

LINQ in Action

LINQ in Action

FABRICE MARGUERIE

STEVE EICHERT

 JIM WOOLEY

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2008 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Manning Publications Co. Copyeditor: Benjamin Berg
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-933988-16-9
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 13 12 11 10 09 08

brief contents
PART 1 GETTING STARTED ... 1

1 ■ Introducing LINQ 3

2 ■ C# and VB.NET language enhancements 44

3 ■ LINQ building blocks 82

PART 2 QUERYING OBJECTS IN MEMORY 113

4 ■ Getting familiar with LINQ to Objects 115

5 ■ Beyond basic in-memory queries 160

PART 3 QUERYING RELATIONAL DATA................................... 203

6 ■ Getting started with LINQ to SQL 205

7 ■ Peeking under the covers of LINQ to SQL 237

8 ■ Advanced LINQ to SQL features 267

PART 4 MANIPULATING XML ... 311

9 ■ Introducing LINQ to XML 313

10 ■ Query and transform XML with LINQ to XML 350

11 ■ Common LINQ to XML scenarios 385
v

vi BRIEF CONTENTS
PART 5 LINQING IT ALL TOGETHER..................................... 435

12 ■ Extending LINQ 437

13 ■ LINQ in every layer 482

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxii

PART 1 GETTING STARTED... 1

1 Introducing LINQ 3
1.1 What is LINQ? 4

Overview 5 ■ LINQ as a toolset 6 ■ LINQ as language
extensions 7

1.2 Why do we need LINQ? 9
Common problems 10 ■ Addressing a paradigm mismatch 12
LINQ to the rescue 18

1.3 Design goals and origins of LINQ 19
The goals of the LINQ project 20 ■ A bit of history 21

1.4 First steps with LINQ to Objects: Querying collections
in memory 23

What you need to get started 23 ■ Hello LINQ to Objects 25
vii

viii CONTENTS
1.5 First steps with LINQ to XML: Querying XML
documents 29

Why we need LINQ to XML 30 ■ Hello LINQ to XML 32

1.6 First steps with LINQ to SQL: Querying relational
databases 37

Overview of LINQ to SQL’s features 37 ■ Hello LINQ to
SQL 38 ■ A closer look at LINQ to SQL 42

1.7 Summary 42

2 C# and VB.NET language enhancements 44
2.1 Discovering the new language enhancements 45

Generating a list of running processes 46 ■ Grouping results
into a class 47

2.2 Implicitly typed local variables 49
Syntax 49 ■ Improving our example using implicitly
typed local variables 50

2.3 Object and collection initializers 52
The need for object initializers 52 ■ Collection initializers 53
Improving our example using an object initializer 54

2.4 Lambda expressions 55
A refresher on delegates 56 ■ Anonymous
methods 58 ■ Introducing lambda expressions 58

2.5 Extension methods 64
Creating a sample extension method 64 ■ More
examples using LINQ’s standard query operators 68
Extension methods in action in our example 70
Warnings 71

2.6 Anonymous types 73
Using anonymous types to group data into an object 74
Types without names, but types nonetheless 74
Improving our example using anonymous
types 76 ■ Limitations 76

2.7 Summary 79

CONTENTS ix
3 LINQ building blocks 82
3.1 How LINQ extends .NET 83

Refresher on the language extensions 83 ■ The key elements
of the LINQ foundation 85

3.2 Introducing sequences 85
IEnumerable<T> 86 ■ Refresher on iterators 87
Deferred query execution 89

3.3 Introducing query operators 93
What makes a query operator? 93 ■ The standard query
operators 96

3.4 Introducing query expressions 97
What is a query expression? 98 ■ Writing query
expressions 98 ■ How the standard query operators relate
to query expressions 100 ■ Limitations 102

3.5 Introducing expression trees 104
Return of the lambda expressions 105 ■ What are
expression trees? 105 ■ IQueryable, deferred query
execution redux 108

3.6 LINQ DLLs and namespaces 109
3.7 Summary 111

PART 2 QUERYING OBJECTS IN MEMORY................. 113

4 Getting familiar with LINQ to Objects 115
4.1 Introducing our running example 116

Goals 116 ■ Features 117 ■ The business entities 117
Database schema 118 ■ Sample data 118

4.2 Using LINQ with in-memory collections 121
What can we query? 121 ■ Supported operations 126

4.3 Using LINQ with ASP.NET and Windows Forms 126
Data binding for web applications 127 ■ Data binding
for Windows Forms applications 133

x CONTENTS
4.4 Focus on major standard query operators 137
Where, the restriction operator 138 ■ Using projection
operators 139 ■ Using Distinct 142 ■ Using conversion
operators 143 ■ Using aggregate operators 145

4.5 Creating views on an object graph in memory 146
Sorting 146 ■ Nested queries 147 ■ Grouping 150
Using joins 151 ■ Partitioning 155

4.6 Summary 159

5 Beyond basic in-memory queries 160
5.1 Common scenarios 161

Querying nongeneric collections 162 ■ Grouping by multiple
criteria 164 ■ Dynamic queries 167 ■ LINQ to Text Files 178

5.2 Design patterns 180
The Functional Construction pattern 181 ■ The ForEach
pattern 184

5.3 Performance considerations 186
Favor a streaming approach 187 ■ Be careful about immediate
execution 189 ■ Will LINQ to Objects hurt the performance of my
code? 191 ■ Getting an idea about the overhead of LINQ to
Objects 195 ■ Performance versus conciseness: A cruel
dilemma? 198

5.4 Summary 200

PART 3 QUERYING RELATIONAL DATA..................... 203

6 Getting started with LINQ to SQL 205
6.1 Jump into LINQ to SQL 207

Setting up the object mapping 209 ■ Setting up the
DataContext 212

6.2 Reading data with LINQ to SQL 212
6.3 Refining our queries 217

Filtering 217 ■ Sorting and grouping 219
Aggregation 221 ■ Joining 222

CONTENTS xi
6.4 Working with object trees 226
6.5 When is my data loaded and why does it matter? 229

Lazy loading 229 ■ Loading details immediately 231

6.6 Updating data 233
6.7 Summary 236

7 Peeking under the covers of LINQ to SQL 237
7.1 Mapping objects to relational data 238

Using inline attributes 239 ■ Mapping with external XML
files 245 ■ Using the SqlMetal tool 247 ■ The LINQ to SQL
Designer 249

7.2 Translating query expressions to SQL 252
IQueryable 252 ■ Expression trees 254

7.3 The entity life cycle 257
Tracking changes 259 ■ Submitting changes 260
Working with disconnected data 263

7.4 Summary 266

8 Advanced LINQ to SQL features 267
8.1 Handling simultaneous changes 268

Pessimistic concurrency 268 ■ Optimistic concurrency 269
Handling concurrency exceptions 272 ■ Resolving conflicts using
transactions 276

8.2 Advanced database capabilities 278
SQL pass-through: Returning objects from SQL queries 278
Working with stored procedures 280 ■ User-defined
functions 290

8.3 Improving the business tier 294
Compiled queries 294 ■ Partial classes for custom business
logic 296 ■ Taking advantage of partial methods 299
Using object inheritance 301

8.4 A brief diversion into LINQ to Entities 306
8.5 Summary 309

xii CONTENTS
PART 4 MANIPULATING XML 311

9 Introducing LINQ to XML 313
9.1 What is an XML API? 314
9.2 Why do we need another XML programming API? 316
9.3 LINQ to XML design principles 317

Key concept: functional construction 319 ■ Key concept: context-
free XML creation 320 ■ Key concept: simplified names 320

9.4 LINQ to XML class hierarchy 323
9.5 Working with XML using LINQ 326

Loading XML 327 ■ Parsing XML 329 ■ Creating
XML 330 ■ Creating XML with Visual Basic XML literals 335
Creating XML documents 338 ■ Adding content to XML 341
Removing content from XML 343 ■ Updating XML
content 344 ■ Working with attributes 347 ■ Saving
XML 348

9.6 Summary 349

10 Query and transform XML with LINQ to XML 350
10.1 LINQ to XML axis methods 352

Element 354 ■ Attribute 355 ■ Elements 356 ■ Descendants
357 ■ Ancestors 360 ■ ElementsAfterSelf, NodesAfterSelf,

ElementsBeforeSelf, and NodesBeforeSelf 362 ■ Visual Basic XML
axis properties 363

10.2 Standard query operators 366
Projecting with Select 369 ■ Filtering with Where 370
Ordering and grouping 372

10.3 Querying LINQ to XML objects with XPath 376
10.4 Transforming XML 378

LINQ to XML transformations 378 ■ Transforming LINQ to
XML objects with XSLT 382

10.5 Summary 383

CONTENTS xiii
11 Common LINQ to XML scenarios 385
11.1 Building objects from XML 386

Goal 387 ■ Implementation 389

11.2 Creating XML from object graphs 392
Goal 392 ■ Implementation 393

11.3 Creating XML with data from a database 398
Goal 399 ■ Implementation 401

11.4 Filtering and mixing data from a database with
XML data 406

Goal 406 ■ Implementation 407

11.5 Reading XML and updating a database 411
Goal 412 ■ Implementation 413

11.6 Transforming text files into XML 428
Goal 428 ■ Implementation 429

11.7 Summary 432

PART 5 LINQING IT ALL TOGETHER 435

12 Extending LINQ 437
12.1 Discovering LINQ’s extension mechanisms 438

How the LINQ flavors are LINQ implementations 439
What can be done with custom LINQ extensions 441

12.2 Creating custom query operators 442
Improving the standard query operators 443 ■ Utility or
domain-specific query operators 446

12.3 Custom implementations of the basic query
operators 451

Refresh on the query translation mechanism 452 ■ Query
expression pattern specification 453 ■ Example 1: tracing
standard query operators’ execution 455 ■ Limitation: query
expression collision 457 ■ Example 2: nongeneric, domain-specific
operators 459 ■ Example 3: non-sequence operator 461

xiv CONTENTS
12.4 Querying a web service: LINQ to Amazon 463
Introducing LINQ to Amazon 463 ■ Requirements 465
Implementation 467

12.5 IQueryable and IQueryProvider: LINQ to Amazon
advanced edition 474

The IQueryable and IQueryProvider interfaces 474
Implementation 479 ■ What happens exactly 480

12.6 Summary 481

13 LINQ in every layer 482
13.1 Overview of the LinqBooks application 483

Features 483 ■ Overview of the UI 484 ■ The data model 486

13.2 LINQ to SQL and the data access layer 486
Refresher on the traditional three-tier architecture 487 ■ Do we
need a separate data access layer or is LINQ to SQL enough? 488
Sample uses of LINQ to SQL in LinqBooks 495

13.3 Use of LINQ to XML 502
Importing data from Amazon 502 ■ Generating RSS feeds 504

13.4 Use of LINQ to DataSet 505
13.5 Using LINQ to Objects 509
13.6 Extensibility 509

Custom query operators 509 ■ Creating and using a custom LINQ
provider 510

13.7 A look into the future 511
Custom LINQ flavors 511 ■ LINQ to XSD, the typed LINQ to
XML 513 ■ PLINQ: LINQ meets parallel computing 513
LINQ to Entities, a LINQ interface for the ADO.NET Entity
Framework 514

13.8 Summary 515

appendix: The standard query operators 517
resources 523
index 527

bonus chapter: Working with LINQ and DataSets
available online only from www.manning.com/LINQinAction

foreword
It’s difficult for me to write this foreword, not because the road to LINQ was long
and arduous or that I’m teary-eyed, wrought with emotion, or finding it difficult
to compose just the right the words for a send-off worthy of a product that I’ve
poured my very soul into. It’s difficult because I know that this is going to be a
well-respected book and I’m finding it tricky to work in a punch line.

 For me the LINQ project started years before anything official, back when I was
involved in plotting and scheming over a new managed ADO. Back then, a few
very smart developers had the audacity to suggest shucking off the chains of tradi-
tional data access APIs and designing around the ubiquity of objects and metadata
that were fundamental to the new runtime—the Java runtime. Unfortunately,
none of that happened. The traditionalists won, and at the time I was one of
them. Yet what I gained from that experience was a perspective that data belongs
at the heart of any programming system, not bolted on as an afterthought. It made
sense that in a system based on objects, data should be objects too. But getting
there was going to take overcoming a lot of challenges.

 As an engineer, I was at the center of the advancements happening inside
Microsoft, designing new APIs and influencing language features that would move
us forward. Many of these never made it all the way to shipping products, yet each
attempt was a step in the right direction. LINQ is a culmination of these endeavors,
of battles fought and lessons learned. It is born out of an accretion of insights from
a group of my peers, draws upon existing theories and techniques from computer
xv

xvi FOREWORD
science at large, and would never have come together without the clear-cut wisdom
and attention to detail that is Anders Hejlsberg.

 Of course, there were all of you too. LINQ was shaped significantly by the com-
munity of developers discussing it on forums and blogs. The ability to receive such
immediate feedback was like turning on the lights in a darkened room. It was also
energizing to watch as the spark caught fire in so many of you, how you became
experts and evangelists, gave talks, wrote articles, and inspired each other.

 That’s why this book is so important. Fabrice, Jim, and Steve were a large part
of that community and have captured its essence within the pages of their book.
LINQ in Action is a book from the people to the people. It’s as if they had decided
to throw a party for LINQ and everyone who’s anyone showed up.

 So read on, enjoy, and don’t waste time waiting in line for the punch.

 MATT WARREN
 PRINCIPAL ARCHITECT

 MICROSOFT

preface
I chose software development as the way to make a living mainly because it’s a
technology that is constantly evolving. There’s always something new to learn. No
chance of getting bored in this line of work! In addition to learning, I also enjoy
teaching software development. Writing LINQ in Action was a good opportunity to
both learn and teach at the same time.

 When we started writing this book, LINQ was still an early prototype. We followed
its evolution as it was taking shape. There was a lot to discover and a lot to under-
stand. This is part of a software developer’s everyday job. We have to stay up-to-date
with the technologies we use and learn new ones as they come out. The software
development environment is evolving at an increasingly fast pace, and I don’t see
any signs that that’s going to change.

 .NET is a fast-moving environment. Over the last couple of years, we’ve seen
two major releases of the .NET Framework, and several companion technologies
have appeared: Windows Presentation Foundation, Windows Communication
Foundation, Windows Workflow Foundation, ASP.NET AJAX, Silverlight, and LINQ
have joined our developer toolbox. Another trend in .NET is the multiplication of
programming languages. F#, which will receive the same support as C# or VB.NET
in Visual Studio, introduces functional programming in .NET. Dynamic lan-
guages, such as Python and Ruby, are going to be supported by the .NET Dynamic
Language Runtime.
xvii

xviii PREFACE
 In coming years, we’ll have to deal with more programming languages than
the ones we currently master. An advantage of C#, Visual Basic, and the other
.NET languages is that they are constantly adapting. C# and VB.NET have been
improved in their latest versions to offer support for language-integrated query-
ing through LINQ.

 In addition to offering novel approaches to deal with data, LINQ represents a
shift toward declarative and functional programming. When people ask me for rea-
sons to learn LINQ, I tell them that they should learn it in order to be able to use
it with XML, relational data, or in-memory collections, but above all to be able to
start using declarative programming, deferred execution, and lambda expressions.

 Start learning LINQ now! When you do, you’ll not only learn how to use this
new technology, but you’ll also discover where programming is heading. One of
our main goals with LINQ in Action was to help you fully comprehend the new
approaches associated with LINQ.

FABRICE MARGUERIE

acknowledgments
Writing this book was a long process. It gave us the opportunity to have informative
discussions with a lot of interesting people, as well as to learn and get input from
some very smart individuals. We received help from many different sources—this
book would not have been possible without them. Not only that: They also brought
out the best in us. The people who contributed to the book in ways both large and
small kept pushing us to raise the quality of our work higher and higher. We forgive
them now for being so demanding. It was all for a good cause.

 First, we’d like to express our gratitude to everyone at Manning. We appreci-
ate the trust they placed in us and their involvement in asking us for our best in
this project. A sincere thank-you to our publisher Marjan Bace for his vote of con-
fidence in offering us the opportunity to write this book and to our editor
Michael Stephens for being there throughout the process and helping make this
project a reality.

 Thanks to the editorial team at Manning who worked with us on turning this
book into the end product you are now holding in your hands: Cynthia Kane,
Mary Piergies, Karen Tegtmeyer, Ron Tomich, Lianna Wlasiuk, Megan Yockey,
Benjamin Berg, Gordan Salinovic, Dottie Marsico, Elizabeth Martin, and Tiffany
Taylor all guided us and kept us moving in the right direction.

 We would also thank the many reviewers of the manuscript, who looked at it in
various stages of development and whose thoughtful feedback made this a much
better book: Dave Corun, Marius Bancila, Keith Farmer, Curt Christianson, Mark
xix

xx ACKNOWLEDGMENTS
Monster, Darren Neimke, Jon Skeet, Tomas Restrepo, Javier G. Lozano, Oliver
Sturm, Mohammad Azam, Eric Swanson, Keith Hill, Rama Krishna Vavilala, and
Bruno Boucard.

 Our technical proofreader was Keith Farmer and he did a great job checking
the code and making sure it all ran properly shortly before the book went to press.
Thanks, Keith.

 We’d also like to thank the people from Microsoft with whom we’ve been in
touch: Keith Farmer, Dinesh Kulkarni, Amanda Silver, Erick Thompson, Matt
Warren, and Eric White. Their hints and assistance were precious when we were
lost in the mysteries of the early LINQ machinery. Special thanks to Matt Warren
for agreeing to write the foreword to our book.

 We can’t forget the subscribers to the Manning Early Access Program (MEAP)
who reported errors either through the book’s forum or directly in emails, help-
ing us weed out a lot of early mistakes. Michael Vandemore is one such vigilant
reader we’d like to acknowledge here.

 Thanks again to all of you listed above and below—as well as to any others we
may have forgotten to mention: You made it possible!

FABRICE MARGUERIE

When Michael Stephens first contacted me, I knew that writing a book wasn’t an
easy task, but I also knew that I was ready to take on the challenge. Only now,
more than 20 months later, as I’m writing these acknowledgments, do I realize
how big the challenge was and how much work was ahead of us.

 I’d like to thank Jon Skeet, Troy Magennis, and Eric White for kindly allowing
me to use parts of their work in my chapters.

 I’m grateful to my co-workers and friends who were kind enough to review
portions of the manuscript and provided many useful comments. They include
Bruno Boucard, Pierrick Gourlain, Pierre Kovacs, Christophe Menet, and Patrick
Smacchia.

 Special thanks go to my wife for her patience during this long project. Who
else could forgive me for all the extra time I spent in front of my computer during
these last months?

 Finally, I’d like to extend my thanks to Steve and Jim for their invaluable con-
tributions to the book. They have been excellent partners. Steve and Jim, thank
you for joining the project and bringing your talents to it.

ACKNOWLEDGMENTS xxi
STEVE EICHERT

I would like to thank my beautiful wife Christin, and three wonderful children,
McKayla, Steven John, and Keegan. Your patience, encouragement, and love are
what got me through this project. You continue to inspire me in ways that I never
thought possible. Thank you!

JIM WOOLEY

I would like to thank Microsoft for their openness through blogs, forums, and
access to tech previews. Without access to these, books like ours would not be pos-
sible. I am also appreciative of the support we have received from members of the
product teams, particularly Keith Farmer, Matt Warren, and Amanda Silver, as
well as the evangelists like Doug Turnure and Joe Healy who support us out in the
field and encourage us to do crazy things like write books.

 Saving the best for last, I want to thank my family, particularly my wife Sindee,
son Daniel, and my parents, who supported me even when it meant sacrificing
holidays and weekends to meet publication deadlines. I couldn’t have done it
without your patience and encouragement.

about this book
Welcome to LINQ in Action. This book is an introduction to the Microsoft .NET
LINQ technology and the rich toolset that comes with it.

 LINQ stands for Language INtegrated Query. In a nutshell, it makes query opera-
tions like SQL statements into first-class citizens in .NET languages like C# and VB.
LINQ offers built-in support for querying in-memory collections such as arrays or
lists, XML, DataSets, and relational databases. But LINQ is extensible and can be
used to query various data sources.

 Our goal with this book is to help developers who have an existing knowledge
of the .NET Framework and the C# or VB.NET language to discover the concepts
introduced by LINQ and gain a complete understanding of how the technology
works, as well as how to make the best of it in their projects.

 LINQ in Action covers the entire LINQ spectrum. From Hello World code samples
and the new C# 3.0 and VB.NET 9.0 features to LINQ’s extensibility and a tour of all
the LINQ providers, this book has everything you need to get up to speed with LINQ
and to be able to create applications that take advantage of it.

 We believe this book provides the right mix of theory and examples. We made
sure to keep the focus on the practical side of things, because we think that noth-
ing’s better than a hands-on exploration of the technology. Several additions have
been made to the C# and VB.NET languages, as well as to the .NET class library. But
fear not: These language innovations aren’t difficult to grasp when you have the
right code sample in front of you.
xxii

ABOUT THIS BOOK xxiii
 We’ll guide you along as you make your way through this new world where beasts
like lambda expressions, query operators, and expression trees live. You’ll discover all the
basics of LINQ that’ll help you form a clear understanding of the complete LINQ
toolset. We’ll also provide a presentation of the common use cases for all the flavors
of LINQ. Whether you want to use LINQ to query objects, XML documents, or rela-
tional databases, you’ll find all the information you’ll need. But we won’t stop at the
basic code. We’ll also show you how LINQ can be used for advanced data processing.
This includes coverage of LINQ’s extensibility, which allows us to query more data
sources than those supported by default.

 In order to base our code samples on concrete business classes, we’ll use a run-
ning example. This example, LinqBooks, is a personal book-cataloging system.
This means that the LINQ queries you’ll see throughout the book will deal with
objects such as Book, Publisher, and Author. The running example we’ve chosen
is broad enough to involve all aspects of LINQ. We’ll progressively build the sam-
ple application throughout the chapters, finishing with a complete application in
the last chapter.

Who should read this book

This book targets the .NET developer audience. Whether you don’t know much
about LINQ yet or you already have a good knowledge of it, this book is for you.

 In order to fully appreciate this book, you should already know C# or VB.NET,
ideally C# 2.0 or VB.NET 8.0.

How the book is organized

This book has been written so that you can choose what you want to read and how
you want to read it. It has 5 parts, 13 chapters, an appendix, a list of resources, and
a bonus chapter.

 Part 1 introduces LINQ and its toolset. It also helps you to write your first LINQ
queries. If LINQ is new to you or if you want to make sure that you have all the
background information required to correctly understand LINQ code, the first
part of this book is for you. If you’re already familiar with LINQ and have a firm
grasp on the new features of C# 3.0 and VB.NET 9.0, feel free to skip the first chap-
ters and jump directly to other parts of the book that are related to specific uses of
LINQ. If you want to understand where LINQ comes from, before you dive in, you
may be interested in reading the bit of history we propose in chapter 1.

xxiv ABOUT THIS BOOK
 Part 2 is dedicated to LINQ to Objects and querying in-memory collections. This
part also contains information about common LINQ use cases and best practices
that’ll be useful when working with any LINQ flavor.

 Part 3 focuses on LINQ to SQL. It addresses the persistence of objects into rela-
tional databases. It will also help you discover how to query SQL Server databases
with LINQ. Advanced LINQ to SQL features are also presented, such as inherit-
ance, transactions, stored procedures, and more.

 Part 4 covers LINQ to XML. It demonstrates how to use LINQ for creating and
processing XML documents. In this part, you’ll see what LINQ to XML has to offer
compared to the other XML APIs. A comprehensive set of examples covers the
most common LINQ to XML use cases.

 Part 5 covers extensibility and shows how the LINQ flavors fit in a complete
application. The extensibility chapter demonstrates various ways to enrich the
LINQ toolset. The last chapter analyzes the use of LINQ in our running example
and discusses choices you can make when you use LINQ.

 The appendix contains a reference of the standard query operators, a key con-
stituent of LINQ queries. Resources provides pointers to resources that will help you
to learn more about LINQ, such as Microsoft’s official web sites, articles, weblogs
or forums.

 An online bonus chapter available as a download at http://www.manning.com/
LINQinAction and at http://LinqInAction.net introduces LINQ to DataSet. It dem-
onstrates how LINQ can be used to query DataSets and DataTables.

 It’s up to you to decide whether you want to read the book from start to finish
or jump right into one precise chapter. Wherever you are in the book, we tried to
make it easy for you to navigate between chapters.

Tools used

The LINQ technology is included in .NET 3.5. It is supported by Visual Studio
2008, C# 3.0, and VB.NET 9.0. All the content of this book and the code samples it
contains are based on Visual Studio 2008 and .NET 3.5 RTM,1 the final products.
You can refer to section 1.4.1 to find a detailed list of software requirements for
working with LINQ and this book’s samples.

Source code

This book contains extensive source code examples in C# and VB.NET. All code
examples can be found as a downloadable archive at the book’s web site at

1 Release To Manufacturing.

http://www.manning.com/LINQinAction

ABOUT THIS BOOK xxv
http://www.manning.com/LINQinAction and at http://LinqInAction.net. Not
all the examples are provided in both C# and VB.NET at the same time in the
book, but they’re all available in both languages in the companion source code.

Conventions

When we write “LINQ,” we’re referring to the LINQ technology or the complete
LINQ framework. When we write “LINQ toolset,” we mean the set of tools LINQ
offers: LINQ to Objects, LINQ to XML, LINQ to SQL, and the others. We’ll explic-
itly use LINQ to Objects, LINQ to XML, or LINQ to SQL to refer to specific parts of the
LINQ toolset.

Typographical conventions

This book uses a special code font whenever certain code terms such as classes,
objects, or operator names appear in the main text.

 Particular bits of code that we want to draw attention to appear in bold. Fur-
thermore, all code results and console output appears in italics.

 Code annotations accompany many of the listings, highlighting important
concepts. In some cases, numbered bullets B link to explanations that follow the
listing.

 Icons like this differentiate between code in C# and VB.NET:

Author Online

Purchase of LINQ in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to http://www.manning.com/
LINQinAction. This page provides information on how to get on the forum once you
are registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialogue between individual readers and between readers and the authors can
take place. It is not a commitment to any specific amount of participation on the
part of the authors, whose contribution to the book’s forum remains voluntary
(and unpaid). We suggest you try asking the authors some challenging questions,
lest their interest stray!

http://www.manning.com/LINQinAction

xxvi ABOUT THIS BOOK
 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

About the authors

FABRICE MARGUERIE is a software architect and developer with more than 13 years
of experience in the software industry. He has diverse experience, ranging from
consulting services and training to starting his own business. Fabrice has been
awarded the C# MVP title by Microsoft in recognition for his involvement in the
.NET community. His activities include speaking at conferences, writing technical
articles in English and French, writing a weblog about .NET, and running websites
such as sharptoolbox.com and proagora.com. Fabrice is based in Paris, France.

STEVE EICHERT is an architect and technical lead at Algorithmics, Inc. He also
runs his own consulting company where he specializes in delivering solutions to
clients utilizing the latest Microsoft .NET technologies. Steve can be found online
at http://iqueryable.com. He is married and has three beautiful children. Steve is
based in Philadelphia.

JIM WOOLEY has been working with .NET since PDC 2000 and has been actively
evangelizing LINQ since its announcement in 2005. He leads the Atlanta VB Study
Group and serves as INETA Membership Manager for the Georgia region.

About the title

By combining introductions, overviews, and how-to examples, the In Action books
are designed to help learning and remembering. According to research in cogni-
tive science, the things people remember are things they discover during self-
motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, re-telling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively explor-
ing them. Humans learn in action. An essential part of an In Action book is that it is
example-driven. It encourages the reader to try things out, to play with new code,
and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just when

ABOUT THIS BOOK xxvii
they want it. They need books that aid them in action. The books in this series are
designed for such readers.

About the cover illustration

The caption for the figure on the cover of LINQ in Action reads “La Champenoise”
or “The Champagne One.” The drawing is of a young woman from the historic
province of Champagne in the northeast of France, best known for the produc-
tion of the sparkling white wine that bears the region’s name. The illustration is
taken from a French travel book, Encyclopedie des Voyages by J. G. St. Saveur, pub-
lished in 1796. Travel for pleasure was a relatively new phenomenon at the time
and travel guides such as this one were popular, introducing both the tourist as
well as the armchair traveler to the inhabitants of other regions of the world, as
well as to the and regional costumes and uniforms of French soldiers, civil ser-
vants, tradesmen, merchants, and peasants.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years
ago. This was a time when the dress codes of two regions separated by a few dozen
miles identified people uniquely as belonging to one or the other. The travel
guide brings to life a sense of isolation and distance of that period and of every
other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life two
centuries ago brought back to life by the pictures from this travel guide.

Part 1

Getting started

This part of the book introduces the LINQ technology and the C# and
VB language enhancements.

 Chapter 1 presents LINQ, its history, the reasons to use it, and quick
“hello world” examples with objects, XML, and SQL. Chapter 2 introduces all
the new languages features provided by the latest versions of C# and VB.NET
to enable LINQ. Chapter 3 covers LINQ’s technical fundamentals and shows
how they fit together.

Introducing LINQ
This chapter covers
■ LINQ’s origins
■ LINQ’s design goals
■ First steps with LINQ to Objects, LINQ to XML,

and LINQ to SQL
3

4 CHAPTER 1

Introducing LINQ
Software is simple. It boils down to two things: code and data. Writing software is
not so simple, and one of the major activities it involves is writing code that deals
with data.

 To write code, we can choose from a variety of programming languages. The
selected language for an application may depend on the business context, on
developer preferences, on the development team’s skills, on the operating system,
or on company policy.

 Whatever language you end up with, at some point you will have to deal with
data. This data can be in files on a disk, tables in a database, or XML documents
coming from the Web, or often you have to deal with a combination of all of
these. Ultimately, managing data is a requirement for every software project you’ll
work on.

 Given that dealing with data is such a common task for developers, we would
expect rich software development platforms like the .NET Framework to provide
an easy way to do it. .NET does provide wide support for working with data. You will
see, however, that something had yet to be achieved: deeper language and data
integration. This is where LINQ to Objects, LINQ to XML, and LINQ to SQL fit in.

 The technologies we present in this book have been designed as a new way to
write code. This book has been written by developers for developers, so don’t be
afraid: You won’t have to wait too long before you are able to write your first lines
of LINQ code! In this chapter, we will quickly introduce “hello world” pieces of
code to give you hints on what you will discover in the rest of the book. The aim is
that, by the end of the book, you will be able to tackle real-world projects while
being convinced that LINQ is a joy to work with.

 The intent of this first chapter is to give you an overview of LINQ and to help
you identify the reasons to use it. We will start by providing an overview of LINQ
and the LINQ toolset, which includes LINQ to Objects, LINQ to XML, and LINQ to
SQL. We will then review some background information to clearly understand why
we need LINQ and where it comes from. The second half of this chapter will guide
you while you make your first steps with LINQ code.

1.1 What is LINQ?

Suppose you are writing an application using .NET. Chances are high that at some
point you’ll need to persist objects to a database, query the database, and load the
results back into objects. The problem is that in most cases, at least with relational
databases, there is a gap between your programming language and the database.
Good attempts have been made to provide object-oriented databases, which

What is LINQ? 5
would be closer to object-oriented platforms and imperative programming lan-
guages such as C# and VB.NET. However, after all these years, relational databases
are still pervasive, and you still have to struggle with data access and persistence in
all of your programs.

 The original motivation behind LINQ was to address the conceptual and tech-
nical difficulties encountered when using databases with .NET programming lan-
guages. With LINQ, Microsoft’s intention was to provide a solution for the
problem of object-relational mapping, as well as to simplify the interaction
between objects and data sources. LINQ eventually evolved into a general-purpose
language-integrated querying toolset. This toolset can be used to access data com-
ing from in-memory objects (LINQ to Objects), databases (LINQ to SQL), XML
documents (LINQ to XML), a file-system, or any other source.

 We will first give you an overview of what LINQ is, before looking at the tools it
offers. We will also introduce how LINQ extends programming languages.

1.1.1 Overview

LINQ could be the missing link—whether this pun is intended is yet to be discov-
ered—between the data world and the world of general-purpose programming
languages. LINQ unifies data access, whatever the source of data, and allows mix-
ing data from different kind of sources. It allows for query and set operations, sim-
ilar to what SQL statements offer for databases. LINQ, though, integrates queries
directly within .NET languages such as C# and Visual Basic through a set of exten-
sions to these languages: LINQ means Language-INtegrated Query.

 Before LINQ, we had to juggle different languages like SQL, XML, or XPath
along with various technologies and APIs like ADO.NET or System.Xml in every
application written using general-purpose languages such as C# or VB.NET. It goes
without saying that this approach had several drawbacks.1 LINQ glues several
worlds together. It helps us avoid the bumps we would usually find on the road
from one world to another: using XML with objects, objects with relational data,
and relational data with XML are some of the tasks that LINQ will simplify.

 One of the key aspects of LINQ is that it was designed to be used against any
type of object or data source and to provide a consistent programming model for
doing so. The syntax and concepts are the same across all of its uses: Once you

1 “It was like you had to order your dinner in one language and drinks in another,” said Jason McConnell,
product manager for Visual Studio at Microsoft. “The direct benefit is programmers are more produc-
tive because they have this unified approach to querying and updating data from within their language.”

6 CHAPTER 1

Introducing LINQ
learn how to use LINQ against an array or a collection, you also know most of the
concepts needed to take advantage of LINQ with a database or an XML file.

 Another important aspect of LINQ is that when you use it, you work in a
strongly typed world. The benefits include compile-time checking for your que-
ries as well as nice hints from Visual Studio’s IntelliSense feature.

 LINQ will significantly change some aspects of how you handle and manipulate
data with your applications and components. You will discover how LINQ is a step
toward a more declarative programming model. Maybe you will wonder in the
not-so-distant future why you used to write so many lines of code.

 There is duality in LINQ. You can conceive of LINQ as consisting of two com-
plementary parts: a set of tools that work with data, and a set of programming lan-
guage extensions.

 You’ll first see how LINQ is a toolset that can be used to work with objects, XML
documents, relational databases, or other kinds of data. You’ll then see how LINQ
is also an extension to programming languages like C# and VB.NET.

1.1.2 LINQ as a toolset

LINQ offers numerous possibilities. It will significantly change some aspects of how
you handle and manipulate data with your applications and components. In this
book, we’ll detail the use of three major flavors of LINQ, or LINQ providers—LINQ
to Objects, LINQ to SQL, and LINQ to XML, respectively—in parts 2, 3, and 4. These
three LINQ providers form a family of tools that can be used separately for partic-
ular needs or combined for powerful solutions.

 We will focus on LINQ to Objects, LINQ to SQL, and LINQ to XML in this book,
but LINQ is open to new data sources. The three main LINQ providers discussed
in this book are built on top of a common LINQ foundation. This foundation con-
sists of a set of building blocks including query operators, query expressions, and expres-
sion trees, which allow the LINQ toolset to be extensible.

 Other variants of LINQ can be created to provide access to diverse kinds of
data sources. Implementations of LINQ will be released by software vendors, and
you can also create your own implementations, as you’ll see in chapter 12, which
covers LINQ’s extensibility. You can plug a wide array of data sources into LINQ,
including the file system, Active Directory, WMI, the Windows Event Log, or any
other data source or API. This is excellent because you can benefit from LINQ’s
features with a lot of the data sources you deal with every day. In fact, Microsoft
already offers more LINQ providers than just LINQ to Objects, LINQ to SQL, and
LINQ to XML. Two of them are LINQ to DataSet and LINQ to Entities (to work

What is LINQ? 7
with the new ADO.NET Entity Framework). We will present these tools in the sec-
ond and third parts of this book. For now, let’s keep the focus on the big picture.

 Figure 1.1 shows how we can represent the LINQ building blocks and toolset in
a diagram.

 The LINQ providers presented in figure 1.1 are not standalone tools. They can
be used directly in your programming languages. This is possible because the
LINQ framework comes as a set of language extensions. This is the second aspect
of LINQ, which is detailed in the next section.

1.1.3 LINQ as language extensions

LINQ allows you to access information by writing queries against various data
sources. Rather than being simply syntactic sugar2 that would allow you to easily

2 Syntactic sugar is a term coined by Peter J. Landin for additions to the syntax of a computer language
that do not affect its expressiveness but make it “sweeter” for humans to use. Syntactic sugar gives the
programmer an alternative way of coding that is more practical, either by being more succinct or more
like some familiar notation.

Figure 1.1 LINQ building blocks, LINQ providers, and data sources that can be queried using LINQ

8 CHAPTER 1

Introducing LINQ
include database queries right into your C# code, LINQ provides the same type of
expressive capabilities that SQL offers, but in the programming language of your
choice. This is great because a declarative approach like the one LINQ offers
allows you to write code that is shorter and to the point.

 Listing 1.1 shows sample C# code you can write with LINQ.

var contacts =
 from customer in db.Customers
 where customer.Name.StartsWith("A") && customer.Orders.Count > 0
 orderby customer.Name
 select new { customer.Name, customer.Phone };

var xml =
 new XElement("contacts",
 from contact in contacts
 select new XElement("contact",
 new XAttribute("name", contact.Name),
 new XAttribute("phone", contact.Phone)
)
);

The listing demonstrates all you need to write in order to extract data from a data-
base and create an XML document from it. Imagine how you would do the same
without LINQ, and you’ll realize how things are easier and more natural with
LINQ. You will soon see more LINQ queries, but let’s keep focused on the lan-
guage aspects for the moment. With the from, where, orderby, and select key-
words in the listing, it’s obvious that C# has been extended to enable language-
integrated queries.

 We’ve just shown you code in C#, but LINQ provides a common querying archi-
tecture across programming languages. It works with C# 3.0 and VB.NET 9.0 (also
known as VB 2008), and as such requires dedicated compilers, but it can be
ported to other .NET languages. This is already the case for F#, a functional lan-
guage for .NET from Microsoft Research, and you can expect to see LINQ support
appear in more .NET languages in the future.

 Figure 1.2 shows a typical language-integrated query that is used to talk to
objects, XML, or data tables.

 The query in the figure is expressed in C# and not in a new language. LINQ is
not a new language. It is integrated into C# and VB.NET. In addition, LINQ can be
used to avoid entangling your .NET programming language with SQL, XSL, or

Listing 1.1 Sample code that uses LINQ to query a database and create an XML document

Retrieve customers from database

Generate XML data
from list of customers

Why do we need LINQ? 9
other data-specific languages. The set of language extensions that come with
LINQ enables queries over several kinds of data stores to be formulated right into
programming languages. Think of LINQ as a universal remote control, if you wish.
At times, you’ll use it to query a database; at others, you’ll query an XML docu-
ment. But you’ll do all this in your favorite language, without having to switch to
another one like SQL or XQuery.

 In chapter 2, we’ll show you the details of how the programming languages
have been extended to support LINQ. In chapter 3, you’ll learn how to write LINQ
queries. This is where you’ll learn about query operators, query expressions, and
expression trees. But you still have a few things to discover before getting there.

 Now that we have given you an idea of what LINQ is, let’s discuss the motivation
behind it, and then we’ll review its design goals and a bit of history.

1.2 Why do we need LINQ?

We have just provided you with an overview of LINQ. The big questions at this
point are: Why do we want a tool like LINQ? What makes the previous tools incon-
venient? Was LINQ created only to make working with programming languages,
relational data, and XML at the same time more convenient?

Figure 1.2 LINQ as language extensions and as a gateway to several data sources

10 CHAPTER 1

Introducing LINQ
 At the origin of the LINQ project is a simple fact: The vast majority of applica-
tions that are developed access data or talk to a relational database. Consequently,
in order to program applications, learning a language such as C# is not enough.
You also have to learn another language such as SQL, and the APIs that tie it
together with C# to form your full application.

 We’ll start by taking a look at a piece of data-access code that uses the standard
.NET APIs. This will allow us to point out the common problems that are encoun-
tered in this kind of code. We will then extend our analysis by showing how these
problems exist with other kinds of data such as XML. You’ll see that LINQ
addresses a general impedance mismatch between data sources and programming
languages. Finally, a short code sample will give you a glimpse at how LINQ is a
solution to the problem.

1.2.1 Common problems

The frequent use of databases in applications requires that the .NET Framework
address the need for APIs that can access the data stored within. Of course, this
has been the case since the first appearance of .NET. The .NET Framework Class
Library (FCL) includes ADO.NET, which provides an API to access relational data-
bases and to represent relational data in memory. This API consists of classes such
as SqlConnection, SqlCommand, SqlReader, DataSet, and DataTable, to name a
few. The problem with these classes is that they force the developer to work explic-
itly with tables, records, and columns, while modern languages such as C# and
VB.NET use object-oriented paradigms.

 Now that the object-oriented paradigm is the prevailing model in software
development, developers incur a large amount of overhead in mapping it to other
abstractions, specifically relational databases and XML. The result is that a lot of
time is spent on writing plumbing code.3 Removing this burden would increase
productivity in data-intensive programming, which LINQ helps us do.

 But it’s not only about productivity! It also impacts quality. Writing tedious
and fragile plumbing code can lead to insidious defects in software or degraded
performance.

 Listing 1.2 shows how we would typically access a database in a .NET program.
By looking at the problems that exist with traditional code, you’ll be able to see
how LINQ comes to the rescue.

3 It is estimated that dealing with the task of storing and retrieving objects to and from data stores
accounts for between 30 and 40 percent of a development team’s time.

Why do we need LINQ? 11
using (SqlConnection connection = new SqlConnection("..."))
{
 connection.Open();
 SqlCommand command = connection.CreateCommand();
 command.CommandText =
 @"SELECT Name, Country
 FROM Customers
 WHERE City = @City";
 command.Parameters.AddWithValue("@City", "Paris");
 using (SqlDataReader reader = command.ExecuteReader())
 {
 while (reader.Read())
 {
 string name = reader.GetString(0);
 string country = reader.GetString(1);
 ...
 }
 }
}

Just by taking a quick look at this code, we can list several limitations of the model:

■ Although we want to perform a simple task, several steps and verbose code
are required.

■ Queries are expressed as quoted strings B, which means they bypass all
kinds of compile-time checks. What if the string does not contain a valid
SQL query? What if a column has been renamed in the database?

■ The same applies for the parameters C and for the result sets D: they are
loosely defined. Are the columns of the type we expect? Also, are we sure
we’re using the correct number of parameters? Are the names of the param-
eters in sync between the query and the parameter declarations?

■ The classes we use are dedicated to SQL Server and cannot be used with
another database server. Naturally, we could use DbConnection and its
friends to avoid this issue, but that would solve only half of the problem.
The real problem is that SQL has many vendor-specific dialects and data
types. The SQL we write for a given DBMS is likely to fail on a different one.

Other solutions exist. We could use a code generator or one of the several object-
relational mapping tools available. The problem is that these tools are not per-
fect either and have their own limitations. For instance, if they are designed for
accessing databases, most of the time they don’t deal with other data sources

Listing 1.2 Typical .NET data-access code

SQL query in
a string

B

Loosely bound
parametersC

Loosely typed
columns

D

12 CHAPTER 1

Introducing LINQ
such as XML documents. Also, one thing that language vendors such as Microsoft
can do that mapping tool vendors can’t is integrate data-access and -querying fea-
tures right into their languages. Mapping tools at best present a partial solution
to the problem.

 The motivation for LINQ is twofold: Microsoft did not have a data-mapping
solution yet, and with LINQ it had the opportunity to integrate queries into its
programming languages. This could remove most of the limitations we identified
in listing 1.2.

 The main idea is that by using LINQ you are able to gain access to any data
source by writing queries like the one shown in listing 1.3, directly in the program-
ming language that you master and use every day.

from customer in customers
where customer.Name.StartsWith("A") && customer.Orders.Count > 0
orderby customer.Name
select new { customer.Name, customer.Orders }

In this query, the data could be in memory, in a database, in an XML document,
or in another place; the syntax would remain similar if not exactly the same. As
you saw in figure 1.2, this kind of query can be used with multiple types of data
and different data sources, thanks to LINQ’s extensibility features. For example, in
the future we are likely to see an implementation of LINQ for querying a file sys-
tem or for calling web services.

1.2.2 Addressing a paradigm mismatch

Let’s continue looking at why we need LINQ. The fact that modern application
developers have to simultaneously deal with general-purpose programming lan-
guages, relational data, SQL, XML documents, XPath, and so on means that we
need two things:

■ To be able to work with any of these technologies or languages individually

■ To mix and match them to build a rich and coherent solution

The problem is that object-oriented programming (OOP), the relational database
model, and XML—just to name a few—were not originally built to work together.
They represent different paradigms that don’t play well with each other.

Listing 1.3 Simple query expression

Why do we need LINQ? 13
What is this impedance mismatch everybody’s talking about?
Data is generally manipulated by application software written using OOP lan-
guages such as C#, VB.NET, Java, Delphi, and C++. But translating an object graph
into another representation, such as tuples of a relational database, often requires
tedious code.

 The general problem LINQ addresses has been stated by Microsoft like this:
“Data != Objects.” More specifically, for LINQ to SQL: “Relational data != Objects.”
The same could apply for LINQ to XML: “XML data != Objects.” We should also add:
“XML data != Relational data.”

 We’ve used the term impedance mismatch. It is commonly applied to incompati-
bility between systems and describes an inadequate ability of one system to accom-
modate input from another. Although the term originated in the field of
electrical engineering, it has been generalized and used as a term of art in systems
analysis, electronics, physics, computer science, and informatics.

Object-relational mapping
If we take the object-oriented paradigm and the relational paradigm, the mis-
match exists at several levels. Let’s name a few.

 Relational databases and object-oriented languages don’t share the same set of primitive
data types. For example, strings usually have a delimited length in databases, which
is not the case in C# or VB.NET. This can be a problem if you try to persist a 150-
character string in a table field that accepts only 100 characters. Another simple
example is that most databases don’t have a Boolean type, whereas we frequently
use true/false values in many programming languages.

 OOP and relational theories come with different data models. For performance rea-
sons and due to their intrinsic nature, relational databases are usually normalized.
Normalization is a process that eliminates redundancy, organizes data efficiently,
and reduces the potential for anomalies during data operations and improves
data consistency. Normalization results in an organization of data that is specific
to the relational data model. This prevents a direct mapping of tables and records
to objects and collections. Relational databases are normalized in tables and rela-
tions, whereas objects use inheritance, composition, and complex reference
graphs. A common problem exists because relational databases don’t have con-
cepts like inheritance: Mapping a class hierarchy to a relational database requires
using “tricks.”

 Programming models. In SQL, we write queries, and so we have a higher-level,
declarative way of expressing the set of data that we’re interested in. With imperative

14 CHAPTER 1

Introducing LINQ
programming languages such as C# or VB.NET, we have to write for loops and if
statements and so forth.

 Encapsulation. Objects are self-contained and include data as well as behavior.
In databases, data records don’t have behavior, per se. It’s possible to act on data-
base records only through the use of SQL queries or stored procedures. In rela-
tional databases, code and data are clearly separated.

 The mismatch is a result of the differences between a relational database and a
typical object-oriented class hierarchy. We might say relational databases are from
Mars and objects are from Venus.

 Let’s take the simple example shown in figure 1.3. We have an object model
we’d like to map to a relational model.

 Concepts such as inheritance or composition are not directly supported by
relational databases, which means that we cannot represent the data the same way
in both models. You can see here that several objects and types of objects can be
mapped to a single table.

 Even if we wanted to persist an object model like the one we have here in a
new relational database, we would not be able to use a direct mapping. For
instance, for performance reasons and to avoid duplication, it’s much better in
this case to create only one table in the database. A consequence of doing so, how-
ever, is that data coming from the database table cannot be easily used to repopu-
late an object graph in memory. When we win on one side, we lose on the other.

 We may be able to design a database schema or an object model to reduce the
mismatch between both worlds, but we’ll never be able to remove it because of

Figure 1.3 How simple objects can be mapped to a database model. The mapping is not trivial due to
the differences between the object-oriented and the relational paradigms.

Why do we need LINQ? 15
the intrinsic differences between the two paradigms. We don’t even always have
the choice. Often, the database schema is already defined, and in other cases we
have to work with objects defined by someone else.

 The complex problem of integrating data sources with programs involves
more than simply reading from and writing to a data source. When programming
using an object-oriented language, we normally want our applications to use an
object model that is a conceptual representation of the business domain, instead
of being tied directly to the relational structure. The problem is that at some
point we need to make the object model and the relational model work together.
This is not an easy task because object-oriented programming languages and .NET
involve entity classes, business rules, complex relationships, and inheritance,
whereas a relational data source involves tables, rows, columns, and primary and
foreign keys.

 A typical solution for bridging object-oriented languages and relational data-
bases is object-relational mapping. This refers to the process of mapping our rela-
tional data model to our object model, usually back and forth. Mapping can be
defined as the act of determining how objects and their relationships are per-
sisted in permanent data storage, in this case relational databases.

 Databases4 do not map naturally to object models. Object-relational mappers
are automated solutions to address the impedance mismatch. To make a long
story short: We provide an object-relational mapper with our classes, database,
and mapping configuration, and the mapper takes care of the rest. It generates
the SQL queries, fills our objects with data from the database, persists them in the
database, and so on.

 As you can guess, no solution is perfect, and object-relational mappers could
be improved. Some of their main limitations include the following:

■ A good knowledge of the tools is required before being able to use them
efficiently and avoid performance issues.

■ Optimal use still requires knowledge of how to work with a relational
database.

■ Mapping tools are not always as efficient as handwritten data-access code.

■ Not all the tools come with support for compile-time validation.

4 We are talking only about relational databases here because this is what is used in the vast majority of
business applications. Object-oriented databases offer a different approach that allows persisting objects
more easily. Whether object-oriented databases are better than relational databases is another debate,
which we are not going to address in this book.

16 CHAPTER 1

Introducing LINQ
Multiple object-relational mapping tools are available for .NET. There is a choice
of open source, free, or commercial products. As an example, listing 1.4 shows a
mapping configuration file for NHibernate, one of the open source mappers.
Fields, relationships, and inheritance are defined using XML.

<?xml version="1.0" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.0"
 namespace="Eg" assembly="Eg">
 <class name="Cat" table="CATS" discriminator-value="C">
 <id name="Id" column="uid" type="Int64">
 <generator class="hilo"/>
 </id>
 <discriminator column="subclass" type="Char"/>
 <property name="Birthdate" type="Date"/>
 <property name="Color" not-null="true"/>
 <property name="Sex" not-null="true" update="false"/>
 <property name="Weight"/>
 <many-to-one name="Mate" column="mate_id"/>
 <set name="Kittens">
 <key column="mother_id"/>
 <one-to-many class="Cat"/>
 </set>
 <subclass name="DomesticCat" discriminator-value="D">
 <property name="Name" type="String"/>
 </subclass>
 </class>

 <class name="Dog">
 <!-- mapping for Dog could go here -->
 </class>
</hibernate-mapping>

In part 3 of this book, you’ll see how LINQ to SQL is an object-relational mapping
solution and how it addresses some of these issues. But for now, we are going to
look at another problem LINQ can solve.

Object-XML mapping
Analogous to the object-relational impedance mismatch, a similar mismatch also
exists between objects and XML. For example, the type system described in the W3C
XML Schema specification has no one-to-one relationship with the type system of
the .NET Framework. However, using XML in a .NET application is not much of a
problem because we already have APIs that deal with this under the System.Xml
namespace as well as the built-in support for serializing and deserializing objects.

Listing 1.4 NHibernate mapping file used to map a Cat class to a CATS table in a
 relational database

Why do we need LINQ? 17
Still, a lot of tedious code is required most of the time for doing even simple things
on XML documents.

 Given that XML has become so pervasive in the modern software world, some-
thing had to be done to reduce the work required to deal with XML in program-
ming languages.

 When you look at these domains, it is remarkable how different they are. The
main source of contention relates to the following facts:

■ Relational databases are based on relational algebra and are all about
tables, rows, columns, and SQL.

■ XML is all about documents, elements, attributes, hierarchical structures,
and XPath.

■ Object-oriented general-purpose programming languages and .NET live in
a world of classes, methods, properties, inheritance, and loops.

Many concepts are specific to each domain and have no direct mapping to
another domain. Figure 1.4 gives an overview of the concepts used in .NET and
object-oriented programming, in comparison to the concepts used in data
sources such as XML documents or relational databases.

 Too often, programmers have to do a lot of plumbing work to tie together the
different domains. Different APIs for each data type cause developers to spend an
inordinate amount of time learning how to write, debug, and rewrite brittle code.
The usual culprits that break the pipes are bad SQL query strings or XML tags, or
content that doesn’t get checked until runtime. .NET languages such as C# and

Figure 1.4 .NET applications and data sources are different worlds. The concepts used in object-
oriented programming are different from the concepts used with relational databases and XML.

18 CHAPTER 1

Introducing LINQ
VB.NET assist developers and provide such things as IntelliSense, strongly typed
code, and compile-time checks. Still, this can become broken if we start to include
malformed SQL queries or XML fragments in our code, none of which are vali-
dated by the compiler.

 A successful solution requires bridging the different technologies and solving
the object-persistence impedance mismatch—a challenging and resource-intensive
problem. To solve this problem, we must resolve the following issues between .NET
and data source elements:

■ Fundamentally different technologies

■ Different skill sets

■ Different staff and ownership for each of the technologies

■ Different modelling and design principles

Some efforts have been made to reduce the impedance mismatch by bringing
some pieces of one world into another. For example: SQLXML 4.0 ties SQL to XSD;
System.Xml spans XML/XML DOM/XSL/XPath and CLR; the ADO.NET API
bridges SQL and CLR data types; and SQL Server 2005 includes CLR integration.
All these efforts are proof that data integration is essential; however, they repre-
sent distinct moves without a common foundation, which makes them difficult to
use together. LINQ, in contrast, offers a common infrastructure to address the
impedance mismatches.

1.2.3 LINQ to the rescue

To succeed in using objects and relational databases together, you need to under-
stand both paradigms, along with their differences, and then make intelligent
tradeoffs based on that knowledge. The main goal of LINQ and LINQ to SQL is to
get rid of, or at least reduce, the need to worry about these limits.

 An impedance mismatch forces you to choose one side or the other as the “pri-
mary” side. With LINQ, Microsoft chose the programming language side, because
it’s easier to adapt the C# and VB.NET languages than to change SQL or XML.
With LINQ, the aim is toward deeply integrating the capabilities of data query and
manipulation languages into programming languages.

 LINQ removes many of the barriers among objects, databases, and XML. It
enables us to work with each of these paradigms using the same language-integrated
facilities. For example, we are able to work with XML data and data coming from a
relational database within the same query.

Design goals and origins of LINQ 19
 Because code is worth a thousand words, let’s take a look at a quick code sample
using the power of LINQ to retrieve data from a database and create an XML doc-
ument in a single query. Listing 1.5 creates an RSS feed based on relational data.

var database = new RssDB("server=.; initial catalog=RssDB");

XElement rss = new XElement("rss",
 new XAttribute("version", "2.0"),
 new XElement("channel",
 new XElement("title", "LINQ in Action RSS Feed"),
 new XElement("link", "http://LinqInAction.net"),
 new XElement("description", "The RSS feed for this book"),
 from post in database.Posts
 orderby post.CreationDate descending
 select new XElement("item",
 new XElement("title", post.Title),
 new XElement("link", "posts.aspx?id="+post.ID),
 new XElement("description", post.Description),
 from category in post.Categories
 select new XElement("category", category.Description)
)
)
);

We will not detail here how this code works. You will see documented examples
like this one in parts 3 and 4 of the book. What is important to note at this point is
how LINQ makes it easy to work with relational data and XML in the same piece of
code. If you have already done this kind of work before, it should be obvious that
this code is very concise and readable in comparison to the solutions at your dis-
posal before LINQ appeared.

 Before seeing more code samples and helping you write your own LINQ code,
we’ll now quickly review where LINQ comes from.

1.3 Design goals and origins of LINQ

It’s important to know clearly what Microsoft set out to achieve with LINQ. This is
why we’ll start this section by reviewing the design goals of the LINQ project. It’s
also interesting to know where LINQ takes its roots from and understand the links
with other projects you may have heard of. We’ll spend some time looking at the
history of the LINQ project to know how it was born.

 LINQ is not a recent project from Microsoft in the sense that it inherits a lot of
features from research and development work done over the last several years.

Listing 1.5 Working with relational data and XML in the same query

Querying
database

Creating
XML

20 CHAPTER 1

Introducing LINQ
We’ll discuss the relationships LINQ has with other Microsoft projects so you know
if LINQ replaces projects like C�, ObjectSpaces, WinFS, or support for XQuery in
the .NET Framework.

1.3.1 The goals of the LINQ project

Table 1.1 reviews the design goals Microsoft set for the LINQ project in order to
give you a clear understanding of what LINQ offers.

 The number-one LINQ feature presented in table 1.1 is the ability to deal with
several data types and sources. LINQ ships with implementations that support

Table 1.1 LINQ’s design goals and the motivations behind them

Goal Motivation

Integrate objects, relational data, and
XML

Unified query syntax across data sources to avoid different
languages for different data sources.
Single model for processing all types of data regardless of
source or in-memory representation.

SQL and XQuery-like power in C# and VB Integrate querying abilities right into the programming
languages.

Extensibility model for languages Enable implementation for other programming languages.

Extensibility model for multiple data
sources

Be able to access other data sources than relational data-
bases or XML documents.
Allow other frameworks to enable LINQ support for their own
needs.

Type safety Compile-time type checking to avoid problems that were previ-
ously discovered at run-time only.
The compiler will catch errors in your queries.

Extensive IntelliSense support (enabled
by strong-typing)

Assist developers when writing queries to improve productivity
and to help them get up to speed with the new syntax.
The editor will guide you when writing queries.

Debugger support Allow developers to debug LINQ queries step by step and with
rich debugging information.

Build on the foundations laid in C# 1.0
and 2.0, VB.NET 7.0 and 8.0

Reuse the rich features that have been implemented in the
previous versions of the languages.

Run on the .NET 2.0 CLR Avoid requiring a new runtime and creating unnecessary
deployment hassles.

Remain 100% backward compatible Be able to use standard and generic collections, data binding,
existing web and Windows Forms controls, and so on.

Design goals and origins of LINQ 21
querying against regular object collections, databases, entities, and XML sources.
Because LINQ supports rich extensibility, developers can also easily integrate it
with other data sources and providers.

 Another essential feature of LINQ is that it is strongly typed. This means the
following:

■ We get compile-time checking for all queries. Unlike SQL statements today,
where we typically only find out at runtime if something is wrong, this
means we can check during development that our code is correct. The
direct benefit is a reduction of the number of problems discovered late in
production. Most of the time, issues come from human factors. Strongly
typed queries allow us to detect early typos and other mistakes made by the
developer in charge of the keyboard.

■ We get IntelliSense within Visual Studio when writing LINQ queries. This
not only makes typing faster, but also makes it much easier to work against
both simple and complex collection and data source object models.

This is all well and good, but where does LINQ come from? Before delving into
LINQ and starting to use it, let’s see how it was born.

1.3.2 A bit of history

LINQ is the result of a long-term research process inside Microsoft. Several
projects involving evolutions of programming languages and data-access methods
can be considered to be the parents of LINQ to Objects, LINQ to XML (formerly
known as XLinq), and LINQ to SQL (formerly known as DLinq).

C� (or the C-Omega language)
C� (pronounced “c-omega”) was a project from Microsoft Research that extended
the C# language in several areas, notably the following:

■ A control flow extension for asynchronous wide-area concurrency (formerly
known as Polyphonic C#)

■ A data type extension for XML and database manipulation (formerly known
as Xen and as X#)

C� covered more than what comes with LINQ, but a good deal of what is now
included as part of the LINQ technologies was already present in C�. The C�
project was conceived to experiment with integrated queries, mixing C# and SQL,
C# and XQuery, and so on. This was carried out by researchers such as Erik

22 CHAPTER 1

Introducing LINQ
Meijer, Wolfram Schulte, and Gavin Bierman, who published multiple papers on
the subject.

 C� was released as a preview in 2004. A lot has been learned from that proto-
type, and a few months later, Anders Hejlsberg, chief designer of the C# language,
announced that Microsoft would be working on applying a lot of that knowledge in
C# and other programming languages. Anders said at that time that his particular
interest for the past couple of years had been to think deeply about the big imped-
ance mismatch between programming languages—C# in particular—and the data
world. This includes database and SQL, but also XML and XQuery, for example.

 C�’s extensions to the .NET type system and to the C# language were the first
steps to a unified system that treated SQL-style queries, query result sets, and XML
content as full-fledged members of the language. C� introduced the stream type,
which is analogous to the .NET Framework 2.0 type System.Collections.Generic.
IEnumerable<T>. C� also defined constructors for typed tuples (called anonymous
structs), which are similar to the anonymous types we get in C# 3.0 and VB.NET 9.0.
Another thing C� supported is embedded XML, something we are able to see in
VB.NET 9.0 (but not in C# 3.0).

ObjectSpaces
LINQ to SQL is not Microsoft’s first attempt at object-relational mapping. Another
project with a strong relationship to LINQ was ObjectSpaces.

 The first preview of the ObjectSpaces project appeared in a PDC 2001
ADO.NET presentation. ObjectSpaces was a set of data access APIs. It allowed data
to be treated as objects, independent of the underlying data store. ObjectSpaces
also introduced OPath, a proprietary object query language. In 2004, Microsoft
announced that ObjectSpaces depended on the WinFS5 project, and as such
would be postponed to the Orcas timeframe (the next releases after .NET 2.0 and
Visual Studio 2005). No new releases happened after that. Everybody realized that
ObjectSpaces would never see the light of day when Microsoft announced that
WinFS wouldn’t make it into the first release of Windows Vista.

XQuery implementation
Similar to what happened with ObjectSpaces and about the same time, Microsoft
had started working on an XQuery processor. A preview was included in the first
beta release of the .NET Framework version 2.0, but eventually it was decided not

5 WinFS was a project for a relational file system Microsoft had been developing for Windows. It was can-
celed in 2006.

First steps with LINQ to Objects: Querying collections in memory 23
to ship a client-side6 XQuery implementation in the final version. One problem
with XQuery is that it was an additional language we would have to learn specifi-
cally to deal with XML.

 Why all these steps back? Why did Microsoft apparently stop working on these
technologies? Well, the cat came out of the bag at PDC 2005, when the LINQ
project was announced.

 LINQ has been designed by Anders Hejlsberg and others at Microsoft to
address this impedance mismatch from within programming languages like C#
and VB.NET. With LINQ, we can query pretty much anything. This is why Microsoft
favored LINQ instead of continuing to invest in separate projects like
ObjectSpaces or support for XQuery on the client-side.

 As you’ve seen, LINQ has a rich history behind it and has benefited from all the
research and development work done on prior, now-defunct projects. Before we
go further and show you how it works, how to use it, and its different flavors, what
about writing your first lines of LINQ code?

 The next three sections provide simple code that demonstrates LINQ to
Objects, LINQ to XML, and LINQ to SQL. This will give you an overview of what
LINQ code looks like and show you how it can help you work with object collec-
tions, XML, and relational data.

1.4 First steps with LINQ to Objects:
Querying collections in memory

After this introduction, you’re probably eager to look at some code and to make
your first steps with LINQ. We think that you’ll get a better understanding of the
features LINQ provides if you spend some time on a piece of code. Programming
is what this book is about, anyway!

1.4.1 What you need to get started

Before looking at code, let’s spend some time reviewing all you need to be able to
test this code.

6 A server-side implementation of XQuery is included with SQL Server 2005, and now that the XQuery
standard has been finalized, Microsoft is once again considering whether to add support for XQuery in
.NET.

24 CHAPTER 1

Introducing LINQ
Compiler and .NET Framework support and required software
LINQ is delivered as part of the Orcas wave, which includes Visual Studio 2008 and
the .NET Framework 3.5. This version of the framework comes with additional
and updated libraries, as well as new compilers for the C# and VB.NET languages,
but it stays compatible with the .NET Framework 2.0.

 LINQ features are a matter of compiler and libraries, not runtime. It is impor-
tant to understand that although the C# and VB.NET languages have been enriched
and a few new libraries have been added to the .NET Framework, the .NET runtime
(the CLR) did not need to evolve. New compilers are required for C# 3.0 and
VB.NET 9.0, but the required runtime is still an unmodified version 2.0. This means
that the applications you’ll build using LINQ can run in a .NET 2.0 runtime.7

 At the time of this writing, LINQ and LINQ to XML, or at least subsets of them,
are supported by the current releases of the Silverlight runtime. They are avail-
able through the System.Linq and System.Xml.Linq namespaces.

 All the content of this book and the code samples it contains are based on the
final products, Visual Studio 2008 and .NET 3.5 RTM,8 which were released on
November 19, 2007.

 To set up your machine and be able to run our code samples as you read, you
only need to install the following:

 At least one of these versions of Visual Studio:

■ Visual C# 2008 Express Edition

■ Visual Basic 2008 Express Edition

■ Visual Web Developer 2008 Express Edition

■ Visual Studio 2008 Standard Edition or higher

If you want to run the LINQ to SQL samples, one of the following is required:

■ SQL Server 2005 Express Edition or SQL Server 2005 Compact Edition
(included with most versions of Visual Studio)

■ SQL Server 2005

■ SQL Server 2000a

■ A later version of SQL Server9

7 Nevertheless, .NET 2.0 Service Pack 1 is required for LINQ to SQL.
8 Release To Manufacturing.
9 The new data types provided by SQL Server 2008 are not supported by the first release of LINQ to SQL.

First steps with LINQ to Objects: Querying collections in memory 25
That’s all for the required software. Let’s now review the programming languages
we’ll use in this book.

Language considerations
In this book, we assume you know the syntax of the C# programming language
and occasionally a bit of VB.NET. For the sake of simplicity, we’ll be light on the
explanations while we introduce our first few code samples. Don’t worry: In chap-
ters 2 and 3, we’ll take the time to present in detail the syntax evolutions provided
by C# 2.0, C# 3.0, VB.NET 9.0, and LINQ. You will then be able to fully understand
LINQ queries.

NOTE Most of the examples contained in this book are in C#, but they can
easily be ported to VB.NET, because the syntax is similar between the
two languages.

Code examples are in VB.NET when we examine the features specific
to this language or simply when it makes sense. All the code samples are
available both in C# and VB.NET as a companion source code download,
so you can find them in your language of choice.

All right, enough preliminaries! Let’s dive into a simple example that will show
you how to query a collection in memory using LINQ to Objects. Follow the guide,
and be receptive to the magic of all these new features you’ll be using soon in
your own applications.

1.4.2 Hello LINQ to Objects

You may have had little contact with these new concepts and syntactic constructs.
Fear not! Our ultimate goal is for you to master these technologies, but don’t
force yourself to understand everything at once. We’ll take the time we need to
come back to every detail of LINQ and the new language extensions as we
progress through the book.

 Listing 1.6 shows our first LINQ example in C#.

using System;
using System.Linq;

static class HelloWorld
{
 static void Main()
 {

Listing 1.6 Hello LINQ in C#
 (HelloLinq.csproj)

26 CHAPTER 1

Introducing LINQ
 string[] words =
 { "hello", "wonderful", "linq", "beautiful", "world" };

 var shortWords =
 from word in words
 where word.Length <= 5
 select word;

 foreach (var word in shortWords)
 Console.WriteLine(word);
 }
}

Listing 1.7 shows the same example in VB.NET.

Module HelloWorld
 Sub Main()
 Dim words As String() = _
 { "hello", "wonderful", "linq", "beautiful", "world" }

 Dim shortWords = _
 From word In words _
 Where word.Length <= 5 _
 Select word

 For Each word In shortWords
 Console.WriteLine(word)
 Next
 End Sub
End Module

NOTE Most of the code examples contained in this book can be copied and
pasted without modification into a console application for testing.

If you were to compile and run these codes, here is the output you’d see:

hello
linq
world

As is evident from the results, we have filtered a list of words to select only the
ones whose length is less than or equal to five characters.

 We could argue that the same result could be achieved without LINQ using the
code in listing 1.8.

Listing 1.7 Hello LINQ in VB.NET
 (HelloLinq.vbproj)

Get only
short words

Print each
word out

Get only
short words

Print each
word out

First steps with LINQ to Objects: Querying collections in memory 27
using System;

static class HelloWorld
{
 static void Main()
 {
 string[] words = new string[] {
 "hello", "wonderful", "linq", "beautiful", "world" };

 foreach (string word in words)
 {
 if (word.Length <= 5)
 Console.WriteLine(word);
 }
 }
}

Notice how this “old-fashioned” code is much shorter than the LINQ version and
very easy to read. Well, don’t give up yet. There is much more to LINQ than what
we show in this first simple program! If you read on, we will help you discover all
the power of LINQ to Objects, LINQ to SQL, and LINQ to XML.

 To give you some motivation to pursue reading, let’s try to improve our simple
example with grouping and sorting. This should give you an idea of why LINQ is
useful and powerful.

 In order to get this result

Words of length 9
 beautiful
 wonderful
Words of length 5
 hello
 world
Words of length 4
 linq

we can use the C# code shown in listing 1.9.

using System;
using System.Linq;

static class HelloWorld

Listing 1.8 Old-school version of Hello LINQ
 (OldSchoolHello.csproj)

Listing 1.9 Hello LINQ in C# improved with grouping and sorting
 (HelloLinqWithGroupingAndSorting.csproj)

28 CHAPTER 1

Introducing LINQ
{
 static void Main()
 {
 string[] words =
 { "hello", "wonderful", "linq", "beautiful", "world" };

 var groups =
 from word in words
 orderby word ascending
 group word by word.Length into lengthGroups
 orderby lengthGroups.Key descending
 select new {Length=lengthGroups.Key, Words=lengthGroups};

 foreach (var group in groups)
 {
 Console.WriteLine("Words of length " + group.Length);
 foreach (string word in group.Words)
 Console.WriteLine(" " + word);
 }
 }
}

Listing 1.10 shows the equivalent VB.NET code.

Module HelloWorld
 Sub Main()
 Dim words as String() = _
 {"hello", "wonderful", "linq", "beautiful", "world"}

 Dim groups = _
 From word In words _
 Order By word Ascending _
 Group By word.Length Into TheWords = Group _
 Order By Length Descending

 For Each group In groups
 Console.WriteLine("Words of length " + _
 group.Length.ToString())
 For Each word In group.TheWords
 Console.WriteLine(" " + Word)
 Next
 Next
 End Sub
End Module

Listing 1.10 Hello LINQ in VB improved with grouping and sorting
 (HelloLinqWithGroupingAndSorting.vbproj)

Group words
by length

Print each group out

Group words
by length

Print each
group out

First steps with LINQ to XML: Querying XML documents 29
In the preceding examples, we have expressed in one query (or two nested que-
ries more precisely) what could be formulated in English as “Sort words from a list
alphabetically and group them by their length in descending order.”

 We’ll leave doing the same without LINQ as an exercise for you. If you take the
time to do it, you’ll notice that it takes more code and requires dealing a lot with
collections. One of the first advantages of LINQ that stands out with this example
is the expressiveness it enables: We can express declaratively what we want to
achieve using queries instead of writing convoluted pieces of code.

 We won’t take the time right now to get into the details of the code you’ve just
seen. If you are familiar with SQL, you probably already have a good idea of what
the code is doing. In addition to all the nice SQL-like querying, LINQ also provides
a number of other functions such as Sum, Min, Max, Average, and much more.
They let us perform a rich set of operations.

 For example, here we sum the amount of each order in a list of orders to com-
pute a total amount:

decimal totalAmount = orders.Sum(order => order.Amount);

If you haven’t dealt with C# 3.0 yet, you may find the syntax confusing. “What’s
this strange arrow?” you may wonder. We’ll explain this type of code in greater
detail later in the book so you can fully understand it. However, before we con-
tinue, you may wish to test our “Hello LINQ” example and start playing with the
code. Feel free to do so to get an idea of how easy to use LINQ really is.

 Once you are ready, let’s move on to LINQ to XML and LINQ to SQL. We’ll spend
some time with these two other flavors of LINQ so you can get an idea of what they
taste like. We will get back to LINQ to Objects in detail in part 2 of this book.

1.5 First steps with LINQ to XML:
Querying XML documents

As we said in the first half of this chapter, the extensibility of the LINQ query archi-
tecture is used to provide implementations that work over both XML and SQL
data. We will now help you to make your first steps with LINQ to XML.

 LINQ to XML takes advantage of the LINQ framework to offer XML query and
transform capabilities integrated into host .NET programming languages. You can
also think of LINQ to XML as a full-featured XML API comparable to a modernized,
redesigned .NET 2.0 System.Xml plus a few key features from XPath and XSLT. LINQ
to XML provides facilities to edit XML documents and element trees in-memory, as
well as streaming facilities. This means that you’ll be able to use LINQ to XML to

30 CHAPTER 1

Introducing LINQ
more easily perform many of the XML-processing tasks that you have been perform-
ing with the traditional XML APIs from the System.Xml namespace.

 We will first examine why we need an XML API like LINQ to XML by comparing
it to some alternatives. You’ll then make your first steps with some code using
LINQ to XML in an obligatory “Hello World” example.

1.5.1 Why we need LINQ to XML

XML is ubiquitous nowadays, and is used extensively in applications written using
general-purpose languages such as C# or VB.NET. It is used to exchange data
between applications, store configuration information, persist temporary data,
generate web pages or reports, and perform many other things. It is everywhere!

 Until now, XML hasn’t been natively supported by most programming lan-
guages, which therefore required the use of APIs to deal with XML data. These
APIs include XmlDocument, XmlReader, XPathNavigator, XslTransform for XSLT,
and SAX and XQuery implementations. The problem is that these APIs are not
well integrated with programming languages, often requiring several lines of
unnecessarily convoluted code to achieve a simple result. You’ll see an example of
this in the next section (see listing 1.13). But for the moment, let’s see what LINQ
to XML has to offer.

 LINQ to XML extends the language-integrated query features offered by LINQ
to add support for XML. It offers the expressive power of XPath and XQuery but in
our programming language of choice and with type safety and IntelliSense.

 If you’ve worked on XML documents with .NET, you probably used the XML
DOM (Document Object Model) available through the System.Xml namespace.
LINQ to XML leverages experience with the DOM to improve the developer toolset
and avoid the limitations of the DOM.

 Table 1.2 compares the characteristics of LINQ to XML with those of the XML
DOM.

Table 1.2 Comparing LINQ to XML with the XML DOM to show how LINQ to XML is a better
 value proposition

LINQ to XML characteristic XML DOM characteristic

Element-centric Document-centric

Declarative model Imperative model

LINQ to XML code presents a layout close to
the hierarchical structure of an XML document

No resemblance between code and document structure

Language-integrated queries No integrated queries

First steps with LINQ to XML: Querying XML documents 31
Whereas the DOM is low-level and requires a lot of code to precisely formulate
what we want to achieve, LINQ to XML provides a higher-level syntax that allows us
to do simple things simply.

 LINQ to XML also enables an element-centric approach in comparison to the
document-centric approach of the DOM. This means that we can easily work with
XML fragments (elements and attributes) without having to create a complete
XML document.

 Two classes that the .NET Framework offers are XmlReader and XmlWriter.
These classes provide support for working on XML text in its raw form and are
lower-level than LINQ to XML. LINQ to XML uses the XmlReader and XmlWriter
classes underneath and is not a completely new XML API. One advantage of this is
that it allows LINQ to XML to remain compatible with XmlReader and XmlWriter.

 LINQ to XML makes creating documents more direct, but it also makes it easier
to query XML documents. Expressing queries against XML documents feels more
natural than having to write of lot of code with several loop instructions. Also,
being part of the LINQ family of technologies, it is a good choice when we need to
join diverse data sources.

 With LINQ to XML, Microsoft is aiming at 80 percent of the use cases. These
cases involve straightforward XML formats and common processing. For the other
cases, developers will continue to use the other APIs. Also, although LINQ to XML
takes inspiration from XSLT, XPath, and XQuery, these technologies have benefits
of their own and are designed for specific use cases, and within those scopes LINQ
to XML is in no way able to compete with them. LINQ to XML is not enough for
some specific cases, but its compatibility with the other XML APIs allows us to use

Creating elements and attributes can be done
in one instruction; text nodes are just strings

Basic things require a lot of code

Simplified XML namespace support Requires dealing with prefixes and “namespace
managers”

Faster and smaller Heavyweight and memory intensive

Streaming capabilities Everything is loaded in memory

Symmetry in element and attribute APIs Different ways to work with the various bits of XML
documents

Table 1.2 Comparing LINQ to XML with the XML DOM to show how LINQ to XML is a better
 value proposition (continued)

LINQ to XML characteristic XML DOM characteristic

32 CHAPTER 1

Introducing LINQ
it in combination with these APIs. We’ll keep these kinds of advanced scenarios
for part 4 of this book.

 For the moment, let’s discover how LINQ to XML makes a difference by look-
ing at some code.

1.5.2 Hello LINQ to XML

The running example application we’ll use in this book deals, appropriately
enough, with books. We’ll detail this example in chapter 4. For the moment,
we’ll stick to a simple Book class because it is enough for your first contact with
LINQ to XML.

 In our first example, we want to filter and save a set of Book objects as XML.
Here is how the Book class could be defined in C#:10

class Book
{
 public string Publisher;
 public string Title;
 public int Year;

 public Book(string title, string publisher, int year)
 {
 Title = title;
 Publisher = publisher;
 Year = year;
 }
}

And here it is in VB.NET:

Public Class Book
 Public Publisher As String
 Public Title As String
 Public Year As Integer

 Public Sub New(_
 ByVal title As String, _
 ByVal publisher As String, _
 ByVal year As Integer)
 Me.Title = title
 Me.Publisher = publisher
 Me.Year = year
 End Sub
End Class

10 Here we use public fields in the Book class for the sake of simplicity, but properties and private fields
would be better. Another option is to use auto-implemented properties, which is a new feature of C# 3.0.
You’ll see auto-implemented properties in action in chapters 2, 7, and 13.

First steps with LINQ to XML: Querying XML documents 33
Let’s say we have the following collection of books:

Book[] books = new Book[] {
 new Book("Ajax in Action", "Manning", 2005),
 new Book("Windows Forms in Action", "Manning", 2006),
 new Book("RSS and Atom in Action", "Manning", 2006)
};

Here is the result we would like to get if we ask for the books published in 2006:

<books>
 <book title="Windows Forms in Action">
 <publisher>Manning</publisher>
 </book>
 <book title="RSS and Atom in Action">
 <publisher>Manning</publisher>
 </book>
</books>

Using LINQ to XML, this can be done with the code shown in listing 1.11.

using System;
using System.Linq;
using System.Xml;
using System.Xml.Linq;

class Book
{
 public string Publisher;
 public string Title;
 public int Year;

 public Book(string title, string publisher, int year)
 {
 Title = title;
 Publisher = publisher;
 Year = year;
 }
}

static class HelloLinqToXml
{
 static void Main()
 {
 Book[] books = new Book[] {
 new Book("Ajax in Action", "Manning", 2005),
 new Book("Windows Forms in Action", "Manning", 2006),
 new Book("RSS and Atom in Action", "Manning", 2006)
 };

Listing 1.11 Hello LINQ to XML in C#
 (HelloLinqToXml.csproj)

Book
collection

34 CHAPTER 1

Introducing LINQ

 XElement xml = new XElement("books",
 from book in books
 where book.Year == 2006
 select new XElement("book",
 new XAttribute("title", book.Title),
 new XElement("publisher", book.Publisher)
)
);

 Console.WriteLine(xml);
 }
}

Listing 1.12 shows the same code in VB.NET.

Module HelloLinqToXml

 Public Class Book
 Public Publisher As String
 Public Title As String
 Public Year As Integer

 Public Sub New(_
 ByVal title As String, _
 ByVal publisher As String, _
 ByVal year As Integer)
 Me.Title = title
 Me.Publisher = publisher
 Me.Year = year
 End Sub
 End Class

 Sub Main()
 Dim books As Book() = { _
 New Book("Ajax in Action", "Manning", 2005), _
 New Book("Windows Forms in Action", "Manning", 2006), _
 New Book("RSS and Atom in Action", "Manning", 2006) _
 }

 Dim xml As XElement = New XElement("books", _
 From book In books _
 Where book.Year = 2006 _
 Select New XElement("book", _
 New XAttribute("title", book.Title), _
 New XElement("publisher", book.Publisher) _

Listing 1.12 Hello LINQ to XML in VB.NET
 (HelloLinqToXml.vbproj)

Build XML fragment
based on collection

Dump XML
to console

Book
collection

Build XML fragment
based on collection

First steps with LINQ to XML: Querying XML documents 35
) _
)

 Console.WriteLine(xml)
 End Sub

End Module

In contrast, listing 1.13 shows how we would build the same document without
LINQ to XML, using the XML DOM.

using System;
using System.Xml;

class Book
{
 public string Title;
 public string Publisher;
 public int Year;

 public Book(string title, string publisher, int year)
 {
 Title = title;
 Publisher = publisher;
 Year = year;
 }
}

static class HelloLinqToXml
{
 static void Main()
 {
 Book[] books = new Book[] {
 new Book("Ajax in Action", "Manning", 2005),
 new Book("Windows Forms in Action", "Manning", 2006),
 new Book("RSS and Atom in Action", "Manning", 2006)
 };

 XmlDocument doc = new XmlDocument();
 XmlElement root = doc.CreateElement("books");
 foreach (Book book in books)
 {
 if (book.Year == 2006)
 {

Listing 1.13 Old-school version of Hello LINQ to XML
 (OldSchoolXml.csproj)

Dump XML
to console

Book
collection

Build XML fragment
based on collection

36 CHAPTER 1

Introducing LINQ
 XmlElement element = doc.CreateElement("book");
 element.SetAttribute("title", book.Title);

 XmlElement publisher = doc.CreateElement("publisher");
 publisher.InnerText = book.Publisher;
 element.AppendChild(publisher);

 root.AppendChild(element);
 }
 }
 doc.AppendChild(root);

 doc.Save(Console.Out);
 }
}

As you can see, LINQ to XML is more visual than the DOM. The structure of the
code to get our XML fragment is close to the document we want to produce itself.
We could say that it’s WYSIWYM code: What You See Is What You Mean.

 Microsoft names this approach the Functional Construction pattern. It allows us
to structure code in such a way that it reflects the shape of the XML document (or
fragment) that we’re constructing.

 In VB.NET, the code can be even closer to the resulting XML, as shown in list-
ing 1.14.

Module XmlLiterals

 Sub Main()
 Dim books as Book() = { _
 New Book("Ajax in Action", "Manning", 2005), _
 New Book("Windows Forms in Action", "Manning", 2006), _
 New Book("RSS and Atom in Action", "Manning", 2006) _
 }

 Dim xml As XElement = _
 <books>
 <%= From book In books _
 Where book.Year = 2006 _
 Select _
 <book title=<%= book.Title %>>
 <publisher><%= book.Publisher %></publisher>
 </book> _
 %>
 </books>

Listing 1.14 Hello LINQ to XML VB.NET using XML literals
 (HelloLinqWithLiterals.vbproj)

Display
result XML

Book
collection

Build XML fragment
using XML literals

First steps with LINQ to SQL: Querying relational databases 37
 Console.WriteLine(xml)
 End Sub

End Module

The listing uses a new syntax named XML literals, which is highlighted in bold. Lit-
eral means something that is output as part of the result. Here, the books, book, and
publisher XML elements will be part of the generated XML. XML literals allow us
to use a template of the XML we’d like to get, with a syntax comparable to ASP.

 The XML literals feature is not provided by C# 3.0. It exists only in VB.NET 9.0.
You will discover that VB.NET comes with more language-integrated features than
C# to work with XML.

 You’ll get the details about XML literals and everything else you need to know
to make the best of LINQ to XML in part 4 of the book. For the moment, we still
have one major piece of the LINQ trilogy to introduce: LINQ to SQL.

1.6 First steps with LINQ to SQL:
Querying relational databases

LINQ’s ambition is to make queries a natural part of the programming language.
LINQ to SQL, which made its first appearance as DLinq, applies this concept to
allow developers to query relational database using the same syntax that you have
seen with LINQ to Objects and LINQ to XML.

 After summing up how LINQ to SQL will help us, we’ll show you how to write
your first LINQ to SQL code.

1.6.1 Overview of LINQ to SQL’s features

LINQ to SQL provides language-integrated data access by using LINQ’s extension
mechanism. It builds on ADO.NET to map tables and rows to classes and objects.

 LINQ to SQL uses mapping information encoded in .NET custom attributes or
contained in an XML document. This information is used to automatically handle
the persistence of objects in relational databases. A table can be mapped to a class
and the table’s columns to properties of the class, and relationships between
tables can be represented by additional properties.

 LINQ to SQL automatically keeps track of changes to objects and updates the
database accordingly through dynamic SQL queries or stored procedures. This is
why we don’t have to provide the SQL queries by ourself most of the time. But all

Display
result XML

38 CHAPTER 1

Introducing LINQ
this will be developed in part 3 of this book. For the moment, let’s make our first
steps with LINQ to SQL code.

1.6.2 Hello LINQ to SQL

The time has come to look at some code using LINQ to SQL. As you saw in our
Hello LINQ example, we are able to write queries against a collection of objects.
The following C# code snippet filters an in-memory collection of contacts based
on their city:

from contact in contacts
where contact.City == "Paris"
select contact;

The good news is that thanks to LINQ to SQL, doing the same on data from a rela-
tional database is direct:

from contact in db.GetTable<Contact>()
where contact.City == "Paris"
select contact;

This query works on a list of contacts from a database. Notice how subtle the dif-
ference is between the two queries. Only the object on which we are working is
different; the query syntax is exactly the same. This shows how we’ll be able to
work the same way with multiple types of data. This is what is so great about LINQ!

 As an astute reader, you know that the language a relational database under-
stands is SQL, and you suspect that our LINQ query must be translated into a SQL
query at some point. This is the heart of the technology: In the first example, the
collection is iterated in memory, whereas in the second code snippet, the query is
used to generate a SQL query that is sent to a database server. In the case of LINQ
to SQL queries, the real processing happens on the database server. What’s appeal-
ing about these queries is that we have a nice strongly typed query API, in contrast
with SQL, where queries are expressed in strings and not validated at compile-time.

 We will dissect the inner workings of LINQ to SQL in the third part of this
book, but let’s first walk through a simple complete example. To begin with,
you’re probably wondering what db.GetTable<Contact>() means in our LINQ to
SQL query.

Entity classes
The first step in building a LINQ to SQL application is declaring the classes we’ll
use to represent your application data: our entities.

 In our simple example, we’ll define a class named Contact and associate it
with the Contacts table of the Northwind sample database provided by Microsoft

First steps with LINQ to SQL: Querying relational databases 39
with the LINQ code samples.11 To do this, we need only to apply a custom
attribute to the class:

[Table(Name="Contacts")]
class Contact
{
 public int ContactID;
 public string Name;
 public string City;
}

The Table attribute is provided by LINQ to SQL in the System.Data.Linq.Map-
ping namespace. It has a Name property that is used to specify the name of the
database table.

 In addition to associating entity classes with tables, we need to denote each
field or property we intend to associate with a column of the table. This is done
with the Column attribute:

[Table(Name="Contacts")]
class Contact
{
 [Column(IsPrimaryKey=true)]
 public int ContactID { get; set; }
 [Column(Name="ContactName"]
 public string Name { get; set; }
 [Column]
 public string City { get; set; }
}

The Column attribute is also part of the System.Data.Linq.Mapping namespace. It
has a variety of properties we can use to customize the exact mapping between
our fields or properties and the database’s columns. You can see that we use the
IsPrimaryKey property to tell LINQ to SQL that the table column named
ContactID is part of the table’s primary key. Notice how we indicate that the Con-
tactName column is to be mapped to the Name field. We don’t specify the names of
the other columns or the types of the columns: In our case, LINQ to SQL will
deduce them from the fields of the class.

The DataContext
The next thing we need to prepare before being able to use language-integrated
queries is a System.Data.Linq.DataContext object. The purpose of DataContext

11 See the CSharpSamples.zip and VBSamples.zip files in the Samples subfolder of your Visual Studio 2008
installation folder.

40 CHAPTER 1

Introducing LINQ
is to translate requests for objects into SQL queries made against the database and
then assemble objects out of the results.

 We will use the Northwnd.mdf database provided with the code samples
accompanying this book. This database is in the Data directory, so the creation of
the DataContext object looks like this:

string path = Path.GetFullPath(@"..\..\..\..\Data\northwnd.mdf");
DataContext db = new DataContext(path);

The constructor of the DataContext class takes a connection string as a parame-
ter. Because we are using SQL Server 2005 Express Edition, a path to the database
file is sufficient.

 The DataContext provides access to the tables in the database. Here is how to
get access to the Contacts table mapped to our Contact class:

Table<Contact> contacts = db.GetTable<Contact>();

DataContext.GetTable is a generic method, which allows us to work with strongly
typed objects. This is what will allow us to use a LINQ query.

 We are now able to write a complete code sample, as seen in listing 1.15.

using System;
using System.Linq;
using System.Data.Linq;
using System.Data.Linq.Mapping;

static class HelloLinqToSql
{
 [Table(Name="Contacts")]
 class Contact
 {
 [Column(IsPrimaryKey=true)]
 public int ContactID { get; set; }
 [Column(Name="ContactName")]
 public string Name { get; set; }
 [Column]
 public string City { get; set; }
 }

 static void Main()
 {
 string path =
 System.IO.Path.GetFullPath(@"..\..\..\..\Data\northwnd.mdf");
 DataContext db = new DataContext(path);

Listing 1.15 Hello LINQ to SQL complete source code
 (HelloLinqToSql.csproj)

Get access
to database

First steps with LINQ to SQL: Querying relational databases 41
 var contacts =
 from contact in db.GetTable<Contact>()
 where contact.City == "Paris"
 select contact;

 foreach (var contact in contacts)
 Console.WriteLine("Bonjour "+contact.Name);
 }
}

Executing this code gives the following result:

Bonjour Marie Bertrand
Bonjour Dominique Perrier
Bonjour Guylène Nodier

Here is the SQL query that was sent to the server transparently:

SELECT [t0].[ContactID], [t0].[ContactName] AS [Name], [t0].[City]
FROM [Contacts] AS [t0]
WHERE [t0].[City] = @p0

Notice how easy it is to get strongly typed access to a database thanks to LINQ.
This is a simplistic example, but it gives you a good idea of what LINQ to SQL has
to offer and how it could change the way you work with databases.

 Let’s sum up what has been done automatically for us by LINQ to SQL:

■ Opening a connection to the database

■ Generating the SQL query

■ Executing the SQL query against the database

■ Creating and filling our objects out of the tabular results

As an exercise, you can try to do the same without LINQ to SQL. For example, you
can try to use a DataReader. You’ll notice the following things in the old-school
code when comparing it with our LINQ to SQL code:

■ Queries explicitly written SQL in quotes

■ No compile-time checks

■ Loosely bound parameters

■ Loosely typed result sets

■ More code required

■ More knowledge required

Query for contacts
from Paris

Display list of
matching contacts

42 CHAPTER 1

Introducing LINQ
Writing standard data-access code hinders productivity for simple cases. In con-
trast, LINQ to SQL allows us to write data-access code that doesn’t get in the way.

 Before concluding our introduction to LINQ to SQL, let’s review some of its
features.

1.6.3 A closer look at LINQ to SQL

You have seen that LINQ to SQL is able to generate dynamic SQL queries based
on language-integrated queries. This may not be adapted to every situation, and
so LINQ to SQL also supports custom SQL queries and stored procedures so that
we can use our own handwritten SQL code and still benefit from the LINQ to
SQL infrastructure.

 In our example, we provided the mapping information using custom attributes
on our classes; but if you prefer not to have this kind of information hard-coded
in your binaries, you are free to use an external XML mapping file to do the same.

 To get a better understanding of how LINQ to SQL works, we created our entity
classes and provided the mapping information. In practice, typically this code
would be generated by tools that come with LINQ to SQL or using the graphical
LINQ to SQL Designer.

 The list of LINQ to SQL’s features is much longer than this and includes things
such as support for data binding, interoperability with ADO.NET, concurrency
management, support for inheritance, and help for debugging. Let’s keep that
for later; we promise that all this and more will be covered in detail in part 3 of
the book.12

1.7 Summary

This first chapter presented the motivation behind the LINQ technologies. You
also took your first steps with LINQ to Objects, LINQ to XML, and LINQ to SQL
code.

 Although we have just scratched the surface of the possibilities offered by
LINQ, we hope you now have an idea of the potential power these technologies
provide. As you’ve seen, LINQ is not about taking SQL or XML and slapping

12 It should be noted that while LINQ to SQL includes a lot of functionality, its narrow focus means it
doesn’t include some of the features found in other object-relational mapper products available today
on the market. In 2008, Microsoft will be providing an even broader object-relational mapping solution:
the ADO.NET Entity Framework. We will include a quick introduction to it after discussing LINQ to
SQL later in this book.

Summary 43
them into C# or VB.NET code. It’s much more than that, as you’ll see soon in
the next chapters.

 LINQ unlocks a whole new way to access data from within your applications.
However, LINQ would not be possible without the addition of a number of fea-
tures to programming languages. We will start the next chapter by reviewing the
enhancements that have been made to the C# and VB.NET languages to enable
language-integrated queries.

C# and VB.NET
 language enhancements
This chapter covers:
■ Key C# 3.0 and VB.NET 9.0 languages

features for LINQ
■ Implicitly typed local variables
■ Object initializers
■ Lambda expressions
■ Extension methods
■ Anonymous types
44

Discovering the new language enhancements 45
In chapter 1, we reviewed the motivation behind LINQ and introduced some
code to give you an idea of what to expect. In this chapter, we’ll present the lan-
guage extensions that make LINQ possible and allow queries to blend into pro-
gramming languages.

 LINQ extends C# and VB.NET with new constructs. We find it important that
you discover these language features before we get back to LINQ content. This
chapter is a stepping stone that explains how the C# and VB.NET languages have
been enriched to make LINQ possible. Please note that the full-fledged features
we present here can be used in contexts other than just LINQ.

 We won’t go into advanced details about each feature, because we don’t want
to lose our focus on LINQ for too long. You’ll be able to see all these features in
action throughout this book, so you should grow accustomed to them as you read.

 In chapter 3, we’ll focus on LINQ-specific concepts such as expression trees
and query operators. You’ll then see how the features presented in this chapter
are used by LINQ.

2.1 Discovering the new language enhancements

.NET 2.0 laid the groundwork for a lot of what LINQ needs to work. Indeed, it
introduced a number of important language and framework enhancements. For
example, .NET now supports generic types, and in order to achieve the deep
data integration that LINQ targets, you need types that can be parameterized—
otherwise the type system isn’t rich enough.

 C# 2.0 also added anonymous methods and iterators. These features serve as
cornerstones for the new level of integration between data and programming
languages.

 We expect readers of this book to know the basics about the features offered by
.NET 2.0. We’ll provide you with a refresher on anonymous methods in section 2.4
when we present lambda expressions, and we’ll review iterators in chapter 3.

 More features were required, though, for LINQ to expose query syntaxes
natively to languages such as C# and VB.NET. C# 3.0 and VB.NET 9.0 (also known
as VB 2008) build on generics, anonymous methods, and iterators as key compo-
nents of the LINQ facility.

 These features include

■ Implicitly typed local variables, which permit the types of local variables to be
inferred from the expressions used to initialize them.

■ Object initializers, which ease construction and initialization of objects.

46 CHAPTER 2

C# and VB.NET language enhancements
■ Lambda expressions, an evolution of anonymous methods that provides
improved type inference and conversion to both delegate types and expres-
sion trees, which we’ll discuss in the next chapter.

■ Extension methods, which make it possible to extend existing types and con-
structed types with additional methods. With extension methods, types
aren’t extended but look as if they were.

■ Anonymous types, which are types automatically inferred and created from
object initializers.

Instead of merely listing these new language features and detailing them one by
one, let’s discover them in the context of an ongoing example. This will help us
clearly see how they can help us in our everyday coding.

 We’ll start with the simplest code possible, using only .NET 2.0 constructs, and
then we’ll improve it by progressively introducing the new language features.
Each refactoring step will address one specific problem or syntax feature. First,
let’s get acquainted with our simple example: an application that outputs a list of
running processes.

2.1.1 Generating a list of running processes

Let’s say we want to get a list of the processes running on our computer. This can
be done easily thanks to the System.Diagnostics.Process.GetProcesses API.

NOTE We use the GetProcesses method in this example because it returns a
generic list of results that are likely to be different each time the method
is called. This makes our example more realistic than one that would be
based on a static list of items.

Listing 2.1 shows sample C# 2.0 code that achieves our simple goal.

using System;
using System.Collections.Generic;
using System.Diagnostics;

static class LanguageFeatures
{
 static void DisplayProcesses()
 {
 List<String> processes = new List<String>();
 foreach (Process process in Process.GetProcesses())
 processes.Add(process.ProcessName);

Listing 2.1 Sample .NET 2.0 code for listing processes
 (DotNet2.csproj)

Prepare list
of strings

B

Build list of
processes

C

Discovering the new language enhancements 47
 ObjectDumper.Write(processes);
 }

 static void Main()
 {
 DisplayProcesses();
 }
}

Our processes variable points to a list of strings B. The type we use is based on
the generic type List<T>. Generics are a major addition to .NET that first appeared
in .NET 2.0. They allow us to maximize code reuse, type safety, and performance.
The most common use of generics is to create strongly typed collection classes,
just like we’re doing here. As you’ll notice, LINQ makes extensive use of generics.

 In the listing, we use a class named ObjectDumper to display the results D.
ObjectDumper is a utility class provided by Microsoft as part of the LINQ code sam-
ples. We’ll reuse ObjectDumper in many code samples throughout this book. (The
complete source code for the samples is available for download at http://LinqI-
nAction.net.) ObjectDumper can be used to dump an object graph in memory to
the console. It’s particularly useful for debugging purposes; we’ll use it here to dis-
play the result of our processing.

 This first version of the code is nothing more than a foreach loop that adds pro-
cess names to a list C, so a call to Console.WriteLine on each item would be
enough. However, in the coming examples, we’ll have more complex results to dis-
play. ObjectDumper will then save us some code by doing the display work for us.

 Here is some sample output produced by listing 2.1:

firefox
Skype
WINWORD
devenv
winamp
Reflector

This example is very simple. Soon, we’ll want to be able to filter this list, sort it, or
perform other operations, such as grouping or projections.

 Let’s improve our example a bit. For a start, what if we’d like more information
about the process than just its name?

2.1.2 Grouping results into a class

Let’s say we’d like the list to contain the ID, name, and memory consumption of
each process. For instance:

Print to
consoleD

http://LinqInAction.net

48 CHAPTER 2

C# and VB.NET language enhancements
Id=2300 Name=firefox Memory=78512128
Id=2636 Name=Skype Memory=23478272
Id=2884 Name=WINWORD Memory=78442496
Id=2616 Name=devenv Memory=54296576
Id=1824 Name=winamp Memory=29188096
Id=2940 Name=Reflector Memory=83857408

This requires creating a class or structure to group the information we’d like to
retain about a process. Listing 2.2 shows the code with a new class shown in bold
named ProcessData.

NOTE Here we use public fields in the ProcessData class for the sake of sim-
plicity, but properties and private fields would be better. Read on and in
a few pages you’ll discover how to easily use properties instead thanks to
C# 3.0.

using System;
using System.Collections.Generic;
using System.Diagnostics;

static class LanguageFeatures
{
 class ProcessData
 {
 public Int32 Id;
 public Int64 Memory;
 public String Name;
 }

 static void DisplayProcesses()
 {

 List<ProcessData> processes = new List<ProcessData>();
 foreach (Process process in Process.GetProcesses())
 {
 ProcessData data = new ProcessData();
 data.Id = process.Id;
 data.Name = process.ProcessName;
 data.Memory = process.WorkingSet64;
 processes.Add(data);
 }

 ObjectDumper.Write(processes);
 }

Listing 2.2 Improved .NET 2.0 code for listing processes
 (DotNet2Improved.csproj)

Prepare list of
ProcessData

objects

B

Build list
of running
processes

Print out list
to console

Implicitly typed local variables 49
 static void Main()
 {
 DisplayProcesses();
 }
}

Although our code produces the output we want, it has some duplicate informa-
tion in it. The type of our objects is specified twice B: once for the declaration of
the variables and once more for calling the constructor:

List<ProcessData> processes = new List<ProcessData>();
...
ProcessData data = new ProcessData();

New keywords will allow us to make our code shorter and avoid duplication, as
you’ll see next.

2.2 Implicitly typed local variables

C# 3.0 offers a new keyword that allows us to declare a local variable without hav-
ing to specify its type explicitly: var. When the var keyword is used to declare a
local variable, the compiler infers the type of this variable from the expression
used to initialize it.

 Let’s review the syntax proposed by this new keyword, and then we’ll revise our
example with it.

2.2.1 Syntax

The var keyword is easy to use. It should be followed by the name of the local vari-
able and then by an initializer expression. For example, the following two code
snippets are equivalent. They produce the exact same Intermediate Language
(IL) code once compiled.

 Let’s compare some code with implicitly typed variables and some code with-
out. Here is some code with implicitly typed variables:

var i = 12;
var s = "Hello";
var d = 1.0;
var numbers = new[] {1, 2, 3};
var process = new ProcessData();
var processes =
 new Dictionary<int, ProcessData>();

var i = 5;

50 CHAPTER 2

C# and VB.NET language enhancements
And here is equivalent code with the traditional syntax:

int i = 12;
string s = "Hello";
double d = 1.0;
int[] numbers = new int[] {1, 2, 3};
ProcessData process = new ProcessData();
Dictionary<int, ProcessData> processes =
 new Dictionary<int, ProcessData>();

Implicitly typed local variables can also be used in VB.NET, thanks to the Dim key-
word. For example, here is the Dim keyword with implicitly typed variables:

Dim processes =
 New List(Of ProcessData)()

And here it is with the traditional syntax:

Dim processes As List(Of ProcessData) =
 New List(Of ProcessData)()

This looks like variants in VB, but the new syntax and variants aren’t the same.
Implicitly typed local variables are strongly typed. For example, the following
VB.NET code isn’t valid and will return an error stating that conversion from type
String to type Integer isn’t valid:

Dim someVariable = 12
someVariable = "Some string"

In the first line, someVariable is an Integer. The second line throws the error.
 In comparison, the following code that uses a variant is valid:

Dim someVariable as Variant = 12
someVariable = "Some String"

2.2.2 Improving our example using implicitly typed local variables

Listing 2.3 shows how we could improve our DisplayProcesses method thanks to
the var keyword. New code is shown in bold.

using System;
using System.Collections.Generic;
using System.Diagnostics;

static class LanguageFeatures
{
 class ProcessData
 {

Listing 2.3 Our DisplayProcesses method using the var keyword
 (UsingVar.csproj)

Implicitly typed local variables 51
 public Int32 Id { get; set; }
 public Int64 Memory { get; set; }
 public String Name { get; set; }
 }

 static void DisplayProcesses()
 {
 var processes = new List<ProcessData>();
 foreach (var process in Process.GetProcesses())
 {
 var data = new ProcessData();
 data.Id = process.Id;
 data.Name = process.ProcessName;
 data.Memory = process.WorkingSet64;
 processes.Add(data);
 }

 ObjectDumper.Write(processes);
 }

 static void Main()
 {
 DisplayProcesses();
 }
}

NOTE This time, we use auto-implemented properties to define the ProcessData
class B. This is a new feature of the C# 3.0 compiler that creates anony-
mous private variables to contain each of the values that the individual
property will be using. Using this new syntax, we can eliminate the need
for explicitly stating the private variables and repetitive property accessors.

Listing 2.3 does exactly the same thing as listing 2.2. It may not look like it at first,
but the processes, process, and data variables are still strongly typed!

 With implicitly typed local variables C, we no longer have to write the types of
local variables twice. The compiler infers the types automatically. This means that
even though we use a simplified syntax, we still get all the benefits of strong types,
such as compile-time validation and IntelliSense.

 Notice that we can use the same var keyword in foreach D to avoid writing
the type of the iteration variable.

 As you can see, the var and Dim keywords can be used extensively to write shorter
code. In some cases, they’re required to use LINQ features. However, if you like to
have the local variable declarations grouped at the top of method bodies instead of
scattered all over the code statements, you’ll use var and Dim thoughtfully.

 Let’s improve our example a bit more. Initializing a new ProcessData object
requires lengthy code. It’s time to introduce a new improvement to fix this.

B

CD

52 CHAPTER 2

C# and VB.NET language enhancements
2.3 Object and collection initializers

As we continue to make progress in our journey through the new C# and VB.NET
features, the features we introduce in this section will be useful when you start to
write query expressions in the next chapter.

 We’ll start this section with an introduction to object and collection initializers.
We’ll then update our running example to use an object initializer.

2.3.1 The need for object initializers

Object initializers allow us to specify values for one or more fields or properties of
an object in one statement. They allow declarative initializations for all kinds of
objects.

NOTE This is possible only for accessible fields and properties. The expression
after the equals sign is processed the same way as an assignment to the
field or property.

Until now, we have been able to initialize objects of primitive or array types, as
follows:

int i = 12;
string s = "abc"
string[] names = new string[] {"LINQ", "In", "Action"}

It wasn’t possible to use a simple instruction to initialize other objects, though. We
had to use code like this:

ProcessData data = new ProcessData();
data.Id = 123;
data.Name = "MyProcess";
data.Memory = 123456;

Starting with C# 3.0 and VB.NET 9.0, we can initialize all objects using an initial-
izer approach.

In C#
var data = new ProcessData {Id = 123, Name = "MyProcess",
 Memory = 123456};

In VB.NET
Dim data = New ProcessData With {.Id = 123, .Name = "MyProcess", _
 .Memory = 123456}

The pieces of code with and without object initializers produce the same IL code.
Object initializers simply offer a shortcut.

new Point {X = 1, Y = 2}

Object and collection initializers 53
 In cases where a constructor is required or useful, it’s still possible to use object
initializers. In the following example, we use a constructor in combination with an
object initializer:

throw new Exception("message") { Source = "LINQ in Action" };

Here, we initialize two properties in one line of code: Message (through the con-
structor) and Source (through an object initializer). Without the new syntax, we
would have to declare a temporary variable like this:

var exception = new Exception("message");
exception.Source = "LINQ in Action";
throw exception;

2.3.2 Collection initializers

Another kind of initializer has been added: the collection initializer. This new syn-
tax allows us to initialize different types of collections, provided they implement
System.Collections.IEnumerable and provide suitable Add methods.

 Here’s an example:

var digits = new List<int> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

This line of code is equivalent to the following code, which is generated by the
compiler transparently:

List<int> digits = new List<int>();
digits.Add(0);
digits.Add(1);
digits.Add(2);
...
digits.Add(9);

Object and collection initializers are particularly useful when used together in the
same piece of code. The following two equivalent code blocks show how initializers
allow us to write shorter code. Let’s compare some code with object and collection
initializers to code without. Here is the code with object and collection initializers:

var processes = new List<ProcessData> {
 new ProcessData {Id=123, Name="devenv"},
 new ProcessData {Id=456, Name="firefox"}
}

Here is the same code without initializers. Note that it’s much longer:

ProcessData tmp;
var processes = new List<ProcessData>();
tmp = new ProcessData();
tmp.Id = 123;
tmp.Name = "devenv";

54 CHAPTER 2

C# and VB.NET language enhancements
processes.Add(tmp);
tmp = new ProcessData();
tmp.Id = 456;
tmp.Name = "firefox";
processes.Add(tmp);

We can initialize collections represented by a class that implements the IEnumera-
ble interface and provides an Add method. We can use syntax of the form {x, y, z}
to describe arguments that match the Add method’s signature if there is more
than one argument. This enables us to initialize many preexisting collection
classes in the framework and third-party libraries.

 This generalization allows us to initialize a dictionary with the following syntax,
for example:

new Dictionary<int, string> {{1, "one"}, {2, "two"}, {3, "three"}}

2.3.3 Improving our example using an object initializer

As you can see in the following code snippet, we have to write several lines of code
and use a temporary variable in order to create a ProcessData object:

ProcessData data = new ProcessData();
data.Id = process.Id;
data.Name = process.ProcessName;
data.Memory = process.WorkingSet64;
processes.Add(data);

We could add a constructor to our ProcessData class to be able to initialize an
object of this type in just one statement. This would allow us to write listing 2.4.

static void DisplayProcesses()
{
 var processes = new List<ProcessData>();
 foreach (var process in Process.GetProcesses())
 {
 processes.Add(new ProcessData(process.Id,
 process.ProcessName, process.WorkingSet64));
 }

 ObjectDumper.Write(processes);
}

Adding a constructor requires adding code to the ProcessData type. In addition,
the constructor we add may not be suitable for every future use of this class. An
alternative solution is to adapt our code to use the new object initializer syntax, as in
listing 2.5.

Listing 2.4 DisplayProcesses method using a constructor for ProcessData

Lambda expressions 55
static void DisplayProcesses()
{
 var processes = new List<ProcessData>();
 foreach (var process in Process.GetProcesses())
 {
 processes.Add(new ProcessData { Id=process.Id,
 Name=process.ProcessName, Memory=process.WorkingSet64 });
 }

 ObjectDumper.Write(processes);
}

Although the two syntaxes are similar, the latter doesn’t require us to add a con-
structor!

 We can see several advantages to the object initializer notation:

■ We can initialize an object within just one instruction.
■ We don’t need to provide a constructor to be able to initialize simple

objects.
■ We don’t need several constructors to initialize different properties of

objects.

This doesn’t mean that object initializers are an alternative to writing good con-
structors. Object initializers and constructors are language features that comple-
ment each other. You should still define the appropriate set of constructors for your
types. Constructors help prevent the creation of objects that aren’t completely ini-
tialized and define the correct initialization order for an object’s members.

 After these syntactic improvements, let’s add new functionality to our example.
We’ll do this with the help of lambda expressions.

2.4 Lambda expressions

As a part of our tour of the new language features that are enablers for LINQ, we’ll
now introduce lambda expressions, which come from the world of the lambda calcu-
lus. Many functional programming languages such as Lisp use lambda notations
to define functions. In addition to allowing the expression of LINQ queries, the
introduction of lambda expressions into C# and VB.NET can be seen as a step
toward functional languages.

Listing 2.5 DisplayProcesses method using an object initializer
 (ObjectInitializer.csproj)

address => address.City == "Paris"

56 CHAPTER 2

C# and VB.NET language enhancements
Let’s get back to our example. Suppose we want to improve it by adding filtering
capabilities. In order to do this, we can use delegates, which allow us to pass one
method as a parameter to another, for example.

 We’ll start with a refresher on delegates and anonymous methods before using
lambda expressions.

2.4.1 A refresher on delegates

Let’s build on the code of our DisplayProcesses method as we left it in listing 2.5.
Here, we’ve added a hard-coded filtering condition, as you can see in listing 2.6.

static void DisplayProcesses()
{
 var processes = new List<ProcessData>();
 foreach (var process in Process.GetProcesses())
 {
 if (process.WorkingSet64 >= 20*1024*1024)
 {
 processes.Add(new ProcessData { Id=process.Id,
 Name=process.ProcessName, Memory=process.WorkingSet64 });
 }
 }

 ObjectDumper.Write(processes);
}

WorkingSet64 is the amount of physical memory allocated for the associated pro-
cess. Here we search for processes with more than 20 megabytes of allocated
memory.

 In order to make our code more generic, we’ll try to provide the filter informa-
tion as a parameter of our method instead of keeping it hard-coded. In C# 2.0 and

Listing 2.6 DisplayProcesses method with a hard-coded filtering condition

Lambda calculus
In mathematical logic and computer science, the lambda calculus (�-calculus) is
a formal system designed to investigate function definition, function application,
and recursion. It was introduced by Alonzo Church in the 1930s. Lambda calcu-
lus has greatly influenced functional programming languages, such as Lisp, ML,
and Haskell. (Source: Wikipedia.)

Build list of processes
matching criterion

Lambda expressions 57
earlier, this was possible thanks to delegates. A delegate is a type that can store a
pointer to a method.

 Our filtering method should take a Process object as an argument and return
a Boolean value to indicate whether a process matches some criteria. Here is how
to declare such a delegate:

delegate Boolean FilterDelegate(Process process);

Instead of creating our own delegate type, we can also use what .NET 2.0 provides:
the Predicate<T> type. Here is how this type is defined:

delegate Boolean Predicate<T>(T obj);

The Predicate<T> delegate type represents a method that returns true or false,
based on its input. This type is generic, so we need to specify that it will work on
Process objects. The exact delegate type we’ll use is Predicate<Process>.

 Listing 2.7 shows our DisplayProcesses method adapted to take a predicate
as a parameter.

static void DisplayProcesses(Predicate<Process> match)
{
 var processes = new List<ProcessData>();
 foreach (var process in Process.GetProcesses())
 {
 if (match(process))
 {
 processes.Add(new ProcessData { Id=process.Id,
 Name=process.ProcessName, Memory=process.WorkingSet64 });
 }
 }

 ObjectDumper.Write(processes);
}

With the DisplayProcesses method updated as in the listing, it’s now possible to
pass any “filter” to it. In our case, the filtering method contains our condition and
returns true if the criterion is matched:

static Boolean Filter(Process process)
{
 return process.WorkingSet64 >= 20*1024*1024;
}

To use this method, we provide it as an argument to the DisplayProcesses
method, as in listing 2.8.

Listing 2.7 DisplayProcesses method that uses a delegate for filtering

58 CHAPTER 2

C# and VB.NET language enhancements
DisplayProcesses(Filter);

2.4.2 Anonymous methods

Delegates existed in C# 1.0, but C# 2.0 was improved to allow working with dele-
gates through anonymous methods. Anonymous methods allow you to write
shorter code and avoid the need for explicitly named methods.

 Thanks to anonymous methods, we don’t need to declare a method like
Filter. We can directly pass the code to DisplayProcesses, as in listing 2.9.

DisplayProcesses(delegate (Process process)
 { return process.WorkingSet64 >= 20*1024*1024; });

NOTE VB.NET doesn’t offer support for anonymous methods.

Those who have dealt with C++’s Standard Template Library (STL) may compare
anonymous methods to functors. Similarly to functors, anonymous methods can
be used to elegantly tweak a collection with a single line of code.

 .NET 2.0 introduced a set of methods in System.Collections.Generic.
List<T> and System.Array that are designed especially to be used with anonymous
methods. These methods include ForEach, Find, and FindAll. They can operate on
a list or an array with relatively little code.

 For example, here is how the Find method can be used with an anonymous
method to find a specific process:

var visualStudio = processes.Find(delegate (Process process)
 { return process.ProcessName == "devenv"; });

2.4.3 Introducing lambda expressions

Instead of using an anonymous method, like in listing 2.9, starting with C# 3.0 we
can use a lambda expression.

 Listing 2.10 is strictly equivalent to the previous piece of code.

DisplayProcesses(process => process.WorkingSet64 >= 20*1024*1024);

Listing 2.8 Calling the DisplayProcesses method using a standard delegate

Listing 2.9 Calling the DisplayProcesses method using an anonymous method

Listing 2.10 Calling the DisplayProcesses method using a lambda expression
 (LambdaExpressions.csproj)

Lambda expressions 59
Notice how the code is simplified when using a lambda expression. This lambda
expression reads like this: “Given a process, return true if the process consumes 20
megabytes of memory or more.”

 As you can see, in the case of lambda expressions, we don’t need to provide the
type of the parameter. Again, this was duplicated information in the previous
code: The new C# compiler is able to deduce the type of the parameters from the
method signature.

Comparing lambda expressions with anonymous methods
C# 2.0 introduced anonymous methods, which allow code blocks to be written
“inline” where delegate values are expected. The anonymous method syntax is
verbose and imperative in nature. In contrast, lambda expressions provide a more
concise syntax, providing much of the expressive power of functional program-
ming languages.

 Lambda expressions can be considered as a functional superset of anonymous
methods, providing the following additional functionality:

■ Lambda expressions can infer parameter types, allowing you to omit them.
■ Lambda expressions can use both statement blocks and expressions as bod-

ies, allowing for a terser syntax than anonymous methods, whose bodies can
only be statement blocks.

■ Lambda expressions can participate in type argument inference and
method overload resolution when passed in as arguments. Note: anony-
mous methods can also participate in type argument inference (inferred
return types).

■ Lambda expressions with an expression body can be converted into expres-
sion trees. (We’ll introduce expression trees in the next chapter.)

Lambda expressions introduce new syntaxes in C# and VB.NET. In the next sec-
tion, we’ll look at the structure of lambda expressions and review some samples so
you can grow accustomed to them.

How to express lambda expressions
In C#, a lambda expression is written as a parameter list, followed by the => token,
followed by an expression or a statement block, as shown in figure 2.1.

Figure 2.1
Structure of a lambda
expression in C#

60 CHAPTER 2

C# and VB.NET language enhancements
NOTE The => token always follows the parameter list. It should not be confused
with comparison operators such as <= and >=.

The lambda operator can be read as “goes to.” The left side of the operator speci-
fies the input parameters (if any), and the right side holds the expression or state-
ment block to be evaluated.

 There are two kinds of lambda expressions. A lambda expression with an
expression on the right side is called an expression lambda. The second kind is a
statement lambda, which looks similar to an expression lambda except that its right
part consists of any number of statements enclosed in curly braces.

 To give you a better idea of what lambda expressions look like in C#, see list-
ing 2.11 for some examples.

x => x + 1

x => { return x + 1; }

(int x) => x + 1

(int x) => { return x + 1; }

(x, y) => x * y

() => 1

() => Console.WriteLine()

customer => customer.Name

person => person.City == "Paris"

(person, minAge) => person.Age >= minAge

Implicitly typed, expression body

Implicitly typed, statement body

Explicitly typed, expression body

Explicitly typed, statement body

Multiple parameters

No parameters, expression body

No parameters, statement body

NOTE The parameters of a lambda expression can be explicitly or implicitly
typed.

In VB.NET, lambda expressions are written differently. They start with the Func-
tion keyword, as shown in figure 2.2:

Listing 2.11 Sample lambda expressions in C#

B
C

D
E

F
G

H

B

C

D

E

F

G

H

Lambda expressions 61
NOTE VB.NET 9.0 doesn’t support statement lambdas.

Listing 2.12 shows the sample expressions we provided for C#, but in VB.NET this
time.

Function(x) x + 1

Function(x As Integer) x + 1

Function(x, y) x * y

Function() 1

Function(customer) customer.Name

Function(person) person.City = "Paris"

Function(person, minAge) person.Age >= minAge

Implicitly typed

Explicitly typed

Multiple parameters

No parameters

As you saw in the example, lambda expressions are compatible with delegates. To
give you a feel for lambda expressions as delegates, we’ll use some delegate types.

 The System.Action<T>, System.Converter<TInput, TOutput>, and Sys-
tem.Predicate<T> generic delegate types were introduced by .NET 2.0:

delegate void Action<T>(T obj);
delegate TOutput Converter<TInput, TOutput>(TInput input);
delegate Boolean Predicate<T>(T obj);

Another interesting delegate type from previous versions of .NET is MethodIn-
voker. This type represents any method that takes no parameters and returns no
results:

delegate void MethodInvoker();

We regret that MethodInvoker has been declared in the System.Windows.Forms
namespace even though it can be useful outside Windows Forms applications.
This has been addressed in .NET 3.5. A new version of the Action delegate type

Listing 2.12 Sample lambda expressions in VB.NET

Figure 2.2
Structure of a lambda
expression in VB.NET

B
C

D
E

B

C

D

E

62 CHAPTER 2

C# and VB.NET language enhancements
that takes no parameter is added to the System namespace by the new Sys-
tem.Core.dll assembly:

delegate void Action();

NOTE The System.Core.dll assembly comes with .NET 3.5. We’ll describe its
content and the content of the other LINQ assemblies in chapter 3.

A whole set of additional delegate types is added to the System namespace by the
System.Core.dll assembly:

delegate void Action<T1, T2>(T1 arg1, T2 arg2);
delegate void Action<T1, T2, T3>(T1 arg1, T2 arg2);
delegate void Action<T1, T2, T3, T4>(T1 arg1, T2 arg2,
 T3 arg3, T4 arg4);
delegate TResult Func<TResult>();
delegate TResult Func<T, TResult>(T arg);
delegate TResult Func<T1, T2, TResult>(T1 arg1, T2 arg2);
delegate TResult Func<T1, T2, T3, TResult>(T1 arg1, T2 arg2);
delegate TResult Func<T1, T2, T3, T4, TResult>(T1 arg1, T2 arg2,
 T3 arg3, T4 arg4);

A lambda expression is compatible with a delegate if the following rules are
respected:

■ The lambda must contain the same number of parameters as the delegate
type.

■ Each input parameter in the lambda must be implicitly convertible to its
corresponding delegate parameter.

■ The return value of the lambda (if any) must be implicitly convertible to the
delegate’s return type.

To give you a good overview of the various possible combinations, we have pre-
pared a set of sample lambda expressions declared as delegates. These samples
demonstrate the compatibility between the delegate types we have just introduced
and some lambda expressions. Listings 2.13 and 2.14 contain the samples, which
include lambda expressions and delegates with and without parameters, both with
and without result, as well as expression lambdas and statement lambdas.

Func<DateTime> getDateTime = () => DateTime.Now;

Action<string> printImplicit = s => Console.WriteLine(s);

Action<string> printExplicit = (string s) => Console.WriteLine(s);

Listing 2.13 Sample lambda expressions declared as delegates in C#
 (LambdaExpressions.csproj)

B

C

D

Lambda expressions 63
Func<int, int, int> sumInts = (x, y) => x + y;

Predicate<int> equalsOne1 = x => x == 1;
Func<int, bool> equalsOne2 = x => x == 1;

Func<int, int> incInt = x => x + 1;
Func<int, double> incIntAsDouble = x => x + 1;

Func<int, int, int> comparer = (int x, int y) =>
 {
 if (x > y) return 1;
 if (x < y) return -1;
 return 0;
 };

No parameter

Implicitly typed string parameter

Explicitly typed string parameter

Two implicitly typed parameters

Equivalent but not compatible

Same lambda expression but different delegate types

Statement body and explicitly typed parameters

Listing 2.14 shows similar lambda expressions declared as delegates in VB.

Dim getDateTime As Func(Of DateTime) = Function() DateTime.Now

Dim upperImplicit As Func(Of String, String) = _
 Function(s) s.ToUpper()

Dim upperExplicit As Func(Of String, String) = _
 Function(s As String) s.ToUpper()

Dim sumInts As Func(of Integer, Integer, Integer) = _
 Function(x, y) x + y

Dim equalsOne1 As Predicate(of Integer) = Function(x) x = 1
Dim equalsOne2 As Func(Of Integer, Boolean) = Function(x) x = 1

Dim incInt As Func(Of Integer, Integer) = Function(x) x + 1
Dim incIntAsDouble As Func(Of Integer, Double) = Function(x) x + 1

Listing 2.14 Sample lambda expressions declared as delegates in VB.NET
 (LambdaExpressions.vbproj)

E

F

G

H

B

C

D

E

F

G

H

B

C

D

E

F

G

64 CHAPTER 2

C# and VB.NET language enhancements
No parameter

Implicitly typed string parameter

Explicitly typed string parameter

Two implicitly typed parameters

Equivalent but not compatible

Same lambda expression but different delegate types

The statement lambda isn’t reproduced in VB in the listing because VB.NET
doesn’t support this kind of lambda expression. Furthermore, we use Func(Of
String, String) CD instead of Action(Of String) because it would require a
statement lambda.

 Let’s continue improving our example. This time, we’ll work on the list of
processes.

2.5 Extension methods

The next topic we’d like to cover is extension methods. You’ll see how this new lan-
guage feature allows you to add methods to a type after it has been defined. You’ll
also see how extension methods compare to static methods and instance methods.

 We’ll start by creating a sample extension method, before going through more
examples and using some predefined extension methods. Before jumping onto
the next subject, we’ll give you some warnings and show you the limitations of
extension methods.

2.5.1 Creating a sample extension method

In our continuing effort to improve our example that displays information about
the running processes, let’s say we want to compute the total memory used by a
list of processes. We could define a standard static method that accepts an enu-
meration of ProcessData objects as a parameter. This method would loop on the
processes and sum the memory used by each process.

 For an example, see listing 2.15.

static Int64 TotalMemory(IEnumerable<ProcessData> processes)
{
 Int64 result = 0;

 foreach (var process in processes)

Listing 2.15 The TotalMemory helper method coded as standard static method

B

C

D

E

F

G

static void Dump(this object o);

Extension methods 65
 result += process.Memory;

 return result;
}

We could then use this method this way:

Console.WriteLine("Total memory: {0} MB",
 TotalMemory(processes)/1024/1024);

One thing we can do to improve our code is convert our static method into an
extension method. This new language feature makes it possible to treat existing
types as if they were extended with additional methods.

Declaring extension methods in C#
In order to transform our method into an extension method, all we have to do is
add the this keyword to the first parameter, as shown in listing 2.16.

static Int64 TotalMemory(this IEnumerable<ProcessData> processes)
{
 Int64 result = 0;

 foreach (var process in processes)
 result += process.Memory;

 return result;
}

If we examine this new version of the method, it still looks more or less exactly
like any run-of-the-mill helper routine, with the notable exception of the first
parameter being decorated with the this keyword B.

 The this keyword instructs the compiler to treat the method as an extension
method. It indicates that this is a method that extends objects of type IEnumera-
ble<ProcessData>.

NOTE In C#, extension methods must be declared on a non-generic static class.
In addition, an extension method can take any number of parameters,
but the first parameter must be of the type that is extended and preceded
by the keyword this.

Listing 2.16 The TotalMemory helper method declared as an extension method
 (ExtensionMethods.csproj)

B

66 CHAPTER 2

C# and VB.NET language enhancements
We can now use the TotalMemory method as if it were an instance method defined
on the type of our processes object. Here is the syntax it allows:

Console.WriteLine("Total memory: {0} MB",
 processes.TotalMemory()/1024/1024);

See how we have extended, in appear-
ance at least, the IEnumerable<Pro-
cessData> type with a new method. The
type remains unchanged. The compiler
converts the code to a static method
call, comparable to what we used in list-
ing 2.15.

 It may not appear that using an
extension method makes a big differ-
ence, but it helps when writing code
because our TotalMemory method is
now listed by IntelliSense for the types
supported by this method, as shown in
figure 2.3.

 Notice how a specific icon with a blue arrow is used for extension methods.
The figure shows the ToList and ToLookup standard query operators (more on
these in section 2.5.2), as well as our TotalMemory extension method. Now, when
writing code, we clearly see that we can get a total of the memory used by the pro-
cesses contained in an enumeration of ProcessData objects. Extension methods
are more easily discoverable through IntelliSense than classic static helper meth-
ods are.

 Another advantage of extension methods is that they make it much easier to
chain operations together. Let’s consider that we want to do the following:

1 Filter out some processes from a collection of ProcessData objects using a
helper method.

2 Compute the total memory consumption of the processes using TotalMemory.

3 Convert the memory consumption into megabytes using another helper
method.

We would end up writing code that looks like this with classical helper methods:

BytesToMegaBytes(TotalMemory(FilterOutSomeProcesses(processes)));

Figure 2.3 IntelliSense displays extension
methods with a specific icon in addition to
instance methods.

Extension methods 67
One problem with this kind of code is that the operations are specified in the
opposite of the order in which they are executed. This makes the code both
harder to write and more difficult to understand.

 In comparison, if the three fictitious helper methods were defined as exten-
sion methods, we could write:

processes
 .FilterOutSomeProcesses()
 .TotalMemory()
 .BytesToMegaBytes();

In this latter version, the operations are specified in the same order they execute
in. This is much easier to read, don’t you think?

NOTE Notice in the code sample that we insert line breaks and whitespace
between method calls. We’ll do this often in our code samples in order to
improve code readability. This isn’t a new feature offered by C# 3.0,
because it’s supported by all versions of C#.

You’ll see more examples of chaining constructs in the next sections. As you’ll see
in the next chapter, this is a key feature for writing LINQ queries. For the moment,
let’s see how to declare extension methods in VB.NET.

Declaring extension methods in VB.NET
In VB.NET, extension methods are shared methods decorated with a custom
attribute (System.Runtime.CompilerServices.ExtensionAttribute) that allow
them to be invoked with instance-method syntax. (An extension method can be a
Sub procedure or a Function procedure.) This attribute is provided by the new
System.Core.dll assembly.

NOTE In VB.NET, extension methods should be declared in a module.

The first parameter in a VB.NET extension method definition specifies which data
type the method extends. When the method is run, the first parameter is bound
to the instance of the data type against which the method is applied.

 Listing 2.17 shows how we would declare our TotalMemory extension method
in VB.NET.

<System.Runtime.CompilerServices.Extension()> _
Public Function TotalMemory(_
 ByVal processes As IEnumerable(Of ProcessData)) _
 As Int64

Listing 2.17 Sample extension method in VB.NET
 (ExtensionMethods.vbproj)

68 CHAPTER 2

C# and VB.NET language enhancements
 Dim result As Int64 = 0
 For Each process In processes
 result += process.Memory
 Next
 Return Result
End Function

NOTE Extension members of other kinds, such as properties, events, and opera-
tors, are being considered by Microsoft for the future but are currently
not supported in C# 3.0 and VB.NET 9.0.

To give you a better idea of what can be done with extension methods and why they
are useful, we’ll now use some standard extension methods provided with LINQ.

2.5.2 More examples using LINQ’s standard query operators

LINQ comes with a set of extension methods you can use like any other exten-
sion method. We’ll use some of them to show you more extension methods in
action and give you a preview of the standard query operators, which we’ll cover
in the next chapter.

OrderByDescending
Let’s say that we’d like to sort the list of processes by their memory consumption,
memory hogs first. We can use the OrderByDescending extension method defined
in the System.Linq.Enumerable class. Extension methods are imported through
using namespace directives. For example, to use the extension methods defined
in the Enumerable class, we need to add the following line of code to the top of
our code file if it’s not already there:

using System.Linq;

NOTE Your project also needs a reference to System.Core.dll, but this is
added by default for new projects.

We’re now able to call OrderByDescending as follows to sort our processes:

ObjectDumper.Write(
 processes.OrderByDescending(process => process.Memory));

You can see that we provide the extension method with a lambda expression to
decide how the sort operation will be performed. Here we indicate that we want
to compare the processes based on their memory consumption.

 It’s important to note that type inference is used automatically to simplify the
code. Although OrderByDescending is defined as a generic method, we don’t
need to explicitly indicate the types we’re dealing with. The C# compiler deduces

Extension methods 69
from the method call that OrderByDescending works here on Process objects and
returns an enumeration of Int64 objects.

 When a generic method is called without specifying type arguments, a type infer-
ence process attempts to infer type arguments for the call. The presence of type
inference allows a more convenient syntax to be used for calling a generic method,
and allows the programmer to avoid specifying redundant type information.

 Here is how OrderByDescending is defined:

public static IOrderedSequence<TSource>
 OrderByDescending<TSource, TKey>(
 this IEnumerable<TSource> source,
 Func<TSource, TKey> keySelector)

Here is how we would have to use it if type inference weren’t occurring:

processes.OrderByDescending<Process, Int64>(
 (Process process) => process.Memory));

The code would be more difficult to read without type inference because we’d
have to specify types everywhere in LINQ queries.

 Let’s now look at other query operators.

Take
If we’re interested only in the two processes that consume the most memory, we
can use the Take extension method:

ObjectDumper.Write(
 processes
 .OrderByDescending(process => process.Memory)
 .Take(2));

The Take method returns the first n elements in an enumeration. Here we want
two elements.

Sum
If we want to sum the amount of memory used by the two processes, we can use
another standard extension method: Sum. The Sum method can be used in place of
the extension method we created, TotalMemory. Here is how to use it:

ObjectDumper.Write(
 processes
 .OrderByDescending(process => process.Memory)
 .Take(2)
 .Sum(process => process.Memory)/1024/1024);

70 CHAPTER 2

C# and VB.NET language enhancements
2.5.3 Extension methods in action in our example

Listing 2.18 shows what our DisplayProcess method looks like after all the addi-
tions we made.

static void DisplayProcesses(Func<Process, Boolean> match)
{
 var processes = new List<ProcessData>();
 foreach (var process in Process.GetProcesses())
 {
 if (match(process))
 {
 processes.Add(new ProcessData { Id=process.Id,
 Name=process.ProcessName, Memory=process.WorkingSet64 });
 }
 }

 Console.WriteLine("Total memory: {0} MB",
 processes.TotalMemory()/1024/1024);

 var top2Memory =
 processes
 .OrderByDescending(process => process.Memory)
 .Take(2)
 .Sum(process => process.Memory)/1024/1024;
 Console.WriteLine(
 "Memory consumed by the two most hungry processes: {0} MB",
 top2Memory);

 ObjectDumper.Write(processes);
}

You can see how extension methods are especially useful when you combine them.
Without extension methods, we would have to write code that is more difficult
to comprehend. For example, compare the following code snippets that use the
same methods.

 Note these methods used as classic static methods:

var top2Memory =
 Enumerable.Sum(
 Enumerable.Take(
 Enumerable.OrderByDescending(processes,
 process => process.Memory),
 2),
 process => process.Memory)/1024/1024;

Listing 2.18 The DisplayProcesses methods with extension methods
 (ExtensionMethods.csproj)

Extension methods 71
Compare that to these methods used as extension methods:

var top2Memory =
 processes
 .OrderByDescending(process => process.Memory)
 .Take(2)
 .Sum(process => process.Memory)/1024/1024;

As you can see, extension methods facilitate a chaining pattern because they can
be strung together using dot notation. This looks like a pipeline and could be
compared to Unix pipes. This is important for working with query operators,
which we’ll cover in chapter 3.

Notice how much easier it is to follow the latter code. The processing steps are
clearly expressed: We want to order the processes by memory, then keep the first
two, and then sum their memory consumption. With the first code, it’s not that
obvious, because what happens first is nested in method calls.

2.5.4 Warnings

Let’s review some limitations of extension methods before returning to our exam-
ple application.

 An important question arises when encountering extension methods: What if
an extension method conflicts with an instance method? It’s important to under-
stand how the resolution of extension methods works.

 Extension methods are less “discoverable” than instance methods, which
means that they are always lower priority. An extension method can’t hide an
instance method.

 Let’s consider listing 2.19.

using System;

class Class1
{
}

class Class2

Listing 2.19 Sample code for demonstrating extension methods’ discoverability

Pipelines
In Unix-like computer operating systems, a pipeline is a set of processes chained
by their standard streams, so that the output of each process (stdout) feeds di-
rectly as input (stdin) of the next one. Example: who | grep "joe" | sort.

72 CHAPTER 2

C# and VB.NET language enhancements
{
 public void Method1(string s)
 {
 Console.WriteLine("Class2.Method1");
 }
}

class Class3
{
 public void Method1(object o)
 {
 Console.WriteLine("Class3.Method1");
 }
}

class Class4
{
 public void Method1(int i)
 {
 Console.WriteLine("Class4.Method1");
 }
}

static class Extensions
{
 static public void Method1(this object o, int i)
 {
 Console.WriteLine("Extensions.Method1");
 }

 static void Main()
 {
 new Class1().Method1(12);
 new Class2().Method1(12);
 new Class3().Method1(12);
 new Class4().Method1(12);
 }
}

This code produces the following results:

Extensions.Method1
Extensions.Method1
Class3.Method1
Class4.Method1

You can see that as soon as an instance method exists with matching parameter
types, it gets executed. The extension method is called only when no method with
the same signature exists.

Class3.Method1 called

Extensions.Method1 called

Class4.Method1 called

Anonymous types 73
Extension methods are more limited in functionality than instance methods.
They can’t access non-public members, for example. Also, using extension meth-
ods intensively can negatively affect the readability of your code if it’s not clear
that an extension method is used. For those reasons, we recommend you use
extension methods sparingly and only in situations where instance methods aren’t
feasible. We’ll use and create extension methods in combination with LINQ, but
that’s a story for later.

 With all these new features, we have greatly improved our code. But wait a
minute: We can do better than that! Don’t you think it would be a big improvement
if we could get rid of the ProcessData class? As it stands, it’s a temporary class with
no real value, and it accounts for several lines of code. Getting rid of all the extra
code would be perfect. This is just what anonymous types will allow us to do!

2.6 Anonymous types

We’re approaching the end of this chapter. But we still have one language
enhancement to introduce before we can focus again on LINQ in the next chap-
ter, in which you’ll be able to employ everything you learned in this chapter.

Warning
In VB.NET, the behavior is a bit different. With code similar to listing 2.19, the
results are as follows if Option Strict is Off:

Extensions.Method1
Class2.Method1
Class3.Method1
Class4.Method1

As you can see, the VB.NET compiler gives higher priority to instance methods
by converting parameters if needed. Here, the integer we pass to Method1 is con-
verted automatically to a string in order to call the method of Class2.

If Option Strict is On, the following compilation error happens: "Option
Strict On disallows implicit conversions from 'Integer' to 'String'".
In such a case, a classic shared method call can be used, such as Method1(New
Class2(), 12).

See the sample ExtensionMethodsDiscoverability.vbproj project to ex-
periment with this.

var contact = new { Name = "Bob", Age = 8 }

74 CHAPTER 2

C# and VB.NET language enhancements
 Using a syntax similar to that of object initializers, we can create anonymous
types. They are usually used to group data into an object without first declaring a
new class.

 We’ll start this section by demonstrating how to use anonymous types in our
example. We’ll then show you how anonymous types are real types, and point out
some of their limitations.

2.6.1 Using anonymous types to group data into an object

Let’s say we want to collect the results of our processing together. We want to
group information into an object. Having to declare a specific type just for this
would be a pain.

 Here is how we can use an anonymous type in C#:

var results = new {
 TotalMemory = processes.TotalMemory()/1024/1024,
 Top2Memory = top2Memory,
 Processes = processes };

NOTE To output content of the Processes property, which is created as part of
our new object, we should instruct ObjectDumper to process the data one
level deeper. In order to do this, call ObjectDumper.Write(results, 1)
instead of ObjectDumper.Write(results).

The syntax for anonymous types in VB.NET is similar:

Dim results = New With { _
 .TotalMemory = processes.TotalMemory()/1024/1024, _
 .Top2Memory = top2Memory, _
 .Processes = processes }

NOTE Objects declared using an anonymous type can be used only with the var
or Dim keywords. This is because an anonymous type doesn’t have a name
we could use in our code!

2.6.2 Types without names, but types nonetheless

Anonymous types are types without names,1 but types anyway. This means that a
real type is created by the compiler. Our results variable points to an instance of
a class that is created automatically based on our code. This class has three prop-
erties: TotalMemory, Top2Memory, and Processes. The types of the properties are
deduced from the initializers.

 Figure 2.4 shows what the anonymous type that is created for us looks like in
the produced assembly.

1 Without names we can use, at least.

Anonymous types 75
The figure is a screenshot of .NET Reflector displaying the decompiled code of an
anonymous type generated for the code we wrote in the previous section. (.NET
Reflector is a free tool we highly recommend, available at http://aisto.com/
roeder/dotnet.)

 Be aware that compilers consider two anonymous types that are specified
within the same program with properties of the same names and types in the same
order to be the same type. For example, if we write the following two lines of code,
only one type is created by the compiler:

var v1 = new { Person = "Suzie", Age = 32, CanCode = true }
var v2 = new { Person = "Barney", Age = 29, CanCode = false }

After this code snippet is executed, the two variables v1 and v2 contain two differ-
ent instances of the same class.

 If we add a third line like the following one, a different type is created for v3
because the order of the properties is different:

var v3 = new { Age = 17, Person = "Bill", CanCode = false }

Figure 2.4 Sample anonymous type produced by the compiler, as displayed by .NET Reflector

http://aisto.com/roeder/dotnet

76 CHAPTER 2

C# and VB.NET language enhancements
2.6.3 Improving our example using anonymous types

That’s all well and good, but we said that we could get rid of the ProcessData object,
and we haven’t done so. Let’s get back to what we wanted to do. Listing 2.20 shows
a version of our DisplayProcesses method that uses an anonymous type instead of
the ProcessData class:

static void DisplayProcesses(Func<Process, Boolean> match)
{
 var processes = new List<Object>();
 foreach (var process in Process.GetProcesses())
 {
 if (match(process))
 {
 processes.Add(new {
 process.Id,
 Name=process.ProcessName,
 Memory=process.WorkingSet64 });
 }
 }

 ObjectDumper.Write(processes);
}

NOTE If a name isn’t specified for a property, and the expression is a simple
name or a member access, the result property takes the name of the orig-
inal member. Here we don’t provide a name for the first member B, so
it will be named Id.

For the sake of clarity, you may consider explicitly naming the mem-
bers even if it isn’t required.

The great advantage of using such code is that we don’t need to declare our Pro-
cessData class. This makes anonymous types a great tool for quick and simple tem-
porary results. We don’t have to declare classes to hold temporary results anymore—
thanks to anonymous types.

 Still, anonymous types suffer from a number of limitations.

2.6.4 Limitations

A problem with our new code is that now that we have removed the ProcessData
class, we can’t use our TotalMemory method any longer because it’s defined to
work with ProcessData objects. As soon as we use anonymous types, we lose the

Listing 2.20 The DisplayProcesses method with an anonymous type
 (AnonymousTypes.csproj)

B

Anonymous types 77
ability to work with your objects in a strongly typed manner outside of the method
where they are defined. This means that we can pass an instance of an anonymous
type to a method only if the method expects an Object as parameter, but not if it
expects a more precise type. Reflection is the only way to work with an anonymous
type outside of the method where it’s created.

 Likewise, anonymous types can’t be used as method results, unless the
method’s return type is Object. This is why anonymous types should be used only
for temporary data and can’t be used like normal types in method signatures.

 Well, that’s not entirely true. We can use anonymous types as method results
from generic methods. Let’s consider the following method:

public static TResult ReturnAGeneric<TResult>(
 Func<TResult> creator)
{
 return creator();
}

The return type of the ReturnAGeneric method is generic. If we call it without
explicitly specifying a type for the TResult type argument, it’s inferred automati-
cally from the signature of the creator parameter. Now, let’s consider the follow-
ing line of code that invokes ReturnAGeneric:

var obj = ReturnAGeneric(
 () => new {Time = DateTime.Now, AString = "abc"});

Because the creator function provided as an argument returns an instance of an
anonymous type, ReturnAGeneric returns that instance. However, ReturnA-
Generic isn’t defined to return an Object, but a generic type. This is why the obj
variable is strongly typed. This means it has a Time property of type DateTime and
an AString property of type String.

 Our ReturnAGeneric method is pretty much useless. But as you’ll be able to
see with the standard query operators, LINQ uses this extensively in a more useful
way.

 There is one more thing to keep in mind about anonymous types. In C#,
instances of anonymous types are immutable. This means that once you create an
anonymous type instance, its field and property values are fixed forever. If you
look at the sample anonymous type the compiler creates in figure 2.4, you can
see that properties have getters but no setters. The only way to assign values to
the properties and their underlying fields is through the constructor of the
class. When you use the syntax to initialize an instance of an anonymous type,
the constructor of that type is invoked automatically and the values are set once
and for all.

78 CHAPTER 2

C# and VB.NET language enhancements
 Because they are immutable, instances of anonymous types have stable hash
codes. If an object can’t be altered, then its hash code will never change either
(unless the hash code of one of its fields isn’t stable). This is useful for hash tables
and data-binding scenarios, for example.

 You may wonder why anonymous types in C# are designed to be immutable.
What may appear to be a limitation is in fact a feature. It enables value-based pro-
gramming, which is used in functional languages to avoid side effects. Objects
that never change allow concurrent access to work much better. This will be useful
to enable PLINQ (Parallel LINQ), a project Microsoft has started to introduce con-
currency in LINQ queries. You’ll learn more about PLINQ in chapter 13. Immuta-
ble anonymous types take .NET one step closer to a more functional
programming world where we can use snapshots of state and side-effect-free code.

Keyed anonymous types
We wrote that anonymous types are immutable in C#. The behavior is different in
VB.NET. By default, instances of anonymous types are mutable in VB.NET. But we
can specify a Key modifier on the properties of an anonymous type, as shown in
listing 2.21.

Dim v1 = New With {Key .Id = 123, .Name = "Fabrice"}
Dim v2 = New With {Key .Id = 123, .Name = "Céline"}
Dim v3 = New With {Key .Id = 456, .Name = "Fabrice"}
Console.WriteLine(v1.Equals(v2))
Console.WriteLine(v1.Equals(v3))

The Key modifier does two things: It makes the property on which it’s applied
read-only (keys have to be stable), and it causes the GetHashCode method to be
overridden by the anonymous type so it calls GetHashCode on the key properties.
You can have as many key properties as you like.

 A consequence of using Key is that it affects the comparison of objects. For
example, in the listing, v1.Equals(v2) returns True because the keys of v1 and v2
are equal. In contrast, v1.Equals(v3) returns False.

Listing 2.21 Testing keyed anonymous types
 (AnonymousTypes.csproj)

Summary 79
2.7 Summary

In this chapter, we have covered several language extensions provided by C# 3.0
and VB.NET 9.0:

■ Implicitly typed local variables
■ Object and collection initializers
■ Lambda expressions
■ Extension methods
■ Anonymous types

All these new features are cornerstones for LINQ, but they are integral parts of the
C# and VB.NET languages and can be used separately. They represent a move by
Microsoft to bring some of the benefits that exist with dynamic and functional lan-
guages to .NET developers.

To sum up what we have introduced in this chapter, listing 2.22 shows the com-
plete source code of the example we built. You can see all the new language fea-
tures in action, as highlighted in the annotations.

Feature notes
We also used auto-implemented properties in this chapter, but this new feature
exists only for C# and isn’t required for LINQ to exist. If you want to learn more
about the new C# features and C# in general, we suggest you read another book
from Manning: C# in Depth.

VB.NET 9.0 introduces more language features, but they aren’t related to
LINQ, and we won’t cover them in this book. This includes If as a ternary oper-
ator similar to C#’s ?: operator and as a replacement for IIf. Other VB improve-
ments include relaxed delegates and improved generic type inferencing.

It’s interesting to note that Visual Studio 2008 lets us write code that uses
C# 3.0 or VB.NET 9.0 features but target .NET 2.0. In other words, we can run
code that uses what we introduced in this chapter on .NET 2.0 without needing
.NET 3.0 or 3.5 installed on the client or host machine, because all the features
are provided by the compiler and don’t require runtime or library support. One no-
table exception is extension methods, which require the System.Runtime.Com-
pilerServices.ExtensionAttribute class; but we can introduce it ourselves
or deliver the System.Core assembly that contains it with our .NET 2.0 program.

80 CHAPTER 2

C# and VB.NET language enhancements
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;

static class LanguageFeatures
{
 class ProcessData
 {
 public Int32 Id { get; set; }
 public Int64 Memory { get; set; }
 public String Name { get; set; }
 }

 static void DisplayProcesses(Func<Process, Boolean> match)
 {
 var processes = new List<ProcessData>();
 foreach (var process in Process.GetProcesses())
 {
 if (match(process))
 {
 processes.Add(new ProcessData { Id=process.Id,
 Name=process.ProcessName, Memory=process.WorkingSet64 });
 }
 }

 Console.WriteLine("Total memory: {0} MB",
 processes.TotalMemory()/1024/1024);
 var top2Memory =
 processes
 .OrderByDescending(process => process.Memory)
 .Take(2)
 .Sum(process => process.Memory)/1024/1024;
 Console.WriteLine(
 "Memory consumed by the two most hungry processes: {0} MB",
 top2Memory);

 var results = new {
 TotalMemory = processes.TotalMemory()/1024/1024,
 Top2Memory = top2Memory,
 Processes = processes };
 ObjectDumper.Write(results, 1);

 ObjectDumper.Write(processes);
 }

Listing 2.22 Complete code demonstrating the new language features
 (CompleteCode.csproj)

Implicitly typed
local variables

Object
initializers

Extension
methods

Anonymous
types

Summary 81
 static Int64 TotalMemory(this IEnumerable<ProcessData> processes)
 {
 Int64 result = 0;

 foreach (var process in processes)
 result += process.Memory;

 return result;
 }

 static void Main()
 {
 DisplayProcesses(
 process => process.WorkingSet64 >= 20*1024*1024);
 }
}

After this necessary digression, in the next chapter you’ll see how all the language
enhancements you have just discovered are used by LINQ to integrate queries into
C# and VB.NET.

Extension
methods

Lambda
expressions

LINQ building blocks
This chapter covers:
■ An introduction to the key elements of the

LINQ foundation
■ Sequences
■ Deferred query execution
■ Query operators
■ Query expressions
■ Expression trees
■ LINQ DLLs and namespaces
82

How LINQ extends .NET 83
In chapter 2, we reviewed the language additions made to C# and VB.NET: the
basic elements and language innovations that make LINQ possible.

 In this chapter, you’ll discover new concepts unique to LINQ. Each of these
concepts builds on the new language features we presented in chapter 2. You’ll
now begin to see how everything adds up when used by LINQ.

 We’ll start with a rundown of the language features we’ve already covered.
We’ll then present new features that form the key elements of the LINQ founda-
tion. In particular, we’ll detail the language extensions and key concepts. This
includes sequences, the standard query operators, query expressions, and expres-
sion trees. We’ll finish this chapter by taking a look at how LINQ extends the .NET
Framework with new assemblies and namespaces.

 At the end of this chapter, you should have a good overview of all the funda-
mental building blocks on which LINQ relies and how they fit together. With this
foundation, you’ll be ready to work on LINQ code.

3.1 How LINQ extends .NET

This section gives a refresher on the features we introduced in chapter 2 and puts
them into the big picture so you can get a clear idea of how they all work together
when used with LINQ. We’ll also enumerate the elements LINQ brings to the
party, which we’ll detail in the rest of this chapter.

3.1.1 Refresher on the language extensions

As a refresher, let’s sum up the significant additions to the languages that you dis-
covered in chapter 2:

■ Implicitly typed local variables

■ Object initializers

■ Lambda expressions

■ Extension methods

■ Anonymous types

These additions are what we call language extensions, the set of new language fea-
tures and syntactic constructs added to C# and VB.NET to support LINQ. All of
these extensions require new versions of the C# and VB.NET compilers, but no
new IL instructions or changes of the .NET runtime.

84 CHAPTER 3

LINQ building blocks
 These language extensions are full-fledged features that can be used in code
that has nothing to do with LINQ. They are however required for LINQ to work,
and you’ll use them a lot when writing language-integrated queries.

 In order to introduce LINQ concepts and understand why they are important,
we’ll dissect a code sample throughout this chapter. We’ll keep the same subject
as in chapter 2: filtering and sorting a list of running processes.

 Here is the code sample we’ll use:

static void DisplayProcesses()
{
 var processes =
 Process.GetProcesses()
 .Where(process => process.WorkingSet64 > 20*1024*1024)
 .OrderByDescending(process => process.WorkingSet64)
 .Select(process => new { process.Id,
 Name=process.ProcessName });

 ObjectDumper.Write(processes);
}

The portion of code in bold is a LINQ query. If you take a close look at it, you can
see all the language enhancements we introduced in the previous chapter, as
shown in figure 3.1.

 In the figure, you should clearly see how everything dovetails to form a com-
plete solution. You can now understand why we called the language enhance-
ments “key components” for LINQ.

Figure 3.1 The language extensions all in one picture

Introducing sequences 85
3.1.2 The key elements of the LINQ foundation

More features and concepts are required for LINQ to work than those we’ve just
listed. Several concepts specifically related to queries are also required:

■ We’ll start by explaining what sequences are and how they are used in LINQ
queries.

■ You’ll also encounter query expressions. This is the name for the
from…where…select syntax you’ve already seen.

■ We’ll explore query operators, which represent the basic operations you can
perform in a LINQ query.

■ We’ll also explain what deferred query execution means, and why it is important.

■ In order to enable deferred query execution, LINQ uses expression trees. We’ll
see what expression trees are and how LINQ uses them.

You need to understand these features in order to be able to read and write LINQ
code, as we’ll do in the next chapters.

3.2 Introducing sequences

The first LINQ concept we’ll present in this chapter is the sequence.
 In order to introduce sequences and understand why they are important, let’s

dissect listing 3.1.

var processes =
 Process.GetProcesses()
 .Where(process => process.WorkingSet64 > 20*1024*1024)
 .OrderByDescending(process => process.WorkingSet64)
 .Select(process => new { process.Id,
 Name=process.ProcessName });

Get a list of running processes

Filter the list

Sort the list

Keep only the IDs and names

Listing 3.1 Querying a list of processes using extension methods

B
C

D
E

B

C

D

E

86 CHAPTER 3

LINQ building blocks
To precisely understand what happens under the covers, let’s analyze this code
step by step, in the order the processing happens.

 We’ll start by looking at IEnumerable<T>, a key interface you’ll find every-
where when working with LINQ. We’ll also provide a small refresher on iterators
and then stress how iterators allow deferred query execution.

3.2.1 IEnumerable<T>

The first thing you need to understand in listing 3.1 is what the call to Pro-
cess.GetProcesses B returns and how it is used. The GetProcesses method of
the System.Diagnostics.Process class returns an array of Process objects. This
is not surprising and probably wouldn’t be interesting, except that arrays imple-
ment the generic IEnumerable<T> interface. This interface, which appeared with
.NET 2.0, is key to LINQ. In our particular case, an array of Process objects imple-
ments IEnumerable<Process>.

 The IEnumerable<T> interface is important because Where C, OrderBy-
Descending D, Select E, and other standard query operators used in LINQ
queries expect an object of this type as a parameter.

 Listing 3.2 shows how the Where method is defined, for instance.

public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source,
 Func<TSource, Boolean> predicate)
{
 foreach (TSource element in source)
 {
 if (predicate(element))
 yield return element;
 }
}

But where does this Where method come from? Is it a method of the IEnumera-
ble<T> interface? Well, no. As you may have guessed if you remember chapter 2,
it’s an extension method. This can be detected by the presence of the this keyword
on the first parameter of the method B.

 The extension methods we see here (Where, OrderByDescending, and
Select) are provided by the System.Linq.Enumerable class. The name of this
class comes from the fact that the extension methods it contains work on IEnu-
merable<T> objects.

Listing 3.2 The Where method that is used in our sample query

B

C

Introducing sequences 87
NOTE In LINQ, the term sequence designates everything that implements IEnu-
merable<T>.

Let’s take another look at the Where method. Note that it uses the yield return C
statement added in C# 2.0. This and the IEnumerable<TSource> return type in the
signature make it an iterator.

 We’ll now take some time to review background information on iterators
before getting back to our example.

3.2.2 Refresher on iterators

An iterator is an object that allows you to traverse through a collection’s elements.
What is named an iterator in .NET is also known as a generator in other languages
such as Python, or sometimes a cursor, especially within the context of a database.

 You may not know what an iterator is, but you surely have used several of them
before! Each time you use a foreach loop (For Each in VB.NET), an iterator is
involved. (This isn’t true for arrays because the C# and VB.NET compilers opti-
mize foreach and For Each loops over arrays to replace the use of iterators by a
simple loop, as if a for loop were used.) Every .NET collection (List<T>, Dictio-
nary<T>, and ArrayList for example) has a method named GetEnumerator that
returns an object used to iterate over its contents. That’s what foreach uses
behind the scenes to iterate on the items contained in a collection.

 If you’re interested in design patterns, you can study the classical Iterator pat-
tern. This is the design iterators rely on in .NET.

 An iterator is similar, in its result, to a traditional method that returns a collec-
tion, because it generates a sequence of values. For example, we could create the
following method to return an enumeration of integers:

int[] OneTwoThree()
{
 return new [] {1, 2, 3};
}

However, the behavior of an iterator in C# 2.0 or 3.0 is very specific. Instead of
building a collection containing all the values and returning them all at once, an
iterator returns the values one at a time. This requires less memory and allows the
caller to start processing the first few values immediately, without having the com-
plete collection ready.

 Let’s look at a sample iterator to understand how it works. An iterator is easy to
create: it’s simply a method that returns an enumeration and uses yield return
to provide the values.

88 CHAPTER 3

LINQ building blocks
 Listing 3,3 shows an iterator named OneTwoThree that returns an enumeration
containing the integer values 1, 2, and 3:

using System;
using System.Collections.Generic;

static class Iterator
{
 static IEnumerable<int> OneTwoThree()
 {
 Console.WriteLine("Returning 1");
 yield return 1;
 Console.WriteLine("Returning 2");
 yield return 2;
 Console.WriteLine("Returning 3");
 yield return 3;
 }

 static void Main()
 {
 foreach (var number in OneTwoThree())
 {
 Console.WriteLine(number);
 }
 }

Here are the results of this code sample’s execution:

Returning 1
1
Returning 2
2
Returning 3
3

As you can see, the OneTwoThree method does not exit until we reach its last state-
ment. Each time we reach a yield return statement, the control is yielded back
to the caller method. In our case, the foreach loop does its work, and then con-
trol is returned to the iterator method where it left so it can provide the next item.

 It looks like two methods, or routines, are running at the same time. This is
why .NET iterators could be presented as a kind of lightweight coroutine. A tradi-
tional method starts its execution at the beginning of its body each time it is
called. This kind of method is named a subroutine. In comparison, a coroutine is a

Listing 3.3 Sample iterator
 (Iterator.csproj)

Introducing sequences 89
method that resumes its execution at the point it stopped the last time it was
called, as if nothing had happened between invocations. All C# methods are sub-
routines except methods that contain a yield return instruction, which can be
considered to be coroutines.1

 One thing you may find strange is that although we implement a method that
returns an IEnumerable<int> in listing 3.3, in appearance we don’t return an
object of that type. We use yield return. The compiler does the work for us, and
a class implementing IEnumerable<int> is created automagically for us. The yield
return keyword is a time-saver that instructs the compiler to create a state engine
in IL so you can create methods that retain their state without having to go
through the pain of maintaining state in your own code.

 We won’t go into more details on this subject in this book, because it’s not
required to understand LINQ, and anyway, this is a standard C# 2.0 feature. How-
ever, if you want to investigate this, .NET Reflector is your friend.2

NOTE VB.NET has no instruction equivalent to yield return. Without this
shortcut, VB.NET developers have to implement the IEnumerable(Of T)
interface by hand to create enumerators. We provide a sample imple-
mentation in the companion source code download. See the Itera-
tor.vbproj project.

The simple example provided in listing 3.3 shows that iterators are based on lazy
evaluation. We’d like to stress that this big characteristic of iterators is essential for
LINQ, as you’ll see next.

3.2.3 Deferred query execution

LINQ queries rely heavily on lazy evaluation. In LINQ vocabulary, we’ll refer to
this as deferred query execution, also called deferred query evaluation. This is one of
the most important concepts in LINQ. Without this facility, LINQ would perform
very poorly.

 Let’s take a simple example to demonstrate how a query execution behaves.

1 See Patrick Smacchia’s book Practical .NET2 and C#2 (Paradoxal Press) if you want to learn more about
iterators.

2 If you want to look into the low-level machinery of how state engines are built to make iterators work in
.NET, you can download .NET Reflector at http://aisto.com/roeder/dotnet.

90 CHAPTER 3

LINQ building blocks
Demonstrating deferred query execution
In listing 3.4, we’ll query an array of integers and perform an operation on all the
items it contains.

using System;
using System.Linq;

static class DeferredQueryExecution
{
 static double Square(double n)
 {
 Console.WriteLine("Computing Square("+n+")...");
 return Math.Pow(n, 2);
 }

 public static void Main()
 {
 int[] numbers = {1, 2, 3};

 var query =
 from n in numbers
 select Square(n);

 foreach (var n in query)
 Console.WriteLine(n);
 }
}

The results of this program clearly show that the query does not execute at once.
Instead, the query evaluates as we iterate on it:

Computing Square(1)...
1
Computing Square(2)...
4
Computing Square(3)...
9

As you’ll see soon in section 3.4, queries such as the following one are translated
into method calls at compile-time:

var query =
 from n in numbers
 select Square(n);

Listing 3.4 Deferred query execution demonstration
 (DeferredQueryExecution.csproj)

Introducing sequences 91
Once compiled, this query becomes

IEnumerable<double> query =
 Enumerable.Select<int, double>(numbers, n => Square(n));

The fact that the Enumerable.Select method is an iterator explains why we get
delayed execution.

 It is important to realize that our query variable represents not the result of a
query, but merely the potential to execute a query. The query is not executed when
it is assigned to a variable. It executes afterward, step by step.

 One advantage of deferred query evaluation is that it conserves resources. The
gist of lazy evaluation is that the data source on which a query operates is not iter-
ated until you iterate over the query’s results. Let’s suppose a query returns thou-
sands of elements. If we decide after looking at the first element that we don’t
want to further process the results, these results won’t be loaded in memory. This
is because the results are provided as a sequence. If the results were contained in
an array or list as is often the case in classical programming, they would all be
loaded in memory, even if we didn’t consume them.

 Deferred query evaluation is also important because it allows us to define a
query at one point and use it later, exactly when we want to, several times if
needed.

Reusing a query to get different results
An important thing to understand is that if you iterate on the same query a sec-
ond time, it can produce different results. An example of this behavior can be
seen in listing 3.5. New code is shown in bold.

using System;
using System.Linq;

static class QueryReuse
{
 static double Square(double n)
 {
 Console.WriteLine("Computing Square("+n+")...");
 return Math.Pow(n, 2);
 }

 public static void Main()
 {
 int[] numbers = {1, 2, 3};

Listing 3.5 Same query producing different results between two executions

92 CHAPTER 3

LINQ building blocks
 var query =
 from n in numbers
 select Square(n);

 foreach (var n in query)
 Console.WriteLine(n);

 for (int i = 0; i < numbers.Length; i++)
 numbers[i] = numbers[i]+10;

 Console.WriteLine("- Collection updated -");

 foreach (var n in query)
 Console.WriteLine(n);
 }
}

Here we reuse the query object after changing the underlying collection. We
add 10 to each number in the array before iterating again on the query.

 As expected, the results are not the same for the second iteration:

Computing Square(1)...
1
Computing Square(2)...
4
Computing Square(3)...
9
- Collection updated -
Computing Square(11)...
121
Computing Square(12)...
144
Computing Square(13)...
169

The second iteration executes the query again, producing new results.

Forcing immediate query execution
As you’ve seen, deferred execution is the default behavior. Queries are executed
only when we request data from them. If you want immediate execution, you have
to request it explicitly.

 Let’s say that we want the query to be executed completely, before we begin to
process its results. This would imply that all the calls to the Square method hap-
pen before the results are used.

 Here is how the output should look without deferred execution:

Introducing query operators 93
Computing Square(1)...
Computing Square(2)...
Computing Square(3)...
1
4
9

We can achieve this by adding a call to ToList—another extension method from
the System.Linq.Enumerable class—to our code sample:

foreach (var n in query.ToList())
 Console.WriteLine(n);

With this simple modification, our code’s behavior changes radically.
 ToList iterates on the query and creates an instance of List<double> initial-

ized with all the results of the query. The foreach loop now iterates on a prefilled
collection, and the Square method is not invoked during the iteration.

 Let’s go back to our DisplayProcesses example and continue analyzing the
query.

 The Where, OrderByDescending, and Select methods used in listing 3.1 are
iterators. This means for example that the enumeration of the source sequence
provided as the first parameter of a call to the Where method won’t happen before
we start enumerating the results. This is what allows delayed execution.

 You’ll now learn more about the extension methods provided by the Sys-
tem.Linq.Enumerable class.

3.3 Introducing query operators

We’ve used extension methods from the System.Linq.Enumerable class several
times in our code samples. We’ll now spend some time describing them more pre-
cisely. You’ll learn how such methods, called query operators, are at the heart of
the LINQ foundation. You should pay close attention to query operators, because
you’ll use them the most when writing LINQ queries.

 We’ll first define what a query operator is, before introducing the standard
query operators.

3.3.1 What makes a query operator?

Query operators are not a language extension per se, but an extension to the
.NET Framework Class Library. Query operators are a set of extension methods
that perform operations in the context of LINQ queries. They are the real ele-
ments that make LINQ possible.

94 CHAPTER 3

LINQ building blocks
 Before spending some time on iterators, we were looking at the Where method
that is used in the following code sample:

var processes =
 Process.GetProcesses()
 .Where(process => process.WorkingSet64 > 20*1024*1024)
 .OrderByDescending(process => process.WorkingSet64)
 .Select(process => new { process.Id,
 Name=process.ProcessName });

Let’s take a deeper look at the Where method and analyze how it works. This
method is provided by the System.Linq.Enumerable class. Here again is how it’s
implemented, as we showed in listing 3.2:

public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source,
 Func<TSource, Boolean> predicate)
{
 foreach (TSource element in source)
 {
 if (predicate(element))
 yield return element;
 }
}

Note that the Where method takes an IEnumerable<T> as an argument. This is not
surprising, because it’s an extension method that gets applied to the result of the
call to Process.GetProcesses, which returns an IEnumerable<Process> as we’ve
seen before. What is particularly interesting at this point is that the Where method
also returns an IEnumerable<T>, or more precisely an IEnumerable<Process> in
this context.

 Here is how the Where method works:

It is called with the list of processes returned by Process.GetProcesses.

It loops on the list of processes it receives.

It filters this list of processes.

It returns the filtered list element by element.

Although we present the processing as four steps, you already know that the pro-
cesses are handled one by one thanks to the use of yield return and iterators.

 If we tell you that OrderByDescending and Select also take IEnumerable<T>
and return IEnumerable<T>, you should start to see a pattern. Where, OrderBy-
Descending, and Select are used in turn to refine the processing on the original
enumeration. These methods operate on enumerations and generate enumera-
tions. This looks like a Pipeline pattern, don’t you think?

Call to
WhereB

foreach
loop

C

Filter sourceD
Return
elementsE

B

C

D

E

Introducing query operators 95
 Do you remember how we said in chapter 2 that extension methods are basi-
cally static methods that can facilitate a chaining or pipelining pattern? If we
remove the dot notation from this code snippet

var processes =
 Process.GetProcesses()
 .Where(process => process.WorkingSet64 > 20*1024*1024)
 .OrderByDescending(process => process.WorkingSet64)
 .Select(process => new { process.Id,
 Name=process.ProcessName });

and transform it to use standard static method calls, it becomes listing 3.6.

var processes =
 Enumerable.Select(
 Enumerable.OrderByDescending(
 Enumerable.Where(
 Process.GetProcesses(),
 process => process.WorkingSet64 > 20*1024*1024),
 process => process.WorkingSet64),
 process => new { process.Id, Name=process.ProcessName });

Again, you can see how extension methods make this kind of code much easier to
read! If you look at the code sample that doesn’t use extension methods, you can
see how difficult it is to understand that we start the processing with a list of pro-
cesses. It’s also hard to follow how the method calls are chained to refine the
results. It is in cases like this one that extension methods show all their power.

 Until now in this chapter, we’ve stressed several characteristics of extension
methods such as Where, OrderByDescending, and Select:

■ They work on enumerations.

■ They allow pipelined data processing.

■ They rely on delayed execution.

All these features make these methods useful to write queries. This explains why
these methods are called query operators.

 Here is an interesting analogy. If we consider a query to be a factory, the query
operators would be machines or engines, and sequences would be the material
the query operators work on (see figure 3.2):

1 A sequence is provided at the start of the processing.

Listing 3.6 A query expressed as static method calls

96 CHAPTER 3

LINQ building blocks
2 Several operators are applied on the sequence to refine it.

3 The final sequence is the product of the query.

NOTE Don’t be misled by figure 3.2. Each element in the sequence is processed
only when it is requested. This is how delayed execution works. The ele-
ments in sequences are not processed in batch, and maybe even not all
processed if not requested.

As we’ll highlight in chapter 5, some intermediate operations (such as
sorting and grouping) require the entire source be iterated over. Our
OrderByDescending call is an example of this.

If we look at listing 3.6, we could say that queries are just made of a combination
of query operators. Query operators are the key to LINQ, even more than lan-
guage constructs like query expressions.

3.3.2 The standard query operators

Query operators can be combined to perform complex operations and queries on
enumerations. Several query operators are predefined and cover a wide range of
operations. These operators are called the standard query operators.

 Table 3.1 classifies the standard query operators according to the type of oper-
ation they perform.

Table 3.1 The standard query operators grouped in families

Family Query operators

Filtering OfType, Where

Projection Select, SelectMany

Partitioning Skip, SkipWhile, Take, TakeWhile

Join GroupJoin, Join

Figure 3.2 A LINQ query represented as a factory where query operators are machines and sequences
are the material.

Introducing query expressions 97
As you can see, many operators are predefined. For reference, you can find this
list augmented with a description of each operator in the appendix. You’ll also
learn more about the standard query operators in chapter 4, where we’ll provide
several examples using them. We’ll then demonstrate how they can be used to do
projections, aggregation, sorting, or grouping.

 Thanks to the fact that query operators are mainly extension methods working
with IEnumerable<T> objects, you can easily create your own query operators.
We’ll see how to create and use domain-specific query operators in chapter 12,
which covers extensibility.

3.4 Introducing query expressions

Another key concept of LINQ is a new language extension. C# and VB.NET pro-
pose syntactic sugar for writing simpler query code in most cases.

 Until now, in this chapter, we’ve used a syntax based on method calls for our
code samples. This is one way to express queries. But most of the time when you
look at code based on LINQ, you’ll notice a different syntax: query expressions.

 We’ll explain what query expressions are and then describe the relationship
between query expressions and query operators.

Concatenation Concat

Ordering OrderBy, OrderByDescending, Reverse, ThenBy, ThenByDescending

Grouping GroupBy, ToLookup

Set Distinct, Except, Intersect, Union

Conversion AsEnumerable, AsQueryable, Cast, ToArray, ToDictionary, ToList

Equality SequenceEqual

Element ElementAt, ElementAtOrDefault, First, FirstOrDefault, Last,
LastOrDefault, Single, SingleOrDefault

Generation DefaultIfEmpty, Empty, Range, Repeat

Quantifiers All, Any, Contains

Aggregation Aggregate, Average, Count, LongCount, Max, Min, Sum

Table 3.1 The standard query operators grouped in families (continued)

Family Query operators

98 CHAPTER 3

LINQ building blocks
3.4.1 What is a query expression?

Query operators are static methods that allow the expression of queries. But
instead of using the following syntax

var processes =
 Process.GetProcesses()
 .Where(process => process.WorkingSet64 > 20*1024*1024)
 .OrderByDescending(process => process.WorkingSet64)
 .Select(process => new { process.Id,
 Name=process.ProcessName });

you can use another syntax that makes LINQ queries resemble SQL queries (see
QueryExpression.csproj):

var processes =
 from process in Process.GetProcesses()
 where process.WorkingSet64 > 20*1024*1024
 orderby process.WorkingSet64 descending
 select new { process.Id, Name=process.ProcessName };

This is called a query expression or query syntax.
 The two code pieces are semantically identical. A query expression is conve-

nient declarative shorthand for code you could write manually. Query expressions
allow us to use the power of query operators, but with a query-oriented syntax.

 Query expressions provide a language-integrated syntax for queries that is sim-
ilar to relational and hierarchical query languages such as SQL and XQuery. A
query expression operates on one or more information sources by applying one
or more query operators from either the standard query operators or domain-spe-
cific operators. In our code sample, the query expression uses three of the stan-
dard query operators: Where, OrderByDescending, and Select.

 When you use a query expression, the compiler automagically translates it into
calls to standard query operators.

 Because query expressions compile down to method calls, they are not neces-
sary: We could work directly with the query operators. The big advantage of query
expressions is that they allow for greater readability and simplicity.

3.4.2 Writing query expressions

Let’s detail what query expressions look like in C# and in VB.NET.

C# syntax
Figure 3.3 shows the exhaustive syntax for a query expression.

Introducing query expressions 99
Let’s review how this syntax is presented in the C# 3.0 language specification. A
query expression begins with a from clause and ends with either a select or
group clause. The initial from clause can be followed by zero or more from, let,
where, join, or orderby clauses.

 Each from clause is a generator introducing a variable that ranges over the ele-
ments of a sequence. Each let clause introduces a range variable representing a
value computed by means of previous range variables. Each where clause is a filter
that excludes items from the result.

 Each join clause compares specified keys of the source sequence with keys of
another sequence, yielding matching pairs. Each orderby clause reorders items
according to specified criteria. The final select or group clause specifies the
shape of the result in terms of the range variables.

 Finally, an into clause can be used to splice queries by treating the results of
one query as a generator in a subsequent query.

 This syntax should not be unfamiliar if you know SQL.

VB.NET syntax
Figure 3.4 depicts the syntax of a query expression in VB.NET.

 Notice how the VB.NET query expression syntax is richer compared to C#.
More of the standard query operators are supported in VB, such as Distinct,
Skip, Take, and the aggregation operators.

 We’ll use query expressions extensively in the rest of the book. We believe it’s
easier to discover the syntax through code samples instead of analyzing and
exposing the exact syntax at this point. You’ll see query expressions in action in
chapter 4, for instance, where we’ll use all kinds of queries. This will help you to

Figure 3.3 C# query expression syntax

100 CHAPTER 3

LINQ building blocks
learn everything you need to use query expressions. In addition, Visual Studio’s
IntelliSense will help you to write query expressions and discover their syntax as
you type them.

3.4.3 How the standard query operators relate to query expressions

You’ve seen that a translation happens when a query expression is compiled into
calls to standard query operators.

 For instance, consider our query expression:

from process in Process.GetProcesses()
where process.WorkingSet64 > 20*1024*1024
orderby process.WorkingSet64 descending
select new { process.Id, Name=process.ProcessName };

Here is the same query formulated with query operators:

Figure 3.4 VB.NET query expression syntax

Introducing query expressions 101
Process.GetProcesses()
 .Where(process => process.WorkingSet64 > 20*1024*1024)
 .OrderByDescending(process => process.WorkingSet64)
 .Select(process => new { process.Id, Name=process.ProcessName });

Table 3.2 shows how the major standard query operators are mapped to the new
C# and VB.NET query expression keywords.

Table 3.2 Mapping of standard query operators to query expression keywords by language

Query operator C# syntax VB.NET syntax

All N/A Aggregate … In … Into All(…)

Any N/A Aggregate … In … Into Any()

Average N/A Aggregate … In … Into Average()

Cast Use an explicitly typed range
variable, for example:
from int i in numbers

From … As …

Count N/A Aggregate … In … Into Count()

Distinct N/A Distinct

GroupBy group … by
or
group … by … into …

Group … By … Into …

GroupJoin join … in … on …
equals … into…

Group Join … In … On …

Join join … in … on …
equals …

From x In …, y In … Where x.a = b.a
or
Join … [As …] In … On …

LongCount N/A Aggregate … In … Into LongCount()

Max N/A Aggregate … In … Into Max()

Min N/A Aggregate … In … Into Min()

OrderBy orderby Order By

OrderByDescending orderby … descending Order By … Descending

Select select Select

SelectMany Multiple from clauses Multiple From clauses

Skip N/A Skip

SkipWhile N/A Skip While

102 CHAPTER 3

LINQ building blocks
As you can see, not all operators have equivalent keywords in C# and VB.NET. In
your simplest queries, you’ll be able to use the keywords proposed by your pro-
gramming language; but for advanced queries, you’ll have to call the query opera-
tors directly, as you’ll see in chapter 4.

 Also, writing a query using a query expression is only for comfort and readabil-
ity; in the end, once compiled, it gets converted into calls to standard query oper-
ators. You could decide to write all your queries only with query operators and
avoid the query expression syntax if you prefer.

3.4.4 Limitations

Throughout this book, we’ll write queries either using the query operators
directly or using query expressions. Even when using query expressions, we may
have to explicitly use some of the query operators. Only a subset of the standard
query operators is supported by the query expression syntax and keywords. It’s
often necessary to work with some of the query operators right in the context of a
query expression.

 The C# compiler translates query expressions into invocations of the following
operators: Where, Select, SelectMany, Join, GroupJoin, OrderBy, OrderByDe-
scending, ThenBy, ThenByDescending, GroupBy, and Cast, as shown in table 3.2. If
you need to use other operators, you can do so in the context of a query expression.

 For example, in listing 3.7, we use the Take and Distinct operators.

Sum N/A Aggregate … In … Into Sum()

Take N/A Take

TakeWhile N/A Take While

ThenBy orderby …, … Order By …, …

ThenByDescending orderby …, …
descending

Order By …, … Descending

Where where Where

Table 3.2 Mapping of standard query operators to query expression keywords by language (continued)

Query operator C# syntax VB.NET syntax

Introducing query expressions 103
var authors =
 from distinctAuthor in (
 from book in SampleData.Books
 where book.Title.Contains("LINQ")
 from author in book.Authors.Take(1)
 select author)
 .Distinct()
 select new {distinctAuthor.FirstName, distinctAuthor.LastName};

NOTE SampleData is a class we’ll define when we introduce our running exam-
ple in chapter 4. It provides some sample data on books, authors, and
publishers.

We use Take and Distinct explicitly. Other operators are used implicitly in this
query, namely Where, Select, and SelectMany, which correspond to the where,
select, and from keywords.

 In listing 3.7, the query selects a list of the names of the first author of each
book that contains “LINQ” in its title, a given author being listed only once.

 Listing 3.8 shows how the same query can be written with query operators only.

var authors =
 SampleData.Books
 .Where(book => book.Title.Contains("LINQ"))
 .SelectMany(book => book.Authors.Take(1))
 .Distinct()
 .Select(author => new {author.FirstName, author.LastName});

It’s up to you to decide what’s more readable. In some cases, you’ll prefer to use
a combination of query operators because a query expression wouldn’t make
things clearer. Sometimes, query expressions can even make code more difficult
to understand.

 In listing 3.7, you can see that parentheses are required to use the Distinct
operator. This gets in the middle of the query expression and makes it more diffi-
cult to read. In listing 3.8, where only query operators are used, it’s easier to fol-
low the pipelined processing. The query operators allow us to organize the
operations sequentially. Note that in VB, the question is less important because

Listing 3.7 C# query expression that uses query operators
 (QueryExpressionWithOperators.csproj)

Listing 3.8 C# query that uses query operators only
 (QueryExpressionWithOperators.csproj)

104 CHAPTER 3

LINQ building blocks
the language offers more keywords mapped to query operators. This includes
Take and Distinct. Consequently, the query we’ve just written in C# can be writ-
ten completely in VB as a query expression without resorting to query operators.

 If you’re used to working with SQL, you may also like query expressions
because they offer a similar syntax. Another reason for preferring query expres-
sion is that they offer a more compact syntax than query operators.

 Let’s take the following queries for example. First, here is a query with query
operators:

SampleData.Books
 .Where(book => book.Title == "Funny Stories")
 .OrderBy(book => book.Title)
 .Select(book => new {book.Title, book.Price});

Here is the same query with a query expression:

from book in SampleData.Books
where book.Title == "Funny Stories"
orderby book.Title
select new {book.Title, book.Price};

The two queries are equivalent. But you might notice that the query formulated
with query operators makes extensive use of lambda expressions. Lambda expres-
sions are useful, but too many in a small block of code can be unattractive. Also, in
the same query, notice how the book identifier is declared several times. In com-
parison, in the query expression, you can see that the book identifier only needs
to be declared once.

 Again, it’s mainly a question of personal preference, so we do not intend to tell
you that one way is better than the other.

 After query expressions, we have one last LINQ concept to introduce.

3.5 Introducing expression trees

You might not use expression trees as often as the other concepts we’ve reviewed
so far, but they are an important part of LINQ. They allow advanced extensibility
and make LINQ to SQL possible, for instance.

 We’ll spend some time again with lambda expressions because they allow us to
create expression trees. We’ll then detail what an expression tree is, before stress-
ing how expression trees offer another way to enable deferred query execution.

Introducing expression trees 105
3.5.1 Return of the lambda expressions

When we introduced lambda expressions in chapter 2, we presented them mainly
as a new way to express anonymous delegates. We then demonstrated how they
could be assigned to delegate types. Here is one more example:

Func<int, bool> isOdd = i => (i & 1) == 1;

Here we use the Func<T, TResult> generic delegate type defined in the System
namespace. This type is declared as follows in the System.Core.dll assembly that
comes with .NET 3.5:

delegate TResult Func<T, TResult>(T arg);

Our isOdd delegate object represents a method that takes an integer as a param-
eter and returns a Boolean. This delegate variable can be used like any other
delegate:

for (int i = 0; i < 10; i++)
{
 if (isOdd(i))
 Console.WriteLine(i + " is odd");
 else
 Console.WriteLine(i + " is even");
}

One thing we’d like to stress at this point is that a lambda expression can also be
used as data instead of code. This is what expression trees are about.

3.5.2 What are expression trees?

Consider the following line of code that uses the Expression<TDelegate> type
defined in the System.Linq.Expressions namespace:

Expression<Func<int, bool>> isOdd = i => (i & 1) == 1;

Here is the equivalent line of code in VB.NET:

Dim isOdd As Expression(Of Func(Of Integer, Boolean)) = _
 Function(i) (i And 1) = 1

This time, we can’t use isOdd as a delegate. This is because it’s not a delegate, but
an expression tree.

 It turns out that the compiler knows about this Expression<TDelegate> type
and behaves differently than with delegate types such as Func<T, TResult>. Rather
than compiling the lambda expression into IL code that evaluates the expression,
it generates IL that constructs a tree of objects representing the expression.

106 CHAPTER 3

LINQ building blocks
 Note that only lambda expressions with an expression body can be used as
expression trees. Lambda expressions with a statement body are not convertible
to expression trees. In the following example, the first lambda expression can be
used to declare an expression tree because it has an expression body, whereas the
second can’t be used to declare an expression tree because it has a statement body
(see chapter 2 for more details on the two kinds of lambda expressions):

Expression<Func<Object, Object>> identity = o => o;
Expression<Func<Object, Object>> identity = o => { return o; };

When the compiler sees a lambda expression being assigned to a variable of an
Expression<> type, it will compile the lambda into a series of factory method calls
that will build the expression tree at runtime. Here is the code that is generated
behind the scenes by the compiler for our expression:

ParameterExpression i = Expression.Parameter(typeof(int), "i");
Expression<Func<int, bool>> isOdd =
 Expression.Lambda<Func<int, bool>>(
 Expression.Equal(
 Expression.And(
 i,
 Expression.Constant(1, typeof(int))),
 Expression.Constant(1, typeof(int))),
 new ParameterExpression[] { i });

Here is the VB syntax:

Dim i As ParameterExpression = _
 Expression.Parameter(GetType(Integer), "i")
Dim isOdd As Expression(Of Func(Of Integer, Boolean)) = _
 Expression.Lambda(Of Func(Of Integer, Boolean))(_
 Expression.Equal(_
 Expression.And(_
 i, _
 Expression.Constant(1, GetType(Integer))), _
 Expression.Constant(1, GetType(Integer))), _
 New ParameterExpression() {i})

NOTE Expression trees are constructed at runtime when code like this executes,
but once constructed they cannot be modified.

Note that you could write this code by yourself. It would be uninteresting for our
example, but it could be useful for advanced scenarios. We’ll keep that for chap-
ter 5, where we use expression trees to create dynamic queries.

 Apart from being grateful to the compiler for generating this for us, you can
start to see why this is called an expression tree. Figure 3.5 is a graphical represen-
tation of this tree.

Introducing expression trees 107
At this stage, you’ve learned that lambda expressions can be represented as code
(delegates) or as data (expression trees). Assigned to a delegate, a lambda expres-
sion emits IL code; assigned to Expression<TDelegate>, it emits an expression
tree, which is an in-memory data structure that represents the parsed lambda.

 The best way to prove that an expression completely describes a lambda
expression is to show how expression trees can be compiled down to delegates:

Func<int, bool> isOddDelegate = i => (i & 1) == 1;
Expression<Func<int, bool>> isOddExpression = i => (i & 1) == 1;
Func<int, bool> isOddCompiledExpression =
 isOddExpression.Compile();

In this code, isOddDelegate and isOddCompiledExpression are equivalent.
Their IL code is the same.

 The burning question at this point should be, “Why would we need expression
trees?” Well, an expression is a kind of an abstract syntax tree (AST). In computer sci-
ence, an AST is a data structure that represents source code that has been parsed.
An AST is often used as a compiler or interpreter’s internal representation of a
computer program while it is being optimized, from which code generation is

Figure 3.5
Graphical view of an expression tree

108 CHAPTER 3

LINQ building blocks
performed. In our case, an expression tree is the result of the parsing operation
the C# compiler does on a lambda expression. The goal here is that some code
will analyze the expression tree to perform various operations.

 Expression trees can be given to tools at runtime, which use them to guide
their execution or translate them into something else, such as SQL in the case of
LINQ to SQL. As you’ll see in more detail in parts 4 and 5 of this book, LINQ to
SQL uses information contained in expression trees to generate SQL and perform
queries against a database.

 For the moment, we’d like to point out that expression trees are another way
to achieve deferred query execution.

3.5.3 IQueryable, deferred query execution redux

You’ve seen that one way to achieve deferred query execution is to rely on IEnu-
merable<T> and iterators. Expression trees are the basis for another way to out-of-
process querying.

 This is what is used in the case of LINQ to SQL. When we write code as follows,
as we did in chapter 1, no SQL is executed before the foreach loop starts iterating
on contacts:

string path =
 System.IO.Path.GetFullPath(@"..\..\..\..\Data\northwnd.mdf");
DataContext db = new DataContext(path);

var contacts =
 from contact in db.GetTable<Contact>()
 where contact.City == "Paris"
 select contact;

foreach (var contact in contacts)
 Console.WriteLine("Bonjour "+contact.Name);

This behavior is similar to what happens with IEnumerable<T>, but this time, the
type of contacts is not IEnumerable<Contact>, like you could expect, but IQue-
ryable<Contact>. What happens with IQueryable<T> is different than with
sequences. An instance of IQueryable<T> receives an expression tree it can
inspect to decide what processing it should perform.

 In this case, as soon as we start enumerating the content of contacts, the
expression tree it contains gets analyzed, SQL is generated and executed, and the
results of the database query are returned as Contact objects.

 We won’t go into detail about how things work here, but IQueryable is more
powerful than sequences based on IEnumerable because intelligent processing

LINQ DLLs and namespaces 109
based on the analysis of expression trees can happen. By examining a complete
query through its expression tree representation, a tool can take smart decisions
and make powerful optimizations. IQueryable and expression trees are suitable
for cases where IEnumerable and its pipelining pattern are not flexible enough.

 Deferred query execution with expression trees allow LINQ to SQL to optimize
a query containing multiple nested or complex queries into the fewest number of
efficient SQL statements possible. If LINQ to SQL were to use a pipelining pattern
like the one supported by IEnumerable<T>, it would only be able to execute sev-
eral small queries in cascade against databases instead of a reduced number of
optimized queries.

 As you’ll see later, expression trees and IQueryable can be used to extend
LINQ and are not limited to LINQ to SQL. We’ll demonstrate how we can take
advantage of LINQ’s extensibility in chapter 12.

 Now that we’ve explored all the main elements of LINQ, let’s see where to find
the nuts and bolts you need to build your applications.

3.6 LINQ DLLs and namespaces

The classes and interfaces that you need to use LINQ in your applications come
distributed in a set of assemblies (DLLs) provided with .NET 3.5. You need to know
what assemblies to reference and what namespaces to import.

 The main assembly you’ll use is System.Core.dll. In order to write LINQ to
Objects queries, you’ll need to import the System.Linq namespace it contains.
This is how the standard query operators provided by the System.Linq.Enumera-
ble class become available to your code. Note that the System.Core.dll assembly
is referenced by default when you create a new project with Visual Studio 2008.

 If you need to work with expression trees or create your own IQueryable
implementation, you’ll also need to import the System.Linq.Expressions
namespace, which is also provided by the System.Core.dll assembly.

 In order to work with LINQ to SQL or LINQ to XML, you have to use dedicated
assemblies: respectively System.Data.Linq.dll or System.Xml.Linq.dll. LINQ’s
features for the DataSet class are provided by the System.Data.DataSetExten-
sions.dll assembly.

 The System.Xml.Linq.dll and System.Data.DataSetExtensions.dll

assemblies are referenced by default when you create projects with Visual Stu-
dio 2008. System.Data.Linq.dll is not referenced by default. You need to refer-
ence it manually.

110 CHAPTER 3

LINQ building blocks
 Table 3.3 is an overview of the LINQ assemblies and namespaces, and their
content.

Table 3.3 Content of the assemblies provided by .NET 3.5 that are useful for LINQ

File name Namespaces Description and content

System.Core.dll

System Action and Func delegate types

System.Linq Enumerable class (extension methods for
IEnumerable<T>)
IQueryable and IQueryable<T> interfaces
Queryable class (extension methods for
IQueryable<T>)
IQueryProvider interface
QueryExpression class
Companion interfaces and classes for query oper-
ators:
Grouping<TKey, TElement>
ILookup<TKey, TElement>
IOrderedEnumerable<TElement>
IOrderedQueryable
IOrderedQueryable<T>
Lookup<TKey, TElement>

System.Linq.Expressions Expression<TDelegate> class and other
classes that enable expression trees

System.Data.DataSetExtensions.dll

System.Data Classes for LINQ to DataSet, such as
TypedTableBase<T>, DataRowComparer,
DataTableExtensions, and
DataRowExtensions

System.Data.Linq.dll

System.Data.Linq Classes for LINQ to SQL, such as
DataContext, Table<TEntity>, and
EntitySet<TEntity>

System.Data.Linq.Mapping Classes and attributes for LINQ to SQL, such as
ColumnAttribute, FunctionAttribute,
and TableAttribute

System.Data.Linq.SqlClient The SqlMethods and SqlHelpers classes

Summary 111

3.7 Summary

In this chapter, we’ve explained how LINQ extends C# and VB.NET, as well as the
.NET Framework. You should now have a better idea of what LINQ is.

 We’ve walked through some important foundational LINQ material. You’ve
learned some new terminology and concepts.

 Here is a summary of what we’ve introduced in this chapter:

■ Sequences, which are enumerations and iterators applied to LINQ

■ Deferred query execution

■ Query operators, extension methods that allow operations in the context of
LINQ queries

■ Query expressions, which allow the SQL-like from…where…select syntax

■ Expression trees, which represent queries as data and allow advanced
extensibility

You’re now prepared to read and write LINQ code. We’ll now get to action and start
using LINQ for useful things. In part 2, we’ll use LINQ to Objects to query objects
in memory. In part 3, we’ll address persistence to relational databases with LINQ to
SQL. In part 4, we’ll detail how to work on XML documents with LINQ to XML.

System.Xml.Linq.dll

System.Xml.Linq Classes for LINQ to XML, such as XObject,
XNode, XElement, XAttribute, XText,
XDocument, and XStreamingElement

System.Xml.Schema Extensions class that provides extension
methods to deal with XML schemas

System.Xml.XPath Extensions class that provides extension meth-
ods to deal with XPath expressions and to create
XPathNavigator objects from XNode instances

Table 3.3 Content of the assemblies provided by .NET 3.5 that are useful for LINQ (continued)

File name Namespaces Description and content

Part 2

Querying objects in memory

Now that we know what LINQ is all about, it’s time to cover the major
LINQ flavors. LINQ to Objects allows us to query collections of objects in
memory. This part of the book will help us discover LINQ to Objects and also
provide important knowledge we’ll reuse with the other flavors of LINQ.

 Chapter 4 introduces our running LinqBooks example, presents LINQ to
Objects in the context of ASP.NET and Windows Forms applications, and
goes through the major query operations we can perform with LINQ. Chap-
ter 5 looks at ways of using LINQ queries in common scenarios and design
patterns, and addresses performance considerations.

Getting familiar
with LINQ to Objects
This chapter covers:
■ The LinqBooks running example
■ Querying collections
■ Using LINQ with ASP.NET and Windows Forms
■ Major standard query operators
115

116 CHAPTER 4

Getting familiar with LINQ to Objects
In chapter 1 we introduced LINQ, and in chapters 2 and 3 we described new lan-
guage features and LINQ concepts. We’ll now sample each LINQ flavor in turn.
This part focuses on LINQ to Objects. We’ll cover LINQ to SQL in part 3, and LINQ
to XML in part 4.

 The code samples you’ll encounter in the rest of this book are based on a run-
ning example: a book cataloging system. This chapter starts with a description of
this example application, its database schema, and its object model.

 We’ll use this sample application immediately as a base for discovering LINQ to
Objects. We’ll review what can be queried with LINQ to Objects and what opera-
tions can be performed.

 Most of what we’ll show you in this chapter applies to all LINQ flavors and not
just LINQ to Objects. We’ll focus on how to write language-integrated queries and
how to use the major standard query operators. The goal of this chapter is that
you become familiar with query expressions and query operators, as well as feel
comfortable using LINQ features with in-memory object collections.

4.1 Introducing our running example

While we were introducing the new language features (chapter 2) and key LINQ
concepts (chapter 3), we used simple code samples. We should now be able to
tackle more useful and complex real-life examples. Starting at this point, the new
code samples in this book will be based on an ongoing example: LinqBooks, a per-
sonal book-cataloging system.

 We’ll discuss the goals behind the example and review the features we expect
it to implement. We’ll then show you the object model and database schema we’ll
use throughout this book. We’ll also introduce sample data we’ll use to create
our examples.

4.1.1 Goals

A running example will allow us to base our code samples on something solid.
We’ve chosen to develop an example that is rich enough to offer opportunities to
use the complete LINQ toolset.

 Here are some of our requirements for this example:

■ The object model should be rich enough to enable a variety of LINQ queries.

■ It should deal with objects in memory, XML documents, and relational data,
both independently and in combination.

Introducing our running example 117
■ It should include ASP.NET web sites as well as Windows Forms applications.

■ It should involve queries to local data stores as well as to external data
sources, such as public web services.

Although we may provide a complete sample application after this book is pub-
lished, our goal here is not to create a full-featured application. However, in chap-
ter 13, we’ll focus on using all the parts of our running example to see LINQ in
action in a complete application.

 Let’s review the set of features we plan to implement.

4.1.2 Features

The main features LinqBooks should have include the ability to

■ Track what books we have

■ Store what we think about them

■ Retrieve more information about our books

■ Publish our list of books and our review information

The technical features we’ll implement in this book include

■ Querying/inserting/updating data in a local database

■ Providing search capabilities over both the local catalog and third parties
(such as Amazon or Google)

■ Importing data about books from a web site

■ Importing and persisting some data from/in XML documents

■ Creating RSS feeds for the books you recommend

In order to implement these features, we’ll use a set of business entities.

4.1.3 The business entities

The object model we’ll use consists of the following classes: Book, Author, Pub-
lisher, Subject, Review, and User.

 Figure 4.1 is a class diagram that shows how these objects are defined and how
they relate to each other.

 We’ll first use these objects in memory with LINQ to Objects, but later on we’ll
have to persist this data in a database. Let’s see the database model we’ll use.

118 CHAPTER 4

Getting familiar with LINQ to Objects
4.1.4 Database schema

In part 3 of this book, we’ll demonstrate how to use LINQ to work with relational
databases. Figure 4.2 shows the database schema we’ll use.

 We’ll use this database to save and load the information the application han-
dles. This schema was designed to involve several kinds of relations and data types.
This will be useful to demonstrate the features LINQ to SQL offers for dealing with
relational data.

4.1.5 Sample data

In this part of the book, we’ll use a set of in-memory data for the purpose of dem-
onstrating LINQ to Objects.

 Listing 4.1 contains the SampleData class that contains the data we’ll use.

Figure 4.1 Object model for the running example

Introducing our running example 119

using System;
using System.Collections.Generic;
using System.Text;

namespace LinqInAction.LinqBooks.Common
{
 static public class SampleData
 {
 static public Publisher[] Publishers =
 {
 new Publisher {Name="FunBooks"},
 new Publisher {Name="Joe Publishing"},
 new Publisher {Name="I Publisher"}
 };

 static public Author[] Authors =
 {
 new Author {FirstName="Johnny", LastName="Good"},
 new Author {FirstName="Graziella", LastName="Simplegame"},
 new Author {FirstName="Octavio", LastName="Prince"},

Listing 4.1 The SampleData class provides sample data
 (LinqBooks.Common\SampleData.cs)

Figure 4.2
Database schema for
the running example

120 CHAPTER 4

Getting familiar with LINQ to Objects
 new Author {FirstName="Jeremy", LastName="Legrand"}
 };

 static public Book[] Books =
 {
 new Book {
 Title="Funny Stories",
 Publisher=Publishers[0],
 Authors=new[]{Authors[0], Authors[1]},
 PageCount=101,
 Price=25.55M,
 PublicationDate=new DateTime(2004, 11, 10),
 Isbn="0-000-77777-2"
 },
 new Book {
 Title="LINQ rules",
 Publisher=Publishers[1],
 Authors=new[]{Authors[2]},
 PageCount=300,
 Price=12M,
 PublicationDate=new DateTime(2007, 9, 2),
 Isbn="0-111-77777-2"
 },
 new Book {
 Title="C# on Rails",
 Publisher=Publishers[1],
 Authors=new[]{Authors[2]},
 PageCount=256,
 Price=35.5M,
 PublicationDate=new DateTime(2007, 4, 1),
 Isbn="0-222-77777-2"
 },
 new Book {
 Title="All your base are belong to us",
 Publisher=Publishers[1],
 Authors=new[]{Authors[3]},
 PageCount=1205,
 Price=35.5M,
 PublicationDate=new DateTime(2005, 5, 5),
 Isbn="0-333-77777-2"
 },
 new Book {
 Title="Bonjour mon Amour",
 Publisher=Publishers[0],
 Authors=new[]{Authors[1], Authors[0]},
 PageCount=50,
 Price=29M,
 PublicationDate=new DateTime(1973, 2, 18),
 Isbn="2-444-77777-2"
 }
 };
 }
}

Using LINQ with in-memory collections 121
Notice how we use object and collection initializers—introduced in chapter 2—to
easily initialize our collections. This sample data and the classes it relies on are
provided with the source code of this book in the LinqBooks.Common project.

 When we address LINQ to XML and LINQ to SQL, we’ll use a set of sample XML
documents and sample records in a database. We’ll show you this additional data
when we use it.

 Before using this sample data and actually working with our running example,
we’ll review some basic information about LINQ to Objects.

4.2 Using LINQ with in-memory collections

LINQ to Objects is the flavor of LINQ that works with in-memory collections of
objects. What does this mean? What kinds of collections are supported by LINQ to
Objects? What operations can we perform on these collections?

 We’ll start by reviewing the list of collections that are compatible with LINQ,
and then we’ll give you an overview of the supported operations.

4.2.1 What can we query?

As you might guess, not everything can be queried using LINQ to Objects. The
first criterion for applying LINQ queries is that the objects need to be collections.

 All that is required for a collection to be queryable through LINQ to Objects is
that it implements the IEnumerable<T> interface. As a reminder, objects imple-
menting the IEnumerable<T> interface are called sequences in LINQ vocabulary.
The good news is that almost every generic collection provided by the .NET
Framework implements IEnumerable<T>! This means that you’ll be able to query
the usual collections you were already working with in .NET 2.0.

 Let’s review the collections you’ll be able to query using LINQ to Objects.

Arrays
Any kind of array is supported. It can be an untyped array of objects, like in list-
ing 4.2.

using System;
using System.Linq;

static class TestArray
{
 static void Main()
 {
 Object[] array = {"String", 12, true, 'a'};

Listing 4.2 Querying an untyped array with LINQ to Objects
 (UntypedArray.csproj)

122 CHAPTER 4

Getting familiar with LINQ to Objects
 var types =
 array
 .Select(item => item.GetType().Name)
 .OrderBy(type => type);

 ObjectDumper.Write(types);
 }
}

NOTE We already used the ObjectDumper class in chapter 2. It is a utility class
useful for displaying results. It is provided by Microsoft as part of the
LINQ code samples. You’ll be able to find it in the downloadable source
code accompanying this book.

This code displays the types of an array’s elements, sorted by name. Here is the
output of this example:

Boolean
Char
Int32
String

Of course, queries can be applied to arrays of custom objects. In listing 4.3, we
query an array of Book objects.

using System;
using System.Collections.Generic;
using System.Linq;
using LinqInAction.LinqBooks.Common;

static class TestArray
{
 static void Main()
 {
 Book[] books = {
 new Book { Title="LINQ in Action" },
 new Book { Title="LINQ for Fun" },
 new Book { Title="Extreme LINQ" } };

 var titles =
 books
 .Where(book => book.Title.Contains("Action"))
 .Select(book => book.Title);

 ObjectDumper.Write(titles);
 }
}

Listing 4.3 Querying a typed array with LINQ to Objects
 (TypedArray.csproj)

Using LINQ with in-memory collections 123
In fact, LINQ to Objects queries can be used with an array of any data type!
 Other important collections, such as generic lists and dictionaries, are also

supported by LINQ to Objects. Let’s see what other types you can use.

Generic lists
The most common collection you use in .NET 2.0 with arrays is without a doubt
the generic List<T>. LINQ to Objects can operate on List<T>, as well as on the
other generic lists.

 Here is a list of the main generic list types:

■ System.Collections.Generic.List<T>

■ System.Collections.Generic.LinkedList<T>

■ System.Collections.Generic.Queue<T>

■ System.Collections.Generic.Stack<T>

■ System.Collections.Generic.HashSet<T>

■ System.Collections.ObjectModel.Collection<T>

■ System.ComponentModel.BindingList<T>

Listing 4.4 shows how the previous example that worked with an array can be
adapted to work with a generic list.

using System;
using System.Collections.Generic;
using System.Linq;
using LinqInAction.LinqBooks.Common;

static class TestList
{
 static void Main()
 {
 List<Book> books = new List<Book>() {
 new Book { Title="LINQ in Action" },
 new Book { Title="LINQ for Fun" },
 new Book { Title="Extreme LINQ" } };

 var titles =
 books
 .Where(book => book.Title.Contains("Action"))
 .Select(book => book.Title);

 ObjectDumper.Write(titles);
 }
}

Listing 4.4 Querying a generic list with LINQ to Objects
 (GenericList.csproj)

124 CHAPTER 4

Getting familiar with LINQ to Objects
Note that the query remains unchanged, because both the array and the list
implement the same interface used by the query: IEnumerable<Book>.

 Although you’ll most likely primarily query arrays and lists with LINQ, you may
also write queries against generic dictionaries.

Generic dictionaries
As with generic lists, all generic dictionaries can be queried using LINQ to
Objects:

■ System.Collections.Generic.Dictionary<TKey,TValue>

■ System.Collections.Generic.SortedDictionary<TKey, TValue>

■ System.Collections.Generic.SortedList<TKey, TValue>

Generic dictionaries implement IEnumerable<KeyValuePair<TKey, TValue>>.
The KeyValuePair structure holds the typed Key and Value properties.

 Listing 4.5 shows how we can query a dictionary of strings indexed by integers.

using System;
using System.Collections.Generic;
using System.Linq;

static class TestDictionary
{
 static void Main()
 {
 Dictionary<int, string> frenchNumbers;
 frenchNumbers = new Dictionary<int, string>();
 frenchNumbers.Add(0, "zero");
 frenchNumbers.Add(1, "un");
 frenchNumbers.Add(2, "deux");
 frenchNumbers.Add(3, "trois");
 frenchNumbers.Add(4, "quatre");

 var evenFrenchNumbers =
 from entry in frenchNumbers
 where (entry.Key % 2) == 0
 select entry.Value;

 ObjectDumper.Write(evenFrenchNumbers);
 }
}

Listing 4.5 Querying a generic dictionary with LINQ to Objects
 (GenericDictionary.csproj)

Using LINQ with in-memory collections 125
Here is the output of this sample’s execution:

zero
deux
quatre

We’ve listed the most important collections you’ll query. You can query other col-
lections, as you’ll see next.

String
Although System.String may not be perceived as a collection at first sight, it
actually is one, because it implements IEnumerable<Char>. This means that string
objects can be queried with LINQ to Objects, like any other collection.

NOTE In C#, these extension methods will not be seen in IntelliSense. The
extension methods for System.String are specifically excluded because
it is seen as highly unusual to treat a string object as an IEnumera-
ble<char>.

Let’s take an example. The LINQ query in listing 4.6 works on the characters from
a string.

var count =
 "Non-letter characters in this string: 8"
 .Where(c => !Char.IsLetter(c))
 .Count();

Needless to say, the result of this query is 8.

Other collections
We’ve listed only the collections provided by the .NET Framework. Of course, you
can use LINQ to Objects with any other type that implements IEnumerable<T>.
This means LINQ to Objects will work with your own collection types or collec-
tions from other frameworks.

 A problem you may encounter is that not all .NET collections implement IEnu-
merable<T>. In fact, only strongly typed collections implement this interface.
Arrays, generic lists, and generic dictionaries are strongly typed: you can work
with an array of integers, a list of strings, or a dictionary of Book objects.

 The nongeneric collections do not implement IEnumerable<T>, but imple-
ment IEnumerable. Does this mean that you won’t be able to use LINQ with
DataSet or ArrayList objects, for example?

Listing 4.6 Querying a string with LINQ to Objects
 (String.csproj)

126 CHAPTER 4

Getting familiar with LINQ to Objects
 Fortunately, solutions exist. In section 5.1.1, we’ll demonstrate how you can
query nongeneric collections thanks to the Cast and OfType query operators.

 Let’s now review what LINQ allows us to do with all these collections.

4.2.2 Supported operations

The operations that can be performed on the types we’ve just listed are those sup-
ported by the standard query operators. LINQ comes with a number of operators
that provide useful ways of manipulating sequences and composing queries.

 Here is an overview of the families of the standard query operators: Restric-
tion, Projection, Partitioning, Join, Ordering, Grouping, Set, Conversion, Equal-
ity, Element, Generation, Quantifiers, and Aggregation. As you can see, a wide
range of operations is supported. We won’t detail all of them, but we’ll focus on
the most important of them in section 4.4.

 Remember that the standard query operators are defined in the Sys-
tem.Linq.Enumerable class as extension methods for the IEnumerable<T> type,
as we’ve seen in chapter 3.

 These operators are called the standard query operators because we can pro-
vide our own custom query operators. Because query operators are merely exten-
sion methods for the IEnumerable<T> type, we’re free to create all the query
operators we wish. This allows us to enrich our queries with operations that the
designers of LINQ overlooked and that aren’t supported by the standard opera-
tors. We’ll demonstrate this in chapter 12 when we cover extensibility.

 We’ll soon use several query operators and demonstrate how to perform the
supported operations we’ve just presented. In order to be able to create our sam-
ple applications, we’ll now take some time to create our first ASP.NET web sites
and Windows Forms applications that work with LINQ.

4.3 Using LINQ with ASP.NET and Windows Forms

In previous chapters, we used LINQ code in console applications. That was okay
for simple examples, but most real-life projects take the form of web sites or Win-
dows applications, not console applications. We’ll now make the jump and start
creating ASP.NET or Windows Forms applications that use LINQ.

 Support for LINQ is built into .NET 3.5 and Visual Studio 2008, so creating
applications that use LINQ is not different than creating other applications. You
simply need to use the standard project templates coming with Visual Studio. This
is the case for both ASP.NET web sites and Windows Forms applications. We’ll

Using LINQ with ASP.NET and Windows Forms 127
show you how to use these templates to create your first applications that query
data using LINQ and display the results using standard .NET controls.

NOTE If you used prerelease versions of LINQ, you may remember using spe-
cific project templates. The standard templates that come with Visual Stu-
dio 2008 now support LINQ. The project templates create the required
references to the LINQ assemblies. Of course, this is true only if you select
.NET Framework 3.5 as the target for your project, the default value.

4.3.1 Data binding for web applications
ASP.NET controls support data binding to any IEnumerable collection. This makes
it easy to display the result of language-integrated queries using controls like
GridView, DataList, and Repeater.

 Let’s create a sample web site and improve it step by step.

Step 0: Creating an ASP.NET web site
To create a new ASP.NET web site, choose File > New > Web Site in Visual Studio,
and select the ASP.NET Web Site template, as shown in figure 4.3.

 This creates a web site project that looks like fig-
ure 4.4.

 We’ll add a new page to this project to display
some data.

Figure 4.3
Creating a new ASP.NET
web site

Figure 4.4 Default content for a
web site

128 CHAPTER 4

Getting familiar with LINQ to Objects
Step 1: Creating our first ASP.NET page using LINQ
Create a new page called Step1.aspx and add a GridView control to it so it looks
like listing 4.7.

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="Step1.aspx.cs" Inherits=" Step1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Step 1</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:GridView ID="GridView1" runat="server">
 </asp:GridView>
 </div>
 </form>
</body>
</html>

Listing 4.8 contains the code you should write in the code-behind file to bind a
query to the GridView.

using System;
using System.Linq;

using LinqInAction.LinqBooks.Common;

public partial class Step1 : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 String[] books = { "Funny Stories",
 "All your base are belong to us", "LINQ rules",
 "C# on Rails", "Bonjour mon Amour" };

 GridView1.DataSource =

Listing 4.7 Markup for the first ASP.NET page
 (Step1.aspx)

Listing 4.8 Code-behind for the first ASP.NET page
 (Step1.aspx.cs)

Using LINQ with ASP.NET and Windows Forms 129
 from book in books
 where book.Length > 10
 orderby book
 select book.ToUpper();
 GridView1.DataBind();
 }
}

Make sure you have a using System.Linq state-
ment at the top of the file to ensure we can use
LINQ querying features.

 Here, we use a query expression, a syntax we
introduced in chapter 3. The query selects all the
books with names longer than 10 characters, sorts
the result in alphabetical order, then returns the
names converted into uppercase.

 LINQ queries return results of type IEnumera-
ble<T>, where T is determined by the object type
of the select clause. In this sample, book is a
string, so the result of the query is a generics-
based collection of type IEnumerable<String>.

 Because ASP.NET controls support data binding to any IEnumerable collection,
we can easily assign this LINQ query to the GridView control. Calling the Data-
Bind method on the GridView generates the display.

 The result page looks like figure 4.5 when the application is run.

NOTE Instead of using the GridView control, you can use as easily a Repeater,
DataList, DropDownList, or any other ASP.NET list control. This
includes the new ListView control that comes with .NET 3.5.

You could also use the new LinqDataSource control to enable richer
data binding. You’ll be able to see it in action in the last chapter of this
book, when we create the LinqBooks web application.

That’s it! We’ve created our first ASP.NET web site that uses LINQ. Not terribly dif-
ficult, right? Let’s improve our example a bit, because everything is so easy.

Step 2: Using richer collections
Searching an array of strings is not extremely interesting (although sometimes use-
ful). To make our application more realistic, let’s add the ability to search and work
against richer collections. The good news is that LINQ makes this easy.

Figure 4.5 ASP.NET step 1 result

130 CHAPTER 4

Getting familiar with LINQ to Objects
 Let’s use the types and sample data from our running example. For instance,
we could query our collection of books filtered and ordered on prices. We’d like
to achieve something like figure 4.6.

 Notice that this time we’re also displaying the price. Title and Price are two
properties of our Book object. A Book object has more than these two properties,
as you can see in figure 4.7.

We can use two methods to display only the properties we want: either declare
specific columns at the grid level, or explicitly select only the Title and Price
properties in the query.

 Let’s try the former method first.
 In order to use the Book class and the sample data provided with this book,

start by adding a reference to the LinqBooks.Common project. Then, create a new
page named Step2a.aspx with a GridView control that defines two columns, as in
listing 4.9.

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="Step2a.aspx.cs" Inherits="Step2a" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Step 2 – Grid columns</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

Listing 4.9 Markup for a richer collection
 (Step2a.aspx)

Figure 4.6 Result of using richer
collections in ASP.NET

Figure 4.7
The Book class

Using LINQ with ASP.NET and Windows Forms 131
 <asp:GridView ID="GridView1" runat="server"
 AutoGenerateColumns="false">
 <Columns>
 <asp:BoundField HeaderText="Book" DataField="Title" />
 <asp:BoundField HeaderText="Price" DataField="Price" />
 </Columns>
 </asp:GridView>
 </div>
 </form>
</body>
</html>

Listing 4.10 shows the new query that works on our sample data and returns Book
objects.

protected void Page_Load(object sender, EventArgs e)
{
 GridView1.DataSource =
 from book in SampleData.Books
 where book.Title.Length > 10
 orderby book.Price
 select book;
 GridView1.DataBind();
}

Make sure there is a using System.Linq statement at the top of the file.
 The GridView displays only the two properties specified as columns because

we’ve specified that we don’t want it to generate columns automatically based on
the properties of the objects.

 As we said, another way to specify the columns displayed in the grid is to select
only the properties we want in the query. This is what we do in listing 4.11.

using System;
using System.Linq;

using LinqInAction.LinqBooks.Common;

public partial class Step2b : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 GridView1.DataSource =
 from book in SampleData.Books

Listing 4.10 Code-behind for a richer collection
 (Step2a.aspx.cs)

Listing 4.11 Code-behind for a richer collection using an anonymous type
 (Step2b.aspx.cs)

132 CHAPTER 4

Getting familiar with LINQ to Objects
 where book.Title.Length > 10
 orderby book.Price
 select new { book.Title, book.Price };
 GridView1.DataBind();
 }
}

As you can see, this is done using an anonymous type, a language extension we
introduced in chapter 2. Anonymous types allow you to easily create and use type
structures inline, without having to formally declare their object model before-
hand. A type is automatically inferred by the compiler based on the initialization
data for the object.

 Instead of returning a Book object from our select clause like before, we’re
now creating a new anonymous type that has two properties—Title and Price.
The types of these properties are automatically calculated based on the value of
their initial assignment (in this case a String and a Decimal).

 This time, thanks to the anonymous type, we don’t need to specify the columns
in the grid: See listing 4.12.

NOTE Keep in mind that the columns in the grid may not appear in the order
you expect. The GridView control relies on reflection to get the proper-
ties of the objects it should display. This technique does not ensure that
the properties are returned in the same order as they are declared in the
bound object.

...
<body>
 <form id="form1" runat="server">
 <div>
 <asp:GridView ID="GridView1" runat="server"
 AutoGenerateColumns="true">
 </asp:GridView>
 </div>
 </form>
</body>
</html>

Both of the methods we’ve just presented to limit the number of columns are useful.
The first method allows us to specify header text or other options for the columns.
For instance, here we used “Book” as the header for the column that displays the
title. The second method allows us to select only the data we need and not the com-
plete objects. This will be useful especially when working with LINQ to SQL, as you’ll
see in part 3 of this book, to avoid retrieving too much data from the database server.

Listing 4.12 Markup for listing 4.11
 (Step2b.aspx)

Using LINQ with ASP.NET and Windows Forms 133
 An even more important benefit of using anonymous types is that you can avoid
having to create new types just for presenting data. In trivial situations, you can use
an anonymous type to map your domain model to a presentation model. In the following
query, creating an anonymous type allows a flat view of our domain model:

from book in SampleData.Books
where book.Title.Length > 10
orderby book.Price
select new { book.Title, book.Price
 Publisher=book.Publisher.Name, Authors=book.Authors.Count() };

Here we create a view on a graph of objects by projecting data from the object
itself and data from the object’s relations into an anonymous type.

 After creating an ASP.NET site, let’s see how to do the same with Windows
Forms.

4.3.2 Data binding for Windows Forms applications
Using LINQ in a Windows Forms application isn’t more difficult than with
ASP.NET in a web application. We’ll show you how to do the same kind of data-
binding operations between LINQ query results and standard Windows Forms
controls in a sample application.

 We’ll proceed the same way we did with ASP.NET. We’ll build a sample applica-
tion step by step, starting with the creation of a new project.

Step 0: Creating a Windows Forms application
To create a new Windows Application, choose File > New > Project, and select
Windows Forms Application, as shown in figure 4.8.

Figure 4.8
Visual Studio
2008’s new
project dialog box

134 CHAPTER 4

Getting familiar with LINQ to Objects
Figure 4.9 shows the default con-
tent created by this template.

Step 1: Creating our first form
using LINQ
We’ll start our sample by creating
a new form for displaying books
returned by a query. Create a
form named FormStrings, and
drop a DataGridView control on
it, as shown in figure 4.10.

 Add an event handler for the
Load event of the page as in list-
ing 4.13.

.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;

namespace LinqInAction.Chapter04.Win
{
 public partial class FormStrings : Form
 {
 public FormStrings()
 {
 InitializeComponent();
 }

 private void FormStrings_Load(object sender, EventArgs e)
 {
 String[] books = { "Funny Stories",
 "All your base are belong to us", "LINQ rules",
 "C# on Rails", "Bonjour mon Amour" };

 var query =
 from book in books
 where book.Length > 10
 orderby book

Listing 4.13 Code-behind for the first form
 (FormStrings.cs)

Figure 4.9
Default content
for a new Windows
Forms application

Figure 4.10
New form with a
DataGridView

Using LINQ with ASP.NET and Windows Forms 135
 select new { Book=book.ToUpper() };

 dataGridView1.DataSource = query.ToList();
 }
 }
}

Make sure you import the System.Linq namespace with a using clause.
 You should notice two things in comparison to the code we used for the

ASP.NET web application sample in section 4.3.1. First, we use an anonymous type
to create objects containing a Book property. This is because the DataGridView
control displays the properties of objects by default. If we returned strings instead
of custom objects, all we would see displayed would be the title’s Length, because
that’s the only property on strings. Second, we con-
vert the result sequence into a list. This is required
for the grid to perform data binding. Alternatively,
we could use a BindingSource object.

 Figure 4.11 shows the result of this code sample’s
execution.

 This is not perfect, because the titles are not com-
pletely displayed. We’ll improve this in the next step,
while we display more information at the same time.

Step 2: Using richer collections
As we did for ASP.NET, we’ll now use richer objects
and not just strings. We’ll reuse the same sample
data from our running example, so make sure you
reference the LinqBooks.Common project.

 Figure 4.12 shows the result we’d like to get with
a query that filters and sorts our book collection.

 To achieve this result, first create a new form
named FormBooks. Add a DataGridView control
to it, just like you did for the previous sample.

 This time, we’ll specify the grid columns. Edit
the columns using the grid’s smart tags, as shown in figure 4.13.

Figure 4.11 Result of the first
Windows Forms step

Figure 4.12 Result of the second
Windows Forms step

136 CHAPTER 4

Getting familiar with LINQ to Objects
Add two columns, Book and Price, as shown in figure 4.14.
 Note that we can also specify the width of each column. We could for example

specify that we wish the columns to be automatically sized according to their con-
tent, using the AutoSizeMode setting.

 That’s all there is to it. We now have a rich collection mapped to a grid.
 Because you now have some knowledge of data binding of LINQ queries in web

and Windows applications, let’s move on to building richer examples. We’ll use
the data binding techniques we just showed you to write advanced queries. You’ll
see how to use the query operators to perform several kinds of common opera-
tions, such as projections or aggregations.

Figure 4.13
DataGridView’s smart tags

Figure 4.14 Adding two columns to the DataGridView control

Focus on major standard query operators 137
Make sure you map the columns to the result objects’ properties using the Data-
PropertyName setting, as shown in figure 4.15.

4.4 Focus on major standard query operators

Before using query expressions and query operators to start creating the sample
application we introduced at the beginning of this chapter, we’ll take a small
detour to focus on some of the standard query operators. It’s important to know
the standard query operators because they are the elements that make queries. You
need to get a good idea of the existing operators and what they can be used for.

 We won’t be able to cover all of the 51 standard query operators, but only a
subset of them. We’ll highlight the major operators like Where, Select, Select-
Many, the conversion operators, and some aggregation operators. Don’t worry—
you’ll see many of the other standard query operators in action throughout the
code samples contained in this book.

 As a reminder, table 4.1 lists all the standard query operators.

Table 4.1 The standard query operators grouped in families

Family Query operators

Filtering OfType, Where

Projection Select, SelectMany

Partitioning Skip, SkipWhile, Take, TakeWhile

Join GroupJoin, Join

Concatenation Concat

Figure 4.15
Mapping columns to properties
and specifying column width

138 CHAPTER 4

Getting familiar with LINQ to Objects
The operators covered in this chapter are highlighted in bold text. We’ll let you
discover the others by yourself.1 Once we’ve shown you about half of the operators
in this chapter, it should be easier to learn new ones. You’ll see most of them in
action in the rest of this book, even if we don’t provide full details about them.

 Let’s start our exploration of the query operators with Where.

4.4.1 Where, the restriction operator

Similar to a sieve, the Where operator filters a sequence of values based on some
criteria. Where enumerates a source sequence yielding only those values that
match the predicate you provide.

 Here is how the Where operator is declared:

public static IEnumerable<T> Where<T>(
 this IEnumerable<T> source,
 Func<T, bool> predicate);

The first argument of the predicate function represents the element to test. This
function returns a Boolean value indicating whether test conditions are satisfied.

 The following example creates a sequence of the books that have a price
greater than or equal to 15:

IEnumerable<Book> books =
 SampleData.Books.Where(book => book.Price >= 15);

Ordering OrderBy, OrderByDescending, Reverse, ThenBy, ThenByDescending

Grouping GroupBy, ToLookup

Set Distinct, Except, Intersect, Union

Conversion AsEnumerable, AsQueryable, Cast, ToArray, ToDictionary, ToList

Equality SequenceEqual

Element ElementAt, ElementAtOrDefault, First, FirstOrDefault, Last, LastOrDefault,
Single, SingleOrDefault

Generation DefaultIfEmpty, Empty, Range, Repeat

Quantifiers All, Any, Contains

Aggregation Aggregate, Average, Count, LongCount, Max, Min, Sum

1 The complete list of the standard query operators with their descriptions is available in the appendix.

Table 4.1 The standard query operators grouped in families (continued)

Family Query operators

Focus on major standard query operators 139
In a query expression, a where clause translates to an invocation of the Where
operator. The previous example is equivalent to the translation of the following
query expression:

var books =
 from book in SampleData.Books
 where book.Price >= 15
 select book;

An overload of the Where operator uses predicates that work with the index of ele-
ments in the source sequence:

public static IEnumerable<T> Where<T>(
 this IEnumerable<T> source,
 Func<T, int, bool> predicate);

The second argument of the predicate, if present, represents the zero-based
index of the element within the source sequence.

 The following code snippet uses this version of the operator to filter the collec-
tion of books and keep only those that have a price greater than or equal to 15
and are in odd positions (should you wish to do so for some strange reason):

IEnumerable<Book> books =
 SampleData.Books.Where(
 (book, index) => (book.Price >= 15) && ((index & 1) == 1));

Where is a restriction operator. It’s simple, but you’ll use it often to filter sequences.
 Another operator you’ll use often is Select.

4.4.2 Using projection operators

Let’s review the two projection operators: Select and SelectMany.

Select
The Select operator is used to perform a projection over a sequence, based on
the arguments passed to the operator. Select is declared as follows:

public static IEnumerable<S> Select<T, S>(
 this IEnumerable<T> source,
 Func<T, S> selector);

The Select operator allocates and yields an enumeration, based on the evalua-
tion of the selector function applied to each element of the source enumeration.
The following example creates a sequence of the titles of all books:

IEnumerable<String> titles =
 SampleData.Books.Select(book => book.Title);

In a query expression, a select clause translates to an invocation of Select. The
following query expression translates to the preceding example:

140 CHAPTER 4

Getting familiar with LINQ to Objects
var titles =
 from book in SampleData.Books
 select book.Title;

This query narrows a sequence of books to a sequence of string values. We could
also select an object. Here is how we would select Publisher objects associated
with books:

var publishers =
 from book in SampleData.Books
 select book.Publisher;

The resulting collection of using Select can also be a direct pass-through of the
source objects, or any combination of fields in a new object. In the following sam-
ple, an anonymous type is used to project information into an object:

var books =
 from book in SampleData.Books
 select new { book.Title, book.Publisher.Name, book.Authors };

This kind of code creates a projection of data, hence the name of this operator’s
family. Let’s take a look at the second projection operator.

SelectMany
The second operator in the projection family is SelectMany. Its declaration is sim-
ilar to that of Select, except that its selector function returns a sequence:

public static IEnumerable<S> SelectMany<T, S>(
 this IEnumerable<T> source,
 Func<T, IEnumerable<S>> selector);

The SelectMany operator maps each element from the sequence returned by the
selector function to a new sequence, and concatenates the results. To understand
what SelectMany does, let’s compare its behavior with Select in the following
code samples.

 Here is some code that uses the Select operator:

IEnumerable<IEnumerable<Author>> tmp =
 SampleData.Books
 .Select(book => book.Authors);
foreach (var authors in tmp)
{
 foreach (Author author in authors)
 {
 Console.WriteLine(author.LastName);
 }
}

And here’s the equivalent code using SelectMany. As you can see, it is much
shorter:

Focus on major standard query operators 141
IEnumerable<Author> authors =
 SampleData.Books
 .SelectMany(book => book.Authors);
foreach (Author author in authors)
{
 Console.WriteLine(author.LastName);
}

Here we’re trying to enumerate the authors of our books. The Authors property
of the Book object is an array of Author objects. Therefore, the Select operator
returns an enumeration of these arrays as is. In comparison, SelectMany spreads
the elements of these arrays into a sequence of Author objects.

 Here is the query expression we could use in place of the SelectMany invoca-
tion in our example:

from book in SampleData.Books
from author in book.Authors
select author.LastName

Notice how we chain two from clauses. In a query expression, a SelectMany projec-
tion is involved each time from clauses are chained. When we cover the join oper-
ators in section 4.5.4, we’ll show you how this can be used to perform a cross join.

 The Select and SelectMany operators also provide overloads that work with
indices. Let’s see what they can be used for.

Selecting indices
The Select and SelectMany operators can be used to retrieve the index of each
element in a sequence. Let’s say we want to display the index of each book in our
collection before we sort them in alphabetical order:

index=3 Title=All your base are belong to us
index=4 Title=Bonjour mon Amour
index=2 Title=C# on Rails
index=0 Title=Funny Stories
index=1 Title=LINQ rules

Listing 4.14 shows how to use Select to achieve that.

var books =
 SampleData.Books
 .Select((book, index) => new { index, book.Title })
 .OrderBy(book => book.Title);
ObjectDumper.Write(books);

Listing 4.14 Sample use of the Select query operator with indices
 (SelectIndex.csproj)

142 CHAPTER 4

Getting familiar with LINQ to Objects
This time we can’t use the query expression syntax because the variant of the
Select operator that provides the index has no equivalent in this syntax. Notice
that this version of the Select method provides an index variable that we can use
in our lambda expression. The compiler automatically determines which version
of the Select operator we want just by looking at the presence or absence of the
index parameter. Note also that we call Select before OrderBy. This is important
to get the indices before the books are sorted, not after.

 Let’s now review another query operator: Distinct.

4.4.3 Using Distinct

Sometimes, information is duplicated in query results. For example, listing 4.15
returns the list of authors who have written books.

var authors =
 SampleData.Books
 .SelectMany(book => book.Authors)
 .Select(author => author.FirstName+" "+author.LastName);
ObjectDumper.Write(authors);

You can see that a given author may appear more than once in the results:

Johnny Good
Graziella Simplegame
Octavio Prince
Octavio Prince
Jeremy Legrand
Graziella Simplegame
Johnny Good

This is because an author can write several books. To remove duplication, we can
use the Distinct operator. Distinct eliminates duplicate elements from a
sequence. In order to compare the elements, the Distinct operator uses the ele-
ments’ implementation of the IEquatable<T>.Equals method if the elements
implement the IEquatable<T> interface. It uses their implementation of the
Object.Equals method otherwise.

 Listing 4.16 does not yield the same author twice.

Listing 4.15 Retrieving a list of authors without using the Distinct query operator
 (Distinct.csproj)

Focus on major standard query operators 143

var authors =
 SampleData.Books
 .SelectMany(book => book.Authors)
 .Distinct()
 .Select(author => author.FirstName+" "+author.LastName);
ObjectDumper.Write(authors);

The new result is:

Johnny Good
Graziella Simplegame
Octavio Prince
Jeremy Legrand

As with many query operators, there is no equivalent keyword for Distinct in the
C# query expression syntax. In C#, Distinct can only be used as a method call.
However, VB.NET offers support for the Distinct operator in query expressions.
Listing 4.17 shows how the query from listing 4.16 can be written in VB.NET.

Dim authors = _
 From book In SampleData.Books _
 From author In book.Authors _
 Select author.FirstName + " " + author.LastName _
 Distinct

The next family of operators that we’re going to explore does not have equivalent
keywords in query expressions, either in C# or in VB.NET. These operators can be
used to convert sequences to standard collections.

4.4.4 Using conversion operators

LINQ comes with convenience operators designed to convert a sequence to other
collections. The ToArray and ToList operators, for instance, convert a sequence
to a typed array or list, respectively. These operators are useful for integrating que-
ried data with existing code libraries. They allow you to call methods that expect
arrays or list objects, for example.

Listing 4.16 Retrieving a list of authors using the Distinct query operator
 (Distinct.csproj)

Listing 4.17 Retrieving a list of authors using the VB Distinct keyword
 (Distinct.vbproj)

144 CHAPTER 4

Getting familiar with LINQ to Objects
 By default, queries return sequences, collections implementing IEnumera-
ble<T>:

IEnumerable<String> titles =
 SampleData.Books.Select(book => book.Title);

Here is how such a result can be converted to an array or a list:

String[] array = titles.ToArray();
List<String> list = titles.ToList();

ToArray and ToList are also useful when you want to request immediate execu-
tion of a query or cache the result of a query. When invoked, these operators com-
pletely enumerate the source sequence on which they are applied to build an
image of the elements returned by this sequence.

 Remember that, as we showed you in chapter 3, a query can return different
results in successive executions. You’ll use ToArray and ToList when you want to
take an instant snapshot of a sequence. Because these operators copy all the result
elements into a new array or list each time you call them, you should be careful
and avoid abusing them on large sequences.

 Let’s consider a use case worth mentioning. If we’re querying a disposable
object created by a using block, and if we’re yielding from inside that block, the
object will be disposed of before we want it to. The workaround is to materialize
the results with ToList, exit the using block, and then yield the results out.

 Here is pseudocode that pictures this:

IEnumerable<Book> results;

using (var db = new LinqBooksDataContext())
{
 results = db.Books.Where(...).ToList();
}

foreach (var book in results)
{
 DoSomething(book);
 yield return book;
}

Another interesting conversion operator is ToDictionary. Instead of creating an
array or list, this operator creates a dictionary, which organizes data by keys.

 Let’s see an example:

Dictionary<String, Book> isbnRef =
 SampleData.Books.ToDictionary(book => book.Isbn);

Focus on major standard query operators 145
Here we create a dictionary of books that is indexed by each book’s ISBN. A vari-
able of this kind can be used to find a book based on its ISBN:

Book linqRules = isbnRef["0-111-77777-2"];

After these conversion operators,2 let’s see one last family: aggregate operators.

4.4.5 Using aggregate operators

Some standard query operators are available to apply math functions to data: the
aggregate operators. These operators include the following:

■ Count, which counts the number of elements in a sequence
■ Sum, which computes the sum of a sequence of numeric values
■ Min and Max, which find the minimum and the maximum of a sequence of

numeric values, respectively

The following example demonstrates how these operators can be used:

var minPrice = SampleData.Books.Min(book => book.Price);
var maxPrice = SampleData.Books.Select(book => book.Price).Max();
var totalPrice = SampleData.Books.Sum(book => book.Price);
var nbCheapBooks =
 SampleData.Books.Where(book => book.Price < 30).Count();

You may have noticed that in this code sample, Min and Max are not invoked in the
same way. The Min operator is invoked directly on the book collection, whereas
the Max operator is chained after the Select operator. The effect is identical. In
the former case, the aggregate function is applied just to the sequences that satisfy
the expression; in the latter case it is applied to all the objects. All the aggregate
operators can take a selector as a parameter. The choice of one overload or the
other depends on whether you’re working on a prerestricted sequence.

 We’ve introduced some important query operators. You should now be more
familiar with Where, Select, SelectMany, Distinct, ToArray, ToList, Count, Sum,
Min, and Max. This is a good start! There are many more useful operators, as you’ll
see next.

2 These conversion operators are demonstrated in ConversionOperators.csproj and ConversionOpera-
tors.vbproj.

146 CHAPTER 4

Getting familiar with LINQ to Objects
4.5 Creating views on an object graph in memory

After focusing on the major operators in the previous section, we’ll now use them
to discover others in the context of our sample application. We’ll see how to write
queries and use the query operators to perform common operations such as sort-
ing, dealing with nested data, and grouping.

 Let’s start with sorting.

4.5.1 Sorting

The objects in our sample data come in a spe-
cific order. This is an arbitrary order, and we
may wish to view the data sorted by specific
orderings. Query expressions allow us to use
orderby clauses for this.

 Let’s return to our web example. Let’s say
we’d like to view our books sorted by publisher,
then by descending price, and then by ascend-
ing title. The result would look like figure 4.16.

 The query we’d use to achieve this result is
shown in listing 4.18.

from book in SampleData.Books
 orderby book.Publisher.Name, book.Price descending, book.Title
 select new { Publisher=book.Publisher.Name,
 book.Price,
 book.Title };

The orderby keyword can be used to specify several orderings. By default, items
are sorted in ascending order. It’s possible to use the descending keyword on a
per-member basis, as we do here for the price.

 A query expression’s orderby clause translates to a composition of calls to the
OrderBy, ThenBy, OrderByDescending, and ThenByDescending operators. Here is
our example expressed with query operators:

SampleData.Books
 .OrderBy(book => book.Publisher.Name)
 .ThenByDescending(book => book.Price)

Listing 4.18 Using an orderby clause to sort results
 (Sorting.aspx.cs)

Figure 4.16 Sorting result

Creating views on an object graph in memory 147
 .ThenBy(book => book.Title)
 .Select(book => new { Publisher=book.Publisher.Name,
 book.Price,
 book.Title });

In order to get the results displayed in a web page as in figure 4.16, we use a Grid-
View control with the markup shown in listing 4.19.

<asp:GridView ID="GridView1" runat="server"
 AutoGenerateColumns="false">
 <Columns>
 <asp:BoundField HeaderText="Publisher" DataField="Publisher" />
 <asp:BoundField HeaderText="Price" DataField="Price" />
 <asp:BoundField HeaderText="Book" DataField="Title" />
 </Columns>
</asp:GridView>

That’s all there is to sorting. It’s not difficult. Let’s jump to another type of opera-
tion we can use in queries.

4.5.2 Nested queries

In the previous example, the data is collected
using a projection. All the information appears
at the same level. We don’t see the hierarchy
between a publisher and its books. Also, there is
some duplication we could avoid. For example,
the name of each publisher appears several
times because we’ve projected this information
for each book.

 We’ll try to improve this by using nested
queries.

 Let’s look at an example to show how we can
avoid projections. Let’s say we want to display
publishers and their books in the same grid, as
in figure 4.17.

 We can start by writing a query for publishers:

from publisher in SampleData.Publishers
select publisher

Listing 4.19 Markup used to display the results of the sorting sample
 (Sorting.aspx)

Figure 4.17 Books grouped by
publisher using nested queries

148 CHAPTER 4

Getting familiar with LINQ to Objects
We said that we want both the publisher’s name and books, so instead of return-
ing a Publisher object, we’ll use an anonymous type to group this information
into an object with two properties: Publisher and Books:

from publisher in SampleData.Publishers
select new { Publisher = publisher.Name, Books = ... }

You should be used to this by now. The interesting part is: how do we get a pub-
lisher’s books? This is not a trick question.

 In our sample data, books are attached to a publisher through their Publisher
property. You may have noticed though that there is no backward link from a Pub-
lisher object to Book objects. Fortunately, LINQ helps us compensate for this. We
can use a simple query expression, nested in the first one:

from publisher in SampleData.Publishers
select new {
 Publisher = publisher.Name,
 Books =
 from book in SampleData.Books
 where book.Publisher.Name == publisher.Name
 select book }

Listing 4.20 contains the complete source code to use in a web page.

using System;
using System.Linq;

using LinqInAction.LinqBooks.Common;

public partial class Nested : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 GridView1.DataSource =
 from publisher in SampleData.Publishers
 orderby publisher.Name
 select new {
 Publisher = publisher.Name,
 Books =
 from book in SampleData.Books
 where book.Publisher == publisher
 select book};
 GridView1.DataBind();
 }
}

Listing 4.20 Code-behind that demonstrates nested queries
 (Nested.aspx.cs)

Creating views on an object graph in memory 149
To display the Books property’s data, we’ll use an interesting feature of ASP.NET
data controls: they can be nested. In listing 4.21, we use this feature to display the
books in a bulleted list.

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="Nested.aspx.cs" Inherits="Nested" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Nested queries</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:GridView ID="GridView1" runat="server"
 AutoGenerateColumns="false">
 <Columns>
 <asp:BoundField HeaderText="Publisher"
 DataField="Publisher" />
 <asp:TemplateField HeaderText="Books">
 <ItemTemplate>
 <asp:BulletedList ID="BulletedList1" runat="server"
 DataSource='<%# Eval("Books") %>'
 DataValueField="Title" />
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>
 </div>
 </form>
</body>
</html>

In this markup, we use a TemplateField for the “Books” column. In this column,
a BulletedList control is bound to the Books property of the anonymous type. As
specified by DataValueField, it displays the Title property of each book.

 In this sample, we’ve created a view on hierarchical data. This is just one kind
of operation we can do with LINQ. We’ll now show you more ways to work with
object graphs.

Listing 4.21 Markup for the nested queries
 (Nested.aspx)

150 CHAPTER 4

Getting familiar with LINQ to Objects
4.5.3 Grouping

In the previous sample, we showed how to cre-
ate a hierarchy of data by using nested queries.
We’ll now consider another way to achieve the
same result using LINQ’s grouping features.

 Using grouping, we’ll get the same result as
with the previous sample except that we don’t
see the publishers without books this time. See
figure 4.18.

 We’ll also reuse the same markup. Only the
query is different. See listing 4.22.

protected void Page_Load(object sender, EventArgs e)
{
 GridView1.DataSource =
 from book in SampleData.Books
 group book by book.Publisher into publisherBooks
 select new { Publisher=publisherBooks.Key.Name,
 Books=publisherBooks };
 GridView1.DataBind();
}

What happens here is that we ask for books grouped by publishers. All the books
that belong to a specific publisher will be in the same group. In our query, such a
group is named publisherBooks. The publisherBooks group is an instance of
the IGrouping<TKey, T> interface. Here is how this interface is defined:

public interface IGrouping<TKey, T> : IEnumerable<T>
{
 TKey Key { get; }
}

You can see that an object that implements the IGrouping generic interface has a
strongly typed key and is a strongly typed enumeration. In our case, the key is a
Publisher object, and the enumeration is of type IEnumerable<Book>.

 Our query returns a projection of the publisher’s name (the group’s key) and
its books. This is exactly what was happening in the previous example using

Listing 4.22 Grouping books by publisher using a group clause
 (Grouping.aspx.cs)

Figure 4.18 Books grouped by
publisher using grouping

Creating views on an object graph in memory 151
nested queries! This explains why we can reuse the same grid configuration for
this sample.

 Using the grouping operator instead of a nested query—like we did in the pre-
vious sample—offers at least two advantages. The first is that the query is shorter.
The second is that we can name the group. This makes it easier to understand
what the group consists of, and it allows us to reuse the group in several places
within the query. For example, we could improve our query to show the books for
each publisher, as well as the number of books in a separate column:

from book in SampleData.Books
group book by book.Publisher into publisherBooks
select new {
 Publisher=publisherBooks.Key.Name,
 Books=publisherBooks,
 publisherBooks.Count() };

Grouping is commonly used in SQL alongside aggregation operators. Notice how
we use the Count operator in a similar way in the latest code snippet. You’ll often
use Count and the other aggregation operators like Sum, Min, and Max on groups.

 Grouping is one way LINQ offers to deal with relationships between objects.
Another is join operations.

4.5.4 Using joins

After seeing how to group data using nested queries or the grouping operator,
we’ll now discover yet another way to achieve about the same result. This time,
we’ll use join operators.

 Join operators allow us to perform the same kind of operations as projections,
nested queries, or grouping do, but their advantage is that they follow a syntax
close to what SQL offers.

Group join
In order to introduce the join operators, let’s consider a query expression that
uses a join clause, shown in listing 4.23.

from publisher in SampleData.Publishers
join book in SampleData.Books
 on publisher equals book.Publisher into publisherBooks
select new { Publisher=publisher.Name, Books=publisherBooks };

Listing 4.23 Using a join..into clause to group books by publisher
 (Joins.aspx.cs)

152 CHAPTER 4

Getting familiar with LINQ to Objects
This is a group join. It bundles each publisher’s books as sequences named pub-
lisherBooks. This new query is equivalent to the one we wrote in section 4.5.3,
which uses a group clause:

from book in SampleData.Books
group book by book.Publisher into publisherBooks
select new { Publisher=publisherBooks.Key.Name,
 Books=publisherBooks };

Look at figure 4.19 and note how the result is dif-
ferent than with a grouping operation. As with
nested queries (see figure 4.17), publishers with
no books appear in the results this time.

 After group joins, we’ll now take a look at
inner joins, left outer joins, and cross joins.

Inner join
An inner join essentially finds the intersection
between two sequences. With an inner join, the
elements from two sequences that meet a
matching condition are combined to form a
single sequence.

 The Join operator performs an inner join of
two sequences based on matching keys
extracted from the elements. For example, it
can be used to display a flat view of publishers
and books like the one in figure 4.20.

 The query to use to get this result looks like
listing 4.24.

 This query is similar to the one we used in
the group join sample. The difference here is
that we don’t use the into keyword to group
the elements. Instead, the books are projected
on the publishers. As you can see in figure 4.20,
the result sequence contains an element for
each book. In our sample data, one publisher
isn’t associated with any book. Note that this
publisher isn’t part of the results. This is why
this kind of join operation is called an inner join. Only elements from the
sequences that have at least one matching element in the other sequence are kept.
We’ll see in a minute how this compares with a left outer join.

Figure 4.19 Group join result

Figure 4.20 Inner join result

Creating views on an object graph in memory 153

from publisher in SampleData.Publishers
join book in SampleData.Books on publisher equals book.Publisher
select new { Publisher=publisher.Name, Book=book.Title };

Before going further, let’s take a look at listing 4.25, which shows how our last
query can be written using the Join query operator.

SampleData.Publishers

 .Join(SampleData.Books,

 publisher => publisher,

 book => book.Publisher,

 (publisher, book) => new { Publisher=publisher.Name,

 Book=book.Title });

This is a case where a query expression is clearly easier to read than code based on
operators. The SQL-like syntax offered by query expressions can really help avoid
the complexity of some query operators.

 Let’s now move on to left outer joins.

Left outer join
As we’ve just seen, with an inner join, only the
combinations with elements in both joined
sequences are kept. When we want to keep all
elements from the outer sequence, indepen-
dently of whether there is a matching element
in the inner sequence, we need to perform a
left outer join.

 A left outer join is like an inner join, except
that all the left-side elements get included at
least once, even if they don’t match any right-
side elements.

 Let’s say for example that we want to include
the publishers with no books in the results. Note
in figure 4.21 how the last publisher shows up in the output even though it has no
matching books.

 A so-called outer join can be expressed with a group join. Listing 4.26 shows
the query that produces these results.

Listing 4.24 Using a join clause to group books by publisher
 (Joins.aspx.cs)

Listing 4.25 Using the Join operator to group books by publisher

Inner
sequence Outer key

selector Inner key
selector

Result
selector

Figure 4.21 Left outer join result

154 CHAPTER 4

Getting familiar with LINQ to Objects

from publisher in SampleData.Publishers
join book in SampleData.Books
 on publisher equals book.Publisher into publisherBooks
from book in publisherBooks.DefaultIfEmpty()
select new {
 Publisher = publisher.Name,
 Book = book == default(Book) ? "(no books)" : book.Title
};

The DefaultIfEmpty operator supplies a default element for an empty sequence.
DefaultIfEmpty uses the default keyword of generics. It returns null for refer-
ence types and zero for numeric value types. For structs, it returns each member
of the struct initialized to zero or null depending on whether they are value or ref-
erence types.

 In our case, the default value is null, but
we can test against default(Book) to decide
what to display for books.

 We’ve just seen group joins, inner joins,
and left outer joins. There is one more kind of
join operation we’d like to introduce: cross
joins.

Cross join
A cross join computes the Cartesian product of
all the elements from two sequences. The result
is a sequence that contains a combination of each
element from the first sequence with each
element from the second sequence. As a
consequence, the number of elements in the
result sequence is the product of the number
of elements in each sequence.

 Before showing you how to perform a cross
join, we’d like to point out that in LINQ, it is
not done with the Join operator. In LINQ
terms, a cross join is a projection. It can be
achieved using the SelectMany operator or by
chaining from clauses in a query expression,
both of which we introduced in section 4.4.2.

Listing 4.26 Query used to perform a left outer join
 (Joins.aspx.cs)

Figure 4.22 Cross join result

Creating views on an object graph in memory 155
 As an example, let’s say we want to display all the publishers and the books pro-
jected together, regardless of whether there is a link between them. We can add a
column to indicate the correct association, as in figure 4.22.

 Listing 4.27 shows the query expression that yields this result.

from publisher in SampleData.Publishers
from book in SampleData.Books
select new {
 Correct = (publisher == book.Publisher),
 Publisher = publisher.Name,
 Book = book.Title };

Here is how we would do the same without a query expression, using the Select-
Many and Select operators:

SampleData.Publishers.SelectMany(
 publisher => SampleData.Books.Select(
 book => new {
 Correct = (publisher == book.Publisher),
 Publisher = publisher.Name,
 Book = book.Title }));

Again, this is a case where the syntactic sugar offered by query expressions makes
things easier to write and read!

 After joins, we’ll discover one more way to create views on objects in memory.
This time we’ll partition sequences to keep only a range of their elements.

4.5.5 Partitioning

For the moment, we’ve been displaying all the
results in a single page. This is not a problem,
as we don’t have long results. If we had more
results to display, it could be interesting to
enable some pagination mechanism.

Adding paging
Let’s say we want to display a maximum of
three books on a page. This can be done easily
using the GridView control’s paging features. A
grid looks like with paging enabled looks like
figure 4.23.

Listing 4.27 Query used to perform a cross join
 (Joins.aspx.cs)

Figure 4.23 Grid with paging

156 CHAPTER 4

Getting familiar with LINQ to Objects
 The numbers at the bottom of the grid give access to the pages. Paging can be
configured in the markup, as follows:

<asp:GridView ID="GridView1" runat="server"
 AllowPaging="true" PageSize="3"
 OnPageIndexChanging="GridView1_PageIndexChanging">
</asp:GridView>

The code-behind file in listing 4.28 shows how to handle paging.

using System;
using System.Linq;
using System.Web.UI.WebControls;

using LinqInAction.LinqBooks.Common;

public partial class Paging : System.Web.UI.Page
{
 private void BindData()
 {
 GridView1.DataSource =
 SampleData.Books
 .Select(book => book.Title).ToList();
 GridView1.DataBind();
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 BindData();
 }

 protected void GridView1_PageIndexChanging(object sender,
 GridViewPageEventArgs e)
 {
 GridView1.PageIndex = e.NewPageIndex;
 BindData();
 }
}

NOTE Here we use ToList in order to enable paging because a sequence
doesn’t provide the necessary support for it.

Paging is useful and easy to activate with the GridView control, but this does not
have a lot to do with LINQ. The grid handles it all by itself.

Listing 4.28 Code-behind for paging in a GridView control
 (Paging.aspx.cs)

Creating views on an object graph in memory 157
 We can perform the same kind of operations programmatically in LINQ que-
ries thanks to the Skip and Take operators.

Skip and Take
When you want to keep only a range of the data
returned by a sequence, you can use the two par-
titioning query operators: Skip and Take.

 The Skip operator skips a given number of ele-
ments from a sequence and then yields the
remainder of the sequence. The Take operator
yields a given number of elements from a
sequence and then skips the remainder of the se-
quence. The canonical expression for returning
page index n, given pageSize is: sequence.Skip
(n * pageSize).Take(pageSize).

 Let’s say we want to keep only a subset of the
books. We can do this thanks to two combo
boxes allowing us to select the start and end indi-
ces. Figure 4.24 shows the complete list of books,
as well as the filtered list:

 Listing 4.29 shows the code that yields these
results.

using System;
using System.Linq;
using System.Web.UI.WebControls;

using LinqInAction.LinqBooks.Common;

public partial class Partitioning : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 GridViewComplete.DataSource = #1
 SampleData.Books #1
 .Select((book, index) => new { Index=index,
 Book=book.Title});
 GridViewComplete.DataBind();

Listing 4.29 Code-behind for demonstrating partitioning
 (Partitioning.aspx.cs)

Display
complete list

Figure 4.24 Partitioning results

158 CHAPTER 4

Getting familiar with LINQ to Objects
 int count = SampleData.Books.Count();
 for (int i = 0; i < count; i++)
 {
 ddlStart.Items.Add(i.ToString());
 ddlEnd.Items.Add(i.ToString());
 }
 ddlStart.SelectedIndex = 2;
 ddlEnd.SelectedIndex = 3;

 DisplayPartialData();
 }
 }

 protected void ddlStart_SelectedIndexChanged(object sender,
 EventArgs e)
 {
 DisplayPartialData();
 }

 private void DisplayPartialData()
 {
 int startIndex = int.Parse(ddlStart.SelectedValue);
 int endIndex = int.Parse(ddlEnd.SelectedValue);

 GridViewPartial.DataSource =
 SampleData.Books
 .Select(
 (book, index) => new { Index=index, Book=book.Title })
 .Skip(startIndex).Take(endIndex-startIndex+1);
 GridViewPartial.DataBind();
 }
}

Here’s the associated markup:

...
<body>
 <form id="form1" runat="server">
 <div>
 <h1>Complete results</h1>
 <asp:GridView ID="GridViewComplete" runat="server" />

 <h1>Partial results</h1>
 Start:
 <asp:DropDownList ID="ddlStart" runat="server"
 AutoPostBack="True" CausesValidation="True"
 OnSelectedIndexChanged="ddlStart_SelectedIndexChanged" />
 End:
 <asp:DropDownList ID="ddlEnd" runat="server"

Prepare
combo boxes

Display
filtered list

Retrieve start
and end indices

Display
filtered
list

Summary 159
 AutoPostBack="True" CausesValidation="True"
 OnSelectedIndexChanged="ddlStart_SelectedIndexChanged" />
 <asp:CompareValidator ID="CompareValidator1" runat="server"
 ControlToValidate="ddlStart" ControlToCompare="ddlEnd"
 ErrorMessage=
 "The second index must be higher than the first one"
 Operator="LessThanEqual" Type="Integer" />

 <asp:GridView ID="GridViewPartial" runat="server" />
 </div>
 </form>
</body>
</html>

Partitioning was the last LINQ operation we wanted to show you for now. You’ve
seen several query operators as well as how they can be used in practice to create
views on object collections in memory. You’ll discover more operations and opera-
tors in the next chapters.

4.6 Summary

This chapter—the first on LINQ to Objects—demonstrated how to perform sev-
eral kinds of operations on object collections in memory.

 This chapter also introduced the LinqBooks running example. We’ll continue
using it for the code samples in subsequent chapters. You also created your first
ASP.NET web site and your first Windows Forms application using LINQ. Most
importantly, we reviewed major standard query operators and applied typical
query operations such as filtering, grouping, and sorting.

 What you’ve learned in this chapter is useful for working with LINQ to Objects,
but it’s important to remember that most of this knowledge also applies to all the
other LINQ flavors. You’ll see how this is the case with LINQ to XML and LINQ to
SQL in parts 3 and 4 of this book.

 When we cover LINQ’s extensibility in chapter 12, we’ll demonstrate how to
enrich the standard set of query operators with your own operators.

 After learning a lot about language features and LINQ flavors in four chapters,
it’s time to consider some common scenarios to help you write LINQ code. This is
the subject of the next chapter, which will also cover performance considerations
in order to help you avoid writing suboptimal queries.

Beyond basic
 in-memory queries
This chapter covers:
■ LINQ to Objects common scenarios
■ Dynamic queries
■ Design patterns
■ Performance considerations
160

Common scenarios 161
After learning the basics of LINQ in part 1 of this book and gaining knowledge of
in-memory LINQ queries in part 2, it’s time to have a break before discovering
other LINQ variants. You’ve already learned a lot about LINQ queries and in par-
ticular about LINQ to Objects in chapter 4. You may think that this is enough to
write efficient LINQ queries. Think again. LINQ is like an ocean where each vari-
ant is an island. We have taught you the rudiments of swimming, but you need to
learn more before you can travel safely to all the islands. You know how to write a
query, but do you know how to write an efficient query? In this chapter, we’ll
expand on some of our earlier ideas to improve your skills of LINQ. We’re going
to step back and look at how to make the most of what we’ve covered so far.

 This chapter is important for anyone who plans on using LINQ. Most of what
you’ll learn in this chapter applies not only to LINQ to Objects, but to other in-
memory LINQ variants as well, such as LINQ to XML. One of our goals is to help
you identify common scenarios for in-memory LINQ queries and provide you with
ready-to-use solutions. Other goals are to introduce LINQ design patterns, expose
best practices, and advise you on what to do and what to avoid in your day-to-day
LINQ coding. We also want to address concerns you may have about the perfor-
mance of in-memory queries.

 Once you’ve read this chapter, you’ll be prepared to take the plunge into LINQ
to SQL and LINQ to XML, which we’ll cover in detail in parts 3 and 4.

5.1 Common scenarios

We’re pretty sure that you’re eager to start using LINQ for real development now
that you have some knowledge about it and have practiced with several examples.
When you write LINQ code on your own, you’ll likely encounter some problems that
weren’t covered in the usual examples. The short code samples used in the official
documentation, on the Internet, or even in the previous chapters of this book focus
on small tasks. They help you to get a grip on the technology but do not address
everyday LINQ programming and the potential difficulties that come with it.

 In this section, we show you some common scenarios for LINQ to Objects and
provide solutions to get you up-to-speed faster with LINQ application program-
ming. We start by showing how to query nongeneric collections. We then demon-
strate how to group by multiple criteria in queries. We also give you an
introduction to dynamic and parameterized queries. Finally, we finish the section
with a demonstration of a fictitious flavor of LINQ named LINQ to Text Files,
which shows how LINQ to Objects is powerful enough to work with many data
sources without needing a specific flavor for each kind of data source.

162 CHAPTER 5

Beyond basic in-memory queries
5.1.1 Querying nongeneric collections

If you’ve read the preceding chapters attentively, you should now be able to query
in-memory collections with LINQ to Objects. There is one problem, though. You
may think you know how to query collections, but in reality you only know how to
query some collections. The problem comes from the fact that LINQ to Objects
was designed to query generic collections that implement the System.Collec-
tions.Generic.IEnumerable<T> interface. Don’t get us wrong: most collections
implement IEnumerable<T> in the .NET Framework. This includes the major col-
lections such as the System.Collections.Generic.List<T> class, arrays, dictio-
naries, and queues. The problem is that IEnumerable<T> is a generic interface,
and not all classes are generic.

 Generics have been available since .NET 2.0, but are still not adopted yet by
everyone.1 Moreover, even if you use generics in your own code, you may have to
deal with legacy code that isn’t based on generics. For example, the most com-
monly used collection in .NET before the arrival of generics was the System.Col-
lections.ArrayList data structure. An ArrayList is a nongeneric collection that
contains a list of untyped objects and does not implement IEnumerable<T>. Does
this mean that you can’t use LINQ with ArrayLists?

 If you try to use the query in listing 5.1, you’ll get a compile-time error because
the type of the books B variable is not supported:

ArrayList books = GetArrayList();

var query =
 from book in books
 where book.PageCount > 150
 select new { book.Title, book.Publisher.Name };

It would be too bad if we couldn’t use LINQ with ArrayLists or other nongeneric
collections. As you can guess, there is a solution. Nongeneric collections aren’t a
big problem with LINQ once you know the trick.

 Suppose that you get results from a method that returns a nongeneric collection,
such as an ArrayList object. What you need to query a collection with LINQ is some-
thing that implements IEnumerable<T>. The trick is to use the Cast operator, which

1 Those heathens!

Listing 5.1 Trying to query an ArrayList using LINQ to Objects directly fails

Source type not
supported

B

Common scenarios 163
gives you just that: Cast takes a nongeneric IEnumerable and gives you back a
generic IEnumerable<T>. The Cast operator can be used each time you need to
bridge between nongeneric collections and the standard query operators.

 Listing 5.2 demonstrates how to use Cast to convert an ArrayList into a
generic enumeration that can be queried using LINQ to Objects.

ArrayList books = GetArrayList();

var query =
 from book in books.Cast<Book>()
 where book.PageCount > 150
 select new { book.Title, book.Publisher.Name };

dataGridView.DataSource = query.ToList();

Notice how simply applying the Cast operator to an ArrayList allows us to inte-
grate it in a LINQ query! The Cast operator casts the elements of a source sequence
to a given type. Here is the signature of the Cast operator:

public static IEnumerable<T> Cast<T>(this IEnumerable source)

This operator works by allocating and returning an enumerable object that cap-
tures the source argument. When the object returned by Cast is enumerated, it
iterates the source sequence and yields each element cast to type T. An Invalid-
CastException is thrown if an element in the sequence cannot be cast to type T.

NOTE In the case of value types, a null value in the sequence causes a NullRef-
erenceException. In the case of reference types, a null value is cast with-
out error as a null reference of the target type.

It’s interesting to note that thanks to a feature of query expressions, the code of
our last example can be simplified. We don’t need to explicitly invoke the Cast
operator! In a C# query expression, an explicitly typed iteration variable trans-
lates to an invocation of Cast. Our query can be formulated without Cast by
explicitly declaring the book iteration variable as a Book. Listing 5.3 is equivalent
to listing 5.2, but shorter.

Listing 5.2 Querying an ArrayList is possible thanks to the Cast query operator

164 CHAPTER 5

Beyond basic in-memory queries
var query =
 from Book book in books
 where book.PageCount > 150
 select new { book.Title, book.Publisher.Name };

The same technique can be used to work with DataSet objects. For instance, here
is how you can query the rows of a DataTable using a query expression:

from DataRow row in myDataTable.Rows
where (String)row[0] == "LINQ"
select row

NOTE You’ll see in our bonus chapter how LINQ to DataSet offers an alternative
for querying DataSets and DataTables.

As an alternative to the Cast operator, you can also use the OfType operator. The
difference is that OfType only returns objects from a source collection that are of
a certain type. For example, if you have an ArrayList that contains Book and Pub-
lisher objects, calling theArrayList.OfType<Book>() returns only the instances
of Book from the ArrayList.

 As time goes by, you’re likely to encounter nongeneric collections less and less
because generic collections offer type checking and improved performance. But
until then, if you want to apply your LINQ expertise to all collections including
nongeneric ones, the Cast and OfType operators and explicitly typed from itera-
tion variables are your friends!

 Querying nongeneric collections was the first common scenario we wanted to
show you. We’ll now introduce a completely different scenario that consists of
grouping query results by composite keys. Although grouping by multiple criteria
seems like a pretty simple task, the lack of a dedicated syntax for this in query
expressions does not make how to do it obvious.

5.1.2 Grouping by multiple criteria

When we introduced grouping in chapter 4, we grouped results by a single prop-
erty, as in the following query:

var query =
 from book in SampleData.Books
 group book by book.Publisher;

Listing 5.3 Querying an ArrayList is possible thanks to type declarations in
 query expressions

Common scenarios 165
Here we group books by publisher. But what if you need to group by multiple cri-
teria? Let’s say that you want to group by publisher and subject, for example. If
you try to adapt the query to do this, you may be disappointed to find that the
LINQ query expression syntax does not accept multiple criteria in a group clause,
nor does it accept multiple group clauses in a query.

 The following queries are not valid, for example:

var query1 =
 from book in SampleData.Books
 group book by book.Publisher, book.Subject;
var query2 =
 from book in SampleData.Books
 group book by book.Publisher
 group book by book.Subject;

This doesn’t mean that it’s impossible to perform grouping by multiple criteria in
a query expression. The trick is to use an anonymous type to specify the members
on which to perform the grouping. We know this may sound difficult and several
options are possible, so we’ll break it down into small examples.

 Let’s consider that you want to group by publisher and subject. This would
produce the following results for our sample data:

Publisher=FunBooks Subject=Software development
 Books: Title=Funny Stories PublicationDate=10/11/2004...
Publisher=Joe Publishing Subject=Software development
 Books: Title=LINQ rules PublicationDate=02/09/2007...
 Books: Title=C# on Rails PublicationDate=01/04/2007...
Publisher=Joe Publishing Subject=Science fiction
 Books: Title=All your base are belong to us

 ➥PublicationDate=05/05/2006...
Publisher=FunBooks Subject=Novel
 Books: Title=Bonjour mon Amour PublicationDate=18/02/1973...

To achieve this result, your group clause needs to contain an anonymous type that
combines the Publisher and Subject properties of a Book object. In listing 5.4,
we use a composite key instead of a simple key.

var query =
 from book in SampleData.Books
 group book by new { book.Publisher, book.Subject };

This query results in a collection of groupings. Each grouping contains a key (an
instance of the anonymous type) and an enumeration of books matching the key.

Listing 5.4 Grouping books by publisher and subject

166 CHAPTER 5

Beyond basic in-memory queries
In order to produce a more meaningful result similar to the one we showed ear-
lier, you can improve the query by adding a select clause, as in listing 5.5.

var query =
 from book in SampleData.Books
 group book by new { book.Publisher, book.Subject }
 into grouping
 select new {
 Publisher = grouping.Key.Publisher.Name,
 Subject = grouping.Key.Subject.Name,
 Books = grouping
 };

The into keyword B is introduced to provide a variable we can use in select C
or other subsequent clauses. The grouping variable B we declare after into con-
tains the key of the grouping, which is accessible through its Key property D, as
well as the elements in the grouping. The key represents the thing that we group
on. The elements of each grouping can be retrieved by enumerating the group-
ing variable E, which implements IEnumerable<T>, where T is the type of what is
specified immediately after the group keyword. Here, grouping is an enumera-
tion of Book objects. Note that the grouping variable can be named differently if
you prefer.

 To display the results, you can use the ObjectDumper class again:

ObjectDumper.Write(query, 1);

REMINDER ObjectDumper is a utility class we already used in several places, like in
chapters 2 and 4. It’s provided by Microsoft as part of the LINQ code sam-
ples. You’ll be able to find it in the downloadable source code that comes
with this book.

The result elements of a grouping do not need to be of the same type as the
source’s elements. For example, you may wish to retrieve only the title of each
book instead of a complete Book object. In this case, you would adapt the query as
in listing 5.6.

var query =
 from book in SampleData.Books
 group book.Title by new { book.Publisher, book.Subject }
 into grouping

Listing 5.5 Using the into keyword in a group by clause

Listing 5.6 Query that groups book titles, and not book objects, by publisher and subject

into
keyword

B

grouping
variableE

Key
property

D
Select
clause

C

Common scenarios 167
 select new {
 Publisher = grouping.Key.Publisher.Name,
 Subject = grouping.Key.Subject.Name,
 Titles = grouping
 };

To go further, you may use an anonymous type to specify the shape of the result-
ing elements. In the following query, we specify that we want to retrieve the title
and publisher name for each book in grouping by subject:

var query =
 from book in SampleData.Books
 group new { book.Title, book.Publisher.Name } by book.Subject
 into grouping
 select new {Subject=grouping.Key.Name, Books=grouping };

In this query, we use only the subject as the key for the grouping for the sake of
simplicity, but you could use an anonymous type as in the previous query if you
wish.

NOTE Anonymous types can be used as composite keys in other query clauses,
too, such as join and orderby.

Are you ready for another scenario? The next common scenario we’d like to
address covers dynamic queries. You may wonder what we mean by this. This is
something you’ll want to use when queries depend on the user’s input or other
factors. We’ll show you how to create dynamic queries by parameterizing and cus-
tomizing them programmatically.

5.1.3 Dynamic queries

There is something that may be worrisome when you start working with LINQ.
Your first queries, at least the examples you can see everywhere, seem very static.

 Let’s look at a typical query:

from book in books
where book.Title = "LINQ in Action"
select book.Publisher

This construct may give you the impression that a LINQ query can only be used
for a specific search. In this section, we show you that the title used for the condi-
tion can be parameterized, and even further than that, the whole where clause
can be specified or even omitted dynamically. We’ll show you that a query is not
static at all and can be parameterized, enriched, or customized in several ways.

168 CHAPTER 5

Beyond basic in-memory queries
 Let’s start by seeing how to change the value of a criterion in a LINQ to Objects
query.

Parameterized query
If you remember what we demonstrated in chapter 3 when we introduced
deferred query execution, you already know that a given query can be reused sev-
eral times but produce different results each time. The trick we used in that chap-
ter is changing the source sequence the query operates on between executions.
It’s like using a cookie recipe but substituting some of the ingredients. Do you
want pecans or walnuts? Another solution to get different results from a query is
to change the value of some criteria used in the query. After all, you have the right
to add more chocolate chips to your cookies!

 Let’s consider a simple example. In the following query, a where clause is used
to filter books by their number of pages:

int minPageCount = 200;

var books =
 from book in SampleData.Books
 where book.PageCount >= minPageCount
 select book;

The criterion used in the where clause of this query is based on a variable named
minPageCount. Changing the value of the minPageCount variable affects the
results of the query. Your small “My top 50 cookie recipes” book and its 100 pages
won’t appear in here.

 In listing 5.7, when we change the value of minPageCount from 200 to 50 and
execute the query a second time, the result sequence contains five books instead
of three:

minPageCount = 200;
Console.WriteLine("Books with at least {0} pages: {1}",
 minPageCount, books.Count());

minPageCount = 50;
Console.WriteLine("Books with at least {0} pages: {1}",
 minPageCount, books.Count());

NOTE Applying the Count operator to the query contained in the books vari-
able executes the query immediately. Count completely enumerates the
query it’s invoked on in order to determine the number of elements.

Listing 5.7 Using a local variable to make a query dynamic

Set minPageCount to 200

Query returns
3 books

Change minPageCount

Query now
returns 5 books

Common scenarios 169
This technique may not seem very advanced, but it’s good to remember that it’s
possible and provide an example to demonstrate how to use it. Such small tricks
are useful when using LINQ queries.

 Let’s consider a variant of this technique. Often you’ll use queries in a method
with parameters. If you use the method parameters in the query, they impact the
results of the query.

 The method in listing 5.8 reuses the same technique as in our last example,
but this time a parameter is used to specify the minimum number of pages.

void ParameterizedQuery(int minPageCount)
{
 var books =
 from book in SampleData.Books
 where book.PageCount >= minPageCount
 select book;

 Console.WriteLine("Books with at least {0} pages: {1}",
 minPageCount, books.Count());
}

This technique is very common. It’s the first solution you can use to introduce
some dynamism in LINQ queries. Other techniques can be used also. For exam-
ple, we’ll now show you how to change the sort order used in a query.

Custom sort
Sorting the results of a query based on the user’s preference is another common
scenario where dynamic queries can help. In a query, the sort order can be speci-
fied using an orderby clause or with an explicit call to the OrderBy operator. Here
is a query expression that sorts books by title:

from book in SampleData.Books
orderby book.Title
select book.Title;

Here is the equivalent query written using the method syntax:

SampleData.Books
 .Orderby(book => book.Title)
 .Select(book => book.Title);

The problem with these queries is that the sorting order is hard-coded: the results
of such queries will always be ordered by titles. What if we wish to specify the order
dynamically?

Listing 5.8 Using a method parameter to make a query dynamic

170 CHAPTER 5

Beyond basic in-memory queries
 Suppose you’re creating an applica-
tion where you wish to let the user
decide how books are sorted. The user
interface may look like figure 5.1.

 You can implement a method that
accepts a sort key selector delegate as a
parameter. This parameter can then
be used in the call to the OrderBy
operator. Here is the signature of the
OrderBy operator:

OrderedSequence<TElement> OrderBy<TElement, TKey>(
 this IEnumerable<TElement> source, Func<TElement, TKey> keySelector)

This shows that the type of the delegate you need to provide to OrderBy is
Func<TElement, TKey>. In our case, the source is a sequence of Book objects, so
TElement is the Book class. The key is selected dynamically and can be a string (for
the Title property for example) or an integer (for the PageCount property). In
order to support both kinds of keys, you can use a generic method, where TKey is
a type parameter.

 Listing 5.9 shows how you can write a method that takes a sort key selector as
an argument.

void CustomSort<TKey>(Func<Book, TKey> selector)
{
 var books = SampleData.Books.OrderBy(selector);
 ObjectDumper.Write(books);
}

The method can also be written using a query expression, as in listing 5.10.

void CustomSort<TKey>(Func<Book, TKey> selector)
{
 var books =
 from book in SampleData.Books
 orderby selector(book)
 select book;
 ObjectDumper.Write(books);
}

Listing 5.9 Method that uses a parameter to enable custom sorting

Listing 5.10 Method that uses a parameter in a query expression to enable
 custom sorting

Figure 5.1 A user interface that allows the user
to choose the sort order he wants to see applied
to a list of books

Common scenarios 171
This method can be used as follows:

CustomSort(book => book.Title);

or

CustomSort(book => book.Publisher.Name);

One problem is that this code does not allow sorting in descending order. In
order to support descending order, the CustomSort method needs to be adapted
as shown in listing 5.11.

void CustomSort<TKey>(Func<Book, TKey> selector, Boolean ascending)
{
 IEnumerable<Book> books = SampleData.Books;
 books = ascending ? books.OrderBy(selector)
 : books.OrderByDescending(selector);
 ObjectDumper.Write(books);
}

This time, the method can be written only using explicit calls to the operators.
The query expression cannot include the test on the ascending parameter
because it needs a static orderby clause.

 The additional ascending parameter allows us to choose between the OrderBy
and OrderByDescending operators. It then becomes possible to use the following
call to sort using a descending order instead of the default ascending order:

CustomSort(book => book.Title, false);

Finally, we have a complete version of the CustomSort method that uses a
dynamic query to allow you to address our common scenario. All you have to do is
use a switch statement to take into account the user’s choice for the sort order, as
in listing 5.12.

switch (cbxSortOrder.SelectedIndex)
{
 case 0:
 CustomSort(book => book.Title);
 break;
 case 1:

Listing 5.11 Method that uses a parameter to enable custom sorting in ascending
 or descending order

Listing 5.12 Switch statement used to choose between several custom sorts

172 CHAPTER 5

Beyond basic in-memory queries
 CustomSort(book => book.Title, false);
 break;
 case 2:
 CustomSort(book => book.Publisher.Name);
 break;
 case 3:
 CustomSort(book => book.PageCount);
 break;
}

This produces the display shown in figure 5.2 for an ascending sort by title.
 Figure 5.3 shows the display for a descending sort by title.
 After showing you how to parameterize the condition of a query’s where clause

and use a dynamic sort order, we’d like to show you a more advanced scenario. This
new example will demonstrate how to dynamically define a query, including or
excluding clauses and operators depending on the context. This is something you’d
want to achieve often, so queries can take into account the application’s context, set-
tings, or the user’s input.

Conditionally building queries
The previous examples showed how to customize queries by changing the values
they use as well as the sort order. A new example will show you how to add criteria
and operators to a query dynamically. This technique allows us to shape queries
based on user input, for example.

 Let’s consider a common scenario. In most applications, data isn’t presented
to the user directly as is. After being extracted from a database, an XML docu-
ment, or another data source, the data is filtered, sorted, formatted, and so on.
This is where LINQ is of great help. LINQ queries allow us to perform all these
data manipulation operations with a nice declarative syntax. Most of the time, the
data is filtered and dynamically shaped based on what the user specifies.

Figure 5.2 Books sorted by title in ascending
order according to the user’s choice of a sort order

Figure 5.3 Books sorted by title in descending
order according to the user’s choice of a sort order

Common scenarios 173
 As an example, a typical search
screen consists of an area where the
user can input a set of criteria, com-
bined with a grid or another list con-
trol that displays the results. Figure 5.4
shows such a screen.

 This is the dialog window we’ll use
for our example. In order to take the
user’s criteria into account, we can
write a simple query that looks like list-
ing 5.13.

var query =
 SampleData.Books
 .Where(
 book => book.PageCount >= (int)cbxPageCount.SelectedValue)
 .Where(book => book.Title.Contains(txtTitleFilter.Text))

if (cbxSortOrder.SelectedIndex == 1)
 query = query.OrderBy(book => book.Title);
else if (cbxSortOrder.SelectedIndex == 2)
 query = query.OrderBy(book => book.Publisher.Name);
else if (cbxSortOrder.SelectedIndex == 3)
 query = query.OrderBy(book => book.PageCount);

query = query.Select(
 book => new { book.Title,
 book.PageCount,
 Publisher=book.Publisher.Name });

dataGridView1.DataSource = query.ToList();

For code reusability and clarity, it’s better to refactor the code to move this query
to a dedicated method, as in listing 5.14.

void ConditionalQuery<TSortKey>(
 int minPageCount, String titleFilter,
 Func<Book, TSortKey> sortSelector)
{
 var query =
 SampleData.Books

Listing 5.13 Building a conditional query based on user input

Listing 5.14 Dynamic query refactored into a method

Prepare query according
to user’s criteria

Call
OrderBy
if needed

Call
Select

Bind results to DataGridView

Figure 5.4 A typical search screen with a criteria
area used to filter books by page count and title,
and to specify the results’ sort order

174 CHAPTER 5

Beyond basic in-memory queries
 .Where(book => book.PageCount >= minPageCount.Value)
 .Where(book => book.Title.Contains(titleFilter))
 .OrderBy(sortSelector)
 .Select(
 book => new { book.Title,
 book.PageCount,
 Publisher=book.Publisher.Name });

 dataGridView1.DataSource = query.ToList();
}

Here we use the explicit method syntax instead of a query expression because it
will make the transition to the next version of the code. This method can be
called using the code in listing 5.15.

int? minPageCount;
string titleFilter;

minPageCount = (int?)cbxPageCount.SelectedValue;
titleFilter = txtTitleFilter.Text;
if (cbxSortOrder2.SelectedIndex == 1)
{
 ConditionalQuery(minPageCount, titleFilter,
 book => book.Title);
}
else if (cbxSortOrder2.SelectedIndex == 2)
{
 ConditionalQuery(minPageCount, titleFilter,
 book => book.Publisher.Name);
}
else if (cbxSortOrder2.SelectedIndex == 3)
{
 ConditionalQuery(minPageCount, titleFilter,
 book => book.PageCount);
}
else
{
 ConditionalQuery<Object>(minPageCount, titleFilter, null);
}

This is all fine, but our example is not complete. We don’t have the flexible query
we promised! In fact, we have a small problem. What will happen if the user
doesn’t provide values for all the criteria? We won’t get the correct results,
because the method was not created to handle blank values.

Listing 5.15 Invoking the ConditionalQuery method according to user input

Common scenarios 175
 We need to take this into account and test whether we have values for the crite-
ria. When there is no value for a criterion, we simply exclude the corresponding
clause from the query. In fact, if you look at the new version of our method in list-
ing 5.16, you’ll notice that we create the query on the fly by adding clauses one
after another.

void ConditionalQuery<TSortKey>(
 int? minPageCount, String titleFilter,
 Func<Book, TSortKey> sortSelector)
{
 IEnumerable<Book> query;

 query = SampleData.Books;
 if (minPageCount.HasValue)
 query =
 query.Where(book => book.PageCount >= minPageCount.Value);
 if (!String.IsNullOrEmpty(titleFilter))
 query = query.Where(book => book.Title.Contains(titleFilter));
 if (sortSelector != null)
 query = query.OrderBy(sortSelector);

 var completeQuery = query.Select(
 book => new { book.Title,
 book.PageCount,
 Publisher=book.Publisher.Name });

 dataGridView1.DataSource = completeQuery.ToList();
}

At the beginning, our query simply consists of the complete list of books B. If the
user specifies a value for the minimum page count, then we add a call to the
Where operator to the query C. If the user decides to filter the results based on
the title of books, then we add another call to Where D. If a sort order is specified,
we add the OrderBy operator to the mix E. Finally, we define the shape of the
results by using the Select operator and an anonymous type F.

REMINDER When we use something like query = query.Where(…), we’re actually
chaining method calls and not creating a new query object. The fact that
the query operators are extension methods (see chapters 2 and 3) allows
us to use a temporary query variable to chain operations. We would not
be able to write this kind of code without extension methods.

Listing 5.16 Complete version of the ConditionalQuery method that tests for
 the provided criteria

List of
books

B

E

Where
operator call

C

Second
Where call

D

OrderBy
operator

call Select
operator call

F

176 CHAPTER 5

Beyond basic in-memory queries
Armed with the technique we have just demonstrated, you should now be able to
create rich dynamic queries. Yet, there is one more approach that can be used for
advanced cases. We’ll now take some time to introduce this technique, which uses
expression trees.

Creating queries at run-time
In the previous examples, we showed you how to create dynamic queries. These
queries are dynamic because some of the values they use or even the clauses that
make them are not decided at compile-time, but at run-time. The information
these queries are based on is not available when the code is written because it can
depend on the user or on the context. In more advanced scenarios, you may have
to completely create queries on the fly. Imagine that your application needs to
query data based on a description coming from an XML file, a remote application,
or the user. In these cases, it’s possible to rely on expression trees.

 Suppose the following XML fragment describes the criteria to apply to a collec-
tion of books in order to filter it:

<and>
 <notEqual property="Title" value="Funny Stories" />
 <greaterThan property="PageCount" value="100" />
</and>

This XML stipulates that the Title property of a book should be different from
“Funny Stories” and its PageCount property should be greater than 100. If we were
to write a query that matches these conditions, it would look like this:

var query =
 from book in SampleData.Books
 where (book.Title != "Funny Stories") && (book.PageCount > 100)
 select book;

This is a typical query completely defined at compile-time. However, if the XML is
provided to our application at run-time, we cannot write the query this way because
the application is already compiled. The solution is to use expression trees.

 As you’ve seen in chapter 3, the simplest way to create an expression tree is to
let the compiler convert a lambda expression declared with the Expression<TDele-
gate> class into a series of factory method calls that will build the expression tree
at run-time. In order to create dynamic queries, you can take advantage of another
way of working with expression trees. You can “roll your own” expression tree by call-
ing the factory methods—they’re static methods on the Expression<TDelegate>
class—and compile the expression tree into a lambda expression at run-time.

Common scenarios 177
 Listing 5.17 dynamically creates a query at run-time that is equivalent to the
preceding query expression.

var book = Expression.Parameter(typeof(Book), "book");

var titleExpression = Expression.NotEqual(
 Expression.Property(book, "Title"),
 Expression.Constant("Funny Stories"));

var pageCountExpression = Expression.GreaterThan(
 Expression.Property(book, "PageCount"),
 Expression.Constant(100));

var andExpression = Expression.And(titleExpression,
 pageCountExpression);

var predicate = Expression.Lambda(andExpression, book);
var query = Enumerable.Where(SampleData.Books,
 (Func<Book, Boolean>)predicate.Compile());

The listing creates an expression tree that describes the filtering condition.
Each statement augments the expression tree by adding new expressions to it.
The last two statements convert the expression tree into code that forms an exe-
cutable query. The query variable from the code can then be used like any
other LINQ query.

 Of course, the code from listing 5.17 uses hard-coded values such as “Title”,
“Funny Stories”, “PageCount”, and “100”. In a real application, these values
would come from our XML document or any other source of information that
exists at run-time.

 Expression trees represent an advanced topic. We won’t describe further how
to use them in the context of dynamic queries, but they’re powerful once you
master them. You can refer to the LINQ to Amazon example in chapter 13 to see
another use of expression trees.

NOTE Using dynamic queries with LINQ to SQL is another story because every-
thing in the query needs to be translatable to SQL.

Tomas Petricek, a C# MVP, shows how to easily build dynamic LINQ to
SQL queries at run-time in C# on his web site. See http://tomasp.net/
blog/dynamic-linq-queries.aspx.

Listing 5.17 Completely creating a query at run-time using an expression tree

Define book
variable

book.Title !=
"Funny Stories"

book.PageCount
> 100

and

Create the
where clause

http://tomasp.net/blog/dynamic-linq-queries.aspx

178 CHAPTER 5

Beyond basic in-memory queries
The last common scenario we’d like to cover in this chapter will show you how to
write LINQ queries against text files. You know how to query collections in mem-
ory, but how can you query text files? The question is: do we need another varia-
tion of LINQ for this?

5.1.4 LINQ to Text Files

Varieties of LINQ exist to deal with several kinds of data and data structures. You
already know the major “islands”: We have LINQ to Objects, LINQ to DataSet,
LINQ to XML, LINQ to SQL. What if you’d like to use LINQ queries with text files?
Is there a small island somewhere we didn’t let you know about yet? Should you
create a new island, since LINQ’s extensibility allows this? You could code a few
query operators to deal with file streams and text lines… . Wait a second; don’t
jump straight to your keyboard to create LINQ to Text Files! We don’t need it.
Let’s see how LINQ to Objects is enough for our scenario.

 We’ll develop an example inspired by Eric White, a Microsoft programming
writer who works on the LINQ to XML documentation among other things. Eric’s
example2 shows how to extract information from a CSV file.

NOTE CSV stands for comma-separated values. In a CSV file, different field val-
ues are separated by commas.

The sample CSV file we’ll use is shown in listing 5.18.

#Books (format: ISBN, Title, Authors, Publisher, Date, Price)
0735621632,CLR via C#,Jeffrey Richter,Microsoft Press,02-22-2006,

 ➥59.99
0321127420,Patterns Of Enterprise Application Architecture,

 ➥Martin Fowler,Addison-Wesley, 11-05-2002,54.99
0321200683,Enterprise Integration Patterns,Gregor Hohpe,

 ➥Addison-Wesley,10-10-2003,54.99
0321125215,Domain-Driven Design,Eric Evans,

 ➥Addison-Wesley Professional,08-22-2003,54.99
1932394613,Ajax In Action,Dave Crane;Eric Pascarello;Darren James,

 ➥Manning Publications,10-01-2005,44.95

This CSV contains information about books. In order to read the CSV data, the first
step is to open the text file and retrieve the lines it contains. One easy solution to

2 See Eric White’s blog at http://blogs.msdn.com/ericwhite/archive/2006/08/31/734383.aspx.

Listing 5.18 Sample CSV document containing information about books

Common scenarios 179
achieve this is to use the File.ReadAllLines method. ReadAllLines is a static
method available on the System.IO.File class. This method reads all lines from a
text file and returns them as a string array. The second step is to filter out com-
ments. This can be done easily using a where clause.

 Here is how to write the start of the query:

from line in File.ReadAllLines("books.csv")
where !line.StartsWith("#")

Here, we use the string array returned by File.ReadAllLines as the source
sequence in our from clause, and we ignore the lines that start with #.

 The next step is to split each line into parts. In order to do this, we can lever-
age the Split method available on string objects. Split returns a string array con-
taining the substrings that are delimited by a character or a set of characters in a
string instance. Here, we’ll split the string based on commas.

 We need to refer to each part of the line in the rest of the query, but it’s impor-
tant to perform the split operation only once. This is a typical situation in which
the let clause is useful. A let clause computes a value and introduces an identi-
fier representing that value. Here, we use the let clause to hold the parts con-
tained in each line. Once we have a line split apart, we can wrap it into a new
object using an anonymous type in a select clause.

 Listing 5.19 shows is the complete query.

from line in File.ReadAllLines("books.csv")
where !line.StartsWith("#")
let parts = line.Split(',')
select new { Isbn=parts[0], Title=parts[1], Publisher=parts[3] };

Here is the result you get if you use ObjectDumper with the query:

Isbn=0735621632 Title=CLR via C# Publisher=Microsoft Press
Isbn=0321127420 Title=Patterns Of Enterprise Application Architecture

 ➥Publisher=Addison-Wesley
Isbn=0321200683 Title=Enterprise Integration Patterns Publisher=

 ➥Addison-Wesley
Isbn=0321125215 Title=Domain-Driven Design Publisher=Addison-Wesley
Isbn=1932394613 Title=Ajax In Action Publisher=Manning Publications

That’s all you need to do to read simple CSV files using LINQ. With four lines of
code, you get a query that produces a sequence of objects that contain a title, a
publisher name, and an ISBN! This demonstrates that LINQ to Objects is enough

Listing 5.19 Querying information about books from a CSV file

180 CHAPTER 5

Beyond basic in-memory queries
to deal with several data sources. We don’t need a specific flavor of LINQ to query
text files.

WARNING This example shows a naïve approach to parsing CSV files. It doesn’t deal
with escaped commas or other advanced CSV features. You may want to
strengthen the code or use another approach for dealing with CSV in
your applications.

In addition, this version of the code can have bad performance impli-
cations. We’ll show you how it can be improved to solve this in section 5.3.1.

We have just seen common scenarios and how to deal with them. Without the
kind of ready-to-use solutions we gave you, you’d have to search by yourself how to
address each scenario. In order to optimize the development of common scenar-
ios, design patterns are often created. The next section gives you an overview of
design patterns that can be applied to LINQ. We’ll get started with a design pat-
tern that is widely used in LINQ queries: the Functional Construction pattern.

 Since the LINQ to Text Files example is nice, we’ll reuse it as the base for our
introduction to this first pattern. We’ll also use it again in section 5.3.1, where
we’ll discuss how to improve the query we wrote in the current section to save
resources and increase performance.

5.2 Design patterns

Like with any other technology, with LINQ some designs are used again and again
over time. These designs eventually become well documented as design patterns so
they can be reused easily and efficiently. A design pattern is a general repeatable
solution to a commonly occurring problem in software design. Design patterns
gained popularity in computer science after the book Design Patterns from the
Gang of Four (aka GoF) was published in 1994.3 Design patterns were initially
defined for object-oriented programming, but have since been used for domains
as diverse as organization, process management, and software architecture.

 The patterns we cover here apply to LINQ contexts: Functional Construction
and ForEach.

3 Design Patterns: Elements of Reusable Object-Oriented Software. By Erich Gamma, Richard Helm, Ralph
Johnson, John Vlissides. Addison-Wesley; ISBN 0-201-63361-2

Design patterns 181
5.2.1 The Functional Construction pattern

The first design pattern we’ll present uses collection initializers and query compo-
sition. This pattern is widely used in LINQ queries, especially with LINQ to XML as
you’ll see in part 4 of this book.

 This pattern is named Functional Construction because it’s used to construct a
tree or a graph of objects, with a code structure similar to what is used in func-
tional programming languages such as Lisp.

 In order to introduce the Functional Construction pattern, let’s reuse and
extend the LINQ to Text Files example that we presented in the previous section.
Here is the query we used:

from line in File.ReadAllLines("books.csv")
where !line.StartsWith("#")
let parts = line.Split(',')
select new { Isbn=parts[0], Title=parts[1], Publisher=parts[3] };

We conveniently left the authors out of the query since they require a little extra
work. We’ll now handle them to get the following kind of results:

Isbn=0735621632 Title=CLR via C# Publisher=Microsoft Press
 Authors: FirstName=Jeffrey LastName=Richter
Isbn=0321127420 Title=Patterns Of Enterprise Application Architecture

 ➥Publisher=Addison-Wesley
 Authors: FirstName=Martin LastName=Fowler
Isbn=0321200683 Title=Enterprise Integration Patterns Publisher=

 ➥Addison-Wesley
 Authors: FirstName=Gregor LastName=Hohpe
Isbn=0321125215 Title=Domain-Driven Design Publisher=Addison-Wesley

 ➥Professional
 Authors: FirstName=Eric LastName=Evans
Isbn=1932394613 Title=Ajax In Action Publisher=Manning Publications
 Authors: FirstName=Dave LastName=Crane
 Authors: FirstName=Eric LastName=Pascarello
 Authors: FirstName=Darren LastName=James

Unlike the other fields in our text file, there can be more than one author specified
for a single book. If we go back and review the sample text file from listing 5.18, we
see that the authors are delimited by a semicolon:

Dave Crane;Eric Pascarello;Darren James

As we did with the entire line, we can split the string of authors into an array,
with each author being an individual element in the array. To be sure we get
our fill of Split, we use it one final time to break the full author name into first
and last names. Finally, we place the statements for parsing out the authors into

182 CHAPTER 5

Beyond basic in-memory queries
a subquery and wrap the results of our many splits into each book’s Author
property. Listing 5.20 shows the full query.

var books =
 from line in File.ReadAllLines("books.csv")
 where !line.StartsWith("#")
 let parts = line.Split(',')
 select new {
 Isbn = parts[0],
 Title = parts[1],
 Publisher = parts[3],
 Authors =
 from authorFullName in parts[2].Split(';')
 let authorNameParts = authorFullName.Split(' ')
 select new {
 FirstName = authorNameParts[0],
 LastName = authorNameParts[1]
 }
 };

ObjectDumper.Write(books, 1);

In the query, we use anonymous types for the results, but we could use regular
types instead. Listing 5.21 shows how to reuse our existing Book, Publisher, and
Author types.

var books =
 from line in File.ReadAllLines("books.csv")
 where !line.StartsWith("#")
 let parts = line.Split(',')
 select new Book {
 Isbn = parts[0],
 Title = parts[1],
 Publisher = new Publisher { Name = parts[3] },
 Authors =
 from authorFullName in parts[2].Split(';')
 let authorNameParts = authorFullName.Split(' ')
 select new Author {
 FirstName=authorNameParts[0],
 LastName=authorNameParts[1]
 }
 };

Listing 5.20 Declarative approach for parsing a CSV file, with anonymous types

Listing 5.21 Declarative for parsing a CSV file, with existing types

Design patterns 183
It’s interesting to note how the Authors property is initialized with a nested query.
This is possible thanks to query compositionality. LINQ queries are fully composi-
tional, meaning that queries can be arbitrarily nested. The result of the subquery
is automatically transformed into a collection of type IEnumerable<Author>.

 The Functional Construction pattern is sometimes called Transform pattern
because it’s used to create a new object graph based on source objects graphs and
sequences. It allows us to write code that is more declarative than imperative in
nature. If you don’t use this pattern then in a lot of cases you have to write a lot of
contrived imperative code.

 Listing 5.22 is imperative code that is equivalent to listing 5.21.

List<Book> books = new List<Book>();
foreach (String line in File.ReadAllLines("books.csv"))
{
 if (line.StartsWith("#"))
 continue;

 String[] parts = line.Split(',');
 Book book = new Book();
 book.Isbn = parts[0];
 book.Title = parts[1];
 Publisher publisher = new Publisher();
 publisher.Name = parts[3];
 book.Publisher = publisher;
 List<Author> authors = new List<Author>();
 foreach (String authorFullName in parts[2].Split(';'))
 {
 String[] authorNameParts = authorFullName.Split(' ');
 Author author = new Author();
 author.FirstName = authorNameParts[0];
 author.LastName = authorNameParts[1];
 authors.Add(author);
 }
 book.Authors = authors;

 books.Add(book);
}

As you can see, the Functional Construction pattern offers a more concise style. Of
course, the difference could be reduced if the Book, Publisher, and Author
classes had constructors or if you used initializers. In fact, the real difference is
elsewhere. Comparing the two pieces of code allows you to see how the Functional

Listing 5.22 Imperative approach for parsing a CSV file

184 CHAPTER 5

Beyond basic in-memory queries
Construction pattern favors a declarative approach, in contrast to the imperative
approach, which requires loops in our example. With a declarative approach, you
describe what you want to achieve, but not necessarily how to achieve it.

 One big advantage of the Functional Construction pattern is that the code
often has the same shape as the result. We can clearly see the structure of the
resulting object tree in listing 5.21 just by looking at the source code. This pattern
is fundamental for LINQ to XML. In part 4, you’ll be able to see how this pattern is
heavily used for creating XML.

WARNING If you plan to use a similar approach for querying text files, make sure
you read section 5.3.1 to see how the call to ReadAllLines we use in the
query should be replaced for better performance.

Let’s now see a second design pattern that can be used to iterate over a sequence
in a query.

5.2.2 The ForEach pattern

The design pattern we present in this section allows you to write shorter code
when you have a query immediately followed by an iteration of this query. Typical
LINQ code you’ve seen in this book until now looks like listing 5.23.

var query =
 from sourceItem in sequence
 where some condition
 select some projection

foreach (var item in query)
{
 // work with item
}

We don’t know about you, but a question we had after seeing this pattern over and
over is “Is there a way to perform the iteration within the query instead of in a sep-
arate foreach loop?” The short answer is that there is no query operator that
comes with LINQ that can help you to do that. Our answer is that you can easily
create one by yourself.

 You can create the ForEach operator, which addresses this issue, with the code
in listing 5.24.

Listing 5.23 Standard code used to execute and enumerate a LINQ query

Design patterns 185
public static void ForEach<T>(
 this IEnumerable<T> source,
 Action<T> func)
{
 foreach (var item in source)
 func(item);
}

ForEach is simply an extension method for IEnumerable<T>, similar to the one
that already exists on List<T>, that loops on a sequence and executes the func-
tion it receives over each item in the sequence. The ForEach operator can be used
in queries using the method syntax shown in listing 5.25.

SampleData.Books
 .Where(book => book.PageCount > 150)
 .ForEach(book => Console.WriteLine(book.Title));

ForEach can also be used with the query syntax shown in listing 5.26.

(from book in SampleData.Books
 where book.PageCount > 150
 select book)
 .ForEach(book => Console.WriteLine(book.Title));

In these examples, we use only one statement in ForEach. Thanks to the support
lambda expressions offer for statement bodies (see chapter 2), it’s also possible to
use multiple statements in a call to ForEach. Listing 5.27 is a small example in
which we perform an update on the iterated object.

SampleData.Books
 .Where(book => book.PageCount > 150)
 .ForEach(book => {
 book.Title += " (long)";
 Console.WriteLine(book.Title);
 });

Listing 5.24 ForEach query operator that executes a function over each element in
 a source sequence

Listing 5.25 Using the ForEach query operator using the method syntax

Listing 5.26 Using the ForEach query operator with a query expression

Listing 5.27 Using multiple statements in a ForEach call

186 CHAPTER 5

Beyond basic in-memory queries
Using a query operator this way, instead of foreach or for loops, offers a better inte-
gration with queries. It follows the same general orientation as LINQ. It takes inspi-
ration from functional programming. In fact, Eric White suggested this operator in
his functional programming tutorial.4 We recommend you take a look at Eric’s tuto-
rial to get an introduction to how LINQ features relate to functional programming.

WARNING ForEach cannot be used in VB because it requires a statement lambda
and VB.NET 9.0 does not offer support for statement lambdas.

The samples we have in C# cannot be converted to VB. Calls to
ForEach in VB produce the following error at compile-time: Expression
does not produce a value.

Now that we’ve covered common scenarios and design patterns, it’s time to focus
on the second major topic of this chapter. So far, we have taught you how to use
LINQ to Objects, first in simple queries and then in more advanced ones. But
there’s one thing you need to pay attention to if you want to write LINQ queries
you can actually use in production: performance. At this point, you know how to
write simple LINQ queries and rich LINQ queries, but you still need to make sure
that you write efficient queries. In the next section, we’ll give you an idea about
performance overhead in LINQ to Objects and warn you about a number of pit-
falls. All of which should help you write better LINQ applications.

5.3 Performance considerations

LINQ’s main advantage is not that it allows you to do new things, but it allows you
to do things in new, simpler, more concise ways. The usual trade-off to get these ben-
efits is performance. LINQ is no exception. The goal of this section is to make sure
you know the performance implications of LINQ queries. We’ll show you how to get
an idea of LINQ’s overhead and provide some figures. We’ll also highlight the main
pitfalls. If you know where they are, you’ll be in a better position to avoid them.

 As always, we have several ways to perform one task with the .NET Framework.
Sometimes, the choice is only a matter of taste, other times it’s a matter of concise-
ness, but more often than not, making the right choice is critical and impacts the
behavior of your program. Some methods are well adapted for LINQ queries and
others should be avoided.

 In this section, we’ll test the performance of several ways to use LINQ. We’ll
also compare code written with LINQ and code written without LINQ. The goal is

4 See http://blogs.msdn.com/ericwhite/pages/Programming-in-a-Functional-Style.aspx.

Performance considerations 187
to compare the benefits for the developer in terms of productivity and code read-
ability between the various options. We’ll make sure you understand the impact of
each option in terms of performance.

 To get started, we’ll get back to our LINQ to Text Files example one more time.
It will be useful to demonstrate how it’s important to choose the right methods for
reading text from a file in LINQ queries.

5.3.1 Favor a streaming approach

Let’s get back to our LINQ to Text Files example from sections 5.1.4 and 5.2.1.
This example clearly demonstrates the ability of LINQ to Objects to query various
data sources. As significant as this example is, we’d like to point out that it suffers
from a potential problem: the use of ReadAllLines. This method returns an array
populated with all the lines from the CSV file. This is fine for small files with few
lines, but imagine a file with a lot of lines. The program can potentially allocate an
enormous array in memory!

 Moreover, the query somewhat defeats the standard deferred execution we
expect with a LINQ query. Usually, the execution of a query is deferred, as we
demonstrated in chapter 3. This means that the query doesn’t execute before we
start to iterate it, using a foreach loop for example. Here, ReadAllLines executes
immediately and loads the complete file in memory, before any iteration hap-
pens. Of course, this consumes a lot of memory, but in addition, we load the com-
plete file while we may not process it completely.

 LINQ to Objects has been designed to make the most of deferred query execu-
tion. The streaming approach it uses also saves resources, like memory and CPU.
It’s important to walk down the same path whenever possible.

 There are several ways to read text from a file using the .NET Framework.
File.ReadAllLines is simply one. A better solution for our example is to use a
streaming approach for loading the file. This can be done with a StreamReader
object. It will allow us to save resources and give us a smoother execution. In
order to integrate the StreamReader in the query, an elegant solution is to create
a custom query operator, as Eric White suggests in his example.5 See Listing 5.28.

public static class StreamReaderEnumerable
{
 public static IEnumerable<String> Lines(this StreamReader source)
 {

Listing 5.28 Lines query operator that yields the text lines from a source StreamReader

5 See Eric White’s blog at http://blogs.msdn.com/ericwhite/archive/2006/08/31/734383.aspx.

188 CHAPTER 5

Beyond basic in-memory queries
 String line;

 if (source == null)
 throw new ArgumentNullException("source");

 while ((line = source.ReadLine()) != null)
 yield return line;
 }
}

The query operator is implemented as an extension method for the StreamReader
class. (You can see more examples of custom query operators in chapter 13.) It enu-
merates the lines provided by the StreamReader one by one, but does not load a line
in memory before it’s actually needed. The integration of this technique into our
query from listing 5.19 is easy; see listing 5.29.

using (StreamReader reader = new StreamReader("books.csv"))
{
 var books =
 from line in reader.Lines()
 where !line.StartsWith("#")
 let parts = line.Split(',')
 select new {Title=parts[1], Publisher=parts[3], Isbn=parts[0]}

 ObjectDumper.Write(books, 1);
}

The main point is that this technique allows you to work with huge files while
maintaining a small memory usage profile. This is the kind of thing you should
pay attention to in order to improve your queries. It’s easy to write queries that are
not optimal and consume a lot of memory.

 Before moving on to another subject, let’s review what happens with the last
version of our LINQ to Text Files query. The key is lazy evaluation. Objects are cre-
ated on the fly, as you loop through the results, and not all at the beginning.

 Let’s suppose we loop on the query’s results using foreach as follows—this is
similar to what ObjectDumper.Write does in the previous code snippet:

foreach (var book in books)
{
 ...
}

Listing 5.29 Using the Lines query operator to use a streaming approach in CSV parsing

Work with book object

Performance considerations 189
The book object used in each iteration of the foreach loop exists only within that
iteration. Not all objects are present in memory at the same time. Each iteration
consists in reading a line from the file, splitting its content, and creating an object
based on that information. Once we’re done with this object, another line is read,
and so on.

 It’s important that you try to take advantage of deferred execution so that fewer
resources are consumed and less memory pressure happens. The next pitfall we’d
like to highlight also has to do with deferred query execution or lack thereof.

5.3.2 Be careful about immediate execution

Most of the standard query operators are based on deferred execution through
the use of iterators (see chapter 3). As we have seen in the previous section, this
allows a lower resource burden. We’d like to draw your attention to the fact that
some query operators defeat deferred execution. Indeed, some query operators
iterate all the elements of the sequence they operate on as part of their behavior.

 In general, the operators that do not return a sequence but a scalar value are
executed immediately. This includes all the aggregation operators (Aggregate,
Average, Count, LongCount, Max, Min, and Sum). This is not surprising because
aggregation is the process of taking a collection and making a scalar. In order to
compute their result, these operators need to iterate all the elements from the
source sequence.

 In addition, some other operators that return a sequence and not a scalar also
iterate the source sequence completely before returning. Examples are OrderBy,
OrderByDescending, and Reverse. These operators change the order of the ele-
ments from a source sequence. In order to know how to sort the elements in their
result sequence, these operators need to completely iterate the source sequence.

 Let’s elaborate what the problem is. Again, we’ll reuse our LINQ to Text Files
example. We said in section 5.3.1 that it’s better to use a streaming approach to
avoid loading complete files in memory. The code we used is shown in listing 5.30.

using (StreamReader reader = new StreamReader("books.csv"))
{
 var books =
 from line in reader.Lines()
 where !line.StartsWith("#")
 let parts = line.Split(',')
 select new {Title=parts[1], Publisher=parts[3], Isbn=parts[0]}

Listing 5.30 Code used to parse a CSV document

190 CHAPTER 5

Beyond basic in-memory queries
 foreach (var book in books)
 {
 ...
 }
}

If you run this code, here is what happens:

1 A loop starts, using the Lines operator to read a line from the file.

a. If there are no more lines to deal with, the process halts.

2 The Where operator executes on the line.

a. If the line starts with #, it’s a comment so the line is skipped. Execution
 resumes at step 1.

b. If the line is not a comment, the process continues.

3 The line is split into parts.

4 An object is created by the Select operator.

5 Work is performed on the book object as specified in the body of the
foreach statement.

6 The process continues at step 1.

NOTE You can clearly see these steps execute if you do step-by-step debugging
of the code under Visual Studio. We highly encourage you to do so to get
used to the way LINQ queries execute.

If you decide to process the files in a different order by introducing an orderby
clause or a call to the Reverse operator in the query, the process changes. Let’s
say you add a call to Reverse as follows:

...
from line in reader.Lines().Reverse()
...

This time, the query executes as follows:

1 The Reverse operator executes.

a. Reverse loops on all lines, invoking the Lines operator immediately
for each line.

2 A loop starts by retrieving a line returned by Reverse.

a. If there are no more lines to deal with, the process halts.

Work with
book objects

Performance considerations 191
3 The Where operator executes on the line.

a. If the line starts with #, it’s a comment so the line is skipped. Execution
 resumes at step 1.

b. If the line is not a comment, the process continues.

4 The line is split into parts.

5 An object is created by the Select operator.

6 Work is performed on the book object as specified in the body of the
foreach statement.

7 The process continues at step 2.

You can see that the Reverse operator breaks the nice pipeline flow we had in the
original version because it loads all lines in memory at the beginning of the pro-
cess. Make sure you absolutely need to call this kind of operator before using
them in your queries. At least, you need to be aware of how they behave; other-
wise you may have bad performance and memory surprises when dealing with
large collections.

 Keep in mind that some conversion operators also exhibit the same behavior.
These operators are ToArray, ToDictionary, ToList, and ToLookup. They all return
sequences, but create new collections that contain all the elements from the source
sequence they’re applied on, which requires immediately iterating the sequence.

 Now that you’ve been warned about the behavior of some query operators,
we’ll take a look at a common scenario that will show that you need to use LINQ
and the standard query operators carefully.

5.3.3 Will LINQ to Objects hurt the performance of my code?

Sometimes LINQ to Objects does not provide what you need right from the box.
Let’s consider a fairly common scenario that Jon Skeet, author of C# in Depth and
a C# MVP, presents on his blog.6 Imagine you have a collection of objects and you
need to find the object that has the maximum value for a certain property. This is
like having a box full of cookies and you want to find the one that has the most
chocolate chips—not for you, but to offer it to your darling, of course. The box of
cookies is the collection, and the number of chocolate chip’s is the property.

 At first, you might think that the Max operator, which is part of the standard
query operators, is all you need. But the Max operator doesn’t help in this case

6 See http://msmvps.com/blogs/jon.skeet/archive/2005/10/02/68712.aspx.

192 CHAPTER 5

Beyond basic in-memory queries
because it returns the maximum value, not the object that has that value. Max can
tell you the maximum number of chocolate chips on one cookie, but cannot tell
you which cookie this is!

 This is a typical scenario where we have the choice among several options,
including using LINQ in one way or another or resorting to LINQ-free code and
classical constructs. Like Jon Skeet, let’s review possible ways to find a replacement
for the inadequate Max.

Options
A first option is to use a simple foreach loop, as in listing 5.31.

Book maxBook = null;
foreach (var book in books)
{
 if ((maxBook == null) || (book.PageCount > maxBook.PageCount))
 maxBook = book;
}

This solution is pretty straightforward. It keeps a reference to the “maximum ele-
ment so far”. It iterates through the list only once. It has a complexity of O(n), which
is mathematically the best we can get without knowing something about the list.

 A second option is to sort the collection and take the first element, as in list-
ing 5.32.

var sortedList =
 from book in books
 orderby book.PageCount descending
 select book;
var maxBook = sortedList.First();

In this solution, we use a LINQ query to sort the books in descending number of
pages, and then take the first book in the resulting list. The disadvantage with this
approach is that all the books are sorted before we can get the result. This opera-
tion is likely to be O(n log n).

Listing 5.31 Using a foreach statement to find the book with the highest number of
 pages in a collection

Listing 5.32 Using sorting and First to find the book with the highest number of
pages in a collection

Performance considerations 193
 A third option is to use a use a subquery, as in listing 5.33.

var maxList =
 from book in books
 where book.PageCount == books.Max(b => b.PageCount)
 select book;
var maxBook = maxList.First();

This goes through the list, finding every book whose number of pages is equal to the
maximum, and then takes the first of those books. Unfortunately, the comparison
calculates the maximum size on every iteration. This makes it an O(n2) operation.

 A fourth option is to use two separate queries, like in listing 5.34.

var maxPageCount = books.Max(book => book.PageCount);
var maxList =
 from book in books
 where book.PageCount == maxPageCount
 select book;
var maxBook = maxList.First();

This is similar to the previous version, but solves the problem of the repeated cal-
culation of the maximum number of pages by doing it before anything else. This
makes the whole operation O(n), but it’s somewhat dissatisfying, as we have to
iterate the list twice.

 The last solution we’d recommend for its higher integration with LINQ is to
create a custom query operator. Listing 5.35 shows how to code such an operator,
which we’ll call MaxElement.

public static TElement MaxElement<TElement, TData>(
 this IEnumerable<TElement> source,
 Func<TElement, TData> selector)
 where TData : IComparable<TData>
{

Listing 5.33 Using a subquery to find the book with the highest number of pages
 in a collection

Listing 5.34 Using two separate queries to find the book with the highest number of
 pages in a collection

Listing 5.35 Creating a custom operator named MaxElement to find the object with
 the maximum value

194 CHAPTER 5

Beyond basic in-memory queries
 if (source == null)
 throw new ArgumentNullException("source");
 if (selector == null)
 throw new ArgumentNullException("selector");

 Boolean firstElement = true;
 TElement result = default(TElement);
 TData maxValue = default(TData);
 foreach (TElement element in source)
 {
 var candidate = selector(element);
 if (firstElement ||
 (candidate.CompareTo(maxValue) > 0))
 {
 firstElement = false;
 maxValue = candidate;
 result = element;
 }
 }
 return result;
}

This query operator is easy to use:

var maxBook = books.MaxElement(book => book.PageCount);

Table 5.1 shows how the different options behave if you run a benchmark with 20
runs.

 These results7 show that the performance can vary a lot between different solu-
tions. It’s important to use correct LINQ queries! In particular, it’s definitely

7 Results measured with .NET 3.5 RTM on a machine with two Intel Xeon 2.4 GHz CPUs and 2 GB of
RAM. The application was compiled with the Release configuration.

Table 5.1 Time measured for each MaxElement option

Option
Average time

(in ms)
Minimum time

(in ms)
Maximum time

(in ms)

foreach 37 35 42

OrderBy + First 1724 1704 1933

Sub-query 37482 37201 45233

Two queries 66 65 69

Custom operator 56 54 73

Performance considerations 195
cheaper to iterate through the collection only once. The custom operator is not
quite as fast as the non-LINQ way, but it’s still much better than most of the other
options. It’s up to you to decide whether such a custom query operator can safely
be used in place of the foreach solution. What we can say is that the custom query
operator is an appealing solution for LINQ contexts, even if it comes with a perfor-
mance cost.

NOTE You can easily experiment with other solutions by building on the com-
plete example packaged with the code coming with this book.

Lessons learned
You need to think about the complexity of LINQ to Objects queries. Because we
deal with lists and loops, it’s particularly important to try to spare CPU cycles if
possible. Keep in mind that you should avoid writing queries that iterate collec-
tions more than once; otherwise your queries may perform poorly. In other
words, you don’t want to waste your time counting chocolate chips again and
again. Your goal is to find the cookie quickly, so you can attack the next one with-
out delay.

 You also need to take into account the context in which they will be executed.
For example, the same scenario in the context of a LINQ to SQL query would be
very different because LINQ to SQL interprets queries in its own way, which is dic-
tated by what the SQL language supports.

 The conclusion is that you should use LINQ to Objects wisely. LINQ to Objects
is not the ultimate solution for all use cases. In some cases, it may be preferable to
use traditional approaches, such as for and foreach loops. In other cases, you can
stick to LINQ, but it’s better to create your own query operators for optimal per-
formance. There’s a lesson from the Python philosophy: write everything in
Python for simplicity, readability, and maintainability, and optimize what you need
in C++. The analog here is: Write everything in LINQ, and optimize when you
must using domain-specific operators.

 In this section, we have mainly compared different solutions that use LINQ. In
the next section, we’ll focus on comparing LINQ solutions to traditional ones. The
goal is to give you an idea of LINQ’s overhead.

5.3.4 Getting an idea about the overhead of LINQ to Objects

LINQ to Objects is fantastic because it allows you to write code that is simpler to
read and write. Coding some of the operations that LINQ to Objects allows on
in-memory collections using classic constructs can be difficult. Often you’d have
to use tedious code with a lot of nested loops and temporary variables. You’re

196 CHAPTER 5

Beyond basic in-memory queries
probably convinced that LINQ to Objects is really nice, so we won’t to try to per-
suade you further. What we’ll do instead is closer to the opposite! Of course, our
goal is not to deter you from using LINQ, but you need to know how much LINQ
costs performance-wise. We’ll try to answer the question “Should I always use
LINQ or are standard solutions better in some cases?”

 Let’s determine the level of overhead you can expect with LINQ. We don’t want
to provide you with figures straight off, first because performance can vary largely
from one machine to another, and second because it’s better if you can perform
tests by yourself. This is why we propose to show you what tests we did, and you’ll
then be able to adapt and run them.

 The simplest operation that a LINQ query can perform is a filter, such as in the
one in listing 5.36.

var results =
 from book in books
 where book.PageCount > 500
 select book;

Let’s review how we can reproduce the same operation with alternative solutions.
Listing 5.37 shows the equivalent code with a foreach statement.

var results = new List<Book>()
foreach (var book in books)
{
 if (book.PageCount > 500)
 results.Add(book);
}

And listing 5.38 shows the same with a for statement.

var results = new List<Book>()
for (int i = 0; i < books.Count; i ++)
{
 Book book = books[i];
 if (book.PageCount > 500)
 results.Add(book);
}

Listing 5.36 Filtering a collection of books with a LINQ query

Listing 5.37 Filtering a collection of books with a foreach loop

Listing 5.38 Filtering a collection of books with a for loop

Performance considerations 197
This can also be achieved using List<T>.FindAll, as in listing 5.39.

var results = books.FindAll(book => book.PageCount > 500);

There are other possibilities, but the goal here is not list them all. You’ll be able to
find the complete tests in the code accompanying this book, with other alterna-
tives included.

 To give you an idea of the performance of each option, we have run a bench-
mark with one million randomly initialized objects. Table 5.2 shows the results we
got for 50 runs with a release build.

Surprised? Disappointed? LINQ to Objects seems to be almost 50 percent slower
than the other options on average! But wait: don’t decide to stop using LINQ
immediately after reading these results. We all know that tests and results need to
be taken carefully, so follow us a bit more.

 First of all, these are the results for one query. What if we change the query a
little? For example, let’s change the condition in the where clause. Here we use a
test on a string (Title) instead of an int (PageCount):

var results =
 from book in books
 where book.Title.StartsWith("1")
 select book;

If we adapt the queries for all options and run the test 50 times again, we get the
results in table 5.3.

 What do we notice with these new results? The LINQ option takes approxi-
mately four times what was needed for the previous test with the condition on

Listing 5.39 Filtering a collection of books with the List<T>.FindAll method

Table 5.2 Time measured for each search option executed 50 times
 using a condition on an int

Option
Average time

(in ms)
Minimum time

(in ms)
Maximum time

(in ms)

foreach 68 47 384

for 59 42 383

List<T>.FindAll 62 51 278

LINQ 91 74 404

198 CHAPTER 5

Beyond basic in-memory queries
an int. This is because operations on strings are much more expensive than on
integers/numbers. But the most interesting is that this time, the LINQ option is
only around 10 percent slower than the fastest option. This clearly shows that
the impact of LINQ does not always cause a big drop in performance.

 Why do we see a difference between the two series of tests? When we changed
the condition in the where clause from a test on an int to a test on a string, we
increased the work to be performed each time the test executes. The additional
time spent testing the condition affects each option, but LINQ’s overhead remains
more or less the same. If we look at this the other way around, we could say that
the less work there is to do in the query, the higher the overhead appears.

 There are no surprises. LINQ does not come for free. LINQ queries cause addi-
tional work, object creations, and pressure on the garbage collector. The additional
cost of using LINQ can vary a lot depending on the query. It can be as low as 5 per-
cent, but can sometimes be around 500 percent.

 In conclusion, don’t be afraid to use LINQ, but use it wisely. For simple opera-
tions that are executed extensively in your code, you may consider using the tradi-
tional alternatives. For simple filter or search operations, you can stick to the
methods offered by List<T> and arrays, such as FindAll, ForEach, Find, Conver-
tAll, or TrueForAll. Of course, you can continue to use the classic for and
foreach statements wherever LINQ would be overkill. For queries that are not
executed several times per second, you can probably use LINQ to Objects safely. A
query that is executed only once in a non–time-critical context won’t make a big
difference if it takes 60 milliseconds to execute instead of 10. Don’t forget the
benefits at the source code level in terms of clarity and maintainability.

 Let’s take another example to compare code with LINQ and code without.

5.3.5 Performance versus conciseness: A cruel dilemma?

We have just seen that LINQ seems to impose a trade-off on performance versus
conciseness and code clarity. We propose to look at a new example to confirm or

Table 5.3 Time measured for each search option executed 50 times
 using a condition on a string

Option
Average time

(in ms)
Minimum time

(in ms)
Maximum time

(in ms)

foreach 327 323 361

for 292 288 329

List<T>.FindAll 325 321 355

LINQ 339 377 377

Performance considerations 199
refute this theory. This time, we’ll perform a grouping operation. Listing 5.40
shows a LINQ query that can be used for grouping books by publisher, with the
resulting groups sorted alphabetically by publisher name.

var results =
 from book in SampleData.Books
 group book by book.Publisher.Name into publisherBooks
 orderby publisherBooks.Key
 select publisherBooks;

Listing 5.41 shows what would be required to perform the same grouping without
LINQ.

var results = new SortedDictionary<String, IList<Book>>();

foreach (var book in SampleData.Books)
{
 IList<Book> publisherBooks;

 if (!results.TryGetValue(book.Publisher.Name,
 out publisherBooks))
 {
 publisherBooks = new List<Book>();
 results[book.Publisher.Name] = publisherBooks;
 }
 publisherBooks.Add(book);
}

There’s no doubt that the code without LINQ is longer and more complex. It
remains accessible, but you can easily imagine that things can get more complicated
with more complex queries. After all, we used a relatively simple LINQ query!

 The main difference between the two code samples lies in the use of opposite
approaches. The LINQ query follows a declarative approach, while the code with-
out LINQ is imperative in nature. All the code written in C# or VB.NET before
LINQ appeared is imperative because these languages were imperative. The code
without LINQ completely indicates how the work is performed. The code that uses
LINQ simply consists of a query that describes the results we want to get. Instead of
describing in great detail how to deal with data, writing non-procedural code in
LINQ is more akin to describing the results that you want. This is fundamental.

Listing 5.40 Grouping with a LINQ query

Listing 5.41 Grouping without LINQ

200 CHAPTER 5

Beyond basic in-memory queries
 We already said that you’re probably convinced about the benefits of LINQ. So,
what’s the point of this new example? If you run a performance benchmark of the
two solutions, you’ll find that the LINQ solution is faster this time! In fact, it takes
less than half the time to execute compared to the non-LINQ solution. In this
case, we get all the benefits with LINQ!

 Of course, you may wonder why the second solution is slower. We’ll let you
investigate this on your own. Our point remains the same: if you want to achieve
the same performance level without the LINQ query, you’ll have to write even
more complex code.

HINTS SortedDictionary is an expensive data structure in terms of memory
use and speed of insertion. In addition, we use TryGetValue during each
loop iteration. The LINQ operators handle this scenario in a much more
efficient way. The non-LINQ code can certainly be improved, but it will
remain more complex in any case.

5.4 Summary

This chapter was an occasion to take a second look at in-memory LINQ queries.
 We showed you how to handle common scenarios, such as querying nonge-

neric collections, grouping by multiple criteria, creating dynamic queries, or que-
rying text files. We also introduced design patterns you can apply in your queries.
The Functional Construction pattern, for example, is critical for LINQ to XML, as
you’ll see in part 4 of the book.

 The second major topic we covered in this chapter is performance. We drew
your attention to performance problems that can happen with LINQ queries. This
should help you to avoid writing suboptimal queries. We also carried out some
testing to compare the performance of LINQ code to other more traditional solu-
tions. This allowed you to see LINQ’s strengths and weaknesses.

 In previous chapters, we introduced LINQ and showed you how to write queries
quickly and easily. Like everything new, LINQ may have seemed delightful at first
sight. In this chapter, we tried to disillusion you somewhat by looking beyond the
shiny surface. Of course, our goal is not to draw you away from LINQ, but we wanted
to make sure that you can handle advanced use cases and write efficient queries.

 The conclusion is that life is not a fairy tale. Not everything is black or white.
LINQ helps you greatly to query data in innovative ways. LINQ queries are also eas-
ier to read and maintain. However, performance-wise LINQ comes at a cost you
have to bear in mind. In fact, in the future LINQ queries will help you to boost the
performance of your code. Microsoft is working on PLINQ, which will allow you to

Summary 201
implicitly use concurrency in LINQ to Objects-like queries. PLINQ hasn’t been
released at the same time as the other LINQ technologies, but it should follow
some time in 2008.

 And now for something completely different. Now that you know so much
about in-memory queries, it’s time to discover other LINQ flavors. In the next
parts of this book, you’ll learn about LINQ to SQL and LINQ to XML. Since we dis-
cussed performance in this chapter, it may be a good place to recommend you
take a look at the blog of Microsoft’s Rico Mariani.8 You’ll find there a series of
posts on the performance of LINQ to SQL. But maybe you should learn about
LINQ to SQL first, so let’s jump right into this subject with the next chapter!

8 Visit the following URL to find Rico Mariani’s study about LINQ to SQL’s performance: http://
blogs.msdn.com/ricom/archive/2007/06/22/dlinq-linq-to-sql-performance-part-1.aspx

Part 3

Querying relational data

When discussing querying techniques, we typically turn our attention
to databases. In this part, we’ll continue to build on the core LINQ infra-
structure, this time focusing on relational data. With minor changes, we can
eliminate repetitive data access code and work with the SQL Server family of
databases using LINQ queries. By changing our underlying data source and
leaving our queries intact, we can quickly utilize the power of LINQ directly
against our database. In addition, LINQ to SQL moves beyond querying data
to updating data and accessing some of SQL Server’s more powerful stored
procedures and user-defined functions.

 Chapter 6 begins our journey into LINQ to SQL and shows the differences
between a LINQ to Objects query and one using LINQ to SQL. Chapter 7
peeks under the covers to explore some of the underlying infrastructure that
enables LINQ to SQL. Chapter 8 explores some of the more advanced capa-
bilities that LINQ to SQL offers from the database and client perspectives.

Getting started
with LINQ to SQL
This chapter covers:
■ Using LINQ to SQL to access data from

SQL Server
■ The advantages of LINQ to SQL for fetching

relational data
■ Updating data with LINQ to SQL
205

206 CHAPTER 6

Getting started with LINQ to SQL
So far in this book, we’ve focused on working with data once it is already in mem-
ory. In order to query it, we need a group of items we can iterate over using the
IEnumerable<T> interface. While the ability to work with data already in memory
is a much-needed feature, it fails to address a large part of the picture—moving
data to and from a persistence medium, typically a relational database system like
SQL Server.

 By this point, we should be able to handle a fairly complex LINQ to Objects query.
In this chapter, we’re going to take a look at converting a query and associated
classes to use LINQ to SQL rather than custom ADO.NET. We’ll start with a query that
will return a listing of books that cost less than $30 and group them by their subject.
This will require us to combine information from two collections: Books and Sub-
jects. Listing 6.1 represents a possible solution to the problem at hand.

IEnumerable<Book> books = Book.GetBooks();
IEnumerable<Subject> subjects = Subject.GetSubjects();

var query = from subject in subjects
 join book in books
 on subject.SubjectId equals book.SubjectId
 where book.Price < 30
 orderby subject.Description, book.Title
 select new
 {
 subject.Description,
 book.Title,
 book.Price
 };

In this example, we fill collections of books and subjects and then query from the
resulting collections. While this achieves our goal, it does not do so as efficiently
as we’d like. Here are the resulting SQL queries that are passed to the database
when running the code samples that accompany this chapter:

SELECT ID, Isbn, Notes, PageCount, Price, PubDate,
 Publisher, Subject, Summary, Title
FROM Book

SELECT ID, Name, Description
FROM Subject

Since the filtering, projecting, and sorting are being done on the client, we have to
fetch all fields of all records before we start processing. As a result, we will fetch

Listing 6.1 Querying Subjects and Books with LINQ to Objects

Jump into LINQ to SQL 207
more records and fields than we need. Additionally, we cannot take advantage of
the powerful indexes that the database has available. This means we’re putting
undue stress on our network and processing power. Worse yet, we have to manually
write all of the data access code, which is repetitive and ripe with potential pitfalls.

 Here, LINQ to SQL comes to our rescue to reduce the network stress, reduce
the client processing, and utilize the database indexes. At the same time, we can
eliminate most of the previously necessary plumbing code. When we’re done, we
will end up with the following database query:

SELECT t0.Description, t1.Title, t1.Price
FROM Subject AS t0 INNER JOIN
 Book AS t1 ON t0.ID = t1.Subject
WHERE (t1.Price < @p0)
ORDER BY t0.Description, t1.Title

Amazingly, we can do all this by adding one line of code and changing two others.
The corresponding changes in our business objects allow us to eliminate dozens
of lines of ADO.NET code. Additionally, the same changes we make will allow us to
eliminate specialized code needed to update records that we fetch.

 Over the next three chapters we will dig into LINQ to SQL. In this chapter, we
will show how to take advantage of LINQ to SQL with our starting query and iden-
tify how we can increase performance while reducing code. In chapter 7, we will
peek under the covers and explore how the framework achieves this magic. We’ll
conclude our exploration of LINQ to SQL in chapter 8 by diving deeper into the
framework to see some of the more advanced techniques LINQ to SQL offers.

6.1 Jump into LINQ to SQL

In our example for this chapter, we’re exploring ways to query our books to see
those that cost less than $30 and group them by subject. To do this, we can sepa-
rate the process into several separate tasks: selecting the ordered subjects, select-
ing the corresponding books filtered on price, combining the subjects with the
books, and projecting only the results that we need. Let’s start by looking at the
book-related tasks first and then deal with joining them to the subjects. Listing 6.2
restates the book portion of our starting query.

IEnumerable<Book> books = Book.GetBooks();
var query = from book in books
 where book.Price < 30
 orderby book.Title

Listing 6.2 Selecting the book title and price for books less than $30

208 CHAPTER 6

Getting started with LINQ to SQL
 select new
 {
 book.Title,
 book.Price
 };

At this point, we’re still requesting everything from the database and filtering it
on the client. To prove this, here is the SQL statement sent to the database:

SELECT ID, Isbn, Notes, PageCount, Price, PubDate,
 Publisher, Subject, Summary, Title
FROM Book

NOTE Throughout our discussion, the generated SQL we present is based on a
prerelease version of Visual Studio 2008. Some of the query details may
differ from the final release, but the basic concepts should still apply.

We’re still retrieving all of the fields from the database even though we’re only
using two of them. Additionally, we’re fetching all records from the database, not
just the ones that meet our criteria. Also, we’re not leveraging our indexes
because we’re ordering the results on the client. Ideally, we’d like to issue a state-
ment to the database like the following:

SELECT Title, Price
FROM Book AS t0
WHERE (Price < @p0)
ORDER BY Title

How many changes does it take to our query to make this change? None! All we
need to do is modify our Book class and change how we’re accessing it. Let’s start
by revisiting the Book object and table (shown in figure 6.1) to see what changes
we will need to make.

Figure 6.1
Comparing the Book table
with the Book class

Jump into LINQ to SQL 209
To begin, we’re going to apply a 1-1 field mapping between the table and our des-
tination object. Later in this chapter, we will take a look at joining this table with
the corresponding subjects and see how we can handle the foreign key relation-
ships in the database. For now, we will limit our focus to a single table. Let’s start
by looking at the code for the Book class, shown in listing 6.3.

public class Book
{
 public Guid BookId { get; set; }
 public String Isbn { get; set; }
 public String Notes { get; set; }
 public Int32 PageCount { get; set; }
 public Decimal Price { get; set; }
 public DateTime PublicationDate { get; set; }
 public String Summary { get; set; }
 public String Title { get; set; }
 public Guid SubjectId { get; set; }
 public Guid PublisherId { get; set; }
}

For the sake of this discussion, we use the auto-implemented properties discussed
in section 2.2.2. We’re left with a clean class definition that includes only the pub-
lic property declarations. At this point, we still need a way to fill our objects with
data from the database. We do this by setting up a series of mappings to specify
how our objects relate to the database tables and columns.

NOTE Auto-implemented properties are not available in VB 9.0. With VB, you
will need to explicitly include the private backing fields along with the
get/set accessors.

6.1.1 Setting up the object mapping

Let’s start our exploration of LINQ to SQL by enabling the Book class. To begin,
add a reference to the System.Data.Linq assembly, which is part of the .NET 3.5
Framework, and add a using statement to the top of the class. The Mapping
namespace contains attributes that enable us to declaratively establish the rela-
tionship between the database and objects.

using System.Data.Linq.Mapping;

For the sake of clarity, we will use attributes to declare our data mappings for this
chapter. We’ll only look at the basics at this point. In chapter 7, we will dive
deeper into the mapping options, but for now we simply want to get it working.

Listing 6.3 Starting Book class definition

210 CHAPTER 6

Getting started with LINQ to SQL
 In most cases, we need to identify two things in a class: what table it is related
to, and what columns the values are mapped to. Mapping the book table with the
object is perhaps the simplest mapping possible. In this case, our database has a
table called Book. Our object structure also represents a book instance with a class
called Book. Thus we have a one-to-one mapping between both objects, and they
are named the same. To declare the mapping, we add an attribute to the class dec-
laration called Table as follows:

[Table]
public class Book {…}

If we want to be more explicit, we can declare the name of the source table by
using a named parameter, Name, as follows:

[Table(Name="dbo.Book")]
public class Book {…}

Now that we’ve mapped the class to the table, we need to indicate which proper-
ties are stored as columns in the table and how the columns map to the property
information. We do this by adding a Column attribute to the properties we wish to
map. For example, to map the Title property to the Title column of the book
table, we add a Column attribute before the property declaration:

[Column]
public String Title { get; set; }

We’re not limited to direct mappings. We can specify some translation between
the table column name and the object’s property name. For example, our Book
table has a column called PubDate. To make the business object easier for the cli-
ent application developer to work with, we may wish to use a more verbose nam-
ing convention and name the property PublicationDate. To do this, we specify
the name of the source column as part of the attribute’s parameters.

[Column(Name="PubDate")]
public DateTime PublicationDate { get; set; }

One thing we need to identify for each object is the primary key. In our case that
will be the BookId property. Here, we combine the Name parameter with a new
IsPrimaryKey parameter to declare the mapping. LINQ to SQL requires that at
least one property from each object be specified as the primary key in order to
manage object identity.

[Column(Name=”ID”, IsPrimaryKey=true)]
public Guid BookId { get; set; }

Jump into LINQ to SQL 211
We use the same method to declare the mappings for all of the properties in our
class. The resulting declaration is shown in listing 6.4.

using System.Data.Linq;

 [Table]
 public class Book
 {
 [Column(Name="ID", IsPrimaryKey=true)]
 public Guid BookId { get; set; }
 [Column]
 public String Isbn { get; set; }
 [Column(CanBeNull=true)]
 public String Notes { get; set; }
 [Column]
 public Int32 PageCount { get; set; }
 [Column]
 public Decimal Price { get; set; }
 [Column(CanBeNull=true)]
 public String Summary { get; set; }
 [Column(Name="PubDate")]
 public DateTime PublicationDate { get; set; }
 [Column]
 public String Title { get; set; }
 [Column(Name="Subject")]
 public Guid SubjectId { get; set; }
 [Column(Name="Publisher")]
 public Guid PublisherId { get; set; }
 }

Although it may appear that we’ve doubled the number of lines of code in our
Book class, the net result will be drastically reduced code, as we will not need to
worry about creating separate methods for the Create, Read, Update, and Delete
(CRUD) methods. Additionally, we won’t need a customized implementation for
specialized querying operations. We declare the mappings once and the frame-
work takes care of the rest.

 With the necessary changes made to our Book, you may be itching to see how
to use LINQ to SQL to access our database. Although we’ve specified how to access
the tables and columns, we can’t do anything until we identify the database that
the tables live in. We need to set up our connection to the database. We do this by
using a new DataContext object located in the System.Data.Linq namespace.
Once that is done, rest assured, we will jump right in to querying our data.

Listing 6.4 The full Book class with basic mapping

Table
mapping

Identity
column

Standard
column mapping

Specify the
column name

212 CHAPTER 6

Getting started with LINQ to SQL
6.1.2 Setting up the DataContext

The DataContext, shown in figure 6.2,
lies at the heart of LINQ to SQL and
handles the majority of the work. First
and foremost, it manages our connec-
tion to the database. We instruct the
DataContext about the connection
string. The DataContext will handle
opening and closing the connection
for us. As a result, we don’t need to
worry about abusing our expensive
connection external resources.

 To begin working with the DataContext, create an instance of a DataContext
object passing it the connection string for our database.

DataContext dataContext = new DataContext(liaConnectionString);

The DataContext also handles managing our mappings and provides a vital
resource—the ability to fill a collection of objects from the database. It fills the
object into a specialized generic collection type called a Table<>. To get a table of
books from the DataContext object, we call dataContext.GetTable<Book>():

DataContext dataContext = new DataContext(liaConnectionString);
Table<Book> books = dataContext.GetTable<Book>();

Without LINQ to SQL, when returning a list of objects, the return type could be a
generic List<Book>. In this case, we’re returning a new type—Table<Book>. By
making this change, we don’t bring back the raw data, but rather the means
through which we can more dynamically access and manipulate our data. This will
allow us to modify the query prior to actually issuing the request to the database.
Now that we can access our data, let’s see what we can do with LINQ to SQL
beyond that.

6.2 Reading data with LINQ to SQL

The first thing we need to do is select values from the database. We’ve already
seen one way to access data using the GetTable method. The generic Table class
implements a new IQueryable<T> interface, which extends IEnumerable<T>.
Because it extends IEnumerable<T>, we’re free to use the standard query opera-
tors from LINQ to Objects. Let’s start with a basic query fetching all of the books
from our newly refactored Book object. See listing 6.5.

Figure 6.2 Services offered by the DataContext

Reading data with LINQ to SQL 213
DataContext dataContext = new DataContext(liaConnectionString);
IQueryable<Book> query = from book in dataContext.GetTable<Book>()
 select book;

With this example, we’ve effectively eliminated any custom ADO.NET code that
we’d have otherwise needed to write. However, we’re fetching all of the fields
regardless of whether we need to use them.

 As we’re learning the capabilities of LINQ to SQL, we may want to examine our
code on the database. At times, the resulting query may be surprising. We have
several options to see the query that is issued to the database. Using the SQL
Server Profiler tool that comes with SQL Server, we can watch statements as they
are being issued against the database. Alternatively, we can attach the DataCon-
text’s Log property to an output stream, like the one Console has:

dataContext.Log = Console.Out;

With this logging function enabled, any SQL statements issued to the database will
be sent to an output stream. If we attach it to the console in a console application,
the statements will appear in the console window. In a Windows Forms applica-
tion, the results will be sent to the Output window. We will use the log frequently
throughout these chapters to see what is happening behind the scenes.

 As another alternative, Microsoft has a Query Visualizer tool that can be down-
loaded separately from Visual Studio 2008. The tool, along with the source code
and installation instructions, is available at http://weblogs.asp.net/scottgu/
archive/2007/07/31/linq-to-sql-debug-visualizer.aspx. Once this tool is installed,
we can break into our code and hover over the instantiated query object to see a
new magnifying glass as part of the debugging assistance, as shown in figure 6.3.

 Click the magnifying glass, and the window shown in figure 6.4 opens, allowing
access to the full SQL statement that will be issued. The visualizer also allows us to
see the results in a data grid and optionally to hand edit the generated SQL.

Listing 6.5 Fetch books using LINQ to SQL

Figure 6.3 Accessing the LINQ to SQL query visualizer while debugging

http://weblogs.asp.net/scottgu/archive/2007/07/31/linq-to-sql-debug-visualizer.aspx

214 CHAPTER 6

Getting started with LINQ to SQL
We can also programmatically access the query using the DataContext’s GetCom-
mand method as follows:

Console.Writeline(dataContext.GetCommand(query).CommandText);

This command will not identify when the query is executed, but it will show the
statement that will be issued. While you’re getting used to LINQ to SQL, try each
of these techniques out to see which ones work the best for you. Regardless of
which you choose, make sure to watch the statements that are being issued. As you
learn LINQ to SQL, you will find the need to alter queries to avoid unexpected
results you may not notice otherwise.

 Let’s return our focus to our query. In the previous example, we showed how
we could use the mappings to fetch values, but rather than fetching just the fields
we need, we were fetching the entire book object. Since LINQ to SQL builds on
the base query expressions, we can project the columns we want into our result
set. Thus, if we only want to get a listing of the titles from our query, we could
change our select clause as shown in listing 6.6.

DataContext dataContext = new DataContext(liaConnectionString);
dataContext.Log = Console.Out;
IEnumerable<String> query =
 from book in dataContext.GetTable<Book>()
 select book.Title;

Because we used dataContext.Log, we can look at the output window and see the
resulting query.

SELECT [t0].[Title]
FROM [Book] AS [t0]

Listing 6.6 Fetch the list of book titles

Figure 6.4
LINQ to SQL query
visualizer in action

Reading data with LINQ to SQL 215
Viewing this SQL statement, we see that we’re no longer returning all of the book
properties from our database. We’re almost back to achieving our first task for this
chapter: fetching the book titles and prices. To achieve this goal, we need to
change our select clause to return an anonymous type with just the Title and
Price values. See listing 6.7.

var query = from book in dataContext.GetTable<Book>()
 select new
 {
 book.Title,
 book.Price
 };

Notice that the generated SQL code only selects the fields asked for as part of the
Select extension method, rather than filling the full book object.

SELECT [t0].[Title], [t0].[Price]
FROM [Book] AS [t0]

Try the sample again, but this time step through the code. Pay attention to the
console window. Note that the SQL code is not inserted in the window when we
call the dataContext.GetTable<Book>() method, nor is it displayed when we
declare the query object. In fact, the SQL is not generated and submitted to the
database until we first access the data. The query variable contains the definition
of how we want to access the data, not the data itself. Execution of the query is
deferred until it is first used. We will discuss this more in section 6.6.

 Because we don’t create the query until the results are first requested, we can
continue to compose the query by adding more functionality. In listing 6.8, we
add paging functions to the query after it is first defined using the Skip and Take
extension methods. LINQ to SQL then pieces them together to create an opti-
mized single statement.

DataContext dataContext = new DataContext(liaConnectionString);
dataContext.Log = Console.Out;

var books = dataContext.GetTable<Book>();

var query = from book in books
 select new

Listing 6.7 Project into an anonymous type

Listing 6.8 Adding data paging using composition

Define
query

216 CHAPTER 6

Getting started with LINQ to SQL
 {
 book.Title,
 book.Price
 };
var pagedTitles = query.Skip(2);
var titlesToShow = pagedTitles.Take(2);

ObjectDumper.Write(titlesToShow);

The same query in VB.NET can be performed as a single statement because
VB.NET includes the Skip and Take methods as query expressions. Listing 6.9
shows the corresponding VB syntax.

Dim query = From book In books _
 Skip 2 _
 Take 2 _
 Select book.Title, book.Price

Regardless which option is used, the resulting SQL is as follows:

SELECT TOP 2 [t1].[Title], [t1].[Price]

FROM (SELECT ROW_NUMBER()

 OVER (ORDER BY [t0].[Title], [t0].[Price])

 AS [ROW_NUMBER],

 [t0].[Title], [t0].[Price]

 FROM [Book] AS [t0]) AS [t1]

WHERE [t1].[ROW_NUMBER] > @p0

Standard LINQ to Objects would have issued a single SELECT statement that
fetched all of the books. Since LINQ to SQL was smart enough to detect the addi-
tional operations, it was able to optimize the query to be specific to our database
(SQL Server 2005). If we were using SQL Server 2000, a different SQL syntax
would have been used because the ROW_NUMBER() option is not available prior to
SQL Server 2005.

 We’ve seen a bit of the power that LINQ to SQL brings to the table. Instead of
blanket fetching our records and relying on LINQ to Objects to do the heavy lift-
ing, LINQ to SQL has the power to evaluate our requests and only return the
requested results. If we want to perform additional selection operations including
filtering and sorting, we use common LINQ query syntax. The declarative query
expression is parsed and adjusted as necessary for the specific business needs at

Listing 6.9 VB syntax for paging data

Paging

Evaluate

Take next two

Use
Row_Number

Skip first two

Refining our queries 217
hand. Let’s return our focus on extending our basic fetching queries by adding
more functionality.

6.3 Refining our queries

So far, we’ve focused on retrieving results from a table. We’ve shown how LINQ to
SQL is better than ADO.NET because we don’t need to rewrite all of the repetitive
plumbing code. LINQ to SQL is also able to reduce our network overhead by
returning only the fields we need. If the framework were to stop here, it would
have already offered a vast improvement over prior techniques.

 Relational databases offer specialized capabilities to access and manipulate
associated sets of data. By leveraging the indexing and query execution plans, the
database can provide data access faster than we’d be able to do without indexes.
Additionally, by processing the query on the server, we can often limit the amount
of information that must be transmitted over the network. Reducing the network
demands is important because the network pipe is typically one of the biggest bot-
tlenecks of data-centric applications. Let’s continue our look at LINQ by seeing
how we can refine our queries using some of these additional server-side processes.

6.3.1 Filtering

LINQ to SQL supports a full range of filtering functionality. A filter can be as sim-
ple as finding a record with a specific value. In our example for this chapter, we
want to see books that cost less than 30 dollars. We can accomplish this with the
code from listing 6.10.

var books = dataContext.GetTable<Book>();
var query = from book in books
 where book.Price < 30
 select book;

If we look at the generated SQL, the results are just as we’d expect.

SELECT [t0].[Title]
FROM [dbo].[Book] AS [t0]
WHERE [t0].[Price] < @p0

The object-based query we started with fetched all rows from the database. When
using LINQ to SQL, we’re able to translate the filtering clause into a parameter-
ized query that is executed on the server, limiting the results to rows that meet
our criteria.

Listing 6.10 Filtering using a range

218 CHAPTER 6

Getting started with LINQ to SQL
 Additionally, by using parameterized queries, we solve a couple of common
issues. First, one of the biggest security vulnerabilities is the ability to inject func-
tionality into a query (like dropping a table).1 One of the easiest ways to thwart
this kind of vulnerability, called a SQL injection attack, is to use parameterized que-
ries or stored procedures.

 Another advantage of using parameterized queries is the fact that we can take
advantage of SQL Server’s query plan caching. By reusing queries where the only
change is the input parameters, SQL Server can determine an appropriate execu-
tion plan and cache it for later use. On subsequent requests, the server will use
the cached plan rather than reevaluating the expression. If we concatenated the
request SQL, the server would need to parse the expression each time to deter-
mine the most efficient execution plan based on the indexes available.

 Some SQL filtering options do not have a direct translation to keywords in
the .NET Framework. In many cases, there is an alternative that performs the
same or similar function. When it can, LINQ will translate the function call to
the SQL equivalent.

 Let’s consider the SQL LIKE clause. LIKE finds records based on a pattern-
matching scheme. Instead, the String type has three methods that serve the same
function—StartsWith, EndsWith, and Contains. LINQ to SQL has been designed
to map these functions to the LIKE expression using the SqlMethods.Like
method and inserts the wildcard matching pattern as appropriate. Thus in order
to find all books containing the string "on", we use the LINQ expression shown in
listing 6.11.

var books = dataContext.GetTable<Book>();
var query = from book in books
 where book.Title.Contains("on")
 select book.Title;

The query using the Contains method translates to the following SQL expression:

SELECT [t0].[Title]
FROM [dbo].[Book] AS [t0]
WHERE [t0].[Title] LIKE @p0
-- @p0: Input NVarChar (Size = 4) NOT NULL [%on%]

1 For a look at SQL injection in action, see the webcast at http://www.rockyh.net/AssemblyHijacking/
AssemblyHijacking.html.

Listing 6.11 Using mapped CLR methods

http://www.rockyh.net/AssemblyHijacking/AssemblyHijacking.html

Refining our queries 219
Note that the Contains method has been translated to LIKE and the parameter
value now includes the % wildcard, which is specific to SQL Server.

 Not all CLR functions can be translated to a database equivalent. Consider the
following query:

var query =
 from book in books
 where book.PubDate >= DateTime.Parse("1/1/2007")
 select book.PubDate.Value.ToString("MM/dd/yyyy");

In this example, the translation provider is able to convert the DateTime.Parse
method and insert a database-specific representation of the date. It is not able to
handle the ToString method for formatting the data in the select clause. Identi-
fying all of the supported and unsupported expressions that are translated is
impossible. Additionally, translation support is dependent on the provider. When
you’re unsure whether a method is supported, try it out and see if it works.

 In many cases, filtering works as expected. In other cases, experimentation is
necessary to find the proper method. We cannot cover all of the mappings here,
but hopefully we have enough to get started. By allowing the filter to be applied
on the server rather than the client, we can greatly reduce the amount of network
bandwidth and take advantage of the database indexes.

 So far, we’ve been able to rewrite our original query and objects to return only
the desired fields and rows from our database while eliminating custom ADO.NET
code. We’re not quite back to the query that we started with, because we still need
to utilize the server indexes for sorting our results. Let’s continue to refine our
query by adding sorting.

6.3.2 Sorting and grouping

If we needed to perform sorting functions manually, we’d need to write a lot of
custom code. LINQ to Objects allows us to simplify the query, but to truly utilize
our database’s power, we need to use the indexes that the database has defined.
The query expressions orderby and orderby…descending are designed to trans-
late our sorting expression to the database. Consider the change we made to our
running query by adding the sorting function, shown in listing 6.12.

var books = dataContext.GetTable<Book>();
var query = from book in books
 where book.Price < 30
 orderby book.Title
 select book.Title;

Listing 6.12 Sorting with LINQ to SQL

Works
Fails

Add
sorting

220 CHAPTER 6

Getting started with LINQ to SQL
As we indicated early on in this book, this query is truly an example of WYSIWYW
(What You See Is What You Want). As seen in the resulting query string, we’ve
now accomplished another part of our goal—leveraging the database’s indexes to
handle sorting rather than sorting on the client.

SELECT [t0].[Title]
FROM [Book] AS [t0]
WHERE [t0].[Price] < @p0
ORDER BY [t0].[Title]

If we wanted to order the results in descending order, we’d use the descending
query expression as part of the clause. Also, if we wanted to sort on multiple col-
umns, we’d include the list of fields separated by commas just as we would with a
standard SQL expression.

 Often, instead of just sorting the results, we need to group the results to com-
bine like results. In listing 6.13, we group our listing of books by their subject. We
project the results of the grouping operation into a temporary result which we
can then reuse.

var query =
 from book in dataContext.GetTable<Book>()
 group book by book.SubjectId into groupedBooks
 orderby groupedBooks.Key
 select new
 {
 SubjectId = groupedBooks.Key,
 Books = groupedBooks
 };

foreach (var groupedBook in query)
{
 Console.WriteLine("Subject: {0}", groupedBook.SubjectId);
 foreach (Book item in groupedBook.Books)
 {
 Console.WriteLine("Book: {0}", item.Title);
 }
}

The resulting object is an ordered collection of collections. To view the results, we
need to iterate over both the grouped results and the contained collection of
books for each grouping of subjects. This produces the following SQL:

Listing 6.13 Grouping and sorting

Refining our queries 221
SELECT [t1].[SubjectId] AS [Key]
FROM (
 SELECT [t0].[Subject] AS [SubjectId]
 FROM [dbo].[Book] AS [t0]
 GROUP BY [t0].[Subject]
) AS [t1]
ORDER BY [t1].[SubjectId]

Note that this query only selects the key values. As we iterate over the results, sepa-
rate queries are issued for each grouping. The resulting collection is contained in
the groupedBooks object. While we have our results grouped, it would be nice if
we could perform some aggregation on the values so that we can see counts, aver-
ages, and totals by the groupings.

6.3.3 Aggregation

LINQ to SQL fully supports all of the standard aggregation methods that extend
IEnumerable<T>. Thus, we can create a query to display the number of books that
belong to each category. Listing 6.14 uses an anonymous type on our select clause
to take our grouped book collections and return the count of the books by subject.

Table<Book> books = dataContext.GetTable<Book>();
var query = from book in books
 group book by book.SubjectId into groupedBooks
 select new
 {
 groupedBooks.Key,
 BookCount = groupedBooks.Count()
 };

Notice that in this example, we could return all of the books as we iterate over the
result set and then count them on the client. LINQ to SQL offers the additional
benefit of performing the count on the server and only returning that value
rather than overloading the network with unnecessary data. Here is the corre-
sponding SQL statement for this query:

SELECT COUNT(*) AS [BookCount], [t0].[Subject] AS [SubjectId]
FROM [Book] AS [t0]
GROUP BY [t0].[Subject]

We continue our tradition of only returning the results we want and not overload-
ing our database or the network with needless data.

Listing 6.14 Including aggregates in the results

222 CHAPTER 6

Getting started with LINQ to SQL
 Using the other aggregate methods is just as easy. Listing 6.15 aggregates the
total price, lowest price, highest price, and average price for the books grouped by
each subject.

Table<Book> books = dataContext.GetTable<Book>();
var query =
 from book in books
 group book by book.SubjectId into groupedBooks
 select new
 {
 groupedBooks.Key,
 TotalPrice = groupedBooks.Sum(b => b.Price),
 LowPrice = groupedBooks.Min(b => b.Price),
 HighPrice = groupedBooks.Max(b => b.Price),
 AveragePrice = groupedBooks.Average(b => b.Price)
 };

Once again, the aggregation methods are translated into the appropriate SQL and
the aggregation is performed in the database itself. The database only returns the
results that we ask for, limiting the amount of data that needs to be returned.

 Throughout our discussion so far, we’ve been limited to working only with val-
ues from a single table. It would be nice if we could join our Book table with the
corresponding Subject table so that we could include the descriptive name of the
subject rather than the cryptic unique identifier contained in the Book table. Nat-
urally, LINQ to SQL offers several options for joining our results.

6.3.4 Joining

Combing data from multiple tables is the heart and soul of relational databases. If
we didn’t need to combine different pieces of data, we’d be happy writing our
enterprise applications in Excel or flat text files. By being able to join related data,
we’re able to dig into information otherwise hidden in the individual records.
LINQ to SQL offers several mechanisms for joining data between related sources.
In our case, we’re going to join the Books table with the Subject table. This way,
we can display the name of the subject rather than just the foreign key.

 LINQ to SQL supports two syntaxes for joins. One uses a comparison in the
Where clause, which is similar to the ANSI-82 SQL syntax. To use this syntax, we can
get a reference to the Book and Subject table objects. Notice we didn’t say we’re
going to fetch the tables. With the reference to the table objects, the code in listing
6.16 shows how we can compose our query expression selecting from both of the

Listing 6.15 Using multiple aggregates

Refining our queries 223
tables where the SubjectId of the Subject object is the same as the SubjectId of
the corresponding Book object.

var subjects = dataContext.GetTable<Subject>();
var books = dataContext.GetTable<Book>();
var query = from subject in subjects
 from book in books
 where subject.SubjectId == book.SubjectId
 select new { subject.Name, book.Title, book.Price };

More than 15 years ago, the ANSI-92 standard replaced ANSI-82. Reverting to the
older ANSI-82 syntax may appear unusual. Fortunately, LINQ also supports the
join syntax reminiscent of the ANSI-92 SQL syntax. The previous query expression
can be rewritten as shown in listing 6.17.

var query = from subject in subjects join book in books
 on subject.SubjectId equals book.SubjectId
 select new { subject.Name, book.Title, book.Price };

Be aware that the order of the source and destination objects is important in
LINQ join clauses. Unlike the forgiving nature of SQL interpreted by the data-
base, LINQ is less forgiving. Because the query expressions are translated to
methods, changing the order of the tables but not the fields will result in a com-
pile time error. Here is the definition for the System.Enumerable.Linq.Join
extension method:

public static IEnumerable<TResult> Join<TOuter, TInner, TKey, TResult>
 (this IEnumerable<TOuter> outer, IEnumerable<TInner> inner,
 Func<TOuter, TKey> outerKeySelector,
 Func<TInner, TKey> innerKeySelector,
 Func<TOuter, TInner, TResult> resultSelector)

Notice how the first and third parameters match up, as do the second and fourth.
Figure 6.5 shows how the Join in our query maps to the parameters of the exten-
sion method. We can see how the outer and outerKeySelector parameters match
up. If we were to transpose the outer and inner parameters or the corresponding
innerKeySelector and outerKeySelector, we’d end up with a mismatch on our
parameters when translating them to the underlying extension method.

Listing 6.16 Joining Books and Subjects

Listing 6.17 Joining with the Join keyword

http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://System.Core:3.5.0.0:b77a5c561934e089/System.Func%3c,,%3e" \o "System.Func<TOuter,TInner,TResult>
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://System.Core:3.5.0.0:b77a5c561934e089/System.Func%3c,%3e" \o "System.Func<TInner,TKey>
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://System.Core:3.5.0.0:b77a5c561934e089/System.Func%3c,%3e" \o "System.Func<TOuter,TKey>
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.Collections.Generic.IEnumerable%3c%3e" \o "System.Collections.Generic.IEnumerable<TInner>
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.Collections.Generic.IEnumerable%3c%3e" \o "System.Collections.Generic.IEnumerable<TOuter>
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://System.Core:3.5.0.0:b77a5c561934e089/System.Linq.Enumerable/Join%3c,,,%3e(System.Collections.Generic.IEnumerable%3c%3c!!0%3e%3e,System.Collections.Generic.IEnumerable%3c%3c!!1%3e%3e,System.Func
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.Collections.Generic.IEnumerable%3c%3e" \o "System.Collections.Generic.IEnumerable<TResult>

224 CHAPTER 6

Getting started with LINQ to SQL
So far each of these joins has been a cross join (or inner join), where we only
return the values that have similar results in both tables. But often, we want to
return results from one table regardless of whether there are matching results in
the other table. In standard SQL terms, this is typically referred to as an outer join.
In the previous example, we may want to get a listing of all of the subjects regard-
less of whether any books are actually in our database for that subject. This would
typically be expressed with the following ANSI-92 SQL expression:

SELECT Subject.Name, Book.Title
FROM Subject LEFT OUTER JOIN
 Book ON Subject.ID = Book.Subject

To accomplish the same thing with LINQ, we need to observe that we’re looking
for books where the subject exists or is null. The DefaultIfEmpty() extension
method comes to our rescue, as shown in listing 6.18.

var query =
 from subject in Subjects
 join book in books
 on subject.SubjectId equals book.SubjectId into joinedBooks
 from joinedBook in joinedBooks.DefaultIfEmpty()
 select new
 {
 subject.Name,
 joinedBook.Title,
 joinedBook.Price
 };

In this case, we tell LINQ that we want to join the books and subjects and place the
results in a new temporary object called joinedBooks. Then we want to view the
results from the Subjects and the joined Books, using the DefaultIfEmpty exten-
sion method to return a default value if the subject doesn’t contain a book.

Listing 6.18 Approximating an outer join

Figure 6.5
Mapping the join to the
extension method parameters

Refining our queries 225
 Now that we can combine our books and subjects, let’s return to the original
query we started at the beginning of the chapter to see how far we’ve come. List-
ing 6.19 shows the end result.

DataContext dataContext = new DataContext(liaConnectionString);

Table<Subject> subjects = dataContext.GetTable<Subject>();
Table<Book> books = dataContext.GetTable<Book>();

var query = from subject in subjects
 join book in books
 on subject.SubjectId equals book.SubjectId
 where book.Price < 30
 orderby subject.Name
 select new
 {
 subject.Name,
 joinedBook.Title,
 joinedBook.Price
 };

Comparing this query, we can see that the only real change in listing 6.1 is the
source of the data. The LINQ query is identical. But a quick look at the generated
SQL statement shows that we’ve now fetched only the rows and fields that we want.
Additionally, we’re performing the join, filter, and sort on the server. Here is the
SQL that is generated from our LINQ to SQL query:

SELECT t0.Name, t1.Title, t1.Price
FROM Subject AS t0 INNER JOIN
 Book AS t1 ON t0.ID = t1.Subject
WHERE (t1.Price < @p0)
ORDER BY t0.Name

The LINQ expression is more explicit than the corresponding SQL statement due
to the fact that LINQ is designed to work not only with relational data, but other
data sources as well, including objects and hierarchical sources. Since we’ve
accomplished our goal, we could easily stop here, but LINQ to SQL offers more
functionality that we need to look into before moving on.

 Although there are times where forcing a relational construct into an object-
oriented model is necessary, working with object hierarchies directly can often be
more appropriate for application development.

Listing 6.19 Rewriting the original example using LINQ to SQL

226 CHAPTER 6

Getting started with LINQ to SQL
6.4 Working with object trees

At the heart of the object/relational impedance mismatch is the clash between
rows of data joined by identifying columns (relational) and memory constructs
containing collections of objects (object-oriented). These objects can contain
additional collections of objects. Thus where our database contains rows of books
and subjects that we can join, it doesn’t have an easy way to read a subject and
then automatically show us the books associated with that subject. We need to
explicitly tell the database to join the two tables to return the results.

 In an object-oriented world, we typically obtain an instance of an object, like
the Subject. From the Subject, we can drill in to identify the Books that belong
to that Subject. We could potentially also drill in through the book to see the
Authors, or any other property that we choose to expose. Luckily, LINQ to SQL
offers an easy way to navigate these object hierarchies.

 If we return to the definition of the Subject class, we may determine that we’d
like a method that allows us to drill into the books that belong to that subject. Typ-
ically, we’d do that by lazy loading the books related to each subject as we called
for them (see section 6.5.1 for more on lazy loading). Books would then be a
property of a Subject object that we could drill into and work with as we wished.
The mapping functionality in LINQ to SQL used in listing 6.20 shows how we can
expose our collection of Book objects as a generic System.Data.Linq.Entity-
Set<Book> object and call it Books. Again, we will use the auto-implemented prop-
erty syntax for brevity.

using System.Data.Linq.Mapping;
{
 [Table]
 public class Subject
 {
 [Column(IsPrimaryKey = true, Name = "ID")]
 public Guid SubjectId { get; set; }
 [Column]
 public String Description { get; set; }
 [Column]
 public String Name { get; set; }

 [Association(OtherKey="SubjectId")]
 public EntitySet<Book> Books { get; set; }
 }
}

Listing 6.20 Mapping the object associations

Working with object trees 227
Just like the table and columns, we need to tell the framework how the objects are
related. We will do that using the Association attribute. In order for the associa-
tion to work, we need to identify how our Book type is related to the Subject. We
associate the two objects by specifying the property of the related object we will be
joining with our current object. Our Book object contains a SubjectId property
that we’ve already mapped to the Subject field of the Book table in the database.
Thus, for the contained Books property of the Subject class, we specify the prop-
erty of the Book class that represents the key to our record is called SubjectId.
This key is the OtherKey, or the key property in the related object.

 Now that we’ve specified the relationship between the two objects, we can
fetch our Subjects using a standard LINQ to SQL expression, as in listing 6.21.
Instead of explicitly joining the tables, we can directly drill into the books collec-
tion of each object. To display the results, we will iterate through the Subjects. As
we loop through each subject, we will nest a loop to display the names of the
books that are in that Subject.

foreach (Subject subject in dataContext.GetTable<Subject>())
{
 Console.WriteLine(subject.Name);
 foreach (Book book in subject.Books)
 {
 Console.WriteLine("…{0}", book.Title);
 }
}

When we run the query, we may notice that by default, we achieve the same results
as an outer join. From an object perspective, when we fetch the list of subjects, we
don’t know whether there are any associated books attached to each book. It is
only when we iterate over the books for each subject that we find out if there are
subjects with no associated books. Thus there may be cases where we display a sub-
ject that doesn’t contain any books. Likewise, if we have a book that doesn’t have a
subject, it won’t appear in the resulting list.

 In order to filter our results a bit, we have at our disposal a couple of additional
extension methods: Any and All. The Any method only returns results where
related records exist in both result sets. Thus to refine our query to return only the
subjects that also have related books (similar to an inner join), listing 6.22 uses the
Any extension method.

Listing 6.21 Iterating over object trees

228 CHAPTER 6

Getting started with LINQ to SQL
var query = from subject in Subjects
 where subject.Books.Any()
 select subject;

If we want, we can simply negate the where clause of the query to return any sub-
jects where there aren’t any related books, as follows:

var query = from subject in Subjects
 where !subject.Books.Any()
 select subject;

If we want to filter the results and see only subjects where the price of the book is
less than 30 dollars, we call the All extension method as shown in listing 6.23.

var query = from subject in Subjects
 where subject.Books.All(b => b.Price < 30)
 select subject;

The ability to represent our data through more natural object hierarchies allows
us to work with it in a more familiar programming manner. We establish the
object dependencies based on the specific business needs and we can work with it
as we would any set of objects. This allows us to maintain our business rules and
integrity without having to focus on the relational nature of the underlying store.
If we want, we can restate our running example using a hierarchical syntax as
shown in listing 6.24.

Table<Subject> subjects = dataContext.GetTable<Subject>();

var query = from subject in subjects
 orderby subject.Name
 select new
 {
 subject.Name,
 Books = from book in subject.Books
 where book.Price < 30
 select new { book.Title, book.Price }
 };

Listing 6.22 Using Any to achieve an inner join on object trees

Listing 6.23 Filtering child objects using All

Listing 6.24 Running query using object hierarchies

B

C

When is my data loaded and why does it matter? 229
In this version, we not only implement the more natural object hierarchies B, but
also nest the results as a similar set of hierarchical object structures C. Again, we
let the database do what it’s best at and only return the necessary portions of the
underlying objects.

 There are times where we will want to query otherwise unrelated items. In
those cases, joining data is still required. Both options are available as the business
needs demand. Regardless of which method works best for each situation, LINQ
to SQL attempts to return just the values requested and only return them when
needed. Usually, this is advantageous. Occasionally the lazy loading behavior
results in more frequent interaction with the database than originally intended.
Let’s continue our exploration of LINQ to SQL by looking at times where the
default behavior may result in more frequent database inquiries.

6.5 When is my data loaded and why does it matter?

When we fetch data from the database, LINQ to SQL utilizes a technique called
deferred execution. With deferred execution, the results are only loaded into mem-
ory when they are requested. Stepping through our examples in this chapter and
paying attention to when the SQL statements are being generated, we can see that
they are not generated when we define the query. Instead, the database is not
accessed until we actually request each record. Waiting to access the values until
they are needed is called lazy loading.

6.5.1 Lazy loading

When displaying results, lazy loading offers the benefit of only retrieving the data
when we request it, and only returning the data we request. In many cases, this pro-
vides performance benefits, but in other cases it can lead to some unexpected
results. Consider the code from listing 6.25, which displays the list of subjects that
may or may not have associated books. In this case, we will send the generated SQL
commands to the console window to be displayed when the request is submitted to
the database. When running this example, step through the code and watch the
console window carefully to see exactly when each command is being issued.

DataContext dataContext = new DataContext(liaConnectionString);
dataContext.Log = Console.Out;
var subjects = dataContext.GetTable<Subject>();
ObjectDumper.Write(subjects);

Listing 6.25 Lazy loading child objects

230 CHAPTER 6

Getting started with LINQ to SQL
Since we only want to list the subjects, we’re not fetching the books. By only fetch-
ing the books if and when we really need them, we can optimize our network
bandwidth, minimize memory consumption, and limit the amount of work the
database needs to do.

 We can extend this sample by instructing the ObjectDumper to not only display
the Subjects, but also display its children by telling it we want to view one child
level in addition to the base level. The ObjectDumper.Write method accepts an
overload to indicate the level we want to view. Change the last line in listing 6.25
to request the first-level children as well as follows:

ObjectDumper.Write(Subjects, 1);

Note that the child records for each subject are fetched only when we want them.
This lazy loading behavior is beneficial when we don’t need to display all of the
children for all parent objects, but only want to fetch them as the user requests
the details. As we request the books for each subject, we will send a separate query
to the database for each row of the Subject table. Listing 6.26 shows sample out-
put from the changed version of the code.

SELECT [t0].[ID], [t0].[Description], [t0].[Name]
FROM [Subject] AS [t0]

SubjectId=a0e2a5d7-88c6-4dfe-a416-10eadb978b0b Description=null
 Name=Software development Books=...
SELECT [t0].[ID] AS [BookId], [t0].[Isbn], [t0].[Notes],
 [t0].[PageCount], [t0].[Price], [t0].[PubDate] AS [PublicationDate],
 [t0].[Summary], [t0].[Title], [t0].[Subject] AS [SubjectId],
 [t0].[Publisher] AS [PublisherId]
FROM [dbo].[Book] AS [t0]
WHERE [t0].[Subject] = @p0
-- @p0: Input UniqueIdentifier (Size = 0; Prec = 0; Scale = 0)
 NOT NULL [a0e2a5d7-88c6-4dfe-a416-10eadb978b0b]

 Books: BookId=b1c7670c-fdf5-45e5-8f06-3b7994b6a346 Isbn=0-222-77777-2
 Notes=null PageCount=256 Price=35.5000
 PublicationDate=4/1/2007 Summary=null Title=C# on Rails
 SubjectId=a0e2a5d7-88c6-4dfe-a416-10eadb978b0b Subject={ }
 PublisherId=855cb02e-dc29-473d-9f40-6c3405043fa3
 Books: BookId=4f3b0ac1-3746-4067-a810-79a9ce02a7bf Isbn=0-000-77777-2
 Notes=null PageCount=101 Price=25.5500
 PublicationDate=11/10/2004 Summary=null Title=Funny Stories
 SubjectId=a0e2a5d7-88c6-4dfe-a416-10eadb978b0b Subject={ }
 PublisherId=4ab0856e-51f3-4b67-9355-8b11510119ba

Listing 6.26 Generated output when lazy loading the child elements

Selecting
Subjects

For first
Subject

When is my data loaded and why does it matter? 231
SELECT [t0].[ID] AS [BookId], [t0].[Isbn],
 [t0].[Notes], [t0].[PageCount], [t0].[Price],
 [t0].[PubDate] AS [PublicationDate], [t0].[Summary], [t0].[Title],
 [t0].[Subject] AS [SubjectId], [t0].[Publisher] AS [PublisherId]
FROM [dbo].[Book] AS [t0]
WHERE [t0].[Subject] = @p0
-- @p0: Input UniqueIdentifier (Size = 0; Prec = 0; Scale = 0)
 NOT NULL [92f10ca6-7970-473d-9a25-1ff6cab8f682]

 Books: BookId=09017e35-ca66-40b8-80a4-ba5253716e33 Isbn=2-444-77777-2
 Notes=null PageCount=50 Price=29.0000
 PublicationDate=2/18/1973 Summary=null Title=Bonjour mon Amour
 SubjectId=92f10ca6-7970-473d-9a25-1ff6cab8f682 Subject={ }
 PublisherId=4ab0856e-51f3-4b67-9355-8b11510119ba

In the generated code, we fetch the list of subjects, then as we iterate through
each item, we issue a separate query for each book, passing in the id column of
the subject for each row. This means that instead of issuing one statement, we
send separate statements for each child record. Before improving the situation,
let’s make it worse. In this case, copy the last line and paste it twice so that we call
ObjectDumper.Write twice. Step through the code and pay attention to the SQL
that is generated.

 We will spare you from having to read the gory results again here. In this case,
all of the queries were sent to the database twice, once for each Write method.
We’ve now turned a very good thing (lazy loading) into a potentially bad thing (too
much network traffic to the database). What can we do to improve the situation?

6.5.2 Loading details immediately

If all we want to do is fetch the results more than once, we can prefetch them and
store them in an array or list using the ToList, ToDictionary, ToLookup, or ToAr-
ray extension methods. Thus, we could change our earlier implementation to
indicate that we want to load all of the customers once and then continue to use
the results as long as our subjects variable is in scope.

var subjects = dataContext.GetTable<Subject>().ToList<Subject>();

By explicitly stating that we want to retrieve the results, we force LINQ to SQL to
immediately fetch the results and populate a new generic List with the resulting
Subject objects. This has the advantage of not requiring round trips to the data-
base each time we want to fetch our list. Additionally, we can use the LINQ to
Objects query mechanisms to continue to manipulate our results and perform
grouping, joining, aggregating, or sorting as necessary.

For second Subject

232 CHAPTER 6

Getting started with LINQ to SQL
 Unfortunately, by converting our results into a List or Array, we lose some of
the benefits of LINQ to SQL, specifically the ability to optimize the data we retrieve
from the database by leveraging the server-side functionality and limiting the
amount of data we have to put into memory. Any query expressions applied to the
resulting Subjects list will be processed by LINQ to Objects rather than LINQ
to SQL.

 Simply casting the results ToList still doesn’t help eliminate the separate que-
ries to fetch each of the lazy loaded child collections. Fortunately, LINQ to SQL
supports a mechanism to instruct the DataContext which optimizations to make.
By using a DataLoadOptions type as shown in listing 6.27, we can shape (but not
fetch) the result sets ahead of time. As soon as a record of the declared object type
is fetched, it will also retrieve the associated child records.

DataLoadOptions options = new DataLoadOptions();

options.LoadWith<Subject>(subject => subject.Books);

dataContext.LoadOptions = options;

In this example, we create a new DataLoadOptions object called options B. The
main function of DataLoadOptions is to indicate which child objects load with a
given object type. Since we want to make sure we load our books whenever we
load the subjects, we tell the options to LoadWith<Subject> and pass it a function
in the form of an expression C. We could pass an actual delegate, but since we
have lambda expressions at our disposal, we can tell it, “given a subject, load the
Books EntitySet.” All that remains is to attach our options to our data context D.

 With the new options in place, run the example again. Here is the SQL that
LINQ generates:

SELECT [t0].[ID], [t0].[Description], [t0].[Name],
 [t1].[ID] AS [BookId], [t1].[Isbn], [t1].[Notes], [t1].[PageCount],
 [t1].[Price], [t1].[PubDate] AS [PublicationDate], [t1].[Summary],
 [t1].[Title], [t1].[Subject] AS [SubjectId],
 [t1].[Publisher] AS [PublisherId], (
 SELECT COUNT(*)
 FROM [dbo].[Book] AS [t2]
 WHERE [t2].[Subject] = [t0].[ID]
) AS [count]
FROM [Subject] AS [t0]
LEFT OUTER JOIN [dbo].[Book] AS [t1] ON [t1].[Subject] = [t0].[ID]
ORDER BY [t0].[ID], [t1].[ID]

Listing 6.27 Using DataLoadOptions to optimize object loading

B
C

D

Updating data 233
By specifying the DataLoadOptions of the data that we want to access, we elimi-
nate the multiple subqueries that were necessary with the previous lazy loaded
implementation. This should provide much-improved interaction between our
client application and the database. Of course, if we know we won’t need the
books, we shouldn’t fetch them, but if we know we will need to work with the
books for each category, we can load them up-front and provide a more respon-
sive application.

 Be aware that the load options can be set only once on an instance of a con-
text. Once set, they cannot be changed for that instance. Using the DataLoad-
Options offers powerful control over the desired results, but take more care when
using it.

 Simply by specifying the DataLoadOptions, we do not eliminate the multiple
fetches if we try to iterate over our results twice. In order to finish our optimiza-
tion, we can combine the DataLoadOptions with the ToList method. Using both
of these together, we can make sure that we access our database once and ensure
that the subjects and books are joined properly.

 Using joins gives LINQ to SQL a powerful ability to drill into data. Whether we
choose to work in an object-oriented manner or mimic relational interaction, we
can specify the mapping once and then focus on the business needs. We do need
to be careful and check the underlying database interaction to make sure we’re
optimizing it as we should. In many simple operations, the default behavior is
fine. However, there are times when refactoring our code can produce dramatic
improvements in the resulting implementation. If we really need control over the
data we receive, we do have additional options including stored procedures and
user-defined functions, which we will look at in chapter 8. For now, let’s move
beyond simply fetching data and look at options we have to save our data once we
change it.

6.6 Updating data

If we were limited to fetching data, the functionality would be no more than a
reporting tool. Luckily, updating the data is just as simple as fetching it. As long
as we have a persistent DataContext object, we can make additions, alterations,
and deletions using standard methods on the table objects. The DataContext
keeps track of the changes and handles updating the database with a single
method call.

 To begin, let’s look at an example that updates the price of our most expensive
books so we can offer a discount on them (see listing 6.28). In this case, we fetch

234 CHAPTER 6

Getting started with LINQ to SQL
only the books that are “expensive”—where the price is greater than $30—and
then iterate over them, reducing the price of each by $5. Finally, we persist the
changes to our database by calling the SubmitChanges method on our DataCon-
text object.

DataContext dataContext = new DataContext(liaConnectionString);

var ExpensiveBooks =

 from b in dataContext.GetTable<Book>()

 where b.Price>30

 select b;

foreach (Book b in ExpensiveBooks)

{

 b.Price -= 5;

}

dataContext.SubmitChanges();

The code in listing 6.28 is straightforward C# code. We start by fetching the
records that we want to modify B. We then make the necessary changes by work-
ing with the book object just as we would with any other collection C. Once we’re
done, we call SubmitChanges to commit the changes D. We don’t need to worry
about creating a separate mapping to issue an update command. The context
takes the same metadata we created for querying and uses it to generate the nec-
essary update statement. Here is the SQL that was generated for our example:

UPDATE [Book]
SET [Price] = @p8
WHERE ([ID] = @p0) AND ([Isbn] = @p1) AND ([Notes] IS NULL) AND
 ([PageCount] = @p2) AND ([Price] = @p3) AND ([PubDate] = @p4) AND
 ([Summary] IS NULL) AND ([Title] = @p5) AND ([Subject] = @p6) AND
 ([Publisher] = @p7)

Although this code may appear to be excessive, the first two lines accomplish the
update. The rest is in place to check for concurrency violations. We will look at
concurrency in chapter 8. What is important at this point is to observe that the
change manager of the DataContext object recognized that the only column that
needs to be changed in our database is the Price field. It does not try to update
any other columns or records. This reduces the amount of data we need to trans-
mit across the network. We’re also able to queue up multiple updates into a single
unit of work and commit them with a single call to SubmitChanges. We’ve seen

Listing 6.28 Updating values and committing them to the database

B

C

D

Updating data 235
how to read and update. Now, let’s take a look at the other two parts of the CRUD
operation: create and delete.

 Typically when working with collections, we’d add and remove objects by using
IList’s Add and Remove methods. The traditional semantics of Add and Remove
imply that the collections immediately reflect the new values. Preview releases of
LINQ continued the tradition of using Add and Remove for these functions. How-
ever, users were confused when their values were not returned as part of subse-
quent queries until they were committed to the database. As a result, the names
for these methods were changed to InsertOnSubmit and DeleteOnSubmit to
reflect the nature of the implementation more accurately.

 Creating new items with LINQ to SQL is as simple as calling the InsertOnSub-
mit method on the table object. To delete, we similarly call the DeleteOnSubmit
method. Listing 6.29 demonstrates adding a book to our book collection and sub-
sequently removing it.

DataContext dataContext = new DataContext(liaConnectionString);
Table<Book> books = dataContext.GetTable<Book>();

Book newBook = new Book();
newBook.Price = 40;
newBook.PublicationDate = System.DateTime.Today;
newBook.Title = "Linq In Action";
newBook.PublisherId =
 new Guid("4ab0856e-51f3-4b67-9355-8b11510119ba");
newBook.SubjectId =
 new Guid("a0e2a5d7-88c6-4dfe-a416-10eadb978b0b");

books.InsertOnSubmit(newBook);

dataContext.SubmitChanges();

books.DeleteOnSubmit(newBook);

dataContext.SubmitChanges();

If we check the generated SQL code, we will see that the code to insert a record is
a simple INSERT INTO statement. The code to delete the record is a bit more com-
plex than a simple DELETE FROM Table structure. The extra code is required to
handle potential concurrency issues. We can perform all of the standard CRUD

Listing 6.29 Adding and removing items from a table

Get book
tableCreate

new book

Add and
save book

Remove from table

Remove from database

236 CHAPTER 6

Getting started with LINQ to SQL
operations using basic object method calls. The DataContext maintains the
changes and automatically generates the SQL to accomplish the requested work.

6.7 Summary

In this chapter, we demonstrated how to map our relational data to object struc-
tures. Once we have the mappings set up, we can perform all of the standard
query expressions and extension methods. In previous versions of ADO.NET, we
had to manually implement the specific data access implementation for each sce-
nario and separate implementations for each of the CRUD operations. With LINQ
to SQL, once the mappings are defined, we can ignore the details of the database
interaction. Instead, we work with the objects focusing on the business need
rather than the implementation details.

 Additionally, LINQ to SQL offers an advantage over LINQ to Objects in that we
can capitalize on the power of the database to preprocess our results. The queries
are dynamically composed to reduce the amount of network bandwidth and client
processing requirements. We recommend taking a moment and trying the exam-
ples in this chapter before moving on in order to get a feel for LINQ to SQL in action.

 In the next couple of chapters, we will dive deeper into the LINQ to SQL capa-
bilities and tools. We could get started working with the technology now, but to
understand how it works or some of the advanced options, keep reading. We will
explain how LINQ to SQL performs its magic and explore some more advanced
options. If you like what you’ve seen so far, keep reading. It gets better.

Peeking under the
 covers of LINQ to SQL
This chapter covers:
■ Mapping from the database to objects
■ Exploring how LINQ to SQL works under the covers
■ Translating query expressions into SQL with

IQueryable and expression trees
■ Tracking objects through their life cycle
■ Working with disconnected data
237

238 CHAPTER 7

Peeking under the covers of LINQ to SQL
In chapter 6, we presented a high-level view of some of the capabilities of LINQ to
SQL. By now, you should have enough tools under your belt to start working with
LINQ to SQL.

 In this chapter, we dive a bit deeper and explore how the technology works
under the covers. We’ll start by looking at the mapping options at our disposal.
We explain not only the mapping options, but also how to employ some of the
tools that come with Visual Studio 2008 to make mapping easier. We’ll continue
by looking at the underlying technologies that make LINQ to SQL behave differ-
ently from LINQ to Objects. We won’t have enough time to create our own O/R
mapper, but we’ll discuss how they differ at their core. We’ll conclude this chapter
by examining the object life cycle and see how LINQ to SQL manages the objects
through their changes until they are updated. By combining the mapping, trans-
lations, and object life cycle, LINQ to SQL emerges as a powerful extension of the
LINQ family of technologies.

7.1 Mapping objects to relational data

In the previous chapter, we extended the Book and Subject objects of our run-
ning example using several custom attributes. By decorating the classes and prop-
erties, we demonstrated how to eliminate repetitive traditional ADO.NET code
and let the framework handle mapping the relational tables to our business entity
classes. We’re able to specify the mappings once. The framework can determine
the SQL necessary to translate our declarative query constructs into a syntax that
our database can recognize. By changing the business needs, we do not need to
implement an entirely different data tier, potentially with separate code both in
our application and on the database itself. We can let the framework manage the
language translations based on the mappings we set up.

 When we initially presented the mappings, we showed how to manually map
the values. The attribute-based mappings provide a direct method of specifying
the mappings. In addition to explicitly specifying the mappings with attributes,
Visual Studio 2008 offers three other mechanisms to assist with mapping data to
your objects. The full list of mapping options consists of

■ Attributes declared inline with your classes
■ External XML files
■ The command-line SqlMetal tool
■ The graphical LINQ to SQL Designer tool

In this section, we’ll explore all four of these methods and identify how each one
has a role. By understanding each method, we’ll be able to build and maintain

Mapping objects to relational data 239
applications quicker and more effectively. In chapter 6, we introduced the con-
cept of mapping with attributes. Since we’re already familiar with using the Table
and Column attributes to accomplish mappings, let’s begin our exploration by see-
ing how we can implement more of the capabilities that these attributes offer.

7.1.1 Using inline attributes

In many ways, starting our discussion with the manual method is like learning to
ride a unicycle before riding a bicycle with training wheels. However, starting with
the basics helps us to better appreciate the other options. We’ll also have a better
understanding of the code generated by the other tools.

 In the previous chapter we identified LINQ to SQL’s three main types of
attributes—Table, Column, and Association. We can decorate our classes with
the Table attribute to designate how the object maps to a database table. Proper-
ties can be decorated with either the Column attribute or the Association
attribute. The Column attribute designates how an individual property maps to a
column in the table. The Association attribute designates how tables are related
to each other via foreign-key relationships. In addition to these three attributes,
there are a number of less frequently used attributes. Table 7.1 provides a brief
overview of the basic functionality of each of these attributes.

Table 7.1 Custom attributes exposed by System.Data.Linq.Mapping for mapping
 databases to objects

Attribute Description

Association Sets up the primary-key and foreign-key relationships between classes.

Column Identifies the mapping for a column in the database table to the specified
property or field.

Database Specifies the database name used by CreateDatabase from your
mapping metadata.

Function Used to map user-defined functions or stored procedures to a method.

InheritanceMapping Used when mapping to polymorphic objects. We’ll discuss this in chapter 8.

Parameter Designates the parameters for a stored procedure or function.

Provider Designates the type used to perform the querying. Since LINQ to SQL is
limited to SQL Server, this will indicate the version of SQL Server that will
be targeted.

ResultType Indicates the type of object that is returned as the result of a stored pro-
cedure or function.

Table Designates the name of the table you wish to map to a class.

240 CHAPTER 7

Peeking under the covers of LINQ to SQL
For the moment, let’s restrict our focus to the main attributes you’ll use with stan-
dard tables. We’ll explore stored procedures, functions, and inheritance in chap-
ter 8. Let’s take a closer look at the Table, Column, and Association attributes.

Table attribute
The Table attribute serves as a starting point to bridge the gap between tables and
objects. If we don’t specify that our class is the representation for a table, any of
the other attributes we set on the properties will be useless as there will be no way
of knowing what table the class is related to. To indicate that a class named Author
maps to the Author table, decorate the class with the Table attribute.

[Table()]
public class Author

Not only is the Table attribute one of the most critical, it is also one of the sim-
plest. By default, just decorating the class with the Table attribute indicates that
the class name is the same as the name of the table. The Table attribute also takes
one parameter as an argument called Name. Use the Name argument to specify the
name of the table in the database if they are not the same. For example, if we
wanted to modify our Author class to use data from a table called Authors, change
the attribute to include the Name parameter as follows:

[Table(Name="dbo.Authors")]

Column Attribute
Typically, the most frequently used attribute is the Column attribute. This attribute
maps the columns in the database to the class properties. In mapping a column
to a property with the same name, we can get away with decorating the property
with the Column attribute without specifying any parameter values. In many cases,
we’ll want to specify some of the parameters in table 7.2 to add functionality to
the mappings.

Table 7.2 Listing of parameters used by the Column attribute

Parameter name Description

AutoSync Enumerated value indicating how LINQ to SQL should handle database col-
umns that change as the result of a Create or Update method. This is
particularly useful for columns with default values. The valid options are
Default, Always, Never, OnInsert, and OnUpdate.

CanBeNull Indicates if the database column can be null. Remember, a null is not the
same as an empty string.

Mapping objects to relational data 241
Using these attributes, we can map the Author class from our running example to
the corresponding table. Every EntitySet collection requires an identifying prop-
erty. In the case of Author, we’ll use a Guid called ID. Instead of using the public
property set method, we specify that we want to store the value directly in the private

DbType This attribute is used to specify the database type used when creating a col-
umn with the DataContext.CreateDatabase method. A valid example
would be NVarChar(50) Not Null Default('')

Expression This value is only used when generating databases with the CreateDatabase
method. The value included here is the SQL string specifying how to create a cal-
culated field in the database.

IsDbGenerated Used to indicate if the database generates the value for this property. This
parameter should be used for Identity or AutoNumber columns in the data-
base. The value will be populated in your class immediately after the record is
updated in the database via the SubmitChanges method.

IsDiscriminator Use this to designate that the column in question identifies a specific instance
type to be used for the given row. We’ll see this in action in section 8.3.3.

IsPrimaryKey Set this value for the column of your table that uniquely identifies the row.
Most frequently, this is the primary key column of your table. LINQ to SQL
requires at least one column be indicated as the primary key for each class for
use by the object identity and change tracking services; for multicolumn keys,
set this in each Column attribute.

IsVersion Use this attribute on columns that are the timestamp or version number of
your record. This value is updated each time the row is changed, and is useful
for optimistic concurrency checks.

Name Indicates the name of the column in the table you wish to map to.

Storage To map a column directly to the underlying private field in a class rather than
using the public property setter, specify the name of the field as the storage
parameter.

UpdateCheck Specifies how LINQ to SQL will use this column when processing the optimistic
concurrency (see section 8.1). By default, all mapped columns in the class will
be used when evaluating the concurrency. If you’re using a timestamp or
another technique to manage concurrency, use this parameter to optimize your
update and delete methods. This parameter takes an enumerated value with
the following options:
Always (default)—Always check this column
Never—Never check this column
WhenChanged—Only check this column if the given property has changed.

Table 7.2 Listing of parameters used by the Column attribute (continued)

Parameter name Description

242 CHAPTER 7

Peeking under the covers of LINQ to SQL
_ID field using the Storage parameter. For clarity, we indicate that the name of the
column is ID using the Name parameter. In case we wanted to generate the database
dynamically, we specify the DbType for the column as UniqueIdentifier NOT NULL.
Perhaps the most critical parameter on this column is the IsPrimaryKey designa-
tion that is required for at least one property in each class. The final parameter of
the ID column is CanBeNull, which indicates that a value is required for this prop-
erty. If no value is supplied, a run-time exception will be thrown.

private System.Guid _ID;
[Column(Storage = "_ID", Name = "ID",
 DbType = "UniqueIdentifier NOT NULL",
 IsPrimaryKey = true, CanBeNull = false)]
public System.Guid ID { get { return _ID;} set{ _ID = value;} }

The next three columns are similar. In each case, we specify the name of the col-
umn that corresponds to our property. The data type of each column is VarChar.
The FirstName and LastName are optional (NOT NULL and CanBeNull = false).
The others allow for null values in the database. If either of these were value types
rather than strings, we would need to use the nullable types introduced by the
.NET Framework 2.0 for these properties.

[Column(Name = "LastName", DbType = "VarChar(50) NOT NULL",
 CanBeNull = false, UpdateCheck=UpdateCheck.Never)]
public string LastName { get; set; }

[Column(Name = "FirstName", DbType = "VarChar(30) NOT NULL",
 CanBeNull = false, UpdateCheck=UpdateCheck.Never)]
public string FirstName { get; set; }

[Column(Name = "WebSite", DbType = "VarChar(200)",
 UpdateCheck=UpdateCheck.Never)]
public string WebSite { get; set; }

All three of these columns include the parameter instruction to never perform
an update check because of a special feature we’re including in this example—
the final timestamp column. With SQL Server, a TimeStamp column is changed
by the database every time a record is changed. We indicate that the database
will assign it by including the IsDbGenerated parameter and setting it to true.
We also specify that this column tracks each time the row was changed by set-
ting the IsVersion attribute. We specify that the value is required using the
CanBeNull=false designation.

[Column(Name="TimeStamp", DbType="rowversion NOT NULL",
 IsDbGenerated=true, IsVersion=true, CanBeNull=false,
 UpdateCheck=UpdateCheck.Always)]
public byte[] TimeStamp { get; set; }

Mapping objects to relational data 243
We’ll discuss concurrency in chapter 8. For now, understand that when making
updates, we check to see if values were changed since we last fetched the values.
Because the database updates a timestamp each time the row is changed, we don’t
need to worry about changes to any other column. By combining the previous
value of the ID and timestamp, we check to see that someone else didn’t make a
conflicting change to our record while we were working on it. The rest of the
properties are not needed for concurrency checking and thus we can state that we
never need to check the values on update (UpdateCheck.Never).

 With these mappings in place, we’re ready to perform standard queries against
our revised Author class. If we wanted to work with object trees to join our authors
with the books using the AuthorBooks table, we would need to specify one more
set of mapping attributes, Association.

Association attribute
The Association attribute is used to designate how two classes, and by extension
their corresponding tables, are related. Unlike the Table and Column attributes, at
least one parameter is required in order for our association to work. Table 7.3 lists
the parameters used by the Association attribute.

Table 7.3 Listing of parameters used by the Association attribute

Parameter Name Description

DeleteRule Indicates the cascading delete policy for the relationship.

DeleteOnNull Used in 1:1 relationships to indicate the cascading delete policy when the foreign
key fields are not nullable.

IsForeignKey Indicates that the class in question is the child of a parent-child relationship.

IsUnique Used to indicate a 1:1 relationship where both the foreign key and primary key are
unique and contained in both tables. This is not used often, as most relationships
are 1:0-1 or 1:n rather than a true 1:1.

Name Specifies the name of the foreign key that will be used when dynamically creating
the database from the metadata.

OtherKey Used to identify the column(s) in the associated class that contain the related key
values. If the parameter is not specified, the ID columns specified in the other
class will be assumed.

Storage Specifies the internal field used to track the related child object EntitySets.

ThisKey Identifies the property that contains the local ID field. If this is not specified, the
column(s) designated by IsPrimary in the Column attribute are used. If the key
consists of multiple columns, include each of them in a comma-separated list of
the column names.

244 CHAPTER 7

Peeking under the covers of LINQ to SQL
Given this information, let’s take a look at how we can add an association between
our new Author class and a BookAuthor class.

private EntitySet<BookAuthor> _BookAuthors;
[Association(Name="FK_BookAuthor_Author", Storage="_BookAuthors",
 OtherKey="Author", ThisKey="ID")]
public EntitySet<BookAuthor> BookAuthors
{
 get
 {
 return this._BookAuthors;
 }
 set
 {
 this._BookAuthors.Assign(value);
 }
}

The primary key of the Author class is the ID property (ThisKey) and the associ-
ated key in the BookAuthor is the Author property (OtherKey). We’ll store the col-
lection (Storage) in an EntitySet<BookAuthor> field called _BookAuthors. In
case we wish to autogenerate the database from our class attribute metadata, we’ll
specify the name of the foreign key to be FK_BookAuthor_Author (Name).

 So far in this chapter we’ve focused on the three main attributes—Table, Col-
umn, and Attribute. Using these mapping structures, we can declaratively work
with our objects using standard query expressions and allow the framework to
automatically handle the data access plumbing for us. Directly embedding the
mapping in our classes can be seen as a double-edged sword when it comes to
code maintenance. When creating a business class, the developer is typically inti-
mately aware of the relationships between the database and the object. Addition-
ally, we can ensure that changes we make are not orphaned as we continue to
enhance our system. However, when maintaining an application down the road,
quickly locating the attributes can be difficult when interspersed throughout our
code. Additionally, polluting our business code with the mapping information
makes focusing on the core business requirements more difficult from a readabil-
ity standpoint.

 A bigger issue with using attributes is that they are set at compile time. Break-
ing changes in our database’s schema, including renaming or removing an exist-
ing column or table, will require us to rebuild the application in order to
synchronize the components. If the attributes specify a mapping that no longer
exists in the database, a run-time exception will likely arise. To handle both con-
cerns, LINQ offers a second mapping mechanism—using an external XML file.

Mapping objects to relational data 245
7.1.2 Mapping with external XML files

Using XML files to specify mappings is similar to using attributes on classes. With
XML mapping, the mapping file needs to be specified when instantiating the
DataContext. Unlike attribute-based mappings, the XML mapping file can be
dynamically changed without recompiling. Additionally, attributes can be
removed from the business class definitions, which should facilitate focusing on
the business requirements. XML mapping files also offer the added benefit of
keeping our mappings in a central location, making maintenance of the mapping
portions easier.

 We don’t need to be concerned about learning an entirely different set of
properties to use the external file. The XML mapping elements look similar to the
attributes we’ve already discussed. The amount of code that needs to be main-
tained is reduced. By using the XML mapping, we can eliminate the inline
attributes on our class. Instead, we can use the file shown in listing 7.1 to map our
Author object to the database.

<?xml version="1.0" encoding="utf-16"?>
<Database Name="lia"
 xmlns="http://schemas.microsoft.com/linqtosql/mapping/2007">
 <Table Name="Author">
 <Type Name="LinqInAction.LinqBooks.Common.Author">
 <Column Name="ID" Member="ID" Storage="_Id"
 DbType="UniqueIdentifier NOT NULL" IsPrimaryKey="True" />
 <Column Name="LastName" Member="LastName"
 DbType="VarChar(50) NOT NULL" CanBeNull="False" />
 <Column Name="FirstName" Member="FirstName"
 DbType="VarChar(30)" />
 <Column Name="WebSite" Member="WebSite"
 DbType="VarChar(200)" />
 <Column Name="TimeStamp" Member="TimeStamp"
 DbType="rowversion NOT NULL" CanBeNull="False"
 IsDbGenerated="True" IsVersion="True" AutoSync="Always" />
 </Type>
 </Table>
</Database>

The resulting Author class is similar to the code we set up back in chapter 4. All of
the extra mapping work we did has been moved to the XML file. The information
in the XML mapping file nearly matches the parameters we previously used in the
class’s attributes. We do need to specify the Type and Member information to indi-
cate which class and property we wish to map.

Listing 7.1 XML mapping file for Author class

B
C

D

246 CHAPTER 7

Peeking under the covers of LINQ to SQL
 The root node of the XML file is the Database element. Here we specify the
name of the database we’re mapping to. The Database can have multiple Table
elements. Each Table B element contains a Type element, which indicates the
class we use when mapping the given table. The Type C can have any number of
Column and Association elements. The attributes for the Column D and Associ-
ation element include one additional value not included in the attribute based
version we previously used—Member.

 Since we’re not directly decorating individual properties using attributes, we
need to specify which property (or Member) the column mapping applies to.
Given what we learned previously about the Table, Column, and Association
attributes, we can transfer the attributes from the class declarations directly into
the Column and Association elements, remembering to add the Member attribute.

 In order to use our new mapping file, we need to instruct the DataContext to
use the mapping rather than rely on the default attribute based declaration. In list-
ing 7.2, we show how to attach an external mapping file (lia.xml) to the DataCon-
text and then query our undecorated business objects using the XML mappings.

XmlMappingSource map =
 XmlMappingSource.FromXml(File.ReadAllText(@"lia.xml"));

DataContext dataContext =
 new DataContext(liaConnectionString, map);

Table<Author> authors = dc.GetTable<Author>();

In the first line of listing 7.2, we create a new System.Data.Linq.XmlMapping-
Source instance in the lia.xml file in our application directory B. We can load
this document using any of the following methods: FromXml, FromUrl, From-
Stream, or FromReader. To attach our XmlMappingSource object to the DataCon-
text, we add it as the second parameter of the overloaded constructor C. Once
we’ve attached the external mapping to the DataContext, we’re free to use all of
the querying techniques we learned in chapter 6 D.

 As we’ve mentioned, the XML mapping offers the benefit of centralizing the def-
initions and allows us to change the mappings dynamically as schema changes are
made in the underlying database. The need to load and parse the XML file increases
the overhead required to create the DataContext compared to using attributes. As
with any programming task, test the various options in any situation to determine
the most appropriate method. Each method has its positives and negatives.

Listing 7.2 Attaching the external XML mapping to the DataContext

B

C

D

Mapping objects to relational data 247
 One of the negatives that both the XML and attribute-based mappings face is
the tedium caused by having to manually create and maintain the classes and
mappings. Thankfully, Visual Studio includes a couple of options to help generate
the mappings—the command-line SqlMetal tool and the LINQ to SQL designer. If
you’re a masochist who enjoys manually creating your classes and mappings, you
can skip the next sections. Otherwise, let’s see how we can exploit the tools to do
the monotonous work for us, starting with a command-line option—SqlMetal.

7.1.3 Using the SqlMetal tool

Microsoft realized developers would be more likely to adopt the technology if
tools were provided to automate the mapping process. One such tool is a com-
mand-line tool called SqlMetal. We point the tool at our database and it generates
the corresponding business classes. The basic syntax for using the tool is SqlMetal
[switches] [input file]. Let’s see what happens if we try to generate classes for
the SqlExpress database for this book.

 To begin, open the Visual Studio 2008 Command Prompt, located in the
Visual Studio Tools folder for Visual Studio 2008. We need to use this command
prompt rather than the standard command-line tool in order to set the necessary
path settings. To generate our classes, enter the following from the command
prompt, making sure to use the correct path to your database:

SqlMetal /server:.\sqlexpress
/namespace:LinqInAction.LinqBooks.Common /code:Common.cs
/language:csharp "C:\projects\Lia\lia.mdf"

With this command, we specify that we want SqlMetal to generate a set of C#
classes (because of the language switch) based on the LIA SqlExpress database.
The code switch indicates that the classes will be generated in a single file called
Common.cs and placed in the LinqInAction.LinqBooks.Common namespace
because of the namespace switch. SqlMetal has a number of switches that can spec-
ify more advanced capabilities.

 The switches we provide to SqlMetal will depend on our specific needs. Per-
haps the most useful switch as we begin is the help switch, which is fairly standard
with command-line tools. This command displays a listing of all of the switches,
along with a description and sample usages.

SqlMetal /?

As with the first example, generating classes directly from the database may be suf-
ficient. In the following command, we can generate a set of classes in the Linq-
InAction namespace to a file called Common.cs. The generated code will be in
C# and will include stored procedures in addition to the tables.

248 CHAPTER 7

Peeking under the covers of LINQ to SQL
SqlMetal /database:lia.mdf /Namespace:LinqInAction /code:Common.cs
/language:csharp /sprocs

Other times, it may be helpful to generate the metadata first. Do this by directing
SqlMetal at your database and sending the results to a file called LiaMetadata.xml
as follows:

SqlMetal /database:lia.mdf /xml:LiaMetadata.xml

This generated metadata file is an XML file that can be modified to adjust the
names of the classes, properties, and columns. Once the metadata is extracted to
the XML file, we can use the following command to generate classes based on the
metadata rather than going back to the database again:

SqlMetal /namespace:LinqInAction /code:Common.cs
/language:csharp LiaMetadata.xml

Regardless of how we arrive at our final code, the generated code uses the same
basic patterns. Go ahead and run the first SqlMetal command. Open the Com-
mon.cs file in Visual Studio and explore the generated code. The file can be bro-
ken down into the following sections:

■ DataContext
■ Partial method declarations for custom logic on insert, update, and

delete for each table
■ Overloaded constructors
■ Table accessors
■ Stored procedure and function implementations

■ Table classes
■ Change notification event args
■ Private fields
■ Partial method declarations for change notification
■ Constructors
■ Public properties with attribute mapping
■ Properties for associated tables
■ Change notification events

■ Classes for object types returned by stored procedures and functions

NOTE Partial methods are a new language feature that allows you to insert
method stubs that the generated code can optionally call if they are
implemented. We’ll discuss this more fully in chapter 8.

Mapping objects to relational data 249
The Common.cs file contains a number of class definitions. The first class encap-
sulates the DataContext that represents the connection to the database. It also
includes methods to access each of the tables and other database objects.

 Following the DataContext class, the generated file includes class definitions
for each table in the database. Unlike the simplistic class definitions we’ve used
thus far, the generated classes have more business functionality. Each class is
defined as a partial class. In chapter 8, we’ll look at extending this functionality to
add custom business logic.

 The table definitions also contain built-in functionality to manage robust change
tracking. When any property’s values are changed, the generated code fires change
notification events and calls partial methods that will be called if they are imple-
mented. The table classes also offer accessors and tracking of related child objects.

 Following the table definitions, SqlMetal generates classes to represent the
result types for the various stored procedures and functions. These classes are
used as the return types of the function declarations established in the custom
DataContext class.

 SqlMetal is great if we want to regenerate our entire database model into a sin-
gle class file. It can even be included as part of a continuous integration practice
by scripting it into a custom MSBuild action. The tool does not give the flexibility
to pick and choose which elements will be generated. If there are relationships
that aren’t included in the database implementation, including table relation-
ships beyond primary key-foreign key relationships that can’t be predefined in the
database, they won’t be scripted as part of the SqlMetal implementation. Also,
using SqlMetal to directly generate the entities from the database will be
restricted to the names defined in your tables and columns. An intermediary data-
base markup language (DBML) file is required to specify mapping changes as neces-
sary. Perhaps the biggest hindrance for SqlMetal is that it’s not a flexible,
graphical mapping tool. Visual Studio 2008 comes with a visual designer to help
bridge this gap.

7.1.4 The LINQ to SQL Designer

To help developers visually model their data mappings, Visual Studio provides an
integrated designer. This designer allows developers to drag and drop objects
from their database or manually add conceptual models and visually manage the
mappings. Although some expert programmers may shun designers, the tools can
often assist not only in seeing a snapshot of the model, but also in helping to learn
a new technology. If we’re unsure how to map a specific data relationship, we can
try using the design tool. We can always go back and tweak the generated code as
long as we don’t plan on regenerating it.

250 CHAPTER 7

Peeking under the covers of LINQ to SQL
 Let’s try using the designer and see what it produces. To begin, right-click the
project in the Solution Explorer and select Add, then New Item. From the list of
supplied templates, locate the one named LINQ to SQL Classes. Change the name
to Lia.dbml and click the Add button. You’ll now be presented with a blank
design surface.

 With the LINQ to SQL designer visible, open the Server Explorer. If the listing
of data connections doesn’t already include our lia database, add it by right-click-
ing on the Data Connections node in the Server Explorer and selecting Add Con-
nection. In the connection wizard, supply the appropriate values for the server
name and database name and click OK to add the connection.

 Once the database is included in the Data Connections node, expand the
tables for the lia database. Select all of the tables by left-clicking the first one and
then holding down the Shift key and left-clicking each of the others. With all of
the tables selected, drag them onto the middle of the design surface. The
designer will interrogate the tables and their relationships, adding them to the
design surface.

 The designer is fully editable. From the toolbox, we can drag and drop new
Class and Association items. Removing items is done by selecting them and
pressing the Delete key. We can also move any of our entities around on the
design surface to provide a more coherent representation of our data. Figure 7.1
shows a structured representation of our lia database after we’ve rearranged the
classes and associations.

 In figure 7.1, we show several regions that are used with the designers. In the
upper-left corner, we show the Server Explorer. We can drag server objects onto
the main area in the middle, which includes the method pane. This main area in
the center is where we can visually design our class structures and mappings. The
design surface is divided into two halves. The left side allows us to graphically

Figure 7.1 Mapping the LINQinAction database using the LINQ to SQL designer tool

Mapping objects to relational data 251
design our class relationships, similar to using the Class Designer introduced with
Visual Studio 2005. On the right side is the method pane, where we can work with
our stored procedures and table-defined functions.

 The toolbox is in the lower-left corner. When the designer is visible, we can
add classes, associations, and inheritance relationships. At this point, the designer
surface includes classes (boxes) and associations (arrows). In chapter 8, we’ll add
some inheritance as well.

 On the right side, we show the context-sensitive property window, which
should be familiar. If we need to modify the mapping structures, we do it in the
designer or the property window. In this case, we’ve changed the Book’s PubDate
column to a property called PublicationDate by setting the Name property for
that item. By changing it in the designer, the changes will be retained whenever
we regenerate the classes with subsequent changes we make in the designer.

 Once we’re happy with our modeling view, we can save it and the associated
classes will be generated. The designer consists of three files: an XML-based meta-
data file (Lia.dbml) specifying how the classes will be generated, another XML file
containing visual layout information on the designer surface (Lia.dbml.layout),
and the actual generated classes in a single file (Lia.designer.cs). By default, the
diagram and designer files are hidden by the Solution Explorer. However, clicking
the Show All Files option in the Solution Explorer will expose them. The designer
file contains the actual partial class definitions, similar to the code file we gener-
ated previously with the SqlMetal tool.

 Look at the generated code and use it as a learning tool for creating your own
classes by hand. However, resist the temptation to modify the code in the code
behind designer file directly. Modifications to the code in the designer file,
including adding new tables and associations, will be overwritten if unrelated
changes in the actual design surface are made. Instead, try to limit modifying the
objects to the graphical designer by using the property window or directly in the
DBML file.

 So far, this chapter has explored the mapping options. We can do it manually
with attributes or XML. If we’re not comfortable doing it manually or want to
reduce the amount of redundant typing needed to establish the classes, we can
use a command-line tool or a visual designer. The command-line tool offers a
mechanism to generate the entire database mapping, but it doesn’t offer the abil-
ity to take parts of the database or customize the mappings for particular business
entity needs. The designer gives an easy snapshot of just the pertinent portions of
the database and allows for customization. The designer does not offer any easy
method to regenerate the classes when the database schema changes. Manually
dropping and re-creating the table(s) in question is the current solution.

252 CHAPTER 7

Peeking under the covers of LINQ to SQL
 SqlMetal does offer the option of incorporating it into a regular build process.
By using SqlMetal to construct the metadata (DBML) file and modifying that man-
ually as necessary, it can generate your class definitions directly from the DBML
file as part of the regular build process and thus achieve the best of both worlds.

7.2 Translating query expressions to SQL

In this chapter, we’re attempting to pull back the covers and expose the core of
LINQ to SQL. So far, we’ve peeled back the outer layer by exploring the mapping
options. We have to get through some more layers before we can truly understand
LINQ. One of the layers we can pull back relatively easily is the query expressions.
Since the LINQ querying functionality is built around extending types that imple-
ment IEnumerable<T>, all we need is for our EntitySets and Tables to imple-
ment IEnumerable<T>.

 Naturally, EntitySet<T> and Table<T> do implement IEnumerable<T>. How-
ever, if that were as far as they went, all of the querying functionality would be
performed on the client, including filtering and sorting. We need a way to
advance to a more specialized implementation if we want to translate our expres-
sions to the server. Enter an interface that extends the IEnumerable<T> model
called IQueryable<T>.

7.2.1 IQueryable

One of the biggest advantages LINQ to SQL has over LINQ to Objects is the ability
to evaluate query expressions and translate them into another format. In order to
accomplish this, the objects need to expose additional information regarding the
structure of the query. All of the query expressions in LINQ to Objects are built to
be able to extend IEnumerable<T>. However, IEnumerable<T> only offers the ability
to iterate over data. It doesn’t include information that would allow us to easily ana-
lyze the query’s definition in order to accomplish the necessary translation. The .NET
Framework 3.5 adds a new interface that extends IEnumerable and does include the
necessary information—the IQueryable interface. Figure 7.2 shows the relation-
ship between IQueryable and IEnumerable and their generic counterparts.

 IQueryable requires the implementing class to inherit IEnumerable. In addi-
tion, it requires the class to contain three other pieces of information—the Ele-
mentType that it contains, an Expression that represents the actions to be taken,
and a Provider that implements the IQueryProvider generic interface.

 By containing an interface implementation, IQueryable supports creating addi-
tional provider models for other data sources, including specific SQL flavors for
databases other than SQL Server. The provider takes the information contained by

Translating query expressions to SQL 253
the IQueryable expression and performs the heavy work of translating the structure
into an expression that can be consumed. The translation is done by CreateQuery.
The Execute method consumes the query that was created.

 The Expression property contains the definition of the method. To help
understand the difference, let’s consider the case of the following query.

var query = books.Where(book => book.Price>30);

If the books object only implemented IEnumerable<T>, the compiler would trans-
late it into a standard static method call similar to the following:

IEnumerable<Book> query =
 System.Linq.Enumerable.Where<Book>(
 delegate(Book book){return book.Price > 30M;});

However if the Books object implements IQueryable<T>, the compiler would
retain the steps used to create the result as an expression tree (listing 7.3):

LinqBooksDataContext context = new LinqBooksDataContext();

var bookParam = Expression.Parameter(typeof(Book), "book");

var query =
 context.Books.Where<Book>(Expression.Lambda<Func<Book, bool>>
 (Expression.GreaterThan(

Listing 7.3 Query expressed as expressions

Figure 7.2 Object model for the IQueryable interface

254 CHAPTER 7

Peeking under the covers of LINQ to SQL
 Expression.Property(
 bookParam,
 typeof(Book).GetProperty("Price")),
 Expression.Constant(30M, typeof(decimal?))),
 new ParameterExpression[] { bookParam }));

By retaining the steps that were used to create the query, IQueryable’s provider
implementation can translate the language construct into a format understood by
the underlying data source. Also, we can compositionally create and extend the
query constructs by adding more functionality (ordering, grouping, aggregating,
paging) and then evaluate and execute the results all at once.

 At this point, you may be saying, “Okay, I understand how the compiler can
know to use LINQ to SQL instead of LINQ to Objects, but what are the expression
things you keep mentioning?” I’m glad you asked, as they are the next layer that
we must strip away.

7.2.2 Expression trees

Expression trees supply the working pieces of LINQ to SQL with the information
necessary to work. We introduced expression trees in section 3.5. In section 5.1.3,
we demonstrated how to dynamically create expressions and add them to the
trees to build a query dynamically.

 In contrast to our previous explorations, with LINQ to SQL we take existing
expression trees and examine them branch by branch in order to translate our
query expressions to a syntax understood by the database. There have been other
efforts to make database access more generic so that the same query syntax can
be applied to multiple database engines, even though the engines may process
the query differently. Often these solutions rely on taking queries as strings and
applying a number of string manipulations to convert one string representation
into another.

 Unlike these other query translation systems, LINQ to SQL distinguishes itself
by translating the query expressions into expression trees. By retaining the expres-
sions, we can enhance the queries by adding to them compositionally, keep the
queries strongly typed, provide better IDE integration, and retain the necessary
metadata. Best of all, we don’t have to worry about parsing a string representation
of our intent. The expression trees allow us to use similar heuristics that are
implemented by the language compilers themselves.

 Let’s see what happens if we apply this concept to our earlier IQueryable
example. In this case, let’s focus on the expressions in the example.

Translating query expressions to SQL 255
LinqBooksDataContext context = new LinqBooksDataContext();

var bookParam = Expression.Parameter(typeof(Book), "book");

var query =
 context.Books.Where<Book>(Expression.Lambda<Func<Book, bool>>
 (Expression.GreaterThan(
 Expression.Property(
 bookParam,
 typeof(Book).GetProperty("Price")),
 Expression.Constant(30M, typeof(decimal?))),
 new ParameterExpression[] { bookParam }));

By highlighting our expression types, we can see that we have the following kinds
of expressions: Lambda, GreaterThan, Property, Parameter, Constant. Each of these
expression types can be broken down into more granular portions to encapsulate
more information. For example, the GreaterThan expression is actually a Bina-
ryExpression that takes two parts, a left side and a right side. With this, we can
compare the value from the left side to see if it is GreaterThan the value on the
right side. By breaking the expression down, we can then generalize the analysis
and allow for variations in the left and right portions. In this example, the left
value is the book’s price and the right side is the constant value of 30. Figure 7.3
shows a graphical representation of the full expression tree.

Figure 7.3
ExpressionTree
Visualizer
representation of the
book query

256 CHAPTER 7

Peeking under the covers of LINQ to SQL
 In the figure, we can see that more information is available about the method
than was evident in the compiler representation from the IQueryable example.1

Starting at the top, we can see that the Where MethodCallExpression takes two
arguments, the ConstantExpression that contains the source of the data and a
UnaryExpression that contains the function we’ll apply. Because the data context
maintains a reference to the metadata information including the mapping (gen-
erated from attributes or XML), we can translate the object representation into
terms that the database understands.

 Looking further down the expression tree, we can see how additional nodes
are inserted when applying the GreaterThan BinaryExpression. When applying
the GreaterThan operator on CLR types, we need to compare similar types. Thus,
we need to convert the ConstantExpression into a nullable Decimal type in
order to compare it with the data type in the underlying book’s Price property.
However, this additional step is not necessary when we issue a SQL statement to
the database.

 So, how does LINQ to SQL take all of this information and translate it to the
database? When we first try to iterate over the results of our IQueryable<T> type,
the entire Expression value is passed to its assigned Provider. The provider then
uses a Visitor pattern to walk the expression tree identifying expression types that
it knows how to handle, such as Where and GreaterThan. Additionally, it walks the
expression tree from the bottom up to identify nodes that don’t need to be evalu-
ated, like lifting the constant to a nullable type. The provider constructs a parallel
expression tree that more closely matches the SQL implementation.

 Once the expressions are parsed, the provider constructs the resulting SQL
statement, substituting the appropriate mappings to translate the objects into
table and column names taken from the attributes or XML mapping source. Once
all of the pieces are put together, the resulting SQL statement can be sent to the
database. The resulting values are then used to populate the necessary object col-
lection, again using the mapping information as appropriate.

 Performing the translation from the expression tree to a provider-specific
implementation increases in complexity as we add more functions to the tree. It
would be impossible to cover all of the possible query permutations in this book. If
you’re interested in pursuing this further, Matt Warren, one of the original archi-
tects of LINQ to SQL, has a detailed explanation demonstrating how to implement
an IQueryable provider in a blog series starting with http://blogs.msdn.com/
mattwar/archive/2007/07/30/linq-building-an-iqueryable-provider-part-i.aspx.

1 The LINQ samples at http://msdn2.microsoft.com/en-us/bb330936.aspx include an expression tree
visualizer project that can evaluate an expression tree and display it in a treeview control.

http://blogs.msdn.com/mattwar/archive/2007/07/30/linq-building-an-iqueryable-provider-part-i.aspx

The entity life cycle 257
 Additionally, we’ll dig deeper with the expression trees at the end of this book,
when we investigate extending LINQ to use a web service provided by Amazon. For
now, the important thing to take away is to understand the difference between
LINQ to Objects and LINQ to SQL and how the IQueryable interface can be used
to perform the key translations that make the technology work.

 So far we’ve shown how LINQ to SQL knows how to map the data to classes. We
also have shown how it translates our query expressions into a syntax the database
understands. By combining these features, the .NET 3.5 Framework has provided
a powerful querying functionality. As we demonstrated in chapter 6, LINQ to SQL
is not limited to only viewing data. It also maintains information necessary to per-
sist our changes back to the database. Let’s continue our look under the covers by
seeing what happens to our objects in their life cycle after we fetch them.

7.3 The entity life cycle

If LINQ to SQL were limited to mapping data between relational data and objects,
it would represent yet another in a long line of object-relational mapping solu-
tions. As we’ve already seen, LINQ offers the capability to construct strongly typed
queries directly within the language. Beyond that, the framework includes sup-
port to manage object changes and to optimize the database interaction based on
those values.

 The DataContext object continues to play a pivotal role in the entity’s life
cycle. As we’ve already seen, the DataContext manages the connection to the
database. In addition, it evaluates the mappings and translates the expression
trees into consumable structures. If we were only concerned with viewing data, the
mapping and translation services would be sufficient for our needs. The life cycle
would end the moment we fetched the objects.

 As applications work with the results of queries, they typically view the data and
make changes. We need a mechanism for tracking the changes that are made and
maintaining those values until they are no longer needed. Additionally, we need
to retain the changes so that we can commit them to the database. To handle the
rest of the object’s life cycle, the DataContext also manages references to the
retrieved objects. It watches as changes are made to them by tracking the
retrieved object’s identities and the changed values. Figure 7.4 illustrates the ser-
vices offered by the DataContext.

 The life cycle begins when we first read a value from the database. Prior to
passing the resulting object on to the consuming application code, the DataCon-
text retains a reference to the object. An identity management service tracks the

258 CHAPTER 7

Peeking under the covers of LINQ to SQL
object in a list indexed by the identity designated in the mapping. By retaining
this value, we can refer back to the object based on its object identity.

 Each time we query values from the database, the DataContext checks with the
identity management service to see if an object with the same identity has already
been returned in a previous query. If so, the DataContext will return the value
stored in the internal cache rather than remapping the row to the table. By retain-
ing the original value, we can allow clients to make changes to their copy of the
data without regard for changes that other users have made. We won’t worry
about concurrency issues until the changes are submitted.

 You may expect that if the context is caching the returned values, separate
database queries will not be issued each time you request information. Assuming
you don’t prefetch your results using the ToList or similar extension methods,
the database will be queried each time. The distinction here is that if the context
is already aware of the object, only the identifying column(s) will be used. The
additional columns will be ignored.

 There are a couple of instances where the object identity implementation may
catch you off guard. Using the Single extension method is an exception to this
caching behavior. With Single, the internal cache is checked first. If the
requested object is not in the cache, the database will be queried.

 Additionally, you may expect that an item inserted into or removed from a table
will be available for querying. Since the database is hit and only items that the data-
base knows about are returned, objects added or removed using InsertOnSubmit
or DeleteOnSubmit are not included in the results until they are actually submitted.
This is the key reason why the xxxOnSubmit methods were used instead of the typ-
ical IList method names. The at times counterintuitive behavior of the object
identity is important to understand as we use LINQ to change data.

Figure 7.4 DataContext services to maintain the object life cycle between
the application and database

The entity life cycle 259
7.3.1 Tracking changes

As we make changes to our objects, the DataContext maintains both the original
value of that property and the newly changed value by a change tracking service.
By retaining both the original and new values, we can optimize the submission
back to the database and only update the changed records. In listing 7.4, we estab-
lish two different DataContext objects. Each of them manages its own set of object
identities and change tracking.

LinqBooksDataContext context1 = new LinqBooksDataContext();
LinqBooksDataContext context2 = new LinqBooksDataContext();

context1.Log = Console.Out;
context2.Log = Console.Out;

Guid Id = new Guid("92f10ca6-7970-473d-9a25-1ff6cab8f682");

Subject editingSubject =
 context1.Subjects.Where(s => s.ID == Id).SingleOrDefault();

ObjectDumper.Write(editingSubject);
ObjectDumper.Write(context2.Subjects.Where(s => s.ID == Id));

editingSubject.Description = @"Testing update";

ObjectDumper.Write(context1.Subjects.Where(s => s.ID == Id));
ObjectDumper.Write(context2.Subjects.Where(s => s.ID == Id));

As we did in listing 7.3, we begin by setting up our two data context objects B. We
use two contexts for the purpose of this example to simulate two separate users.
Each context manages the identity and change tracking services separately. In this
example, we retrieve the subject that corresponds to a given Guid. In order to
demonstrate the identity management, we fetch the same record from our data-
base in two separate contexts. We also include logging C for each context to out-
put the results to the console (or output) window to prove that we’re actually
requesting information from the database.

 We fetch the editingSubject from the first context and display the values in
both the editingSubject and the database in the second context D. As shown in
table 7.4, the output for both values should be identical. We then change the
description on the editing subject, but we don’t commit the change to the data-
base E. At this point, the change is only retained in memory via the change track-
ing service of the context1 instance. Context2 has no knowledge of the change.

Listing 7.4 Identity management and change tracking

B

C

D

E

260 CHAPTER 7

Peeking under the covers of LINQ to SQL
When we output the results by reissuing the original query, we now see that the
description returned by the query on context1 returns our new description value,
but the one using context2 still returns the original value. Remember, since each
context mimics a different user, this would mean that two users would see differ-
ent representations of the data. If we were to check the value in the database, we
would see that it still retains the original values as well.

 It is important to realize the difference between the value stored in memory
for each context object and the value stored in the database. The results of the
query on the second context object are not surprising. However, what is not
expected is that requerying the first context returns the object from the identity
tracking service instead of a new object from the database. Actually, the second
context is returning the object it has retained as well, but since we haven’t made
any change to the object tracked by the second context, it appears to be identical
to the values stored in the database for that row.

 In addition to tracking changes in column-mapped properties, the change-
tracking service also monitors changes in object associations. Thus if we were to
move a comment from one book to another, the change tracking would maintain
that change in memory until we actually submit the change back to the database.

7.3.2 Submitting changes

So far, all of the changes we’ve made have been retained in memory and not per-
sisted to the database. It only appears that the changes have been applied on sub-
sequent queries due to the identity tracking on the DataContext. As we
demonstrated in chapter 6, submitting changes to the database is done with a sin-
gle call of SubmitChanges on the context. When SubmitChanges is called, the con-
text compares the original values of the objects that it is tracking with the current
values. If these differ, the context packages up the changes and creates the neces-
sary query string to be executed by the database.

 Assuming no conflicts occurred in the update and the appropriate records
are updated, the context flushes its list of changes. If there are problems, the
changes are rolled back in the database based on the concurrency management

Table 7.4 State of values returned by queries before and after changes

Action Context1 Context2 Database

Value returned from original query Original Original Original

Make change and requery Changed Original Original

The entity life cycle 261
selected. Listing 7.5 extends the previous example by actually saving the data to
the database.

LinqBooksDataContext context1 = new LinqBooksDataContext();
LinqBooksDataContext context2 = new LinqBooksDataContext();

Guid Id = new Guid("92f10ca6-7970-473d-9a25-1ff6cab8f682");

Subject editingSubject =
 context1.Subjects.Where(s => s.ID == Id).SingleOrDefault();

Console.WriteLine("Before Change:");
ObjectDumper.Write(editingSubject);
ObjectDumper.Write(context2.Subjects.Where(s => s.ID == Id));

editingSubject.Description = @"Testing update";

Console.WriteLine("After Change:");
ObjectDumper.Write(context1.Subjects.Where(s => s.ID == Id));
ObjectDumper.Write(context2.Subjects.Where(s => s.ID == Id));

context1.SubmitChanges();

Console.WriteLine("After Submit Changes:");
ObjectDumper.Write(context1.Subjects.Where(s => s.ID == Id));
ObjectDumper.Write(context2.Subjects.Where(s => s.ID == Id));

LinqBooksDataContext context3 = new LinqBooksDataContext();
ObjectDumper.Write(context3.Subjects.Where(s => s.ID == Id));

This results in the following output:

Before Change:
ID=92f10ca6-7970-473d-9a25-1ff6cab8f682
Name=Novel
Description=Initial Value
ObjectId=448c7362-ca4e-4199-9e4f-0a0d029b9c8d

ID=92f10ca6-7970-473d-9a25-1ff6cab8f682
Name=Novel
Description=Initial Value
ObjectId=5040810a-eca9-4850-bcf6-09e42837fe92

After Change:
ID=92f10ca6-7970-473d-9a25-1ff6cab8f682

Listing 7.5 Submitting changes with identity and change tracking management

B

C

D

262 CHAPTER 7

Peeking under the covers of LINQ to SQL
Name=Novel
Description=Testing Update
ObjectId=448c7362-ca4e-4199-9e4f-0a0d029b9c8d

ID=92f10ca6-7970-473d-9a25-1ff6cab8f682
Name=Novel
Description=Initial Value
ObjectId=5040810a-eca9-4850-bcf6-09e42837fe92

After Submit Changes:
Id=92f10ca6-7970-473d-9a25-1ff6cab8f682
Name=Novel
Description=Testing update
ObjectId=bc2d5231-ed4e-4447-9027-a7f42face624

Id=92f10ca6-7970-473d-9a25-1ff6cab8f682
Name=Novel
Description=Original Value
ObjectId=18792750-c170-4d62-9a97-3a7444514b0b

Id=92f10ca6-7970-473d-9a25-1ff6cab8f682
Name=Novel
Description=Testing update
ObjectId=207eb678-0c29-479b-b844-3aa28d9572ac

Listing 7.5 begins just as the previous example did. Up until we call Submit-
Changes on the first context B, any changes we made were retained only in mem-
ory. Calling SubmitChanges on context1 commits the changes to the database
and flushes the change tracking on context1. Following SubmitChanges, we issue
the same LINQ query on context1 and context2 C. Additionally, for the pur-
poses of this example, we create a new third context that is oblivious to the iden-
tity and change tracking of the other two contexts D. The final three queries are
identical except for the context that is issuing the request. In Table 7.5 we summa-
rize the results before and after submitting the changes.

In order to explicitly identify the objects, we’ve added a new Guid property
called ObjectId. The value of this column is assigned as part of the Subject’s

Table 7.5 Values returned before and after submitting changes from each DataContext

Action Description1 Description2 Description3 Id1 Id2 Id3

Initial fetch Original Original n/a Guid1 Guid2 n/a

After change Changed Original n/a Guid1 Guid2 n/a

After commit Changed Original Changed Guid1 Guid2 Guid3

The entity life cycle 263
constructor. This way, the value should change each time we have a different
object instance. In the resulting output, compare the values in each object
before changes, after changes, and after submitting. Notice that the ObjectId in
the subject returned by the first context is retained for the life of the context.
Even after we submit changes, context1 continues to track the same object
through the identity-tracking service. To prove that the value actually exists in
the database following the submit changes, we compare the results from
context1 and the local context instance (Description3 and Id3). Notice that the
fetched values are identical, but the ObjectId differs between these objects. Also
notice that the subject returned from context2 is still maintaining the values
from its identity service.

 It is important to realize how your objects work in relation to the data context.
The DataContext is intended to be a short-lived object. We need to be aware of
the context(s) we’re using and how the identity- and change-tracking services
work in order to avoid unexpected results. When only fetching data, we can create
the context as we fetch the values and then throw it away. In that case, we can opti-
mize the context by setting the ObjectTrackingEnabled property to false. This
increases performance by disabling the change- and identity-tracking services, but
disables the ability to update the changes.

 If we need to be able to update the data, be aware of the context’s scope and
manage it appropriately. In Windows applications, it may be acceptable to retain a
context as changes are made, but realize the performance and memory overhead
that come with retaining all objects and the changed values. The intended usage
pattern for LINQ to SQL is as a unit of work, which uses the following pattern:
Query – Report – Edit – Submit – Dispose. As soon as we no longer need to main-
tain changes on an object, we should clean up the context and create a new one.

7.3.3 Working with disconnected data

Occasionally, working in a connected environment with the context is either inad-
visable or impossible. This situation typically occurs when updating values from an
ASP.NET page, web service, or other similar disconnected model, including Work-
flow (WF) and Windows Communication Foundation (WCF). When fetching
records in the disconnected model, we need to encapsulate the results. We cannot
cache the context or transmit it to the disconnected user.

 Since the object must be divorced from the context, we can no longer rely on
the context’s change-tracking or identity-management services. Transmission to
the client is limited to simple objects (or an XML representation of the objects).
Managing changes becomes a bigger challenge in the disconnected model.

264 CHAPTER 7

Peeking under the covers of LINQ to SQL
 To support the disconnected model, LINQ to SQL offers two alternatives to
apply changes. If you’re just adding a row to a table, you can call the InsertOn-
Submit2 method on the appropriate DataContext’s table object. Change tracking
is not necessary for new records, only for changing existing ones, thus calling
InsertOnSubmit works fine since we don’t need to worry about conflicts with
existing records.

 However, if we need to change an existing record, we need to associate the
changes with the existing record. Several options exist to attach the changed
object to the context. The easiest and preferred method is to use the Attach
method to introduce the record to a DataContext as if it were loaded via a normal
query. The example in listing 7.6 uses the Attach method to connect an object to
a new DataContext.

public void UpdateSubject(Subject cachedSubject)

{

 LinqBooksDataContext context = new LinqBooksDataContext();

 context.Subjects.Attach(cachedSubject);

 cachedSubject.Name = @"Testing update";

 context.SubmitChanges();

}

In this example, we begin with the existing, unchanged object. This object could
have been cached in an ASP.NET Session object or supplied as a parameter of our
method. We connect the object to the DataContext using the Attach method B.
Once it is attached, the context’s change- and identity-tracking service can moni-
tor the changes we’re going to apply. Any subsequent changes C will be tracked
by the change-tracking service and updated accordingly. Remember that the
object must be attached prior to making the changes or else the change tracking
will not be aware of the changes.

 If you try to attach a value already updated, as is typical in a web service sce-
nario, you can’t just attach this already-changed version unless the object has
some special characteristics. If you implement a TimeStamp column in your
object, as we did with the Author object, you can attach the author object using
the overloaded Attach method as follows:

context.Authors.Attach(cachedAuthor, True)

2 LINQ releases through the beta cycle used the Add and Remove methods on the table objects. When
Visual Studio 2008 was finished, the names for these methods were changed to InsertOnSubmit and
RemoveOnSubmit. Earlier documentation may still refer to the earlier API.

Listing 7.6 Updating records in a disconnected environment

B
C

The entity life cycle 265
The second parameter indicates that the object should be considered dirty and
forces the context to add the object to the list of changed objects. If you don’t
have the liberty of enhancing your database schema to include timestamp col-
umns and you need to use Attach like this, you can set the UpdateCheck property
on the mapping so that the values are not checked. In both of these cases, all
properties will be updated, regardless of whether or not they have been changed.

 If you retain a copy of the original object (either via a cache or by keeping a
copy inside the entity itself), attach the new object by using the Attach method
and including both the changed version along with the original version:

context.Subjects.Attach(changedSubject, originalSubject);

In this case, only the changed columns will be included in the Update clause,
rather than an update being forced on all columns. The original values will be
used in the Where clause for concurrency checking.

 If you can’t take advantage of any of these Attach scenarios, you can replace
the originalSubject with one newly fetched from the database as part of the
update transaction as shown in listing 7.7.

public static void UpdateSubject(Subject changingSubject)
{
 LinqBooksDataContext context = new LinqBooksDataContext();
 Subject existingSubject = context.Subjects
 .Where(s => s.ID == changingSubject.ID)
 .FirstOrDefault<Subject>();
 existingSubject.Name = changingSubject.Name;
 existingSubject.Description = changingSubject.Description;
 context.SubmitChanges();
}

In the case of objects that have already been updated, simply attaching them to
the DataContext will fail. No values would be flagged as needing to be updated, as
the change-tracking service will have been unaware of the changes. Here, we need
to fetch the record from the database based on the ID of the object that we’re try-
ing to update B. Then, we need to update each property as necessary C. If the
values in the properties are the same, the change-tracking service will continue to
exclude those properties from needing to be updated. When we call Submit-
Changes, only the properties and objects that have changed will be submitted. D

 Be aware that the object we’re updating may have been based on values that
have been subsequently changed in the database. In order to manage concur-
rency tracking, our best option is to supply a timestamp that indicates

Listing 7.7 Updating a disconnected object that has already been changed

B

C

D

266 CHAPTER 7

Peeking under the covers of LINQ to SQL
the database version when originally fetching the record. If adding the timestamp
column is not an option, we can retain a copy of the original values or a hash of
the original values. We can then compare the appropriate values and manage the
concurrency ourselves.

 The DataContext’s object identity and change-tracking services play a crucial
role in the object’s life cycle. If we simply need to read the values, we can set the
DataContext to a read-only mode by setting the ObjectTrackingEnabled to false,
thus bypassing these services. However, if we need to be able to change and persist
the values, tracking the objects and changes is critical.

7.4 Summary

On the surface, LINQ to SQL allows for easy access to querying and updating abili-
ties without the need to manually define the database access. Under the covers, it
offers a powerful set of mapping structures, expression parsing, and entity man-
agement. You can use the technology without fully understanding how everything
works under the covers. The more you understand how it works, the less likely you
are to find yourself experiencing unexpected results. If nothing else, it is impor-
tant to understand how the DataContext manages the object identity and change
management so that you make sure you update the correct information.

 At this point, we’ve covered the core concepts behind LINQ to SQL and pulled
back the covers to get an understanding of how it works. In the next chapter, we’ll
continue to examine LINQ to SQL by exploring some more advanced functional-
ity. By the time we’re done, you should have a full tool belt for using LINQ with
the SQL Server family of databases.

Advanced LINQ
to SQL features
This chapter covers:
■ Handling concurrency
■ Working directly with the database using pass-

through queries, stored procedures, and user
defined functions

■ Improving the business tier with compiled queries,
partial classes, partial methods, and object
inheritance

■ Comparison of LINQ to SQL with LINQ to Entities
267

268 CHAPTER 8

Advanced LINQ to SQL features
In the last couple of chapters, we discussed the core components of working with
relational data using LINQ to SQL. We saw how the mapping metadata combined
with the IQueryable interface and expression trees to enable us to apply the same
LINQ to Objects query expressions to relational data stores. By leveraging com-
mon APIs, we can eliminate vast amounts of data plumbing code and focus more
directly on the business needs.

 In this chapter, we’re going to extend the basic concepts and see some of LINQ
to SQL’s more advanced features. We’ll begin by expanding on our discussion of
the object life cycle, focusing on concurrency and transaction issues. We’ll con-
tinue by exploring how we can work more directly with the database and take
advantage of some of the more specific functionality offered by SQL Server. Moving
beyond the data tier, we’ll look at options LINQ to SQL gives us to customize the
business tier, including precompiling query expressions, using partial classes, and
polymorphism via inheritance. We’ll conclude by briefly exploring the upcoming
Entity Framework as an alternative to LINQ to SQL for accessing relational data.

8.1 Handling simultaneous changes

When designing systems for a single user, the developer doesn’t need to worry about
how changes that one person makes affect other users. In actuality, it is rare for a
production system to be used by only one user, as they typically grow and take on
lives of their own. As the system grows to support multiple users, we need to take into
account the conflicts that arise when two users try to change the same record at the
same time. In general, there are two strategies to handle this: pessimistic concurrency,
which locks a second user out of changing a record until the first user has released
a lock, and optimistic concurrency, which allows two users to make changes. In the case
of optimistic concurrency, the application designer needs to decide whether to
retain the first user’s values, retain the last update, or somehow merge the values
from both users. Each strategy offers different advantages and disadvantages.

8.1.1 Pessimistic concurrency

Prior to .NET, many applications maintained open connections to the database.
With these systems, developers frequently wrote applications that would retrieve a
record in the database and retain a lock on that record to prevent other users from
making changes to it at the same time. This kind of locking is called pessimistic con-
currency. Small Windows-based applications built with this pessimistic concurrency
worked with few issues. However, as those systems needed to scale to larger user
bases, the locking mechanisms caused systems to bog down.

Handling simultaneous changes 269
 At the same time the scalability issues started emerging, many systems began
moving from client-server architectures toward more stateless, web-based architec-
tures in order to alleviate deployment challenges. The demands of stateless web
applications required that they no longer rely on long-held pessimistic locks.

 As an attempt to keep developers from falling into the scalability and locking
traps posed by pessimistic concurrency models, the .NET Framework was designed
to target the disconnected nature of web-based applications. The data API for
.NET, ADO.NET, was created without the capability to hold cursors to the tables
and thus eliminated automated pessimistic concurrency options. Applications
could still be designed to add a “checked out” flag on a record that would be eval-
uated when subsequent attempts were made to access the same record. However,
these checked out flags were frequently not reset, as it became difficult to deter-
mine when the user was no longer using it. Due to these issues, the pessimistic
concurrency model began to unravel in the disconnected environment.

8.1.2 Optimistic concurrency

As a result of the problems encountered in a disconnected environment, an alter-
native strategy was typically used. The alternative, optimistic concurrency model
allowed any user to make changes to their copy of the data. When the values were
saved, the program would check the previous values to see if they were changed. If
the values were unchanged, the record would be considered unlocked, thus the
record would be saved. If there was a conflict, the program would need to know
whether to automatically overwrite the previous changes, throw away the new
changes, or somehow merge the changes.

 The first half of determining optimistic concurrency is relatively simple. With-
out a concurrency check, the SQL statement to the database would consist of the
following syntax: UPDATE TABLE SET [field = value] WHERE [Id = value]. To
add optimistic concurrency, the WHERE clause would be extended to not only
include the value of the ID column, but also compare the original values of each
column in the table. Listing 8.1 demonstrates a sample SQL statement to check
for optimistic concurrency on our running example’s Book table.

UPDATE dbo.Book
SET Title = @NewTitle,
 Subject = @NewSubject,
 Publisher = @NewPublisher,
 PubDate = @NewPubDate,
 Price = @NewPrice,

Listing 8.1 SQL Update statement to perform optimistic concurrency on Book

New
values

270 CHAPTER 8

Advanced LINQ to SQL features
 PageCount = @NewPageCount,
 Isbn = @NewIsbn,
 Summary = @NewSummary,
 Notes = @NewNotes
WHERE ID = @ID AND Title = @OldTitle AND
 Subject = @OldSubject AND
 Publisher = @OldPublisher AND
 PubDate = @PubDate AND
 Price = @Price AND
 PageCount = @PageCount AND
 Isbn = @OldIsbn AND
 Summary = @OldSummary AND
 Notes = @OldNotes
RETURN @@RowCount

Using the code in listing 8.1, we attempt to update a record and check the Row-
Count to see if the update succeeded. If it returns 1, we know that the original val-
ues did not change and the update worked. If it returns 0, we know that someone
changed at least one of the values since they were last fetched, because we can’t
find a record that still has the same values we originally loaded. In this case, the
record is not updated. At that point, we can inform the user that there was a con-
flict and handle the concurrency violation appropriately. As with the rest of LINQ
to SQL, handling concurrency issues is built in.

 Configuring classes to support optimistic concurrency is extremely easy. In
fact, by establishing the table and column mappings, we’re already set to use opti-
mistic concurrency. When calling SubmitChanges, the DataContext will automati-
cally implement optimistic concurrency. To demonstrate the SQL generated for a
simple update, let’s consider an example where we get the most expensive book
in our table B and attempt to discount it by 10% C. (See listing 8.2.)

Ch8DataContext context = new Ch8DataContext()
Book mostExpensiveBook = (from book in context.Books
 orderby book.Price descending
 select book).First();

decimal discount = .1M;
mostExpensiveBook.Price -= mostExpensiveBook.Price * discount;

context.SubmitChanges();

Listing 8.2 Default concurrency implementation with LINQ to SQL

Compare
original values

Update successful?

B

C

D

Handling simultaneous changes 271
This produces the SQL to select the book, as well as the following SQL to update:

UPDATE [dbo].[Book]
SET [Price] = @p8
FROM [dbo].[Book]
WHERE ([Title] = @p0) AND ([Subject] = @p1) AND ([Publisher] = @p2)
 AND ([PubDate] = @p3) AND ([Price] = @p4) AND ([PageCount] = @p5)
 AND ([Isbn] = @p6) AND ([Summary] IS NULL) AND ([Notes] IS NULL)
 AND ([ID] = @p7)

When SubmitChanges is called on the DataContext D, the Update statement is
generated and issued to the server. If no matching record is found based on the
previous values passed in the WHERE clause, the context will recognize that no
records are affected as part of this statement. When no records are affected, a
ChangeConflictException is thrown.

 Depending on the situation, the number of parameters needed to implement
optimistic concurrency can cause performance issues. In those cases, we can
refine our mappings to identify only the fields necessary to ensure that the values
didn’t change. We can do this by setting the UpdateCheck attribute. By default,
UpdateCheck is set to Always, which means that LINQ to SQL will always check this
column for optimistic concurrency. As an alternative, we can set it to only check if
the value changes (WhenChanged) or to never check (Never).

 If we really want to draw on the power of the UpdateCheck attribute and have
the ability to modify the table schema, we can add a RowVersion or TimeStamp col-
umn to each table. The database will automatically update the value of the Row-
Version each time the row is changed. Concurrency checks only need to run on
the combination of the version and ID columns. All other columns are set to
UpdateCheck=Never and the database will assist with the concurrency checking.
We used this scheme for the Author class mapping back in chapter 7. Listing 8.3
illustrates the revised Author class, applying the same change as we did in the pre-
vious example. Using the TimeStamp column, we can see a streamlined WHERE
clause in the Update statement.

Ch8DataContext context = new Ch8DataContext();
Author authorToChange = (context.Authors).First();

authorToChange.FirstName = "Jim";
authorToChange.LastName = "Wooley";

context.SubmitChanges();

Listing 8.3 Optimistic concurrency with Authors using a timestamp column

272 CHAPTER 8

Advanced LINQ to SQL features
This results in the following SQL:

UPDATE [dbo].[Author]
SET [LastName] = @p2, [FirstName] = @p3
FROM [dbo].[Author]
WHERE ([ID] = @p0) AND ([TimeStamp] = @p1)

SELECT [t1].[TimeStamp]
FROM [dbo].[Author] AS [t1]
WHERE ((@@ROWCOUNT) > 0) AND ([t1].[ID] = @p4)

In addition to changing the standard optimistic concurrency by setting all fields
to check always or using a timestamp, there are a couple of other concurrency
models available. The first option is to simply ignore any concurrent changes and
always update the records, allowing the last update to be accepted. In that case,
set UpdateCheck to Never for all properties. Unless you can guarantee that con-
currency is not an issue, this is not a recommended solution. In most cases, it is
best to inform the user that there was a conflict and provide options to remedy
the situation.

 In some cases, it is fine to allow two users to make changes to different col-
umns in the same table. For example, in wide tables, we may want to manage dif-
ferent sets of columns with different objects or contexts. In this case, set the
UpdateCheck attribute to WhenChanged rather than Always.

 This is not recommended in all cases, particularly when multiple fields contrib-
ute to a calculated total. For example, in a typical OrderDetail table, columns
may appear for quantity, price, and total price. If a change was made in either the
quantity or price, the total price will need to be changed. If one user changes the
quantity while another changes the price, the total price would not be modified
properly. This form of automatic merge concurrency management does have its
place. Business demands should dictate if it is appropriate in any given situation.

 With LINQ to SQL, concurrency checking can be set on a field-level basis. The
framework was designed to provide the flexibility to allow for various customized
implementations. The default behavior is to fully support optimistic concurrency.
So far, we’ve identified how to recognize when there is a conflict. The second
part of the equation is what we do with the knowledge that there was a concur-
rency exception.

8.1.3 Handling concurrency exceptions

In using the Always or WhenChanged options for UpdateCheck, it is inevitable that
two users will modify the same values and cause conflicts. In those cases, the
DataContext will raise a ChangeConflictException when the second user issues

Perform
update

Get updated timestamp

Handling simultaneous changes 273
an SubmitChanges request. Because of the likelihood of running into an excep-
tion, we need to make sure we wrap the updates inside a structured exception-
handling block.

 Once an exception is thrown, several options to resolve the exception exist. The
DataContext helps discover not only the object(s) that are in conflict, but also
which properties are different between the original value, the changed value, and
the current value in the database. In order to provide this level of information, we
can specify the RefreshMode to determine whether the conflicting record is first
refreshed from the database to determine the current values. Once we have the
refreshed values, we can determine whether we want to retain the original values,
the current database values, or our new values. If we want to take the last option and
make sure our values are the ones that are retained, we resolve the change conflicts
of the context object specifying that we want to keep the changes. Listing 8.4 illus-
trates a typical try-catch block to make sure our changes are retained.

try
{
 context.SubmitChanges(ConflictMode.ContinueOnConflict);
}
catch (ChangeConflictException)
{
 context.ChangeConflicts.ResolveAll(RefreshMode.KeepChanges);

 context.SubmitChanges();
}

If we use the KeepChanges option, we don’t need to inspect the changed values.
We assert that our values are correct and go ahead and force them into the appro-
priate row. This last-in-wins method can be potentially dangerous. Columns that
we didn’t update will be refreshed from the current value in the database.

 If the business needs demand it, we could merge the changes with the new val-
ues from the database; simply change RefreshMode to KeepCurrentValues. This
way, we’ll incorporate the other user’s changes into our record and add our
changes. However, if both users changed the same column, the new value will
overwrite the value that the first user updated.

 To be safe, we can overwrite the values that the second user tried to change
with the current values from the database. In that case, use RefreshMode.Over-
writeCurrentValues. At this point, it would not be beneficial to submit the

Listing 8.4 Resolving change conflicts with KeepChanges

274 CHAPTER 8

Advanced LINQ to SQL features
changes back to the database again, as there would be no difference between the
current object and the values in the database. We would present the refreshed
record to the user and have them make the appropriate changes again.

 Depending on the number of changes that the user made, they may not appre-
ciate having to reenter their data. Since SubmitChanges can update multiple
records in a batch, the number of changes could be significant. To assist with this,
the SubmitChanges method takes an overloaded value to indicate how we wish to
proceed when a record is in conflict. We can either stop evaluating further records
or collect a listing of objects that were conflicted. The ConflictMode enumeration
specifies the two options: FailOnFirstConflict and ContinueOnConflict.

 With the ContinueOnConflict option, we’ll need to iterate over the conflict-
ing options and resolve them using the appropriate RefreshMode. Listing 8.5 illus-
trates how to submit all of the nonconflicting records and then overwrite the
unsuccessful records with the current values in the database.

try
{
 context.SubmitChanges(ConflictMode.ContinueOnConflict);
}
catch (ChangeConflictException)
{
 context.ChangeConflicts.ResolveAll(RefreshMode.OverwriteCurrentValues);
}

With this method, we can at least submit some of the values and then prompt the
user to reenter his information in the conflicting items. This could still cause
some user resentment, as he would need to review all of the changes to see what
records need to be changed.

 A better solution would be to present the user with the records and fields that
were changed. LINQ to SQL not only allows access to this information, but also
supports the ability to view the current value, original value, and database value
for the conflicting object. Listing 8.6 demonstrates using the ChangeConflicts
collection of the DataContext to collect the details of each conflict.

try
{
 context.SubmitChanges(ConflictMode.ContinueOnConflict);
}

Listing 8.5 Replacing the user’s values with ones from the database

Listing 8.6 Displaying conflict details

Handling simultaneous changes 275
catch (ChangeConflictException)
{
 var exceptionDetail =
 from conflict in context.ChangeConflicts
 from member in conflict.MemberConflicts
 select new
 {
 TableName = context.GetTableName(conflict.Object),
 MemberName = member.Member.Name,
 CurrentValue = member.CurrentValue.ToString(),
 DatabaseValue = member.DatabaseValue.ToString(),
 OriginalValue = member.OriginalValue.ToString()
 };
 ObjectDumper.Write(exceptionDetail);
}

Each item in the ChangeConflicts collection B contains the object that con-
flicted as well as a MemberConflicts collection C. This collection contains infor-
mation about the Member, CurrentValue, DatabaseValue, and OriginalValue D.
Once we have this information, we can display it to the user in whatever method
we choose.

 Using this code, we can display details of the concurrency errors that the user
creates. Consider the possibility where two users try to change the price of a book
at the same time. If the first user were to raise the price by 2 dollars while a second
tries to discount it by a dollar, what would happen? The first user to save the
changes would have no problems. As the second user tries to commit her changes,
a ChangeConflictException will be thrown. We could easily display the excep-
tionDetail list as shown in figure 8.1.

 Once presented with the details of the conflicts, the second user can elect how
she wants to resolve each record individually. The key point to realize is that the

B
C

D

Figure 8.1 Displaying the original, current, and database value to resolve concurrency
exceptions

276 CHAPTER 8

Advanced LINQ to SQL features
DataContext is more than a connection object. It maintains full change tracking
and concurrency management by default. We have to do extra work to turn the
optimistic concurrency options off.

 In designing systems that allow for multiple concurrent users, we need to con-
sider how to handle concurrency concerns. In most cases, it is not a matter of if a
ChangeConflictException will be thrown. It is only a matter of when. By catching
the exception, we can either handle it using one of the resolution modes or roll
the entire transaction back. In the next section, we’ll look at options for manag-
ing transactions within LINQ to SQL.

8.1.4 Resolving conflicts using transactions

As we were discussing concurrency options, we noted that updating the database
with SubmitChanges could update a single record or any number of records (even
across multiple tables). If we run into conflicts, we can decide how to handle the
conflict. However, we didn’t point out previously that if some effort is not made to
roll back changes, any records that were successfully saved prior to the exception
will be committed to the database. This could leave the database in an invalid
state if some records are saved and others are not.

 Why is it a bad thing to save some of the records and not others? Consider
going to a computer store to purchase the components for a new computer. We
pick up the motherboard, case, power supply, hard drives, and video card, and
then head to the counter to check out. The astute salesperson notices the missing
memory and processor. After looking around for a bit, he finds the store doesn’t
have a compatible processor. At this point, we’re left with a decision: go ahead
and purchase the pieces we picked out and hope to find the remaining pieces
somewhere else, change the motherboard to one with a matching processor, or
stop the purchase.

 Now, consider that this computer is your database. The components are the
records in the business objects that need to be updated and the salesperson is the
DataContext. The salesperson noticing the problem can be compared to the
DataContext throwing a ChangeConflictException. If we choose the first option
(buy what we can now), we could use ConflictMode.ContinueOnConflict and
then ignore the conflicts. Naturally, the DataContext needs to be told how to han-
dle the conflicts before they arise. If we choose the third option (give up and go
home), any changes would need to be rolled back (get your money back). If we
choose the middle option, we would need to roll back the changes from the data-
base, then decide what changes we need to make. Once the appropriate changes
are made, we could try to submit the changes again.

Handling simultaneous changes 277
 LINQ to SQL offers three main mechanisms to manage transactions. In the first
option, used by default, the DataContext will create and enlist in a transaction
when SubmitChanges is called. This will roll back changes automatically depend-
ing on the selected ConflictMode option.

 If we wish to manually maintain the transaction, the DataContext also offers
the ability to use the transaction on the connection already maintained by the
DataContext. In this case, we call BeginTransaction on DataContext.Connec-
tion before we try to submit the changes. After we submit the changes, we can
either commit them or roll them back. Listing 8.7 demonstrates this alternative.

try
{
 context.Connection.Open();
 context.Transaction = context.Connection.BeginTransaction();
 context.SubmitChanges(ConflictMode.ContinueOnConflict);
 context.Transaction.Commit();
}
catch (ChangeConflictException)
{
 context.Transaction.Rollback();
}

The downside of managing the transactions directly through the DataContext is
that it cannot span multiple connections or multiple DataContext objects. As a
third option, the System.Transactions.TransactionScope object that was intro-
duced with the .NET 2.0 Framework was specifically designed to seamlessly span
connections. To use it, add a reference to the System.Transactions library.

 This object will automatically scale the transaction based on the objects that it
covers. If the scope only covers a single database call, it will use a simple database
transaction. If it spans multiple classes with multiple connections, it will automati-
cally scale up to an enterprise transaction. Additionally, the TransactionScope
doesn’t require us to explicitly begin the transaction or roll it back. The only
thing you need to do is complete it. Listing 8.8 illustrates using the Transaction-
Scope with LINQ to SQL.

using (System.Transactions.TransactionScope scope =
 new System.Transactions.TransactionScope())
{

Listing 8.7 Managing the transaction through the DataContext

Listing 8.8 Managing transactions with the TransactionScope object

278 CHAPTER 8

Advanced LINQ to SQL features
 context.SubmitChanges(ConflictMode.ContinueOnConflict);
 scope.Complete();
}

Unlike the other transaction mechanisms, we don’t need to wrap the code in a try-
catch block solely to roll the transaction back. With the TransactionScope, the
transaction will automatically get rolled back unless we call the Complete method.
If an exception is thrown in SubmitChanges, the exception will bypass the Com-
plete method. We don’t need to explicitly roll the transaction back. It still needs
to be wrapped in an exception-handling block, but the exception handling can be
done closer to the user interface.

 The true joy of the TransactionScope object is that it automatically scales
based on the given context. It works equally well with local transactions and with
heterogeneous sources. Because of the flexibility and scalability, using the Trans-
actionScope object is the preferred method of handling transactions with LINQ
to SQL.

 Managing transactions and concurrency are important tasks that most applica-
tions need to consider. Even though LINQ to SQL provides baseline implementa-
tions of these important concepts, it allows the programmer to customize the
implementation to refine it to the customized business needs. The customizations
do not end with transactions and concurrency. They extend to a number of data-
base-specific capabilities that we can work with. Let’s continue by looking at some
of these more advanced capabilities.

8.2 Advanced database capabilities

In many cases, the default mapping between tables and objects is fine for simple
CRUD operations. But sometimes a direct relationship is not sufficient. In this sec-
tion, we’ll explore some of the additional options LINQ to SQL provides to cus-
tomize your data access. In each case, the programming model dramatically
reduces the amount of custom plumbing code. We’ll start by looking at issuing
statements directly to the database. We’ll continue by looking at how we can call
upon the programmatic options of SQL Server, including stored procedures and
user-defined functions.

8.2.1 SQL pass-through: Returning objects from SQL queries

Although the querying functionality in LINQ presents us with a revolutionary way
of working with data, there is a major downside to the concept. The object-based

Advanced database capabilities 279
query structures need to be compiled. In cases of ad hoc reporting or other user-
defined data access, we often need more flexible models. To achieve this end,
LINQ to SQL offers the ability to send dynamic SQL statements directly to the data-
base without the need to compile them. To use this, we only need a DataContext
object. From it, we can call the ExecuteQuery method passing the SQL string we
want to execute. In listing 8.9, we ask the user to supply the fields they want to
include and concatenate that value to the end of the SQL statement. We then dis-
play the results.

string searchName;
string sql = @"Select ID, LastName, FirstName, WebSite, TimeStamp " +
 "From dbo.Author " +
 "Where LastName = '" + searchName + "'";

IEnumerable<Author> authors = context.ExecuteQuery<Author>(sql);

The amount of data access code is greatly reduced as compared to standard
ADO.NET. When using the ExecuteQuery method, the source of the data is not
important. All that is important is that the column names returned by the select
statement match the names of the properties in the class. As long as these values
match, the pass-through query can return the strongly typed objects that we specify.

 Since the entire query is weakly typed when working with pass-through queries,
special care needs to be taken to validate the user-supplied values. In addition, we
also need to check the syntax. In listing 8.9, if the user enters a value for the
SearchName that is not a valid field name, the framework will throw an exception.
Even worse, a malicious user could easily initiate a SQL injection attack. For exam-
ple, consider the results that would be returned if the user enters the following
string in the textbox: Good' OR ''='. In this case, we would effectively be return-
ing all records where the author last name is “Good” and any records where an
empty string equals an empty string. Since the second clause would always return
true, all authors would be returned rather than just the requested author.

 As an alternative, the pass-through query can be constructed using the same
curly notation that is used by the String.Format method. Follow the SQL string
with a list of parameters that will be used by the query. In this case, the values are
added into the statement as parameters rather than relying on string concatena-
tion. Listing 8.10 extends the previous example with a parameter array replacing
the inline concatenation. Rather than performing a direct String.Format

Listing 8.9 Dynamic SQL pass-through

280 CHAPTER 8

Advanced LINQ to SQL features
method, which would result in a concatenation, the DataContext translates the
expression into a parameterized query. In this case, we can thwart users trying to
inject commands into the query string.

string searchName = "Good' OR ''='";

Ch8DataContext context = new Ch8DataContext();
string sql =
 @"Select ID, LastName, FirstName, WebSite, TimeStamp " +
 "From dbo.Author " +
 "Where LastName = {0}";

ObjectDumper.Write(context.ExecuteQuery<Author>(sql, SearchName));

Looking at the generated SQL, we can see that the query is now parameterized,
which will prevent the dreaded SQL injection attack.

Select ID, LastName, FirstName, WebSite, TimeStamp
From dbo.Author
Where LastName = @p0

Dynamic SQL can be a powerful tool. It can also be dangerous if placed in the
hands of the wrong users. Even for users who aren’t malicious, the dynamic SQL
option can allow them to create queries that cause poor performance due to a
lack of proper indexing for the query in question. Many database administrators
will object to the overuse of dynamic SQL. While it definitely has its place, try to
come up with other options before traversing down this route.

8.2.2 Working with stored procedures

At the opposite end of the spectrum from dynamic SQL lies the precompiled
stored procedures that are included with SQL Server. Although standard LINQ to
SQL methods can often be fine for simple CRUD operations, often business
forces demand the use of stored procedures. The most typical reasons for reli-
ance on stored procedures revolve around security, performance, auditing, or
additional functionality.

 In some cases, LINQ to SQL’s use of parameterized queries reduces the con-
cerns from a performance and security perspective. From the performance per-
spective, the parameterized queries’ execution plans are evaluated once and
cached, just as they are for stored procedures. From the security perspective,
parameterized queries eliminate the possibility of SQL injection attacks. LINQ to

Listing 8.10 Dynamic SQL pass-through with parameters

Advanced database capabilities 281
SQL still requires server permissions at the table level, which some database
administrators (DBAs) are reluctant to allow.

 Also, stored procedures allow the DBA to control the data access and customize
the indexing schemes. However, when using stored procedures, we can’t rely on
the DataContext dynamically creating the CRUD SQL statements and limiting the
number of properties that need to be updated. The entire object needs to be
updated each time. Nonetheless, if the application requires stored procedures,
they are relatively easy to use.

Reading data with stored procedures
When your environment requires stored procedures for accessing data, a bit more
work is necessary as opposed to using just the basic LINQ query syntax. The first
step is to create the stored procedure to return results. Once the procedure is set
up in your database, we can access it the same as any other method call. Let’s con-
sider a procedure to fetch a single book from the database based on a value
passed in by the user. To demonstrate the kind of additional functionality we can
do inside the stored procedure, we’ll add a bit of logging into an AuditTracking
table. The sample project that comes with this book includes this table and the
GetBook stored procedure that we’ll be using.

 To add the stored procedure, we open the LINQ to SQL design surface that con-
tains our Books class. Next, expand the Stored Procedures node of the Server
Explorer and find the GetBook procedure. Drag the GetBook procedure onto the
design surface and drop it on top of the Book class. The result is shown in figure 8.2.

 When we were working with tables, we mapped the tables directly to classes.
When we query the data, we use extension methods or query syntax to define our

Figure 8.2 Adding the GetBook stored procedure to the LINQ to SQL Designer

282 CHAPTER 8

Advanced LINQ to SQL features
queries. Stored procedures, on the other hand, are implemented as method calls
that return objects. Since the designer defines the stored procedure as a method
in the custom data context, we call it as shown in listing 8.11.

Guid bookId = new Guid("0737c167-e3d9-4a46-9247-2d0101ab18d1");
Ch8DataContext context = new Ch8DataContext();
IEnumerable<Book> query =
 context.GetBook(bookId,
 System.Threading.Thread.CurrentPrincipal.Identity.Name);

Returning results from a stored procedure is as easy as calling the generated
method passing in the appropriate values. The values we pass in are strongly
typed. As long as the column names returned in the stored procedure’s result set
correspond to the destination object type, the values will be automatically
matched up. Note that the results of the stored procedure are returned as an
IEnumerable<T> rather than IQueryable<T> type. Because we cannot consume
the results of stored procedures in other server-side queries, there is no need to
worry about the expression tree parsing required by IQueryable. We can, how-
ever, consume the results on the client in a LINQ to Objects query if we want.

 Before moving on, let’s take a quick peek under the covers and see how the
DataContext actually calls into the stored procedure. If we look at the generated
Ch8.designer.cs file, we can see the underlying generated method call, as shown
in listing 8.12.

[Function(Name="dbo.GetBook")]
public ISingleResult<Book> GetBook(
 [Parameter(Name="BookId", DbType="UniqueIdentifier")]
 System.Nullable<System.Guid> bookId,
 [Parameter(Name="UserName", DbType="NVarChar(50)")]
 string userName)
{
 IExecuteResult result = this.ExecuteMethodCall(
 this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())),
 bookId,
 userName);

 return ((ISingleResult<Book>)(result.ReturnValue));
}

Listing 8.11 Using a stored procedure to return results

Listing 8.12 Generated GetBook code to call the stored procedure

B

C

D

E

Advanced database capabilities 283
Implementation of the stored procedure proxies requires us to not only import
the System.Data.Linq namespace, but also System.Data.Linq.Mapping and
System.Reflection. For this method, we want to get a book that uses the given
ID. We name our method GetBook B and pass two parameters, a Guid called
BookId and a string called UserName C. The method will return an object typed
ISingleResult<Book>. ISingleResult does not return a single object, but rather
a single list of objects. If our stored procedure returned multiple result sets, we
would use IMultipleResult.

 In order to map our method to the stored procedure, we need to specify a
number of attributes.1 The first attribute maps the Function called dbo.GetBook
to this method by specifying the Name parameter.

 Next, we need to identify how we’re going to map the method’s parameters to
the stored procedure’s parameters. We do this by decorating each method with a
System.Data.Linq.Mapping.Parameter attribute. Once we have the mappings in
place, all we need to do is call the method.

 In order to call a stored procedure, the DataContext class includes a method
called ExecuteMethodCall D. We can use this method to return result sets, scalar
values, or issue a statement to the server. Since we’ve already created our method
inside a class that inherits from DataContext, we can call the ExecuteMethodCall
directly by calling into the DataContext base class itself.

 ExecuteMethodCall takes three parameters. The first parameter is the Data-
Context object instance that is calling it. The second parameter is a reference to
the information about the method that is calling it. Using reflection, the Method-
Info needs to be passed in order for the framework to recognize our attributes
and map them appropriately. Typically we can just set the first parameter to this
and the second to MethodInfo.GetCurrentMethod.

 The final parameter is a parameter array that takes a list of values. These
remaining parameters are the actual values that we’ll be sending to our stored
procedure. The order of the parameters must match the order in which they
appear in the Parameter attributes in the method’s declaration. If they don’t
match, a runtime exception will be thrown. Figure 8.3 shows the interfaces that
ExecuteMethodCall returns.

1 We could use an external mapping file here as well. Attributes are used to facilitate explanation for the
purpose of the text. Chapter 7 includes a full discussion of mapping options available with LINQ to
SQL.

284 CHAPTER 8

Advanced LINQ to SQL features
IExecuteResult exposes a ReturnValue of type Object and the ability to access
parameter values to the parameters. If the procedure returns a list of objects
that we can strongly type, we’ll typically cast the ReturnValue as an ISingle-
Result<T> E. If it can return different types based on internal processing, we
would use the IMultipleResults implementation, which allows us to access a
specific type via the generic GetResult<TElement> method.

 Retrieving data via stored procedures is not limited to returning tables and
result sets. They can just as easily return scalar values. Listing 8.13 demonstrates
consuming the BookCountForPublisher stored procedure to return the count of
the books for a given publisher. We don’t return a result set, but rather rely on the
return parameter, which contains the resulting count. As in the previous example,
we call the procedure using the ExecuteMethodCall method of the DataContext.

[Function(Name="dbo.BookCountForPublisher")]
public int BookCountForPublisher(
 [Parameter(Name="PublisherId", DbType="UniqueIdentifier")]
 System.Nullable<System.Guid> publisherId)
{
 IExecuteResult result = this.ExecuteMethodCall(
 this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())),
 publisherId);
 return ((int)(result.ReturnValue));
}

Listing 8.13 Returning a scalar value

Figure 8.3 Interfaces return as a result of ExecuteMethodCall

Advanced database capabilities 285
In this case, we retrieve our scalar value through the return parameter of our stored
procedure. LINQ to SQL realizes that there are no result sets being sent back.
Instead, it presents the value that the stored procedure returns as the ReturnValue
of the result. All we need to do is cast the value to the appropriate type. The
ReturnValue will change depending on what kinds of data the procedure returns.
In listing 8.14, we consume this method as we would any other method.

Guid publisherId = new Guid("851e3294-145d-4fff-a190-3cab7aa95f76");
Ch8DataContext context = new Ch8DataContext();
Console.WriteLine(String.Format("Books found: {0}",
 context.BookCountForPublisher(publisherId).ToString()));

The fetching examples shown here are admittedly rudimentary. In actuality, we
could perform the same queries using standard LINQ to SQL and avoid the need
to define our own custom stored procedures. Depending on the application’s
business needs, directly accessing the table may be fine. Other business situations
require the use of stored procedures for accessing data to meet security, perfor-
mance, or auditing needs or to otherwise perform more advanced server-side pro-
cessing before returning the results. Few changes are necessary to call stored
procedures for these operations.

Updating data with stored procedures
Updating data is perhaps a more frequent use of stored procedures. Because a
user making changes to data often requires more complex logic, security, or audit-
ing, applications frequently rely on stored procedures to handle the remainder of
the CRUD operations. As we’ve observed already, LINQ to SQL covers some of the
same concerns that lead many applications to use stored procedures. In many
cases, the dynamic SQL created by calling SubmitChanges on the DataContext is
sufficient. In other cases, using stored procedures is still necessary.

 If the use of stored procedures for updating data is required, using it is almost
as easy as fetching records. However, we’ll no longer be able to take advantage of
the dynamic optimization that LINQ provides by only updating changed columns.
Additionally, we’ll be responsible for handling concurrency conflicts explicitly.
Let’s take look at what we need to do to replace the standard LINQ update
method for our Author class.

 In listing 8.15 we see the definition of the stored procedure we can create to
handle the update for the Author class. To illustrate how we can add additional

Listing 8.14 Consuming a scalar stored procedure

286 CHAPTER 8

Advanced LINQ to SQL features
functionality using stored procedures, this procedure will not only update the
Author table, but also insert a record into the AuditTracking table.

CREATE PROCEDURE [dbo].[UpdateAuthor]
 @ID UniqueIdentifier output,
 @LastName varchar(50),
 @FirstName varchar(50),
 @WebSite varchar(200),
 @UserName varchar(50),
 @TimeStamp timestamp
AS

DECLARE @RecordsUpdated int

-- Save values
UPDATE dbo.Author
SET LastName=@LastName,
 FirstName=@FirstName,
 WebSite=@WebSite
WHERE ID=@ID AND
 [TimeStamp]=@TimeStamp

SELECT @RecordsUpdated=@@RowCount

IF @RecordsUpdated = 1 BEGIN

 -- Add auditing record
 INSERT INTO dbo.AuditTracking
 (TableName, UserName, AccessDate)
 VALUES ('Author', @UserName, GetDate())

END

RETURN @RecordsUpdated

This script is fairly standard. In it, we define a parameter for each value we’re going
to update B. Since we’re using a timestamp column C, we don’t need to send the
original values for each column as well. This will help to optimize our network
bandwidth to the server. We also declare an internal parameter called @RecordsUp-
dated that will help us track whether records were updated D. If no records are
updated, we’ll assume that there is a concurrency problem. Once we set up our val-
ues, we can try to call the update method E. Immediately after calling the update,
we need to get the number of rows that were changed F. If we wait, @@RowCount
will not return a reliable result.

Listing 8.15 Stored procedure to update an Author

B

C

D

E

F

G

H

Advanced database capabilities 287
 If records are updated, we add a record to our tracking table G. We don’t care
about tracking changes that aren’t successful. At the end, we make sure to return
the number of rows updated so that our client code can raise a concurrency
exception if necessary H.

 With this code in place, we can create a method in our DataContext class that
will consume the procedure (see listing 8.16). We can create this method manu-
ally or using the designer by dragging our stored procedure into the method
pane. Here we see the code generated by the designer.

[Function(Name="dbo.UpdateAuthor")]
public int AuthorUpdate(
 [Parameter(Name="ID")] Guid iD,
 [Parameter(Name="LastName")] string lastName,
 [Parameter(Name="FirstName")] string firstName,
 [Parameter(Name="WebSite")] string webSite,
 [Parameter(Name="UserName")] string userName,
 [Parameter(Name="TimeStamp")] byte[] timeStamp)
{
 if (userName == null)
 {userName=Thread.CurrentPrincipal.Identity.Name;}
 IExecuteResult result = this.ExecuteMethodCall(
 this, ((MethodInfo)(MethodInfo.GetCurrentMethod())),
 iD, lastName, firstName, webSite, userName, timeStamp);
 iD = (Guid)(result.GetParameterValue(0));
 int RowsAffected = ((int)(result.ReturnValue));
 if (RowsAffected==0){throw new ChangeConflictException();}
 return RowsAffected;
}

The basic pattern we use in this update method is almost identical to the one we
used when accessing data. We start by defining our method, decorating it with the
Function attribute B and its parameters with the Parameter attribute C so that
we can map them to our stored procedure and the stored procedure’s parame-
ters. Since our procedure needs the name of the current user in order to perform
the logging, we include it as well. We check to see if it is populated, and if not, set
it to the currently logged-in user D.

 The meat of the method follows. Here we call ExecuteMethodCall to access the
database E. As we did before, we pass the instance of the DataContext and the call-
ing method’s MethodInfo so that ExecuteMethodCall will be able to determine the
appropriate mappings. We follow that with a parameter array of the values that

Listing 8.16 Consuming the update stored procedure using LINQ

B

C

D

E

F

288 CHAPTER 8

Advanced LINQ to SQL features
we’re sending to the database. Make sure to keep the order of the parameters in the
method signature identical to the order in the parameter array.

 ExecuteMethodCall will return the return value from our stored procedure as
part of its result. We check this ReturnValue, making sure to cast it to an integer F.
In order to check for concurrency issues, we determine whether any records were
updated. If not, we throw a ChangeConflictException so that our client code can
handle the concurrency exception. This first implementation of UpdateAuthor
does the dirty work of calling the stored procedure.

 If we want to automatically use this procedure in place of the run-time gener-
ated method whenever we update this table, we create a second method with a
special signature as shown in listing 8.17.

private void UpdateAuthor(Author instance)
{
 this.UpdateAuthor(instance.ID,
 instance.LastName, instance.FirstName,
 instance.WebSite, null, instance.TimeStamp);
 }
}

In the UpdateAuthor(Author instance) method, we use a predefined signature
designating that this method be used to update records on this object type rather
than creating the update method dynamically. If we define methods in our Data-
Context with the following signatures, they will be used instead of the dynamic
SQL: InsertT(T instance), UpdateT(T instance), and DeleteT(T instance).
In this case, since we’re updating an Author instance, we define our method as
UpdateAuthor(Author instance). If we have a method with this signature in the
context attached to the objects we’re updating, it will be called when Submit-
Changes is called on that DataContext instance rather than dynamically creating
the update SQL statement.

 So far, we’ve demonstrated coding the procedures manually. In many cases, it
may be easier to at least start with the designer and then use the generated code
to learn now to do it manually. In figure 8.4, we show the Visual Studio designer
again. This time, pay attention to each of the four panes: the Server Explorer,
both sides of the Method pane, and the Properties window. To generate a method
from a stored procedure, we simply drag and drop the procedure in question
from the Server Explorer into the Method pane. The generated method’s signa-
ture will appear.

Listing 8.17 UpdateT(T instance) method to replace the run-time implementation

Advanced database capabilities 289
Once we’ve added the stored procedures, we can configure the custom Insert,
Update, and Delete methods. Click on the Author class in the Method pane and
observe the Properties window. Entries for each of these custom procedure func-
tions will appear. If we select the Update property, we can click on a button that
opens the designer shown in figure 8.5. Alternatively, right-click the class in the
designer and select Configure Behavior.

Figure 8.4 LINQ to SQL Designer to map stored procedures to the data context as methods

Figure 8.5
Update procedure designer
window to assign the
custom stored procedures
with CRUD operations

290 CHAPTER 8

Advanced LINQ to SQL features
By default, the behavior for the methods is set to Use Runtime. As long as it is set
to Use Runtime, the DataContext will dynamically generate the Insert, Update,
and Delete methods and issue them directly against the tables. To change the
functionality, select the Customize option for the behavior you wish to replace.
From the drop-down option under Customize, select the desired method. If the
stored procedures are already defined, they can be selected at this point. Once
set, the mapping of the method arguments can be customized. In the case of this
method, we’ll leave the class property for the UserName set to None and then set it
in our actual implementing method.

 Be aware that if we want to make changes to the implementation, they need to
be done in the partial class and not in the designers. Any changes made to the
.designer.cs file will be overwritten as the designers regenerate the code due to
other changes. In this example, we did the implementation in a partial class defi-
nition of the data context in order to specify the user name based on the current
thread’s identity.

 Traditionally, stored procedures make up the bulk of the custom database
code when working with SQL Server. In fact, there are a number of books and best
practice guides that argue in favor of limiting all database access to go through
stored procedures rather than allowing direct access to the underlying tables.
Familiarity with the technology and business requirements will help determine
whether stored procedures are still necessary for individual applications or
whether the native LINQ to SQL behavior is sufficient.

 The functionality offered by SQL server does not stop with stored procedures.
It also offers the ability to define user-defined functions that can return both sca-
lar values and tables. The next section explores the capabilities that these offer.

8.2.3 User-defined functions

Many data-centric applications currently limit themselves to tables and stored pro-
cedures for data access. An additional area that may offer benefits and is easier to
use than stored procedures is user-defined functions. The two main flavors of
user-defined functions are scalar and table-valued functions. Scalar functions
return a single value, which is handy for quick lookup translations. Table-valued
functions return results that can be consumed as if they were returned by the
table directly. Similar to stored procedures, additional functionality can be added
to the function within certain limitations. Unlike stored procedures, you can
reuse the return results natively on the server as part of other server-side queries.
When building new components and applications, consider how user-defined

Advanced database capabilities 291
functions may offer additional functionality and flexibility over stored procedures
for fetching results.

 To see how we can use user-defined functions, let’s revisit our stored procedure
from listing 8.13, which returned the count of books by publisher. To begin, we
need to establish the function that we’re going to use. To avoid naming conflicts,
we’ll name our database function fnBookCountForPublisher. (See listing 8.18.)

CREATE FUNCTION dbo.fnBookCountForPublisher
 (@PublisherId UniqueIdentifier)
 RETURNS int
AS
BEGIN
 DECLARE @BookCount int

 SELECT @BookCount = count(*)
 FROM dbo.Book
 WHERE dbo.Book.Publisher=@PublisherId

 Return @BookCount
END

The definition of the function is nearly identical to the one we used in listing 8.13.
Most of the differences are syntactic. Instead of focusing on the differences in the
server implementation, we’ll concentrate on the differences in the LINQ code.
Luckily, the differences are relatively minor. Using the LINQ to SQL Designer, we
can drag our new function onto the design surface and the function will appear in
the right column. Once we save the changes in the designer, we can take a peek at
the generated code, as shown in listing 8.19.

[Function(Name = "dbo.fnBookCountForPublisher",
 IsComposable = true)]
public int? fnBookCountForPublisher1(
 [Parameter(Name = "PublisherId")] Guid? publisherId)
{
 return (int?)(this.ExecuteMethodCall(
 this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())),
 publisherId).ReturnValue);
}

Listing 8.18 User-defined scalar function

Listing 8.19 LINQ code generated for the scalar function

292 CHAPTER 8

Advanced LINQ to SQL features
Comparing the client code in listings 8.13 and 8.19, we see that they are very similar.
We execute the function the same way we did with the stored procedure, using the
ExecuteMethodCall of the DataContext instance and returning the ReturnValue.

 The key change between functions and stored procedures is the use of the
IsComposable attribute on the method signature. With functions, we set this to
True. By doing this, we can use the function within a LINQ query and the call will
be executed on the server. With the function translated to the server, consider the
results of the sample in listing 8.20.

var query =
 from publisher in context.GetTable<Publisher>()
 select new
 {
 publisher.Name,
 BookCount = context.fnBookCountForPublisher(publisher.ID)
 };

Checking the generated SQL statement, we can see that the function is translated
to run directly on the server rather than the client as we iterate over each result.

SELECT Name, CONVERT(Int, dbo.fnBookCountForPublisher(ID)) AS value
FROM Publisher AS t0

If it weren’t for the composability that LINQ and deferred execution offer, the
query would need to return the list of publishers to the client and then issue sepa-
rate function calls to the database to evaluate each row. Due to LINQ’s compos-
ability, the entire query is executed directly on the server. As a result, we minimize
round-trips to the database and maximize performance due to optimized execu-
tion plans on the server.

 Returning a table is similar. Consider a business situation where we want to
horizontally partition our book table by publishers. Suppose we don’t want users
to have direct access to fetch all records from the table, only the records for their
publisher code. But we still want to work with the results as a table for query pur-
poses. In that case, we could create different views for each publisher and config-
ure security based on those views. Alternatively, our sample database includes a
table-defined function to return the books based on their publisher ID. We con-
sume this using the code shown in listing 8.21.

Listing 8.20 Using a scalar user-defined function in a query

Advanced database capabilities 293
[Function(Name = "dbo.fnGetPublishersBooks",
 IsComposable = true)]
public IQueryable<Book> fnGetPublishersBooks(
 [Parameter(Name = "Publisher", DbType = "UniqueIdentifier")]
 System.Nullable<System.Guid> publisher)
{
 return this.CreateMethodCallQuery<Book>(
 this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())),
 publisher);
}

In this example, the SQL function returns a table rather than a single value. We
send a single parameter—publisher—and return all books that are assigned to
the given publisher. In order for LINQ to consume this function, we need to set up
our familiar mappings for the function and the parameters. Instead of calling
ExecuteMethodCall, we use a new method on the context—CreateMethod-

CallQuery<T>. The main distinction between these two methods is the fact that
CreateMethodCallQuery returns an IQueryable rather than just IEnumerable,
which allows us to compose larger expression trees. As a result, we can use this
result just as we would any other LINQ to SQL table. Listing 8.22 illustrates how we
can use both of our user-defined functions within a single LINQ query to return
an anonymous type of the name of a book along with how many other books are
published by that publisher.

Guid publisherId = new Guid("855cb02e-dc29-473d-9f40-6c3405043fa3");
var query1 =
 from book in context.fnGetPublishersBooks(publisherId)
 select new
 {
 book.Title,
 OtherBookCount =
 context.fnBookCountForPublisher(book.Publisher) - 1
 };

In this code, we consume both the fnPublishersBooks and the fnBookCountFor-
Publisher methods that we set up previously. Executing this query results in the
following SQL expression:

Listing 8.21 Defining and consuming a table-valued function

Listing 8.22 Consuming user-defined functions

294 CHAPTER 8

Advanced LINQ to SQL features
SELECT Title,
 CONVERT(Int, dbo.fnBookCountForPublisher(Publisher)) - @p1 AS value
FROM dbo.fnGetPublishersBooks(@p0) AS t0

We can consume functions in much the same way as we consume data from tables.
Functions offer the added benefit of allowing custom logic to be run on the server
in conjunction with fetching the data. Functions also offer the added benefit that
they can be used inside queries, both on the server and when using LINQ on the
client. The power and flexibility of functions make them a viable alternative to
stored procedures and views when designing LINQ-enabled applications.

 At this point, we’ve explored how LINQ to SQL handles working with the major
portions of the database engine. These capabilities allow us to perform operations
on tables, views, stored procedures, and user-defined functions.

 We’ve been focusing not on the database capabilities, but rather on alternative
methods of programmatically accessing the data in a client or business tier. At this
point, we’ll move from looking at LINQ to SQL in the database-centric mode and
instead focus on the advanced options available from an object-oriented perspec-
tive on the business and/or client tier.

8.3 Improving the business tier

When working on the business tier, we begin to focus on areas of performance,
maintainability, and code reuse. This section looks at some of the advanced func-
tionality LINQ to SQL offers in these areas. We begin by focusing on improving
performance by caching the frequently used query structures. We continue by
looking at three options for improving maintainability and reuse through the use
of partial classes, partial methods, and object inheritance. Obviously we’ll only be
able to scratch the surface of the later topics, as they are often subjects of com-
plete books in themselves.

8.3.1 Compiled queries

Any time complex layers are added, performance can potentially decrease. The
architectural dilemma when designing systems is determining the trade-off
between performance and maintainability. Working with LINQ is no exception.
There is overhead in determining the translation between the LINQ query syntax
and the syntax the database understands. This translation requires reflecting on
the mapping metadata, parsing the query into an expression tree, and construct-
ing a SQL string based on the results.

Improving the business tier 295
 With queries that will be performed repeatedly, the structure can be analyzed
once and then consumed many times. To define a query that will be reused, use
the CompiledQuery.Compile method. We recommend using a static field and a
nonstatic method to the data context. Instead of returning a value type or simple
class, this method will return a generic function definition. Listing 8.23 demon-
strates creating a precompiled query to return expensive books. In this case, we
can pass in a threshold amount, which we’ll call minimumPrice. We can use this
minimumPrice parameter to determine what constitutes an expensive book. The
entire query structure will be precompiled with the exception of the value of the
parameter. All the runtime will need to do is specify the DataContext instance
and the value of the minimumPrice, and the compiled query will return the list of
books that meet the criteria.

public static Func<CustomContext, decimal, IQueryable<Book>>
 ExpensiveBooks = CompiledQuery.Compile(
 (Ch8DataContext context, decimal minimumPrice) =>
 from book in context.Books
 where book.Price >= minimumPrice
 select book);

public IQueryable<Book>
 GetExpensiveBooks(decimal minimumPrice)
{
 return ExpensiveBooks(this, minimumPrice);
}

Listing 8.23 includes the two new members. The first, ExpensiveBooks, is a static
field that contains the compiled query definition B. The second method acts as a
helper method to encapsulate the call to ExpensiveBooks, passing in the contain-
ing DataContext instance C. The real work is done in the first method. The func-
tion stored in ExpensiveBooks defines a signature that takes a Ch8DataContext
and a decimal as input parameters and returns an object that implements the
generic IQueryable<Book> interface.

 We define the function as the result of System.Data.Linq.CompiledQuery.
Compile. Compile takes a lambda expression defining our query. It evaluates the
structure and prepares the function for use. Since the function is defined as static,
it will be evaluated only once in the lifetime of our AppDomain. After that,
we’re free to use it as much as we want without worrying about most of the evalua-
tion overhead.

Listing 8.23 Precompiling a query

B

C

296 CHAPTER 8

Advanced LINQ to SQL features
 Any time we want to fetch the listing of expensive books, we can call the
GetExpensiveBooks method. The framework no longer needs to reevaluate the
mappings between the database and the objects, nor will it need to parse the
query into an expression tree. This work has already been done.

 If you’re unsure of the impact of using compiled queries, read the series
of posts by Rico Mariani beginning with http://blogs.msdn.com/ricom/
archive/2007/06/22/dlinq-linq-to-sql-performance-part-1.aspx. He shows how
using a compiled query offers nearly twice the performance of noncompiled
queries and brings the performance to within 93 percent of using a raw Data-
Reader to populate objects. As LINQ continues to evolve, there will continue to
be more performance enhancements.

 The other business tier components that we’ll discuss are less focused on per-
formance and more focused on code maintainability and reuse. The fine art of
programming is all about making trade-offs between these two areas. Often a
small performance penalty is outweighed by greatly increased maintainability.

8.3.2 Partial classes for custom business logic

Using object-oriented programming practices adds functionality to the business
domain by taking base object structures and extending them to add the custom
business logic. Prior to .NET 2.0, the main way to extend those structures was by
inheriting from a base class. With .NET 2.0, Microsoft introduced the concept of
partial classes. With partial classes, we can isolate specific functionality sets in sepa-
rate files and then allow the compiler to merge them into a single class. The use-
fulness of partial classes is particularly evident when dealing with generated code.

 By default, both of the automated generation tools we’ve explored (the
designer and SqlMetal) generate the class definitions as partial classes. As a result,
we can use either tool to dynamically generate our entities and enforce custom-
ized business logic in separate classes. Let’s explore a simple use case that will
entail adding a property to concatenate and format the author’s name based on
the existing properties in the Author object.

 In chapter 7, we defined the mapped version of our Author class. When we
defined it manually, we set it up as public class Author. When we later let the
tools generate our Author class, they defined it as a partial class. Because it was
created as a partial class, we can create a second class file to define the other part.
Listing 8.24 shows the code to add functionality to our Author class by using a par-
tial class definition.

http://blogs.msdn.com/ricom/archive/2007/06/22/dlinq-linq-to-sql-performance-part-1.aspx

Improving the business tier 297
public partial class Author
{
 public string FormattedName
 {
 get { return this.FirstName + ' ' + this.LastName; }
 }
}

The code in listing 8.24 is not earth-shattering, but shows how easy it is to add cus-
tomized logic to an existing class in our project. This is particularly important if
the mapping portion of the class is going to be regenerated by Visual Studio. Some
other areas that already use the partial code methodology within Visual Studio
include the WinForms and ASP.NET designers. In both cases, Microsoft split the
functionality between two files to keep the development focused on the custom
business logic and hide the details and fragility of the designer-generated code.

 With the combined class, we can now create a LINQ query leveraging both the
mapped class and our new FormattedName property as shown in listing 8.25. Be
aware that you cannot project into an anonymous type containing an unmapped
property. Thus we have to select the entire Author object in the Select clause
when working with LINQ to SQL.

var partialAuthors = from author in context.Authors
 select author;

Note that our client code is oblivious to the fact that the portions are defined in
separate files. We just consume it as if it were defined as a standard class.

 Partial classes are not limited to adding simple calculated fields. We can
include much more functionality than that. As an example, consider the ability to
extend a class by implementing an interface in the partial class. Listing 8.26 shows
some sample code that we could use to implement the IDataErrorInfo interface.

partial class Publisher : System.ComponentModel.IDataErrorInfo
 {
 private string CheckRules(string columnName)
 {

Listing 8.24 Adding functionality with partial classes

Listing 8.25 Querying with a property from the partial class

Listing 8.26 Implementing IDataErrorInfo in the custom partial class

B

298 CHAPTER 8

Advanced LINQ to SQL features
 //See the download samples for the implementation
 //All rules are ok, return an empty string
 return string.Empty;
 }

 #region IDataErrorInfo Members
 public string Error
 {
 get { return CheckRules("Name") +
 CheckRules("WebSite"); }
 }

 public string this[string columnName]
 {
 get { return CheckRules(columnName); }
 }

 #endregion
 }

IDataErrorInfo is used by the ErrorProvider in WinForm applications to pro-
vide immediate feedback to the user that an object doesn’t meet a set of business
logic. The implementation in this example is not intended to be a full-featured
rules management application, only to demonstrate the possibilities that arise by
leveraging the partial class implementation.

 In this case, we can centralize the business logic of our class to a single Check-
Rules method B. Then whenever the UI detects a change in the business object,
it checks the validity of the object and the changing property. If the resulting
string returned from the Error or the column name indexer contains values, an
error icon is displayed as shown in figure 8.6.

 In this grid, the rules we place in the CheckRules method are checked as users
change values. If the user-supplied value does not agree with the business rules,
the user is shown a nonintrusive notification that he needs to change his value.
The key thing to take away here is that we can use the LINQ to SQL Designer to
generate our business class and put our logic in the partial class implementation.

Figure 8.6
DataGridView for editing Publishers
implementing IDataErrorInfo in
the partial class

Improving the business tier 299
When we need to regenerate our entities, the business functionality will be
retained. When we compile our application, the compiler combines the gener-
ated code with our custom code into a single class definition.

 Partial classes were introduced as a way to add physically separate methods into
isolated files. If we want to optionally inject functionality within a given generated
method, it does not give us the hooks that we could use. C# 3.0 and VB 9.0 include
a new language feature called partial methods to allow injecting functionality within
a method.

8.3.3 Taking advantage of partial methods

Typically when working with business entities, we need to provide additional pro-
cessing as part of a constructor or during a property change. Prior to C# 3.0 and
VB 9.0, we would need to create base abstract classes and allow our properties to
be overridden by implementing classes. Such a class would then implement the
desired custom functionality. As we’ll discuss briefly, using this form of inherit-
ance can be problematic with LINQ to SQL due to the inheritance implementa-
tion model. Thankfully, C# 3.0 and VB 9.0 bring us the option of partial methods.

 With partial methods, we can insert method stubs into our generated code. If
we implement the method in our business code, the compiler will add the func-
tionality. If we don’t implement it, the complier will remove the empty method.
Listing 8.27 shows some of the partial methods that the LINQ to SQL Designer and
SqlMetal insert into our class definitions and how we can take advantage of them.

[Table(Name="dbo.Publisher")]
public partial class Publisher :
 INotifyPropertyChanging, INotifyPropertyChanged
{
#region Extensibility Method Definitions
 partial void OnCreated();
 partial void OnNameChanging(string value);
 partial void OnNameChanged();
 #endregion

public Publisher()
{
 this._Books = new EntitySet<Book>(
 new Action<Book>(this.attach_Books),
 new Action<Book>(this.detach_Books));
 OnCreated();
}

Listing 8.27 Partial signature of the generated class including partial methods

Partial method
stubs

B

300 CHAPTER 8

Advanced LINQ to SQL features
[Column(Storage="_Name", DbType="VarChar(50) NOT NULL",
 CanBeNull=false)]
public string Name
{
 get
 {
 return this._Name;
 }
 set
 {
 if ((this._Name != value))
 {
 this.OnNameChanging(value);
 this.SendPropertyChanging();
 this._Name = value;
 this.SendPropertyChanged("Name");
 this.OnNameChanged();
 }
 }
}

For the Publisher object and most of the entities generated by the LINQ to SQL
tools, you’ll find a number of method stubs that allow you to inject functionality B.
In this example, if we wanted to perform some initialization on our properties, we
could add that by implementing an OnCreated method as follows:

partial void OnCreated()
{
 this.ID = Guid.NewGuid();
 this.Name = string.Empty();
 this.WebSite = string.Empty();
}

With the OnCreated method implemented, we can now make sure that we initial-
ize our values as the object is being instantiated. If we wanted, we could also take
the opportunity to hook the PropertyChanging and PropertyChanged events to a
more robust rules engine or change-tracking engine (like the one the DataCon-
text includes).

 Speaking of property changing, the generated code offers two partial method
stubs in each property set that allow us to perform actions both before and after a
given property is changed. This would allow us to implement a change-tracking
system or other business logic based on the user input.

 Remember, if we don’t implement the partial methods, they will not clutter up
the compiled business object with needless processing cycles. They are helpful oth-
erwise to allow beneficial extensibility points for injecting custom business logic.

Call
partial
method

Improving the business tier 301
 Partial classes and methods offer powerful abilities to extend otherwise
generic entities. However, more defined customized logic for related object
instances often requires a more polymorphic inheritance model. For example, in
cases where we have different kinds of users, we would want to have a base user
type and then inherit from that to provide the additional functionality of each
specific user type. Naturally, LINQ to SQL offers this kind of polymorphic inherit-
ance behavior.

8.3.4 Using object inheritance

As with .NET, LINQ has objects and OOP at its heart. One of the pillars of OOP is the
ability to inherit from base classes and extend the functionality based on custom-
ized business needs. Frequently, inheriting objects extend base classes by exposing
new properties. As long as the needed properties are contained in the same table
as the base class, LINQ to SQL supports mapping the specialized objects. For this
section, we’ll continue extending our running example. In this case, we’ll consider
the users of the system.

 When we started, we only had a single user object that contained the user
name and an ID. We may find as we work that we want to have some specialized
users with additional functionality. In particular, we may want to give Authors and
Publishers special rights to be able to edit information that applies to them.
Other users would have more restrictive rights. In order to link users with their
roles, we could add columns to the User table to specify the Publisher’s and
Author’s IDs. We’ll set both of these as Nullable, as users that are not one of the
specialized types won’t have values in these fields. Figure 8.7 shows a representa-
tive set of the revised User table to support these specialized user types.

 In our new table, we’ve added three columns. The last two columns contain
the foreign key values of the ID columns in the Publisher and Author tables
respectively. The additional column UserType identifies what kind of user the row

Figure 8.7 User table sample data to support inheritance based on the distinguishing
UserType column

302 CHAPTER 8

Advanced LINQ to SQL features
represents. In our case, if the type is A, the user is an Author. If it is P the user is a
Publisher. Standard users are designated with S as their UserType. In the sample
data, the first user is a standard user and doesn’t have a publisher or author for-
eign key value. Mike is a publisher and has a Publisher foreign key. The other
users are all authors and include the appropriate Author foreign key.

 With this structure in mind, we can think about how we want to model our
objects to reflect the new table structure. Since we have three types of users, we’ll
have three classes to represent the different behavior of each user. We’ll call the
standard user UserBase, as it will serve as the base user type for the other two types.
The other users we’ll call AuthorUser and PublisherUser. Each of these custom
user types will inherit from UserBase. Figure 8.8 shows the full object structure.

 We begin building our structure by opening the LINQ to SQL Designer. In the
designer, add the Publisher, Book, BookAuthor, and Author tables by dragging
them from the Server Explorer to the design surface. To add the users, drag the

Figure 8.8 LINQ to SQL Designer with inherited users

Improving the business tier 303
modified User table to the design surface. Since our UserBase object will not
include the fields for the customized objects, remove the Author and Publisher
properties from the User object. From the Properties window, change the Name of
the User object to UserBase.

 Once our UserBase class is configured, we need to add our two customized
user objects. To do this, drag two new objects onto the design surface from the
toolbar. Name the first one PublisherUser and the second one AuthorUser. In
the PublisherUser object, right-click the Properties heading and select Add, then
Property. Set the Name of the property to PropertyId. Set the Source property to
the Publisher column of the table. Do the same for the AuthorUser object, but
this time, name the property AuthorId and set the source to the Author column.

 With your classes defined, click on the Inheritance tool in the toolbox. Drag
an inheritance line from the PublisherUser to the UserBase class. The inherit-
ance arrow will appear in the designer. Do the same again to set up the inherit-
ance between AuthorUser and UserBase.

 We’re almost done setting up our inheritance model. At this point, we need to
identify which object type we want to load for each row in our table. For example,
if we load a User with a UserType of A, we should get an instance of the Autho-
rUser instead of just the simple UserBase instance. To do so, we need to enhance
our mappings. We could do this by adding more attributes to our class definition
indicating the InheritanceMapping value. Since we’re making these modifica-
tions using the designer, let’s see how we can do it from there.

 To specify the mapping, select the inheritance arrow line between the Pub-
lisherUser and UserBase and open the Properties window. The Properties win-
dow has four values: Base Class Discriminator, Derived Class Discriminator,
Discriminator Property, and Inheritance Default. Let’s start by setting the Dis-
criminator Property. This will identify which property in our base class indicates
which type of object to instantiate. Our UserBase class maintains this in the User-
Type property, so set the Discriminator Property to UserType. The Base Class Dis-
criminator is used to indicate what value in the UserType will be used for objects
of UserBase. In our case, that will be the Standard user, so we’ll add the value S.
The next property is for the Derived Class Discriminator. Since we want to load
the PublisherUser when the UserType is P, enter the value P for this property.
From this window, we can also specify that the default class implementation is the
UserBase class when no match can be found on the discriminator.

 We have one final step. We need to identify under which circumstances we want
to instantiate the AuthorUser object. Similar to PublisherUser, we click the arrow
between the AuthorUser and UserBase classes and open the Properties window.

304 CHAPTER 8

Advanced LINQ to SQL features
Notice this time, since we already assigned the Base Class Discriminator, Discrimi-
nator Property, and Inheritance Default, these values are retained. All we need to
do is set the Derived Class Code. Since we want AuthorUsers loaded when the type
is A, enter the value A. With the inheritance mappings set, save the changes to the
designer. Viewing the generated code in the .designer.cs file shows the attributes
that were added to your class definition.

[InheritanceMapping(Code="S", Type=typeof(UserBase), IsDefault=true)]
[InheritanceMapping(Code="A", Type=typeof(AuthorUser))]
[InheritanceMapping(Code="P", Type=typeof(PublisherUser))]
[Table(Name="dbo.[User]")]
Public partial class UserBase
{
 //Implementation code omitted
}

The runtime relies on the attributes (or the XML mapping file) to indicate which
objects to load. In addition to the InheritanceMapping attributes defined on the
class, there is one other parameter we set when we made the changes in the
designer. The attribute in question is not on the table, but on the UserType’s Col-
umn attribute. Note that the IsDiscriminator parameter is now set to true.

[Column(Storage="_UserType", IsDiscriminator=true)]
public char UserType

As we fetch records, LINQ to SQL will check the property decorated by the IsDis-
criminator attribute. It will then compare the underlying value against the list of
InheritanceMapping codes in the base class to determine which type to instanti-
ate. With this value set, we’ve completed the necessary steps to create our inherit-
ance trees.

 Before we consume our new inherited objects, let’s use the designer to estab-
lish one more set of relationships. At this point, we can use the designer to assign
associations between the Publisher and Author objects and our newly customized
AuthorUser and PublisherUser objects. This will allow us to drill into the object
hierarchies even though we don’t have foreign key indexes associated between
the tables in our database. The designer makes adding this functionality a breeze.
Select the Association tool from the toolbox. Click on the ID property of the
Author class, followed by the AuthorId property of the AuthorUser. Do the same
for the Publisher and PublisherUser. The designer should now look something
like the illustration we started with in figure 8.4.

 We’re done with the changes to our designer. Let’s move on to actually using
our hard work. Listing 8.28 demonstrates several ways we can access our user lists.

Improving the business tier 305
var query =
 from user in context.UserBases
 select user.Name;

var authors =
 from user in context.UserBases
 where user is AuthorUser
 select user.Name;

var publishers =
 from user in context.UserBases.OfType<PublisherUser>()
 select user.Name;

In the first example B, we can select all users from our user table regardless of
the implementing type. We can iterate over the list even though each row is repre-
sented by a different object type because each of the objects inherits from the
same UserBase class. Here is the SQL that is generated for this first query:

SELECT [t0].[Name]
FROM [dbo].[User] AS [t0]

In the second query, we limit the records we want to retrieve based on the object
type. To fetch just the AuthorUser objects (where the UserType=A) we can use
strong typing and specify we only want users where the implementing type is
AuthorUser in the where clause C. The final example illustrates another method
of filtering. In this case, we use the OfType extension method to retrieve only
objects that match the PublisherUser type D. Since we’re selecting just the user
name, both of these queries result in the same generated SQL:

SELECT [t0].[Name]
FROM [dbo].[User] AS [t0]
WHERE [t0].[UserType] = @p0

One thing to keep in mind, if you have columns that apply to some derived classes
but not others, they need to be marked as Nullable in the database. Otherwise,
updating values in the table on objects that don’t implement those properties will
throw an exception because the values were not supplied.

 We’ve only scratched the surface of the capabilities that inheritance can offer.
As long as the data is limited to a single table, implementing inheritance with
LINQ to SQL is relatively painless. The InheritanceMapping attributes on the base
class and Discriminator column on the table are all that we need.

 The inheritance model supported by LINQ to SQL does suffer from a couple of
weaknesses. First, the runtime requires that the base class of the object hierarchy

Listing 8.28 Consuming inherited LINQ to SQL objects

B

C

D

306 CHAPTER 8

Advanced LINQ to SQL features
include the definition for the base table mappings. Thus, using a base framework
for business objects may limit the ability to define mappings in the base class
implementation, as each object will likely come from a different table.

 The second weakness in the LINQ to SQL inheritance model lies in the fact
that the columns for the object’s properties cannot cross multiple tables. It is not
uncommon to have a set of database entities where a portion of the data, like a
postal address, is included in a referential table. This may be fine from a rela-
tional database perspective, but including the address information within the
entity class may fit better with the business model. Alternatively, the address infor-
mation could be included within the same table as the entity’s data, but having a
shared Address class could offer better maintainability due to code reuse. In both
cases (1 class encompassing 2 tables, and 2 classes pointing to the same table)
LINQ to SQL fails to support a direct mapping structure at this time.

 In those cases, we need to look beyond LINQ to SQL and investigate another
portion of the new data access stack—the ADO.NET Entity Framework, which is
scheduled to ship after the rest of the LINQ technologies. At this point, let’s take
a brief diversion into what this technology will offer us for more advanced map-
ping relationships.

8.4 A brief diversion into LINQ to Entities

In many cases, LINQ to SQL may serve the need for CRUD operations in our appli-
cations. As we’ve already pointed out, direct table access can be insufficient. To
accommodate this, LINQ to SQL allows access to extra processing power via stored
procedures and user-defined functions in the database. Other times, the business
model requires more complex entity structures than are available with one-to-one
table to object data mappings.

 Frequently with larger database structures, the database will perform better
with a more normalized structure. That normalized structure may or may not rep-
resent an optimal structure for our business entities. In those cases, we can flatten
our table structures by using database views. Figure 8.9 illustrates such a case. In
this example, we add one more table to our running database structure. This new
table stores addresses. With it, we can store addresses for any number of associ-
ated tables. In figure 8.9, we show how the Address table can store information
for both the Author and Publisher.

NOTE We’re not arguing here whether the schema shown in figure 8.9 is the
best. We’re using it as an example. You need to determine how your data
is best stored in terms of normalization.

A brief diversion into LINQ to Entities 307
In this example, we may want to store our data with the address information nor-
malized into a separate table. However, our business entity may want to combine
the author, user, and address information into a single class to reflect the full
information about the Author in a single class. If we only want to view this flat-
tened information, we could easily create a server view. The view would isolate the
business from needing to remember how to join the tables.

 The challenge with a view is that once flattened, the metadata needed in order
to update records in the original tables is lost. In 1976, Dr. Peter Chen wrote a
seminal paper outlining the theory of an entity-relationship model.2 In it, he out-
lines a separation between the physical model (from the database) and the logical
model (in the objects) by inserting a conceptual model.

 In some ways, this conceptual model is similar to a view in that it can consoli-
date information from multiple sources. It goes beyond a view in several ways.
First, unlike a view, the conceptual Entity Data Model (EDM) includes information
about the source of the data so that the tools have enough information about the
creation. This metadata indicates where the values came from and consequently
where they will go when updated. Additionally, the EDM includes the ability to
store both objects and relationships necessary to create fully dynamic object hier-
archies in a conceptual model.

 At the same time that the language teams were designing LINQ, the Microsoft
data teams were working on implementing this conceptual model to handle these

2 http://portal.acm.org/citation.cfm?id=320440

Figure 8.9 Adding a shared address table for both the Author and Publisher tables

308 CHAPTER 8

Advanced LINQ to SQL features
more complex entity structures. They are calling this technology the ADO.NET
Entity Framework (EF). The EF separates the physical from the logical models by
using a series of XML-based mapping files (see figure 8.10).

 In the EF, the physical database is mapped to a logical model using a one-to-
one relationship between the tables and logical layer entities. The logical entities
are defined through an XML-based Store Schema Definition Language (SSDL)
file. These mappings are similar to those we defined in LINQ to SQL.

 The EF moves beyond LINQ to SQL by using another XML-based file (Mapping
Schema Language or MSL) to map the logical model to a conceptual model. The
conceptual model is yet another XML file using a Conceptual Schema Definition
Language (CSDL). These conceptual entities can be further converted into
strongly typed objects if desired.

 With the EDM established, we can query it with a string-based query language
called Entity SQL. In addition, our LINQ knowledge can be applied against the EDM
by using LINQ to Entities. Since the EDM represents a true abstraction layer between
the application and database, we can modify our database and EDM mapping file
and restructure the data store without having to recompile the application.

 The separation of layers we get from the EDM allows for an increased separa-
tion between the physical and logical. This allows us to change our data model
and mapping structures and leave our application intact. Additionally, since the

Figure 8.10 Layers of the Entity Framework

Summary 309
EF is built on top of the existing ADO provider model, the EF can work against
data stores other than SQL Server. If you can’t wait for native LINQ support for
other databases, you may want to look into the LINQ to Entities and the EF for
your data access tier.

 As of the writing of this book, the EF is scheduled to be released after the offi-
cial release of the LINQ technologies. Due to the release schedule and the scope
of the project itself, we’re unable to cover it with the sufficient attention it
deserves. More information about the entity framework is available at http://
msdn2.microsoft.com/en-us/data/aa937723.aspx.

8.5 Summary

LINQ to SQL offers the capability to manage the interaction between relational
data stores and application logic based in objects through the object’s full life
cycle. We no longer need to manually write hundreds of lines of ADO.NET plumb-
ing code. In fact, with the supplied tools, most of the code can be automatically
generated. Once the objects and mapping structures are established, we can work
with the data using the same query syntax used in LINQ to Objects.

 Because we set up the metadata about the source and destination of the data,
we can let the framework manage the entire life cycle. Let’s summarize what we’ve
covered in the past three chapters by stepping through the typical object life
cycle. See figure 8.11.

Figure 8.11 LINQ to SQL sequence diagram

310 CHAPTER 8

Advanced LINQ to SQL features
In the typical scenario, our objects are created when we first query them. The cli-
ent defines a query using query syntax or method calls and passes the resulting
expression tree to the DataContext. The DataContext parses the expression tree
and translates it into a query syntax that the database understands. As we ask for
results, the DataContext opens the connection to the database and fetches the
rows. The rows returned from the database are translated into a collection of
objects. As it evaluates the returned values, it checks them against the versions
already in memory by checking the objects’ identities. If it has a copy of the
object, it returns the copy the user has been working with. The resulting objects
are then returned to our client to consume.

NOTE In this case, we’re referring to the client in a generic sense. The client
does not have to be a person or presentation layer. The client is anything
that consumes the LINQ to SQL entities. This can include a SOA service
or data access tier.

The process can end here by just displaying the resulting objects to the consumer.
If necessary, the user can make changes to the objects and submit those changes
back via the DataContext. The DataContext evaluates the submitted data and
compares it against the change-tracking store to determine which values need to
be sent back to the database. The DataContext packages these changes up and
issues the appropriate statements back to the server either using parameterized
queries or stored procedures. If it uses parameterized queries, it automatically
manages concurrency control. If problems occur during the update, they are han-
dled by the transaction mechanisms that are implicitly or explicitly defined. Once
the data is committed, the cycle is ready to start all over again.

 At this point, we should be equipped with the tools needed to use LINQ to
work with relational data. As with any tool, the ability to use the tool will depend
on how much it is used. We could spend several chapters going over numerous
usage permutations, but it would be impossible to cover every situation. Before
moving on to LINQ to XML in the next chapter, take some time to work with LINQ
to SQL, try the examples included in this book, and then extend them to meet
business needs. Increased familiarity will help you identify the capabilities of the
tool and decide where it fits in your data access toolkit.

Part 4

Manipulating XML

XML has become an important piece of technology within the applica-
tions we build. Whether we’re integrating with a third-party web site via its
public XML API, building RSS capabilities into our application, or reading an
XML configuration file, XML has become an integral component within our
applications. In this section, we explore how we can use LINQ against our
XML data. We’ll explore how to query XML using the standard LINQ query
syntax covered in the first three parts of this book, as well as how we can use
the new XML API provided with LINQ to manipulate XML documents.

 Chapter 9 introduces you to LINQ to XML and the new lightweight XML
programming API it provides. In chapter 10, we look at how we can use LINQ
to query XML, as well as how LINQ to XML can be used to transform XML
into alternate formats. Chapter 11 covers many of the common scenarios
that you’ll encounter as you begin to work with LINQ to XML.

Introducing
 LINQ to XML
This chapter covers
■ LINQ to XML design principles
■ LINQ to XML class hierarchy
■ Loading, parsing, and manipulating XML
313

314 CHAPTER 9

Introducing LINQ to XML
In the first three parts of this book, we introduced you to the new language fea-
tures in C# and VB that help enable LINQ, the default implementation of the stan-
dard query operators that work over objects—LINQ to Objects—as well as the
implementation of LINQ for working with relational data—LINQ to SQL. In this
chapter, we introduce you to another import piece of LINQ—LINQ to XML.

 LINQ to XML allows you to use the powerful query capabilities offered by LINQ
with XML data. Rather than learn a new API for querying XML, we can stick with
the familiar query syntax that we’ve already learned for querying objects and rela-
tional data.

 In addition to allowing us to query XML using LINQ, LINQ to XML also pro-
vides developers with a new XML programming API. The programming API is a
lightweight, in-memory API that has been designed to take advantage of the latest
.NET Framework. It provides functionality similar to the DOM, but does so with a
redesigned API that is more intuitive.

 In this chapter, we’re going to focus on the new XML programming API offered
with LINQ. Understanding the LINQ to XML API will give us a foundation that we’ll
build upon as we dive deeper later in this chapter, as well as in chapters 10 and 11.
Once we have a firm understanding of the LINQ to XML API, we’ll see how we can
begin to query and transform XML data with LINQ to XML in chapter 10.

 To become experts in the LINQ to XML API, we first need to back up and
become familiar with its key design principles. In this chapter, we’ll introduce
those design principles, along with several of the key concepts that are at the
heart of the API. Once we understand why Microsoft chose to create LINQ to XML,
we’ll plunge into the LINQ to XML class hierarchy. As we look at the class hierar-
chy, we’ll identify several of the key constructors and methods that we’ll use when
working with the LINQ to XML API toward the end of this chapter. Once we have
an overview of the classes provided by LINQ to XML, we’ll look at how we can
begin to use the LINQ to XML classes to perform the key operations necessary for
building applications that use XML data, such as how to load, parse, create,
update, delete, and save XML.

 Before we get too deep into the details of the LINQ to XML API, we first need to
understand what an XML API is, and what it’s good for.

9.1 What is an XML API?

An XML API provides developers with a programming interface for working with
XML data. By utilizing an XML API, we can build applications that make use of
XML. To illustrate our need for such an API, think about how we might build an

What is an XML API? 315
application that makes use of an XML file that contains a list of web site links, as
shown in listing 9.1.

<links>
 <link>
 <url>http://linqinaction.net</url>
 <name>LINQ in Action</name>
 </link>
 <link>
 <url>http://hookedonlinq.com</url>
 <name>Hooked on LINQ</name>
 </link>
 <link>
 <url>http://msdn.microsoft.com/data/linq/</url>
 <name>The LINQ Project</name>
 </link>
</links>

To build an application that uses this XML file, we need a way to open the XML file
and read its contents. We also might need a way to create a file with the same
structure as the file shown, as well as a way to modify specific links contained
within the XML file. If you’ve done any work with XML, you already know that
these scenarios are exactly what an XML API is designed for. Rather than resorting
to brute force string manipulation, we use an API that is designed to make load-
ing, manipulating, and saving XML easy for programmers.

 Over the years we’ve seen many different implementations of APIs for working
with XML. While they all share some common attributes, they each have a differ-
ent style and approach that make them unique. Today, when working with XML in
.NET, we can choose from a variety of APIs. Our choice largely depends upon what
we’re trying to accomplish. If we’re interested in the low-level parsing of XML, we
can use the XmlTextReader class. If we’re dealing with large documents, we might
choose a streaming API such as XmlReader. And if we’re interested in an API that
will make it easy to traverse the XML, we might choose to use the DOM available
via the XmlNode class, or the XPathNavigator class, which allows traversal of XML
nodes via XPath expressions. Each API provides unique advantages and has spe-
cific strengths and weaknesses. But what they all have in common is their goal of
allowing developers to build applications that use XML.

Listing 9.1 Sample XML file containing web site links

316 CHAPTER 9

Introducing LINQ to XML
 With so many .NET XML API choices available today, you might be wondering
why we need LINQ to XML at all. After all, it appears we have a lot of specialized
XML APIs that are designed for working with XML data. Let’s now take a look at
why we need yet another XML programming API.

9.2 Why do we need another XML programming API?

With existing APIs, developers have too much to think about. We have to know
when to choose between XSLT, XPath, XQuery, and XML DOM. We have to worry
about the subtle points of a lot of different APIs and need to learn technologies
that have completely different conceptual models. For those working with XML
day in and day out, this might not be a problem, but for the majority of develop-
ers, the depth and breadth of technological choices for working with XML
is overwhelming.

 LINQ to XML aims to solve these problems by providing mainstream develop-
ers with a simple, yet powerful, XML programming API. It provides the query and
transformation power of XQuery and XPath integrated into .NET programming
languages, as well as an in-memory programming API that makes working with
XML data consistent and predictable.

 In addition to providing developers with a more usable XML API, LINQ to XML
also aims to take advantage of the advancements in programming languages that
have occurred since the DOM/SAX was created nearly a decade ago. Language fea-
tures such as nullable types and functional construction are in wide use today, and
developers working with XML should be able to leverage these language advance-
ments in their daily work. Additionally, LINQ itself brings many language advance-
ments such as extension methods, anonymous types, and lambda expressions. In
order for LINQ to fulfill its goal of providing a single query API for all data,
Microsoft needed to ensure the LINQ story surrounding XML was compelling.

 It could be argued that instead of creating a brand-new API, Microsoft should
have reworked its existing APIs. Although Microsoft considered adding LINQ sup-
port to the existing APIs, retrofitting them would be difficult without breaking
existing applications. An attempt to do so would cause a great deal of confusion
among developers and would raise the complexity of those APIs to a point that
they’d be unusable for most tasks. Since one of the primary goals was to make a
more usable XML API, the complexity that changing existing APIs would bring
made it a less viable option.

LINQ to XML design principles 317
 If what we’ve just said has yet to convince you, don’t worry, because as you
begin to work with LINQ to XML you’ll quickly see why Microsoft chose to create a
new XML API. LINQ to XML has been designed for LINQ, and it shows!

 Let’s now look at the core LINQ to XML design principles to get a better under-
standing of how LINQ to XML differs from existing .NET XML APIs.

9.3 LINQ to XML design principles

To make working with XML more productive and enjoyable for the average XML
programmer, Microsoft has taken a completely new approach with the design of
LINQ to XML. It has been designed to be a lightweight XML-programming API,
both from a conceptual as well as from a memory and performance perspective.
As we’ll see in section 9.4, the LINQ to XML data model has been closely aligned
with the W3C Information Set.1

 To fully appreciate how the design principles that we’re about to discuss make
a difference when working with XML, let’s create a simple XML document using
today’s most prominent XML-programming API, the DOM, then compare it
against how we create the same XML document using LINQ to XML. Our simple
example will show how LINQ to XML can make our lives as XML developers easier
and more productive.

 Our aim is to create an XML document that contains the details of the books
contained within our LINQBooks sample application. Let’s start with a simple doc-
ument that contains the most important book in anyone’s library (see listing 9.2).

<books>
 <book>
 <title>LINQ in Action</title>
 <author>Fabrice Marguerie </author>
 <author>Steve Eichert</author>
 <author>Jim Wooley</author>
 <publisher>Manning</publisher>
 </book>
</books>

1 The W3C Information Set is a specification that provides a consistent set of definitions for the informa-
tion in an XML document. For more information, visit the W3C Information Set web site: http://
www.w3.org/TR/xml-infoset/.

Listing 9.2 The most important book in anyone’s library

318 CHAPTER 9

Introducing LINQ to XML
Now let’s write the code necessary for creating our document using the DOM. See
listing 9.3.

XmlDocument doc = new XmlDocument();
XmlElement books = doc.CreateElement("books");
XmlElement author1 = doc.CreateElement("author");
author1.InnerText = "Fabrice Marguerie";
XmlElement author2 = doc.CreateElement("author");
author2.InnerText = "Steve Eichert";
XmlElement author3 = doc.CreateElement("author");
author3.InnerText = "Jim Wooley";
XmlElement title = doc.CreateElement("title");
title.InnerText = "LINQ in Action";
XmlElement book = doc.CreateElement("book");
book.AppendChild(author1);
book.AppendChild(author2);
book.AppendChild(author3);
book.AppendChild(title);
books.AppendChild(book);
doc.AppendChild(books);

As we can see, creating XML documents using the DOM requires us to use an
imperative construction model. First, we create our element within the context of
our document, and then we append it to its parent. The imperative construction
model results in code that looks nothing like the resulting XML. Rather than
being hierarchical like the XML we’re trying to produce, the code is flat with
everything at a single level. Additionally, we need to create a lot of temporary vari-
ables to hold onto each element we create. The result is a block of code that is
hard to read, debug, and maintain. The structure of the code has no relationship
to the structure of the XML we’re creating. In contrast, let’s look at the code
required to create the same XML using LINQ to XML.

new XElement("books",
 new XElement("book",
 new XElement("author", "Fabrice Marguerie"),
 new XElement("author", "Steve Eichert"),
 new XElement("author", "Jim Wooley"),
 new XElement("title", "LINQ in Action"),
 new XElement("publisher", "Manning")
)
);

Listing 9.3 Create an XML document using the DOM

Listing 9.4 Create an XML document using LINQ to XML

LINQ to XML design principles 319
By providing convenient constructors for creating elements within the context of a
document-free environment, we can quickly write the code necessary for creating
our document using the LINQ to XML programming API. We no longer have to
worry about creating our elements within the context of a parent document, and we
can construct our XML using a structure very similar to that of the resulting XML.

 Our simple example demonstrated several of the key design differences
between LINQ to XML and the DOM. To highlight the difference even more, we’re
now going to explore LINQ to XML’s key concepts and examine the underlying
design principles of LINQ to XML in detail.

9.3.1 Key concept: functional construction

LINQ to XML provides a powerful approach to creating XML elements, referred to
as functional construction. Functional construction allows a complete XML tree to
be created in a single statement. Rather than imperatively building up our XML
document by creating a series of temporary variables for each node, we build XML
in a functional manner, which allows the XML to be built in a way that closely
resembles the resulting XML.

 When working with the DOM, notice how much code we need to write just to
keep our elements around so we can assign them values and append them to the
appropriate parent element. Not only do we need to write a lot more code, but
also the code doesn’t look at all like the resulting XML. In order to build XML
using the imperative model that the DOM requires, we need to stop thinking
about our XML and instead think about how the XML DOM works.

 The goal of functional construction is to allow programmers to build XML in a
way that fits with how they think about XML. By allowing developers to stay
focused on the XML and not have to switch gears, the LINQ to XML API makes
developers’ lives more pleasant and enjoyable. Isn’t happiness in life defined by
how nicely your XML API lets you create XML documents?

 As we can see in figure 9.1, the LINQ to XML code on the left closely resembles
the resulting XML that’s shown on the right.

Figure 9.1 LINQ to XML’s functional construction allows the code for creating XML to closely resemble
the resulting XML.

320 CHAPTER 9

Introducing LINQ to XML
When we start discussing how to create XML in section 9.5.3, we’ll revisit and reex-
amine how functional construction is made possible in LINQ to XML. For now, let’s
move on to the second key concept of LINQ to XML, context-free XML creation.

9.3.2 Key concept: context-free XML creation

When creating XML using the DOM, everything must be done within the context of
a parent document. This document-centric approach to creating XML results in
code that is hard to read, write, and debug. Within LINQ to XML, elements and
attributes have been granted first-class status. They’re standalone values that can be
created outside the context of a document or parent element. This allows program-
mers to work with XML in a much more natural way. Rather than going through fac-
tory methods to create elements and attributes, they can be created using the
compositional constructors offered by the XElement and XAttribute class.

 The result is code that is much more readable and understandable. In addition,
it is easier to create methods that accept and return elements and attributes, since
they no longer have to be constructed within the context of their parent document.

 Although documents have lost their elite status within LINQ to XML, they still
have their place. When creating full XML documents that have XML declarations,
document type definitions, and XML processing instructions, LINQ to XML offers
the XDocument class.

 As we work through the rest of this chapter, you’ll begin to see the benefits of
working within a context-free API. We know you’re excited to see more key con-
cepts, so now let’s move on to simplified names.

9.3.3 Key concept: simplified names

One of the most confusing aspects of XML is all the XML names, XML
namespaces, and namespace prefixes. When creating elements with the DOM,
developers have several overloaded factory methods that allow them to include
details of the fully expanded name of an element. How the DOM figures out the
name, namespace, and prefix is confusing and complicates the API unnecessarily.
Within LINQ to XML, XML names have been greatly simplified. Rather than hav-
ing to worry about local names, qualified names, namespaces, and namespace
prefixes, we can focus on a single fully expanded name. The XName class repre-
sents a fully expanded name, which includes the namespace and local name for
the elements. When a namespace is included as part of an XName, it takes the fol-
lowing form: {http://schemas.xyxcorp.com/}localname.

 In addition to simplifying the process of creating elements that use namespaces,
LINQ to XML also makes it much easier to query an XML tree for elements that have

LINQ to XML design principles 321
a namespace specified. Let’s look at the code for querying the following RSS feed
(which has namespaces), shown in listing 9.5.

<?xml-stylesheet href=http://iqueryable.com/friendly-rss.xsl
 type="text/xsl" media="screen"?>
<rss version="2.0" xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:slash="http://purl.org/rss/1.0/modules/slash/"
 xmlns:wfw="http://wellformedweb.org/CommentAPI/">
 <channel>
 <title>Steve Eichert</title>
 <link>http://iqueryable.com/</link>
 <generator>ActiveType CMS v0.1</generator>
 <dc:language>en-US</dc:language>
 <description />
 <item>
 <dc:creator>Steve Eichert</dc:creator>
 <title>Parsing WordML using LINQ to XML</title>
 <link>http://iqueryable.com/LINQ/ParsingWordMLusingLINQ to XML</link>
 <pubDate>Wed, 02 Aug 2006 15:52:44 GMT</pubDate>
 <guid>http://iqueryable.com/LINQ/ParsingWordMLusingLINQ to XML</guid>
 <comments>
 http://iqueryable.com/LINQ/ParsingWordMLusingLINQ to XML#comments
 </comments>
 <wfw:commentRss>
 http://iqueryable.com/LINQ/ParsingWordMLusingLINQ to
XML/commentRss.aspx
 </wfw:commentRss>
 <slash:comments>1</slash:comments>
 <description>Foo…</description>
 </item>
 </channel>
</rss>

Note that the RSS feed uses several XML namespaces: http://purl.org/dc/ele-
ments/1.1/, http://purl.org/rss/1.09/modules/slash/, and http://well-
formedweb.org/commentapi/. Listing 9.6 shows the code for using the DOM to
select values out of elements that use a namespace prefix for the aforemen-
tioned namespaces.

XmlDocument doc = new XmlDocument();
doc.Load("http://iqueryable.com/rss.aspx");

XmlNamespaceManager ns = new XmlNamespaceManager(doc.NameTable);

Listing 9.5 An RSS feed that uses XML namespaces

Listing 9.6 Working with XML containing namespaces via the DOM

http://purl.org/dc/elements/1.1/
http://wellformedweb.org/commentapi/

322 CHAPTER 9

Introducing LINQ to XML
ns.AddNamespace("dc", "http://purl.org/dc/elements/1.1/");
ns.AddNamespace("slash", "http://purl.org/rss/1.0/modules/slash/");
ns.AddNamespace("wfw", "http://wellformedweb.org/CommentAPI/");

XmlNodeList commentNodes = doc.SelectNodes("//slash:comments", ns);
foreach(XmlNode node in commentNodes) {
 Console.WriteLine(node.InnerText);
}

When querying the RSS feed using the DOM, we need to create an XMLNamespace-
Manager and remember to use it every time we do a search on the document.
Unless of course we don’t plan on querying for elements that have a prefix, in
which case we can get rid of the namespace manager altogether:

XmlNodeList titleNodes = doc.SelectNodes("/rss/channel/item/title");
foreach(XmlNode node in titleNodes) {
 Console.WriteLine(node.InnerText);
}

Depending on what we’re querying, we have slightly different APIs. We have to
remember when to use a namespace manager and when to forgo it. LINQ to XML
provides a more natural way of handling namespaces. Instead of working with an
XMLNamespaceManager and having to remember when to use it, we remember one
simple rule:

Always use fully expanded names when working with elements and attributes.
If the element that you’re interested in has a namespace associated with it, use it
when constructing your XName; if it doesn’t, then don’t. Listing 9.7 shows the LINQ
to XML code for querying our sample XML.

XElement rss = XElement.Load("http://iqueryable.com/rss.aspx");
XNamespace dc = "http://purl.org/dc/elements/1.1/";
XNamespace slash = "http://purl.org/rss/1.0/modules/slash/";
XNamespace wfw = "http://wellformedweb.org/CommentAPI/";

IEnumerable<XElement> comments = rss.Descendants(slash + "comments");
foreach(XElement comment in comments) {
 Console.WriteLine((int)comment);
}

IEnumerable<XElement> titles = rss.Descendants("title");
foreach(XElement title in titles) {
 Console.WriteLine((string)title);
}

Listing 9.7 Querying XML containing namespaces with LINQ to XML

Fully expanded query using
an XNamespace and XName

Query using
only a local
name

LINQ to XML class hierarchy 323
As you can see, the way we deal with namespaces in LINQ to XML is straightfor-
ward. In our first query, we build our fully expanded name (XName) by appending
the element’s local name to our XNamespace (slash). In the second query for the
titles of the items in the RSS feed, we use just the local name (title) since it
doesn’t have any namespace associated with it. By combining the namespace and
the local name into a single concept, LINQ to XML makes working with XML doc-
uments that use namespaces and namespace prefixes much simpler. Everything is
wrapped up into a single concept and encapsulated in a single class, XName.

 That completes our quick tour of the key concepts within LINQ to XML.
Throughout the next chapters, you’ll see many examples of these key concepts, as
well as how they can make your life easier when working with XML. Now let’s jump
into the class hierarchy itself so that we can see how everything we’ve talked about
thus far manifests itself in the classes and objects we’ll use to build XML applications.

9.4 LINQ to XML class hierarchy

Before moving on to look at how we can use the LINQ to XML programming API
to load, create, and update XML, we need to understand the major classes we’ll be
using. Fortunately, LINQ to XML has a relatively small hierarchy, and only a hand-
ful of classes that you’ll work with day to day. The class hierarchy is figure 9.2
shows the major classes defined in the LINQ to XML API.

Figure 9.2 The LINQ to XML class hierarchy consists of a small number of classes, but together
they provide developers with a powerful programming API for working with XML.

324 CHAPTER 9

Introducing LINQ to XML
LINQ to XML is a small, focused API that has been designed to allow programmers
to work with XML in a more productive and intuitive manner.

 At the top of figure 9.2 we have the abstract XObject class. The XObject class
serves as a base class for the majority of the classes within the LINQ to XML class
hierarchy. It provides an AddAnnotation method for adding user-defined infor-
mation, such as line numbers, to LINQ to XML objects, as well as a RemoveAnnota-
tion for getting rid of an annotation when it’s no longer desired. To retrieve
annotations, XObject offers the Annotation, Annotation<T>, Annotations, and
Annotations<T> axis methods.

 Just below XObject in the class diagram is the abstract XNode class. XNode is the
base class for all LINQ to XML classes that represent element nodes. It provides
common operations for updates using the imperative style such as AddAfterSelf,
AddBeforeSelf, and Remove, as well as axis methods such as Ancestors, Element-
sAfterSelf, ElementsBeforeSelf, NodesAfterSelf, and NodesBeforeSelf.

 Just below XNode in the class hierarchy is the XContainer class. XContainer is an
abstract base class for all XNode objects that can contain other XNode objects. XCon-
tainer adds additional imperative update methods such as Add, AddFirst,
RemoveNodes, and ReplaceNodes. It also adds axis methods such as Nodes, Descen-
dants, Element, and Elements. XContainer serves as the base class of two of the
most important classes within the LINQ to XML hierarchy, XElement and XDocument.

 Although it appears low in the class hierarchy, the most fundamental class
within LINQ to XML is XElement. The XElement class represents XML element
nodes that contain other elements as child nodes. It adds further axis methods
such as Attributes, AncestorsAndSelf, and DescendantAndSelf, as well as addi-
tional imperative update methods such as RemoveAll, RemoveAttributes, Set-
ElementValue, and SetAttributeValue. As the fundamental class within LINQ to
XML, XElement also provides a static Load method, which allows XML to be loaded
from external sources, as well as a static Parse method that allows an XElement to
be created from a string of XML. Finally, XElement offers a Save method for saving
the XML tree that it represents to disk, as well as a WriteTo method that allows the
XML to be written to an XmlWriter. In addition to being able to contain other
XNode objects, XElement also has the ability to have attributes assigned.

 The XAttribute class represents attributes within LINQ to XML. Unlike many
of the other core classes within LINQ to XML, XAttribute does not inherit from
XNode. XAttribute objects are name/value pairs that are associated with XEle-
ment objects. The XAttribute class provides a Parent axis property, as well as a
single imperative Remove method.

LINQ to XML class hierarchy 325
 As we mentioned earlier in this chapter, the importance of XML documents
has been greatly deemphasized in LINQ to XML, but they’re still needed from
time to time. It’s for this purpose that LINQ to XML provides the XDocument class.
The XDocument class represents a complete XML document. Like the XElement
class, it offers both a static Load method for loading XML documents from exter-
nal sources and a static Parse method that allows XML documents to be created
from a string. It also offers the same Save and WriteTo methods that allow the
actual XML document that they represent to be saved. The primary difference
between the XElement and XDocument classes is that an XDocument contains a sin-
gle root XElement, as well as the ability to contain

■ One XML declaration

■ One XML document type

■ XML processing instructions

As mentioned earlier, one of the key concepts of LINQ to XML is the simplification
of XML names. The two classes that help with this simplification are the XName and
XNamespace classes. XName represents a fully expanded name for an XElement or
XAttribute. The fully expanded name is represented in the string format
{namespace}localname. The XNamespace class represents the namespace portion
of an XName, and as such can be retrieved using the Namespace property of an
XName. The XName and XNamespace classes have an implicit operator overload
defined that allows a string formatted in expanded XML Name format to automat-
ically be converted into an XName and XNamespace. The implicit overloads allow us
to use strings in place of XName and XNamespace objects when constructing XEle-
ment and XAttribute objects.

 While there are several other classes within the LINQ to XML hierarchy, they’re
complementary classes that you likely won’t see in your everyday programming
efforts. See table 9.1.

Table 9.1 Complementary LINQ to XML classes

Class Description

XDeclaration Represents an XML declaration. An XML declaration is used to declare the XML
version, the encoding, and whether or not the XML document is standalone.

XComment Represents an XML comment.

XDocumentType Represents an XML DTD.

326 CHAPTER 9

Introducing LINQ to XML
The simplicity of LINQ to XML can be seen in the low number of classes within
the API, and in how few classes you need to be intimately familiar with to complete
common XML programming tasks. Now that we have a base understanding of the
core classes within the LINQ to XML object hierarchy, let’s start to get our hands
dirty with LINQ to XML.

9.5 Working with XML using LINQ

Now that we’ve seen the LINQ to XML class hierarchy, it’s time to look at how we
use the API provided by the LINQ to XML classes to perform the common XML
operations we encounter when developing applications. The LINQ to XML API
provides developers with an in-memory programming interface for reading, pars-
ing, creating, and manipulating XML. Using the LINQ to XML API, we can quickly
build applications that leverage XML data throughout.

 In this section, we’re going to cover all the fundamental operations that are
required for building applications that use XML. As we work our way through the
API, we’re not going to cover every class within the LINQ to XML hierarchy, and
we’re not going to cover every method available. Instead we’ll focus on the key
classes and methods that will be the most valuable when building applications
with LINQ to XML.

 We’re going to start by looking at how to load data from a file on disk, as well
as from an external web site. Once we have a firm understanding of how to read
XML, we’ll be able to leverage the various XML data feeds available on the web
within our applications. While it’s nice to have a well-formatted XML document,
we’ll sometimes need to parse a string of text formatted as XML into a LINQ to
XML object. Because of this, we’ll explore the Parse methods available on XEle-
ment and XDocument.

 Next, we’ll learn how to create our own XML, and we’ll finish by looking at
how we can alter and modify existing XML trees using the LINQ to XML API. By

XProcessingInstruction Represents an XML processing instruction. A processing instruction is
intended to convey information to an application that processes the XML.

XStreamingElement Allows elements to be streamed on input and output.

XText and XCData The LINQ to XML text node classes. Text nodes are used when creating CData
sections or working with mixed content

Table 9.1 Complementary LINQ to XML classes (continued)

Class Description

Working with XML using LINQ 327
the time we finish, we’ll have covered all the common operations that you’ll need
to start building applications that use XML. Without further ado, let’s take a look
at how to load existing XML documents with LINQ to XML.

9.5.1 Loading XML

LINQ to XML allows XML to be loaded from a variety of input sources. These
sources include a file, a URL, and an XmlReader. To load XML, the static Load
method on XElement can be used. To load an XML file from a file on your hard
drive into an XElement, you can use the following C# code:

XElement x = XElement.Load(@"c:\books.xml");

Loading XML from a web site (or any URL) is also supported by the Load method.
To load the RSS feed from the MSDN web site, we can alter the Load method to
take in a URL instead of a file path.

XElement x = XElement.Load("http://msdn.microsoft.com/rss.xml");

By default, when XML is loaded into a XDocument or XElement, the whitespace
within the document is removed. If you want to preserve the whitespace within
the source document, you can overload the Load method so it takes a Load-
Options flag. The LoadOptions flag can be used to indicate the options to use
when loading the XML. The available options are None, PreserveWhitespace,
SetBaseUri, and SetLineInfo. Let’s load the RSS from MSDN again, but this time
preserve whitespace by passing the LoadOptions.PreserveWhitespace flag.

string xmlUrl = "http://msdn.microsoft.com/rss.xml";
XElement x = XElement.Load(xmlUrl, LoadOptions.PreserverWhitespace);

When loading XML from a file or URL, LINQ to XML uses the XmlReader class.
The XmlReader first retrieves the XML requested in the Load method, either by
reading the file from the local filesystem or by requesting the file with the pro-
vided URL. Once the file is retrieved, the XmlReader reads the XML within the file
and parses it into an in-memory tree of LINQ to XML objects. Given XElement’s
use of XmlReader for loading XML, it’s not surprising that LINQ to XML also sup-
ports loading XML directly from an existing XmlReader. To load XML from an
XmlReader, you must first position the XmlReader on an element node.

 In listing 9.8, we load our books.xml file into an XmlReader using its static Create
method. We then read each node within the XmlReader until we find a node with
a NodeType of XmlNodeType.Element. Once our XmlReader is positioned on an ele-
ment node, we then use the static ReadFrom method that accepts an XmlReader as
a parameter to create an XElement from the existing XmlReader instance.

328 CHAPTER 9

Introducing LINQ to XML
using(XmlReader reader = XmlReader.Create("books.xml")) {
 while(reader.Read()) {
 if(reader.NodeType == XmlNodeType.Element)
 break;
 }
 XElement booksXml = (XElement) XNode.ReadFrom(reader);
}

If you want to create an XElement object from a fragment of XML contained
within an XmlReader, you need to navigate to the proper node using the Xml-
Reader API and once again pass the reader to the ReadFrom method. For example,
to load the first book element within our books.xml file, we can use listing 9.9.

using(XmlReader reader = XmlTextReader.Create("books.xml")) {
 while (reader.Read()) {
 if (reader.NodeType == XmlNodeType.Element && reader.Name == "book")
 break;
 }
 XElement booksXml = (XElement) XNode.ReadFrom(reader);
}

Thus far we’ve only explored how to load XML into XElement objects. If you’re
interested in accessing the XML declarations (XDeclaration), top-level XML pro-
cessing instructions (XProcessingInstruction), XML document type definitions
(XDocumentType), or XML comments (XComment) within an XML document, you’ll
need to load your XML into an XDocument object instead of an XElement. To load
XML into an XDocument object, you can use the same mechanisms that we just dis-
cussed. The static Load method on XDocument has the same overloads as XElement
and provides the same basic behavior. The only difference is that XDocument can
contain additional nodes types as children. If we again want to load the MSDN RSS
feed, but this time we’re interested in being able to access every child node
(including the XML declarations, DTDs, processing instructions, and comments)
we can load the RSS feed into an XDocument object using the following code:

XDocument msdnDoc = XDocument.Load("http://msdn.microsoft.com/rss.xml");

Now that we’ve discussed how to load XML from external sources such as files,
URLs, and XmlReader objects, let’s look at how we can deal with XML that is con-
tained within a simple string rather than a file.

Listing 9.8 Creating an XElement from an existing XmlReader

Listing 9.9 Creating an XElement object from a fragment of XML contained within
 an XmlReader

Working with XML using LINQ 329
9.5.2 Parsing XML

In some cases the XML that we want to use won’t be in a file, or located at a URL. It
will be a simple string that is being built by some other part of our application.
For these cases, the XElement class provides a static Parse method that creates a
new XElement from a string of XML. The Parse method has a similar interface to
the Load method, so there isn’t much new to learn. Listing 9.10 shows how we can
use the Parse method to create an XElement from a string of XML.

XElement x = XElement.Parse(
@"<books>
 <book>
 <author>Don Box</author>
 <title>Essential .NET</title>
 </book>
 <book>
 <author>Martin Fowler</author>
 <title>Patterns of Enterprise Application Architecture</title>
 </book>
 </books>");

Just like the Load method, the Parse method allows you to control whether
whitespace is preserved by passing LoadOptions.PreserveWhitespace as the sec-
ond parameter:

XElement x = XElement.Parse("<books/>", LoadOptions.PreserveWhitespace);

As noted earlier, LINQ to XML uses an XmlReader to parse XML. If malformed
XML is passed to Parse then the underlying XmlReader will throw an exception.
The Load and Parse methods do not catch the exceptions thrown by XmlReader;
instead the exception bubbles up so that application code can catch the excep-
tion and handle it appropriately. The following code shows the general structure
that should be followed when loading or parsing XML:

try {
 XElement xml = XElement.Parse("<bad xml>");
}
catch (System.Xml.XmlException e) {
 // log the exception
}

As we’ve seen throughout this section, the way we load and parse XML hasn’t
changed much with LINQ to XML. Under the covers, LINQ to XML leverages the
power of the existing XmlReader infrastructure to perform all the XML parsing.

Listing 9.10 Parsing a string of XML to an XElement

330 CHAPTER 9

Introducing LINQ to XML
This allows the LINQ to XML classes to focus on providing an intuitive API for work-
ing with XML, rather than on the nitty-gritty details required to parse the XML.

 Now that we’ve covered the basics of loading and parsing existing XML, let’s
move on to creating XML from scratch.

9.5.3 Creating XML

As we discussed earlier in this chapter, LINQ to XML provides a powerful
approach to creating XML elements, referred to as functional construction. Func-
tional construction allows a complete XML tree to be created in a single state-
ment. As an example, let’s look at how we can create the following XML using
functional construction.

<books>
 <book>
 <author>Don Box</author>
 <title>Essential .NET</title>
 </book>
</book>

To create this XML, we can use one of the XElement constructors that allow us to pass
in an entire XML fragment as a set of nested XElement objects. See listing 9.11.

XElement books = new XElement("books",
 new XElement("book",
 new XElement("author", "Don Box"),
 new XElement("title", "Essential .NET")
)
);

By indenting the C# code used to create the XML, we can see it take the shape of
the resulting XML. Compare this to listing 9.12, which creates the same XML using
the imperative construction model provided by LINQ to XML.

XElement book = new XElement("book");
book.Add(new XElement("author", "Don Box"));
book.Add(new XElement("title", "Essential .NET"));

XElement books = new XElement("books");
books.Add(book);

Listing 9.11 Creating an XElement with functional construction

Listing 9.12 Creating an XElement using the imperative construction model provided
 by LINQ to XML

Working with XML using LINQ 331
While the overall number of lines to create the XML in the two code samples is
comparable, the first sample that used functional construction is more readable
and more closely resembles the resulting XML. When creating XML using the
imperative model, we need to create temporary variables for the various elements
that make up the resulting XML. The result is code that is less readable and more
prone to errors.

 When thinking about XML, we often visualize the hierarchy of nodes that
make up the XML. When building XML using imperative Add method calls, the
code can’t easily take on a shape similar to the resulting XML. With functional
construction, we can write code that has a shape and feel similar to the resulting
XML. This allows us to stay focused on the XML and not have to switch gears. The
end result is a more pleasant and enjoyable programming experience.

 To enable functional construction, the following three constructors are avail-
able on XElement.

public XElement(XName name)
public XElement(XName name, object content)
public XElement(XName name, params object[] content)

The content parameter can be any type of object that is a legitimate child of an
XElement. Legitimate child content includes

■ A string, which is added as text content. This is the recommended pattern
to add a string as the value of an element; the LINQ to XML implementa-
tion will create the internal XText node.

■ An XText, which can have either a string or CData value, added as child
content. This is mainly useful for CData values; using a string is simpler for
ordinary string values.

■ An XElement, which is added as a child element.

■ An XAttribute, which is added as an attribute.

■ An XProcessingInstruction or XComment, which is added as child content.

■ An IEnumerable, which is enumerated, and these rules are applied recur-
sively.

■ Anything else, in which case To String() is called and the result is added as
text content.

■ null, which is ignored.

The simplest way to create an XElement is by using a constructor that takes an XName.

XElement book = new XElement("book");

332 CHAPTER 9

Introducing LINQ to XML
To make working with the LINQ to XML API more usable, the XName class has an
implicit conversion from string. This means that LINQ to XML can convert a
string, such as “book”, into an XName object without you explicitly specifying a cast
or creating a new XName object. Because of this, we can pass the name of the ele-
ment (“book”) directly to the XElement constructor. Under the covers, LINQ to
XML implicitly converts the string into an XName and initializes the XElement with
the XName.

 Creating leaf elements that have text content is as easy as passing the content
as the second parameter to the XElement constructor.

XElement name = new XElement("name", "Steve Eichert");

Which will produce

<name>Steve Eichert</name>

As you would expect, the string could have been stored in a variable or returned
from a method call.

XElement name = new XElement("name", usersName);
XElement name = new XElement("name", GetUsersName());

To create an XML element with child nodes, we can take advantage of the third
XElement constructor that is declared with the params keyword. The params key-
word allows a variable number of arguments to be passed as content. To create
this XML:

<books>
 <book>LINQ in Action</book>
 <book>Ajax in Action</book>
</books>

We can use the following code:

XElement books = new XElement("books",
 new XElement("book", "LINQ in Action"),
 new XElement("book", "Ajax in Action")
);

Since each child node in the previous sample is itself an XElement, we can extend
the code to create an entire XML tree, as in listing 9.13.

XElement books = new XElement("books",
 new XElement("book",
 new XElement("title", "LINQ in Action"),
 new XElement("authors",

Listing 9.13 Creating an XML tree using LINQ to XML

Working with XML using LINQ 333
 new XElement("author", "Fabrice Marguerie"),
 new XElement("author", "Steve Eichert"),
 new XElement("author", "Jim Wooley")
),
 new XElement("publicationDate", "January 2008")
),
 new XElement("book",
 new XElement("title", "Ajax in Action"),
 new XElement("authors",
 new XElement("author", "Dave Crane"),
 new XElement("author", "Eric Pascarello"),
 new XElement("author", "Darren James")
),
 new XElement("publicationDate", "October 2005")
)
);

Of course, as you encounter real-life scenarios for creating XML, it’s pretty
unlikely that you’ll be dealing with XML that doesn’t contain namespaces and
namespace prefixes. To create an element with a namespace, you can either pass
the fully expanded XML name as the first parameter to the XElement constructor
or you can create an XNamespace and append the local name when creating the
element. Listing 9.14 shows how to create an XElement with a full XML name, as
well as with an XNamespace.

XElement book = new XElement("{http://linqinaction.net}book");

XNamespace ns = "http://linqinaction.net";
XElement book = new XElement(ns + "book");

If you’re creating a single element that uses a namespace, you’ll most likely pass
the fully expanded name and not explicitly create an XNamespace. If you’re creat-
ing several elements that all use the same namespace, your code will look a lot
cleaner if you declare the XNamespace once and use it throughout all the relevant
elements, as shown in listing 9.15.

XNamespace ns = "http://linqinaction.net";
XElement book = new XElement(ns + "book",
 new XElement(ns + "title", "LINQ in Action"),

Listing 9.14 Creating an XElement with a full XML name and an XNamespace

Listing 9.15 Creating several elements that all use an XNamespace

Create
XElement
with fully
expanded
XName

Create with
XNamespace
and local name

334 CHAPTER 9

Introducing LINQ to XML
 new XElement(ns + "author", "Fabrice Marguerie"),
 new XElement(ns + "author", "Steve Eichert"),
 new XElement(ns + "author", "Jim Wooley"),
 new XElement(ns + "publisher", "Manning")
);

This will produce the following XML:

<book xmlns="http://linqinaction.net">
 <title>LINQ in Action</title>
 <author>Fabrice Marguerie</author>
 <author>Steve Eichert</author>
 <author>Jim Wooley</author>
 <publisher>Manning</publisher>
</book>

If you need to include namespace prefixes in your XML, you’ll have to alter your
code to explicitly associate a prefix with an XML namespace. To associate a prefix
with a namespace, you can add an XAttribute object to the element requiring
the prefix and append the prefix to the XNamespace.Xmlns namespace, as seen in
listing 9.16.

XNamespace ns = "http://linqinaction.net";
XElement book = new XElement(ns + "book",
 new XAttribute(XNamespace.Xmlns + "l", ns)
);

The resulting XML will look like this:

<l:book xmlns:l="http://linqinaction.net" />

Thus far we’ve primarily focused on producing XML that contains elements.
When creating XML in real-world scenarios, the XML that we produce may
include attributes, processing instructions, XML DTDs, comments, and more.

 To include any of these in our XML is simply a matter of passing them in at the
appropriate place within the functional construction statement. For example, to
add an attribute to our book element, we can create a new XAttribute and pass it
as one of the content parameters of our XElement, as in listing 9.17.

Listing 9.16 Associating a prefix with a namespace

Working with XML using LINQ 335
XElement book = new XElement("book",
 new XAttribute("publicationDate", "October 2005"),
 new XElement("title", "Ajax in Action")
);

In this section we’ve focused exclusively on using functional construction and the
LINQ to XML API for creating XML. We’ve also focused on doing so with C# as our
programming language. Those VB programmers in the crowd will be excited to
know that you’re privy to a nice feature called XML literals, which allows you to
embed XML directly within your Visual Basic 9.0 code.

9.5.4 Creating XML with Visual Basic XML literals

When creating XML in Visual Basic 9.0 using LINQ to XML, we can use the func-
tional construction pattern as well as the imperative methods available within the
LINQ to XML API. In addition, XML can be embedded directly within VB code
using the XML literal syntax. To illustrate the power of the XML literals feature,
let’s look at how we can construct XML using functional construction and com-
pare it against the code for creating the same XML using XML literals. Let’s start
by taking a look at the XML we’re going to produce.

<book>
 <title>Naked Conversations</title>
 <author>Robert Scoble</author>
 <author>Shel Israel</author>
 <publisher>Wiley</publisher>
</book>

Before checking out how to create this XML using XML literals let’s first do so
using functional construction. The VB code to construct the XML using functional
construction is shown in listing 9.18.

Dim xml As New XElement("book", _
 New XElement("title", "Naked Conversations"), _
 New XElement("author", "Robert Scoble"), _
 New XElement("author", "Shel Israel"), _
 New XElement("publisher", "Wiley") _
)

Listing 9.17 Creating XML with an attribute

Listing 9.18 Creating XML using Visual Basic and functional construction

336 CHAPTER 9

Introducing LINQ to XML
As you can see, the code for creating the XML using functional construction is
exactly the same as the code we’ve already seen when creating XML using C#
(besides the minor syntactical differences). Let’s now take a look at listing 9.19,
which shows the code for creating the XML using the XML literal syntax offered
by VB9.

Dim xml As XElement = <book>
 <title>Naked Conversations</title>
 <author>Robert Scoble</author>
 <author>Shel Israel</author>
 <publisher>Wiley</publisher>
</book>

With XML literals, we can embed XML directly into our Visual Basic code. Rather
than creating LINQ to XML object hierarchies that represent the XML, we instead
can define the XML using XML syntax. The result is code that exactly mirrors the
resulting XML and is more clear and concise.

 In listing 9.19, we create a static XML fragment using XML literals. When build-
ing real applications, we need to build XML in a more dynamic fashion. XML liter-
als allow us to embed expressions into the XML literal code using syntax that is
similar to the syntax used in ASP.NET. Let’s modify the code to create an XML frag-
ment using values stored in a set of local variables to illustrate how we can embed
expressions in our XML. See listing 9.20.

Dim title as String = "NHibernate in Action"
Dim author as String = "Pierre Kuate"
Dim publisher as String = "Manning"

Dim xml As XElement = <book>
 <title><%= title %></title>
 <author><%= author %></author>
 <publisher><%= publisher %></publisher>
</book>

In the listing code, we use an expression hole, which is expressed with the <%=
statement %> syntax to embed dynamic values into our XML literals. While our
expressions use local variables, we could just as easily use values returned from a
function or pulled from a database. By allowing us to embed our own expressions

Listing 9.19 Creating XML using XML literals

Listing 9.20 Embedding expressions in XML literal expression holes

Working with XML using LINQ 337
within the XML literal code, VB9 provides us with an intuitive method for dynami-
cally creating XML fragments using familiar XML syntax.

 In addition to supporting expression holes as the content of XML tags, we can
also use expression holes to create XML elements dynamically. For instance, if we
wanted to store the element name for the root element within our XML in a vari-
able, we can modify our code to look like listing 9.21.

Dim elementName as String = "book_tag"
Dim title as String = "NHibernate in Action"
Dim author as String = "Pierre Kuate"
Dim publisher as String = "Manning"

Dim xml As XElement = <<%= elementName %>>
 <title><%= title %></title>
 <author><%= author %></author>
 <publisher><%= publisher %></publisher>
</>

Which results in the following output:

<book_tag>
 <title>NHibernate in Action</title>
 <author>Pierre Kuate</author>
 <publisher>Manning</publisher>
</book_tag>

As we can see, using expression holes as element names is a matter of placing the
expression that builds the tag inside the expression hole. Since tags created with
expression holes aren’t known until run-time, VB9 allows an empty tag </> to
denote the close of an element.

 In addition to supporting expression holes as element names and as content of
elements, expressions can also be used in place of attribute values:

Dim linkXml = _
 <link updatedDate=<%=Now()%>>http://www.linqinaction.net/</link>

The addition of XML literals provides an intuitive syntax for creating XML in Visual
Basic. Rather than having to learn the details of an XML API, XML literals allow pro-
grammers to embed XML directly within their code. Under the covers, the Visual
Basic compiler coverts the XML literals into the corresponding LINQ to XML API
calls that we discussed earlier in this chapter. This allows XML code created within

Listing 9.21 Using expression holes to populate the element name of an XML element

338 CHAPTER 9

Introducing LINQ to XML
XML literals to interoperate with code written in languages that don’t support XML
literals, such as C#.

 Now that we’ve covered how to create XML using functional construction, as
well as Visual Basic’s XML literals, let’s move on to look at how we can create full
XML documents using LINQ to XML’s XDocument class.

9.5.5 Creating XML documents

When working with XDocument objects, you’ll find yourself in familiar territory. All
of the methods that we’ve talked about thus far, within the context of elements,
apply equally to XDocument. The main difference between the two is what is con-
sidered allowable content. When working with XElement objects, we allow XEle-
ment objects, XAttribute objects, XText, IEnumerable, and strings to be added
as content. XDocument allows the following to be added as child content:

■ One XDocumentType for the DTD.

■ One XDeclaration object, which allows you to specify the pertinent parts of
an XML declaration: the XML version, the encoding of the document, and
whether the XML document is standalone.

■ Any number of XProcessingInstruction objects. A processing instruction
conveys information to an application that processes the XML.

■ One XElement object. This is the root node of the XML document.

■ Any number of XComment objects. The comments will be siblings to the root
element. The XComment object can’t be the first argument in the list, as it is
invalid for an XML document to start with a comment.

In most usage scenarios, XML documents will be created using the functional con-
struction pattern, as shown in listing 9.22.

XDocument doc = new XDocument(
 new XDeclaration("1.0", "utf-8", "yes"),
 new XProcessingInstruction("XML-stylesheet", "friendly-rss.xsl"),
 new XElement("rss",
 new XElement("channel", "my channel")
)
);

Now that we’ve constructed our initial XDocument, let’s talk about some of the
classes that we may use during its construction.

Listing 9.22 Create an XML document using the XDocument class and functional
 construction

Working with XML using LINQ 339
XDeclaration
The XDeclaration class represents an XML declaration. An XML declaration is
used to declare the version and encoding of the document, as well as to indicate
whether the XML document is standalone.2 As such, the XDeclaration class has
the following constructor:

public XDeclaration(string version, string encoding, string standalone)

The XDeclaration class can be constructed using an existing XDeclaration or
XmlReader. When an existing XmlReader is passed into the constructor, the XML
declaration from the XmlReader is read into the XDeclaration. In order for the
XML declaration to be read from the XmlReader, it must be positioned on the XML
declaration. If the XmlReader is not positioned on an XML declaration, an Invalid-
OperationException will be thrown.

XProcessingInstruction
The second class that becomes relevant when we start working with XML docu-
ments is XProcessingInstruction. The XProcessingInstruction class repre-
sents an XML processing instruction. Processing instructions convey information
to an application that processes the XML. Like the XDeclaration class, the XPro-
cessingInstruction class can be constructed with an existing XmlReader
instance. Another way an XProcessingInstruction can be constructed is via the
following constructor:

public XProcessingInstruction(string target, string data)

One of the most common uses of XML processing instructions is to indicate what
XSLT stylesheet should be used to display an XML document. For example, to dis-
play a human-readable page when visitors click the RSS feed for your blog, you
may want to add an XML-stylesheet processing instruction to tell browsers to apply
a custom XSL stylesheet when displaying the raw XML feed, as in listing 9.23.

XDocument d = new XDocument(
 new XProcessingInstruction("XML-stylesheet",
 "href='http://iqueryable.com/friendly-rss.xsl' type='text/xsl'
 media='screen'"),
 new XElement("rss", new XAttribute("version", "2.0"),

2 A standalone XML document does not rely on information from external sources, such as external
DTDs, for its content.

Listing 9.23 Create an XML document with an XML stylesheet processing instruction

340 CHAPTER 9

Introducing LINQ to XML
 new XElement("channel",
 new XElement("item", "my item")
)
)
);

As we can see, the process of adding XML processing instructions to XML docu-
ments is easy as pie when we have the powerful functional construction capabili-
ties offered by LINQ to XML at our disposal. Let’s now move on to the next class
that may be necessary for the XML document you’re creating, XDocumentType.

XDocumentType
The XDocumentType class represents an XML document type definition. When
constructing XML, we can use a DTD to define the rules for the document, such
as what elements are present, as well as the relationships that exist between ele-
ments. Like every other class we’ve talked about in this section, XDocumentType
has one constructor that allows it to be constructed from an XmlReader and
another that gives it the freedom to be created without an XmlReader object. Here
is the constructor definition:

public XDocumentType(string name, string publicId, string systemId, string
internalSubset)

To see an example of the XDocumentType class, let’s create a valid HTML page using
LINQ to XML. For an HTML document to be considered valid, it must declare the
version of HTML that is used in the document; we’ll do so using an XDocumentType
object. When we’re finished we’ll end up with the following HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <body>This is the body!</body>
</html>

To create this HTML, we can create a new XDocument object using functional
construction and pass along an XDocumentType, as well as an XElement as in list-
ing 9.24.

XDocument html = new XDocument(
 new XDocumentType("HTML", "-//W3C//DTD HTML 4.01//EN",
 "http://www.w3.org/TR/html4/strict.dtd", null),

Listing 9.24 Create an HTML document with a document type via
 the XDocumentType class

Working with XML using LINQ 341
 new XElement("html",
 new XElement("body", "This is the body!")
)
);

Now that we’ve seen how to add XML document type declarations to our XML
documents, let’s finish off our discussion of the classes that we’ll use when creat-
ing XML documents by looking at how we can include XML comments.

XComment
Like the comments that we place within our C# and VB.NET code, XML comments
can be added to XML documents to provide an explanation of what is contained
within the document. An XML comment can be constructed with a string or by
reading the XML comment that an XmlReader is currently positioned on. The
XComment class is not limited to use within XDocument classes, but we don’t see it as
important so we’ve buried it down here where nobody except you will ever see it.
After all, XML is supposed to be human readable, why should we need comments?

 Now that we’ve covered how to use LINQ to XML to create XML from scratch
using XElement and XDocument, it’s time to look at how we can update and modify
the XML we’ve created.

9.5.6 Adding content to XML

LINQ to XML provides a full set of methods for manipulating XML. Let’s start by
looking at how we can insert new elements and attributes into an existing XElement.

 After loading or constructing an XElement, you may want to add additional
child items to the element. The Add method allows content to be added to an
existing XElement. The definition of the Add method is similar in nature to the
constructors offered by XElement. It provides two overloads. The first overload
takes in a single object, while the second allows a variable number of items to be
added as content. The following are the two overloads for Add:

public void Add(object content)
public void Add(params object[] content)

These two overloads on Add allow content to be added using the functional con-
struction pattern we discussed in section 9.5.3. To add a single child element to an
existing XElement, we can use the following code:

XElement book = new XElement("book");
book.Add(new XElement("author", "Dr. Seuss"));

342 CHAPTER 9

Introducing LINQ to XML
Of course the content parameter can be anything that is allowable as a child of
XElement. We can add an attribute to our XElement by passing an XAttribute to
our Add method instead of an XElement.

XElement book = new XElement("book");
book.Add(new XAttribute("publicationDate", "October 2005"));

As shown in listing 9.25, we can also use the second overload that accepts a vari-
able number of objects to assign as content.

XElement books = new XElement("books");
books.Add(new XElement("book",
 new XAttribute("publicationDate", "May 2006"),
 new XElement("author", "Chris Sells"),
 new XElement("title", "Windows Forms Programming")
)
);

It’s also important to note that Add will properly handle content that implements
IEnumerable. When a content item that implements IEnumerable is passed to the
Add method, each item within the IEnumerable is recursively added to the XEle-
ment. This allows LINQ queries to be used to construct XML, since the standard
query operators, as well as all of the XML query axis methods provided by LINQ to
XML, return IEnumerable<XElement>. In chapter 10, we’ll discuss the querying
capabilities of LINQ to XML in depth and show how the functional construction
pattern of creating XML can be combined with query expressions to create and
transform XML. For the time being, let’s look at the following example, which
shows how we can leverage the support for IEnumerable within the Add method to
add all the child elements in an existing XML document to an XElement.

XElement existingBooks = XElement.Load("existingBooks.xml");
XElement books = new XElement("books");
books.Add(existingBooks.Elements("book"));

By default, when an item is added to an XElement, it is added as the last child of
the element. If the content being added is an XElement, the element is added as
the last child element. If the content is an XAttribute, the attribute is the last
attribute defined within the element. If this isn’t the behavior you’re after, don’t
worry. XElement offers several alternate methods. To add the child as the first
child, you can call AddFirst. Alternatively, if you know precisely where you want
the element placed, you can navigate to an element and call AddAfterSelf or

Listing 9.25 Add content to an XElement using the Add method

Working with XML using LINQ 343
AddBeforeSelf. For example, to add a book element as the second child of our
books XElement, we can do the following:

XElement newBook = new XElement("book", "LINQ in Action");
XElement firstBook = books.Element("book");
firstBook.AddAfterSelf(newBook);

The AddFirst, AddAfterSelf, and AddBeforeSelf methods all provide the same
two overloads as Add, and they all process the content parameter in the same way.
As you explore the LINQ to XML API, you’ll see that it has been designed to work
the same way throughout. Rather than finding unexpected behavior when explor-
ing new methods, you’ll find that they work just as you would expect.

 Now that we’ve figured out how to add content to our XML, let’s look at how
we can remove it.

9.5.7 Removing content from XML

XElement provides several methods for removing child content. The most
straightforward approach is to navigate to the item to be deleted and call Remove.
Remove works over a single element as well as with an IEnumerable. Calling it on
an IEnumerable will remove all elements within the IEnumerable with a single
call. In listing 9.26, we show how to delete a single book element, as well as how to
remove all book elements.

books.Element("book").Remove(); // remove the first book
books.Elements("book").Remove(); // remove all books

Although not as straightforward, the SetElementValue method on XElement can
also be used to remove elements. To remove an element using SetElementValue,
pass null as the parameter.

books.SetElementValue("book", null);

If you’re interested in keeping your element around but removing all of its con-
tent, you can use the Value property. To delete the content of the author element
(“Steve Eichert”) in the following XML:

<books>
 <book>
 <author>Steve Eichert</author>
 </book>
</books>

Listing 9.26 Removing one or many elements from an XElement with Remove

344 CHAPTER 9

Introducing LINQ to XML
You can navigate to the element and then set the Value property to an empty
string.

books.Element("book").Element("author").Value = String.Empty;

Which results in the following XML:

<books>
 <book>
 <author></author>
 </book>
</books>

Several of the methods mentioned in this section can also be used to update XML.
We explore their use within that context next. Before moving on, let’s take a deep
breath. We’ve been covering a lot of ground and realize that you may be getting
tired. Luckily we only have two more sections before we’re finished with our intro-
duction to the LINQ to XML API.

 Let’s move on to take a look at how we can update XML content using LINQ to
XML.

9.5.8 Updating XML content

LINQ to XML offers several alternatives when it comes to updating XML. The most
direct approach is to use the SetElementValue method defined on XElement.
SetElementValue allows simple content of child elements to be replaced. Let’s
replace Steve Eichert as the author of this book with someone a little more prom-
inent. Let’s first take a look at the XML we’ll be updating.

<books>
 <book>
 <title>LINQ in Action</title>
 <author>Steve Eichert</author>
 </book>
</books>

To update the <author/> element, we navigate to the first book element using the
Element axis method. Once we’re positioned on the <book/> element, we call
SetElementValue and pass the name of the element that we want to update
(author), as well as the new value.

XElement books = new XElement("books.xml");
books.Element("book").SetElementValue("author", "Bill Gates");

After calling SetElementValue, the value of the author element has been updated
to Bill Gates:

Working with XML using LINQ 345
<books>
 <book>
 <title>LINQ in Action</title>
 <author>Bill Gates</author>
 </book>
</books>

It’s important to remember that SetElementValue only supports simple content.
If we try to pass more advanced content, SetElementValue will attempt to convert
the content to a string using the GetStringValue method on XContainer. For
example, if we update our code to pass an XElement as the value for our author
element instead of the string, like so:

books.Element("book").SetElementValue("author", new XElement("foo"));

we’ll end up with an exception being thrown by XContainer, since it does not
accept anything that inherits from XObject to be used as content.

 To handle more complex content, the ReplaceNodes method that is defined
on XContainer should be used. ReplaceNodes supports passing in all different
types of content and provides overloads for passing in a variable number of con-
tent items. If we update our code to use ReplaceNodes instead of SetEle-
mentValue, we end up with the results we’re after. The following code:

books.Element("book").Element("author").ReplaceNodes(new XElement("foo"));

results in

<books>
 <book>
 <title>LINQ in Action</title>
 <author>
 <foo/>
 </author>
 </book>
</books>

Calling ReplaceNodes on an XElement results in all existing content being
removed and the content parameter passed to ReplaceNodes being added. The
content parameter can be any valid child element of XElement, as well as an IEnu-
merable. If an IEnumerable is encountered, each item in the enumeration is
added as a child content item. ReplaceNodes also has an overload that accepts a
variable number of content parameters. This allows multiple child content items
to be used as the replacement for the existing content. If we want to replace the
entire contents of a <book/> element with a new set of child elements, we can use
listing 9.27.

346 CHAPTER 9

Introducing LINQ to XML
books.Element("book").ReplaceNodes(
 new XElement("title", "Ajax in Action"),
 new XElement("author", "Dave Crane")
);

Both SetElementValue and ReplaceNodes operate over the content of an ele-
ment. If you need to replace an entire node rather than update its contents, you
can use the ReplaceWith method defined on XNode. ReplaceWith operates over
the element itself, rather than its content. This allows entire elements to be
replaced. For example, if we want to replace all the <title/> elements within our
XML file with <book_title/> elements, we could use listing 9.28.

var titles = books.Descendants("title").ToList();
foreach(XElement title in titles) {
 title.ReplaceWith(new XElement("book_title", (string) title));
}

In the listing, we first select all the <title/> elements using the Descendants axis
method (which we’ll discuss in the next chapter). Once we have all of the ele-
ments, we loop over each element and call the ReplaceWith method, passing a
new XElement with book_title as its XName and the value of the current element
as the value. This results in all the <title/> elements being replaced with
<book_title/> elements.

 As we’ve seen, when updating XML, we have several options at our disposal.
ReplaceWith allows entire nodes to be replaced and is ideal for scenarios where
we need to replace all instances of a given element with a new element. SetEle-
mentValue and ReplaceNodes offer us the ability to replace the contents of ele-
ments. SetElementValue is only meant for simple content, while ReplaceNodes
supports more advanced content.

 Throughout the last several sections, we’ve focused on how to add, delete, and
update XML with a strong focus on elements. Since elements are the fundamental
building block that we use to build XML, it’s understandable that they’ve received
most of our attention. Now that we have a firm grasp of how to work with elements,
we need to look into how we can annotate our elements with attributes. After all,
attributes are used in the majority of XML documents today. If we’re going to be

Listing 9.27 Replacing the contents of a element with new content

Listing 9.28 Replace an entire node with ReplaceWith

Working with XML using LINQ 347
able to create and read real-world XML documents, we’ll need to understand how
LINQ to XML makes that possible. In the next section, we provide a complete run
down of how to deal with attributes when working with LINQ to XML.

9.5.9 Working with attributes

The XAttribute class is used to represent an attribute within LINQ to XML.
Unlike earlier XML APIs, attributes are not within the same class hierarchy as ele-
ments and nodes. In LINQ to XML, attributes are simply name-value pairs. As
such, it’s not surprising to find a constructor that allows XAttribute objects to be
constructed with a name and value.

public XAttribute(XName name, object value)

During the creation of XML, we can include attributes within our XML by passing
them as one of the parameters to the functional construction statements and/or
the Add method. To create a book element with a publication date attribute, we
can either add the attribute during construction time:

new XElement("book", new XAttribute("pubDate", "July 31, 2006"));

or we can add the attribute after the fact by calling Add and passing the attribute
as the content parameter.

book.Add(new XAttribute("pubDate", "July 31, 2006"));

In either case, we end up with the following XML:

<book pubDate="July 31, 2006"/>

In addition to the Add method, we also have the ability to add attributes to ele-
ments with SetAttributeValue. SetAttributeValue is similar to the SetEle-
mentValue method we discussed earlier. SetAttributeValue can be used to add
or update an attribute on an existing XElement. If the attribute already exists on
the element, it will be updated, and if it doesn’t exist, it will be added. If we need
to update the pubDate attribute, we can use the SetAttributeValue method.

book.SetAttributeValue("pubDate", "October 1, 2006");

Again, like its closely related friend SetElementValue, SetAttributeValue can
also be used to remove attributes by passing null as the value parameter. In addi-
tion to allowing attributes to be removed with SetAttributeValue, the XAt-
tribute class has a Remove method.

book.Attribute("pubDate").Remove();

348 CHAPTER 9

Introducing LINQ to XML
Remove can be called on a single XAttribute as well as on an IEnumerable<XAt-
tribute>. Calling Remove on the latter results in all the attributes within the
IEnumerable being removed from their associated elements.

 As you can see, the way we work with attributes within LINQ to XML closely par-
allels how we work with elements. The key difference is that XAttribute objects
are not nodes in the element tree, but are name-value pairs associated with an
XML element.

 We’ve gotten to a point where we can create XML from scratch using func-
tional construction as well as manipulate that XML in all ways possible. As we con-
tinue, we’ll likely want to figure out how our modified XML can be saved. Lucky
for us, that’s the focus of our next section.

9.5.10 Saving XML

The process of saving XML is extremely straightforward. The XElement and XDoc-
ument classes provide a Save method that will save your XML to a file, an XmlText-
Writer, or an XmlWriter. To save an XElement to disk, we can call Save and pass a
file path as a parameter, as in listing 9.29.

XElement books = new XElement("books",
 new XElement("book",
 new XElement("title", "LINQ in Action"),
 new XElement("author", "Steve Eichert"),
 new XElement("author", "Jim Wooley"),
 new XElement("author", "Fabrice Marguerie")
)
);
books.Save(@"c:\books.XML");

That’s it! Well, not entirely; you do have the ability to disable formatting of the
XML during save by passing SaveOptions.DisableFormatting as a second param-
eter to the Save method, but it doesn’t get much simpler than that, does it?

 Now that we can save our XML, we’ve come full circle with the LINQ to XML
programming API. We’ve covered how to load and parse XML from files, URLs,
and text, as well as how to create XML using functional construction. Additionally,
we’ve covered how we can use the imperative update methods available on XEle-
ment and XAttribute (such as Add, SetElementValue, and Remove) to add,
update, and delete XML. We finished by looking at how we can use the Save
method on XElement and XDocument to save our XML to a file. While we haven’t

Listing 9.29 Saving an XElement to disk with the Save method

Summary 349
covered every detail of every class, we’ve covered the major classes and methods
that will allow you to start building applications with LINQ to XML. As with any
new technology, the best way to learn the intricacies of the LINQ to XML program-
ming API is to start writing applications that use it today.

9.6 Summary

LINQ to XML builds on the infrastructure provided by LINQ to allow XML to be
queried using the standard query operators. LINQ to XML provides several XML
axis methods that make retrieving elements or attributes easily. While the query
capabilities offered by LINQ to XML are significant, just as significant if not more
so is the LINQ to XML programming API. It provides a much better programming
experience for developers working with XML and has an intuitive API that makes
building applications that use XML simpler and more enjoyable.

 The LINQ to XML programming API is a new lightweight XML API that was
designed for LINQ. It builds on the language innovations brought by LINQ and
introduces several new key concepts such as functional construction, context-free
XML creation, and simplification of XML names. While Microsoft could have ret-
rofitted existing XML APIs to work with LINQ, creating a new API designed and
tuned specifically for LINQ has resulted in an API that makes working with XML
productive and enjoyable.

 At the heart of the LINQ to XML class hierarchy is XElement. It is the funda-
mental class that you work with in LINQ to XML. In addition to XElement, the
XAttribute, XDocument, and XName classes are prominent. These core classes, as
well as the rest of the programming API, have been designed with the program-
mer in mind, and as such provide an intuitive API for loading, parsing, creating,
updating, and saving XML.

 Now that we’ve introduced you to LINQ to XML and provided a detailed over-
view of the XML class hierarchy and programming API, it’s time to move on to a
detailed discussion of querying and transforming XML using LINQ to XML. We do
that in the next chapter.

Query and transform
 XML with LINQ to XML
This chapter covers:
■ LINQ to XML query axis methods
■ Querying XML documents using LINQ to XML
■ Transforming XML
350

Query and transform XML with LINQ to XML 351
Over the last several years, many websites have begun to offer public XML web ser-
vices that allow developers to access the data inside their site. Amazon.com pro-
vides a set of e-commerce web services that allow you to search their product
catalog, Flickr lets you grab photographs that people have identified as interest-
ing, and del.icio.us exposes XML feeds that allow you to keep abreast of websites
that users have added to their bookmarks. By providing this data to clients as
XML, Amazon, Flickr, and del.icio.us have enabled third-party developers to tie
into their platforms to create compelling applications.

 In order to do interesting things with the data contained in the XML, develop-
ers need a toolset that allows them to query the XML for the individual pieces of
data that are of interest. With Amazon, they need to be able to read product
details out of the XML feed, with Flickr it’s the photograph details, and with
del.icio.us it’s the URL of the site that’s been bookmarked.

 In this chapter, we explore the querying and transformation capabilities
offered by LINQ to XML. After a full chapter focusing on the LINQ to XML API,
you might be wondering how LINQ to XML fits in with the rest of the LINQ toolset.
After all, the previous chapter was primarily focused on learning about the XML
API, and as such didn’t include any discussion about how we can query XML data
using LINQ. Now that we understand the core class library and have a feel for the
XML API, it’s time to look at how we can leverage the tremendous querying capa-
bilities offered by LINQ when working with XML data.

 We’ll start by looking at parts of the XML API that we intentionally brushed
over in the previous chapter, the LINQ to XML axis methods. The axis methods
are made available by the LINQ to XML programming API and allow us to retrieve
particular elements, attributes, and nodes within an XML tree. In order to do any-
thing productive with XML data, we need this basic capability.

 Once we’ve covered the LINQ to XML axis methods, we’ll take a look at how the
axis methods can be combined with the standard query operators and LINQ query
expressions to provide the powerful querying capabilities that we’ve come to expect
from LINQ. In addition to looking into the LINQ to XML axis methods and standard
query operators, we’ll also show how to query LINQ to XML objects using XPath.

 Finally, we’ll switch gears and examine how we can use LINQ to XML to trans-
form XML into alternate formats. In a perfect world, the XML data we receive would
already be in the exact format that we require, but sadly that’s rarely the case. In
order for us to use XML, we often need to transform it into alternate XML formats
or into a format that can be displayed to a user, such as HTML. By combining the
powerful query capabilities offered with LINQ to XML with functional construction
and/or XML literals, we can transform XML documents into alternate formats
quickly and easily.

Query and transform XML with LINQ to XML

352 CHAPTER 10

Query and transform XML with LINQ to XML
Query and transform XML with LINQ to XML

 In the LINQ to Objects and LINQ to SQL sections of this book, you’ve seen how
the standard query operators allow a common set of query expressions to be used
against objects as well as relational data. In this chapter, we’ll show how the same
standard query operators enable the querying of XML. Before we get to the stan-
dard query operators, we need to dive into the LINQ to XML axis methods, since
they’re the key to enabling the standard query operators to work against XML
data. Let’s get started.

10.1 LINQ to XML axis methods

The standard query operators provided by the LINQ framework allow queries to
be a first-class language construct in C# and VB.NET. As we learned earlier in this
book, the standard query operators operate over a sequence, where the sequence
is an object whose type implements the IEnumerable<T> or IQueryable<T> inter-
face. In the case of LINQ to XML, the “some type T” is typically an XElement, XAt-
tribute, or XNode.

 In order to use the standard query operators with our XML data, we need to be
able to search our XML for a sequence of objects that can then be queried using
the standard query operators. The LINQ to XML axis methods provide a means by
which we can find the elements, attributes, and nodes that we want to work with
within our XML.

 Throughout this section we’re going to introduce you to the various axis meth-
ods and explain when to use each. Once we have a firm handle on the axis meth-
ods, we’ll look at how we can use them along with the standard query operators.
To get started, let’s look at the sample XML file that we’ll use throughout this sec-
tion for learning about the axis methods. The XML in listing 10.1 represents a
subset of the books within our LINQ Books catalog.

<category name="Technical">
 <category name=".NET">
 <books>
 <book>CLR via C#</book>
 <book>Essential .NET</book>
 </books>
 </category>
 <category name="Design">
 <books>
 <book>Refactoring</book>
 <book>Domain Driven Design</book>
 <book>Patterns of Enterprise Application Architecture</book>
 </books>

Listing 10.1 A sample XML file, illustrating the tree-like structure of XML

LINQ to XML axis methods 353
 </category>
 <books>
 <book>Extreme Programming Explained</book>
 <book>Pragmatic Unit Testing with C#</book>
 <book>Head First Design Patterns</book>
 </books>
</category>

As we look at this XML, we can see that it contains information about categories
and books. In order for this data to be useful, we need to figure out how we can
get it out of the XML and into a set of objects that we can query using LINQ.

 Like most XML, this XML is hierarchical in nature. It contains a parent <cate-
gory> element that contains a series of children (either other <category> ele-
ments or <books>), which themselves contain their own children (<book>s). With
the LINQ to XML axis methods, we can select the elements and attributes that
we’re interested in. In this XML, we might be interested in the name of the root
category element, or perhaps we’re interested in the names of all the books within
the .NET category. Or maybe we don’t care at all about the categories and just
want a list of every book, no matter where it lives in the XML tree.

 Before we get any further, we should quickly mention that context is important
when discussing the axis methods. Let’s take a step away from the LINQ to XML
axis methods for a second and imagine that we’ve decided to take a trip to the
grocery store to pick up something to eat in anticipation for a long night of LINQ
coding. When we get to the store, we realize we have no idea where anything is.
Luckily, we find a lovely lady at the front of the store who seems willing to help.
We walk up and tell her our problem. We need to get a pack of Mountain Dew, a
bag of chips, and some donuts to fuel our coding frenzy. As the lady tells us where
everything is, she does so by using our current location as a point of reference.
She tells us the Mountain Dew is three aisles to the left, chips are two aisles to the
right, and the donuts are all the way at the other end of the aisle right in front of
us. Without knowing our current location, or context, those instructions wouldn’t
mean a thing.

 The same applies to the LINQ to XML axis methods. In order to understand
the results they’re going to produce, we need to know our current location within
the XML tree. We’ll remind you of this as we move through our discussion of each
method, but since it’s important to understand, we wanted to call your attention
to it now before getting started.

 With that out of the way, let’s get started with the LINQ to XML axis methods.
To explore what the LINQ to XML axis methods provide, let’s try to produce the
following output with the help of the axis methods:

354 CHAPTER 10

Query and transform XML with LINQ to XML
.NET
- CLR via C#
- Essential .NET

To produce this output, we’ll need to learn a bit about the Element, Attribute,
and Elements axis methods. Once we have a good grasp on these three core axis
methods, we’ll move on to look at a few other axis methods such as Descendants
and Ancestors.

 Let’s get started by showing how the Element axis method can be put into
action and get us on our way to accomplishing our goal.

10.1.1 Element

The first thing that we need to do to produce our desired output is select the .NET
category element within our XML. The Element axis method allows us to select a
single XML element by name. In our case, we’re looking to select the first XML
element with the category name. We can use listing 10.2 to do just that.

XElement root = XElement.Load("categorizedBooks.xml");
XElement dotNetCategory = root.Element("category");
Console.WriteLine(dotNetCategory);

As you can see, we start by loading our XML into an XElement using the static Load
method we introduced in chapter 9. Once we have our XML loaded, we call the
Element axis method on the root XElement and pass category as a parameter.
The Element axis method accepts an XName as a parameter and returns the first
matching XElement with the provided name that is a child of the current element.
As we learned in the previous chapter, the implicit operator overloads defined on
XName allow us to pass category instead of new XName("category"). The implicit
operator overload automatically turns the string "category" into a full XName
object with the local name set to category. The code in listing 10.2 results in the
following output being printed to the console:

<category name=".NET">
 <books>
 <book>CLR via C#</book>
 <book>Essential .NET</book>
 </books>
</category>

If no elements are found with the name provided to the Element axis method,
null will be returned.

Listing 10.2 Selecting an element by name using the Element query axis method

LINQ to XML axis methods 355
 Now that we have the .NET category XElement, we need to print out the name
of the category rather than the entire XML fragment. As we can see, the name of
the category is stored in the name attribute. As such, now seems like the perfect
opportunity to introduce the Attribute axis method.

10.1.2 Attribute

Now that we have the .NET category element in the form of an XElement, we want
to query the XElement for the value of the name attribute. To retrieve the name
attribute, we use the Attribute axis method. Like the Element axis method,
Attribute returns the first matching attribute with the provided XName. In our
case, we only have a single attribute defined on the XElement, but you can be sure
that won’t always be the case. Since we’re interested in the name of the category,
we’ll call the Attribute axis method and pass name as a parameter, as shown in
listing 10.3.

XElement root = XElement.Load("categorizedBooks.xml");
XElement dotNetCategory = root.Element("category");
XAttribute name = dotNetCategory.Attribute("name");

Just like the Element axis method, Attribute returns the first attribute with the
provided XName. If no attributes with the provided name are found, null is
returned. Now that we have the name XAttribute in hand, we can output the title
of the category to the console by casting the XAttribute to a string, as shown:

Console.WriteLine((string) name);

This results in the following output:

.NET

Once we have the category name printed to the console, we can stop and cele-
brate. We’ve accomplished part of our goal, and at the same time learned about
both the Element and Attribute axis methods! Okay, you’re right; perhaps we
shouldn’t celebrate just yet. We still have a ways to go.

 With the Element and Attribute methods in our arsenal, we’re on our way
to being able to use LINQ query expressions and standard query operators with
our XML data. We can select individual elements that we’re interested in, as well
as read individual attributes of an XElement. We’re not quite ready to show how
what we’ve learned can be used in a LINQ query, but you need not worry: It’s
coming shortly.

Listing 10.3 Retrieve an attribute from an XML element with the Attribute method

356 CHAPTER 10

Query and transform XML with LINQ to XML
 Before moving on to our next LINQ to XML axis method, let’s revisit the XML
fragment that we’re working with and talk about what’s next. We started our jour-
ney by selecting the first category under the root element in listing 10.1. The fol-
lowing XML fragment is the result:

<category name=".NET">
 <books>
 <book>CLR via C#</book>
 <book>Essential .NET</book>
 </books>
</category>

Once we have the XElement in hand, we output the name of the category to the
console with the help of the Attribute query axis method. Next we need to query
the category XElement for all the book elements contained within it. Unfortu-
nately, we need to select multiple elements, so we can’t use the Element method
that we’ve already learned about. It looks like it’s time to learn about the Ele-
ments axis method.

10.1.3 Elements

The Elements axis method is similar to the Element query axis method; the pri-
mary difference is that rather than returning the first matching XElement, Ele-
ments returns all matches. Given this, it shouldn’t be surprising that Elements
returns an IEnumerable of XElement objects, rather than a single XElement. Like
Element, Elements accepts an XName as a parameter.

 In our case, we’re looking for all <book> elements so we’ll provide book as our
parameter to Elements. Since the <book> elements aren’t directly under the cate-
gory XElement that we selected in sections 10.1.1 and 10.1.2, we’ll need to select
the <books> element with the Element query axis method, and then call Elements
as shown in listing 10.4.

XElement root = XElement.Load("categorizedBooks.xml");
XElement dotNetCategory = root.Element("category");
XAttribute name = dotNetCategory.Attribute("name");

XElement books = dotNetCategory.Element("books");
IEnumerable<XElement> bookElements = books.Elements("book");

Console.WriteLine((string) dotNetcategory);
foreach(XElement bookElement in bookElements) {
 Console.WriteLine(" - " + (string)bookElement);
}

Listing 10.4 Select all the child book elements using the Elements query axis method

LINQ to XML axis methods 357
When we run the code, we get the following results:

.NET
- CLR via C#
- Essential .NET

In addition to allowing us to find all elements with a given name, the Elements
method also has a parameterless overload that can be used to retrieve all the chil-
dren of an XElement. In the listing, we could have called the parameterless version
of Elements since the <books> element only contains <book> elements as children.

 By leveraging the Element, Attribute, and Elements axis methods, we’ve suc-
cessfully read a set of details out of our sample XML and accomplished our goal.
We didn’t set our sights that high, but nevertheless we’ve learned about three
essential LINQ to XML axis methods that we’ll use when constructing more com-
plex LINQ to XML queries.

 It’s important to remember that Elements only searches the elements that are
direct children of the XElement that it’s called on. Sometimes rather than need-
ing just the children of the current element, we want to look at all the elements
that exist at any level beneath the current element. It’s for these scenarios that the
LINQ to XML API provides the Descendants axis method.

10.1.4 Descendants

The Descendants axis method works in the same way as the Elements method,
but instead of limiting the elements returned to those that are direct children of
the current element, Descendants will traverse all the elements underneath the
current element.

 The Descendants axis method is helpful when you want to retrieve all the ele-
ments with a particular XName, but you’re not sure where in the tree they live. The
Descendants axis method has two overloads. The first overload accepts an XName
and returns all elements anywhere underneath the current element with the pro-
vided XName. To retrieve every descendant, regardless of XName, you can call
Descendants without any parameters.

 We’re once again going to use the XML we introduced in listing 10.1. This
time, instead of looking for all the books within a single category, we’d like to
return every book, no matter what category it’s in. Since the book elements exist
at different levels within the XML, we can’t use the Elements axis method.
Instead, we’ll use the Descendants axis method. To retrieve every book within our
XML, we can write the code shown in listing 10.5.

358 CHAPTER 10

Query and transform XML with LINQ to XML
XElement books = XElement.Load("categorizedBooks.xml");
foreach(XElement bookElement in books.Descendants("book")) {
 Console.WriteLine((string)bookElement);
}

This will output

CLR via C#
Essential .NET
Refactoring
Domain Driven Design
Patterns of Enterprise Application Architecture
Extreme Programming Explained
Pragmatic Unit Testing with C#
Head First Design Patterns

As you can see, the Descendants axis method makes it easy to retrieve all the book
elements within the XML. Rather than having to navigate the tree ourselves using
a combination of the Element and Elements methods, we can use the Descen-
dants method to return all the elements that fall underneath the current element
with a given XName (“book”).

 Closely related to the Descendants axis method is the DescedantNodes axis
method. The only difference between the two is that DescendantNodes includes
nonelement nodes (such as XComment and XProcessingInstruction) and as
such returns an IEnumerable of XNode objects rather than an IEnumerable of
XElement objects.

 It’s important to note that the Descendants axis method does not include itself
in the tree of elements that are searched. If you need to include the current ele-
ment, use the DescendantsAndSelf axis method. Just like the Descendants axis
method, the DescendantsAndSelf method returns an IEnumberable of XElement
objects. The only difference is that DescendantsAndSelf includes itself within the
set of XElement objects that will be returned. Let’s once again return to the XML
introduced in listing 10.1, which is shown here:

<category name="Technical">
 <category name=".NET">
 <books>
 <book>CLR via C#</book>
 <book>Essential .NET</book>
 </books>
 </category>
 <category name="Design">

Listing 10.5 Retrieve every book within the XML with the Descendants method

LINQ to XML axis methods 359
 <books>
 <book>Refactoring</book>
 <book>Domain Driven Design</book>
 <book>Patterns of Enterprise Application Architecture</book>
 </books>
 </category>
 <books>
 <book>Extreme Programming Explained</book>
 <book>Pragmatic Unit Testing with C#</book>
 <book>Head First Design Patterns</book>
 </books>
</category>

Now let’s compare the Descendants and DescendantsAndSelf methods with the
code shown in listing 10.6.

XElement root = XElement.Load("categorizedBooks.xml");
IEnumerable<XElement> categories = root.Descendants("category");

Console.WriteLine("Descendants");
foreach(XElement categoryElement in categories) {
 Console.WriteLine(" - " + (string)categoryElement.Attribute("name"));
}

categories = root.DescendantsAndSelf("category");
Console.WriteLine("DescendantsAndSelf");
foreach (XElement categoryElement in categories) {
 Console.WriteLine(" - " + (string)categoryElement.Attribute("name"));
}

As we can see, the way we call Descendants and DescendantsAndSelf is identical.
If we examine the following output, we can see that DescendantsAndSelf
included the root category (Technical) in its output.

Descendants
 - .NET
 - Design
DescendantsAndSelf
 - Technical
 - .NET
 - Design

Using Descendants and DescendantsAndSelf, we can quickly retrieve all the ele-
ments that we’re interested in within a given XML tree as long as the elements are
under the current node. When querying XML, you’ll find that Element, Elements,
Attribute, and Descendants are the primary axis methods that you use for finding

Listing 10.6 Comparing the Descendants and DescendantsAndSelf query
 axis methods

360 CHAPTER 10

Query and transform XML with LINQ to XML
the elements and attributes that are of interest in an XML tree. Since Elements and
Descendants return IEnumerable<XElement> objects, they work nicely with the
standard query operators and query expressions. We’ll be digging into how the
standard query operators work with LINQ to XML in section 10.2, but to give you a
small taste, let’s rewrite our earlier query using the LINQ query expression syntax.
See listing 10.7.

XElement root = XElement.Load("categorizedBooks.xml");
var books = from book in root.Descendants("book")
 select (string)book;

foreach(string book in books) {
 Console.WriteLine(book);
}

As you can see, with a little help from the Descendants axis method, LINQ to XML
allows us to write a query against our XML data using the same syntax that we use
for querying our objects and relational data. Before further investigating how we
can use the standard query operators and query expressions, let’s finish off our dis-
cussion of the remaining LINQ to XML axis methods as well as show the more com-
pact syntax Visual Basic provides for several of the axis methods already discussed.

 While not as commonly used as the axis methods we’ve already covered, the
remaining axis methods provide important functionality to developers. Let’s start
by exploring an axis method that shares many similarities with the Descendants
axis method, Ancestors.

10.1.5 Ancestors

The Ancestors axis method works exactly like the Descendants method, except
instead of searching down the XML tree, it searches up the tree. It offers the same
signature and has the same related methods, AncestorsAndSelf and Ancestor-
Nodes. Unlike all the other axis methods we’ve discussed so far, Ancestors searches
for matching elements that are above the current node within the XML tree.

 So far, we’ve learned how to get a list of books within a category element using
a combination of Element and Elements, as well as how to get every book within
our XML using Descendants. In this section, we’re going to learn how we can use
Ancestors to get the list of categories that a given book is in. Since the category
elements are nested, we’ll look to get the full category path for a book in the fol-
lowing form:

Listing 10.7 Using LINQ query expression syntax for querying XML

LINQ to XML axis methods 361

,
Reverse the order
since we want the
topmost category

first

Domain Driven Design is in the: Technical/Design category.

The first thing we’ll need to do is select the book that we’re interested in. To do
this, we can use the Descendants axis method to select all the books in our XML.
Once we have all the books, we can filter the list of books down to the single one
we’re interested in using the Where and First standard query operators, like so:

XElement root = XElement.Load("categorizedBooks.xml");
XElement dddBook =
 root.Descendants("book")
 .Where(book => (string)book == "Domain Driven Design")
 .First();

In the code, we select the Domain Driven Design book element. Once we have the
book element in hand, we can call the Ancestors axis method to select all the par-
ent categories for the book element. Once we have the list of parent elements,
we’ll do some special processing with Reverse and String.Join to get the catego-
ries formatted as we desire. When all is said and done, we end up with listing 10.8.

XElement root = XElement.Load("categorizedBooks.xml");
XElement dddBook = root.Descendants("book")
 .Where(book =>
 (string)book == "Domain Driven Design"
).First();

IEnumerable<XElement> ancestors = dddBook.Ancestors("category").Reverse();

string categoryPath =
 String.Join("/", ancestors.Select(e =>

(string)e.Attribute("name")).ToArray());

Console.WriteLine((string)dddBook + " is in the: " + categoryPath +
" category.");

The result printed to the console includes everything we expect:

Domain Driven Design is in the: Design/Technical category.

The final set of axis methods available within the LINQ to XML API allow you to
retrieve all the elements or content that occur before or after the current ele-
ment. Let’s look at them next.

Listing 10.8 Using Ancestors to query an XML document for elements above a
 particular element

Build the category path

362 CHAPTER 10

Query and transform XML with LINQ to XML
10.1.6 ElementsAfterSelf, NodesAfterSelf,
ElementsBeforeSelf, and NodesBeforeSelf

The ElementsAfterSelf, ElementsBeforeSelf, NodesAfterSelf, and Nodes-
BeforeSelf methods provide an easy way for us to retrieve all the elements or
content that exist before or after the current element. As is evident from their
names, the ElementsBeforeSelf and ElementsAfterSelf axis methods return all
the XElement objects that occur before or after the current element in the XML
tree, respectively. If you need to retrieve all nodes, and not just the elements, then
the NodesBeforeSelf and NodesAfterSelf methods are what you’re after. Let’s
return to our previous example to see how the ElementsBeforeSelf and Ele-
mentsAfterSelf axis methods work. Once again we’ll be working with the XML
shown in Listing 10.1.

 When we examined the Ancestors axis method, we looked at how we could
retrieve the category path for a book within the XML tree. With the Elements-
BeforeSelf and ElementsAfterSelf methods, we can look at the book elements
that sit before or after the Domain Driven Design book element. It’s important to
note that unlike the Ancestors and Descendants axis methods, the Elements-
BeforeSelf, ElementsAfterSelf, NodesBeforeSelf, and NodesAfterSelf meth-
ods only look at the elements and nodes at the same level as the current element.
In listing 10.9, we’ll use the ElementsBeforeSelf axis method to retrieve all the
elements that are before the Domain Driven Design book element.

XElement root = XElement.Load("categorizedBooks.xml");
XElement dddBook =
 root.Descendants("book")
 .Where(book => (string)book == "Domain Driven Design")
 .First();

IEnumerable<XElement> beforeSelf = dddBook.ElementsBeforeSelf();
foreach (XElement element in beforeSelf) {
 Console.WriteLine((string)element);
}

Not surprisingly, we end up with the following output:

Refactoring

The Refactoring book element is the only element that exists before the Domain
Driven Design book element in our sample XML. As we can see from our output,

Listing 10.9 Finding all element nodes at the same level as an element
 using ElementsBeforeSelf

LINQ to XML axis methods 363
ElementsBeforeSelf is limited to elements on the same level as the current
node. It will not traverse up or down the tree like the Ancestors and Descen-
dants axis methods.

 As you can see, the way that we navigate the XML tree using the LINQ to XML
axis methods is simple, consistent, and powerful. The LINQ to XML axis methods
provide us with an easy-to-use API that allows us to navigate to whatever it is we
might be looking for within our XML. Before moving on to look at how we can use
the LINQ to XML axis methods along with the standard query operators, let’s look
at a couple of unique features available within Visual Basic for accessing the axes
within an XML tree.

10.1.7 Visual Basic XML axis properties

As we saw in chapter 9, Visual Basic has a few unique features for working with
XML, most notably XML literals. XML literals allow XML to be created inside Visual
Basic code using XML syntax. To complement this feature, the VB team has added
several XML axis properties to Visual Basic that allow LINQ to XML axis methods
to be called using a more compact syntax.

 Let’s get started by looking at the Visual Basic child axis property.

Child axis property
The child axis property is equivalent to the Elements axis method that we dis-
cussed earlier in this chapter. It allows you to return all the child elements with a
particular element name. To use the child axis property, the XName of the element
is enclosed like this: <element>. To illustrate, let’s compare how we query the RSS
feed in listing 10.10 using the child axis property with how we would query it with
the Elements axis method.

<?xml version="1.0" encoding="utf-8" ?>
<rss>
 <channel>
 <title>LINQ</title>
 <description>This is the LINQ channel!</description>
 <item>
 <title>Learning LINQ</title>
 <description>Learning LINQ is best done by reading the fantastic LINQ
in Action book that's currently in your hands. It's simply amazing, and
has such wonderful code samples, don't you agree?</description>
 </item>
 <item>
 <title>LINQ to XML Axis methods make XML LINQable</title>

Listing 10.10 The RSS feed that we’ll query using the Visual Basic XML axis properties

364 CHAPTER 10

Query and transform XML with LINQ to XML
 <description>Without the LINQ to XML Axis methods LINQ to XML would
simply be one of the many XML APIs available in .NET land. With axis
methods, we get an extremely powerful XML API, as well as a killer query
story that puts XPath, XSLT, and friends to shame.</description>
 </item>
 </channel>
</rss>

Let’s start by looking at how we can query this RSS using the Elements axis
method that we used in the previous section, but this time in Visual Basic. See list-
ing 10.11.

Dim rss = XElement.Load("rss.xml")
Dim items = rss.Element("channel").Elements("item")

For Each item As XElement In items
 Console.WriteLine(CType(item.Element("title"), String))
Next

If we convert this code to use the child axis property rather than the Elements
axis method, we end up with listing 10.12.

Dim rss = XElement.Load("rss.xml")
Dim items = rss.<channel>(0).<item>

For Each item As XElement In items
 Console.WriteLine(CType(item.<title>.Value, String))
Next

Under the covers, the child axis property is converted into a call to the Elements
axis method. Given this, it shouldn’t be surprising that it returns an IEnumera-
ble(Of XElement) with the provided name.

 As we discussed when we examined the Elements and Descendants axis meth-
ods, often we don’t want to limit the elements that are returned to the immediate
children of our current element. If you need to include all the descendant ele-
ments in your search, you can use the descendants axis property.

Descendants axis property
As you might have guessed, the descendants axis property is equivalent to the
Descendants axis method. It returns all the elements with a particular name that

Listing 10.11 Querying an RSS feed for all items using the Elements query axis method

Listing 10.12 Querying an RSS feed for all items using the child axis property

LINQ to XML axis methods 365
occur anywhere below the current element within the XML tree. The syntax for the
descendants axis property is the same as the child axis property, except for one
slight difference. Rather than calling the axis property with a single dot, the descen-
dants axis property is accessed with triple-dot notation (...). For instance, to return
all <item> elements within an RSS XML feed, you can use code in listing 10.13.

Dim rss = XElement.Load("rss.xml")
Dim items as IEnumerable<XElement> = rss...<item>

Like the child axis property, the descendants axis property returns an IEnumera-
ble(Of XElement). If you need to access a particular item within the list of returned
XElement objects, you can use the extension indexer or the value extension prop-
erties, which we’ll look at next.

Extension indexer and Value extension
Visual Basic provides the extension indexer and Value extension to complement
the child and descendants axis properties. The extension indexer allows you to
retrieve a particular item in the resulting list of XElement objects. If we want to use
the second <item> element in our RSS feed, we can use the element indexer along
with the descendants axis property:

Dim secondItem = rss...<item>(1)

The element indexer is converted into a call to the ElementAt extension method.
Since we often want to work with the value of the first item within the list of
matches, VB provides another extension property to support just that. The Value
extension property returns the value of the first XElement returned by the child or
descendants axis property. See listing 10.14.

Dim books = <books>
 <book>LINQ in Action</book>
 <book>Art of Unit Testing</book>
 </books>

Console.WriteLine(books.<book>.Value)

The code results in “LINQ in Action” being printed to the console.

Listing 10.13 Retrieving all descendant nodes with the descendants axis property

Listing 10.14 Using the Value extension property to return the value of the
 first XElement

366 CHAPTER 10

Query and transform XML with LINQ to XML
 Now that we’ve covered the various axis properties available within Visual
Basic for retrieving elements, let’s look at the final axis property, the attribute
axis property.

Attribute axis property
The attributes axis property is equivalent to the Attribute axis method we talked
about earlier, and can be used by placing a @ before the name of the attribute that
you wish to retrieve. Let’s look at listing 10.15 to see an example of the attribute
axis property in action.

Dim book = <book publisher='Manning'>LINQ in Action</book>

Console.WriteLine(book.@publisher)

The attribute axis property returns the string value of the attribute, so listing 10.15
will result in “Manning” being printed to the console. If you need to access the
actual XAttribute object, you’ll need to resort to the standard Attribute
axis method.

 By providing a shorthand syntax for accessing the primary XML axes that devel-
opers use when querying XML, Visual Basic allows developers to stay focused on
the XML they’re trying to consume. While the same result can be achieved using
the LINQ to XML axis methods, the Visual Basic axis properties provide a more
concise syntax for querying XML.

 We’ve completed our discussion of the various axis methods available in LINQ
to XML. With these methods, you have the knowledge necessary to begin querying
XML documents using LINQ. Now that we have a solid understanding of the LINQ
to XML axis methods, we can further explore how we can use the axis methods
along with the standard query operators and LINQ query expressions to query our
XML data.

10.2 Standard query operators

In addition to providing the ability to select specific elements, attributes, and
nodes within an XML tree, the axis methods are also a key enabler of the standard
query operators. As we saw in chapter 4, the standard query operators operate over
any sequence of objects that implement the IEnumerable<T> or IQueryable<T>
interface. The axis methods enable the use of the standard query operators by

Listing 10.15 Selecting the value of an attribute using the attribute axis property

Standard query operators 367
returning an IEnumerable of XElement, XAttribute, or XNode objects. By enabling
the use of the standard query operators, the LINQ to XML axis methods allow us to
leverage everything we’ve already learned about querying objects and relational
data to our XML data. Rather than having to learn a completely new language
or syntax as we switch from objects to relational data to XML, we can instead use
LINQ to query all three using the exact same set of standard query operators and
query expressions!

 Since you’re reading this book, we’re going to go out on a limb and bet that
you’re a .NET programmer. What can we say; we like to live on the edge! In this
next section, we’re going to find some great .NET books by using the standard
query operators and LINQ to XML. We’ll use the standard query operators to
explore XML containing the top 20 most-tagged .NET books on Amazon.com.
We’re going to use the standard query operators to examine the list of books, fil-
ter the list down to those that we think are most interesting, and organize them
into logical groupings (such as by publisher). Before we can get started, we need
to learn about how we’re going to access the XML containing the top-tagged .NET
books on Amazon.com.

 Amazon provides a number of web services that allows for data contained
within Amazon.com to be accessed via a web service API. To access Amazon’s web
services, you have to register with their web services program.1 After registering,
an access key will be assigned to your account that grants you access to the Ama-
zon web services. Once you have the registration complete, you can start using the
web services to retrieve information from Amazon. Amazon provides both SOAP
and REST versions of their web services. For this section we’ll be accessing the
TagLookup web service operation via the REST interface. The REST version of the
TagLookup service can be accessed with the following URL:

http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService
 &AWSAccessKeyId={Your Access Key Here}
 &Operation=TagLookup
 &ResponseGroup=Tags,Small
 &Version=2007-07-16
 &TagName={Tag}
 &Count=20

If you replace “{Your Access Key Here}” with the key provided to you by Amazon
and “{Tag}” with the tag that you’re interested in, you can point your web browser

1 http://www.amazon.com/gp/aws/registration/registration-form.html

368 CHAPTER 10

Query and transform XML with LINQ to XML
to the URL to see the XML returned by Amazon. The screenshot in figure 10.1
shows a fragment of the XML returned for the “dotnet” tag.

 As we can see, the XML returned contains a <Tag> element for the “dotnet”
category, along with a series of <TaggedItems> elements representing each of the
books that have been tagged with “dotnet” on Amazon.com. Let’s get started by
seeing how we can use the Select standard query operator to read the title of
each of the books within the XML.

Figure 10.1 XML returned by the Amazon.com TagLookup web service for the “dotnet” tag

Standard query operators 369
10.2.1 Projecting with Select

The most commonly used standard query operator may be Select. The Select
operator performs a projection over a sequence. In our case, the sequence will be
an IEnumerable<XElement>. Let’s look at how we can use the Select operator
along with the Descendants query axis method that we discussed in the previous
section to retrieve the titles of all the books in our XML. In listing 10.16, we build
the URL to the Amazon REST Tag Lookup service, define the namespace used in
the resulting XML, and finally select the books from the XML using Descendants
and the Select operator.

string url =
 "http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService" +
 "&AWSAccessKeyId={Your Access Key Here}" +
 "&Version=2007-07-16" +
 "&Operation=TagLookup" +
 "&ResponseGroup=Tags,Small" +
 "&TagName=dotnet" +
 "&Count=20";

XNamespace ns =
 "http://webservices.amazon.com/AWSECommerceService/2007-07-16";

XElement tags = XElement.Load(url);
var titles = tags.Descendants(ns + "Title")
 .Select(titleElement => (string)titleElement);

foreach (string title in titles) {
 Console.WriteLine(title);
}

To select all the <Title> elements within the XML, we use the Descendants axis
method. Since the XML returned by Amazon has a default namespace, we declare
a local XNamespace variable to be used when we call Descendants. Once we have
all the elements, we then call the Select operator and pass it a selector that reads
the title out of the <Title> element. The result is a sequence of strings containing
the titles for all the books in the source XML. As we learned in chapter 3, the
Select operator can also be called using LINQ query expression syntax as shown
in listing 10.17.

Listing 10.16 Using the Select standard query operator to apply a projection to
 an XML document

370 CHAPTER 10

Query and transform XML with LINQ to XML
XElement tags = XElement.Load(url);
var titles = from title in tags.Descendants(ns + "Title")
 select (string)title;

At the end of the day, the same code gets run whether we call the standard query
operators using the direct method call syntax or using the query expression syntax.
Due to the expressiveness and compactness of query expressions, they’re generally
preferred. As we discussed in chapter 3, not all standard query operators have an
equivalent query expression clause. Throughout the remainder of this chapter,
we’ll use the query expressions syntax to express our queries whenever possible.

 While it’s nice to be able to view all the books within the source XML, it would
be even nicer if we could filter the list of books to those that we’re most interested
in. With listing 10.17, we don’t have many attributes to filter on, so we’ll keep things
simple and filter the list by searching for keywords within the title of the book. As
you can tell by our extensive use of Console.WriteLine within our code samples,
we’re in desperate need of a couple of books on Windows Presentation Founda-
tion. Hopefully, after we learn how to filter our list of books down to those specifi-
cally about Windows Presentation Foundation, you’ll be able to pick out one or two
to order so next time around you can create a snazzy 3D GUI for our sample! Let’s
see how we can filter our list of books using the Where standard query operator.

10.2.2 Filtering with Where

We’re going to try to find a book on Windows Presentation Foundation so we can
expand my UI expertise beyond the simple Console.WriteLine paradigm, which
we’ve clearly mastered. To filter our list of books, we’ll use the Where standard
query operator. The Where operator is a restriction operator, and as such can be
used to filter our list of books down to those that are of interest. Before looking at
our query, let’s examine the XML for a single book within our XML.

<TaggedItems>
 <Item>
 <ASIN>0201734117</ASIN>
 <ItemAttributes>
 <Author>Don Box</Author>
 <Manufacturer>Addison-Wesley Professional</Manufacturer>
 <ProductGroup>Book</ProductGroup>
 <Title>Essential .NET, Volume I: The Common Language Runtime</Title>
 </ItemAttributes>
 </Item>
</TaggedItems>

Listing 10.17 Calling the Select standard query operator using LINQ query
 expression syntax

Standard query operators 371
As we can see, we don’t have many attributes by which we can filter our books, so
we’ll stick to filtering the books by looking for “Windows Presentation Founda-
tion” in the title. Listing 10.18 loads the XML from Amazon.com and filters the list
of books using the where query expression clause.

string url =
 "http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService" +
 "&AWSAccessKeyId={Your Access Key Here}" +
 "&Version=2007-07-16" +
 "&Operation=TagLookup" +
 "&ResponseGroup=Tags,Small" +
 "&TagName=dotnet" +
 "&Count=20";

XNamespace ns =
 "http://webservices.amazon.com/AWSECommerceService/2007-07-16";

XElement tags = XElement.Load(url);

var wpfBooks =
 from book in tags.Descendants(ns + "Item")
 let bookAttributes = book.Element(ns + "ItemAttributes")
 let title = ((string)bookAttributes.Element(ns + "Title"))
 where title.Contains("Windows Presentation Foundation")
 select title;

foreach (string title in wpfBooks) {
 Console.WriteLine(title);
}

At the time of this writing, listing 10.18 results in the following books being
printed to the console:

Windows Presentation Foundation Unleashed (WPF) (Unleashed)
Programming Windows Presentation Foundation (Programming)

As we can see by examining our output, our query successfully filtered the list of
books down to only those that have “Windows Presentation Foundation” in the
title. To filter the list of books, we first selected all the <Item> elements in the XML
with the Descendants axis method. Once all the <Item> elements were selected,
we used the let clause to assign the <ItemAttributes> element to a query vari-
able (bookAttributes). Finally, we constructed a where clause to filter the list of
books to only those with “Windows Presentation Foundation” in the title.

Listing 10.18 Load XML from Amazon.com and filter the book list using the where clause

372 CHAPTER 10

Query and transform XML with LINQ to XML
 In order to express our where clause predicate, we needed to cast the <Title>
element to a string. You’ll often find that in order to express the where clause
predicate for LINQ to XML queries, you’ll need to cast XElement or XAttribute
objects to other .NET types. Luckily, LINQ to XML makes this easy by providing
explicit operator overloads for XElement and XAttribute objects. Once the
<Title> element is cast to a string, we can complete our predicate definition by
calling the Contains method on the string with “Windows Presentation Founda-
tion” as the parameter.

 Now that we’ve filtered our list down to a couple of Windows Presentation
Foundation books, it’s time to jump over to www.amazon.com to place an order.
Hopefully once those books arrive, we’ll be able to start creating more compelling
user interfaces within our code samples.

 In the meantime, let’s continue to explore a couple more standard query oper-
ators to see how they work with LINQ to XML. In addition to applying projections
and filtering our XML data, we often want to group the results of our query, as well
as order the results. Let’s look at how we can use the OrderBy and GroupBy stan-
dard query operators with LINQ to XML.

10.2.3 Ordering and grouping

In the previous section, we used the Where operator to filter our list of books
down to those with “Windows Presentation Foundation” in the title. In this sec-
tion, we’re going to go back to working with all the books in the XML. We’re going
to learn about how we can sort the books, as well as how we can group the books
by their publisher.

 LINQ provides two standard query operators for sorting sequences. The OrderBy
standard query operator sorts the elements within a sequence in ascending order.
If you want to sort in descending rather than ascending order, the OrderByDescend-
ing standard query operator is available. Both the OrderBy and OrderByDescending
standard query operators have equivalent query expression clauses. Table 10.1
shows the query expression equivalent for both C# and Visual Basic.

Table 10.1 Standard query operators and their query expression equivalents

Standard query operator C# equivalent VB equivalent

OrderBy orderby … Order By …

OrderByDescending orderby … descending Order By … Descending

Standard query operators 373
Let’s go back to our query from the previous section, but instead of filtering the
books, let’s order them instead. Listing 10.19 selects the title of the books from
the XML and sorts them in ascending order.

XNamespace ns =
 "http://webservices.amazon.com/AWSECommerceService/2007-07-16";

string url =
 "http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService" +
 "&AWSAccessKeyId={Your Access Key Here}" +
 "&Version=2007-07-16" +
 "&Operation=TagLookup" +
 "&ResponseGroup=Tags,Small" +
 "&TagName=dotnet" +
 "&Count=20";

XElement tags = XElement.Load(url);
var groups =
 from book in tags.Descendants(ns + "Item")
 let bookAttributes = book.Element(ns + "ItemAttributes")
 let title = (string)bookAttributes.Element(ns + "Title")
 orderby title
 select title;

Sorting the books in descending rather than ascending order is a matter of chang-
ing the orderby title class to orderby title descending. As with the other
operators that we’ve discussed, the orderby operator is used with XML data the
same as it’s used by objects and relational data. The only difference is that the key
that is used for the sorting will come from a LINQ to XML object such as XElement,
XAttribute, or XNode. The orderby clause allows multiple keys to be specified,
which allows one or more secondary sorts to be performed.

 Now that we’ve seen how to sort our data, we’re going to investigate one final
standard query operator before moving on to look at how we can query LINQ to
XML trees using XPath. The last standard query operator that we’re going to cover
is the GroupBy operator.

 The GroupBy standard query operator allows a sequence of data to be grouped.
To illustrate how we can use the GroupBy standard query operator with LINQ to
XML, let’s group the books in our XML by their publisher. To group our books by
publisher, we’ll modify our query as shown in listing 10.20.

Listing 10.19 Ordering the results of a query using the orderby expression

374 CHAPTER 10

Query and transform XML with LINQ to XML
XElement tags = XElement.Load(url);
var groups =
 from book in tags.Descendants(ns + "Item")
 let bookAttributes = book.Element(ns + "ItemAttributes")
 let title = (string)bookAttributes.Element(ns + "Title")
 let publisher = (string)bookAttributes.Element(ns + "Manufacturer")
 orderby publisher, title
 group title by publisher;

In the query, we start by selecting all the books with the Descendants axis method.
We then retrieve the title and publisher of the book using the Element axis
method. With the title and publisher in hand, we order our results by publisher
and then title, and finally group the books by the publisher. The group by query
expression results in our query returning an object that implements the IGroup-
ing<K, T> and IEnumerable<T> interfaces. The type K is the type of the value we
group by, and the type T is the type of object that we’re putting into our group. In
our query, we can determine type K and T by looking at our group by expression.

group title by publisher;
 T K

In our group by expression, types T and K are both strings. Now that our results
are grouped by publisher, let’s loop over the results returned by our query and
output them to the console.

foreach (var group in groups) {
 Console.WriteLine(group.Count() + " book(s) published by " + group.Key);
 foreach (var title in group) {
 Console.WriteLine(" - " + title);
 }
}

When we put everything together and run our code, we end up with the following
results.

4 book(s) published by Addison-Wesley Professional
 - Essential .NET, Volume I: The Common Language Runtime
 - Framework Design Guidelines: Conventions, Idioms, and Patterns for
Reusable .NET Libraries (Microsoft .NET Development Series)
 - The .NET Developer's Guide to Directory Services Programming (Microsoft
.NET Development Series)
 - The .NET Developer's Guide to Windows Security (Microsoft .NET
Development Series)
5 book(s) published by Apress

Listing 10.20 Grouping the results of a query using the group expression

Standard query operators 375
 - Foundations of F#
 - Pro .NET 2.0 Windows Forms and Custom Controls in C#
 - Pro C# 2005 and the .NET 2.0 Platform, Third Edition
 - Pro C# with .NET 3.0, Special Edition (Pro)
 - Pro WF: Windows Workflow in .NET 3.0 (Expert's Voice in .Net)
1 book(s) published by Cambridge University Press
 - Data Structures and Algorithms Using C#
3 book(s) published by Microsoft Press
 - Applications = Code + Markup: A Guide to the Microsoft Windows
Presentation Foundation (Pro - Developer)
 - CLR via C#, Second Edition (Pro Developer)
 - Inside Windows Communication Foundation (Pro Developer)
4 book(s) published by O'Reilly Media, Inc.
 - C# Cookbook, 2nd Edition (Cookbooks (O'Reilly))
 - Programming .NET Components, 2nd Edition
 - Programming WCF Services (Programming)
 - Programming Windows Presentation Foundation (Programming)
1 book(s) published by Sams
 - Windows Presentation Foundation Unleashed (WPF) (Unleashed)
2 book(s) published by Wrox
 - Professional .NET Framework 2.0 (Programmer to Programmer)
 - Professional C# 2005 (Wrox Professional Guides)

As we’ve seen by exploring the Select, Where, GroupBy, and OrderBy standard
query operators, LINQ to XML fully leverages the LINQ framework and allows you
to fully express XML queries using the familiar LINQ query expression syntax.
While we haven’t explored every standard query operator, rest assured that LINQ
to XML fully supports them all. As we discussed earlier in this chapter, not all stan-
dard query operators have an equivalent query expression clause. As with LINQ to
Objects and LINQ to SQL, LINQ to XML requires you to call those operators using
the traditional standard query operator methods.

 Now that we’ve introduced the LINQ to XML axis methods, shown how to use a
few of the standard query operators with LINQ to XML, and shown how LINQ to
XML queries can be expressed using LINQ query expressions syntax, you should
have all you need to start building applications that query XML data with LINQ.
The consistent query experience for objects, databases, and XML provided by
LINQ offers significant advancements for developers. They no longer have to
switch gears as they work with different types of data. Instead, they can learn one
common set of standard query operators, along with the LINQ to XML axis meth-
ods, and begin to build applications that combine all different types of data.

 Until now, we’ve completely ignored the primary method for querying XML
that existed before LINQ to XML, the standard query operators, and the axis
methods came to be: XPath.

376 CHAPTER 10

Query and transform XML with LINQ to XML
10.3 Querying LINQ to XML objects with XPath

XPath is a language for finding information in an XML document, much like the
axis methods and standard query operators. However, instead of offering an API
for navigating the XML tree and finding the desired elements and attributes,
XPath provides a text-based query language that can be used to define the infor-
mation that should be selected with the query.

 As we’ve already seen, the primary means for querying XML data when using
LINQ to XML are the standard query operators and LINQ to XML axis methods.
Still, there may be times when an existing XPath query will need to be used. To
enable this, a number of bridge classes have been added to the Sys-

tem.Xml.XPath namespace that enable the use of XPath with LINQ to XML
objects. To use XPath against LINQ to XML objects, a reference will need to be
added to the System.Xml.XPath namespace.

using Sytem.Xml.XPath;

Adding a reference to System.Xml.XPath adds a number of extension methods to
classes that derive from XNode. The first method added is the CreateNavigator
method, which allows an XPathNavigator to be created from an existing XNode.
In addition to being able to create an XPathNavigator, the extension methods
also allow XPath expressions to be evaluated against an XNode via the XPathEvalu-
ate method. Finally, the XPathSelectElement and XPathSelectElements exten-
sion methods allow LINQ to XML objects to be searched via XPath expressions.
XPathSelectElement returns the first element matching the XPath expression
and XPathSelectElements returns all elements matching the expression.

 Let’s see how we can use these extension methods to query the XML with
XPath.

<category name="Technical">
 <category name=".NET">
 <books>
 <book>CLR via C#</book>
 <book>Essential .NET</book>
 </books>
 </category>
 <category name="Design">
 <books>
 <book>Refactoring</book>
 <book>Domain Driven Design</book>
 <book>Patterns of Enterprise Application Architecture</book>
 </books>
 </category>

Querying LINQ to XML objects with XPath 377
 <books>
 <book>Extreme Programming Explained</book>
 <book>Pragmatic Unit Testing with C#</book>
 <book>Head First Design Patterns</book>
 </books>
</category>

As we did in an earlier example, let’s start by querying the XML for every book
within the XML. The Descendants query axis method is ideal for this type of
query, since it traverses the entire XML tree. The equivalent XPath expression for
retrieving every book element anywhere within the XML tree is //book. Since the
XPathSelectElements extension method returns an IEnumerable<XElement>, we
can use the familiar query expression syntax for creating our query, as shown in
listing 10.21.

XElement root = XElement.Load("categorizedBooks.xml");
var books = from book in root.XPathSelectElements("//book")
 select book;

foreach(XElement book in books) {
 Console.WriteLine((string)book);
}

When this code is run, we get the following results printed to the console:

CLR via C#
Essential .NET
Refactoring
Domain Driven Design
Patterns of Enterprise Application Architecture
Extreme Programming Explained
Pragmatic Unit Testing with C#
Head First Design Patterns

By providing a set of extension methods for the XNode object, the LINQ to XML
team has allowed developers to use the same basic API for querying XML data
whether it’s via the axis methods and standard query operators or via XPath
expressions. Additionally, the extension methods for running XPath queries
against LINQ to XML objects allow for a much smoother migration path for appli-
cations that we want to move from code based on System.Xml.

 Now that we’ve covered how to query XML data using axis methods, the stan-
dard query operators, query expressions, and XPath, its time to explore how we
can use LINQ to XML to transform XML into alternate formats.

Listing 10.21 Querying XElement objects with XPath

378 CHAPTER 10

Query and transform XML with LINQ to XML
10.4 Transforming XML

When working with XML data, we often find that it needs to be transformed or
manipulated in order to support our internal systems. This might be because of
the way we need to present the data to our users or due to requirements of other
systems within our infrastructure for the XML. No matter the reason, XML often
needs to be transformed into alternate formats. Luckily, LINQ to XML provides an
intuitive and powerful method for transforming XML that leverages its support
for LINQ’s standard query operators, its implementation of the LINQ to XML axis
methods, and its support for functional construction.

10.4.1 LINQ to XML transformations

To see the powerful transformational capabilities offered by LINQ to XML, let’s
transform the XML from listing 10.22 into an XHTML document that can be
shown in a browser.

<?xml version="1.0" encoding="utf-8" ?>
<books>
 <book>
 <title>Linq in Action</title>
 <author>Fabrice Marguerie</author>
 <author>Steve Eichert</author>
 <author>Jim Wooley</author>
 <publisher>Manning</publisher>
 </book>
 <book>
 <title>Ajax in Action</title>
 <author>Dave Crane</author>
 <publisher>Manning</publisher>
 </book>
 <book>
 <title>Enterprise Application Architecture</title>
 <author>Martin Fowler</author>
 <publisher>APress</publisher>
 </book>
</books>

When we’re finished with our transformation, we’ll end up with the following
XHTML:

<html>
 <body>
 <h1>LINQ Books Library</h1>

Listing 10.22 The XML to be transformed

Transforming XML 379
 <div>
 LINQ in Action
 By: Fabrice Marguerie, Steve Eichert, Jim Wooley
 Published By: Manning
 </div>
 <div>
 AJAX in Action
 By: Dave Crane
 Published By: Manning
 </div>
 <div>
 Patterns of Enterprise Application Architecture
 By: Martin Fowler
 Published By: APress
 </div>
 </body>
</html>

In order to transform the XML shown in listing 10.22 into this XHTML, we’ll need
to take advantage of the axis methods provided by LINQ to XML as well its func-
tional construction capabilities. Let’s start by examining how we can create the
resulting XHTML using functional construction and for the moment ignore the
XML that we’re going to transform. To get a jump start, we can copy the resulting
XHTML to the clipboard and use the Paste XML as LINQ Visual Studio .NET add-in
to create our functional construction code for building the desired XML. When
we do so, we end up with listing 10.23.

NOTE The Paste XML as LINQ Visual Studio add-in is shipped as a sample. To use
it in Visual Studio 2008, you have to compile and install the add-in from
the source code provided. The add-in can be found in the LinqSamples
directory of the \Program Files\Visual Studio 9.0\Samples\CSharpSam-
ples.zip file.

XElement xml =
 new XElement("html",
 new XElement("body",
 new XElement("h1", "LINQ Books Library"),
 new XElement("div",
 new XElement("b", "LINQ in Action"),
 " By: Fabrice Marguerie, Steve Eichert, Jim Wooley\n" +
 " Published By: Manning\n"
),
 new XElement("div",
 new XElement("b", "AJAX in Action"),

Listing 10.23 The LINQ to XML code created via the Paste XML as LINQ Visual Studio
 .NET add in

380 CHAPTER 10

Query and transform XML with LINQ to XML
 " By: Dave Crane\n" +
 " Published By: Manning\n"
),
 new XElement("div",
 new XElement("b", "Patterns of Enterprise Application

Architecture"),
 " By: Martin Fowler\n" +
 " Published By: APress\n"
)
)
);

As we can see, the Paste XML as LINQ add-in converted the XHTML into a single
functional construction statement that creates each item contained within the
XML. While the XML isn’t perfect, it provides a good starting point.

 When transforming XML, you may often find it beneficial to start with the end
in mind and work your way backward. Now that we have a template for the
XHTML we want to produce, we can incorporate LINQ to XML queries and take
advantage of the rich support for embedding query expressions within functional
construction statements. Before incorporating our query expressions with the
functional construction statements, lets write a query to retrieve the data out of
our XML. See listing 10.24.

var books = from book in booksXml.Descendants("book")
 select new {
 Title = (string)book.Element("title"),
 Publisher = (string)book.Element("publisher"),
 Authors = String.Join(", ",
 book.Descendants("author")
 .Select(a => (string)a).ToArray())
 };

With this query, we’ve selected the title, publisher, and authors out of the XML
file. We’ve done extra work to format the list of author names as a comma-
separated list to match our desired output format. Now that we have our func-
tional construction statements and our query, it’s time to combine the two into a
single LINQ to XML transformation. See listing 10.25.

Listing 10.24 Retrieve the title, publisher, and authors for each book within the XML

Transforming XML 381
XElement html =
 new XElement("html",
 new XElement("body",
 new XElement("h1", "LINQ Books Library"),
 from book in booksXml.Descendants("book")
 select new XElement("div",
 new XElement("b", (string)book.Element("title")),
 "By: " + String.Join(", ", book.Descendants("author")
 .Select(b => (string)b).ToArray()) +
 "Published By: " + (string)book.Element("publisher")
)
)
);

The resulting XHTML can be seen in figure 10.2.
 As we’ve illustrated, LINQ to XML provides powerful transformation capabili-

ties. Rather than having to learn a new language, such as XSLT, developers can
leverage the knowledge they’ve already gained for creating XML using functional
construction and their knowledge for querying XML using LINQ queries. By pro-
viding a single construction method for creating XML from scratch as well as cre-
ating XML from other XML via transformations, LINQ to XML provides a
consistent programming model.

 While LINQ to XML offers powerful transformations, the LINQ to XML team also
recognized that a lot of existing applications have large investments in XSLT as a
transformation technology. As such, they’ve provided support for transforming
LINQ to XML objects using XSLT. Let’s explore how we can use XSLT to produce the
same output that we’ve produced in figure 10.2 with LINQ to XML transformations.

Listing 10.25 Transform XML into XHTML with LINQ to XML transformations

Figure 10.2 The XHTML result from our LINQ to XML query

382 CHAPTER 10

Query and transform XML with LINQ to XML
10.4.2 Transforming LINQ to XML objects with XSLT

In order to use XSLT with LINQ to XML objects, a reference to the Sys-
tem.Xml.Xsl namespace must be added to the class handling the transformation.
Once a reference has been made to System.Xml.Xsl, an XDocument needs to be
created to hold the output of the transformation. From there, you create an Xml-
Writer using the CreateWriter method on XDocument, load your XSL, then apply
the XSL to the XElement. Since the XslCompiledTransform object expects an
XmlReader, not an XElement, we need to use the CreateReader() method on
XElement and pass the resulting XmlReader on to the transform object. When we
put this all together, we end up with listing 10.26.

string xsl = @"<?xml version='1.0' encoding='UTF-8' ?>
 <xsl:stylesheet version='1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match='books'>
 <html>
 <title>Book Catalog</title>

 <xsl:apply-templates select='book'/>

 </html>
 </xsl:template>
 <xsl:template match='book'>

 <xsl:value-of select='title'/> by
 <xsl:apply-templates select='author'/>

 </xsl:template>
 <xsl:template match='author'>
 <xsl:if test='position() > 1'>, </xsl:if>
 <xsl:value-of select='.'/>
 </xsl:template>
 </xsl:stylesheet>";

XElement books = XElement.Load("books.xml");
XDocument output = new XDocument();
using (XmlWriter writer = output.CreateWriter()) {
 XslCompiledTransform xslTransformer = new XslCompiledTransform();
 xslTransformer.Load(XmlReader.Create(new StringReader(xsl)));
 xslTransformer.Transform(books.CreateReader(), writer);
}
Console.WriteLine(output);

Listing 10.26 Transforming an XElement using XSLT

Summary 383
The output is exactly the same as that shown in section 10.5.1. In order to make
the transform code we used in the code reusable, we can pull the transformation
logic into an extension method like in listing 10.27.

public static class XmlExtensions {
 public static XDocument XslTransform(this XNode node, string xsl) {
 XDocument output = new XDocument();
 using (XmlWriter writer = output.CreateWriter()) {
 XslCompiledTransform xslTransformer = new XslCompiledTransform();
 xslTransformer.Load(XmlReader.Create(new StringReader(xsl)));
 xslTransformer.Transform(node.CreateReader(), writer);
 }
 return output;
 }
}

With this extension method in place, we can apply our transformation using the
following code:

XElement.Load("books.xml").XslTransform(xsl));

In this section we’ve shown how to transform XML from one format to another by
using the transformational capabilities of functional construction, as well as with
XSLT. But often we need to transform XML data into in-memory objects. In the
next chapter, we tackle this common scenario as well as many others.

10.5 Summary

In this chapter, we’ve shown you how to query and transform XML using LINQ to
XML. We started by looking at the LINQ to XML axis methods and examined how
the different axis methods allow elements and attributes within the XML to be
selected. Next, we examined how we can use the axis methods along with the stan-
dard query operators and LINQ query expressions to express our XML queries
using the same syntax as we use for querying objects and relational data. By
enabling developers to use a single query syntax for objects, relational data, and
XML, LINQ has completely changed how developers work with data. Rather than
learn multiple technologies, developers can instead focus on mastering a single
technology that covers all their data needs.

 In addition to having strong XML-querying features, LINQ to XML has strong
transformation features. By combining the powerful XML-creating capabilities

Listing 10.27 An extension method for transforming an XNode using XSL

384 CHAPTER 10

Query and transform XML with LINQ to XML
offered by LINQ to XML with the advanced querying capabilities of LINQ, LINQ to
XML provides developers an easy and intuitive method for transforming XML.
Rather than learn a new transformation language, such as XSLT, developers can stay
focused on a single set of techniques that can be used for creating, querying, and
transforming XML.

 With that, we’ve completed our overview of LINQ to XML. While we’ve pro-
vided you with the information necessary for building applications with LINQ to
XML, we haven’t covered many of the common scenarios that you might encoun-
ter. We rectify that in our next and final chapter on LINQ to XML.

Common LINQ
 to XML scenarios
This chapter covers:
■ Building objects from XML
■ Creating XML from objects
■ Creating XML from data in a database
■ Creating XML from a CSV file
385

386 CHAPTER 11

Common LINQ to XML scenarios
Now that we’ve learned about the LINQ to XML API and seen how to query and
transform XML using LINQ to XML, it’s time to explore some common scenarios
that you may come across when working with LINQ to XML. These include build-
ing objects from XML, creating XML from a set of objects, creating XML with data
from a database, filtering and mixing data from a database with XML data, updat-
ing a database with data read from an XML file, and transforming text files into
XML using LINQ to XML. As we explore these common scenarios, you’ll witness
the powerful capabilities offered by LINQ to XML.

 In addition to using LINQ to XML, we’ll also make extensive use of the capabil-
ities offered by LINQ to Objects and LINQ to SQL in this chapter. At times, you
might forget that we’re even talking about LINQ to XML because of the strong
focus on LINQ to Objects and LINQ to SQL. Our ability to intertwine discussions of
LINQ to XML along with LINQ to Objects and LINQ to SQL shows how well the
LINQ technologies work together and how important it is to understand each one.
In the end, our goal is to help you understand LINQ to XML and how it can be
used to solve the common scenarios we’ve outlined, so we’ll try to stay on course.

 Within each section of this chapter, we’ll start by defining the goal that we’re
looking to achieve. Once our goal is defined, we’ll look at the techniques that
we’ll use to accomplish our goal. Finally, we’ll look at the implementation and
examine the code necessary for meeting our goal.

 As you’ll see throughout this chapter, LINQ to XML provides an intuitive XML
programming API that, combined with the LINQ framework, provides a lot of pow-
erful capabilities for building applications.

 Let’s get started by looking at how we can build objects from an XML file.

11.1 Building objects from XML

As we already mentioned, the first scenario that we’re going to cover is building
objects from XML. Before we look at the specifics of how we go about building
objects from XML with LINQ to XML, let’s talk briefly about why we would want to
do it in the first place. When we build applications today, we do so using objects.
Objects allow us to encapsulate the logic and data that exist in our software. Since
XML is a data format and not a programming language, we need to read the data
out of the XML files if we want to use it in our applications. To ensure our applica-
tion doesn’t get too tightly coupled to the format of an XML file, we’ll convert the
data within the XML file into a set of objects using the powerful capabilities
offered by LINQ to XML.

Building objects from XML 387
 As we’ll see, LINQ to XML allows us to convert XML into objects using the same
transformation techniques we learned about in the previous chapter. No matter
what format we need to transform our XML into, LINQ to XML is up to the chal-
lenge. With that said, let’s get started by examining our goal for this scenario.

11.1.1 Goal

Our goal in the section is to create a collection of objects that contain the data
within the XML document shown in listing 11.1 using the capabilities offered by
LINQ to XML.

<?xml version="1.0" encoding="utf-8" ?>
<books>
 <book>
 <title>LINQ in Action</title>
 <authors>
 <author>
 <firstName>Fabrice</firstName>
 <lastName>Marguerie</lastName>
 <website>http://linqinaction.net/</website>
 </author>
 <author>
 <firstName>Steve</firstName>
 <lastName>Eichert</lastName>
 <webSite>http://iqueryable.com</webSite>
 </author>
 <author>
 <firstName>Jim</firstName>
 <lastName>Wooley</lastName>
 <webSite> http://devauthority.com/blogs/jwooley/</webSite>
 </author>
 </authors>
 <subject>
 <name>LINQ</name>
 <description>LINQ shall rule the world</description>
 </subject>
 <publisher>Manning</publisher>
 <publicationDate>January 15, 2008</publicationDate>
 <price>44.99</price>
 <isbn>1933988169</isbn>
 <notes>Great book!</notes>
 <summary>LINQ in Action is great!</summary>
 <reviews>
 <review>
 <user>Steve Eichert</user>
 <rating>5</rating>
 <comments>What can I say, I’m biased!</comments>

Listing 11.1 Book data in XML format

388 CHAPTER 11

Common LINQ to XML scenarios
 </review>
 </reviews>
 </book>
 <book>
 <title>Patterns of Enterprise Application Architecture</title>
 …
 </book>
</books>

As we can see, the XML contains a set of information about books. If we move our
attention to the classes shown in figure 11.1, we can see that we have a series of
objects that correlate to the data contained in the XML file in listing 11.1.

Figure 11.1
Class diagram

Building objects from XML 389
Our goal is to take the data contained in the XML file and create a list of Book
objects. In addition to populating the Book object, we’ll also populate the Sub-
ject, Publisher, Authors, and Reviews properties of the Book with the corre-
sponding information in the XML file.

 With our goal of creating book objects from the XML out of the way, let’s a
look at the technique we’ll use to accomplish our goal.

11.1.2 Implementation

As we saw in the previous chapter, LINQ to XML provides powerful transformation
capabilities. In addition to being able to transform XML to alternate XML formats,
LINQ to XML also allows us to transform XML into other data structures, such as
in-memory objects.

 To build our objects from XML, we’ll write several queries that leverage the axis
methods provided by LINQ to XML. The queries will retrieve the baseline book
information out of the XML document, as well as the publishers, authors, and
reviews. We’ll build our objects using the new object initializer syntax available in
C# 3.0. We’ll also explore how we can nest query expressions to read data that is in
repeating elements, such as the authors and reviews. Before diving into the details
of how we can construct objects from XML, let’s figure out how to load our XML
document into an XElement.

 To load the XML document, we can use the static Load method on the XEle-
ment class.

XElement booksXml = XElement.Load("books.xml");

Once the XML is loaded, we need to figure out how we can get the data within the
XML into our Book objects. Since the book details are contained within the
<book> element, our first step is to retrieve all the <book> elements within the
XML document. As we learned in the previous chapter, the Elements query axis
method can be used to select all elements with a particular name, so we’ll select
every book element with the following code:

IEnumerable<XElement> bookElements = booksXml.Elements("book");

Our call to the Elements query axis method will return an IEnumerable<XEle-
ment> that represents the books within our XML document. In order to build our
Book object from the XElement objects, we’ll need to read data out of the relevant
child elements. The easiest way to construct our book object with the data in our
XML is to alter our code to use the object initializer syntax available in C# 3.0.
Rather than simply selecting the XElement objects as we did earlier, we’ll update
our query to create new book instances by adding a select clause to our query.

390 CHAPTER 11

Common LINQ to XML scenarios
We’ll assign the values contained in the child elements of the <book> element to
the corresponding property on the Book object, as shown in listing 11.2.

var books =
 from bookElement in booksXml.Elements("book")
 select new Book {
 Title = (string)bookElement.Element("title"),
 PublicationDate = (DateTime)bookElement.Element("publicationDate"),
 Price = (decimal)bookElement.Element("price"),
 Isbn = (string)bookElement.Element("isbn"),
 Notes = (string)bookElement.Element("notes"),
 Summary = (string)bookElement.Element("summary")
 };

To read the details of the book contained in the child elements, we select the rele-
vant element with the Elementaxis method and use the explicit cast operators
defined on XElement to convert the value to the proper data types.

 While this query gives us the basic details for our books, it doesn’t include the
data that is nested within child nodes, such as the list of authors and reviews. To
include the authors, we can update our query to include a nested query that
returns a list of Author objects that matches the author’s details contained in the
XML. Since the <author> elements are not directly below the <book> element, we
can use the Descendants query axis method and once again use the object initial-
izer syntax to build our author object with the data contained within the XML.

...
Authors =
 from authorElement in bookElement.Descendants("author")
 select new Author {
 FirstName = (string)authorElement.Element("firstName"),
 LastName = (string)authorElement.Element("lastName")
 }
...

Since our query expression returns an IEnumerable<Author>, we can assign the
results of the query expression directly to the Authors property on the book
instance. To include the reviews, we can take the same approach. We write a query
expression that reads the reviews out of the XML and into a list of Review objects:

...
Reviews =
 from reviewElement in bookElement.Descendants("review")
 select new Review {

Listing 11.2 Create Book objects from the XML using object initializers

Select all
authors and
create Author
objects

Select all reviews
and create
Review objects

Building objects from XML 391
 User = new User { Name = (string)reviewElement.Element("user")},
 Rating = (int)reviewElement.Element("rating"),
 Comments = (string)reviewElement.Element("comments")
 }
...

If we wrap everything together, we end up with the program in listing 11.3, which
creates a list of books from our XML document and prints them to the console
using ObjectDumper

using System;
using System.Linq;
using System.Xml.Linq;
using LinqInAction.LinqBooks.Common;

namespace Chapter11.CreateObjectsFromXml {
 class Program {
 static void Main(string[] args) {

 XElement booksXml = XElement.Load("books.xml");

 var books =
 from bookElement in booksXml.Elements("book")
 select new Book {
 Title = (string)bookElement.Element("title"),
 Publisher = new Publisher {
 Name = (string)bookElement.Element("publisher")
 },
 PublicationDate = (DateTime)bookElement.Element("publicationDate"),
 Price = (decimal)bookElement.Element("price"),
 Isbn = (string)bookElement.Element("isbn"),
 Notes = (string)bookElement.Element("notes"),
 Summary = (string)bookElement.Element("summary"),
 Authors =
 from authorElement in bookElement.Descendants("author")
 select new Author {
 FirstName = (string)authorElement.Element("firstName"),
 LastName = (string)authorElement.Element("lastName")
 },
 Reviews =
 from reviewElement in bookElement.Descendants("review")
 select new Review {
 User = new User {
 Name = (string)reviewElement.Element("user")
 },
 Rating = (int)reviewElement.Element("rating"),
 Comments = (string)reviewElement.Element("comments")
 }

Listing 11.3 Creating objects from XML

Load the XML
document

Build our objects
using query
expressions and
object initializers

392 CHAPTER 11

Common LINQ to XML scenarios
 };

 ObjectDumper.Write(books);
 }
 }
}

With LINQ to XML we can transform our XML data into alternate data formats
quickly and easily. By combining query expressions with the new object initializer
syntax offered by C# 3.0, we can build objects from XML using familiar LINQ lan-
guage constructs. As you’ll see throughout the remainder of this chapter, LINQ to
XML provides a simple and consistent API for transforming data to and from XML.

 Now that we’ve covered how to create objects from XML, let’s look at how we
can handle our next common scenario, creating XML from objects using VB9’s
XML literals.

11.2 Creating XML from object graphs

As we discussed in chapter 9, XML literals is a Visual Basic feature that allows XML
to be created using familiar XML syntax. Our XML will be created from a set of in-
memory objects that contain details about books within our LinqBooks catalog, as
well as reviews for those books. Let’s dig into more specifics regarding our goal for
this scenario.

11.2.1 Goal

No application is complete without a little RSS sprinkled in. In this section, our
goal is to create an RSS feed that contains all the book reviews within our Linq-
Books catalog. To keep things simple, we’re going to assume that we already have
a set of objects loaded with the book and review data, and that the RSS feed that
we create will be constructed directly from those objects.

 Since we often deal with in-memory objects when developing applications, this
section will provide a good overview of how in-memory objects can be trans-
formed into XML using XML literals.

 Before getting started with the code, let’s look at a sample of the XML docu-
ment that we’ll produce.

<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
 <channel>
 <title>Book Reviews</title>
 <description>LINQBooks Book Reviews</description>

Print the
results

Creating XML from object graphs 393
 <item>
 <title>Review of LINQ in Action by Steve Eichert</title>
 <description>This is an amazing book!...and I'm not biased!
 </description>
 </item>
 </channel>
</rss>

The XML that we produce will be a standard RSS 2.0 feed that contains the reviews
for our books. The final XML will contain one <item> element for each review
within the data used to produce the feed.

 Now that we’ve determined our goal for this scenario, let’s look at how we’re
going to use XML literals to achieve it.

11.2.2 Implementation

By allowing XML to be directly embedded in code, XML literals reduce the ambi-
guity that often exists when creating XML. Rather than focusing on the program-
ming API required to create XML, XML literals allow developers to focus on the
XML that they want to produce.

 In this scenario, we’re going to use XML literals to create an RSS feed that con-
tains the reviews within a set of in-memory objects. We’ll construct a query to
return the book and review data and use the support for embedding expressions
inside XML literals to produce our final XML.

 To create our RSS feed, we’ll query our in-memory objects for all the books
that have at least one review, and create an RSS feed containing the reviews for the
books using XML literals. We’re going to use the objects that we reviewed in
section 11.1 (see figure 11.1) as well as the SampleData class introduced in
chapter 4.

 As a reminder, listing 11.4 shows how the SampleData class is defined.

using System;
using System.Collections.Generic;
using System.Text;

namespace LinqInAction.LinqBooks.Common {
 static public class SampleData {

 static public User[] Users ={
 new User { Name="Steve Eichert"},
 new User { Name="Fabrice Marguerie"},
 new User { Name="Jim Wooley"}
 };

Listing 11.4 The SampleData class introduced in chapter 4

394 CHAPTER 11

Common LINQ to XML scenarios
 static public Publisher[] Publishers = {
 new Publisher {Name="FunBooks"},
 new Publisher {Name="Joe Publishing"},
 new Publisher {Name="I Publisher"}
 };

 static public Author[] Authors = {
 new Author {FirstName="Johnny", LastName="Good"},
 new Author {FirstName="Graziella", LastName="Simplegame"},
 new Author {FirstName="Octavio", LastName="Prince"},
 new Author {FirstName="Jeremy", LastName="Legrand"}
 };

 static public Book[] Books = {
 new Book {
 Title="Funny Stories",
 Publisher=Publishers[0],
 Authors=new[]{Authors[0], Authors[1]},
 Price=25.55M,
 Isbn="0-000-77777-2",
 Reviews=new Review[] {
 new Review {
 User=Users[0],
 Rating=5,
 Comments="It was very funny indeed!"
 },
 new Review {
 User=Users[1],
 Rating=4,
 Comments="It was Fabulous."}
 }
 },
 new Book {
 Title="LINQ rules",
 Publisher=Publishers[1],
 Authors=new[]{Authors[2]},
 Price=12M,
 Isbn="0-111-77777-2"
 },
 new Book {
 Title="C# on Rails",
 Publisher=Publishers[1],
 Authors=new[]{Authors[2]},
 Price=35.5M,
 Isbn="0-222-77777-2",
 Reviews=new Review[] {
 new Review {
 User=Users[0],
 Rating=5,

Creating XML from object graphs 395
 Comments="Say goodnight to the Rails Party,
 Microsoft is here!"},
 new Review {
 User=Users[1],
 Rating=5,
 Comments="Don Box said he likes Ruby, little
 did we know he'd turn C# into Ruby.NET!"}
 }
 },
 new Book {
 Title="All your base are belong to us",
 Publisher=Publishers[1],
 Authors=new[]{Authors[3]},
 Price=35.5M,
 Isbn="0-333-77777-2"
 },
 new Book {
 Title="Bonjour mon Amour",
 Publisher=Publishers[0],
 Authors=new[]{Authors[1], Authors[0]},
 Price=29M,
 Isbn="2-444-77777-2"
 }
 };
 }
}

To build our RSS feed; we want to select the books from the SampleData.Books
array shown in listing 11.4. Since the RSS will have details of the reviews, we want
to limit the list of books to those that have at least one review. To limit the set of
books returned to only those with reviews, we’ll check that the Reviews property
on the book is not null and that at least one review exists using listing 11.5.

Dim reviews =
 From book In SampleData.Books _
 Where Not IsNothing(book.Reviews) AndAlso book.Reviews.Count > 0 _
 From review In book.Reviews _
 Select book, review

Since we can have multiple reviews per book, we’ve created a second-level query
that selects each review from the book.Reviews property. To create our XML feed,
we’ll need to embed this query into our XML literals code.

Listing 11.5 Limit the set of books returned to only those with reviews

396 CHAPTER 11

Common LINQ to XML scenarios
 Now that we’ve defined a query for retrieving the necessary data, we need to
create the XML literal code that will produce the desired XML. With XML literals,
VB allows us to create XML using familiar XML syntax. Now we can focus on the
desired XML output rather than on the details of the XML programming API. As
mentioned in chapter 9, under the covers, XML literals get turned into functional
construction statements, which allow them to be interoperable with other lan-
guages that don’t support XML literals.

 Creating the XML literals is a matter of copying and pasting the desired XML into
our class that will be responsible for the XML creation. We can, of course, hand-code
the XML as well, but since we’ve already done that once to create the sample doc-
ument, we might as well leverage all that typing here. We’ll use listing 11.6 as a tem-
plate for building our desired XML.

Dim rss = _
<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0">
 <channel>
 <title>Book Reviews</title>
 <description>LINQBooks Book Reviews</description>
 <item>
 <title>Review of LINQ in Action by Steve Eichert</title>
 <description>
 This is an amazing book!...and I'm not biased!
 </description>
 </item>
 </channel>
</rss>

With the XML literals code in place, we’re ready to integrate the query that selects
the book and review data from the SampleData.Books array, as well as place
“holes” within the XML literals that we can use to plug in the proper values from
our query. As mentioned in chapter 9, we can place expression holes in our XML
literals using the <%= Expression %> and <% Statement %> syntax.

 To create our full RSS feed, we’re going to replace the single <item> element
in listing 11.6 with our query for retrieving the book and review data. Once we
have our queries and XML literal code in place, we replace the hard-coded book
name, reviewer name, and review with embedded expressions that place the
proper values from the book and review objects into the resulting XML. The com-
plete code for creating our RSS feed is shown in listing 11.7.

Listing 11.6 XML literals template for building RSS

Creating XML from object graphs 397
Imports LinqInAction.LinqBooks.Common

Module XmlFromObjectsUsingXmlLiterals
 Sub Main()
 Dim rss = _
 <?xml version="1.0" encoding="utf-8"?>
 <rss version="2.0">
 <channel>
 <title>Book Reviews</title>
 <description>LINQBooks Book Reviews</description>
 <%= From book In SampleData.Books _
 Where Not IsNothing(book.Reviews) _
 AndAlso book.Reviews.Count > 0 _
 Select _
 From review In book.Reviews _
 Select _
 <item>
 <title>
 Review of <%= book.Title %> by <%= review.User.Name %>
 </title>
 <description><%= review.Comments %></description>
 </item> %>
 </channel>
 </rss>

 Console.WriteLine(rss)
 End Sub
End Module

When we run this code, we end up with the following XML printed to the console:

<rss version="2.0">
 <channel>
 <title>Book Reviews</title>
 <description>LINQBooks Book Reviews</description>
 <item>
 <title>Review of Funny Stories by Steve Eichert</title>
 <description>It was very funny indeed!</description>
 </item>
 <item>
 <title>Review of Funny Stories by Fabrice Marguerie</title>
 <description>It was Fabulous.</description>
 </item>
 <item>
 <title>Review of C# on Rails by Steve Eichert</title>
 <description>Say goodnight to the Rails Party, Microsoft is here!
 </description>

Listing 11.7 Creating XML from an object graph using XML literals

398 CHAPTER 11

Common LINQ to XML scenarios
 </item>
 <item>
 <title>Review of C# on Rails by Fabrice Marguerie</title>
 <description>Don Box said he likes Ruby, little did we know he'd turn
C# into Ruby.NET!</description>
 </item>
 </channel>
</rss>

Now that we have our RSS feed created, we can deploy it to our web host and start
sharing our reviews with the world. See figure 11.2.

 In this section, we created an RSS feed from our in-memory book objects. By
utilizing XML literals, we were able to stay focused on the end goal and plug in
data from our objects as necessary. The result is a more productive programming
environment for developers. While it was a fun exercise to convert our in-memory
objects to XML, it’s more likely that we’ll need to pull information from our data-
base. In the next section, we explore what LINQ to XML offers for such a case.

11.3 Creating XML with data from a database

The relational database is at the heart of many of the applications we build. It pro-
vides a reliable means for storing, aggregating, and processing our data. Often the
data within our applications need to be shared with others, and more often than
not the format chosen for the interchange is XML. In this scenario, we’ll explore
how we can take data within our relational database and create an XML represen-
tation of it that can be shared with others. As we learned in chapters 6, 7, and 8,
LINQ to SQL provides powerful capabilities for working with our relational data
via LINQ. In this scenario, we’ll get a chance to see how nicely LINQ to XML can

Figure 11.2
The resulting
Reviews RSS feed

Creating XML with data from a database 399
be used in conjunction with LINQ to SQL to combine relational and XML data
within a single query. Let’s get started by looking at our goal for this scenario.

11.3.1 Goal

Our goal is to export XML of the books within our book catalog database (see fig-
ure 11.2). This will allow us to share our catalog with other LinqBooks users.
We’re going to start by creating the desired XML with the Paste XML as LINQ
Visual Studio Add-In that is shipped as a sample with Visual Studio 2008, and then
define our queries to retrieve the data from the database. Once we have the stub
code for our XML and the queries for retrieving the data, we’ll combine the two to
create our desired XML.

 Listing 11.8 shows the XML that we’ll create.

<books>
 <book>
 <title>LINQ in Action</title>
 <authors>
 <author>
 <firstName>Steve</firstName>
 <lastName>Eichert</lastName>
 <webSite>http://iqueryable.com</webSite>
 </author>
 <author>
 <firstName>Fabrice</firstName>
 <lastName>Marguerie</lastName>
 <webSite>http://linqinaction.net/</website>
 </author>
 <author>
 <firstName>Jim</firstName>
 <lastName>Wooley</lastName>
 <webSite>http://devauthority.com/blogs/jwooley</website>
 </author>
 </authors>
 <subject>
 <name>LINQ</name>
 <description>LINQ shall rule the world</description>
 </subject>
 <publisher>Manning</publisher>
 <publicationDate>January, 2008</publicationDate>
 <price>43.99</price>
 <isbn>1933988169</isbn>
 <notes>Great book!</notes>
 <summary>LINQ in Action is great!</summary>
 <reviews>
 <review>

Listing 11.8 The XML that will be created from our database

http://linqinaction.net/%3c/website

400 CHAPTER 11

Common LINQ to XML scenarios
 <user>Steve Eichert</user>
 <rating>5</rating>
 <comments>What can I say, I’m biased!</comments>
 <review>
 <reviews>
 </book>
</books>

To create this XML we’ll need to query data from the database tables shown in fig-
ure 11.3.

 Now that we’ve seen the structure of the XML we’re trying to produce as well as
the schema for the database tables we’ll be pulling our data from, let’s look at the
technique we’ll use to accomplish our goal.

Figure 11.3
Database schema

Creating XML with data from a database 401
11.3.2 Implementation

Functional construction provides a powerful means by which we can create XML.
By embedding query expressions within functional construction statements, XML
trees can be built from a database or any other data source. Since LINQ to SQL
provides an implementation of the standard query operators for querying rela-
tional databases, we can use familiar LINQ query expressions to retrieve the data
for creating the desired XML.

 The XML tree that we’re going to produce requires information from every
table within the database schema shown in figure 11.3. To retrieve the data, we’ll
generate a set of objects from our database using LINQ to SQL. As we discussed in
chapter 6, LINQ to SQL creates a class for every table in the database. In addition
to generating properties that map to each column in the database, LINQ to SQL
also generates properties to represent the relationships within the database. This
allows all the relevant information required for creating our XML to be retrieved
via the Book class.

 Before diving into the code necessary for creating the XML from the database,
we need to generate our LINQ to SQL objects. There are several options available
for generating our objects. To keep things simple, we’ll use the SqlMetal.exe com-
mand-line executable that ships with LINQ to SQL.

CMD>Sqlmetal /server:localhost /database:LinqInAction /pluralize
/namespace:LinqInAction.LinqToSql /code:LinqInAction.cs

While the details of SqlMetal are outside the scope of this chapter, you can find more
information about how to leverage it to create LINQ to SQL objects by checking out
chapter 7 or by browsing to \Program Files\Microsoft SDKs\Windows\v6.0A\Bin and
executing SqlMetal.exe without any command-line switches.

usage: sqlmetal [options] [<input file>]
options:
 /server:<name> database server name
 /database:<name> database catalog on server
 /user:<name> login user id
 /password:<name> login password
 /views extract database views
 /functions extract database functions
 /sprocs extract stored procedures
 /xml[:file] output as xml
 /code[:file] output as source code
 /map[:file] generate xml mapping file instead of attributes
 /language:xxx language for source code (vb,csharp)
 /namespace:<name> namespace used for source code
 /pluralize auto-pluralize table names
 /dataAttributes auto-generate DataObjectField and Precision attributes
 /timeout:<seconds> timeout value in seconds to use for database commands

402 CHAPTER 11

Common LINQ to XML scenarios
Once we have our LINQ to SQL objects generated, we can write the code for creat-
ing our XML tree. To get started, we can copy the XML in our sample XML docu-
ment to the clipboard and use the Paste XML as LINQ Visual Studio add-in to give
us the C# code shown in listing 11.9.

XElement xml = new XElement("books",
 new XElement("book",
 new XElement("title", "LINQ in Action"),
 new XElement("authors",
 new XElement("author",
 new XElement("firstName", "Steve"),
 new XElement("lastName", "Eichert"),
 new XElement("webSite", "http://iqueryable.com")
),
 new XElement("author",
 new XElement("firstName", "Fabrice"),
 new XElement("lastName", "Marguerie"),
 new XElement("website", "http://linqinaction.net/")
),
 new XElement("author",
 new XElement("firstName", "Jim"),
 new XElement("lastName", "Wooley"),
 new XElement("website", "http://devauthority.com/blogs/jwooley/")
)
),
 new XElement("subject",
 new XElement("name", "LINQ"),
 new XElement("description", "LINQ shall rule the world")
),
 new XElement("publisher", "Manning"),
 new XElement("publicationDate", "January, 2008),
 new XElement("price", "43.99"),
 new XElement("isbn", "1933988169"),
 new XElement("notes", "Great book!"),
 new XElement("summary", "LINQ in Action is great!"),
 new XElement("reviews",
 new XElement("review",
 new XElement("user", "Steve Eichert"),
 new XElement("rating", "5"),
 new XElement("comments", "What can I say, I'm biased!")
)
)
)
);

Listing 11.9 Stub code via copy and paste XElement

Replace the authors element
with a query expression that
returns all the authors

B

Replace the hard-coded subject with the subject
name and description from the Subject table

C

Replace the publisher
name with the proper
publisher name from
the publishers tableD

Replace the hard-coded list of
reviews with a query expression

that returns all the reviews E

Creating XML with data from a database 403
In the listing, we’ve identified four sections of XML that will need to be replaced
with LINQ expressions. The author element B will need to be replaced with a
query expression that returns an IEnumerable<XElement> containing the author
elements. We’ll need to replace the hard-coded name and description on the Sub-
ject C with the name and description from the Subject table that the Book table
links to. Next we’ll need to replace the publisher name D with the proper pub-
lisher name from the Publisher table. Finally, the hard-coded lists of reviews E
will need to be replaced with a query expression that returns an IEnumerable
<XElement> built from the Reviews table.

 Now that we have the stub code in listing 11.9, we need to plug in query
expressions for retrieving information about the book, as well as its publisher, sub-
ject, authors, and reviews. To express our queries, we can use query expressions or
explicit dot notation. Since query expressions are more readable and compact
and work better when embedding queries within functional construction state-
ments, we’ll use them to create our XML.

 The first query expression that we need returns all the books within our data-
base. Although the sort order of the books doesn’t matter, we’ll sort them by title
to make our query more interesting.

LinqInActionContext ctx = new LinqInActionContext();
var books = from book in ctx.Books
 orderby book.Title
 select book;

To retrieve the other details necessary for building the XML, we can traverse the rela-
tionships that SqlMetal creates on the Book class. Figure 11.4 shows a class diagram
of the classes created by SqlMetal to see what relationships are available.

 As we can see in figure 11.4, the Book class has relationships that allow us to
retrieve all the related data using properties such as book.BookAuthors,
book.Subject, book.Reviews, and book.Publisher. Utilizing these properties, we
can create queries for returning the data necessary for building our complete
XML document, as in listing 11.10.

var authors =
 from bookAuthor in book.BookAuthors
 orderby bookAuthor.AuthorOrder
 select bookAuthor.Author;

var subject = book.Subject;

Listing 11.10 Retrieve the data necessary for building our XML document using LINQ
 to XML queries

Retrieve the authors
through the BookAuthors

Review the data from
the 1-to-1 relationships

404 CHAPTER 11

Common LINQ to XML scenarios
var publisher = book.Publisher;

var reviews =
 from review in book.Reviews
 orderby review.Rating
 select review;

Once we have these queries, we can plug them into our original statement that
creates our XML. In listing 11.11, we update the hard-coded element values with
the appropriate value from the book instance and replace the repeating ele-
ments—such as the authors and reviews—with query expressions that return an
IEnumerable<XElement> that represents the items.

using System;
using System.Linq;
using System.Xml.Linq;

Listing 11.11 Code to create our full XML tree

Retrieve the reviews
sorted by rating

Figure 11.4 A class diagram showing the classes and relationships created by SqlMetal
for the LinqBooks database

Creating XML with data from a database 405
using System.Data.Linq;
using LinqInAction.LinqToSql;

namespace Chapter11.CreateXmlFromDatabase {
 class Program {
 static void Main(string[] args) {

 LinqInActionDataContext ctx = new LinqInActionDataContext();

 XElement xml = new XElement("books",
 from book in ctx.Books
 orderby book.Title
 select new XElement("book",
 new XElement("title", book.Title),
 new XElement("authors",
 from bookAuthor in book.BookAuthors
 orderby bookAuthor.AuthorOrder
 select new XElement("author",
 new XElement("firstName", bookAuthor.Author.FirstName),
 new XElement("lastName", bookAuthor.Author.LastName),
 new XElement("webSite", bookAuthor.Author.WebSite)
)
),
 new XElement("subject",
 new XElement("name", book.Subject.Name),
 new XElement("description", book.Subject.Description)
),
 new XElement("publisher", book.Publisher.Name),
 new XElement("publicationDate", book.PubDate),
 new XElement("price", book.Price),
 new XElement("isbn", book.Isbn),
 new XElement("notes", book.Notes),
 new XElement("summary", book.Summary),
 new XElement("reviews",
 from review in book.Reviews
 orderby review.Rating
 select new XElement("review",
 new XElement("user", review.User.Name),
 new XElement("rating", review.Rating),
 new XElement("comments", review.Comments)
)
)
)
);

 Console.WriteLine(xml.ToString());
 }
 }
}

Create DataContext to
retrieve data from database

Create
XML

Print XML
to console

406 CHAPTER 11

Common LINQ to XML scenarios
With the powerful creation capabilities offered by functional construction, as well
as its tight integration with other LINQ-enabled technologies such as LINQ to SQL,
LINQ to XML is primed to become the runaway winner when it comes to selecting
an XML stack to build applications on top of. Not only does it offer all the query
advantages that we’ve seen time and time again from the LINQ framework, it also
provides the most powerful and user friendly XML API available!

 Now that we’ve seen how to create XML from a database, it’s time to move on
to our next scenario.

11.4 Filtering and mixing data
from a database with XML data

Now that we’ve seen how we can create XML from a database, it’s time to further
explore how we can integrate XML and relational data within a single LINQ query.
In this scenario, we’re going to look at how we can mix the data within our database
with XML data retrieved from Amazon’s e-commerce web services. As we’ll see in
this example, LINQ to XML makes it easy to join XML data with data from a rela-
tional database. Before we jump into how we accomplish this, let’s review our goal.

11.4.1 Goal

The Amazon e-commerce web services provide developers with a set of APIs for
retrieving data from the Amazon catalog. In this scenario, we’ll query the Item-
Lookup service for the reviews that have been submitted for a set of books within
our LinqBooks catalog. With our XML data in hand, we’ll then query our rela-
tional database for additional book details. Finally, we’ll integrate the two data
sources with a single query and display the results on screen.

 The following is a sample of the output:

Book: CLR via C#, Second Edition

Rating: 5

Jeffrey Richter is my hero, he really is. This guy is simply amazing. I just
cant imagine how he pulls it off - the toughest topics explained in the
clearest manner.Moreover, he has achieved this feat over and over again. Any
book he has written is testimony for this.

In his books, you would find information where you wouldnt find in any
other place. You would also find information you can find elsewhere, but
not as clear as his. He has the advantage of working closely with Microsoft
and consulting with the .NET team, but I would say he would be a great author
and teacher even without that advantage.

As about this book, it should not be your first C# book. I suggest you

Filtering and mixing data from a database with XML data 407
get beginner's C# book first (if you dont know any C#), I suggest Jesse
Liberty's book, and then come to this book. You would get a tremendous
advantage over people who havent read this book and your understanding of the
building blocks of .NET platform would be in depth. His chapters on Threading
alone is worth the price of the book. This book is an absolute pleasure to
read, just like any other book from Richter. Grab your copy today!
If there really is a 5 star book,this one is it.

Nobody writes like Richter, nobody.

Rating: 5

I echo the positive reviews below. If you already know the .Net platform
fairly well and want to understand the internals of the CLR, this is the best
place to start. This edition is as good or better than his 1.0/1.1 version,
Applied .Net Framework Programming.

By allowing us to easily load XML data from a web service and mix that data with
data from a LINQ to SQL query, LINQ to XML provides a powerful method for
creating XML content. Let’s look at the technique we’ll use for creating our
desired result.

11.4.2 Implementation

LINQ provides several mechanisms for mixing XML and relational data. To allow
users to see the reviews on Amazon for a given book, we’ll be joining the data
available within our relational database with XML data returned by a call to the
Amazon ItemLookup service. Although the data is in completely different formats
and from completely different sources, LINQ allows us to easily mix the data by
joining the two sources on the common data points, in this case the ISBN, then
selecting the data we’re interested in from each source within our select clause.
In order to get the data that we want to display to users, we’ll need to perform two
queries. The first query will retrieve XML data from Amazon and the second query
will retrieve information from the database.

 Let’s start by loading the XML data from Amazon. Amazon provides several dif-
ferent ways to access its web services. Developers can request data from Amazon
using either the REST or SOAP APIs offered by Amazon. Since LINQ to XML is ide-
ally suited to work as a client for REST web services, we’ll leverage that strength
here and use the REST web service API.

 As we briefly mentioned in chapter 10, to access the Amazon web services,
you’re required to register with the Amazon Web Services program.1 After register-
ing with Amazon, you’ll be assigned a key, which grants you access to the Amazon

1 http://www.amazon.com/gp/aws/registration/registration-form.html

408 CHAPTER 11

Common LINQ to XML scenarios
web services. Once you have the registration complete, you can start using the web
services to retrieve information from Amazon.

 Now that we have that disclaimer out of the way, let’s figure out how to retrieve
data from the Amazon ItemLookup service. To retrieve data from the ItemLookup
service, we create a request URL that includes all the request parameters that
detail the information that we’re interested in retrieving from Amazon. To
retrieve the reviews, we use the following request URL:

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService&
 AWSAccessKeyId={AccessKey}&
 Operation=ItemLookup&
 ItemId={ItemID}&
 ResponseGroup=Reviews

Table 11.1 shows the common request parameters that are included in Amazon
web services calls. For more detailed information on the parameters available,
refer to the Amazon Web Service documentation at http://aws.amazon.com/.

Table 11.1 Common Amazon e-commerce web service operation request parameters

Parameter Value Description

Service AWSECommerceService Specifies the ECS service.

AWSAccessKeyId Your Amazon-assigned
Access Key ID

You can register for an access key ID from the
Amazon web site if you do not have one. Every
ECS 4.0 request must contain either an access
key ID or a subscription ID, but not both.

SubscriptionId Your Amazon-assigned
subscription ID

Every ECS 4.0 request must contain either an
access key ID or a subscription ID, but not both.
Starting with version 2006-06-28, ECS stopped
distributing subscription IDs. If you already have
one, it will continue to work.

Operation Operation you wish to
perform

One of the ECS operation types.a

ResponseGroup Reviews Specifies what data is to be returned by the cur-
rent operation; allows you to control the volume
and content of returned data.

ItemId The list of ASINs for the
products to return data for

Product(s) you would like information about. You
may specify up to 10 IDs using a comma-sepa-
rated list (REST) or multiple elements (SOAP). By
default the item IDs are assumed to be ASINs,
unless you specify the IdType parameter.

a. http://docs.amazonwebservices.com/AWSEcommerceService/2006-06-28/PgOverviewArticle.html#Summary

Filtering and mixing data from a database with XML data 409
Now that our request URL is created, we can load the XML response using the
Load method of XElement, as shown in listing 11.12.

string requestUrl =
 "http://webservices.amazon.com/onca/xml?Service=AWSECommerceService&" +
 "AWSAccessKeyId={AccessKey}&" +
 "Operation=ItemLookup&" +
 "ItemId=0735621632&" +
 "ResponseGroup=Reviews";

XElement amazonReviews = XElement.Load(requestUrl);

Before moving on, let’s look at the XML that is returned for our request, shown in
figure 11.5.

 As you can see in the figure, the reviews are returned within the <CustomerRe-
views> element. We’re particularly interested in the <Rating> and <Content> ele-
ments, as they contain the information that we’re going to display on screen.

 Now that we’ve covered some of the basics regarding how we’ll retrieve the Ama-
zon reviews, let’s look at how to retrieve the books from our relational database. As
we saw in section 11.3, LINQ to SQL makes it easy to retrieve data from our database.

Listing 11.12 Load XML from Amazon’s e-commerce web service

Figure 11.5 Amazon.com reviews XML

410 CHAPTER 11

Common LINQ to XML scenarios
As we did in section 11.3, we’ll retrieve the details of our book with the LinqIn-
ActionDataContext.Books property.

LinqInActionDataContext ctx = new LinqInActionDataContext();
var books = ctx.Books;

With the details of our queries out of the way, it’s time we move on to joining them
together and displaying the details onscreen. To join the XML data returned by
Amazon and the book details within our database, we use the Join operator pro-
vided by LINQ. As discussed in chapter 3, the Join and GroupJoin operators allow
us to join two sequences on matching keys extracted from each sequence. In our
case, the two sequences are the sequence of book elements returned by amazon-
Reviews.Elements(ns + "Items").Elements(ns + "Item") and the sequence of
books within the database that we access through the Books property on the Linq-
InActionDataContext class. We’ll extract the ASIN element out of our XML and the
ISBN out of our Book, and use them to join our two sequences together.

 When we put everything together we end up with the program in listing 11.13.

using System;
using System.Linq;
using System.Xml.Linq;
using System.Data.Linq;
using LinqInAction.LinqToSql;

namespace Chapter11.MixXmlAndRelationalData {
 class Program {
 public const string AmazonAccessID = "15QN7X0P65HR0X975T02";

 static void Main(string[] args) {
 string requestUrl =

 ➥"http://webservices.amazon.com/onca/xml?Service=AWSECommerceService" +
 "&AWSAccessKeyId=" + AmazonAccessID +
 "&Operation=ItemLookup&" +
 "ItemId=0735621632&" +
 "ResponseGroup=Reviews";

 XNamespace ns =
 "http://webservices.amazon.com/AWSECommerceService/2005-10-05";
 LinqInActionDataContext ctx = new LinqInActionDataContext();

 XElement amazonReviews = XElement.Load(requestUrl);

 var results =
 from bookElement in amazonReviews.Element(ns + "Items")
 .Elements(ns + "Item")

Listing 11.13 Mixing XML and relational data within a single query

Reading XML and updating a database 411
 join book in ctx.Books on
 (string)bookElement.Element(ns + "ASIN") equals book.Isbn.Trim()
 select new {
 Title = book.Title,
 Reviews =
 from reviewElement in bookElement.Descendants(ns + "Review")
 orderby (int)reviewElement.Element(ns + "Rating") descending
 select new Review {
 Rating = (int)reviewElement.Element(ns + "Rating"),
 Comments = (string)reviewElement.Element(ns + "Content")
 }
 };

 string seperator = "--------------------------";
 foreach (var item in results) {
 Console.WriteLine("Book: " + item.Title);
 foreach (var review in item.Reviews) {
 Console.WriteLine(seperator + "\r\nRating: " +
 review.Rating + "\r\n" +
 seperator + "\r\n" + review.Comments);
 }
 }
 }
 }
}

By leveraging the built-in join support offered by LINQ, we can build queries that
select from multiple data sources and create new objects from subsets of the data
within each data source. It should be noted that in order to do the join between
our XML and database, LINQ enumerates each element returned by ctx.Books.
This results in a query being run that returns every book within our database. In
our particular scenario, we’re not concerned with the performance impact of that
operation, but it’s something you should keep in mind when designing queries
that join XML and relational data.

 At this point, we’ve covered several common scenarios involving XML and our
database. In the next section, we cover the most obvious remaining scenario,
updating our database with information contained within XML.

11.5 Reading XML and updating a database

In the previous two sections, we’ve looked at how we can use LINQ to XML to cre-
ate XML from a database as well as how we can join XML and relational data
within a single LINQ query. In this section, we go a step further and investigate

412 CHAPTER 11

Common LINQ to XML scenarios
how we can use LINQ to XML and LINQ to SQL to update our database with infor-
mation contained within XML. Before getting started with our goal, we should
mention that this scenario is a little more involved than those that we’ve covered
thus far. As such, this scenario is a bit longer, but also a bit more interesting. The
real power of LINQ is shown when all the different LINQ-enabled technologies are
used together. In this scenario, we use LINQ to XML, LINQ to Objects, and LINQ
to SQL. Additionally, we query a web service, a database, and a UI for data, and
learn about how we can update our relational data with information returned
from a web service!

 Now that we’ve whetted your appetite with what’s to come, let’s get started by
identifying our goal for this scenario.

11.5.1 Goal

In this section, we’re going to add an exciting new feature to our sample applica-
tion. We’re going to allow users to add new books to their LinqBooks catalog
directly from Amazon. To enable this, we’ll build a simple GUI screen that can be
used to search Amazon for books. See figure 11.6.

Figure 11.6 Amazon search UI

Reading XML and updating a database 413
As shown in the figure, a search box at the top of the UI will allow users to enter
the keywords to search on. After entering keywords, users will be able to click the
Search button. When the Search button is clicked, a web service call will be made
to Amazon for all books that match the entered keywords. The results provided by
Amazon will be displayed in the grid, where users will be able to select the book(s)
to be imported by checking the Import check box. Before importing the selected
books, they need to be classified. The Subject combo box, at the bottom of the
form, lists all the subjects currently in the database. Once the appropriate subject
is selected and the Import button is clicked, the books will be inserted into the
LinqBooks database.

11.5.2 Implementation

In order to accomplish our goal, we’ll need to leverage a lot of what we’ve learned
throughout the last several chapters. We’re going to query the Amazon web ser-
vice using LINQ to XML, query our relational database using LINQ to SQL, build
objects from XML, and finally create new records in our database with informa-
tion within the XML.

 As we saw in the previous section, LINQ provides a Join operator that allows
XML and relational data to be included in a single LINQ query. In this section,
we’re going to go a step further and join XML, relational data, and in-memory
objects. When we’re through, we’ll have a simple Windows Forms application that
allows users to search Amazon.com for books and import them into their Linq-
Books database.

 After creating our basic UI, which we’ll skip here since we have a lot of ground
to cover, we need to start creating our LINQ queries for retrieving information
from Amazon, as well as our database. We’ll once again use the REST service to
retrieve books that match the keywords entered into the UI.

 We need to formulate a URL with all the details of our query before making
our request. The URL that we use to retrieve the books matching our keywords is
shown in listing 11.14.

http://webservices.amazon.com/onca/xml?Service=AWSECommerceService&
 AWSAccessKeyId={AccessKey}&
 Operation=ItemSearch&
 SearchIndex=Books&
 Keywords={keywords}&
 ResponseGroup=Large

Listing 11.14 Amazon.com REST URL for retrieving books by a keyword

414 CHAPTER 11

Common LINQ to XML scenarios
Once our request URL is formulated, we make our service call to Amazon by call-
ing the static Load method on XElement. When we call Load, the XElement class
asks System.Xml.XmlReader to load the URL. This results in a web request being
made to Amazon’s server, which in turn constructs an XML document that con-
tains the results of our search. The following is the code to retrieve the books
matching the keywords supplied in the keywords text box:

string requestUrl =
 "http://webservices.amazon.com/onca/xml?Service=AWSECommerceService" +
 "&AWSAccessKeyId=" + AmazonAccessKey +
 "&Operation=ItemSearch" +
 "&SearchIndex=Books" +
 "&Keywords=" + keywords.Text +
 "&ResponseGroup=Large";

XElement amazonXml = XElement.Load(requestUrl);

Now that we have a loaded XML tree, we need to read the books out of the XML
and display them to the user. Before investigating how we can display the books,
let’s look at the XML that is returned, shown in listing 11.15

<?xml version="1.0" encoding="utf-8"?>
<ItemSearchResponse

 ➥xmlns="http://webservices.amazon.com/AWSECommerceService/2005-10-05">
 <Items>
 <TotalResults>1389</TotalResults>
 <TotalPages>139</TotalPages>
 <Item>
 <ASIN>0977326403</ASIN>
 <DetailPageURL>http://www.amazon.com/gp/redirect.html%3FASIN=0977326403%

 ➥26tag=ws%26lcode=xm2%26cID=2025%26ccmID=165953%26location=/o/ASIN/
 ➥0977326403%253FSubscriptionId=15QN7X0P65HR0X975T02</DetailPageURL>

 <SalesRank>49</SalesRank>
 <ItemAttributes>
 <Author>Jim Collins</Author>
 <Binding>Paperback</Binding>
 <DeweyDecimalNumber>658.048</DeweyDecimalNumber>
 <EAN>9780977326402</EAN>
 <ISBN>0977326403</ISBN>
 <Label>Collins</Label>
 <ListPrice>
 <Amount>1195</Amount>
 <CurrencyCode>USD</CurrencyCode>
 <FormattedPrice>$11.95</FormattedPrice>
 </ListPrice>

Listing 11.15 Amazon XML for a book

Reading XML and updating a database 415
 <Manufacturer>Collins</Manufacturer>
 <NumberOfItems>1</NumberOfItems>
 <NumberOfPages>42</NumberOfPages>
 <PackageDimensions>
 <Height Units="hundredths-inches">13</Height>
 <Length Units="hundredths-inches">916</Length>
 <Weight Units="hundredths-pounds">21</Weight>
 <Width Units="hundredths-inches">642</Width>
 </PackageDimensions>
 <ProductGroup>Book</ProductGroup>
 <PublicationDate>2005-11-30</PublicationDate>
 <Publisher>Collins</Publisher>
 <Studio>Collins</Studio>
 <Title>Good to Great and the Social Sectors:
 A Monograph to Accompany Good to Great</Title>
 </ItemAttributes>
 </Item>
 </Items>
</ItemSearchResponse>

After reviewing the XML returned by Amazon and taking a quick peek at the grid
we’re using to display the results of our search, we find that the two primary
pieces of information we need to read from the XML are within the <Title> and
<ISBN> elements. Both elements live inside the <ItemAttributes> element. With
this knowledge in hand, let’s start to put the pieces in place for our GUI. We’ll
start by adding an event handler for the Click event of our search button.

private void searchButton_Click(object sender, EventArgs e) {

}

Once our event handler is in place, we add the code for constructing our request
URL and then make the web service call to Amazon by calling XEle-

ment.Load(requestUrl). Since we’re going to be using the Amazon results out-
side the scope of the searchButton_Click handler, we assign the results of our
web service call to a class-level variable named amazonXml. Finally, we construct a
query expression that creates a sequence of Books by reading the title and ISBN
out of the XML returned by Amazon. See listing 11.16.

private void searchButton_Click(object sender, EventArgs e) {

 string requestUrl =
 String.Format(Amazon.AmazonSearchRestUrl, keywords.Text);

Listing 11.16 When Search button is clicked, query Amazon for books matching our
 keywords

Do cool Amazon search here!

Create a request URL for calling
the ItemSearch Amazon service

416 CHAPTER 11

Common LINQ to XML scenarios

 amazonXml = XElement.Load(requestUrl);

 var books =
 from amazonItem in amazonXml.Descendants(ns + "Item")
 let attributes = amazonItem.Element(ns + "ItemAttributes")
 select new Book {
 Isbn = (string)attributes.Element(ns + "ISBN"),
 Title = (string)attributes.Element(ns + "Title"),
 };

 bookBindingSource.DataSource = books;
}

Before moving on, let’s dig into our query expression and examine how we’re
building our list of books. The first thing to point out is that we create an
XNamespace instance with the default namespace used in the XML returned by
Amazon. As we mentioned in previous chapters, all queries in LINQ to XML use
the full expanded name (namespace + local name) of elements. We declare our
namespace once, before constructing our query expression, to keep our query
clean and concise. Once our namespace is declared, we can move on to construct-
ing our query expression. The XML returned by Amazon contains one <Item> ele-
ment for each book that matches our search. We use the Descendants query axis
method available on XElement to retrieve each <Item> element and build a new
Book instance using an inline object initializer. We set the Title and ISBN proper-
ties on the book instance to the values within the <Title> and <ISBN> elements of
the XML. Also of note is our use of the let clause. Rather than typing the full
expression for reading the title and ISBN out of the /Item/ItemAttributes/
Title and /Item/ItemAttributes/ISBN elements, we instead use a let clause to
assign the ItemAttributes element to a query variable called attributes. This
allows us to use attributes in our select clause, which results in less typing and
a more readable query. Finally, we bind our query defined in the books variable to
the binding source for our grid, which populates the grid with the books returned
by Amazon. Now that we have the books matching our keywords in our grid, let’s
move on to figuring out how we can get them imported into our database.

 Once the books returned from Amazon are shown in the grid, users can select
the books to import by checking the check box in the first column. Once the user
has checked the books she would like to import, she clicks the Import button to
put them into the LinqBooks database.

Load the XML
from AmazonQuery the XML returned by

Amazon for the title and ISBN

Reading XML and updating a database 417
 The first thing that we need to do when the user clicks the Import button is fig-
ure out what items in the grid have been checked. To get the books that have
been selected, we want to find all the rows within our grid that have the check box
in the first cell checked. To determine whether the check box in the first cell of
our grid is checked, we examine the EditedFormattedValue of the DataGrid-
ViewCell. If we were still stuck in the olden days of programming, we would loop
over every row in the grid and check whether the EditedFormattedValue of the
first cell was true. If so, we’d then add the Book that was bound to the row to a list
of some sort. Lucky for us, we’re not stuck in the olden days. Rather than looping
over the rows in the grid, we can construct a query expression to select the rows
that match a predicate, which we’ve defined. The code to do just that follows:

var selectedBooks =
 from row in bookDataGridView.Rows.OfType<DataGridViewRow>()
 where ((bool) row.Cells[0].EditedFormattedValue) == true
 select (Book) row.DataBoundItem;

Notice our use of the OfType<> extension method. OfType<> allows us to turn an
old-school DataGridViewRowCollection into an IEnumerable of DataGridView-
Row objects. Once we have the DataGridViewRow objects in an IEnumerable, we
can query them using LINQ.

 Once we have the books that have been checked for import, we can begin to
write the code that will import the books into our database. It’s important to
remember that the books bound to the DataGridView only contain the title and
ISBN of the book. In order to get all the details for the book, we’re going to need
to return to the XML that we retrieved from Amazon.

 As we saw when we built the list displayed in the grid, most of the details of the
book are contained within the <ItemAttributes> element of the XML. We need
to match the item attributes contained in the XML with the columns that we have
in our database (see figure 11.2 to review the database schema). The mapping of
the XML to the database can be seen in table 11.2.

Table 11.2 Mapping of XML to database for Book attributes

Book attribute Location in XML Location in database

Title /Items/Item/ItemAttributes/Title Book.Title

ISBN /Items/Item/ItemAttributes/ISBN Book.ISBN

Publication Date /Items/Item/ItemAttributes/PublicationDate Book.PubDate

Price /Items/Item/ItemAttributes/ListPrice/FormattedPrice Book.Price

418 CHAPTER 11

Common LINQ to XML scenarios
In table 11.2 we define the mapping between the XML and our database. Since
the title, ISBN, publication date, and price have a straightforward mapping; let’s
start by constructing a query that will read those values out of the XML and into
our Book objects.

var booksToImport =
 from amazonItem in amazonXml.Descendants(ns + "Item")
 let attributes = amazonItem.Element(ns + "ItemAttributes")
 select new Book {
 Isbn = (string)attributes.Element(ns + "ISBN"),
 Title = (string)attributes.Element(ns + "Title"),
 PubDate = (DateTime)attributes.Element(ns + "PublicationDate"),
 Price = ParsePrice(attributes.Element(ns + "ListPrice")
 };

With this query in place, we need to start thinking about how we’re going to filter
the list of books to only those that we checked in the grid. Additionally, we need
to figure out how we’re going to set the Publisher for our book, as well as the list
of authors. Let’s start by figuring out how we can filter our list of books to only
those that the user selected.

 To filter the list of books, we need to join the results of the query for finding
books from Amazon with the query for retrieving the list of selected books from
the grid. See listing 11.18.

var selectedBooks =
 from row in bookDataGridView.Rows
 where ((bool)row.Cells[0].EditedFormattedValue) == true
 select (Book)row.DataBoundItem;

var booksToImport =
 from amazonItem in amazonXml.Descendants(ns + "Item")
 join selectedBook in selectedBooks on

Publisher /Items/Item/ItemAttributes/Publisher Publisher.Name

Author(s) /Items/Item/ItemAttributes/Author
(repeated for each author)

Author.FirstName &
Author.LastName

Listing 11.17 Read the values out of the XML returned by Amazon into our Book objects

Listing 11.18 Joining the results returned by Amazon with the books selected in the grid

Table 11.2 Mapping of XML to database for Book attributes (continued)

Book attribute Location in XML Location in database

Reading XML and updating a database 419
 (string)amazonItem.Element(ns + "ItemAttributes")
 .Element(ns + "ISBN")
 equals selectedBook.Isbn
 let attributes = amazonItem.Element(ns + "ItemAttributes")
 select new Book {
 Isbn = (string)attributes.Element(ns + "ISBN"),
 Title = (string)attributes.Element(ns + "Title"),
 PubDate = (DateTime)attributes.Element(ns + "PublicationDate"),
 Price = ParsePrice(attributes.Element(ns + "ListPrice"))
 };

As you can see, we again use the Join operator provided by LINQ for joining our
two data sources together. This provides the results we’re looking for, a list of
books built from the data returned by Amazon filtered down to only those that
were checked for import in the grid. Now that we have the books we’re interested
in, let’s explore how we can include the additional details such as the Publishers
and Authors.

 At first glance, including the Publishers and Authors seems like a simple task.
Since the data from Amazon includes the publisher and authors, it’s simply a mat-
ter of updating our query expression to select the values out of the XML and
assign them to the appropriate properties on our book instance. Unfortunately,
nothing in life is as easy as it first seems.

 As we import books into our catalog, we’ll slowly build up a list of authors and
publishers. If we’re not careful, we could end up with duplicate authors and pub-
lishers within our database. If we go to import a book that has the same publisher
or author as a book already in the database, we’ll end up with duplicates if we
don’t specifically handle that case. We could ignore this fact and insert a new pub-
lisher and author for every book, but that would result in data integrity issues,
which we’d rather not introduce. If the publisher or author already exists in the
database, we want to assign that existing publisher or author to the book. If the
publisher or author does not exist, we want to create a new instance and insert
them into the database. When building objects in an imperative manner, this
wouldn’t be too hard to solve, but how do we handle this when our objects are get-
ting built within a query expression?

 Let’s start by looking at how we can include the publisher in our query. The
XML returned by Amazon has the publisher stored in the /Item/ItemAt-
tributes/Publisher element. We need to perform a search on the Publisher
table to see if a publisher with a Name equal to the value in our <Publisher> ele-
ment exists. If so, the existing publisher needs to be pulled out of the database

420 CHAPTER 11

Common LINQ to XML scenarios
and assigned to the Publisher property on our book instance. If a publisher
doesn’t exist, we need to create a new Publisher instance with the publisher’s
name that is in the XML and assign it to our book. To accomplish this, we’ll use
the grouping join support in LINQ as well as the DefaultIfEmpty operator.

from amazonItem in amazonXml.Descendants(ns + "Item")
join p in ctx.Publishers on
 (string)amazonItem.Element(ns + "ItemAttributes")
 .Element(ns + "Publisher")
 equals p.Name into publishers
 from existingPublisher in publishers.DefaultIfEmpty()
...

By combining a grouping join with the DefaultIfEmpty operator, we are able to
create a left outer join between our XML and Publisher table. Once we have our
left outer join in place, we can use the null coalescing operator (??) and object
initializers to get our desired behavior. If our join results in a null publisher, we’ll
create a new Publisher; otherwise, we’ll assign our existing publisher to the Pub-
lisher property on our book.

...
Publisher=(existingPublisher ??
 new Publisher {
 ID = Guid.Empty,
 Name = (string)attributes.Element(ns + "Publisher")
 }
)
...

When we put everything together, we end up with a query expression that joins
our Amazon item with the Publisher table in our database and either assigns the
existing publisher to our book or creates a new one. See listing 11.19.

var booksToImport =
 from amazonItem in amazonXml.Descendants(ns + "Item")
 join selectedBook in selectedBooks on
 (string)amazonItem.Element(ns + "ItemAttributes").Element(ns + "ISBN")
 equals selectedBook.Isbn
 join p in ctx.Publishers on
 (string)amazonItem.Element(ns + "ItemAttributes").Element(ns +

 ➥"Publisher")
 equals p.Name into publishers
 let existingPublisher = publishers.SingleOrDefault()
 let attributes = amazonItem.Element(ns + "ItemAttributes")
 select new Book {
 Isbn = (string)attributes.Element(ns + "ISBN"),

Listing 11.19 Populate the book publisher by joining to the Publisher table

Perform a left
outer join between
our XML and the
Publisher table

Assign the publisher if it’s not null;
otherwise create a new Publisher

Reading XML and updating a database 421
 Title = (string)attributes.Element(ns + "Title"),
 Publisher = (existingPublisher ??
 new Publisher {
 ID = Guid.Empty,
 Name = (string)attributes.Element(ns + "Publisher")
 }
),
 PubDate = (DateTime)attributes.Element(ns + "PublicationDate"),
 Price = ParsePrice(attributes.Element(ns + "ListPrice"))
};

Now that we have the publisher out of the way, it’s time to move on to the authors.
To include the authors, we’re going to use some of the same methods we just cov-
ered for including the publisher. The primary difference is that a book can have
multiple authors. Since our existing query expression is getting a little more com-
plex than we’d like, we’ll separate out the logic for assigning the authors into a
separate method.

 Before diving into the code for creating our authors, let’s quickly review what
we need to accomplish. The XML returned for a book can have one-to-many
<Author> elements. We need to ensure that when we import our book, we don’t
re-create an author that is already in our database. As we can see in figure 11.7, we
also need to map each author element into an Author object, which will be placed
inside a BookAuthor object. The BookAuthor object is an association object that
represents the link between a book and the authors who wrote the book. For
more details about how one-to-many relationships are represented in LINQ to
SQL, refer to chapter 7. Figure 11.7 shows the relationship between the Book class
and the Author class.

Figure 11.7 Author and Book class diagram

422 CHAPTER 11

Common LINQ to XML scenarios
After reviewing the class diagram in figure 11.7, we see that our Author class has
FirstName and LastName properties. That means that we’ll need to map the full
author name within our XML to two properties on our object. To make our lives
easy, we’ll take a naïve approach and assume that the author element in the XML
contains the first and last names of the author separated by a space. Once we have
all these details out of the way, we can construct our query expression for retriev-
ing our authors, as in listing 11.20.

var bookAuthors =
 from authorElement in amazonItem.Elements(ns + “Author”)
 join a in ctx.Authors on
 (string)authorElement equals a.FirstName + " " + a.LastName into authors
 let existingAuthor = authors.SingleOrDefault()
 let nameParts = ((string)authorElement).Split(' ')
 select new BookAuthor {
 Author = existingAuthor ??
 new Author {
 ID = Guid.Empty,
 FirstName = nameParts[0],
 LastName = nameParts[1]
 }
 };

We again use a grouping join and the DefaultIfEmpty operator to create a left
outer join between our <Author> element and the Author table. We don’t have a
unique key to join on in this case, so we do the best we can by joining the full
author name contained in the <Author> element to the first and last name in the
Author table. After creating the query expression to retrieve the authors, we need
to encapsulate it inside a method that we can call from our main query expres-
sion. Additionally, we need to use the results of the authors query expression to
create an EntitySet<BookAuthor>, which we’ll assign to the BookAuthors prop-
erty on our book instance. After a bit of work, we end up with the GetAuthors
method shown in listing 11.21.

private EntitySet<BookAuthor> GetAuthors(IEnumerable<XElement>
 authorElements) {
 LinqInActionDataContext ctx = new LinqInActionDataContext();
 var bookAuthors =

Listing 11.20 Query our XML for the authors of the book

Listing 11.21 Retrieving the authors from the XML and converting them into
 an EntitySet

Reading XML and updating a database 423
 from authorElement in authorElements
 join a in ctx.Authors on
 (string)author equals a.FirstName + " " + a.LastName into authors
 from existingAuthor in authors.DefaultIfEmpty()
 let nameParts = ((string)authorElement).Split(' ')
 select new BookAuthor {
 Author = existingAuthor ?? new Author {
 ID = Guid.Empty,
 FirstName = nameParts[0],
 LastName = nameParts[1]
 }
 };

 EntitySet<BookAuthor>set = new EntitySet<BookAuthor>();
 set.AddRange(bookAuthors);
 return set;
}

With the GetAuthors() method in place, we can update our query expression to
incorporate the authors into our query:

var booksToImport =
 from amazonItem in amazonXml.Descendants(ns + "Item")
 join selectedBook in selectedBooks on
 (string)amazonItem.Element(ns + "ItemAttributes").Element(ns + "ISBN")
 equals selectedBook.Isbn
 join p in ctx.Publishers on
 (string)amazonItem.Element(ns + "ItemAttributes")
 .Element(ns + "Publisher")
 equals p.Name into publishers
 from existingPublisher in publishers.DefaultIfEmpty()
 let attributes = amazonItem.Element(ns + "ItemAttributes")
 select new Book {
 Isbn = (string)attributes.Element(ns + "ISBN"),
 Title = (string)attributes.Element(ns + "Title"),
 Publisher = (existingPublisher ??
 new Publisher {
 ID = Guid.Empty,
 Name = (string)attributes.Element(ns + "Publisher")
 }),
 Subject = (Subject)categoryComboBox.SelectedItem,
 PubDate = (DateTime)attributes.Element(ns + "PublicationDate"),
 Price = ParsePrice(attributes.Element(ns + "ListPrice")),
 BookAuthors = GetAuthors(attributes.Elements(ns + "Author"))
 };

We’ve now completed the process of writing a query expression to create a list of
books that should be imported from the XML returned by Amazon.

424 CHAPTER 11

Common LINQ to XML scenarios
 Thankfully, LINQ to SQL handles the majority of the work once we have our
objects created. We do have a small preparatory step that we need to take before
we can let LINQ to SQL run with our list of books and save them to the database.
In order for our books to get saved, we need to tell the DataContext to add the
books to the database. Telling the DataContext to add our books is simply a mat-
ter of calling ctx.Books.InsertAllOnSubmit(booksToImport).2 Once we have all
our books added, we call SubmitChanges().

ctx.Books.InsertAllOnSubmit(booksToImport);

try {
 ctx.SubmitChanges();
 MessageBox.Show(booksToImport.Count() + " books imported.");
} catch(Exception ex) {
 MessageBox.Show("An error occurred while attempting to import the

 ➥selected books. " + Environment.NewLine + Environment.NewLine +
ex.Message);

}

With everything now in place, we can run our application and begin to import
books into our LinqBooks database from Amazon.com. The complete code listing
is shown in listing 11.22.

using System;
using System.Collections.Generic;
using System.Data.Linq;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;
using System.Xml.Linq;
using Chapter11.Common;
using LinqInAction.LinqToSql;

namespace Chapter11.WinForms {
 public partial class ImportForm : Form
 {

 LinqInActionDataContext ctx;
 XNamespace ns =
 "http://webservices.amazon.com/AWSECommerceService/2005-10-05";
 XElement amazonXml;

2 The InsertOnSubmit method was named Add in Beta1 and Beta2 of LINQ to SQL.

Listing 11.22 Full code for importing books from Amazon.com

Reading XML and updating a database 425
 public ImportForm()
 {
 InitializeComponent();
 this.Load += new EventHandler(ImportForm_Load);
 ctx = new LinqInActionDataContext();
 }

 void ImportForm_Load(object sender, EventArgs e)
 {
 subjectComboBox.DataSource = ctx.Subjects.ToList();
 }

 void searchButton_Click(object sender, EventArgs e)
 {
 string requestUrl =
 String.Format(Amazon.AmazonSearchRestUrl, keywords.Text);
 amazonXml = XElement.Load(requestUrl);

 var books =
 from result in amazonXml.Descendants(ns + "Item")
 let attributes = result.Element(ns + "ItemAttributes")
 select new Book
 {
 Isbn = (string)attributes.Element(ns + "ISBN"),
 Title = (string)attributes.Element(ns + "Title"),
 };

 bookBindingSource.DataSource = books;
 var rows =
 from row in bookDataGridView.Rows.OfType<DataGridViewRow>()
 let dataBoundBook = ((Book)row.DataBoundItem)
 join book in ctx.Books
 on dataBoundBook.Isbn equals book.Isbn.Trim()
 select row;

 foreach (DataGridViewRow row in rows)
 {
 row.DefaultCellStyle.BackColor = Color.LightGray;
 row.Cells[0].ReadOnly = true;
 row.Cells[1].Value =
 "** Already Exists ** - " + row.Cells[1].Value;
 }
 }

 void importButton_Click(object sender, EventArgs e)
 {
 var selectedBooks =
 from row in bookDataGridView.Rows.OfType<DataGridViewRow>()
 where ((bool)row.Cells[0].EditedFormattedValue) == true
 select (Book)row.DataBoundItem;

426 CHAPTER 11

Common LINQ to XML scenarios
 using (var newContext = new LinqInActionDataContext())
 {
 var booksToImport =
 from amazonItem in amazonXml.Descendants(ns + "Item")
 join selectedBook in selectedBooks
 on (string)amazonItem
 .Element(ns + "ItemAttributes")
 .Element(ns + "ISBN")
 equals selectedBook.Isbn
 join p in newContext.Publishers
 on ((string)amazonItem
 .Element(ns + "ItemAttributes")
 .Element(ns + "Publisher")).ToUpperInvariant()
 equals p.Name.Trim().ToUpperInvariant()
 into publishers
 from existingPublisher in publishers.DefaultIfEmpty()
 let attributes =
 amazonItem.Element(ns + "ItemAttributes")
 select new Book
 {
 ID = Guid.NewGuid(),
 Isbn = (string)attributes.Element(ns + "ISBN"),
 Title = (string)attributes.Element(ns + "Title"),
 Publisher = (existingPublisher ??
 new Publisher
 {
 ID = Guid.NewGuid(),
 Name = (string)attributes
 .Element(ns + "Publisher")
 }
),
 Subject = (Subject)subjectComboBox.SelectedItem,
 PubDate =
 (DateTime)attributes.Element(ns + "PublicationDate"),
 Price = ParsePrice(attributes.Element(ns + "ListPrice")),
 BookAuthors =
 GetAuthors(attributes.Elements(ns + "Author"))
 };

 newContext.Subjects.Attach((Subject)
 ➥subjectComboBox.SelectedItem);

 newContext.Books.InsertAllOnSubmit(booksToImport);

 try
 {
 newContext.SubmitChanges();
 MessageBox.Show(booksToImport.Count() + " books imported.");
 }

Reading XML and updating a database 427
 catch (Exception ex)
 {
 MessageBox.Show(
 "An error occurred while attempting to import the
 selected books."
 + Environment.NewLine + Environment.NewLine + ex.Message);
 }
 }
 }

 private EntitySet<BookAuthor> GetAuthors(IEnumerable<XElement>
authorElements)
 {
 var bookAuthors =
 from authorElement in authorElements
 join author in ctx.Authors
 on (string)authorElement
 equals author.FirstName + " " + author.LastName
 into authors
 from existingAuthor in authors.DefaultIfEmpty()
 let nameParts = ((string)authorElement).Split(' ')
 select new BookAuthor
 {
 ID = Guid.NewGuid(),
 Author = existingAuthor ??
 new Author
 {
 ID = Guid.NewGuid(),
 FirstName = nameParts[0],
 LastName = nameParts[1]
 }
 };

 EntitySet<BookAuthor> set = new EntitySet<BookAuthor>();
 set.AddRange(bookAuthors);
 return set;
 }

 private decimal ParsePrice(XElement priceElement)
 {
 return Convert.ToDecimal(
 ((string)priceElement.Element(ns + "FormattedPrice"))
 .Replace("$", String.Empty)
);
 }
 }
}

428 CHAPTER 11

Common LINQ to XML scenarios
In this section, we pulled together many of the features available within LINQ
and LINQ to XML to create an application that allows users to import books
from Amazon.com. The application demonstrates the powerful capabilities avail-
able within LINQ for joining together data from in-memory objects, XML, and
the database, as well as shows how LINQ to XML and LINQ to SQL can be used
together to integrate data from disparate systems.

 The past three scenarios have all involved integrating LINQ to XML with a
relational database via LINQ to SQL. In our next scenario, we’ll take a step away
from the database and look at how we can use LINQ to XML to transform text
files into XML. Although text files may not be as glamorous as databases, the
LINQ framework and LINQ to XML manage to make programming against text
files just as fun!

11.6 Transforming text files into XML

In today’s modern world that’s ruled by XML, you’d think everybody would’ve
upgraded their internal systems to the latest and greatest, and done away with
their arcane flat files. Unfortunately, many internal systems still rely heavily on
text files. Rather than stay in the dark ages, we’d like to upgrade all of our internal
systems to speak XML. To that end, let’s see what LINQ to XML offers when it
comes to converting text files into XML. As you should be accustomed to by now,
we’ll get started by exploring our goal for this scenario.

11.6.1 Goal

In this section, we aim to transform a text file into a hierarchical XML document.
As shown in listing 11.23, the text file will contain the following book information:
the ISBN, title, author(s), publisher, publication date, and price.

01 0735621632,CLR via C#,Jeffrey Richter,Microsoft Press,02-22-2006,59.99
02 0321127420,Patterns Of Enterprise Application Architecture,Martin

 ➥Fowler,Addison-Wesley,11-05-2002,54.99
03 0321200683,Enterprise Integration Patterns,Gregor Hohpe,Addison-Wesley,

 ➥10-10-2003,54.99
04 0321125215,Domain-Driven Design,Eric Evans,Addison-Wesley,08-22-2003,

 ➥54.99
05 1932394613,Ajax In Action,Dave Crane;Eric Pascarello;Darren James,

 ➥Manning Publications,10-01-2005,44.95

Listing 11.23 CSV of Books

Transforming text files into XML 429
This text file is the same file that we used in the LINQ to Text Files section of chap-
ter 5. You’ll notice some similarities between the code here and that presented in
chapter 5, since not only are we using the same file, but both sections are using
functional construction to convert the text file into alternate formats. In this sce-
nario, our goal is to parse the data in the text file and produce a hierarchy of
XML, as shown in listing 11.24.

<?xml version="1.0" encoding="utf-8" ?>
<books>
 <book>
 <title>CLR via C#</title>
 <authors>
 <author>
 <firstName>Jeffrey</firstName>
 <lastName>Richter</lastName>
 </author>
 </authors>
 <publisher>Microsoft Press</publisher>
 <publicationDate>02-22-2006</publicationDate>
 <price>59.99</price>
 <isbn>0735621632</isbn>
 </book>
 <book>
 <title>Patterns Of Enterprise Application Architecture</title>
 <authors>
 <author>
 <firstName>Martin</firstName>
 <lastName>Fowler</lastName>
 </author>
 </authors>
 <publisher>Addison-Wesley Professional</publisher>
 <publicationDate>11-05-2002</publicationDate>
 <price>54.99</price>
 <isbn>0321127420</isbn>
 </book>
 ...
</books>

Now that we have an idea of the XML we’ll be producing, let’s look at the tech-
nique we’ll use to create the XML.

11.6.2 Implementation

The technique used in this scenario is similar to the previous examples we’ve
covered. The XML is constructed in a bottom-up manner using LINQ to XML’s
functional construction capabilities, along with a set of query expressions that

Listing 11.24 The XML output that will be created from the transformation

430 CHAPTER 11

Common LINQ to XML scenarios
selects the relevant data out of the individual lines of the CSV file. Once again,
we see that LINQ to XML allows us to intertwine results from varying data
sources, in this case a flat file, with LINQ to XML functional construction state-
ments to create XML.

 In order to create our desired XML, we need to open the text file, split each
line in the file into an array, and place each item in the array into the appropriate
XML element. Let’s start with opening the file and splitting it into parts.

from line in File.ReadAllLines("books.txt")
let items = line.Split(',')

We leverage the static ReadAllLines method available on the File class to read
each line within the text file. Since ReadAllLines returns a string array, we can
safely use it in our from clause. To split each line, we use the Split method avail-
able on string, as well as the let clause that is available in C#. The let clause
allows us to perform the split operation once and refer to the result in subsequent
expressions. Once we have our line split apart, we can wrap each item into the
appropriate XML element, as in listing 11.25.

var booksXml = new XElement("books",
 from line in File.ReadAllLines("books.txt")
 let items = line.Split(',')
 select new XElement("book",
 new XElement("title", items[1]),
 new XElement("publisher", items[3]),
 new XElement("publicationDate", items[4]),
 new XElement("price", items[5]),
 new XElement("isbn", items[0])
);

We conveniently left the authors out of the query, since they require extra work.
Unlike the other fields in our text file, there can be more than one author speci-
fied for a single book. If we go back and review the sample text file, we see that the
authors are delimited by a semicolon (;).

Dave Crane;Eric Pascarello;Darren James

As we did with the entire line, we can Split the string of authors into an array,
with each author being an individual element in the array. To be sure we get our
fill of Split, we use it one final time to break the full author name into first and
last name parts. Finally, we place the statements for parsing out the authors into a
query and wrap the results of our many splits into the appropriate XML.

Listing 11.25 Read the lines from the text file into XElement objects

Add functional construction
statements for creating the XML

Transforming text files into XML 431
...
new XElement("authors",
 from authorFullName in items[2].Split(';')
 let authorNameParts = authorFullName.Split(' ')
 select new XElement("author",
 new XElement("firstName", authorNameParts[0]),
 new XElement("lastName", authorNameParts[1])
)
)
...

When we add it all together we get the final solution, which can be seen in list-
ing 11.26.

using System;
using System.Linq;
using System.Xml.Linq;
using System.IO;

namespace Chapter11.FlatFileToXml {
 class Program {
 static void Main(string[] args) {
 XElement xml =
 new XElement("books",
 from line in File.ReadAllLines("books.txt")
 where !line.StartsWith("#")
 let items = line.Split(',')
 select new XElement("book",
 new XElement("title", items[1]),
 new XElement("authors",
 from authorFullName in items[2].Split(';')
 let authorNameParts = authorFullName.Split(' ')
 select new XElement("author",
 new XElement("firstName", authorNameParts[0]),
 new XElement("lastName", authorNameParts[1])
)
),
 new XElement("publisher", items[3]),
 new XElement("publicationDate", items[4]),
 new XElement("price", items[5]),
 new XElement("isbn", items[0])
)
);
 Console.WriteLine(xml);
 }
 }
}

Listing 11.26 Flat file to XML implementation

432 CHAPTER 11

Common LINQ to XML scenarios
We’d be remiss if we didn’t point out that the code presented here isn’t recom-
mended if the file that is being processed is large. In this scenario, we used the
File.ReadAllLines method in our LINQ to XML query. When working with large
files, and/or when performance is critical, the file should be read using a stream-
ing approach like that presented in section 5.3.1.

 As we’ve seen over and over again, LINQ to XML allows us to mix and match
data from varying data sources into functional construction statements. The result
is a consistent programming API for developers, which makes the way XML is cre-
ated from other data sources—whether they be relational, object, or a text file—
consistent and predictable.

11.7 Summary

In this chapter, we took a whirlwind ride through many of the common scenarios
you’ll run into when building applications that use XML. Along the way, we
explored many of the powerful capabilities that LINQ to XML offers.

 We started by exploring LINQ to XML’s transformation capabilities, by building
a set of objects from XML. Since we often work with objects, this scenario provided
a good overview of how we can read data from XML into a set of objects. It also
showed how similar the code is for transforming XML to alternate data formats
when using LINQ to XML.

 Next we moved on to look at how to create XML from objects using the XML lit-
erals support in Visual Basic. By allowing developers to embed XML directly into VB
code, XML literals help reduce the confusion that often arises when creating XML.

 In addition to having solid support for transforming XML into objects, LINQ to
XML also has strong integration with LINQ to SQL. We explored this integration
by creating XML from data within a database as well as by filtering and mixing
data from a database with XML data in a single query. We rounded out our explo-
ration of LINQ to XML’s integration with LINQ to SQL by looking at how to read
information out of an XML file to update a database.

 Finally, we completed our common scenarios by exploring how a flat CSV file
could be transformed into XML, once again using LINQ to XML’s powerful trans-
formation capabilities.

 In this chapter, we were able to create XML from in-memory objects, a rela-
tional database, and flat files. We also transformed our XML into other data
sources—such as LINQ to SQL objects—and saw how functional construction
solves many of our data transformation scenarios.

Summary 433
 In the first four parts of this book, we’ve provided you with detailed coverage
of all the major pieces of the LINQ puzzle. In the next chapter, we explore how
you can extend LINQ to support additional scenarios that it doesn’t support out of
the box.

Part 5

LINQing it all together

The first purpose of this part of the book is to show how LINQ can be
extended to adapt to your own application domains. The second purpose is to
show how different flavors of LINQ can be used in every layer of applications.

 Chapter 12 is devoted to LINQ’s extensibility. It demonstrates how you
can create custom query operators and even complete LINQ providers.
Chapter 13 discusses using all the flavors of LINQ and their extensibility
options in the context of a complete application, our LinqBooks example.

Extending LINQ
This chapter covers:
■ LINQ’s extension mechanisms
■ Custom query operators
■ The query expression pattern
■ IQueryable and IQueryProvider
■ LINQ to Amazon
437

438 CHAPTER 12

Extending LINQ
When we introduced LINQ, we pointed out that one of its major features is its ability
to query several kinds of data and data sources. In the chapters that followed, we
focused on LINQ to Objects, LINQ to SQL, and LINQ to XML. In this chapter, we’ll
analyze how these flavors of LINQ extend LINQ with support for data sources such
as in-memory collections, XML, or relational databases. This will allow you to deter-
mine the techniques you can use to extend LINQ and use it with your own data
sources. LINQ’s extensibility features will allow you to adapt it to particular needs.
They will also enable novel use cases that expand the LINQ spectrum.

 LINQ’s extensibility allows you to create your own flavor of LINQ by creating a
LINQ provider. Of course, this can be a lot of work. Most of the time you won’t
need to create a complete LINQ flavor. You may simply need small adaptations of
LINQ’s behavior. Fortunately, LINQ is flexible enough that you can add new query
operators or redefine some of the default ones according to your needs. Whether
you’re a framework provider who wants to give your users the power of LINQ or
simply a developer who wants to adapt LINQ to your own business context, you’ll
find that LINQ is flexible enough to adapt to your needs.

 The goal of this chapter is to show the available extensibility options that LINQ
offers to help you pick the technique best for your situation. We’ll also show you
how to use these extensibility options through demonstrations. In order to dem-
onstrate LINQ’s extensibility, we’ll cover several examples. We’ll start by creating
custom query operators and using them as utility methods that can simplify your
LINQ queries. We’ll also create domain-specific query operators. These will allow
you to work closely with your own business objects. We’ll then see how we can
rewrite the basic operators used by query expressions, such as Where or OrderBy.
Finally, we’ll create a new LINQ provider: LINQ to Amazon. This example will
demonstrate how to encapsulate calls to a web API into a LINQ provider that you’ll
use in LINQ queries. We’ll then review advanced extensibility features that involve
expression trees and the System.Linq.IQueryable<T> interface.

 To get started, let’s review how LINQ was designed to be extensible.

12.1 Discovering LINQ’s extension mechanisms
Discovering LINQ’s extension mechanisms As we explained when we introduced LINQ, it is not a closed package that allows

working only with in-memory collections, XML, or relational databases. In fact,
LINQ is based on extensibility from the ground up. In other words, LINQ isn’t
exclusive. It can be adapted to work with the data sources you have to deal with.

 The core of LINQ consists of query operators and query expressions. This is
where the magic happens. The great news is that the query syntax offered by

Discovering LINQ’s extension mechanisms 439
LINQ’s query expressions is by no means hard-wired to the standard query opera-
tors we introduced in chapters 3 and 4. Query expressions are purely a syntactic
feature that applies to anything that fulfills what is known as the LINQ query expres-
sion pattern. This pattern defines the set of operators required to fully support
query expressions and how they must be implemented. Implementing this pat-
tern consists of providing methods with appropriate names and signatures. The
standard query operators you are used to working with provide an implementa-
tion of the LINQ query expression pattern. They’re implemented as extension
methods (see chapter 2) that augment the IEnumerable<T> interface. This is just
one possible implementation of the LINQ query expression pattern.

 The standard query operators implement the LINQ query expression pattern
to enable querying any .NET array or collection. Developers may apply the query
syntax to any class they want, as long as they make sure their implementation
adheres to the LINQ pattern. Third parties are free to replace the standard query
operators with their own implementations that are appropriate for a target
domain or technology. Custom implementation may provide additional services
such as remote evaluation, query translation, or optimization. By adhering to the
conventions of the LINQ pattern, such implementations can enjoy the same lan-
guage integration and tool support as the standard query operators.

 Before looking at how we can extend LINQ, it’s important to understand how
Microsoft’s official flavors of LINQ are built on the LINQ foundation. This will
allow us to highlight the different extensibility options that are available.

12.1.1 How the LINQ flavors are LINQ implementations

The extensibility of the query architecture is used in LINQ to provide implementa-
tions that work over various data sources such as XML or SQL data. The query
operators over XML (LINQ to XML) use an efficient, easy-to-use in-memory XML
facility to provide XPath/XQuery functionality in the host programming lan-
guage. The query operators over relational data (LINQ to SQL) build on the inte-
gration of SQL-based schema definitions into the CLR type system. This
integration provides strong typing over relational data while retaining the expres-
sive power of the relational model and the performance of query evaluation
directly in the underlying data store.

 The flavors of LINQ provided by Microsoft are all made possible thanks to
LINQ’s extensibility. These flavors include LINQ to Objects, LINQ to XML, LINQ to
DataSet, LINQ to SQL, and LINQ to Entities. In terms of implementation, each fla-
vor comes in the form of a LINQ provider. Each provider relies on specific extensi-
bility techniques supported by LINQ. Depending on what you wish to achieve,

440 CHAPTER 12

Extending LINQ
you’ll reuse one of the techniques that the default providers use. Reviewing how
each provider is implemented will help you determine which technique to use to
create your own LINQ to Whatever.

LINQ to Objects
LINQ to Objects allows us to query arrays or other collections that implement
the IEnumerable<T> interface. LINQ to Objects relies on the standard query
operators, which are extension methods for the IEnumerable<T> type. When
we use LINQ to Objects, we’re using the set of query operators implemented by
the System.Linq.Enumerable class. That’s all there is to LINQ to Objects. It’s
pretty straightforward.

LINQ to DataSet
LINQ to DataSet allows us to query DataSets using LINQ. It is not much more
complicated than LINQ to Objects. LINQ to DataSet is also based on the same
standard query operators, but it adds a small set of extension methods for the
types involved in DataSets, mostly the System.Data.DataRow class.

 See our online chapter to learn more about LINQ to DataSet.

LINQ to XML
LINQ to XML is also based on the standard query operators, but adds a set of
classes to deal with XML objects. LINQ to XML is used the same way LINQ to
Objects is used, but this time you query and create objects such as XNode, XEle-
ment, XAttribute, and XText.

LINQ to SQL
LINQ to SQL works differently than the previous providers. While the standard
query operators used with LINQ to Objects and LINQ to XML use delegates, all the
query operators used by LINQ to SQL are implemented using expression trees.
The implementation of the operators is provided by the System.Linq.Queryable
class this time. Also, these operators don’t deal with IEnumerable<T> but with
IQueryable<T>. The use of expression trees and IQueryable<T> enables LINQ to
SQL queries obtained by numerous calls to query operators to be converted into a
single SQL query that gets sent to the database.

LINQ to Entities
LINQ to Entities is implemented using the same technique as LINQ to SQL. LINQ
to Entities translates LINQ expressions into the canonical query trees used
throughout the ADO.NET Entity Framework. These trees are handed out to the
Entity Framework query pipeline for mapping and SQL generation.

Discovering LINQ’s extension mechanisms 441
 The way the official Microsoft LINQ providers are implemented should give you
a good idea of what can be achieved through LINQ’s extensibility features. Here are
the options we can use to improve LINQ or to create a new LINQ provider:

■ Create query operators that implement the LINQ query expression pattern
using delegates.

■ Provide classes that can be used with the standard query operators but that
allow working with a specific data source or with specific data types.

■ Create query operators that implement the LINQ query expression pattern
using expression trees.

■ Implement the IQueryable<T> interface.

We’ll soon demonstrate how to put these techniques into practice. Before this,
let’s suggest additional usages for LINQ’s extensibility features.

12.1.2 What can be done with custom LINQ extensions

The range of possibilities offered by LINQ’s extensibility features goes from query-
ing your custom business objects to querying...anything! LINQ has extension
mechanisms suitable for the level of customization you desire.

 As we’ll demonstrate through examples, you can start by simply creating addi-
tional query operators. And if you have a need for it, you can even create a custom
implementation of the standard query operators. By writing extension methods
that mimic what the implementation from System.Linq.Enumerable provides,
you can adapt the behavior of the standard operators to your needs.

 In advanced cases, you can resort to the technique used for LINQ to SQL:
resorting to expression trees and implementing the IQueryable<T> interface.
This is more difficult than creating simple query operators, but this is what you’ll
need to do if you want to use LINQ queries with complex or remote data sources.
For example, web sites and web services don’t support the kind of intensive inter-
action LINQ to Objects implies with the standard query operators. This means
that other techniques are required. Similar to the way LINQ to SQL works, you can
take advantage of expression trees and deferred query execution to be able to
query remote sources.

 It may be difficult to imagine what your needs will be, but we can give you an
idea of what can be achieved through extensibility. Let’s review potential uses of
LINQ to help you see how far you can go with it.

442 CHAPTER 12

Extending LINQ
Suggested use cases for LINQ’s extensibility
Here are some scenarios that could require putting LINQ’s extensibility into
action:

■ Querying a custom data source (such as a filesystem, Active Directory, WMI,
or Windows’s Event Log)

■ Querying web services (Amazon, other public web services, or in-house web
services)

■ Allowing the developers who use your product to take advantage of LINQ—
if you are a tool provider or sell a development framework (examples
include object-relational frameworks)

Some of these scenarios are more difficult than others. Querying the Windows
Event Log may not require more than implementing some query operators, which
is not very difficult. In comparison, integrating LINQ with an object-relational
framework is more involved and implies dealing with the IQueryable<T> interface
and expression trees. This is what LINQ to SQL uses to generate SQL queries from
LINQ queries. This is also what a framework like NHibernate could use to generate
HQL queries from LINQ queries.

NOTE The custom query operators we’ll demonstrate here apply to in-memory
queries only. This means that they can work with LINQ to Objects, LINQ
to DataSet, and LINQ to XML, but not with LINQ to SQL or LINQ to Enti-
ties. This is because for a query operator to be supported by LINQ to SQL
or LINQ to Entities, it must be translatable into SQL or Entity SQL. LINQ
to SQL and LINQ to Entities have no knowledge about your additional
operators, so they wouldn’t know what to do with them.

Techniques exist to create custom query operators that can be used in
LINQ to SQL, but we won’t discuss them here.

Enough with the preliminaries! It’s time to get our hands dirty. We’ll cover the
various extensibility options, from the simplest ones to the richer and more diffi-
cult ones. We’ll use a gradual approach, starting with “light” extensions and finish-
ing with our advanced LINQ to Amazon example. To get started, let’s see how to
implement additional query operators.

12.2 Creating custom query operators
Creating custom query operators In this section, we’ll focus on LINQ to Objects. Even though LINQ comes with 51

standard query operators, in some situations this may not be enough, as you’ll see.

Creating custom query operators 443
The first way to extend LINQ is to create additional query operators. You can use
this technique to overcome the limitations that you may run into when working
with the standard query operators. We’ll lead you through examples that will show
you how to create additional operators that supplement the standard operators.
We’ll also demonstrate how custom query operators may be used to enrich your
LINQ queries with domain-specific processing.

12.2.1 Improving the standard query operators

Since we’re looking at how you can overcome limitations of the standard query
operators, the best example to look at is a custom implementation of the Sum oper-
ator. When using the standard query operators in his code, a C# developer named
Troy Magennis noticed some limitations (see http://aspiring-technology.com/
blogs/troym/archive/2006/10/06/24.aspx). One of the limitations comes from
the Sum query operator. There is a high chance for overflow when working with big
numbers and the variant of Sum that operates on a sequence of integers.

 The following simple piece of code demonstrates this problem:

Enumerable.Sum(new int[] {int.MaxValue, 1});

Understandably, this code yields an OverflowException with the message “Arith-
metic operation resulted in an overflow.”1 The problem is that the sum of two
integers can be too big to fit in an int (System.Int32) object. This is why Troy
wrote LongSum, which returns a long (System.Int64) object instead of an int
object, as with Sum.

 Let’s re-create the LongSum operator together. As you saw when we introduced
the standard query operators in chapter 3, they consist of extension methods for
the IEnumerable<T> type.

 Listing 12.1 shows how the Sum operator for int comes out of the box in the
System.Linq.Enumerable class.

namespace System.Linq
{
 public static class Enumerable
 {

1 C# statements can execute in either checked or unchecked context, depending on the use of the
checked or unchecked keywords. In a checked context, arithmetic overflow raises an exception. In an
unchecked context, arithmetic overflow is ignored and the result is truncated. The Sum operator is
implemented using the checked keyword, hence the OverflowException.

Listing 12.1 Standard implementation of the Sum operator for int

http://aspiring-technology.com/blogs/troym/archive/2006/10/06/24.aspx

444 CHAPTER 12

Extending LINQ
 ...

 public static int Sum(this IEnumerable<int> source)
 {
 if (source == null)
 throw new ArgumentNullException("source");
 int sum = 0;
 checked
 {
 foreach (int v in source)
 sum += v;
 }
 return sum;
 }

 public static int? Sum(this IEnumerable<int?> source)
 {
 if (source == null)
 throw new ArgumentNullException("source");
 int? sum = 0;
 checked
 {
 foreach (int? v in source)
 if (v != null)
 sum += v;
 }
 return sum;
 }

 public static int Sum<T>(this IEnumerable<T> source,
 Func<T, int> selector)
 {
 return Enumerable.Sum(Enumerable.Select(source, selector));
 }

 public static int? Sum<T>(this IEnumerable<T> source,
 Func<T, int?> selector)
 {
 return Enumerable.Sum(Enumerable.Select(source, selector));
 }

 ...
 }
}

As you can see in the code, the Sum operator is implemented as four method over-
loads. These methods can be easily adapted to create the LongSum operator. List-
ing 12.2 shows the source code that implements the same four methods but with
longs as the results.

Creating custom query operators 445
using System;
using System.Collections.Generic;
using System.Linq;

namespace LinqInAction.Extensibility
{
 public static class SumExtensions
 {
 public static long LongSum(this IEnumerable<int> source)
 {
 if (source == null)
 throw new ArgumentNullException("source");
 long sum = 0;
 checked
 {
 foreach (int v in source)
 sum += v;
 }
 return sum;
 }

 public static long? LongSum(this IEnumerable<int?> source)
 {
 if (source == null)
 throw new ArgumentNullException("source");
 long? sum = 0;
 checked
 {
 foreach (int? v in source)
 if (v != null)
 sum += v;
 }
 return sum;
 }

 public static long LongSum<T>(this IEnumerable<T> source,
 Func<T, int> selector)
 {
 return SumExtensions.LongSum(Enumerable.Select(source, selector));
 }

 public static long? LongSum<T>(this IEnumerable<T> source,
 Func<T, int?> selector)
 {
 return SumExtensions.LongSum(Enumerable.Select(source, selector));
 }
 }
}

Listing 12.2 LongSum, improved implementation of the Sum operator for int
 (SumExtensions.cs)

446 CHAPTER 12

Extending LINQ
The new LongSum operator we’ve just created in listing 12.2 returns the numerical
sum of a sequence of ints or nullable ints as a long or nullable long. This gives
more range for the results compared to the default Sum operator.

 This demonstrates how you can improve your LINQ experience with query
operators that work the way they should, or at least the way you want them to
work. This kind of extensibility ensures that you are not stuck with a static pre-
defined set of operators.

 The example we’ve just seen shows how to fix a problem with a standard query
operator. But this isn’t the only way we can extend LINQ to solve a problem or to
improve our code. Creating custom query operators can be useful in other situa-
tions, as you’ll see next.

12.2.2 Utility or domain-specific query operators

Our first example revolved around a standard query operator. The default set of
operators that comes with LINQ to Objects is useful and can be applied to a wide
range of situations. This is possible especially since these operators are generic:
they can be used with any type of objects. However, when you are dealing with
business objects, specific operations may be required.

 Imagine you are working on Book and Publisher objects. How do you deter-
mine whether a book is expensive in a LINQ query? How do you retrieve a pub-
lisher’s books? The standard query operators may not be adapted to satisfy such
needs because as we mentioned earlier, they’re generic! While being generic is a
big advantage, it doesn’t help when business-specific processing or concepts are
required, because more specialized assistance is needed. In situations like this,
you would want to use custom utility query operators.

 When writing code, developers often create utility or helper methods. Utility
methods are commonly used to simplify code and keep frequently used code in
one place. In order to remove complexity from your LINQ queries, it may be use-
ful to create utility methods. Imagine you want to create a method that deals with
a collection of Book objects. You could simply create a traditional method to do
this, but the best way to proceed is to create a query operator. Since a query is
made of calls to query operators, utility methods integrate nicely within LINQ que-
ries if they’re written as query operators.

 In order to get a feel for utility query operators, we are going to go through
some samples. Each of the operators we’ll introduce works on one or a collection
of the business objects from our LinqBooks running example. This is why we
could say that these operators are “domain-specific query operators.”

 Let’s start with an operator that works on a sequence of books.

Creating custom query operators 447
IEnumerable<Book>.TotalPrice
The code in listing 12.3 shows how you can create an operator that works on a
sequence of Book objects to compute a total price.

using System;
using System.Collections.Generic;
using System.Linq;

using LinqInAction.LinqBooks.Common;

namespace LinqInAction.Extensibility
{
 public static class CustomQueryOperators
 {
 ...

 public static Decimal TotalPrice(this IEnumerable<Book> books)
 {
 if (books == null)
 throw new ArgumentNullException("books");

 Decimal result = 0;
 foreach (Book book in books)
 if (book != null)
 result += book.Price;
 return result;
 }

 ...
 }
}

Our new TotalPrice operator can then be nicely used in query expressions, like
in the following:

from publisher in SampleData.Publishers
join book in SampleData.Books
 on publisher equals book.Publisher into pubBooks
select new { Publisher = publisher.Name,
 TotalPrice = pubBooks.TotalPrice() };

The same could be done without much difficulty by using only standard opera-
tors, but you get the idea. Creating your own operators helps write shorter and
clearer code. In general, it can be useful to create utility methods that you can use
in your queries.

Listing 12.3 TotalPrice custom query operator
 (CustomQueryOperators.cs)

448 CHAPTER 12

Extending LINQ
 Let’s consider another utility operator that also works on a sequence of books.

IEnumerable<Book>.Min
Let’s say we’d like to implement Min for Book objects. The Min operator provided
by the standard query operators only works on numeric values. The extension
method in listing 12.4 provides an implementation of Min that works on a
sequence of Book objects and returns the book that has the lowest number of
pages as the result.

public static Book Min(this IEnumerable<Book> source)
{
 if (source == null)
 throw new ArgumentNullException("source");

 Book result = null;
 foreach (Book book in source)
 {
 if ((result == null) || (book.PageCount < result.PageCount))
 result = book;
 }
 return result;
}

With this custom query operator, you can write the following code, for instance:

Book minBook = SampleData.Books.Min();
Console.WriteLine(
 "Book with the lowest number of pages = {0} ({1} pages)",
 minBook.Title, minBook.PageCount);

This example shows how you can adapt a concept like Min introduced by the stan-
dard query operators to deal with domain-specific objects.

 For a change, let’s now see a utility operator that works on a Publisher object.

Publisher.Books
You can resort to any extension method that helps you simplify your code and
hide complexity. For example, in the following query, we use a join clause to get
access to each publisher’s books:

from publisher in SampleData.Publishers
join book in SampleData.Books
 on publisher equals book.Publisher into books

Listing 12.4 Min custom query operator
 (CustomQueryOperators.cs)

Creating custom query operators 449
select new {
 Publisher = publisher.Name,
 TotalPrice = books.TotalPrice()
};

We’re likely to use the same kind of join clause in every query each time we want
to access a publisher’s books. It could be useful to create a utility query operator
to perform this operation. The operator in listing 12.5 selects a publisher’s books
from a sequence of books.

static public IEnumerable<Book> Books(this Publisher publisher,
 IEnumerable<Book> books)
{
 return books.Where(book => book.Publisher == publisher);
}

This new Books operator can be used to simplify our previous query expression as
follows:

from publisher in SampleData.Publishers
select new {
 Publisher = publisher.Name,
 TotalPrice = publisher.Books(SampleData.Books).TotalPrice()
};

Of course this operator can be reused in other queries as well, which makes it easy
to filter books by publisher.

WARNING This is also an interesting example of what should be avoided! The code
that uses the join clause and not our Books operator will be more effi-
cient in most cases because it uses the GroupJoin operator behind the
scenes. GroupJoin is optimized to join sequences, and in our case it will
loop on books only once to find their publisher. The version of the code
that uses our Books operator will loop on the collection of books for
each publisher.

This example should help you to understand that while it’s easy to cre-
ate new query operators, it’s not always the most efficient option. The
choice is yours. Always consider the implications.

Before we move on to other kinds of extensibility, let’s consider one more exam-
ple of a domain-specific query operator.

Listing 12.5 Books custom query operator
 (CustomQueryOperators.cs)

450 CHAPTER 12

Extending LINQ
Book.IsExpensive
The last operator in this section will show you how query operators can be used to
code a specific concept only once.

 The sample operator in listing 12.6 takes a book as a parameter and returns
whether or not it is expensive.

public static Boolean IsExpensive(this Book book)
{
 if (book == null)
 throw new ArgumentNullException("book");

 return (book.Price > 50) ||
 ((book.Price / book.PageCount) > 0.10M);
}

The IsExpensive operator defined in the listing can be used in LINQ queries
each time we need to know whether a book is expensive. Here is a sample query
that uses this operator:

var books =
 from book in SampleData.Books
 group book.Title by book.IsExpensive() into bookGroup
 select new { Expensive = bookGroup.Key, Books = bookGroup };
ObjectDumper.Write(books, 1);

The results of this query’s execution looks like this:

Expensive=True Books=...
 Books: Funny Stories
 Books: C# on Rails
 Books: Bonjour mon Amour
Expensive=False Books=...
 Books: LINQ rules
 Books: All your base are belong to us

The advantage of creating operators like IsExpensive is that they abstract away
some notions that need to be expressed in queries. For example, IsExpensive
can be reused in multiple queries without having to think each time about what
“expensive” means. (Whether something is expensive is subjective, so good luck
writing an actual algorithm for this!) Also, if this notion needs to be changed, it
can be done in only one place: the operator’s code.

Listing 12.6 IsExpensive custom query operator
 (CustomQueryOperators.cs)

A book is expensive
if its price is high or
its number of pages
is low for the price

Custom implementations 451
of the basic query operators
 We’ve seen how you can use LINQ’s extensibility to create utility operators that
help you deal with business objects. The operators we’ve demonstrated are addi-
tional operators that can be used in LINQ queries, but only through the dot nota-
tion. Only a small set of query operators can be used implicitly with the query
expression syntax. This is the case for basic operators like Where, Select, or
OrderBy, for example, which are transparently invoked when where, select, or
orderby clauses are used in a query expression. We’ll now demonstrate another
kind of extensibility supported by LINQ that allows you to reimplement the opera-
tors behind from, where, join, orderby, select, and the other keywords in a
query expression.

12.3 Custom implementations
of the basic query operators

Custom implementations of the basic query operators In the previous section, when we demonstrated how to use our additional query
operators, we used the explicit dot notation (method syntax). For example, here
is a query that uses two of the operators we created, Books and TotalPrice:

from publisher in SampleData.Publishers
where publisher.Name.StartsWith("A")
select new {
 Publisher = publisher.Name,
 TotalPrice = publisher.Books(SampleData.Books).TotalPrice()
};

This query implicitly involves more operators than just ours. Namely, the Where
and Select operators are also part of the query through the where and select
clauses. By default, the clauses of this kind of query expression are translated into
calls to standard query operators. You may wish to change how a query like this
one behaves. We’ll show how you can easily provide and use your own implemen-
tations of Where and Select even if they’re used through the query expression
notation. Thanks to the way the compiler resolves query operators when it trans-
lates a query expression, we can define what implementation of the basic query
operators is used.

 We’ll first review how query expressions are translated into method calls. This
implies that we get to know the query expression pattern. Once we know the
basics of the query translation mechanism, we’ll go through some sample imple-
mentations of the query expression pattern.

452 CHAPTER 12

Extending LINQ
12.3.1 Refresh on the query translation mechanism

Let’s review how the compiler translates query expressions into method calls. This
is the starting point of the extensibility option that will allow you to create custom
implementation of the basic query operators.

 Imagine that we write the following query:

using System.Linq;
using LinqInAction.LinqBooks.Common;

static class TestCustomImplementation
{
 static void Main()
 {
 var books =
 from book in SampleData.Books
 where book.Price < 30
 select book.Title;

 ObjectDumper.Write(books);
 }
}

The code that actually gets executed for this query depends on one thing: the
namespaces you import. Because query operators are extension methods, they’re
referenced through namespaces. When the compiler sees a query expression, it
converts it into calls to extension methods.

 One task that the compiler achieves is resolving where the Where and Select
methods come from. If you import System.Linq, the compiler will find the Where
and Select extension methods that the System.Linq.Enumerable class provides.
The result is that the code that actually gets executed is the following:

var query =
 System.Linq.Enumerable.Select(
 System.Linq.Enumerable.Where(
 SampleData.Books,
 book => book.Price < 30),
 book => book.Title);

If you don’t import System.Linq, but instead a namespace of your own that also
provides implementations of the Where and Select operators, the code is trans-
lated differently.

 The idea here is that the same query expression can become translated into
something like this:

var query =
 MyNamespace.MyExtensions.Select(
 MyNamespace.MyExtensions.Where(

Custom implementations 453
of the basic query operators
 SampleData.Books,
 book => book.Price < 30),
 book => book.Title);

The kind of extensibility we’re discussing in this section relies on this mechanism.
Let’s now examine more precisely how the mapping between a query expression
and query operators works.

12.3.2 Query expression pattern specification

We’ve just seen how we can provide our own implementation for a query expres-
sion’s where and select clauses. The same mechanism applies to all the clauses.
The C# 3.0 specification details which operators should be implemented to fully
support query expressions and how they must be implemented. This document
introduces the pattern of methods that types can implement to support query
expressions as the query expression pattern.

 The recommended shape of a generic class C<T> that supports the query
expression pattern is shown in listing 12.7.

delegate R Func<T1,R>(T1 arg1);
delegate R Func<T1,T2,R>(T1 arg1, T2 arg2);

class C
{
 public C<T> Cast<T>();
}

class C<T>
{
 public C<T> Where(Func<T,bool> predicate);
 public C<U> Select<U>(Func<T,U> selector);
 public C<U> SelectMany<U,V>(Func<T,C<U>> selector,
 Func<T,U,V> resultSelector);
 public C<V> Join<U,K,V>(C<U> inner,
 Func<T,K> outerKeySelector,
 Func<U,K> innerKeySelector,
 Func<T,U,V> resultSelector);
 public C<V> GroupJoin<U,K,V>(C<U> inner,
 Func<T,K> outerKeySelector,
 Func<U,K> innerKeySelector,
 Func<T,C<U>,V> resultSelector);
 public O<T> OrderBy<K>(Func<T,K> keySelector);
 public O<T> OrderByDescending<K>(Func<T,K> keySelector);
 public C<G<K,T>> GroupBy<K>(Func<T,K> keySelector);
 public C<G<K,E>> GroupBy<K,E>(Func<T,K> keySelector,
 Func<T,E> elementSelector);

Listing 12.7 The query expression pattern

454 CHAPTER 12

Extending LINQ
}

class O<T> : C<T>
{
 public O<T> ThenBy<K>(Func<T,K> keySelector);
 public O<T> ThenByDescending<K>(Func<T,K> keySelector);
}

class G<K,T> : C<T>
{
 public K Key { get; }
}

NOTE The query expression pattern for VB has not been provided by Microsoft
at the time of this writing.

You should refer to the C# 3.0 specification to learn about the details of this pat-
tern. Because query expressions are translated into method invocations by means
of a syntactic mapping, types have considerable flexibility in how they implement
the query expression pattern. In the context of this book, there are a few things
you need to know to understand the examples we’re about to work out:

■ A generic type is used in the query expression pattern to illustrate the
proper relationships between parameter and result types, but it is possible
to implement the pattern for nongeneric types as well.

■ The standard query operators we described in chapters 3 and 4 provide an
implementation of the query operator pattern for any type that implements
the IEnumerable<T> interface. Although we’re used to working on collec-
tions with the standard query operators in the context of LINQ to Objects
and LINQ to XML, you can see that IEnumerable<T> is not part of the pat-
tern. This means we can use LINQ with any object and not just enumera-
tions/sequences.

■ The standard query operators are implemented as extension methods, but
the patterns’ methods can be implemented as extension methods or as
instance methods, because the two have the same invocation syntax.

■ The methods can request delegates or expression trees as their parameters
because lambda expressions are convertible to both.

■ Although recommended for completeness, providing an implementation of
all the previously listed methods is not required.

Custom implementations 455
of the basic query operators
Everything we covered in the first part of this section is the foundation we needed
to start creating custom implementations of the basic query operators. We are
now ready to see some examples.

 To give you a good overview of how it’s possible to implement the LINQ query
expression pattern, here’s what we’re going to demonstrate next:

■ We’ll show you examples of generic implementation as well as nongeneric.

■ We’ll build operators that work on IEnumerable<T> as well as operators that
work on other kinds of objects.

■ We’ll build operators that receive delegates as well as operators that receive
expression trees.

■ Some of our operators will be defined as extension methods, some as
instance methods.

■ To keep things simple, we’ll provide implementations of Where and Select
only.

Let’s jump right into our examples.

12.3.3 Example 1: tracing standard query operators’ execution

In our first example, we’ll create custom implementations of the Where and
Select operators. Our methods will just delegate the processing to the standard
Enumerable.Where and Enumerable.Select implementations.

 Listing 12.8 shows two operators implemented in a class named CustomImple-
mentation inside the LinqInAction.Extensibility namespace.

using System;
using System.Collections.Generic;
using System.Linq;

namespace LinqInAction.Extensibility
{
 public static class CustomImplementation
 {
 public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source,
 Func<TSource, Boolean> predicate)
 {
 Console.WriteLine("in CustomImplementation.Where<TSource>");

Listing 12.8 Custom implementations of Where and Select with the standard
 generic signatures
 (CustomImplementation.csproj)

456 CHAPTER 12

Extending LINQ
 return Enumerable.Where(source, predicate);
 }

 public static IEnumerable<TResult> Select<TSource, TResult>(
 this IEnumerable<TSource> source,
 Func<TSource, TResult> selector)
 {
 Console.WriteLine(
 "in CustomImplementation.Select<TSource, TResult>");
 return Enumerable.Select(source, selector);
 }
 }
}

In order to use these new implementations of the two operators, all we need to do
is import the LinqInAction.Extensibility namespace instead of the Sys-
tem.Linq namespace:

//using System.Linq;
using LinqInAction.Extensibility;
using LinqInAction.LinqBooks.Common;

class TestCustomImplementation
{
 static void Main()
 {
 var books =
 from book in SampleData.Books
 where book.Price < 30
 select book.Title;

 ObjectDumper.Write(books);
 }
}

Of course, executing this program will display our trace information:

in CustomImplementation.Where<TSource>
in CustomImplementation.Select<TSource, TResult>
Funny Stories
LINQ rules
Bonjour mon Amour

That’s it for our first example. You’ve just seen how to provide your own implemen-
tation of the Where and Select operators. Here, we’ve simply added some trace
information, which can be useful if you want to better understand how queries

Custom implementations 457
of the basic query operators
work. Of course, you could do something completely different and more useful.
Maybe you could rewrite the basic query operators to improve their performance?
Let’s make that a challenge for you. Please let us know if you can imagine ways to
do that!

 Before moving on to our next example that shows another custom implemen-
tation of the basic query operators, we’d like to point out that the mechanism we’ve
just demonstrated comes with a limitation that we’ll explain in the next section.

12.3.4 Limitation: query expression collision

There is an important limitation you need to keep in mind when implementing
the query expression pattern: You cannot implement one or two operators and
mix them with the default ones if the signatures of your implementations and the
default ones are the same. This is due to the way extension methods are resolved.

 Let’s say we change our query expression to sort the results:

var query =
 from Book book in SampleData.Books
 where book.Price < 30
 orderby book.Title
 select book.Title;

As you can see, a new query operator gets involved: OrderBy. The problem is that
since we provide implementations only for Where and Select, the compiler com-
plains that it can’t find an implementation for OrderBy:

'System.Collections.Generic.IEnumerable<LinqInAction.LinqBooks.Com-
mon.Book>' does not contain a definition for 'OrderBy' and no extension
method 'OrderBy' accepting a first argument of type 'System.Collec-
tions.Generic.IEnumerable<LinqInAction.LinqBooks.Common.Book>' could be
found (are you missing a using directive or an assembly reference?)

While we wanted to put in place new implementations of Where and Select, we
may not be interested in providing a custom implementation for OrderBy and the
other operators at this time. The default reflex would be to reuse the standard
implementation to stick with the default behavior. In order to do this, you need to
import the System.Linq namespace in your code file in addition to our own
namespace. You can try to do that, but you’ll notice that the compiler reports a
conflict because it doesn’t know how to choose between the implementations of
the Where and Select operators from our namespace and the ones from the Sys-
tem.Linq namespace. Here is what the compiler errors say:

458 CHAPTER 12

Extending LINQ
error CS1940: Multiple implementations of the query pattern were found for
source type 'LinqInAction.LinqBooks.Common.Book[]'. Ambiguous call to
'Where'.

error CS1940: Multiple implementations of the query pattern were found for
source type 'System.Collections.Generic.IEnumerable<LinqInAction.Linq-
Books.Common.Book>'. Ambiguous call to 'Select'.

We could call this a namespace collision. The way extension methods are resolved
makes handling multiple extension methods with the same signature in the same
scope difficult.

 There is unfortunately no easy way to remove the ambiguity in this case. This
means that in a given file, either you use only the operators you’ve implemented
or you use only those from System.Linq. One option would be to change our ver-
sions of the operators to work with more precise types such as IEnumerable<Book>
instead of IEnumerable<T>, but obviously this would require creating an imple-
mentation for each type we want to deal with—Publisher, Author, and so on—
which would make things a bit difficult.

NOTE Sometimes, the compiler chooses silently between the available opera-
tors. For example, if the replacement operators are in the same
namespace as the calling code, they’re chosen silently. In this case, there
is no conflict with the implementation from System.Linq.Enumerable
either. The problem is that this situation does not happen often, because
most of the time the namespaces are different.

 In fact, as soon as you import the System.Linq namespace—just to get access
to the Func delegate types, for example—you simply cannot use your own reim-
plementations of the standard query operators because of the conflict with the
implementations provided by the System.Linq.Enumerable class.

TRICK One way to get access to the Func delegate types and other types
declared in the System.Linq namespace is to use complete type names
(types prefixed by their namespace). For example, if you don’t add
using System.Linq; at the top of your C# file, you can use Sys-
tem.Linq.Func<…> to get access to the Func delegate types without cre-
ating a namespace collision.

You can also use a namespace alias for long namespaces. For example,
if you add using SysLinq = System.Linq; at the top of your C# file
instead of using System.Linq;, you can use SysLinq.Func<…> to refer-
ence the Func delegate types.

Let’s now move on to a second example.

Custom implementations 459
of the basic query operators
12.3.5 Example 2: nongeneric, domain-specific operators

In this new example, we’ll create another custom implementation of the basic
query operators that will show you how the query expression pattern can be
implemented by domain-specific query operators.

 You’ve just seen in the previous example that you can provide your own
implementations of the basic query operators by creating extension methods for
the IEnumerable<T> type. It’s interesting to note that you may also create query
operators that work on an enumeration of a specific type and not just on a
generic enumeration.

 Instead of creating an extension method for IEnumerable<T>, you can create
an extension method for IEnumerable<Book>. This allows you to transparently
use a custom implementation of the query operators for Book objects while using
the standard implementation of the query operators for objects of other types.
This can be used as a workaround for the limitation we presented in the previous
section. However, doing this can make sense in itself.

 Here, we’ll create implementations of the Where and Select operators that
work on Book objects. We’ll adapt the generic implementations we provided in
listing 12.8 as our first example and use the fact that we work with Book objects to
display the title of each book that the operators process.

 Listing 12.9 shows our domain-specific implementations.

using System;
using System.Collections.Generic;
using System.Linq;

using LinqInAction.LinqBooks.Common;

namespace LinqInAction.Extensibility
{
 static class DomainSpecificOperators
 {
 public static IEnumerable<Book> Where(
 this IEnumerable<Book> source,
 Func<Book, Boolean> predicate)
 {
 foreach (Book book in source)
 {
 Console.WriteLine(
 "processing book \"{0}\" in "+
 "DomainSpecificOperators.Where",

Listing 12.9 Domain-specific implementations of Where and Select
 (DomainSpecificOperators.cs)

460 CHAPTER 12

Extending LINQ
 Book.Title);
 if (predicate(book))
 yield return book;
 }
 }

 public static IEnumerable<TResult> Select<TResult>(
 this IEnumerable<Book> source, Func<Book, TResult> selector)
 {
 foreach (Book book in source)
 {
 Console.WriteLine(
 "processing book \"{0}\" in "+
 "DomainSpecificOperators.Select<TResult>",
 book.Title);
 yield return selector(book);
 }
 }
 }
}

Let’s reuse the same query as in our first example:

using LinqInAction.Extensibility;
using LinqInAction.LinqBooks.Common;

static class TestDomainSpecificOperators
{
 static void Main()
 {
 var books =
 from book in SampleData.Books
 where book.Price < 30
 select book.Title;

 ObjectDumper.Write(books);
 }
}

When executed, this program outputs the following kind of results:

processing book "Funny Stories" in DomainSpecificOperators.Where
processing book "Funny Stories" in DomainSpecificOperators.Select<TResult>
Funny Stories
processing book "Linq rules" in DomainSpecificOperators.Where
processing book "Linq rules" in DomainSpecificOperators.Select<TResult>
LINQ rules
processing book "C# on Rails" in DomainSpecificOperators.Where
processing book "All your base are belong to us" in

 ➥DomainSpecificOperators.Where

Custom implementations 461
of the basic query operators
processing book "Bonjour mon Amour" in DomainSpecificOperators.Where
processing book "Bonjour mon Amour" in

 ➥DomainSpecificOperators.Select<TResult>
Bonjour mon Amour

The trace information in these results shows which books are processed by each
operator.

 In comparison to generic operators, domain-specific operators know the types
they’re working on. This allows us to access specific members, like the Title prop-
erty in our example.

 Also, the limitation we presented in the previous section does not exist with
this kind of operator. Domain-specific operators can be used in combination with
the default implementation of the other operators.

 This time, we can use an orderby clause in our query, although we didn’t pro-
vide a custom implementation for the OrderBy operator:

var query =
 from Book book in SampleData.Books
 where book.Price < 30
 orderby book.Title
 select book.Title;

The only thing you need to do for this to work is to import both our operator’s
namespace (LinqInAction.Extensibility) and the System.Linq namespace.

WARNING As you can see, changing or adding a namespace import can make a seri-
ous difference in the behavior of your code. A given query can behave
differently if you use System.Linq, LinqInAction.Extensibility, or
another namespace!

The design decision of relying on namespace imports to reference
extension methods (and query operators) is questionable. Anyway, be care-
ful about this and double-check the namespaces you import when in doubt.

After demonstrating that the implementation you provide for the basic query oper-
ators doesn’t have to work on generic types, we’ll show you in a third example that
your implementation doesn’t necessarily have to work on sequences either.

12.3.6 Example 3: non-sequence operator

This last example of how to provide custom implementations of the operators used
in query expressions demonstrates how you can integrate single objects in queries.

 The standard query operators provide an implementation of the query operator
pattern for IEnumerable<T>. This allows you to work with collections like the array
of Book objects provided by our SampleData.Books property. Let’s suppose we want
to work with a single object and not a sequence of objects. What can we do?

462 CHAPTER 12

Extending LINQ
 In the following query, we work on a specific Publisher instance and use it in
a way similar to how we’d use a sequence of Publisher objects:

from publisher in SampleData.Publishers[0]
join book in SampleData.Books
 on publisher equals book.Publisher into books
select new { Publisher = publisher.Name, Books = books};

This query seems to make sense, but the problem is that it doesn’t work as is with
the standard query operators. This is because the standard query operators are
designed to work only with IEnumerable<T>. The particular problem in our case is
that the compiler complains that it cannot find GroupJoin for the Publisher type:

error CS1936: Could not find an implementation of the query pattern for
source type 'LinqInAction.LinqBooks.Common.Publisher'. 'GroupJoin' not
found.

The GroupJoin operator—used because we are performing a join operation—is
defined the following way:

public static IEnumerable<TResult>
 GroupJoin<TOuter, TInner, TKey, TResult>(
 this IEnumerable<TOuter> outer,
 IEnumerable<TInner> inner,
 Func<TOuter, TKey> outerKeySelector,
 Func<TInner, TKey> innerKeySelector,
 Func<TOuter, IEnumerable<TInner>, TResult> resultSelector)

You can clearly see that the outer argument is defined as a sequence (IEnumera-
ble<TOuter>). All we need to do to make the compiler happy is provide a new
implementation of GroupJoin that accepts a single element as the outer object
instead of a sequence.

 Listing 12.10 shows how to write this additional version of GroupJoin.

using System;
using System.Collections.Generic;
using System.Linq;

using LinqInAction.LinqBooks.Common;

namespace LinqInAction.Extensibility
{
 static class NonSequenceOperator
 {
 public static IEnumerable<TResult>

Listing 12.10 Implementation of GroupJoin for a single element
 (NonSequenceOperator.cs)

Querying a web service: LINQ to Amazon 463
 GroupJoin<TOuter, TInner, TKey, TResult>(
 this TOuter outer,
 IEnumerable<TInner> inner,
 Func<TOuter, TKey> outerKeySelector,
 Func<TInner, TKey> innerKeySelector,
 Func<TOuter, IEnumerable<TInner>, TResult> resultSelector)
 {

 ILookup<TKey, TInner> lookup =
 inner.ToLookup(innerKeySelector);
 yield return resultSelector(outer,
 lookup[outerKeySelector(outer)]);
 }
 }
}

All we’ve done here is change the type of the first argument and adapt the code to
deal with a single object.

 Until now, we’ve used only simple examples, but you should now be able to
code your own query operators. We are now going to introduce a richer example.
It will have methods request expression trees as their parameters instead of dele-
gates.

12.4 Querying a web service: LINQ to Amazon
Querying a web service: LINQ to Amazon In the previous section, we learned how to create custom query operators or

implement the standard ones differently. This is a solution that works well for
objects in memory, just like what LINQ to Objects offers. In this section, we’ll con-
sider a different scenario: We’ll query a web service. More precisely, we’ll query
Amazon to get information about books.

 In this section, now that you know a lot about LINQ and how it works, we’re
going to create our own LINQ provider: LINQ to Amazon! In the next section, we
are going to further refine our implementation.

 This example will allow us to address the case of query translation to another
query language and remote evaluation. The query we’ll write here will be trans-
lated into web queries and run on a remote web server. This requires a different
extensibility mechanism than what we’ve seen previously.

12.4.1 Introducing LINQ to Amazon

The example we’ll introduce in this section will use LINQ’s extensibility to allow for
language-integrated queries against a book catalog. LINQ queries will be converted

Outer argument as
a single element

Validation of arguments
ignored for simplicity

464 CHAPTER 12

Extending LINQ
to REST URLs, which are supported by Amazon’s web services. These services return
XML data, which we’ll be able to convert from XML to .NET objects using LINQ
to XML.

 A use case for this example could be the following:

1 Search for books on Amazon using a LINQ query

2 Display the results in XHTML using LINQ to XML

3 Import the selected books into a database using LINQ to SQL

The goal here is not to create a complete solution, so we won’t demonstrate all of
this at this point. We’ll focus on the first part of the scenario. We already per-
formed this kind of operation in the prior chapters, but this time we’ll create a
LINQ provider that can be used to write queries without worrying about the
details of the dialog with Amazon.

 We won’t support the complete set of operators that could be used in a LINQ
query. This would be too complex to present in the context of this book. Anyway,
since we are calling an underlying web service, we need to restrict the query possi-
bilities to what the service supports.

 For the moment, let’s look at the client code we would like to be able to write:

var query =
 from book in new LinqToAmazon.AmazonBookSearch()
 where
 book.Title.Contains("ajax") &&
 (book.Publisher == "Manning") &&
 (book.Price <= 25) &&
 (book.Condition == BookCondition.New)
 select book;

This piece of code is nearly self-explanatory. This is LINQ to Amazon code. It
expresses a query against Amazon, but does not execute it. The query variable con-
tains…a query. The query will be executed when we start enumerating the results.

 The following piece of code makes the transition from the LINQ to Amazon
world to the familiar LINQ to Objects world:

var sequence = query.AsEnumerable();

The query gets executed when AsEnumerable is called and an enumeration of the
resulting books is created. The next steps could be to use LINQ to Objects to per-
form grouping operations on the results:

var groups =
 from book in query.AsEnumerable()
 group book by book.Year into years

Querying a web service: LINQ to Amazon 465
 orderby years.Key descending
 select new {
 Year = years.Key,
 Books =
 from book in years
 select new { book.Title, book.Authors }
 };

This query can be used for displaying the results like this:

Published in 2006
 Title=Ruby for Rails : Ruby Techniques for Rails Developers Authors=...
 Title=Wxpython in Action Authors=...

Published in 2005
 Title=Ajax in Action Authors=...
 Title=Spring in Action (In Action series) Authors=...

Published in 2004
 Title=Hibernate in Action (In Action series) Authors=...
 Title=Lucene in Action (In Action series) Authors=...

Here is the code that produces this kind of results:

foreach (var group in groups)
{
 Console.WriteLine("Published in " + group.Year);
 foreach (var book in group.Books)
 {
 Console.Write(" ");
 ObjectDumper.Write(book);
 }
 Console.WriteLine();
}

What a great way to query a catalog of books! Don’t you think that this code is
comprehensible and clearly expresses the intention? It’s certainly better than
having to construct a web request and having to know all the details of the Ama-
zon API.

 Let’s see what’s needed to implement LINQ to Amazon.

12.4.2 Requirements

This time, the data we’ll query will not be in memory. When the data is in mem-
ory, we can query it continuously and retrieve the results one by one.

 In our now-classic LINQ to Objects example, each time we perform an itera-
tion in foreach, a new result is pulled from the original list down through our
query processing:

466 CHAPTER 12

Extending LINQ
using System.Linq;
using LinqInAction.LinqBooks.Common;

static class LinqInAction
{
 static void Main()
 {
 var books =
 from book in SampleData.Books
 where book.Price < 30
 select book.Title;

 foreach (String book in books)
 {

 }
 }
}

Here is the detail of what can happen when the program is executed:

4 First iteration of the foreach loop

a. Is the first book cheaper than $30? No.

b. Is the second book cheaper than $30? Yes.

c. Process the second book.

5 Second iteration

a. Is the third book cheaper than $30? Yes.

b. Process the third book.

6 Third iteration

a. Is the third book cheaper than $30? No.

b. Etc.

As you can see, deferred query execution implies that we work continuously on
the original data source. In our new example, we’ll call a web service, so we can’t
rely on the same kind of processing. We want to make a query over the web only
once, and we don’t want to retrieve a complete list we would filter locally. Instead,
we want the web service to return only those results we are interested in.

 This requires the following steps:

1 As a developer, we express a query using LINQ.

2 At run-time, the query is translated into something the web service can
understand.

3 The web service is called and returns the results.

The key point here is that we need the web query to be completely defined before
we can make the call.

Some processing
on the book

Querying a web service: LINQ to Amazon 467
12.4.3 Implementation

We’ll now start to write the code for creating LINQ to Amazon. Before getting to
the details of the implementation code, let’s describe what we need to do in order
to be able to use LINQ with Amazon.

 First, we’ll work with books, just like in our other examples. The difference
though is that a book described by Amazon is not the same as what the Book class
models. For the sake of simplicity, we’ll define an AmazonBook class that represents
a book as returned by Amazon’s web services:

public class AmazonBook
{
 public IList<String> Authors { get; set; }
 public BookCondition Condition { get; set; }
 public String Isbn { get; set; }
 public UInt32 PageCount { get; set; }
 public String Publisher { get; set; }
 public Decimal Price { get; set; }
 public String Title { get; set; }
 public UInt32 Year { get; set; }
}

NOTE Here we use auto-implemented properties, a new feature of C#. We used
this feature in chapters 2 and 6.

You can see that this class defines the members we use in our query (Title, Pub-
lisher, Price, and Condition), as well as others we’ll use later for display. Condi-
tion is of type BookCondition, which is just an enumeration defined like this:

public enum BookCondition {All, New, Used, Refurbished, Collectible}

The next and main thing we have to do is define the AmazonBookSearch class we’ll
use to perform the query.

 An instance of this class will represent a given query. This is why it should con-
tain the criteria we specify in the where clause of our query. For clarity and reus-
ability, we created the AmazonBookQueryCriteria class, which looks like this:

class AmazonBookQueryCriteria
{
 public BookCondition? Condition { get; set; }
 public Decimal? MaximumPrice { get; set; }
 public String Publisher { get; set; }
 public String Title { get; set; }
}

AmazonBookSearch contains an instance of AmazonBookQueryCriteria. Here is
the first version of the AmazonBookSearch class:

468 CHAPTER 12

Extending LINQ
public class AmazonBookSearch
{
 private AmazonBookQueryCriteria _Criteria;
}

As it stands, this class is useless. To be able to use an instance of AmazonBook-
Search in a query expression, we need to provide the accompanying Where and
Select query operators. For a change, we won’t create these operators as exten-
sion methods, but instead as instance methods (we used extension methods for all
the examples in sections 12.2 and 12.3). This is also supported by the query
expression pattern.

 Here is how we’ll write the Where and Select operators:

public class AmazonBookSearch
{
 ...

 public AmazonBookSearch Where(
 Expression<Func<AmazonBook, Boolean>> predicate)
 {
 var visitor = new AmazonBookExpressionVisitor();
 _Criteria = visitor.ProcessExpression(predicate);
 return this;
 }

 public AmazonBookSearch Select<TResult>(
 Expression<Func<AmazonBook, TResult>> selector)
 {
 return this;
 }

 ...
}

In both methods, we just return the current AmazonBookSearch instance B
because we are still working on the same query.

 You should notice an important thing here: Our operators are not receiving
delegates as with our previous examples, but instances of the Expression<TDele-
gate> class C. As you saw in chapter 3, the System.Linq.Expressions.Expres-
sion<TDelegate> class can be used to retrieve an expression tree. In operators
that receive a delegate as a parameter, we can’t really do much more than execute
the code the delegate points to. In comparison, the expression tree we receive in
Where describes what is written in the where clause of a query as data instead of
code. The point is that we’ll be able to analyze the predicate expression tree
received as a parameter by the Where method to extract the criteria specified in
the query.

D

B

C

Querying a web service: LINQ to Amazon 469
 The next logical step is to code the AmazonBookExpressionVisitor class used
in Where D. This class is used to process an expression tree and extract the query
criteria it contains. Before doing so, it’s important to get an idea of what the expres-
sion tree contains. An expression tree is a hierarchy of expressions. Listing 12.11
shows the complete hierarchy received by the Where method.

var book = Expression.Parameter(typeof(AmazonBook), "book");
var expressionTree =
Expression.Lambda<Func<AmazonBook, Boolean>>(
 Expression.AndAlso(
 Expression.AndAlso(
 Expression.AndAlso(
 Expression.Call(
 Expression.Property(book,
 typeof(AmazonBook).GetProperty("Title")),
 typeof(String).GetMethod("Contains"),
 new Expression[] {
 Expression.Constant("ajax", typeof(String)) }
),
 Expression.Equal(
 Expression.Property(book,
 typeof(AmazonBook).GetProperty("Publisher")),
 Expression.Constant("Manning", typeof(String)),
 false,
 typeof(String).GetMethod("op_Equality")
)
),
 Expression.LessThanOrEqual(
 Expression.Property(book,
 typeof(AmazonBook).GetProperty("Price")),
 Expression.Constant(25M, typeof(Decimal))
)
),
 Expression.Equal(
 Expression.Convert(
 Expression.Property(book,
 typeof(AmazonBook).GetProperty("Condition")),
 typeof(int)),
 Expression.Constant(1, typeof(int)
)
)
),
 new ParameterExpression[] { book }
);

Listing 12.11 Sample expression tree generated for a LINQ to Amazon query

B

C

D

E

470 CHAPTER 12

Extending LINQ
If you look closely at this tree, you should be able to locate the criteria we’ve spec-
ified in our query: the restriction on the title B, the filter on the publisher C, the
price limit D, and the book condition E. As a reminder, here is the query for
which this expression tree is generated:

from book in new LinqToAmazon.AmazonBookSearch()
where
 book.Title.Contains("ajax") &&
 (book.Publisher == "Manning") &&
 (book.Price <= 25) &&
 (book.Condition == BookCondition.New)
select book;

The ProcessExpression method of the AmazonBookExpressionVisitor class
should basically walk through the expression tree to extract information. Here
we’ll implement the Visitor design pattern to find all the criteria the expression
tree contains.

 Here is the main method of the AmazonBookExpressionVisitor class, Visit-
Expression:

private void VisitExpression(Expression expression)
{
 if (expression.NodeType == ExpressionType.AndAlso)
 {
 ProcessAndAlso((BinaryExpression)expression);
 }
 else if (expression.NodeType == ExpressionType.Equal)
 {
 ProcessEqual((BinaryExpression)expression);
 }
 else if (expression.NodeType == ExpressionType.LessThanOrEqual)
 {
 ProcessLessThanOrEqual((BinaryExpression)expression);
 }
 else if (expression is MethodCallExpression)
 {
 ProcessMethodCall((MethodCallExpression)expression);
 }
 else if (expression is LambdaExpression)
 {
 ProcessExpression(((LambdaExpression)expression).Body);
 }
}

We won’t detail every method here. You can refer to the complete source code
accompanying this book to see how all these methods are implemented. Just to
give you an idea, here is the VisitAndAlso method:

Querying a web service: LINQ to Amazon 471
private void VisitAndAlso(BinaryExpression andAlso)
{
 VisitExpression(andAlso.Left);
 VisitExpression(andAlso.Right);
}

Here is the VisitEqual method, which handles the book.Publisher == "xxx"
and book.Condition == BookCondition.* criteria:

private void VisitEqual(BinaryExpression expression)
{
 if ((expression.Left.NodeType == ExpressionType.MemberAccess) &&
 (((MemberExpression)expression.Left).Member.Name ==
 "Publisher"))
 {
 if (expression.Right.NodeType == ExpressionType.Constant)
 {
 _Criteria.Publisher =
 (String)((ConstantExpression)expression.Right).Value;
 }
 else if (expression.Right.NodeType ==
 ExpressionType.MemberAccess)
 {
 _Criteria.Publisher =
 (String)GetMemberValue((MemberExpression)expression.Right);
 }
 else
 {
 throw new NotSupportedException(
 "Expression type not supported for publisher: " +
 expression.Right.NodeType.ToString());
 }
 }
 else if ((expression.Left is UnaryExpression) &&
 (((UnaryExpression)expression.Left).Operand.Type ==
 typeof(BookCondition)))
 {
 if (expression.Right.NodeType == ExpressionType.Constant)
 {
 _Criteria.Condition =
 (BookCondition)((ConstantExpression)expression.Right).Value;
 }
 else if (expression.Right.NodeType ==
 ExpressionType.MemberAccess)
 {
 _Criteria.Condition =
 (BookCondition)GetMemberValue(
 (MemberExpression)expression.Right);
 }
 else
 {

Handle
 book.Publisher == "xxx"

Handle
book.Condition ==

 BookCondition.*

472 CHAPTER 12

Extending LINQ
 throw new NotSupportedException(
 "Expression type not supported for book condition: " +
 expression.Right.NodeType.ToString());
 }
 }
}

After the execution of AmazonBookExpressionVisitor.ProcessExpression, our
AmazonBookSearch instance has collected all the criteria provided in the LINQ
query. At this point, the query has been parsed, but hasn’t been executed. No call
has been made to Amazon.

 As usual, we want the execution to happen when we start enumerating the
results of the query. This is why we’ll make AmazonBookSearch implement IEnu-
merable<AmazonBook>. Here is how to code the two necessary methods:

public class AmazonBookSearch : IEnumerable<AmazonBook>
{
 ...

 IEnumerator<AmazonBook> IEnumerable<AmazonBook>.GetEnumerator()
 {
 Var enumerable = (IEnumerable)this;
 return (IEnumerator<AmazonBook>)enumerable.GetEnumerator();
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 String url = AmazonHelper.BuildUrl(_Criteria);
 IEnumerable<AmazonBook> books =
 AmazonHelper.PerformWebQuery(url);

 return books.GetEnumerator();
 }

 ...
}

As you can see, all the processing is delegated to a helper class, AmazonHelper,
which knows how to build an Amazon URL and how to call Amazon and convert
the results into a sequence of AmazonBook objects.

 Here is the AmazonHelper.BuildUrl method, which takes the criteria and
returns an URL that uses them:

static internal String BuildUrl(AmazonBookQueryCriteria criteria)
{
 if (criteria == null)
 throw new ArgumentNullException("criteria");

 String url = URL_AWSECommerceService;

Handle
book.Condition == BookCondition.*

Execute
query

Querying a web service: LINQ to Amazon 473
 if (!String.IsNullOrEmpty(criteria.Title))
 url += "&Title=" + HttpUtility.UrlEncode(criteria.Title);
 if (!String.IsNullOrEmpty(criteria.Publisher))
 url += "&Publisher=" + HttpUtility.UrlEncode(criteria.Publisher);
 if (criteria.Condition.HasValue)
 url += "&Condition=" +
 HttpUtility.UrlEncode(criteria.Condition.ToString());
 if (criteria.MaximumPrice.HasValue)
 url += "&MaximumPrice=" +
 HttpUtility.UrlEncode(
 (criteria.MaximumPrice * 100)
 .Value.ToString(CultureInfo.InvariantCulture)
);

 return url;
}

The second method of the AmazonHelper class is PerformWebQuery. This method
performs the actual call to Amazon and builds the results by parsing the web
response using LINQ to XML:

static internal IEnumerable<AmazonBook> PerformWebQuery(String url)
{
 XElement booksDoc = XElement.Load(url);

 XNamespace ns = NAMESPACE_AWSECommerceService;
 IEnumerable<AmazonBook> books = #2
 from book in booksDoc.Descendants(ns + "Item")
 let attributes = book.Element(ns + "ItemAttributes")
 let price = attributes.Element(ns + "ListPrice")
 .Element(ns + "Amount").Value
 select new AmazonBook
 {
 Title = attributes.Element(ns + "Title").Value,
 Isbn = attributes.Element(ns + "ISBN").Value,
 PageCount = UInt32.Parse(
 attributes.Element(ns + "NumberOfPages").Value),
 Price = price != null ? Decimal.Parse(price) / 100 : 0,
 Publisher = attributes.Element(ns + "Publisher").Value,
 Year = UInt32.Parse(
 ((String)attributes.Element(ns + "PublicationDate").Value)
 .Substring(0, 4)),
 Authors = (
 from author in book.Descendants(ns + "Author")
 select (String)author.Value
).ToList()
 };

 return books;
}

Parse
results

Execute query

474 CHAPTER 12

Extending LINQ
That’s all there is to it. You should now be able to use LINQ to Amazon queries!
Keep in mind that this is a straightforward implementation. This implementation
supports only simple queries and is likely to fail if you try to use it with different
queries. Feel free to build on this example and improve it!

 You can take a look at the complete source code for the details of the imple-
mentation (look for the LinqToAmazon project).

NOTE In order to use the Amazon.com web services and test this example fully,
you need to register with the Amazon Web Services program. After regis-
tering with Amazon, you’ll be assigned an access key. Edit the Amazon-
Helper.cs file and replace INSERT YOUR AWS ACCESS KEY HERE with your
access key.

In some cases, creating additional query operators or reimplementing the stan-
dard ones is not enough. In these cases, you may resort to another extensibility
mechanism offered by LINQ. We’ll show you an example in the next section.

12.5 IQueryable and IQueryProvider:
LINQ to Amazon advanced edition

IQueryable and IQueryProvider: LINQ to Amazon advanced edition In the previous version of our LINQ to Amazon example, we implemented the
Where operator in such a way that it receives the criteria expressed in our query as
an expression tree. All the processing happens in this operator by analyzing the
expression tree.

 Our first LINQ to Amazon implementation is far from being complete. We cre-
ated it to take into account only one call to the Where operator. If we were to write
a complete implementation of LINQ to Amazon, we’d have to resort to an
advanced technique. This technique relies on the System.Linq.IQueryable<T>
interface. This is the technique used for LINQ to SQL to query data from a rela-
tional database. The use of expression trees and the IQueryable<T> interface
enables rich queries, obtained by numerous calls to query operators, to be con-
verted into a single SQL query that gets sent to the database.

 In this section, we’ll create a new implementation of LINQ to Amazon that
relies on IQueryable<T>. Before doing so, let’s spend some time learning more
about IQueryable<T>.

12.5.1 The IQueryable and IQueryProvider interfaces

Let’s look at the query we used with the first implementation of LINQ to Amazon:

IQueryable and IQueryProvider: 475
LINQ to Amazon advanced edition
var query =
 from book in new LinqToAmazon.AmazonBookSearch()
 where
 book.Title.Contains("ajax") &&
 (book.Publisher == "Manning") &&
 (book.Price <= 25) &&
 (book.Condition == BookCondition.New)
 select book;

As usual, the key thing the compiler looks at when it’s about to convert such a
query expression into calls to query operators is the type of object the query oper-
ates on. In our case, this is an instance of LinqToAmazon.AmazonBookSearch. The
compiler notices that AmazonBookSearch provides an implementation of the
Where operator and so this is what will be invoked when the query is evaluated. Of
course, the real execution only happens when the query is enumerated through a
call to GetEnumerator.

 To be able to support richer queries using the same technique, we would have
to implement more operators than just Where. For example, with our first imple-
mentation, we get the results in an unspecified order. If we want to sort the
results, we can do it locally using LINQ to Objects. If we want to be able to per-
form the sort operation on the server, we would have to implement the OrderBy
operator in addition to Where. We would then be able to retrieve the sort informa-
tion expressed in the query and transmit it as part of the web query. If the server
supports sorting, the results we retrieve would be sorted without having to use
LINQ to Objects afterward on the client.

 Another thing that our first implementation doesn’t support is retrieving par-
tial information. If you look at our query’s select clause, you’ll notice that we
return complete information on books. What if we wanted to retrieve only the
titles? It would be more efficient to ask the web server to return only the title of
each book instead of the complete information about it. In order to do this, we
would have to implement the Select operator.

 You should start to understand that if we do it this way, the analysis of the query
is scattered in several places: in each operator’s implementation. This tends to
complicate the analysis of the query and makes optimization more difficult.

 The IQueryable interface has been designed to help in situations like this. It
allows us to receive all the information contained in a query as one big expression
tree instead of having each operator receive partial information. Once the expres-
sion tree is ready, it can be analyzed to do whatever we want in response to the
query. IQueryable defines the pattern for you to gather up a user’s query and
present it to your processing engine as a single expression tree that you can either
transform or interpret.

476 CHAPTER 12

Extending LINQ
 When a query works on an object that implements IQueryable, the query
operators that are used are not coming from the System.Linq.Enumerable class,
but from the System.Linq.Queryable class. This class provides all the query oper-
ators required by the LINQ query expression pattern implemented using expres-
sion trees.

 The query operators in the Queryable static class do not actually perform any
querying. Instead, their functionality is to build an expression tree as an instance
of the System.Linq.Expressions.Expression object representing the query to
be performed and then pass that Expression object to the source IQueryable for
further processing.

 All the implementations of the query operators provided by the Queryable
class return a new IQueryable that augments that expression tree with a represen-
tation of a call to that query operator. Thus, when it comes time to evaluate the
query, typically because the IQueryable is enumerated, the data source can pro-
cess the expression tree representing the whole query in one batch.

 The actual query execution is performed by classes that implement the IQue-
ryable interface, as well as the additional IQueryProvider interface. We’ll now
see how these two types work together and how to implement them.

Getting ready for the implementation
With our first implementation, the queries were applied to an instance of the
LinqToAmazon.AmazonBookSearch type. This type implements IEnumerable<Ama-
zonBook>. Here is a sample query using the first implementation:

var query =
 from book in new LinqToAmazon.AmazonBookSearch()
 where
 book.Title.Contains("ajax") &&
 (book.Publisher == "Manning") &&
 (book.Price <= 25) &&
 (book.Condition == BookCondition.New)
 select book;

In the second implementation, we’re going to create new types that implement
IQueryable and IQueryProvider. The entry point type will be named Amazon-
BookQueryProvider. This is the class that will implement IQueryProvider. A second
class will provide a generic implementation of IQueryable<T>: the Query<T> class.

 Here is how these two classes will allow us to write the same query as earlier
using the second implementation:

var provider = new AmazonBookQueryProvider();
var queryable = new Query<AmazonBook>(provider);
var query =

IQueryable and IQueryProvider: 477
LINQ to Amazon advanced edition
 from book in queryable
 where
 book.Title.Contains("ajax") &&
 (book.Publisher == "Manning") &&
 (book.Price <= 25) &&
 (book.Condition == BookCondition.New)
 select book;

Notice how the query is unchanged. Only the object on which we are performing
the query is different. The use of an implicitly typed local variable through the
var keyword abstracts away the type of the query’s result, but it is different for
each implementation. With the first implementation, the type of the result is
IEnumerable<AmazonBook>. With the second implementation, the type of the
result is IQueryable<AmazonBook>.

 As we already explained, the difference is that IEnumerable<T> represents an
enumeration, while IQueryable<T> represents a query. An instance of a type that
implements IQueryable<T> contains all the information needed to execute a query.
Think of it as a description of what you want done when the query is enumerated.

Overview of IQueryable and IQueryProvider
Before we move on to the implementation, let’s look at how the IQueryable<T>
and IQueryProvider interfaces are defined.

 Here is the declaration of IQueryable<T>:

interface IQueryable<T> : IEnumerable<T>, IQueryable
{
}

This means that we have to implement the members of the following interfaces:

interface IEnumerable<T> : IEnumerable
{
 IEnumerator<T> GetEnumerator();
}

interface IEnumerable
{
 IEnumerator GetEnumerator();
}

interface IQueryable : IEnumerable
{
 Type ElementType { get; }
 Expression Expression { get; }
 IQueryProvider Provider { get; }
}

478 CHAPTER 12

Extending LINQ
The main element you should pay attention to in the interfaces is the Expression
property of the IQueryable interface. It gives you the expression that corresponds
to the query. The actual query underneath the hood of an IQueryable is an
expression tree of LINQ query operators/method calls. This is the part of the
IQueryable that your provider must comprehend in order to do anything useful.

 Note that the IQueryable<T> interface implements IEnumerable<T> so that
the results of the query it encompasses can be enumerated. Enumeration should
force the execution of the expression tree associated with an IQueryable object.
At this time, we’ll translate the expression tree into an Amazon web query and
make the call to Amazon’s web services. This is what the IQueryProvider refer-
enced by an IQueryable instance will do.

 We have to implement the members of the IQueryProvider interface in order
to handle the execution of the queries. Here is how it is declared:

public interface IQueryProvider
{
 IQueryable CreateQuery(Expression expr);
 IQueryable<TElement> CreateQuery<TElement>(Expression expr);
 object Execute(Expression expr);
 TResult Execute<TResult>(Expression expr);
}

As you can see, the IQueryProvider interface contains two groups of methods, one
for the creation of queries and another of the execution of queries. Each group
contains both generic and nongeneric overloads. Implementing IQueryProvider
may look like a lot of work. Don’t worry. You only really need to worry about the
Execute method. It is the entry point into your provider for executing query
expressions. This is the quintessence of your LINQ provider implementation.

 Now that you’ve seen what needs to be implemented to create a complete
LINQ provider, you may start to wonder if it’s not something difficult. Well, it is!
You should never consider the creation of a LINQ provider to be an easy task.
However, things should be a bit easier after you’ve taken a look at our sample
implementation and you’ve been able to see how the mechanics work. The LINQ
to Amazon sample is here to help you make your first steps with IQueryable<T>
without too much difficulty. It contains the bases required for every implementa-
tion of a LINQ provider.

 Let’s now see how the LINQ to Amazon provider implements IQueryable and
IQueryProvider.

IQueryable and IQueryProvider: 479
LINQ to Amazon advanced edition
12.5.2 Implementation

To implement LINQ to Amazon’s query provider, we reused code provided by
Matt Warren from Microsoft on his blog.2 The code we reuse consists of a generic
implementation of IQueryable<T> (the Query<T> class in the Query.cs file) and a
base implementation of IQueryProvider (the QueryProvider class in the Query-
Provider.cs file).

 Once you have these classes at hand, what’s left is to create a class that inherits
from QueryProvider and provides an implementation for the Execute method,
and optionally one for the GetQueryText method. Of course, implementing Exe-
cute is the most difficult part, precisely because what a LINQ provider does is exe-
cute queries!

 In our case, this is not so difficult, as you can see. Here is how we implemented
the AmazonBookQueryProvider class:

public class AmazonBookQueryProvider : QueryProvider
{
 public override String GetQueryText(Expression expr)
 {
 AmazonBookQueryCriteria criteria;

 var visitor = new AmazonBookExpressionVisitor();
 criteria = visitor.ProcessExpression(expr);

 String url = AmazonHelper.BuildUrl(criteria);

 return url;
 }

 public override object Execute(Expression expr)
 {
 String url = GetQueryText(expr);
 IEnumerable<AmazonBook> results =
 AmazonHelper.PerformWebQuery(url);
 return results;
 }
}

You can see that the work is greatly simplified because we’d already created the
useful helper classes, AmazonBookExpressionVisitor and AmazonHelper, in the
previous section.

2 Matt Warren provides an introduction to the implementation of an IQueryable provider, as well as
sample source code in his blog. The series of posts is available at the following address: http://
blogs.msdn.com/mattwar/archive/2007/08/09/linq-building-an-iqueryable-provider-part-i.aspx

Retrieve
criteria

Generate
URL

480 CHAPTER 12

Extending LINQ
 If we were to rewrite LINQ to SQL, the Execute method would convert the
entire expression tree it receives as an argument into an equivalent SQL query
and send that query to a database for execution. The LINQ to Amazon implemen-
tation instead needs to convert the expression tree into a web request and execute
that request.

 We won’t give more details about the implementation here because it would be
too long. You should look at the source code accompanying this book to learn
more. We recommend that you also refer to Matt Warren’s blog posts to fully
understand how to implement a complete LINQ provider.

 Before closing this chapter, we think it may be useful to review the execution
of a sample query step by step to help you better understand how an implementa-
tion of IQueryable<T> works.

12.5.3 What happens exactly

You may wonder how the mechanism enabled by IQueryable<T> works. We’ll now
quickly depict this mechanism to satisfy your curiosity.

 Let’s consider the following sample query that works with an AmazonBookQue-
ryProvider:

var provider = new AmazonBookQueryProvider();
var queryable = new Query<AmazonBook>(provider);
var query =
 from book in queryable
 where
 book.Title.Contains("ajax") &&
 (book.Publisher == "Manning") &&
 (book.Price <= 25) &&
 (book.Condition == BookCondition.New)
 select book;

Each time a query such as this one is written, the compiler generates the following
kind of code:

var provider = new AmazonBookQueryProvider();
var queryable = new Query<AmazonBook>(provider);
IQueryable<AmazonBook> query =
 Queryable.Where<AmazonBook>(queryable, <expression tree>);

Queryable.Where is a static method that takes as arguments an IQueryable<T>
followed by an expression tree. The Queryable.Where method returns the result
of a call to the provider’s CreateQuery method.

 In our case, the source IQueryable<T> is an instance of the Query<AmazonBook>
class. The implementation of CreateQuery provided by the base QueryProvider

Summary 481
class creates a new Query<AmazonBook> instance that keeps track of the expression
tree. We don’t support complex queries, so CreateQuery is called only once in our
case, but in richer implementations CreateQuery could be invoked several times in
cascade to create a deep expression tree.

 The next operation is the enumeration of the query. Typically, this happens in
a foreach loop in which you process the results. Enumerating the query invokes
the GetEnumerator method of the Query<AmazonBook> object.

 In response to a call to the GetEnumerator method, the Execute method of the
provider is invoked. This is where we parse the expression tree, generate the cor-
responding web query, call Amazon, and build a list of AmazonBook objects based on
the response we get. Finally, we return the list of books as the result of the Execute
method, and that becomes the result of the GetEnumerator method. The query
execution is then complete and the list of books is now ready to be processed.

 That’s all for our LINQ to Amazon example. Implementing IQueryable<T>
enables powerful scenarios that integrate LINQ with a lot of different data sources.
This powerful extensibility option is not easy to implement, which is why we recom-
mend you take a look at other implementations to make sure you fully understand
how IQueryable works if you plan on creating your own implementation.

12.6 Summary
Summary In this chapter, we presented options available to extend LINQ and adapt it to

your needs. The sample extensions we demonstrated here are simple. It will be
interesting to see how many real-life alternate implementations and extensions
are released as people find flaws or shortcomings in the default set.

 LINQ’s extensibility is what allows it to offer support for several data sources.
It’s also what will allow wide adoption of LINQ by developers in all layers of appli-
cations. As LINQ gets adopted, we are likely to see more and more framework pro-
viders adding LINQ support to their products to offer their users the benefits of
strongly typed and standard querying capabilities.

LINQ in every layer
This chapter covers:
■ The LinqBooks application
■ N-tier architecture
■ Third-party LINQ providers
■ The future of LINQ
482

Overview of the LinqBooks application 483
Congratulations! You’ve reached the last chapter of this book. You should now
have a good grasp of LINQ’s capabilities and should now be able to put the skills
you’ve acquired into practice in your projects. There is still one last subject we’d
like to cover: the place of LINQ in your applications.

 As you know, LINQ is not only a generic querying technology but a complete set
of tools you can use to deal with relational databases, XML, DataSets, in-memory
object collections, and many more data sources thanks to LINQ’s extensibility. This
means that from now on, LINQ is likely to become pervasive in your code.

 In this chapter, we will look at a sample application we’ve created using LINQ.
This application is the LinqBooks running example that we introduced in chap-
ter 4 and that we used over this book’s chapters as the base for the code samples.
You’ll be able to find the complete source code in the downloadable package
that accompanies this book. By looking at the LinqBooks sample, you’ll be able
to identify where and how each LINQ flavor is used. Our goal is to help you
decide whether you need to use LINQ in your application layers, as well as see
what impact it can have on your applications’ architecture.

 We’ll start by describing the LinqBooks application. We’ll then focus on the
place LINQ to SQL has in this application. LINQ to SQL is likely to influence your
application’s architecture, so it’s important to spend time thinking about how to
use it. Once we’re done with LINQ to SQL, we’ll analyze where LINQ to XML and
LINQ to DataSet can be useful. Finally, we’ll use LINQ’s extensibility through cus-
tom query operators as well as our LINQ to Amazon implementation.

13.1 Overview of the LinqBooks application

We already introduced our sample application in chapter 4. Let’s present it again,
but with an accent on the architecture and the use of LINQ. The LinqBooks appli-
cation allows its users to manage a personal book catalog.

13.1.1 Features

Here are the main features of the LinqBooks application:

■ Tracking books users own

■ Storing what users think about them

■ Retrieving more information about books from external sources

■ Publishing the list of books and review information to make it available to
others

484 CHAPTER 13

LINQ in every layer
The technical features implemented include

■ Adding books, publishers, and authors to the catalog

■ Attaching books to publishers and authors

■ Adding reviews to books

■ Querying/inserting/updating data in a local SQL Server database

■ Searching over the local catalog

■ Searching over Amazon’s catalog

■ Importing data about books from Amazon

■ Importing and persisting some data from/as XML documents

■ Creating RSS feeds for the books you recommend

Let’s now get an idea of the UI that exposes these features.

13.1.2 Overview of the UI

We decided to implement LinqBooks as a web application. It also comes with a
utility for importing data from Amazon that is implemented as a Windows Forms
application.

 Let’s see some screenshots of the application. Figure 13.1 shows the page that
displays the list of books from the database.

Figure 13.1
Web page that displays the
list of books in a grid as
well as some statistics

Overview of the LinqBooks application 485
The page that displays the details for a book can be seen in figure 13.2.
 Figure 13.3 shows the page that displays the list of publishers.
 There are more pages in the LinqBooks application, of course. You’ll discover

some in the rest of this chapter, and all of them if you look at the source code and
run the application.

 Let’s now give you an overview of the data model used by the sample application.

Figure 13.2
Web page that displays the
details about a book and allows
us to add authors and reviews

486 CHAPTER 13

LINQ in every layer
13.1.3 The data model

The LinqBooks application relies on a
SQL Server database. The database
schema we use is shown in figure 13.4.

 Now that you have a good idea of
what the LinqBooks application does, we
can focus on the use of all the LINQ fla-
vors in all of the application’s layers.
We’ll start with LINQ to SQL and we’ll
analyze how it influences the architec-
ture of applications that employ it.

13.2 LINQ to SQL and the
data access layer

The flavor of LINQ that may have the
biggest impact on application architec-
ture is probably LINQ to SQL. This is why
it’s worth spending time thinking about
the traditional three-tier architecture
and how LINQ to SQL fits in the picture.

Figure 13.3
Web page that displays the list of
publishers and their books in a grid

Figure 13.4 Database schema for the running
example

LINQ to SQL and the data access layer 487
The impact of the use of LINQ to SQL may be so profound that we may have to
reconsider the very nature of a data access layer.

 Let’s start with a refresher on the traditional three-tier architecture and data
access layer. We’ll then throw LINQ to SQL in and analyze the impacts on such
architectures. Finally, we’ll depict the way we use LINQ to SQL in LinqBooks
through some code samples.

13.2.1 Refresher on the traditional three-tier architecture

You probably already know how a multitier architecture is structured, but it’s good
to quickly go over the basic principles to ensure that we’re speaking about the
same things. While you can use several tiers in a multitier architecture, we’ll focus
here on the three-tier architecture because it’s sufficient for discussing the impact
of LINQ to SQL on such an architecture.

 A three-tier architecture is any system that enforces a general separation
between the following three parts:

■ The presentation tier

■ The logic tier or business logic tier

■ The data access tier

NOTE In this discussion, the words tier and layer are used to refer to the same
thing.

Figure 13.5 shows the elements parts of a traditional three-tier architecture.

Figure 13.5
The traditional three-tier application
architecture, with its presentation, business
logic, and data access layers, as well as the
optional object models that may be used with it

488 CHAPTER 13

LINQ in every layer
Dividing an application into several tiers or layers as described in the figure is all
about separation of concerns. The goals of separation of concerns are to design sys-
tems so that functions can be optimized independently of other functions, so that
failure of one function does not cause other functions to fail, and in general to
make it easier to understand, design, and manage complex interdependent sys-
tems. This is why a common practice is to break a program into distinct layers that
overlap as little as possible.

 Let’s review the role of each of the layers in the three-tier architecture:

■ The data-access layer stores and retrieves information from a database, file
system, or any other storage. The information is passed back to the business
logic layer for processing and eventually back to the user.

■ The business logic layer coordinates the application, processes commands,
makes logical decisions and evaluations, and performs calculations. It also
moves and processes data between the two surrounding layers.

■ The presentation layer handles the topmost level of the application: the user
interface. The main function of the interface is to translate tasks and results
into something the user can understand. The presentation layer contains
components needed to interact with the user of the application. Examples
of such components are web pages and rich-client forms.

The object models shown in the figure are optional. They represent the data
structures that can be used to exchange data between layers.

 Obviously, we should focus on the data access layer, DAL for short. The pur-
pose of a DAL is to isolate the data store from other application layers. The com-
ponents in this layer abstract the semantics of the underlying data access
technology, thus allowing the business layer to focus on business logic. Each com-
ponent typically provides methods to perform CRUD operations for a specific
business entity.

 Now that we’ve given an overview of a traditional data access layer, it’s time
to get back to LINQ and see if LINQ to SQL can be used within a three-tier archi-
tecture.

13.2.2 Do we need a separate data access layer
or is LINQ to SQL enough?

After reading about LINQ to SQL in chapters 6, 7, and 8, you’re ready to use it in
your applications. But the way we’ve used LINQ to SQL so far in this book gives no

LINQ to SQL and the data access layer 489
hint about how to use LINQ to SQL in a multitier architecture. This is because
until now we’ve used LINQ to SQL in a RAD1 way.

 When you develop applications with LINQ to SQL, you can decide to follow one
of two directions: Either you use LINQ to SQL transparently all through your appli-
cation—this is the RAD way we’ve followed until now—or you stick to the traditional
three-tier architecture with data access that is built using LINQ to SQL.

 With the first option, you get all the benefit of LINQ to SQL. With the second
option, you get the benefits of having a clearly defined data access layer. Let’s
describe each option separately.

Using LINQ to SQL as your DAL
When LINQ to SQL is used in a RAD way, it acts as a kind of a minimal data-access
layer. The classes generated from the LINQ to SQL Designer document (the .dbml
file) or the SqlMetal tool are the data entities that form the data object model.
There is no data access code in these entities. The SQL code that performs the
calls to the database to load or save data from the data entities is generated by a
LINQ to SQL DataContext based on queries you write in C# or VB. To actually
interact with the database, you need to write LINQ queries that LINQ to SQL will
convert into SQL queries.

NOTE It’s true that by default the data entities generated by the LINQ to SQL
designer or the SqlMetal tool are decorated with LINQ to SQL attributes.
If you want attribute-free POCOs2 for your data entity classes, you can use
the SqlMetal command-line tool to generate a VB or C# source file and a
mapping file, as was described in chapter 7.

We’ve stated that when you use LINQ without creating a real data access layer, you
can get all the benefits of LINQ to SQL. Let’s review these benefits.

 It allows us to avoid limitations of the data access layer’s API.
 When you’re writing an application, you may often realize that each page

requires a custom database query.
 For instance, if on one page you need to display the books that have a long title

(for some obscure reason we won’t discuss here), then you’ll need a specific method
in your data access layer that provides this kind of data. Chances are high that this

1 RAD (rapid application development) is a software development methodology that involves iterative
development and the construction of prototypes. Traditionally the RAD approach involves compro-
mises in usability, features, and/or execution speed.

2 POCO means Plain-Old CLR Objects. This term is used to contrast a class or an object with one that is
designed to be used with a specific framework such as an object-relational mapper.

490 CHAPTER 13

LINQ in every layer
method won’t be used elsewhere in your application. There is no one-size-fits-all
DAL. More precisely, if there is any DAL that has code generic enough to satisfy the
needs of every page, it may be at the cost of performance.

 If you use LINQ to SQL directly on your page, you can write rich queries that
precisely match your needs for that page. Here is an example of such a query:

IEnumerable<Book> booksWithLongTitles =
 from book in dataContext.Books
 where book.Title.Length > 25
 select book;

It can reduce the database workload and network traffic.
 When you retrieve data from the database, you can easily select only the fields

you need and avoid having too much data loaded for nothing. For example, in
the following LINQ to SQL code, only the Title field of the Books table will be
retrieved from the database:

IEnumerable<String> longTitles =
 from book in dataContext.Books
 where book.Title.Length > 25
 select book.Title;

If you instead use a standard method proposed by your DAL to retrieve a list of
books, several fields can be loaded from the database even if you don’t need
them. Typically, such a method would return a full Book object, not just titles. Of
course, you can always design your DAL to be able to specify which fields you want
to be loaded, but this complicates the code.

 More operations can be performed directly by the server.
 Often, when you retrieve data from a database, you’d like to perform opera-

tions on it so it’s formatted to satisfy your needs. As we’ve just seen, you can define
the shape of the data you retrieve. But there are other operations you can do. For
example, you can ask the database server to sort, group, or join the data. If you
use a generic DAL method, you’re likely to always return data sorted, grouped, or
joined in the same way. In contrast, if you use the following query in your presen-
tation layer, the grouping and sorting specified through the orderby and
group..by clauses will be performed by the database server and returned to you
as you wish them to be:

var longTitles =
 from book in dataContext.Books
 where book.Title.Length > 25
 orderby book.Title
 group book.Title by book.PublisherObject.Name into publisherBooks
 select new { Publisher = publisherBooks.Key,
 BookTitles = publisherBooks };

LINQ to SQL and the data access layer 491
To sum up the benefits we’ve just listed, we could say that genericity has a cost.
What using LINQ to SQL in a RAD way allows is fine-grained customization.

 We’ve just identified using LINQ to SQL directly as an interesting solution for
data access, but we said previously that we’d consider another option: creating a
real data access layer written using LINQ to SQL. Why consider this second option?
Are there problems if we use LINQ to SQL directly?

 Here are some limitations you should keep in mind if you decide to go the
LINQ to SQL RAD route:

■ Writing database queries in your presentation layer is not as bad as using
SQL code in it (think about ASP.NET’s SqlDataSource web control for exam-
ple), but it’s still a questionable practice. If you do it, you’re mixing data
access code with business logic and presentation code. This means that
you’ve decided to abandon the benefits of the separation of concerns.

■ There is no single place to look when you want to find all that’s related to
data access. If all your LINQ to SQL queries are scattered around in your
business logic or presentation code, it becomes difficult to review or update
all the data access code.

■ Code reuse is not central in such a design. If you want to share LINQ to SQL
queries between business objects or screens, where do you put them? You
can enrich the DataContext class with predefined queries or validation
code, but this makes it look like a big bag of tricks without much structure
compared to a real data access layer.

■ If you don’t create a concrete data access layer, where will you put all the
data processing that can’t be done with LINQ to SQL? This is close to the
previous point. Again you can enrich the DataContext class if this is okay
with you.

■ Mapping is limited to the table-per-class model. If you want to have entities
that span over several tables, as is often the case, it may be better to either
use something other than LINQ to SQL or create an application layer that
abstracts this limitation and returns richer entities.

If there were no way to address these concerns then LINQ to SQL would be
doomed to be used only in prototypes. If you use LINQ to SQL as is without being
careful, it’s easy to unknowingly commit the reprehensible architectural sin of
mixing the UI, business logic, and data access layers, for example.

 To avoid this kind of quick-and-dirty use, let’s now see how you can create a
real data access layer instead of using LINQ to SQL directly in all the layers of your
applications.

492 CHAPTER 13

LINQ in every layer
Using LINQ to SQL to create a real DAL
If you don’t use LINQ to SQL directly in your presentation or business logic layer,
you can still use it to create your DAL. This way you can get the benefits of having
a true DAL, while still keeping some benefits of LINQ to SQL.

 Before going further, it may be good to restate the basic goals for a DAL.3

■ The DAL should completely hide the underlying data storage and the data
access technology used, whether it’s an object-relational mapping tool, hand-
generated inline SQL, calls to stored procedures, or anything else. This allows
the client or upper-level layers to be created with a higher level of abstraction.

■ The DAL should not place any significant constraints on the design of the
business object model (also called the domain model).

■ The entire DAL should be replaceable with minimal impact.

All of the aforementioned goals can be summarized with one word: decoupling.
When LINQ to SQL is used in a RAD way, this is not really achieved. This is why you
may consider creating a real DAL instead of spreading LINQ to SQL queries all
over in your applications.

 When you create a concrete DAL with LINQ to SQL, there a few points to keep
in mind. Here are three of them:

■ The ratio of plumbing code to real code can be high compared to direct
LINQ to SQL code.

■ If you return LINQ to SQL entities or queries from your DAL, these objects
support deferred execution and lazy fetching, weakening your division.

■ Your DAL should return objects that can be passed between components at
different tiers.

We won’t address the first point here. It’s true that the source code of a DAL that
uses LINQ to SQL may look useless because it can be simple and could be used
directly in other parts of your applications. However, this is what we want to avoid
and one reason for creating a DAL, so this is something you should accept. The
fact that the code in your DAL is simpler than equivalent code with literal SQL
queries does not mean that it’s useless. It’s better, in fact!

 Let’s look at the second point. When you write your first DAL method, you may
be tempted to write something like listing 13.1.

3 Source: Howard Dierking at http://blogs.msdn.com/howard_dierking/archive/2007/04/23/design-
ing-a-domain-driven-data-access-layer.aspx

http://blogs.msdn.com/howard_dierking/archive/2007/04/23/designing-a-domain-driven-data-access-layer.aspx

LINQ to SQL and the data access layer 493
public class BookDataAccessObject
{
 LinqBooksDataContext _dataContext = new LinqBooksDataContext();

 public IQueryable<Book> GetBooksBySubjectName(String subjectName)
 {
 return
 from book in _dataContext.Books
 where book.SubjectObject.Name == subjectName
 select book;
 }
}

In the listing, you can see a method named GetBooksBySubjectName that returns
an object of type IQueryable<Book>. The result is a simple LINQ to SQL query,
hence the result type.

 If you create a DAL with LINQ to SQL and have your methods return something
like IQueryable<T>, as in our sample, you don’t return data but you do return
queries. This makes a big difference compared to a method that would return a
collection of Book objects.

 In this situation, the calls to the database aren’t performed inside the DAL
methods, but outside at a later time. Remember that due to deferred execution,
LINQ queries are executed only when they are enumerated.

 It may be better to return a list of entities instead of a query. In listing 13.2, the
query is executed inside the DAL method, thanks to the call to ToList, and the
results are returned in the form of a list of entities.

public class BookDataAccessObject
{
 LinqBooksDataContext _dataContext = new LinqBooksDataContext();

 public List<Book> GetBooksBySubjectName(String subjectName)
 {
 var query =
 from book in _dataContext.Books
 where book.SubjectObject.Name == subjectName
 select book;
 return query.ToList();
 }
}

Listing 13.1 Data access object with a method that returns a query (IQueryable<T>)

Listing 13.2 Data access object with a method that returns a collection of
 objects (List<T>)

494 CHAPTER 13

LINQ in every layer
If you use lazy loading, more calls to the database happen through transparent
calls to LINQ to SQL. For example, by default, if your DAL returns a Subject
object and you access its Books property in your business logic or presentation lay-
ers, an implicit call to the database is done without your always being aware of it. A
solution to avoid this is to return only detached objects (value objects), with lazy
loading deactivated.

NOTE Some would argue that we shouldn’t care when database calls get made,
but this is a debate we can’t address in this book.

In listing 13.3, Book objects are loaded in advance for each Subject object before
the list of subjects is returned. In addition, the DataContext.DeferredLoading-
Enabled property is set to false to ensure that no additional calls to the database
are made through lazy loading.

public List<Subject> GetSubjectsWithBooksLoaded()
{
 LinqBooksDataContext dataContext = new LinqBooksDataContext();
 dataContext.DeferredLoadingEnabled = false;

 DataLoadOptions loadOptions = new DataLoadOptions();
 loadOptions.LoadWith<Subject>(subject => subject.Books);
 dataContext.LoadOptions = loadOptions;

 var query =
 dataContext.Subjects.OrderBy(subject => subject.Name);

 return query.ToList();
}

Returning value objects is important also when you need to pass objects between
remote tiers. This is the third concern we included in our list earlier. If you return
a Subject object to a client remote tier, using WCF for example, and this client
tier needs data that isn’t loaded with the object, then a call to the database will be
attempted if lazy loading is enabled, something that we don’t want and that’s
likely to fail anyway.

 The problem is that it’s not always easy to know what callers of the DAL meth-
ods will need. If your DAL returns a Book object, some callers will access the data
about the publishers while others will need to access more information, such as
the data about the authors. In any case, it should be made clear which data is
loaded by each DAL method, in one way or another.

Listing 13.3 DAL method returning subjects ordered by name, with lazy loading disabled

Disable lazy
loading

Specify that the
books should
be loaded with
each subject

Query all subjects
ordered by name

LINQ to SQL and the data access layer 495
 We’ve just seen that there are a couple of ways you can use LINQ to SQL. One is
to use it to replace your DAL; the other is to use it inside your DAL. In your own
applications, you’re free to decide what’s better. It depends on whether you want
to invest in long-term development or you’re just creating lightweight applica-
tions or prototypes.

 One of the nice things about LINQ to SQL is that it’s flexible enough to allow
you to easily build an object-oriented layer for your data and business logic. Spe-
cifically, it provides a way to add validation rules and some business logic in your
data entity classes. The entity classes for LINQ to SQL also support persistence
ignorance and flexible inheritance (no base class required). In a lot of projects,
these features may be used to merge the data and business layers, while in others
the traditional separation of concerns will remain the rule.

 Before moving on to the other LINQ flavors, let’s see how we use LINQ to SQL
in the LinqBooks sample application.

13.2.3 Sample uses of LINQ to SQL in LinqBooks

In the LinqBooks sample, we’ve decided to use LINQ to SQL directly in the pre-
sentation layer in most parts of the application to demonstrate how easy it is to
write flexible and robust data querying. Still, to demonstrate the second approach
we described earlier, we created a sample DAL with a few data access objects. As
you’ll see, there are still benefits to using LINQ to SQL inside of your DAL, such as
code conciseness, readability, and reliability.

Summary of the options
When LINQ to SQL is used directly in
the presentation layer, the architec-
ture of the application is simple. The
DataContext class generated using
SqlMetal or the LINQ to SQL Designer
contains the entity classes that are
used directly in the user interface
classes. All the data access is per-
formed by the DataContext. If you
enrich the DataContext and its entity
classes with business logic, the Data-
Context replaces both the data access
layer and the business logic layer.

 Figure 13.6 depicts this.

Figure 13.6 An application architecture where
the data object model, the data access code and
the business logic are all represented by a LINQ
to SQL DataContext

496 CHAPTER 13

LINQ in every layer
When you follow the traditional three-tier architecture, LINQ to SQL is used in a
clearly separated data access layer. This is where the DataContext is created and
used. In addition, the business logic is coded outside of the DataContext and the
data access layer altogether.

 Figure 13.7 shows the schema of the complete three-tier architecture, similar
to the one we presented in section 13.2.1, but with a LINQ to SQL DataContext as
the data access object.

Sample code
Let’s now focus on some code samples to give you an idea of how LINQ to SQL can
be used in an application like LinqBooks.

 Let’s start with the Publishers.aspx page. Figure 13.8 shows what it looks like.
 In Publishers.aspx.cs, a simple LINQ to SQL query is used to retrieve the list of

publishers available in the database. See listing 13.4.

Figure 13.7 A three-tier application architecture, with its presentation,
business logic, and LINQ to SQL data access layers

LINQ to SQL and the data access layer 497
var query =
 from publisher in _DataContext.Publishers
 orderby publisher.Name
 select publisher;
GridViewPublishers.DataSource = query;
GridViewPublishers.DataBind();

This is a straightforward way of retrieving and displaying data. The GridView that
is used to display the data is declared as shown in listing 13.5.

<asp:GridView ID="GridViewPublishers" runat="server"
 AutoGenerateColumns="False"
 OnRowDatabound="GridViewPublishers_RowDataBound">
 <columns>
 <asp:hyperlinkfield DataNavigateUrlFields="ID"
 DataNavigateUrlFormatString="~/Publisher.aspx?ID={0}"
 DataTextField="Name" HeaderText="Name">
 </asp:hyperlinkfield>
 <asp:TemplateField HeaderText="Books">
 <ItemTemplate>
 <linqBooks:BookList ID="BookList" runat="server" />
 </ItemTemplate>

Listing 13.4 Retrieving a list of publishers from a database and binding it to a GridView

Listing 13.5 ASP.NET markup to display a list of publishers in a GridView

Figure 13.8
Publishers.aspx page used to display
the list of the publishers contained in
the LinqBooks database

498 CHAPTER 13

LINQ in every layer
 </asp:TemplateField>
 </columns>
</asp:GridView>

The BookList tag is used to reference a custom control that displays a list of books.
The RowDataBound event is used to provide the list of books to display to the
BookList user control. This technique is used to ensure compile-time validation of
the code. Listing 13.6 shows the code of the event handler for RowDataBound.

protected void GridViewPublishers_RowDataBound(object sender,
 GridViewRowEventArgs e)
{
 if (e.Row.DataItem == null)
 return;

 Publisher publisher = (Publisher)e.Row.DataItem;
 BookList bookList = (BookList)e.Row.FindControl("BookList");
 bookList.Books = publisher.Books;
 bookList.DataBind();
}

On this first page, we display the data
in a simple grid. If we want to allow
the user to sort the data and activate
paging, we can use a new component
provided by .NET 3.5: LinqData-
Source. The LinqDataSource com-
ponent can work with a DataContext,
or you can provide it a LINQ query
and it’ll automatically perform pag-
ing and sorting operations. This is
what we use on the Books.aspx page.

 Figure 13.9 shows a screenshot of
the Books.aspx page.

 As you can see, you can click the
headers of the columns to sort them,
and a pager is available at the bot-
tom of the grid.

Listing 13.6 Handler for the GridView.RowDataBound event used to display a child
 collection (Publisher.Books)

Figure 13.9 Books.aspx page used to display the list
of the books contained in the LinqBooks database

LINQ to SQL and the data access layer 499
 A standard GridView control is used to obtain this display, but its DataSource is
a LinqDataSource:

<asp:LinqDataSource ID="LinqDataSource1" runat="server"
 OnSelecting="LinqDataSource1_Selecting">
</asp:LinqDataSource>
...
<asp:GridView ID="GridViewBooks" runat="server"
 AllowSorting="True" AllowPaging="True" PageSize="3"
 AutoGenerateColumns="False" DataSourceID="LinqDataSource1">
...

Note that sorting and paging are activated on the GridView control, and Page-
Size is set to 3.

 In Books.aspx.cs, the Selecting event of the LinqDataSource is handled to
provide the query used by the DataSource, as shown in listing 13.7.

protected void LinqDataSource1_Selecting(object sender,
 LinqDataSourceSelectEventArgs e)
{
 e.Result =
 from book in new LinqBooksDataContext().Books
 orderby book.Title
 select new
 {
 Id = book.ID,
 Title = book.Title,
 Publisher = book.PublisherObject.Name,
 Price = book.Price
 };
}

As you can see, the query doesn’t return Book objects but uses anonymous types to
return only the data we need. There is no need to load more information from
the database than what we really need. Here we display only the titles of the
books, the names of their publishers, and their prices, and we use the ID to create
and hyperlink to the book details page (Book.aspx).

 Listing 13.8 shows the markup for the GridView.

<asp:GridView ID="GridViewBooks" runat="server"
 AllowSorting="True" AllowPaging="True" PageSize="3"
 AutoGenerateColumns="False" DataSourceID="LinqDataSource1">

Listing 13.7 Handler for LinqDataSource.Selecting to provide the query used by
 the DataSource

Listing 13.8 Markup to display a list of books in a GridView

500 CHAPTER 13

LINQ in every layer
 <Columns>
 <asp:HyperLinkField
 DataNavigateUrlFields="Id"
 DataNavigateUrlFormatString="~/Book.aspx?ID={0}"
 DataTextField="Title" HeaderText="Title"
 SortExpression="Title">
 </asp:HyperLinkField>
 <asp:BoundField DataField="Publisher" HeaderText="Publisher"
 ReadOnly="True" SortExpression="Publisher" />
 <asp:BoundField DataField="Price" HeaderText="Price"
 DataFormatString="{0:F2}" HtmlEncode="false"
 ReadOnly="True" SortExpression="Price" />
 </Columns>
</asp:GridView>

This example shows that a LINQ to SQL query can be used to load only the data
needed in a given context. Let’s now take another example: Book.aspx. This page
is used to display details about a book. Figure 13.10 shows a sample display.

 Again, in this page, we use a LINQ to SQL query to select the data we want to
display. This example is interesting because it shows how the query and an anony-
mous type are used to shape the results, with subselections on authors and
reviews. See listing 13.9.

Figure 13.10
Book.aspx page used to
display details about a book

LINQ to SQL and the data access layer 501
var books =
 from book in _DataContext.Books
 where book.ID == _BookId
 select new
 {
 Title = book.Title,
 Isbn = book.Isbn,
 Summary = book.Summary,
 Notes = book.Notes,
 PageCount = book.PageCount,
 Price = book.Price,
 PubDate = book.PubDate,
 PublisherId = book.Publisher,
 PublisherName = book.PublisherObject.Name,
 Authors = book.BookAuthors.Select(
 bookAuthor => bookAuthor.AuthorObject),
 Subject = book.SubjectObject.Name,
 AverageRating =
 book.Reviews.Average(review => (double?)review.Rating)
 };

We won’t review all the pages of the sample application, but we’d like to point out
some specifics so you know what to look at in the source code. Here are some
pages you can analyze more precisely:

■ In Author.aspx.cs, you can see how a parameter provided on the query
string (in the URL) is used to filter data. See in the Page_Load method how
the ID of the author to display is used.

■ In Authors.aspx.cs, you can see how a class named AuthorPresentation-
Model is used to contain the data we need about an author. As the name
indicates, the code of the Authors page demonstrates how to work with a
presentation model.4 This class is then used in the GridViewAuthors_Row
DataBound method to work with the retrieved data.

■ The btnAddAuthor_Click method in Authors.aspx.cs shows how to add a
record into the database.

Listing 13.9 Using an anonymous type and query operators to shape a list of books
 for display

4 See http://www.martinfowler.com/eaaDev/PresentationModel.html for more information about the
Presentation Model design pattern.

502 CHAPTER 13

LINQ in every layer
■ The btnDelete_Click method in Author.aspx.cs demonstrates how to delete
a record. The btnDelete_Click method in Book.aspx.cs performs the same
kind of operation, but with the additional deletion of linked records.

■ Open the Subjects.aspx.cs file to see how to use a method from the applica-
tion’s DAL. In the DisplaySubjects method, the DAL is invoked to get the
list of all subjects in the database ordered by name, with associated books
loaded and lazy loading disabled.

After our focus on LINQ to SQL, it’s time to consider another flavor of LINQ. It was
important to address the use of LINQ to SQL in an application, but we should not
forget that LINQ is useful for dealing with other kinds of data sources than just
relational databases. Let’s now see how we use another major LINQ flavor in Linq-
Books: LINQ to XML.

13.3 Use of LINQ to XML

LINQ to XML can be used to read or create XML. Given the wide use of XML now-
adays, you can expect to find LINQ to XML employed in every layer of applica-
tions. As you saw in chapter 11, where several common LINQ to XML scenarios are
covered, it can be used in combination with data from a database, to import XML
data, create RSS feeds, and more.

13.3.1 Importing data from Amazon

The first usage of LINQ to XML in LinqBooks comes in the form of a standalone
utility.

 We covered this scenario, reading XML and updating a database, in chapter 11.
In LinqBooks, we reuse the sample Windows Forms application for importing
books and details about them from Amazon. See figure 13.11.

 This utility allows us to search for books with keywords and select books to
import in the LinqBooks database. This sample Windows Forms application dem-
onstrates how to use LINQ to XML to parse the XML data returned by Amazon’s
web services. LINQ to SQL is used to insert the imported data into the database.

 Here is the LINQ to XML query used to display the list of books:

var books =
 from result in amazonXml.Descendants(ns + "Item")
 let attributes = result.Element(ns + "ItemAttributes")
 select new Book {
 Isbn = (string)attributes.Element(ns + "ISBN"),
 Title = (string)attributes.Element(ns + "Title"),
 };

bookBindingSource.DataSource = books;

Use of LINQ to XML 503
The list of books selected using the Import check box is built using LINQ to
Objects:

var selectedBooks =
 from row in bookDataGridView.Rows.OfType<DataGridViewRow>()
 where (bool)row.Cells[0].EditedFormattedValue
 select (Book)row.DataBoundItem;

The actual data to import in the database is prepared thanks to LINQ to XML
again, as in listing 13.10.

var booksToImport =
 from amazonItem in amazonXml.Descendants(ns + "Item")
 join selectedBook in selectedBooks
 on (string)amazonItem
 .Element(ns + "ItemAttributes")
 .Element(ns + "ISBN")
 equals selectedBook.Isbn
 join p in ctx.Publishers
 on (string)amazonItem
 .Element(ns + "ItemAttributes")
 .Element(ns + "Publisher")
 equals p.Name into publishers
 from existingPublisher in publishers.DefaultIfEmpty()
 let attributes = amazonItem.Element(ns + "ItemAttributes")
 select new Book {

Listing 13.10 LINQ to XML query used to prepare data to be inserted into a database

Figure 13.11
Windows Forms user
interface for importing
books from Amazon

504 CHAPTER 13

LINQ in every layer
 ID = Guid.NewGuid(),
 Isbn = (string)attributes.Element(ns + "ISBN"),
 Title = (string)attributes.Element(ns + "Title"),
 Publisher = (existingPublisher ??
 new Publisher {
 ID = Guid.NewGuid(),
 Name = (string)attributes.Element(ns + "Publisher")
 }
),
 Subject = (Subject)categoryComboBox.SelectedItem,
 PubDate = (DateTime)attributes.Element(ns + "PublicationDate"),
 Price = ParsePrice(attributes.Element(ns + "ListPrice")),
 BookAuthors = GetAuthors(attributes.Elements(ns + "Author"))
 };

See chapter 11 for complete details about this utility and this kind of use of LINQ
to XML.

 Let’s now look at another use of LINQ to XML, relying on its capability to gen-
erate XML documents.

13.3.2 Generating RSS feeds

LINQ to XML can be used to generate XML documents, such as RSS feeds. This
scenario was covered in chapter 11. In LinqBooks, we also create RSS feeds, based
on data coming from a database through LINQ to SQL.

 A sample RSS feed published by the LinqBooks web site returns the list of reviews
contained in the database. This RSS feed is generated and returned by a web method
as an XmlDocument. Listing 13.11 shows the complete code of the web method.

[WebMethod]
public XmlDocument GetReviews()
{
 var dataContext = new LinqBooksDataContext();

 var xml =
 new XElement("rss",
 new XAttribute("version", "2.0"),
 new XElement("channel",
 new XElement("title", "LinqBooks reviews"),
 from review in dataContext.Reviews
 select new XElement("item",
 new XElement("title",
 "Review of \""+review.BookObject.Title+"\" by "+

Listing 13.11 Web method that creates an RSS feed and returns it as an XmlDocument
 (RSS.asmx.cs)

Use of LINQ to DataSet 505
 review.UserObject.Name),
 new XElement("description", review.Comments),
 new XElement("link",
 "http://example.com/Book.aspx?ID="+
 review.BookObject.ID.ToString())
)
)
);

 XmlDocument result = new XmlDocument();
 result.Load(xml.CreateReader());
 return result;
}

You can see how LINQ to XML streamlines the creation of simple XML documents
such as RSS feeds. This is why you’re likely to use LINQ to XML everywhere XML is
required.

 We’d demonstrate other uses of LINQ to XML, but we have other LINQ fla-
vors to cover. Let’s see how LINQ to DataSet can be useful in an application like
LinqBooks.

13.4 Use of LINQ to DataSet

One feature of the LinqBooks application is to let you export the complete set of
data contained in your book catalog as an XML document. This can be useful to
create backups of your data. It can also be used to share data with your friends. To
that effect, we also implemented an import feature in the application.

 These import and export features are implemented through the use of
DataSets. For simplicity, the export is performed using the TableAdapters gener-
ated with the typed DataSet class, so LINQ is not used in this operation. The
source code, shown in listing 13.12, is pretty straightforward.

LinqBooksDataSet dataSet = new LinqBooksDataSet();
new SubjectTableAdapter().Fill(dataSet.Subject);
new PublisherTableAdapter().Fill(dataSet.Publisher);
new BookTableAdapter().Fill(dataSet.Book);
new AuthorTableAdapter().Fill(dataSet.Author);
new BookAuthorTableAdapter().Fill(dataSet.BookAuthor);
new UserTableAdapter().Fill(dataSet.User);
new ReviewTableAdapter().Fill(dataSet.Review);

Listing 13.12 Loading the complete data from the database into a typed DataSet
 (GetXML.ashx.cs)

506 CHAPTER 13

LINQ in every layer
The import operation is more advanced. The goal is to allow you to load an existing
XML document, provided by a friend for example, and select which books to import
into your catalog. In the implementation, we use LINQ to DataSet to allow this.

NOTE To discover LINQ to DataSet, please read our online chapter, which is
available on the web. See http://LinqInAction.net.

Figure 13.12 shows what the web page looks like once an XML document has been
uploaded.

Figure 13.12 The XML import/export page displaying data from an uploaded XML document

Use of LINQ to DataSet 507
The first step during an import operation is to load the selected XML document
into a DataSet. Here is how it’s done:

var dataSet = new LinqBooksDataSet();
dataSet.ReadXml(uploadXml.FileContent);
Session["DataSet"] = dataSet;

Note that we store the DataSet in the ASP.NET session so it’s easily available.
 Once the data is loaded, we can query the DataSet to display the list of the

books that are already in your catalog. First, we need to prepare a list of the books
in your database:

var dataContext = new LinqBooksDataContext();
IEnumerable<String> knownTitles =
 dataContext.Books.Select(book => book.Title);

Then, we can use this list to filter the list of books that are in the DataSet, as in
listing 13.13.

var dataSet = (LinqBooksDataSet)Session["DataSet"];
var queryExisting =
 from book in dataSet.Book
 where knownTitles.Contains(book.Title)
 orderby book.Title
 select new {
 Title = book.Title,
 Publisher = book.PublisherRow.Name,
 ISBN = book.Field<String>("Isbn"),
 Subject = book.SubjectRow.Name
 };
GridViewDataSetExisting.DataSource = queryExisting;
GridViewDataSetExisting.DataBind();

We can also display the list of the books that are not yet in your catalog, which is
a similar operation, except that the condition used for filtering is reversed. List-
ing 13.14 shows the source code.

var queryNew =
 from book in dataSet.Book
 where !knownTitles.Contains(book.Title)
 orderby book.Title

Listing 13.13 Filtering and displaying data from a DataSet
 (XMLImportExport.aspx.cs)

Listing 13.14 Filtering and displaying data from a DataSet
 (XMLImportExport.aspx.cs)

508 CHAPTER 13

LINQ in every layer
 select new {
 Id = book.ID,
 Title = book.Title,
 Publisher = book.PublisherRow.Name,
 ISBN = book.Field<String>("Isbn"),
 Subject = book.SubjectRow.Name
 };
GridViewDataSetNew.DataSource = queryNew;
GridViewDataSetNew.DataBind();

Finally, the books you select are imported using a mix of DataSet and LINQ to
SQL queries, as shown in listing 13.15.

foreach (GridViewRow gridRow in GridViewDataSetNew.Rows)
{
 CheckBox chkImport = (CheckBox)gridRow.FindControl("chkImport");
 if (!chkImport.Checked)
 continue;

 Guid bookId =
 (Guid)GridViewDataSetNew.DataKeys[gridRow.RowIndex].Value;

 LinqBooksDataSet.BookRow bookRow = dataSet.Book.FindByID(bookId);

 #region Find or create publisher

 Guid publisherId =
 dataContext.Publishers
 .Where(p => p.Name == bookRow.PublisherRow.Name)
 .Select(p => p.ID)
 .SingleOrDefault();
 if (publisherId == Guid.Empty)
 {
 publisherId = bookRow.Publisher;
 Publisher publisher = new Publisher();
 publisher.ID = publisherId;
 publisher.Name = bookRow.PublisherRow.Name;
 dataContext.Publishers.InsertOnSubmit(publisher);
 }

 #endregion Find or create publisher

 #region Find or create authors
 ...

Listing 13.15 Inserting books from a DataSet into a database
 (XMLImportExport.aspx.cs)

Retrieve
data

Find book

Extensibility 509
Some developers depict DataSets as outdated or harmful and advise against using
them, but they’re a useful tool for features like the one we’ve just presented. As we
demonstrate in our online chapter, LINQ to DataSet makes it easier to query
DataSets. It’s one more companion tool on your belt wherever you need to deal
with DataSets.

13.5 Using LINQ to Objects

We don’t really use LINQ to Objects separately in the LinqBooks application. It’s
used in combination with LINQ to XML or LINQ to SQL. However, in some places,
we use small LINQ to Objects queries to simplify some code. Here is an example
you already saw in the section Importing data from Amazon:

var selectedBooks =
 from row in bookDataGridView.Rows.OfType<DataGridViewRow>()
 where (bool)row.Cells[0].EditedFormattedValue
 select (Book)row.DataBoundItem;

Depending on the type of your applications, you may find LINQ to Objects useful
by itself. In fact, as soon as you need to query collections, such as arrays, lists or
dictionaries, you’re likely to find LINQ to Objects a useful tool. The fact that it
works with in-memory collections makes it suitable for any layer of your applica-
tions. We already demonstrated this extensively in other chapters, especially in
part 1. This is why there’s no reason to spend more time on LINQ to Objects at
this point.

13.6 Extensibility

In chapter 12, we covered LINQ’s extensibility and provided sample custom query
operators. In the same chapter, we also introduced a new LINQ flavor named
LINQ to Amazon. In LinqBooks, we reuse some of the custom query operators
from previous chapters. We also use LINQ to Amazon to provide a light data
import facility.

13.6.1 Custom query operators

The first custom query operator that is used in LinqBooks is TotalPrice. We cre-
ated this query operator in chapter 12. It iterates over an enumeration of books
and returns the sum of the books’ prices. This operator demonstrates how you
can create custom query operators to simplify your code. For example, once

510 CHAPTER 13

LINQ in every layer
you’ve created the TotalPrice operator, getting the total price of all books in
your LinqBooks catalog can be achieved with the following simple code:

var dataContext = new LinqBooksDataContext();
lblTotalPrice.Text = dataContext.Books.TotalPrice().ToString("F2");

Another custom query operator used in LinqBooks comes from chapter 5: Max-
Element. The goal of this operator is to retrieve an object from a collection.

Book biggestBook =
 dataContext.Books.Where(book => book.Title.Length > 0)
 .MaxElement(book => book.PageCount);
lnkBiggestBook.Text = biggestBook.Title;
lnkBiggestBook.NavigateUrl = "~/Book.aspx?ID=" + biggestBook.ID;
lblPageCount.Text = biggestBook.PageCount.ToString();

NOTE The queries in this section retrieve all the data from the database before
working in memory.

The uniform syntax between the various LINQ flavors allows us to mix
them together in queries. In these examples, LINQ to SQL and LINQ to
Objects codes are combined in each query. This is elegant and useful,
but you should be aware that the query executes in two stages. Each fla-
vor executes separately. For example, in the case of the following query, a
SQL query is first executed to fetch books that match the condition in
Where, and then the MaxElement operator is executed in memory over
the results:

Sample uses of both TotalPrice and MaxElement are provided in the Books.
aspx.cs file.

13.6.2 Creating and using a custom LINQ provider

Our LinqBooks sample application offers the ability to import books from Ama-
zon through a Windows Forms application. In order to show how a custom LINQ
provider can be useful in a real-life application, we’ve added another import facil-
ity on the Add Books page. This time, we reuse the AmazonBookSearch class from
LINQ to Amazon, which we introduced in the previous chapter.

 Listing 13.16 shows the LINQ to Amazon query that is used.

var query =
 from book in new AmazonBookSearch()
 where
 book.Title.Contains(txtSearchKeywords.Text) &&

Listing 13.16 Querying Amazon using LINQ to Amazon with dynamic criteria
 (AddBooks.aspx.cs)

A look into the future 511
 (book.Publisher == txtSearchPublisher.Text) &&
 (book.Price <= 25) &&
 (book.Condition == BookCondition.New)
 orderby book.Title
 select book;

The query is used directly to display the results:

GridViewAmazonBooks.DataSource = query;
GridViewAmazonBooks.DataBind();

A custom LINQ implementation such as LINQ to Amazon allows us to write simple
and declarative code. Here we don’t need to worry about how the call to Amazon
is made and how to retrieve and parse the data it returns.

 If you need to deal with a service or an API in your application, inquire whether
a LINQ version is available. It can simplify your work. If no LINQ API is available, you
may consider creating one by yourself. Be warned that this can be a difficult enterprise
if you don’t fully master the implementation details of a LINQ provider.

13.7 A look into the future

In this book, we presented LINQ as it stands today. A good thing about LINQ is
that it’s extensible and can easily evolve to support new scenarios and new data
sources.

 Custom LINQ flavors have already started to appear, and we’ll give you a quick
list of them now. We’ll also spend some time describing what Microsoft has
announced for the future of LINQ.

13.7.1 Custom LINQ flavors

Additional LINQ implementations have started to appear. Most of them don’t
come from Microsoft. They’re possible thanks to the extensibility features built
into LINQ.

 Here are LINQ flavors:

■ WmiLinq, WMI LINQ provider
http://bloggingabout.net/blogs/emile/archive/2005/12/12/10514.aspx

■ DB_Linq, LINQ provider for MySql, Oracle, and PostgreSQL
http://code2code.net/DB_Linq/

■ A LINQ provider for CiteSeer
http://blogs.msdn.com/hartmutm/archive/2006/06/12/628382.aspx

512 CHAPTER 13

LINQ in every layer
■ A LINQ provider for RDF files
http://blogs.msdn.com/hartmutm/archive/2006/07/10/661512.aspx

■ LINQ to NHibernate, object-relational mapping
http://www.ayende.com/Blog/archive/2007/03/16/Linq-for-
NHibernate.aspx

■ LINQ to Active Directory
http://community.bartdesmet.net/blogs/bart/archive/2007/11/25/linq-
to-active-directory-formerly-known-as-linq-to-ldap-is-here.aspx

■ LINQ to SharePoint
http://www.codeplex.com/LINQtoSharePoint

■ LINQ to Google Desktop
http://langexplr.blogspot.com/2007/05/linq-to-google-desktop.html

■ LINQ to Google Image and Google Groups
http://www.codeproject.com/csharp/Linq_To_Google_Image.asp

■ LINQ to Flickr
http://spellcoder.com/blogs/bashmohandes/archive/2007/04/08/
6552.aspx

■ LINQ.Flickr
http://www.codeplex.com/LINQFlickr

■ Slinq (Streaming LINQ), an implementation of LINQ focused on streaming data
http://www.codeplex.com/Slinq

■ SyncLINQ, set of extensions to LINQ that enable data binding over LINQ
queries, with changes to source collections reflected in the user interface
http://trac.paulstovell.com/wiki/SyncLINQ

■ MetaLinq, LINQ to Expressions
http://www.codeplex.com/metalinq

■ LINQ to Amazon of course!
http://linqinaction.net/blogs/main/archive/2006/06/26/
introducing_linq_to_amazon.aspx

Here are products that offer support for LINQ:

■ Genome, object-relational mapper
http://www.genom-e.com

■ Vanatec OpenAccess, object-relational mapper
http://www.vanatec.com

http://spellcoder.com/blogs/bashmohandes/archive/2007/04/08/6552.aspx
http://linqinaction.net/blogs/main/archive/2006/06/26/introducing_linq_to_amazon.aspx

A look into the future 513
■ EntitySpaces, persistence layer and business objects
http://www.entityspaces.net

■ LLBLGen Pro, object-relational mapper
http://llblgen.com

As far as Microsoft is concerned, the future of LINQ consists at least of LINQ to
XSD, PLINQ, and LINQ to Entities. Let’s review them quickly one by one.

13.7.2 LINQ to XSD, the typed LINQ to XML

LINQ to XSD, which is available at the time of this writing only as an alpha version,
is designed to allow strongly typed XML queries. It provides developers with sup-
port for typed XML programming on top of LINQ to XML. While LINQ to XML
programmers operate on generic XML trees, LINQ to XSD programmers operate
on typed XML trees. A typed XML tree consists of instances of .NET types that
model the XML types of a specific XML schema (XSD).

 A LINQ query is worth a thousand words, so let’s compare a LINQ to XML
query to a LINQ to XSD query, and you’ll quickly understand the difference
between the two technologies.

 Consider the following C# fragment for a LINQ to XML query that computes
the total over the items in a XML tree for a purchase order:

from item in purchaseOrder.Elements("Item")
select (double)item.Element("Price") * (int)item.Element("Quantity")

Using LINQ to XSD, the same query is written in a much clearer and type-safe way:

from item in purchaseOrder.Item
select item.Price * item.Quantity

As you can see, there’s no need for the dangerous strings and type casting with
LINQ to XSD. Everything is strongly typed and structured.

 Unfortunately, no release data has been announced for LINQ to XSD, and it
has not been updated to the RTM of .NET 3.5. Will Microsoft pursue the work on
this approach?

13.7.3 PLINQ: LINQ meets parallel computing

PLINQ, as we told you in chapter 2, means Parallel LINQ. It’s a key component of
Parallel FX (PFX), the next generation of concurrency support in the .NET Frame-
work. The goal is to take advantage of LINQ queries to distribute processing over
multiple CPUs or cores. The idea is that you can write LINQ queries in the same

514 CHAPTER 13

LINQ in every layer
way you do today, but they get split up and run in parallel. The advantage is that
with PLINQ, LINQ queries become a source of performance gains.

 The key element in PLINQ is the AsParallel query operator. It integrates with
your LINQ queries to have them run in parallel:

IEnumerable<T> leftData = ..., rightData = ...;
var query =
 from x in leftData.AsParallel()
 join y in rightData on x.A == y.B
 select f(x, y);

A first preview of PLINQ was released November 28, 2007. Microsoft hasn’t fur-
ther revealed plans in terms of release schedule.

 An overview of PLINQ was published in MSDN Magazine in October 2007 (“Run-
ning queries on multi-core processors” at http://msdn.microsoft.com/msdn-
mag/issues/07/10/PLINQ/).

 Another project from Microsoft related to distributed computing is DryadLINQ.
DryadLINQ is a research project that combines the Dryad distributed execution
engine and LINQ. Dryad enables reliable, distributed computing on thousands of
servers for large-scale data parallel applications. You can learn more about Dryad
and DryadLINQ at http://research.microsoft.com/research/sv/DryadLINQ/.

13.7.4 LINQ to Entities, a LINQ interface
for the ADO.NET Entity Framework

We already wrote briefly about LINQ to Entities at the end of chapter 8 when we
presented the ADO.NET Entity Framework. Like LINQ to SQL, the Entity Frame-
work and LINQ to Entities can be used to perform object-relational mapping.
Unlike LINQ to SQL, the Entity Framework will support more database engines
than just SQL Server. The fact that LINQ to SQL works only with SQL Server is a big
limitation. Will more database engines be supported? When? Microsoft has not
announced anything about this lately.

 Also, the Entity Framework allows a richer mapping. It works with a true
abstraction layer between the application and the database. While LINQ to SQL
supports only a direct one-to-one mapping between classes and tables, the Entity
Framework allows creating higher-level entity models.

 Several previews of the ADO.NET Entity Framework have been made available,
but no precise date has been announced for the final release. Microsoft declared
that it has targeted the first half of 2008 to ship the ADO.NET Entity Framework as
an update to the .NET Framework 3.5 and to Visual Studio 2008.

http://msdn.microsoft.com/msdnmag/issues/07/10/PLINQ/

Summary 515
13.8 Summary

We hope you’ve found everything you needed to get started with LINQ. You can
now use it as a powerful tool to write your own production applications. We’ve
told you a lot in this book, but because LINQ is a rich subject, we’re sure you’ll still
discover a lot about it as you use it.

 Happy LINQing!

appendix:
The standard

 query operators
517

518 APPENDIX

The standard query operators
Filtering

Projection

Partitioning

Join

Operator name Description

OfType Selects values, depending on their ability to be cast to a specified type.

Where Selects values, depending on a predicate function.

Operator name Description

Select Selects values, depending on a selector function.

SelectMany Selects values, depending on a selector function, and combines resulting
sequences into one sequence. SelectMany performs a one-to-many ele-
ment projection over a sequence. It differs from Select in that the selector
function is expected to return a sequence that is then expanded.

Operator name Description

Skip Skips n elements from a sequence.

SkipWhile Skips elements based on a predicate function until an element does not
satisfy the condition.

Take Takes n elements from a sequence.

TakeWhile Takes elements based on a predicate function until an element does not
satisfy the condition.

Operator name Description

GroupJoin Joins two sequences based on key selector functions and groups the result-
ing matches for each element.

Join Joins two sequences based on key selector functions and extracts pairs
of values.

APPENDIX

The standard query operators 519
Concatenation

Sorting

Grouping

Set

Operator name Description

Concat Concatenates two sequences to form one sequence.

Operator name Description

OrderBy Sorts values in ascending order.

OrderByDescending Sorts values in descending order.

ThenBy Performs a secondary sort in ascending order.

ThenByDescending Performs a secondary sort in descending order.

Reverse Reverses the order of the elements in a sequence.

Operator name Description

GroupBy Groups elements that share a common attribute. Each group is represented
by an IGrouping<TKey, TElement> object.

ToLookup Inserts elements into a Lookup<TKey, TElement> (a one-to-many
dictionary) based on a key selector function.

Operator name Description

Distinct Removes duplicate values from a collection.

Except Returns the set difference, which means the elements of one sequence that
do not appear in a second sequence.

Intersect Returns the set intersection, which means elements that appear in each of
two sequences.

Union Returns the set union, which means unique elements that appear in either of
two sequences.

520 APPENDIX

The standard query operators
Conversion

NOTE By convention, the “ToXXX” operators cause the queries to execute. The
“AsXXX” operators do not. This applies to the conversion operators, but
should be respected for clarity for other operators as well, including cus-
tom ones.

Equality

Element

Operator name Description

AsEnumerable Returns the input typed as IEnumerable<T>.

AsQueryable Converts a (generic) IEnumerable to a (generic) IQueryable.

Cast Casts the elements of a sequence to a specified type.

OfType Selects values, depending on their ability to be cast to a specified type.

ToArray Converts a collection to an array. This method forces query execution.

ToDictionary Puts elements into a (one-to-one) Dictionary<TKey, TValue> based
on a key selector function.

ToList Converts a collection to a List<T>.

ToLookup Inserts elements into a Lookup<TKey, TElement> (a one-to-many
dictionary) based on a key selector function.

Operator name Description

SequenceEqual Determines whether two sequences are equal by comparing elements in a
pair-wise manner.

Operator name Description

ElementAt Returns the element at a specified index in a sequence.

ElementAtOrDefault Returns the element at a specified index in a sequence or default(T) if
the index is out of range.

First Returns the first element of a sequence, or the first element that satisfies a
condition.

FirstOrDefault Returns the first element of a sequence, or the first element that satisfies a
condition. Returns default(T) if no such element exists.

APPENDIX

The standard query operators 521
Element (continued)

Generation

Quantifiers

Operator name Description

Last Returns the last element of a sequence, or the last element that satisfies a
condition.

LastOrDefault Returns the last element of a sequence, or the last element that satisfies a
condition. Returns default(T) if no such element exists.

Single Returns the only element of a sequence, or the only element that satisfies a
condition. Raises an InvalidOperationException if the sequence
does not contain exactly one element.

SingleOrDefault Returns the only element of a sequence, or the only element that satisfies a
condition. Returns default(T) if no such element exists. Raises an
InvalidOperationException if the sequence contains more than
one element.

Operator name Description

DefaultIfEmpty Replaces an empty sequence with a default valued singleton sequence.

Empty Returns an empty sequence.

Range Generates a sequence of integral numbers within a specified range.

Repeat Generates a sequence that contains one repeated value.

Operator name Description

All Determines whether all the elements in a sequence satisfy a condition.

Any Determines whether any elements in a sequence satisfy a condition.

Contains Determines whether a sequence contains a specified element.

522 APPENDIX

The standard query operators
Aggregation

Aggregation (continued)

NOTE In general, operators that return something other than an IEnumera-
ble<T> will cause immediate query execution.

Operator name Description

Aggregate Performs a custom aggregation operation on the values of a sequence.

Average Calculates the average value of a sequence of values.

Operator name Description

Count Counts the elements in a sequence, optionally only those elements that
satisfy a predicate function.

LongCount Counts the elements in a large sequence, optionally only those elements that
satisfy a predicate function.

Max Determines the maximum value in a sequence.

Min Determines the minimum value in a sequence.

Sum Calculates the sum of the values in a sequence.

resources
LINQ in Action resources

 LINQ in Action official site and blog
http://LinqInAction.net

 Manning’s home page for LINQ in Action
http://www.manning.com/marguerie

Microsoft resources

 LINQ official web site
http://msdn2.microsoft.com/en-us/netframework/aa904594.aspx

 MSDN Library LINQ documentation
http://msdn2.microsoft.com/en-us/library/bb397926(VS.90).aspx

 101 LINQ samples
C#: http://msdn2.microsoft.com/en-us/vcsharp/aa336746.aspx
VB.NET: http://msdn2.microsoft.com/en-us/vbasic/bb688088.aspx
Visual Studio 2008 samples: http://msdn2.microsoft.com/en-us/bb330936.aspx

 “LINQ to SQL: .NET Language-Integrated Query for Relational Data.” By Dinesh Kulkarni,
Luca Bolognese, Matt Warren, Anders Hejlsberg, Kit George.
http://msdn2.microsoft.com/en-us/library/bb425822.aspx

 C# 3.0 language specification
http://download.microsoft.com/download/3/8/8/388e7205-bc10-4226-b2a8-
75351c669b09/csharp%20language%20specification.doc
Also at <Program Files>\Microsoft Visual Studio 9.0\VC#\Specifications\1033 if you have
Visual Studio installed

 MSDN C# Developer Center
http://msdn2.microsoft.com/en-us/vcsharp/

 Visual Basic 9.0 language specification
http://www.microsoft.com/downloads/details.aspx?FamilyID=39de1dd0-f775-40bf-a191-
09f5a95ef500&displaylang=en
523

524 RESOURCES
 MSDN Visual Basic Developer Center
http://msdn2.microsoft.com/en-us/vbasic/

 .NET 3.5 Runtime bootstrapper
http://go.microsoft.com/?linkid=7755937

 Scott Guthrie
http://weblogs.asp.net/scottgu/archive/tags/LINQ/default.aspx

 Matt Warren
LINQ (first in a series): http://blogs.msdn.com/mattwar/archive/tags/LINQ/default.aspx
IQueryable: http://blogs.msdn.com/mattwar/archive/2007/07/30/linq-building-an-
iqueryable-provider-part-i.aspx

 Rico Mariani
LINQ to SQL performance posts:
http://blogs.msdn.com/ricom/archive/2007/06/22/dlinq-linq-to-sql-performance-part-
1.aspx

 LINQ to SQL Debug Visualizer
http://weblogs.asp.net/scottgu/archive/2007/07/31/linq-to-sql-debug-visualizer.aspx

 ADO.NET 3.5 Development Center (covers the ADO.NET Entity Framework)
http://msdn2.microsoft.com/en-us/data/aa937723.aspx

 “Parallel LINQ: Running Queries On Multi-Core Processors.” By Joe Duffy and Ed Essey.
http://msdn.microsoft.com/msdnmag/issues/07/10/PLINQ/

 DryadLINQ web site
http://research.microsoft.com/research/sv/DryadLINQ/

Community resources

 Official LINQ forum
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=123&SiteID=1

 Hooked on LINQ
http://www.hookedonlinq.com

 Charlie Calvert’s links to LINQ wiki
http://blogs.msdn.com/charlie/archive/2006/10/05/Links-to-LINQ.aspx

Blogs

 Roger Jennings
LINQ: http://oakleafblog.blogspot.com/search/label/LINQ
LINQ to SQL: http://oakleafblog.blogspot.com/search/label/DLinq
C# 3.0: http://oakleafblog.blogspot.com/search/label/C%23%203.0
VB 9.0: http://oakleafblog.blogspot.com/search/label/VB%209.0

 David Hayden
LINQ: http://davidhayden.com/blog/dave/category/52.aspx
LINQ to SQL: http://davidhayden.com/blog/dave/category/59.aspx
C# 3.0: http://davidhayden.com/blog/dave/category/58.aspx

RESOURCES 525
 Bart de Smet
LINQ: http://community.bartdesmet.net/blogs/bart/archive/tags/LINQ/default.aspx
C# 3.0: http://community.bartdesmet.net/blogs/bart/archive/tags/C_2300_+3.0/
default.aspx
VB 9.0: http://community.bartdesmet.net/blogs/bart/archive/tags/VB+9.0/default.aspx

Others

 “The entity-relationship model—toward a unified view of data.” By Peter Chen.
http://portal.acm.org/citation.cfm?id=320440

 Tomas Petricek’s articles about LINQ
http://tomasp.net/blog/linq-expand.aspx
http://tomasp.net/articles/linq-expand-update.aspx
http://tomasp.net/blog/dynamic-linq-queries.aspx
http://tomasp.net/articles/clinq-project.aspx
http://tomasp.net/articles/dynamic-flinq.aspx

 PredicateBuilder, dynamically building LINQ expression predicates
http://www.albahari.com/expressions/

 LINQPad, a LINQ tool that you can use to quickly try out LINQ expressions.
http://www.albahari.com/linqpad.html

 Community-driven LINQ providers
See the resources at the end of chapter 13.

http://community.bartdesmet.net/blogs/bart/archive/tags/C_2300_+3.0/default.aspx

index
Symbols

=> token 59
?? 420
@ 366

A

abstract syntax tree 107
Access Key 367, 407

ID 408
Action delegate types 61
Add 324, 331, 341–342

content to XML 341
See also InsertOnSubmit

Add method 53
AddAfterSelf 324, 342–343
AddBeforeSelf 324, 343
AddBooks.aspx.cs 510
AddFirst 324, 342–343
ADO.NET 10, 18
ADO.NET Entity Framework

7, 440, 514
See also LINQ to Entities

aggregate query operators 145
aggregating 398
Aggregation

Average 222
Count 221
Max 222
Min 222
operators 97, 189
Sum 222

All 227–228
operator 101

alternate data formats 392
Amazon 351, 502–504

importing from 502–504
Amazon e-commerce web

services 406
Amazon web services 367
Amazon. See LINQ to Amazon
AncestorNodes 360
Ancestors 324, 354, 360
AncestorsAndSelf 324, 360
Annotation 324
anonymous

iterators 45
methods 45, 58
structs 22

anonymous types 46, 73–78,
165, 215, 316

for grouping data 74
keyed 78
limitations 76–78
parsing with 182

AnonymousTypes.csproj 76, 78
Any 227

operator 101
APIs

System.Diagnostics.Process.
GetProcesses 46

XmlDocument 30
XmlReader 30
XPathNavigator 30
XslTransform 30

applying projections 372
architectures

three-tier 487–488
ArrayList 162

querying 162

Arrays 121
ascending order 372
ASP.NET 127–133

creating web sites 127
ASP.NET pages 127–133

creating with LINQ 128–129
AsParallel operators 514
assemblies

System.Core.dll 67, 105, 109
System.Data.Linq.dll 109
System.Xml.Linq.dll 109

Association 227
attribute 239, 243–244
tool 304

AssociationAttribute
DeleteOnNull 243
DeleteRule 243
IsForeignKey 243
IsUnique 243
Name 243
OtherKey 226, 243
Storage 243
ThisKey 243

AST. See abstract syntax tree
Attach 264
Attribute 324, 354–355

axis method 366
axis property 366

attributes 347, 353
mapping 239–244
removing 347

Author 241
class 117
mapping 241
property 183

AuthorUpdate 287
527

528 INDEX
AuthorUser 302
auto-implemented

properties 32, 51, 209, 226
AutoSync 240

Always 240
Default 240
Never 240
OnInsert 240
OnUpdate 240

Average 222
function 29
operator 101

AWSAccessKeyId 408
AWSECommerceService 408
axis methods 351–366, 377, 389

Ancestors 360
Attribute 355
Descendants 357–360
Element 354, 356
ElementsAfterSelf 362
NodesAfterSelf 362
NodesBeforeSelf 362

B

backward compatibility 20
Base Class

code 304
discriminator 303

BeginTransaction 277
benchmark 194
Bierman, Gavin 22
BinaryExpression 255–256
binding source 416
BindingSource 135
blank values 174
Book 208

class 32, 117
mapping 208

BookAuthor 244
BookCountForPublisher 284
Books

operator 448
Querying As Object 206

Boolean 13
bridge classes 376
building objects from

XML 386–392
business logic

custom 296–299

business logic layer 487–488
business logic tier. See logic layer
business object model 492
business tier

improving 294–306

C

C precursors 21
C#

extension methods in 65–67
language extensions 5, 83–84
new language features. See

language enhancements
query expression syntax 98

C# 3.0 389
CanBeNull 211, 240
Cartesian product 154
cast 372
Cast operator 101, 162

query operator 162
change tracking 249, 259
ChangeConflictException

271–272, 287
ChangeConflicts 275

MemberConflicts 275
ChangeConflicts.ResolveAll 274
changes

handling 268–278
simultaneous 268–278
submitting 260
tracking 259

CheckRules 298
child axis property 363
child elements 389
child nodes 332, 390
children

direct 357
immediate 364

CiteSeer 511
class diagram 403
classes

Author 117
Book 32, 117
bridge 376
Contact 38
DataSet 10, 109
DataTable 10
entity 38–39

Expression 176
generic 162
ObjectDumper 47, 166
ProcessData 48
Publisher 117
Review 117
SampleData 393
SqlCommand 10
SqlConnection 10
SqlReader 10
Subject 117
System.Linq.Enumerable 68,

86, 93, 109
TElement 170
TKey 170
XDocument 320
XElement 389
XmlReader 31
XmlWriter 31

code quality, impact on
performance 10

code reuse 491
collection

initializers 52–55
iterating through 195

collections 125
ArrayList 162
in-memory 121–126
nongeneric 162–164
querying 162–164
using 129–133, 135–136

collisions 457
avoiding 458
namespace collisions 458

Column 210
mapping 240–243

column 401
Column attribute 239–243

AutoSync 240
CanBeNull 240, 242
DbType 241
Expression 241
IsDbGenerated 241
IsDiscriminator 241, 304
IsPrimaryKey 210, 241–242
IsVersion 241
Name 210, 241
Storage 241
UpdateCheck 241, 243, 271

ColumnAttribute 110

INDEX 529
combining
extension methods 70
relational and XML data 399

C-Omega. See C
comma-separated lists 380
comma-separated values. See CSV
common scenarios

161–180, 386
compiled queries 294
CompiledQuery

Compile 295
compile-time

checking queries 21
validation 15, 51

CompleteCode.csproj 80
compositional constructors 320
concatenation operator 97
Conceptual Schema Definition

Language 308
conciseness versus

performance 198
Concurrency 243
concurrency 234

exceptions 272–276
optimistic 269–272
pessimistic 268

conditional queries 172–176
ConditionalQuery method 174
Configure Behavior 289
ConflictMode

ContinueOnConflict 273–274
connection string 40
ConstantExpression 256
construction models

imperative 318
constructors

compositional 320
Contains 218
content parameter 342
context 353
context free XML creation 320
Context, GetTable 212
ContinueOnConflict 274
conversion operators 97

query operators 143
Converter delegate type 61
converting

text files into XML 428
values 390

coroutines 88
versus subroutines 88

Count operator 101, 168
query operator 145

coupling, tight 386
coversion operators 191
CreateMethodCallQuery 293
CreateNavigator method 376
CreateReader 382
CreateWriter 382
creating

custom query operators
442–451

extension methods 64–68
XML 330–335, 381
XML documents 338–341
XML from databases 398–406
XML from object

graphs 392–398
criteria, grouping by 164–167
cross join 154, 224
CRUD 235–236, 278, 280–281,

285, 289, 306, 488
defined 241

CSDL. See Conceptual Schema
Definition Language

CSV 178, 182
file 430
parsing 182

current element 364
CurrentValue 275
cursors. See iterators
custom business logic 296–299
custom operators 451–463

Books 448
IsExpensive 450
LongSum 443
Min 448
Select 468
TotalPrice 447
Where 468

custom query operators 193,
442–451, 509

custom sort 169–172
CustomImplementation.csproj

455
CustomQueryOperators.cs

447–450
CustomSort method 170

D

DAL. See data access layer
data

disconnected 263–266
grouping with anonymous

types 74
updating 233–236

data access layer 486–502
creating with LINQ to

SQL 492–495
limitations 489
LINQ to SQL as 489–491
versus LINQ to SQL 488–495
when to use 488–495

data access tier. See data access
layer

data binding
ASP.NET 127–133
Windows Forms 133

data format 386
data integrity 419
data source 401
data sources

dealing with multiple 20
integrating within

programs 15
data structures 389
.Data.Linq.Mapping. See

mapping
database 398, 420

accessing in .NET 10
advanced capabilities

278–294
creating XML from 398–406
extracting XML from 8
normalization 13
object-oriented 4
reducing workload 490
relational 4, 10, 13
schema 401
tables 400
updating 386, 411–428

Database attribute 239
DatabaseValue 275
DataContext 39–42, 212, 257,

424, 495
Connection 277
CreateDatabase 241
ExecuteMethodCall 283
ExecuteQuery 279

530 INDEX
DataContext (continued)
GetCommand 214
Log 213
setting up 212
SubmitChanges 260
using external XML

mapping 245
DataContext.GetTable 40
DataGridView 135
DataGridViewCell 417
DataGridViewRow 417
DataGridViewRowCollection

417
DataLoadOptions 232

LoadWith 232
DataReader 11, 41
DataSet 109, 125, 440

querying 164
DataSet class 10
DataTable class 10
DataTable, querying 164
DB_Linq 511
dbml 250–251
DbType 241
debugging 20
declarative 13, 29–30, 52
decoupling 492
default

keyword 154
namespace 369, 416

DefaultIfEmpty 224, 420, 422
operator 420
query operator 154

deferred evaluation. See deferred
query execution

Deferred Execution 215
deferred execution

229, 492–493
deferred query execution 89–93
DeferredLoadingEnabled 494
DeferredQueryExecution.csproj

90
del.icio.us 351
delayed execution. See deferred

query execution
delegate 56–58, 61, 454

Action types 61
Converter types 61
MethodInvoker types 61
Predicate types 61

delegates, Predicate types 61
Delete 235
DELETE FROM 235
DeleteOnNull 243
DeleteOnSubmit 235, 258
DeleteRule 243
DeleteT 288
Derived Class

Code 303
Discriminator 303

DescedantNodes 358
DescendantAndSelf 324
Descendants 324, 354, 357,

359–360, 369, 416
axis method 358, 374
axis property 364
query axis method 390

DescendantsAndSelf 358–359
descending 220, 373

keyword 146
design patterns 180–186

ForEach 184–186
Functional Construction

36, 181–184
Gang of Four 180
Visitor 470

design principles
LINQ to XML 317–323

dictionaries 124
Dim keyword 50

See also implicitly typed
variable

direct children 357
DisableFormatting 348
disconnected 263–266
Discriminator Property 303
Distinct operator 101

query operator 142
Distinct.csproj 142
Distinct.vbproj 143
distributed computing 514
DLinq 21
DLLs and LINQ 109
Document Object Model. See

DOM
DOM 315–317

See also XML Document
Object Model

Domain Driven Design 361

domain model 492
domain-specific query

operators 446–451
nongeneric 459–461

DomainSpecificOperators.cs
459

DotNet2.csproj 46
DotNet2Improved.csproj 48
Dryad 514
DryadLINQ 514
DTD 338
dynamic queries 167–178

LINQ to SQL 177

E

ECS 408
EditedFormattedValue 417
EDM. See Entity Data Model
EF. See Entity Framework
Element 354
ElementAt 365
Elements 324, 354,

356, 364, 389
query axis method 389

elements 353
current 364
operators 97
removing 343

ElementsAfterSelf 324, 362
ElementsBeforeSelf 324, 362
embedded expressions 396
embedding

queries 403
query expressions 401
XML in code 393

encapsulating 386
encapsulation 14
EndsWith 218
entity 38–39

life cycle 257–266
Entity Data Model 307
Entity Framework 308

See also ADO.NET Entity
Framework

EntitySet 226, 422
Assign 244

EntitySpaces 513
equality operator 97

INDEX 531
ErrorProvider 298
events, Selecting 499
exceptions

InvalidCastException 163
OverflowException 443

ExecuteMethodCall 282, 287
ExecuteQuery 279
executing standard query

operators 455
execution

deferred 89–93, 493
immediate 92, 189–191

expanded name 320, 416
ExpensiveBooks 295
explicit

cast operators 390
dot notation 403, 451
operator overloads 372

exporting XML 399
Expression 105, 176, 241
expression

body 59
hole 336, 396
lambda 60

expression trees 6, 59, 104–109,
177, 254–257, 454

definition 105
graphical representation 106

Expression.Constant 255
Expression.GreaterThan 255
Expression.Lambda 255
Expression.Parameter 255
Expression.Property 255
extensibility 6, 12, 20,

438, 509–511
LinqBooks 509–511
mechanisms 438–442
use cases 442
what can be done with it 441

extension indexer 365
extension methods 46, 64, 73,

86, 175, 316, 376, 383, 454
in C# 65–67
combining 70
creating 64–68
discoverability 71
in VB.NET 67–68
warnings 71–73

ExtensionMethods.csproj 65, 70
ExtensionMethods.vbproj 67

F

F# 8
factory 96
FCL 10
fetching, lazy 492
File class 430
filter 418
Filter. See Where
filtering 196, 370, 406–411

with for loops 196
with foreach loops 196
operators 96
with Where 370–372

Find method 58
First 361

operator 192
first item 365
flat files 428
Flickr 351, 512
fnBookCountForPublisher 291
fnGetPublishersBooks 293
for loops, filtering with 196
ForEach design pattern

184–186
foreach loops 87, 192

filtering with 196
ForEach operator 184

multiple statements 185
and VB.NET 186
with method syntax 185
with query expressions 185

FormattedName 297
FormStrings.cs 134
from keyword 8
full expanded name 416
fully expanded XML name 333
Func delegate types 62
Function

attribute 239
keyword 60

functional construction 319,
378, 396, 401, 403

Functional Construction design
pattern 36, 181–184

functional language 8
FunctionAttribute 282

IsComposable 291
functions

Average 29
Max 29

Min 29
Sum 29
user-defined 290–294

functor 58

G

Gang of Four 180
generate 401
generating RSS feeds 504
generation operators 97
generators. See iterators
generic

classes 162
interfaces 162
types 45

GenericDictionary.csproj 124
GenericList.csproj 123
Genome 512
GetBook, stored procedure 281
GetCommand 214
GetEnumerator method 87
GetExpensiveBooks 296
GetHashCode 78
GetStringValue 345
GetTable 212

See also DataContext.
GetTable

GetXML.ashx.cs 505
Google

Groups 512
Image 512

GoogleDesktop 512
GridView 128, 134–135, 147,

155, 497
group 220

clause 165
joins 151
keyword 152

group…by query
expression 374

GroupBy 372
GroupBy operator 101, 373
GroupBy standard query

operator 373
grouping 27, 150, 199,

219–221, 372–375
join 420, 422
by multiple criteria 164–167
operators 97
titles 166

532 INDEX
Grouping.aspx.cs 150
GroupJoin 410
GroupJoin operator 101,

449, 462

H

hash code 78
Hejlsberg, Anders 22
HelloLinq.csproj 25
HelloLinq.vbproj 26
HelloLinqToSql.csproj 40
HelloLinqToXml.csproj 33
HelloLinqToXml.vbproj 34
HelloLinqWithGrouping-

AndSorting.csproj 27
HelloLinqWithGrouping-

AndSorting.vbproj 28
HelloLinqWithLiterals.vbproj

36
hierarchical XML

document 428

I

IDataErrorInfo 297
Identity 241
identity management 258
IdType parameter 408
IEnumerable 86, 252, 366
IEnumerable of XElement 356
IEquatable 142
IExecuteResult 282

ReturnValue 284
IFunctionResult 284
IGrouping 150, 374
immediate

children 364
execution 189–191
query execution 92

immutability 77
impedance mismatch 13
imperative 5, 13, 30, 419

construction 330
construction model 318, 330

implementing
IQueryable 479
LINQ 439–441
LINQ to Amazon 467–474

implicit
conversion 332
operator overloads 354
overloads 325

implicitly typed variables
45, 49–51

syntax 49–50
versus traditional syntax 50

Import 413
importing 423, 428

from Amazon 502–504
namespaces 461

improving business tier 294–306
IMultipleResult 283
IMultipleResults

GetResult 284
inheritance 14, 301–306

and databases 13
Inheritance Default 303–304
Inheritance tool 303
InheritanceMapping 303–304

attribute 239
initialization declarative 52
initializing objects 52
inline object initializer 416
in-memory collections 121–126
in-memory objects 389, 392
in-memory programming

API 316
inner join 152, 224
innerKeySelector 223
Insert 235
INSERT INTO 235
InsertAllOnSubmit 424
InsertOnSubmit 235, 258, 264
InsertT 288
int 443

limitations 443
performance versus

string 198
integrate data 428
integrating XML and relational

data 406
integration 406
IntelliSense 18, 20, 30, 51, 66

within Visual Studio 21
interchange 398
interfaces

generic 162
IQueryable 474–478

System.Collections.Generic.
IEnumerable 162

System.Collections.Generic.
List 162

into keyword 152, 166
InvalidCastException 163
IQueryable 108–109, 212,

252–254, 293, 366,
474–478, 493

CreateQuery 253
ElementType 252
Execute 253
Expression 252–253
how it works 480
implementation 479
and LINQ to Amazon

474–481
overview 477
Provider 252

IQueryProvider 252, 478
and LINQ to Amazon

474–481
See also IQueryable

is Inheritance filtering 305
IsComposable 291
IsDbGenerated 241–242
IsDiscriminator 241
IsExpensive operator 450
IsForeignKey 243
ISingleResult 283
IsPrimaryKey 210, 241
IsUnique 243
IsVersion 241–242
<Item> 371
ItemAttributes 415
ItemId 408
ItemLookup service 406
iteration collections 195
Iterator.csproj 88
iterators 87–89

anonymous 45

J

Join 223, 410
Cross 224
Inner 224
operator 101, 410, 413, 419
operators 96
Outer 224

INDEX 533
Join (continued)
query operator 152
in the where clause 222

join keyword 153, 167
joining 222–225, 407

two sequences 410
XML and relational data 411
XML data 406

joins 151–155
cross joins 154
group joins 151
inner joins 152
left outer joins 153

Joins.aspx.cs 151, 153–155

K

key concepts, LINQ to XML 319
Key keyword 78
keyed anonymous types 78
keys 166

composite 165
keywords 414

descending 146
Dim 10, 50
from 8
Function 60
group 152
into 153, 166
join 167
Key 78
let 179
orderby 8, 167, 169
select 8
this 65
var 49
where 8

L

lambda expressions 46, 55–64,
316, 454

compared to anonymous
method 59

expression body 59
and expression trees 105
parameters 60
statement body 59
syntax 59, 64

lambda operator 60
LambdaExpressions.csproj

58, 62
LambdaExpressions.vbproj 63
language enhancements 45–49
language extensions 7–9, 83–84

See also language
enhancements

Language-INtegrated Query. See
LINQ

large files 432
layers

business logic layer 487
data-access layer 487
presentation layer 487

layout 251
lazy evaluation. See deferred

query execution
lazy loading 226, 229–231, 492

disabling 494
LDAP 512
left outer join 153, 420
let clause 416, 430
let keyword 179
lightweight XML programming

API 317
LIKE 218
Lines operator 188
LINQ

with ASP.NET 126–136
classes 250
consistency of syntax 6
design goals 20–21
DLLs and namespaces 109
expressiveness 29
extensibility 6, 12

See also extensibility
as extension of .NET 83–85
flavors. See LINQ, providers
foundation 85
history 21–23
implementing 439–441
with in-memory

collections 121–126
integration with C# and

VB.NET 8
introduction 3
as language extensions 7, 9
language extensions 5
motivation behind 5, 12

and .NET 2.0 runtime 24
origins 19–23
overview 5–6
providers 6–7, 439–441, 511
query expression pattern 439
query expression syntax

369, 375
query expressions 401
and Silverlight runtime 24
the future 511–514
as a toolset 6–7
what is 4–9
why 9–19
with Windows Forms 126–136

LINQ to Amazon 463–474, 510
implementation 467–474
introduction 463
requirements 465
with IQueryable 474–481

LINQ to DataSet 6,
440, 505–509

LinqBooks 505–509
LINQ to Entities 6, 306, 309,

440, 514
See also ADO.NET Entity

Framework
LINQ to LDAP 512
LINQ to NHibernate 512
LINQ to Objects 23–29, 116,

314, 440, 509
getting started 23–29
Hello project 25–29
LinqBooks 509
overhead 195–198
performance 186–200
speed comparison 197
supported operations 126

LINQ to SQL 19, 37–42,
207–212, 398, 440, 495–502

Association 250
creating data-access layer

with 492–495
data-access layer 486, 489–502
dynamic queries 177
features 37
getting started 37–42
Hello example 38–42
in multi-tier architecture 489
LinqBooks 495–502
mapping 491

534 INDEX
LINQ to SQL (continued)
Projecting with Select 214
reading data 212–217

LINQ to SQL Designer
42, 249–252

Inheritance 251
LINQ to Text Files 178–180,

189, 429
LINQ to XML 19, 29–37,

313–314, 440, 502–505
axis methods 352, 367
class hierarchy 323
design principles 317–323
getting started 29–37
Hello example 32–37
key concepts 319
LinqBooks 502–505
queries 380
Scenarios 385
transformation 380
versus LINQ to XSD 513
why 30–32

LINQ to XSD 513
versus LINQ to XML 513

LinqBooks 32, 103, 483–486
data model 118, 486
features 117, 483
goals 116
introduction 116–121
object model 117
overview 483–486
sample data 118–121
sample uses of LINQ to

DataSet 505–509
sample uses of LINQ to

Objects 509
sample uses of LINQ to

SQL 495–502
sample uses of LINQ to

XML 502–505
samples uses of LINQ’s

extensibility 509–511
user interface 484–485

LinqBooks project
Author class 117
LinqBooks.CommonSample-

Data.cs 119
Publisher class 117
Review class 117
Subject class 117

LinqBooks.CommonSample-
Data.cs 119

LinqDataSource 129, 498
LinqInAction.Extensibility 455
LinqInAction.LinqBooks.

Common.dll 121, 130, 135
LinqInActionDataContext 410
Lisp 55
List 493
List type 47
List.FindAll method 197
lists 123

comma-separated 380
filtering 84
generic 123
sorting 84

ListView 129
literals. See XML literals
LLBLGen Pro 513
Load 324, 327, 354,

389, 409, 414
loading

immediate 231–233
lazy 229–231
when 229–233

loading XML 327
data from a web service 407

LoadOptions 327
LoadOptions.Preserve-

Whitespace 329
LoadWith 232
local names 320, 323, 416
local variables 168
Log 213
logic layer 487
logic tier. See logic layer
LongCount operator 101
LongSum operator 443
LongSum query operator 443
looping 184
loops 184

foreach 192

M

Magennis, Troy 443
mapping 238–252, 418

Association attribute 239
See also Association attribute

attributes 239–244

Column attribute. See Column
attribute

ColumnAttribute 210
Database attribute 239
Function attribute 239
FunctionAttribute 282
InheritanceMapping

attribute 239
InheritanceMappingAttribute

304
Parameter attribute 239
ParameterAttribute 282–283
Provider attribute 239
ResultType attribute 239
stored procedures 251
Table attribute 239
TableAttribute. See Table-

Attribute
table-defined functions 251
with LINQ to SQL 491
XML 245–247

Mapping Schema Language 308
Mariani, Rico 201
matching keys 410
Max 222

function 29
operator 101, 191
query operator 145, 191

MaxElement operator 193
Meijer, Erik 22
MemberConflicts 275
MetaLinq 512
method call syntax 370
MethodCallExpression 256
MethodInfo 283
MethodInfo.GetCurrentMethod

283
MethodInvoker delegate

types 61
methods

Add 53, 324
AddFirst 324
Ancestors 360
AncestorsAndSelf 324
Annotation 324
anonymous 45, 58
Attributes 324, 355
ConditionalQuery 174
CustomSort 170

INDEX 535
methods (continued)
Descendants 324,

357–360, 390
DescendantsAndSelf 324
Elements 324, 354,

356, 389
extension methods 46, 64–73,

86, 175, 454
Find 58
GetEnumerator 87
LINQ to XML axis

methods 352–366
List.FindAll 197
Load 324, 389
Nodes 324
Parse 326
ReadAllLines 179, 187
Remove 324
RemoveAll 324
RemoveAttributes 324
RemoveNodes 324
ReplaceNodes 324
Save 324
Select 91
SetAttributeValue 324
SetElementValue 324
Split 179
Square 92
TotalMemory 64
utility methods 446
WriteTo 324

Microsoft Research 8
Min 222

function 29
Min operator 101

custom implementation 448
query operator 145

minPageCount variable 168
mismatch. See impedance mis-

match; paradigm mismatch
mix and match data 432
mixing

XML and databases 406–411
XML and relational data 407

models
business object model 492
domain model 492

MSBuild 249
multiple data sources 411
MySql 511

N

Name 240–241, 243
names

expanded 320
local 320, 323
qualified 320
simplified 320–323

namespace 369, 416
collisions 458
imports 461
prefixes 320–321, 333–334

namespaces 320, 333
importing 461
and LINQ 109
System.Data.Linq.Mapping

39
System.Linq 24, 109
System.Linq.Expressions

105, 109
System.Xml 16, 29
System.Xml.Linq 24

native .NET types 372
nested queries 147, 183, 390
Nested.aspx 149
Nested.aspx.cs 148
.NET 2.0 24
.NET 2.0 CLR 20
.NET 2.0 runtime

and LINQ 24
.NET 3.5 24
.NET Framework Class Library.

See FCL
.NET Reflector 75, 89
.NET, as extended by LINQ

83–85
.NET Framework 314
new keyword

See anonymous types;
collection, initializers;
object initializers

NHibernate 16, 442, 512
Nodes 324
NodesAfterSelf 324, 362
NodesBeforeSelf 324, 362
NodeType 327
non-sequence query

operators 461
NonSequenceOperator.cs 462
normalization 13
Northwind 38

n-tier architecture. See three-tier
architecture

null coalescing operator 420

O

object graphs 146–159
creating XML from 392–398
translating 13

object hierarchies 226
object identity 258
object initializer syntax 389
object initializers 45, 52–55, 420

need for 52–53
syntax 54

object mapping 209–211
object models

conceptual versus
relational 15

object trees 226–229
ObjectDumper 47, 122, 391

class 47, 166
ObjectDumper.Write 230
ObjectInitializer.csproj 55
object-oriented code

overhead 10
object-oriented

programming 17
object-relational mapping

13–16
custom LINQ providers 512

object-relational mapping tools
limitations 11
NHibernate 16
support for compile-time

validation 15
using efficiently 15

objects 386
building from XML 386–392
initializing 52
int 443
mapping 209–211
mapping to data 238–252
StreamReader 187
transforming with XSLT 382

ObjectSpaces 22
ObjectTrackingEnabled

263, 266
OfType 305, 417

extension method 417
operator 164

536 INDEX
OldSchoolHello.csproj 27
OldSchoolXml.csproj 35
OnChanged 299
OnChanging 299
OnCreated 299–300
one-to-many relationships 421
OOP. See object-oriented

programming
OPath 22
OpenAccess 512
opening the file 430
Operation 408
operations supported 126
operator

LongCount 101
Min 101
OrderBy 101
OrderByDescending 101

operators
aggregate operators 145
aggregation 97, 189
All 101
Any 101
AsParallel 514
Average 101
Books 448
Cast 101
concatenation 97
conversion 97
conversion operators 143
Count 101, 168
coversion 191
custom 442–463, 509
Distinct 101, 142
domain-specific 459–461
element 97
equality 97
explicit cast operators 390
filtering 96
First 192
ForEach 184
generation 97
GroupBy 101
grouping 97
GroupJoin 101, 449, 462
IsExpensive 450
Join 96, 101
lambda 60
Lines 188
LongSum 443
Max 101, 191

MaxElement 193
Min 448
nongeneric 459–461
non-sequence 461
OfType 164
OrderBy 169, 372, 461
OrderByDescending 68–69
ordering 97
partitioning 96
projection 96
projection operators 139–142
quantifiers 97
restriction 370
Reverse 189–190
Select 101, 139, 190, 369
SelectMany 101, 140
set 97
Skip 101, 157
SkipWhile 101
standard query operators

68–69, 366–375
Sum 69, 102, 443
Take 69, 102, 157
TakeWhile 102
ThenBy 102
ThenByDescending 102
ToList 66, 93
ToLookup 66
TotalPrice 447
tracing execution 455
utility operators 446–451
Where 94, 102, 138, 175, 190
See also query operators;

standard query operators
optimistic concurrency 269–272
Oracle 511
Orcas 22, 24
orderby 219

keyword 8, 146, 167, 169
operator 373

OrderBy operator 101, 169,
372, 461

Descending 219
OrderByDescending 372

operator 86, 101
query operator 68–69, 171

ordering and grouping 372–375
ordering operators 97
OriginalValue 275
ORM. See object-relational

mapping

OtherKey 227, 243–244
outer join 224
outerKeySelector 223
output format 380
OverflowException 443
overhead

LINQ to Objects 195–198
reducing 10

OverwriteCurrentValues 274

P

PageCount property 176
paging 155
Paging data 215
Paging.aspx.cs 156
paradigm mismatch 12–18
parallel computing 513
Parallel FX 513
Parallel LINQ. See PLINQ
Parameter attribute 239
parameterized queries

168, 217, 280
parameters, loosely defined 11
params 332
Parent axis property 324
parse 326, 329, 429
parsing

CSV 182
imperative approach 183
with anonymous types 182
with existing types 182
with Lines operator 188
XML 329

partial classes 296
Partial methods 248
partial methods 248, 299–301
partitioning 155–159

operators 96
Partitioning.aspx.cs 157
paste XML as LINQ 379–380,

399, 402
PDC 22–23
performance 411

and code quality 10
and collections 195
improving 490
int versus string 198
versus conciseness 198
See also LINQ to Objects,

performance

INDEX 537
pessimistic concurrency 268
PFX. See Parallel FX
pipeline 71, 94
PLINQ 78, 201, 513
plumbing 10, 17

code 492
POCO 489
Polyphonic C# 21
populating 389
PostgreSQL 511
predicate 372
Predicate delegate types 61
presentation layer 487–488

database queries 491
presentation tier. See presenta-

tion layer
preserve whitespace 327
PreserveWhitespace 327
ProcessData class 48
processes variable 47
processing 398

instruction 338–339
programming API 393
programming languages

general-purpose 5
imperative 5, 13

programming models
declarative 13, 30
imperative 13, 30

programming styles
declarative 52, 184
imperative 318
rapid application develop-

ment (RAD) 489
programs, integrating data

sources 15
projection 369

operators 96
query operators 139–142

projects 507
AddBooks.aspx.cs 510
AnonymousTypes.csproj

76, 78
CompleteCode.csproj 80
CustomImplementation.

csproj 455
CustomQueryOperators.cs

447–450
DeferredQueryExecution.

csproj 90
Distinct.csproj 142

Distinct.vbproj 143
DomainSpecificOperators.cs

459
DotNet2.csproj 46
DotNet2Improved.csproj 48
ExtensionMethods.csproj

65, 70
ExtensionMethods.vbproj 67
FormStrings.cs 134
GenericDictionary.csproj 124
GenericList.csproj 123
GetXML.ashx.cs 505
Grouping.aspx.cs 150
HelloLinq.csproj 25
HelloLinq.vbproj 26
HelloLinqToSql.csproj 40
HelloLinqToXml.csproj 33
HelloLinqToXml.vbproj 34
HelloLinqWithGrouping-

AndSorting.csproj 27
HelloLinqWithGrouping-

AndSorting.vbproj 28
HelloLinqWithLiterals.vbproj

36
Iterator.csproj 88
Joins.aspx.cs 151, 153–155
LambdaExpressions.csproj

58, 62
LambdaExpressions.vbproj

63
LinqBooks.CommonSample-

Data.cs 119
Nested.aspx 149
Nested.aspx.cs 148
NonSequenceOperator.cs

462
ObjectInitializer.csproj 55
OldSchoolHello.csproj 27
OldSchoolXml.csproj 35
Paging.aspx.cs 156
Partitioning.aspx.cs 157
QueryExpressionWith-

Operators.csproj 103
SelectIndex.csproj 141
Sorting.aspx 146
Step1.aspx 128
Step1.aspx.cs 128
Step2a.aspx 130
Step2a.aspx.cs 131
Step2b.aspx 132
Step2b.aspx.cs 131

String.csproj 125
SumExtensions.cs 445
TypedArray.csproj 122
UntypedArray.csproj 121
UsingVar.csproj 50
XMLImportExport.aspx.cs

507–508
properties

Attribute axis property 366
Authors 183
auto-implemented 51, 209
child axis property 363
DeferredLoadingEnabled

494
Descendants axis

property 364
PageCount 176
Title 176

Provider 252
attribute 239

providers 439–441
LINQ to DataSet 440
LINQ to Entities 440
LINQ to Objects 440
LINQ to SQL 440
LINQ to XML 440

providers. See LINQ, providers
Publisher 301

class 117
Publisher.Books 498
PublisherUser 302

Q

qualified names 320
quantifier operators 97
queries 13

compiled 294
compile-time checking 21
conditional 172, 176
creating at run-time 176
deferred execution 89–93
dynamic 167–178
immediate execution 92
nested 147, 183
parameterized 168
presentation layer 491
query expression

pattern 453–455
refining 217–225
reusing 91

538 INDEX
queries (continued)
second-level 395
translating 452
what can be queried 121–126

query a web service 412
query expression 12, 390, 403,

415, 419
clause 370
syntax 370, 451

query expression pattern
451, 453–455

and VB.NET 454
query expressions 6, 97–104,

360, 389, 401, 403, 429
collision 457
definition 98
limitations 102–104
LINQ query expression

pattern 439
mapping to the standard

query operators 100
query expression pattern

451, 453–455
syntax 98–100, 451
translating to SQL 252–257
with ForEach operator 185

query languages, text-based 376
query operations with LINQ 5
query operators 6, 93–97,

137–145
Cast 162
creating custom operators. See

custom query operators
custom 193, 509
definition 93
domain specific. See domain-

specific query operators
domain-specific 459–461
GroupJoin 449
LongSum 443
nongeneric 459–461
non-sequence 461
OrderByDescending 86
Select 86
standard query operators 86
Sum 443
TotalPrice. See TotalPrice

operator
Where 86, 138
See also standard query

operators

query plan caching 218
query reuse 91
query syntax 98

C# 98
VB.NET 99

query translation 452
query variable 177
Query Visualizer 213
query XML data 375
QueryExpressionWithOperators

.csproj 103
querying

based on user input 173
at compile-time 176
custom data sources 442
DataSet 164
DataTable 164
LINQ to XML 376
nongeneric collections

162–164
objects 367
presentation layer 491
relational databases 401
at run-time 176
web services 442, 463–474
what can be queried 121–126
XML 377

R

RAD. See rapid application devel-
opment

rapid application
development 489

limitations 491
RDF 512
ReadAllLines 179, 430

method 187
reading data, LINQ to

SQL 212–217
reducing

database workloads 490
network traffic 490

Refactoring 362
refining queries 217–225
Reflector. See .NET Reflector
RefreshMode 273

KeepCurrentValues 273
OverwriteCurrentValues 273

related data 403
relational algebra 17

relational data 398
relational databases 4, 10, 13,

206, 398, 406
relationships 401, 403
Remove 324

See also DeleteOnSubmit
RemoveAll 324
RemoveAttributes 324
RemoveNodes 324
removing attributes 347–348
removing content from

XML 343
removing elements 343
replace an entire node 346
ReplaceNodes 324, 345
ReplaceWith 346
replacing XML 345
Request Parameters 408
request URL 409, 414
requirements 23–25

software 24
ResponseGroup 408
REST 367, 407–408

web service API 407
restriction operator 370
ResultType attribute 239
retrieve XML data from

Amazon 407
ReturnValue 285
reusing code 491
Reverse 361

operator 189–190
query operator 189

Review class 117
routines 88
ROW_NUMBER 216
RowCount to test

concurrency 270
RowVersion 271
rowversion 242
RSS 19, 117, 392, 484, 504
RSS feed 363, 392

generating 504
running example. See LinqBooks
run-time, creating queries

at 176

S

SampleData 393
Save 324, 348

INDEX 539
SaveOptions 348
saving XML 348
SAX 316
Scalar functions 290
scenarios, common 161–180
schema 400
Schulte, Wolfram 22
second-level queries 395
Select 369

all elements 389
method 91
operator 86, 101, 190,

369, 468
standard query operator 368

select clause 166, 389, 407
select keyword 8
Select query operator 139, 155

with index 141
SelectIndex.csproj 141
selecting 411
Selecting event 499
SelectMany operator 101
SelectMany query operator

140, 154–155
with index 141

SendPropertyChanged 300
SendPropertyChanging 300
separation of concerns 488, 491
sequences 85–93, 352, 369

sorting 372
servers, improving

performance 490
Service 408
set operations with LINQ 5
set operators 97
SetAttributeValue 324, 347
SetBaseUri 327
SetElementValue 324, 343–344
SetLineInfo 327
SharePoint 512
Silverlight runtime and

LINQ 24
simplified names 320–323
single dot 365
Skeet, Jon 191
Skip 215

operator 101
query operator 157

SkipWhile operator 101
Slinq 512

SOAP 367, 407–408
software requirements 24
sort 372
sorting 27, 146, 219–221

ascending order 372
custom sort 169–172
descending order 373
keys 165
sequences 372

Sorting.aspx 146
Split 430

method 179
SQL

dialects 11
pass-through 278–280
queries 13
translating to query

expressions 252–257
SQL injection 279
SQL injection attack

avoiding 218
SQL pass-through 278–280
SQL Server 206

with LINQ to SQL 206
SQL. See LINQ to SQL
SqlCommand class 10
SqlConnection class 10
SqlExpress 247
SqlMetal 247–249, 401, 403

code 247
language 247
mapping stored

procedures 248
Namespace 247

SqlMethods 218
Like 218

SqlReader class 10
SQLXML 4.0 18
Square method 92
SSDL. See Store Schema Defini-

tion Language
standard query operators

68–69, 86, 96–97, 137–145,
314, 352, 360, 366–375, 377

aggregate. See aggregate query
operators

Cast. See Cast operator
compared to query

expressions 100

conversion. See conversion
operators

Count. See Count operator
custom

implementations 451–463
DefaultIfEmpty. See Default-

IfEmpty, query operator
Distinct. See Distinct operator
ForEach. See ForEach

operator
improvements 443
Join. See Join, query operator
Lines. See Lines operator
Max. See Max, operator; Max,

query operator
MaxElement. See Max-

Element operator
Min. See Min, query operator
OfType. See OfType, operator
OrderBy. See OrderBy

operator
OrderByDescending. See

OrderByDescending,
query operator

projection. See projection,
query operators

Reverse. See Reverse, operator
Select. See Select
SelectMany. See SelectMany

operator
Skip. See Skip, query operator
Sum. See Sum, query operator
Take. See Take, query operator
ToArray. See ToArray, query

operator
ToDictionary. See ToDic-

tionary, query operator
ToList. See ToList, query

operator
tracing execution 455
Where. See Where operator

StartsWith 218
statement body 59
statement lambda 60

and VB.NET 186
statements, yield return 87
Step1.aspx 128
Step1.aspx.cs 128
Step2a.aspx 130
Step2a.aspx.cs 131

540 INDEX
Step2b.aspx 132
Step2b.aspx.cs 131
Storage 241–243
Store Schema Definition

Language 308
stored procedures 280–290

reading data 281–285
updating data 285–290

storing 398
stream type 22
streaming 187–189, 432, 512

API 315
StreamReader object 187
String.csproj 125
String.Format 279
String.Join 361
strings 125

length in databases 13
strongly typed 6, 18, 20–21,

38, 40
stub code 403
Subject 222

class 117
SubmitChanges 234, 260,

270, 424
ChangeConflictException

273
Updating 234

submitting changes 260
subroutines 88

versus coroutines 88
SubscriptionId 408
Sum 222

function 29
operator 102, 443
query operator 69, 145

SumExtensions.cs 445
SyncLINQ 512
syntactic sugar 7
syntax

consistency 6
explicit dot notation 451
method syntax 451
query expression syntax 451

System.Collections.Generic.IEn
umerable 162

System.Collections.Generic.List
162

System.Core.dll 62, 67–68,
105, 109

System.Data.DataSetExtensions.
dll 109

System.Data.Linq 39, 209
System.Data.Linq.Compiled-

Query 295
System.Data.Linq.DataLoad-

Options 232
System.Data.Linq.dll 109
System.Data.Linq.EntitySet 226
System.Data.Linq.Mapping 39

See also Mapping
System.Data.Linq.Table. See

Table
System.Diagnostics.Process.Get-

Processes 46
System.Linq 24, 109, 129, 452
System.Linq.Enumerable 68,

86, 93–94, 109, 126
System.Linq.Expressions

105, 109
System.Linq.IQueryable 212
System.Runtime.Compiler-

Services.Extension 67
System.Transactions 277
System.Xml 16, 18, 29–30
System.Xml.Linq 24
System.Xml.Linq.dll 109
System.Xml.XmlReader 414
System.Xml.XPath 376
System.Xml.Xsl 382

T

Table 210, 212
attribute 239
mapping 240

TableAttribute 240
Name 240

Table-valued functions 290
<Tag> 368
Tag Lookup service 367, 369
<TaggedItems> 368
Take 215

operator 102
query operator 69, 157

TakeWhile operator 102
TElement class 170
template 380
text files, transforming into

XML 428–432

text-based query language 376
ThenBy operator 102
ThenByDescending

operator 102
this keyword 65
ThisKey 243–244
three-tier architecture 487–488

and LINQ to SQL 489
tiers. See layers
tight coupling 386
TimeStamp 264, 271
timestamp 241–242
<Title> 369
Title property 176
TKey class 170
ToArray 231

query operator 143
ToDictionary 231

query operator 144
tokens => 59
ToList 231

operator 66, 93
query operator 143, 156

ToLookup 231
operator 66

tools
NHibernate 16
object-relational mapping 15
SqlMetal 247–249

TotalMemory sample helper
method 64

TotalPrice operator 447
tracking changes 259
traditional code

drawbacks 10
transactions 276–278
TransactionScope 277

Complete 278
transformation 387

technology 381
transforming

LINQ to XML objects with
XSLT 382

text files into XML 428–432
with XSLT 382
XML 377–378, 380–383,

387, 389
translating 13

queries 452
SQL to query

expressions 252–257

INDEX 541
traverse 357
triple-dot notation 365
tuple 22
type safety. See strongly typed
type, List 47
TypedArray.csproj 122
types

anonymous 46, 73–78, 165
generic 45, 454
without names 74

typing, strong 6, 18

U

UnaryExpression 256
unit of work 234, 263
Unix pipes 71
UntypedArray.csproj 121
Update 234
UpdateAuthor 288
UpdateCheck 241, 243, 265

Always 241, 271
Never 241, 243, 271
WhenChanged 241, 271

UpdateT 288
updating

data 233–236
databases 386, 411–428

updating XML content 344
Use Runtime 290
User 301
user friendly XML API 406
user input, querying 173
user interfaces

LinqBooks 484–485
UserBase 302
user-defined functions 290–294
UserType 301
UsingVar.csproj 50
utility methods 446
utility query operators 446–451

V

validation, compile-time 15
Value extension 365
Value property 343
values

blank 174
converting 390

Vanatec 512

var keyword 49
See also implicitly typed

variables
variables

grouping 166
implicitly typed 45, 49–51
local 168
minPageCount 168
processes 47
query 177

VB.NET
extension methods in 67–68
and ForEach operator 186
language extensions 5, 83–84
new language features. See
language enhancements
query syntax 99
and statement lambdas 186

view 307
views, creating on object

graphs 146–159
Visitor design pattern 470
Visual Basic 335, 363, 392
Visual Basic XML axis

properties 363
Visual Studio 24, 126

and IntelliSense 21
Visual Studio .NET Add-in 379
Visual Studio 2008 399
Visual Studio Add-In 399

W

W3C Information Set 317
Warren, Matt 479
web applications. See ASP.NET
web request 414
web services 367

querying 442, 463–474
See also LINQ to Amazon

Where 361, 370
filtering with LINQ to

SQL 217–219
where clause 168

predicate 372
where keyword 8
Where operator 86, 94, 102,

175, 190, 468
filtering with 370–372

where query expression
clause 371

Where query operator 138
White, Eric 178, 187
Windows applications. See

Windows Forms
Windows Forms 133, 413

creating 133
creating with LINQ 134–135

Windows Presentation
Foundation 370

WinFS 22
WMI 511
WmiLinq 511
WriteTo 324

X

X# 21
XAttribute 324, 347, 366, 372
XCData 326
XComment 325, 341, 358
XContainer 324, 345
XDeclaration 325, 339
XDocument 320, 325, 328,

338, 382
XDocumentType 325, 340
XElement 324, 330, 354, 372,

389, 414
Xen 21
XHTML 378, 381
XLinq 21
XML

adding content to 341
alternate formats 389
building objects from

386–392
context-free creation 320
creating 330, 335, 381
creating from databases

398–406
creating from object

graphs 392–398
documents 319
DOM. See XML DOM
embedding in code 393
extracting from databases 8
loading 327
mapping 245–247
mapping to objects 16–18
mixing with databases

406–411
names. See XML names

542 INDEX
XML (continued)
namespaces. See XML

namespaces
parsing 329
pervasiveness 17
programming APIs 316
querying 377, 386
reading 411–428
removing content from 343
saving 348
transforming 377–383,

386–387, 389
transforming text files

into 428–432
ubiquity 30
updating content 344

XML API 314, 316
user-friendly 406

XML comments 328
XML declaration 338–339
XML declarations 328
XML Document Object

Model 30
XML document type

definition 328, 340
XML documents 319

creating 338–341
XML DOM 316, 319

See XML Document Object
Model

XML element 354, 430

XML feed 395
XML formats 389
XML literals 36, 335, 363, 393
XML names 320
XML namespace 320–321, 334
XML processing

instructions 328, 339
XML programming APIs

316, 386
lightweight 317

XML query axis methods 342
XML representation 398
XML syntax 392, 396
XML trees 401
XML web services 351
XML. See LINQ to XML
XmlDocument API 30
XMLImportExport.aspx.cs

507–508
XmlMapping 245

Association 246
Column 246
Database 246
Member 245
Table 246
Type 245

XmlMappingSource 246
XMLNamespaceManager 322
XmlNode 315
XmlReader 31, 315, 327, 382
XmlReader API 30

XmlTextReader 315
XmlTextWriter 348
XmlWriter 31, 348, 382
XName 320, 322–323, 325,

332, 354
XNamespace 323, 325, 333,

369, 416
XNamespace.Xmlns 334
XNode 324, 358, 376
XObject 324
XPath 5, 12, 29, 316, 373, 376

expressions 376
queries 376–377

XPathEvaluate 376
XPathNavigator 315, 376

API 30
XPathSelectElement 376
XProcessingInstruction 326,

339, 358
XQuery 20, 22, 316
XSD. See LINQ to XSD
XSL 382
XslCompiledTransform 382
XSLT 29, 316, 381–382
XslTransform API 30
XStreamingElement 326
XText 326

Y

yield return 87

	LINQ in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How the book is organized
	Tools used
	Source code
	Conventions
	Typographical conventions
	Author Online
	About the authors
	About the title
	About the cover illustration
	Getting started
	Introducing LINQ
	1.1 What is LINQ?
	1.1.1 Overview
	1.1.2 LINQ as a toolset
	1.1.3 LINQ as language extensions

	1.2 Why do we need LINQ?
	1.2.1 Common problems
	1.2.2 Addressing a paradigm mismatch
	1.2.3 LINQ to the rescue

	1.3 Design goals and origins of LINQ
	1.3.1 The goals of the LINQ project
	1.3.2 A bit of history

	1.4 First steps with LINQ to Objects: Querying collections in memory
	1.4.1 What you need to get started
	1.4.2 Hello LINQ to Objects

	1.5 First steps with LINQ to XML: Querying XML documents
	1.5.1 Why we need LINQ to XML
	1.5.2 Hello LINQ to XML

	1.6 First steps with LINQ to SQL: Querying relational databases
	1.6.1 Overview of LINQ to SQL’s features
	1.6.2 Hello LINQ to SQL
	1.6.3 A closer look at LINQ to SQL

	1.7 Summary

	C# and VB.NET language enhancements
	2.1 Discovering the new language enhancements
	2.1.1 Generating a list of running processes
	2.1.2 Grouping results into a class

	2.2 Implicitly typed local variables
	2.2.1 Syntax
	2.2.2 Improving our example using implicitly typed local variables

	2.3 Object and collection initializers
	2.3.1 The need for object initializers
	2.3.2 Collection initializers
	2.3.3 Improving our example using an object initializer

	2.4 Lambda expressions
	2.4.1 A refresher on delegates
	2.4.2 Anonymous methods
	2.4.3 Introducing lambda expressions

	2.5 Extension methods
	2.5.1 Creating a sample extension method
	2.5.2 More examples using LINQ’s standard query operators
	2.5.3 Extension methods in action in our example
	2.5.4 Warnings

	2.6 Anonymous types
	2.6.1 Using anonymous types to group data into an object
	2.6.2 Types without names, but types nonetheless
	2.6.3 Improving our example using anonymous types
	2.6.4 Limitations

	2.7 Summary

	LINQ building blocks
	3.1 How LINQ extends .NET
	3.1.1 Refresher on the language extensions
	3.1.2 The key elements of the LINQ foundation

	3.2 Introducing sequences
	3.2.1 IEnumerable<T>
	3.2.2 Refresher on iterators
	3.2.3 Deferred query execution

	3.3 Introducing query operators
	3.3.1 What makes a query operator?
	3.3.2 The standard query operators

	3.4 Introducing query expressions
	3.4.1 What is a query expression?
	3.4.2 Writing query expressions
	3.4.3 How the standard query operators relate to query expressions
	3.4.4 Limitations

	3.5 Introducing expression trees
	3.5.1 Return of the lambda expressions
	3.5.2 What are expression trees?
	3.5.3 IQueryable, deferred query execution redux

	3.6 LINQ DLLs and namespaces
	3.7 Summary

	Querying objects in memory
	Getting familiar with LINQ to Objects
	4.1 Introducing our running example
	4.1.1 Goals
	4.1.2 Features
	4.1.3 The business entities
	4.1.4 Database schema
	4.1.5 Sample data

	4.2 Using LINQ with in-memory collections
	4.2.1 What can we query?
	4.2.2 Supported operations

	4.3 Using LINQ with ASP.NET and Windows Forms
	4.3.1 Data binding for web applications
	4.3.2 Data binding for Windows Forms applications

	4.4 Focus on major standard query operators
	4.4.1 Where, the restriction operator
	4.4.2 Using projection operators
	4.4.3 Using Distinct
	4.4.4 Using conversion operators
	4.4.5 Using aggregate operators

	4.5 Creating views on an object graph in memory
	4.5.1 Sorting
	4.5.2 Nested queries
	4.5.3 Grouping
	4.5.4 Using joins
	4.5.5 Partitioning

	4.6 Summary

	Beyond basic in-memory queries
	5.1 Common scenarios
	5.1.1 Querying nongeneric collections
	5.1.2 Grouping by multiple criteria
	5.1.3 Dynamic queries
	5.1.4 LINQ to Text Files

	5.2 Design patterns
	5.2.1 The Functional Construction pattern
	5.2.2 The ForEach pattern

	5.3 Performance considerations
	5.3.1 Favor a streaming approach
	5.3.2 Be careful about immediate execution
	5.3.3 Will LINQ to Objects hurt the performance of my code?
	5.3.4 Getting an idea about the overhead of LINQ to Objects
	5.3.5 Performance versus conciseness: A cruel dilemma?

	5.4 Summary

	Querying relational data
	Getting started with LINQ to SQL
	6.1 Jump into LINQ to SQL
	6.1.1 Setting up the object mapping
	6.1.2 Setting up the DataContext

	6.2 Reading data with LINQ to SQL
	6.3 Refining our queries
	6.3.1 Filtering
	6.3.2 Sorting and grouping
	6.3.3 Aggregation
	6.3.4 Joining

	6.4 Working with object trees
	6.5 When is my data loaded and why does it matter?
	6.5.1 Lazy loading
	6.5.2 Loading details immediately

	6.6 Updating data
	6.7 Summary

	Peeking under the covers of LINQ to SQL
	7.1 Mapping objects to relational data
	7.1.1 Using inline attributes
	7.1.2 Mapping with external XML files
	7.1.3 Using the SqlMetal tool
	7.1.4 The LINQ to SQL Designer

	7.2 Translating query expressions to SQL
	7.2.1 IQueryable
	7.2.2 Expression trees

	7.3 The entity life cycle
	7.3.1 Tracking changes
	7.3.2 Submitting changes
	7.3.3 Working with disconnected data

	7.4 Summary

	Advanced LINQ to SQL features
	8.1 Handling simultaneous changes
	8.1.1 Pessimistic concurrency
	8.1.2 Optimistic concurrency
	8.1.3 Handling concurrency exceptions
	8.1.4 Resolving conflicts using transactions

	8.2 Advanced database capabilities
	8.2.1 SQL pass-through: Returning objects from SQL queries
	8.2.2 Working with stored procedures
	8.2.3 User-defined functions

	8.3 Improving the business tier
	8.3.1 Compiled queries
	8.3.2 Partial classes for custom business logic
	8.3.3 Taking advantage of partial methods
	8.3.4 Using object inheritance

	8.4 A brief diversion into LINQ to Entities
	8.5 Summary

	Manipulating XML
	Introducing LINQ to XML
	9.1 What is an XML API?
	9.2 Why do we need another XML programming API?
	9.3 LINQ to XML design principles
	9.3.1 Key concept: functional construction
	9.3.2 Key concept: context-free XML creation
	9.3.3 Key concept: simplified names

	9.4 LINQ to XML class hierarchy
	9.5 Working with XML using LINQ
	9.5.1 Loading XML
	9.5.2 Parsing XML
	9.5.3 Creating XML
	9.5.4 Creating XML with Visual Basic XML literals
	9.5.5 Creating XML documents
	9.5.6 Adding content to XML
	9.5.7 Removing content from XML
	9.5.8 Updating XML content
	9.5.9 Working with attributes
	9.5.10 Saving XML

	9.6 Summary

	Query and transform XML with LINQ to XML
	10.1 LINQ to XML axis methods
	10.1.1 Element
	10.1.2 Attribute
	10.1.3 Elements
	10.1.4 Descendants
	10.1.5 Ancestors
	10.1.6 ElementsAfterSelf, NodesAfterSelf, ElementsBeforeSelf, and NodesBeforeSelf
	10.1.7 Visual Basic XML axis properties

	10.2 Standard query operators
	10.2.1 Projecting with Select
	10.2.2 Filtering with Where
	10.2.3 Ordering and grouping

	10.3 Querying LINQ to XML objects with XPath
	10.4 Transforming XML
	10.4.1 LINQ to XML transformations
	10.4.2 Transforming LINQ to XML objects with XSLT

	10.5 Summary

	Common LINQ to XML scenarios
	11.1 Building objects from XML
	11.1.1 Goal
	11.1.2 Implementation

	11.2 Creating XML from object graphs
	11.2.1 Goal
	11.2.2 Implementation

	11.3 Creating XML with data from a database
	11.3.1 Goal
	11.3.2 Implementation

	11.4 Filtering and mixing data from a database with XML data
	11.4.1 Goal
	11.4.2 Implementation

	11.5 Reading XML and updating a database
	11.5.1 Goal
	11.5.2 Implementation

	11.6 Transforming text files into XML
	11.6.1 Goal
	11.6.2 Implementation

	11.7 Summary

	LINQing it all together
	Extending LINQ
	12.1 Discovering LINQ’s extension mechanisms
	12.1.1 How the LINQ flavors are LINQ implementations
	12.1.2 What can be done with custom LINQ extensions

	12.2 Creating custom query operators
	12.2.1 Improving the standard query operators
	12.2.2 Utility or domain-specific query operators

	12.3 Custom implementations of the basic query operators
	12.3.1 Refresh on the query translation mechanism
	12.3.2 Query expression pattern specification
	12.3.3 Example 1: tracing standard query operators’ execution
	12.3.4 Limitation: query expression collision
	12.3.5 Example 2: nongeneric, domain-specific operators
	12.3.6 Example 3: non-sequence operator

	12.4 Querying a web service: LINQ to Amazon
	12.4.1 Introducing LINQ to Amazon
	12.4.2 Requirements
	12.4.3 Implementation

	12.5 IQueryable and IQueryProvider: LINQ to Amazon advanced edition
	12.5.1 The IQueryable and IQueryProvider interfaces
	12.5.2 Implementation
	12.5.3 What happens exactly

	12.6 Summary

	LINQ in every layer
	13.1 Overview of the LinqBooks application
	13.1.1 Features
	13.1.2 Overview of the UI
	13.1.3 The data model

	13.2 LINQ to SQL and the data access layer
	13.2.1 Refresher on the traditional three-tier architecture
	13.2.2 Do we need a separate data access layer or is LINQ to SQL enough?
	13.2.3 Sample uses of LINQ to SQL in LinqBooks

	13.3 Use of LINQ to XML
	13.3.1 Importing data from Amazon
	13.3.2 Generating RSS feeds

	13.4 Use of LINQ to DataSet
	13.5 Using LINQ to Objects
	13.6 Extensibility
	13.6.1 Custom query operators
	13.6.2 Creating and using a custom LINQ provider

	13.7 A look into the future
	13.7.1 Custom LINQ flavors
	13.7.2 LINQ to XSD, the typed LINQ to XML
	13.7.3 PLINQ: LINQ meets parallel computing
	13.7.4 LINQ to Entities, a LINQ interface for the ADO.NET Entity Framework

	13.8 Summary

	appendix: The standard query operators
	resources
	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

