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foreword
There are two kinds of pianists.

 There are some pianists who play not because they enjoy it, but because their par-
ents force them to take lessons. Then there are those who play the piano because it
pleases them to create music. They don’t need to be forced; on the contrary, they
sometimes don’t know when to stop.

 Of the latter kind, there are some who play the piano as a hobby. Then there are
those who play for a living. That requires a whole new level of dedication, skill, and tal-
ent. They may have some degree of freedom about what genre of music they play and
the stylistic choices they make in playing it, but fundamentally those choices are
driven by the needs of the employer or the tastes of the audience.

 Of the latter kind, there are some who do it primarily for the money. Then there
are those professionals who would want to play the piano in public even if they weren’t
being paid. They enjoy using their skills and talents to make music for others. That
they can have fun and get paid for it is so much the better.

 Of the latter kind, there are some who are self-taught, who “play by ear,” who
might have great talent and ability but cannot communicate that intuitive understand-
ing to others except through the music itself. Then there are those who have formal
training in both theory and practice. They can explain what techniques the composer
used to achieve the intended emotional effect, and use that knowledge to shape their
interpretation of the piece.

 Of the latter kind, there are some who have never looked inside their pianos. Then
there are those who are fascinated by the clever escapements that lift the damper felts
a fraction of a second before the hammers strike the strings. They own key levelers
and capstan wrenches. They take delight and pride in being able to understand the
mechanisms of an instrument that has five to ten thousand moving parts.
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 Of the latter kind, there are some who are content to master their craft and exer-
cise their talents for the pleasure and profit it brings. Then there are those who are
not just artists, theorists, and technicians; somehow they find the time to pass that
knowledge on to others as mentors.

 I have no idea if Jon Skeet is any kind of pianist. But from my email conversations
with him as one of the C# team’s Most Valuable Professionals over the years, from
reading his blog and from reading every word of this book at least three times, it has
become clear to me that Jon is that latter kind of software developer: enthusiastic,
knowledgeable, talented, curious and analytical—a teacher of others.

 C# is a highly pragmatic and rapidly evolving language. Through the addition of
query comprehensions, richer type inference, a compact syntax for anonymous func-
tions, and so on, I hope that we have enabled a whole new style of programming while
still staying true to the statically typed, component-oriented approach that has made
C# a success.

 Many of these new stylistic elements have the paradoxical quality of feeling very
old (lambda expressions go back to the foundations of computer science in the first
half of the twentieth century) and yet at the same time feeling new and unfamiliar to
developers used to a more modern object-oriented approach.

 Jon gets all that. This book is ideal for professional developers who have a need to
understand the “what” and “how” of the latest revision to C#. But it is also for those
developers whose understanding is enriched by exploring the “why” of the language’s
design principles.

 Being able to take advantage of all that new power will require new ways of think-
ing about data, functions, and the relationship between them. It’s not unlike trying to
play jazz after years of classical training—or vice versa. Either way, I am looking for-
ward to finding out what sorts of functional compositions the next generation of C#
programmers come up with. Happy composing, and thanks for choosing the key of
C# to do it in.

 
 ERIC LIPPERT

 Senior Software Engineer, Microsoft



preface
I have a sneaking suspicion that many authors have pretty much stumbled into writing
books. That’s certainly true in my case. I’ve been writing about Java and C# on the
Web and in newsgroups for a long time, but the leap from that to the printed page is
quite a large one. From my perspective, it’s been an “anti-Lemony Snicket”—a series
of fortunate events.

 I’ve been reviewing books for various publishers, including Manning, for a while. In
April 2006 I asked whether it would be OK to write a blog entry on a book that looked
particularly promising: PowerShell in Action. In the course of the ensuing conversation,
I somehow managed to end up on the author team for Groovy in Action. I owe a huge
debt of thanks to my wife for even allowing me to agree to this—which makes her
sound like a control freak until you understand we were expecting twins at the time,
and she had just gone into the hospital. It wasn’t an ideal time to take on extra work,
but Holly was as supportive as she’s always been.

 Contributing to the Groovy book took a lot of hard work, but the writing bug
firmly hit me during the process. When talking with the principal author, Dierk
König, I realized that I wanted to take on that role myself one day. So, when I heard
later that Manning was interested in publishing a book about C#3, I started writing a
proposal right away.

 My relationship with C# itself goes further back. I started using it in 2002, and
have kept up with it ever since. I haven’t been using it professionally for all that
time—I’ve been flitting back and forth between C# and Java, depending on what my
employers wanted for the projects I was working on. However, I’ve never let my inter-
est in it drop, posting on the newsgroups and developing code at home. Although I
xix
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didn’t start using C#2 until Visual Studio 2005 was close to release, I’ve tracked C#3
more closely.

 While watching the gradual emergence of C#3, I’ve also been watching the devel-
oper reaction to C#2—and I think people are missing out. The adoption rate of C#2
has been quite slow for various reasons, but where it is being used, I believe its full
potential isn’t being realized. I want to fix that.

 The proposal I made to Manning was narrow in focus, but deep in scope. My mis-
sion is a simple one: to take existing C#1 developers and turn them into confident
and competent C#2 and 3 developers who understand the language at a deep level. At
the time of this writing, I don’t know of any other books that have a similar explicit
aim. I’m immensely grateful to Manning for allowing me to write the book I really
wanted to, without interfering and forcing it down a more conventional path. At the
same time, the folks at Manning expertly guided the book and made it much more
useful than it would have been otherwise.

 I tried to write the book that I would want to read when learning C#2 and 3. To that
extent, I think I’ve succeeded. Whether that means it’s a book that anyone else will want
to read remains to be seen—but if you, the reader, have even a fraction of the enjoy-
ment when reading it that I’ve had writing it, you’re in for a good time.
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about this book
This is a book about C#2 and 3—it’s as simple as that. I barely cover C#1, and only cover
the .NET Framework libraries and Common Language Runtime (CLR) when they’re
related to the language. This is a deliberate decision, and the result is quite a different
book from most of the C# and .NET books I’ve seen.

 By assuming a reasonable amount of knowledge of C#1, I avoided spending hun-
dreds of pages covering material that I think most people already understand. That
gave me much more room to expand on the details of C#2 and 3, which is what I hope
you’re reading the book for.

 I believe that many developers would be less frustrated with their work if they had
a deeper connection with the language they’re writing in. I know it sounds geeky in the
extreme to talk about having a “relationship” with a programming language, but that’s
the best way I can describe it. This book is my attempt to help you achieve that sort of
understanding, or deepen it further. It won’t be enough on its own—it should be a
companion to your coding, guiding you and suggesting some interesting avenues to
explore, as well as explaining why your code behaves the way it does.

Who should read this book?

During the course of the multiple rounds of reviewing this book underwent as I was
writing it, one comment worried me more than most: “This is a book for C# experts.”
That was never the intention, and I hope that (partly thanks to that honest feedback)
it’s not an accurate reflection of who will get the most out of this book.

 I don’t particularly want to write for experts. Aside from anything else, I’ve got less
to offer experts than I have “intermediate” developers. I want to write for people who
xxiii
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want to become experts. That’s what this book is about. If you feel passionately about
computing, but happen not to have studied C#2 or 3 in much detail, this book is
aimed squarely at you. If you want to immerse yourself in C# until it’s part of your
bloodstream, then I’d feel honored to be the one to push you under. If you feel frus-
trated when you arrive at working code, but don’t quite know why it works, I want to
help you to understand.

 Having said all that, this book is not meant for complete beginners. If you haven’t
used C#1 before, you’ll find this book very hard work. That doesn’t mean it won’t be
useful to you—but please go and find a book (or at least a tutorial) on C#1 before you
go much further. The first chapter will tease you with the joys of C#2 and 3, but you
won’t be able to appreciate them if you’re worrying about how variables are declared
and where the semicolons go.

 I’m not going to claim that reading this book will make you a fabulous coder.
There’s so much more to software engineering than knowing the syntax of the lan-
guage you happen to be using. I give some words of guidance here and there, but ulti-
mately there’s a lot more gut instinct in development than most of us would like to
admit. What I will claim is that if you read and understand this book, you should feel
comfortable with C#2 and 3, and free to follow your instincts without too much appre-
hension. It’s not about being able to write code that no one else will understand
because it uses unknown corners of the language: it’s about being confident that you
know the options available to you, and know which path the C# idioms are encourag-
ing you to follow.

Roadmap

The book’s structure is simple. There are three parts and a single appendix. The first
part serves as an introduction, including a refresher on topics in C#1 that are impor-
tant for understanding C#2 and 3, and that are often misunderstood. The second part
covers the new features in C#2. The third part covers the new features in C#3.

 There are occasions where organizing the material this way means we come back
to a topic a couple of times—in particular delegates are improved in C#2 and then
again in C#3—but there is method in my madness. I anticipate that a number of read-
ers will initially only be using C#2 for the bulk of their professional work, but with an
interest in learning C#3 for new projects and hobbies. That means that it is useful to
clarify what is in which version. It also provides a feeling of context and evolution—it
shows how the language has developed over time.

 Chapter 1 sets the scene by taking a simple piece of C#1 code and evolving it, see-
ing how C#2 and 3 allow the source to become more readable and powerful. We look
at the historical context in which C# has grown, and the technical context in which it
operates as part of a complete platform: C# as a language builds on framework librar-
ies and a powerful runtime to turn abstraction into reality.

 Chapter 2 looks back at C#1, and three specific aspects: delegates, the type system
characteristics, and the differences between value types and reference types. These
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topics are often understood “just well enough” by C#1 developers, but C#2 and 3
develop them significantly, so a solid grounding is required in order to make the most
of the new features.

 Chapter 3 tackles the biggest feature of C#2, and potentially the hardest to grasp:
generics. Methods and types can be written generically, with type parameters standing
in for real types which are specified in the calling code. Initially it’s as confusing as this
description makes it sound, but once you understand generics you’ll wonder how you
survived without them.

 If you’ve ever wanted to represent a null integer, chapter 4 is for you. It introduces
nullable types, a feature built on generics and taking advantage of support in the lan-
guage, runtime, and framework.

 Chapter 5 shows the improvements to delegates in C#2. You may have only used
delegates for handling events such as button clicks before now. C#2 makes it easier to
create delegates, and library support makes them more useful for situations other
than events.

 In chapter 6 we examine iterators, and the easy way to implement them in C#2.
Few developers use iterator blocks, but as LINQ to Objects is built on iterators, they
will become more and more important. The lazy nature of their execution is also a key
part of LINQ.

 Chapter 7 shows a number of smaller features introduced in C#2, each making life
a little more pleasant. The language designers have smoothed over a few rough places
in C#1, allowing more flexible interaction with code generators, better support for
utility classes, more granular access to properties, and more.

 Chapter 8 once again looks at a few relatively simple features—but this time in
C#3. Almost all the new syntax is geared toward the common goal of LINQ but the
building blocks are also useful in their own right. With anonymous types, automati-
cally implemented properties, implicitly typed local variables, and greatly enhanced
initialization support, C#3 gives a far richer language with which your code can
express its behavior.

 Chapter 9 looks at the first major topic of C#3—lambda expressions. Not content
with the reasonably concise syntax we saw in chapter 5, the language designers have
made delegates even easier to create than in C#2. Lambdas are capable of more—they
can be converted into expression trees: a powerful way of representing code as data.

 In chapter 10 we examine extension methods, which provide a way of fooling the
compiler into believing that methods declared in one type actually belong to another.
At first glance this appears to be a readability nightmare, but with careful consider-
ation it can be an extremely powerful feature—and one which is vital to LINQ.

 Chapter 11 combines the previous three chapters in the form of query expres-
sions, a concise but powerful way of querying data. Initially we concentrate on LINQ to
Objects, but see how the query expression pattern is applied in a way which allows
other data providers to plug in seamlessly.

 Chapter 12 reaps the rewards of query expressions combined with expression
trees: it shows how LINQ to SQL is able to convert what appears to be normal C# into
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SQL statements. We also take a speedy look at some other LINQ providers—those in
the .NET Framework, some third-party ones which are gradually appearing, and a
sneak peek at what Microsoft has in store.

 We wind down in chapter 13 with a speculative glance at what the future might
hold. We examine how the changes to C# will affect the flavor and texture of the code
we write in it, as well as looking at some future trends in technology.

 The appendix is a straightforward piece of reference material: the LINQ standard
query operators, with some examples. Strictly speaking, this is not part of C#3—it’s
library material—but I believe it’s so useful that readers will welcome its inclusion.

Terminology and typography

Most of the terminology of the book is explained as it goes along, but there are a few
definitions that are worth highlighting here. I use C#1, C#2, and C#3 in a reasonably
obvious manner—but you may see other books and websites referring to C#1.0, C#2.0,
and C#3.0. The extra “.0” seems redundant to me, which is why I’ve omitted it—I hope
the meaning is clear.

 I’ve appropriated a pair of terms from a C# book by Mark Michaelis. To avoid the
confusion between “runtime” being an execution environment (as in “the Common
Language Runtime”) and a point in time (as in “overriding occurs at runtime”), Mark
uses “execution time” for the latter concept, usually in comparison with “compile
time.” This seems to me to be a thoroughly sensible idea, and one that I hope catches
on in the wider community. I’m doing my bit by following his example in this book.

 I frequently refer to “the language specification” or just “the specification”—unless
I indicate otherwise, this means “the C# language specification.” However, multiple ver-
sions of the specification are available, partly due to different versions of the language
itself and partly due to the standardization process. Rather than clutter up the book
with specific “chapter and verse” references, there’s a page on the book’s website that
allows you to pick which version of the specification you’re interested in and then see
which part of the book refers to which area of the specification.

 This book contains numerous pieces of code, which appear in a fixed-width font;
output from the listings appears in the same way. Code annotations accompany some
listings, and at other times particular sections of the code are highlighted in bold.

 Almost all of the code appears in “snippet” form, allowing it to stay compact but
still runnable—within the right environment. That environment is Snippy, a custom
tool that is introduced in section 1.4. Snippy is available for download, along with all
of the code from the book (in the form of snippets, full Visual Studio solutions, or
more often both) from the book’s website at www.manning.com/CSharpInDepth.

Author Online and the C# in Depth website

Purchase of C# in Depth includes free access to a private web forum run by Manning Pub-
lications where you can make comments about the book, ask technical questions, and
receive help from the author and other users. To access the forum and subscribe to it,
point your web browser to www.manning.com/CSharpInDepth or www.manning.com/
skeet. This page provides information on how to get on the forum once you are regis-
tered, what kind of help is available, and the rules of conduct on the forum.

www.manning.com/skeet
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 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

 In addition to Manning’s own website, I have set up a companion website for the
book at www.csharpindepth.com, containing information that didn’t quite fit into
the book, as well as downloadable source code for all the listings in the book and fur-
ther examples.

About the author

In many books, you will find a very impressive list of business and technical achieve-
ments accomplished by the author(s). Sadly, I have little to boast of on that front.
Microsoft has been kind enough to award me MVP (Most Valuable Professional) status
since 2003 for my “work” in the C# newsgroups, but I have to put “work” in quotes as it’s
been such a fun ride. Beyond that, I run a modest website with some articles about C#
and .NET, and a blog with some random thoughts about software development. I’m not
the CTO of a wildly successful startup. I haven’t given sell-out lecture tours across mul-
tiple continents with webcasts that brought the Internet to its knees. Instead, I’ve spent
my time working as a developer, listening to the problems of other developers, and try-
ing to gradually learn the best way to write code and design solutions.

 I’d like to think that in some ways that makes me the right person to write a book
about C#—because it’s what I live and breathe from day to day, and it’s what I love
helping people with. I’m passionate about C# in a way which my wife has learned to
tolerate, and I hope that passion comes through in this book. I thought I was mad
about it before I started writing, and my appreciation has only grown as I’ve become
more intimately familiar with the details.

 I’m not so much in love with C# that I can’t see any flaws—again, I hope that
comes across in my writing. I’ve never met a language yet that didn’t have its hidden
traps: C# is better than most in that respect, but it’s not perfect. When I see areas that
have caused problems, either for me or for other developers who have posted in news-
groups or emailed me, I’m more than willing to point them out. I hope the designers
will forgive the implied criticisms, and understand that I hold them in the highest
regard for the beautiful and elegant language they created.



about the cover illustration
The caption on the illustration on the cover of C# in Depth is a “Musician.” The illus-
tration is taken from a collection of costumes of the Ottoman Empire published on
January 1, 1802, by William Miller of Old Bond Street, London. The title page is miss-
ing from the collection and we have been unable to track it down to date. The book’s
table of contents identifies the figures in both English and French, and each illustra-
tion bears the names of two artists who worked on it, both of whom would no doubt
be surprised to find their art gracing the front cover of a computer programming
book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor did not have on his person the substantial amount of
cash that was required for the purchase and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed that
the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred the funds the next day, and we remain grateful and impressed by
this unknown person’s trust in one of us. It recalls something that might have hap-
pened a long time ago.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.
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comments from the tech review
Technical proofreaders are a vital part of the book-publishing process. They read
the final manuscript for technical accuracy and test all the code shortly before the
book goes to typesetting. 

 A good proofreader will find and help correct all technical errors. A really
good one will pick up incorrect implications and unhelpful nuances. A great tech-
nical proofreader will provide guidance in terms of style as well as content, help-
ing to hone the manuscript and the author’s point of view. In Eric Lippert we
found such a person. As a member of the C# team, we knew from the start that he
would provide accurate information—but he was also able to give Jon’s excellent
manuscript an extra layer of polish. 

 We always ask our technical proofreaders for feedback once they’ve completed
the review, and for this book we wanted to share some of those comments with you:

This is a gem of a book, both in its details and its overall organization. Every bit
of jargon from the specification is used correctly and in context; when Jon needs
new terms he makes up good ones…

Where it needs to be simple it is simple, but never simplistic. The majority of
my comments were not corrections; rather, they expanded on the history behind
a particular design decision, giving ideas for further explorations, and so on.

Jon takes a sensible approach to presenting complex material. The book
begins with an “ontogenic” approach, describing the evolution of the language
over time. In the section on C#3, he switches to a more “constructivist” approach,
describing how we built more complex features (such as query comprehensions)
out of more basic features (such as extension methods and lambda expressions).
xxix
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This choice of book organization is particularly well-suited to high-end users,
like Jon himself, who are primarily looking to use the language, but who can do
so better when they understand the parts from which it was built…

If I had time to write another book, this is the kind of book I would hope to
write. Now I don’t have to, and thank goodness for that!

To see more comments and margin notes made by Eric during the technical
review process, as well as responses from Jon, please visit the book’s web page at
www.manning.com/CSharpInDepth or www.csharpindepth.com/Notes.aspx.



Part 1

Preparing for the journey

Every reader will come to this book with a different set of expectations and
a different level of experience. Are you an expert looking to fill some holes, how-
ever small, in your present knowledge? Perhaps you consider yourself an “average”
developer, beginning to migrate projects to .NET 2.0 but with an eye to the future.
Maybe you’re reasonably confident with C# 2 but have no C# 3 experience.

 As an author, I can’t make every reader the same—and I wouldn’t want to
even if I could. I hope that all readers have two things in common, however: the
desire for a deeper relationship with C# as a language, and at least a basic knowl-
edge of C# 1. If you can bring those elements to the party, I’ll provide the rest.

 The potentially huge range of skill levels is the main reason for this part
of the book existing. You may already know what to expect from C# 2 and 3—
or it could all be brand new to you. You could have a rock-solid understanding
of C# 1, or you might be rusty on some of the details that didn’t matter much
before but that will become increasingly important as you learn C# 2 and
then 3. By the end of part 1, I won’t have leveled the playing field entirely, but
you should be able to approach the rest of the book with confidence and an
idea of what’s coming later.

 For the first two chapters, we will be looking both forward and back. One of
the key themes of the book is evolution. Before introducing any feature into the
language, the design team carefully considers that feature in the context of
what’s already present and the general aims of the future. This brings a feeling
of consistency to the language even in the midst of change. To understand how
and why the language is evolving, we need to see where we’ve come from and
where we’re going to.



 Chapter 1 presents a bird’s-eye view of the rest of the book, taking a brief look at
some of the biggest features of both C# 2 and C# 3 and showing a progression of code
from C# 1 onward. To bring more perspective and context to the new features, we’ll also
take a look at nearly 12 years of development history, from the first release of Java in Jan-
uary 1996 to the birth of C# 3 and .NET 3.5 in November 2007.

 Chapter 2 is heavily focused on C# 1. If you’re an expert in C# 1 you can skip this
chapter, but it does tackle some of the areas of C# 1 that tend to be misunderstood.
Rather than try to explain the whole of the language, the chapter concentrates on fea-
tures that are fundamental to the later versions of C#. From this solid base, we can
move on and look at C# 2 in part 2 of this book.



The changing face
 of C# development
The world is changing at a pace that is sometimes terrifying, and technology is one
of the fastest-moving areas of that change. Computing in particular seems to push
itself constantly, both in hardware and in software. Although many older computer
languages are like bedrocks, rarely changing beyond being consolidated in terms of
standardization, newer ones are still evolving. C# falls into the latter category, and
the implications of this are double-edged. On the one hand, there’s always more to
learn—the feeling of having mastered the language is unlikely to last for long, with
a “V next” always looming. However, the upside is that if you embrace the new fea-
tures and you’re willing to change your coding style to adopt the new idioms, you’ll
discover a more expressive, powerful way of developing software.

This chapter covers
■ An evolving example
■ C#’s historical context
■ The composition of .NET
■ Snippy, the snippet compiler
3
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 To get the most out of any new language feature, you need to understand it thor-
oughly. That’s the point of this book—to delve into the very heart of C#, so you under-
stand it at a deep level rather than just enough to get by. Without wishing to sound
melodramatic or overly emotional, I want to put you in harmony with the language.

 If you’re anxious to get coding straight away, and if you’re confident in your under-
standing of C# 1, feel free to skip to part 2 and dive in. However, there’s always more
to coding than just the technicalities, and in this part I will be providing background
to the bigger picture: the reasons why both the C# language and the .NET Framework
have changed in the ways that they have.

 In this chapter, we’ll have a sneak peek at a few of the features the rest of the book
will cover. We’ll see that while C# 2 fixed a lot of the issues people encountered when
using C# 1, the ideas in C# 3 could significantly change the way we write and even think
about code. I’ll put the changes into historical context, guide you through the maze of
terminology and version numbers, then talk about how the book is presented in order
to help you get as much out of it as possible. Let’s start by looking at how some code
might evolve over time, taking advantage of new features as they become available.

1.1 Evolution in action: examples of code change
I’ve always dreamed of doing magic tricks, and for this one section I get to live that
dream. This is the only time that I won’t explain how things work, or try to go one step
at a time. Quite the opposite, in fact—the plan is to impress rather than educate. If you
read this entire section without getting at least a little excited about what C# 2 and 3 can
do, maybe this book isn’t for you. With any luck, though, you’ll be eager to get to the
details of how the tricks work—to slow down the sleight of hand until it’s obvious what’s
going on—and that’s what the rest of the book is for.

 I should warn you that the example is very contrived—clearly designed to pack as
many new features into as short a piece of code as possible. From C# 2, we’ll see gener-
ics, properties with different access modifiers for getters and setters, nullable types, and
anonymous methods. From C# 3, we’ll see automatically implemented properties,
enhanced collection initializers, enhanced object initializers, lambda expressions,
extension methods, implicit typing, and LINQ query expressions. There are, of course,
many other new features, but it would be impossible to demonstrate them all together
in a meaningful way. Even though you usually wouldn’t use even this select set of fea-
tures in such a compact space, I’m sure you’ll recognize the general tasks as ones that
do crop up frequently in real-life code. 

 As well as being contrived, the example is also clichéd—but at least that makes it
familiar. Yes, it’s a product/name/price example, the e-commerce virtual child of
“hello, world.”

 To keep things simple, I’ve split the code up into sections. Here’s what we want to do:

■ Define a Product type with a name and a price in dollars, along with a way of
retrieving a hard-coded list of products

■ Print out the products in alphabetical order
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■ Print out all the products costing more than $10
■ Consider what would be required to represent products with unknown prices

We’ll look at each of these areas separately, and see how as we move forward in versions
of C#, we can accomplish the same tasks more simply and elegantly than before. In
each case, the changes to the code will be in a bold font. Let’s start with the Product
type itself.

1.1.1 Defining the Product type

We’re not looking for anything particularly impressive from the Product type—just
encapsulation of a couple of properties. To make life simpler for demonstration pur-
poses, this is also where we create a list of predefined products. We override ToString
so that when we print out the products elsewhere, they show useful values. Listing 1.1
shows the type as it might be written in C# 1. We’ll then move on to see how the same
effect can be achieved in C# 2, then C# 3. This is the pattern we’ll follow for each of
the other pieces of code.

using System.Collections;

public class Product
{
    string name;
    public string Name
    {
        get { return name; }
    }

    decimal price;
    public decimal Price
    {
        get { return price; }
    }

    public Product(string name, decimal price)
    {
        this.name = name;
        this.price = price;
    }

    public static ArrayList GetSampleProducts()
    {
        ArrayList list = new ArrayList();
        list.Add(new Product("Company", 9.99m));
        list.Add(new Product("Assassins", 14.99m));
        list.Add(new Product("Frogs", 13.99m));
        list.Add(new Product("Sweeney Todd", 10.99m));
        return list;
    }

    public override string ToString()
    {

Listing 1.1 The Product type (C# 1)
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        return string.Format("{0}: {1}", name, price);
    }
}

Nothing in listing 1.1 should be hard to understand—it’s just C# 1 code, after all.
There are four limitations that it demonstrates, however:

■ An ArrayList has no compile-time information about what’s in it. We could
have accidentally added a string to the list created in GetSampleProducts and
the compiler wouldn’t have batted an eyelid. 

■ We’ve provided public “getter” properties, which means that if we wanted
matching “setters,” they would have to be public too. In this case it’s not too
much of a problem to use the fields directly, but it would be if we had valida-
tion that ought to be applied every time a value was set. A property setter
would be natural, but we may not want to expose it to the outside world. We’d
have to create a private SetPrice method or something similar, and that asym-
metry is ugly.

■ The variables themselves are available to the rest of the class. They’re private,
but it would be nice to encapsulate them within the properties, to make sure
they’re not tampered with other than through those properties.

■ There’s quite a lot of fluff involved in creating the properties and variables—
code that complicates the simple task of encapsulating a string and a decimal.

Let’s see what C# 2 can do to improve matters (see listing 1.2; changes are in bold).

using System.Collections.Generic;

public class Product
{
    string name;
    public string Name
    {
        get { return name; }
        private set { name = value; }
    }

    decimal price;
    public decimal Price
    {
        get { return price; }
        private set { price = value; }
    }

    public Product(string name, decimal price)
    {
        Name = name;
        Price = price;
    }

    public static List<Product> GetSampleProducts()

Listing 1.2 Strongly typed collections and private setters (C# 2)
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    {
        List<Product> list = new List<Product>();
        list.Add(new Product("Company", 9.99m));
        list.Add(new Product("Assassins", 14.99m));
        list.Add(new Product("Frogs", 13.99m));
        list.Add(new Product("Sweeney Todd", 10.99m));
        return list;
    }

    public override string ToString()
    {
        return string.Format("{0}: {1}", name, price);
    }
}

The code hasn’t changed much, but we’ve addressed two of the problems. We now
have properties with private setters (which we use in the constructor), and it doesn’t
take a genius to guess that List<Product> is telling the compiler that the list contains
products. Attempting to add a different type to the list would result in a compiler
error. The change to C# 2 leaves only two of the original four difficulties unanswered.
Listing 1.3 shows how C# 3 tackles these.

using System.Collections.Generic;

class Product
{
    public string Name { get; private set; }
    public decimal Price { get; private set; }

    public Product(string name, decimal price)
    {
        Name = name;
        Price = price;
    }

    Product()
    {
    }

    public static List<Product> GetSampleProducts()
    {
        return new List<Product>
        {
            new Product { Name="Company", Price = 9.99m },
            new Product { Name="Assassins", Price=14.99m },
            new Product { Name="Frogs", Price=13.99m },
            new Product { Name="Sweeney Todd", Price=10.99m}
        };
    }

    public override string ToString()
    {
        return string.Format("{0}: {1}", Name, Price);
    }
}

Listing 1.3 Automatically implemented properties and simpler initialization (C# 3)
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The properties now don’t have any code (or visible variables!) associated with them, and
we’re building the hard-coded list in a very different way. With no “name” and “price”
variables to access, we’re forced to use the properties everywhere in the class, improving
consistency. We now have a private parameterless constructor for the sake of the new
property-based initialization. In this example, we could actually have removed the pub-
lic constructor completely, but it would make the class less useful in the real world.

 Figure 1.1 shows a summary of how our Product type has evolved so far. I’ll include
a similar diagram after each task, so you can see the pattern of how C# 2 and 3 improve
the code.

So far the changes are relatively minimal. In fact, the addition of generics (the
List<Product> syntax) is probably the most important part of C# 2, but we’ve only
seen part of its usefulness so far. There’s nothing to get the heart racing yet, but we’ve
only just started. Our next task is to print out the list of products in alphabetical order.
That shouldn’t be too hard…

1.1.2 Sorting products by name

The easiest way of displaying a list in a particular order is to sort the list and then run
through it displaying items. In .NET 1.1, this involved using ArrayList.Sort, and in
our case providing an IComparer implementation. We could have made the Product
type implement IComparable, but we could only define one sort order that way, and
it’s not a huge stretch to imagine that we might want to sort by price at some stage as
well as by name. Listing 1.4 implements IComparer, then sorts the list and displays it.

class ProductNameComparer : IComparer
{
    public int Compare(object x, object y)
    {
        Product first = (Product)x;
        Product second = (Product)y;
        return first.Name.CompareTo(second.Name);
    }
}

... 

ArrayList products = Product.GetSampleProducts();
products.Sort(new ProductNameComparer());

Listing 1.4 Sorting an ArrayList using IComparer (C# 1)

C# 2

Private property "setters"
Strongly typed collections

C# 3

Automatically implemented
properties

Enhanced collection and
object initialization

C# 1

Read-only properties
Weakly typed collections

Figure 1.1 Evolution of the Product type, showing greater encapsulation, stronger typing, and ease 
of initialization over time
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foreach (Product product in products)
{
    Console.WriteLine (product);
}

The first thing to spot in listing 1.4 is that we’ve had to introduce an extra type to help
us with the sorting. That’s not a disaster, but it’s a lot of code if we only want to sort by
name in one place. Next, we see the casts in the Compare method. Casts are a way of
telling the compiler that we know more information than it does—and that usually
means there’s a chance we’re wrong. If the ArrayList we returned from GetSample-
Products had contained a string, that’s where the code would go bang—where the
comparison tries to cast the string to a Product.

 We’ve also got a cast in the code that displays the sorted list. It’s not obvious,
because the compiler puts it in automatically, but the foreach loop implicitly casts
each element of the list to Product. Again, that’s a cast we’d ideally like to get rid of,
and once more generics come to the rescue in C# 2. Listing 1.5 shows the earlier code
with the use of generics as the only change.

class ProductNameComparer : IComparer<Product>
{
    public int Compare(Product first, Product second)
    {
        return first.Name.CompareTo(second.Name);
    }
}

...

List<Product> products = Product.GetSampleProducts();
products.Sort(new ProductNameComparer());
foreach (Product product in products)
{
    Console.WriteLine(product);
}

The code for the comparer in listing 1.5 is simpler because we’re given products to
start with. No casting necessary. Similarly, the invisible cast in the foreach loop is
gone. It’s hard to tell the difference, given that it’s invisible, but it really is gone. Hon-
est. I wouldn’t lie to you. At least, not in chapter 1…

 That’s an improvement, but it would be nice to be able to sort the products by sim-
ply specifying the comparison to make, without needing to implement an interface to
do so. Listing 1.6 shows how to do precisely this, telling the Sort method how to com-
pare two products using a delegate.

List<Product> products = Product.GetSampleProducts();
products.Sort(delegate(Product first, Product second)
    { return first.Name.CompareTo(second.Name); } 
);

Listing 1.5 Sorting a List<Product> using IComparer<Product> (C# 2)

Listing 1.6 Sorting a List<Product> using Comparison<Product> (C# 2)
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foreach (Product product in products)
{
    Console.WriteLine(product);
}

Behold the lack of the ProductNameComparer type. The statement in bold actually cre-
ates a delegate instance, which we provide to the Sort method in order to perform
the comparisons. More on that feature (anonymous methods) in chapter 5. We’ve now
fixed all the things we didn’t like about the C# 1 version. That doesn’t mean that C# 3
can’t do better, though. First we’ll just replace the anonymous method with an even
more compact way of creating a delegate instance, as shown in listing 1.7.

List<Product> products = Product.GetSampleProducts();
products.Sort(
    (first, second) => first.Name.CompareTo(second.Name)
);
foreach (Product product in products)
{
    Console.WriteLine(product);
}

We’ve gained even more strange syntax (a lambda expression), which still creates a
Comparison<Product> delegate just the same as listing 1.6 did but this time with less
fuss. We haven’t had to use the delegate keyword to introduce it, or even specify the
types of the parameters. There’s more, though: with C# 3 we can easily print the
names out in order without modifying the original list of products. Listing 1.8 shows
this using the OrderBy method.

List<Product> products = Product.GetSampleProducts();

foreach (Product product in products.OrderBy(p => p.Name))
{
    Console.WriteLine (product);
}

We appear to be calling an OrderBy method, but if you look in MSDN you’ll see that it
doesn’t even exist in List<Product>. We’re able to call it due to the presence of an
extension method, which we’ll see in more detail in chapter 10. We’re not actually sorting
the list “in place” anymore, but just retrieving the contents of the list in a particular
order. Sometimes you’ll need to change the actual list; sometimes an ordering without
any other side effects is better. The important point is that it’s much more compact and
readable (once you understand the syntax, of course). We wanted to order the list by
name, and that’s exactly what the code says. It doesn’t say to sort by comparing the
name of one product with the name of another, like the C# 2 code did, or to sort by
using an instance of another type that knows how to compare one product with
another. It just says to order by name. This simplicity of expression is one of the key

Listing 1.7 Sorting using Comparison<Product> from a lambda expression (C# 3)

Listing 1.8 Ordering a List<Product> using an extension method (C# 3)
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benefits of C# 3. When the individual pieces of data querying and manipulation are so
simple, larger transformations can still remain compact and readable in one piece of
code. That in turn encourages a more “data-centric” way of looking at the world.

 We’ve seen a bit more of the power of C# 2 and 3 in this section, with quite a lot of
(as yet) unexplained syntax, but even without understanding the details we can see
the progress toward clearer, simpler code. Figure 1.2 shows that evolution.

That’s it for sorting. Let’s do a different form of data manipulation now—querying.

1.1.3 Querying collections

Our next task is to find all the elements of the list that match a certain criterion—in par-
ticular, those with a price greater than $10. In C# 1, we need to loop around, testing each
element and printing it out where appropriate (see listing 1.9).

ArrayList products = Product.GetSampleProducts();
foreach (Product product in products)
{
    if (product.Price > 10m)
    {
        Console.WriteLine(product);
    }
}

OK, this is not difficult code to understand. However, it’s worth bearing in mind how
intertwined the three tasks are—looping with foreach, testing the criterion with if,
then displaying the product with Console.WriteLine. The dependency is obvious
because of the nesting. C# 2 lets us flatten things out a bit (see listing 1.10).

List<Product> products = Product.GetSampleProducts();
Predicate<Product> test = delegate(Product p) 
    { return p.Price > 10m; };
List<Product> matches = products.FindAll(test);

Action<Product> print = delegate(Product p)
    { Console.WriteLine (p); };
matches.ForEach (print);

Listing 1.9 Looping, testing, printing out (C# 1)

Listing 1.10 Separating testing from printing (C# 2)

C# 2

Strongly typed comparator
Delegate comparisons
Anonymous methods

C# 3

Lambda expressions
Extension methods

Option of leaving list unsorted

C# 1

Weakly typed comparator
No delegate sorting option

Figure 1.2 Features involved in making sorting easier in C# 2 and 3
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I’m not going to claim this code is simpler than the C# 1 code—but it is a lot more
powerful.1 In particular, it makes it very easy to change the condition we’re testing for
and the action we take on each of the matches independently. The delegate variables
involved (test and print) could be passed into a method—that same method could
end up testing radically different conditions and taking radically different actions. Of
course, we could have put all the testing and printing into one statement, as shown in
listing 1.11.

List<Product> products = Product.GetSampleProducts();
products.FindAll (delegate(Product p) { return p.Price > 10;})
        .ForEach (delegate(Product p) { Console.WriteLine(p); });

That’s a bit better, but the delegate(Product p) is getting in the way, as are the braces.
They’re adding noise to the code, which hurts readability. I still prefer the C# 1 version,
in the case where we only ever want to use the same test and perform the same action.
(It may sound obvious, but it’s worth remembering that there’s nothing stopping us
from using the C# 1 version when using C# 2 or 3. You wouldn’t use a bulldozer to plant
tulip bulbs, which is the kind of overkill we’re using here.) C# 3 improves matters dra-
matically by removing a lot of the fluff surrounding the actual logic of the delegate (see
listing 1.12).

List<Product> products = Product.GetSampleProducts();
foreach (Product product in products.Where(p => p.Price > 10))
{
     Console.WriteLine(product);
}

The combination of the lambda expression putting the test in just the right place and
a well-named method means we can almost read the code out loud and understand it
without even thinking. We still have the flexibility of C# 2—the argument to Where
could come from a variable, and we could use an Action<Product> instead of the
hard-coded Console.WriteLine call if we wanted to.

 This task has emphasized what we already knew from sorting—anonymous methods
make writing a delegate simple, and lambda expressions are even more concise. In
both cases, that brevity means that we can include the query or sort operation inside
the first part of the foreach loop without losing clarity. Figure 1.3 summarizes the
changes we’ve just seen.

 So, now that we’ve displayed the filtered list, let’s consider a change to our initial
assumptions about the data. What happens if we don’t always know the price for a
product? How can we cope with that within our Product class?

1 In some ways, this is cheating. We could have defined appropriate delegates in C# 1 and called them within
the loop. The FindAll and ForEach methods in .NET 2.0 just help to encourage you to consider separation
of concerns.

Listing 1.11 Separating testing from printing redux (C# 2)

Listing 1.12 Testing with a lambda expression (C# 3)
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1.1.4 Representing an unknown price

I’m not going to present much code this time, but I’m sure it will be a familiar prob-
lem to you, especially if you’ve done a lot of work with databases. Let’s imagine our list
of products contains not just products on sale right now but ones that aren’t available
yet. In some cases, we may not know the price. If decimal were a reference type, we
could just use null to represent the unknown price—but as it’s a value type, we can’t.
How would you represent this in C# 1? There are three common alternatives:

■ Create a reference type wrapper around decimal
■ Maintain a separate Boolean flag indicating whether the price is known
■ Use a “magic value” (decimal.MinValue, for example) to represent the unknown

price

I hope you’ll agree that none of these holds much appeal. Time for a little magic: we
can solve the problem with the addition of a single extra character in the variable
and property declarations. C# 2 makes matters a lot simpler by introducing the
Nullable<T> structure and some syntactic sugar for it that lets us change the prop-
erty declaration to

decimal? price;
public decimal? Price
{
    get { return price; }
    private set { price = value; }
}

The constructor parameter changes to decimal? as well, and then we can pass in null
as the argument, or say Price = null; within the class. That’s a lot more expressive
than any of the other solutions. The rest of the code just works as is—a product with
an unknown price will be considered to be less expensive than $10, which is probably
what we’d want. To check whether or not a price is known, we can compare it with
null or use the HasValue property—so to show all the products with unknown prices
in C# 3, we’d write the code in listing 1.13.

List<Product> products = Product.GetSampleProducts();
foreach (Product product in products.Where(p => p.Price==null))

Listing 1.13 Displaying products with an unknown price (C# 2 and 3)

C# 2

Separate condition from
action invoked.

Anonymous methods
make delegates simple.

C# 3

Lambda expressions
make the condition
even easier to read.

C# 1

Strong coupling between
condition and action.
Both are hard-coded.

Figure 1.3 Anonymous methods and lambda expressions aid separation of concerns and readability 
for C# 2 and 3.
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{
     Console.WriteLine(product.Name);
}

The C# 2 code would be similar to listing 1.11 but using return p.Price == null; as
the body for the anonymous method. There’s no difference between C# 2 and 3 in
terms of nullable types, so figure 1.4 represents the improvements with just two boxes.

So, is that it? Everything we’ve seen so far is useful and important (particularly
generics), but I’m not sure it really counts as exciting. There are some cool things
you can do with these features occasionally, but for the most part they’re “just” mak-
ing code a bit simpler, more reliable, and more expressive. I value these things
immensely, but they rarely impress me enough to call colleagues over to show how
much can be done so simply. If you’ve seen any C# 3 code already, you were proba-
bly expecting to see something rather different—namely LINQ. This is where the
fireworks start.

1.1.5 LINQ and query expressions

LINQ (Language Integrated Query) is what C# 3 is all about at its heart. Whereas the
features in C# 2 are arguably more about fixing annoyances in C# 1 than setting the
world on fire, C# 3 is rather special. In particular, it contains query expressions that allow
a declarative style for creating queries on various data sources. The reason none of the
examples so far have used them is that they’ve all actually been simpler without using
the extra syntax. That’s not to say we couldn’t use it anyway, of course—listing 1.12, for
example, is equivalent to listing 1.14.

List<Product> products = Product.GetSampleProducts();
var filtered = from Product p in products
               where p.Price > 10
               select p;
foreach (Product product in filtered)
{
    Console.WriteLine(product);
}

Listing 1.14 First steps with query expressions: filtering a collection

C# 2 / 3

Nullable types make the
"extra work" option simple

and syntactic sugar improves
matters even further.

C# 1

Choice between extra work
maintaining a flag, changing
to reference type semantics,
or the hack of a magic value.

Figure 1.4 The options available for working around the lack of nullable types in C# 1, 
and the benefits of C# 2 and 3
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Personally, I find the earlier listing easier to read—the only benefit to the query
expression version is that the where clause is simpler.

 So if query expressions are no good, why is everyone making such a fuss about
them, and about LINQ in general? The first answer is that while query expressions are
not particularly suitable for simple tasks, they’re very, very good for more complicated
situations that would be hard to read if written out in the equivalent method calls
(and fiendish in C# 1 or 2). Let’s make things just a little harder by introducing
another type—Supplier. I haven’t included the whole code here, but complete ready-
to-compile code is provided on the book’s website (www.csharpindepth.com). We’ll
concentrate on the fun stuff.

 Each supplier has a Name (string) and a SupplierID (int). I’ve also added
SupplierID as a property in Product and adapted the sample data appropriately.
Admittedly that’s not a very object-oriented way of giving each product a supplier—
it’s much closer to how the data would be represented in a database. It makes this
particular feature easier to demonstrate for now, but we’ll see in chapter 12 that
LINQ allows us to use a more natural model too.

 Now let’s look at the code (listing 1.15) to join the sample products with the sam-
ple suppliers (obviously based on the supplier ID), apply the same price filter as
before to the products, sort by supplier name and then product name, and print out
the name of both supplier and product for each match. That was a mouthful (finger-
ful?) to type, and in earlier versions of C# it would have been a nightmare to imple-
ment. In LINQ, it’s almost trivial.

List<Product> products = Product.GetSampleProducts();
List<Supplier> suppliers = Supplier.GetSampleSuppliers();
var filtered = from p in products
               join s in suppliers 
               on p.SupplierID equals s.SupplierID
               where p.Price > 10
               orderby s.Name, p.Name                       
               select new {SupplierName=s.Name, 
                           ProductName=p.Name};
foreach (var v in filtered)
{
    Console.WriteLine("Supplier={0}; Product={1}", 
                      v.SupplierName, v.ProductName);
}

The more astute among you will have noticed that it looks remarkably like SQL.2

Indeed, the reaction of many people on first hearing about LINQ (but before examin-
ing it closely) is to reject it as merely trying to put SQL into the language for the sake
of talking to databases. Fortunately, LINQ has borrowed the syntax and some ideas
from SQL, but as we’ve seen, you needn’t be anywhere near a database in order to use

Listing 1.15 Joining, filtering, ordering, and projecting

2 If you’ve ever worked with SQL in any form whatsoever but didn’t notice the resemblance, I’m shocked. 
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it—none of the code we’ve run so far has touched a database at all. Indeed, we could
be getting data from any number of sources: XML, for example. Suppose that instead
of hard-coding our suppliers and products, we’d used the following XML file:

<?xml version="1.0"?>
<Data>
  <Products>
    <Product Name="Company" Price="9.99" SupplierID="1" />
    <Product Name="Assassins" Price="14.99" SupplierID="2" />
    <Product Name="Frogs" Price="13.99" SupplierID="1" />
    <Product Name="Sweeney Todd" Price="10.99" SupplierID="3" />
  </Products>

  <Suppliers>
    <Supplier Name="Solely Sondheim" SupplierID="1" />
    <Supplier Name="CD-by-CD-by-Sondheim" SupplierID="2" />
    <Supplier Name="Barbershop CDs" SupplierID="3" />
  </Suppliers>
</Data>

Well, the file is simple enough, but what’s the best way of extracting the data from it?
How do we query it? Join on it? Surely it’s going to be somewhat harder than listing 1.14,
right? Listing 1.16 shows how much work we have to do in LINQ to XML. 

XDocument doc = XDocument.Load("data.xml");
var filtered = from p in doc.Descendants("Product")
               join s in doc.Descendants("Supplier")
               on (int)p.Attribute("SupplierID") 
                   equals (int)s.Attribute("SupplierID")
               where (decimal)p.Attribute("Price") > 10
               orderby (string)s.Attribute("Name"), 
                       (string)p.Attribute("Name")
               select new
               {
                   SupplierName = (string)s.Attribute("Name"),
                   ProductName = (string)p.Attribute("Name")
               };
foreach (var v in filtered)
{
    Console.WriteLine("Supplier={0}; Product={1}",
                      v.SupplierName, v.ProductName);
}

Well, it’s not quite as straightforward, because we need to tell the system how it should
understand the data (in terms of what attributes should be used as what types)—but
it’s not far off. In particular, there’s an obvious relationship between each part of the
two listings. If it weren’t for the line length limitations of books, you’d see an exact
line-by-line correspondence between the two queries.

 Impressed yet? Not quite convinced? Let’s put the data where it’s much more likely
to be—in a database. There’s some work (much of which can be automated) to let

Listing 1.16 Complex processing of an XML file with LINQ to XML
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LINQ to SQL know about what to expect in what table, but it’s all fairly straightforward.
Listing 1.17 shows the querying code.

using (LinqDemoDataContext db = new LinqDemoDataContext())
{
    var filtered = from p in db.Products
                   join s in db.Suppliers
                   on p.SupplierID equals s.SupplierID
                   where p.Price > 10
                   orderby s.Name, p.Name
                   select new
                   {
                       SupplierName = s.Name,
                       ProductName = p.Name
                   };
    foreach (var v in filtered)
    {
        Console.WriteLine("Supplier={0}; Product={1}",
                          v.SupplierName, v.ProductName);
    }
}

By now, this should be looking incredibly familiar. Everything below the
“join” line is cut and pasted directly from listing 1.14 with no changes.
That’s impressive enough, but if you’re performance conscious you may
be wondering why we would want to pull down all the data from the data-
base and then apply these .NET queries and orderings. Why not get the
database to do it? That’s what it’s good at, isn’t it? Well, indeed—and
that’s exactly what LINQ to SQL does. The code in listing 1.17 issues a
database request, which is basically the query translated into SQL. Even
though we’ve expressed the query in C# code, it’s been executed as SQL.

We’ll see later that the way this query joins isn’t how we’d normally use LINQ to SQL—
there’s a more relation-oriented way of approaching it when the schema and the enti-
ties know about the relationship between suppliers and products. The result is the
same, however, and it shows just how similar LINQ to Objects (the in-memory LINQ
operating on collections) and LINQ to SQL can be.

 It’s important to understand that LINQ is flexible, too: you can write your own
query translators. It’s not easy, but it can be well worth it. For instance, here’s an exam-
ple using Amazon’s web service to query its available books:

var query =
  from book in new LinqToAmazon.AmazonBookSearch()
  where
    book.Title.Contains("ajax") &&
    (book.Publisher == "Manning") &&
    (book.Price <= 25) &&
    (book.Condition == BookCondition.New)
  select book;

Listing 1.17 Applying a query expression to a SQL database

Query is 

written in C#, 

but executes 

as SQL
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This example was taken from the introduction3 to “LINQ to Amazon,” which is a LINQ
provider written as an example for the LINQ in Action book (Manning, 2008). The query
is easy to understand, and written in what appears to be “normal” C# 3—but the provider
is translating it into a web service call. How cool is that?

 Hopefully by now your jaw is suitably close to the floor—mine certainly was the
first time I tried an exercise like the database one we’ve just seen, when it worked
pretty much the first time. Now that we’ve seen a little bit of the evolution of the C#
language, it’s worth taking a little history lesson to see how other products and tech-
nologies have progressed in the same timeframe.

1.2 A brief history of C# (and related technologies)
When I was learning French and German at school, the teachers always told me that I
would never be proficient in those languages until I started thinking in them. Unfortu-
nately I never achieved that goal, but I do think in C# (and a few other languages).4

There are people who are quite capable of programming reasonably reliably in a com-
puter language without ever getting comfortable (or even intimate) with it. They will
always write their code with an accent, usually one reminiscent of whatever language
they are comfortable in.

 While you can learn the mechanics of C# without knowing anything about the con-
text in which it was designed, you’ll have a closer relationship with it if you understand
why it looks the way it does—its ancestry, effectively. The technological landscape and
its evolution have a significant impact on how both languages and libraries evolve, so
let’s take a brief walk through C#’s history, seeing how it fits in with the stories of other
technologies, both those from Microsoft and those developed elsewhere. This is by no
means a comprehensive history of computing at the end of the twentieth century and
the start of the twenty-first—any attempt at such a history would take a whole (large)
book in itself. However, I’ve included the products and technologies that I believe
have most strongly influenced .NET and C# in particular.

1.2.1 The world before C#

We’re actually going to start with Java. Although it would be a stretch to claim that
C# and .NET definitely wouldn’t have come into being without Java, it would also be
hard to argue that it had no effect. Java 1.0 was released in January 1996 and the
world went applet mad. Briefly. Java was very slow (at the time it was 100 percent
interpreted) and most of the applets on the Web were fairly useless. The speed grad-
ually improved as just-in-time compilers (JITs) were introduced, and developers
started looking at using Java on the server side instead of on the client. Java 1.2 (or
Java 2, depending on whether you talk developer version numbers or marketing ver-
sion numbers) overhauled the core libraries significantly, the servlet API and JavaSer-
ver Pages took off, and Sun’s Hotspot engine boosted the performance significantly.

3 http://linqinaction.net/blogs/main/archive/2006/06/26/Introducing-Linq-to-Amazon.aspx
4 Not all the time, I hasten to add. Only when I’m coding.
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Java is reasonably portable, despite the “write once, debug everywhere” skit on Sun’s
catchphrase of “write once, run anywhere.” The idea of letting coders develop enter-
prise Java applications on Windows with friendly IDEs and then deploy (without even
recompiling) to powerful Unix servers was a compelling proposition—and clearly
something of a threat to Microsoft.

 Microsoft created their own Java Virtual Machine (JVM), which had reasonable
performance and a very fast startup time, and even released an IDE for it, named J++.
However, they introduced incompatible extensions into their platform, and Sun sued
Microsoft for violating licensing terms, starting a very long (and frankly tedious) legal
battle. The main impact of this legal battle was felt long before the case was con-
cluded—while the rest of the world moved on to Java 1.2 and beyond, Microsoft’s ver-
sion of Java stayed at 1.1, which made it effectively obsolete pretty rapidly. It was clear
that whatever Microsoft’s vision of the future was, Java itself was unlikely to be a major
part of it.

 In the same period, Microsoft’s Active Server Pages (ASP) gained popularity too.
After an initial launch in December 1996, two further versions were released in 1997
and 2000. ASP made dynamic web development much simpler for developers on
Microsoft servers, and eventually third parties ported it to non-Windows platforms.
Despite being a great step forward in the Windows world, ASP didn’t tend to promote
the separation of presentation logic, business logic, and data persistence, which most
of the vast array of Java web frameworks encouraged.

1.2.2 C# and .NET are born

C# and .NET were properly unveiled at the Professional Developers Conference
(PDC) in July 2000, although some elements had been preannounced before then,
and there had been talk about the same technologies under different names
(including COOL, COM3, and Lightning) for a long time. Not that Microsoft hadn’t
been busy with other things, of course—that year also saw both Windows Me and
Windows 2000 being released, with the latter being wildly successful compared with
the former.

 Microsoft didn’t “go it alone” with C# and .NET, and indeed when the specifica-
tions for C# and the Common Language Infrastructure (CLI) were submitted to
ECMA (an international standards body), they were co-sponsored by Hewlett-Packard
and Intel along with Microsoft. ECMA ratified the specification (with some modifica-
tions), and later versions of C# and the CLI have gone through the same process. C#
and Java are “open” in different ways, with Microsoft favoring the standardization
path and Sun gradually open sourcing Java and allowing or even encouraging other
Java runtime environments. There are alternative CLI and C# implementations, the
most visible being the Mono project,5 but they don’t generally implement the whole
of what we think of as the .NET Framework. Commercial reliance on and support

5 http://www.mono-project.com
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of non-Microsoft implementations is small, outside of Novell, which sponsors the
Mono project.

 Although C# and .NET weren’t released until 2002 (along with Visual Studio
.NET 2002), betas were available long before then, and by the time everything was offi-
cial, C# was already a popular language. ASP.NET was launched as part of .NET 1.0, and
it was clear that Microsoft had no plans to do anything more with either “ASP Classic”
or “VB Classic”—much to the annoyance of many VB6 developers. While VB.NET looks
similar to VB6, there are enough differences to make the transition a nontrivial one—
not least of which is learning the .NET Framework. Many developers have decided to go
straight from VB6 to C#, for various reasons.

1.2.3 Minor updates with .NET 1.1 and the first major step: .NET 2.0

As is often the case, the 1.0 release was fairly quickly followed by .NET 1.1, which
launched with Visual Studio .NET 2003 and included C# 1.2. There were few signifi-
cant changes to either the language or the framework libraries—in a sense, it was
more of a service pack than a truly new release. Despite the small number of changes,
it’s rare to see anyone using .NET 1.0 at the time of this writing, although 1.1 is still
very much alive and kicking, partly due to the OS requirements of 2.0.

While Microsoft was busy bringing its new platform to the world, Sun (and
its other significant partners, including IBM) hadn’t left Java stagnating.
Not quite, anyway. Java 1.5 (Java 5 for the marketing folk among you) was
launched in September 2004, with easily the largest set of language
enhancements in any Java release, including generics, enums (supported
in a very cool way—far more object-oriented than the “named numbers”
that C# provides), an enhanced for loop (foreach to you and me), anno-
tations (read: attributes), “varargs” (broadly equivalent to parameter

arrays of C#—the params modifier), and automatic boxing/unboxing. It would be fool-
ish to suggest that all of these enhancements were due to C# having taken off (after all,
putting generics into the language had been talked about since 1997), but it’s also
worth acknowledging the competition for the mindshare of developers. For Sun,
Microsoft, and other players, it’s not just about coming up with a great language: it’s
about persuading developers to write software for their platform.

 C# and Java have both been cautious when it comes to introducing powerful fea-
tures such as templates and macros from C++. Every new feature has to earn its place
in the language in terms of not just power, but also ease of use and readability—and
sometimes that can take time. For example, both Java and C# shipped without any-
thing like C++ templates to start with, and then worked out ways of providing much of
their value with as few risks and drawbacks as possible. We’ll see in chapter 3 that
although Java and C# generics look quite similar on the most superficial level, they
differ significantly under the surface.

Imitation is 

the sincerest 

form of 

flattery
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NOTE The pioneering role of Microsoft Research—Microsoft Research is responsible
for some of the new directions for .NET and C#. They published a paper
on .NET generics as early as May 2001 (yes, even before .NET 1.0 had
been released!) and worked on an extension called Cω (pronounced C
omega), which included—among other things—some of the ideas which
later formed LINQ. Another C# extension, Spec#, adds contracts to C#,
allowing the compiler to do more verification automatically.6 We will
have to wait and see whether any or all of the ideas of Spec# eventually
become part of C# itself.

C# 2 was released in November 2005, as part of .NET 2.0 and alongside Visual Stu-
dio 2005 and VB8. Visual Studio became more productive to work with as an IDE—par-
ticularly now that refactoring was finally included—and the significant improvements
to both the language and the platform were warmly welcomed by most developers.

 As a sign of just how quickly the world is moving on—and of how long it takes to
actually bring a product to market—it’s worth noting that the first announcements
about C# 3 were made at the PDC in September 2005, which was two months before
C# 2 was released. The sad part is that while it seems to take two years to bring a prod-
uct from announcement to market, it appears that the industry takes another year or
two—at least—to start widely embracing it. As mentioned earlier, many companies are
only now transitioning from .NET 1.1 to 2.0. We can only hope that it will be a shorter
path to widespread adoption of .NET 3.0 and 3.5. (C# 3 comes with .NET 3.5, although
you can use many C# 3 features while still targeting .NET 2.0. I’ll talk about the version
numbers shortly.)

 One of the reasons .NET 2.0 took so long to come out is that it was being embed-
ded within SQL Server 2005, with the obvious robustness and reliability concerns that
go hand in hand with such a system. This allows .NET code to execute right inside the
database, with potential for much richer logic to sit so close to the data. Database folk
tend to be rather cautious, and only time will tell how widely this ability is used—but
it’s a powerful tool to have available if you find you need it.

1.2.4 “Next generation” products

In November 2006 (a year after .NET 2.0 was released), Microsoft launched Windows
Vista, Office 2007, and Exchange Server 2007. This included launching .NET 3.0,
which comes preinstalled on Vista. Over time, this is likely to aid adoption of .NET cli-
ent applications for two reasons. First, the old “.NET isn’t installed on all computers”
objection will become less relevant—you can safely assume that if the user is running
Vista, they’ll be able to run a .NET application. Second, Windows Presentation Foun-
dation (WPF) is now the rich client platform of choice for developers in Microsoft’s
view—and it’s only available from .NET.

6 http://research.microsoft.com/specsharp/
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 Again, while Microsoft was busy with Vista and other products, the rest of the world
was innovating too. Lightweight frameworks have been gaining momentum, and
Object Relational Mapping (ORM) now has a significant developer mindshare, partly
due to high-quality free frameworks such as Hibernate. The SQL aspect of LINQ is
much more than just the querying side we’ve seen so far, and marks a more definite
step from Microsoft than its previous lukewarm ventures into this area, such as
ObjectSpaces. Only time will tell whether LINQ to SQL or perhaps its cousin the
ADO.NET Entity Framework hits the elusive sweet spot of making database access truly
simple—they’re certainly very promising.

 Visual Studio 2008 was released in November 2007, including .NET 3.5, C# 3, and
VB9. It contains built-in support for many features that were previously only available as
extensions to Visual Studio 2005, as well as the new language and framework features.
Continuing the trend from Visual Studio 2005, a free Express edition is available for
each language. With the ability to target multiple versions of the .NET Framework and
only minimal solution and project changes when migrating existing code, there is little
reason not to upgrade to Visual Studio 2008—I expect its adoption rate to be far faster
than that of Visual Studio 2005.

 Dynamic languages have become increasingly important, with many options vying
for developers’ attention. Ruby—and particularly the Ruby on Rails framework—has
had a large impact (with ports for Java and .NET), and other projects such as Groovy on
the Java platform and IronRuby and IronPython on .NET are gaining support. As part
of Silverlight 2.0, Microsoft will release the Dynamic Language Runtime (DLR), which
is a layer on top of the CLR to make it more amenable to dynamic languages. Silverlight
is part of another battleground, but this time for rich Internet applications (RIAs),
where Microsoft is competing with Adobe Flex and Sun’s JavaFX. Silverlight 1.0 was
released in September 2007, but this version was based on JavaScript. At the time of this
writing, many developers are currently awaiting 1.1, which will ship with a “mini-CLR”
and cater for multiple platforms.

1.2.5 Historical perspective and the fight for developer support

It’s hard to describe all of these strands interweaving through history and yet keep a
bird’s-eye view of the period. Figure 1.5 shows a collection of timelines with some of
the major milestones described earlier, within different technological areas. The list is
not comprehensive, of course, but it gives some indication of which product versions
were competing at different times.

 There are many ways to look at technological histories, and many untold stories
influencing events behind the scenes. It’s possible that this retrospective overempha-
sizes the influence of Java on the development of .NET and C#, and that may
well partly be due to my mixed allegiances to both technologies. However, it seems
to me that the large wars for developer support are taking place among the follow-
ing camps.
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■ Native code (primarily C and C++) developers, who will have to be convinced
about the reliability and performance of managed code before changing their
habits. C++/CLI is the obvious way of dipping a toe in the water here, but its
popularity may not be all that Microsoft had hoped for.

■ VB6 developers who may have antipathy toward Microsoft for abandoning their
preferred platform, but will need to decide which way to jump sooner or later—
and .NET is the most obvious choice for most people at this stage. Some may
cross straight to C#, with others making the smaller move to VB.NET.

■ Scripting and dynamic language developers who value the immediacy of
changes. Familiar languages running on managed platforms can act as Trojan
horses here, encouraging developers to learn the associated frameworks for use
in their dynamic code, which then lowers the barrier to entry for learning the
traditional object-oriented languages for the relevant platform. The IronPython
programmer of today may well become the C# programmer of tomorrow.

■ “Traditional” managed developers, primarily writing C#, VB.NET, or Java. Here
the war is not about whether or not running under some sort of managed envi-
ronment is a good thing, but which managed environment to use. The battle-
grounds are primarily in tools, portability, performance, and libraries, all of
which have come on in leaps and bounds. Competition between different .NET
languages is partly internal to Microsoft, with each team wanting its own lan-
guage to have the best support—and features developed primarily for one
language can often be used by another in the fullness of time.

■ Web developers who have already had to move from static HTML, to dynami-
cally generated content, to a nicer user experience with Ajax. Now the age of
RIAs is upon us, with three very significant contenders in Microsoft, Adobe, and
Sun. At the time of this writing, it’s too early to tell whether there will be a clear
winner here or whether the three can all garner enough support to make them
viable for a long time to come. Although it’s possible to use a .NET-based RIA
solution with a Java-based server to some extent, the development process is sig-
nificantly easier when technologies are aligned, so capturing the market here is
important for all parties.

One thing is clear from all of this—it’s a good time to be a developer. Companies are
investing a lot of time and money in making software development a fun and profit-
able industry to be in. Given the changes we’ve seen over the last decade or so, it’s dif-
ficult to predict what programming will look like in another decade, but it’ll be a
fantastic journey getting there.

 I mentioned earlier that C# 3 is effectively part of .NET 3.5. It’s worth taking a bit of
time to look at the different aspects that together make up .NET.

1.3 The .NET platform
When it was originally introduced, “.NET” was used as a catchall term for a vast range
of technologies coming from Microsoft. For instance, Windows Live ID was called
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.NET Passport despite there being no clear relationship between that and what we cur-
rently know as .NET. Fortunately things have calmed down somewhat since then. In
this section we’ll look at the various parts of .NET (at least the ones we’re interested
in) and how they have been separately versioned.

1.3.1 Distinguishing between language, runtime, and libraries

In several places in this book, I’ll refer to three different kinds of features: features of
C# as a language, features of the runtime that provides the “engine” if you will, and fea-
tures of the .NET framework libraries. In particular, this book is heavily focused on the
language of C#, only explaining runtime and framework features when they relate to
features of C# itself. This only makes sense if there is a clear distinction between the
three. Often features will overlap, but it’s important to understand the principle of
the matter.
LANGUAGE

The language of C# is defined by its specification, which describes the format of C#
source code, including both syntax and behavior. It does not describe the platform that
the compiler output will run on, beyond a few key points at which the two interact. For
instance, the C# language requires a type called System.IDisposable, which contains
a method called Dispose. These are required in order to define the using statement.
Likewise, the platform needs to be able to support (in one form or other) both value
types and reference types, along with garbage collection.

 In theory, any platform that supports the required features could have a C# compiler
targeting it. For example, a C# compiler could legitimately produce output in a form
other than the Intermediate Language (IL), which is the typical output at the time of
this writing. A runtime could legitimately interpret the output of a C# compiler rather
than JIT-compiling it. In practice, although interpreting IL is possible (and indeed sup-
ported by Mono), we are unlikely to see widespread use of C# on platforms that are very
different from .NET.
RUNTIME

The runtime aspect of the .NET platform is the relatively small amount of code that is
responsible for making sure that programs written in IL execute according to the CLI
specification, partitions I to III. The runtime part of the CLI is called the Common
Language Runtime (CLR). When I refer to the CLR in the rest of the book, I mean
Microsoft’s implementation.

 Some elements of language never appear at the runtime level, but others cross the
divide. For instance, enumerators aren’t defined at a runtime level, and neither is any
particular meaning attached to the IDisposable interface—but arrays and delegates
are important to the runtime.
FRAMEWORK LIBRARIES

Libraries provide code that is available to our programs. The framework libraries in
.NET are largely built as IL themselves, with native code used only where necessary. This
is a mark of the strength of the runtime: your own code isn’t expected to be a second-
class citizen—it can provide the same kind of power and performance as the libraries
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it utilizes. The amount of code in the library is much larger than that of the runtime,
in the same way that there’s much more to a car than the engine.

 The .NET libraries are partially standardized. Partition IV of the CLI specification
provides a number of different profiles (compact and kernel) and libraries. Partition IV
comes in two parts—a general textual description of the libraries, including which
libraries are required within which profiles, and another part containing the details of
the libraries themselves in XML format. This is the same form of documentation pro-
duced when you use XML comments within C#.

 There is much within .NET that is not within the base libraries. If you write a pro-
gram that only uses libraries from the specification, and only uses them correctly, you
should find your code works flawlessly on any implementation—Mono, .NET, or any-
thing else. In practice, almost any program of any size will use libraries that aren’t
standardized—Windows Forms or ASP.NET, for instance. The Mono project has its
own libraries that are not part of .NET as well, of course, such as GTK#, in addition to
implementing many of the nonstandardized libraries.

 The term .NET refers to the combination of the runtime and libraries provided by
Microsoft, and it also includes compilers for C# and VB.NET. It can be seen as a whole
development platform built on top of Windows.

 Now that we know what term means what, we can look at different versions avail-
able of each. The subject of the version numbers chosen by Microsoft and what’s in
which version is a slightly convoluted one, but it’s important that we all agree on what
we mean when we talk about a particular version.

1.3.2 Untangling version number chaos

A newcomer to the industry might think that coming up with version numbers would
be easy. You start with 1, then move on to 2, then 3 in a logical progression, right? If only
that were the case… Software products and projects of all natures like to keep minor
version changes distinct from major ones, and then there are patch levels, service packs,
build numbers, and so forth. In addition, there are the codenames, which are widely used
and then abandoned, much to the frustration of “bleeding edge” book authors and
publishers. Fortunately from the point of view of C# as a language we can make life rea-
sonably straightforward.

NOTE Keeping it simple: C# 1, C# 2, and C# 3—Throughout this book, I’ll refer to
C# versions as just 1, 2, and 3. There’s little point in distinguishing
between the two 1.x versions, and no point in adding a cumbersome
extra “.0” every time I refer to the different versions—which of course I’ll
be doing quite a lot.

We don’t just need to keep track of the language, unfortunately. There are five things
we’re interested in, when it comes to versioning.

■ The .NET Framework
■ Framework libraries
■ The CLR
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■ C# (the version of the compiler that comes with the framework)
■ Visual Studio—version number and codename

Just for kicks, we’ll throw in the Visual Basic numbering and naming too. (Visual Stu-
dio is abbreviated to VS and Visual Basic is abbreviated to VB for reasons of space.)
Table 1.1 shows the different version numbers. 

Note how both Visual Studio and Visual Basic lost the “.NET” moniker between 2003
and 2005, indicating Microsoft’s emphasis on this being the tool for Windows devel-
opment, as far as they’re concerned.

 As you can see, so far the version of the overall framework has followed the librar-
ies exactly. However, it would be possible for a new version of the CLR with more capa-
bilities to still be released with the existing libraries, so we could (for instance) have
.NET 4.0 with libraries from 3.5, a CLR 3.0, and a C# 3 compiler. Let’s hope it doesn’t
come to that. As it is, Microsoft has already confounded developers somewhat with the
last two lines of the table.

 .NET 3.0 is really just the addition of four libraries: Windows Presentation Foun-
dation (WPF), Windows Communication Foundation (WCF), Windows Workflow
Foundation (WF7), and Windows CardSpace. None of the existing library classes
were changed, and neither was the CLR, nor any of the languages targeting the CLR,
so creating a whole new major version number for this feels a bit over the top.

 Next comes .NET 3.5. This time, along with completely new classes (notably LINQ)
there are many enhancements to the base class libraries (BCL—types within the
namespaces such as System, System.IO; the core of the framework libraries). There’s a
new version of C#, without which this book would be considerably shorter, and a new ver-
sion of Visual Studio to support that and VB 9.0. Apparently all of that isn’t worth a major
version number change, though. There are service packs for both .NET 2.0 and 3.0, and

Table 1.1 Cross-reference table for versions of different products and technologies

.NET
Framework 

libraries (max)
CLR C# Visual Studio Visual Basic

1.0 1.0 1.0 1.0 VS .NET 2002 (no codename) VB.NET 7.0

1.1 1.1 1.1 1.2a

a. I’ve no idea why this isn’t 1.1. I only discovered that it was 1.2 while researching this book. That’s the 
numbering according to Microsoft’s version of the specification, at least. I decided not to confuse matters 
further by also including the ECMA-334 edition number here, although that’s another story in its own right.

VS .NET 2003 (Everett) VB.NET 7.1

2.0 2.0 2.0 2.0 VS 2005 (Whidbey) VB 8.0

3.0 3.0 2.0 2.0 VS 2005 (extension previews), 
VS 2008 (full support)

VB 8.0

3.5 3.5 2.0 3.0 VS 2008 (Orcas) VB 9.0

7 Not WWF due to wrestling and wildlife conflicts.
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both service packs ship with Visual Studio 2008—so while you can target .NET 2.0
and 3.0 with the latest and greatest IDE (as well as 3.5, of course) you should be aware
that what you’ll really be compiling and running against is 2.0SP1, 3.0SP1 or 3.5.

 OK, rant over. It’s only version numbers, after all—but it is important to under-
stand what each version means, if for no other reason than communication. If some-
one says they’re using “3.0” you need to check whether they mean C# 3 or .NET 3.0.

 If all this talk of history and versioning is making you want to get back onto the
familiar ground of actual programming, don’t worry—we’re nearly there. Indeed, if
you fancy writing some code right now, the next section invites you to do just that, as I
introduce the style I’ll be using for most of the examples in this book.

1.4 Fully functional code in snippet form
One of the challenges when writing a book about a computer language (other than
scripting languages) is that complete programs—ones that the reader can compile
and run with no source code other than what’s presented—get pretty long pretty
quickly. I wanted to get around this, to provide you with code that you could easily
type in and experiment with: I believe that actually trying something is a much better
way of learning about it than just reading.

 The solution I’ve come up with isn’t applicable to all situations, but it will serve us
well for most of the example code. It would be awful to use for “real” development,
but it’s specifically tailored to the context we’re working in: presenting and playing
with code that can be compiled and run with the minimal amount of fuss. That’s not
to say you should only use it for experimentation when reading this book—I’ve found
it useful as a general way of testing the behavior of small pieces of code.

1.4.1 Snippets and their expansions

With the right assembly references and the right using directives, you can accomplish
quite a lot in a fairly short amount of C# code—but the killer is the fluff involved in writ-
ing those using directives, then declaring a class, then declaring a Main method before
you’ve even written the first line of useful code. My examples are mostly in the form of
snippets, which ignore the fluff that gets in the way of simple programs, concentrating
on the important part. So, for example, suppose I presented the snippet in listing 1.18.

foreach (string x in new string[] {"Hello", "There"})
{
    Console.WriteLine (x);
}

This code clearly won’t compile on its own—there’s no class declaration, for a start. The
code from listing 1.18 corresponds to the full program shown in listing 1.19.

using System;
public class Snippet

Listing 1.18 The first snippet, which simply displays two words on separate lines

Listing 1.19 Expanded form of listing 1.18, creating a complete program
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{
    [STAThread]
    static void Main(string[] args)
    {
        foreach (string x in new string[] {"Hello", "There"})
        {
            Console.WriteLine (x);
        }
    }
}

Occasionally extra methods or even types are required, with a bit of code in the Main
method to access them. I indicate this by listing the non-Main code, then an ellipsis
(...) and then the Main code. So the code in listing 1.20 would turn into listing 1.21.

static string[] GetGreetingWords()
{
    return new string[] {"Hello", "There"};

}

...

foreach (string x in GetGreetingWords())
{
    Console.WriteLine (x);
}

using System;
public class Snippet
{
    static string[] GetGreetingWords()
    {
        return new string[] {"Hello", "There"};
    }

    [STAThread]
    static void Main(string[] args)
    {
        foreach (string x in GetGreetingWords())
        {
            Console.WriteLine (x);
        }
    }
}

Types declared in snippets will be nested within the Snippet class, but that’s very
rarely a problem.

 Now that we understand what snippets are and what they look like when they’re
expanded, let’s make them a bit more user friendly.

Listing 1.20 A code snippet with an extra method, called within the Main method

Listing 1.21 Expanded form of listing 1.20
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1.4.2 Introducing Snippy

Just knowing what the code would look like isn’t terribly helpful, so I’ve written a small
tool that you can download from the book’s website. It’s written in WPF, so you’ll need
to have .NET 3.0 or higher installed in order to run it. Figure 1.6 shows a screenshot of
it in action. 

 It’s not a visual masterpiece, but it does the job. You can edit the code, compile it,
and run it. There are different options available to use different using directives and
references depending on which part of the book you are looking at, although the
choice of “.NET 3.5” will compile anything that doesn’t require extra custom refer-
ences. Snippy doesn’t try to work out which using directives are actually required by the
code, so the full code is rather longer than the examples in the previous section, but
having extra using directives is harmless.

 Aside from the WPF requirement to run Snippy, everything in the C# 2 section of
the book compiles and runs with only .NET 2.0 installed, and all the snippets compile
and run with .NET 3.5 installed. There’s a single button to compile and run, as you’re
unlikely to want to do anything after a successful compilation other than running
the code.

 As I mentioned earlier, not all examples work this way—the examples in this chapter,
for instance, all require the Product type, which isn’t included in every snippet. From
this point on, however, I will give fair warning whenever a listing isn’t a snippet—so
unless you hear otherwise, you should be able to type it in and play around with it.

 Of course, if you don’t like manually typing in code from books, you can down-
load all of the code from the book’s website, including extra examples that don’t
appear directly in the text. All the code works in the Express editions of Visual
C# 2005 and 2008, although of course the examples that are specific to C# 3 don’t
run in Visual C# 2005.8

8 Some of them may run in Visual Studio 2005 with the C# 3 extension Community Technology Preview (CTP)
installed, but I make no guarantees. The language has changed in a few ways since the final CTP was released,
and I haven’t tested any of the code in this environment. Visual C# 2008 Express is free, though, so why not
give it a try?

Figure 1.6 Snippy in action. 
The code in the top area is 
converted into a full program, 
then run. Its output is shown 
in the bottom area.
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1.5 Summary
In this chapter, I’ve shown (but not explained) some of the features that are tackled in
depth in the rest of the book. There are plenty more that haven’t been shown here,
and all the features we’ve seen so far have further “subfeatures” associated with them.
Hopefully what you’ve seen here has whetted your appetite for the rest of the book.

 After looking through some actual code, we took a step back to consider the his-
tory of C# and the .NET Framework. No technology is developed in a vacuum, and
when it’s commercial (whether or not it directly comes with a price tag) you can guar-
antee that the funding body sees a business opportunity in that development. I’ve not
been through Microsoft’s internal company memos, nor have I interviewed Bill Gates,
but I’ve given my view on the reasons Microsoft has invested so much in .NET, and
what the rest of the world has been doing in the same period. By talking around the
language, I hope I’ve made you more comfortable in the language, and what it’s try-
ing to achieve.

 We then performed a little detour by way of version numbers. This was mainly to
make sure that you’ll understand what I mean when I refer to particular .NET and C#
version numbers (and how different those two can be!), but it might also help when
talking with other people who may not have quite as clear a grasp on the matter as you
now do. It’s important to be able to get to the bottom of what people actually mean
when they talk about a particular version, and with the information in this chapter you
should be able to ask appropriate questions to get an accurate picture. This could be
particularly useful if you ever talk to other developers in a support role—establishing
the operating environment is always critical.

 Finally, I described how code will be presented in this book, and introduced
Snippy, the application you can use to run the code quickly if you don’t want to down-
load the full set of complete samples from the book’s website. This system of code
snippets is designed to pack the book with the really interesting parts of code samples—
the bits that demonstrate the language features I’ll be explaining—without removing
the possibility of actually running the code yourself.

 There’s one more area we need to cover before we dive into the features of C# 2, and
that’s C# 1. Obviously as an author I have no idea how knowledgeable you are about
C# 1, but I do have some understanding of which areas of C# 1 are typically understood
fairly vaguely. Some of these areas are critical to getting the most out of C# 2 and 3, so
in the next chapter I’ll go over them in some detail.



Core foundations:
 building on C# 1
This is not a refresher on the whole of C# 1. Let’s get that out of the way immedi-
ately. I couldn’t do justice to any topic in C# if I had to cover the whole of the first
version in a single chapter. I’ve written this book assuming that all my readers are at
least reasonably competent in C# 1. What counts as “reasonably competent” is, of
course, a somewhat subjective matter, but I’ll assume you would at least be happy to
walk into an interview for a junior C# developer role and answer technical ques-
tions appropriate to that job. My expectation is that many readers will have more
experience, but that’s the level of knowledge I’m assuming.

 In this chapter we’re going to focus on three areas of C# 1 that are particularly
important for C# 2 and 3. This should raise the “lowest common denominator” a lit-
tle, so that I can make slightly greater assumptions later on in the book. Given that
it is a lowest common denominator, you may well find you already have a perfect

This chapter covers
■ Delegates
■ Type system characteristics
■ Value/reference types
32
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understanding of all the concepts in this chapter. If you believe that’s the case without
even reading the chapter, then feel free to skip it. You can always come back later if it
turns out something wasn’t as simple as you thought. You might want to at least look at
the summary at the end of each section, which highlights the important points—if any
of those sound unfamiliar, it’s worth reading that section in detail.

 You may be wondering why I’ve included this chapter at all, if I’ve already assumed
you know C# 1. Well, my experience is that some of the fundamental aspects of C#
tend to be fudged over, both in books and tutorials. As a result, there’s a lot of some-
what hazy understanding of these concepts among developers—creating a lot of ques-
tions (and occasional well-intentioned but ill-informed answers) in the C# newsgroup,
for instance.

 The misunderstood concepts tend to be about the type system used by C# and
.NET, and the details around it. If those concepts weren’t important when learning
about C# 2 and 3, I wouldn’t have included this chapter, but as it happens they’re
absolutely crucial to the rest of the book. It’s hard to come to grips with generics if you
don’t understand static typing, for instance, or to understand the problem solved by
nullable types if the difference between value types and reference types is a bit of a
blur. There’s no shame in having an incomplete understanding of these concepts—
often the details and differences are only important in certain rare situations or when
discussing technicalities. Given that, a more thorough understanding of the language
in which you’re working is always a good thing.

 In this chapter we’ll be looking at three high-level concepts:

■ Delegates
■ Type system characteristics 
■ Value types and reference types

In each case I’ll describe the ideas and behavior, as well as take the opportunity to
define terms so that I can use them later on. After we’ve looked at how C# 1 works, I’ll
show you a quick preview of how many of the new features in C# 2 and 3 relate to the
topics examined in this chapter.

2.1 Delegates
I’m sure you already have an instinctive idea about the concept of a delegate, hard as
it can be to articulate. If you’re familiar with C and had to describe delegates to
another C programmer, the term “function pointer” would no doubt crop up. Essen-
tially, delegates provide a way of giving a level of indirection, so that instead of specify-
ing behavior directly, it can be in some way “contained” in an object, which can be
used like any other object, where one available option is to execute the encapsulated
behavior. Alternatively, you can think of a delegate type as a single-method interface,
and a delegate instance as an object implementing that interface.

 If that’s just a lot of gobbledygook to you, maybe an example will help. It’s slightly
morbid, but it does capture what delegates are all about. Consider your will—that is,
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your last will and testament. It is a set of instructions—“pay the bills, make a donation
to charity, leave the rest of my estate to the cat,” for instance. You write it before your
death, and leave it in an appropriately safe place. After your death, your attorney will
(you hope!) act on those instructions.

 A delegate in C# acts like your will does in the real world—as a sequence of actions
to be executed at the appropriate time. Delegates are typically used when the code that
wants to execute the actions doesn’t know the details of what that action should be. For
instance, the only reason that the Thread class knows what to run in a new thread when
you start it is because you provide it with a ThreadStart delegate instance.

 We’ll start our tour of delegates with the four absolute basics, without which none
of the rest would make sense.

2.1.1 A recipe for simple delegates

In order for delegates to do anything, four things need to happen:

■ The delegate type needs to be declared.
■ There must be a method containing the code to execute.
■ A delegate instance must be created.
■ The delegate instance must be invoked.

Let’s take each of the steps of this recipe in turn.
DECLARING THE DELEGATE TYPE
A delegate type is effectively just a list of parameter types and a return type. It specifies
what kind of action can be represented by instances of the type. For instance, consider
a delegate type declared like this:

delegate void StringProcessor (string input);

The code says that if we want to create an instance of StringProcessor, we’re going to
need a method with one parameter (a string) and a void return type (the method
doesn’t return anything). It’s important to understand that StringProcessor really is
a type. It has methods, you can create instances of it, pass around references to instances,
the whole works. There are obviously a few “special features,” but if you’re ever stuck
wondering what will happen in a particular situation, first think about what would hap-
pen if you were just using a “normal” reference type.

NOTE Source of confusion: the ambiguous term “delegate”—Delegates are often mis-
understood because the word “delegate” is used to describe both a “dele-
gate type” and a “delegate instance.” The distinction between these two is
exactly the same as the one that exists between any other type and
instances of that type—the string type itself is different from a particular
sequence of characters, for example. I’ve used the terms “delegate type”
and “delegate instance” throughout this chapter to try to keep it clear
exactly what I’m talking about at any point. 

We’ll use the StringProcessor delegate type when we consider the next ingredient.
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FINDING AN APPROPRIATE METHOD FOR THE DELEGATE INSTANCE’S ACTION
In .NET, delegate instances always refer to methods. Our next ingredient is to find (or
write, of course) a method that does what we want and has the same signature as the del-
egate type we’re using. The idea is to make sure that when we try to invoke a delegate
instance, the parameters we use will all match up and we’ll be able to use the return value
(if any) in the way we expect—just like a normal method call. 

 Now consider these five method signatures as candidates to be used for a String-
Processor instance:

void PrintString (string x)
void PrintInteger (int x)
void PrintTwoStrings (string x, string y)
int   GetStringLength (string x)
void PrintObject (object x)

The first method has everything right, so we can use it to create a delegate instance.
The second method takes one parameter, but it’s not string, so it’s incompatible with
StringProcessor. The third method has the correct first parameter type, but it has
another parameter as well, so it’s still incompatible.

 The fourth method has the right parameter list but a nonvoid return type. (If our
delegate type had a return type, the return type of the method would have to match
that too.) The fifth method is interesting—any time we invoke a StringProcessor
instance we could call the PrintObject method with the same arguments, because
string derives from object. It would make sense to be able to use it for an instance of
StringProcessor, but C# 1 limits the delegate to have exactly the same parameter
types.1 C# 2 changes this situation—see chapter 5 for more details. In some ways the
fourth method is similar, as you could always ignore the unwanted return value. How-
ever, void and nonvoid return types are currently always deemed to be incompatible.

 Let’s assume we’ve got a method body for the compatible signature (PrintString)
and move on to our next ingredient—the delegate instance itself.
CREATING A DELEGATE INSTANCE
Now that we’ve got a delegate type and a method with the right signature, we can create
an instance of that delegate type, specifying that this method be executed when the del-
egate instance is invoked. There’s no good official terminology defined for this, but for
this book I will call it the action of the delegate instance. The exact form of the expression
used to create the delegate instance depends on whether the action uses an instance
method or a static method. Suppose PrintString is a static method in a type called
StaticMethods and an instance method in a type called InstanceMethods. Here are two
examples of creating an instance of StringProcessor:

StringProcessor proc1, proc2; 
proc1 = new StringProcessor(StaticMethods.PrintString);

InstanceMethods instance = new InstanceMethods();
proc2 = new StringProcessor(instance.PrintString);

1 As well as the parameter types, you have to match whether the parameter is in (the default), out, or ref. It’s
reasonably rare to use out/ref parameters with delegates, though.
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When the action is a static method, you only need to specify the type name. When the
action is an instance method, you need an instance of the type (or a derived type)—
just as if you were calling the method in the normal way. This object is called the target
of the action, and when the delegate instance is invoked, the method will be called on
that object. If the action is within the same class (as it often is, particularly when
you’re writing event handlers in UI code), you don’t need to qualify it either way—the
this reference is used implicitly for instance methods.2 Again, these rules act just as if
you were calling the method directly.

NOTE Utter garbage! (Or not, as the case may be…)—It’s worth being aware that a
delegate instance will prevent its target from being garbage collected, if
the delegate instance itself can’t be collected. This can result in appar-
ent memory leaks, particularly when a “short-lived” object subscribes to
an event in a “long-lived” object, using itself as the target. The long-lived
object indirectly holds a reference to the short-lived one, prolonging
its lifetime.

There’s not much point in creating a delegate instance if it doesn’t get invoked at
some point. Let’s look at our last step—the invocation.
INVOKING A DELEGATE INSTANCE
This is the really easy bit3—it’s just a case of calling a method on the delegate instance.
The method itself is called Invoke, and it’s always present in a delegate type with the
same list of parameters and return type that the delegate type declaration specifies. So
in our case, there’s a method like this:

void Invoke (string input)

Calling Invoke will execute the action of the delegate
instance, passing on whatever parameters you’ve
specified in the call to Invoke, and (if the return type
isn’t void) returning the return value of the action.

 Simple as this is, C# makes it even easier—if you
have a variable4 whose type is a delegate type, you can
treat it as if it were a method itself. It’s easiest to see this
happening as a chain of events occurring at different
times, as shown in figure 2.1.

 So, that’s simple too. All our ingredients are in
place, so we can preheat our CLR to 220°F, stir every-
thing together, and see what happens.

2 Of course, if the action is an instance method and you’re trying to create a delegate instance from within a
static method, you’ll still need to provide a reference to be the target.

3 For synchronous invocation, anyway. You can use BeginInvoke and EndInvoke to invoke a delegate instance
asynchronously, but that’s beyond the scope of this chapter.

4 Or any other kind of expression—but it’s usually a variable.

Compiles to...

Which at 
execution
time invokes...

proc1("Hello");

PrintString("Hello");

proc1.Invoke("Hello");

Figure 2.1 Processing a call to a 
delegate instance that uses the C# 
shorthand syntax
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A COMPLETE EXAMPLE AND SOME MOTIVATION
It’s easiest to see all this in action in a complete example—finally, something we can
actually run! As there are lots of bits and pieces going on, I’ve included the whole
source code this time rather than using snippets. There’s nothing mind-blowing in list-
ing 2.1, so don’t expect to be amazed—it’s just useful to have concrete code to discuss.

using System;

delegate void StringProcessor(string input);

class Person
{

    string name;

    public Person(string name)
    {
        this.name = name;
    }

    public void Say(string message)
    {
        Console.WriteLine ("{0} says: {1}", name, message);
    }

}

class Background
{
    public static void Note(string note)
    {
        Console.WriteLine ("({0})", note);
    }

}

class SimpleDelegateUse
{
    static void Main()
    {
        Person jon = new Person("Jon");
        Person tom = new Person("Tom");

        StringProcessor jonsVoice, tomsVoice, background; 
        jonsVoice = new StringProcessor(jon.Say);         
        tomsVoice = new StringProcessor(tom.Say);         
        background = new StringProcessor(Background.Note);

        jonsVoice("Hello, son.");                
        tomsVoice.Invoke("Hello, Daddy!");    
        background("An airplane flies past.");
    }
}

To start with, we declare the delegate type B. Next, we create two methods (C
and D) that are both compatible with the delegate type. We’ve got one instance
method (Person.Say) and one static method (Background.Note) so that we can see

Listing 2.1 Using delegates in a variety of simple ways

Declares 
delegate type

B

Declares compatible 
instance method

C

Declares compatible 
static method

D

E Creates 
three 
delegate 
instances

Invokes delegate 
instances

F
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how they’re used differently when we create the delegate instances E. We’ve cre-
ated two instances of the Person class so that we can see the difference that the tar-
get of a delegate makes. When jonsVoice is invoked F, it calls the Say method on
the Person object with the name Jon; likewise, when tomsVoice is invoked, it uses
the object with the name Tom. I’ve included both the ways we’ve seen of invoking
delegate instances—calling Invoke explicitly and using the C# shorthand—just for
interest’s sake. Normally you’d just use the shorthand. The output for listing 2.1 is
fairly obvious:

Jon says: Hello, son.
Tom says: Hello, Daddy!
(An airplane flies past.)

Frankly, there’s an awful lot of code in listing 2.1 to display three lines of output. Even
if we wanted to use the Person class and the Background class, there’s no real need to
use delegates here. So what’s the point? Why can’t we just call methods directly? The
answer lies in our original example of an attorney executing a will—just because you
want something to happen, that doesn’t mean you’re always there at the right time
and place to make it happen yourself. Sometimes you need to give instructions—to
delegate responsibility, as it were.

I should stress that back in the world of software, this isn’t a matter of
objects leaving dying wishes. Often the object that first creates a dele-
gate instance is still alive and well when the delegate instance is
invoked. Instead, it’s about specifying some code to be executed at a
particular time, when you may not be able to (or may not want to)
change the code that is running at that point. If I want something to
happen when a button is clicked, I don’t want to have to change the
code of the button—I just want to tell the button to call one of my meth-

ods that will take the appropriate action. It’s a matter of adding a level of
indirection—as so much of object-oriented programming is. As we’ve seen, this adds
complexity (look at how many lines of code it took to produce so little output!) but
also flexibility.

 Now that we understand a bit more about simple delegates, we’ll take a brief look at
combining delegates together to execute a whole bunch of actions instead of just one. 

2.1.2 Combining and removing delegates

So far, all the delegate instances we’ve looked at have had a single action. The truth is
a little bit more complicated: a delegate instance actually has a list of actions associated
with it. This is called the invocation list of the delegate instance. The static Combine and
Remove methods of the System.Delegate type are responsible for creating new dele-
gate instances by respectively splicing together the invocation lists of two delegate
instances or removing the invocation list of one delegate instance from another.

 Before we look at the details, it’s important to note that delegate instances are
immutable. Once you’ve created a delegate instance, nothing about it can be changed.
This makes it safe to pass around delegate instances and combine them with others

Reasons for 

delegates 

existing
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without worrying about consistency, thread safety, or anyone trying to change their
actions. This is just the same with delegate instances as it is with strings, which are
also immutable. The reason for mentioning this is that Delegate.Combine is just like
String.Concat—they both combine existing instances together to form a new one
without changing the original objects at all. In the case of delegate instances, the
original invocation lists are concatenated together. Note that if you ever try to com-
bine null with a delegate instance, the null is treated as if it were a delegate
instance with an empty invocation list.

 You’ll rarely see an explicit call to Delegate.
Combine in C# code—usually the + and += opera-
tors are used. Figure 2.2 shows the translation
process, where x and y are both variables of the
same (or compatible) delegate types. All of this is
done by the C# compiler.

 As you can see, it’s a straightforward transfor-
mation, but it does make the code a lot neater.
Just as you can combine delegate instances,
you can remove one from another with the
Delegate.Remove method, and C# uses the short-
hand of the - and -= operators in the obvious way. Delegate.Remove(source, value)
creates a new delegate whose invocation list is the one from source, with the list from
value having been removed. If the result would have an empty invocation list, null
is returned. 

 Table 2.1 shows some examples of the results of combining and removing delegate
instances. I’ve used the notation [a, b, c] to indicate a delegate with an invocation
list of actions a, b, and c (whatever they may happen to be).

Table 2.1 A selection of examples of combining and removing delegates, showing what the result 
                 is and why

Operation Result Notes

[a] + [b] [a, b] --

[a] + null [a] null counts as an empty invocation list.

null + [a] [a] --

[a] + [b, c] [a, b, c] --

[a, b] + [b, c] [a, b, b, c] Duplicates are allowed.

[a, b, c] - [b] [a, c] The removal list doesn’t have to be at the end…

[a, b, c, d, b, c] - [b, c] [a, b, c, d] … but the last occurrence of the removal list is 
removed.

[a] - [b] [a] No-op removal of nonexistent list.

x = Delegate.Combine(x, y);

x = x+y;

x += y;

Figure 2.2 The transformation process 
used for the C# shorthand syntax for 
combining delegate instances
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When a delegate instance is invoked, all its actions are executed in order. If the dele-
gate’s signature has a nonvoid return type, the value returned by Invoke is the value
returned by the last action executed. It’s quite rare to see a nonvoid delegate instance
with more than one action in its invocation list, because it means the return values of
all the other actions are never seen.

 If any of the actions in the invocation list throws an exception, that prevents any of
the subsequent actions from being executed. For example, if a delegate instance with
an action list [a, b, c] is invoked, and action b throws an exception, then the exception
will be propagated immediately and action c won’t be executed.

 Combining and removing delegate instances is particularly useful when it comes to
events. Now that we understand what combining and removing involves, we can sensi-
bly talk about what events are. 

2.1.3 A brief diversion into events

You probably have an instinctive idea about the overall point of events—particularly if
you’ve written any UIs. The idea is that an event allows code to react when something
happens—saving a file when the appropriate button is clicked, for example. In this
case, the event is the button being clicked, and the action is the saving of the file.
Understanding the reason for the concept isn’t the same as understanding how C#
defines events in language terms, however.

 Developers often get confused between events and delegate instances, or between
events and delegate type fields. The difference is important: events aren’t delegate type
fields. The reason for the confusion is that yet again, C# provides a shorthand, in the
form of field-like events. We’ll come to those in a minute, but first let’s consider what
events consist of as far as the C# compiler is concerned.

I think it’s helpful to think of events as being very similar to properties.
To start with, both of them are declared to be of a certain type, which in
the case of an event is forced to be a delegate type. When you use proper-
ties, it looks like you’re fetching or assigning values directly to fields, but
you’re actually calling methods (getters and setters). The property imple-
mentation can do what it likes within those methods—it just happens
that most properties are implemented with simple fields backing them,

sometimes with some validation in the setter and sometimes with some thread safety
thrown in for good measure.

[a, b, c, d, e] - [a, c, e] [a, b, c, d, e] The removal list must be present as a sublist; 
it’s not just removing each element of the 
removal list.

[a, b] - [a, b] null null is returned for an empty invocation list.

Table 2.1 A selection of examples of combining and removing delegates, showing what the result 
                 is and why (continued)

Operation Result Notes

Events 
are like  

properties—
both 

encapsulate 

data
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 Likewise, when you subscribe to or unsubscribe from an event, it looks like you’re
using a field whose type is a delegate type, with the += and -= operators. Again,
though, you’re actually calling methods (add and remove5). That’s all you can do with
a pure event—subscribe to it (add an event handler) or unsubscribe from it (remove
an event handler). It’s up to the event methods to do something useful—such as tak-
ing notice of the event handlers you’re trying to add and remove, and making them
available elsewhere within the class.

 The reason for having events in the first place is very much like the reason for
having properties—they add a layer of encapsulation. Just as you don’t want other
code to be able to set field values without the owner at least having the option of val-
idating the new value, you often don’t want code outside a class to be able to arbi-
trarily change (or call) the handlers for an event. Of course, a class can add methods
to give extra access—for instance, to reset the list of handlers for an event, or to
raise the event (in other words, call its event handlers). For example, Background-
Worker.OnProgressChanged just calls the ProgressChanged event handlers. How-
ever, if you only expose the event itself, code outside the class only has the ability to
add and remove handlers.

 Field-like events make the implementation of all of this much simpler to look at—a
single declaration and you’re done. The compiler turns the declaration into both an
event with default add/remove implementations, and a private delegate type field.
Code inside the class sees the field; code outside the class only sees the event. This
makes it look as if you can invoke an event—but what you actually do to call the event
handlers is invoke the delegate instance stored in the field.

 The details of events are outside the scope of this chapter—events themselves haven’t
changed significantly in C# 2 or 3—but I wanted to draw attention to the difference
between delegate instances and events now, to prevent it causing confusion later on. 

2.1.4 Summary of delegates

So, to summarize what we’ve covered on delegates:

■ Delegates allow behavior to be encapsulated.
■ The declaration of a delegate type controls which methods can be used to cre-

ate delegate instances. 
■ Creating a delegate instance requires a method and (for instance methods) a

target to call the method on.
■ Delegate instances are immutable.
■ Delegate instances each contain an invocation list—a list of actions.
■ Delegate instances can be combined together and removed from each other.
■ Events are not delegate instances—they’re just add/remove method pairs

(think property getters/setters).

5 These aren’t their names in the compiled code; otherwise you could only have one event per type. The com-
piler creates two methods with names that aren’t used elsewhere, and a special piece of metadata to let other
types know that there’s an event with the given name, and what its add/remove methods are called.
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Delegates are one very specific feature of C# and .NET—a detail, in the grand scheme
of things. Both of the other “reminder” sections in this chapter deal with much
broader topics. First, we will consider what it means to talk about C# being a statically
typed language and the implications that has. 

2.2 Type system characteristics
Almost every programming language has a type system of some kind. Over time, these
have been classified as strong/weak, safe/unsafe, static/dynamic, and no doubt some
more esoteric variations. It’s obviously important to understand the type system with
which one is working, and it’s reasonable to expect that knowing the categories into
which a language falls would give a lot of information to help on that front. However,
because the terms are used to mean somewhat different things by different people,
miscommunication is almost inevitable. I’ll try to say exactly what I mean by each term
to avoid confusion as much as possible.

 One important thing to note is that this section is only applicable to “safe” code—
which means all C# code that isn’t explicitly within an unsafe context. As you might
judge from the name, code within an unsafe context can do various things that safe
code can’t, and that may violate some aspects of normal type safety. Most developers
are unlikely ever to need to write unsafe code, and the characteristics of the type sys-
tem are far simpler to describe and understand when only safe code is considered.

 This section shows what restrictions are and aren’t enforced in C# 1 while defin-
ing some terms to describe that behavior. We’ll then see a few things we can’t do
with C# 1—first from the point of view of what we can’t tell the compiler, and then
from the point of view of what we wish we didn’t have to tell the compiler.

 Let’s start off with what C# 1 does, and what terminology is usually used to describe
that kind of behavior.

2.2.1 C#’s place in the world of type systems

It’s easiest to begin by making a statement, and then clarify what it actually means and
what the alternatives might be:

C# 1’s type system is static, explicit, and safe.

You might well have expected the word strong to appear in the list, and I had half a
mind to include it. However, while most people can reasonably agree on whether a
language has the listed characteristics, deciding whether or not a language is strongly
typed can cause heated debate because the definitions vary so wildly. Some meanings
(those preventing any conversions, explicit or implicit) would clearly rule C# out—
whereas others are quite close to (or even the same as) statically typed, which would
include C#. Most of the articles and books I’ve read that describe C# as a strongly
typed language are effectively using it to mean statically typed. I’ve used the word static
here to try to minimize the potential for confusion—although it should be noted that
it has little in common with the common understanding of the keyword static used
within code itself as related to the type rather than a particular instance.

 Let’s take the terms in the definition one at a time and shed some light on them.
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STATIC TYPING VS. DYNAMIC TYPING
C# is statically typed: each variable6 is of a particular type, and that type is known at
compile time. Only operations that are known about for that type are allowed, and
this is enforced by the compiler. Consider this example of enforcement:

object o = "hello";
Console.WriteLine (o.Length);

Now as developers looking at the code, we obviously know that the value of o refers to
a string, and that the string type has a Length property, but the compiler only thinks
of o as being of type object. If we want to get to the Length property, we have to tell
the compiler that the value of o actually refers to a string:

object o = "hello";
Console.WriteLine (((string)o).Length);

The alternative to static typing is dynamic typing, which can take a variety of guises. The
essence of dynamic typing is to say that variables just have values—they aren’t
restricted to particular types, so the compiler can’t perform the same sort of checks.
Instead, the execution environment attempts to understand any given expression in
an appropriate manner for the value involved. For example, if C# were dynamically
typed, we could do this:

o = "hello";
Console.WriteLine (o.Length);
o = new string[] {"hi", "there"};
Console.WriteLine (o.Length);

This would be using two completely unrelated Length properties—String.Length and
Array.Length—by examining the types dynamically at execution time. Like many areas
of defining type systems, there are different levels of dynamic typing. Some languages
allow you to specify types where you want to—possibly still treating them dynamically
apart from assignment—but let you use untyped variables elsewhere.
EXPLICIT TYPING VS. IMPLICIT TYPING
The distinction between explicit typing and implicit typing is only relevant in statically typed
languages. With explicit typing, the type of every variable must be explicitly stated in the
declaration. Implicit typing allows the compiler to infer the type of the variable based
on its use. For example, the language could dictate that the type of the variable is the
type of the expression used to assign the initial value.

 Consider a hypothetical language that uses the keyword var to indicate type infer-
ence.7 Table 2.2 shows how code in such a language could be written in C# 1. The
code in the left column is not allowed in C# 1, but the code in the right column is the
equivalent valid code.

6 This applies to most expressions too, but not quite all of them. There are certain expressions which don’t have
a type, such as void method invocations, but this doesn’t affect C#’s status of being statically typed. I’ve used the
word variable throughout this section to avoid unnecessary brain strain.

7 OK, not so hypothetical. See section 8.2 for C# 3’s implicitly typed local variable capabilities.
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Hopefully it’s clear why this is only relevant for statically typed situations: for both
implicit and explicit typing, the type of the variable is known at compile time, even if
it’s not explicitly stated. In a dynamic context, the variable doesn’t even have a type to
state or infer.
TYPE-SAFE VS. TYPE-UNSAFE
The easiest way of describing a type-safe system is to describe its opposite. Some lan-
guages (I’m thinking particularly of C and C++) allow you to do some really devious
things. They’re potentially powerful in the right situations, but with great power
comes a free pack of donuts, or however the expression goes—and the right situations
are relatively rare. Some of these devious things can shoot you in the foot if you get
them wrong. Abusing the type system is one of them.

 With the right voodoo rituals, you can persuade these languages to treat a value of
one type as if it were a value of a completely different type without applying any conver-
sions. I don’t just mean calling a method that happens to be called the same thing, as
in our dynamic typing example earlier. I mean some code that looks at the raw bytes
within a value and interprets them in the “wrong” way. Listing 2.2 gives a simple C
example of what I mean.

#include <stdio.h>

int main(int argc, char **argv)
{
    char *first_arg = argv[1];
    int *first_arg_as_int = (int *)first_arg;
    printf ("%d", *first_arg_as_int);
}

If you compile listing 2.2 and run it with a simple argument of "hello", you will see
a value of 1819043176—at least on a little-endian architecture with a compiler treat-
ing int as 32 bits and char as 8 bits, and where text is represented in ASCII or UTF-8.
The code is treating the char pointer as an int pointer, so dereferencing it returns
the first 4 bytes of text, treating them as a number.

 In fact, this tiny example is quite tame compared with other potential abuses—
casting between completely unrelated structs can easily result in total mayhem. It’s not
that this actually happens in real life very often, but some elements of the C typing sys-
tem often mean you’ll have to tell the compiler what to do, leaving it no option but to
trust you even at execution time. 

 Fortunately, none of this occurs in C#. Yes, there are plenty of conversions avail-
able, but you can’t pretend that data for one particular type of object is actually data

Invalid C# 1—implicit typing Valid C# 1—explicit typing

var s = "hello";
var x = s.Length;
var twiceX = x*2;

string s = "hello";
int x = s.Length;
int twiceX = x*2;

Listing 2.2 Demonstrating a type-unsafe system with C code

Table 2.2 An example showing the
differences between implicit and
explicit typing
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for a different type. You can try by adding a cast to give the compiler this extra (and
incorrect) information, but if the compiler spots that it’s actually impossible for that
cast to work, it will trigger a compilation error—and if it’s theoretically allowed but
actually incorrect at execution time, the CLR will throw an exception.

 Now that we know a little about how C# 1 fits into the bigger picture of type sys-
tems, I’d like to mention a few downsides of its choices. That’s not to say the choices
are wrong—just limiting in some ways. Often language designers have to choose
between different paths that add different limitations or have other undesirable con-
sequences. I’ll start with the case where you want to tell the compiler more informa-
tion, but there’s no way of doing so.

2.2.2 When is C# 1’s type system not rich enough?

There are two common situations where you might want to expose more information
to the caller of a method, or perhaps force the caller to limit what they provide in
their arguments. The first involves collections, and the second involves inheritance
and overriding methods or implementing interfaces. We’ll examine each in turn.
COLLECTIONS, STRONG AND WEAK
Having avoided the terms strong and weak for the C# type system in general, I’ll use
them when talking about collections. They’re used almost everywhere in this context,
with little room for ambiguity. Broadly speaking, three kinds of collection types are
built into .NET 1.1:

■ Arrays—strongly typed—which are built into both the language and the runtime
■ The weakly typed collections in the System.Collections namespace
■ The strongly typed collections in the System.Collections.Specialized

namespace

Arrays are strongly typed,8 so at compile time you can’t set an element of a string[] to
be a FileStream, for instance. However, reference type arrays also support covariance,
which provides an implicit conversion from one type of array to another, so long as
there’s a conversion between the element types. Checks occur at execution time to
make sure that the wrong type of reference isn’t actually stored, as shown in listing 2.3.

string[] strings = new string[5];
object[] objects = strings;    
objects[0] = new object();

If you run listing 2.3, you will see an ArrayTypeMismatchException is thrown C. This
is because the conversion from string[] to object[] B returns the original refer-
ence—both strings and objects refer to the same array. The array itself “knows” it is

8 At least, the language allows them to be. You can use the Array type for weakly typed access to arrays, though.

Listing 2.3 Demonstration of the covariance of arrays, and execution time type checking

Applies covariant 
conversion

B

C
Attempts to store 
a plain “object”
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a string array, and will reject attempts to store references to nonstrings. Covariance is
often useful, but comes at the cost of some of the type safety being implemented at
execution time instead of compile time.

 Let’s compare this with the situation that the weakly typed collections such as Array-
List and Hashtable put us in. The API of these collections uses object as the type of
keys and values. When you are writing a method that takes an ArrayList, for example,
there is no way of making sure at compile time that the caller will pass in a list of strings.
You can document it, and the type safety of the runtime will enforce it if you cast each
element of the list to string, but you don’t get compile-time type safety. Likewise, if you
return an ArrayList, you can indicate in the documentation that it will just contain
strings, but callers will have to trust that you’re telling the truth, and will have to insert
casts when they access the elements of the list.

 Finally, consider the strongly typed collections such as StringCollection. These
provide an API that is strongly typed, so you can be confident that when you receive
a StringCollection as a parameter or return value it will only contain strings, and
you don’t need to cast when fetching elements of the collection. It sounds ideal, but
there are two problems. First, it implements IList, so you can still try to add non-
strings to it (although you’ll fail at runtime). Second, it only deals with strings.
There are other specialized collections, but all told they don’t cover much ground.
There’s the CollectionBase type, which can be used to build your own strongly
typed collections, but that means creating a new collection type for each element
type, which is also not ideal.

 Now that we’ve seen the problem with collections, let’s consider the issue that can
occur when overriding methods and implementing interfaces. It’s related to the idea
of covariance, which we’ve already seen with arrays.
LACK OF COVARIANT RETURN TYPES
ICloneable is one of the simplest interfaces in the framework. It has a single method,
Clone, which should return a copy of the object that the method is called on. Now,
leaving aside the issue of whether this should be a deep or shallow copy, let’s look at
the signature of the Clone method:

object Clone()

It’s a straightforward signature, certainly—but as I said, the method should return a
copy of the object it’s called on. That means it needs to return an object of the same
type—or at least a compatible one (where that meaning will vary depending on the
type). It would make sense to be able to override the method with a signature that gives
a more accurate description of what the method actually returns. For example, in a
Person class it would be nice to be able to implement ICloneable with

public Person Clone()

That wouldn’t break anything—code expecting any old object would still work fine. This
feature is called return type covariance but unfortunately, interface implementation and
method overriding don’t support it. Instead, the normal workaround for interfaces is
to use explicit interface implementation to achieve the desired effect:
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public Person Clone()
{

    [Implementation goes here]

}

object ICloneable.Clone()
{
    return Clone();
}

Any code that calls Clone() on an expression that the compiler knows is of type Person
will call the top method; if the type of the expression is just ICloneable, it will call the
bottom method. This works but is really ugly.

 The mirror image of this situation also occurs with parameters, where if you had
an interface or virtual method with a signature of, say void Process(string x), then
it would seem logical to be able to implement or override the method with a less
demanding signature, such as void Process(object x). This is called parameter type
contravariance—and is just as unsupported as return type covariance, with the same
workaround for interfaces and normal overloading for virtual methods. It’s not a
showstopper, but it’s irritating.

 Of course, C# 1 developers put up with all of these issues for a long time—and Java
developers had a similar situation for far longer. While compile-time type safety is a
great feature in general, I can’t remember seeing many bugs where people actually put
the wrong type of element in a collection. I can live with the workaround for the lack
of covariance and contravariance. But there’s such a thing as elegance and making
your code clearly express what you mean, preferably without needing explanatory
comments. We’ll see later that C# 2 isn’t flawless either, but it makes large improve-
ments. As an aside, let’s briefly go into an area that isn’t improved upon in any way by
C# 2 and is only tangentially touched on by C# 3—dynamic typing.

2.2.3 When does C# 1’s type system get in the way?

I like static typing. Most of the time, it does what I want without much fuss, and it stops
me from making silly mistakes. It also means the IDE has more information to help me
with features such as IntelliSense.

 Just occasionally, it’s a real pain. If I’ve got two types that already have a particular
method signature, but the types have nothing else in common or don’t know about
my code at all, why can’t I “pretend” they implement an interface containing that sig-
nature? This feature is known as duck typing (and yet again, different people use the
term to mean slightly different things) in that if something walks like a duck and
quacks like a duck, you might as well treat it like a duck.

 If I’m working with an API (usually through COM) that doesn’t have strongly typed
methods, why can’t I ask the compiler to just stop using static typing for a while? Visual
Basic has this feature, which is controlled with Option Strict; likewise, implicit typing
is turned on and off using Option Explicit. Both of these features have received bad
press, partly due to poor choices for default values in the past. It’s also partly due to

Implements 
interface explicitly

Calls noninterface 
method
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the overuse of these features by developers who decided to make their code compile
at all costs (and then wondered why it failed at runtime). I can’t say I would use this
sort of feature particularly heavily in C# if it were there—but every so often, it would
be welcome.

 Of course, a dynamic type system doesn’t have to stop there. More adventurous
languages such as Ruby, Python, and Groovy allow methods to be added to types (or
even individual objects) at execution time, and allow the type itself to determine
what should happen if you try to call a method that doesn’t exist. These powerful
(though expensive in performance terms) features can lead to programs that appear
to work almost by magic, and that certainly make C#’s static typing look positively
antiquated. They have their costs in terms of understanding what’s going on in your
code, as well as reducing compile-time safety, but again, used in the right place they
can be positive.

 It’s important that languages don’t try too hard to be all things to all people. Such
attempts always end in tears, and the cost in terms of the complexity of the language
can be high. We’ll see this balance between adding new features and limiting the cost
of them time and time again throughout this book—the C# team has quite a high
bar in terms of how useful a feature must be before it’s considered for inclusion in
the language.

2.2.4 Summary of type system characteristics

In this section we’ve learned some of the differences between type systems, and in par-
ticular which characteristics apply to C# 1:

■ C# 1 is statically typed—the compiler knows what members to let you use.
■ C# 1 is explicit—you have to tell the compiler what types variables have.
■ C# 1 is safe—you can’t treat one type as if it were another without the availabil-

ity of a genuine conversion.
■ Static typing still doesn’t allow a single collection to be a strongly typed “list of

strings” or “list of integers.”
■ Method overriding and interface implementation don’t allow covariance/

contravariance.

Our next section covers one of the most fundamental aspects of C#’s type system
beyond its high-level characteristics—the differences between structs and classes.

2.3 Value types and reference types
It would be hard to overstate how important the subject of this section is. Everything you
do in .NET will deal with either a value type or a reference type—and yet it’s curiously
possible to develop for a long time with only a vague idea of what the difference is. Worse
yet, there are plenty of myths around to confuse things further. The unfortunate fact is
that it’s quite easy to make a short but incorrect statement that is close enough to the
truth to be plausible but inaccurate enough to be misleading—but it’s relatively tricky
to come up with a concise but accurate description.
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 Once you “get it,” the difference between value types and reference types is simple.
It can take a while to reach that stage, and you may well have been able to write a lot of
correct code without really understanding it. It’s worth persevering, though: for one
thing, a lot of seemingly complicated situations are much easier to understand when
you’re aware of what’s really going on.

 This section is not a complete breakdown of how types are handled, marshaling
between application domains, interoperability with native code, and the like. Instead,
it’s a fairly brief look at the absolute basics of the topic (as applied to C# 1) that are cru-
cial to understand in order to come to grips with C# 2 and 3.

 We’ll start off by seeing how the fundamental differences between value types and
reference types appear naturally in the real world as well as in .NET.

2.3.1 Values and references in the real world

Suppose you’re reading something really fantastic, and want a friend to read it too.
Let’s further suppose that it’s a document in the public domain, just to avoid any accu-
sations of supporting copyright violation. What do you need to give your friend so that
he can read it too? It entirely depends on just what you’re reading.

 First we’ll deal with the case where you’ve got real paper in your hands. To give
your friend a copy, you’d need to photocopy all the pages and then give it to him. At
that point, he has his own complete copy of the document. In this situation, we are
dealing with value type behavior. All the information is directly in your hands—you
don’t need to go anywhere else to get it. Your copy of the information is also indepen-
dent of your friend’s after you’ve made the copy. You could add some notes to your
pages, and his pages wouldn’t be changed at all.

 Compare that with the situation where you’re actually reading a web page. This
time, all you have to give your friend is the URL of the web page. This is reference type
behavior, with the URL taking the place of the reference. In order to actually read the
document, you have to navigate the reference by putting the URL in your browser and
asking it to load the page. On the other hand, if the web page changes for some rea-
son (imagine it’s a wiki page and you’ve added your notes to the page) both you and
your friend will see that change the next time each of you loads the page. 

 The differences we’ve seen in the real world form the heart of the distinction
between value types and reference types in C# and .NET. Most types in .NET are refer-
ence types, and you’re likely to create far more reference than value types. Aside from
the special cases that follow, classes (declared using class) are reference types, and
structures (declared using struct) are value types. The other cases are as follows:

■ Array types are reference types, even if the element type is a value type (so
int[] is still a reference type, even though int is a value type).

■ Enumerations (declared using enum) are value types.
■ Delegate types (declared using delegate) are reference types.
■ Interface types (declared using interface) are reference types, but they can be

implemented by value types.
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Now that we’ve got the basic idea of what reference types and value types are about,
we’ll look at a few of the most important details.

2.3.2 Value and reference type fundamentals

The key concept to grasp when it comes to value types and reference types is what the
value of a particular expression is. To keep things concrete, I’ll use variables as the
most common examples of expressions—but the same thing applies to properties,
method calls, indexers, and other expressions.

As we discussed in section 2.2.1, most expressions have types associated
with them. The value of a value type expression is the value, plain and
simple. For instance, the value of the expression “2+3” is just 5. The value
of a reference type expression, however, is a reference. It’s not the object
that the reference refers to. So, the value of the expression String.
Empty is not an empty string—it’s a reference to an empty string. In every-
day discussions and even in documentation we tend to blur this distinc-
tion. For instance, we might describe String.Concat as returning “a

string that is the concatenation of all the parameters.” Using very precise terminology
here would be time-consuming and distracting, and there’s no problem so long as
everyone involved understands that it’s only a reference that is returned.

 To demonstrate this further, consider a Point type that stores two integers, x and y.
It could have a constructor that takes the two values. Now, this type could be imple-
mented as either a struct or a class. Figure 2.3 shows the result of executing the follow-
ing lines of code:

Point p1 = new Point(10, 20);
Point p2 = p1;

The left side of figure 2.3 indicates the
values involved when Point is a class (a
reference type), and the right side shows
the situation when Point is a struct (a
value type).

 In both cases, p1 and p2 have the
same value after the assignment. How-
ever, in the case where Point is a refer-
ence type, that value is a reference: both
p1 and p2 refer to the same object. When
Point is a value type, the value of p1 is the
whole of the data for a point—the x and
y values. Assigning the value of p1 to p2 copies all of that data.

 The values of variables are stored wherever they are declared. Local variable values
are always stored on the stack,9 and instance variable values are always stored wherever

9 This is only totally true for C# 1. We’ll see later that local variables can end up on the heap in certain situations
in C# 2 and 3.
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the instance itself is stored. Reference type instances (objects) are always stored on the
heap, as are static variables.

 Another difference between the two kinds of type is that value types cannot be
derived from. One consequence of this is that the value doesn’t need any extra infor-
mation about what type that value actually is. Compare that with reference types,
where each object contains a block of data at the start of it identifying the actual type
of the object, along with some other information. You can never change the type of an
object—when you perform a simple cast, the runtime just takes a reference, checks
whether the object it refers to is a valid object of the desired type, and returns the orig-
inal reference if it’s valid or throws an exception otherwise. The reference itself
doesn’t know the type of the object—so the same reference value can be used for mul-
tiple variables of different types. For instance, consider the following code:

Stream stream = new MemoryStream();
MemoryStream memoryStream = (MemoryStream) stream;

The first line creates a new MemoryStream object, and sets the value of the stream vari-
able to be a reference to that new object. The second line checks that the value of
stream refers to a MemoryStream (or derived type) object and sets the value of
memoryStream to the same value.

 Once you understand these basic points, you can apply them when thinking about
some of the falsehoods that are often stated about value types and reference types.

2.3.3 Dispelling myths

There are various myths that do the rounds on a regular basis. I’m sure the misinfor-
mation is almost always passed on with no malice and with no idea of the inaccuracies
involved. In this section I’ll tackle the most prominent myths, explaining the true situ-
ation as I go.
MYTH #1: “STRUCTS ARE LIGHTWEIGHT CLASSES”
This myth comes in a variety of forms. Some people believe that value types can’t or
shouldn’t have methods or other significant behavior—they should be used as simple
data transfer types, with just public fields or simple properties. The DateTime type is a
good counterexample to this: it makes sense for it to be a value type, in terms of being
a fundamental unit like a number or a character, and it also makes sense for it to be
able to perform calculations to do with its value. Looking at things from the other
direction, data transfer types should often be reference types anyway—the decision
should be based on the desired value or reference type semantics, not the simplicity of
the type.

 Other people believe that value types are “lighter” than reference types in terms of
performance. The truth is that in some cases value types are more performant—they
don’t require garbage collection, don’t have the type identification overhead, and
don’t require dereferencing, for example. However, in other ways reference types are
more performant—parameter passing, assignment, returning values and similar oper-
ations only require 4 or 8 bytes to be copied (depending on whether you’re running
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the 32-bit or 64-bit CLR) rather than copying all the data. Imagine if ArrayList were
somehow a “pure” value type, and passing an ArrayList expression to a method
involved copying all its data!
MYTH #2: “REFERENCE TYPES LIVE ON THE HEAP, VALUE TYPES LIVE ON THE STACK”
This one is often caused just by laziness on the part of the person repeating it. The
first part is correct—an instance of a reference type is always created on the heap. It’s
the second part that is problematic. As we’ve already noted, a variable’s value lives
wherever it’s declared—so if you have a class with an instance variable of type int, that
variable’s value for any given object will always be where the rest of the data for the
object is—on the heap. Only local variables (variables declared within methods) and
method parameters live on the stack. 

NOTE Are these concepts relevant now? It’s arguable that if you’re writing man-
aged code, you should let the runtime worry about how memory is best
used. Indeed, the language specification makes no guarantees about
what lives where; a future runtime may be able to create some objects on
the stack if it knows it could get away with it, or the C# compiler could
generate code that hardly uses the stack at all.

The next myth is usually just a terminology issue.
MYTH #3: “OBJECTS ARE PASSED BY REFERENCE IN C# BY DEFAULT”
This is probably the most widely propagated myth. Again, the people who make this
claim often (though not always) know what the actual C# behavior is, but they don’t
know what “pass by reference” really means. Unfortunately, this leads to people who
do know what it means getting confused. The formal definition of “pass by reference”
is relatively complicated, involving l-values and similar computer science terminology,
but the important thing is that if you pass a variable by reference, the method you’re
calling can change the value of the caller’s variable by changing its parameter value. Now
remember that the value of a reference type variable is the reference, not the object
itself. You can change the contents of the object that a parameter refers to without the
parameter itself being passed by reference. For instance, the following method
changes the contents of the StringBuilder object in question, but the caller’s expres-
sion will still refer to the same object as before:

void AppendHello (StringBuilder builder)
{
    builder.Append("hello");
}

When this method is called, the parameter value (a reference to a StringBuilder) is
passed by value. If I were to change the value of the builder variable within the
method—for example with the statement builder = null;—that change wouldn’t be
seen by the caller, contrary to the myth.

 It’s interesting to note that not only is the “by reference” bit of the myth inaccu-
rate, but so is the “objects are passed” bit. Objects themselves are never passed, either
by reference or by value. When a reference type is involved, either the variable is
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passed by reference or the value of the argument (the reference) is passed by value.
Aside from anything else, this answers the question of what happens when null is
used as a by-value argument—if objects were being passed around, that would cause
issues, as there wouldn’t be an object to pass! Instead, the null reference is passed by
value in just the same way as any other reference would be.

 These myths aren’t the only ones around. Boxing and unboxing come in for their
fair share of misunderstanding, which I’ll try to clear up next.

2.3.4 Boxing and unboxing

Sometimes, you just don’t want a value type value. You want a reference. There are any
number of reasons why this can happen, and fortunately C# and .NET provide a mech-
anism, called boxing, that lets you create an object from a value type value and use a
reference to that new object. Before we leap straight into an example, let’s start off by
reviewing two important facts:

■ The value of a reference type variable is always a reference.
■ The value of a value type variable is always a value of that type.

Given those two facts, the following three lines of code don’t seem to make much
sense at first glance:

int i = 5;
object o = i;
int j = (int) o;

We have two variables: i is a value type variable, and o is a reference type variable. How
does it make sense to assign the value of i to o? The value of o has to be a reference,
and the number 5 isn’t a reference—it’s an integer value. What’s actually happening is
boxing: the runtime creates an object (on the heap—it’s a normal object) that con-
tains the value (5). The value of o is then a reference to that new object. The third line
performs the reverse operation—unboxing. We have to tell the compiler which type to
unbox the object as, and if we use the wrong type (if it’s a boxed uint or long, for
example, or not a boxed value at all) an InvalidCastException is thrown.10

 That’s it, really—boxing and unboxing in a nutshell. The only remaining problem
is knowing when boxing and unboxing occur. Unboxing is usually obvious, because the
cast is present in the code. Boxing can be more subtle. We’ve seen the simple version,
but it can also occur if you call the ToString, Equals, or GetHashCode methods on the
value of a type that doesn’t override them, or if you use the value as an interface expres-
sion—assigning it to a variable whose type is an interface type or passing it as a param-
eter with an interface type. For example, the statement IComparable x = 5; would box
the number 5.

 It’s worth being aware of boxing and unboxing because of the potential perfor-
mance penalty involved. A single box or unbox operation is very cheap, but if you

10 There are corner cases where the type doesn’t have to be exactly right, mostly to do with enums. These are so
fiddly that even the C# language specification hasn’t got it quite right yet!
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perform hundreds of thousands of them, you’ve not only got the cost of the opera-
tion yourself, but you’re also creating a lot of objects, which gives the garbage collec-
tor more work to do. 

2.3.5 Summary of value types and reference types

In this section we’ve looked at the differences between value types and reference
types, as well as some of the myths surrounding them. Here are the key points:

■ The value of a reference type expression (a variable for example) is a reference,
not an object.

■ References are like URLs—they are small pieces of data that let you access the
real information.

■ The value of a value type expression is the actual data.
■ There are times when value types are more efficient than reference types, and

vice versa.
■ Reference type objects are always on the heap, but value type values can be on

either the stack or the heap, depending on context.
■ When a reference type is used as a method parameter, by default the parameter

is passed by value—but the value itself is a reference.
■ Value type values are boxed when reference type behavior is needed; unboxing

is the reverse process.
Now that we’ve had a look at all the bits of C# 1 that you need to be comfortable with,
it’s time to take a quick look forward and see where each of the features will be
enhanced by C# 2 and 3. 

2.4 C# 2 and 3: new features on a solid base
The three topics covered in this chapter are all vital to C# 2 and 3. Almost all the new
features relate to at least one of them, and they change the balance of how the lan-
guage is used. Before we wrap up the chapter, let’s explore how the new features
relate to the old ones. I’m not going to give many details (for some reason the pub-
lisher didn’t want a single 400-page section), but it’s helpful to have an idea of where
these areas are going before we get to the nitty-gritty. We’ll look at them in the same
order as we covered them earlier, starting with delegates.

2.4.1 Features related to delegates

Delegates of all kinds get a boost in C# 2, and then they’re given even more special
treatment in C# 3. Most of the features aren’t new to the CLR, but are clever compiler
tricks to make delegates work more smoothly within the language. This is where
things are changing the most, not just in terms of syntax but also the idioms of how C#
and the .NET Framework are best used. Over time, this will lead to a different way of
approaching code.

 C# 1 has pretty clumsy syntax when it comes to creating a delegate instance. For one
thing, even if you need to accomplish something very straightforward, you’ve got to have
a whole method dedicated to that job in order to create a delegate instance for it. C# 2
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fixes this with anonymous methods, and introduces a simpler syntax for the cases where
you still want to use a normal method to provide the action for the delegate. You can also
create delegate instances using methods with compatible signatures—the method signa-
ture no longer has to be exactly the same as the delegate’s declaration.

 Listing 2.4 demonstrates all these improvements.

static void HandleDemoEvent(object sender, EventArgs e)
{
    Console.WriteLine ("Handled by HandleDemoEvent");
}
...

EventHandler handler;

handler = new EventHandler(HandleDemoEvent);

handler(null, EventArgs.Empty);

handler = HandleDemoEvent;   

handler(null, EventArgs.Empty);

handler = delegate(object sender, EventArgs e)        
    { Console.WriteLine ("Handled anonymously"); };

handler(null, EventArgs.Empty);

handler = delegate                                      
   { Console.WriteLine ("Handled anonymously again"); };

handler(null, EventArgs.Empty);

MouseEventHandler mouseHandler = HandleDemoEvent;       
mouseHandler(null, new MouseEventArgs(MouseButtons.None,
                                      0, 0, 0, 0));     

The first part of the main code B is just C# 1 code, kept for comparison. The remain-
ing delegates all use new features of C# 2. The conversion involved C makes event
subscription code read a lot more pleasantly—lines such as saveButton.Click +=
SaveDocument; are very straightforward, with no extra fluff to distract the eye. The
anonymous method syntax D is a little cumbersome, but does allow the action to
be very clear at the point of creation, rather than being another method to look at
before you understand what’s going on. The shortcut used E is another example of
anonymous method syntax, but this form can only be used when you don’t need the
parameters. Anonymous methods have other powerful features as well, but we’ll see
those later.

 The final delegate instance created F is an instance of MouseEventHandler rather
than just EventHandler—but the HandleDemoEvent method can still be used due to
contravariance, which specifies parameter compatibility. Covariance specifies return
type compatibility. We’ll be looking at both of these in more detail in chapter 5. Event
handlers are probably the biggest beneficiaries of this, as suddenly the Microsoft
guideline to make all delegate types used in events follow the same convention makes

Listing 2.4 Improvements in delegate instantiation brought in by C# 2
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a lot more sense. In C# 1, it didn’t matter whether or not two different event handlers
looked “quite similar”—you had to have a method with an exactly matching signature
in order to create a delegate instance. In C# 2, you may well find yourself able to use
the same method to handle many different kinds of events, particularly if the purpose
of the method is fairly event independent, such as logging.

 C# 3 provides special syntax for instantiating delegate types, using lambda expres-
sions. To demonstrate these, we’ll use a new delegate type. As part of the CLR gaining
generics in .NET 2.0, generic delegate types became available and were used in a num-
ber of API calls in generic collections. However, .NET 3.5 takes things a step further,
introducing a group of generic delegate types called Func that all take a number of
parameters of specified types and return a value of another specified type. Listing 2.5
gives an example of the use of a Func delegate type as well as lambda expressions.

Func<int,int,string> func = (x,y) => (x*y).ToString();
Console.WriteLine (func(5, 20));

Func<int,int,string> is a delegate type that takes two integers and returns a string.
The lambda expression in listing 2.5 specifies that the delegate instance (held in
func) should multiply the two integers together and call ToString(). The syntax is
much more straightforward than that of anonymous methods, and there are other
benefits in terms of the amount of type inference the compiler is prepared to perform
for you. Lambda expressions are absolutely crucial to LINQ, and you should get ready
to make them a core part of your language toolkit. They’re not restricted to working
with LINQ, however—almost any use of anonymous methods from C# 2 can use
lambda expressions in C# 3.

 To summarize, the new features related to delegates are as follows:

■ Generics (generic delegate types)—C# 2
■ Delegate instance creation expressions—C# 2
■ Anonymous methods—C# 2
■ Delegate covariance/contravariance—C# 2
■ Lambda expressions—C# 3

The use of generics extends well beyond delegates, of course—they’re one of the prin-
ciple enhancements to the type system, which we’ll look at next.

2.4.2 Features related to the type system

The primary new feature in C# 2 regarding the type system is that of generics. It
largely addresses the issues I raised in section 2.2.2 about strongly typed collections,
although generic types are useful in a number of other situations too. As a feature, it’s
elegant, it solves a real problem, and despite a few wrinkles it generally works very
well. We’ve seen examples of this in quite a few places already, and it’s described fully
in the next chapter, so I won’t go into any more details here. It’ll be a brief reprieve,

Listing 2.5 Lambda expressions, which are like improved anonymous methods
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though—generics form probably the most important feature in C# 2 with respect to
the type system, and you’ll see generic types throughout the rest of the book. 

 C# 2 doesn’t tackle the general issue of covariant return types and contravariant
parameters, but it does cover it for creating delegate instances in certain situations, as
we saw in section 2.4.1. C# 3 introduces a wealth of new concepts in the type system,
most notably anonymous types, implicitly typed local variables, and extension meth-
ods. Anonymous types themselves are mostly present for the sake of LINQ, where it’s
useful to be able to effectively create a data transfer type with a bunch of read-only
properties without having to actually write the code for them. There’s nothing to stop
them from being used outside LINQ, however, which makes life easier for demonstra-
tions. Listing 2.6 shows both features in action.

var jon = new { Name="Jon", Age=31 };
var tom = new { Name="Tom", Age=4 };
Console.WriteLine ("{0} is {1}", jon.Name, jon.Age);
Console.WriteLine ("{0} is {1}", tom.Name, tom.Age);

The first two lines each show implicit typing (the use of var) and anonymous object
initializers (the new {…} bit), which create instances of anonymous types.

 There are two things worth noting at this stage, long before we get into the
details—points that have caused people to worry needlessly before. The first is that
C# is still statically typed. The C# compiler has declared jon and tom to be of a
particular type, just as normal, and when we use the properties of the objects they
are normal properties—there’s no dynamic lookup going on. It’s just that we (as
source code authors) couldn’t tell the compiler what type to use in the variable
declaration because the compiler will be generating the type itself. The properties
are also statically typed—here the Age property is of type int, and the Name property
of type string.

 The second point is that we haven’t created two different anonymous types here.
The variables jon and tom both have the same type because the compiler uses the
property names, types, and order to work out that it can generate just one type and
use it for both statements. This is done on a per-assembly basis, and makes life a lot
simpler in terms of being able to assign the value of one variable to another (for
example, jon=tom; would be permitted in the previous code) and similar operations.

 Extension methods are also there for the sake of LINQ but can be useful outside it.
Think of all the times you’ve wished that a framework type had a certain method, and
you’ve had to write a static utility method to implement it. For instance, to create a
new string by reversing an existing one you might write a static StringUtil.Reverse
method. Well, the extension method feature effectively lets you call that static method
as if it existed on the string type itself, so you could write

string x = "dlrow olleH".Reverse();

Listing 2.6 Demonstration of anonymous types and implicit typing
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Extension methods also let you appear to add methods with implementations to
interfaces—and indeed that’s what LINQ relies on heavily, allowing calls to all kinds of
methods on IEnumerable<T> that have never previously existed.

 Here’s the quick-view list of these features, along with which version of C# they’re
introduced in:

■ Generics—C# 2
■ Limited delegate covariance/contravariance—C# 2
■ Anonymous types—C# 3
■ Implicit typing—C# 3
■ Extension methods—C# 3

After that fairly diverse set of features on the type system in general, let’s look at the
features added to one very specific part of typing in .NET—value types.

2.4.3 Features related to value types

There are only two features to talk about here, and C# 2 introduces them both. The
first goes back to generics yet again, and in particular collections. One common com-
plaint about using value types in collections with .NET 1.1 was that due to all of the
“general purpose” APIs being specified in terms of the object type, every operation
that added a struct value to a collection would involve boxing it, and when retrieving it
you’d have to unbox it. While boxing is pretty cheap on a “per call” basis, it can cause
a significant performance hit when it’s used every time with frequently accessed col-
lections. It also takes more memory than it needs to, due to the per-object overhead.
Generics fix both the speed and memory deficiencies by using the real type involved
rather than just a general-purpose object. As an example, it would have been madness
to read a file and store each byte as an element in an ArrayList in .NET 1.1—but in
.NET 2.0 it wouldn’t be particularly crazy to do the same with a List<byte>.

 The second feature addresses another common cause of complaint, particularly
when talking to databases—the fact that you can’t assign null to a value type variable.
There’s no such concept as an int value of null, for instance, even though a database
integer field may well be nullable. At that point it can be hard to model the database
table within a statically typed class without a bit of ugliness of some form or another.
Nullable types are part of .NET 2.0, and C# 2 includes extra syntax to make them easy
to use. Listing 2.7 gives a brief example of this.

int? x = null;
x = 5;
if (x != null)
{
    int y = x.Value;
    Console.WriteLine (y);
}
int z = x ?? 10;

Listing 2.7 Demonstration of a variety of nullable type features

Declares and sets nullable variable

Tests for presence of “real” value

Obtains “real” value

Uses null-coalescing operator
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Listing 2.7 shows a number of the features of nullable types and the shorthand that C#
provides for working with them. We’ll get around to the details of each feature in
chapter 4, but the important thing to think about is how much easier and cleaner all
of this is than any of the alternative workarounds that have been used in the past.

 The list of enhancements is smaller this time, but they’re very important features
in terms of both performance and elegance of expression:

■ Generics—C# 2
■ Nullable types—C# 2

2.5 Summary
This chapter has provided some revision of a few topics from C# 1. The aim wasn’t to
cover any of the topics in its entirety, but merely to get everyone on the same page so
that I can describe the C# 2 and 3 features without worrying about the ground that
I’m building on.

 All of the topics we’ve covered are core to C# and .NET, but within community dis-
cussions, blogs, and even occasionally books often they’re either skimmed over too
quickly or not enough care is taken with the details. This has often left developers with
a mistaken understanding of how things work, or with an inadequate vocabulary to
express themselves. Indeed, in the case of characterizing type systems, computer science
has provided such a variety of meanings for some terms that they’ve become almost use-
less. Although this chapter hasn’t gone into much depth about any one point, it will
hopefully have cleared up any confusion that would have made the rest of the book
harder to understand.

 The three core topics we’ve briefly covered in this chapter are all significantly
enhanced in C# 2 and 3, and some features touch on more than one topic. In particular,
generics has an impact on almost every area we’ve covered in this chapter—it’s proba-
bly the most widely used and important feature in C# 2. Now that we’ve finished all our
preparations, we can start looking at it properly in the next chapter.





Part 2

C#2:
 solving the issues

 of C#1

In part 1 we took a quick look at a few of the features of C# 2. Now it’s time to
do the job properly. We’ll see how C# 2 fixes various problems that developers
ran into when using C# 1, and how C# 2 makes existing features more useful by
streamlining them. This is no mean feat, and life with C# 2 is much more pleasant
than with C# 1.

 The new features in C# 2 have a certain amount of independence. That’s not
to say they’re not related at all, of course; many of the features are based on—or
at least interact with—the massive contribution that generics make to the lan-
guage. However, the different topics we’ll look at in the next five chapters don’t
combine into one cohesive whole.

 The first four chapters of this part cover the biggest new features. We’ll look
at the following:

■ Generics -—The most important new feature in C# 2 (and indeed in the
CLR for .NET 2.0), generics allow type and method parameterization.

■ Nullable types —Value types such as int and DateTime don’t have any con-
cept of “no value present”—nullable types allow you to represent the
absence of a meaningful value.

■ Delegates —Although delegates haven’t changed at the CLR level, C# 2
makes them a lot easier to work with. As well as a few simple shortcuts, the
introduction of anonymous methods begins the movement toward a more
functional style of programming—this trend continues in C# 3.

■ Iterators —While using iterators has always been simple in C# with the
foreach statement, it’s a pain to implement them in C# 1. The C# 2 com-
piler is happy to build a state machine for you behind the scenes, hiding a
lot of the complexity involved.



Having covered the major, complex new features of C# 2 with a chapter dedicated to
each one, chapter 7 rounds off our coverage by covering several simpler features. Sim-
pler doesn’t necessarily mean less useful, of course: partial types in particular are very
important for better designer support in Visual Studio 2005.

 As you can see, there’s a lot to cover. Take a deep breath, and let’s dive into the
world of generics…



Parameterized
typing with generics
True1 story: the other day my wife and I did our weekly grocery shopping. Just
before we left, she asked me if I had the list. I confirmed that indeed I did have the
list, and off we went. It was only when we got to the grocery store that our mistake
made itself obvious. My wife had been asking about the shopping list whereas I’d
actually brought the list of neat features in C# 2. When we asked an assistant
whether we could buy any anonymous methods, we received a very strange look.

 If only we could have expressed ourselves more clearly! If only she’d had some
way of saying that she wanted me to bring the list of items we wanted to buy! If only
we’d had generics…

This chapter covers
■ Generic types and methods
■ Generic collections in .NET 2.0
■ Limitations of generics
■ Comparisons with other languages

1 By which I mean “convenient for the purposes of introducing the chapter”—not, you know, accurate as such.
63
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 For most people, generics will be the most important new feature of C# 2. They
enhance performance, make your code more expressive, and move a lot of safety
from execution time to compile time. Essentially they allow you to parameterize types
and methods—just as normal method calls often have parameters to tell them what
values to use, generic types and methods have type parameters to tell them what types
to use. It all sounds very confusing to start with—and if you’re completely new to
generics you can expect a certain amount of head scratching—but once you’ve got
the basic idea, you’ll come to love them.

 In this chapter we’ll be looking at how to use generic types and methods that others
have provided (whether in the framework or as third-party libraries), and how to write
your own. We’ll see the most important generic types within the framework, and take a
look just under the surface to understand some of the performance implications of
generics. To conclude the chapter, I’ll present some of the most frequently encoun-
tered limitations of generics, along with possible workarounds, and compare generics
in C# with similar features in other languages.

 First, though, we need to understand the problems that caused generics to be
devised in the first place.

3.1 Why generics are necessary
Have you ever counted how many casts you have in your C# 1 code? If you use any of
the built-in collections, or if you’ve written your own types that are designed to work
with many different types of data, you’ve probably got plenty of casts lurking in your
source, quietly telling the compiler not to worry, that everything’s fine, just treat the
expression over there as if it had this particular type. Using almost any API that has
object as either a parameter type or a return type will probably involve casts at some
point. Having a single-class hierarchy with object as the root makes things more
straightforward, but the object type in itself is extremely dull, and in order to do any-
thing genuinely useful with an object you almost always need to cast it.

 Casts are bad, m’kay? Not bad in an “almost never do this” kind of way (like muta-
ble structs and nonprivate fields) but bad in a “necessary evil” kind of way. They’re an
indication that you ought to give the compiler more information somehow, and that
the way you’re choosing is to get the compiler to trust you at compile time and gener-
ate a check to run at execution time, to keep you honest.

 Now, if you need to tell the compiler the information somewhere, chances are that
anyone reading your code is also going to need that same information. They can see it
where you’re casting, of course, but that’s not terribly useful. The ideal place to keep
such information is usually at the point of declaring a variable or method. This is even
more important if you’re providing a type or method which other people will call without
access to your code. Generics allow library providers to prevent their users from compiling
code that calls the library with bad arguments. Previously we’ve had to rely on manually
written documentation—which is often incomplete or inaccurate, and is rarely read any-
way. Armed with the extra information, everyone can work more productively: the com-
piler is able to do more checking; the IDE is able to present IntelliSense options based
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on the extra information (for instance, offering the members of string as next steps
when you access an element of a list of strings); callers of methods can be more certain
of correctness in terms of arguments passed in and values returned; and anyone main-
taining your code can better understand what was running through your head when you
originally wrote it in the first place.

NOTE Will generics reduce your bug count? Every description of generics I’ve read
(including my own) emphasizes the importance of compile-time type
checking over execution-time type checking. I’ll let you in on a secret: I
can’t remember ever fixing a bug in released code that was directly due
to the lack of type checking. In other words, the casts we’ve been putting
in our C# 1 code have always worked in my experience. Those casts have
been like warning signs, forcing us to think about the type safety explic-
itly rather than it flowing naturally in the code we write. Although gener-
ics may not radically reduce the number of type safety bugs you encounter,
the greater readability afforded can reduce the number of bugs across
the board. Code that is simple to understand is simple to get right.

All of this would be enough to make generics worthwhile—but there are performance
improvements too. First, as the compiler is able to perform more checking, that leaves
less needing to be checked at execution time. Second, the JIT is able to treat value types
in a particularly clever way that manages to eliminate boxing and unboxing in many sit-
uations. In some cases, this can make a huge difference to performance in terms of
both speed and memory consumption.

 Many of the benefits of generics may strike you as being remarkably similar to the
benefits of static languages over dynamic ones: better compile-time checking, more
information expressed directly in the code, more IDE support, better performance.
The reason for this is fairly simple: when you’re using a general API (for example,
ArrayList) that can’t differentiate between the different types, you effectively are in a
dynamic situation in terms of access to that API. The reverse isn’t generally true, by the
way—there are plenty of benefits available from dynamic languages in many situa-
tions, but they rarely apply to the choice between generic/nongeneric APIs. When you
can reasonably use generics, the decision to do so is usually a no-brainer.

 So, those are the goodies awaiting us in C# 2—now it’s time to actually start using
generics.

3.2 Simple generics for everyday use
The topic of generics has a lot of dark corners if you want to know everything about it.
The C# 2 language specification goes into a great deal of detail in order to make sure
that the behavior is specified in pretty much every conceivable case. However, we
don’t need to understand most of those corner cases in order to be productive. (The
same is true in other areas, in fact. For example, you don’t need to know all the exact
rules about definitely assigned variables—you just fix the code appropriately when the
compiler complains.)
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 This section will cover most of what you’ll need in your day-to-day use of generics,
both consuming generic APIs that other people have created and creating your own. If
you get stuck while reading this chapter but want to keep making progress, I suggest you
concentrate on what you need to know in order to use generic types and methods within
the framework and other libraries; writing your own generic types and methods crops
up a lot less often than using the framework ones. 

 We’ll start by looking at one of the collection classes from .NET 2.0—
Dictionary<TKey,TValue>.

3.2.1 Learning by example: a generic dictionary

Using generic types can be very straightforward if you don’t happen to hit some of the
limitations and start wondering what’s wrong. You don’t need to know any of the ter-
minology to have a pretty good guess as to what the code will do when reading it, and
with a bit of trial and error you can experiment your way to writing your own working
code too. (One of the benefits of generics is that more checking is done at compile
time, so you’re more likely to have working code by the time it all compiles—this
makes the experimentation simpler.) Of course, the aim of this chapter is to give you
the knowledge so that you won’t be using guesswork—you’ll know what’s going on at
every stage.

 For now, though, let’s look at some code that is straightforward even if the syntax is
unfamiliar. Listing 3.1 uses a Dictionary<TKey,TValue> (roughly the generic equiva-
lent of the Hashtable class you’ve almost certainly used with C# 1) to count the fre-
quencies of words in a given piece of text.

static Dictionary<string,int> CountWords(string text)
{
    Dictionary<string,int> frequencies;        

    frequencies = new Dictionary<string,int>();

    string[] words = Regex.Split(text, @"\W+");

    foreach (string word in words)
    {
        if (frequencies.ContainsKey(word))
        {                                 
            frequencies[word]++;          
        }                                 
        else                              
        {                                 
            frequencies[word] = 1;        
        }                                 
    }
    return frequencies;
}
...
string text = @"Do you like green eggs and ham?
                I do not like them, Sam-I-am.

Listing 3.1 Using a Dictionary<TKey,TValue> to count words in text

Creates new map from 
word to frequency

B

Splits text 
into wordsC

Adds to or 
updates map

D
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                I do not like green eggs and ham.";
        
Dictionary<string,int> frequencies = CountWords(text);
foreach (KeyValuePair<string,int> entry in frequencies)
{                                                      
    string word = entry.Key;                           
    int frequency = entry.Value;                       
    Console.WriteLine ("{0}: {1}", word, frequency);   
}                                                      

The CountWords method B first creates an empty map from string to int. This will
effectively count how often each word is used within the given text. We then use a regular
expression C to split the text into words. It’s crude—we end up with two empty strings
(one at each end of the text), and I haven’t worried about the fact that “do” and “Do”
are counted separately. These issues are easily fixable, but I wanted to keep the code as
simple as possible for this example. For each word, we check whether or not it’s already
in the map. If it is, we increment the existing count; otherwise, we give the word an initial
count of 1 D. Notice how the incrementing code doesn’t need to do a cast to int in
order to perform the addition: the value we retrieve is known to be an int at compile
time. The step incrementing the count is actually performing a get on the indexer for
the map, then incrementing, then performing a set on the indexer. Some developers
may find it easier to keep this explicit, using frequencies[word] = frequencies
[word]+1; instead.

 The final part of the listing is fairly familiar: enumerating through a Hashtable
gives a similar (nongeneric) DictionaryEntry with Key and Value properties for
each entry E. However, in C# 1 we would have needed to cast both the word and the
frequency as the key and value would have been returned as just object. That also
means that the frequency would have been boxed. Admittedly we don’t really have to
put the word and the frequency into variables—we could just have had a single call to
Console.WriteLine and passed entry.Key and entry.Value as arguments. I’ve really
just got the variables here to ram home the point that no casting is necessary.

 There are some differences between Hashtable and Dictionary<TKey,TValue>
beyond what you might expect. We’re not looking at them right now, but we’ll cover
them when we look at all of the .NET 2.0 collections in section 3.4. For the moment, if
you experiment beyond any of the code listed here (and please do—there’s nothing
like actually coding to get the hang of a concept) and if it doesn’t do what you expect,
just be aware that it might not be due to a lack of understanding of generics. Check
the documentation before panicking!

 Now that we’ve seen an example, let’s look at what it means to talk about
Dictionary<TKey,TValue> in the first place. What are TKey and TValue, and why do
they have angle brackets round them?

3.2.2 Generic types and type parameters

There are two forms of generics: generic types (including classes, interfaces, delegates,
and structures—there are no generic enums) and generic methods. Both are essentially
a way of expressing an API (whether it’s for a single generic method or a whole

Prints each 
key/value pair 
from map

E
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generic type) such that in some places where you’d expect to see a normal type, you
see a type parameter instead. 

 A type parameter is a placeholder for a real type. Type parameters appear in angle
brackets within a generic declaration, using commas to separate them. So in Dictionary
<TKey,TValue> the type parameters are TKey and TValue. When you use a generic type
or method, you specify the real types you want to use. These are called the type
arguments—in listing 3.1, for example, the type arguments were string (for TKey) and
int (for TValue).

NOTE Jargon alert! There’s a lot of detailed terminology involved in generics.
I’ve included it for reference—and because very occasionally it makes it
easier to talk about topics in a precise manner. It could well be useful if
you ever need to consult the language specification, but you’re unlikely
to need to use this terminology in day-to-day life. Just grin and bear it for
the moment.

The form where none of the type parameters have been provided with type arguments
is called an unbound generic type. When type arguments are specified, the type is said to
be a constructed type. Unbound generic types are effectively blueprints for constructed
types, in a way similar to how types (generic or not) can be regarded as blueprints for
objects. It’s a sort of extra layer of abstraction. Figure 3.1 shows this graphically.

 As a further complication, constructed types can be open or closed. An open type is
one that involves a type parameter from elsewhere (the enclosing generic method or

Hashtable

Instance of
Hashtable

Instantiation

Dictionary<TKey,TValue>
(unbound generic type)

Dictionary<string,int>
(constructed type)

Instance of
Dictionary<string,int>

Specification of
type arguments

Dictionary<byte,long>
(constructed type)

(etc)

Instance of
Dictionary<byte,long>

 Nongeneric
blueprints

 Generic
blueprints

Instantiation Instantiation

Figure 3.1 Unbound generic types act as blueprints for constructed types, which then act as blueprints 
for actual objects, just as nongeneric types do.
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type), whereas for a closed type all the types involved are completely known about. All
code actually executes in the context of a closed constructed type. The only time you
see an unbound generic type appearing within C# code (other than as a declaration)
is within the typeof operator, which we’ll meet in section 3.4.4.

 The idea of a type parameter “receiving” information and a type argument “pro-
viding” the information—the dashed lines in figure 3.1—is exactly the same as with
method parameters and arguments, although type arguments are always just names of
types or type parameters.

 You can think of a closed type as having the API of the open type, but
with the type parameters being replaced with their corresponding type argu-
ments.2 Table 3.1 shows some method and property declarations from the open type
Dictionary<TKey,TValue> and the equivalent member in closed type we built from
it—Dictionary<string,int> .

One important thing to note is that none of the methods in table 3.1 are actually
generic methods. They’re just “normal” methods within a generic type, and they hap-
pen to use the type parameters declared as part of the type.

 Now that you know what TKey and TValue mean, and what the angle brackets are
there for, we can have a look at how Dictionary<TKey,TValue> might be imple-
mented, in terms of the type and member declarations. Here’s part of it—although
the actual method implementations are all missing, and there are more members
in reality:

namespace System.Collections.Generic
{
    public class Dictionary<TKey,TValue>

2 It doesn’t always work exactly that way—there are corner cases that break when you apply that simple rule—
but it’s an easy way of thinking about generics that works in the vast majority of situations.

Table 3.1 Examples of how method signatures in generic types contain placeholders, which are
                  replaced when the type arguments are specified

Method signature in generic type Method signature after type parameter replacement

public void Add 
  (TKey key, TValue value)

public void Add
  (string key, int value)

public TValue this [TKey key]
  { get; set; }

public int this [string key]
  { get; set; }

public bool ContainsValue 
  (TValue value)

public bool ContainsValue 
  (int value)

public bool ContainsKey 
  (TKey key)

public bool ContainsKey 
  (string key)

Declares  
generic class
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        : IEnumerable<KeyValuePair<TKey,TValue>>
    {
        public Dictionary()
        {
            [...]
        }
        public void Add (TKey key, TValue value)
        {
            [...]
        }
        public TValue this [TKey key]
        {
            get { [...] }
            set { [...] }
        }
        public bool ContainsValue (TValue value)
        {
            [...]
        }
        public bool ContainsKey (TKey key)
        {
            [...]
        }
        [... other members ...]
    }
}

Notice how Dictionary<TKey,TValue> implements the generic interface IEnumerable
<KeyValuePair<TKey,TValue>> (and many other interfaces in real life). Whatever type
arguments you specify for the class are applied to the interface where the same type
parameters are used—so in our example, Dictionary<string,int> implements
IEnumerable<KeyValuePair<string,int>>. Now that’s actually sort of a “doubly
generic” interface—it’s the IEnumerable<T> interface, with the structure KeyValue-
Pair <string,int> as the type argument. It’s because it implements that interface that
listing 3.1 was able to enumerate the keys and values in the way that it did. It’s also worth
pointing out that the constructor doesn’t list the type parameters in angle brackets. The
type parameters belong to the type rather than to the particular constructor, so that’s
where they’re declared.

 Generic types can effectively be overloaded on the number of type parameters—so
you could define MyType, MyType<T>, MyType<T,U>, MyType<T,U,V>, and so forth, all
within the same namespace. The names of the type parameters aren’t used when con-
sidering this—just how many there are of them. These types are unrelated except in
name—there’s no default conversion from one to another, for instance. The same is
true for generic methods: two methods can be exactly the same in signature other
than the number of type parameters.

Implements 
generic interface

Declares 
parameterless 
constructor

Declares method 
using type 
parameters

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETFX30SDK4VS.1033/cpref8/html/T_System_Collections_Generic_KeyValuePair%602.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETFX30SDK4VS.1033/cpref8/html/T_System_Collections_Generic_KeyValuePair%602.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETFX30SDK4VS.1033/cpref8/html/T_System_Collections_Generic_IEnumerable%601.htm
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NOTE Naming conventions for type parameters—Although you could have a type with
type parameters T, U, and V, it wouldn’t give much indication of what they
actually meant, or how they should be used. Compare this with Dictionary
<TKey,TValue>, where it’s obvious that TKey represents the type of the keys
and TValue represents the type of the values. Where you have a single type
parameter and it’s clear what it means, T is conventionally used (List<T>
is a good example of this). Multiple type parameters should usually be
named according to meaning, using the prefix T to indicate a type param-
eter. Every so often you may run into a type with multiple single-letter type
parameters (SynchronizedKeyedCollection<K,T>, for example), but you
should try to avoid creating the same situation yourself. 

Now that we’ve got an idea of what generic types do, let’s look at generic methods.

3.2.3 Generic methods and reading generic declarations

We’ve mentioned generic methods a few times, but we haven’t actually met one yet.
You may find the overall idea of generic methods more confusing than generic
types—they’re somehow less natural for the brain—but it’s the same basic principle.
We’re used to the parameters and return value of a method having firmly specified
types—and we’ve seen how a generic type can use its type parameters in method dec-
larations. Well, generic methods go one step further—even if you know exactly which
constructed type you’re dealing with, an individual method can have type parameters
too. Don’t worry if you’re still none the wiser—the concept is likely to “click” at some
point after you’ve seen enough examples.

 Dictionary<TKey,TValue> doesn’t have any generic methods, but its close neigh-
bor List<T> does. As you can imagine, List<T> is just a list of items of whatever type
is specified—so List<string> is just a list of strings, for instance. Remembering that
T is the type parameter for the whole class, let’s dissect a generic method declara-
tion. Figure 3.2 shows what the different parts of the declaration of the ConvertAll
method mean.3 

3 I’ve renamed the parameter from converter to conv so that it fits on one line, but everything else is as doc-
umented.

List<TOutput> ConvertAll<TOutput>(Converter<T,TOutput> conv)

Return type
(a generic list)

Parameter type (generic delegate)Method name

Parameter nameType parameter

Figure 3.2 The anatomy of a generic method declaration
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When you look at a generic declaration—whether it’s for a generic type or a generic
method—it can be a bit daunting trying to work out what it means, particularly if you
have to deal with generic types of generic types, as we did when we looked at the inter-
face implemented by the dictionary. The key is not to panic—just take things calmly,
and pick an example situation. Use a different type for each type parameter, and apply
them all consistently.

 In this case, let’s start off by replacing the type parameter of the type containing
the method (the <T> part of List<T>). We’ve used List<string> as an example
before, so let’s continue to do so and replace T with string everywhere:

List<TOutput> ConvertAll<TOutput>(Converter<string,TOutput> conv)

That looks a bit better, but we’ve still got TOutput to deal with. We can tell that it’s a
method’s type parameter (apologies for the confusing terminology) because it’s in
angle brackets directly after the name of the method. So, let’s try to use another famil-
iar type—Guid—as the type argument for TOutput. The method declaration becomes

List<Guid> ConvertAll<Guid>(Converter<string,Guid> conv)

To go through the bits of this from left to right:

■ The method returns a List<Guid>.
■ The method’s name is ConvertAll.
■ The method has a single type parameter, and the type argument we’re using is

Guid.
■ The method takes a single parameter, which is a Converter<string,Guid> and

is called conv.

Now we just need to know what Converter<string,Guid> is and we’re all done. Not sur-
prisingly, Converter<string,Guid> is a constructed generic delegate type (the unbound
type is Converter<TInput,TOutput>), which is used to convert a string to a GUID.

 So, we have a method that can operate on a list of strings, using a converter to pro-
duce a list of GUIDs. Now that we understand the method’s signature, it’s easier to
understand the documentation, which confirms that this method does the obvious
thing and converts each element in the original list into the target type, and adds it to
a list, which is then returned. Thinking about the signature in concrete terms gives us
a clearer mental model, and makes it simpler to think about what we might expect the
method to do.

 Just to prove I haven’t been leading you down the garden path, let’s take a look at
this method in action. Listing 3.2 shows the conversion of a list of integers into a list of
floating-point numbers, where each element of the second list is the square root of the
corresponding element in the first list. After the conversion, we print out the results.

static double TakeSquareRoot (int x)
{
    return Math.Sqrt(x);

Listing 3.2 The List<T>.ConvertAll<TOutput> method in action
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}
...
List<int> integers = new List<int>();
integers.Add(1);                     
integers.Add(2);                     
integers.Add(3);                     
integers.Add(4);                     

Converter<int,double> converter = TakeSquareRoot;

List<double> doubles;
doubles = integers.ConvertAll<double>(converter);

foreach (double d in doubles)
{
    Console.WriteLine (d);
}

The creation and population of the list B is straightforward enough—it’s just a strongly
typed list of integers. C uses a feature of delegates (method group conversions), which
is new to C# 2 and which we’ll discuss in more detail in section 5.2. Although I don’t like
using a feature before describing it fully, the line would just have been too long to fit on
the page with the full version. It does what you expect it to, though. At D we call the
generic method, specifying the type argument for the method in the same way as we’ve
seen for generic types. We’ll see later (section 3.3.2) that you don’t always need to specify
the type argument—often the compiler can work it out itself, making the code that bit
more compact. We could have omitted it this time, but I wanted to show the full syntax.
Writing out the list that has been returned is simple, and when you run the code you’ll
see it print 1, 1.414..., 1.732..., and 2, as expected.

 So, what’s the point of all of this? We could have just used a foreach loop to go
through the integers and printed out the square root immediately, of course, but it’s
not at all uncommon to want to convert a list of one type to a list of another by perform-
ing some logic on it. The code to do it manually is still simple, but it’s easier to read a
version that just does it in a single method call. That’s often the way with generic meth-
ods—they often do things that previously you’d have happily done “longhand” but that
are just simpler with a method call. Before generics, there could have been a similar
operation to ConvertAll on ArrayList converting from object to object, but it would
have been a lot less satisfactory. Anonymous methods (see section 5.4) also help here—
if we hadn’t wanted to introduce an extra method, we could just have specified the con-
version “inline.”

 Note that just because a method is generic doesn’t mean it has to be part of a
generic type. Listing 3.3 shows a generic method being declared and used within a
perfectly normal class.

static List<T> MakeList<T> (T first, T second)
{
    List<T> list = new List<T>();
    list.Add (first);

Listing 3.3 Implementing a generic method in a nongeneric type
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    list.Add (second);
    return list;
}
...
List<string> list = MakeList<string> ("Line 1", "Line 2");
foreach (string x in list)
{
    Console.WriteLine (x);
}

The MakeList<T> generic method only needs one type parameter (T). All it does is build
a list containing the two parameters. It’s worth noting that we can use T as a type argu-
ment when we create the List<T> in the method, however. Just as when we were looking
at generic declarations, think of the implementation as (roughly speaking) replacing all
of the places where it says T with string. When we call the method, we use the same syn-
tax we’ve seen before. In case you were wondering, a generic method within a generic
type doesn’t have to use the generic type’s type parameters—although most do.

 All OK so far? You should now have the hang of “simple” generics. There’s a bit
more complexity to come, I’m afraid, but if you’re happy with the fundamental idea
of generics, you’ve jumped the biggest hurdle. Don’t worry if it’s still a bit hazy—par-
ticularly when it comes to the open/closed/unbound/constructed terminology—but
now would be a good time to do some experimentation so you can see generics in
action before we go any further.

 The most important types to play with are List<T> and Dictionary<TKey,TValue>.
A lot of the time you can get by just by instinct and experimentation, but if you want
more details of these types, you can skip ahead to sections 3.5.1 and 3.5.2. Once you’re
confident using these types, you should find that you rarely want to use ArrayList or
Hashtable anymore. 

 One thing you may find when you experiment is that it’s hard to only go part of
the way. Once you make one part of an API generic, you often find that you need to
rework other code to either also be generic or to put in the casts required by the more
strongly typed method calls you have now. An alternative can be to have a strongly
typed implementation, using generic classes under the covers, but leaving a weakly
typed API for the moment. As time goes on, you’ll become more confident about
when it’s appropriate to use generics.

3.3 Beyond the basics
While the relatively simple uses of generics we’ve seen can get you a long way, there
are some more features available that can help you further. We’ll start off by examin-
ing type constraints, which allow you more control over which type arguments can be
specified. They are useful when creating your own generic types and methods, and
you’ll need to understand them in order to know what options are available when
using the framework, too.

 We’ll then examine type inference —a handy compiler trick that means that when
you’re using generic methods, you don’t always have to explicitly state the type
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parameters. You don’t have to use it, but it can make your code a lot easier to read
when used appropriately. We’ll see in part 3 that the C# compiler is gradually being
allowed to infer a lot more information from your code, while still keeping the lan-
guage safe and statically typed.

 The last part of this section deals with obtaining the default value of a type param-
eter and what comparisons are available when you’re writing generic code. We’ll wrap
up with an example demonstrating most of the features we’ve covered, as well as being
a useful class in itself.

 Although this section delves a bit deeper into generics, there’s nothing really hard
about it. There’s plenty to remember, but all the features serve a purpose, and you’ll
be grateful for them when you need them. Let’s get started.

3.3.1 Type constraints

So far, all the type parameters we’ve seen can be applied to any type at all—they are
unconstrained. We can have a List<int>, a Dictionary<object,FileMode>, anything.
That’s fine when we’re dealing with collections that don’t have to interact with what
they store—but not all uses of generics are like that. Often you want to call methods
on instances of the type parameter, or create new instances, or make sure you only
accept reference types (or only accept value types). In other words, you want to specify
rules to say which type arguments are considered valid for your generic type or
method. In C# 2, you do this with constraints.

 Four kinds of constraints are available, and the general syntax is the same for all of
them. Constraints come at the end of the declaration of a generic method or type,
and are introduced by the contextual keyword where. They can be combined together
in sensible ways, as we’ll see later. First, however, we’ll explore each kind of constraint
in turn.
REFERENCE TYPE CONSTRAINTS
The first kind of constraint (which is expressed as T : class and must be the first con-
straint specified for that type parameter) simply ensures that the type argument used
is a reference type. This can be any class, interface, array, or delegate—or another
type parameter that is already known to be a reference type. For example, consider
the following declaration:

struct RefSample<T> where T : class

Valid closed types include

■ RefSample<IDisposable>

■ RefSample<string>

■ RefSample<int[]>

Invalid closed types include

■ RefSample<Guid>

■ RefSample<int>
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I deliberately made RefSample a struct (and therefore a value type) to emphasize the
difference between the constrained type parameter and the type itself. RefSample
<string> is still a value type with value semantics everywhere—it just happens to use
the string type wherever T is specified in its API.

 When a type parameter is constrained this way, you can compare references (includ-
ing null) with == and !=, but be aware that unless there are any other constraints, only
references will be compared, even if the type in question overloads those operators (as
string does, for example). With a derivation type constraint (described in a little
while), you can end up with “compiler guaranteed” overloads of == and !=, in which
case those overloads are used—but that’s a relatively rare situation.
VALUE TYPE CONSTRAINTS
This constraint (expressed as T : struct) ensures that the type argument used is a
value type, including enums. It excludes nullable types (as described in chapter 4),
however. Let’s look at an example declaration:

class ValSample<T> where T : struct

Valid closed types include

■ ValSample<int>

■ ValSample<FileMode>

Invalid closed types include

■ ValSample<object>

■ ValSample<StringBuilder>

This time ValSample is a reference type, despite T being constrained to be a value
type. Note that System.Enum and System.ValueType are both reference types in
themselves, so aren’t allowed as valid type arguments for ValSample. Like reference
type constraints, when there are multiple constraints for a particular type parameter,
a value type constraint must be the first one specified. When a type parameter is con-
strained to be a value type, comparisons using == and != are prohibited.

 I rarely find myself using value or reference type constraints, although we’ll see
in the next chapter that nullable types rely on value type constraints. The remain-
ing two constraints are likely to prove more useful to you when writing your own
generic types.
CONSTRUCTOR TYPE CONSTRAINTS
The third kind of constraint (which is expressed as T : new() and must be the last
constraint for any particular type parameter) simply checks that the type argument
used has a parameterless constructor, which can be used to create an instance. This
applies to any value type; any nonstatic, nonabstract class without any explicitly
declared constructors; and any nonabstract class with an explicit public parameter-
less constructor.
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NOTE C# vs. CLI standards—There is a discrepancy between the C# and CLI
standards when it comes to value types and constructors. The CLI specifi-
cation states that value types can’t have parameterless constructors, but
there’s a special instruction to create a value without specifying any
parameters. The C# specification states that all value types have a default
parameterless constructor, and it uses the same syntax to call both explic-
itly declared constructors and the parameterless one, relying on the com-
piler to do the right thing underneath. You can see this discrepancy at
work when you use reflection to find the constructors of a value type—
you won’t see a parameterless one.

Again, let’s look at a quick example, this time for a method. Just to show how it’s use-
ful, I’ll give the implementation of the method too.

public T CreateInstance<T>() where T : new()
{
    return new T();
}

This method just returns a new instance of whatever type you specify, providing
that it has a parameterless constructor. So CreateInstance<int>(); and Create-
Instance<object>(); are OK, but CreateInstance<string>(); isn’t, because string
doesn’t have a parameterless constructor.

 There is no way of constraining type parameters to force other constructor signa-
tures—for instance, you can’t specify that there has to be a constructor taking a single
string parameter. It can be frustrating, but that’s unfortunately just the way it is.

 Constructor type constraints can be useful when you need to use factory-like pat-
terns, where one object will create another one as and when it needs to. Factories often
need to produce objects that are compatible with a certain interface, of course—and
that’s where our last type of constraint comes in.
DERIVATION TYPE CONSTRAINTS
The final (and most complicated) kind of constraint lets you specify another type that
the type argument must derive from (in the case of a class) or implement (in the case
of an interface).4 For the purposes of constraints, types are deemed to derive from
themselves. You can specify that one type argument must derive from another, too—
this is called a type parameter constraint and makes it harder to understand the declara-
tion, but can be handy every so often. Table 3.2 shows some examples of generic type
declarations with derivation type constraints, along with valid and invalid examples of
corresponding constructed types.

 The third constraint of T : IComparable<T> is just one example of using a generic
type as the constraint. Other variations such as T : List<U> (where U is another type

4 Strictly speaking, an implicit reference conversion is OK too. This allows for a constraint such as where T :
IList<Shape> to be satisfied by Circle[]. Even though Circle[] doesn’t actually implement IList
<Shape>, there is an implicit reference conversion available.
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parameter) and T : IList<string> are also fine. You can specify multiple interfaces,
but only one class. For instance, this is fine (if hard to satisfy):

class Sample<T> where T : Stream, 
                                   IEnumerable<string>, 
                                   IComparable<int> 

But this isn’t:

class Sample<T> where T : Stream, 
                                   ArrayList, 
                                   IComparable<int> 

No type can derive directly from more than one class anyway, so such a constraint
would usually either be impossible (like this one) or part of it would be redundant
(specifying that the type had to derive from both Stream and MemoryStream, for exam-
ple). One more set of restrictions: the class you specify can’t be a struct, a sealed class
(such as string), or any of the following “special” types:

■ System.Object

■ System.Enum

■ System.ValueType

■ System.Delegate

Derivation type constraints are probably the most useful kind, as they mean you can
use members of the specified type on instances of the type parameter. One particu-
larly handy example of this is T : IComparable<T>, so that you know you can compare
two instances of T meaningfully and directly. We’ll see an example of this (as well as
discuss other forms of comparison) in section 3.3.3.
COMBINING CONSTRAINTS
I’ve mentioned the possibility of having multiple constraints, and we’ve seen them in
action for derivation constraints, but we haven’t seen the different kinds being

Table 3.2 Examples of derivation type constraints

Declaration Constructed type examples

class Sample<T> 
    where T : Stream

Valid: Sample<Stream>
     Sample<MemoryStream>
Invalid: Sample<object>
      Sample<string>

struct Sample<T> 
    where T : IDisposable

Valid: Sample<IDisposable>
     Sample<DataTable>
Invalid: Sample<StringBuilder>

class Sample<T>
    where T : IComparable<T>

Valid: Sample<string>
Invalid: Sample<FileInfo>

class Sample<T,U>
    where T : U

Valid: Sample<Stream,IDisposable>
     Sample<string,string>
Invalid: Sample<string,IDisposable>
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combined together. Obviously no type can be both a reference type and a value type, so
that combination is forbidden, and as every value type has a parameterless constructor,
specifying the construction constraint when you’ve already got a value type constraint
is also not allowed (but you can still use new T() within methods if T is constrained to
be a value type). Different type parameters can have different constraints, and they’re
each introduced with a separate where.

 Let’s see some valid and invalid examples:

Valid:
class Sample<T> where T : class, Stream, new()
class Sample<T> where T : struct, IDisposable
class Sample<T,U> where T : class where U : struct, T
class Sample<T,U> where T : Stream where U : IDisposable

Invalid:
class Sample<T> where T : class, struct
class Sample<T> where T : Stream, class
class Sample<T> where T : new(), Stream
class Sample<T,U> where T : struct where U : class, T
class Sample<T,U> where T : Stream, U : IDisposable

I included the last example on each list because it’s so easy to try the invalid one
instead of the valid version, and the compiler error is not at all helpful. Just remember
that each list of type parameter constraints needs its own introductory where. The
third valid example is interesting—if U is a value type, how can it derive from T, which
is a reference type? The answer is that T could be object or an interface that U imple-
ments. It’s a pretty nasty constraint, though.

 Now that you’ve got all the knowledge you need to read generic type declarations,
let’s look at the type argument inference that I mentioned earlier. In listing 3.2 we
explicitly stated the type arguments to List.ConvertAll—but let’s now ask the com-
piler to work them out when it can, making it simpler to call generic methods.

3.3.2 Type inference for type arguments of generic methods

Specifying type arguments when you’re calling a generic method can often seem
pretty redundant. Usually it’s obvious what the type arguments should be, based on
the method arguments themselves. To make life easier, the C# 2 compiler is allowed to
be smart in tightly defined ways, so you can call the method without explicitly stating
the type arguments.

 Before we go any further, I should stress that this is only true for generic methods. It
doesn’t apply to generic types. Now that we’ve got that cleared up, let’s look at the rele-
vant lines from listing 3.3, and see how things can be simplified. Here are the lines
declaring and invoking the method:

static List<T> MakeList<T> (T first, T second)
...
List<string> list = MakeList<string> ("Line 1", "Line 2");

Now look at the arguments we’ve specified—they’re both strings. Each of the parame-
ters in the method is declared to be of type T. Even if we hadn’t got the <string> part
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of the method invocation expression, it would be fairly obvious that we meant to call
the method using string as the type argument for T. The compiler allows you to omit
it, leaving this: 

List<string> list = MakeList ("Line 1", "Line 2");

That’s a bit neater, isn’t it? At least, it’s shorter. That doesn’t always mean it’s more
readable, of course—in some cases it’ll make it harder for the reader to work out what
type arguments you’re trying to use, even if the compiler can do it easily. I recom-
mend that you judge each case on its merits. 

 Notice how the compiler definitely knows that we’re using string as the type
parameter, because the assignment to list works too, and that still does specify the
type argument (and has to). The assignment has no influence on the type parameter
inference process, however. It just means that if the compiler works out what type argu-
ments it thinks you want to use but gets it wrong, you’re still likely to get a compile-
time error.

 How could the compiler get it wrong? Well, suppose we actually wanted to use
object as the type argument. Our method parameters are still valid, but the compiler
thinks we actually meant to use string, as they’re both strings. Changing one of the
parameters to explicitly be cast to object makes type inference fail, as one of the
method arguments would suggest that T should be string, and the other suggests that
T should be object. The compiler could look at this and say that setting T to object
would satisfy everything but setting T to string wouldn’t, but the specification only gives
a limited number of steps to follow. This area is already fairly complicated in C# 2, and
C# 3 takes things even further. I won’t try to give all of the nuts and bolts of the C# 2 rules
here, but the basic steps are as follows.

1 For each method argument (the bits in normal parentheses, not angle brack-
ets), try to infer some of the type arguments of the generic method, using some
fairly simple techniques.

2 Check that all the results from the first step are consistent—in other words, if
one argument implied one type argument for a particular type parameter, and
another implied a different type argument for the same type parameter, then
inference fails for the method call.

3 Check that all the type parameters needed for the generic method have been
inferred. You can’t let the compiler infer some while you specify others explic-
itly—it’s all or nothing.

To avoid learning all the rules (and I wouldn’t recommend it unless you’re particularly
interested in the fine details), there’s one simple thing to do: try it to see what happens.
If you think the compiler might be able to infer all the type arguments, try calling the
method without specifying any. If it fails, stick the type arguments in explicitly. You lose
nothing more than the time it takes to compile the code once, and you don’t have to
have all the extra language-lawyer garbage in your head.
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3.3.3 Implementing generics

Although you’re likely to spend more time using generic types and methods than writ-
ing them yourself, there are a few things you should know for those occasions where
you’re providing the implementation. Most of the time you can just pretend T (or what-
ever your type parameter is called) is just the name of a type and get on with writing
code as if you weren’t using generics at all. There are a few extra things you should
know, however.
DEFAULT VALUE EXPRESSIONS
When you know exactly what type you’re working with, you know its “default” value—
the value an otherwise uninitialized field would have, for instance. When you don’t
know what type you’re referring to, you can’t specify that default value directly. You
can’t use null because it might not be a reference type. You can’t use 0 because it
might not be a numeric type. While it’s fairly rare to need the default value, it can be
useful on occasion. Dictionary<TKey,TValue> provides a good example—it has a
TryGetValue method that works a bit like the TryParse methods on the numeric
types: it uses an output parameter for the value you’re trying to fetch, and a Boolean
return value to indicate whether or not it succeeded. This means that the method has
to have some value of type TValue to populate the output parameter with. (Remem-
ber that output parameters must be assigned before the method returns normally.)

NOTE The TryXXX pattern—There are a few patterns in .NET that are easily iden-
tifiable by the names of the methods involved—BeginXXX and EndXXX
suggest an asynchronous operation, for example. The TryXXX pattern is
one that has had its use expanded between .NET 1.1 and 2.0. It’s
designed for situations that might normally be considered to be errors
(in that the method can’t perform its primary duty) but where failure
could well occur without this indicating a serious issue, and shouldn’t be
deemed exceptional. For instance, users can often fail to type in numbers
correctly, so being able to try to parse some text without having to catch
an exception and swallow it is very useful. Not only does it improve per-
formance in the failure case, but more importantly, it saves exceptions
for genuine error cases where something is wrong in the system (however
widely you wish to interpret that). It’s a useful pattern to have up your
sleeve as a library designer, when applied appropriately.

C# 2 provides the default value expression to cater for just this need. The specification
doesn’t refer to it as an operator, but you can think of it as being similar to the typeof
operator, just returning a different value. Listing 3.4 shows this in a generic method,
and also gives an example of type inference and a derivation type constraint in action.

static int CompareToDefault<T> (T value)
    where T : IComparable<T>
{
    return value.CompareTo(default(T));

Listing 3.4 Comparing a given value to the default in a generic way
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}
...
Console.WriteLine(CompareToDefault("x"));
Console.WriteLine(CompareToDefault(10));
Console.WriteLine(CompareToDefault(0));
Console.WriteLine(CompareToDefault(-10));
Console.WriteLine(CompareToDefault(DateTime.MinValue));

Listing 3.4 shows a generic method being used with three different types: string,
int, and DateTime. The CompareToDefault method dictates that it can only be
used with types implementing the IComparable<T> interface, which allows us to call
CompareTo(T) on the value passed in. The other value we use for the comparison is the
default value for the type. As string is a reference type, the default value is null—and
the documentation for CompareTo states that for reference types, everything should be
greater than null so the first result is 1. The next three lines show comparisons with the
default value of int, demonstrating that the default value is 0. The output of the last line
is 0, showing that DateTime.MinValue is the default value for DateTime.

 Of course, the method in listing 3.4 will fail if you pass it null as the argument—
the line calling CompareTo will throw NullReferenceException in the normal way.
Don’t worry about it for the moment—there’s an alternative using IComparer<T>, as
we’ll see soon.
DIRECT COMPARISONS
Although listing 3.4 showed how a comparison is possible, we don’t always want to con-
strain our types to implement IComparable<T> or its sister interface, IEquatable<T>,
which provides a strongly typed Equals(T) method to complement the Equals(object)
method that all types have. Without the extra information these interfaces give us access
to, there is little we can do in terms of comparisons, other than calling Equals(object),
which will result in boxing the value we want to compare with when it’s a value type.
(In fact, there are a couple of types to help us in some situations—we’ll come to them
in a minute.)

 When a type parameter is unconstrained (in other words, no constraints are applied
to it), you can use == and != operators but only to compare a value of that type with
null. You can’t compare two values of T with each other. In the case where the type
argument provided for T is a value type (other than a nullable type), a comparison with
null will always decide they are unequal (so the comparison can be removed by the JIT
compiler). When the type argument is a reference type, the normal reference compar-
ison will be used. When the type argument is a nullable type, the comparison will do the
obvious thing, treating an instance without a value as null. (Don’t worry if this last bit
doesn’t make sense yet—it will when you’ve read the next chapter. Some features are
too intertwined to allow me to describe either of them completely without referring to
the other, unfortunately.)

 When a type parameter is constrained to be a value type, == and != can’t be used with
it at all. When it’s constrained to be a reference type, the kind of comparison per-
formed depends on exactly what the type parameter is constrained to be. If it’s just a ref-
erence type, simple reference comparisons are performed. If it’s further constrained to
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derive from a particular type that overloads the == and != operators, those overloads are
used. Beware, however—extra overloads that happen to be made available by the type
argument specified by the caller are not used. Listing 3.5 demonstrates this with a sim-
ple reference type constraint and a type argument of string.

static bool AreReferencesEqual<T> (T first, T second)
    where T : class
{
    return first==second;
}
...
string name = "Jon";
string intro1 = "My name is "+name;
string intro2 = "My name is "+name;
Console.WriteLine (intro1==intro2);
Console.WriteLine (AreReferencesEqual(intro1, intro2));

Even though string overloads == (as demonstrated by C printing True), this overload
is not used by the comparison at B. Basically, when AreReferencesEqual<T> is com-
piled the compiler doesn’t know what overloads will be available—it’s as if the param-
eters passed in were just of type object.

This is not just specific to operators—when the compiler encounters a
generic type, it resolves all the method overloads when compiling
the unbound generic type, rather than reconsidering each possible
method call for more specific overloads at execution time. For instance, a
statement of Console.WriteLine (default(T)); will always resolve to call
Console.WriteLine(object value)—it doesn’t call Console.WriteLine
(string value) when T happens to be string. This is similar to the normal
situation of overloads being chosen at compile time rather than execution

time, but readers familiar with templates in C++ may be surprised nonetheless.
 Two classes that are extremely useful when it comes to comparing values are Equality-

Comparer<T> and Comparer<T>, both in the System.Collections.Generic namespace.
They implement IEqualityComparer<T> (useful for comparing and hashing dictionary
keys) and IComparer<T> (useful for sorting) respectively, and the Default property
returns an implementation that generally does the right thing for the appropriate type.
See the documentation for more details, but consider using these (and similar types
such as StringComparer) when performing comparisons. We’ll use Equality-
Comparer<T> in our next example.
FULL COMPARISON EXAMPLE: REPRESENTING A PAIR OF VALUES
To finish off our section on implementing generics—and indeed “medium-level” gener-
ics—here’s a complete example. It implements a useful generic type—a Pair
<TFirst,TSecond>, which just holds two values together, like a key/value pair, but with
no expectations as to the relationship between the two values. As well as providing prop-
erties to access the values themselves, we’ll override Equals and GetHashCode to allow

Listing 3.5 Comparisons using == and != using reference comparisons
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instances of our type to play nicely when used as keys in a dictionary. Listing 3.6 gives
the complete code.

using System;
using System.Collections.Generic;

public sealed class Pair<TFirst, TSecond>
    : IEquatable<Pair<TFirst, TSecond>>
{
    private readonly TFirst first;
    private readonly TSecond second;

    public Pair(TFirst first, TSecond second)
    {
        this.first = first;
        this.second = second;
    }

    public TFirst First
    {
        get { return first; }
    }

    public TSecond Second
    {
        get { return second; }
    }

    public bool Equals(Pair<TFirst, TSecond> other)
    {
        if (other == null)
        {
            return false;
        }
        return EqualityComparer<TFirst>.Default
                   .Equals(this.First, other.First) &&
                  EqualityComparer<TSecond>.Default
                   .Equals(this.Second, other.Second);
    }

    public override bool Equals(object o)
    {
        return Equals(o as Pair<TFirst, TSecond>);
    }

    public override int GetHashCode()
    {
        return EqualityComparer<TFirst>.Default
                  .GetHashCode(first) * 37 +
                  EqualityComparer<TSecond>.Default
                  .GetHashCode(second);
    }
}

Listing 3.6 is very straightforward. The constituent values are stored in appropriately
typed member variables, and access is provided by simple read-only properties. We

Listing 3.6 Generic class representing a pair of values
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implement IEquatable<Pair<TFirst,TSecond>> to give a strongly typed API that will
avoid unnecessary execution time checks. The equality and hash-code computations
both use the default equality comparer for the two type parameters—these handle
nulls for us automatically, which makes the code somewhat simpler.5

 If we wanted to support sorting, we could implement IComparer <Pair

<TFirst,TSecond>>, perhaps ordering by the first component and then the second.
This kind of type is a good candidate for bearing in mind what functionality you might
want, but not actually implementing until you need it.

 We’ve finished looking at our “intermediate” features now. I realize it can all seem
complicated at first sight, but don’t be put off: the benefits far outweigh the added
complexity. Over time they become second nature. Now that you’ve got the Pair class
as an example, it might be worth looking over your own code base to see whether
there are some patterns that you keep reimplementing solely to use different types.

 With any large topic there is always more to learn. The next section will take you
through the most important advanced topics in generics. If you’re feeling a bit over-
whelmed by now, you might want to skip to the relative comfort of section 3.5, where we
explore the generic collections provided in the framework. It’s well worth understand-
ing the topics in the next section eventually, but if everything so far has been new to you
it wouldn’t hurt to skip it for the moment.

3.4 Advanced generics
You may be expecting me to claim that in the rest of this chapter we’ll be covering
every aspect of generics that we haven’t looked at so far. However, there are so many lit-
tle nooks and crannies involving generics, that’s simply not possible—or at least, I cer-
tainly wouldn’t want to even read about all the details, let alone write about them.
Fortunately the nice people at Microsoft and ECMA have written all the details in the
freely available language specification,6 so if you ever want to check some obscure situ-
ation that isn’t covered here, that should be your next port of call. Arguably if your
code ends up in a corner case complicated enough that you need to consult the speci-
fication to work out what it should do, you should refactor it into a more obvious form
anyway; you don’t want each maintenance engineer from now until eternity to have to
read the specification. 

 My aim with this section is to cover everything you’re likely to want to know about
generics. It talks more about the CLR and framework side of things than the particu-
lar syntax of the C# 2 language, although of course it’s all relevant when developing
in C# 2. We’ll start by considering static members of generic types, including type ini-
tialization. From there, it’s a natural step to wonder just how all this is implemented

5 The formula used for calculating the hash code based on the two “part” results comes from reading Effective
Java (Prentice Hall PTR, 2001) by Joshua Bloch. It certainly doesn’t guarantee a good distribution of hash
codes, but in my opinion it’s better than using a bitwise exclusive OR. See Effective Java for more details, and
indeed for many other useful tips.

6 http://www.ecma-international.org/publications/standards/Ecma-334.htm
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under the covers—although we won’t be going so deep that you need a flashlight.
We’ll have a look at what happens when you enumerate a generic collection using
foreach in C# 2, and round off the section by seeing how reflection in the .NET
Framework is affected by generics.

3.4.1 Static fields and static constructors

Just as instance fields belong to an instance, static fields belong to the type they’re
declared in. That is, if you declare a static field x in class SomeClass, there’s exactly
one SomeClass.x field, no matter how many instances of SomeClass you create, and
no matter how many types derive from SomeClass.7 That’s the familiar scenario from
C# 1—so how does it map across to generics?

 The answer is that each closed type has its own set of static fields. This is easiest to
see with an example. Listing 3.7 creates a generic type including a static field. We set
the field’s value for different closed types, and then print out the values to show that
they are separate.

class TypeWithField<T>
{
    public static string field;

    public static void PrintField()
    {
        Console.WriteLine(field+": "+typeof(T).Name);
    }
}
...
TypeWithField<int>.field = "First";
TypeWithField<string>.field = "Second";
TypeWithField<DateTime>.field = "Third";

TypeWithField<int>.PrintField();
TypeWithField<string>.PrintField();
TypeWithField<DateTime>.PrintField();

We set the value of each field to a different value, and print out each field along with
the name of the type argument used for that closed type. Here’s the output from list-
ing 3.7:

First: Int32
Second: String
Third: DateTime

So the basic rule is “one static field per closed type.” The same applies for static initial-
izers and static constructors. However, it’s possible to have one generic type nested

7 Well, one per application domain. For the purposes of this section, we’ll assume we’re only dealing with one
application domain. The concepts for different application domains work the same with generics as with non-
generic types.

Listing 3.7 Proof that different closed types have different static fields



87Advanced generics
within another, and types with multiple generic parameters. This sounds a lot more
complicated, but it works as you probably think it should. Listing 3.8 shows this in
action, this time using static constructors to show just how many types there are.

public class Outer<T>
{
    public class Inner<U,V>
    {
        static Inner()
        {
            Console.WriteLine("Outer<{0}>.Inner<{1},{2}>",
                              typeof(T).Name,
                              typeof(U).Name,
                              typeof(V).Name);
        }

        public static void DummyMethod()
        {
        }
    }
}
...
Outer<int>.Inner<string,DateTime>.DummyMethod();
Outer<string>.Inner<int,int>.DummyMethod();
Outer<object>.Inner<string,object>.DummyMethod();
Outer<string>.Inner<string,object>.DummyMethod();
Outer<object>.Inner<object,string>.DummyMethod();
Outer<string>.Inner<int,int>.DummyMethod();

Each different list of type arguments counts as a different closed type, so
the output of listing 3.8 looks like this:

Outer<Int32>.Inner<String,DateTime>
Outer<String>.Inner<Int32,Int32>
Outer<Object>.Inner<String,Object>
Outer<String>.Inner<String,Object>
Outer<Object>.Inner<Object,String>

Just as with nongeneric types, the static constructor for any closed type is only exe-
cuted once, which is why the last line of listing 3.8 doesn’t create a sixth line of out-
put—the static constructor for Outer<string>.Inner<int,int> executed earlier,
producing the second line of output. To clear up any doubts, if we had a nonge-
neric PlainInner class inside Outer, there would still have been one possible
Outer<T>.PlainInner type per closed Outer type, so Outer<int>.PlainInner would
be separate from Outer<long>.PlainInner, with a separate set of static fields as
seen earlier.

 Now that we’ve seen just what constitutes a different type, we should think about
what the effects of that might be in terms of the amount of native code generated.
And no, it’s not as bad as you might think…

Listing 3.8 Static constructors with nested generic types

Note! 

Only 5 lines 

of output…
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3.4.2 How the JIT compiler handles generics

Given that we have all of these different closed types, the JIT’s job is to convert the IL
of the generic type into native code so it can actually be run. In some ways, we
shouldn’t care exactly how it does that—beyond keeping a close eye on memory and
CPU time, we wouldn’t see much difference if the JIT did the obvious thing and gener-
ated native code for each closed type separately, as if each one had nothing to do with
any other type. However, the JIT authors are clever enough that it’s worth seeing just
what they’ve done.

 Let’s start with a simple situation first, with a single type parameter—we’ll use
List<T> for the sake of convenience. The JIT creates different code for each value type
argument—int, long, Guid, and the like—that we use. However, it shares the native
code generated for all the closed types that use a reference type as the type argument,
such as string, Stream, and StringBuilder. It can do this because all references are the
same size (they are 4 bytes on a 32-bit CLR and 8 bytes on a 64-bit CLR, but within any
one CLR all references are the same size). An array of references will always be the same
size whatever the references happen to be. The space required on the stack for a refer-
ence will always be the same. It can use the same register optimizations whatever type
is being used—the List<Reason> goes on.

 Each of the types still has its own static fields as described in section 3.4.1, but the
code that is executed is reused. Of course, the JIT still does all of this lazily—it won’t
generate the code for List<int> before it needs to, and it will cache that code for all
future uses of List<int>. In theory, it’s possible to share code for at least some value
types. The JIT would have to be careful, not just due to size but also for garbage collec-
tion reasons—it has to be able to quickly identify areas of a struct value that are live
references. However, value types that are the same size and have the same in-memory
footprint as far as the GC is concerned could share code. At the time of this writing,
that’s been of sufficiently low priority that it hasn’t been implemented and it may well
stay that way.

This level of detail is primarily of academic interest, but it does have a
slight performance impact in terms of more code being JIT compiled.
However, the performance benefits of generics can be huge, and again
that comes down to having the opportunity to JIT to different code for
different types. Consider a List<byte>, for instance. In .NET 1.1, add-
ing individual bytes to an ArrayList would have meant boxing each
one of them, and storing a reference to each boxed value. Using
List<byte> has no such impact—List<T> has a member of type T[] to

replace the object[] within ArrayList, and that array is of the appropriate type,
taking the appropriate space. So List<byte> has a straight byte[] within it used to
store the elements of the array. (In many ways this makes a List<byte> behave like
a MemoryStream.)

 Figure 3.3 shows an ArrayList and a List<byte>, each with the same six values.
(The arrays themselves have more than six elements, to allow for growth. Both

High 

performance—

avoids boxing
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List<T> and ArrayList have a buffer, and they create a larger buffer when they
need to.)

 The difference in efficiency here is incredible. Let’s look at the ArrayList first,
considering a 32-bit CLR.8 Each of the boxed bytes will take up 8 bytes of object over-
head, plus 4 bytes (1 byte, rounded up to a word boundary) for the data itself. On top
of that, you’ve got all the references themselves, each of which takes up 4 bytes. So for
each byte of useful data, we’re paying at least 16 bytes—and then there’s the extra
unused space for references in the buffer.

 Compare this with the List<byte>. Each byte in the list takes up a single byte
within the elements array. There’s still “wasted” space in the buffer, waiting to be used
potentially by new items—but at least we’re only wasting a single byte per unused ele-
ment there.

 We don’t just gain space, but execution speed too. We don’t need the time taken to
allocate the box, the type checking involved in unboxing the bytes in order to get at
them, or the garbage collection of the boxes when they’re no longer referenced.

 We don’t have to go down to the CLR level to find things happening transpar-
ently on our behalf, however. C# has always made life easier with syntactic shortcuts,
and our next section looks at a familiar example but with a generic twist: iterating
with foreach.

8 When running on a 64-bit CLR, the overheads are bigger.
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3.4.3 Generic iteration

One of the most common operations you’ll want to perform on a collection (usually
an array or a list) is to iterate through all its elements. The simplest way of doing that
is usually to use the foreach statement. In C# 1 this relied on the collection either
implementing the System.Collections.IEnumerable interface or having a similar
GetEnumerator() method that returned a type with a suitable MoveNext() method
and Current property. The Current property didn’t have to be of type object—and
that was the whole point of having these extra rules, which look odd on first sight. Yes,
even in C# 1 you could avoid boxing and unboxing during iteration if you had a
custom-made enumeration type.

 C# 2 makes this somewhat easier, as the rules for the foreach statement have been
extended to also use the System.Collections.Generic.IEnumerable<T> interface
along with its partner, IEnumerator<T>. These are simply the generic equivalents of
the old enumeration interfaces, and they’re used in preference to the nongeneric ver-
sions. That means that if you iterate through a generic collection of value type ele-
ments—List<int>, for example—then no boxing is performed at all. If the old
interface had been used instead, then although we wouldn’t have incurred the boxing
cost while storing the elements of the list, we’d still have ended up boxing them when
we retrieved them using foreach!

 All of this is done for you under the covers—all you need to do is use the foreach
statement in the normal way, using the type argument of the collection as the type of
the iteration variable, and all will be well. That’s not the end of the story, however. In
the relatively rare situation that you need to implement iteration over one of your own
types, you’ll find that IEnumerable<T> extends the old IEnumerable interface, which
means you’ve got to implement two different methods:

IEnumerator<T> GetEnumerator();
IEnumerator GetEnumerator();

Can you see the problem? The methods differ only in return type, and the rules of
C# prevent you from writing two such methods normally. If you think back to sec-
tion 2.2.2, we saw a similar situation—and we can use the same workaround. If you
implement IEnumerable using explicit interface implementation, you can implement
IEnumerable<T> with a “normal” method. Fortunately, because IEnumerator<T>
extends IEnumerator, you can use the same return value for both methods, and
implement the nongeneric method by just calling the generic version. Of course,
now you need to implement IEnumerator<T> and you quickly run into similar prob-
lems, this time with the Current property.

 Listing 3.9 gives a full example, implementing an enumerable class that always just
enumerates to the integers 0 to 9. 

class CountingEnumerable: IEnumerable<int>
{
    public IEnumerator<int> GetEnumerator()

Listing 3.9 A full generic enumeration—of the numbers 0 to 9

Implements 
IEnumerable<T> 
implicitly

B
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    {
        return new CountingEnumerator();
    }

    IEnumerator IEnumerable.GetEnumerator()
    {
        return GetEnumerator();
    }
}

class CountingEnumerator : IEnumerator<int>
{
    int current = -1;

    public bool MoveNext()                       
    {
        current++;
        return current < 10;
    }

    public int Current
    {
        get { return current; }
    }

    object IEnumerator.Current
    {
        get { return Current; }
    }

    public void Reset()                           
    {
                current = -1;
    }

    public void Dispose()                         
    {
    }
}
...
CountingEnumerable counter = new CountingEnumerable();
foreach (int x in counter)                            
{                                                     
    Console.WriteLine(x);                             
}                                                     

Clearly this isn’t useful in terms of the result, but it shows the little hoops you have
to go through in order to implement generic enumeration appropriately—at least if
you’re doing it all longhand. (And that’s without making an effort to throw excep-
tions if Current is accessed at an inappropriate time.) If you think that listing 3.9
looks like a lot of work just to print out the numbers 0 to 9, I can’t help but agree
with you—and there’d be even more code if we wanted to iterate through anything
useful. Fortunately we’ll see in chapter 6 that C# 2 takes a large amount of the work
away from enumerators in many cases. I’ve shown the “full” version so you can
appreciate the slight wrinkles that have been introduced by the design decision for
IEnumerable<T> to extend IEnumerable.

Implements 
IEnumerable 
explicitly

C

Implements 
IEnumerator<T>.Current 
implicitly

D

Implements 
IEnumerator.Current 
explicitly

E

Proves that 
enumerable 
type works

F
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 We only need the trick of using explicit interface implementation twice—once
for IEnumerable.GetEnumerator C, and once at IEnumerator.Current E. Both of
these call their generic equivalents (B and D respectively). Another addition to
IEnumerator<T> is that it extends IDisposable, so you have to provide a Dispose
method. The foreach statement in C# 1 already called Dispose on an enumerator if
it implemented IDisposable, but in C# 2 there’s no execution time testing
required—if the compiler finds that you’ve implemented IEnumerable<T>, it cre-
ates an unconditional call to Dispose at the end of the loop (in a finally block).
Many enumerators won’t actually need to dispose of anything, but it’s nice to know
that when it is required, the most common way of working through an enumerator
(the foreach statement F) handles the calling side automatically.

 We’ll now go from compile-time efficiency to execution-time flexibility: our final
advanced topic is reflection. Even in .NET 1.0/1.1 reflection could be a little tricky,
but generic types and methods introduce an extra level of complexity. The framework
provides everything we need (with a bit of helpful syntax from C# 2 as a language),
and although the additional considerations can be daunting, it’s not too bad if you
take it one step at a time. 

3.4.4 Reflection and generics

Reflection is used by different people for all sorts of things. You might use it for
execution-time introspection of objects to perform a simple form of data binding. You
might use it to inspect a directory full of assemblies to find implementations of a plug-
in interface. You might write a file for an Inversion of Control9 framework to load and
dynamically configure your application’s components. As the uses of reflection are so
diverse, I won’t focus on any particular one but give you more general guidance on per-
forming common tasks. We’ll start by looking at the extensions to the typeof operator.
USING TYPEOF WITH GENERIC TYPES
Reflection is all about examining objects and their types. As such, one of the most
important things you need to be able to do is obtain a reference to the System.Type
object, which allows access to all the information about a particular type. C# uses the
typeof operator to obtain such a reference for types known at compile time, and this
has been extended to encompass generic types.

 There are two ways of using typeof with generic types—one retrieves the generic
type definition (in other words, the unbound generic type) and one retrieves a particu-
lar constructed type. To obtain the generic type definition—that is, the type with none
of the type arguments specified—you simply take the name of the type as it would
have been declared and remove the type parameter names, keeping any commas. To
retrieve constructed types, you specify the type arguments in the same way as you
would to declare a variable of the generic type. Listing 3.10 gives an example of both
uses. It uses a generic method so we can revisit how typeof can be used with a type
parameter, which we previously saw in listing 3.7.

9 See http://www.martinfowler.com/articles/injection.html



93Advanced generics
static void DemonstrateTypeof<X>()
{
    Console.WriteLine(typeof(X));

    Console.WriteLine(typeof(List<>));       
    Console.WriteLine(typeof(Dictionary<,>));

    Console.WriteLine(typeof(List<X>));             
    Console.WriteLine(typeof(Dictionary<string,X>));

    Console.WriteLine(typeof(List<long>));           
    Console.WriteLine(typeof(Dictionary<long,Guid>));
}
...
DemonstrateTypeof<int>();

Most of listing 3.10 is as you might naturally expect, but it’s worth pointing out two
things. First, look at the syntax for obtaining the generic type definition of Dictionary
<TKey,TValue>. The comma in the angle brackets is required to effectively tell the com-
piler to look for the type with two type parameters: remember that there can be several
generic types with the same name, as long as they vary by the number of type parameters
they have. Similarly, you’d retrieve the generic type definition for MyClass<T,U,V,W>
using typeof(MyClass<,,,>). The number of type parameters is specified in IL (and in
full type names as far as the framework is concerned) by putting a back tick after the first
part of the type name and then the number. The type parameters are then indicated in
square brackets instead of the angle brackets we’re used to. For instance, the second line
printed ends with List`1[T], showing that there is one type parameter, and the third
line includes Dictionary`2[TKey,TValue].

 Second, note that wherever the method’s type parameter is used, the actual value
of the type argument is used at execution time. So the first line B prints List`1
<System.Int32> rather than List`1<X>, which you might have expected. In other
words, a type that is open at compile time may be closed at execution time. This is very
confusing. You should be aware of it in case you don’t get the results you expect, but otherwise
don’t worry. To retrieve a truly open constructed type at execution time, you need to
work a bit harder. See the MSDN documentation for Type.IsGenericType for a suit-
ably convoluted example.

 For reference, here’s the output of listing 3.10:

System.Int32
System.Collections.Generic.List`1[T]
System.Collections.Generic.Dictionary`2[TKey,TValue]
System.Collections.Generic.List`1[System.Int32]
System.Collections.Generic.Dictionary`2[System.String,System.Int32]
System.Collections.Generic.List`1[System.Int64]
System.Collections.Generic.Dictionary`2[System.Int64,System.Guid]

Having retrieved an object representing a generic type, there are many “next steps”
you can take. All the previously available ones (finding the members of the type, creat-
ing an instance, and so on) are still present—although some are not applicable for

Listing 3.10 Using the typeof operator with type parameters

Displays method’s 
type parameter

Displays 
generic 
types Displays closed 

types (despite 
using type 
parameter)

B

Displays 
closed types



94 CHAPTER 3 Parameterized typing with generics
generic type definitions—and there are new ones as well that let you inquire about the
generic nature of the type.
METHODS AND PROPERTIES OF SYSTEM.TYPE
There are far too many new methods and properties to look at them all in detail, but
there are two particularly important ones: GetGenericTypeDefinition and Make-
GenericType. They are effectively opposites—the first acts on a constructed type,
retrieving the generic type definition; the second acts on a generic type definition and
returns a constructed type. Arguably it would have been clearer if this method had
been called ConstructGenericType, MakeConstructedType, or some other name with
construct or constructed in it, but we’re stuck with what we’ve got.

 Just like normal types, there is only one Type object for any particular type—so call-
ing MakeGenericType twice with the same types as parameters will return the same ref-
erence twice, and calling GetGenericTypeDefinition on two types constructed from
the same generic type definition will likewise give the same result for both calls.

 Another method—this time one which already existed in .NET 1.1—that is worth
exploring is Type.GetType, and its related Assembly.GetType method, both of which
provide a dynamic equivalent to typeof. You might expect to be able to feed each line
of the output of listing 3.10 to the GetType method called on an appropriate assembly,
but unfortunately life isn’t quite that straightforward. It’s fine for closed constructed
types—the type arguments just go in square brackets. For generic type definitions,
however, you need to remove the square brackets entirely—otherwise GetType thinks
you mean an array type. Listing 3.11 shows all of these methods in action.

string listTypeName = "System.Collections.Generic.List`1";

Type defByName = Type.GetType(listTypeName);

Type closedByName = Type.GetType(listTypeName+"[System.String]");
Type closedByMethod = defByName.MakeGenericType(typeof(string));
Type closedByTypeof = typeof(List<string>);

Console.WriteLine (closedByMethod==closedByName);
Console.WriteLine (closedByName==closedByTypeof);

Type defByTypeof = typeof(List<>);
Type defByMethod = closedByName.GetGenericTypeDefinition();

Console.WriteLine (defByMethod==defByName);
Console.WriteLine (defByName==defByTypeof);

The output of listing 3.11 is just True four times, validating that however you obtain a
reference to a particular type object, there is only one such object involved.

 As I mentioned earlier, there are many new methods and properties on Type,
such as GetGenericArguments, IsGenericTypeDefinition, and IsGenericType. The
documentation for IsGenericType is probably the best starting point for further
exploration.

Listing 3.11 Various ways of retrieving generic and constructed Type objects
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REFLECTING GENERIC METHODS
Generic methods have a similar (though smaller) set of additional properties and
methods. Listing 3.12 gives a brief demonstration of this, calling a generic method by
reflection.

public static void PrintTypeParameter<T>()
{
    Console.WriteLine (typeof(T));
}
...
Type type = typeof(Snippet);
MethodInfo definition = type.GetMethod("PrintTypeParameter");        
MethodInfo constructed;
constructed = definition.MakeGenericMethod(typeof(string));       
constructed.Invoke(null, null);

First we retrieve the generic method definition, and then we make a constructed
generic method using MakeGenericMethod. As with types, we could go the other way if
we wanted to—but unlike Type.GetType, there is no way of specifying a constructed
method in the GetMethod call. The framework also has a problem if there are meth-
ods that are overloaded purely by number of type parameters—there are no methods
in Type that allow you to specify the number of type parameters, so instead you’d have
to call Type.GetMethods and find the right one by looking through all the methods.

 After retrieving the constructed method, we invoke it. The arguments in this exam-
ple are both null as we’re invoking a static method that doesn’t take any “normal”
parameters. The output is System.String, as we’d expect.

 Note that the methods retrieved from generic type definitions cannot be invoked
directly—instead, you must get the method from a constructed type. This applies to
both generic methods and nongeneric methods.

 Again, more methods and properties are available on MethodInfo, and IsGeneric-
Method is a good starting point in MSDN. Hopefully the information in this section will
have been enough to get you going, though—and to point out some of the added com-
plexities you might not have otherwise anticipated when first starting to access generic
types and methods with reflection.

 That’s all we’re going to cover in the way of advanced features. Just to reiterate,
this is not meant to have been an absolutely complete guide by any means—but most
developers are unlikely to need to know the more obscure areas. I hope for your sake
that you fall into this camp, as specifications tend to get harder to read the deeper you
go into them. Remember that unless you’re working alone and just for yourself,
you’re unlikely to be the only one to work on your code. If you need features that are
more complex than the ones demonstrated here, you almost certainly shouldn’t
assume that anyone reading your code will understand it without help. On the other
hand, if you find that your coworkers don’t know about some of the topics we’ve cov-
ered so far, please feel free to direct them to the nearest bookshop…

Listing 3.12 Retrieving and invoking a generic method with reflection



96 CHAPTER 3 Parameterized typing with generics
 The next section is much more down to earth than our investigations into reflec-
tion and the bowels of the JIT. It covers the most common use of generics: the stan-
dard collection classes.

3.5 Generic collection classes in .NET 2.0
Although this book is primarily about C# as a language, it would be foolish to ignore the
fact that C# is almost always used within the .NET Framework, and that in order to use
the language effectively you’ll need to have a certain amount of knowledge of the
libraries too. I won’t be going into the details of ADO.NET, ASP.NET, and the like, but
you’re bound to use collections in almost any .NET program of any size. This section
will cover the core collections found in the System.Collections.Generic namespace.
We’ll start in familiar territory with List<T>.

3.5.1 List<T>

We’ve already seen List<T> several times. Broadly speaking, it’s the generic equiva-
lent of the nongeneric ArrayList type, which has been a part of .NET from the word
go. There are some new features, and a few operations in ArrayList didn’t make it to
List<T>. Most of the features that have been removed from List<T> have also been
removed from other collections, so we’ll cover them here and then just refer to them
later on when talking about the other collections. Many of the new features in
List<T> (beyond “being generic”) aren’t available in the other generic collections.
The combination of these factors leads to our discussion of List<T> being the long-
est in this section—but then it’s probably the most widely used collection in real-life
code, too. When you think of using a list of data items in your code, List<T> is the
default choice.

 I won’t bore you with the most common operations (adding, removing, fetching,
and replacing items) but will merely point out that List<T> makes itself available in a
large number of situations using old APIs by implementing IList as well as IList<T>.
Enough of looking backward, though—let’s see what’s new.
NEW FEATURES OF LIST<T>
The new methods available within List<T> are all powered by generics—in particular,
generic delegates. This is part of a general trend toward using delegates more heavily
in the framework, which has been made simpler by the improvements in delegate syn-
tax available in C# 2. (There would have been little point in adding lots of delegate-
specific features into the framework with the syntax being as clunky as it was in C# 1.)
We can now do the following:

■ Convert each element of the list to a different type, resulting in a new list
(ConvertAll).

■ Check whether any of the elements in the list match a given predicate (Exists).
■ Check whether all of the elements in the list match a given predicate

(TrueForAll).
■ Find the first, last, or all elements in the list matching a predicate (FindXXX).
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■ Remove all elements in the list matching a given predicate (RemoveAll).
■ Perform a given action on each element on the list (ForEach).10

We’ve already seen the ConvertAll method in listing 3.2, but there are two more dele-
gate types that are very important for this extra functionality: Predicate<T> and
Action<T>, which have the following signatures:

public delegate bool Predicate<T> (T obj)
public delegate void Action<T> (T obj)

A predicate is a way of testing whether a value matches a criterion. For instance, you
could have a predicate that tested for strings having a length greater than 5, or one
that tested whether an integer was even. An action does exactly what you might expect
it to—performs an action with the specified value. You might print the value to the
console, add it to another collection—whatever you want.

 For simple examples, most of the methods listed here are easily achieved with a
foreach loop. However, using a delegate allows the behavior to come from some-
where other than the immediate code in the foreach loop. With the improvements to
delegates in C# 2, it can also be a bit simpler than the loop.

 Listing 3.13 shows the last two methods—ForEach and RemoveAll—in action. We
take a list of the integers from 2 to 100, remove multiples of 2, then multiples of 3, and
so forth up to 10, finally listing the numbers. You may well recognize this as a slight
variation on the “Sieve of Eratosthenes” method of finding prime numbers. I’ve used
the streamlined method of creating delegates to make the example more realistic.
Even though we haven’t covered the syntax yet (you can peep ahead to chapter 5 if
you want to get the details), it should be fairly obvious what’s going on here.

List<int> candidates = new List<int>();
for (int i=2; i <= 100; i++)           
{                                      
    candidates.Add(i);                 
}                                      

for (int factor=2; factor <= 10; factor++) 
{                                          
    candidates.RemoveAll (delegate(int x)  
        { return x>factor && x%factor==0; }
    );                                     
}

candidates.ForEach (delegate(int prime)
    { Console.WriteLine(prime); }      
);                                     

10 Not to be confused with the foreach statement, which does a similar thing but requires the actual code in
place, rather than being a method with an Action<T> parameter.

Listing 3.13 Printing primes using RemoveAll and ForEach from List<T>
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Listing 3.13 starts off by just creating a list of all the integers between 2 and 100 inclu-
sive B—nothing spectacular here, although once again I should point out that
there’s no boxing involved. The delegate used in step C is a Predicate <int>, and
the one used in D is an Action<int>. One point to note is how simple the use of
RemoveAll is. Because you can’t change the contents of a collection while iterating
over it, the typical ways of removing multiple elements from a list have previously been
as follows:

■ Iterate using the index in ascending order, decrementing the index variable
whenever you remove an element.

■ Iterate using the index in descending order to avoid excessive copying.
■ Create a new list of the elements to remove, and then iterate through the new

list, removing each element in turn from the old list.

None of these is particularly satisfactory—the predicate approach is much neater, giving
emphasis to what you want to achieve rather than how exactly it should happen. It’s a
good idea to experiment with predicates a bit to get comfortable with them, particularly
if you’re likely to be using C# 3 in a production setting any time in the near future—this
more functional style of coding is going to be increasingly important over time.

 Next we’ll have a brief look at the methods that are present in ArrayList but not
List<T>, and consider why that might be the case.
FEATURES “MISSING” FROM LIST<T>
A few methods in ArrayList have been shifted around a little—the static ReadOnly
method is replaced by the AsReadOnly instance method, and TrimToSize is nearly
replaced by TrimExcess (the difference is that TrimExcess won’t do anything if the
size and capacity are nearly the same anyway). There are a few genuinely “missing”
pieces of functionality, however. These are listed, along with the suggested
workaround, in table 3.3.

The Synchronized method was a bad idea in ArrayList to start with, in my view. Mak-
ing individual calls to a collection doesn’t make the collection thread-safe, because so
many operations (the most common is iterating over the collection) involve multiple

Table 3.3 Methods from ArrayList with no direct equivalent in List<T>

ArrayList method Way of achieving similar effect

Adapter None provided

Clone list.GetRange (0, list.Count) or new List<T>(list)

FixedSize None

Repeat for loop or write a replacement generic method

SetRange for loop or write a replacement generic method

Synchronized SynchronizedCollection 
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calls. To make those operations thread-safe, the collection needs to be locked for the
duration of the operation. (It requires cooperation from other code using the same
collection, of course.) In short, the Synchronized method gave the appearance of
safety without the reality. It’s better not to give the wrong impression in the first
place—developers just have to be careful when working with collections accessed in
multiple threads. SynchronizedCollection<T> performs broadly the same role as a
synchronized ArrayList. I would argue that it’s still not a good idea to use this, for the
reasons outlined in this paragraph—the safety provided is largely illusory. Ironically,
this would be a great collection to support a ForEach method, where it could automat-
ically hold the lock for the duration of the iteration over the collection—but there’s
no such method.

 That completes our coverage of List<T>. The next collection under the micro-
scope is Dictionary<TKey,TValue>, which we’ve already seen so much of.

3.5.2 Dictionary<TKey,TValue>

There is less to say about Dictionary<TKey,TValue> (just called Dictionary<,> for
the rest of this section, for simplicity) than there was about List<T>, although it’s
another heavily used type. As stated earlier, it’s the generic replacement for Hashtable
and the related classes, such as StringDictionary. There aren’t many features present
in Dictionary<,> that aren’t in Hashtable, although this is partly because the ability to
specify a comparison in the form of an IEqualityComparer was added to Hashtable in
.NET 2.0. This allows for things like case-insensitive comparisons of strings without
using a separate type of dictionary. IEqualityComparer and its generic equivalent,
IEqualityComparer<T>, have both Equals and GetHashCode. Prior to .NET 2.0 these
were split into IComparer (which had to give an ordering, not just test for equality) and
IHashCodeProvider. This separation was awkward, hence the move to IEquality-
Comparer<T> for 2.0. Dictionary<,> exposes its IEqualityComparer<T> in the public
Comparer property.

 The most important difference between Dictionary and Hashtable (beyond the
normal benefits of generics) is their behavior when asked to fetch the value associated
with a key that they don’t know about. When presented with a key that isn’t in the
map, the indexer of Hashtable will just return null. By contrast, Dictionary<,> will
throw a KeyNotFoundException. Both of them support the ContainsKey method to
tell beforehand whether a given key is present. Dictionary<,> also provides
TryGetValue, which retrieves the value if a suitable entry is present, storing it in the
output parameter and returning true. If the key is not present, TryGetValue will set
the output parameter to the default value of TValue and return false. This avoids
having to search for the key twice, while still allowing the caller to distinguish between
the situation where a key isn’t present at all, and the one where it’s present but its asso-
ciated value is the default value of TValue. Making the indexer throw an exception is
of more debatable merit, but it does make it very clear when a lookup has failed
instead of masking the failure by returning a potentially valid value.
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 Just as with List<T>, there is no way of obtaining a synchronized Dictionary<,>,
nor does it implement ICloneable. The dictionary equivalent of Synchronized-
Collection<T> is SynchronizedKeyedCollection<K,T> (which in fact derives from
SynchronizedCollection<T>).

 With the lack of additional functionality, another example of Dictionary<,>
would be relatively pointless. Let’s move on to two types that are closely related to
each other: Queue<T> and Stack<T>.

3.5.3 Queue<T> and Stack<T>

The generic queue and stack classes are essentially the same as their nongeneric coun-
terparts. The same features are “missing” from the generic versions as with the other
collections—lack of cloning, and no way of creating a synchronized version. As
before, the two types are closely related—both act as lists that don’t allow random
access, instead only allowing elements to be removed in a certain order. Queues act in
a first in, first out (FIFO) fashion, while stacks have last in, first out (LIFO) semantics.
Both have Peek methods that return the next element that would be removed but
without actually removing it. This behavior is demonstrated in listing 3.14.

Queue<int> queue = new Queue<int>();
Stack<int> stack = new Stack<int>();

for (int i=0; i < 10; i++)
{
    queue.Enqueue(i);
    stack.Push(i);
}

for (int i=0; i < 10; i++)
{
    Console.WriteLine ("Stack:{0} Queue:{1}",
                               stack.Pop(), queue.Dequeue());
}

The output of listing 3.14 is as follows:

Stack:9 Queue:0
Stack:8 Queue:1
Stack:7 Queue:2
Stack:6 Queue:3
Stack:5 Queue:4
Stack:4 Queue:5
Stack:3 Queue:6
Stack:2 Queue:7
Stack:1 Queue:8
Stack:0 Queue:9

You can enumerate Stack<T> and Queue<T> in the same way as with a list, but in my
experience this is used relatively rarely. Most of the uses I’ve seen have involved a
thread-safe wrapper being put around either class, enabling a producer/consumer

Listing 3.14 Demonstration of Queue<T> and Stack<T>
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pattern for multithreading. This is not particularly hard to write, and third-party
implementations are available, but having these classes directly available in the frame-
work would be more welcome.

 Next we’ll look at the generic versions of SortedList, which are similar enough to
be twins. 

3.5.4 SortedList<TKey,TValue> and SortedDictionary<TKey,TValue>

The naming of SortedList has always bothered me. It feels more like a map or dictio-
nary than a list. You can access the elements by index as you can for other lists
(although not with an indexer)—but you can also access the value of each element
(which is a key/value pair) by key. The important part of SortedList is that when you
enumerate it, the entries come out sorted by key. Indeed, a common way of using
SortedList is to access it as a map when writing to it, but then enumerate the entries
in order.

 There are two generic classes that map to the same sort of behavior: Sorted-
List<TKey,TValue> and SortedDictionary<TKey,TValue>. (From here on I’ll just
call them SortedList<,> and SortedDictionary<,> to save space.) They’re very simi-
lar indeed—it’s mostly the performance that differs. SortedList<,> uses less memory,
but SortedDictionary<,> is faster in the general case when it comes to adding entries.
However, if you add them in the sort order of the keys to start with, SortedList<,>
will be faster.

NOTE A difference of limited benefit—SortedList<,> allows you to find the index of
a particular key or value using IndexOfKey and IndexOfValue, and to
remove an entry by index with RemoveAt. To retrieve an entry by index,
however, you have to use the Keys or Values properties, which implement
IList<TKey> and IList<TValue>, respectively. The nongeneric version
supports more direct access, and a private method exists in the generic ver-
sion, but it’s not much use while it’s private. SortedDictionary<,> doesn’t
support any of these operations.

If you want to see either of these classes in action, use listing 3.1 as a good starting
point. Just changing Dictionary to SortedDictionary or SortedList will ensure that
the words are printed in alphabetical order, for example.

 Our final collection class is genuinely new, rather than a generic version of an
existing nongeneric type. It’s that staple of computer science courses everywhere: the
linked list.

3.5.5 LinkedList<T>

I suspect you know what a linked list is. Instead of keeping an array that is quick to
access but slow to insert into, a linked list stores its data by building up a chain of
nodes, each of which is linked to the next one. Doubly linked lists (like
LinkedList<T>) store a link to the previous node as well as the next one, so you can
easily iterate backward as well as forward.
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 Linked lists make it easy to insert another node into the chain—as long as you
already have a handle on the node representing the insertion position. All the list
needs to do is create a new node, and make the appropriate links between that node
and the ones that will be before and after it. Lists storing all their data in a plain array
(as List<T> does) need to move all the entries that will come after the new one, which
can be very expensive—and if the array runs out of spare capacity, the whole lot must
be copied. Enumerating a linked list from start to end is also cheap—but random
access (fetching the fifth element, then the thousandth, then the second) is slower
than using an array-backed list. Indeed, LinkedList<T> doesn’t even provide a ran-
dom access method or indexer. Despite its name, it doesn’t implement IList<T>.
Linked lists are usually more expensive in terms of memory than their array-backed
cousins due to the extra link node required for each value. However, they don’t have
the “wasted” space of the spare array capacity of List<T>.

 The linked list implementation in .NET 2.0 is a relatively plain one—it doesn’t sup-
port chaining two lists together to form a larger one, or splitting an existing one into
two, for example. However, it can still be useful if you want fast insertions at both the
start and end of the list (or in between if you keep a reference to the appropriate node),
and only need to read the values from start to end, or vice versa.

 Our final main section of the chapter looks at some of the limitations of generics
in C# and considers similar features in other languages.

3.6 Limitations of generics in C# and other languages
There is no doubt that generics contribute a great deal to C# in terms of expressive-
ness, type safety, and performance. The feature has been carefully designed to cope
with most of the tasks that C++ programmers typically used templates for, but without
some of the accompanying disadvantages. However, this is not to say limitations don’t
exist. There are some problems that C++ templates solve with ease but that C# gener-
ics can’t help with. Similarly, while generics in Java are generally less powerful than in
C#, there are some concepts that can be expressed in Java but that don’t have a C#
equivalent. This section will take you through some of the most commonly encoun-
tered weaknesses, as well as briefly compare the C#/.NET implementation of generics
with C++ templates and Java generics.

 It’s important to stress that pointing out these snags does not imply that they
should have been avoided in the first place. In particular, I’m in no way saying that I
could have done a better job! The language and platform designers have had to bal-
ance power with complexity (and the small matter of achieving both design and
implementation within a reasonable timescale). It’s possible that future improve-
ments will either remove some of these issues or lessen their impact. Most likely, you
won’t encounter problems, and if you do, you’ll be able to work around them with the
guidance given here.

 We’ll start with the answer to a question that almost everyone raises sooner or later:
why can’t I convert a List<string> to List<object>?



103Limitations of generics in C# and other languages
3.6.1 Lack of covariance and contravariance

In section 2.3.2, we looked at the covariance of arrays—the fact that an array of a refer-
ence type can be viewed as an array of its base type, or an array of any of the interfaces
it implements. Generics don’t support this—they are invariant. This is for the sake of
type safety, as we’ll see, but it can be annoying.
WHY DON’T GENERICS SUPPORT COVARIANCE?
Let’s suppose we have two classes, Animal and Cat, where Cat derives from Animal. In
the code that follows, the array code (on the left) is valid C# 2; the generic code (on
the right) isn’t:

The compiler has no problem with the second line in either case, but the first line on
the right causes the error: 

error CS0029: Cannot implicitly convert type
        'System.Collections.Generic.List<Cat>' to
        'System.Collections.Generic.List<Animal>'

This was a deliberate choice on the part of the framework and language designers. The
obvious question to ask is why this is prohibited—and the answer lies on the second
line. There is nothing about the second line that should raise any suspicion. After all,
List<Animal> effectively has a method with the signature void Add(Animal value)—
you should be able to put a Turtle into any list of animals, for instance. However, the
actual object referred to by animals is a Cat[] (in the code on the left) or a List<Cat>
(on the right), both of which require that only references to instances of Cat are stored
in them. Although the array version will compile, it will fail at execution time. This was
deemed by the designers of generics to be worse than failing at compile time, which is
reasonable—the whole point of static typing is to find out about errors before the code
ever gets run.

NOTE So why are arrays covariant? Having answered the question about why
generics are invariant, the next obvious step is to question why arrays are
covariant. According to the Common Language Infrastructure Annotated
Standard (Addison-Wesley Professional, 2003), for the first edition the
designers wished to reach as broad an audience as possible, which included
being able to run code compiled from Java source. In other words, .NET has
covariant arrays because Java has covariant arrays—despite this being a
known “wart” in Java.

So, that’s why things are the way they are—but why should you care, and how can you
get around the restriction?

Valid (at compile-time):
Animal[] animals = new Cat[5];
animals[0] = new Animal();

Invalid:
List<Animal> animals=new List<Cat>();
animals.Add(new Animal());
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WHERE COVARIANCE WOULD BE USEFUL
Suppose you are implementing a platform-agnostic storage system,11 which could run
across WebDAV, NFS, Samba, NTFS, ReiserFS, files in a database, you name it. You may
have the idea of storage locations, which may contain sublocations (think of directories
containing files and more directories, for instance). You could have an interface like this:

public interface IStorageLocation
{
    Stream OpenForRead();
    ...
    IEnumerable<IStorageLocation> GetSublocations();
}

That all seems reasonable and easy to implement. The problem comes when your
implementation (FabulousStorageLocation for instance) stores its list of subloca-
tions for any particular location as List<FabulousStorageLocation>. You might
expect to be able to either return the list reference directly, or possibly call AsRead-
Only to avoid clients tampering with your list, and return the result—but that would
be an implementation of IEnumerable<FabulousStorageLocation> instead of an
IEnumerable<IStorageLocation>. 

 Here are some options:

■ Make your list a List<IStorageLocation> instead. This is likely to mean you need
to cast every time you fetch an entry in order to get at your implementation-
specific behavior. You might as well not be using generics in the first place.

■ Implement GetSublocations using the funky new iteration features of C# 2, as
described in chapter 6. That happens to work in this example, because the
interface uses IEnumerable<IStorageLocation>. It wouldn’t work if we had to
return an IList<IStorageLocation> instead. It also requires each implementa-
tion to have the same kind of code. It’s only a few lines, but it’s still inelegant.

■ Create a new copy of the list, this time as List<IStorageLocation>. In some
cases (particularly if the interface did require you to return an IList
<IStorageLocation>), this would be a good thing to do anyway—it keeps the
list returned separate from the internal list. You could even use List.Convert-
All to do it in a single line. It involves copying everything in the list, though,
which may be an unnecessary expense if you trust your callers to use the
returned list reference appropriately.

■ Make the interface generic, with the type parameter representing the actual type
of storage sublocation being represented. For instance, FabulousStorage-
Location might implement IStorageLocation<FabulousStorageLocation>.
It looks a little odd, but this recursive-looking use of generics can be quite useful
at times.12

■ Create a generic helper method (preferably in a common class library) that
converts IEnumerator<TSource> to IEnumerator<TDest>, where TSource

derives from TDest.

11 Yes, another one. 
12 For instance, you might have a type parameter T with a constraint that any instance can be compared to another

instance of T for equality—in other words, something like MyClass<T> where T : IEquatable<T>.
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When you run into covariance issues, you may need to consider all of these options
and anything else you can think of. It depends heavily on the exact nature of the situ-
ation. Unfortunately, covariance isn’t the only problem we have to consider. There’s
also the matter of contravariance, which is like covariance in reverse.
WHERE CONTRAVARIANCE WOULD BE USEFUL
Contravariance feels slightly less intuitive than covariance, but it does make sense.
Where covariance is about declaring that we will return a more specific object from a
method than the interface requires us to, contravariance is about being willing to
accept a more general parameter.

 For instance, suppose we had an IShape interface13 that contained the Area prop-
erty. It’s easy to write an implementation of IComparer<IShape> that sorts by area.
We’d then like to be able to write the following code:

IComparer<IShape> areaComparer = new AreaComparer();
List<Circle> circles = new List<Circle>();
circles.Add(new Circle(20));
circles.Add(new Circle(10));
circles.Sort(areaComparer);

That won’t work, though, because the Sort method on List<Circle> effectively takes
an IComparer<Circle>. The fact that our AreaComparer can compare any shape
rather than just circles doesn’t impress the compiler at all. It considers IComparer
<Circle> and IComparer<IShape> to be completely different types. Maddening, isn’t
it? It would be nice if the Sort method had this signature instead:

void Sort<S>(IComparer<S> comparer) where T : S

Unfortunately, not only is that not the signature of Sort, but it can’t be—the con-
straint is invalid, because it’s a constraint on T instead of S. We want a derivation type
constraint but in the other direction, constraining the S to be somewhere up the
inheritance tree of T instead of down.

 Given that this isn’t possible, what can we do? There are fewer options this time
than before. First, you could create a generic class with the following declaration:

ComparisonHelper<TBase,TDerived> : IComparer<TDerived> 
    where TDerived : TBase

You’d then create a constructor that takes (and stores) an IComparer<TBase> as a
parameter. The implementation of IComparer<TDerived> would just return the result
of calling the Compare method of the IComparer<TBase>. You could then sort the
List<Circle> by creating a new ComparisonHelper<IShape,Circle> that uses the
area comparison. 

 The second option is to make the area comparison class generic, with a derivation
constraint, so it can compare any two values of the same type, as long as that type
implements IShape. Of course, you can only do this when you’re able to change the
comparison class—but it’s a nice solution when it’s available.

13 You didn’t really expect to get through the whole book without seeing a shape-related example, did you?
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 Notice that the various options for both covariance and contravariance use more
generics and constraints to express the interface in a more general manner, or to pro-
vide generic “helper” methods. I know that adding a constraint makes it sound less
general, but the generality is added by first making the type or method generic. When
you run into a problem like this, adding a level of genericity somewhere with an
appropriate constraint should be the first option to consider. Generic methods (rather
than generic types) are often helpful here, as type inference can make the lack of vari-
ance invisible to the naked eye. This is particularly true in C# 3, which has stronger
type inference capabilities than C# 2.

NOTE Is this really the best we can do?—As we’ll see later, Java supports covariance
and contravariance within its generics—so why can’t C#? Well, a lot of it
boils down to the implementation—the fact that the Java runtime
doesn’t get involved with generics; it’s basically a compile-time feature.
However, the CLR does support limited generic covariance and contravar-
iance, just on interfaces and delegates. C# doesn’t expose this feature
(neither does VB.NET), and none of the framework libraries use it. The
C# compiler consumes covariant and contravariant interfaces as if they
were invariant. Adding variance is under consideration for C# 4,
although no firm commitments have been made. Eric Lippert has written
a whole series of blog posts about the general problem, and what might
happen in future versions of C#: http://blogs.msdn.com/ericlippert/
archive/tags/Covariance+and+Contravariance/default.aspx.

This limitation is a very common cause of questions on C# discussion groups. The
remaining issues are either relatively academic or affect only a moderate subset of the
development community. The next one mostly affects those who do a lot of calcula-
tions (usually scientific or financial) in their work.

3.6.2 Lack of operator constraints or a “numeric” constraint

C# is not without its downside when it comes to heavily mathematical code. The need
to explicitly use the Math class for every operation beyond the simplest arithmetic and
the lack of C-style typedefs to allow the data representation used throughout a pro-
gram to be easily changed have always been raised by the scientific community as bar-
riers to C#’s adoption. Generics weren’t likely to fully solve either of those issues, but
there’s a common problem that stops generics from helping as much as they could
have. Consider this (illegal) generic method:

public T FindMean<T>(IEnumerable<T> data)
{
    T sum = default(T);
    int count = 0;
    foreach (T datum in data)
    {
        sum += datum;
        count++;
    }

http://blogs.msdn.com/ericlippert/archive/tags/Covariance+and+Contravariance/default.aspx
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    return sum/count;
}

Obviously that could never work for all types of data—what could it mean to add one
Exception to another, for instance? Clearly a constraint of some kind is called for…
something that is able to express what we need to be able to do: add two instances of T
together, and divide a T by an integer. If that were available, even if it were limited to
built-in types, we could write generic algorithms that wouldn’t care whether they were
working on an int, a long, a double, a decimal, and so forth. Limiting it to the built-
in types would have been disappointing but better than nothing. The ideal solution
would have to also allow user-defined types to act in a numeric capacity—so you could
define a Complex type to handle complex numbers, for instance. That complex num-
ber could then store each of its components in a generic way as well, so you could
have a Complex<float>, a Complex<double>, and so on.14

 Two related solutions present themselves. One would be simply to allow con-
straints on operators, so you could write a set of constraints such as

where T : T operator+ (T,T), T operator/ (T, int)

This would require that T have the operations we need in the earlier code. The other
solution would be to define a few operators and perhaps conversions that must be sup-
ported in order for a type to meet the extra constraint—we could make it the
“numeric constraint” written where T : numeric.

 One problem with both of these options is that they can’t be expressed as normal
interfaces, because operator overloading is performed with static members, which
can’t implement interfaces. It would require a certain amount of shoehorning, in
other words.

 Various smart people (including Eric Gunnerson and Anders Hejlsberg, who
ought to be able to think of C# tricks if anyone can) have thought about this, and with
a bit of extra code, some solutions have been found. They’re slightly clumsy, but they
work. Unfortunately, due to current JIT optimization limitations, you have to pick
between pleasant syntax (x=y+z) that reads nicely but performs poorly, and a method-
based syntax (x=y.Add(z)) that performs without significant overhead but looks like a
dog’s dinner when you’ve got anything even moderately complicated going on.

 The details are beyond the scope of this book, but are very clearly presented at
http://www.lambda-computing.com/publications/articles/generics2/ in an article on
the matter.

 The two limitations we’ve looked at so far have been quite practical—they’ve been
issues you may well run into during actual development. However, if you’re generally
curious like I am, you may also be asking yourself about other limitations that don’t
necessarily slow down development but are intellectual curiosities. In particular, just
why are generics limited to types and methods?

14 More mathematically minded readers might want to consider what a Complex<Complex<double>> would
mean. You’re on your own there, I’m afraid.
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3.6.3 Lack of generic properties, indexers, and other member types

We’ve seen generic types (classes, structs, delegates, and interfaces) and we’ve seen
generic methods. There are plenty of other members that could be parameterized.
However, there are no generic properties, indexers, operators, constructors, finaliz-
ers, or events. First let’s be clear about what we mean here: clearly an indexer can have
a return type that is a type parameter—List<T> is an obvious example. KeyValue-
Pair<TKey,TValue> provides similar examples for properties. What you can’t have is
an indexer or property (or any of the other members in that list) with extra type
parameters. Leaving the possible syntax of declaration aside for the minute, let’s look
at how these members might have to be called:

SomeClass<string> instance = new SomeClass<string><Guid>("x");
int x = instance.SomeProperty<int>;
byte y = instance.SomeIndexer<byte>["key"];
instance.Click<byte> += ByteHandler;
instance = instance +<int> instance;

I hope you’ll agree that all of those look somewhat silly. Finalizers can’t even be called
explicitly from C# code, which is why there isn’t a line for them. The fact that we can’t
do any of these isn’t going to cause significant problems anywhere, as far as I can
see—it’s just worth being aware of it as an academic limitation.

 The one exception to this is possibly the constructor. However, a static generic
method in the class is a good workaround for this, and the syntax with two lists of type
arguments is horrific.

 These are by no means the only limitations of C# generics, but I believe they’re the
ones that you’re most likely to run up against, either in your daily work, in community
conversations, or when idly considering the feature as a whole. In our next two sec-
tions we’ll see how some aspects of these aren’t issues in the two languages whose fea-
tures are most commonly compared with C#’s generics: C++ (with templates) and Java
(with generics as of Java 5). We’ll tackle C++ first.

3.6.4 Comparison with C++ templates

C++ templates are a bit like macros taken to an extreme level. They’re incredibly pow-
erful, but have costs associated with them both in terms of code bloat and ease of
understanding.

 When a template is used in C++, the code is compiled for that particular set of tem-
plate arguments, as if the template arguments were in the source code. This means that
there’s not as much need for constraints, as the compiler will check whether you’re
allowed to do everything you want to with the type anyway while it’s compiling the code
for this particular set of template arguments. The C++ standards committee has recog-
nized that constraints are still useful, though, and they will be present in C++0x (the
next version of C++) under the name of concepts.

 The C++ compiler is smart enough to compile the code only once for any given set
of template arguments, but it isn’t able to share code in the way that the CLR does with
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reference types. That lack of sharing does have its benefits, though—it allows type-
specific optimizations, such as inlining method calls for some type parameters but not
others, from the same template. It also means that overload resolution can be per-
formed separately for each set of type parameters, rather than just once based solely
on the limited knowledge the C# compiler has due to any constraints present.

 Don’t forget that with “normal” C++ there’s only one compilation involved, rather
than the “compile to IL” then “JIT compile to native code” model of .NET. A program
using a standard template in ten different ways will include the code ten times in a C++
program. A similar program in C# using a generic type from the framework in ten dif-
ferent ways won’t include the code for the generic type at all—it will refer to it, and the
JIT will compile as many different versions as required (as described in section 3.4.2) at
execution time.

 One significant feature that C++ templates have over C# generics is that the template
arguments don’t have to be type names. Variable names, function names, and constant
expressions can be used as well. A common example of this is a buffer type that has the
size of the buffer as one of the template arguments—so a buffer<int,20> will always
be a buffer of 20 integers, and a buffer<double,35> will always be a buffer of 35 doubles.
This ability is crucial to template metaprogramming 15—an15advanced C++ technique the
very idea of which scares me, but that can be very powerful in the hands of experts.

 C++ templates are more flexible in other ways, too. They don’t suffer from the
problem described in 3.6.2, and there are a few other restrictions that don’t exist in
C++: you can derive a class from one of its type parameters, and you can specialize a
template for a particular set of type arguments. The latter ability allows the template
author to write general code to be used when there’s no more knowledge available
but specific (often highly optimized) code for particular types.

 The same variance issues of .NET generics exist in C++ templates as well—an
example given by Bjarne Stroustrup16 is that there are no implicit conversions
between Vector<shape*> and Vector<circle*> with similar reasoning—in this case,
it might allow you to put a square peg in a round hole.

 For further details of C++ templates, I recommend Stroustrup’s The C++
Programming Language (Addison-Wesley, 1991). It’s not always the easiest book to
follow, but the templates chapter is fairly clear (once you get your mind around C++
terminology and syntax). For more comparisons with .NET generics, look at the blog
post by the Visual C++ team on this topic: http://blogs.msdn.com/branbray/
archive/2003/11/19/51023.aspx.

 The other obvious language to compare with C# in terms of generics is Java, which
introduced the feature into the mainstream language for the 1.5 release,17 several
years after other projects had compilers for their Java-like languages.

15 http://en.wikipedia.org/wiki/Template_metaprogramming
16 The inventor of C++.
17 Or 5.0, depending on which numbering system you use. Don’t get me started.

http://blogs.msdn.com/branbray/archive/2003/11/19/51023.aspx
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3.6.5 Comparison with Java generics

Where C++ includes more of the template in the generated code than C# does, Java
includes less. In fact, the Java runtime doesn’t know about generics at all. The Java
bytecode (roughly equivalent terminology to IL) for a generic type includes some
extra metadata to say that it’s generic, but after compilation the calling code doesn’t
have much to indicate that generics were involved at all—and certainly an instance of
a generic type only knows about the nongeneric side of itself. For example, an
instance of HashSet<T> doesn’t know whether it was created as a HashSet<String> or
a HashSet<Object>. The compiler effectively just adds casts where necessary and per-
forms more sanity checking. Here’s an example—first the generic Java code:

ArrayList<String> strings = new ArrayList<String>();
strings.add("hello");
String entry = strings.get(0);
strings.add(new Object());

and now the equivalent nongeneric code:

ArrayList strings = new ArrayList();
strings.add("hello");
String entry = (String) strings.get(0);
strings.add(new Object());

They would generate the same Java bytecode, except for the last line—which is valid
in the nongeneric case but caught by the compiler as an error in the generic version.
You can use a generic type as a “raw” type, which is equivalent to using
java.lang.Object for each of the type arguments. This rewriting—and loss of infor-
mation—is called type erasure. Java doesn’t have user-defined value types, but you can’t
even use the built-in ones as type arguments. Instead, you have to use the boxed ver-
sion—ArrayList<Integer> for a list of integers, for example.

 You may be forgiven for thinking this is all a bit disappointing compared with
generics in C#, but there are some nice features of Java generics too:

■ The runtime doesn’t know anything about generics, so you can use code com-
piled using generics on an older version, as long as you don’t use any classes or
methods that aren’t present on the old version. Versioning in .NET is much
stricter in general—you have to compile using the oldest environment you want
to run on. That’s safer, but less flexible.

■ You don’t need to learn a new set of classes to use Java generics—where a non-
generic developer would use ArrayList, a generic developer just uses Array-
List<T>. Existing classes can reasonably easily be “upgraded” to generic versions.

■ The previous feature has been utilized quite effectively with the reflection sys-
tem—java.lang.Class (the equivalent of System.Type) is generic, which
allows compile-time type safety to be extended to cover many situations involv-
ing reflection. In some other situations it’s a pain, however.

■ Java has support for covariance and contravariance using wildcards. For
instance, ArrayList<? extends Base> can be read as “this is an ArrayList of
some type that derives from Base, but we don’t know which exact type.” 
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My personal opinion is that .NET generics are superior in almost every respect,
although every time I run into a covariance/contravariance issue I suddenly wish I
had wildcards. Java with generics is still much better than Java without generics, but
there are no performance benefits and the safety only applies at compile time. If
you’re interested in the details, they’re in the Java language specification, or you
could read Gilad Bracha’s excellent guide to them at http://java.sun.com/j2se/1.5/
pdf/generics-tutorial.pdf.

3.7 Summary
Phew! It’s a good thing generics are simpler to use in reality than they are in descrip-
tion. Although they can get complicated, they’re widely regarded as the most impor-
tant addition to C# 2 and are incredibly useful. The worst thing about writing code
using generics is that if you ever have to go back to C# 1, you’ll miss them terribly.

 In this chapter I haven’t tried to cover absolutely every detail of what is and isn’t
allowed when using generics—that’s the job of the language specification, and it
makes for very dry reading. Instead, I’ve aimed for a practical approach, providing the
information you’ll need in everyday use, with a smattering of theory for the sake of
academic interest.

 We’ve seen three main benefits to generics: compile-time type safety, performance,
and code expressiveness. Being able to get the IDE and compiler to validate your code
early is certainly a good thing, but it’s arguable that more is to be gained from tools pro-
viding intelligent options based on the types involved than the actual “safety” aspect.

 Performance is improved most radically when it comes to value types, which no
longer need to be boxed and unboxed when they’re used in strongly typed generic
APIs, particularly the generic collection types provided in .NET 2.0. Performance with
reference types is usually improved but only slightly.

 Your code is able to express its intention more clearly using generics—instead of a
comment or a long variable name required to describe exactly what types are
involved, the details of the type itself can do the work. Comments and variable names
can often become inaccurate over time, as they can be left alone when code is
changed—but the type information is “correct” by definition.

 Generics aren’t capable of doing everything we might sometimes like them to do,
and we’ve studied some of their limitations in the chapter, but if you truly embrace
C# 2 and the generic types within the .NET 2.0 Framework, you’ll come across good
uses for them incredibly frequently in your code. 

 This topic will come up time and time again in future chapters, as other new fea-
tures build on this key one. Indeed, the subject of our next chapter would be very
different without generics—we’re going to look at nullable types, as implemented
by Nullable<T>.

http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf


Saying nothing
 with nullable types
Nullity is a concept that has provoked a certain amount of debate over the years. Is
a null reference a value, or the absence of a value? Is “nothing” a “something”? In
this chapter, I’ll try to stay more practical than philosophical. First we’ll look at why
there’s a problem in the first place—why you can’t set a value type variable to null
in C# 1 and what the traditional alternatives have been. After that I’ll introduce you
to our knight in shining armor—System.Nullable<T>—before we see how C# 2
makes working with nullable types a bit simpler and more compact. Like generics,
nullable types sometimes have some uses beyond what you might expect, and we’ll
look at a few examples of these at the end of the chapter.

 So, when is a value not a value? Let’s find out.

This chapter covers
■ Motivation for null values
■ Framework and runtime support
■ Language support in C# 2
■ Patterns using nullable types
112
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4.1 What do you do when you just don’t have a value?
The C# and .NET designers don’t add features just for kicks. There has to be a real, sig-
nificant problem to be fixed before they’ll go as far as changing C# as a language or
.NET at the platform level. In this case, the problem is best summed up in one of the
most frequently asked questions in C# and .NET discussion groups:

I need to set my DateTime1 variable to null, but the compiler won’t let me.
What should I do?

It’s a question that comes up fairly naturally—a simple example might be in an
e-commerce application where users are looking at their account history. If an order
has been placed but not delivered, there may be a purchase date but no dispatch
date—so how would you represent that in a type that is meant to provide the
order details?

 The answer to the question is usually in two parts: first, why you can’t just use null
in the first place, and second, which options are available. Let’s look at the two parts sep-
arately—assuming that the developer asking the question is using C# 1.

4.1.1 Why value type variables can’t be null

As we saw in chapter 2, the value of a reference type variable is a reference, and the
value of a value type variable is the “real” value itself. A “normal” reference value is
some way of getting at an object, but null acts as a special value that means “I don’t
refer to any object.” If you want to think of references as being like URLs, null is (very
roughly speaking) the reference equivalent of about:blank. It’s represented as all
zeroes in memory (which is why it’s the default value for all reference types—clearing
a whole block of memory is cheap, so that’s the way objects are initialized), but it’s still
basically stored in the same way as other references. There’s no “extra bit” hidden
somewhere for each reference type variable. That means we can’t use the “all zeroes”
value for a “real” reference, but that’s OK—our memory is going to run out long
before we have that many live objects anyway.

 The last sentence is the key to why null isn’t a valid value type value, though. Let’s
consider the byte type as a familiar one that is easy to think about. The value of a vari-
able of type byte is stored in a single byte—it may be padded for alignment purposes,
but the value itself is conceptually only made up of one byte. We’ve got to be able to
store the values 0–255 in that variable; otherwise it’s useless for reading arbitrary
binary data. So, with the 256 “normal” values and one null value, we’d have to cope
with a total of 257 values, and there’s no way of squeezing that many values into a sin-
gle byte. Now, the designers could have decided that every value type would have an
extra flag bit somewhere determining whether a value was null or a “real” value, but
the memory usage implications are horrible, not to mention the fact that we’d have to
check the flag every time we wanted to use the value. So in a nutshell, with value types

1 It’s almost always DateTime rather than any other value type. I’m not entirely sure why—it’s as if developers
inherently understand why a byte shouldn’t be null, but feel that dates are more “inherently nullable.”
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you often care about having the whole range of possible bit patterns available as real
values, whereas with reference types we’re happy enough to lose one potential value
in order to gain the benefits of having a null value.

 That’s the usual situation—now why would you want to be able to represent null
for a value type anyway? The most common immediate reason is simply because data-
bases typically support NULL as a value for every type (unless you specifically make the
field non-nullable), so you can have nullable character data, nullable integers, nul-
lable Booleans—the whole works. When you fetch data from a database, it’s generally
not a good idea to lose information, so you want to be able to represent the nullity of
whatever you read, somehow.

 That just moves the question one step further on, though. Why do databases
allow null values for dates, integers and the like? Null values are typically used for
unknown or missing values such as the dispatch date in our earlier e-commerce
example. Nullity represents an absence of definite information, which can be impor-
tant in many situations.

 That brings us to options for representing null values in C# 1.

4.1.2 Patterns for representing null values in C# 1

There are three basic patterns commonly used to get around the lack of nullable
value types in C# 1. Each of them has its pros and cons—mostly cons—and all of them
are fairly unsatisfying. However, it’s worth knowing them, partly to more fully appreci-
ate the benefits of the integrated solution in C# 2.
PATTERN 1: THE MAGIC VALUE
The first pattern tends to be used as the solution for DateTime, because few people
expect their databases to actually contain dates in 1AD. In other words, it goes against the
reasoning I gave earlier, expecting every possible value to be available. So, we sacrifice
one value (typically DateTime.MinValue) to mean a null value. The semantic meaning of
that will vary from application to application—it may mean that the user hasn’t entered
the value into a form yet, or that it’s inappropriate for that record, for example.

 The good news is that using a magic value doesn’t waste any memory or need any
new types. However, it does rely on you picking an appropriate value that will never be
one you actually want to use for real data. Also, it’s basically inelegant. It just doesn’t
feel right. If you ever find yourself needing to go down this path, you should at least
have a constant (or static read-only value for types that can’t be expressed as con-
stants) representing the magic value—comparisons with DateTime.MinValue every-
where, for instance, don’t express the meaning of the magic value.

 ADO.NET has a variation on this pattern where the same magic value—
DBNull.Value—is used for all null values, of whatever type. In this case, an extra value
and indeed an extra type have been introduced to indicate when a database has
returned null. However, it’s only applicable where compile-time type safety isn’t
important (in other words when you’re happy to use object and cast after testing for
nullity), and again it doesn’t feel quite right. In fact, it’s a mixture of the “magic value”
pattern and the “reference type wrapper” pattern, which we’ll look at next.
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PATTERN 2: A REFERENCE TYPE WRAPPER
The second solution can take two forms. The simpler one is to just use object as the
variable type, boxing and unboxing values as necessary. The more complex (and
rather more appealing) form is to have a reference type for each value type you need
in a nullable form, containing a single instance variable of that value type, and with
implicit conversion operators to and from the value type. With generics, you could do
this in one generic type—but if you’re using C# 2 anyway, you might as well use the
nullable types described in this chapter instead. If you’re stuck in C# 1, you have to
create extra source code for each type you wish to wrap. This isn’t hard to put in the
form of a template for automatic code generation, but it’s still a burden that is best
avoided if possible.

 Both of these forms have the problem that while they allow you to use null
directly, they do require objects to be created on the heap, which can lead to garbage
collection pressure if you need to use this approach very frequently, and adds memory
use due to the overheads associated with objects. For the more complex solution, you
could make the reference type mutable, which may reduce the number of instances
you need to create but could also make for some very unintuitive code.
PATTERN 3: AN EXTRA BOOLEAN FLAG
The final pattern revolves around having a normal value type value available, and
another value—a Boolean flag—indicating whether the value is “real” or whether it
should be disregarded. Again, there are two ways of implementing this solution.
Either you could maintain two separate variables in the code that uses the value, or
you could encapsulate the “value plus flag” into another value type.

 This latter solution is quite similar to the more complicated reference type idea
described earlier, except that you avoid the garbage-collection issue by using a value
type, and indicate nullity within the encapsulated value rather than by virtue of a null
reference. The downside of having to create a new one of these types for every value
type you wish to handle is the same, however. Also, if the value is ever boxed for some
reason, it will be boxed in the normal way whether it’s considered to be null or not.

 The last pattern (in the more encapsulated form) is effectively how nullable types
work in C# 2. We’ll see that when the new features of the framework, CLR, and language
are all combined, the solution is significantly neater than anything that was possible in
C# 1. Our next section deals with just the support provided by the framework and the
CLR: if C# 2 only supported generics, the whole of section 4.2 would still be relevant and
the feature would still work and be useful. However, C# 2 provides extra syntactic sugar
to make it even better—that’s the subject of section 4.3. 

4.2 System.Nullable<T> and System.Nullable
The core structure at the heart of nullable types is System.Nullable<T>. In addition,
the System.Nullable static class provides utility methods that occasionally make nul-
lable types easier to work with. (From now on I’ll leave out the namespace, to make life
simpler.) We’ll look at both of these types in turn, and for this section I’ll avoid any extra
features provided by the language, so you’ll be able to understand what’s going on in
the IL code when we do look at the C# 2 syntactic sugar.
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4.2.1 Introducing Nullable<T>

As you can tell by its name, Nullable<T> is a generic type. The type parameter T has the
value type constraint on it. As I mentioned in section 3.3.1, this also means you can’t
use another nullable type as the argument—so Nullable<Nullable<int>> is forbid-
den, for instance, even though Nullable<T> is a value type in every other way. The type
of T for any particular nullable type is called the underlying type of that nullable type. For
example, the underlying type of Nullable<int> is int.

 The most important parts of Nullable<T> are its properties, HasValue and
Value. They do the obvious thing: Value represents the non-nullable value (the
“real” one, if you will) when there is one, and throws an InvalidOperation-
Exception if (conceptually) there is no real value. HasValue is simply a Boolean
property indicating whether there’s a real value or whether the instance should be
regarded as null. For now, I’ll talk about an “instance with a value” and an “instance
without a value,” which mean instances where the HasValue property returns true or
false, respectively.

 Now that we know what we want the properties to achieve, let’s see how to create
an instance of the type. Nullable<T> has two constructors: the default one (creating
an instance without a value) and one taking an instance of T as the value. Once an
instance has been constructed, it is immutable.

NOTE Value types and mutability—A type is said to be immutable if it is designed so
that an instance can’t be changed after it’s been constructed. Immutable
types often make life easier when it comes to topics such as multithread-
ing, where it helps to know that nobody can be changing values in one
thread while you’re reading them in a different one. However, immutabil-
ity is also important for value types. As a general rule, value types should
almost always be immutable. If you need a way of basing one value on
another, follow the lead of DateTime and TimeSpan—provide methods
that return a new value rather than modifying an existing one. That way,
you avoid situations where you think you’re changing a variable but actually
you’re changing the value returned by a property or method, which is just
a copy of the variable’s value. The compiler is usually smart enough to
warn you about this, but it’s worth trying to avoid the situation in the first
place. Very few value types in the framework are mutable, fortunately.

Nullable<T> introduces a single new method, GetValueOrDefault, which has two
overloads. Both return the value of the instance if there is one, or a default value oth-
erwise. One overload doesn’t have any parameters (in which case the generic default
value of the underlying type is used), and the other allows you to specify the default
value to return if necessary.

 The other methods implemented by Nullable<T> all override existing methods:
GetHashCode, ToString, and Equals. GetHashCode returns 0 if the instance doesn’t
have a value, or the result of calling GetHashCode on the value if there is one.
ToString returns an empty string if there isn’t a value, or the result of calling
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ToString on the value if there is. Equals is slightly more complicated—we’ll come
back to it when we’ve discussed boxing.

 Finally, two conversions are provided by the framework. First, there is an implicit
conversion from T to Nullable<T>. This always results in an instance where HasValue
returns true. Likewise, there is an explicit operator converting from Nullable<T> to
T, which behaves exactly the same as the Value property, including throwing an excep-
tion when there is no real value to return.

NOTE Wrapping and unwrapping—The C# specification names the process of
converting an instance of T to an instance of Nullable<T> wrapping, with
the obvious opposite process being called unwrapping. The C# specifica-
tion actually defines these terms with reference to the constructor taking
a parameter and the Value property, respectively. Indeed these calls are
generated by the C# code, even when it otherwise looks as if you’re using
the conversions provided by the framework. The results are the same
either way, however. For the rest of this chapter, I won’t distinguish
between the two implementations available.

Before we go any further, let’s see all this in action. Listing 4.1 shows everything you
can do with Nullable<T> directly, leaving Equals aside for the moment.

static void Display(Nullable<int> x)
{
    Console.WriteLine ("HasValue: {0}", x.HasValue);
    if (x.HasValue)
    {
        Console.WriteLine ("Value: {0}", x.Value);
        Console.WriteLine ("Explicit conversion: {0}", (int)x);
    }
    Console.WriteLine ("GetValueOrDefault(): {0}", 
                               x.GetValueOrDefault());
    Console.WriteLine ("GetValueOrDefault(10): {0}",
                               x.GetValueOrDefault(10));
    Console.WriteLine ("ToString(): \"{0}\"", x.ToString());
    Console.WriteLine ("GetHashCode(): {0}", x.GetHashCode());
    Console.WriteLine ();
}
...
Nullable<int> x = 5;
x = new Nullable<int>(5);
Console.WriteLine("Instance with value:");
Display(x);

x = new Nullable<int>();
Console.WriteLine("Instance without value:");
Display(x);

In listing 4.1 we first show the two different ways (in terms of C# source code) of wrap-
ping a value of the underlying type, and then we use various different members on the

Listing 4.1 Using various members of Nullable<T>
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instance. Next, we create an instance that doesn’t have a value, and use the same mem-
bers in the same order, just omitting the Value property and the explicit conversion to
int since these would throw exceptions. The output of listing 4.1 is as follows:

Instance with value:
HasValue: True
Value: 5
Explicit conversion: 5
GetValueOrDefault(): 5
GetValueOrDefault(10): 5
ToString(): "5"
GetHashCode(): 5

Instance without value:
HasValue: False
GetValueOrDefault(): 0
GetValueOrDefault(10): 10
ToString(): ""
GetHashCode(): 0

So far, you could probably have predicted all of the results just by looking at the mem-
bers provided by Nullable<T>. When it comes to boxing and unboxing, however,
there’s special behavior to make nullable types behave how we’d really like them to
behave, rather than how they’d behave if we slavishly followed the normal boxing rules.

4.2.2 Boxing and unboxing

It’s important to remember that Nullable<T> is a struct—a value type. This means that
if you want to convert it to a reference type (object is the most obvious example), you’ll
need to box it. It is only with respect to boxing and unboxing that the CLR itself has any
special behavior regarding nullable types—the rest is “standard” generics, conversions,
method calls, and so forth. In fact, the behavior was only changed shortly before the
release of .NET 2.0, as the result of community requests.

 An instance of Nullable<T> is boxed to either a null reference (if it doesn’t have a
value) or a boxed value of T (if it does). You can unbox from a boxed value either to
its normal type or to the corresponding nullable type. Unboxing a null reference will
throw a NullReferenceException if you unbox to the normal type, but will unbox to
an instance without a value if you unbox to the appropriate nullable type. This behav-
ior is shown in listing 4.2.

Nullable<int> nullable = 5;

object boxed = nullable;       
Console.WriteLine(boxed.GetType());    

int normal = (int)boxed;    
Console.WriteLine(normal);

nullable = (Nullable<int>)boxed;
Console.WriteLine(nullable);

Listing 4.2 Boxing and unboxing behavior of nullable types

Boxes a nullable 
with value

Unboxes to non-
nullable variable

Unboxes to 
nullable variable
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nullable = new Nullable<int>();
boxed = nullable;                  
Console.WriteLine (boxed==null);

nullable = (Nullable<int>)boxed;     
Console.WriteLine(nullable.HasValue);

The output of listing 4.2 shows that the type of the boxed value is printed as System.
Int32 (not System.Nullable<System.Int32>). It then confirms that we can retrieve
the value by unboxing to either just int or to Nullable<int>. Finally, the output dem-
onstrates we can box from a nullable instance without a value to a null reference and
successfully unbox again to another value-less nullable instance. If we’d tried unboxing
the last value of boxed to a non-nullable int, the program would have blown up with a
NullReferenceException.

 Now that we understand the behavior of boxing and unboxing, we can begin to
tackle the behavior of Nullable<T>.Equals.

4.2.3 Equality of Nullable<T> instances

Nullable<T> overrides object.Equals(object) but doesn’t introduce any equality
operators or provide an Equals(Nullable<T>) method. Since the framework has sup-
plied the basic building blocks, languages can add extra functionality on top, includ-
ing making existing operators work as we’d expect them to. We’ll see the details of
that in section 4.3.3, but the basic equality as defined by the vanilla Equals method
follows these rules for a call to first.Equals(second):

■ If first has no value and second is null, they are equal.
■ If first has no value and second isn’t null, they aren’t equal.
■ If first has a value and second is null, they aren’t equal.
■ Otherwise, they’re equal if first’s value is equal to second.

Note that we don’t have to consider the case where second is another Nullable<T>
because the rules of boxing prohibit that situation. The type of second is object, so in
order to be a Nullable<T> it would have to be boxed, and as we have just seen, boxing
a nullable instance creates a box of the non-nullable type or returns a null reference.

 The rules are consistent with the rules of equality elsewhere in .NET, so you can use
nullable instances as keys for dictionaries and any other situations where you need
equality. Just don’t expect it to differentiate between a non-nullable instance and a
nullable instance with a value—it’s all been carefully set up so that those two cases are
treated the same way as each other.

 That covers the Nullable<T> structure itself, but it has a shadowy partner: the
Nullable class.

4.2.4 Support from the nongeneric Nullable class

The System.Nullable<T> struct does almost everything you want it to. However, it
receives a little help from the System.Nullable class. This is a static class—it only

Boxes a nullable 
without value

Unboxes to 
nullable variable
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contains static methods, and you can’t create an instance of it.2 In fact, everything it
does could have been done equally well by other types, and if Microsoft had seen
where they were going right from the beginning, it might not have even existed—
which would have saved a little confusion over what the two types are there for, aside
from anything else. However, this accident of history has three methods to its name,
and they’re still useful.

 The first two are comparison methods: 

public static int Compare<T>(Nullable<T> n1, Nullable<T> n2)
public static bool Equals<T>(Nullable<T> n1, Nullable<T> n2)

Compare uses Comparer<T>.Default to compare the two underlying values (if they
exist), and Equals uses EqualityComparer<T>.Default. In the face of instances with
no values, the values returned from each method comply with the .NET conventions
of nulls comparing equal to each other and less than anything else.

 Both of these methods could quite happily be part of Nullable<T> as static but
nongeneric methods. The one small advantage of having them as generic methods in
a nongeneric type is that generic type inference can be applied, so you’ll rarely need
to explicitly specify the type parameter.

 The final method of System.Nullable isn’t generic—indeed, it absolutely couldn’t
be. Its signature is as follows:

public static Type GetUnderlyingType (Type nullableType)

If the parameter is a nullable type, the method returns its underlying type; otherwise
it returns null. The reason this couldn’t be a generic method is that if you knew the
underlying type to start with, you wouldn’t have to call it!

 We’ve now seen what the framework and the CLR provide to support nullable
types—but C# 2 adds language features to make life a lot more pleasant.

4.3 C# 2’s syntactic sugar for nullable types
The examples so far have shown nullable types doing their job, but they’ve not been
particularly pretty to look at. Admittedly it makes it obvious that you are using nullable
types when you have to type Nullable<> around the name of the type you’re really
interested in, but it makes the nullability more prominent than the name of the type
itself, which is surely not a good idea.

 In addition, the very name “nullable” suggests that we should be able to assign
null to a variable of a nullable type, and we haven’t seen that—we’ve always used the
default constructor of the type. In this section we’ll see how C# 2 deals with these
issues and others.

 Before we get into the details of what C# 2 provides as a language, there’s one def-
inition I can finally introduce. The null value of a nullable type is the value where
HasValue returns false—or an “instance without a value,” as I’ve referred to it in sec-
tion 4.2. I didn’t use it before because it’s specific to C#. The CLI specification

2 You’ll learn more about static classes in chapter 7.
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doesn’t mention it, and the documentation for Nullable<T> itself doesn’t mention it.
I’ve honored that difference by waiting until we’re specifically talking about C# 2
itself before introducing the term.

 With that out of the way, let’s see what features C# 2 gives us, starting by reducing
the clutter in our code.

4.3.1 The ? modifier

There are some elements of syntax that may be unfamiliar at first but have an appro-
priate feel to them. The conditional operator (a ? b : c) is one of them for me—it asks
a question and then has two corresponding answers. In the same way, the ? operator
for nullable types just feels right to me.

 It’s a shorthand way of using a nullable type, so instead of using Nullable <byte>
we can use byte? throughout our code. The two are interchangeable and compile to
exactly the same IL, so you can mix and match them if you want to, but on behalf of
whoever reads your code next, I’d urge you to pick one way or the other and use it
consistently. Listing 4.3 is exactly equivalent to listing 4.2 but uses the ? modifier. 

int? nullable = 5;

object boxed = nullable;               
Console.WriteLine(boxed.GetType());    

int normal = (int)boxed;               
Console.WriteLine(normal);

nullable = (int?)boxed;                
Console.WriteLine(nullable);

nullable = new int?();
boxed = nullable;                      
Console.WriteLine (boxed==null);

nullable = (int?)boxed;                
Console.WriteLine(nullable.HasValue);

I won’t go through what the code does or how it does it, because the result is exactly the
same as listing 4.2. The two listings compile down to the same IL—they’re just using dif-
ferent syntax, just as using int is interchangeable with System.Int32. The only changes
are the ones in bold. You can use the shorthand version everywhere, including in
method signatures, typeof expressions, casts, and the like.

 The reason I feel the modifier is very well chosen is that it adds an air of uncer-
tainty to the nature of the variable. Does the variable nullable in listing 4.3 have an
integer value? Well, at any particular time it might, or it might be the null value. From
now on, we’ll use the ? modifier in all the examples—it’s neater, and it’s arguably the
idiomatic way to use nullable types in C# 2. However, you may feel that it’s too easy to
miss when reading the code, in which case there’s certainly nothing to stop you from
using the longer syntax. You may wish to compare the listings in this section and the
previous one to see which you find clearer.

Listing 4.3 The same code as listing 4.2 but using the ? modifier
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 Given that the C# 2 specification defines the null value, it would be pretty odd if we
couldn’t use the null literal we’ve already got in the language in order to represent it.
Fortunately we can, as our next section will show.

4.3.2 Assigning and comparing with null

A very concise author could cover this whole section in a single sentence: “The C#
compiler allows the use of null to represent the null value of a nullable type in both
comparisons and assignments.” I prefer to show you what it means in real code, as well
as think about why the language has been given this feature.

 You may have felt a bit uncomfortable every time we’ve used the default construc-
tor of Nullable<T>. It achieves the desired behavior, but it doesn’t express the reason
we want to do it—it doesn’t leave the right impression with the reader. We want to
give the same sort of feeling that using null does with reference types. If it seems odd
to you that I’ve talked about feelings in both this section and the last one, just think
about who writes code, and who reads it. Sure, the compiler has to understand the
code, and it couldn’t care less about the subtle nuances of style—but very few pieces
of code used in production systems are written and then never read again. Anything
you can do to get the reader into the mental process you were going through when
you originally wrote the code is good—and using the familiar null literal helps to
achieve that.

 With that in mind, we’re going to change the example we’re using from one that
just shows syntax and behavior to one that gives an impression of how nullable types
might be used. We’ll consider modeling a Person class where you need to know the
name, date of birth, and date of death of a person. We’ll only keep track of people
who have definitely been born, but some of those people may still be alive—in which
case our date of death is represented by null. Listing 4.4 shows some of the possible
code. Although a real class would clearly have more operations available, we’re just
looking at the calculation of age for this example.

class Person
{
    DateTime birth;
    DateTime? death;
    string name;

    public TimeSpan Age
    {
        get
        {
            if (death==null)
            {
                return DateTime.Now-birth;
            }
            else
            {
                return death.Value-birth;

Listing 4.4 Part of a Person class including calculation of age

Checks 
HasValue

B

Unwraps for 
calculation

C
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            }
        }
    }

    public Person(string name,
                        DateTime birth,
                        DateTime? death)
    {
        this.birth = birth;
        this.death = death;
        this.name = name;
    }
}
...
Person turing = new Person("Alan Turing", 
                                     new DateTime(1912, 6, 23),
                                     new DateTime(1954, 6, 7));
Person knuth  = new Person("Donald Knuth",
                                     new DateTime(1938, 1, 10),
                                     null);                    

Listing 4.4 doesn’t produce any output, but the very fact that it compiles might have
surprised you before reading this chapter. Apart from the use of the ? modifier caus-
ing confusion, you might have found it very odd that you could compare a DateTime?
with null, or pass null as the argument for a DateTime? parameter. 

 Hopefully by now the meaning is intuitive—when we compare the death variable
with null, we’re asking whether its value is the null value or not. Likewise when we use
null as a DateTime? instance, we’re really creating the null value for the type by calling
the default constructor. Indeed, you can see in the generated IL that the code the
compiler spits out for listing 4.4 really does just call the death.HasValue property B,
and creates a new instance of DateTime? E using the default constructor (repre-
sented in IL as the initobj instruction). The date of Alan Turing’s death D is created
by calling the normal DateTime constructor and then passing the result into the
Nullable<DateTime> constructor, which takes a parameter.

 I mention looking at the IL because that can be a useful way of finding out what
your code is actually doing, particularly if something compiles when you don’t expect
it to. You can use the ildasm tool that comes with the .NET SDK, or for a rather better
user interface you can use Reflector,3 which has many other features (most notably
decompilation to high-level languages such as C# as well as disassembly to IL).

 We’ve seen how C# provides shorthand syntax for the concept of a null value, making
the code more expressive once nullable types are understood in the first place. However,
one part of listing 4.4 took a bit more work than we might have hoped—the subtraction
at C. Why did we have to unwrap the value? Why could we not just return death-birth
directly? What would we want that expression to mean in the case (excluded in our code
by our earlier test for null, of course) where death had been null? These questions—
and more—are answered in our next section.

3 Available free of charge from http://www.aisto.com/roeder/dotnet/

Wraps DateTime 
as a nullable

D

Specifies a null 
date of death

E
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4.3.3 Nullable conversions and operators

We’ve seen that we can compare instances of nullable types with null, but there are
other comparisons that can be made and other operators that can be used in some
cases. Likewise we’ve seen wrapping and unwrapping, but other conversions can be
used with some types. This section explains what’s available. I’m afraid it’s pretty much
impossible to make this kind of topic genuinely exciting, but carefully designed fea-
tures like these are what make C# a pleasant language to work with in the long run.
Don’t worry if not all of it sinks in the first time: just remember that the details are here
if you need to reference them in the middle of a coding session.

 The “executive summary” is that if there is an operator or conversion available on
a non-nullable value type, and that operator or conversion only involves other non-
nullable value types, then the nullable value type also has the same operator or con-
version available, usually converting the non-nullable value types into their nullable
equivalents. To give a more concrete example, there’s an implicit conversion from int
to long, and that means there’s also an implicit conversion from int? to long? that
behaves in the obvious manner. 

 Unfortunately, although that broad description gives the right general idea, the
exact rules are slightly more complicated. Each one is simple, but there are quite a few
of them. It’s worth knowing about them because otherwise you may well end up star-
ing at a compiler error or warning for a while, wondering why it believes you’re trying
to make a conversion that you never intended in the first place. We’ll start with the
conversions, and then look at operators.
CONVERSIONS INVOLVING NULLABLE TYPES
For completeness, let’s start with the conversions we already know about:

■ An implicit conversion from the null literal to T?
■ An implicit conversion from T to T?
■ An explicit conversion from T? to T

Now consider the predefined and user-defined conversions available on types. For
instance, there is a predefined conversion from int to long. For any conversion like
this, from one non-nullable value type (S) to another (T), the following conversions
are also available:

■ S? to T? (explicit or implicit depending on original conversion)
■ S to T? (explicit or implicit depending on original conversion)
■ S? to T (always explicit)

To carry our example forward, this means that you can convert implicitly from int? to
long? and from int to long? as well as explicitly from long? to int. The conversions
behave in the natural way, with null values of S? converting to null values of T?, and
non-null values using the original conversion. As before, the explicit conversion from
S? to T will throw an InvalidOperationException when converting from a null value
of S?. For user-defined conversions, these extra conversions involving nullable types
are known as lifted conversions.
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 So far, so relatively simple. Now let’s consider the operators, where things are
slightly more tricky.
OPERATORS INVOLVING NULLABLE TYPES
C# allows the following operators to be overloaded:

■ Unary: +  ++  -  --  !  ~  true  false
■ Binary:  +  -  *  /  %  &  |  ^  <<  >>
■ Equality:4  ==  !=
■ Relational: <  >  <=  >=

When these operators are overloaded for a non-nullable value type T, the nullable type
T? has the same operators, with slightly different operand and result types. These are
called lifted operators whether they’re predefined operators like addition on numeric
types, or user-defined operators like adding a TimeSpan to a DateTime. There are a few
restrictions as to when they apply:

■ The true and false operators are never lifted. They’re incredibly rare in the
first place, though, so it’s no great loss.

■ Only operators with non-nullable value types for the operands are lifted.
■ For the unary and binary operators (other than equality and relational opera-

tors), the return type has to be a non-nullable value type.
■ For the equality and relational operators, the return type has to be bool.
■ The & and | operators on bool? have separately defined behavior, which we’ll

see in section 4.3.6.

For all the operators, the operand types become their nullable equivalents. For the
unary and binary operators, the return type also becomes nullable, and a null value is
returned if any of the operands is a null value. The equality and relational operators
keep their non-nullable Boolean return types. For equality, two null values are consid-
ered equal, and a null value and any non-null value are considered different, which is
consistent with the behavior we saw in section 4.2.3. The relational operators always
return false if either operand is a null value. When none of the operands is a null value,
the operator of the non-nullable type is invoked in the obvious way.

 All these rules sound more complicated than they really are—for the most part,
everything works as you probably expect it to. It’s easiest to see what happens with a
few examples, and as int has so many predefined operators (and integers can be so
easily expressed), it’s the natural demonstration type. Table 4.1 shows a number of
expressions, the lifted operator signature, and the result. It is assumed that there are
variables four, five, and nullInt, each with type int? and with the obvious values.

 Possibly the most surprising line of the table is the bottom one—that a null value
isn’t deemed “less than or equal to” another null value, even though they are deemed

4 The equality and relational operators are, of course, binary operators themselves, but we’ll see that they
behave slightly differently to the others, hence their separation here.
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to be equal to each other (as per the fifth row)! Very odd—but unlikely to cause prob-
lems in real life, in my experience.

 One aspect of lifted operators and nullable conversion that has caused some con-
fusion is unintended comparisons with null when using a non-nullable value type.
The code that follows is legal, but not useful:

int i = 5;
if (i == null)
{
    Console.WriteLine ("Never going to happen");
}

The C# compiler raises warnings on this code, but you may consider it surprising that
it’s allowed at all. What’s happening is that the compiler sees the int expression on the
left side of the ==, sees null on the right side, and knows that there’s an implicit con-
version to int? from each of them. Because a comparison between two int? values is
perfectly valid, the code doesn’t generate an error—just the warning. As a further com-
plication, this isn’t allowed in the case where instead of int, we’re dealing with a
generic type parameter that has been constrained to be a value type—the rules on
generics prohibit the comparison with null in that situation.

 Either way, there’ll be either an error or a warning, so as long as you look closely at
warnings, you shouldn’t end up with deficient code due to this quirk—and hopefully
pointing it out to you now may save you from getting a headache trying to work out
exactly what’s going on.

Table 4.1 Examples of lifted operators applied to nullable integers

Expression Lifted operator Result

-nullInt int? –(int? x) null

-five int? –(int? x) -5

five + nullInt int? +(int? x, int? y) null

five + five int? +(int? x, int? y) 10

nullInt == nullInt bool ==(int? x, int? y) true

five == five bool ==(int? x, int? y) true

five == nullInt bool ==(int? x, int? y) false

five == four bool ==(int? x, int? y) false

four < five bool <(int? x, int? y) true

nullInt < five bool <(int? x, int? y) false

five < nullInt bool <(int? x, int? y) false

nullInt < nullInt bool <(int? x, int? y) false

nullInt <= nullInt bool <=(int? x, int? y) false



127C# 2’s syntactic sugar for nullable types
 Now we’re able to answer the question at the end of the previous section—why we
used death.Value-birth in listing 4.4 instead of just death-birth. Applying the pre-
vious rules, we could have used the latter expression, but the result would have been a
TimeSpan? instead of a TimeSpan. This would have left us with the options of casting the
result to TimeSpan, using its Value property, or changing the Age property to return a
TimeSpan?—which just pushes the issue onto the caller. It’s still a bit ugly, but we’ll see
a nicer implementation of the Age property in section 4.3.5.

 In the list of restrictions regarding operator lifting, I mentioned that bool? works
slightly differently than the other types. Our next section explains this and pulls back
the lens to see the bigger picture of why all these operators work the way they do.

4.3.4 Nullable logic

I vividly remember my early electronics lessons at school. They always seemed to
revolve around either working out the voltage across different parts of a circuit using
the V=IR formula, or applying truth tables—the reference charts for explaining the dif-
ference between NAND gates and NOR gates and so on. The idea is simple—a truth
table maps out every possible combination of inputs into whatever piece of logic
you’re interested in and tells you the output.

 The truth tables we drew for simple, two-input logic gates always had four rows—
each of the two inputs had two possible values, which means there were four possible
combinations. Boolean logic is simple like that—but what should happen when you’ve
got a tristate logical type? Well, bool? is just such a type—the value can be true,
false, or null. That means that our truth tables now have to have nine rows for our
binary operators, as there are nine combinations. The specification only highlights
the logical AND and inclusive OR operators (& and |, respectively) because the other
operators—unary logical negation (!) and exclusive OR (^)—follow the same rules as
other lifted operators. There are no conditional logical operators (the short-circuiting
&& and || operators) defined for bool?, which makes life simpler.

 For the sake of completeness, table 4.2 gives the truth tables for all four valid bool?
operators.

Table 4.2 Truth table for the logical operators AND, inclusive OR, exclusive OR, and logical 
                  negation, applied to the bool? type

x y x & y x | y x ^ y !x

true true true true false false

true false false true true false

true null null true null false

false true false true true true

false false false false false true

false null false null null true
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For those who find reasoning about rules easier to understand than looking up values
in tables, the idea is that a null bool? value is in some senses a “maybe.” If you imagine
that each null entry in the input side of the table is a variable instead, then you will
always get a null value on the output side of the table if the result depends on the
value of that variable. For instance, looking at the third line of the table, the expres-
sion true & y will only be true if y is true, but the expression true | y will always be
true whatever the value of y is, so the nullable results are null and true, respectively.

 When considering the lifted operators and particularly how nullable logic works, the
language designers had two slightly contradictory sets of existing behavior—C# 1 null
references and SQL NULL values. In many cases these don’t conflict at all—C# 1 had no
concept of applying logical operators to null references, so there was no problem in
using the SQL-like results given earlier. The definitions we’ve seen may surprise some
SQL developers, however, when it comes to comparisons. In standard SQL, the result of
comparing two values (in terms of equality or greater than/less than) is always unknown
if either value is NULL. The result in C# 2 is never null, and in particular two null values
are considered to be equal to each other.

NOTE Reminder: this is C# specific! It’s worth remembering that the lifted opera-
tors and conversions, along with the bool? logic described in this section,
are all provided by the C# compiler and not by the CLR or the framework
itself. If you use ildasm on code that evaluates any of these nullable oper-
ators, you’ll find that the compiler has created all the appropriate IL to
test for null values and deal with them accordingly. This means that dif-
ferent languages can behave differently on these matters—definitely
something to look out for if you need to port code between different
.NET-based languages.

We now certainly know enough to use nullable types and predict how they’ll behave,
but C# 2 has a sort of “bonus track” when it comes to syntax enhancements: the null
coalescing operator. 

4.3.5 The null coalescing operator

Aside from the ? modifier, all of the rest of the C# compiler’s tricks so far to do with
nullable types have worked with the existing syntax. However, C# 2 introduces a new
operator that can occasionally make code shorter and sweeter. It’s called the null coa-
lescing operator and appears in code as ?? between its two operands. It’s a bit like the
conditional operator but specially tweaked for nulls.

null true null true null null

null false false null null null

null null null null null null

Table 4.2 Truth table for the logical operators AND, inclusive OR, exclusive OR, and logical 
                  negation, applied to the bool? type (continued)

x y x & y x | y x ^ y !x
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 It’s a binary operator that evaluates first ?? second by going through the follow-
ing steps (roughly speaking):

1 Evaluate first.
2 If the result is non-null, that’s the result of the whole expression.
3 Otherwise, evaluate second; the result then becomes the result of the whole

expression.

I say “roughly speaking” because the formal rules in the specification involve lots of sit-
uations where there are conversions involved between the types of first and second.
As ever, these aren’t important in most uses of the operator, and I don’t intend to go
through them—consult the specification if you need the details.

 Importantly, if the type of the second operand is the underlying type of the first
operand (and therefore non-nullable), then the overall result is that underlying type.
Let’s take a look at a practical use for this by revisiting the Age property of listing 4.4.
As a reminder, here’s how it was implemented back then, along with the relevant vari-
able declarations:

DateTime birth;
DateTime? death;

public TimeSpan Age
{
    get
    {
        if (death==null)                 
        {
            return DateTime.Now-birth;
        }
        else
        {
            return death.Value-birth;    
        }
    }
}

Note how both branches of the if statement subtract the value of birth from some non-
null DateTime value. The value we’re interested in is the latest time the person was
alive—the time of the person’s death if he or she has already died, or now otherwise. To
make progress in little steps, let’s try just using the normal conditional operator first:

DateTime lastAlive = (death==null ? DateTime.Now : death.Value);
return lastAlive–birth;

That’s progress of a sort, but arguably the conditional operator has actually made it
harder to read rather than easier, even though the new code is shorter. The conditional
operator is often like that—how much you use it is a matter of personal preference,
although it’s worth consulting the rest of your team before using it extensively. Let’s see
how the null coalescing operator improves things. We want to use the value of death if
it’s non-null, and DateTime.Now otherwise. We can change the implementation to

DateTime lastAlive = death ?? DateTime.Now;
return lastAlive–birth;
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Note how the type of the result is DateTime rather than DateTime? because we’ve
used DateTime.Now as the second operand. We could shorten the whole thing to one
expression:

return (death ?? DateTime.Now)-birth;

However, this is a bit more obscure—in particular, in the two-line version the name of
the lastAlive variable helps the reader to see why we’re applying the null coalescing
operator. I hope you agree that the two-line version is simpler and more readable than
either the original version using the if statement or the version using the normal con-
ditional operator from C# 1. Of course, it relies on the reader understanding what the
null coalescing operator does. In my experience, this is one of the least well-known
aspects of C# 2, but it’s useful enough to make it worth trying to enlighten your
coworkers rather than avoiding it.

 There are two further aspects that increase the operator’s usefulness, too. First, it
doesn’t just apply to nullable types—reference types can also be used; you just can’t
use a non-nullable value type for the first operand as that would be pointless. Also, it’s
right associative, which means an expression of the form first ?? second ?? third is
evaluated as first ?? (second ?? third)—and so it continues for more operands.
You can have any number of expressions, and they’ll be evaluated in order, stopping
with the first non-null result. If all of the expressions evaluate to null, the result will be
null too.

 As a concrete example of this, suppose you have an online ordering system (and
who doesn’t these days?) with the concepts of a billing address, contact address, and
shipping address. The business rules declare that any user must have a billing address,
but the contact address is optional. The shipping address for a particular order is also
optional, defaulting to the billing address. These “optional” addresses are easily repre-
sented as null references in the code. To work out who to contact in the case of a
problem with a shipment, the code in C# 1 might look something like this:

Address contact = user.ContactAddress;
if (contact==null)
{
    contact = order.ShippingAddress;
    if (contact==null)
    {
        contact = user.BillingAddress;
    }
}

Using the conditional operator in this case is even more horrible. Using the null coa-
lescing operator, however, makes the code very straightforward:

Address contact = user.ContactAddress ?? 
                         order.ShippingAddress ?? 
                         user.BillingAddress;

If the business rules changed to use the shipping address by default instead of the
user’s contact address, the change here would be extremely obvious. It wouldn’t be
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particularly taxing with the if/else version, but I know I’d have to stop and think
twice, and verify the code mentally. I’d also be relying on unit tests, so there’d be rela-
tively little chance of me actually getting it wrong, but I’d prefer not to think about
things like this unless I absolutely have to.

NOTE Everything in moderation—Just in case you may be thinking that my code is
littered with uses of the null coalescing operator, it’s really not. I tend to
consider it when I see defaulting mechanisms involving nulls and possibly
the conditional operator, but it doesn’t come up very often. When its use
is natural, however, it can be a powerful tool in the battle for readability.

We’ve seen how nullable types can be used for “ordinary” properties of objects—cases
where we just naturally might not have a value for some particular aspect that is still
best expressed with a value type. Those are the more obvious uses for nullable types
and indeed the most common ones. However, a few patterns aren’t as obvious but can
still be powerful when you’re used to them. We’ll explore two of these patterns in our
next section. This is more for the sake of interest than as part of learning about the
behavior of nullable types themselves—you now have all the tools you need to use
them in your own code. If you’re interested in quirky ideas and perhaps trying some-
thing new, however, read on…

4.4 Novel uses of nullable types
Before nullable types became a reality, I saw lots of people effectively asking for them,
usually related to database access. That’s not the only use they can be put to, however.
The patterns presented in this section are slightly unconventional but can make code
simpler. If you only ever stick to “normal” idioms of C#, that’s absolutely fine—this sec-
tion might not be for you, and I have a lot of sympathy with that point of view. I usually
prefer simple code over code that is “clever”—but if a whole pattern provides benefits
when it’s known, that sometimes makes the pattern worth learning. Whether or not
you use these techniques is of course entirely up to you—but you may find that they
suggest other ideas to use elsewhere in your code. Without further ado, let’s start with
an alternative to the TryXXX pattern mentioned in section 3.2.6.

4.4.1 Trying an operation without using output parameters

The pattern of using a return value to say whether or not an operation worked, and
an output parameter to return the real result, is becoming an increasingly common
one in the .NET Framework. I have no issues with the aims—the idea that some
methods are likely to fail to perform their primary purpose in nonexceptional cir-
cumstances is common sense. My one problem with it is that I’m just not a huge fan
of output parameters. There’s something slightly clumsy about the syntax of declar-
ing a variable on one line, then immediately using it as an output parameter.

 Methods returning reference types have often used a pattern of returning null
on failure and non-null on success. It doesn’t work so well when null is a valid return
value in the success case. Hashtable is an example of both of these statements, in a
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slightly ambivalent way. You see, null is a theoretically valid value in a Hashtable, but
in my experience most uses of Hashtable never use null values, which makes it per-
fectly acceptable to have code that assumes that a null value means a missing key.
One common scenario is to have each value of the Hashtable as a list: the first time
an item is added for a particular key, a new list is created and the item added to it.
Thereafter, adding another item for the same key involves adding the item to the
existing list. Here’s the code in C# 1:

ArrayList list = hash[key];
if (list==null)
{
    list = new ArrayList();
    hash[key] = list;
}
list.Add(newItem);

Hopefully you’d use variable names more specific to your situation, but I’m sure you
get the idea and may well have used the pattern yourself.5 With nullable types, this pat-
tern can be extended to value types—and in fact, it’s safer with value types, because if
the natural result type is a value type, then a null value could only be returned as a fail-
ure case. Nullable types add that extra Boolean piece of information in a nice generic
way with language support—so why not use them?

 To demonstrate this pattern in practice and in a context other than dictionary
lookups, I’ll use the classic example of the TryXXX pattern—parsing an integer. The
implementation of the TryParse method in listing 4.5 shows the version of the pat-
tern using an output parameter, but then we see the use of the version using nullable
types in the main part at the bottom.

static int? TryParse (string data)
{
    int ret;                                       
    if (int.TryParse(data, out ret))
    {
        return ret;
    }
    else
    {
        return null;
    }
}
...
int? parsed = TryParse("Not valid");
if (parsed != null)
{
    Console.WriteLine ("Parsed to {0}", parsed.Value);
}

5 Wouldn’t it be great if Hashtable and Dictionary<TKey,TValue> could take a delegate to call whenever a
new value was required due to looking up a missing key? Situations like this would be a lot simpler.

Listing 4.5 An alternative implementation of the TryXXX pattern

Classic call with 
output parameter

Nullable 
call
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else
{
    Console.WriteLine ("Couldn't parse");
}

You may well think there’s very little to distinguish the two versions here—they’re the
same number of lines, after all. However, I believe there’s a difference in emphasis. The
nullable version encapsulates the natural return value and the success or failure into a
single variable. It also separates the “doing” from the “testing,” which puts the emphasis
in the right place in my opinion. Usually, if I call a method in the condition part of an
if statement, that method’s primary purpose is to return a Boolean value. Here, the
return value is in some ways less important than the output parameter. When you’re
reading code, it’s easy to miss an output parameter in a method call and be left won-
dering what’s actually doing all the work and magically giving the answer. With the nul-
lable version, this is more explicit—the result of the method has all the information
we’re interested in. I’ve used this technique in a number of places (often with rather
more method parameters, at which point output parameters become even harder to
spot) and believe it has improved the general feel of the code. Of course, this only works
for value types.

 Another advantage of this pattern is that it can be used in conjunction with the
null coalescing operator—you can try to understand several pieces of input, stopping
at the first valid one. The normal TryXXX pattern allows this using the short-circuiting
operators, but the meaning isn’t nearly as clear when you use the same variable for
two different output parameters in the same statement.

 The next pattern is an answer to a specific pain point—the irritation and fluff that
can be present when writing multitiered comparisons.

4.4.2 Painless comparisons with the null coalescing operator

I suspect you dislike writing the same code over and over again as much as I do. Refac-
toring can often get rid of duplication, but there are some cases that resist refactoring
surprisingly effectively. Code for Equals and Compare often falls firmly into this cate-
gory in my experience.

 Suppose you are writing an e-commerce site and have a list of products. You may
wish to sort them by popularity (descending), then price, then name—so that the five-
star-rated products come first, but the cheapest within those come before the more
expensive ones. If there are multiple products with the same price, products begin-
ning with A are listed before products beginning with B. This isn’t a problem specific
to e-commerce sites—sorting data by multiple criteria is a fairly common requirement
in computing.

 Assuming we have a suitable Product type, we can write the comparison with code
like this in C# 1:

public int Compare(Product first, Product second)
{
    // Reverse comparison of popularity to sort descending
    int ret = second.Popularity.CompareTo(first.Popularity);
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    if (ret != 0)
    {
        return ret;    
    }
    ret = first.Price.CompareTo(second.Price);
    if (ret != 0)
    {
        return ret;
    }
    return first.Name.CompareTo(second.Name);
}

This assumes that we won’t be asked to compare null references, and that all of the
properties will return non-null references too. We could use some up-front null com-
parisons and Comparer<T>.Default to handle those cases, but that would make the
code even longer and more involved. The code could be shorter (and avoid returning
from the middle of the method) by rearranging it slightly, but the fundamental “com-
pare, check, compare, check” pattern would still be present, and it wouldn’t be as
obvious that once we’ve got a nonzero answer, we’re done.

 Ah… now, that last sentence is reminiscent of something else: the null coalescing
operator. As we saw in section 4.3, if we have a lot of expressions separated by ?? then
the operator will be repeatedly applied until it hits a non-null expression. Now all we’ve
got to do is work out a way of returning null instead of zero from a comparison. This is
easy to do in a separate method, and that can also encapsulate the use of the default
comparer. We can even have an overload to use a specific comparer if we want. We’ll
also deal with the case where either of the Product references we’re passed is null. First,
let’s look at the class implementing our helper methods, as shown in listing 4.6.

public static class PartialComparer
{
    public static int? Compare<T>(T first, T second)
    {
        return Compare(Comparer<T>.Default, first, second);
    }
    
    public static int? Compare<T>(IComparer<T> comparer, 
                                              T first, 
                                              T second)
    {
        int ret = comparer.Compare(first, second);
        if (ret == 0)
        {
            return null;
        }
        return ret;
    }

    public static int? ReferenceCompare<T>(T first, T second)
        where T : class

Listing 4.6 Helper class for providing “partial comparisons”
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    {
        if (first==second)
        {
            return 0;
        }
        if (first==null)
        {
            return -1;
        }
        if (second==null)
        {
            return 1;
        }
        return null;
    }
}

The Compare methods in listing 4.6 are almost pathetically simple—when a comparer
isn’t specified, the default comparer for the type is used, and all that happens to the
comparison’s return value is that zero is translated to null. The ReferenceCompare
method is longer but still very straightforward: it basically returns the correct com-
parison result (–1, 0, or 1) if it can tell the result just from the references, and null
otherwise. Even though this class is simple, it’s remarkably useful. We can now
replace our previous product comparison with a neater implementation:

public int Compare(Product first, Product second)
{
    return PC.ReferenceCompare (first, second) ??
              // Reverse comparison of popularity to sort descending
              PC.Compare (second.Popularity, first.Popularity) ??
              PC.Compare (first.Price, second.Price) ??
              PC.Compare (first.Name, second.Name) ??
              0;
}

As you may have noticed, I’ve used PC rather than PartialComparer—this is solely
for the sake of being able to fit the lines on the printed page. In real source I would
use the full type name and have one comparison per line. Of course, if you wanted
short lines for some reason, you could specify a using directive to make PC an alias
for PartialComparer—I just wouldn’t recommend it.

 The final 0 is to indicate that if all of the earlier comparisons have passed, the two
Product instances are equal. We could have just used Comparer<string>.Default.
Compare(first.Name, second.Name) as the final comparison, but that would hurt the
symmetry of the method.

 This comparison plays nicely with nulls, is easy to modify, forms an easy pattern to
use for other comparisons, and only compares as far as it needs to: if the prices are dif-
ferent, the names won’t be compared.

 You may be wondering whether the same technique could be applied to equality
tests, which often have similar patterns. There’s much less point in the case of equality,
because after the nullity and reference equality tests, you can just use && to provide the
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desired short-circuiting functionality for Booleans. A method returning a bool? can be
used to obtain an initial definitely equal, definitely not equal or unknown result based on the
references, however. The complete code of PartialComparer on this book’s website
contains the appropriate utility method and examples of its use. 

4.5 Summary
When faced with a problem, developers tend to take the easiest short-term solution,
even if it’s not particularly elegant. That’s often exactly the right decision—we don’t
want to be guilty of overengineering, after all. However, it’s always nice when a good
solution is also the easiest solution.

 Nullable types solve a very specific problem that only had somewhat ugly solutions
before C# 2. The features provided are just a better-supported version of a solution
that was feasible but time-consuming in C# 1. The combination of generics (to avoid
code duplication), CLR support (to provide suitable boxing and unboxing behavior),
and language support (to provide concise syntax along with convenient conversions
and operators) makes the solution far more compelling than it was previously.

 It so happens that in providing nullable types, the C# and Framework designers
have made some other patterns available that just weren’t worth the effort before.
We’ve looked at some of them in this chapter, and I wouldn’t be at all surprised to see
more of them appearing over time.

 So far our two new features (generics and nullable types) have addressed areas
where in C# 1 we occasionally had to hold our noses due to unpleasant code smells.
This pattern continues in the next chapter, where we discuss the enhancements to del-
egates. These form an important part of the subtle change of direction of both the C#
language and the .NET Framework, toward a slightly more functional viewpoint. This
emphasis is made even clearer in C# 3, so while we’re not looking at those features quite
yet, the delegate enhancements in C# 2 act as a bridge between the familiarity of C# 1
and the potentially revolutionary style of C# 3.

 



Fast-tracked delegates
The journey of delegates in C# and .NET is an interesting one, showing remarkable
foresight (or really good luck) on the part of the designers. The conventions sug-
gested for event handlers in .NET 1.0/1.1 didn’t make an awful lot of sense—until
C# 2 showed up. Likewise, the effort put into delegates for C# 2 seems in some ways
out of proportion to how widely used they are—until you see how pervasive they
are in idiomatic C# 3 code. In other words, it’s as if the language and platform
designers had a vision of at least the rough direction they would be taking, years
before the destination itself became clear.

 Of course, C# 3 is not a “final destination” in itself, and we may be seeing fur-
ther advances for delegates in the future—but the differences between C# 1 and
C# 3 in this area are startling. (The primary change in C# 3 supporting delegates is
in lambda expressions, which we’ll meet in chapter 9.)

This chapter covers
■ Longwinded C# 1 syntax
■ Simplified delegate construction
■ Covariance and contravariance
■ Anonymous methods
■ Captured variables
137
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 C# 2 is a sort of stepping stone in terms of delegates. Its new features pave the way
for the even more dramatic changes of C# 3, keeping developers reasonably comfort-
able while still providing useful benefits. The extent to which this was a finely bal-
anced act as opposed to intuition and a following wind is likely to stay unknown, but
we can certainly reap the benefits.

 Delegates play a more prominent part in .NET 2.0 than in earlier versions,
although they’re not as common as they are in .NET 3.5. In chapter 3 we saw how they
can be used to convert from a list of one type to a list of another type, and way back in
chapter 1 we sorted a list of products using the Comparison delegate instead of the
IComparer interface. Although the framework and C# keep a respectful distance from
each other where possible, I believe that the language and platform drove each other
here: the inclusion of more delegate-based API calls supported the improved syntax
available in C# 2, and vice versa.

 In this chapter we’ll see how C# 2 makes two small changes that make life easier
when creating delegate instances from normal methods, and then we’ll look at the
biggest change: anonymous methods, which allow you to specify a delegate instance’s
action inline at the point of its creation. The largest section of the chapter is devoted
to the most complicated part of anonymous methods, captured variables, which pro-
vide delegate instances with a richer environment to play in. We’ll cover the topic in
significant detail due to its importance and complexity.

 First, though, let’s remind ourselves of the pain points of C# 1’s delegate facilities.

5.1 Saying goodbye to awkward delegate syntax
The syntax for delegates in C# 1 doesn’t sound too bad—the language already has syn-
tactic sugar around Delegate.Combine, Delegate.Remove, and the invocation of dele-
gate instances. It makes sense to specify the delegate type when creating a delegate
instance—it’s the same syntax used to create instances of other types, after all.

 This is all true, but for some reason it also sucks. It’s hard to say exactly why the del-
egate creation expressions of C# 1 raise hackles, but they do—at least for me. When
hooking up a bunch of event handlers, it just looks ugly to have to write “new
EventHandler” (or whatever is required) all over the place, when the event itself has
specified which delegate type it will use. Beauty is in the eye of the beholder, of course,
and you could argue that there’s less call for guesswork when reading event handler wir-
ing code in the C# 1 style, but the extra text just gets in the way and distracts from the
important part of the code: which method you want to handle the event.

 Life becomes a bit more black and white when you consider covariance and con-
travariance as applied to delegates. Suppose you’ve got an event handling method
that saves the current document, or just logs that it’s been called, or any number of
other actions that may well not need to know details of the event. The event itself
shouldn’t mind that your method is capable of working with only the information pro-
vided by the EventHandler signature, even though it is declared to pass in mouse
event details. Unfortunately, in C# 1 you have to have a different method for each dif-
ferent event handler signature.
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 Likewise it’s undeniably ugly to write methods that are so simple that their imple-
mentation is shorter than their signature, solely because delegates need to have code
to execute and that code has to be in the form of a method. It adds an extra layer of
indirection between the code creating the delegate instance and the code that should
execute when the delegate instance is invoked. Often extra layers of indirection are
welcome—and of course that option hasn’t been removed in C# 2—but at the same
time it often makes the code harder to read, and pollutes the class with a bunch of
methods that are only used for delegates.

 Unsurprisingly, all of these are improved greatly in C# 2. The syntax can still occa-
sionally be wordier than we might like (which is where lambda expressions come into
play in C# 3), but the difference is significant. To illustrate the pain, we’ll start with
some code in C# 1 and improve it in the next couple of sections. Listing 5.1 builds a
(very) simple form with a button and subscribes to three of the button’s events.

static void LogPlainEvent(object sender, EventArgs e)
{
    Console.WriteLine ("LogPlain");
}

static void LogKeyEvent(object sender, KeyPressEventArgs e)
{
    Console.WriteLine ("LogKey");
}

static void LogMouseEvent(object sender, MouseEventArgs e)
{
    Console.WriteLine ("LogMouse");
}

...
Button button = new Button();
button.Text = "Click me";
button.Click         += new EventHandler(LogPlainEvent);
button.KeyPress    += new KeyPressEventHandler(LogKeyEvent);
button.MouseClick += new MouseEventHandler(LogMouseEvent);

Form form = new Form();
form.AutoSize=true;
form.Controls.Add(button);
Application.Run(form);

The output lines in the three event handling methods are there to prove that the code
is working: if you press the spacebar with the button highlighted, you’ll see that the
Click and KeyPress events are both raised; pressing Enter just raises the Click event;
clicking on the button raises the Click and MouseClick events. In the following sec-
tions we’ll improve this code using some of the C# 2 features.

 Let’s start by asking the compiler to make a pretty obvious deduction—which dele-
gate type we want to use when subscribing to an event.

Listing 5.1 Subscribing to three of a button's events
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5.2 Method group conversions
In C# 1, if you want to create a delegate instance you need to specify both the delegate
type and the action. If you remember from chapter 2, we defined the action to be the
method to call and (for instance methods) the target to call it on. So for example, in list-
ing 5.1 when we needed to create a KeyPressEventHandler we used this expression:

new KeyPressEventHandler(LogKeyEvent)

As a stand-alone expression, it doesn’t look too bad. Even used in a simple event sub-
scription it’s tolerable. It becomes a bit uglier when used as part of a longer expres-
sion. A common example of this is starting a new thread:

Thread t = new Thread (new ThreadStart(MyMethod));

What we want to do is start a new thread that will execute MyMethod as simply as possi-
ble. C# 2 allows you to do this by means of an implicit conversion from a method group
to a compatible delegate type. A method group is simply the name of a method,
optionally with a target—exactly the same kind of expression as we used in C# 1 to cre-
ate delegate instances, in other words. (Indeed, the expression was called a method
group back then—it’s just that the conversion wasn’t available.) If the method is
generic, the method group may also specify type arguments. The new implicit conver-
sion allows us to turn our event subscription into

button.KeyPress += LogKeyEvent;

Likewise the thread creation code becomes simply

Thread t = new Thread (MyMethod);

The readability differences between the original and the “streamlined” versions aren’t
huge for a single line, but in the context of a significant amount of code, they can
reduce the clutter considerably. To make it look less like magic, let’s take a brief look
at what this conversion is doing.

 First, let’s consider the expressions LogKeyEvent and MyMethod as they appear in
the examples. The reason they’re classified as method groups is that more than one
method may be available, due to overloading. The implicit conversions available will
convert a method group to any delegate type with a compatible signature. So, if you
had two method signatures as follows:

void MyMethod()
void MyMethod(object sender, EventArgs e)

you could use MyMethod as the method group in an assignment to either a ThreadStart
or an EventHandler as follows:

ThreadStart x = MyMethod;
EventHandler y = MyMethod;

However, you couldn’t use it as the parameter to a method that itself was overloaded to
take either a ThreadStart or an EventHandler—the compiler would complain that
the conversion was ambiguous. Likewise, you unfortunately can’t use an implicit
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method group conversion to convert to the plain System.Delegate type since the
compiler doesn’t know which specific delegate type to create an instance of. This is a
bit of a pain, but you can still be slightly briefer than in C# 1 by making the conversion
explicit. For example:

Delegate invalid = SomeMethod;
Delegate valid = (ThreadStart)SomeMethod;

As with generics, the precise rules of conversion are slightly complicated, and the “just
try it” rule works very well: if the compiler complains that it doesn’t have enough
information, just tell it what conversion to use and all should be well. If it doesn’t com-
plain, you should be fine. For the exact details, consult the language specification.
Speaking of possible conversions, there may be more than you expect, as we’ll see in
our next section.

5.3 Covariance and contravariance
We’ve already talked quite a lot about the concepts of covariance and contravari-
ance in different contexts, usually bemoaning their absence, but delegate construc-
tion is the one area in which they are actually available in C#. If you want to refresh
yourself about the meaning of the terms at a relatively detailed level, refer back to
section 2.3.2—but the gist of the topic with respect to delegates is that if it would be
valid (in a static typing sense) to call a method and use its return value everywhere
that you could invoke an instance of a particular delegate type and use its return
value, then that method can be used to create an instance of that delegate type.
That’s all pretty wordy, but it’s a lot simpler with examples.

 Let’s consider the event handlers we’ve got in our little Windows Forms applica-
tion. The signatures1 of the three delegate types involved are as follows:

void EventHandler (object sender, EventArgs e)
void KeyPressEventHandler (object sender, KeyPressEventArgs e)
void MouseEventHandler (object sender, MouseEventArgs e)

Now, consider that KeyPressEventArgs and MouseEventArgs both derive from Event-
Args (as do a lot of other types—at the time of this writing, MSDN lists 386 types that
derive directly from EventArgs). So, if you have a method that takes an EventArgs
parameter, you could always call it with a KeyPressEventArgs argument instead. It
therefore makes sense to be able to use a method with the same signature as
EventHandler to create an instance of KeyPressEventHandler—and that’s exactly what
C# 2 does. This is an example of contravariance of parameter types.

 To see that in action, let’s think back to listing 5.1 and suppose that we don’t need
to know which event was firing—we just want to write out the fact that an event has
happened. Using method group conversions and contravariance, our code becomes
quite a lot simpler, as shown in listing 5.2.

1 I’ve removed the public delegate part for reasons of space.



142 CHAPTER 5 Fast-tracked delegates
static void LogPlainEvent(object sender, EventArgs e)
{
    Console.WriteLine ("An event occurred");
}
...
Button button = new Button();
button.Text = "Click me";
button.Click         += LogPlainEvent;
button.KeyPress    += LogPlainEvent; 
button.MouseClick += LogPlainEvent;

Form form = new Form();
form.AutoSize=true;
form.Controls.Add(button);
Application.Run(form);

We’ve managed to completely remove the two handler methods that dealt specifically
with key and mouse events, using one event handling method B for everything. Of
course, this isn’t terribly useful if you want to do different things for different types of
events, but sometimes all you need to know is that an event occurred and, potentially,
the source of the event. The subscription to the Click event C only uses the implicit
conversion we discussed in the previous section because it has a simple EventArgs
parameter, but the other event subscriptions D involve the conversion and contravar-
iance due to their different parameter types.

 I mentioned earlier that the .NET 1.0/1.1 event handler convention didn’t make
much sense when it was first introduced. This example shows exactly why the guide-
lines are more useful with C# 2. The convention dictates that event handlers should
have a signature with two parameters, the first of which is of type object and is the
origin of the event, and the second of which carries any extra information about the
event in a type deriving from EventArgs. Before contravariance became available,
this wasn’t useful—there was no benefit to making the informational parameter
derive from EventArgs, and sometimes there wasn’t much use for the origin of the
event. It was often more sensible just to pass the relevant information directly in the
form of normal parameters, just like any other method. Now, however, you can use a
method with the EventHandler signature as the action for any delegate type that
honors the convention.

 Demonstrating covariance of return types is a little harder as relatively few built-in
delegates are declared with a nonvoid return type. There are some available, but it’s eas-
ier to declare our own delegate type that uses Stream as its return type. For simplicity
we’ll make it parameterless:2

delegate Stream StreamFactory();

We can now use this with a method that is declared to return a specific type of stream,
as shown in listing 5.3. We declare a method that always returns a MemoryStream with

Listing 5.2 Demonstration of method group conversions and delegate contravariance

2 Return type covariance and parameter type contravariance can be used at the same time, although you’re
unlikely to come across situations where it would be useful.

B
Handles 
all events

Uses method 
group conversion

C

Uses conversion 
and contravarianceD
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some random data, and then use that method as the action for a StreamFactory dele-
gate instance.

delegate Stream StreamFactory();      

static MemoryStream GenerateRandomData()
{
    byte[] buffer = new byte[16];
    new Random().NextBytes(buffer);
    return new MemoryStream(buffer);
}
...
StreamFactory factory = GenerateRandomData;

Stream stream = factory();              
int data;
while ( (data=stream.ReadByte()) != -1)
{
    Console.WriteLine(data);
}

The actual generation and display of the data in listing 5.3 is only present to give the code
something to do. (In particular, the way of generating random data is pretty awful!)
The important points are the annotated lines. We declare that the delegate type has a
return type of Stream B, but the GenerateRandomData method C has a return type of
MemoryStream. The line creating the delegate instance D performs the conversion we
saw earlier and uses covariance of return types to allow GenerateRandomData to be used
for the action for StreamFactory. By the time we invoke the delegate instance E, the
compiler no longer knows that a MemoryStream will be returned—if we changed the type
of the stream variable to MemoryStream, we’d get a compilation error.

 Covariance and contravariance can also be used to construct one delegate instance
from another. For instance, consider these two lines of code (which assume an appro-
priate HandleEvent method):

EventHandler general = new EventHandler(HandleEvent);
KeyPressEventHandler key = new KeyPressEventHandler(general);

The first line is valid in C# 1, but the second isn’t—in order to construct one delegate
from another in C# 1, the signatures of the two delegate types involved have to match.
For instance, you could create a MethodInvoker from a ThreadStart—but you
couldn’t do what we’re doing in the previous code. We’re using contravariance to cre-
ate a new delegate instance from an existing one with a compatible delegate type signa-
ture, where compatibility is defined in a less restrictive manner in C# 2 than in C# 1.

 This new flexibility in C# 2 causes one of the very few cases where existing valid
C#1 code may produce different results when compiled under C# 2: if a derived class
overloads a method declared in its base class, a delegate creation expression that pre-
viously only matched the base class method could now match the derived class
method due to covariance or contravariance. In this case the derived class method
will take priority in C# 2. Listing 5.4 gives an example of this. 

Listing 5.3 Demonstration of covariance of return types for delegates

Declares delegate type returning StreamB

C
Declares method 
returning MemoryStream

Converts method 
group with covariance

D

E
Invokes 
delegate
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delegate void SampleDelegate(string x);            

public void CandidateAction(string x)              
{
    Console.WriteLine("Snippet.CandidateAction");
}

public class Derived : Snippet
{
    public void CandidateAction(object o)          
    {
        Console.WriteLine("Derived.CandidateAction");
    }
}
...
Derived x = new Derived();
SampleDelegate factory = new SampleDelegate(x.CandidateAction);
factory("test");

Remember that Snippy3 will be generating all of this code within a class called Snippet
which the nested type derives from. Under C# 1, listing 5.4 would print Snippet.
CandidateAction because the method taking an object parameter wasn’t compatible
with SampleDelegate. Under C# 2, however, it is compatible and is the method chosen
due to being declared in a more derived type—so the result is that Derived.
CandidateAction is printed. Fortunately, the C# 2 compiler knows that this is a break-
ing change and issues an appropriate warning. 

 Enough doom and gloom about potential breakage, however. We’ve still got to see
the most important new feature regarding delegates: anonymous methods. They’re a
bit more complicated than the topics we’ve covered so far, but they’re also very power-
ful—and a large step toward C# 3.

5.4 Inline delegate actions with anonymous methods
Have you ever been writing C# 1 and had to implement a delegate with a particular
signature, even though you’ve already got a method that does what you want but
doesn’t happen to have quite the right parameters? Have you ever had to implement a
delegate that only needs to do one teeny, tiny thing, and yet you need a whole extra
method? Have you ever been frustrated at having to navigate away from an important
bit of code in order to see what the delegate you’re using does, only to find that the
method used is only two lines long? This kind of thing happened to me quite regularly
with C# 1. The covariance and contravariance features we’ve just talked about can
sometimes help with the first problem, but often they don’t. Anonymous methods, which
are also new in C# 2, can pretty much always help with these issues.

 Informally, anonymous methods allow you to specify the action for a delegate
instance inline as part of the delegate instance creation expression. This means there’s

Listing 5.4 Demonstration of breaking change between C# 1 and C# 2

3 In case you skipped the first chapter, Snippy is a tool I’ve used to create short but complete code samples. See
section 1.4.2 for more details.
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no need to “pollute” the rest of your class with an extra method containing a small
piece of code that is only useful in one place and doesn’t make sense elsewhere.

 Anonymous methods also provide some far more powerful behavior in the form
of closures, but we’ll come to them in section 5.5. For the moment, let’s stick with rel-
atively simple stuff—as you may have noticed, a common theme in this book is that
you can go a long way in C# 2 without dealing with the more complex aspects of the
language. Not only is this good in terms of learning the new features gradually, but
if you only use the more complicated areas when they provide a lot of benefit, your
code will be easier to understand as well. First we’ll see examples of anonymous
methods that take parameters but don’t return any values; then we’ll explore the
syntax involved in providing return values and a shortcut available when we don’t
need to use the parameters passed to us.

5.4.1 Starting simply: acting on a parameter

In chapter 3 we saw the Action<T> delegate type. As a reminder, its signature is very
simple (aside from the fact that it’s generic):

public delegate void Action<T>(T obj)

In other words, an Action<T> does something with an instance of T. So an
Action<string> could reverse the string and print it out, an Action<int> could print
out the square root of the number passed to it, and an Action<IList <double>> could
find the average of all the numbers given to it and print that out. By complete coinci-
dence, these examples are all implemented using anonymous methods in listing 5.5. 

Action<string> printReverse = delegate(string text)
    {                                                                      
        char[] chars = text.ToCharArray();                     
        Array.Reverse(chars);                                      
        Console.WriteLine(new string(chars));               
    };                                                                      

Action<int> printRoot = delegate(int number)
    {
        Console.WriteLine(Math.Sqrt(number));
    };

Action<IList<double>> printMean = delegate(IList<double> numbers)
    {
        double total = 0;
        foreach (double value in numbers)             
        {                                                         
            total += value;                                  
        }                                                         
        Console.WriteLine(total/numbers.Count);
    };

double[] samples = {1.5, 2.5, 3, 4.5};

Listing 5.5 Anonymous methods used with the Action<T> delegate type

B Uses anonymous 
method to create 
Action<string>

C Uses loop in 
anonymous 
method
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printReverse("Hello world");
printRoot(2);                     
printMean(samples);            

Listing 5.5 shows a few of the different features of anonymous methods.
First, the syntax of anonymous methods: use the delegate keyword, fol-
lowed by the parameters (if there are any), followed by the code for the
action of the delegate instance, in a block. The string reversal code B
shows that the block can contain local variable declarations, and the “list
averaging” code C demonstrates looping within the block. Basically, any-
thing you can do in a normal method body, you can do in an anonymous
method.4 Likewise, the result of an anonymous method is a delegate

instance that can be used like any other one D. Be warned that contravariance
doesn’t apply to anonymous methods: you have to specify the parameter types that
match the delegate type exactly. 

 In terms of implementation, we are still creating a method for each delegate
instance: the compiler will generate a method within the class and use that as the
action it uses to create the delegate instance, just as if it were a normal method. The
CLR neither knows nor cares that an anonymous method was used. You can see the
extra methods within the compiled code using ildasm or Reflector. (Reflector knows
how to interpret the IL to display anonymous methods in the method that uses them,
but the extra methods are still visible.)

 It’s worth pointing out at this stage that listing 5.5 is “exploded” compared with
how you may well see anonymous methods in real code. You’ll often see them used
as parameters to another method (rather than assigned to a variable of the dele-
gate type) and with very few line breaks—compactness is part of the reason for
using them, after all. For example, we mentioned in chapter 3 that List<T> has a
ForEach method that takes an Action<T> as a parameter and performs that action
on each element. Listing 5.6 shows an extreme example of this, applying the same
“square rooting” action we used in listing 5.5, but in a compact form.

List<int> x = new List<int>();
x.Add(5);
x.Add(10);
x.Add(15);
x.Add(20);
x.Add(25);

x.ForEach(delegate(int n){Console.WriteLine(Math.Sqrt(n));});

That’s pretty horrendous—especially when at first sight the last six characters appear to
be ordered almost at random. There’s a happy medium, of course. I tend to break my

4 One slight oddity is that if you’re writing an anonymous method in a value type, you can’t reference this from
within it. There’s no such restriction within a reference type.

Listing 5.6 Extreme example of code compactness. Warning: unreadable code ahead!

Invokes delegates 
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normal code
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usual “braces on a line on their own” rule for anonymous methods (as I do for trivial
properties) but still allow a decent amount of whitespace. I’d usually write the last line
of listing 5.6 as something like

x.ForEach(delegate(int n)
    { Console.WriteLine(Math.Sqrt(n)); }
);

The parentheses and braces are now less confusing, and the “what it does” part stands
out appropriately. Of course, how you space out your code is entirely your own busi-
ness, but I encourage you to actively think about where you want to strike the balance,
and talk about it with your teammates to try to achieve some consistency. Consistency
doesn’t always lead to the most readable code, however—sometimes keeping every-
thing on one line is the most straightforward format.

 You should also consider how much code it makes sense to include in anonymous
methods. The first two examples in listing 5.5 are reasonable , but printMean is proba-
bly doing enough work to make it worth having as a separate method. Again, it’s a bal-
ancing act.

 So far the only interaction we’ve had with the calling code is through parameters.
What about return values?

5.4.2 Returning values from anonymous methods

The Action<T> delegate has a void return type, so we haven’t had to return anything
from our anonymous methods. To demonstrate how we can do so when we need to,
we’ll use the new Predicate<T> delegate type. We saw this briefly in chapter 3, but
here’s its signature just as a reminder:

public delegate bool Predicate<T>(T obj)

Listing 5.7 shows an anonymous method creating an instance of Predicate<T> to
return whether the argument passed in is odd or even. Predicates are usually used in
filtering and matching—you could use the code in listing 5.7 to filter a list to one con-
taining just the even elements, for instance.

Predicate<int> isEven = delegate(int x) 
    { return x%2 == 0; };                       

Console.WriteLine(isEven(1));
Console.WriteLine(isEven(4));

The new syntax is almost certainly what you’d have expected—we just return the
appropriate value as if the anonymous method were a normal method. You may have
expected to see a return type declared near the parameter type, but there’s no need.
The compiler just checks that all the possible return values are compatible with the
declared return type of the delegate type it’s trying to convert the anonymous
method into.

Listing 5.7 Returning a value from an anonymous method
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NOTE Just what are you returning from? When you return a value from an anony-
mous method it really is only returning from the anonymous method—
it’s not returning from the method that is creating the delegate instance.
It’s all too easy to look down some code, see the return keyword, and
think that it’s an exit point from the current method.

Relatively few delegates in .NET 2.0 return values—in particular, few event handlers
do, partly because when the event is raised only the return value from the last action
to be called would be available. The Predicate<T> delegate type we’ve used so far
isn’t used very widely in .NET 2.0, but it becomes important in .NET 3.5 where it’s a key
part of LINQ. Another useful delegate type with a return value is Comparison<T>,
which can be used when sorting items. This works very well with anonymous methods.
Often you only need a particular sort order in one situation, so it makes sense to be
able to specify that order inline, rather than exposing it as a method within the rest of
the class. Listing 5.8 demonstrates this, printing out the files within the C:\ directory,
ordering them first by name and then (separately) by size.

static void SortAndShowFiles(string title,
                                         Comparison<FileInfo> sortOrder)
{
    FileInfo[] files = new DirectoryInfo(@"C:\").GetFiles();

    Array.Sort(files, sortOrder);

    Console.WriteLine (title);
    foreach (FileInfo file in files)
    {
        Console.WriteLine ("  {0} ({1} bytes)", 
                                   file.Name, file.Length);
    }
}
...
SortAndShowFiles("Sorted by name:",
                         delegate(FileInfo first, FileInfo second)
    { return first.Name.CompareTo(second.Name); }
);

SortAndShowFiles("Sorted by length:",
                         delegate(FileInfo first, FileInfo second)
    { return first.Length.CompareTo(second.Length); }
);

If we weren’t using anonymous methods, we’d have to have a separate method for
each of these sort orders. Instead, listing 5.8 makes it clear what we’ll sort by in each
case right where we call SortAndShowFiles. (Sometimes you’ll be calling Sort directly
at the point where the anonymous method is called for. In this case we’re performing
the same fetch/sort/display sequence twice, just with different sort orders, so I encap-
sulated that sequence in its own method.)

Listing 5.8 Using anonymous methods to sort files simply
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 There’s one special syntactic shortcut that is sometimes available. If you don’t care
about the parameters of a delegate, you don’t have to declare them at all. Let’s see
how that works.

5.4.3 Ignoring delegate parameters

Just occasionally, you want to implement a delegate that doesn’t depend on its param-
eter values. You may wish to write an event handler whose behavior was only appro-
priate for one event and didn’t depend on the event arguments: saving the user’s
work, for instance. Indeed, the event handlers from our original example in listing
5.1 fit this criterion perfectly. In this case, you can leave out the parameter list
entirely, just using the delegate keyword and then the block of code to use as the
action for the method. Listing 5.9 is equivalent to listing 5.1 but uses this syntax.

Button button = new Button();
button.Text = "Click me";
button.Click         += delegate { Console.WriteLine("LogPlain"); };
button.KeyPress    += delegate { Console.WriteLine("LogKey"); };
button.MouseClick += delegate { Console.WriteLine("LogMouse"); };

Form form = new Form();
form.AutoSize=true;
form.Controls.Add(button);
Application.Run(form);

Normally we’d have had to write each subscription as something like this:

button.Click += delegate (object sender, EventArgs e) { ... };

That wastes a lot of space for little reason—we don’t need the values of the parame-
ters, so the compiler lets us get away with not specifying them at all. Listing 5.9 also
happens to be a perfect example of how consistency of formatting isn’t always a good
thing—I played around with a few ways of laying out the code and decided this was the
clearest form.

I’ve found this shortcut most useful when it comes to implementing my
own events. I get sick of having to perform a nullity check before rais-
ing an event. One way of getting around this is to make sure that the
event starts off with a handler, which is then never removed. As long as
the handler doesn’t do anything, all you lose is a tiny bit of perfor-
mance. Before C# 2, you had to explicitly create a method with the
right signature, which usually wasn’t worth the benefit. Now, however,
you can do this:

public event EventHandler Click = delegate {};

From then on, you can just call Click without any tests to see whether there are any
handlers subscribed to the event.

 You should be aware of one trap about this “parameter wildcarding” feature—if
the anonymous method could be converted to multiple delegate types (for example,

Listing 5.9 Subscribing to events with anonymous methods that ignore parameters

Neat trick for 

events!
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to call different method overloads) then the compiler needs more help. To show you
what I mean, let’s look at how we start threads. There are four thread constructors in
.NET 2.0:

public Thread (ParameterizedThreadStart start)
public Thread (ThreadStart start) 
public Thread (ParameterizedThreadStart start, int maxStackSize)
public Thread (ThreadStart start, int maxStackSize)  

The two delegate types involved are

public delegate void ThreadStart()
public delegate void ParameterizedThreadStart(object obj)

Now, consider the following three attempts to create a new thread:

new Thread(delegate()            { Console.WriteLine("t1"); } );

new Thread(delegate(object o) { Console.WriteLine("t2"); } );

new Thread(delegate               { Console.WriteLine("t3"); } );

The first and second lines contain parameter lists—the compiler knows that it can’t con-
vert the anonymous method in the first line into a ParameterizedThreadStart, or con-
vert the anonymous method in the second line into a ThreadStart. Those lines compile,
because there’s only one applicable constructor overload in each case. The third line,
however, is ambiguous—the anonymous method can be converted into either delegate
type, so both of the constructor overloads taking just one parameter are applicable. In
this situation, the compiler throws its hands up and issues an error. You can solve this
either by specifying the parameter list explicitly or casting the anonymous method to the
right delegate type.

 Hopefully what you’ve seen of anonymous methods so far will have provoked
some thought about your own code, and made you consider where you could use
these techniques to good effect. Indeed, even if anonymous methods could only do
what we’ve already seen, they’d still be very useful. However, there’s more to anony-
mous methods than just avoiding the inclusion of an extra method in your code.
Anonymous methods are C# 2’s implementation of a feature known elsewhere as clo-
sures by way of captured variables. Our next section explains both of these terms and
shows how anonymous methods can be extremely powerful—and confusing if you’re
not careful.

5.5 Capturing variables in anonymous methods
I don’t like having to give warnings, but I think it makes sense to include one here: if
this topic is new to you, then don’t start this section until you’re feeling reasonably
awake and have a bit of time to spend on it. I don’t want to alarm you unnecessarily,
and you should feel confident that there’s nothing so insanely complicated that you
won’t be able to understand it with a little effort. It’s just that captured variables can
be somewhat confusing to start with, partly because they overturn some of your exist-
ing knowledge and intuition.
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 Stick with it, though! The payback can be massive in terms of code simplicity and
readability. This topic will also be crucial when we come to look at lambda expressions
and LINQ in C# 3, so it’s worth the investment. Let’s start off with a few definitions.

5.5.1 Defining closures and different types of variables

The concept of closures is a very old one, first implemented in Scheme, but it’s been gain-
ing more prominence in recent years as more mainstream languages have taken it on
board. The basic idea is that a function5 is able to interact with an environment beyond
the parameters provided to it. That’s all there is to it in abstract terms, but to understand
how it applies to C# 2, we need a couple more terms:

■ An outer variable is a local variable or parameter6 whose scope includes an anon-
ymous method. The this reference also counts as an outer variable of any
anonymous method where it can be used.

■ A captured outer variable (usually shortened to just “captured variable”) is an outer
variable that is used within an anonymous method. So to go back to closures,
the function part is the anonymous method, and the environment it can inter-
act with is the set of variables captured by it.

That’s all very dry and may be hard to imagine, but the main thrust is that an anony-
mous method can use local variables defined in the same method that declares it. This
may not sound like a big deal, but in many situations it’s enormously handy—you can
use contextual information that you have “on hand” rather than having to set up extra
types just to store data you already know. We’ll see some useful concrete examples
soon, I promise—but first it’s worth looking at some code to clarify these definitions.
Listing 5.10 provides an example with a number of local variables. It’s just a single
method, so it can’t be run on its own. I’m not going to explain how it would work or
what it would do yet, but just explain how the different variables are classified.

void EnclosingMethod()
{
    int outerVariable = 5;            
    string capturedVariable = "captured";

    if (DateTime.Now.Hour==23)
    {
        int normalLocalVariable = DateTime.Now.Minute;
        Console.WriteLine(normalLocalVariable);
    }

    ThreadStart x = delegate()
        { 
            string anonLocal="local to anonymous method";    

5 This is general computer science terminology, not C# terminology.
6 Excluding ref and out parameters.

Listing 5.10 Examples of different kinds of variables with respect to anonymous methods
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method
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            Console.WriteLine(capturedVariable + anonLocal);     
        };
    x();
}

Let’s go through all the variables from the simplest to the most complicated:

■ normalLocalVariable d isn’t an outer variable because there are no anony-
mous methods within its scope. It behaves exactly the way that local variables
always have.

■ anonLocal e isn’t an outer variable either, but it’s local to the anonymous
method, not to EnclosingMethod. It will only exist (in terms of being present in
an executing stack frame) when the delegate instance is invoked.

■ outerVariable B is an outer variable because the anonymous method is
declared within its scope. However, the anonymous method doesn’t refer to it,
so it’s not captured.

■ capturedVariable c is an outer variable because the anonymous method is
declared within its scope, and it’s captured by virtue of being used at f.

Okay, so we now understand the terminology, but we’re not a lot closer to seeing
what captured variables do. I suspect you could guess the output if we ran the
method from listing 5.10, but there are some other cases that would probably sur-
prise you. We’ll start off with a simple example and gradually build up to more com-
plex ones.

5.5.2 Examining the behavior of captured variables

When a variable is captured, it really is the variable that’s captured by the anonymous
method, not its value at the time the delegate instance was created. We’ll see later that
this has far-reaching consequences, but first we’ll make sure we understand what that
means for a relatively straightforward situation. Listing 5.11 has a captured variable
and an anonymous method that both prints out and changes the variable. We’ll see
that changes to the variable from outside the anonymous method are visible within
the anonymous method, and vice versa. We’re using the ThreadStart delegate type
for simplicity as we don’t need a return type or any parameters—no extra threads are
actually created, though.

string captured = "before x is created";

ThreadStart x = delegate 
    { 
        Console.WriteLine(captured); 
        captured = "changed by x";
    };

captured = "directly before x is invoked";
x();

Listing 5.11 Accessing a variable both inside and outside an anonymous method

Capture of 
outer variableF
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Console.WriteLine (captured);

captured = "before second invocation";
x();

The output of listing 5.11 is as follows:

directly before x is invoked
changed by x
before second invocation

Let’s look at how this happens. First, we declare the variable captured and set its value
with a perfectly normal string literal. So far, there’s nothing special about the variable.
We then declare x and set its value using an anonymous method that captures
captured. The delegate instance will always print out the current value of captured,
and then set it to “changed by x”.

 Just to make it absolutely clear that just creating the delegate instance didn’t read
the variable and stash its value away somewhere, we now change the value of captured
to “directly before x is invoked”. We then invoke x for the first time. It reads the value
of captured and prints it out—our first line of output. It sets the value of captured to
“changed by x” and returns. When the delegate instance returns, the “normal”
method continues in the usual way. It prints out the current value of captured, giving
us our second line of output.

 The normal method then changes the value of captured yet again (this time to
before second invocation) and invokes x for the second time. The current value of
captured is printed out, giving our last line of output. The delegate instance changes
captured to changed by x and returns, at which point the normal method has run out
of code and we’re done.

 That’s a lot of detail about how a pretty short piece of code works, but there’s really
only one crucial idea in it: the captured variable is the same one that the rest of the method
uses. For some people, that’s hard to grasp; for others it comes naturally. Don’t worry if
it’s tricky to start with—it’ll get easier over time. Even if you’ve understood everything
easily so far, you may be wondering why you’d want to do any of this. It’s about time we
had an example that was actually useful.

5.5.3 What’s the point of captured variables?

To put it simply, captured variables get rid of the need for you to write extra classes
just to store the information a delegate needs to act on, beyond what it’s passed as
parameters. Before ParameterizedThreadStart existed, if you wanted to start a new
(non-threadpool) thread and give it some information—the URL of a page to fetch,
for instance—you had to create an extra type to hold the URL and put the action of
the ThreadStart delegate instance in that type. It was all a very ugly way of achieving
something that should have been simple.

 As another example, suppose you had a list of people and wanted to write a
method that would return a second list containing all the people who were under a
given age. We know about a method on List<T> that returns another list of everything
matching a predicate: the FindAll method. Before anonymous methods and captured



154 CHAPTER 5 Fast-tracked delegates
variables were around, it wouldn’t have made much sense for List<T>.FindAll to
exist, because of all the hoops you’d have to go through in order to create the right
delegate to start with. It would have been simpler to do all the iteration and copying
manually. With C# 2, however, we can do it all very, very easily:

List<Person> FindAllYoungerThan(List<Person> people, int limit)
{
    return people.FindAll (delegate (Person person)
        { return person.Age < limit; }
    );
}

Here we’re capturing the limit parameter within the delegate instance—if we’d had
anonymous methods but not captured variables, we could have performed a test against
a hard-coded limit, but not one that was passed into the method as a parameter. I hope
you’ll agree that this approach is very neat—it expresses exactly what we want to do with
much less fuss about exactly how it should happen than you’d have seen in a C# 1 version.
(It’s even neater in C# 3, admittedly…7) It’s relatively rare that you come across a situ-
ation where you need to write to a captured variable, but again that can certainly have
its uses.

 Still with me? Good. So far, we’ve only used the delegate instance within the method
that creates it. That doesn’t raise many questions about the lifetime of the captured vari-
ables—but what would happen if the delegate instance escaped into the big bad world?
How would it cope after the method that created it had finished?

5.5.4 The extended lifetime of captured variables

The simplest way of tackling this topic is to state a rule, give an example, and then
think about what would happen if the rule weren’t in place. Here we go:

A captured variable lives for at least as long as any delegate instance
referring to it.

Don’t worry if it doesn’t make a lot of sense yet—that’s what the example is for. Listing
5.12 shows a method that returns a delegate instance. That delegate instance is created
using an anonymous method that captures an outer variable. So, what will happen
when the delegate is invoked after the method has returned?

static ThreadStart CreateDelegateInstance()
{
    int counter = 5;

    ThreadStart ret = delegate
        {
            Console.WriteLine(counter);
            counter++;
        };

7 In case you’re wondering: return people.Where(person => person.Age < limit);

Listing 5.12 Demonstration of a captured variable having its lifetime extended
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    ret();
    return ret;
}
...
ThreadStart x = CreateDelegateInstance();
x();
x();

The output of listing 5.12 consists of the numbers 5, 6, and 7 on separate lines. The
first line of output comes from the invocation of the delegate instance within
CreateDelegateInstance, so it makes sense that the value of i is available at that
point. But what about after the method has returned? Normally we would consider
counter to be on the stack, so when the stack frame for CreateDelegateInstance is
destroyed we’d expect counter to effectively vanish… and yet subsequent invoca-
tions of the returned delegate instance seem to keep using it!

 The secret is to challenge the assumption that counter is on the stack in the first
place. It isn’t. The compiler has actually created an extra class to hold the variable.
The CreateDelegateInstance method has a reference to an instance of that class so it
can use counter, and the delegate has a reference to the same instance—which lives
on the heap in the normal way. That instance isn’t eligible for garbage collection until
the delegate is ready to be collected. Some aspects of anonymous methods are very
compiler specific (in other words different compilers could achieve the same seman-
tics in different ways), but it’s hard to see how the specified behavior could be
achieved without using an extra class to hold the captured variable. Note that if you
only capture this, no extra types are required—the compiler just creates an instance
method to act as the delegate’s action.

 OK, so local variables aren’t always local anymore. You may well be wondering what
I could possibly throw at you next—let’s see now, how about multiple delegates cap-
turing different instances of the same variable? It sounds crazy, so it’s just the kind of
thing you should be expecting by now.

5.5.5 Local variable instantiations

On a good day, captured variables act exactly the way I expect them to at a glance. On
a bad day, I’m still surprised when I’m not taking a great deal of care. When there are
problems, it’s almost always due to forgetting just how many “instances” of local vari-
ables I’m actually creating. A local variable is said to be instantiated each time execu-
tion enters the scope where it’s declared. Here’s a simple example comparing two very
similar bits of code:

int single;
for (int i=0; i < 10; i++)
{
    single = 5;
    Console.WriteLine(single+i);
}

for (int i=0; i < 10; i++)
{
    int multiple = 5;
    Console.WriteLine(multiple+i);
}
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In the good old days, it was reasonable to say that pieces of code like this were seman-
tically identical. Indeed, they’d usually compile to the same IL. They still will, if there
aren’t any anonymous methods involved. All the space for local variables is allocated
on the stack at the start of the method, so there’s no cost to “redeclaring” the variable
for each iteration of the loop. However, in our new terminology the single variable
will be instantiated only once, but the multiple variable will be instantiated ten
times—it’s as if there are ten local variables, all called multiple, which are created
one after another.

I’m sure you can see where I’m going—when a variable is captured, it’s
the relevant “instance” of the variable that is captured. If we captured
multiple inside the loop, the variable captured in the first iteration
would be different from the variable captured the second time round,
and so on. Listing 5.13 shows exactly this effect.

List<ThreadStart> list = new List<ThreadStart>();

for (int index=0; index < 5; index++)
{
    int counter = index*10;
    list.Add (delegate 
        {   
            Console.WriteLine(counter);
            counter++;                        
        }
    );
}

foreach (ThreadStart t in list)
{                                         
    t();                                 
}                                         

list[0]();
list[0]();
list[0]();

list[1]();

Listing 5.13 creates five different delegate instances C—one for each time we go
around the loop. Invoking the delegate will print out the value of counter and then
increment it. Now, because counter is declared inside the loop, it is instantiated for
each iteration B, and so each delegate captures a different variable. So, when we go
through and invoke each delegate D, we see the different values initially assigned to
counter: 0, 10, 20, 30, 40. Just to hammer the point home, when we then go back to
the first delegate instance and execute it three more times E, it keeps going from
where that instance’s counter variable had left off: 1, 2, 3. Finally we execute the sec-
ond delegate instance F, and that keeps going from where that instance’s counter
variable had left off: 11.

Listing 5.13 Capturing multiple variable instantiations with multiple delegates
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So, each of the delegate instances has captured a different variable in this
case. Before we leave this example, I should point out what would have hap-
pened if we’d captured index—the variable declared by the for loop—
instead of counter. In this case, all the delegates would have shared the
same variable. The output would have been the numbers 5 to 14; 5 first
because the last assignment to index before the loop terminates would
have set it to 5, and then incrementing the same variable regardless of
which delegate was involved. We’d see the same behavior with a foreach

loop: the variable declared by the initial part of the loop is only instantiated once. It’s
easy to get this wrong! If you want to capture the value of a loop variable for that par-
ticular iteration of the loop, introduce another variable within the loop, copy the loop
variable’s value into it, and capture that new variable—effectively what we’ve done in list-
ing 5.13 with the counter variable.

 For our final example, let’s look at something really nasty—sharing some captured
variables but not others.

5.5.6 Mixtures of shared and distinct variables

Let me just say before I show you this next example that it’s not code I’d recommend.
In fact, the whole point of presenting it is to show how if you try to use captured vari-
ables in too complicated a fashion, things can get tricky really fast. Listing 5.14 creates
two delegate instances that each capture “the same” two variables. However, the story
gets more convoluted when we look at what’s actually captured.

ThreadStart[] delegates = new ThreadStart[2];

int outside = 0;                                

for (int i=0; i < 2; i++)
{
    int inside = 0;       

    delegates[i] = delegate            
    {
        Console.WriteLine ("({0},{1})",
                                   outside, inside);
        outside++;
        inside++;
    };
}

ThreadStart first = delegates[0];
ThreadStart second = delegates[1];

first();
first();
first();

second();
second();

Listing 5.14 Capturing variables in different scopes. Warning: nasty code ahead!
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How long would it take you to predict the output from listing 5.14 (even with the
annotations)? Frankly it would take me a little while—longer than I like to spend
understanding code. Just as an exercise, though, let’s look at what happens. 

 First let’s consider the outside variable B. The scope it’s declared in is only entered
once, so it’s a straightforward case—there’s only ever one of it, effectively. The inside
variable C is a different matter—each loop iteration instantiates a new one. That
means that when we create the delegate instance D the outside variable is shared
between the two delegate instances, but each of them has its own inside variable.

 After the loop has ended, we call the first delegate instance we created three times.
Because it’s incrementing both of its captured variables each time, and we started off
with them both as 0, we see (0,0), then (1,1), then (2,2). The difference between the
two variables in terms of scope becomes apparent when we execute the second dele-
gate instance. It has a different inside variable, so that still has its initial value of 0,
but the outside variable is the one we’ve already incremented three times. The out-
put from calling the second delegate twice is therefore (3,0), then (4,1).

NOTE How does this happen internally? Just for the sake of interest, let’s think
about how this is implemented—at least with Microsoft’s C# 2 compiler.
What happens is that one extra class is generated to hold the outer vari-
able, and another one is generated to hold an inner variable and a refer-
ence to the first extra class. Essentially, each scope that contains a captured
variable gets its own type, with a reference to the next scope out that con-
tains a captured variable. In our case, there were two instances of the type
holding inner, and they both refer to the same instance of the type hold-
ing outer. Other implementations may vary, but this is the most obvious
way of doing things. 

Even after you understand this code fully, it’s still quite a good template for experi-
menting with other elements of captured variables. As we noted earlier, certain ele-
ments of variable capture are implementation specific, and it’s often useful to refer to
the specification to see what’s guaranteed—but it’s also important to be able to just
play with code to see what happens.

 It’s possible that there are situations where code like listing 5.14 would be the sim-
plest and clearest way of expressing the desired behavior—but I’d have to see it to believe
it, and I’d certainly want comments in the code to explain what would happen. So, when
is it appropriate to use captured variables, and what do you need to look out for?

5.5.7 Captured variable guidelines and summary

Hopefully this section has convinced you to be very careful with captured variables.
They make good logical sense (and any change to make them simpler would probably
either make them less useful or less logical), but they make it quite easy to produce
horribly complicated code.

 Don’t let that discourage you from using them sensibly, though—they can save you
masses of tedious code, and when they’re used appropriately they can be the most
readable way of getting the job done. But what counts as “sensible”?
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GUIDELINES FOR USING CAPTURED VARIABLES
The following is a list of suggestions for using captured variables:

■ If code that doesn’t use captured variables is just as simple as code that does,
don’t use them.

■ Before capturing a variable declared by a for or foreach statement, consider
whether your delegate is going to live beyond the loop iteration, and whether
you want it to see the subsequent values of that variable. If not, create another
variable inside the loop that just copies the value you do want.

■ If you create multiple delegate instances (whether in a loop or explicitly) that
capture variables, put thought into whether you want them to capture the same
variable.

■ If you capture a variable that doesn’t actually change (either in the anonymous
method or the enclosing method body), then you don’t need to worry as much.

■ If the delegate instances you create never “escape” from the method—in other
words, they’re never stored anywhere else, or returned, or used for starting
threads—life is a lot simpler.

■ Consider the extended lifetime of any captured variables in terms of garbage
collection. This is normally not an issue, but if you capture an object that is
expensive in terms of memory, it may be significant.

The first point is the golden rule. Simplicity is a good thing—so any time the use of a
captured variable makes your code simpler (after you’ve factored in the additional
inherent complexity of forcing your code’s maintainers to understand what the cap-
tured variable does), use it. You need to include that extra complexity in your consid-
erations, that’s all—don’t just go for minimal line count.

 We’ve covered a lot of ground in this section, and I’m aware that it can be hard to
take in. I’ve listed the most important things to remember next, so that if you need to
come back to this section another time you can jog your memory without having to
read through the whole thing again:

■ The variable is captured—not its value at the point of delegate instance creation.
■ Captured variables have lifetimes extended to at least that of the capturing del-

egate.
■ Multiple delegates can capture the same variable…
■ …but within loops, the same variable declaration can effectively refer to differ-

ent variable “instances.”
■ for/foreach loop declarations create variables that live for the duration of the

loop—they’re not instantiated on each iteration.
■ Captured variables aren’t really local variables—extra types are created where

necessary.
■ Be careful! Simple is almost always better than clever.

We’ll see more variables being captured when we look at C# 3 and its lambda expres-
sions, but for now you may be relieved to hear that we’ve finished our rundown of the
new C# 2 delegate features. 
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5.6 Summary
C# 2 has radically changed the ways in which delegates can be created, and in doing
so it’s opened up the framework to a more functional style of programming. There
are more methods in .NET 2.0 that take delegates as parameters than there were in
.NET 1.0/1.1, and this trend continues in .NET 3.5. The List<T> type is the best
example of this, and is a good test-bed for checking your skills at using anonymous
methods and captured variables. Programming in this way requires a slightly differ-
ent mind-set—you must be able to take a step back and consider what the ultimate
aim is, and whether it’s best expressed in the traditional C# manner, or whether a
functional approach makes things clearer.

 All the changes to delegate handling are useful, but they do add complexity to the
language, particularly when it comes to captured variables. Closures are always tricky
in terms of quite how the available environment is shared, and C# is no different in
this respect. The reason they’ve lasted so long as an idea, however, is that they can
make code simpler to understand and more immediate. The balancing act between
complexity and simplicity is always a difficult one, and it’s worth not being too ambi-
tious to start with. As anonymous methods and captured variables become more com-
mon, we should all expect to get better at working with them and understanding what
they’ll do. They’re certainly not going away, and indeed LINQ encourages their use
even further.

 Anonymous methods aren’t the only change in C# 2 that involves the compiler cre-
ating extra types behind the scenes, doing devious things with variables that appear to
be local. We’ll see a lot more of this in our next chapter, where the compiler effec-
tively builds a whole state machine for us in order to make it easier for the developer
to implement iterators. 



Implementing
 iterators the easy way
The iterator pattern is an example of a behavioral pattern—a design pattern that
simplifies communication between objects. It’s one of the simplest patterns to
understand, and incredibly easy to use. In essence, it allows you to access all the
elements in a sequence of items without caring about what kind of sequence it is—
an array, a list, a linked list, or none of the above. This can be very effective for
building a data pipeline, where an item of data enters the pipeline and goes through
a number of different transformations or filters before coming out at the other
end. Indeed, this is one of the core patterns of LINQ, as we’ll see in part 3.

 In .NET, the iterator pattern is encapsulated by the IEnumerator and IEnumerable
interfaces and their generic equivalents. (The naming is unfortunate—the pattern
is normally called iteration rather than enumeration to avoid getting confused with

This chapter covers
■ Implementing iterators in C# 1
■ Iterator blocks in C# 2
■ A simple Range type
■ Iterators as coroutines
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other meanings of the word enumeration. I’ve used iterator and iterable throughout this
chapter.) If a type implements IEnumerable, that means it can be iterated over; calling
the GetEnumerator method will return the IEnumerator implementation, which is the
iterator itself.

 As a language, C# 1 has built-in support for consuming iterators using the foreach
statement. This makes it incredibly easy to iterate over collections—easier than using
a straight for loop—and is nicely expressive. The foreach statement compiles down
to calls to the GetEnumerator and MoveNext methods and the Current property, with
support for disposing the iterator afterwards if IDisposable has been implemented.
It’s a small but useful piece of syntactic sugar.

 In C# 1, however, implementing an iterator is a relatively difficult task. The syntactic
sugar provided by C# 2 makes this much simpler, which can sometimes lead to the iter-
ator pattern being worth implementing in cases where otherwise it would have caused
more work than it saved.

 In this chapter we’ll look at just what is required to implement an iterator and the
support given by C# 2. As a complete example we’ll create a useful Range class that can
be used in numerous situations, and then we’ll explore an exciting (if slightly off-the-
wall) use of the iteration syntax in a new concurrency library from Microsoft.

 As in other chapters, let’s start off by looking at why this new feature was intro-
duced. We’ll implement an iterator the hard way.

6.1 C# 1: the pain of handwritten iterators
We’ve already seen one example of an iterator implementation in section 3.4.3 when
we looked at what happens when you iterate over a generic collection. In some ways
that was harder than a real C# 1 iterator implementation would have been, because we
implemented the generic interfaces as well—but in some ways it was easier because it
wasn’t actually iterating over anything useful.

 To put the C# 2 features into context, we’ll first implement an iterator that is about
as simple as it can be while still providing real, useful values. Suppose we had a new type
of collection—which can happen, even though .NET provides most of the collections
you’ll want to use in normal applications. We’ll implement IEnumerable so that users
of our new class can easily iterate over all the values in the collection. We’ll ignore the
guts of the collection here and just concentrate on the iteration side. Our collection will
store its values in an array (object[]—no generics here!), and the collection will have
the interesting feature that you can set its logical “starting point”—so if the array had five
elements, you could set the start point to 2, and expect elements 2, 3, 4, 0, and then 1
to be returned. (This constraint prevents us from implementing GetEnumerator by
simply calling the same method on the array itself. That would defeat the purpose of
the exercise.)

 To make the class easy to demonstrate, we’ll provide both the values and the start-
ing point in the constructor. So, we should be able to write code such as listing 6.1 in
order to iterate over the collection.
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object[] values = {"a", "b", "c", "d", "e"};
IterationSample collection = new IterationSample(values, 3);
foreach (object x in collection)
{
    Console.WriteLine (x);
}

Running listing 6.1 should (eventually) produce output of “d”, “e”, “a”, “b”, and finally
“c” because we specified a starting point of 3. Now that we know what we need to
achieve, let’s look at the skeleton of the class as shown in listing 6.2.

using System;
using System.Collections;

public class IterationSample : IEnumerable
{
    object[] values;
    int startingPoint;

    public IterationSample (object[] values, int startingPoint)
    {
        this.values = values;
        this.startingPoint = startingPoint;
    }

    public IEnumerator GetEnumerator()
    {
        throw new NotImplementedException();
    }
}

As you can see, we haven’t implemented GetEnumerator yet, but the rest of the code is
ready to go. So, how do we go about implementing GetEnumerator? The first thing to
understand is that we need to store some state somewhere. One important aspect of
the iterator pattern is that we don’t return all of the data in one go—the client just
asks for one element at a time. That means we need to keep track of how far we’ve
already gone through our array.

 So, where should this state live? Suppose we tried to put it in the IterationSample
class itself, making that implement IEnumerator as well as IEnumerable. At first sight,
this looks like a good plan—after all, the data is in the right place, including the start-
ing point. Our GetEnumerator method could just return this. However, there’s a big
problem with this approach—if GetEnumerator is called several times, several inde-
pendent iterators should be returned. For instance, we should be able to use two
foreach statements, one inside another, to get all possible pairs of values. That sug-
gests we need to create a new object each time GetEnumerator is called. We could still
implement the functionality directly within IterationSample, but then we’d have a
class that didn’t have a clear single responsibility—it would be pretty confusing.

Listing 6.1 Code using the (as yet unimplemented) new collection type

Listing 6.2 Skeleton of the new collection type, with no iterator implementation
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 Instead, let’s create another class to implement the iterator itself. We’ll use the fact
that in C# a nested type has access to its enclosing type’s private members, which
means we can just store a reference to the “parent” IterationSample, along with the
state of how far we’ve gone so far. This is shown in listing 6.3.

class IterationSampleIterator : IEnumerator
{
    IterationSample parent;              
    int position;                                                   

    internal IterationSampleIterator(IterationSample parent)
    {
        this.parent = parent;
        position = -1;        
    }

    public bool MoveNext()
    {
        if (position != parent.values.Length)
        {                                                  
            position++;                                
        }                                                  
        return position < parent.values.Length;
    }

    public object Current
    {
        get
        {
            if (position==-1 ||                           
                 position==parent.values.Length)
            {
                throw new InvalidOperationException();
            }
            int index = (position+parent.startingPoint);
            index = index % parent.values.Length;          
            return parent.values[index];
        }
    }

    public void Reset()
    {
        position = -1;
    }
}

What a lot of code to perform such a simple task! We remember the original collec-
tion of values we’re iterating over B and keep track of where we would be in a sim-
ple zero-based array C. To return an element we offset that index by the starting
point G. In keeping with the interface, we consider our iterator to start logically
before the first element D, so the client will have to call MoveNext before using the
Current property for the first time. The conditional increment at E makes the test

Listing 6.3 Nested class implementing the collection’s iterator

B Refers to 
collection we’re 
iterating over

C

Indicates 
how far we’ve 
iterated

D
Starts before 
first element

E Increments 
position if we’re 
still going

Prevents access before 
first or after last element

F

Implements 
wraparound

G

Moves back to 
before first element

H
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at F simple and correct even if MoveNext is called again after it’s first reported that
there’s no more data available. To reset the iterator, we set our logical position back
to “before the first element” H.

 Most of the logic involved is fairly straightforward, although there’s lots of room
for off-by-one errors; indeed, my first implementation failed its unit tests for precisely
that reason. The good news is that it works, and that we only need to implement
IEnumerable in IterationSample to complete the example:

public IEnumerator GetEnumerator()
{
    return new IterationSampleIterator(this);
}

I won’t reproduce the combined code here, but it’s available on the book’s website,
including listing 6.1, which now has the expected output.

 It’s worth bearing in mind that this is a relatively simple example—there’s not a lot
of state to keep track of, and no attempt to check whether the collection has changed
between iterations. With this large burden involved to implement a simple iterator, we
shouldn’t be surprised at the rarity of implementing the pattern in C# 1. Developers
have generally been happy to use foreach on the collections provided by the frame-
work, but they use more direct (and collection-specific) access when it comes to their
own collections.

 So, 40 lines of code to implement the iterator in C# 1, not including comments.
Let’s see if C# 2 can do any better.

6.2 C# 2: simple iterators with yield statements
I’ve always been the kind of person who likes to stay up until midnight on Christmas
Eve in order to open a present as soon as Christmas Day arrives. In the same way, I
think I’d find it almost impossible to wait any significant amount of time before show-
ing you how neat the solution is in C# 2.

6.2.1 Introducing iterator blocks and yield return

This chapter wouldn’t exist if C# 2 didn’t have a powerful feature that cut down the
amount of code you had to write to implement iterators. In some other topics the
amount of code has only been reduced slightly, or has just made something more ele-
gant. In this case, however, the amount of code required is reduced massively. Listing 6.4
shows the complete implementation of the GetEnumerator method in C# 2.

public IEnumerator GetEnumerator()
{
    for (int index=0; index < values.Length; index++)
    {
        yield return values[(index+startingPoint)%values.Length];
    }
}

Listing 6.4 Iterating through the sample collection with C# 2 and yield return

Much 

simpler, isn’t 

it?
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Four lines of implementation, two of which are just braces. Just to make it clear, that
replaces the whole of the IterationSampleIterator class. Completely. At least in the
source code… Later on we’ll see what the compiler has done behind our back, and
some of the quirks of the implementation it’s provided, but for the moment let’s look
at the source code we’ve used.

 The method looks like a perfectly normal one until you see the use of yield
return. That’s what tells the C# compiler that this isn’t a normal method but one
implemented with an iterator block. The method is declared to return an IEnumerator,
and you can only use iterator blocks to implement methods1 that have a return type of
IEnumerable, IEnumerator, or one of the generic equivalents. The yield type of the iter-
ator block is object if the declared return type of the method is a nongeneric inter-
face, or the type argument of the generic interface otherwise. For instance, a method
declared to return IEnumerable<string> would have a yield type of string.

 No normal return statements are allowed within iterator blocks—only yield
return. All yield return statements in the block have to try to return a value compat-
ible with the yield type of the block. To use our previous example, you couldn’t write
yield return 1; in a method declared to return IEnumerable<string>.

NOTE Restrictions on yield return—There are a few further restrictions on yield
statements. You can’t use yield return inside a try block if it has any
catch blocks, and you can’t use either yield return or yield break
(which we’ll come to shortly) in a finally block. That doesn’t mean you
can’t use try/catch or try/finally blocks inside iterators—it just
restricts what you can do in them.

The big idea that you need to get your head around when it comes to
iterator blocks is that although you’ve written a method that looks like it
executes sequentially, what you’ve actually asked the compiler to do is
create a state machine for you. This is necessary for exactly the same rea-
son we had to put so much effort into implementing the iterator in
C#1—the caller only wants to see one element at a time, so we need to
keep track of what we were doing when we last returned a value.
In iterator blocks, the compiler creates a state machine (in the form of a

nested type), which remembers exactly where we were within the block and what val-
ues the local variables (including parameters) had at that point. The compiler ana-
lyzes the iterator block and creates a class that is similar to the longhand
implementation we wrote earlier, keeping all the necessary state as instance variables.
Let’s think about what this state machine has to do in order to implement the iterator:

■ It has to have some initial state.
■ Whenever MoveNext is called, it has to execute code from the GetEnumerator

method until we’re ready to provide the next value (in other words, until we hit
a yield return statement). 

1 Or properties, as we’ll see later on. You can’t use an iterator block in an anonymous method, though.

Compiler 

does all 

the work!
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■ When the Current property is used, it has to return the last value we yielded.
■ It has to know when we’ve finished yielding values so that MoveNext can return

false.
The second point in this list is the tricky one, because it always needs to “restart” the
code from the point it had previously reached. Keeping track of the local variables (as
they appear in the method) isn’t too hard—they’re just represented by instance vari-
ables in the state machine. The restarting aspect is trickier, but the good news is that
unless you’re writing a C# compiler yourself, you needn’t care about how it’s achieved:
the result from a black box point of view is that it just works. You can write perfectly
normal code within the iterator block and the compiler is responsible for making sure
that the flow of execution is exactly as it would be in any other method; the difference
is that a yield return statement appears to only “temporarily” exit the method—you
could think of it as being paused, effectively.

 Next we’ll examine the flow of execution in more detail, and in a more visual way.

6.2.2 Visualizing an iterator’s workflow

It may help to think about how iterators execute in terms of a sequence diagram.2

Rather than drawing the diagram out by hand, let’s write a program to print it out
(listing 6.5). The iterator itself just provides a sequence of numbers (0, 1, 2, –1) and
then finishes. The interesting part isn’t the numbers provided so much as the flow of
the code.

static readonly string Padding = new string(' ', 30);

static IEnumerable<int> GetEnumerable()
{
    Console.WriteLine ("{0}Start of GetEnumerator()", Padding);
    
    for (int i=0; i < 3; i++)
    {
        Console.WriteLine ("{0}About to yield {1}", Padding, i);
        yield return i;
        Console.WriteLine ("{0}After yield", Padding);
    }

    Console.WriteLine ("{0}Yielding final value", Padding);
    yield return -1;

    Console.WriteLine ("{0}End of GetEnumerator()", Padding);
}

...

IEnumerable<int> iterable = GetEnumerable();
IEnumerator<int> iterator = iterable.GetEnumerator();

2 See http://en.wikipedia.org/wiki/Sequence_diagram if this is unfamiliar to you.

Listing 6.5 Showing the sequence of calls between an iterator and its caller



168 CHAPTER 6 Implementing iterators the easy way
Console.WriteLine ("Starting to iterate");
while (true)
{
    Console.WriteLine ("Calling MoveNext()...");
    bool result = iterator.MoveNext();
    Console.WriteLine ("... MoveNext result={0}", result);
    if (!result)
    {
        break;
    }
    Console.WriteLine ("Fetching Current...");
    Console.WriteLine ("... Current result={0}", iterator.Current);
}

Listing 6.5 certainly isn’t pretty, particularly around the iteration side of things. In
the normal course of events we’d just use a foreach loop, but to show exactly what’s
happening when, I had to break the use of the iterator out into little pieces. This
code broadly does what foreach does, although foreach also calls Dispose at the
end, which is important for iterator blocks, as we’ll see shortly. As you can see,
there’s no difference in the syntax within the method even though this time we’re
returning IEnumerable<int> instead of IEnumerator<int>. Here’s the output from
listing 6.5:

Starting to iterate
Calling MoveNext()...
                              Start of GetEnumerator()
                              About to yield 0
... MoveNext result=True
Fetching Current...
... Current result=0
Calling MoveNext()...
                              After yield
                              About to yield 1
... MoveNext result=True
Fetching Current...
... Current result=1
Calling MoveNext()...
                              After yield
                              About to yield 2
... MoveNext result=True
Fetching Current...
... Current result=2
Calling MoveNext()...
                              After yield
                              Yielding final value
... MoveNext result=True
Fetching Current...
... Current result=-1
Calling MoveNext()...
                              End of GetEnumerator()
... MoveNext result=False

There are various important things to note from this output:
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■ None of the code we wrote in GetEnumerator is called until the first call to
MoveNext.

■ Calling MoveNext is the place all the work gets done; fetching Current doesn’t
run any of our code.

■ The code stops executing at yield return and picks up again just afterwards at
the next call to MoveNext.

■ We can have multiple yield return statements in different places in the method.
■ The code doesn’t end at the last yield return—instead, the call to MoveNext

that causes us to reach the end of the method is the one that returns false.

There are two things we haven’t seen yet—an alternative way of halting the iteration,
and how finally blocks work in this somewhat odd form of execution. Let’s take a
look at them now. 

6.2.3 Advanced iterator execution flow

In normal methods, the return statement has two effects: First, it supplies the value
the caller sees as the return value. Second, it terminates the execution of the method,
executing any appropriate finally blocks on the way out. We’ve seen that the yield
return statement temporarily exits the method, but only until MoveNext is called
again, and we haven’t examined the behavior of finally blocks at all yet. How can we
really stop the method, and what happens to all of those finally blocks? We’ll start
with a fairly simple construct—the yield break statement.
ENDING AN ITERATOR WITH YIELD BREAK
You can always find a way to make a method have a single exit point, and many people
work very hard to achieve this.3 The same techniques can be applied in iterator
blocks. However, should you wish to have an “early out,” the yield break statement is
your friend. This effectively terminates the iterator, making the current call to Move-
Next return false.

 Listing 6.6 demonstrates this by counting up to 100 but stopping early if it runs out
of time. This also demonstrates the use of a method parameter in an iterator block,4

and proves that the name of the method is irrelevant.

static IEnumerable<int> CountWithTimeLimit(DateTime limit)
{
    for (int i=1; i <= 100; i++)
    {
        if (DateTime.Now >= limit)
        {
            yield break;

3 I personally find that the hoops you have to jump through to achieve this often make the code much harder
to read than just having multiple return points, especially as try/finally is available for cleanup and you
need to account for the possibility of exceptions occurring anyway. However, the point is that it can all be done.

4 Note that methods taking ref or out parameters can’t be implemented with iterator blocks.

Listing 6.6 Demonstration of yield break

Stops if our 
time is up
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        }
        yield return i;
    }
}
...

DateTime stop = DateTime.Now.AddSeconds(2);
foreach (int i in CountWithTimeLimit(stop))
{
    Console.WriteLine ("Received {0}", i);
    Thread.Sleep(300);
}

Typically when you run listing 6.6 you’ll see about seven lines of output. The foreach
loop terminates perfectly normally—as far as it’s concerned, the iterator has just run
out of elements to iterate over. The yield break statement behaves very much like a
return statement in a normal method.

 So far, so simple. There’s one last aspect execution flow to explore: how and when
finally blocks are executed.
EXECUTION OF FINALLY BLOCKS
We’re used to finally blocks executing whenever we leave the relevant scope. Itera-
tor blocks don’t behave quite like normal methods, though—as we’ve seen, a yield
return statement effectively pauses the method rather than exiting it. Following that
logic, we wouldn’t expect any finally blocks to be executed at that point—and
indeed they aren’t.

 However, appropriate finally blocks are executed when a yield break statement is
hit, just as you’d expect them to be when returning from a normal method.5 Listing 6.7
shows this in action—it’s the same code as listing 6.6, but with a finally block. The
changes are shown in bold.

static IEnumerable<int> CountWithTimeLimit(DateTime limit)
{
    try
    {
        for (int i=1; i <= 100; i++)
        {
            if (DateTime.Now >= limit)
            {
                yield break;                
            }
            yield return i;                 
        }
    }
    finally
    {

5 They’re also called when execution leaves the relevant scope without reaching either a yield return or a
yield break statement. I’m only focusing on the behavior of the two yield statements here because that’s
where the flow of execution is new and different.

Listing 6.7 Demonstration of yield break working with try/finally
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        Console.WriteLine ("Stopping!");
    }
}
...

DateTime stop = DateTime.Now.AddSeconds(2);
foreach (int i in CountWithTimeLimit(stop))
{
    Console.WriteLine ("Received {0}", i);
    Thread.Sleep(300);
}

The finally block in listing 6.7 is executed whether the iterator block just finishes by
counting to 100, or whether it has to stop due to the time limit being reached. (It
would also execute if the code threw an exception.) However, there are other ways we
might try to avoid the finally block from being called… let’s try to be sneaky.

 We’ve seen that code in the iterator block is only executed when MoveNext is
called. So what happens if we never call MoveNext? Or if we call it a few times and then
stop? Let’s consider changing the “calling” part of listing 6.7 to this:

DateTime stop = DateTime.Now.AddSeconds(2);
foreach (int i in CountWithTimeLimit(stop))
{
    Console.WriteLine ("Received {0}", i);
    if (i > 3)
    {
        Console.WriteLine("Returning");
        return;
    }
    Thread.Sleep(300);
}

Here we’re not stopping early in the iterator code—we’re stopping early in the code
using the iterator. The output is perhaps surprising:

Received 1
Received 2
Received 3
Received 4
Returning
Stopping!

Here, code is being executed after the return statement in the foreach loop. That
doesn’t normally happen unless there’s a finally block involved—and in this case
there are two! We already know about the finally block in the iterator method, but
the question is what’s causing it to be executed. I gave a hint to this earlier on—
foreach calls Dispose on the IEnumerator it’s provided with, in its own finally block
(just like the using statement). When you call Dispose on an iterator created with an
iterator block before it’s finished iterating, the state machine executes any finally
blocks that are in the scope of where the code is currently “paused.”

 We can prove very easily that it’s the call to Dispose that triggers this by using the
iterator manually:

Executes however 
the loop ends
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DateTime stop = DateTime.Now.AddSeconds(2);
IEnumerable<int> iterable = CountWithTimeLimit(stop);
IEnumerator<int> iterator = iterable.GetEnumerator();

iterator.MoveNext();
Console.WriteLine ("Received {0}", iterator.Current);

iterator.MoveNext();
Console.WriteLine ("Received {0}", iterator.Current);

This time the “stopping” line is never printed. It’s relatively rare that you’ll want to ter-
minate an iterator before it’s finished, and it’s relatively rare that you’ll be iterating
manually instead of using foreach, but if you do, remember to wrap the iterator in a
using statement.

 We’ve now covered most of the behavior of iterator blocks, but before we end
this section it’s worth considering a few oddities to do with the current Microsoft
implementation. 

6.2.4 Quirks in the implementation

If you compile iterator blocks with the Microsoft C# 2 compiler and look at the result-
ing IL in either ildasm or Reflector, you’ll see the nested type that the compiler has
generated for us behind the scenes. In my case when compiling our (evolved) first
iterator block example, it was called IterationSample.<GetEnumerator>d__0 (where
the angle brackets aren’t indicating a generic type parameter, by the way). I won’t go
through exactly what’s generated in detail here, but it’s worth looking at it in Reflec-
tor to get a feel for what’s going on, preferably with the language specification next to
you: the specification defines different states the type can be in, and this description
makes the generated code easier to follow.

 Fortunately, as developers we don’t need to care much about the hoops the com-
piler has to jump through. However, there are a few quirks about the implementation
that are worth knowing about:

■ Before MoveNext is called for the first time, the Current property will always
return null (or the default value for the relevant type, for the generic interface).

■ After MoveNext has returned false, the Current property will always return the
last value returned.

■ Reset always throws an exception instead of resetting like our manual imple-
mentation did. This is required behavior, laid down in the specification.

■ The nested class always implements both the generic and nongeneric form of
IEnumerator (and the generic and nongeneric IEnumerable where appropriate).

Failing to implement Reset is quite reasonable—the compiler can’t reasonably work
out what you’d need to do in order to reset the iterator, or even whether it’s feasible.
Arguably Reset shouldn’t have been in the IEnumerator interface to start with, and I
certainly can’t remember the last time I called it.

 Implementing extra interfaces does no harm either. It’s interesting that if your
method returns IEnumerable you end up with one class implementing five interfaces
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(including IDisposable). The language specification explains it in detail, but the
upshot is that as a developer you don’t need to worry.

 The behavior of Current is odd—in particular, keeping hold of the last item after
supposedly moving off it could keep it from being garbage collected. It’s possible that
this may be fixed in a later release of the C# compiler, though it’s unlikely as it could
break existing code.6 Strictly speaking, it’s correct from the C# 2 language specifica-
tion point of view—the behavior of the Current property is undefined. It would be
nicer if it implemented the property in the way that the framework documentation
suggests, however, throwing exceptions at appropriate times.

 So, there are a few tiny drawbacks from using the autogenerated code, but sensible
callers won’t have any problems—and let’s face it, we’ve saved a lot of code in order to
come up with the implementation. This means it makes sense to use iterators more
widely than we might have done in C# 1. Our next section provides some sample code
so you can check your understanding of iterator blocks and see how they’re useful in
real life rather than just in theoretical scenarios. 

6.3 Real-life example: iterating over ranges
Have you ever written some code that is really simple in itself but makes your project
much neater? It happens to me every so often, and it usually makes me happier than it
probably ought to—enough to get strange looks from colleagues, anyway. That sort of
slightly childish delight is particularly strong when it comes to using a new language
feature in a way that is clearly nicer and not just doing it for the sake of playing with
new toys.

6.3.1 Iterating over the dates in a timetable

While working on a project involving timetables, I came across a few loops, all of
which started like this:

for (DateTime day = timetable.StartDate; 
      day <= timetable.EndDate; 
      day = day.AddDays(1))

I was working on this area of code quite a lot, and I always hated that loop, but it was
only when I was reading the code out loud to another developer as pseudo-code that I
realized I was missing a trick. I said something like, “For each day within the time-
table.” In retrospect, it’s obvious that what I really wanted was a foreach loop. (This
may well have been obvious to you from the start—apologies if this is the case. Fortu-
nately I can’t see you looking smug.) The loop is much nicer when rewritten as

foreach (DateTime day in timetable.DateRange)

In C# 1, I might have looked at that as a fond dream but not bothered implementing
it: we’ve seen how messy it is to implement an iterator by hand, and the end result

6 The Microsoft C# 3 compiler shipping with .NET 3.5 behaves in the same way.



174 CHAPTER 6 Implementing iterators the easy way
only made a few for loops neater in this case. In C# 2, however, it was easy. Within the
class representing the timetable, I simply added a property:

public IEnumerable<DateTime> DateRange
{
    get
    {
        for (DateTime day = StartDate;
              day <= EndDate; 
              day = day.AddDays(1))
        {
            yield return day;
        }
    }
}

Now this has clearly just moved the original loop into the timetable class, but that’s OK—
it’s much nicer for it to be encapsulated there, in a property that just loops through the
days, yielding them one at a time, than to be in business code that was dealing with those
days. If I ever wanted to make it more complex (skipping weekends and public holidays,
for instance), I could do it in one place and reap the rewards everywhere.

 I thought for a while about making the timetable class implement IEnumerable
<DateTime> itself, but shied away from it. Either way would have worked, but it so hap-
pened that the property led me toward the next step: why should the DateRange prop-
erty just be iterable? Why isn’t it a fully fledged object that can be iterated over, asked
whether or not it contains a particular date, as well as for its start and end dates? While
we’re at it, what’s so special about DateTime? The concept of a range that can be
stepped through in a particular way is obvious and applies to many types, but it’s still
surprisingly absent from the Framework libraries.

 For the rest of this section we’ll look at implementing a simple Range class (and
some useful classes derived from it). To keep things simple (and printable), we won’t
make it as feature-rich as we might want—there’s a richer version in my open source
miscellaneous utility library7 that collects odds and ends as I occasionally write small
pieces of useful code.

6.3.2 Scoping the Range class

First we’ll decide (broadly) what we want the type to do, as well as what it doesn’t need
to be able to do. When developing the class, I applied test-driven development to work
out what I wanted. However, the frequent iterative nature of test-driven development
(TDD) doesn’t work as well in a book as it does in reality, so I’ll just lay down the
requirements to start with:

■ A range is defined by a start value and an end value (of the same type, the “ele-
ment type”).

■ We must be able to compare one value of the element type with another.

7 http://pobox.com/~skeet/csharp/miscutil
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■ We want to be able to find out whether a particular value is within the range.
■ We want to be able to iterate through the range easily.

The last point is obviously the most important one for this chapter, but the others
shape the fundamental decisions and ask further questions. In particular, it seems
obvious that this should use generics, but should we allow any type to be used for the
bounds of the range, using an appropriate IComparer, or should we only allow types
that implement IComparable<T>, where T is the same type? When we’re iterating, how
do we move from one value to another? Should we always have to be able to iterate
over a range, even if we’re only interested in the other aspects? Should we be able to
have a “reverse” range (in other words, one with a start that is greater than the end,
and therefore counts down rather than up)? Should the start and end points be exclu-
sive or inclusive?

 All of these are important questions, and the normal answers would promote flexi-
bility and usefulness of the type—but our overriding priority here is to keep things
simple. So:

■ We’ll make comparisons simple by constraining the range’s type parameter T to
implement IComparable<T>.

■ We’ll make the class abstract and require a GetNextValue method to be imple-
mented, which will be used during iteration.

■ We won’t worry about the idea of a range that can’t be iterated over.
■ We won’t allow reverse ranges (so the end value must always be greater than or

equal to the start value).
■ Start and end points will both be inclusive (so both the start and end points are

considered to be members of the range). One consequence of this is that we
can’t represent an empty range.

The decision to make it an abstract class isn’t as limiting as it possibly sounds—it
means we’ll have derived classes like Int32Range and DateTimeRange that allow you to
specify the “step” to use when iterating. If we ever wanted a more general range, we
could always create a derived type that allows the step to be specified as a Converter
delegate. For the moment, however, let’s concentrate on the base type. With all the
requirements specified,8 we’re ready to write the code.

6.3.3 Implementation using iterator blocks

With C# 2, implementing this (fairly limited) Range type is remarkably easy. The hardest
part (for me) is remembering how IComparable<T>.CompareTo works. The trick I usu-
ally use is to remember that if you compare the return value with 0, the result is the same
as applying that comparison operator between the two values involved, in the order
they’re specified. So x.CompareTo(y) < 0 has the same meaning as x < y, for example.

8 If only real life were as simple as this. We haven’t had to get project approval and specification sign-off from
a dozen different parties, nor have we had to create a project plan complete with resource requirements.
Beautiful!
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 Listing 6.8 is the complete Range class, although we can’t quite use it yet as it’s still
abstract.

using System;
using System.Collections;
using System.Collections.Generic;

public abstract class Range<T> : IEnumerable<T> 
    where T : IComparable<T>                        
{
    readonly T start;
    readonly T end;

    public Range(T start, T end)
    {
        if (start.CompareTo(end) > 0)
        {
            throw new ArgumentOutOfRangeException();
        }
        this.start = start;
        this.end = end;
    }

    public T Start
    {
        get { return start; }
    }

    public T End
    {
        get { return end; }
    }

    public bool Contains(T value)                   
    {
        return value.CompareTo(start) >= 0 &&
                  value.CompareTo(end) <= 0;
    }

    public IEnumerator<T> GetEnumerator()
    {
        T value = start;
        while (value.CompareTo(end) < 0)
        {
            yield return value;
            value = GetNextValue(value);
        }
        if (value.CompareTo(end) == 0)
        {
            yield return value;
        }
    }

    IEnumerator IEnumerable.GetEnumerator()
    {

Listing 6.8 The abstract Range class allowing flexible iteration over its values

B
Ensures we can 
compare values

Prevents 
“reversed” 
ranges

C

D

Implements 
IEnumerable<T> 
implicitly

Implements 
IEnumerable 
explicitly

E
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        return GetEnumerator();
    }

    protected abstract T GetNextValue(T current);
}

The code is quite straightforward, due to C# 2’s iterator blocks. The type constraint on
T B ensures that we’ll be able to compare two values, and we perform an execution-
time check to prevent a range being constructed with a lower bound higher than the
upper bound C. We still need to work around the problem of implementing both
IEnumerable<T> and IEnumerable by using explicit interface implementation for the
nongeneric type E and exposing the generic interface implementation in the more
usual, implicit way D. If you don’t immediately see why this is necessary, look back to
the descriptions in sections 2.2.2 and 3.4.3.

 The actual iteration merely starts with the lower end of the range, and repeatedly
fetches the next value by calling the abstract GetNextValue method F until we’ve
reached or exceeded the top of the range. If the last value found is in the range, we
yield that as well. Note that the GetNextValue method shouldn’t need to keep any
state—given one value, it should merely return the next one in the range. This is use-
ful as it means that we should be able to make most of the derived types immutable,
which is always nice. It’s easy to derive from Range, and we’ll implement the two
examples given earlier—a range for dates and times (DateTimeRange) and a range
for integers (Int32Range). They’re very short and very similar—listing 6.9 shows both
of them together.

using System;
public class DateTimeRange : Range<DateTime>
{
    readonly TimeSpan step;

    public DateTimeRange(DateTime start, DateTime end)
        : this (start, end, TimeSpan.FromDays(1))  
    { }

    public DateTimeRange(DateTime start,
                                  DateTime end, 
                                  TimeSpan step)
        : base(start, end)
    {
        this.step = step;
    }

    protected override DateTime GetNextValue(DateTime current)
    {
        return current + step;
    }
}

public class Int32Range : Range<int>
{
    readonly int step;

Listing 6.9 Two classes derived from Range, to iterate over dates/times and integers

“Steps” from 
one value to 
the next

F

Uses 
default 
step

Uses 
specified 
step

Uses step to
find next value
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    public Int32Range(int start, int end)
        : this (start, end, 1)
    { }

    public Int32Range(int start, int end, int step)
        : base(start, end)
    {
        this.step = step;
    }

    protected override int GetNextValue(int current)
    {
        return current + step;
    }
}

If we could have specified addition (potentially using another type) as a type parame-
ter, we could have used a single type everywhere, which would have been neat. There
are other obvious candidates, such as SingleRange, DoubleRange, and DecimalRange,
which I haven’t shown here. Even though we have to derive an extra class for each
type we want to iterate over, the gain over C# 1 is still tremendous. Without generics
there would have been casts everywhere (and boxing for value types, which probably
includes most types you want to use for ranges), and without iterator blocks the code
for the separate iterator type we’d have needed would probably have been about as
long as the base class itself. It’s worth noting that when we use the step to find the next
value we don’t need to change anything within the instance—both of these types are
immutable and so can be freely shared between threads, returned as properties, and
used for all kinds of other operations without fear.

 With the DateTimeRange type in place, I could replace the DateRange property in
my timetable application, and remove the StartDate and EndDate properties entirely.
The closely related values are now nicely encapsulated, the birds are singing, and all is
right with the world. There’s a lot more we could do to our Range type, but for the
moment it’s served its purpose well.

 The Range type is just one example of a way in which iteration presents itself as a
natural option in C# 2 where it would have been significantly less elegant in C# 1. I
hope you’ll consider it next time you find yourself writing a start/end pair of variables
or properties. As examples go, however, it’s pretty tame—iterating over a range isn’t
exactly a novel idea. To close the chapter, we’ll look at a considerably less conven-
tional use of iterator blocks—this time for the purpose of providing one side of a mul-
tithreaded conversation.

6.4 Pseudo-synchronous code with 
the Concurrency and Coordination Runtime
The Concurrency and Coordination Runtime (CCR) is a library developed by Microsoft to
offer an alternative way of writing asynchronous code that is amenable to complex
coordination. At the time of this writing, it’s only available as part of the Microsoft
Robotics Studio,9 although hopefully that will change. We’re not going to delve into
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the depths of it—fascinating as it is—but it has one very interesting feature that’s rele-
vant to this chapter. Rather than present real code that could compile and run (involv-
ing pages and pages of description of the library), we’ll just look at some pseudo-code
and the ideas behind it. The purpose of this section isn’t to think too deeply about
asynchronous code, but to show how by adding intelligence to the compiler, a differ-
ent form of programming becomes feasible and reasonably elegant. The CCR uses
iterator blocks in an interesting way that takes a certain amount of mental effort to
start with. However, once you see the pattern it can lead to a radically different way of
thinking about asynchronous execution.

 Suppose we’re writing a server that needs to handle lots of requests. As part of
dealing with those requests, we need to first call a web service to fetch an authentica-
tion token, and then use that token to get data from two independent data sources
(say a database and another web service). We then process that data and return the
result. Each of the fetch stages could take a while—a second, say. The normal two
options available are simply synchronous and asynchronous. The pseudo-code for the
synchronous version might look something like this:

HoldingsValue ComputeTotalStockValue(string user, string password)
{
    Token token = AuthService.Check(user, password);
    Holdings stocks = DbService.GetStockHoldings(token);
    StockRates rates = StockService.GetRates(token);

    return ProcessStocks(stocks, rates);
}

That’s very simple and easy to understand, but if each request takes a second, the
whole operation will take three seconds and tie up a thread for the whole time
it’s running. If we want to scale up to hundreds of thousands of requests running in
parallel, we’re in trouble. Now let’s consider a fairly simple asynchronous version,
which avoids tying up a thread when nothing’s happening10 and uses parallel calls
where possible: 

void StartComputingTotalStockValue(string user, string password)
{
    AuthService.BeginCheck(user, password, AfterAuthCheck, null);
}

void AfterAuthCheck(IAsyncResult result)
{
    Token token = AuthService.EndCheck(result);
    IAsyncResult holdingsAsync = DbService.BeginGetStockHoldings
        (token, null, null);    
    StockService.BeginGetRates
        (token, AfterGetRates, holdingsAsync);

}

9 http://www.microsoft.com/robotics
10 Well, mostly—in order to keep it relatively simple, it might still be inefficient as we’ll see in a moment.
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void AfterGetRates(IAsyncResult result)
{
    IAsyncResult holdingsAsync = (IAsyncResult)result.AsyncState;
    StockRates rates = StockService.EndGetRates(result);
    Holdings holdings = DbService.EndGetStockHoldings
        (holdingsAsync);

    OnRequestComplete(ProcessStocks(stocks, rates));
}

This is much harder to read and understand—and that’s only a simple version! The
coordination of the two parallel calls is only achievable in a simple way because we
don’t need to pass any other state around, and even so it’s not ideal. (It will still block
a thread waiting for the database call to complete if the second web service call com-
pletes first.) It’s far from obvious what’s going on, because the code is jumping around
different methods so much.

 By now you may well be asking yourself where iterators come into the picture. Well,
the iterator blocks provided by C# 2 effectively allow you to “pause” current execution
at certain points of the flow through the block, and then come back to the same place,
with the same state. The clever folks designing the CCR realized that that’s exactly
what’s needed for something called a continuation-passing style of coding. We need to
tell the system that there are certain operations we need to perform—including start-
ing other operations asynchronously—but that we’re then happy to wait until the
asynchronous operations have finished before we continue. We do this by providing
the CCR with an implementation of IEnumerator<ITask> (where ITask is an interface
defined by the CCR). Here’s pseudo-code for our request handling in this style:

IEnumerator<ITask> ComputeTotalStockValue(string user, string pass)
{
    Token token = null;

    yield return Ccr.ReceiveTask(
        AuthService.CcrCheck(user, pass)  
            delegate(Token t){ token = t; }
    );

    Holdings stocks = null;
    StockRates rates = null;
    yield return Ccr.MultipleReceiveTask(
        DbService.CcrGetStockHoldings(token),
        StockService.CcrGetRates(token),
        delegate(Stocks s, StockRates sr) 
            { stocks = s; rates = sr; }
    );

    OnRequestComplete(ProcessStocks(stocks, rates));
}

Confused? I certainly was when I first saw it—but now I’m somewhat in awe of how neat
it is. The CCR will call into our code (with a call to MoveNext on the iterator), and we’ll
execute until and including the first yield return statement. The CcrCheck method
within AuthService would kick off an asynchronous request, and the CCR would wait
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(without using a dedicated thread) until it had completed, calling the supplied dele-
gate to handle the result. It would then call MoveNext again, and our method would
continue. This time we kick off two requests in parallel, and the CCR to call another del-
egate with the results of both operations when they’ve both finished. After that, Move-
Next is called for a final time and we get to complete the request processing.

 Although it’s obviously more complicated than the synchronous version, it’s still all
in one method, it will get executed in the order written, and the method itself can
hold the state (in the local variables, which become state in the extra type generated
by the compiler). It’s fully asynchronous, using as few threads as it can get away with. I
haven’t shown any error handling, but that’s also available in a sensible fashion that
forces you to think about the issue at appropriate places.

 It all takes a while to get your head around (at least unless you’ve seen continuation-
passing style code before) but the potential benefits in terms of writing correct, scalable
code are enormous—and it’s only feasible in such a neat way due to C# 2’s syntactic
sugar around iterators and anonymous methods. The CCR hasn’t hit the mainstream at
the time of writing, but it’s possible that it will become another normal part of the
development toolkit11—and that other novel uses for iterator blocks will be thought up
over time. As I said earlier, the point of the section is to open your mind to possible uses
of the work that the compiler can do for you beyond just simple iteration.

6.5 Summary
C# supports many patterns indirectly, in terms of it being feasible to implement them
in C#. However, relatively few patterns are directly supported in terms of language fea-
tures being specifically targeted at a particular pattern. In C# 1, the iterator pattern
was directly supported from the point of view of the calling code, but not from the
perspective of the collection being iterated over. Writing a correct implementation of
IEnumerable was time-consuming and error-prone, without being interesting. In C# 2
the compiler does all the mundane work for you, building a state machine to cope
with the “call-back” nature of iterators.

 It should be noted that iterator blocks have one aspect in common with the anony-
mous methods we saw in chapter 5, even though the actual features are very different.
In both cases, extra types may be generated, and a potentially complicated code trans-
formation is applied to the original source. Compare this with C# 1 where most of the
transformations for syntactic sugar (lock, using, and foreach being the most obvious
examples) were quite straightforward. We’ll see this trend toward smarter compilation
continuing with almost every aspect of C# 3.

 As well as seeing a real-life example of the use of iterators, we’ve taken a look at
how one particular library has used them in a fairly radical way that has little to do
with what comes to mind when we think about iteration over a collection. It’s worth
bearing in mind that different languages have also looked at this sort of problem

11 Some aspects of the CCR may also become available as part of the Parallel Extensions library described in
chapter 13.
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before—in computer science the term coroutine is applied to concepts of this nature.
Different languages have historically supported them to a greater or lesser extent,
with tricks being applicable to simulate them sometimes—for example, Simon
Tatham has an excellent article12 on how even C can express coroutines if you’re will-
ing to bend coding standards somewhat. We’ve seen that C# 2 makes coroutines easy
to write and use.

 Having seen some major and sometimes mind-warping language changes focused
around a few key features, our next chapter is a change of pace. It describes a number
of small changes that make C# 2 more pleasant to work with than its predecessor,
learning from the little niggles of the past to produce a language that has fewer rough
edges, more scope for dealing with awkward backward-compatibility cases, and a bet-
ter story around working with generated code. Each feature is relatively straightfor-
ward, but there are quite a few of them…

 

12 http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html



Concluding C# 2:
 the final features
So far we’ve looked at the four biggest new features of C# 2: generics, nullable types,
delegate enhancements, and iterator blocks. Each of these addresses a fairly complex
requirement, which is why we’ve gone into each of them in some depth. The remain-
ing new features of C# 2 are knocking a few rough edges off C# 1. They’re little niggles
that the language designers decided to correct—either areas where the language
needed a bit of improvement for its own sake, or where the experience of working
with code generation and native code could be made more pleasant.

This chapter covers
■ Partial types
■ Static classes
■ Separate getter/setter property access
■ Namespace aliases
■ Pragma directives
■ Fixed-size buffers
■ Friend assemblies
183
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 Over time, Microsoft has received a lot of feedback from the C# community (and
its own developers, no doubt) about areas where C# hasn’t gleamed quite as brightly
as it might. Although it’s impossible to please everyone—and in particular the value of
each feature has to be weighed against the extra complexity it might bring to the lan-
guage—several smaller changes made it into C# 2 along with the larger ones.

 None of the features in this chapter are particularly difficult, and we’ll go through
them fairly quickly. Don’t underestimate how important they are, however—just
because a topic can be explored in a few pages doesn’t mean it’s useless. You’re likely
to use some of these features on a fairly frequent basis. Here’s a quick rundown of the
features covered in this chapter, so you know what to expect:

■ Partial types—The ability to write the code for a type in multiple source files;
particularly handy for types where part of the code is autogenerated and the
rest is written manually.

■ Static classes—Tidying up utility classes so that the compiler can make it clearer
when you’re trying to use them inappropriately.

■ Separate getter/setter property access—Finally, the ability to have a public getter and
a private setter for properties! (That’s not the only combination available, but
it’s the most common one.)

■ Namespace aliases—Ways out of sticky situations where type names aren’t unique.
■ Pragma directives—Compiler-specific instructions for actions such as suppressing

specific warnings for a particular section of code.
■ Fixed-size buffers—More control over how structs handle arrays in unsafe code.
■ InternalsVisibleToAttribute (friend assemblies)—A feature spanning library, frame-

work, and runtime, this allows selected assemblies more access when required.

You may well be itching to get on to the sexy stuff from C# 3 by this point, and I don’t
blame you. Nothing in this chapter is going to set the world on fire—but each of these
features can make your life more pleasant, or dig you out of a hole in some cases. Hav-
ing dampened your expectations somewhat, our first feature is actually pretty nifty.

7.1 Partial types
The first change we’ll look at is due to the power struggle that was usually involved
when using code generators with C# 1. For Windows Forms, the designer in Visual Stu-
dio had to have its own regions of code that couldn’t be touched by developers, within
the same file that developers had to edit for user interface functionality. This was
clearly a brittle situation.

 In other cases, code generators create source that is compiled alongside manually
written code. In C# 1, adding extra functionality involved deriving new classes from the
autogenerated ones, which is ugly. There are plenty of other scenarios where having an
unnecessary link in the inheritance chain can cause problems or reduce encapsulation.
For instance, if two different parts of your code want to call each other, you need virtual
methods for the parent type to call the child, and protected methods for the reverse sit-
uation, where normally you’d just use two private nonvirtual methods.
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 C# 2 allows more than one file to contribute to a type, and indeed IDEs can extend
this notion so that some of the code that is used for a type may not even be visible as
C# source code at all. Types built from multiple source files are called partial types.

 In this section we’ll also learn about partial methods, which are only relevant in par-
tial types and allow a rich but efficient way of adding manually written hooks into
autogenerated code. This is actually a C# 3 feature (this time based on feedback about
C# 2), but it’s far more logical to discuss it when we examine partial types than to wait
until the next part of the book.

7.1.1 Creating a type with multiple files

Creating a partial type is a cinch—you just need to include the partial contextual
keyword in the declaration for the type in each file it occurs in. A partial type can be
declared within as many files as you like, although all the examples in this section
use two.

 The compiler effectively combines all the source files together before compiling.
This means that code in one file can call code in another and vice versa, as shown in
figure 7.1—there’s no need for “forward references” or other tricks.

 You can’t write half of a member in one file and half of it in another—each individ-
ual member has to be complete within its own file.1 There are a few obvious restric-
tions about the declarations of the type—the declarations have to be compatible. Any
file can specify interfaces to be implemented (and they don’t have to be implemented
in that file); any file can specify the base type; any file can specify a type parameter
constraint. However, if multiple files specify a base type, those base types have to be
the same, and if multiple files specify type parameter constraints, the constraints have
to be identical. Listing 7.1 gives an example of the flexibility afforded (while not
doing anything even remotely useful).

1 There’s an exception here: partial types can contain nested partial types spread across the same set of files.

 partial class Example

{

     void FirstMethod()

    {

         SecondMethod();

    }

     void ThirdMethod()

    {

    }

}

 partial class Example

 {

     void SecondMethod()

     {

         ThirdMethod();

     }

 }

Example1.cs Example2.cs

Figure 7.1 Code in partial types is able to “see” all of the members of the type, 
regardless of which file each member is in.
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// Example1.cs
using System;

partial class Example<TFirst,TSecond>
    : IEquatable<string>                    
    where TFirst : class                     
{
    public bool Equals(string other))
    {
        return false;
    }
}

// Example2.cs
using System;

partial class Example<TFirst,TSecond>
    : EventArgs, IDisposable               
{
    public void Dispose()
    {
    }
}

I stress that this listing is solely for the purpose of talking about what’s legal in a decla-
ration—the types involved were only picked for convenience and familiarity. We can
see that both declarations (B and D) contribute to the list of interfaces that must
be implemented. In this example, each file implements the interfaces it declares,
and that’s a common scenario, but it would be legal to move the implementation of
IDisposable E to Example1.cs and the implementation of IEquatable<string> C
to Example2.cs. Only B specified any type constraints, and only C specified a base
class. If B specified a base class, it would have to be EventArgs, and if D specified
any type constraints they’d have to be exactly as in B. In particular, we couldn’t spec-
ify a type constraint for TSecond in D even though it’s not mentioned in B. Both
types have to have the same access modifier, if any—we couldn’t make one declara-
tion internal and the other public, for example.

 In “single file” types, initialization of member and static variables is guaranteed to
occur in the order they appear in the file, but there’s no guaranteed order when mul-
tiple files are involved. Relying on the order of declaration within the file is brittle to
start with—it leaves your code wide open to subtle bugs if a developer decides to
“harmlessly” move things around. So, it’s worth avoiding this situation where you can
anyway, but particularly avoid it with partial types.

 Now that we know what we can and can’t do, let’s take a closer look at why we’d
want to do it.

7.1.2 Uses of partial types

As I mentioned earlier, partial types are primarily useful in conjunction with designers
and other code generators. If a code generator has to modify a file that is “owned” by
a developer, there’s always a risk of things going wrong. With the partial types model, a

Listing 7.1 Demonstration of mixing declarations of a partial type

Specifies interface 
and type parameter 
constraint

B

C
Implements 
IEquatable<string>

Specifies base 
class and interface

D

E
Implements 
IDisposable
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code generator can own the file where it will work, and completely overwrite the
whole file every time it wants to.

 Some code generators may even choose not to generate a C# file at all until the
build is well under way. For instance, the Windows Presentation Foundation version of
the Snippy application has Extensible Application Markup Language (XAML) files
that describe the user interface. When the project is built, each XAML file is converted
into a C# file in the obj directory (the filenames end with “.g.cs” to show they’ve been
generated) and compiled along with the partial class providing extra code for that
type (typically event handlers and extra construction code). This completely prevents
developers from tweaking the generated code, at least without going to extreme
lengths of hacking the build file.

 I’ve been careful to use the phrase code generator instead of just designer because
there are plenty of code generators around besides designers. For instance, in Visual
Studio 2005 web service proxies are generated as partial classes, and you may well
have your own tools that generate code based on other data sources. One reasonably
common example of this is Object Relational Mapping (ORM)—some ORM tools use
database entity descriptions from a configuration file (or straight from the database)
and generate partial classes representing those entities.

 This makes it very straightforward to add behavior to the type: overriding virtual
methods of the base class, adding new members with business logic, and so forth. It’s a
great way of letting the developer and the tool work together, rather than constantly
squabbling about who’s in charge.

 One scenario that is occasionally useful is for one file to be generated containing
multiple partial types, and then some of those types are enhanced in other files, one
manually generated file per type. To return to the ORM example, the tool could gen-
erate a single file containing all the entity definitions, and some of those entities could
have extra code provided by the developer, using one file per entity. This keeps the
number of automatically generated files low, but still provides good visibility of the
manual code involved.

 Figure 7.2 shows how the uses of partial types for XAML and entities are similar, but
with slightly different timing involved when it comes to creating the autogenerated C#
code.

 A somewhat different use of partial types is as an aid to refactoring. Sometimes a
type gets too big and assumes too many responsibilities. One first step to dividing the
bloated type into smaller, more coherent ones can be to first split it into a partial type
over two or more files. This can be done with no risk and in an experimental manner,
moving methods between files until each file only addresses a particular concern.
Although the next step of splitting the type up is still far from automatic at that stage,
it should be a lot easier to see the end goal.

 When partial types first appeared in C# 2, no one knew exactly how they’d be used.
One feature that was almost immediately requested was a way to provide optional
“extra” code for generated methods to call. This need has been addressed by C# 3 with
partial methods.
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7.1.3 Partial methods—C# 3 only!

Just to reiterate my previous explanation, I realize that the rest of this part of the book
has just been dealing with C# 2 features—but partial methods don’t fit with any of the
other C# 3 features and they do fit in very well when describing partial types. Apologies
for any confusion this may cause.

 Back to the feature: sometimes we want to be able to specify behavior in a manually
created file and use that behavior from an automatically generated file. For instance,
in a class that has lots of automatically generated properties, we might want to be able
to specify code to be executed as validation of a new value for some of those proper-
ties. Another common scenario is for a code-generation tool to include construc-
tors—manually written code often wants to hook into object construction to set
default values, perform some logging, and so forth.

 In C# 2, these requirements could only be met either by using events that the man-
ually generated code could subscribe to, or by making the automatically generated
code assume that the handwritten code will include methods of a particular name—
making the whole code fail to compile unless the relevant methods are provided.
Alternatively, the generated code can provide a base class with virtual methods that do
nothing by default. The manually generated code can then derive from the class and
override some or all of the methods.

 All of these solutions are somewhat messy. C# 3’s partial methods effectively pro-
vide optional hooks that have no cost whatsoever if they’re not implemented—any calls
to the unimplemented partial methods are removed by the compiler. It’s easiest to
understand this with an example. Listing 7.2 shows a partial type specified in two files,
with the constructor in the automatically generated code calling two partial methods,
one of which is implemented in the manually generated code.

GuiPage.xaml.cs
(Handwritten C#)

GuiPage.xaml
(XAML)

GuiPage.g.cs
(C#)

GuiPage type
(Part of an assembly)

XAML to C#
converter

(Build time)

Customer.cs
(Handwritten C#)

Schema/model
(Database, XML, etc)

GeneratedEntities.cs
(C# - includes partial

Customer class)

Customer type
(Part of an assembly)

Code generator
(Prebuild)

Using XAML for declarative UI design Prebuilding partial classes for database entities

C# compilation
C# compilation

Figure 7.2 Comparison between XAML precompilation and autogenerated entity classes
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// Generated.cs
using System;
partial class PartialMethodDemo
{
    public PartialMethodDemo()
    {
        OnConstructorStart();
        Console.WriteLine("Generated constructor");
        OnConstructorEnd();
    }

    partial void OnConstructorStart();
    partial void OnConstructorEnd();
}

// Handwritten.cs
using System;
partial class PartialMethodDemo
{
    partial void OnConstructorEnd()
    {
        Console.WriteLine("Manual code");
    }
}

As shown in listing 7.2, partial methods are declared just like abstract methods: by pro-
viding the signature without any implementation but using the partial modifier.
Similarly, the actual implementations just have the partial modifier but are other-
wise like normal methods.

 Calling the parameterless constructor of PartialMethodDemo would result in “Gen-
erated constructor” and then “Manual code” being printed out. Examining the IL for
the constructor, you wouldn’t see a call to OnConstructorStart because it no longer
exists—there’s no trace of it anywhere in the compiled type.

 Because the method may not exist, partial methods must have a return type of
void and can’t take out parameters. They have to be private, but they can be static
and/or generic. If the method isn’t implemented in one of the files, the whole state-
ment calling it is removed, including any argument evaluations. If evaluating any of the
arguments has a side effect that you want to occur whether or not the partial method
is implemented, you should perform the evaluation separately. For instance, suppose
you have the following code:

LogEntity(LoadAndCache(id));

Here LogEntity is a partial method, and LoadAndCache loads an entity from the data-
base and inserts it into the cache. You might want to use this instead:

MyEntity entity = LoadAndCache(id);
LogEntity(entity);

That way, the entity is loaded and cached regardless of whether an implementation
has been provided for LogEntity. Of course, if the entity can be loaded equally

Listing 7.2 A partial method called from a constructor
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cheaply later on, and may not even be required, you should leave the statement in the
first form and avoid an unnecessary load in some cases.

 To be honest, unless you’re writing your own code generators, you’re more likely to
be implementing partial methods than declaring and calling them. If you’re only imple-
menting them, you don’t need to worry about the argument evaluation side of things.

 In summary, partial methods in C# 3 allow generated code to interact with handwrit-
ten code in a rich manner without any performance penalties for situations where the
interaction is unnecessary. This is a natural continuation of the C# 2 partial types fea-
ture, which enables a much more productive relationship between code-generation
tools and developers.

 Our next feature is entirely different, and is just a way of telling the compiler more
about the intended nature of a type so that it can perform more checking on both the
type itself and any code using it. 

7.2 Static classes
Our second new feature is in some ways completely unnecessary—it just makes things
tidier and a bit more elegant when you write utility classes. 

 Everyone has utility classes. I haven’t seen a significant project in either Java or C#
that didn’t have at least one class consisting solely of static methods. The classic exam-
ple appearing in developer code is a type with string helper methods, doing anything
from escaping, reversing, smart replacing—you name it. An example from the Frame-
work is the System.Math class. The key features of a utility class are as follows:

■ All members are static (except a private constructor).
■ The class derives directly from object.
■ Typically there’s no state at all, unless there’s some caching or a singleton

involved.
■ There are no visible constructors.
■ The class is sealed if the developer remembers to do so.

The last two points are optional, and indeed if there are no visible constructors
(including protected ones) then the class is effectively sealed anyway. Both of them help
make the purpose of the class more obvious, however.

 Listing 7.3 gives an example of a C# 1 utility class—then we’ll see how C# 2
improves matters.

using System;

public sealed class StringHelper
{
    private StringHelper()
    {
    }

Listing 7.3 A typical C# 1 utility class

Seals class to 
prevent derivation

B
Prevents instantiation 
from other code
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    public static string Reverse(string input)
    {
        char[] chars = input.ToCharArray();
        Array.Reverse(chars);
        return new string(chars);
    }
}

The private constructor B may seem odd—why have it at all if it’s private and never
going to be used? The reason is that if you don’t supply any constructors for a class, the
C# 1 compiler will always provide a default constructor that is public and parameterless. In
this case, we don’t want any visible constructors, so we have to provide a private one.

 This pattern works reasonably well, but C# 2 makes it explicit and actively prevents
the type from being misused. First we’ll see what changes are needed to turn listing 7.3
into a “proper” static class as defined in C# 2. As you can see from listing 7.4, very little
action is required.

using System;

public static class StringHelper                    
{
    public static string Reverse(string input)
    {
        char[] chars = input.ToCharArray();
        Array.Reverse(chars);
        return new string(chars);
    }
}

We’ve used the static modifier in the class declaration this time instead of sealed,
and we haven’t included a constructor at all—those are the only code differences. The
C# 2 compiler knows that a static class shouldn’t have any constructors, so it doesn’t
provide a default one. In fact, the compiler enforces a number of constraints on the
class definition:

■ It can’t be declared as abstract or sealed, although it’s implicitly both.
■ It can’t specify any implemented interfaces.
■ It can’t specify a base type.
■ It can’t include any nonstatic members, including constructors.
■ It can’t include any operators.
■ It can’t include any protected or protected internal members.

It’s worth noting that although all the members have to be static, you’ve got to explic-
itly make them static except for nested types and constants. Although nested types are
implicitly static members of the enclosing class, the nested type itself can be a non-
static type if that’s required.

 The compiler not only puts constraints on the definition of static classes, though—
it also guards against their misuse. As it knows that there can never be any instances of

Listing 7.4 The same utility class as in listing 7.3 but converted into a C# 2 static class

All methods 
are static
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the class, it prevents any use of it that would require one. For instance, all of the fol-
lowing are invalid when StringHelper is a static class:

StringHelper variable = null;
StringHelper[] array = null;
public void Method1(StringHelper x) {}
public StringHelper Method1() { return null; }
List<StringHelper> x = new List<StringHelper>();

None of these are prevented if the class just follows the C# 1 pattern—but all of them
are essentially useless. In short, static classes in C# 2 don’t allow you to do anything you
couldn’t do before—but they prevent you from doing things that you shouldn’t have
been doing anyway.

 The next feature on our list is one with a more positive feel. It’s aimed at a very spe-
cific—although widely encountered—situation, and allows a solution that is neither
ugly nor breaks encapsulation, which was the choice available in C# 1. 

7.3 Separate getter/setter property access
I’ll admit to being slightly bemused when I first saw that C# 1 didn’t allow you to have
a public getter and a private setter for properties. This isn’t the only combination of
access modifiers that is prohibited by C# 1, but it’s the most commonly desired one. In
fact, in C# 1 both the getter and the setter have to have the same accessibility—it’s
declared as part of the property declaration rather than as part of the getter or setter.

 There are perfectly good reasons to want different accessibility for the getter and
the setter—often you may want some validation, logging, locking, or other code to be
executed when changing a variable that backs the property but you don’t want to
make the property writable to code outside the class. In C# 1 the alternatives were
either to break encapsulation by making the property writable against your better
judgment or to write a SetXXX() method in the class to do the setting, which frankly
looks ugly when you’re used to “real” properties.

 C# 2 fixes the problem by allowing either the getter or the setter to explicitly have a
more restrictive access than that declared for the property itself. This is most easily
seen with an example:

string name;

public string Name
{
    get { return name; }
    private set
    {
        // Validation, logging etc here
        name = value;
    }
}

In this case, the Name property is effectively read-only to all other types,2 but we can
use the familiar property syntax for setting the property within the type itself. The

2 Except nested types, which always have access to private members of their enclosing types.



193Namespace aliases
same syntax is also available for indexers as well as properties. You could make the set-
ter more public than the getter (a protected getter and a public setter, for example)
but that’s a pretty rare situation, in the same way that write-only properties are few and
far between compared with read-only properties.

NOTE Trivia: The only place where “private” is required—Everywhere else in C#, the
default access modifier in any given situation is the most private one pos-
sible. In other words, if something can be declared to be private, then leav-
ing out the access modifiers entirely will default it to being private. This is
a nice element of language design, because it’s hard to get it wrong acci-
dentally: if you want something to be more public than it is, you’ll notice
when you try to use it. If, however, you accidentally make something “too
public,” then the compiler can’t help you to spot the problem. For this rea-
son, my personal convention is not to use any access modifiers unless I
need to; that way, the code highlights (by way of an access modifier) when
I’ve explicitly chosen to make something more public than it might be.
Specifying the access of a property getter or setter is the one exception to
this rule—if you don’t specify anything, the default is to give the getter/
setter the same access as the overall property itself.

Note that you can’t declare the property itself to be private and make the getter pub-
lic—you can only make a particular getter/setter more private than the property. Also,
you can’t specify an access modifier for both the getter and the setter—that would just
be silly, as you could declare the property itself to be whichever is the more public of
the two modifiers.

 This aid to encapsulation is long overdue. There’s still nothing in C# 2 to stop
other code in the same class from bypassing the property and going directly to what-
ever fields are backing it, unfortunately. As we’ll see in the next chapter, C# 3 fixes this
in one particular case, but not in general. Maybe in C# 4…

 We move from a feature you may well want to use fairly regularly to one that you
want to avoid most of the time—it allows your code to be absolutely explicit in terms
of which types it’s referring to, but at a significant cost to readability.

7.4 Namespace aliases
Namespaces are simply ways of keeping fully qualified names of types distinct even when
the unqualified names may be the same. An example of this is the unqualified name
Button. There are two classes with that name in the .NET 2.0 Framework: System.
Windows.Forms.Button and System.Web.UI.WebControls.Button. Although they’re
both called Button, it’s easy to tell them apart by their namespaces. This mirrors real life
quite closely—you may know several people called Jon, but you’re unlikely to know any-
one else called Jon Skeet. If you’re talking with friends in a particular context, you may
well be able to just use the name Jon without specifying exactly which one you’re talking
about—but in other contexts you may need to provide more exact information.

 The using directive of C# 1 (not to be confused with the using statement that calls
Dispose automatically) was available in two flavors—one created an alias for a
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namespace or type (for example, using Out = System.Console;) and the other just
introduced a namespace into the list of contexts the compiler would search when
looking for a type (for example, using System.IO;). By and large, this was adequate,
but there are a few situations that the language simply couldn’t cope with, and others
where automatically generated code would have to go out of its way to make abso-
lutely sure that the right namespaces and types were being used whatever happened.

 C# 2 fixes these problems, bringing an additional robustness to the language. It’s
not that the code being generated is any more robust in terms of execution, but you
can write code that is guaranteed to mean what you want it to regardless of which
other types, assemblies, and namespaces are introduced. These extreme measures are
rarely needed outside automatically generated code, but it’s nice to know that they’re
there when you need them. In C# 2 there are three types of aliases: the namespace
aliases of C# 1, the global namespace alias, and extern aliases. We’ll start off with the one
type of alias that was already present in C# 1, but we’ll introduce a new way of using
aliases to ensure that the compiler knows to treat it as an alias rather than checking to
see whether it’s the name of another namespace or type.

7.4.1 Qualifying namespace aliases

Even in C# 1, it was a good idea to avoid namespace aliases wherever possible. Every so
often you might find that one type name clashed with another—as with our Button
example earlier—and so you either had to specify the full name including the
namespace every time you used them, or have an alias that distinguished the two, in
some ways acting like a shortened form of the namespace. Listing 7.5 shows an exam-
ple where the two types of Button are used, qualified by an alias.

using System;
using WinForms = System.Windows.Forms;
using WebForms = System.Web.UI.WebControls;

class Test
{
    static void Main()
    {
        Console.WriteLine (typeof (WinForms.Button));
        Console.WriteLine (typeof (WebForms.Button));
    }
}

Listing 7.5 compiles without any errors or warnings, although it’s still not as pleasant
as it would be if we only needed to deal with one kind of Button to start with. There’s
a problem, however—what if someone were to introduce a type or namespace called
WinForms or WebForms? The compiler wouldn’t know what WinForms.Button meant,
and would use the type or namespace in preference to the alias. We want to be able to
tell the compiler that we need it to treat WinForms as an alias, even though it’s avail-
able elsewhere. C# 2 introduces the ::syntax to do this, as shown in listing 7.6.

Listing 7.5 Using aliases to distinguish between different Button types
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using System;
using WinForms = System.Windows.Forms;
using WebForms = System.Web.UI.WebControls;

class WinForms
{
}

class Test
{
    static void Main()
    {
        Console.WriteLine (typeof (WinForms::Button));
        Console.WriteLine (typeof (WebForms::Button));
    }
}

Instead of WinForms.Button, listing 7.6 uses WinForms::Button, and the compiler is
happy. If you change the :: back to . you’ll get a compilation error. So, if you use ::
everywhere you use an alias, you’ll be fine, right? Well, not quite…

7.4.2 The global namespace alias

There’s one part of the namespace hierarchy that you can’t define your own alias for:
the root of it, or the global namespace. Suppose you have two classes, both named
Configuration; one is within a namespace of MyCompany and the other doesn’t have
a namespace specified at all. Now, how can you refer to the “root” Configuration
class from within the MyCompany namespace? You can’t use a normal alias, and if you
just specify Configuration the compiler will use MyCompany.Configuration.

 In C# 1, there was simply no way of getting around this. Again, C# 2 comes to the
rescue, allowing you to use global::Configuration to tell the compiler exactly what
you want. Listing 7.7 demonstrates both the problem and the solution.

using System;

class Configuration {}

namespace Chapter7
{
    class Configuration {}

    class Test
    {
        static void Main()
        {
            Console.WriteLine(typeof(Configuration));
            Console.WriteLine(typeof(global::Configuration));
            Console.WriteLine(typeof(global::Chapter7.Test));
        }
    }
}

Listing 7.6 Using :: to tell the compiler to use aliases

Listing 7.7 Use of the global namespace alias to specify the desired type exactly
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Most of listing 7.7 is just setting up the situation—the three lines within Main are the
interesting ones. The first line prints “Chapter7.Configuration” as the compiler
resolves Configuration to that type before moving out to the namespace root. The
second line indicates that the type has to be in the global namespace, and so simply
prints “Configuration.” I included the third line to demonstrate that using the global
alias you can still refer to types within namespaces, but you have to specify the fully
qualified name.

 At this point we can get to any uniquely named type, using the global namespace
alias if necessary—and indeed if you ever write a code generator where the code
doesn’t need to be readable, you may wish to use this feature liberally to make sure
that you always refer to the correct type whatever other types are actually present by
the time the code is compiled. What do we do if the type’s name isn’t unique even
when we include its namespace? The plot thickens…

7.4.3 Extern aliases

At the start of this section, I referred to human names as examples of namespaces and
contexts. I specifically said that you’re unlikely to know more than one person called
Jon Skeet. However, I know that there is more than one person with my name, and it’s
not beyond the realm of possibility to suppose that you might know two or more of us.
In this case, in order to specify which one you mean you have to provide some more
information beyond just the full name—the reason you know the particular person,
or the country he lives in, or something similarly distinctive.

 C# 2 lets you specify that extra information in the form of an extern alias—a name
that exists not only in your source code, but also in the parameters you pass to the com-
piler. For the Microsoft C# compiler, this means specifying the assembly that contains
the types in question. Let’s suppose that two assemblies First.dll and Second.dll
both contained a type called Demo.Example. We couldn’t just use the fully qualified
name to distinguish them, as they’ve both got the same fully qualified name. Instead, we
can use extern aliases to specify which we mean. Listing 7.8 shows an example of the C#
code involved, along with the command line needed to compile it.

// Compile with
// csc Test.cs /r:FirstAlias=First.dll /r:SecondAlias=Second.dll

extern alias FirstAlias; 
extern alias SecondAlias;

using System;

using FD = FirstAlias::Demo;

class Test
{
    static void Main()
    {
        Console.WriteLine(typeof(FD.Example));

Listing 7.8 Working with different types of the same type in different assemblies

Specifies two 
extern aliases

B
Refers to extern alias 
with namespace alias

Uses 
namespace 
alias

C
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        Console.WriteLine(typeof(SecondAlias::Demo.Example));
        Console.ReadLine();
    }
}

The code in listing 7.8 is quite straightforward, and demonstrates that you can
either use extern directives directly D or via namespace aliases (B and C). In fact,
a normal using directive without an alias (for example, using First-

Alias::Demo;) would have allowed us to use the name Example without any further
qualification at all. It’s also worth noting that one extern alias can cover multiple
assemblies, and several extern aliases can all refer to the same assembly. To specify
an external alias in Visual Studio (2005 or 2008), just select the assembly reference
within Solution Explorer and modify the Aliases value in the Properties window, as
shown in figure 7.3.

 Hopefully I don’t need to persuade you to
avoid this kind of situation wherever you possibly
can. It can be necessary to work with assemblies
from different third parties who happen to have
used the same fully qualified type name. Where
you have more control over the naming, however,
make sure that your names never lead you into
this territory in the first place. 

 Our next feature is almost a meta-feature. The
exact purpose it serves depends on which com-
piler you’re using, because its whole purpose is to
enable control over compiler-specific features—
but we’ll concentrate on the Microsoft compiler.

7.5 Pragma directives
Describing pragma directives in general is extremely easy: a pragma directive is a pre-
processing directive represented by a line beginning with #pragma. The rest of the line
can contain any text at all. The result of a pragma directive cannot change the behav-
ior of the program to contravene anything within the C# language specification, but it
can do anything outside the scope of the specification. If the compiler doesn’t under-
stand a particular pragma directive, it can issue a warning but not an error.

 That’s basically everything the specification has to say on the subject. The
Microsoft C# compiler understands two pragma directives: warnings and checksums.

7.5.1 Warning pragmas

Just occasionally, the C# compiler issues warnings that are justifiable but annoying.
The correct response to a compiler warning is almost always to fix it—the code is rarely
made worse by fixing the warning, and usually it’s improved.

 However, just occasionally there’s a good reason to ignore a warning—and that’s
what warning pragmas are available for. As an example, we’ll create a private field that

D

Uses 
extern alias 
directly

Figure 7.3 Part of the Properties 
window of Visual Studio 2008, 
showing an extern alias of FirstAlias 
for the First.dll reference
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is never read from or written to. It’s almost always going to be useless… unless we hap-
pen to know that it will be used by reflection. Listing 7.9 is a complete class demon-
strating this.

public class FieldUsedOnlyByReflection
{
    int x;
}

If you try to compile listing 7.9, you’ll get a warning message like this:

FieldUsedOnlyByReflection.cs(3,9): warning CS0169:
The private field 'FieldUsedOnlyByReflection.x' is never used

That’s the output from the command-line compiler. In the Error List window of Visual
Studio, you can see the same information (plus the project it’s in) except that you don’t
get the warning number (CS0169). To find out the number, you need to either select
the warning and bring up the help related to it, or look in the Output window, where
the full text is shown. We need the number in order to make the code compile with-
out warnings, as shown in listing 7.10.

public class FieldUsedOnlyByReflection
{
#pragma warning disable 0169         
    int x;
#pragma warning restore 0169
}

Listing 7.10 is self-explanatory—the first pragma disables the particular warning we’re
interested in, and the second one restores it. It’s good practice to disable warnings for
as short a space as you can, so that you don’t miss any warnings you genuinely ought to
fix. If you want to disable or restore multiple warnings in a single line, just use a
comma-separated list of warning numbers. If you don’t specify any warning numbers
at all, the result is to disable or restore all warnings in one fell swoop—but that’s a bad
idea in almost every imaginable scenario.

7.5.2 Checksum pragmas

You’re very unlikely to need the second form of pragma recognized by the Microsoft
compiler. It supports the debugger by allowing it to check that it’s found the right
source file. Normally when a C# file is compiled, the compiler generates a checksum
from the file and includes it in the debugging information. When the debugger needs
to locate a source file and finds multiple potential matches, it can generate the check-
sum itself for each of the candidate files and see which is correct.

 Now, when an ASP.NET page is converted into C#, the generated file is what the C#
compiler sees. The generator calculates the checksum of the .aspx page, and uses a

Listing 7.9 Class containing an unused field

Listing 7.10 Disabling (and restoring) warning CS0169
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checksum pragma to tell the C# compiler to use that checksum instead of calculating
one from the generated page.

 The syntax of the checksum pragma is

#pragma checksum "filename" "{guid}" "checksum bytes"

The GUID indicates which hashing algorithm has been used to calculate the check-
sum. The documentation for the CodeChecksumPragma class gives GUIDs for SHA-1 and
MD5, should you ever wish to implement your own dynamic compilation framework
with debugger support.

 It’s possible that future versions of the C# compiler will include more pragma
directives, and other compilers (such as the Mono compiler, mcs) could have their
own support for different features. Consult your compiler documentation for the
most up-to-date information. 

 The next feature is another one that you may well never use—but at the same time,
if you ever do, it’s likely to make your life somewhat simpler.

7.6 Fixed-size buffers in unsafe code
When calling into native code with P/Invoke, it’s not particularly unusual to find your-
self dealing with a structure that is defined to have a buffer of a particular length
within it. Prior to C# 2, such structures were difficult to handle directly, even with
unsafe code. Now, you can declare a buffer of the right size to be embedded directly
with the rest of the data for the structure.

 This capability isn’t just available for calling native code, although that is its pri-
mary use. You could use it to easily populate a data structure directly corresponding to
a file format, for instance. The syntax is simple, and once again we’ll demonstrate it
with an example. To create a field that embeds an array of 20 bytes within its enclosing
structure, you would use

fixed byte data[20];

This would allow data to be used as if it were a byte* (a pointer to byte data),
although the implementation used by the C# compiler is to create a new nested type
within the declaring type and apply the new FixedBuffer attribute to the variable
itself. The CLR then takes care of allocating the memory appropriately.

 One downside of this feature is that it’s only available within unsafe code: the
enclosing structure has to be declared in an unsafe context, and you can only use the
fixed-size buffer member within an unsafe context too. This limits the situations in
which it’s useful, but it can still be a nice trick to have up your sleeve at times. Also,
fixed-size buffers are only applicable to primitive types, and can’t be members of
classes (only structures).

 There are remarkably few Windows APIs where this feature is directly useful. There
are numerous situations where a fixed array of characters is called for—the TIME_
ZONE_INFORMATION structure, for example—but unfortunately fixed-size buffers of char-
acters appear to be handled poorly by P/Invoke, with the marshaler getting in the way.
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 As one example, however, listing 7.11 is a console application that displays the colors
available in the current console window. It uses an API function GetConsoleScreen-
BufferEx that is new to Vista and Windows Server 2008, and that retrieves extended con-
sole information. Listing 7.11 displays all 16 colors in hexadecimal format (bbggrr).

using System;
using System.Runtime.InteropServices;

struct COORD
{
    public short X, Y;    
}

struct SMALL_RECT
{
    public short Left, Top, Right, Bottom;
}

unsafe struct CONSOLE_SCREEN_BUFFER_INFOEX
{
    public int StructureSize;
    public COORD ConsoleSize, CursorPosition;
    public short Attributes;
    public SMALL_RECT DisplayWindow;
    public COORD MaximumWindowSize;
    public short PopupAttributes;    
    public int FullScreenSupported;    
    public fixed int ColorTable[16];
}

static class FixedSizeBufferDemo
{
    const int StdOutputHandle = -11;

    [DllImport("kernel32.dll")]
    static extern IntPtr GetStdHandle(int nStdHandle);

    [DllImport("kernel32.dll")]
    static extern bool GetConsoleScreenBufferInfoEx 
        (IntPtr handle, ref CONSOLE_SCREEN_BUFFER_INFOEX info);

    unsafe static void Main()
    {
        IntPtr handle = GetStdHandle(StdOutputHandle);
        CONSOLE_SCREEN_BUFFER_INFOEX info;
        info = new CONSOLE_SCREEN_BUFFER_INFOEX();
        info.StructureSize = sizeof(CONSOLE_SCREEN_BUFFER_INFOEX);
        GetConsoleScreenBufferInfoEx(handle, ref info);

        for (int i=0; i < 16; i++)
        {
            Console.WriteLine ("{0:x6}", info.ColorTable[i]);
        }
    }
}

Listing 7.11 Demonstration of fixed-size buffers to obtain console color information
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Listing 7.11 uses fixed-size buffers for the table of colors. Before fixed-size buffers, we
could still have used the API either with a field for each color table entry or by mar-
shaling a normal array as UnmanagedType.ByValArray. However, this would have cre-
ated a separate array on the heap instead of keeping the information all within the
structure. That’s not a problem here, but in some high-performance situations it’s
nice to be able to keep “lumps” of data together. On a different performance note, if
the buffer is part of a data structure on the managed heap, you have to pin it before
accessing it. If you do this a lot, it can significantly affect the garbage collector. Stack-
based structures don’t have this problem, of course.

 I’m not going to claim that fixed-size buffers are a hugely important feature in
C# 2—at least, they’re not important to most people. I’ve included them for com-
pleteness, however, and doubtless someone, somewhere will find them invaluable.
Our final feature can barely be called a C# 2 language feature at all—but it just about
counts, so I’ve included it for completeness.

7.7 Exposing internal members to selected assemblies
There are some features that are obviously in the language—iterator blocks, for exam-
ple. There are some features that obviously belong to the runtime, such as JIT com-
piler optimizations. There are some that clearly sit in both camps, like generics. This
last feature has a toe in each but is sufficiently odd that it doesn’t merit a mention in
either specification. In addition, it uses a term that has different meanings in C++ and
VB.NET—adding a third meaning to the mix. To be fair, all the terms are used in the
context of access permissions, but they have different effects.

7.7.1 Friend assemblies in the simple case

In .NET 1.1 it was entirely accurate to say that something defined to be internal
(whether a type, a method, a property, a variable, or an event) could only be
accessed within the same assembly in which it was declared.3 In .NET 2.0 that’s still
mostly true, but there’s a new attribute to let you bend the rules slightly: Internals-
VisibleToAttribute, usually referred to as just InternalsVisibleTo. (When apply-
ing an attribute whose name ends with Attribute, the C# compiler will apply the
suffix automatically.)

 InternalsVisibleTo can only be applied to an assembly (not a specific member),
and you can apply it multiple times to the same assembly. We will call the assembly
containing the attribute the source assembly, although this is entirely unofficial termi-
nology. When you apply the attribute, you have to specify another assembly, known as
the friend assembly. The result is that the friend assembly can see all the internal mem-
bers of the source assembly as if they were public. This may sound alarming, but it can
be useful, as we’ll see in a minute.

 Listing 7.12 shows this with three classes in three different assemblies.

3 Using reflection when running with suitable permissions doesn’t count.
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// Compiled to Source.dll
using System.Runtime.CompilerServices;
[assembly:InternalsVisibleTo("FriendAssembly")]
public class Source
{
    internal static void InternalMethod()
    {
    }
    
    public static void PublicMethod()
    {
    }
}

// Compiled to FriendAssembly.dll
public class Friend
{
    static void Main()
    {
        Source.InternalMethod();
        Source.PublicMethod();
    }
}

// Compiled to EnemyAssembly.dll
public class Enemy
{
    static void Main()
    {
        // Source.InternalMethod();
        Source.PublicMethod();
    }
}

In listing 7.12 a special relationship exists between FriendAssembly.dll and
Source.dll—although it only operates one way: Source.dll has no access to internal
members of FriendAssembly.dll. If we were to uncomment the line at B, the Enemy
class would fail to compile.

 So, why on earth would we want to open up our well-designed assembly to certain
assemblies to start with?

7.7.2 Why use InternalsVisibleTo?

I can’t say I’ve ever used InternalsVisibleTo between two production assemblies.
I’m not saying there aren’t legitimate use cases for that, but I’ve not come across
them. However, I have used the attribute when it comes to unit testing.

 There are some who say you should only test the public interface to code. Personally
I’m happy to test whatever I can in the simplest manner possible. Friend assemblies
make that a lot easier: suddenly it’s trivial to test code that only has internal access with-
out taking the dubious step of making members public just for the sake of testing, or
including the test code within the production assembly. (It does occasionally mean

Listing 7.12 Demonstration of friend assemblies

Grants 
additional access

Uses additional 
access within 
FriendAssembly

EnemyAssembly has 
no special access

B

Accesses public 
method as normal
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making members internal for the sake of testing where they might otherwise be private,
but that’s a less worrying step.)

 The only downside to this is that the name of your test assembly lives on in your
production assembly. In theory this could represent a security attack vector if your
assemblies aren’t signed, and if your code normally operates under a restricted set of
permissions. (Anyone with full trust could use reflection to access the members in the
first place. You could do that yourself for unit tests, but it’s much nastier.) If this ever
ends up as a genuine issue for anyone, I’ll be very surprised. It does, however, bring
the option of signing assemblies into the picture. Just when you thought this was a
nice, simple little feature…

7.7.3 InternalsVisibleTo and signed assemblies

If a friend assembly is signed, the source assembly needs to specify the public key of the
friend assembly, to make sure it’s trusting the right code. Contrary to a lot of documen-
tation, it isn’t the public key token that is required but the public key itself. For instance,
consider the following command line and output (rewrapped and modified slightly for
formatting) used to discover the public key of a signed FriendAssembly.dll:

c:\Users\Jon\Test>sn -Tp FriendAssembly.dll

Microsoft (R) .NET Framework Strong Name Utility Version 3.5.21022.8
Copyright (c) Microsoft Corporation.  All rights reserved.

Public key is
0024000004800000940000000602000000240000525341310004000001
000100a51372c81ccfb8fba9c5fb84180c4129e50f0facdce932cf31fe
563d0fe3cb6b1d5129e28326060a3a539f287aaf59affc5aabc4d8f981
e1a82479ab795f410eab22e3266033c633400463ee7513378bb4ef41fc
0cae5fb03986d133677c82a865b278c48d99dc251201b9c43edd7bedef
d4b5306efd0dec7787ec6b664471c2

Public key token is 647b99330b7f792c

The source code for the Source class would now need to have this as the attribute:

[assembly:InternalsVisibleTo("FriendAssembly,PublicKey="+
"0024000004800000940000000602000000240000525341310004000001"+
"000100a51372c81ccfb8fba9c5fb84180c4129e50f0facdce932cf31fe"+
"563d0fe3cb6b1d5129e28326060a3a539f287aaf59affc5aabc4d8f981"+
"e1a82479ab795f410eab22e3266033c633400463ee7513378bb4ef41fc"+
"0cae5fb03986d133677c82a865b278c48d99dc251201b9c43edd7bedef"+
"d4b5306efd0dec7787ec6b664471c2")]

Unfortunately, you have to either have the public key on one line or use string concat-
enation—whitespace in the public key will cause a compilation failure. It would be a
lot more pleasant to look at if we really could specify the token instead of the whole
key, but fortunately this ugliness is usually confined to AssemblyInfo.cs, so you won’t
need to see it often.

 In theory, it’s possible to have an unsigned source assembly and a signed friend
assembly. In practice, that’s not terribly useful, as the friend assembly typically wants to
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have a reference to the source assembly—and you can’t refer to an unsigned assembly
from one that is signed! Likewise a signed assembly can’t specify an unsigned friend
assembly, so typically you end up with both assemblies being signed if either one of
them is. 

7.8 Summary
This completes our tour of the new features in C# 2. The topics we’ve looked at in this
chapter have broadly fallen into two categories: “nice to have” improvements that
streamline development, and “hope you don’t need it” features that can get you out of
tricky situations when you need them. To make an analogy between C# 2 and improve-
ments to a house, the major features from our earlier chapters are comparable to full-
scale additions. Some of the features we’ve seen in this chapter (such as partial types
and static classes) are more like redecorating a bedroom, and features like namespace
aliases are akin to fitting smoke alarms—you may never see a benefit, but it’s nice to
know they’re there if you ever need them.

 The range of features in C# 2 is very broad—the designers tackled many of the
areas where developers were feeling pain, without any one overarching goal. That’s
not to say the features don’t work well together—nullable value types wouldn’t be fea-
sible without generics, for instance—but there’s no one aim that every feature contrib-
utes to, unless you count general productivity.

 Now that we’ve finished examining C# 2, it’s time to move on to C# 3, where the
picture is very different. Nearly every feature in C# 3 (with the exception of partial
methods, which we’ve covered in this chapter) forms part of the grand picture of
LINQ, a conglomeration of technologies that could well change the way traditional
programmers think—forever. 

 



Part 3

C# 3—
revolutionizing

 how we code

There is no doubt that C# 2 is a significant improvement over C# 1. The ben-
efits of generics in particular are fundamental to other changes, not just in C# 2
but also in C# 3. However, C# 2 was in some sense a piecemeal collection of fea-
tures. Don’t get me wrong: they fit together nicely enough, but they address a set
of individual issues. That was appropriate at that stage of C#’s development, but
C# 3 is different. 

 Almost every feature in C# 3 enables one very specific technology: LINQ.
Many of the features are useful outside this context, and you certainly shouldn’t
confine yourself to only using them when you happen to be writing a query
expression, for example—but it would be equally silly not to recognise the com-
plete picture created by the set of jigsaw puzzle pieces presented in the remain-
ing chapters.

 I’m writing this before C# 3 and .NET 3.5 have been fully released, but I’d like
to make a prediction: in a few years, we’ll be collectively kicking ourselves for not
using LINQ in a more widespread fashion in the early days of C# 3. The buzz
around LINQ—both within the community and in the messages from Microsoft—
has been largely around database access and LINQ to SQL. Now databases are cer-
tainly important—but we manipulate data all the time, not just from databases but
in memory, and from files, network resources, and other places. Why shouldn’t
other data sources get just as much benefit from LINQ as databases?



 They do, of course—and that’s the hidden jewel of LINQ. It’s been in broad day-
light, in public view—just not talked about very much. Even if you don’t talk about
it, I’d like you to keep it in the back of your mind while you read about the features
of C# 3. Look at your existing code in the light of the possibilities that LINQ has to
offer. It’s not suitable for all tasks, but where it is appropriate it can make a spectacu-
lar difference.

 It’s only been in the course of writing this book that I’ve become thoroughly con-
vinced of the elegance and beauty of LINQ. The deeper you study the language, the
more clearly you see the harmony between the various elements that have been intro-
duced. Hopefully this will become apparent in the remainder of the book, but you’re
more likely to feel it gradually as you begin to see LINQ improving your own code. I
don’t wish to sound like a mindless and noncritical C# devotee, but I feel there’s
something special in C# 3.

 With that brief burst of abstract admiration out of the way, let’s start looking at
C# 3 in a more concrete manner.



Cutting fluff
 with a smart compiler
We start looking at C# 3 in the same way that we finished looking at C# 2—with a
collection of relatively simple features. These are just the first small steps on the
path to LINQ, however. Each of them can be used outside that context, but they’re
all pretty important for simplifying code to the extent that LINQ requires in order
to be effective.

 One important point to note is that while two of the biggest features of C# 2—
generics and nullable types—required CLR changes, there are no significant
changes to the CLR that ships with .NET 3.5. There are some bug fixes, but nothing
fundamental. The framework library has grown to support LINQ, along with intro-
ducing a few more features to the base class library, but that’s a different matter. It’s

This chapter covers
■ Automatically implemented properties
■ Implicitly typed local variables
■ Object and collection initializers
■ Implicitly typed arrays
■ Anonymous types
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worth being quite clear in your mind which changes are only in the C# language,
which are library changes, and which are CLR changes.

 The fact that there are no CLR changes for .NET 3.5 means that almost all of the
new features exposed in C# 3 are due to the compiler being willing to do more work
for you. We saw some evidence of this in C# 2—particularly with anonymous methods
and iterator blocks—and C# 3 continues in the same vein. In this chapter, we’ll meet
the following features that are new to C# 3:

■ Automatically implemented properties—Removing the drudgery of writing simple
properties backed directly by fields.

■ Implicitly typed local variables—When you declare a variable and immediately
assign a value to it, you no longer need to specify the type in the declaration.

■ Object and collection initializers—Simple ways to initialize objects in single expres-
sions.

■ Implicitly typed arrays—Let the compiler work out the type of new arrays, based
on their contents.

■ Anonymous types—Primarily used in LINQ, these allow you to create new “ad
hoc” types to contain simple properties.

As well as describing what the new features do, I’ll make recommendations about their
use. Many of the features of C# 3 require a certain amount of discretion and restraint
on the part of the developer. That’s not to say they’re not powerful and incredibly use-
ful—quite the reverse—but the temptation to use the latest and greatest syntactic sugar
shouldn’t be allowed to overrule the drive toward clear and readable code.

 The considerations I’ll discuss in this chapter (and indeed in the rest of the book)
will rarely be black and white. Perhaps more than ever before, readability is in the eye
of the beholder—and as you become more comfortable with the new features, they’re
likely to become more readable to you. I should stress, however, that unless you have
good reason to suppose you’ll be the only one to ever read your code, you should con-
sider the needs and views of your colleagues carefully.

 Enough navel gazing for the moment. We’ll start off with a feature that shouldn’t
cause any controversy—and that I always miss when coding in C# 2. Simple but effec-
tive, automatically implemented properties just make life better.

8.1 Automatically implemented properties
Our first feature is probably the simplest in the whole of C# 3. In fact, it’s even simpler
than any of the new features in C# 2. Despite that—or possibly because of that—it’s also
immediately applicable in many, many situations. When you read about iterator blocks
in chapter 6, you may not immediately have thought of any areas of your current code-
base that could be improved by using them, but I’d be surprised to find any nontrivial
C# program that couldn’t be modified to use automatically implemented properties.
This fabulously simple feature allows you to express trivial properties with less code
than before.
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 What do I mean by a trivial property? I mean one that is read/write and that stores
its value in a straightforward private variable without any validation or other custom
code. In other words, it’s a property like this:

string name;
public string Name
{
    get { return name; }
    set { name = value; }
}

Now, that’s not an awful lot of code, but it’s still five lines—and that’s assuming your
coding conventions allow you to get away with the “one line” forms of the getter and
setter. If your coding conventions force you to keep member variables in one area of
code and properties in another, it becomes a bit uglier—and then there’s the question
of whether to add XML documentation to the property, the variable, or both.

 The C# 3 version using an automatically implemented property is a single line:

public string Name { get; set; }

Where previously you might have been tempted to use a public variable (particularly
for “throwaway code”—which we all know tends to live for longer than anticipated)
just to make the code simple, there’s now even less excuse for not following the best
practice of using a property instead. The compiler generates a private variable that
can’t be referenced directly in the source, and fills in the property getter and setter
with the simple code to read and write that variable.

NOTE Terminology: Automatic property vs. automatically implemented property—When
automatically implemented properties were first discussed, long before
the full C# 3 specification was published, they were called automatic proper-
ties. Personally, I find this a lot less of a mouthful than the full name, and
it’s not like anything other than the implementation is going to be auto-
matic. For the rest of this book I will use automatic property and automati-
cally implemented property synonymously. 

 The feature of C# 2 that allows you to specify different access for the getter and the
setter is still available here, and you can also create static automatic properties. You need
to be careful with static properties in terms of multithreading, however—although most
types don’t claim to have thread-safe instance members, publicly visible static members
usually should be thread-safe, and the compiler doesn’t do anything to help you in this
respect. It’s best to restrict automatic static properties to be private, and make sure you
do any appropriate locking yourself. Listing 8.1 gives an example of this.

public class Person
{
    public string Name { get; private set; }
    public int Age { get; private set; }      

Listing 8.1 A Person class that counts created instances

Declares properties 
with public getters
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    private static int InstanceCounter { get; set; }             
    private static readonly object counterLock = new object();

    public Person(string name, int age)
    {
        Name = name;                            
        Age = age;                              

        lock (counterLock)    
        {                            
            InstanceCounter++;
        }                            
    }
}

An alternative in this case is to use a simple static variable and rely on Interlocked.
Increment to update the instance counter. You may decide that’s simpler (and more
efficient) code than using an explicit lock—it’s a judgment call. Due to this sort of
issue, static automatic properties are rarely useful: it’s usually better to implement nor-
mal properties, allowing you more control. Note that you can’t use automatic proper-
ties and use Interlocked.Increment: you no longer have access to the field, so you
can’t pass it by reference to the method.

 The other automatic properties in listing 8.1, representing the name and age of
the person, are real no-brainers. Where you’ve got properties that you would have
implemented trivially in previous versions of C#, there’s no benefit in not using auto-
matic properties.

 One slight wrinkle occurs if you use automatic properties when writing your own
structs: all of your constructors need to explicitly call the parameterless constructor—
this()—so that the compiler knows that all the fields have been definitely assigned.
You can’t set the fields directly because they’re anonymous, and you can’t use the
properties until all the fields have been set. The only way of proceeding is to call the
parameterless constructor, which will set the fields to their default values.

 That’s all there is to automatically implemented properties. There are no bells
and whistles to them—for instance, there’s no way of declaring them with initial
default values, and no way of making them read-only. If all the C# 3 features were
that simple, we could cover everything in a single chapter. Of course, that’s not the
case—but there are still some features that don’t take very much explanation. Our
next topic removes duplicate code in another common but specific situation—
declaring local variables. 

8.2 Implicit typing of local variables
In chapter 2, I discussed the nature of the C# 1 type system. In particular, I stated that
it was static, explicit, and safe. That’s still true in C# 2, and in C# 3 it’s still almost com-
pletely true. The static and safe parts are still true (ignoring explicitly unsafe code, just
as we did in chapter 2) and most of the time it’s still explicitly typed—but you can ask
the compiler to infer the types of local variables for you.

Declares 
private static 
property and 
lock

Uses lock while 
accessing static 
property
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8.2.1 Using var to declare a local variable

In order to use implicit typing, all you need to do is replace the type part of a normal
local variable declaration with var. Certain restrictions exist (we’ll come to those in a
moment), but essentially it’s as easy as changing

MyType variableName = someInitialValue;

into

var variableName = someInitialValue;

The results of the two lines (in terms of compiled code) are exactly the same, assuming
that the type of someInitialValue is MyType. The compiler simply takes the compile-
time type of the initialization expression and makes the variable have that type too. The
type can be any normal .NET type, including generics, delegates, and interfaces. The
variable is still statically typed; it’s just that you haven’t written the name of the type in
your code.

 This is important to understand, as it goes to the heart of what a lot of developers
initially fear when they see this feature—that C# has become dynamically or weakly
typed. That’s not true at all. The best way of explaining this is to show you some
invalid code:

var stringVariable = "Hello, world.";
stringVariable = 0;

That doesn’t compile, because the type of stringVariable is System.String, and you
can’t assign the value 0 to a string variable. In many dynamic languages, the code
would have compiled, leaving the variable with no particularly useful type as far as the
compiler, IDE, or runtime environment is concerned. Using var is not like using a
Variant type from COM or VB6. The variable is statically typed; it’s just that the type
has been inferred by the compiler. I apologize if I seem to be going on about this
somewhat, but it’s incredibly important.

 In Visual Studio 2008, you can tell the type that the compiler has used for the vari-
able by hovering over the var part of the declaration, as shown in figure 8.1. Note how
the type parameters for the generic Dictionary type are also explained.

 If this looks familiar, that’s because it’s exactly the same behavior you get when you
declare local variables explicitly.

 Tooltips aren’t just available at the point of declaration, either. As you’d probably
expect, the tooltip displayed when you hover over the variable name later on in the
code indicates the type of the variable too. This is shown in figure 8.2, where the same
declaration is used and then I’ve hovered over a use of the variable.

Figure 8.1 Hovering over var in Visual Studio 
2008 displays the type of the declared variable.
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Again, that’s exactly the same behavior as a normal local variable declaration. Now,
there are two reasons for bringing up Visual Studio 2008 in this context. The first is
that it’s more evidence of the static typing involved—the compiler clearly knows the
type of the variable. The second is to point out that you can easily discover the type
involved, even from deep within a method. This will be important when we talk about
the pros and cons of using implicit typing in a minute. First, though, I ought to men-
tion some limitations.

8.2.2 Restrictions on implicit typing

You can’t use implicit typing for every variable in every situation. You can only use it
when

■ The variable being declared is a local variable.
■ The variable is initialized as part of the declaration.
■ The initialization expression isn’t a method group or anonymous function1

(without casting).
■ The initialization expression isn’t null.
■ Only one variable is declared in the statement.
■ The type you want the variable to have is the compile-time type of the initializa-

tion expression.

The third and fourth points are interesting. You can’t write

var starter = delegate() { Console.WriteLine(); }

This is because the compiler doesn’t know what type to use. You can write

var starter = (ThreadStart) delegate() { Console.WriteLine(); }

but if you’re going to do that you’d be better off explicitly declaring the variable in
the first place. The same is true in the null case—you could cast the null appropri-
ately, but there’d be no point. Note that you can use the result of method calls or
properties as the initialization expression—you’re not limited to constants and con-
structor calls. For instance, you could use

var args = Environment.CommandLine;

In that case args would then be of type string[]. In fact, initializing a variable with
the result of a method call is likely to be the most common situation where implicit

1 The term anonymous function covers both anonymous methods and lambda expressions, which we’ll delve into
in chapter 9. 

Figure 8.2 Hovering 
over the use of an 
implicitly typed local 
variable displays its type.
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typing is used, as part of LINQ. We’ll see all that later on—just bear it in mind as the
examples progress.

 It’s also worth noting that you are allowed to use implicit typing for the local vari-
ables declared in the first part of a using, for, or foreach statement. For example, the
following are all valid (with appropriate bodies, of course):

for (var i = 0; i < 10; i++)
using (var x = File.OpenText("test.dat"))
foreach (var s in Environment.CommandLine)

The variables in question would end up with types of int, StreamReader and string,
respectively. Of course, just because you can do this doesn’t mean you should. Let’s
have a look at the reasons for and against using implicit typing.

8.2.3 Pros and cons of implicit typing

The question of when it’s a good idea to use implicit typing is the cause of an awful lot
of community discussion. Views range from “everywhere” to “nowhere” with plenty of
more balanced approaches between the two. We’ll see in section 8.5 that in order to
use another of C# 3’s features—anonymous types—you’ve often got to use implicit typ-
ing. You could avoid anonymous types as well, of course, but that’s throwing the baby
out with the bathwater.

 The main reason for using implicit typing (leaving anonymous types aside for the
moment) is that it reduces not only the number of keystrokes required to enter the
code, but also the amount of code on the screen. In particular, when generics are
involved the type names can get very long. Figures 8.1 and 8.2 used a type of Dictionary
<string, List<Person>>, which is 33 characters. By the time you’ve got that twice on
a line (once for the declaration and once for the initialization), you end up with a mas-
sive line just for declaring and initializing a single variable! An alternative is to use an
alias, but that puts the “real” type involved a long way (conceptually at least) from the
code that uses it.

 When reading the code, there’s no point in seeing the same long type name twice
on the same line when it’s obvious that they should be the same. If the declaration isn’t
visible on the screen, you’re in the same boat whether implicit typing was used or not
(all the ways you’d use to find out the variable type are still valid) and if it is visible, the
expression used to initialize the variable tells you the type anyway.

 All of this sounds good, so what are the arguments against implicit typing? Para-
doxically enough, readability is the most important one, despite also being an argu-
ment in favor of implicit typing! By not being explicit about what type of variable
you’re declaring, you may be making it harder to work it out just by reading the code.
It breaks the “state what are we declaring, then what value it will start off with” mind-
set that keeps the declaration and the initialization quite separate. To what extent
that’s an issue depends on both the reader and the initialization expression involved.
If you’re explicitly calling a constructor, it’s always going to be pretty obvious what
type you’re creating. If you’re calling a method or using a property, it depends on how
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obvious the return type is just from looking at the call. Integer literals are another
example where guessing the inferred type is harder than one might suppose. How
quickly can you work out the type of each of the variables declared here?

var a = 2147483647;
var b = 2147483648;
var c = 4294967295;
var d = 4294967296;
var e = 9223372036854775807;
var f = 9223372036854775808;

The answers are int, uint, uint, long, long, and ulong, respectively—the type used
depends on the value of the expression. There’s nothing new here in terms of the
handling of literals—C# has always behaved like this—but implicit typing makes it eas-
ier to write obscure code in this case.

 The argument that is rarely explicitly stated but that I believe is behind a lot of the
concern over implicit typing is “It just doesn’t feel right.” If you’ve been writing in a C-
like language for years and years, there is something unnerving about the whole busi-
ness, however much you tell yourself that it’s still static typing under the covers. This may
not be a rational concern, but that doesn’t make it any less real. If you’re uncomfortable,
you’re likely to be less productive. If the advantages don’t outweigh your negative feel-
ings, that’s fine. Depending on your personality, you may wish to try to push yourself to
become more comfortable with implicit typing—but you certainly don’t have to.

8.2.4 Recommendations

Here are some recommendations based on my experience with implicit typing. That’s
all they are—recommendations—and you should feel free to take them with a pinch
of salt.

■ Consult your teammates on the matter when embarking on a C# 3 project.
■ When in doubt, try a line both ways and go with your gut feelings.
■ Unless there’s a significant gain in code simplicity, use explicit typing. Note that

numeric variables always fall into this category since you’d never gain more
than a few characters anyway.

■ If it’s important that someone reading the code knows the type of the variable
at a glance, use explicit typing.

■ If the variable is directly initialized with a constructor and the type name is long
(which often occurs with generics) consider using implicit typing.

■ If the precise type of the variable isn’t important, but its general nature is clear
from the context, use implicit typing to deemphasize how the code achieves its
aim and concentrate on the higher level of what it’s achieving.

Effectively, my recommendation boils down to not using implicit typing either
“because it’s new” or for reasons of laziness, saving a few keystrokes. Where it keeps
the code tidier, allowing you to concentrate on the most important elements of the
code, go for it. I’ll be using implicit typing extensively in the rest of the book, for the
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simple reason that code is harder to format in print than on a screen—there’s not as
much width available.

 We’ll come back to implicit typing when we see anonymous types, as they create sit-
uations where you are forced to ask the compiler to infer the types of some variables.
Before that, let’s have a look at how C# 3 makes it easier to construct and populate a
new object in one expression. 

8.3 Simplified initialization
One would have thought that object-oriented languages would have streamlined
object creation long ago. After all, before you start using an object, something has to
create it, whether it’s through your code directly or a factory method of some sort.
And yet in C# 2 very few language features are geared toward making life easier when
it comes to initialization. If you can’t do what you want using constructor arguments,
you’re basically out of luck—you need to create the object, then manually initialize it
with property calls and the like.

 This is particularly annoying when you want to create a whole bunch of objects in
one go, such as in an array or other collection—without a “single expression” way of
initializing an object, you’re forced to either use local variables for temporary manipu-
lation, or create a helper method that performs the appropriate initialization based
on parameters.

 C# 3 comes to the rescue in a number of ways, as we’ll see in this section.

8.3.1 Defining our sample types

The expressions we’re going to be using in this section are called object initializers.
These are just ways of specifying initialization that should occur after an object has
been created. You can set properties, set properties of properties (don’t worry, it’s sim-
pler than it sounds), and add to collections that are accessible via properties. To dem-
onstrate all this, we’ll use a Person class again. To start with, there’s the name and age
we’ve used before, exposed as writable properties. We’ll provide both a parameterless
constructor and one that accepts the name as a parameter. We’ll also add a list of
friends and the person’s home location, both of which are accessible as read-only
properties, but that can still be modified by manipulating the retrieved objects. A sim-
ple Location class provides Country and Town properties to represent the person’s
home. Listing 8.2 shows the complete code for the classes.

public class Person
{
    public int Age { get; set; }          
    public string Name { get; set; }     

    List<Person> friends = new List<Person>();
    public List<Person> Friends { get { return friends; } }

    Location home = new Location();

Listing 8.2 A fairly simple Person class used for further demonstrations
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    public Location Home { get { return home; } }            

    public Person() { }

    public Person(string name)
    {
        Name = name;
    }
}

public class Location
{
    public string Country { get; set; }
    public string Town { get; set; }
}

Listing 8.2 is straightforward, but it’s worth noting that both the list of friends and the
home location are created in a “blank” way when the person is created, rather than
being left as just null references. That’ll be important later on—but for the moment
let’s look at the properties representing the name and age of a person.

8.3.2 Setting simple properties

Now that we’ve got our Person type, we want to create some instances of it using the
new features of C# 3. In this section we’ll look at setting the Name and Age properties—
we’ll come to the others later.

 In fact, object initializers aren’t restricted to using properties. All of the syntactic
sugar here also applies to fields, but the vast majority of the time you’ll be using prop-
erties. In a well-encapsulated system you’re unlikely to have access to fields anyway,
unless you’re creating an instance of a type within that type’s own code. It’s worth
knowing that you can use fields, of course—so for the rest of the section, just read prop-
erty and field whenever the text says property.

 With that out of the way, let’s get down to business. Suppose we want to create a
person called Tom, who is four years old. Prior to C# 3, there are two ways this can be
achieved:

Person tom1 = new Person();
tom1.Name = "Tom";
tom1.Age = 4;

Person tom2 = new Person("Tom");
tom2.Age = 4;

The first version simply uses the parameterless constructor and then sets both proper-
ties. The second version uses the constructor overload which sets the name, and then
sets the age afterward. Both of these options are still available in C# 3 of course, but
there are other alternatives:

Person tom3 = new Person() { Name="Tom", Age=4 };

Person tom4 = new Person { Name="Tom", Age=4 };

Person tom5 = new Person("Tom") { Age = 4 };
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The part in braces at the end of each line is the object initializer. Again, it’s just com-
piler trickery. The IL used to initialize tom3 and tom4 is identical, and indeed it’s very
nearly2 the same as we used for tom1. Predictably, the code for tom5 is nearly the same
as for tom2. Note how for tom4 we omitted the parentheses for the constructor. You
can use this shorthand for types with a parameterless constructor, which is what gets
called in the compiled code.

 After the constructor has been called, the specified properties are set in the obvi-
ous way. They’re set in the order specified in the object initializer, and you can only
specify any particular property at most once—you can’t set the Name property twice,
for example. (You could, however, call the constructor taking the name as a parame-
ter, and then set the Name property. It would be pointless, but the compiler wouldn’t
stop you from doing it.) The expression used as the value for a property can be any
expression that isn’t itself an assignment—you can call methods, create new objects
(potentially using another object initializer), pretty much anything.

You may well be wondering just how useful this is—we’ve saved one or
two lines of code, but surely that’s not a good enough reason to make the
language more complicated, is it? There’s a subtle point here, though:
we’ve not just created an object in one line—we’ve created it in one
expression. That difference can be very important. Suppose you want to
create an array of type Person[] with some predefined data in it. Even
without using the implicit array typing we’ll see later, the code is neat and
readable:

Person[] family = new Person[]
{
     new Person { Name="Holly", Age=31 },
     new Person { Name="Jon", Age=31 },
     new Person { Name="Tom", Age=4 },
     new Person { Name="William", Age=1 },
     new Person { Name="Robin", Age=1 }  
};

Now, in a simple example like this we could have written a constructor taking both the
name and age as parameters, and initialized the array in a similar way in C# 1 or 2.
However, appropriate constructors aren’t always available—and if there are several
constructor parameters, it’s often not clear which one means what just from the posi-
tion. By the time a constructor needs to take five or six parameters, I often find myself
relying on IntelliSense more than I want to. Using the property names is a great boon
to readability in such cases.

 This form of object initializer is the one you’ll probably use most often. However,
there are two other forms—one for setting subproperties, and one for adding to col-
lections. Let’s look at subproperties—properties of properties—first.

2 In fact, the variable’s new value isn’t assigned until all the properties have been set. A temporary local variable
is used until then. This is very rarely noticeable, though, and where it is the code should probably be more
straightforward anyway.

Important! 

One 

expression to 

initialize an 

object
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8.3.3 Setting properties on embedded objects

So far we’ve found it easy to set the Name and Age properties, but we can’t set the Home
property in the same way—it’s read-only. However, we can set the town and the coun-
try of a person, by first fetching the Home property, and then setting properties on the
result. The language specification refers to this as setting the properties of an embedded
object. Just to make it clear, what we’re talking about is the following C# 1 code:

Person tom = new Person("Tom");
tom.Age = 4;
tom.Home.Country = "UK";
tom.Home.Town = "Reading";

When we’re populating the home location, each statement is doing a get to retrieve
the Location instance, and then a set on the relevant property on that instance.
There’s nothing new in that, but it’s worth slowing your mind down to look at it care-
fully; otherwise, it’s easy to miss what’s going on behind the scenes.

 C# 3 allows all of this to be done in one expression, as shown here:

Person tom = new Person("Tom")
{ 
     Age = 4, 
     Home = { Country="UK", Town="Reading" }
};

The compiled code for these snippets is effectively the same. The com-
piler spots that to the right side of the = sign is another object initializer,

and applies the properties to the embedded object appropriately. One point about
the formatting I’ve used—just as in almost all C# features, it’s whitespace indepen-
dent: you can collapse the whitespace in the object initializer, putting it all on one line
if you like. It’s up to you to work out where the sweet spot is in balancing long lines
against lots of lines.

 The absence of the new keyword in the part initializing Home is significant. If you
need to work out where the compiler is going to create new objects and where it’s
going to set properties on existing ones, look for occurrences of new in the initializer.
Every time a new object is created, the new keyword appears somewhere.

 We’ve dealt with the Home property—but what about Tom’s friends? There are
properties we can set on a List<Person>, but none of them will add entries to the list.
It’s time for the next feature—collection initializers. 

8.3.4 Collection initializers

Creating a collection with some initial values is an extremely common task. Until C# 3
arrived, the only language feature that gave any assistance was array creation—and
even that was clumsy in many situations. C# 3 has collection initializers, which allow you
to use the same type of syntax as array initializers but with arbitrary collections and
more flexibility.

Looks like an 

assignment to 

Home, but it’s 

not really!
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CREATING NEW COLLECTIONS WITH COLLECTION INITIALIZERS
As a first example, let’s use the now-familiar List<T> type. In C# 2, you could populate
a list either by passing in an existing collection, or by calling Add repeatedly after cre-
ating an empty list. Collection initializers in C# 3 take the latter approach. Suppose we
want to populate a list of strings with some names—here’s the C# 2 code (on the left)
and the close equivalent in C# 3 (on the right):

Just as with object initializers, you can specify constructor parameters if you want, or
use a parameterless constructor either explicitly or implicitly. Also as before, the deci-
sion about how much whitespace to use is entirely yours—in real code (where there’s
significantly more room than in a book), I might well have put the entire C# 3 state-
ment on one line. The use of implicit typing here was partly for space reasons—the
names variable could equally well have been declared explicitly. Reducing the number
of lines of code (without reducing readability) is nice, but there are two bigger bene-
fits of collection initializers:

■ The “create and initialize” part counts as a single expression.
■ There’s a lot less clutter in the code.

The first point becomes important when you want to use a collection as either an
argument to a method or as one element in a larger collection. That happens relatively
rarely (although often enough to still be useful)—but the second point is the real rea-
son this is a killer feature in my view. If you look at the code on the right, you see the
information you need, with each piece of information written only once. The variable
name occurs once, the type being used occurs once, and each of the elements of the
initialized collection appears once. It’s all extremely simple, and much clearer than
the C# 2 code, which contains a lot of fluff around the useful bits.

 Collection initializers aren’t limited to just lists. You can use them with any type
that implements IEnumerable, as long as it has an appropriate public Add method for
each element in the initializer. You can use an Add method with more than one param-
eter by putting the values within another set of braces. The most common use for this
is creating dictionaries. For example, if we wanted a dictionary mapping names to
ages, we could use the following code:

Dictionary<string,int> nameAgeMap = new Dictionary<string,int>
{
    {"Holly", 31},

List<string> names = new List<string>();
names.Add("Holly");
names.Add("Jon");
names.Add("Tom");
names.Add("Robin");
names.Add("William");

var names = new List<string>
{ 
    "Holly", "Jon", "Tom",
    "Robin", "William"
};
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    {"Jon", 31},
    {"Tom", 4}
};

In this case, the Add(string, int) method would be called three times. If multiple
Add overloads are available, different elements of the initializer can call different over-
loads. If no compatible overload is available for a specified element, the code will fail
to compile. There are two interesting points about the design decision here:

■ The fact that the type has to implement IEnumerable is never used by the com-
piler.

■ The Add method is only found by name—there’s no interface requirement
specifying it.

These are both pragmatic decisions. Requiring IEnumerable to be implemented is a
reasonable attempt to check that the type really is a collection of some sort, and using
any public overload of the Add method (rather than requiring an exact signature)
allows for simple initializations such as the earlier dictionary example. Nonpublic
overloads, including those that explicitly implement an interface, are not used. This is
a slightly different situation from object initializers setting properties, where internal
properties are available too (within the same assembly, of course).

 An early draft of the specification required ICollection<T> to be implemented
instead, and the implementation of the single-parameter Add method (as specified
by the interface) was called rather than allowing different overloads. This
sounds more “pure,” but there are far more types that implement IEnumerable than
ICollection<T>—and using the single-parameter Add method would be inconve-
nient. For example, in our case it would have forced us to explicitly create an
instance of a KeyValuePair<string,int> for each element of the initializer. Sacrific-
ing a bit of academic purity has made the language far more useful in real life.
POPULATING COLLECTIONS WITHIN OTHER OBJECT INITIALIZERS
So far we’ve only seen collection initializers used in a stand-alone fashion to create
whole new collections. They can also be combined with object initializers to populate
embedded collections. To show this, we’ll go back to our Person example. The
Friends property is read-only, so we can’t create a new collection and specify that as
the collection of friends—but we can add to whatever collection is returned by the
property’s getter. The way we do this is similar to the syntax we’ve already seen for set-
ting properties of embedded objects, but we just specify a collection initializer instead
of a sequence of properties.

 Let’s see this in action by creating another Person instance for Tom, this time with
friends (listing 8.3).

Person tom = new Person
{
    Name = "Tom",                                    
    Age = 4,                                             

Listing 8.3 Building up a rich object using object and collection initializers

Calls parameterless constructor

Sets properties 
directly



221Simplified initialization
    Home = { Town="Reading", Country="UK" },      
    Friends = 
    {                                                            
        new Person { Name = "Phoebe" },                
        new Person("Abi"),                                
        new Person { Name = "Ethan", Age = 4 },      
        new Person("Ben")                                  
        {                                                         
            Age = 4,                                            
            Home = { Town = "Purley", Country="UK" }
        }                                                         
    }                                                            
};

Listing 8.3 uses all the features of object and collection initializers we’ve come across.
The main part of interest is the collection initializer, which itself uses all kinds of dif-
ferent forms of object initializers internally. Note that we’re not specifying a type here
as we did with the stand-alone collection creation: we’re not creating a new collection,
just adding to an existing one.

 We could have gone further, specifying friends of friends, friends of friends of
friends, and so forth. What we couldn’t do with this syntax is specify that Tom is Ben’s
friend—while you’re still initializing an object, you don’t have access to it. This can be
awkward in a few cases, but usually isn’t a problem.

 Collection initialization within object initializers works as a sort of cross between
stand-alone collection initializers and setting embedded object properties. For each
element in the collection initializer, the collection property getter (Friends in this
case) is called, and then the appropriate Add method is called on the returned value.
The collection isn’t cleared in any way before elements are added. For example, if you
were to decide that someone should always be their own friend, and added this to
the list of friends within the Person constructor, using a collection initializer would
only add extra friends. 

 As you can see, the combination of collection and object initializers can be used to
populate whole trees of objects. But when and where is this likely to actually happen?

8.3.5 Uses of initialization features

Trying to pin down exactly where these features are useful is reminiscent of being in
a Monty Python sketch about the Spanish Inquisition—every time you think you’ve
got a reasonably complete list, another fairly common example pops up. I’ll just
mention three examples, which I hope will encourage you to consider where else you
might use them.
“CONSTANT” COLLECTIONS
It’s not uncommon for me to want some kind of collection (often a map) that is effec-
tively constant. Of course, it can’t be a constant as far as the C# language is concerned,
but it can be declared static and read-only, with big warnings to say that it shouldn’t be
changed. (It’s usually private, so that’s good enough.) Typically, this involves creating
a static constructor and often a helper method, just to populate the map. With C# 3’s
collection initializers, it’s easy to set the whole thing up inline.

Initializes 
embedded 
object

Initializes collection 
with further object 
initializers



222 CHAPTER 8 Cutting fluff with a smart compiler
SETTING UP UNIT TESTS
When writing unit tests, I frequently want to populate an object just for one test, often
passing it in as a parameter to the method I’m trying to test at the time. This is partic-
ularly common with entity classes. Writing all of the initialization “long-hand” can be
longwinded and also hides the essential structure of the object from the reader of the
code, just as XML creation code can often obscure what the document would look like
if you viewed it (appropriately formatted) in a text editor. With appropriate indenta-
tion of object initializers, the nested structure of the object hierarchy can become
obvious in the very shape of the code, as well as make the values stand out more than
they would otherwise.
PARAMETER ENCAPSULATION
Sometimes patterns occur in production code that can be aided by C# 3’s initialization
features. For instance, rather than specifying several parameters to a single method,
you can sometimes make code more straightforward by collecting the parameters
together in an extra type. The framework ProcessStartInfo type is a good example
of this—the designers could have overloaded Process.Start with many different sets
of parameters, but using ProcessStartInfo makes everything clearer. C# 3 allows you
to create a ProcessStartInfo and fill in all the properties in a clearer manner—and
you could even specify it inline in a call to Process.Start. In some ways, the method
call would then act as if it had a lot of default parameters, with the properties provid-
ing the names of parameters you want to specify. It’s worth considering this pattern
when you find yourself using lots of parameters—it was always a useful technique to
know about, but C# 3 makes it that bit more elegant.
<INSERT YOUR FAVORITE USE HERE>
Of course, there are uses beyond these three in ordinary code, and I certainly don’t
want to put you off using the new features elsewhere. There’s very little reason not to
use them, other than possibly confusing developers who aren’t familiar with C# 3 yet.
You may decide that using an object initializer just to set one property (as opposed to
just explicitly setting it in a separate statement) is over the top—that’s a matter of aes-
thetics, and I can’t give you much guidance there. As with implicit typing, it’s a good
idea to try the code both ways, and learn to predict your own (and your team’s) read-
ing preferences.

 So far we’ve looked at a fairly diverse range of features: implementing properties
easily, simplifying local variable declarations, and populating objects in single expres-
sions. In the remainder of this chapter we’ll be gradually bringing these topics
together, using more implicit typing and more object population, and creating whole
types without giving any implementation details.

 Our next topic appears to be quite similar to collection initializers when you look
at code using it. I mentioned earlier that array initialization was a bit clumsy in C# 1
and 2. I’m sure it won’t surprise you to learn that it’s been streamlined for C# 3. Let’s
take a look.
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8.4 Implicitly typed arrays
In C# 1 and 2, initializing an array as part of a variable declaration and initialization
statement was quite neat—but if you wanted to do it anywhere else, you had to specify
the exact array type involved. So for example, this compiles without any problem:

string[] names = {"Holly", "Jon", "Tom", "Robin", "William"};

This doesn’t work for parameters, though: suppose we want to make a call to
MyMethod, declared as void MyMethod(string[] names). This code won’t work:

MyMethod({"Holly", "Jon", "Tom", "Robin", "William"});

Instead, you have to tell the compiler what type of array you want to initialize:

MyMethod(new string[] {"Holly", "Jon", "Tom", "Robin", "William"});

C# 3 allows something in between:

MyMethod(new[] {"Holly", "Jon", "Tom", "Robin", "William"});

Clearly the compiler needs to work out what type of array to use. It starts by forming a
set containing all the compile-time types of the expressions inside the braces. If
there’s exactly one type in that set that all the others can be implicitly converted to,
that’s the type of the array. Otherwise, (or if all the values are typeless expressions,
such as constant null values or anonymous methods, with no casts) the code won’t
compile. Note that only the types of the expressions are considered as candidates for
the overall array type. This means that occasionally you might have to explicitly cast a
value to a less specific type. For instance, this won’t compile:

new[] { new MemoryStream(), new StringWriter() }

There’s no conversion from MemoryStream to StringWriter, or vice versa. Both are
implicitly convertible to object and IDisposable, but the compiler only considers types
that are in the original set produced by the expressions themselves. If we change one
of the expressions in this situation so that its type is either object or IDisposable, the
code compiles:

new[] { (IDisposable) new MemoryStream(), new StringWriter() }

The type of this last expression is implicitly IDisposable[]. Of course, at that point
you might as well explicitly state the type of the array just as you would in C# 1 and 2,
to make it clearer what you’re trying to achieve.

 Compared with the earlier features, implicitly typed arrays are a bit of an anticli-
max. I find it hard to get particularly excited about them, even though they do make
life that bit simpler in cases where an array is passed as a parameter. You could well
argue that this feature doesn’t prove itself in the “usefulness versus complexity” bal-
ance used by the language designers to decide what should be part of the language.

 The designers haven’t gone mad, however—there’s one important situation in
which this implicit typing is absolutely crucial. That’s when you don’t know (and
indeed can’t know) the name of the type of the elements of the array. How can you
possibly get into this peculiar state? Read on…



224 CHAPTER 8 Cutting fluff with a smart compiler
8.5 Anonymous types
Implicit typing, object and collection initializers, and implicit array typing are all use-
ful in their own right, to a greater or lesser extent. However, they all really serve a
higher purpose—they make it possible to work with our final feature of the chapter,
anonymous types. They, in turn, serve a higher purpose—LINQ.

8.5.1 First encounters of the anonymous kind

It’s much easier to explain anonymous types when you’ve already got some idea of
what they are through an example. I’m sorry to say that without the use of extension
methods and lambda expressions, the examples in this section are likely to be a little
contrived, but there’s a distinct chicken-and-egg situation here: anonymous types are
most useful within the context of the more advanced features, but we need to under-
stand the building blocks before we can see much of the bigger picture. Stick with it—
it will make sense in the long run, I promise.

 Let’s pretend we didn’t have the Person class, and the only properties we cared
about were the name and age. Listing 8.4 shows how we could still build objects with
those properties, without ever declaring a type.

var tom = new { Name = "Tom", Age = 4 };     
var holly = new { Name = "Holly", Age = 31 };
var jon = new { Name = "Jon", Age = 31 };

Console.WriteLine("{0} is {1} years old", jon.Name, jon.Age);

As you can tell from listing 8.4, the syntax for initializing an anonymous type is similar
to the object initializers we saw in section 8.3.2—it’s just that the name of the type is
missing between new and the opening brace. We’re using implicitly typed local vari-
ables because that’s all we can use—we don’t have a type name to declare the variable
with. As you can see from the last line, the type has properties for the Name and Age,
both of which can be read and which will have the values specified in the anonymous
object initializer used to create the instance—so in this case the output is “Jon is 31 years
old.” The properties have the same types as the expressions in the initializers—string

for Name, and int for Age. Just as in normal object initializers, the expressions used in
anonymous object initializers can call methods or constructors, fetch properties, per-
form calculations—whatever you need to do.

 You may now be starting to see why implicitly typed arrays are important. Suppose
we want to create an array containing the whole family, and then iterate through it to
work out the total age. Listing 8.5 does just that—and demonstrates a few other inter-
esting features of anonymous types at the same time.

var family = new[]                   
{

Listing 8.4 Creating objects of an anonymous type with Name and Age properties

Listing 8.5 Populating an array using anonymous types and then finding the total age

Uses an implicitly typed array initializerB
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    new { Name = "Holly", Age = 31 },
    new { Name = "Jon", Age = 31 },   
    new { Name = "Tom", Age = 4 },    
    new { Name = "Robin", Age = 1 }, 
    new { Name = "William", Age = 1 }
};

int totalAge = 0;
foreach (var person in family)
{
    totalAge += person.Age;     
}
Console.WriteLine("Total age: {0}", totalAge);

Putting together listing 8.5 and what we learned about implicitly typed arrays in sec-
tion 8.4, we can deduce something very important: all the people in the family are of the
same type. If each use of an anonymous object initializer in C created a new type, there
wouldn’t be any appropriate type for the array declared at B. Within any given assem-
bly, the compiler treats two anonymous object initializers as the same type if there are
the same number of properties, with the same names and types, and they appear in
the same order. In other words, if we swapped the Name and Age properties in one of
the initializers, there’d be two different types involved—likewise if we introduced an
extra property in one line, or used a long instead of an int for the age of one person,
another anonymous type would have been introduced.

NOTE Implementation detail: how many types?—If you ever decide to look at the IL
(or decompiled C#) for an anonymous type, be aware that although two
anonymous object initializers with the same property names in the same
order but using different property types will produce two different types,
they’ll actually be generated from a single generic type. The generic type
is parameterized, but the closed, constructed types will be different because
they’ll be given different type arguments for the different initializers.

Notice that we’re able to use a foreach statement to iterate over the array just as we
would any other collection. The type involved is inferred D, and the type of the
person variable is the same anonymous type we’ve used in the array. Again, we can
use the same variable for different instances because they’re all of the same type.

 Listing 8.5 also proves that the Age property really is strongly typed as an int—
otherwise trying to sum the ages E wouldn’t
compile. The compiler knows about the anon-
ymous type, and Visual Studio 2008 is even
willing to share the information via tooltips,
just in case you’re uncertain. Figure 8.3 shows
the result of hovering over the person part of
the person.Age expression from listing 8.5.

 Now that we’ve seen anonymous types in
action, let’s go back and look at what the com-
piler is actually doing for us.

Uses same 
anonymous type 
five times

C

Uses implicit 
typing for person

D

Sums agesE

Figure 8.3 Hovering over a variable 
that is declared (implicitly) to be of an 
anonymous type shows the details of 
that anonymous type.



226 CHAPTER 8 Cutting fluff with a smart compiler
8.5.2 Members of anonymous types

Anonymous types are created by the compiler and included in the compiled assembly
in the same way as the extra types for anonymous methods and iterator blocks. The CLR
treats them as perfectly ordinary types, and so they are—if you later move from an anony-
mous type to a normal, manually coded type with the behavior described in this section,
you shouldn’t see anything change. Anonymous types contain the following members:

■ A constructor taking all the initialization values. The parameters are in the
same order as they were specified in the anonymous object initializer, and have
the same names and types.

■ Public read-only properties.
■ Private read-only fields backing the properties.
■ Overrides for Equals, GetHashCode, and ToString.

That’s it—there are no implemented interfaces, no cloning or serialization
capabilities—just a constructor, some properties and the normal methods from object.

 The constructor and the properties do the obvious things. Equality between two
instances of the same anonymous type is determined in the natural manner, compar-
ing each property value in turn using the property type’s Equals method. The hash
code generation is similar, calling GetHashCode on each property value in turn and
combining the results. The exact method for combining the various hash codes
together to form one “composite” hash is unspecified, and you shouldn’t write code
that depends on it anyway—all you need to be confident in is that two equal instances
will return the same hash, and two unequal instances will probably return different
hashes. All of this only works if the Equals and GetHashCode implementations of all
the different types involved as properties conform to the normal rules, of course.

 Note that because the properties are read-only, all anonymous types are immutable
so long as the types used for their properties are immutable. This provides you with all
the normal benefits of immutability—being able to pass values to methods without
fear of them changing, simple sharing of data across threads, and so forth.

 We’re almost done with anonymous types now. However, there’s one slight wrinkle
still to talk about—a shortcut for a situation that is fairly common in LINQ.

8.5.3 Projection initializers

The anonymous object initializers we’ve seen so far have all been lists of name/value
pairs—Name = "Jon", Age=31 and the like. As it happens, I’ve always used constants
because they make for smaller examples, but in real code you often want to copy prop-
erties from an existing object. Sometimes you’ll want to manipulate the values in some
way, but often a straight copy is enough.

 Again, without LINQ it’s hard to give convincing examples of this, but let’s go back
to our Person class, and just suppose we had a good reason to want to convert a collec-
tion of Person instances into a similar collection where each element has just a name,
and a flag to say whether or not that person is an adult. Given an appropriate person
variable, we could use something like this:

new { Name = person.Name, IsAdult = (person.Age >= 18) }
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That certainly works, and for just a single property the syntax for setting the name
(the part in bold) is not too clumsy—but if you were copying several properties it
would get tiresome. C# 3 provides a shortcut: if you don’t specify the property name,
but just the expression to evaluate for the value, it will use the last part of the expres-
sion as the name—provided it’s a simple field or property. This is called a projection ini-
tializer. It means we can rewrite the previous code as

new { person.Name, IsAdult = (person.Age >= 18) }

It’s quite common for all the bits of an anonymous object initializer to be projection
initializers—it typically happens when you’re taking some properties from one object
and some properties from another, often as part of a join operation. Anyway, I’m get-
ting ahead of myself. Listing 8.6 shows the previous code in action, using the
List.ConvertAll method and an anonymous delegate.

List<Person> family = new List<Person>                 
{
    new Person {Name="Holly", Age=31},
    new Person {Name="Jon", Age=31},
    new Person {Name="Tom", Age=4},
    new Person {Name="Robin", Age=1},
    new Person {Name="William", Age=1}
};

var converted = family.ConvertAll(delegate(Person person)
    { return new { person.Name, IsAdult = (person.Age >= 18) }; }
);

foreach (var person in converted)
{
    Console.WriteLine("{0} is an adult? {1}", 
                              person.Name, person.IsAdult);
}

In addition to the use of a projection initializer for the Name property, listing 8.6 shows
the value of delegate type inference and anonymous methods. Without them, we
couldn’t have retained our strong typing of converted, as we wouldn’t have been able
to specify what the TOutput type parameter of Converter should be. As it is, we can
iterate through the new list and access the Name and IsAdult properties as if we were
using any other type.

 Don’t spend too long thinking about projection initializers at this point—the
important thing is to be aware that they exist, so you won’t get confused when you see
them later. In fact, that advice applies to this entire section on anonymous types—so
without going into details, let’s look at why they’re present at all.

8.5.4 What’s the point?

I hope you’re not feeling cheated at this point, but I sympathize if you do. Anonymous
types are a fairly complex solution to a problem we haven’t really encountered yet…
except that I bet you have seen part of the problem before, really.

Listing 8.6 Transformation from Person to a name and adulthood flag
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 If you’ve ever done any real-life work involving databases, you’ll know that you don’t
always want all of the data that’s available on all the rows that match your query criteria.
Often it’s not a problem to fetch more than you need, but if you only need two columns
out of the fifty in the table, you wouldn’t bother to select all fifty, would you?

 The same problem occurs in nondatabase code. Suppose we have a class that reads
a log file and produces a sequence of log lines with many fields. Keeping all of the
information might be far too memory intensive if we only care about a couple of fields
from the log. LINQ lets you filter that information easily.

 But what’s the result of that filtering? How can we keep some data and discard the
rest? How can we easily keep some derived data that isn’t directly represented in the orig-
inal form? How can we combine pieces of data that may not initially have been con-
sciously associated, or that may only have a relationship in a particular situation?
Effectively, we want a new data type—but manually creating such a type in every situa-
tion is tedious, particularly when you have tools such as LINQ available that make the
rest of the process so simple. Figure 8.4 shows the three elements that make anonymous
types a powerful feature.

 If you find yourself creating a type that is only used in a single method, and that only
contains fields and trivial properties, consider whether an anonymous type would be
appropriate. Even if you’re not developing in C# 3 yet, keep an eye out for places where
it might be worth using an anonymous type when you upgrade. The more you think
about this sort of feature, the easier the
decisions about when to use it will become.
I suspect that you’ll find that most of the
times when you find yourself leaning
toward anonymous types, you could also
use LINQ to help you—look out for that too.

 If you find yourself using the same
sequence of properties for the same pur-
pose in several places, however, you might
want to consider creating a normal type
for the purpose, even if it still just contains
trivial properties. Anonymous types natu-
rally “infect” whatever code they’re used in
with implicit typing—which is often fine,
but can be a nuisance at other times. As
with the previous features, use anonymous
types when they genuinely make the code
simpler to work with, not just because
they’re new and cool.

8.6 Summary
What a seemingly mixed bag of features! We’ve seen four features that are quite simi-
lar, at least in syntax: object initializers, collection initializers, implicitly typed arrays,
and anonymous types. The other two features—automatic properties and implicitly

Anonymous
types

Avoiding excessive
data accumulation

Avoiding manual
"turn the handle"

coding

Tailoring data
encapsulation to

one situation

Figure 8.4 Anonymous types allow you to keep 
just the data you need for a particular situation, 
in a form that is tailored to that situation, without 
the tedium of writing a fresh type each time.
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typed local variables—are somewhat different. Likewise, most of the features would
have been useful individually in C# 2, whereas implicitly typed arrays and anonymous
types only pay back the cost of learning about them when the rest of the C# 3 features
are brought into play.

 So what do these features really have in common? They all relieve the developer of
tedious coding. I’m sure you don’t enjoy writing trivial properties any more than I do, or
setting several properties, one at a time, using a local variable—particularly when
you’re trying to build up a collection of similar objects. Not only do the new features
of C# 3 make it easier to write the code, they also make it easier to read it too, at least
when they’re applied sensibly.

 In our next chapter we’ll look at a major new language feature, along with a frame-
work feature it provides direct support for. If you thought anonymous methods made
creating delegates easy, just wait until you see lambda expressions…



Lambda expressions
 and expression trees
In chapter 5 we saw how C# 2 made delegates much easier to use due to implicit
conversions of method groups, anonymous methods, and parameter covariance.
This is enough to make event subscription significantly simpler and more readable,
but delegates in C# 2 are still too bulky to be used all the time: a page of code full of
anonymous methods is quite painful to read, and you certainly wouldn’t want to
start putting multiple anonymous methods in a single statement on a regular basis.

 One of the fundamental building blocks of LINQ is the ability to create pipelines
of operations, along with any state required by those operations. These operations

This chapter covers
■ Lambda expression syntax
■ Conversions from lambdas to delegates
■ Expression tree framework classes
■ Conversions from lambdas to expression trees
■ Why expression trees matter
■ Changes to type inference
■ Changes to overload resolution
230



231Lambda expressions and expression trees
express all kinds of logic about data: how to filter it, how to order it, how to join differ-
ent data sources together, and much more. When LINQ queries are executed “in pro-
cess,” those operations are usually represented by delegates.

 Statements containing several delegates are common when manipulating data with
LINQ to Objects,1 and lambda expressions in C# 3 make all of this possible without sacri-
ficing readability. (While I’m mentioning readability, this chapter uses lambda expres-
sion and lambda interchangeably; as I need to refer to normal expressions quite a lot, it
helps to use the short version in many cases.)

NOTE It’s all Greek to me—The term lambda expression comes from lambda calcu-
lus, also written as �-calculus, where � is the Greek letter lambda. This is
an area of math and computer science dealing with defining and apply-
ing functions. It’s been around for a long time and is the basis of func-
tional languages such as ML. The good news is that you don’t need to
know lambda calculus to use lambda expressions in C# 3.

Executing delegates is only part of the LINQ story. To use databases and other query
engines efficiently, we need a different representation of the operations in the pipe-
line: a way of treating code as data that can be examined programmatically. The logic
within the operations can then be transformed into a different form, such as a web
service call, a SQL or LDAP query—whatever is appropriate.

 Although it’s possible to build up representations of queries in a particular API, it’s
usually tricky to read and sacrifices a lot of compiler support. This is where lambdas
save the day again: not only can they be used to create delegate instances, but the C#
compiler can also transform them into expression trees—data structures representing
the logic of the lambda expressions so that other code can examine it. In short,
lambda expressions are the idiomatic way of representing the operations in LINQ data
pipelines—but we’ll be taking things one step at a time, examining them in a fairly iso-
lated way before we embrace the whole of LINQ.

 In this chapter we’ll look at both ways of using lambda expressions, although for
the moment our coverage of expression trees will be relatively basic—we’re not going
to actually create any SQL just yet. However, with the theory under your belt you
should be relatively comfortable with lambda expressions and expression trees by the
time we hit the really impressive stuff in chapter 12.

 In the final part of this chapter, we’ll examine how type inference has changed for
C# 3, mostly due to lambdas with implicit parameter types. This is a bit like learning
how to tie shoelaces: far from exciting, but without this ability you’ll trip over yourself
when you start running.

 Let’s begin by seeing what lambda expressions look like. We’ll start with an anony-
mous method and gradually transform it into shorter and shorter forms.

Lambda expressions and expression trees

1 LINQ to Objects is the LINQ provider in .NET 3.5 that handles sequences of data within the same process. By
contrast, providers such as LINQ to SQL offload the work to other “out of process” systems—databases, for
example.
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9.1 Lambda expressions as delegates
In many ways, lambda expressions can be seen as an evolution of anonymous methods
from C# 2. There’s almost nothing that an anonymous method can do that can’t be done
using a lambda expression, and it’s almost always more readable and compact using
lambdas. In particular, the behavior of captured variables is exactly the same in lambda
expressions as in anonymous methods. In their most explicit form, not much difference
exists between the two—but lambda expressions have a lot of shortcuts available to make
them compact in common situations. Like anonymous methods, lambda expressions
have special conversion rules—the type of the expression isn’t a delegate type in itself,
but it can be converted into a delegate instance in various ways, both implicitly and
explicitly. The term anonymous function covers anonymous methods and lambda expres-
sions—in many cases the same conversion rules apply to both of them.

 We’re going to start with a very simple example, initially expressed as an anonymous
method. We’ll create a delegate instance that takes a string parameter and returns an
int (which is the length of the string). First we need to choose a delegate type to use;
fortunately, .NET 3.5 comes with a whole family of generic delegate types to help us out.

9.1.1 Preliminaries: introducing the Func<…> delegate types

There are five generic Func delegate types in the System namespace of .NET 3.5.
There’s nothing special about Func—it’s just handy to have some predefined generic
types that are capable of handling many situations. Each delegate signature takes
between zero and four parameters, the types of which are specified as type parame-
ters. The last type parameter is used for the return type in each case. Here are the sig-
natures of all the Func delegate types:

public delegate TResult Func<TResult>()

public delegate TResult Func<T,TResult>(T arg)

public delegate TResult Func<T1,T2,TResult>(T1 arg1, T2 arg2)

public delegate TResult Func<T1,T2,T3,TResult>
    (T1 arg1, T2 arg2, T3 arg3)

public delegate TResult Func<T1,T2,T3,T4,TResult>
    (T1 arg1, T2 arg2, T3 arg3, T4 arg4)

For example, Func<string,double,int> is equivalent to a delegate type of the form

delegate int SomeDelegate(string arg1, double arg2)

The Action<…> set of delegates provide the equivalent functionality when you want a
void return type. The single parameter form of Action existed in .NET 2.0, but the rest
are new to .NET 3.5. For our example we need a type that takes a string parameter
and returns an int, so we’ll use Func<string,int>.

9.1.2 First transformation to a lambda expression

Now that we know the delegate type, we can use an anonymous method to create our
delegate instance. Listing 9.1 shows this, along with executing the delegate instance
afterward so we can see it working.
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Func<string,int> returnLength;
returnLength = delegate (string text) { return text.Length; };

Console.WriteLine (returnLength("Hello"));

Listing 9.1 prints “5,” just as we’d expect it to. I’ve separated out the declaration of
returnLength from the assignment to it so we can keep it on one line—it’s easier to
keep track of that way. The anonymous method expression is the part in bold, and
that’s the part we’re going to convert into a lambda expression.

 The most long-winded form of a lambda expression is this:

(explicitly-typed-parameter-list) => { statements }

The => part is new to C# 3 and tells the compiler that we’re using a lambda expression.
Most of the time lambda expressions are used with a delegate type that has a nonvoid
return type—the syntax is slightly less intuitive when there isn’t a result. This is
another indication of the changes in idiom between C# 1 and C# 3. In C# 1, delegates
were usually used for events and rarely returned anything. Although lambda expres-
sions certainly can be used in this way (and we’ll show an example of this later), much
of their elegance comes from the shortcuts that are available when they need to
return a value.

 With the explicit parameters and statements in braces, this version looks very simi-
lar to an anonymous method. Listing 9.2 is equivalent to listing 9.1 but uses a lambda
expression.

Func<string,int> returnLength;
returnLength = (string text) => { return text.Length; };

Console.WriteLine (returnLength("Hello"));

Again, I’ve used bold to indicate the expression used to create the delegate instance.
When reading lambda expressions, it helps to think of the => part as “goes to”—so the
example in listing 9.2 could be read as “text goes to text.Length.” As this is the only
part of the listing that is interesting for a while, I’ll show it alone from now on. You can
replace the bold text from listing 9.2 with any of the lambda expressions listed in this
section and the result will be the same.

 The same rules that govern return statements in anonymous methods apply to
lambdas too: you can’t try to return a value from a lambda expression with a void
return type, whereas if there’s a nonvoid return type every code path has to return a
compatible value.2 It’s all pretty intuitive and rarely gets in the way.

 So far, we haven’t saved much space or made things particularly easy to read. Let’s
start applying the shortcuts.

Listing 9.1 Using an anonymous method to create a delegate instance

Listing 9.2 A long-winded first lambda expression, similar to an anonymous method

2 Code paths throwing exceptions don’t need to return a value, of course, and neither do detectable infinite
loops.
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9.1.3 Using a single expression as the body

The form we’ve seen so far uses a full block of code to return the value. This is very
flexible—you can have multiple statements, perform loops, return from different
places in the block, and so on, just as with anonymous methods. Most of the time,
however, you can easily express the whole of the body in a single expression, the value
of which is the result of the lambda. In these cases, you can specify just that expres-
sion, without any braces, return statements, or semicolons. The format then is 

(explicitly-typed-parameter-list) => expression

In our case, this means that the lambda expression becomes

 (string text) => text.Length

That’s starting to look simpler already. Now, what about that parameter type? The
compiler already knows that instances of Func<string,int> take a single string
parameter, so we should be able to just name that parameter…

9.1.4 Implicitly typed parameter lists

Most of the time, the compiler can guess the parameter types without you explicitly
stating them. In these cases, you can write the lambda expression as

(implicitly-typed-parameter-list) => expression

An implicitly typed parameter list is just a comma-separated list of names, without the
types. You can’t mix and match for different parameters—either the whole list is
explicitly typed, or it’s all implicitly typed. Also, if any of the parameters are out or ref
parameters, you are forced to use explicit typing. In our case, however, it’s fine—so
our lambda expression is now just

(text) => text.Length

That’s getting pretty short now—there’s not a lot more we could get rid of. The paren-
theses seem a bit redundant, though. 

9.1.5 Shortcut for a single parameter

When the lambda expression only needs a single parameter, and that parameter can
be implicitly typed, C# 3 allows us to omit the parentheses, so it now has this form:

parameter-name => expression

The final form of our lambda expression is therefore

text => text.Length

You may be wondering why there are so many special cases with lambda expressions—
none of the rest of the language cares whether a method has one parameter or more,
for instance. Well, what sounds like a very particular case actually turns out to be
extremely common, and the improvement in readability from removing the parenthe-
ses from the parameter list can be significant when there are many lambdas in a short
piece of code.
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 It’s worth noting that you can put parentheses around the whole lambda expression
if you want to, just like other expressions. Sometimes this helps readability in the case
where you’re assigning the lambda to a variable or property—otherwise, the equals sym-
bols can get confusing. Listing 9.3 shows this in the context of our original code.

Func<string,int> returnLength;
returnLength = (text => text.Length);

Console.WriteLine (returnLength("Hello"));

At first you may find listing 9.3 a bit confusing to read, in the same way that anonymous
methods appear strange to many developers until they get used to them. When you are
used to lambda expressions, however, you can appreciate how concise they are. It
would be hard to imagine a shorter, clearer way of creating a delegate instance.3 We
could have changed the variable name text to something like x, and in full LINQ that’s
often useful, but longer names give a bit more information to the reader.

 The decision of whether to use the short form for the body of the lambda expres-
sion, specifying just an expression instead of a whole block, is completely independent
from the decision about whether to use explicit or implicit parameters. We happen to
have gone down one route of shortening the lambda, but we could have started off by
making the parameters implicit.

NOTE Higher-order functions—The body of a lambda expression can itself con-
tain a lambda expression—and it tends to be as confusing as it sounds.
Alternatively, the parameter to a lambda expression can be another del-
egate, which is just as bad. Both of these are examples of higher-order
functions. If you enjoy feeling dazed and confused, have a look at some
of the sample code in the downloadable source. Although I’m being
flippant, this approach is common in functional programming and can
be very useful. It just takes a certain degree of perseverance to get into
the right mind-set.

So far we’ve only dealt with a single lambda expression, just putting it into different
forms. Let’s take a look at a few examples to make things more concrete before we
examine the details.

9.2 Simple examples using List<T> and events
When we look at extension methods in chapter 10, we’ll use lambda expressions all the
time. Until then, List<T> and event handlers give us the best examples. We’ll start off
with lists, using automatically implemented properties, implicitly typed local variables,
and collection initializers for the sake of brevity. We’ll then call methods that take del-
egate parameters—using lambda expressions to create the delegates, of course.

Listing 9.3 A concise lambda expression, bracketed for clarity

3 That’s not to say it’s impossible, however. Some languages allow closures to be represented as simple blocks
of code with a magic variable name to represent the common case of a single parameter.
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9.2.1 Filtering, sorting, and actions on lists

If you remember the FindAll method on List<T>, it takes a Predicate<T> and
returns a new list with all the elements from the original list that match the predicate.
The Sort method takes a Comparison<T> and sorts the list accordingly. Finally, the
ForEach method takes an Action<T> to perform on each element. Listing 9.4 uses
lambda expressions to provide the delegate instance to each of these methods. The
sample data in question is just the name and year of release for various films. We print
out the original list, then create and print out a filtered list of only old films, then sort
and print out the original list, ordered by name. (It’s interesting to consider how
much more code would have been required to do the same thing in C# 1, by the way.)

class Film
{
    public string Name { get; set; }
    public int Year { get; set; }
    public override string ToString()
    {
        return string.Format("Name={0}, Year={1}", Name, Year);
    }
}
...
var films = new List<Film>
{
    new Film {Name="Jaws", Year=1975},
    new Film {Name="Singing in the Rain", Year=1952},
    new Film {Name="Some Like It Hot", Year=1959},
    new Film {Name="The Wizard of Oz", Year=1939},
    new Film {Name="It's a Wonderful Life", Year=1946},
    new Film {Name="American Beauty", Year=1999},
    new Film {Name="High Fidelity", Year=2000},
    new Film {Name="The Usual Suspects", Year=1995}
};

Action<Film> print = film => { Console.WriteLine(film); };

films.ForEach(print);     

films.FindAll(film => film.Year < 1960)
        .ForEach(print);                          

films.Sort((f1, f2) => f1.Name.CompareTo(f2.Name));
films.ForEach(print);                                         

The first half of listing 9.4 involves just setting up the data. I would have used an anon-
ymous type, but it’s relatively tricky to create a generic list from a collection of anony-
mous type instances. (You can do it by creating a generic method that takes an array
and converts it to a list of the same type, then pass an implicitly typed array into that
method. An extension method in .NET 3.5 called ToList provides this functionality
too, but that would be cheating as we haven’t looked at extension methods yet!)

Listing 9.4 Manipulating a list of films using lambda expressions

Creates 
reusable 
list-printing 
delegate

B

Prints original listC
Creates 
filtered list

D

Sorts 
original list

E
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 Before we use the newly created list, we create a delegate instance B, which we’ll
use to print out the items of the list. We use this delegate instance three times, which is
why I’ve created a variable to hold it rather than using a separate lambda expression
each time. It just prints a single element, but by passing it into List<T>.ForEach we
can simply dump the whole list to the console.

 The first list we print out C is just the original one without any modifications. We
then find all the films in our list that were made before 1960 and print those out D. This
is done with another lambda expression, which is executed for each film in the list—it
only has to determine whether or not a single film should be included in the filtered list.
The source code uses the lambda expression as a method argument, but really the com-
piler has created a method like this:

private static bool SomeAutoGeneratedName(Film film)
{
    return film.Year < 1960;
}

The method call to FindAll is then effectively this:

films.FindAll(new Predicate<Film>(SomeAutoGeneratedName))

The lambda expression support here is just like the anonymous method support in
C# 2; it’s all cleverness on the part of the compiler. (In fact, the Microsoft compiler is
even smarter in this case—it realizes it can get away with reusing the delegate
instance if the code is ever called again, so caches it.)

 The sort E is also performed using a lambda expression, which compares any two
films using their names. I have to confess that explicitly calling CompareTo ourselves is
a bit ugly. In the next chapter we’ll see how the OrderBy extension method allows us
to express ordering in a neater way.

 Let’s look at a different example, this time using lambda expressions with event
handling. 

9.2.2 Logging in an event handler

If you think back to chapter 5, in listing 5.9 we saw an easy way of using anonymous
methods to log which events were occurring—but we were only able to get away with a
compact syntax because we didn’t mind losing the parameter information. What if we
wanted to log both the nature of the event and information about its sender and argu-
ments? Lambda expressions enable this in a very neat way, as shown in listing 9.5.

static void Log(string title, object sender, EventArgs e)
{
    Console.WriteLine("Event: {0}", title);
    Console.WriteLine("  Sender: {0}", sender);
    Console.WriteLine("  Arguments: {0}", e.GetType());
    foreach (PropertyDescriptor prop in 
                 TypeDescriptor.GetProperties(e))

Listing 9.5 Logging events using lambda expressions
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    {
        string name = prop.DisplayName;
        object value = prop.GetValue(e);
        Console.WriteLine("    {0}={1}", name, value);
    }
}
...
Button button = new Button();
button.Text = "Click me";
button.Click      += (src, e) => { Log("Click", src, e); };
button.KeyPress   += (src, e) => { Log("KeyPress", src, e); };
button.MouseClick += (src, e) => { Log("MouseClick", src, e); };

Form form = new Form();
form.AutoSize=true;
form.Controls.Add(button);
Application.Run(form);

Listing 9.5 uses lambda expressions to pass the event name and parameters to the Log
method, which logs details of the event. We don’t log the details of the source event,
beyond whatever its ToString override returns, because there’s an overwhelming
amount of information associated with controls. However, we use reflection over prop-
erty descriptors to show the details of the EventArgs instance passed to us. Here’s
some sample output when you click the button:

Event: Click
  Sender: System.Windows.Forms.Button, Text: Click me
  Arguments: System.Windows.Forms.MouseEventArgs
    Button=Left
    Clicks=1
    X=53
    Y=17
    Delta=0
    Location={X=53,Y=17}
Event: MouseClick
  Sender: System.Windows.Forms.Button, Text: Click me
  Arguments: System.Windows.Forms.MouseEventArgs
    Button=Left
    Clicks=1
    X=53
    Y=17
    Delta=0
    Location={X=53,Y=17}

All of this is possible without lambda expressions, of course—but it’s a lot neater than it
would have been otherwise. Now that we’ve seen lambdas being converted into dele-
gate instances, it’s time to look at expression trees, which represent lambda expres-
sions as data instead of code. 

9.3 Expression trees
The idea of “code as data” is an old one, but it hasn’t been used much in popular pro-
gramming languages. You could argue that all .NET programs use the concept,
because the IL code is treated as data by the JIT, which then converts it into native
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code to run on your CPU. That’s quite deeply hidden, though, and while libraries exist
to manipulate IL programmatically, they’re not widely used.

 Expression trees in .NET 3.5 provide an abstract way of representing some code as a
tree of objects. It’s like CodeDOM but operating at a slightly higher level, and only for
expressions. The primary use of expression trees is in LINQ, and later in this section
we’ll see how crucial expression trees are to the whole LINQ story.

 C# 3 provides built-in support for converting lambda expressions to expression
trees, but before we cover that let’s explore how they fit into the .NET Framework
without using any compiler tricks.

9.3.1 Building expression trees programmatically

Expression trees aren’t as mystical as they sound, although some of the uses they’re
put to look like magic. As the name suggests, they’re trees of objects, where each node
in the tree is an expression in itself. Different types of expressions represent the differ-
ent operations that can be performed in code: binary operations, such as addition;
unary operations, such as taking the length of an array; method calls; constructor
calls; and so forth.

 The System.Linq.Expressions namespace contains the various classes that repre-
sent expressions. All of them derive from the Expression class, which is abstract and
mostly consists of static factory methods to create instances of other expression
classes. It exposes two properties, however:

■ The Type property represents the .NET type of the evaluated expression—you
can think of it like a return type. The type of an expression that fetches the
Length property of a string would be int, for example.

■ The NodeType property returns the kind of expression represented, as a member
of the ExpressionType enumeration, with values such as LessThan, Multiply,
and Invoke. To use the same example, in myString.Length the property access
part would have a node type of MemberAccess.

There are many classes derived from Expression, and some of them can have many
different node types: BinaryExpression, for instance, represents any operation with
two operands: arithmetic, logic, comparisons, array indexing, and the like. This is
where the NodeType property is important, as it distinguishes between different kinds
of expressions that are represented by the same class.

 I don’t intend to cover every expression class or node type—there are far too
many, and MSDN does a perfectly good job of explaining them. Instead, we’ll try to get
a general feel for what you can do with expression trees.

 Let’s start off by creating one of the simplest possible expression trees, adding two
constant integers together. Listing 9.6 creates an expression tree to represent 2+3.

Expression firstArg = Expression.Constant(2);
Expression secondArg = Expression.Constant(3);
Expression add = Expression.Add(firstArg, secondArg);

Console.WriteLine(add);

Listing 9.6 A very simple expression tree, adding 2 and 3
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Running listing 9.6 will produce the out-
put “(2 + 3),” which demonstrates that
the various expression classes override
ToString to produce human-readable
output. Figure 9.1 depicts the tree gener-
ated by the code. 

 It’s worth noting that the “leaf” expres-
sions are created first in the code: you
build expressions from the bottom up.
This is enforced by the fact that expres-
sions are immutable—once you’ve cre-
ated an expression, it will never change,
so you can cache and reuse expressions
at will.

 Now that we’ve built up an expres-
sion tree, let’s try to actually execute it.

9.3.2 Compiling expression trees into delegates

One of the types derived from Expression is LambdaExpression. The generic class
Expression<TDelegate> then derives from LambdaExpression. It’s all slightly confus-
ing—figure 9.2 shows the type hierarchy to make things clearer.

 The difference between Expression and Expression<TDelegate> is that the
generic class is statically typed to indicate what kind of expression it is, in terms of
return type and parameters. Fairly obviously, this is expressed by the TDelegate type
parameter, which must be a delegate type. For instance, our simple addition expres-
sion is one that takes no parameters and returns an integer—this is matched by the
signature of Func<int>, so we could use an Expression<Func<int>> to represent the
expression in a statically typed manner. We do this using the Expression.Lambda
method. This has a number of overloads—our examples use the generic method,
which uses a type parameter to indicate the type of delegate we want to represent. See
MSDN for alternatives.

Expression

LambdaExpression

Expression<TDelegate>

BinaryExpression (Other types)

Figure 9.2 Type hierarchy from Expression<TDelegate> up to Expression

firstArg

ConstantExpression
NodeType=Constant
Type=System.Int32

Value=2

secondArg

ConstantExpression
NodeType=Constant
Type=System.Int32

Value=3

add

BinaryExpression
NodeType=Add

Type=System.Int32

Left Right

Figure 9.1 Graphical representation of the 
expression tree created by listing 9.6
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So, what’s the point of doing this? Well, LambdaExpression has a Compile method that
creates a delegate of the appropriate type. This delegate can now be executed in the
normal manner, as if it had been created using a normal method or any other means.
Listing 9.7 shows this in action, with the same expression as before.

Expression firstArg = Expression.Constant(2);
Expression secondArg = Expression.Constant(3);
Expression add = Expression.Add(firstArg, secondArg);

Func<int> compiled = Expression.Lambda<Func<int>>(add).Compile();
Console.WriteLine(compiled());

Arguably listing 9.7 is one of the most convoluted ways of printing out “5” that you
could ask for. At the same time, it’s also rather impressive. We’re programmatically
creating some logical blocks and representing them as normal objects, and then ask-
ing the framework to compile the whole thing into “real” code that can be executed.
You may never need to actually use expression trees this way, or even build them up
programmatically at all, but it’s useful background information that will help you
understand how LINQ works.

 As I said at the beginning of this section, expression trees are not too far removed
from CodeDOM—Snippy compiles and executes C# code that has been entered as
plain text, for instance. However, two significant differences exist between CodeDOM
and expression trees.

 First, expression trees are only able to represent single expressions. They’re not
designed for whole classes, methods, or even just statements. Second, C# supports
expression trees directly in the language, through lambda expressions. Let’s take a
look at that now.

9.3.3 Converting C# lambda expressions to expression trees

As we’ve already seen, lambda expressions can be converted to appropriate delegate
instances, either implicitly or explicitly. That’s not the only conversion that is avail-
able, however. You can also ask the compiler to build an expression tree from your
lambda expression, creating an instance of Expression<TDelegate> at execution
time. For example, listing 9.8 shows a much shorter way of creating the “return 5”
expression, compiling it and then invoking the resulting delegate.

Expression<Func<int>> return5 = () => 5;
Func<int> compiled = return5.Compile();
Console.WriteLine(compiled());

In the first line of listing 9.8, the () => 5 part is the lambda expression. In this case,
putting it in an extra pair of parentheses around the whole thing makes it look worse
rather than better. Notice that we don’t need any casts because the compiler can verify

Listing 9.7 Compiling and executing an expression tree

Listing 9.8 Using lambda expressions to create expression trees
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everything as it goes. We could have written 2+3 instead of 5, but the compiler would
have optimized the addition away for us. The important point to take away is that the
lambda expression has been converted into an expression tree.

NOTE There are limitations—Not all lambda expressions can be converted to
expression trees. You can’t convert a lambda with a block of statements
(even just one return statement) into an expression tree—it has to be in
the form that just evaluates a single expression. That expression can’t
contain assignments, as they can’t be represented in expression trees.
Although these are the most common restrictions, they’re not the only
ones—the full list is not worth describing here, as this issue comes up so
rarely. If there’s a problem with an attempted conversion, you’ll find out
at compile time.

Let’s take a look at a more complicated example just to see how things work, particu-
larly with respect to parameters. This time we’ll write a predicate that takes two strings
and checks to see if the first one begins with the second. The code is simple when writ-
ten as a lambda expression, as shown in listing 9.9.

Expression<Func<string,string,bool>> expression = 
    ( (x,y) => x.StartsWith(y) );

var compiled = expression.Compile();

Console.WriteLine(compiled("First", "Second"));
Console.WriteLine(compiled("First", "Fir"));

The expression tree itself is more complicated, especially by the time we’ve converted
it into an instance of LambdaExpression. Listing 9.10 shows how it’s built in code.

MethodInfo method = typeof(string).GetMethod                   
    ("StartsWith", new[] { typeof(string) });                    
var target = Expression.Parameter(typeof(string), "x");    
var methodArg = Expression.Parameter(typeof(string), "y");
Expression[] methodArgs = new[] { methodArg };                  

Expression call = Expression.Call     
    (target, method, methodArgs);        

var lambdaParameters = new[] { target, methodArg }; 
var lambda = Expression.Lambda<Func<string,string,bool>>
    (call, lambdaParameters);

var compiled = lambda.Compile();

Console.WriteLine(compiled("First", "Second"));
Console.WriteLine(compiled("First", "Fir"));

As you can see, listing 9.10 is considerably more involved than the version with the C#
lambda expression. However, it does make it more obvious exactly what is involved in

Listing 9.9 Demonstration of a more complicated expression tree

Listing 9.10 Building a method call expression tree in code

Builds up 
parts of 
method call

B

Creates CallExpression 
from parts

C

D Converts call 
into Lambda-
Expression
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the tree and how parameters are bound. We start off by working out everything we
need to know about the method call that forms the body of the final expression B:
the target of the method (in other words, the string we’re calling StartsWith on); the
method itself (as a MethodInfo); and the list of arguments (in this case, just the one).
It so happens that our method target and argument will both be parameters passed
into the expression, but they could be other types of expressions—constants, the
results of other method calls, property evaluations, and so forth.

 After building the method call as an expression C, we then need to convert it
into a lambda expression D, binding the parameters as we go. We reuse the same
ParameterExpression values we created as information for the method call: the
order in which they’re specified when creating the lambda expression is the order in
which they’ll be picked up when we eventually call the delegate.

 Figure 9.3 shows the same final expression tree graphically. To be picky, even
though it’s still called an expression tree, the fact that we reuse the parameter expres-
sions (and we have to—creating a new one with the same name and attempting to
bind parameters that way causes an exception at execution time) means that it’s not a
tree anymore.

method

MethodInfo for
string.StartsWith(string)

target

ParameterExpression
NodeType=Parameter
Type=System.String

Name="x"

Method Object

methodArgs

Collection of
Expressions

Arguments

methodArg

ParameterExpression
NodeType=Parameter
Type=System.String

Name="y"

Body

lambdaParameters

Collection of
ParameterExpressions

Parameters

(Contains)

(Contains)

(Contains)

call

MethodCallExpression
NodeType=Call

Type=System.Boolean

lambda

Expression<T>
NodeType=Lambda

Type=System.Boolean

Figure 9.3 Graphical representation of expression tree that calls a method and uses parameters from 
a lambda expression
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Glancing at the complexity of figure 9.3 and listing 9.10 without trying to look at the
details, you’d be forgiven for thinking that we were doing something really compli-
cated when in fact it’s just a single method call. Imagine what the expression tree for a
genuinely complex expression would look like—and then be grateful that C# 3 can
create expression trees from lambda expressions!

 One small point to note is that although the C# 3 compiler builds expression trees
in the compiled code using code similar to listing 9.10, it has one shortcut up its
sleeve: it doesn’t need to use normal reflection to get the MethodInfo for
string.StartsWith. Instead, it uses the method equivalent of the typeof operator.
This is only available in IL, not in C# itself—and the same operator is also used to cre-
ate delegate instances from method groups.

 Now that we’ve seen how expression trees and lambda expressions are linked, let’s
take a brief look at why they’re so useful.

9.3.4 Expression trees at the heart of LINQ

Without lambda expressions, expression trees would have relatively little value.
They’d be an alternative to CodeDOM in cases where you only wanted to model a sin-
gle expression instead of whole statements, methods, types and so forth—but the ben-
efit would still be limited.

 The reverse is also true to a limited extent: without expression trees, lambda expres-
sions would certainly be less useful. Having a more compact way of creating delegate
instances would still be welcome, and the shift toward a more functional mode of devel-
opment would still be viable. Lambda expressions are particularly effective when com-
bined with extension methods, as we’ll see in the next chapter. However, with expression
trees in the picture as well, things get a lot more interesting.

 So what do we get by combining lambda expressions, expression trees, and exten-
sion methods? The answer is the language side of LINQ, pretty much. The extra syntax
we’ll see in chapter 11 is icing on the cake, but the story would still have been quite
compelling with just those three ingredients. For a long time we’ve been able to either
have nice compile-time checking or we’ve been able to tell another platform to run
some code, usually expressed as text (SQL queries being the most obvious example).
We haven’t been able to do both at the same time.

 By combining lambda expressions that provide compile-time checks and expres-
sion trees that abstract the execution model away from the desired logic, we can have
the best of both worlds—within reason. At the heart of “out of process” LINQ provid-
ers is the idea that we can produce an expression tree from a familiar source language
(C# in our case) and use the result as an intermediate format, which can then be con-
verted into the native language of the target platform: SQL, for example. In some
cases there may not be a simple native language so much as a native API—making dif-
ferent web service calls depending on what the expression represents, perhaps. Figure
9.4 shows the different paths of LINQ to Objects and LINQ to SQL.

 In some cases the conversion may try to perform all the logic on the target platform,
whereas other cases may use the compilation facilities of expression trees to execute
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some of the expression locally and some elsewhere. We’ll look at some of the details of
this conversion step in chapter 12, but you should bear this end goal in mind as we
explore extension methods and LINQ syntax in chapters 10 and 11.

NOTE Not all checking can be done by the compiler—When expression trees are
examined by some sort of converter, there are often cases that have to be
rejected. For instance, although it’s possible to convert a call to
string.StartsWith into a similar SQL expression, a call to string.
IsInterned doesn’t make sense in a database environment. Expression
trees allow a large amount of compile-time safety, but the compiler can
only check that the lambda expression can be converted into a valid
expression tree; it can’t make sure that the expression tree will be suit-
able for its eventual use.

That finishes our direct coverage of lambda expressions and expression trees. Before
we go any further, however, there are a few changes to C# that need some explanation,
regarding type inference and how the compiler selects between overloaded methods. 

9.4 Changes to type inference and overload resolution
The steps involved in type inference and overload resolution have been altered in
C# 3 to accommodate lambda expressions and indeed to make anonymous methods
more useful. This doesn’t count as a new feature of C# as such, but it can be impor-
tant to understand what the compiler is going to do. If you find details like this
tedious and irrelevant, feel free to skip to the chapter summary—but remember that
this section exists, so you can read it if you run across a compilation error related to
this topic and can’t understand why your code doesn’t work. (Alternatively, you
might want to come back to this section if you find your code does compile, but you
don’t think it should!)

C# compiler

LINQ to SQL provider

Executed at database
and fetched back

IL using
delegates

C# compiler

Delegate code
executed directly
in the CLR

LINQ to Objects LINQ to SQL

Compile time

Execution time

C# query code with
lambda expressions

C# query code with
lambda expressions

IL using
expression trees

Query results

Dynamic SQL

Query results

Figure 9.4 Both LINQ to Objects and LINQ to SQL start off with C# code, and end with query results. 
The ability to execute the code remotely comes through expression trees.
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 Even within this section I’m not going to go into absolutely every nook and
cranny—that’s what the language specification is for. Instead, I’ll give an overview of
the new behavior, providing examples of common cases. The primary reason for
changing the specification is to allow lambda expressions to work in a concise fashion,
which is why I’ve included the topic in this particular chapter. Let’s look a little deeper
at what problems we’d have run into if the C# team had stuck with the old rules.

9.4.1 Reasons for change: streamlining generic method calls

Type inference occurs in a few situations. We’ve already seen it apply to implicitly
typed arrays, and it’s also required when you try to implicitly convert a method group
to a delegate type as the parameter to a method—with overloading of the method
being called, and overloading of methods within the method group, and the possibil-
ity of generic methods getting involved, the set of potential conversions can become
quite overwhelming.

 By far the most common situation for type inference is when you’re calling a
generic method without specifying the type arguments for that method. This happens
all the time in LINQ—the way that query expressions work depends on this heavily. It’s
all handled so smoothly that it’s easy to ignore how much the compiler has to work
out on your behalf, all for the sake of making your code clearer and more concise.

 The rules were reasonably straightforward in C# 2, although method groups and
anonymous methods weren’t always handled as well as we might have liked. The type
inference process didn’t deduce any information from them, leading to situations
where the desired behavior was obvious to developers but not to the compiler. Life is
more complicated in C# 3 due to lambda expressions—if you call a generic method
using a lambda expression with an implicitly typed parameter list, the compiler needs
to work out what types you’re talking about, even before it can check the lambda
expression’s body.

 This is much easier to see in code than in words. Listing 9.11 gives an example of the
kind of issue we want to solve: calling a generic method using a lambda expression.

static void PrintConvertedValue<TInput,TOutput>
    (TInput input, Converter<TInput,TOutput> converter)
{
    Console.WriteLine(converter(input));
}
...
PrintConvertedValue("I'm a string", x => x.Length);

The method PrintConvertedValue in listing 9.11 simply takes an input value and a
delegate that can convert that value into a different type. It’s completely generic—it
makes no assumptions about the type parameters TInput and TOutput. Now, look at
the types of the arguments we’re calling it with in the bottom line of the listing. The
first argument is clearly a string, but what about the second? It’s a lambda expression,
so we need to convert it into a Converter<TInput,TOutput>—and that means we
need to know the types of TInput and TOutput.

Listing 9.11 Example of code requiring the new type inference rules
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 If you remember, the type inference rules of C# 2 were applied to each argument indi-
vidually, with no way of using the types inferred from one argument to another. In our
case, these rules would have stopped us from finding the types of TInput and TOutput
for the second argument, so the code in listing 9.11 would have failed to compile.

 Our eventual goal is to understand what makes listing 9.11 compile in C# 3 (and it
does, I promise you), but we’ll start with something a bit more modest.

9.4.2 Inferred return types of anonymous functions

Listing 9.12 shows an example of some code that looks like it should compile but
doesn’t under the type inference rules of C# 2.

delegate T MyFunc<T>();                         

static void WriteResult<T> (MyFunc<T> function)
{
    Console.WriteLine(function());
}
...
WriteResult(delegate { return 5; });            

Compiling listing 9.12 under C# 2 gives an error

error CS0411: The type arguments for method 
'Snippet.WriteResult<T>(Snippet.MyFunc<T>)' cannot be inferred from the 
usage. Try specifying the type arguments explicitly.

 We can fix the error in two ways—either specify the type argument explicitly (as sug-
gested by the compiler) or cast the anonymous method to a concrete delegate type:

WriteResult<int>(delegate { return 5; });

WriteResult((MyFunc<int>)delegate { return 5; });

Both of these work, but they’re slightly ugly. We’d like the compiler to perform the
same kind of type inference as for nondelegate types, using the type of the returned
expression to infer the type of T. That’s exactly what C# 3 does for both anonymous
methods and lambda expressions—but there’s one catch. Although in many cases
only one return statement is involved, there can sometimes be more. Listing 9.13 is a
slightly modified version of listing 9.12 where the anonymous method sometimes
returns an integer and sometimes returns an object.

delegate T MyFunc<T>();

static void WriteResult<T> (MyFunc<T> function)
{
    Console.WriteLine(function());
}
...

Listing 9.12 Attempting to infer the return type of an anonymous method

Listing 9.13 Code returning an integer or an object depending on the time of day

Declares generic
method with

delegate parameter

Declares Func<T> 
that isn’t in .NET 2.0

Requires type 
inference for T
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WriteResult(delegate 
{
    if (DateTime.Now.Hour < 12)
    {
        return 10;
    }
    else
    {
        return new object();
    }
});

The compiler uses the same logic to determine the return type in this situation as it
does for implicitly typed arrays, as described in section 8.4. It forms a set of all the
types from the return statements in the body of the anonymous function4 (in this case
int and object) and checks to see if exactly one of the types can be implicitly con-
verted to from all the others. There’s an implicit conversion from int to object (via
boxing) but not from object to int, so the inference succeeds with object as the
inferred return type. If there are no types matching that criterion, or more than one,
no return type can be inferred and you’ll get a compilation error. 

 So, now we know how to work out the return type of an anonymous function—but
what about lambda expressions where the parameter types can be implicitly defined?

9.4.3 Two-phase type inference

The details of type inference in C# 3 are much more complicated than they are for
C# 2. It’s rare that you’ll need to reference the specification for the exact behavior,
but if you do I recommend you write down all the type parameters, arguments, and
so forth on a piece of paper, and then follow the specification step by step, carefully
noting down every action it requires. You’ll end up with a sheet full of fixed and
unfixed type variables, with a different set of bounds for each of them. A fixed type
variable is one that the compiler has decided the value of; otherwise it is unfixed. A
bound is a piece of information about a type variable. I suspect you’ll get a head-
ache, too.

 I’m going to present a more “fuzzy” way of thinking about type inference—one
that is likely to serve just as well as knowing the specification, and will be a lot easier to
understand. The fact is, if the compiler doesn’t perform type inference in exactly the
way you want it to, it will almost certainly result in a compilation error rather than
code that builds but doesn’t behave properly. If your code doesn’t build, try giving the
compiler more information—it’s as simple as that. However, here’s roughly what’s
changed for C# 3.

 The first big difference is that the method arguments work as a team in C# 3. In
C# 2 every argument was used to try to pin down some type parameters exactly, and

4 Returned expressions which don’t have a type, such as null or another lambda expression, aren’t included
in this set. Their validity is checked later, once a return type has been determined, but they don’t contribute
to that decision.

Return type 
is int

Return type 
is object
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the compiler would complain if any two arguments came up with different results
for a particular type parameter, even if they were compatible. In C# 3, arguments can
contribute pieces of information—types that must be implicitly convertible to the
final fixed value of a particular type parameter. The logic used to come up with that
fixed value is the same as for inferred return types and implicitly typed arrays. List-
ing 9.14 shows an example of this—without using any lambda expressions or even
anonymous methods.

static void PrintType<T> (T first, T second)
{
    Console.WriteLine(typeof(T));
}
...
PrintType(1, new object());

Although the code in listing 9.14 is syntactically valid in C# 2, it wouldn’t build: type
inference would fail, because the first parameter would decide that T must be int
and the second parameter would decide that T must be object. In C# 3 the compiler
determines that T should be object in exactly the same way that it did for the inferred
return type in listing 9.13. In fact, the inferred return type rules are effectively one
example of the more general process in C# 3.

 The second change is that type inference is now performed in two phases. The first
phase deals with “normal” arguments where the types involved are known to begin
with. This includes explicitly typed anonymous functions.

 The second phase then kicks in, where implicitly typed lambda expressions and
method groups have their types inferred. The idea is to see whether any of the infor-
mation we’ve pieced together so far is enough to work out the parameter types of the
lambda expression (or method group). If it is, the compiler is then able to examine
the body of the lambda expression and work out the inferred return type—which is
often another of the type parameters we’re looking for. If the second phase gives some
more information, we go through it again, repeating until either we run out of clues
or we’ve worked out all the type parameters involved.

 Let’s look at two examples to show how it works. First we’ll take the code we started
the section with—listing 9.11.

static void PrintConvertedValue<TInput,TOutput>
    (TInput input, Converter<TInput,TOutput> converter)
{
    Console.WriteLine(converter(input));
}
...
PrintConvertedValue("I'm a string", x => x.Length);

The type parameters we need to work out in listing 9.11 are TInput and TOutput. The
steps performed are as follows:

Listing 9.14 Flexible type inference combining information from multiple arguments
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1 Phase 1 begins.
2 The first parameter is of type TInput, and the first argument is of type string.

We infer that there must be an implicit conversion from string to TInput.
3 The second parameter is of type Converter<TInput,TOutput>, and the second

argument is an implicitly typed lambda expression. No inference is per-
formed—we don’t have enough information.

4 Phase 2 begins.
5 TInput doesn’t depend on any unfixed type parameters, so it’s fixed to string.
6 The second argument now has a fixed input type, but an unfixed output type. We

can consider it to be (string x) => x.Length and infer the return type as int.
Therefore an implicit conversion must take place from int to TOutput.

7 Phase 2 repeats.
8 TOutput doesn’t depend on anything unfixed, so it’s fixed to int.
9 There are now no unfixed type parameters, so inference succeeds.

Complicated, eh? Still, it does the job—the result is what we’d want (TInput=string,
TOutput=int) and everything compiles without any problems. The importance of
phase 2 repeating is best shown with another example, however. Listing 9.15 shows two
conversions being performed, with the output of the first one becoming the input of
the second. Until we’ve worked out the output type of the first conversion, we don’t
know the input type of the second, so we can’t infer its output type either.

static void ConvertTwice<TInput,TMiddle,TOutput>
    (TInput input, 
     Converter<TInput,TMiddle> firstConversion,
     Converter<TMiddle,TOutput> secondConversion)
{
    TMiddle middle = firstConversion(input);
    TOutput output = secondConversion(middle);
    Console.WriteLine(output);
}
...
ConvertTwice("Another string",
                   text => text.Length,
                   length => Math.Sqrt(length));

The first thing to notice is that the method signature appears to be pretty horrific. It’s
not too bad when you stop being scared and just look at it carefully—and certainly the
example usage makes it more obvious. We take a string, and perform a conversion on
it: the same conversion as before, just a length calculation. We then take that length
(an int) and find its square root (a double).

 Phase 1 of type inference tells the compiler that there must be a conversion from
string to TInput. The first time through phase 2, TInput is fixed to string and we
infer that there must be a conversion from int to TMiddle. The second time through

Listing 9.15 Multistage type inference
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phase 2, TMiddle is fixed to int and we infer that there must be a conversion from
double to TOutput. The third time through phase 2, TOutput is fixed to double and
type inference succeeds. When type inference has finished, the compiler can look at
the code within the lambda expression properly.

NOTE Checking the body of a lambda expression—The body of a lambda expression
cannot be checked until the input parameter types are known. The lambda
expression x => x.Length is valid if x is an array or a string, but invalid in
many other cases. This isn’t a problem when the parameter types are
explicitly declared, but with an implicit parameter list the compiler needs
to wait until it’s performed the relevant type inference before it can try to
work out what the lambda expression means.

These examples have shown only one change working at a time—in practice there can
be several pieces of information about different type variables, potentially discovered
in different iterations of the process. In an effort to save your sanity (and mine), I’m
not going to present any more complicated examples—hopefully you understand the
general mechanism, even if the exact details are hazy.

 Although it may seem as if this kind of situation will occur so rarely that it’s not
worth having such complex rules to cover it, in fact it’s quite common in C# 3, particu-
larly with LINQ. Indeed, you could easily use type inference extensively without even
thinking about it—it’s likely to become second nature to you. If it fails and you won-
der why, however, you can always revisit this section and the language specification.

 There’s one more change we need to cover, but you’ll be glad to hear it’s easier
than type inference: method overloading.

9.4.4 Picking the right overloaded method

Overloading occurs when there are multiple methods available with the same name
but different signatures. Sometimes it’s obvious which method is appropriate, because
it’s the only one with the right number of parameters, or it’s the only one where all
the arguments can be converted into the corresponding parameter types. 

 The tricky bit comes when there are multiple methods that could be the right one.
The rules are quite complicated (yes, again)—but the key part is the way that each
argument type is converted into the parameter type. For instance, consider these
method signatures, as if they were both declared in the same type:

void Write(int x)
void Write(double y)

The meaning of a call to Write(1.5) is obvious, because there’s no implicit conver-
sion from double to int, but a call to Write(1) is trickier. There is an implicit
conversion from int to double, so both methods are possible. At that point, the
compiler considers the conversion from int to int, and from int to double. A con-
version from any type to itself is defined to be better than any conversion to a differ-
ent type, so the Write(int x) method is better than Write(double y) for this
particular call.
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 When there are multiple parameters, the compiler has to make sure there is
exactly one method that is at least as good as all the others for every parameter. As a
simple example, suppose we had

void Write(int x, double y)
void Write(double x, int y)

A call to Write(1, 1) would be ambiguous, and the compiler would force you to add a
cast to at least one of the parameters to make it clear which method you meant to call.

 That logic still applies to C# 3, but with one extra rule about anonymous functions,
which never specify a return type. In this case, the inferred return type (as described
in 9.4.2) is used in the “better conversion” rules.

 Let’s see an example of the kind of situation that needs the new rule. Listing 9.16
contains two methods with the name Execute, and a call using a lambda expression.

static void Execute(Func<int> action)
{
    Console.WriteLine("action returns an int: "+action());
}

static void Execute(Func<double> action)
{
    Console.WriteLine("action returns a double: "+action());
}
...

Execute( () => 1 );

The call to Execute in listing 9.16 could have been written with an anonymous method
or a method group instead—the same rules are applied whatever kind of conversion is
involved. So, which Execute method should be called? The overloading rules say that
when two methods are both applicable after performing conversions on the arguments,
then those argument conversions are examined to see which one is “better.” The con-
versions here aren’t from a normal .NET type to the parameter type—they’re from a
lambda expression to two different delegate types. So, which conversion is better?

 Surprisingly enough, the same situation in C# 2 would result in a compilation
error—there was no language rule covering this case. In C# 3, however, the method
with the Func<int> parameter would be chosen. The extra rule that has been added
can be paraphrased to this:

If an anonymous function can be converted to two delegate types that have
the same parameter list but different return types, then the delegate
conversions are judged by the conversions from the inferred return type to
the delegates’ return types.

That’s pretty much gibberish without referring to an example. Let’s look back at list-
ing 9.16: we’re converting from a lambda expression with no parameters and an
inferred return type of int to either Func<int> or Func<double>. The parameter lists
are the same (empty) for both delegate types, so the rule applies. We then just need to

Listing 9.16 Sample of overloading choice influenced by delegate return type
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find the better conversion: int to int, or int to double. This puts us in more familiar
territory—as we saw earlier, the int to int conversion is better. Listing 9.16 therefore
prints out “action returns an int: 1.”

9.4.5 Wrapping up type inference and overload resolution

This section has been pretty heavy. I would have loved to make it simpler—but it’s a
fundamentally complicated topic. The terminology involved doesn’t make it any eas-
ier, especially as parameter type and type parameter mean completely different things!
Congratulations if you made it through and actually understood it all. Don’t worry if
you didn’t: hopefully next time you read through the section, it will shed a bit more
light on the topic—particularly after you’ve run into situations where it’s important in
your own code. For the moment, here are the most important points:

■ Anonymous functions (anonymous methods and lambda expressions) have
inferred return types based on the types of all the return statements.

■ Lambda expressions can only be understood by the compiler when the types of
all the parameters are known.

■ Type inference no longer requires that each argument independently comes to
exactly the same conclusion about type parameters, as long as the results stay
compatible.

■ Type inference is now multistage: the inferred return type of one anonymous
function may be used as a parameter type for another.

■ Finding the “best” overloaded method when anonymous functions are involved
takes the inferred return type into account. 

9.5 Summary
In C# 3, lambda expressions almost entirely replace anonymous methods. The only thing
you can do with an anonymous method that you can’t do with a lambda expression is
say that you don’t care about the parameters in the way that we saw in section 5.4.3. Of
course, anonymous methods are supported for the sake of backward compatibility, but
idiomatic, freshly written C# 3 code will contain very few of them.

 We’ve seen how lambda expressions are much more than just a more compact syn-
tax for delegate creation, however. They can be converted into expression trees, which
can then be processed by other code, possibly performing equivalent actions in differ-
ent execution environments. This is arguably the most important part of the LINQ
story.

 Our discussion of type inference and overloading was a necessary evil to some extent:
no one actually enjoys discussing the sort of rules which are required, but it’s important
to have at least a passing understanding of what’s going on. Before we all feel too sorry
for ourselves, spare a thought for the poor language designers who have to live and
breathe this kind of thing, making sure the rules are consistent and don’t fall apart in
nasty situations. Then pity the testers who have to try to break the implementation!
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 That’s it in terms of describing lambda expressions—but we’ll be seeing a lot more
of them in the rest of the book. For instance, our next chapter is all about extension
methods. Superficially, they’re completely separate from lambda expressions—but in
reality the two features are often used together.



Extension methods
I’m not a fan of inheritance. Or rather, I’m not a fan of a number of places where
inheritance has been used in code that I’ve maintained, or class libraries I’ve
worked with. As with so many things, it’s powerful when used properly, but it’s got a
design overhead to it that is often overlooked and can become painful over time.
It’s sometimes used as a way of adding extra behavior and functionality to a class,
even when no real information is being added about the object—where nothing is
being specialized.

 Sometimes that’s appropriate—if objects of the new type should carry around
the details of the extra behavior—but often it’s not. Indeed, often it’s just not possi-
ble to use inheritance in this way in the first place—if you’re working with a value
type, a sealed class, or an interface. The alternative is usually to write a bunch of
static methods, most of which take an instance of the type in question as at least

This chapter covers
■ Writing extension methods
■ Calling extension methods
■ Method chaining
■ Extension methods in .NET 3.5
■ Other uses for extension methods
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one of their parameters. This works fine, without the design penalty of inheritance,
but does tend to make code look ugly.

 C# 3 introduces the idea of extension methods, which have the benefits of the static
methods solution and also improve the readability of code that calls them. They let
you call static methods as if they were instance methods of a completely different class.
Don’t panic—it’s not as crazy or as arbitrary as it sounds.

 In this chapter we’ll first look at how to use extension methods and how to write
them. We’ll then examine a few of the extension methods provided by the .NET 3.5
Framework, and see how they can be chained together easily. This chaining ability is
an important part of the reason for introducing extension methods to the language in
the first place. Finally, we’ll consider some of the pros and cons of using extension
methods instead of “plain” static methods.

 First, though, let’s have a closer look at why extension methods are sometimes
desirable compared with the plain old static methods available in C# 1 and 2, particu-
larly when you create utility classes.

10.1 Life before extension methods
You may be getting a sense of déjà vu at this point, because utility classes came up in
chapter 7 when we looked at static classes. If you’ve written a lot of C# 2 code by the
time you start using C# 3, you should look at your static classes—many of the methods
in them may well be good candidates for turning into extension methods. That’s not
to say that all existing static classes are a good fit, but you may well recognize the fol-
lowing traits:

■ You want to add some members to a type.
■ You don’t need to add any more data to the instances of the type.
■ You can’t change the type itself, because it’s in someone else’s code.

One slight variation on this is where you want to work with an interface instead of a
class, adding useful behavior while only calling methods on the interface. A good
example of this is IList<T>. Wouldn’t it be nice to be able to sort any (mutable)
implementation of IList<T>? It would be horrendous to force all implementations of
the interface to implement sorting themselves, but it would be nice from the point of
view of the user of the list.

 The thing is, IList<T> provides all the building blocks for a completely generic
sort routine (several, in fact), but you can’t put that implementation in the interface.
IList<T> could have been specified as an abstract class instead, and the sorting func-
tionality included that way, but as C# and .NET have single inheritance of implementa-
tion, that would have placed a significant restriction on the types deriving from it.
Extension methods would allow us to sort any IList<T> implementation, making it
appear as if the list itself provided the functionality.

 We’ll see later that a lot of the functionality of LINQ is built on extension methods
over interfaces. For the moment, though, we’ll use a different type for our examples:
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System.IO.Stream. The Stream class is the bedrock of binary communications in .NET.
Stream itself is an abstract class with several concrete derived classes, such as Network-
Stream, FileStream, and MemoryStream. Unfortunately, there are a few pieces of func-
tionality that would have been handy to include in Stream but that just aren’t there.

 The “missing features” I come across most often are the ability to read the whole of
a stream into memory as a byte array, and the ability to copy1 the contents of one
stream into another. Both of these are frequently implemented badly, making assump-
tions about streams that just aren’t valid (the most common is that Stream.Read will
completely fill the given buffer if the data doesn’t run out first).

 It would be nice to have the functionality in a single place, rather than duplicating
it in several projects. That’s why I wrote the StreamUtil class in my miscellaneous utility
library. The real code contains a fair amount of error checking and other functionality,
but listing 10.1 shows a cut-down version that is more than adequate for our needs.

using System.IO;

public static class StreamUtil
{
    const int BufferSize = 8192;

    public static void Copy(Stream input, 
                                     Stream output) 
    {            
        byte[] buffer = new byte[BufferSize];
        int read;
        while ((read = input.Read(buffer, 0, buffer.Length)) > 0)
        {
            output.Write(buffer, 0, read);
        }
    }

    public static byte[] ReadFully(Stream input)
    {
        using (MemoryStream tempStream = new MemoryStream())
        {
            Copy(input, tempStream);
            return tempStream.ToArray();
        }
    }
}

The implementation details don’t matter much, although it’s worth noting that the
ReadFully method calls the Copy method—that will be useful to demonstrate a point
about extension methods later. The class is easy to use—listing 10.2 shows how we can
write a web response to disk, for example.

1 Due to the nature of streams, this “copying” doesn’t necessarily duplicate the data—it just reads it from one
stream and writes it to another. Although “copy” isn’t a strictly accurate term in this sense, the difference is
usually irrelevant.

Listing 10.1 A simple utility class to provide extra functionality for streams
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WebRequest request = WebRequest.Create("http://manning.com");
using (WebResponse response = request.GetResponse())
using (Stream responseStream = response.GetResponseStream())
using (FileStream output = File.Create("response.dat"))
{
    StreamUtil.Copy(responseStream, output);
}

Listing 10.2 is quite compact, and the StreamUtil class has taken care of looping and
asking the response stream for more data until it’s all been received. It’s done its job
as a utility class perfectly reasonably. Even so, it doesn’t feel very object-oriented. We’d
really like to ask the response stream to copy itself to the output stream, just like the
MemoryStream class has a WriteTo method. It’s not a big problem, but it’s just a little
ugly as it is.

 Inheritance wouldn’t help us in this situation (we want this behavior to be available
for all streams, not just ones we’re responsible for) and we can’t go changing the
Stream class itself—so what can we do? With C# 2, we were out of options—we had to
stick with the static methods and live with the clumsiness. C# 3 allows us to change our
static class to expose its members as extension methods, so we can pretend that the
methods have been part of Stream all along. Let’s see what changes are required.

10.2 Extension method syntax
Extension methods are almost embarrassingly easy to create, and simple to use too.
The considerations around when and how to use them are significantly deeper than
the difficulties involved in learning how to write them in the first place. Let’s start off
by converting our StreamUtil class to have a couple of extension methods.

10.2.1 Declaring extension methods

You can’t use just any method as an extension method—it has to have the following
characteristics:

■ It has to be in a non-nested, nongeneric static class (and therefore has to be a
static method).

■ It has to have at least one parameter.
■ The first parameter has to be prefixed with the this keyword.
■ The first parameter can’t have any other modifiers (such as out or ref).
■ The type of the first parameter must not be a pointer type.

That’s it—the method can be generic, return a value, have ref/out parameters other
than the first one, be implemented with an iterator block, be part of a partial class, use
nullable types—anything, as long as the above constraints are met.

 We will call the type of the first parameter the extended type of the method. It’s not
official specification terminology, but it’s a useful piece of shorthand.

 Not only does the previous list provide all the restrictions, but it also gives the
details of what you need to do to turn a “normal” static method in a static class into an

Listing 10.2 Using StreamUtil to copy a web response stream to a file 
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extension method—just add the this keyword. Listing 10.3 shows the same class as in
listing 10.1, but this time with both methods as extension methods.

public static class StreamUtil
{
    const int BufferSize = 8192;

    public static void CopyTo(this Stream input, 
                                               Stream output) 
    {            
        byte[] buffer = new byte[BufferSize];
        int read;
        while ((read = input.Read(buffer, 0, buffer.Length)) > 0)
        {
            output.Write(buffer, 0, read);
        }
    }

    public static byte[] ReadFully(this Stream input)
    {
        using (MemoryStream tempStream = new MemoryStream())
        {
            CopyTo(input, tempStream);
            return tempStream.ToArray();
        }
    }
}

Yes, the only big change in listing 10.3 is the addition of the two modifiers, as shown in
bold. I’ve also changed the name of the method from Copy to CopyTo. As we’ll see in a
minute, that will allow calling code to read more naturally, although it does look
slightly strange in the ReadFully method at the moment.

 Now, it’s not much use having extension methods if we can’t use them…

10.2.2 Calling extension methods

I’ve mentioned it in passing, but we haven’t yet seen what an extension method actu-
ally does. Simply put, it pretends to be an instance method of another type—the type
of the first parameter of the method.

 The transformation of our example code that uses StreamUtil is as simple as the
transformation of the utility class itself. This time, instead of adding something in
we’ll take it away. Listing 10.4 is a repeat performance of listing 10.2, but using the
“new” syntax to call CopyTo. I say “new,” but it’s really not new at all—it’s the same syn-
tax we’ve always used for calling instance methods.

WebRequest request = WebRequest.Create("http://manning.com");
using (WebResponse response = request.GetResponse())
using (Stream responseStream = response.GetResponseStream())

Listing 10.3 The StreamUtil class again, but this time with extension methods

Listing 10.4 Copying a stream using an extension method
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using (FileStream output = File.Create("response.dat"))
{
    responseStream.CopyTo(output);
}

In listing 10.4 it at least looks like we’re asking the response stream to do the copying.
It’s still StreamUtil doing the work behind the scenes, but the code reads in a more
natural way. In fact, the compiler has converted the CopyTo call into a normal static
method call to StreamUtil.CopyTo, passing the value of responseStream as the first
argument (followed by output as normal).

 Now that you can see the code in question, I hope you can understand why I
changed the method name from Copy to CopyTo. Some names work just as well for
static methods as instance methods, but you’ll find that others need tweaking to get
the maximum readability benefit.

 If we want to make the StreamUtil code slightly more pleasant, you can change
the line of ReadFully that calls CopyTo like this:

input.CopyTo(tempStream);

At this point the name change is fully appropriate for all the uses—although there’s
nothing to stop you from using the extension method as a normal static method,
which is useful when you’re migrating a lot of code.

 You may have noticed that there’s nothing in these method calls to indicate that
we’re using an extension method instead of a regular instance method of Stream. This
can be seen in two ways: it’s a good thing if our aim is to make extension methods blend
in as much as possible and cause very little alarm—but it’s a bad thing if you want to be
able to immediately see what’s really going on. If you’re using Visual Studio 2008, you
can hover over a method call and get an indication in the tooltip when it’s an extension
method, as shown in figure 10.1.

 IntelliSense also indicates when it’s offering an extension method, in both the
icon for the method and the tooltip when it’s selected. Of course, you don’t want to
have to hover over every method call you make or be super-careful with IntelliSense,
but most of the time it doesn’t matter whether you’re calling an instance or exten-
sion method.

 There’s one thing that’s still rather strange about our calling code, though—it
doesn’t mention StreamUtil anywhere! How does the compiler know to use the
extension method in the first place?

Figure 10.1 Hovering over 
a method call in Visual Studio 
2008 reveals whether or not 
the method is actually an 
extension method.



261Extension method syntax
10.2.3 How extension methods are found

It’s important to know how to call extension methods—but it’s also important to know
how to not call them—how to not be presented with unwanted options. To achieve
that, we need to know how the compiler decides which extension methods to use in
the first place.

 Extension methods are made available to the code in the same way that classes are
made available without qualification—with using directives. When the compiler sees
an expression that looks like it’s trying to use an instance method but none of the
instance methods are compatible with the method call (if there’s no method with that
name, for instance, or no overload matches the arguments given), it then looks for an
appropriate extension method. It considers all the extension methods in all the
imported namespaces and the current namespaces, and matches ones where there’s
an implicit conversion from the expression type to the extended type.

NOTE Implementation: How does the compiler spot an extension method in a library? To
work out whether or not to use an extension method, the compiler has to
be able to tell the difference between an extension method and other
methods within a static class that happen to have an appropriate signature.
It does this by checking whether System.Runtime.CompilerServices.
ExtensionAttribute has been applied to the method. This attribute is new
to .NET 3.5, but the compiler doesn’t check which assembly the attribute
comes from. This means that you can still use extension methods even if
your project targets .NET 2.0—you just need to define your own attribute
with the right name, in the right namespace.

If multiple applicable extension methods are available for different extended types
(using implicit conversions), the most appropriate one is chosen with the “better con-
version” rules used in overloading. For instance, if IChild inherits from IParent, and
there’s an extension method with the same name for both, then the IChild extension
method is used in preference to the one on IParent. This is crucial to LINQ, as you’ll
see in section 12.2, where we meet the IQueryable<T> interface.

It’s important to note that instance methods are always used before
extension methods, but the compiler doesn’t warn of an extension
method that matches an existing instance method. If a new version of the
framework were to introduce a CopyTo method in Stream that took the
same parameters as our extension method, recompiling our code against
the new framework would silently change the meaning of the method
call. (Indeed, that’s one reason for choosing CopyTo instead of
WriteTo—we wouldn’t want the meaning to change depending on
whether the compile-time type was Stream or MemoryStream.)

One potential problem with the way that extension methods are made available to
code is that it’s very wide-ranging. If there are two classes in the same namespace con-
taining methods with the same extended type, there’s no way of only using the exten-
sion methods from one of the classes. Likewise, there’s no way of importing a

Warning: 

subtle 

versioning 

issue!
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namespace for the sake of making types available using only their simple names, but
without making the extension methods within that namespace available at the same
time. I recommend using a namespace that solely contains static classes with exten-
sion methods to mitigate this problem.

 There’s one aspect of extension methods that can be quite surprising when you
first encounter it but is also useful in some situations. It’s all about null references—
let’s take a look.

10.2.4 Calling a method on a null reference

I’d be amazed if I ever encountered anyone who’d done a significant amount of .NET
programming without seeing a NullReferenceException due to calling a method with
a variable whose value turned out to be a null reference. You can’t call instance methods
on null references in C# (although IL itself supports it for nonvirtual calls)—but you can
call extension methods with a null reference. This is demonstrated by listing 10.5. Note
that this isn’t a snippet since nested classes can’t contain extension methods.

using System;
public static class NullUtil
{
    public static bool IsNull(this object x)
    {
        return x==null;
    }
}

public class Test
{
    static void Main()
    {
        object y = null;
        Console.WriteLine(y.IsNull());
        y = new object();
        Console.WriteLine(y.IsNull());
    }
}

The output of listing 10.5 is “True” then “False”—if IsNull had been a normal
instance method, an exception would have been thrown in the second line of Main.
Instead, IsNull was called with null as the argument. Prior to the advent of extension
methods, C# had no way of letting you write the more readable y.IsNull() form
safely, requiring NullUtil.IsNull(y) instead. There’s one particularly obvious exam-
ple in the framework where this could be useful: string.IsNullOrEmpty. C# 3 allows
you to write an extension method that has the same signature (other than the “extra”
parameter for the extended type) as an existing static method on the extended type.
To save you reading through that sentence several times, here’s an example—even
though the string class has a static, parameterless method IsNullOrEmpty, you can
still create and use the following extension method:

Listing 10.5 Extension method being called on a null reference
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public static bool IsNullOrEmpty(this string text)
{
    return string.IsNullOrEmpty(text);
}

At first it seems odd to be able to call IsNullOrEmpty on a variable that is null without
an exception being thrown, particularly if you’re familiar with it as a static method from
.NET 2.0. In my view, code using the extension method is more easily understandable.
For instance, if you read the expression if (name.IsNullOrEmpty()) out loud, it says
exactly what it’s doing. As always, experiment to see what works for you—but be aware
of the possibility of other people using this technique if you’re debugging code. Don’t
be certain that an exception will be thrown on a method call unless you’re sure it’s not
an extension method! Also note that you should think carefully before reusing an exist-
ing name for an extension method—the previous extension method could confuse
readers who are only familiar with the static method from the framework.

 Now that we know the syntax and behavior of extension methods, we can have a look
at some examples of them, which are provided in .NET 3.5 as part of the framework.

10.3 Extension methods in .NET 3.5
The biggest use of extension methods in .NET 3.5 is in LINQ. Some LINQ providers have
a few extension methods to help them along, but there are two classes that stand out,
both of them appearing in the System.Linq namespace: Enumerable and Queryable.
These contain many, many extension methods: most of the ones in Enumerable operate
on IEnumerable<T> and most of those in Queryable operate on IQueryable<T>. We’ll
see the purpose of IQueryable<T> in chapter 12, but for the moment let’s concentrate
on Enumerable.

10.3.1 First steps with Enumerable

Even just looking at Enumerable, we’re getting very close to LINQ now. Indeed, a lot of
the time you don’t need full-blown query expressions to solve a problem. Enumerable
has a lot of methods in it, and the purpose of this section isn’t to cover all of them but
to give you enough of a feel for them to let you go off and experiment. It’s a real joy to
just play with everything available in Enumerable—although this time it’s definitely
worth firing up Visual Studio 2008 for your experiments (rather than using Snippy) as
IntelliSense is handy for this kind of activity.

 All the complete examples in this section deal with a simple situation: we start off
with a collection of integers and transform it in various ways. Obviously real-life situa-
tions are likely to be somewhat more complicated, usually dealing with business-related
types. At the end of this section, I’ll present a couple of examples of just the transfor-
mation side of things applied to possible business situations, with full source code avail-
able on the book’s website—but that’s harder to play with than a straightforward
collection of numbers. It’s worth considering some recent projects you’ve been work-
ing on as we go, however—see if you can think of situations where you could have made
your code simpler or more readable by using the kind of operations described here.
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 There are a few methods in Enumerable that aren’t extension methods, and we’ll
use one of them in the examples for the rest of the chapter. The Range method takes
two int parameters: a number to start with, and how many results to yield. The result
is an IEnumerable<int>, which simply returns one number at a time in the obvious
way. This isn’t as flexible as the Range<T> type we built in chapter 6, but it’s still handy
for this sort of quick testing. If you’ve downloaded or typed in Range<T>, you can
experiment with types other than int—all the extension methods presented here
work with any IEnumerable<T>.

 To demonstrate the Range method and give us a framework to play with, let’s just
print out the numbers 0 to 9, as shown in listing 10.6. To keep the examples short, I’ve
stuck with the “snippet” format even though you’ll probably want to play with this in
Visual Studio.

var collection = Enumerable.Range(0, 10);

foreach (var element in collection)
{
    Console.WriteLine(element);
}

There are no extension methods called in listing 10.6, just a plain static method. And
yes, it really does just print the numbers 0 to 9—I never claimed this code would set
the world on fire.

NOTE Deferred execution—The Range method doesn’t build a list with the appro-
priate numbers—it just yields them at the appropriate time. In other
words, constructing the enumerable instance doesn’t do the bulk of the
work—it just gets things ready, so that the data can be provided in a “just-
in-time” fashion at the appropriate point. This is called deferred execution
and is a crucial part of LINQ. We’ll learn much more about this in the
next chapter.

Pretty much the simplest thing we can do with a sequence of numbers (which is
already in order) is to reverse it. Listing 10.7 uses the Reverse extension method to do
this—it returns an IEnumerable<T> that yields the same elements as the original
sequence but in the reverse order.

var collection = Enumerable.Range(0, 10)
                                      .Reverse();

foreach (var element in collection)
{
    Console.WriteLine(element);
}

Predictably enough, this prints out 9, then 8, then 7, and so on right down to 0. We’ve
called Reverse (seemingly) on an IEnumerable<int> and the same type has been

Listing 10.6 Using Enumerable.Range to print out the numbers 0 to 9

Listing 10.7 Reversing a collection with the Reverse method



265Extension methods in .NET 3.5
returned. This pattern of returning one enumerable based on another is pervasive in
the Enumerable class.

NOTE Efficiency: buffering vs. streaming—The extension methods provided by the
framework try very hard to “stream” or “pipe” data wherever possible—
when an iterator is asked for its next element, it will often take an ele-
ment off the iterator it’s chained to, process that element, and then
return something appropriate, preferably without using any more stor-
age itself. Simple transformations and filters can do this very easily, and
it’s a really powerful way of efficiently processing data where it’s possi-
ble—but some operations such as reversing the order, or sorting, require
all the data to be available, so it’s all loaded into memory for bulk pro-
cessing. The difference between this buffered approach and piping is
similar to the difference between reading data by loading a whole
DataSet versus using a DataReader to process one record at a time. It’s
important to consider what’s required when using LINQ—a single
method call can have significant performance implications.

Let’s do something a little more adventurous now—we’ll use a lambda expression to
remove the even numbers.

10.3.2 Filtering with Where, and chaining method calls together

The Where extension method is a simple but powerful way of filtering collections: it
accepts a predicate, which it applies to each of the elements of the original collection.
Again, it returns an IEnumerable<T>, and this time any element that matches the pred-
icate is included in the resulting collection. Listing 10.8 demonstrates this, applying the
odd/even filter to the collection of integers before reversing it. We don’t have to use a
lambda expression here—for instance, we could use a delegate we’d created earlier, or
an anonymous method. In this case (and in many other real-life situations), it’s simple
to put the filtering logic inline, and lambda expressions keep the code concise.

var collection = Enumerable.Range(0, 10)
                                      .Where(x => x%2 != 0)
                                      .Reverse();

foreach (var element in collection)
{
    Console.WriteLine(element);
}

Listing 10.8 prints out the numbers 9, 7, 5, 3, and 1. Hopefully you’ll have noticed a
pattern forming—we’re chaining the method calls together. The chaining idea itself
isn’t new. For example, StringBuilder.Append always returns the instance you call it
on, allowing code like this:

builder.Append(x).Append(y).Append(z)

Listing 10.8 Using the Where method with a lambda expression to keep odd numbers only
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That’s fine for instance methods, but extension methods allow static method calls to
be chained together. This is one of the primary reasons for extension methods existing.
They’re useful for other utility classes, but their true power is revealed in this ability to
chain static methods in a natural way. That’s why extension methods primarily show
up in Enumerable and Queryable in .NET 3.5: LINQ is geared toward this approach to
data processing, with information traveling through pipelines constructed of individ-
ual operations chained together.

NOTE Efficiency consideration: reordering method calls to avoid waste—I’m certainly
not a fan of micro-optimization without good cause, but it’s worth look-
ing at the ordering of the method calls in listing 10.8. We could have
added the Where call after the Reverse call and achieved the same results.
However, that would have wasted some effort—the Reverse call would
have had to work out where the even numbers should come in the
sequence even though they will be discarded from the final result. In this
case it’s not going to make much difference, but it can have a significant
effect on performance: if you can reduce the amount of wasted work
without compromising readability, that’s a good thing. That doesn’t
mean you should always put filters at the start of the pipeline, however;
you need to think carefully about any reordering to make sure you’ll still
get the correct results.

There are two obvious ways of writing the first part of listing 10.8 without using the
fact that Reverse and Where are extension methods. One is to use a temporary vari-
able, which keeps the structure intact:

var collection = Enumerable.Range(0, 10);
collection       = Enumerable.Where(collection, x => x%2 != 0)
collection       = Enumerable.Reverse(collection);

I hope you’ll agree that the meaning of the code is far less clear here than in listing 10.8.
It gets even worse with the other option, which is to keep the “single statement” style:

var collection = Enumerable.Reverse
                           (Enumerable.Where
                               (Enumerable.Range(0, 10), 
                                    x => x%2 != 0));

The method call order appears to be reversed, because the innermost method call
(Range) will be performed first, then the others, with execution working its way outward.

 Let’s get back to our nice clean syntax but introduce another wrinkle—we’ll trans-
form (or project) each element in our original collection, creating an anonymous type
for the result.

10.3.3 Projections using the Select method and anonymous types

The most important projection method in Enumerable is Select—it operates on an
IEnumerable<TSource> and projects it into an IEnumerable<TResult> by way of a
Func<TSource,TResult>, which is the transformation to use on each element, specified
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as a delegate. It’s very like the ConvertAll method in List<T>, but operating on any
enumerable collection and using deferred execution to perform the projection only as
each element is requested.

 When I introduced anonymous types, I said they were useful with lambda expres-
sions and LINQ—well, here’s an example of the kind of thing you can do with them.
We’ve currently got the odd numbers between 0 and 9 (in reverse order)—let’s create
a type that encapsulates the square root of the number as well as the original number.
Listing 10.9 shows both the projection and a slightly modified way of writing out the
results. I’ve adjusted the whitespace solely for the sake of space on the printed page.

var collection = Enumerable.Range(0, 10)
        .Where(x => x%2 != 0)
        .Reverse()
        .Select(x => new { Original=x, SquareRoot=Math.Sqrt(x) } );

foreach (var element in collection)
{
    Console.WriteLine("sqrt({0})={1}",
                              element.Original,
                              element.SquareRoot);
}

This time the type of collection isn’t IEnumerable<int>—it’s IEnumerable<Some-
thing>, where Something is the anonymous type created by the compiler. We can’t
explicitly type the collection variable except as either the nongeneric IEnumerable
type or object. Implicit typing is what allows us to use the Original and SquareRoot
properties when writing out the results. The output of listing 10.9 is as follows:

sqrt(9)=3
sqrt(7)=2.64575131106459
sqrt(5)=2.23606797749979
sqrt(3)=1.73205080756888
sqrt(1)=1

Of course, a Select method doesn’t have to use an anonymous type at all—we could
have selected just the square root of the number, discarding the original. In that case
the result would have been IEnumerable<double>. Alternatively, we could have manu-
ally written a type to encapsulate an integer and its square root—it was just easiest to
use an anonymous type in this case.

 Let’s look at one last method to round off our coverage of Enumerable for the
moment: OrderBy.

10.3.4 Sorting using the OrderBy method

Sorting data is a common requirement when processing data, and in LINQ this is usu-
ally performed using the OrderBy or OrderByDescending methods, sometimes fol-
lowed by ThenBy or ThenByDescending if you need to sort by more than one property
of the data. This ability to sort on multiple properties has always been available the

Listing 10.9 Projection using a lambda expression and an anonymous type
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hard way using a complicated comparison, but it’s much clearer to be able to present
a series of simple comparisons. 

 To demonstrate this, I’m going to change the operations we’ll use a bit. We’ll start
off with the integers –5 to 5 (inclusive—11 elements in total), and then project to an
anonymous type containing the original number and its square (rather than square
root). Finally, we’ll sort by the square and then the original number. Listing 10.10
shows all of this.

var collection = Enumerable.Range(-5, 11)
        .Select(x => new { Original=x, Square=x*x })
        .OrderBy(x => x.Square)
        .ThenBy(x => x.Original);

foreach (var element in collection)
{
    Console.WriteLine(element);
}

Notice how aside from the call to Enumerable.Range (which isn’t as clear as using our
own Range<T> class) the code reads almost exactly like the textual description. This
time I’ve decided to let the anonymous type’s ToString implementation do the for-
matting, and here are the results:

{ Original = 0, Square = 0 }
{ Original = -1, Square = 1 }
{ Original = 1, Square = 1 }
{ Original = -2, Square = 4 }
{ Original = 2, Square = 4 }
{ Original = -3, Square = 9 }
{ Original = 3, Square = 9 }
{ Original = -4, Square = 16 }
{ Original = 4, Square = 16 }
{ Original = -5, Square = 25 }
{ Original = 5, Square = 25 }

As intended, the “main” sorting property is Square—but for two values that both have
the same square, the negative original number is always sorted before the positive
one. Writing a single comparison to do the same kind of thing (in a general case—
there are mathematical tricks to cope with this particular example) would have been
significantly more complicated, to the extent that you wouldn’t want to include the
code “inline” in the lambda expression.

 We’ve seen just a few of the many extension methods available in Enumerable, but
hopefully you can appreciate how neatly they can be chained together. In the next
chapter we’ll see how this can be expressed in a different way using extra syntax pro-
vided by C# 3 (query expressions)—as well as some other operations we haven’t cov-
ered here. It’s worth remembering that you don’t have to use query expressions,
though—often it can be simpler to make a couple of calls to methods in Enumerable,
using extension methods to chain operations together. 

Listing 10.10 Ordering a sequence by two properties
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 Now that we’ve seen how all these apply to our “collection of numbers” example, it’s
time for me to make good on the promise of some more business-related situations.

10.3.5 Business examples involving chaining

Much of what we do as developers involves moving data around. In fact, for many
applications that’s the only meaningful thing we do—the user interface, web ser-
vices, database, and other components often exist solely to get data from one place
to another, or from one form into another. It should be of no surprise that the
extension methods we’ve looked at in this section are well suited to many business
problems. I’ll just give a couple of examples, as I’m sure you’ll be able to take them
as a springboard into thinking about your business requirements and how C# 3 and
the Enumerable class can help you solve problems more expressively than before.
For each example I’ll only include a sample query—it should be enough to under-
stand the purpose of the code, but without all the baggage. Full working code is on
the book’s website.
AGGREGATION: SUMMING SALARIES
The first example involves a company comprised of several departments. Each depart-
ment has a number of employees, each of whom has a salary. Suppose we want to
report on total salary cost by department, with the most expensive department first.
The query is simply

company.Departments
          .Select(dept => new 
                     { 
                        dept.Name, 
                        Cost=dept.Employees.Sum (person => person.Salary)
                     })
          .OrderByDescending (deptWithCost => deptWithCost.Cost);

This query uses an anonymous type to keep the department name (using a projection
initializer) and the sum of the salaries of all the employees within that department.
The salary summation uses a self-explanatory Sum extension method, again part of
Enumerable. In the result, the department name and total salary can be retrieved as
properties. If you wanted the original department reference, you’d just need to
change the anonymous type used in the Select method.
GROUPING: COUNTING BUGS ASSIGNED TO DEVELOPERS
If you’re a professional developer, I’m sure you’ve seen many project management
tools giving you different metrics. If you have access to the raw data, LINQ can help
you transform it in practically any way you choose. As a simple example, we could look
at a list of developers and how many bugs they have assigned to them at the moment:

bugs.GroupBy(bug => bug.AssignedTo)
      .Select(list => new { Developer=list.Key, Count=list.Count() })
      .OrderByDescending (x => x.Count);

This query uses the GroupBy extension method, which groups the original collection
by a projection (the developer assigned to fix the bug in this case), resulting in an
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IGrouping<TKey,TElement>. There are many overloads of GroupBy, but I’ve used the
simplest one here and then selected just the key (the name of the developer) and the
number of bugs assigned to them. After that we’ve just ordered the result to show the
developers with the most bugs first.

 One of the problems when looking at the Enumerable class can be working out
exactly what’s going on—one of the overloads of GroupBy has four type parameters
and five “normal” parameters (three of which are delegates), for instance. Don’t
panic, though—just follow the steps shown in chapter 3, assigning different types to
different type parameters until you’ve got a concrete example of what the method
would look like. That usually makes it a lot easier to understand what’s going on.

 We’ll use the example of defect tracking as our sample data when we look at query
expressions in the next chapter.

 These examples aren’t particularly involved ones, but I hope you can see the
power of chaining method calls together, where each method takes an original collec-
tion and returns another one in some form or other, whether by filtering out some
values, ordering them, transforming each element, aggregating some values, or many
other options. In many cases, the resulting code can be read aloud and understood
immediately—and in other situations it’s still usually a lot simpler than the equivalent
code would have been in previous versions of C#.

 Now that we’ve seen some of the extension methods provided for us, we’ll consider
just how and when it makes sense for you to write them yourself.

10.4 Usage ideas and guidelines
Like implicit typing of local variables, extension methods are controversial. It would
be hard to claim that they make the overall aim of the code harder to understand in
many cases, but at the same time they do obscure the details of what method is getting
called. In the words of one of the lecturers at my university, “I’m hiding the truth in
order to show you a bigger truth”—if you believe that the most important aspect of the
code is its result, extension methods are great. If the implementation is more impor-
tant to you, then explicitly calling a static method is clearer. Effectively, it’s the differ-
ence between the “what” and the “how.”

 We’ve already looked at using extension methods for utility classes and method
chaining, but before we discuss the pros and cons further, it’s worth calling out a cou-
ple of aspects of this that may not be obvious.

10.4.1 “Extending the world” and making interfaces richer

Wes Dyer, a former developer on the C# compiler team, has a fantastic blog2 cover-
ing all kinds of subject matter. One of his posts about extension methods3 particu-
larly caught my attention. It’s called “Extending the World,” and it talks about how

2 http://blogs.msdn.com/wesdyer
3 http://blogs.msdn.com/wesdyer/archive/2007/03/09/extending-the-world.aspx
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extension methods can make code easier to read by effectively adapting your envi-
ronment to your needs:

Typically for a given problem, a programmer is accustomed to building up
a solution until it finally meets the requirements. Now, it is possible to
extend the world to meet the solution instead of solely just building up until
we get to it. That library doesn’t provide what you need, just extend the
library to meet your needs.

This has implications beyond situations where you’d use a utility class. Typically devel-
opers only start creating utility classes when they’ve seen the same kind of code repro-
duced in dozens of places—but extending a library is about clarity of expression as
much as avoiding duplication. Extension methods can make the calling code feel like
the library is richer than it really is.

 We’ve already seen this with IEnumerable<T>, where even the simplest implemen-
tation appears to have a wide set of operations available, such as sorting, grouping, pro-
jection, and filtering. Of course, the benefits aren’t limited to interfaces—you can also
“extend the world” with enums, abstract classes, and so forth.

 The .NET Framework also provides a good example of another use for extension
methods: fluent interfaces.

10.4.2 Fluent interfaces

There used to be a television program in the United Kingdom called Catchphrase. The
idea was that contestants would watch a screen where an animation would show some
cryptic version of a phrase or saying, which they’d have to guess. The host would often
try to help by instructing them: “Say what you see.” That’s pretty much the idea
behind fluent interfaces—that if you read the code verbatim, its purpose will leap off
the screen as if it were written in a natural human language. The term was originally
coined by Martin Fowler4 and Eric Evans. If you’re familiar with domain specific lan-
guages (DSLs), you may be wondering what the differences are between a fluent inter-
face and a DSL. A lot has been written on the subject, but the consensus seems to be
that a DSL has more freedom to create its own syntax and grammar, whereas a fluent
interface is constrained by the “host” language (C# in our case).

 A good example of a fluent interface in the framework is the OrderBy and ThenBy
methods: with a bit of interpretation of lambda expressions, the code explains exactly
what it does. In the case of our numbers example earlier, we could read “order by the
square, then by the original number” without much work. Statements end up reading
as whole sentences rather than just individual noun-verb phrases.

 Writing fluent interfaces can require a change of mind-set. Method names defy the
normal “descriptive verb” form, with “And,” “Then,” and “If” sometimes being suit-
able methods in a fluent interface. The methods themselves often do little more than
setting up context for future calls, often returning a type whose sole purpose is to act
as a bridge between calls. Figure 10.2 gives an example of how this “bridging” works. It

4 http://www.martinfowler.com/bliki/FluentInterface.html
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only uses two extension methods (on int and TimeSpan), but they make all the differ-
ence to the readability.

 The grammar of the example in figure 10.2 could have many different forms:
you may be able to add additional attendees to an UntimedMeeting, or create an
UnattendedMeeting at a particular time before specifying the attendees, for instance.
Anders Norås has a full example on his blog5 that can be a useful starting point
when you’re planning a fluent interface.

 C# 3 only supports extension methods rather than extension properties, which restricts
fluent interfaces slightly—it means we can’t have expressions such as 1.week.from.now
or 2.days + 10.hours (which are both valid in Groovy with an appropriate package6) but
with a few superfluous parentheses we can have achieve similar results. At first it looks
odd to call a method on a number (such as 2.Dollars() or 3.Meters ()), but it’s hard
to deny that the meaning is clear. Without extension methods, this sort of clarity simply
isn’t possible when you need to act on types like numbers that aren’t under your control.

 At the time of this writing, the development community is still on the fence about
fluent interfaces: they’re relatively rare in most fields, although many mocking librar-
ies used for unit testing have at least some fluent aspects. They’re certainly not univer-
sally applicable, but in the right situations they can radically transform the readability
of the calling code.

 These aren’t the only uses available for extension methods, of course—you may
well discover something new and wonderful that makes the world a generally better
place using extension methods. I constantly find it amazing how such a simple little
feature can have such a profound impact on readability when used appropriately. The
key word there is “appropriately.”

10.4.3 Using extension methods sensibly

I’m in no position to dictate how you write your code. It may be possible to write tests
to objectively measure readability for an “average” developer, but it only matters for

5 http://andersnoras.com/blogs/anoras/archive/2007/07/09/behind-the-scenes-of-the-planning-dsl.aspx
6 http://groovy.codehaus.org/Google+Data+Support

Meeting.Between("Jon")

            

      .And("Russell")

           

      .At(8.OClock().Tomorrow())

Returns SoloMeeting

Returns UntimedMeeting

Returns Meeting

Returns TimeSpan

Returns  DateTime

Figure 10.2 Pulling apart a fluent interface expression 
to create a meeting. The time of the meeting is specified 
using extension methods to create a TimeSpan from an 
int, and a DateTime from a TimeSpan.



273Usage ideas and guidelines
those who are going to use and maintain your code. So, you need to consult with the
relevant people as far as you can: this depends on your type of project and its audi-
ence, of course, but it’s nice to present different options and get appropriate feed-
back. Extension methods make this particularly easy in many cases, as you can
demonstrate both options in working code simultaneously—turning a method into an
extension method doesn’t stop you from calling it explicitly in the same way as before.

 The main question to ask is the one I referred to at the start of this section: is the
“what does it do” of the code more important than the “how does it do it?” That varies
by person and situation, but here are some guidelines to bear in mind:

■ Everyone on the development team should be aware of extension methods and
where they might be used. Where possible, avoid surprising code maintainers.

■ By putting extensions in their own namespace, you make it hard to use them acci-
dentally. Even if it’s not obvious when reading the code, the developer writing it
should at least be aware of what she’s doing. Use a projectwide or companywide
convention for naming the namespace. You may choose to take this one step fur-
ther and use a single namespace for each extended type. For instance, you could
create a TypeExtensions namespace for classes that extend System.Type.

■ The decision to write an extension method should always be a conscious one. It
shouldn’t become habitual—certainly not every static method deserves to be an
extension method.

■ An extension method is reasonably valid if it’s applicable to all instances of the
extended type. If it’s only appropriate in certain situations, I’d make it clear
that the method is not part of the type by leaving it as a “normal” static method.

■ Document whether or not the first parameter (the value your method appears
to be called on) is allowed to be null—if it’s not, check the value in the method
and throw an exception if necessary.

■ Be careful not to use a method name that already has a meaning in the
extended type. If the extended type is a framework type or comes from a third-
party library, check all your extended method names whenever you change ver-
sions of the library.

■ Question your instincts, but acknowledge that they affect your productivity. Just
like with implicit typing, there’s little point in forcing yourself to use a feature
you instinctively dislike.

■ Try to group extension methods into static classes dealing with the same
extended type. Sometimes related classes (such as DateTime and TimeSpan) can
be sensibly grouped together, but avoid grouping extension methods targeting
disparate types such as Stream and string within the same class.

■ Think really carefully before adding extension methods with the same extended
type and same name in two different namespaces, particularly if there are situa-
tions where the different methods may both be applicable (they have the same
number of parameters). It’s reasonable for adding or removing a using direc-
tive to make a program fail to build, but it’s nasty if it still builds but changes
the behavior.
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Few of these guidelines are particularly clear-cut—to some extent you’ll have to feel
your own way to the best use or avoidance of extension methods. It’s perfectly reason-
able to never write your own extension methods at all but still use the LINQ-related
ones for the readability gains available there. It’s worth at least thinking about what’s
possible, though.

10.5 Summary
The mechanical aspect of extension methods is straightforward—it’s a simple feature
to describe and demonstrate. The benefits (and costs) of them are harder to talk
about in a definitive manner—it’s a touchy-feely topic, and different people are
bound to have different views on the value provided.

 In this chapter I’ve tried to show a bit of everything—early on we looked at what
the feature achieves in the language, before we saw some of the capabilities available
through the framework. In some ways, this was a relatively gentle introduction to
LINQ: we’ll be revisiting some of the extension methods we’ve seen so far when we
delve into query expressions in the next chapter, as well as seeing some new ones. 

 A wide variety of methods are available within the Enumerable class, and we’ve only
scratched the surface. An exhaustive description with examples of all the methods
would take most of a book on its own, and it’d become rather dull. It’s much more
interesting to come up with a scenario of your own devising (whether hypothetical or
in a real project) and browse through MSDN to see what’s available to help you. I urge
you to use a sandbox project of some description to play with the extension methods
provided—it does feel like play rather than work, and you’re unlikely to want to con-
strain yourself to just looking at what you need to achieve your most immediate goal.
The appendix has a list of the standard query operators from LINQ, which covers
many of the methods within Enumerable.

 New patterns and practices keep emerging in software engineering, and ideas
from some systems often cross-pollinate to others. That’s one of the things that keeps
development exciting. Extension methods allow code to be written in a way which was
previously unavailable in C#, creating fluent interfaces and changing the environment
to suit our code rather than the other way around. Those are just the techniques we’ve
looked at in this chapter—there are bound to be interesting future developments
using the new C# features, whether individually or combined.

 The revolution obviously doesn’t end here, however. For a few calls, extension
methods are fine. In our next chapter we look at the real power tools: query expres-
sions and full-blown LINQ. 



Query expressions
 and LINQ to Objects
You may well be tired of all the hyperbole around LINQ by now. We’ve seen some
examples in chapters 1 and 3, and you’ve almost certainly read some examples and
articles on the Web. This is where we separate myth from reality:

■ LINQ isn’t going to turn the most complicated query into a one-liner.
■ LINQ isn’t going to mean you never need to look at raw SQL again.
■ LINQ isn’t going to magically imbue you with architectural genius.

This chapter covers
■ Streaming sequences of data
■ Deferred execution
■ Standard query operators
■ Query expression translation
■ Range variables and transparent identifiers
■ Projecting, filtering, and sorting
■ Joining and grouping
275
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Given all that, LINQ is still going to change how most of us think about code. It’s not a
silver bullet, but it’s a very powerful tool to have in your development armory. We’ll
explore two distinct aspects of LINQ: the framework support, and the compiler trans-
lation of query expressions. The latter can look odd to start with, but I’m sure you’ll
learn to love them.

 Query expressions are effectively “preprocessed” by the compiler into “normal”
C# 3, which is then compiled in a perfectly ordinary way. This is a neat way of inte-
grating queries into the language without changing its semantics all over the place:
it’s syntactic sugar in its purest form. Most of this chapter is a list of the preprocess-
ing translations performed by the compiler, as well as the effects achieved when the
result uses the Enumerable extension methods.

 You won’t see any SQL or XML here—all that awaits us in chapter 12. However, with
this chapter as a foundation you should be able to understand what the more exciting
LINQ providers do when we meet them. Call me a spoilsport, but I want to take away
some of their magic. Even without the air of mystery, LINQ is still very cool.

 First let’s consider what LINQ is in the first place, and how we’re going to explore it.

11.1 Introducing LINQ
A topic as large as LINQ needs a certain amount of background before we’re ready to
see it in action. In this section we’ll look at what LINQ is (as far as we can discern it), a
few of the core principles behind it, and the data model we’re going to use for all the
examples in this chapter and the next. I know you’re likely to be itching to get into
the code, so I’ll keep it fairly brief. Let’s start with an issue you’d think would be quite
straightforward: what counts as LINQ?

11.1.1 What’s in a name?

LINQ has suffered from the same problem that .NET had early in its life: it’s a term
that has never been precisely defined. We know what it stands for: Language INte-
grated Query—but that doesn’t actually help much. LINQ is fundamentally about data
manipulation: it’s a means of accessing data from different sources in a unified man-
ner. It allows you to express logic about that manipulation in the language of your
choice—C# in our case—even when the logic needs to be executed in an entirely differ-
ent environment. It also attempts to eliminate (or at least vastly reduce) the impedance
mismatch1—the difficulties introduced when you need to integrate two environments
with very different data models, such as the object-oriented model of .NET and the
relational data model of SQL.

 All of the C# 3 features we’ve seen so far (with the exception of partial methods
and automatic properties) contribute to the LINQ story, so how many of these do you
need to use before you can consider yourself to be using LINQ? Do you need to be
using query expressions, which are the final genuine language feature in C# 3? If you use

1 http://en.wikipedia.org/wiki/Object-Relational_impedance_mismatch explains this for the specific object-
relational case, but impedance mismatches are present in other situations, such as XML representations and
web services.
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the extension methods of Enumerable but do it without query expressions, does that
count? What about plain lambda expressions without any querying going on? 

 As a concrete example of this question, let’s consider four slightly different ways of
achieving the same goal. Suppose we have a List<Person> (where Person has proper-
ties Name and Age as in chapter 8) and we wish to apply a transformation so that we get
a sequence of strings, just the names of the people in the list. Using lambda expressions
in preference to anonymous methods, we can still use the standard ConvertAll method
of List<T>, as follows:

var names = people.ConvertAll(p => p.Name);

Alternatively we can use the Select method of the Enumerable class, because List<T>
implements IEnumerable<T>. The result of this will be an IEnumerable<string>
rather than a List<string>, but in many cases that’s fine. The code becomes

var names = Enumerable.Select(people, p => p.Name);

Knowing that Select is an extension method, we can simplify things a little bit:

var names = people.Select(p => p.Name);

Finally, we could use a query expression:

var names = from p in people select p.Name;

Four one-liners, all of which accomplish much the same goal.2 Which of them count as
LINQ? My personal answer is that the first isn’t really using LINQ (even though it uses a
lambda expression), but the rest are LINQ-based solutions. The second form certainly
isn’t idiomatic, but the last two are both perfectly respectable LINQ ways of achieving
the same aim, and in fact all of the last three samples compile to the same IL.

 In the end, there are no bonus points available for using LINQ, so the question is
moot. However, it’s worth being aware that when a fellow developer says they’re using
LINQ to solve a particular problem, that statement could have a variety of meanings.

 The long and the short of it is that LINQ is a collection of technologies, including
the language features of C# 3 (and VB9) along with the framework libraries provided as
part of .NET 3.5. If your project targets .NET 3.5, you can use LINQ as much or as little
as you like. You can use just the support for in-memory querying, otherwise known as
LINQ to Objects, or providers that target XML documents, relational databases, or other
data sources. The only provider we’ll use in this chapter is LINQ to Objects, and in the
next chapter we’ll see how the same concepts apply to the other providers.

 There are a few concepts that are vital to LINQ. We’ve seen them tangentially in
chapter 10, but let’s look at them a little more closely.

11.1.2 Fundamental concepts in LINQ

Most of this chapter is dedicated to exactly what the C# 3 compiler does with query
expressions, but it won’t make much sense until we have a better understanding of the

2 There’s actually a big difference between ConvertAll and Select, as we’ll see in a minute, but in many cases
either could be used.
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ideas underlying LINQ as a whole. One of the problems with reducing the impedance
mismatch between two data models is that it usually involves creating yet another
model to act as the bridge. This section describes the LINQ model, beginning with its
most important aspect: sequences.
SEQUENCES
You’re almost certainly familiar with the concept of a sequence: it’s encapsulated by the
IEnumerable and IEnumerable<T> interfaces, and we’ve already looked at those fairly
closely in chapter 6 when we studied iterators. Indeed, in many ways a sequence is just
a slightly more abstract way of thinking of an iterator. A sequence is like a conveyor belt
of items—you fetch them one at a time until either you’re no longer interested or the
sequence has run out of data. There are three other fairly obvious examples: a Stream
represents a sequence of bytes, a TextReader represents a sequence of characters, and
a DataReader represents a sequence of rows from a database.3

 The key difference between a sequence and other collection data structures such
as lists and arrays is that when you’re reading from a sequence, you don’t generally
know how many more items are waiting, or have access to arbitrary items—just the
current one. Indeed, some sequences could be never-ending: you could easily have an
infinite sequence of random numbers, for example. Only one piece of data is pro-
vided at a time by the sequence, so you can implement an infinite sequence without
having infinite storage. Lists and arrays can act as sequences, of course—just as
List<T> implements IEnumerable<T>—but the reverse isn’t always true. You can’t
have an infinite array or list, for example.

Sequences are the bread and butter of LINQ. When you read a query
expression, it’s really helpful to think of the sequences involved: there’s
always at least one sequence to start with, and it’s usually transformed
into other sequences along the way, possibly being joined with yet more
sequences. We’ll see examples of this as we go further into the chapter,
but I can’t emphasize enough how important it is. Examples of LINQ
queries are frequently provided on the Web with very little explana-
tion: when you take them apart by looking at the sequences involved,

things make a lot more sense. As well as being an aid to reading code, it can also help
a lot when writing it. Thinking in sequences can be tricky—it’s a bit of a mental leap
sometimes—but if you can get there, it will help you immeasurably when you’re
working with LINQ.

 As a simple example, let’s take another query expression running against a list of
people. We’ll apply the same transformation as before, but with a filter involved that
keeps only adults in the resulting sequence:

var adultNames = from person in people
                       where person.Age >= 18
                       select person.Name;

3 Interestingly, none of these actually implements IEnumerable<T>.

Think in 

sequences!
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Figure 11.1 shows this query expres-
sion graphically, breaking it down into
its individual steps. I’ve included a
number of similar figures in this chap-
ter, but unfortunately for complicated
queries there is simply not enough
room on the printed page to show as
much data as we might like. More
detailed diagrams are available on the
book’s website.

 Each arrow represents a sequence—
the description is on the left side, and
some sample data is on the right. Each
box is a transformation from our query
expression. Initially, we have the whole
family (as Person objects); then after
filtering, the sequence only contains
adults (again, as Person objects); and
the final result has the names of those
adults as strings. Each step simply takes
one sequence and applies an operation
to produce a new sequence. The result isn’t the strings “Holly” and “Jon” —instead, it’s
an IEnumerable<string>, which, when asked for its elements one by one, will first yield
“Holly” and then “Jon.”

 This example was straightforward to start with, but we’ll apply the same technique
later to more complicated query expressions in order to understand them more easily.
Some advanced operations involve more than one sequence as input, but it’s still a lot
less to worry about than trying to understand the whole query in one go.

 So, why are sequences so important? They’re the basis for a streaming model for
data handling—one that allows us to process data only when we need to.
DEFERRED EXECUTION AND STREAMING
When the query expression shown in figure 11.1 is created, no data is processed. The
original list of people isn’t accessed at all. Instead, a representation of the query is built
up in memory. Delegate instances are used to represent the predicate testing for adult-
hood and the conversion from a person to that person’s name. It’s only when the result-
ing IEnumerable<string> is asked for its first element that the wheels start turning.

 This aspect of LINQ is called deferred execution. When the first element of the result
is requested, the Select transformation asks the Where transformation for its first ele-
ment. The Where transformation asks the list for its first element, checks whether the
predicate matches (which it does in this case), and returns that element back to
Select. That in turn extracts the name and returns it as the result. 

 That’s all a bit of a mouthful, but a sequence diagram makes it all much clearer.
I’m going to collapse the calls to MoveNext and Current to a single fetch operation: it

where person.Age >= 18

All "Person" objects
in "people"

All "Person" objects with
an age of at least 18

from person in people

select person.Name

Name="Holly", Age=31
Name="Tom", Age=4
Name="Jon", Age=31
Name="William", Age=1
Name="Robin", Age=1

(Result of query)

Name="Holly", Age=31
Name="Jon", Age=31

Names of people with
an age of at least 18

"Holly"
"Jon"

Figure 11.1 A simple query expression broken down 
into the sequences and transformations involved
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makes the diagram a lot simpler. Just remember that each time the fetch occurs, it’s
effectively checking for the end of the sequence as well. Figure 11.2 shows the first few
stages of our sample query expression in operation, when we print out each element
of the result using a foreach loop.

 As you can see in figure 11.2, only one element of data is processed at a time. If we
decided to stop printing output after writing “Holly,” we would never execute any of
the operations on the other elements of the original sequence. Although several
stages are involved here, processing data in a streaming manner like this is efficient and

Caller
(foreach)

Select Where List

fetch
fetch

fetch

return {"Holly", 31}

Check: Age >= 18? Yes
return {"Holly", 31}

Transform:
{"Holly", 31} =>
"Holly”

return "Holly"

fetch

fetch
fetch

Print "Holly"

return {"Jon", 31}

return {"Tom", 4}

Check: Age >= 18? No

return {"Jon", 31}

Check: Age >= 18? Yes

fetch

Transform:
{"Jon", 31} =>
"Jon"

return "Jon"

Print "Jon"

(and so on)

Figure 11.2 Sequence diagram of the execution of a query expression
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flexible. In particular, regardless of how much source data there is, you don’t need to
know about more than one element of it at any one point in time. That’s the differ-
ence between using List.ConvertAll and Enumerable.Select: the former creates a
whole new in-memory list, whereas the latter just iterates through the original
sequence, yielding a single converted element at a time.

 This is a best-case scenario, however. There are times where in order to fetch the
first result of a query, you have to evaluate all of the data from the source. We’ve
already seen one example of this in the previous chapter: the Enumerable.Reverse
method needs to fetch all the data available in order to return the last original ele-
ment as the first element of the resulting sequence. This makes Reverse a buffering
operation—which can have a huge effect on the efficiency (or even feasibility) of your
overall operation. If you can’t afford to have all the data in memory at one time, you
can’t use buffering operations.

 Just as the streaming aspect depends on which operation you perform, some trans-
formations take place as soon as you call them, rather than using deferred execution.
This is called immediate execution. Generally speaking, operations that return another
sequence (usually an IEnumerable<T> or IQueryable<T>) use deferred execution,
whereas operations that return a single value use immediate execution.

 The operations that are widely available in LINQ are known as the standard query
operators—let’s take a brief look at them now.
STANDARD QUERY OPERATORS
LINQ’s standard query operators are a collection of transformations that have well-under-
stood meanings. LINQ providers are encouraged to implement as many of these oper-
ators as possible, making the implementation obey the expected behavior. This is
crucial in providing a consistent query framework across multiple data sources. Of
course, some LINQ providers may expose more functionality, and some of the opera-
tors may not map appropriately to the target domain of the provider—but at least the
opportunity for consistency is there.

 C# 3 has support for some of the standard query operators built into the language
via query expressions, but they can always be called manually. You may be interested to
know that VB9 has more of the operators present in the language: as ever, there’s a
trade-off between the added complexity of including a feature in the language and
the benefits that feature brings. Personally I think the C# team has done an admirable
job: I’ve always been a fan of a small language with a large library behind it.

 We’ll see some of these operators in our examples as we go through this chapter and
the next, but I’m not aiming to give a comprehensive guide to them here: this book is
primarily about C#, not the whole of LINQ. You don’t need to know all of the operators
in order to be productive in LINQ, but your experience is likely to grow over time. The
appendix gives a brief description of each of the standard query operators, and MSDN
gives more details of each specific overload. When you run into a problem, check the
list: if it feels like there ought to be a built-in method to help you, there probably is!

 Having mentioned examples, it’s time to introduce the data model that most of
the rest of the sample code in this chapter will use. 
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11.1.3 Defining the sample data model

In section 10.3.5 I gave a brief example of bug tracking as a real use for extension
methods and lambda expressions. We’ll use the same idea for almost all of the sample
code in this chapter—it’s a fairly simple model, but one that can be manipulated in
many different ways to give useful information. It’s also a domain that most profes-
sional developers are familiar with, while not involving frankly tedious relationships
between customers and orders. You can find further examples using the same model
in the downloadable source code, along with detailed comments. Some of these are
more complicated than the ones presented in this chapter and provide good exercises
for understanding larger query expressions.

 Our fictional setting is SkeetySoft, a small software company with big ambition. The
founders have decided to attempt to create an office suite, a media player, and an instant
messaging application. After all, there are no big players in those markets, are there?

 The development department of SkeetySoft consists of five people: two developers
(Deborah and Darren), two testers (Tara and Tim), and a manager (Mary). There’s
currently has a single customer: Colin. The aforementioned products are SkeetyOf-
fice, SkeetyMediaPlayer, and SkeetyTalk, respectively. We’re going to look at defects
logged during August 2007, using the data model shown in figure 11.3.

Figure 11.3 Class diagram of the SkeetySoft defect data model
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As you can see, we’re not recording an awful lot of data. In particular, there’s no real
history to the defects, but there’s enough here to let us demonstrate the query
expression features of C# 3. For the purposes of this chapter, all the data is stored in
memory. We have a class named SampleData with properties AllDefects, AllUsers,
AllProjects, and AllSubscriptions, which each return an appropriate type of
IEnumerable<T>. The Start and End properties return DateTime instances for the
start and end of August respectively, and there are nested classes Users and
Projects within SampleData to provide easy access to a particular user or project.
The one type that may not be immediately obvious is NotificationSubscription:
the idea behind this is to send an email to the specified address every time a defect
is created or changed in the relevant project.

 There are 41 defects in the sample data, created using C# 3 object initializers. All of
the code is available on the book’s website, but I won’t include the sample data itself
in this chapter.

 Now that the preliminaries are dealt with, let’s get cracking with some queries!

11.2 Simple beginnings: selecting elements
Having brought up some general LINQ concepts beforehand, I’ll introduce the con-
cepts that are specific to C# 3 as they arise in the course of the rest of the chapter. We’re
going to start with a simple query (even simpler than the ones we’ve seen so far in the
chapter) and work up to some quite complicated ones, not only building up your exper-
tise of what the C# 3 compiler is doing, but also teaching you how to read LINQ code.

 All of our examples will follow the pattern of defining a query, and then printing
the results to the console. We’re not interested in binding queries to data grids or any-
thing like that—it’s all important, but not directly relevant to learning C# 3. 

 We can use a simple expression that just prints out all our users as the starting
point for examining what the compiler is doing behind the scenes and learning about
range variables.

11.2.1 Starting with a source and ending with a selection

Every query expression in C# 3 starts off in the same way—stating the source of a
sequence of data:

from element in source

The element part is just an identifier, with an optional type name before it. Most of
the time you won’t need the type name, and we won’t have one for our first example.
Lots of different things can happen after that first clause, but sooner or later you
always end with a select clause or a group clause. We’ll start off with a select clause
to keep things nice and simple. The syntax for a select clause is also easy:

select expression

The select clause is known as a projection. Combining the two together and using the
most trivial expression we can think of gives a simple (and practically useless) query,
as shown in listing 11.1.
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var query = from user in SampleData.AllUsers 
                   select user;

foreach (var user in query)
{
    Console.WriteLine(user);
}

The query expression is the part highlighted in bold. I’ve overridden ToString for
each of the entities in the model, so the results of listing 11.1 are as follows:

User: Tim Trotter (Tester)
User: Tara Tutu (Tester)
User: Deborah Denton (Developer)
User: Darren Dahlia (Developer)
User: Mary Malcop (Manager)
User: Colin Carton (Customer)

You may be wondering how useful this is as an example: after all, we could have just
used SampleData.AllUsers directly in our foreach statement. However, we’ll use this
query expression—however trivial—to introduce two new concepts. First we’ll look at
the general nature of the translation process the compiler uses when it encounters a
query expression, and then we’ll discuss range variables. 

11.2.2 Compiler translations as the basis of query expressions

The C# 3 query expression support is based on the compiler translating query expres-
sions into “normal” C# code. It does this in a mechanical manner that doesn’t try to
understand the code, apply type inference, check the validity of method calls, or any
of the normal business of a compiler. That’s all done later, after the translation. In
many ways, this first phase can be regarded as a preprocessor step. The compiler trans-
lates listing 11.1 into listing 11.2. before doing the real compilation.

var query = SampleData.AllUsers.Select(user => user);

foreach (var user in query)
{
    Console.WriteLine(user);
}

The C# 3 compiler translates the query expression into exactly that code before properly
compiling it further. In particular, it doesn’t assume that it should use Enumerable.
Select, or that List<T> will contain a method called Select. It merely translates the
code and then lets the next phase of compilation deal with finding an appropriate
method—whether as a straightforward member or as an extension method. The param-
eter can be a suitable delegate type or an Expression<T> for an appropriate type T.

 This is where it’s important that lambda expressions can be converted into
both delegate instances and expression trees. All the examples in this chapter will

Listing 11.1 Trivial query to print the list of users

Listing 11.2 The query expression of listing 11.1 translated into a method call
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use delegates, but we’ll see how expression trees are used when we look at the other
LINQ providers in chapter 12. When I present the signatures for some of the meth-
ods called by the compiler later on, remember that these are just the ones called in
LINQ to Objects—whenever the parameter is a delegate type (which most of them
are), the compiler will use a lambda expression as the argument, and then try to
find a method with a suitable signature.

 It’s also important to remember that wherever a normal variable (such as a local
variable within the method) appears within a lambda expression after translation has
been performed, it will become a captured variable in the same way that we saw back
in chapter 5. This is just normal lambda expression behavior—but unless you under-
stand which variables will be captured, you could easily be confused by the results of
your queries.

 The language specification gives details of the query expression pattern, which must
be implemented for all query expressions to work, but this isn’t defined as an inter-
face as you might expect. It makes a lot of sense, however: it allows LINQ to be applied
to interfaces such as IEnumerable<T> using extension methods. This chapter tackles
each element of the query expression pattern, one at a time.

 Listing 11.3 proves how the compiler translation works: it provides a dummy
implementation of both Select and Where, with Select being a normal instance
method and Where being an extension method. Our original simple query expression
only contained a select clause, but I’ve included the where clause to show both kinds
of methods in use. Unfortunately, because it requires a top-level class to contain the
extension method it can’t be represented as a snippet but only as a full listing.

using System;

static class Extensions
{
    public static Dummy<T> Where<T>(this Dummy<T> dummy,
                                                          Func<T,bool> predicate)
    {
        Console.WriteLine ("Where called");
        return dummy;
    }
}

public class Dummy<T>
{
    public Dummy<U> Select<U>(Func<T,U> selector)
    {
        Console.WriteLine ("Select called");
        return new Dummy<U>();
    }
}

public class TranslationExample
{

Listing 11.3 Compiler translation calling methods on a dummy LINQ implementation

Declares 
Where 
extension 
method

Declares Select 
instance method
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    static void Main()
    {
        var source = new Dummy<string>();

        var query = from dummy in source                
                           where dummy.ToString()=="Ignored"
                           select "Anything";                      
    }
}

Running listing 11.3 prints “Where called” and then “Select called” just as we’d
expect, because the query expression has been translated into this code:

var query = source.Where(dummy => dummy.ToString()=="Ignored")
                         .Select(dummy => "Anything");

Of course, we’re not doing any querying or transformation here, but it shows how the
compiler is translating our query expression. If you’re puzzled as to why we’ve selected
"Anything" instead of just dummy, it’s because a projection of just dummy (which is a “do
nothing” projection) would be removed by the compiler in this particular case. We’ll
look at that later in section 11.3.2, but for the moment the important idea is the overall
type of translation involved. We only need to learn what translations the C# compiler
will use, and then we can take any query expression, convert it into the form that
doesn’t use query expressions, and then look at what it’s doing from that point of view.

 Notice how we don’t implement IEnumerable<T> at all in Dummy<T>. The translation
from query expressions to “normal” code doesn’t depend on it, but in practice almost
all LINQ providers will expose data either as IEnumerable<T> or IQueryable<T> (which
we’ll look at in chapter 12). The fact that the translation doesn’t depend on any partic-
ular types but merely on the method names and parameters is a sort of compile-time
form of duck typing. This is similar to the same way that the collection initializers pre-
sented in chapter 8 find a public method called Add using normal overload resolution
rather than using an interface containing an Add method with a particular signature.
Query expressions take this idea one step further—the translation occurs early in the
compilation process in order to allow the compiler to pick either instance methods or
extension methods. You could even consider the translation to be the work of a separate
preprocessing engine.

NOTE Why from … where … select instead of select … from … where? Many
developers find the order of the clauses in query expressions confusing
to start with. It looks just like SQL—except back to front. If you look back
to the translation into methods, you’ll see the main reason behind it. The
query expression is processed in the same order that it’s written: we start
with a source in the from clause, then filter it in the where clause, then
project it in the select clause. Another way of looking at it is to consider
the diagrams throughout this chapter. The data flows from top to bot-
tom, and the boxes appear in the diagram in the same order as their cor-
responding clauses appear in the query expression. Once you get over
any initial discomfort due to unfamiliarity, you may well find this
approach appealing—I certainly do. 

Creates source 
to be queried

Calls methods via a 
query expression
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So, we know that a source level translation is involved—but there’s another crucial
concept to understand before we move on any further.

11.2.3 Range variables and nontrivial projections

Let’s look back at our original query expression in a bit more depth. We haven’t exam-
ined the identifier in the from clause or the expression in the select clause. Figure 11.4
shows the query expression again, with each part labeled to explain its purpose.

 The contextual keywords are easy to explain—they specify to the compiler what we
want to do with the data. Likewise the source expression is just a normal C# expression—
a property in this case, but it could just as easily have been a method call, or a variable.

 The tricky bits are the range variable declaration and the projection expression.
Range variables aren’t like any other type of variable. In some ways they’re not vari-
ables at all! They’re only available in query expressions, and they’re effectively present
to propagate context from one expression to another. They represent one element of
a particular sequence, and they’re used in the compiler translation to allow other
expressions to be turned into lambda expressions easily.

 We’ve already seen that our original query expression was turned into 

SampleData.AllUsers.Select(user => user)

The left side of the lambda expression—the part that provides the parameter name—
comes from the range variable declaration. The right side comes from the select
clause. The translation is as simple as that (in this case). It all works out OK because
we’ve used the same name on both sides. Suppose we’d written the query expression
like this:

from user in SampleData.AllUsers
select person

In that case, the translated version would have been

SampleData.AllUsers.Select(user => person)

At that point the compiler would have complained because it wouldn’t have known
what person referred to. Now that we know how simple the process is, however, it

from user in SampleData.AllUsers

            

      select user;

Query expression
contextual keywords

Range variable
declaration

Expression using
range variable

Source expression
(normal code)

Figure 11.4 A simple query expression 
broken down into its constituent parts
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becomes easier to understand a query expression that has a slightly more complicated
projection. Listing 11.4 prints out just the names of our users.

var query = from user in SampleData.AllUsers 
                   select user.Name;

foreach (string name in query)
{
    Console.WriteLine(name);
}

This time we’re using user.Name as the projection, and we can see that the result is a
sequence of strings, not of User objects. The translation of the query expression fol-
lows the same rules as before, and becomes

SampleData.AllUsers.Select(user => user.Name)

The compiler allows this, because the Select extension method as applied to AllUsers
effectively has this signature, acting as if it were a member of IEnumerable<T>:

IEnumerable<TResult> Select<TResult> (Func<T,TResult> selector)

NOTE Extension methods pretending to be instance methods—Just to be clear, Select
isn’t a member of IEnumerable<T> itself, and the real signature has an
IEnumerable<T> parameter at the start. However, the translation process
doesn’t care whether the result is a call to a normal instance method or
an extension method. I find it easier to pretend it’s a normal method just
for the sake of working out the query translation. I’ve used the same con-
vention for the remainder of the chapter.

The type inference described in chapter 9 kicks in, converting the lambda expression
into a Func<User,TResult> by deciding that the user parameter must be of type User,
and then inferring that the return type (and thus TResult) should be string. This is
why lambda expressions allow implicitly typed parameters, and why there are such
complicated type inference rules: these are the gears and pistons of the LINQ engine.

NOTE Why do you need to know all this? You can almost ignore what’s going on
with range variables for a lot of the time. You may well have seen many,
many queries and understood what they achieve without ever knowing
about what’s going on behind the scenes. That’s fine for when things are
working (as they tend to with examples in tutorials), but it’s when things
go wrong that it pays to know about the details. If you have a query
expression that won’t compile because the compiler is complaining that
it doesn’t know about a particular identifier, you should look at the range
variables involved.

So far we’ve only seen implicitly typed range variables. What happens when we
include a type in the declaration? The answer lies in the Cast and OfType standard
query operators.

Listing 11.4 Query selecting just the names of the users
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11.2.4 Cast, OfType, and explicitly typed range variables

Most of the time, range variables can be implicitly typed; in .NET 3.5, you’re likely to
be working with generic collections where the specified type is all you need. What if
that weren’t the case, though? What if we had an ArrayList, or perhaps an object[]
that we wanted to perform a query on? It would be a pity if LINQ couldn’t be applied
in those situations. Fortunately, there are two standard query operators that come to
the rescue: Cast and OfType. Only Cast is supported directly by the query expression
syntax, but we’ll look at both in this section.

 The two operators are similar: both take an arbitrary untyped sequence and return
a strongly typed sequence. Cast does this by casting each element to the target type
(and failing on any element that isn’t of the right type) and OfType does a test first,
skipping any elements of the wrong type.

 Listing 11.5 demonstrates both of these operators, used as simple extension meth-
ods from Enumerable. Just for a change, we won’t be using our SkeetySoft defect sys-
tem for our sample data—after all, that’s all strongly typed! Instead, we’ll just use two
ArrayList objects.

ArrayList list = new ArrayList { "First", "Second", "Third"};
IEnumerable<string> strings = list.Cast<string>();
foreach (string item in strings)
{
    Console.WriteLine(item);
}

list = new ArrayList { 1, "not an int", 2, 3};
IEnumerable<int> ints = list.OfType<int>();
foreach (int item in ints)
{
    Console.WriteLine(item);
}

The first list has only strings in it, so we’re safe to use Cast<string> to obtain a
sequence of strings. The second list has mixed content, so in order to fetch just the
integers from it we use OfType<int>. If we’d used Cast<int> on the second list, an
exception would have been thrown when we tried to cast “not an int” to int. Note that
this would only have happened after we’d printed “1”—both operators stream their
data, converting elements as they fetch them.

 When you introduce a range variable with an explicit type, the compiler uses a call
to Cast to make sure the sequence used by the rest of the query expression is of the
appropriate type. Listing 11.6 shows this, with a projection using the Substring method
to prove that the sequence generated by the from clause is a sequence of strings.

ArrayList list = new ArrayList { "First", "Second", "Third"};
var strings = from string entry in list
                   select entry.Substring(0, 3);

Listing 11.5 Using Cast and OfType to work with weakly typed collections

Listing 11.6 Using an explicitly typed range variable to automatically call Cast
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foreach (string start in strings)
{
    Console.WriteLine(start);
}

The output of listing 11.6 is “Fir,” “Sec,” “Thi”—but what’s more interesting is the
translated query expression, which is

list.Cast<string>().Select(entry => entry.Substring(0,3));

Without the cast, we wouldn’t be able to call Select at all, because the extension
method is only defined for IEnumerable<T> rather than IEnumerable. Even when
you’re using a strongly typed collection, you might still want to use an explicitly typed
range variable, though. For instance, you could have a collection that is defined to be
a List<ISomeInterface> but you know that all the elements are instances of
MyImplementation. Using a range variable with an explicit type of MyImplementation
allows you to access all the members of MyImplementation without manually inserting
casts all over the code.

 We’ve covered a lot of important conceptual ground so far, even though we
haven’t achieved any impressive results. To recap the most important points briefly:

■ LINQ is based on sequences of data, which are streamed wherever possible.
■ Creating a query doesn’t immediately execute it: most operations use deferred

execution. 
■ Query expressions in C# 3 involve a preprocessing phase that converts the

expression into normal C#, which is then compiled properly with all the normal
rules of type inference, overloading, lambda expressions, and so forth.

■ The variables declared in query expressions don’t act like anything else: they
are range variables, which allow you to refer to data consistently within the
query expression.

I know that there’s a lot of somewhat abstract information to take in. Don’t worry if
you’re beginning to wonder if LINQ is worth all this trouble. I promise you that it is.
With a lot of the groundwork out of the way, we can start doing genuinely useful
things—like filtering our data, and then ordering it.

11.3 Filtering and ordering a sequence
You may be surprised to learn that these two operations are some of the simplest to
explain in terms of compiler translations. The reason is that they always return a
sequence of the same type as their input, which means we don’t need to worry about
any new range variables being introduced. It also helps that we’ve seen the corre-
sponding extension methods in chapter 10.

11.3.1 Filtering using a where clause

It’s remarkably easy to understand the where clause. The format is just

where filter-expression
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The compiler translates this into a call to the Where method with a lambda expres-
sion, which uses the appropriate range variable as the parameter and the filter
expression as the body. The filter expression is applied as a predicate to each ele-
ment of the incoming stream of data, and only those that return true are present in
the resulting sequence. Using multiple where clauses results in multiple chained
Where calls—only elements that match all of the predicates are part of the resulting
sequence. Listing 11.7 demonstrates a query expression that finds all open defects
assigned to Tim. 

User tim = SampleData.Users.TesterTim;

var query = from bug in SampleData.AllDefects 
                where bug.Status != Status.Closed
                where bug.AssignedTo == tim
                select bug.Summary;

foreach (var summary in query)
{
    Console.WriteLine(summary);
}

The query expression in listing 11.7 is translated into

SampleData.AllDefects.Where (bug => bug.Status != Status.Closed)
               .Where (bug => bug.AssignedTo == tim)
               .Select(bug => bug.Summary)

The output of listing 11.7 is as follows:

Installation is slow
Subtitles only work in Welsh
Play button points the wrong way
Webcam makes me look bald
Network is saturated when playing WAV file

Of course, we could write a single where clause that combined the two conditions as
an alternative to using multiple where clauses. In some cases this may improve perfor-
mance, but it’s worth bearing the readability of the query expression in mind, too.
Once more, this is likely to be a fairly subjective matter. My personal inclination is to
combine conditions that are logically related but keep others separate. In this case,
both parts of the expression deal directly with a defect (as that’s all our sequence con-
tains), so it would be reasonable to combine them. As before, it’s worth trying both
forms to see which is clearer.

 In a moment, we’ll start trying to apply some ordering rules to our query, but first
we should look at a small detail to do with the select clause.

11.3.2 Degenerate query expressions

While we’ve got a fairly simple translation to work with, let’s revisit a point I glossed
over earlier in section 11.2.2 when I first introduced the compiler translations. So far,

Listing 11.7 Query expression using multiple where clauses
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all our translated query expressions have included a call to Select. What happens if
our select clause does nothing, effectively returning the same sequence as it’s given?
The answer is that the compiler removes that call to Select—but only if there are
other operations being performed within the query expression. For example, the fol-
lowing query expression just selects all the defects in the system:

from defect in SampleData.AllDefects
select defect

This is known as a degenerate query expression. The compiler deliberately generates a call
to Select even though it seems to do nothing:

SampleData.Select (defect => defect)

There’s a big difference between this and the simple expression SampleData, however.
The items returned by the two sequences are the same, but the result of the Select
method is just the sequence of items, not the source itself. The result of a query
expression is never the same object as the source data, unless the LINQ provider has
been poorly coded. This can be important from a data integrity point of view—a pro-
vider can return a mutable result object, knowing that changes to the returned data
set won’t affect the “master” even in the face of a degenerate query.

 When other operations are involved, there’s no need for the compiler to keep “no-
op” select clauses. For example, suppose we change the query expression in listing 11.7
to select the whole defect rather than just the name:

from bug in SampleData.AllDefects 
where bug.Status != Status.Closed
where bug.AssignedTo == SampleData.Users.TesterTim
select bug

We now don’t need the final call to Select, so the translated code is just this:

SampleData.AllDefects.Where (bug => bug.Status != Status.Closed)
                                    .Where (bug => bug.AssignedTo == tim)

These rules rarely get in the way when you’re writing query expressions, but they can
cause confusion if you decompile the code with a tool such as Reflector—it can be sur-
prising to see the Select call go missing for no apparent reason.

 With that knowledge in hand, let’s improve our query so that we know what Tim
should work on next.

11.3.3 Ordering using an orderby clause

It’s not uncommon for developers and testers to be asked to work on the most critical
defects before they tackle more trivial ones. We can use a simple query to tell Tim the
order in which he should tackle the open defects assigned to him. Listing 11.8 does
exactly this using an orderby clause, printing out all the details of the bugs, in
descending order of priority.
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User tim = SampleData.Users.TesterTim;

var query = from bug in SampleData.AllDefects 
                where bug.Status != Status.Closed
                where bug.AssignedTo == tim
                orderby bug.Severity descending
                select bug;

foreach (var bug in query)
{
    Console.WriteLine("{0}: {1}", bug.Severity, bug.Summary);
}

The output of listing 11.8 shows that we’ve sorted the results appropriately:

Showstopper: Webcam makes me look bald
Major: Subtitles only work in Welsh
Major: Play button points the wrong way
Minor: Network is saturated when playing WAV file
Trivial: Installation is slow

However, you can see that we’ve got two major defects. Which order should those be
tackled in? Currently no clear ordering is involved. Let’s change the query so that
after sorting by severity in descending order, we sort by “last modified time” in ascend-
ing order. This means that Tim will test the bugs that have been fixed a long time ago
before the ones that were fixed recently. This just requires an extra expression in the
orderby clause, as shown in listing 11.9.

User tim = SampleData.Users.TesterTim;

var query = from bug in SampleData.AllDefects 
                where bug.Status != Status.Closed
                where bug.AssignedTo == tim
                orderby bug.Severity descending, bug.LastModified
                select bug;

foreach (var bug in query)
{
    Console.WriteLine("{0}: {1} ({2:d})", 
                              bug.Severity, bug.Summary, bug.LastModified);
}

The results of listing 11.9 are shown here. Note how the order of the two major
defects has been reversed.

Showstopper: Webcam makes me look bald (08/27/2007)
Major: Play button points the wrong way (08/17/2007)
Major: Subtitles only work in Welsh (08/23/2007)
Minor: Network is saturated when playing WAV file (08/31/2007)
Trivial: Installation is slow (08/15/2007)

Listing 11.8 Sorting by the severity of a bug, from high to low priority

Listing 11.9 Ordering by severity and then last modified time
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So, that’s what the query expression looks like—but what does the compiler do? It sim-
ply calls the OrderBy and ThenBy methods (or OrderByDescending/ThenBy-
Descending for descending orders). Our query expression is translated into

SampleData.AllDefects.Where (bug => bug.Status != Status.Closed)
                                    .Where (bug => bug.AssignedTo == tim)
                                    .OrderByDescending (bug => bug.Severity)
                                    .ThenBy (bug => bug.LastModified)

Now that we’ve seen an example, let’s look at the general syntax of orderby clauses.
They’re basically the contextual keyword orderby followed by one or more orderings.
An ordering is just an expression (which can use range variables) optionally followed by
descending, which has the obvious meaning. The translation for the first ordering is a
call to OrderBy or OrderByDescending, and any other orderings are translated using a
call to ThenBy or ThenByDescending, as shown in our example.

 The difference between OrderBy and ThenBy is quite simple: OrderBy assumes it
has primary control over the ordering, whereas ThenBy understands that it’s subservi-
ent to one or more previous orderings. For LINQ to Objects, ThenBy is only defined as
an extension method for IOrderedEnumerable<T>, which is the type returned by
OrderBy (and by ThenBy itself, to allow further chaining).

It’s very important to note that although you can use multiple orderby
clauses, each one will start with its own OrderBy or OrderByDescending
clause, which means the last one will effectively “win.” There may be some
reason for including multiple orderby clauses, but it would be very
unusual. You should almost always use a single clause containing multi-
ple orderings instead.

 As noted in chapter 10, applying an ordering requires all the data to
be loaded (at least for LINQ to Objects)—you can’t order an infinite
sequence, for example. Hopefully the reason for this is obvious—you

don’t know whether you’ll see something that should come at the start of the resulting
sequence until you’ve seen all the elements, for example.

 We’re about halfway through learning about query expressions, and you may be sur-
prised that we haven’t seen any joins yet. Obviously they’re important in LINQ just as
they’re important in SQL, but they’re also complicated. I promise we’ll get to them in
due course, but in order to introduce just one new concept at a time, we’ll detour via
let clauses first. That way we can learn about transparent identifiers before we hit joins.

11.4 Let clauses and transparent identifiers
Most of the rest of the operators we still need to look at involve transparent identifiers.
Just like range variables, you can get along perfectly well without understanding trans-
parent identifiers, if you only want to have a fairly shallow grasp of query expressions.
If you’ve bought this book, I hope you want to know C# 3 at a deeper level, which will
(among other things) enable you to look compilation errors in the face and know
what they’re talking about.

Warning: 

only use one 

orderby 

clause!
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 You don’t need to know everything about transparent identifiers, but I’ll teach you
enough so that if you see one in the language specification you won’t feel like running
and hiding. You’ll also understand why they’re needed at all—and that’s where an
example will come in handy. The let clause is the simplest transformation available
that uses transparent identifiers.

11.4.1 Introducing an intermediate computation with let

A let clause simply introduces a new range variable with a value that can be based on
other range variables. The syntax is as easy as pie:

let identifier = expression

To explain this operator in terms that don’t use any other complicated operators, I’m
going to resort to a very artificial example. Suspend your disbelief, and imagine that
finding the length of a string is a costly operation. Now imagine that we had a com-
pletely bizarre system requirement to order our users by the lengths of their names, and
then display the name and its length. Yes, I know it’s somewhat unlikely. Listing 11.10
shows one way of doing this without a let clause.

var query = from user in SampleData.AllUsers
                   orderby user.Name.Length
                   select user.Name;

foreach (var name in query)
{
    Console.WriteLine("{0}: {1}", name.Length, name);
}

That works fine, but it uses the dreaded Length property twice—once to sort the users,
and once in the display side. Surely not even the fastest supercomputer could cope with
finding the lengths of six strings twice! No, we need to avoid that redundant computa-
tion. We can do so with the let clause, which evaluates an expression and introduces
it as a new range variable. Listing 11.11 achieves the same result as listing 11.10, but only
uses the Length property once per user.

var query = from user in SampleData.AllUsers
                   let length = user.Name.Length
                   orderby length
                   select new { Name = user.Name, Length = length };

foreach (var entry in query)
{
    Console.WriteLine("{0}: {1}", entry.Length, entry.Name);
}

Listing 11.11 introduces a new range variable called length, which contains the length
of the user’s name (for the current user in the original sequence). We then use that new

Listing 11.10 Sorting by the lengths of user names without a let clause

Listing 11.11 Using a let clause to remove redundant calculations
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range variable for both sorting and the projection at the end. Have you spotted the prob-
lem yet? We need to use two range variables, but the lambda expression passed to Select
only takes one parameter! This is where transparent identifiers come on the scene.

11.4.2 Transparent identifiers

In listing 11.11, we’ve got two range variables involved in the final projection, but the
Select method only acts on a single sequence. How can we combine the range vari-
ables? The answer is to create an anonymous type that contains both variables but
apply a clever translation to make it look as if we’ve actually got two parameters for the
select and orderby clauses. Figure 11.5 shows the sequences involved.

 The let clause achieves its objectives by using another call to Select, creating an
anonymous type for the resulting sequence, and effectively creating a new range vari-
able whose name can never be seen or used in source code. Our query expression
from listing 11.11 is translated into something like this:

SampleData.AllUsers.Select(user => new { user, 
                                                         length=user.Name.Length })
                                .OrderBy(z => z.length)
                                .Select(z => new { Name=z.user.Name, 
                                                     Length=z.length })

orderby length

User: { Name="Tim Trotter" ... }
User: { Name="Tara Tutu" ... }
User: { Name="Dave Denton" ... }
...

user=User: { Name="Tim Trotter" ... }, length=11 
user=User: { Name="Tara Tutu" ... }, length=9 
user=User: { Name="Dave Denton" ... }, length=11 
...

user=User: { Name="Tara Tutu" ... }, length=9 
user=User: { Name="Tim Trotter" ...}, length=11 
user=User: { Name="Dave Denton" ... }, length=11 
...

select new { Name=user.Name,
Length=user.Length }

(Result of query)

Name="Tara Tutu",  Length=9 
Name="Tim Trot ter" ,  Length=11 
Name="Dave Denton",  Length=11 
. . .

from user in
SampleData.AllUsers

let length = user.Name.Length

Figure 11.5 Sequences involved in listing 
11.11, where a let clause introduces the 
length range variable



297Joins
Each part of the query has been adjusted appropriately: where the original query
expression referenced user or length directly, if the reference occurs after the let
clause, it’s replaced by z.user or z.length. The choice of z as the name here is arbi-
trary—it’s all hidden by the compiler.

 If you read the C# 3 language specification on let clauses, you’ll see that the trans-
lation it describes is from one query expression to another. It uses an asterisk (*) to
represent the transparent identifier introduced. The transparent identifier is then
erased as a final step in translation. I won’t use that notation in this chapter, as it’s hard
to come to grips with and unnecessary at the level of detail we’re going into. Hope-
fully with this background, the specification won’t be quite as impenetrable as it might
be otherwise, should you need to refer to it.

 The good news is that we can now take a look at the rest of the translations making
up C# 3’s query expression support. I won’t go into the details of every transparent
identifier introduced, but I’ll mention the situations in which they occur. Let’s look at
the support for joins first.

11.5 Joins
If you’ve ever read anything about SQL, you probably have an idea what a database join
is. It takes two tables and creates a result by matching one set of rows against another
set of rows. A LINQ join is similar, except it works on sequences. Three types of joins
are available, although not all of them use the join keyword in the query expression.
We’ll start with the join that is closest to a SQL inner join.

11.5.1 Inner joins using join clauses

Inner joins involve two sequences. One key selector expression is applied to each ele-
ment of the first sequence and another key selector (which may be totally different) is
applied to each element of the second sequence. The result of the join is a sequence
of all the pairs of elements where the key from the first element is the same as the key
from the second element.

NOTE Terminology clash! Inner and outer sequences—The MSDN documentation for
the Join method used to evaluate inner joins unhelpfully calls the
sequences involved inner and outer. This has nothing to do with inner
joins and outer joins—it’s just a way of differentiating between the
sequences. You can think of them as first and second, left and right, Bert
and Ernie—anything you like that helps you. I’ll use left and right for this
chapter. Aside from anything else, it makes it obvious which sequence is
which in diagram form.

The two sequences can be anything you like: the right sequence can even be the same
as the left sequence, if that’s useful. (Imagine finding pairs of people who were born
on the same day, for example.) The only thing that matters is that the two key selector
expressions must result in the same type of key4. You can’t join a sequence of people

4 It is also valid for there to be two key types involved, with an implicit conversion from one to the other. One
of the types must be a better choice than the other, in the same way that the compiler infers the type of an
implicitly typed array. In my experience you rarely need to consciously consider this detail. 
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to a sequence of cities by saying that the birth date of the person is the same as the
population of the city—it doesn’t make any sense.

 The syntax for an inner join looks more complicated than it is:

[query selecting the left sequence]
join right-range-variable in right-sequence
on left-key-selector equals right-key-selector

Seeing equals as a contextual keyword rather than using symbols can be slightly dis-
concerting, but it makes it easier to distinguish the left key selector from the right key
selector. Often (but not always) at least one of the key selectors is a trivial one that just
selects the exact element from that sequence.

 Let’s look at an example from our defect system. Suppose we had just added the
notification feature, and wanted to send the first batch of emails for all the existing
defects. We need to join the list of notifications against the list of defects, where their
projects match. Listing 11.12 performs just such a join.

var query = from defect in SampleData.AllDefects 
                   join subscription in SampleData.AllSubscriptions 
                     on defect.Project equals subscription.Project
                   select new { defect.Summary, subscription.EmailAddress };

foreach (var entry in query)
{
    Console.WriteLine("{0}: {1}", entry.EmailAddress, entry.Summary);
}

Listing 11.12 will show each of the media player bugs twice—once for “media-
bugs@skeetysoft.com” and once for “theboss@skeetysoft.com” (because the boss really
cares about the media player project).

 In this particular case we could easily have made the join the other way round,
reversing the left and right sequences. The result would have been the same entries
but in a different order. The implementation in LINQ to Objects returns entries so
that all the pairs using the first element of the left sequence are returned (in the
order of the right sequence), then all the pairs using the second element of the left
sequence, and so on. The right sequence is buffered, but the left sequence is
streamed—so if you want to join a massive sequence to a tiny one, it’s worth using the
tiny one as the right sequence if you can.

 One error that might trip you up is putting the key selectors the wrong way round.
In the left key selector, only the left sequence range variable is in scope; in the right
key selector only the right range variable is in scope. If you reverse the left and right
sequences, you have to reverse the left and right key selectors too. Fortunately the
compiler knows that it’s a common mistake and suggests the appropriate course of
action.

 Just to make it more obvious what’s going on, figure 11.6 shows the sequences as
they’re processed.

Listing 11.12 Joining the defects and notification subscriptions based on project



299Joins
Often you want to filter the sequence, and filtering before the join occurs is more effi-
cient than filtering it afterward. At this stage the query expression is simpler if the left
sequence is the one requiring filtering. For instance, if we wanted to show only defects
that are closed, we could use this query expression:

from defect in SampleData.AllDefects 
where defect.Status == Status.Closed
join subscription in SampleData.AllSubscriptions
     on defect.Project equals subscription.Project
select new { defect.Summary, subscription.EmailAddress }

We can perform the same query with the sequences reversed, but it’s messier:

from subscription in SampleData.AllSubscriptions
join defect in (from defect in SampleData.AllDefects
                      where defect.Status == Status.Closed
                      select defect)
     on subscription.Project equals defect.Project
select new { defect.Summary, subscription.EmailAddress }

join subscription in
SampleData.AllSubscriptions

on defect.Project equals subscription.Project

from defect in
SampleData.AllDefects

select new { defect.Summary,
subscription.EmailAddress } 

Defect: { ID=1, Project=Media player, Summary="MP3 files ..." ... }
D efect: { ID=2, Project=Media player, Summary="Text is too big", ...}
D efect: { ID=3, Project=Talk, Summary="Sky is wrong ..." ...}
...

{ defect={ ID=1 ... }, subscription={ Media player, "media-bugs@..." }
{ defect={ ID=1 ... }, subscription={ Media player, "theboss@..." }
{ defect={ ID=2 ... }, subscription={ Media player, "media-bugs@..." }
{ defect={ ID=2 ... }, subscription={ Media player, "theboss@..." }
{ defect={ ID=3 ... }, subscription={ Talk, "talk-bugs@..." }

{ Summary="MP3 files ...", EmailAddress="media-bugs@..." }
{ Summary="MP3 files ...", EmailAddress="theboss@..." }
{ Summary="Text is too big", EmailAddress="media-bugs@..." }
{ Summary="Text is too big", EmailAddress="theboss@... }
{ Summary="Sky is wrong ...", EmailAddress="talk-bugs@..." }

(Result of query)

from subscription in
SampleData.AllSubscriptions

NotificationSubscription sequence:
{ Media player, "media-bugs@..." },
{ Talk, "talk-bugs@..." },
{ Office, "office-bugs@..." }
{ Media player, "theboss@..." }

Figure 11.6 The join from listing 11.12 in graphical form, showing two different sequences 
(defects and subscriptions) used as data sources
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Notice how you can use one query expression inside another—indeed, the language
specification describes many of the compiler translations in these terms. Nested query
expressions are useful but hurt readability as well: it’s often worth looking for an alter-
native, or using a variable for the right-hand sequence in order to make the code clearer.

NOTE Are inner joins useful in LINQ to Objects? Inner joins are used all the time
in SQL. They are effectively the way that we navigate from one entity to a
related one, usually joining a foreign key in one table to the primary key
on another. In the object-oriented model, we tend to navigate from one
object to another via references. For instance, retrieving the summary of
a defect and the name of the user assigned to work on it would require a
join in SQL—in C# we just use a chain of properties. If we’d had a reverse
association from Project to the list of NotificationSubscription
objects associated with it in our model, we wouldn’t have needed the join
to achieve the goal of this example, either. That’s not to say that inner
joins aren’t useful sometimes even within object-oriented models—but
they don’t naturally occur nearly as often as in relational models.

Inner joins are translated by the compiler into calls to the Join method. The signa-
ture of the overload used for LINQ to Objects is as follows (when imagining it to be an
instance method of IEnumerable<T>):

IEnumerable<TResult> Join<TInner,TKey,TResult> (
    IEnumerable<TInner> inner,
    Func<T,TKey> outerKeySelector,
    Func<T,TKey> innerKeySelector,
    Func<T,TInner,TResult> resultSelector
)

The first three parameters are self-explanatory when you’ve remembered to treat inner
and outer as right and left, respectively, but the last one is slightly more interesting. It’s a
projection from two elements (one from the left sequence and one from the right
sequence) into a single element of the resulting sequence. When the join is followed
by anything other than a select clause, the C# 3 compiler introduces a transparent
identifier in order to make the range variables used in both sequences available for
later clauses, and creates an anonymous type and simple mapping to use for the
resultSelector parameter.

 However, if the next part of the query expression is a select clause, the projection
from the select clause is used directly as the resultSelector parameter—there’s no
point in creating a pair and then calling Select when you can do the transformation
in one step. You can still think about it as a “join” step followed by a “select” step
despite the two being squished into a single method call. This leads to a more consis-
tent mental model in my view, and one that is easier to reason about. Unless you’re
looking at the generated code, just ignore the optimization the compiler is perform-
ing for you.

 The good news is that having learned about inner joins, our next type of join is
much easier to approach.



301Joins
11.5.2 Group joins with join … into clauses

We’ve seen that the result sequence from a normal join clause consists
of pairs of elements, one from each of the input sequences. A group join
looks similar in terms of the query expression but has a significantly dif-
ferent outcome. Each element of a group join result consists of an ele-
ment from the left sequence (using its original range variable), and also
a sequence of all the matching elements of the right sequence, exposed as
a new range variable specified by the identifier coming after into in the
join clause.

Let’s change our previous example to use a group join. Listing 11.13 again shows all
the defects and the notifications required for each one, but breaks them out in a per-
defect manner. Pay particular attention to how we’re displaying the results, and to the
nested foreach loop.

var query = from defect in SampleData.AllDefects 
                   join subscription in SampleData.AllSubscriptions
                     on defect.Project equals subscription.Project
                 into groupedSubscriptions
                   select new { Defect=defect, 
                                       Subscriptions=groupedSubscriptions };

foreach (var entry in query)
{
    Console.WriteLine(entry.Defect.Summary);
    foreach (var subscription in entry.Subscriptions)
    {
        Console.WriteLine ("  {0}", subscription.EmailAddress);
    }
}

The Subscriptions property of each entry is the embedded sequence of subscrip-
tions matching that entry’s defect. Figure 11.7 shows how the two initial sequences are
combined.

 One important difference between an inner join and a group join—and indeed
between a group join and normal grouping—is that for a group join there’s a one-to-
one correspondence between the left sequence and the result sequence, even if some
of the elements in the left sequence don’t match any elements of the right sequence.
This can be very important, and is sometimes used to simulate a left outer join from
SQL. The embedded sequence is empty when the left element doesn’t match any right
elements. As with an inner join, a group join buffers the right sequence but streams
the left one.

 Listing 11.14 shows an example of this, counting the number of bugs created on
each day in August. It uses a DateTimeRange (as described in chapter 6) as the left
sequence, and a projection that calls Count on the embedded sequence in the result
of the group join.

Listing 11.13 Joining defects and subscriptions with a group join

Result 

contains 

embedded 

subsequences
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var dates = new DateTimeRange(SampleData.Start, SampleData.End);

var query = from date in dates
                   join defect in SampleData.AllDefects 
                     on date equals defect.Created.Date 
                   into joined
                   select new { Date=date, Count=joined.Count() };

Listing 11.14 Counting the number of bugs raised on each day in August

join subscription in
SampleData.AllSubscriptions

on defect.Project equals subscription.Project
into groupedSubscriptions

from defect in
SampleData.AllDefects

select new { Defect=defect, 
Subscriptions=groupedSubscriptions }

Defect: { ID=1, Project=Media player, ... }
Defect: { ID=2, Project=Media player, ...}
Defect: { ID=3, Project=Talk, ...}
...

(Result of query)

from subscription in
SampleData.AllSubscriptions

{ defect=Defect: { ID=1, Project=Media player ... },
  groupedSubscriptions= { Media player, "media-bugs@..." ... }

{ Media player, "theboss@..." ...}

{ defect=Defect: { ID=2, Project=Media player ... },
  groupedSubscriptions=

{ defect=Defect: { ID=3, Project=Talk ... },
  groupedSubscriptions= { Talk, "talk-bugs@..." ... }

...

(NotificationSubscription sequence)

{ Media player, "media-bugs@..." ... }
{ Media player, "theboss@..." ...}

{ Defect=Defect: { ID=1, Project=Media player ... },
  Subscriptions= { Media player, "media-bugs@..." ... }

{ Media player, "theboss@..." ...}

{ Defect=Defect: { ID=2, Project=Media player ... },
  Subscriptions=

{ Defect=Defect: { ID=3, Project=Talk ... },
  Subscriptions= { Talk, "talk-bugs@..." ... }

...

{ Media player, "media-bugs@..." ... }
{ Media player, "theboss@..." ...}

Figure 11.7 Sequences involved in the group join from listing 11.13. The short arrows 
indicate embedded sequences within the result entries. In the output, some entries 
contain multiple email addresses for the same bug.
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foreach (var grouped in query)
{
    Console.WriteLine("{0:d}: {1}", grouped.Date, grouped.Count);
}

Count itself uses immediate execution, iterating through all the elements of the sequence
it’s called on—but we’re only calling it in the projection part of the query expression,
so it becomes part of a lambda expression. This means we still have deferred execu-
tion: nothing is evaluated until we start the foreach loop.

 Here is the first part of the results of listing 11.14, showing the number of bugs cre-
ated each day in the first week of August:

08/01/2007: 1
08/02/2007: 0
08/03/2007: 2
08/04/2007: 1
08/05/2007: 0
08/06/2007: 1
08/07/2007: 1

The compiler translation involved for a group join is simply a call to the GroupJoin
method, which has the following signature:

IEnumerable<TResult> GroupJoin<TInner,TKey,TResult> (
    IEnumerable<TInner> inner,
    Func<T,TKey> outerKeySelector,
    Func<TInner,TKey> innerKeySelector,
    Func<T,IEnumerable<TInner>,TResult> resultSelector
)

The signature is exactly the same as for inner joins, except that the resultSelector
parameter has to work with a sequence of right-hand elements, not just a single one.
As with inner joins, if a group join is followed by a select clause the projection is used
as the result selector of the GroupJoin call; otherwise, a transparent identifier is intro-
duced. In this case we have a select clause immediately after the group join, so the
translated query looks like this:

dates.GroupJoin(SampleData.AllDefects,
                           date => date,
                           defect => defect.Created.Date,
                       (date, joined) => new { Date=date, 
                                                             Count=joined.Count() })

Our final type of join is known as a cross join—but it’s not quite as straightforward as it
might seem at first.

11.5.3 Cross joins using multiple from clauses

So far all our joins have been equijoins—a match has been performed between elements
of the left and right sequences. Cross joins don’t perform any matching between the
sequences: the result contains every possible pair of elements. They’re achieved by sim-
ply using two (or more) from clauses. For the sake of sanity we’ll only consider two from
clauses for the moment—when there are more, just mentally perform a cross join on
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the first two from clauses, then cross join the resulting sequence with the next from
clause, and so on. Each extra from clause adds its own range variable.

 Listing 11.15 shows a simple (but useless) cross join in action, producing a
sequence where each entry consists of a user and a project. I’ve deliberately picked
two completely unrelated initial sequences to show that no matching is performed.

var query = from user in SampleData.AllUsers
                   from project in SampleData.AllProjects
                   select new { User=user, Project=project };

foreach (var pair in query)
{
    Console.WriteLine("{0}/{1}", 
                              pair.User.Name,
                              pair.Project.Name);
}

The output of listing 11.15 begins like this:

Tim Trotter/Skeety Media Player
Tim Trotter/Skeety Talk
Tim Trotter/Skeety Office
Tara Tutu/Skeety Media Player
Tara Tutu/Skeety Talk
Tara Tutu/Skeety Office

Figure 11.8 shows the sequences involved to get this result.
 If you’re familiar with SQL, you’re probably quite comfortable so far—it looks just

like a Cartesian product obtained from a query specifying multiple tables. Indeed,
most of the time that’s exactly how cross joins are used. However, there’s more power
available when you want it: the right sequence used at any particular point in time can
depend on the “current” value of the left sequence. When this is the case, it’s not a
cross join in the normal sense of the term. The query expression translation is the
same whether or not we’re using a true cross join, so we need to understand the more
complicated scenario in order to understand the translation process.

 Before we dive into the details, let’s see the effect it produces. Listing 11.16 shows a
simple example, using sequences of integers.

var query = from left in Enumerable.Range(1, 4)
                   from right in Enumerable.Range(11, left)
                   select new { Left=left, Right=right };

foreach (var pair in query)
{
    Console.WriteLine("Left={0}; Right={1}", 
                              pair.Left, pair.Right); 
}

Listing 11.15 Cross joining users against projects

Listing 11.16 Cross join where the right sequence depends on the left element
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Listing 11.16 starts with a simple range of integers, 1 to 4. For each of those integers,
we create another range, beginning at 11 and having as many elements as the original
integer. By using multiple from clauses, the left sequence is joined with each of the
generated right sequences, resulting in this output:

Left=1; Right=11
Left=2; Right=11
Left=2; Right=12

from project in
SampleData.AllProjects

from user in
SampleData.AllUsers

User: { Name="Tim Trotter" ... }
User: { Name="Tara Tutu" ... }
User: { Name="Dave Denton" ... }
User: { Name="Darren Dahlia" ...}
User: { Name="Mary Malcop" ...}
User: { Name="Colin Carton" ...}

select new { User=user,
Project=project }

user=User (Tim Trotter), project=Project (Media Player)
user=User (Tim Trotter), project=Project (Talk)
user=User (Tim Trotter), project=Project (Office)
user=User (Tara Tutu), project=Project (Media Player)
user=User (Tara Tutu), project=Project (Talk)
user=User (Tara Tutu), project=Project (Office)
...

(Result of query)

SampleData.AllProjects

Project: { Name="Skeety Media Player } 
Project: { Name="Skeety Talk" } 
Project: { Name="Skeety Office" }

User=User (Tim Trotter), Project=Project (Media Player)
User=User (Tim Trotter), Project=Project (Talk)
User=User (Tim Trotter), Project=Project (Office)
U ser=User (Tara Tutu), Project=Project (Media Player)
User=User (Tara Tutu), Project=Project (Talk)
User=User (Tara Tutu), Project=Project (Office)
...

Figure 11.8 Sequences from listing 11.15, cross joining users and projects. All possible 
combinations are returned in the results.
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Left=3; Right=11
Left=3; Right=12
Left=3; Right=13
Left=4; Right=11
Left=4; Right=12
Left=4; Right=13
Left=4; Right=14

The method the compiler calls to generate this sequence is SelectMany. It takes a sin-
gle input sequence (the left sequence in our terminology), a delegate to generate
another sequence from any element of the left sequence, and a delegate to generate a
result element given an element of each of the sequences. Here’s the signature of the
method, again written as if it were an instance method on IEnumerable<T>:

public IEnumerable<TResult> SelectMany<TCollection, TResult> (
    Func<T,IEnumerable<TCollection>> collectionSelector,
    Func<T,TCollection,TResult> resultSelector
)

As with the other joins, if the part of the query expression following the join is a select
clause, that projection is used as the final argument; otherwise, a transparent identifier
is introduced to make both the left and right sequences’ range variables available.

 Just to make this all a bit more concrete, here’s the query expression of listing 11.16,
as the translated source code:

Enumerable.Range(1, 4)
               .SelectMany (left => Enumerable.Range(11, left),
                                 (left, right) => new {Left=left, 
                                                               Right=right})

One interesting feature of SelectMany is that the execution is completely streamed—
it only needs to process one element of each sequence at a time, because it uses a
freshly generated right sequence for each different element of the left sequence.
Compare this with inner joins and group joins: they both load the right sequence
completely before starting to return any results. You should bear in mind the
expected size of sequence, and how expensive it might be to evaluate it multiple
times, when considering which type of join to use and which sequence to use as the
left and which as the right.

 This behavior of flattening a sequence of sequences, one produced from each ele-
ment in an original sequence, can be very useful. Consider a situation where you
might want to process a lot of log files, a line at a time. We can process a seamless
sequence of lines, with barely any work. The following pseudo-code is filled in more
thoroughly in the downloadable source code, but the overall meaning and usefulness
should be clear:

var query = from file in Directory.GetFiles(logDirectory, "*.log")
                from line in new FileLineReader(file)
                let entry = new LogEntry(line)
                where entry.Type == EntryType.Error
                select entry;
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In just five lines of code we have retrieved, parsed, and filtered a whole collection of
log files, returning a sequence of entries representing errors. Crucially, we haven’t had
to load even a single full log file into memory all in one go, let alone all of the files—
all the data is streamed.

 Having tackled joins, the last items we need to look at are slightly easier to under-
stand. We’re going to look at grouping elements by a key, and continuing a query
expression after a group … by or select clause.

11.6 Groupings and continuations
One common requirement is to group a sequence of elements by one of its proper-
ties. LINQ makes this easy with the group … by clause. As well as describing this final
type of clause, we’ll also revisit our earliest one (select) to see a feature called query
continuations that can be applied to both groupings and projections. Let’s start with a
simple grouping.

11.6.1 Grouping with the group … by clause

Grouping is largely intuitive, and LINQ makes it simple. To group a sequence in a
query expression, all you need to do is use the group … by clause, with this syntax:

group projection by grouping

This clause comes at the end of a query expression in the same way a select clause
does. The similarities between these clauses don’t end there: the projection expression
is the same kind of projection a select clause uses. The outcome is somewhat differ-
ent, however. 

 The grouping expression determines what the sequence is grouped by—the key of
the grouping. The overall result is a sequence where each element is itself a sequence
of projected elements, and also has a Key property, which is the key for that group;
this combination is encapsulated in the IGrouping<TKey,TElement> interface, which
extends IEnumerable<TElement>.

 Let’s have a look at a simple example from the SkeetySoft defect system: grouping
defects by their current assignee. Listing 11.17 does this with the simplest form of pro-
jection, so that the resulting sequence has the assignee as the key, and a sequence of
defects embedded in each entry.

var query = from defect in SampleData.AllDefects
                 where defect.AssignedTo != null       
                 group defect by defect.AssignedTo;

foreach (var entry in query)
{
    Console.WriteLine(entry.Key.Name);
    foreach (var defect in entry)
    {
        Console.WriteLine("  ({0}) {1}", 

Listing 11.17 Grouping defects by assignee—trivial projection

Filters out 
unassigned defects

B

C
Groups by 
assigneeUses key of each

entry: the assignee
D

E
Iterates over entry’s 
subsequence
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                                  defect.Severity,
                                  defect.Summary);
    }
    Console.WriteLine();
}

Listing 11.17 might be useful in a daily build report, to quickly see what defects each
person needs to look at. We’ve filtered out all the defects that don’t need any more
attention B and then grouped using the AssignedTo property. Although this time
we’re just using a property, the grouping expression can be anything you like—it’s just
applied to each entry in the incoming sequence, and the sequence is grouped based
on the result of the expression. Note that grouping cannot stream the results,
although it streams the input, applying the key selection and projection to each ele-
ment and buffering the grouped sequences of projected elements.

 The projection we’ve applied in the grouping C is trivial—it just selects the origi-
nal element. As we go through the resulting sequence, each entry has a Key property,
which is of type User D, and each entry also implements IEnumerable<Defect>,
which is the sequence of defects assigned to that user E.

 The results of listing 11.17 start like this:

Darren Dahlia
  (Showstopper) MP3 files crash system
  (Major) Can't play files more than 200 bytes long
  (Major) DivX is choppy on Pentium 100
  (Trivial) User interface should be more caramelly

After all of Darren’s defects have been printed out, we see Tara’s, then Tim’s, and so
on. The implementation effectively keeps a list of the assignees it’s seen so far, and
adds a new one every time it needs to. Figure 11.9 shows the sequences generated
throughout the query expression, which may make this ordering clearer.

 Within each entry’s subsequence, the order of the defects is the same as the order
of the original defect sequence. If you actively care about the ordering, consider
explicitly stating it in the query expression, to make it more readable.

 If you run listing 11.17, you’ll see that Mary Malcop doesn’t appear in the output at
all, because she doesn’t have any defects assigned to her. If you wanted to produce a
full list of users and defects assigned to each of them, you’d need to use a group join
like the one used in listing 11.14.

 The compiler always uses a method called GroupBy for grouping clauses. When the
projection in a grouping clause is trivial—in other words, when each entry in the orig-
inal sequence maps directly to the exact same object in a subsequence—the compiler
uses a simple method call, which just needs the grouping expression, so it knows how
to map each element to a key. For instance, the query expression in listing 11.17 is
translated into this nonquery expression:

SampleData.AllDefects.Where(defect => defect.AssignedTo != null)
                                    .GroupBy(defect => defect.AssignedTo)
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When the projection is nontrivial, a slightly more complicated version is used. List-
ing 11.18 gives an example of a projection so that we only capture the summary of
each defect rather than the Defect object itself.

var query = from defect in SampleData.AllDefects
                where defect.AssignedTo != null
                group defect.Summary by defect.AssignedTo;

foreach (var entry in query)

Listing 11.18 Grouping defects by assignee—projection retains just the summary

where defect.AssignedTo != null

from defect in
SampleData.AllDefects

group defect by defect.AssignedTo

Defect: { ID=1, AssignedTo=Darren ...}
Defect: { ID=2, AssignedTo=null ...}
Defect: { ID=3, AssignedTo=Tara ...}
Defect: { ID=4, AssignedTo=Darren ...}
Defect: { ID=5, AssignedTo=Tim ...}
Defect: { ID=6, AssignedTo=Darren ...}
...

(Result of query)

Defect: { ID=1, AssignedTo=Darren ...}
Defect: { ID=3, AssignedTo=Tara ...}
Defect: { ID=4, AssignedTo=Darren ...}
Defect: { ID=5, AssignedTo=Tim ...}
Defect: { ID=6, AssignedTo=Darren ...}
...

Key=Darren Defect: { ID=1, AssignedTo=Darren ...}
Defect: { ID=4, AssignedTo=Darren  ...}
Defect: { ID=6, AssignedTo=Darren ...}
...

Key=Tara Defect: { ID=3, AssignedTo=Tara ...}
Defect: { ID=13, AssignedTo=Tara ...}
...

Key=Tim Defect: { ID=5, AssignedTo=Tim ...}
Defect: { ID=8, AssignedTo=Tim ...}
...

Figure 11.9 Sequences used when grouping defects by assignee. Each 
entry of the result has a Key property and is also a sequence of defect entries.
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{
    Console.WriteLine(entry.Key.Name);
    foreach (var summary in entry)
    {
        Console.WriteLine("  {0}", summary);
    }
    Console.WriteLine();
}

I’ve highlighted the differences between listing 11.18 and listing 11.17 in bold. Having
projected a defect to just its summary, the embedded sequence in each entry is just an
IEnumerable<string>. In this case, the compiler uses an overload of GroupBy with
another parameter to represent the projection. The query expression in listing 11.18
is translated into the following expression:

SampleData.AllDefects.Where(defect => defect.AssignedTo != null)
                                    .GroupBy(defect => defect.AssignedTo,
                                           defect => defect.Summary)

There are more complex overloads of GroupBy available as extension methods on
IEnumerable<T>, but they aren’t used by the C# 3 compiler when translating query
expressions. You can call them manually, of course—if you find you want more power-
ful grouping behavior than query expressions provide natively, then they’re worth
looking into.

 Grouping clauses are relatively simple but very useful. Even in our defect-tracking
system, you could easily imagine wanting to group defects by project, creator, severity,
or status, as well as the assignee we’ve used for these examples.

 So far, we’ve ended each query expression with a select or group … by clause, and
that’s been the end of the expression. There are times, however, when you want to do
more with the results—and that’s where query continuations are used.

11.6.2 Query continuations

Query continuations provide a way of using the result of one query expression as the
initial sequence of another. They apply to both group … by and select clauses, and
the syntax is the same for both—you simply use the contextual keyword into and then
provide the name of a new range variable. That range variable can then be used in the
next part of the query expression.

 The C# 3 specification explains this in terms of a translation from one query
expression to another, changing

first-query into identifier
second-query-body

into

from identifier in (first-query)
second-query-body

An example will make this a lot clearer. Let’s go back to our grouping of defects by
assignee, but this time imagine we only want the count of the defects assigned to each
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person. We can’t do that with the projection in the grouping clause, because that only
applies to each individual defect. We want to project an assignee and the sequence of
their defects into the assignee and the count from that sequence, which is achieved
using the code in listing 11.19.

var query = from defect in SampleData.AllDefects
                where defect.AssignedTo != null
                group defect by defect.AssignedTo into grouped
                select new { Assignee=grouped.Key, 
                                  Count=grouped.Count() };

foreach (var entry in query)
{
    Console.WriteLine("{0}: {1}",
                              entry.Assignee.Name,
                              entry.Count);
}

The changes to the query expression are highlighted in bold. We can use the grouped
range variable in the second part of the query, but the defect range variable is no
longer available—you can think of it as being out of scope. Our projection simply cre-
ates an anonymous type with Assignee and Count properties, using the key of each
group as the assignee, and counting the sequence of defects associated with each
group. The results of listing 11.19 are as follows:

Darren Dahlia: 14
Tara Tutu: 5
Tim Trotter: 5
Deborah Denton: 9
Colin Carton: 2

Following the specification, the query expression from listing 11.19 is translated into
this one:

from grouped in (from defect in SampleData.AllDefects
                       where defect.AssignedTo != null
                       group defect by defect.AssignedTo)
select new { Assignee=grouped.Key, Count=grouped.Count() }

The rest of the translations are then performed, resulting in the following code:

SampleData.AllDefects
               .Where (defect => defect.AssignedTo != null)
               .GroupBy(defect => defect.AssignedTo)
               .Select(grouped => new { Assignee=grouped.Key,
                                                 Count=grouped.Count() })

An alternative way of understanding continuations is to think of two separate state-
ments. This isn’t as accurate in terms of the actual compiler translation, but I find it
makes it easier to see what’s going on. In this case, the query expression (and assign-
ment to the query variable) can be thought of as the following two statements:

Listing 11.19 Continuing a grouping with another projection
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var tmp = from defect in SampleData.AllDefects
             where defect.AssignedTo != null
             group defect by defect.AssignedTo;

var query = from grouped in tmp
                   select new { Assignee=grouped.Key, 
                                  Count=grouped.Count() };

Of course, if you find this easier to read there’s nothing to stop you from breaking up
the original expression into this form in your source code. Nothing will be evaluated
until you start trying to step through the query results anyway, due to deferred execution.

 Let’s extend this example to see how multiple continuations can be used. Our
results are currently unordered—let’s change that so we can see who’s got the most
defects assigned to them first. We could use a let clause after the first continua-
tion, but listing 11.20 shows an alternative with a second continuation after our cur-
rent expression.

var query = from defect in SampleData.AllDefects
                where defect.AssignedTo != null
                group defect by defect.AssignedTo into grouped
                select new { Assignee=grouped.Key, 
                                  Count=grouped.Count() } into result
                orderby result.Count descending
                select result;

foreach (var entry in query)
{
    Console.WriteLine("{0}: {1}",
                              entry.Assignee.Name,
                              entry.Count);
}

The changes between listing 11.19 and 11.20 are highlighted in bold. We haven’t had
to change any of the output code as we’ve got the same type of sequence—we’ve just
applied an ordering to it. This time the translated query expression is as follows:

SampleData.AllDefects
               .Where (defect => defect.AssignedTo != null)
               .GroupBy(defect => defect.AssignedTo)
               .Select(grouped => new { Assignee=grouped.Key,
                                                      Count=grouped.Count() })
               .OrderByDescending(result => result.Count);

By pure coincidence, this is remarkably similar to the first defect tracking query we
came across, in section 10.3.5. Our final select clause effectively does nothing, so the
C# compiler ignores it. It’s required in the query expression, however, as all query
expressions have to end with either a select or a group … by clause. There’s nothing
to stop you from using a different projection or performing other operations with the
continued query—joins, further groupings, and so forth. Just keep an eye on the read-
ability of the query expression as it grows.

Listing 11.20 Query expression continuations from group and select
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11.7 Summary
In this chapter, we’ve looked at how LINQ to Objects and C# 3 interact, focusing on
the way that query expressions are first translated into code that doesn’t involve query
expressions, then compiled in the usual way. We’ve seen how all query expressions
form a series of sequences, applying a transformation of some description at each
step. In many cases these sequences are evaluated using deferred execution, fetching
data only when it is first required.

 Compared with all the other features of C# 3, query expressions look somewhat
alien—more like SQL than the C# we’re used to. One of the reasons they look so odd
is that they’re declarative instead of imperative—a query talks about the features of the
end result rather than the exact steps required to achieve it. This goes hand in hand
with a more functional way of thinking. It can take a while to click, and it’s certainly
not suitable for every situation, but where declarative syntax is appropriate it can vastly
improve readability, as well as making code easier to test and also easier to parallelize.

 Don’t be fooled into thinking that LINQ should only be used with databases: plain
in-memory manipulation of collections is common, and as we’ve seen it’s supported
very well by query expressions and the extension methods in Enumerable. 

 In a very real sense, you’ve seen all the new features of C# 3 now! Although we
haven’t looked at any other LINQ providers yet, we now have a clearer understanding
of what the compiler will do for us when we ask it to handle XML and SQL. The com-
piler itself doesn’t know the difference between LINQ to Objects, LINQ to SQL, or any
of the other providers: it just follows the same rules blindly. In the next chapter we’ll
see how these rules form the final piece of the LINQ jigsaw puzzle when they convert
lambda expressions into the expression trees so that the various clauses of query
expressions can be executed on different platforms.



LINQ beyond collections
In the previous chapter, we saw how LINQ to Objects works, with the C# 3 compiler
translating query expressions into normal C# code, which for LINQ to Objects just
happens to call the extension methods present in the Enumerable class. Even with-
out any other features, query expressions would have been useful for manipulating
data in memory. It probably wouldn’t have been worth the extra complexity in the
language, though. In reality, LINQ to Objects is just one aspect of the big picture.

 In this chapter we’ll take a whirlwind tour of other LINQ providers and APIs.
First we’ll look at LINQ to SQL, an Object Relational Mapping (ORM) solution from
Microsoft that ships as part of .NET 3.5. After we’ve seen it working as if by magic,
we’ll take a look at what’s happening behind the scenes, and how query expressions
written in C# end up executing as SQL on the database.

This chapter covers
■ LINQ to SQL
■ Building providers with IQueryable
■ LINQ to DataSet
■ LINQ to XML
■ Third party-LINQ
■ Future Microsoft LINQ technologies 
314
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 LINQ to DataSet and LINQ to XML are both frameworks that tackle existing prob-
lems (manipulating datasets and XML respectively) but do so in a LINQ-friendly fash-
ion. Both of them use LINQ to Objects for the underlying query support, but the APIs
have been designed so that query expressions can be used to access data in a painless
and consistent manner.

 Having covered the LINQ APIs shipped with .NET 3.5, we’ll take a peek at some
other providers. Microsoft developers aren’t the only ones writing LINQ providers,
and I’ll show a few third-party examples, before revealing what Microsoft has in store
for us with the ADO.NET Entity Framework and Parallel LINQ. 

 This chapter is not meant to provide you with a comprehensive knowledge of using
LINQ by any means: it’s a truly massive topic, and I’m only going to scratch the surface
of each provider here. The purpose of the chapter is to give you a broad idea of what
LINQ is capable of, and how much easier it can make development. Hopefully there’ll
be enough of a “wow” factor that you’ll want to study some or all of the providers fur-
ther. To this end, there are great online resources, particularly blog posts from the var-
ious LINQ teams (see this book’s website for a list of links), but I also thoroughly
recommend LINQ in Action (Manning 2008).

 As well as understanding LINQ itself, by the end of this chapter you should see how
the different pieces of the C# 3 feature set all fit together, and why they’re all present
in the first place. Just as a reminder, you shouldn’t expect to see any new features of C#
at this point—we’ve covered them all in the previous chapters—but they may well
make more sense when you see how they help to provide unified querying over multi-
ple data sources.

 The change in pace, from the detail of the previous chapters to the sprint through
features in this one, may be slightly alarming at first. Just relax and enjoy the ride,
remembering that the big picture is the important thing here. There won’t be a test
afterward, I promise. There’s a lot to cover, so let’s get cracking with the most impres-
sive LINQ provider in .NET 3.5: LINQ to SQL.

12.1 LINQ to SQL
I’m sure by now you’ve absorbed the message that LINQ to SQL converts query expres-
sions into SQL, which is then executed on the database. There’s more to it than that,
however—it’s a full ORM solution. In this section we’ll move our defect system into a
SQL Server 2005 database, populate it with the sample defects, query it, and update it.
We won’t look at the details of how the queries are converted into SQL until the next
section, though: it’s easier to understand the mechanics once you’ve seen the end
result. Let’s start off by getting our database and entities up and running.

12.1.1 Creating the defect database and entities

To use LINQ to SQL, you need a database (obviously) and some classes representing
the entities. The classes have metadata associated with them to tell LINQ to SQL how
they map to database tables. This metadata can be built directly into the classes using
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attributes, or specified with an XML file. To keep things simple, we’re going to use
attributes—and by using the designer built into Visual Studio 2008, we won’t even
need to specify the attributes ourselves. First, though, we need a database. It’s possible
to generate the database schema from the entities, but my personal preference is to
work “database first.”
CREATING THE SQL SERVER 2005 DATABASE SCHEMA
The mapping from the classes we had before to SQL Server 2005 database tables is
straightforward. Each table has an autoincrementing integer ID column, with an
appropriate name: ProjectID, DefectID, and so forth. The references between tables
simply use the same name, so the Defect table has a ProjectID column, for instance,
with a foreign key constraint. There are a few exceptions to this simple set of rules:

■ User is a reserved word in T-SQL, so the User class is mapped to the DefectUser
table.

■ The enumerations (status, severity, and user type) don’t have tables: their values
are simply mapped to tinyint columns in the Defect and DefectUser tables.

■ The Defect table has two links to the DefectUser table, one for the user who
created the defect and one for the current assignee. These are represented with
the CreatedByUserId and AssignedToUserId columns, respectively.

The database is available as part of the downloadable source code so that you can use
it with SQL Server 2005 Express yourself. If you leave the files in the same directory
structure that they come in, you won’t even need to change the connection string
when you use the sample code.
CREATING THE ENTITY CLASSES
Once our tables are created, creating the entity classes from Visual Studio 2008 is
easy. Simply open Server Explorer (View, Server Explorer) and add a data source to
the SkeetySoftDefects database (right-click on Data Connections and select Add Con-
nection). You should be able to see four tables: Defect, DefectUser, Project, and
NotificationSubscription.

 In a C# project targeting .NET 3.5, you should then be able to add a new item of
type “LINQ to SQL classes.” When choosing a name for the item, bear in mind that
among the classes it will create for you, there will be one with the selected name fol-
lowed by DataContext—this is going to be an important class, so choose the name
carefully. Visual Studio 2008 doesn’t make it terribly easy to refactor this after you’ve
created it, unfortunately. I chose DefectModel—so the data context class is called
DefectModelDataContext.

 The designer will open when you’ve created the new item. You can then drag the
four tables from Server Explorer into the designer, and it will figure out all the associ-
ations. After that, you can rearrange the diagram, and adjust various properties of the
entities. Here’s a list of what I changed:

■ I renamed the DefectID property to ID to match our previous model.
■ I renamed DefectUser to User (so although the table is still called DefectUser,

we’ll generate a class called User, just like before).
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■ I changed the type of the Severity, Status, and UserType properties to their
enum equivalents (having copied those enumerations into the project).

■ I renamed the parent and child properties used for the associations between
Defect and DefectUser—the designer guessed suitable names for the other
associations, but had trouble here because there were two associations between
the same pair of tables.

Figure 12.1 shows the designer diagram after all of these changes.
 As you can see, the model in figure 12.1 is exactly the same as the code model

shown in figure 11.3, except without the enumerations. The public interface is so sim-
ilar that we can create instances of our entities with the same sample data code. If you
look in the C# code generated by the designer (DefectModel.designer.cs), you’ll
find five partial classes: one for each of the entities, and the DefectModelDataContext
class I mentioned earlier. The fact that they’re partial classes is important when it
comes to making the sample data creation code work seamlessly. I had created a con-
structor for User, which took the name and user type as parameters. By creating
another file containing a partial User class, we can add that constructor to our model
again, as shown in listing 12.1.

Figure 12.1 The LINQ to SQL classes designer 
showing the rearranged and modified entities
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public partial class User
{
    public User (string name, UserType userType)
        : this()
    {
        Name = name;
        UserType = userType;
    }
}

It’s important to call the parameterless constructor from our new one—the generated
code initializes some members there. In the same way as we added a constructor, we
can override ToString in all the entities, so that the results will be exactly as they were
in chapter 11. The generated code contains many partial method declarations, so you
can easily react to various events occurring on particular instances.

 At this point, we can simply copy over the SampleData.cs file from chapter 11 and
build the project. Now for the tricky bit—copying the sample data into the database
from the in-memory version.

12.1.2 Populating the database with sample data

OK, I lied. Populating the database is ludicrously easy. Listing 12.2 shows just how sim-
ple it is.

using (var context = new DefectModelDataContext())
{
    context.Log = Console.Out;

    context.Users.InsertAllOnSubmit(SampleData.AllUsers);        
    context.Projects.InsertAllOnSubmit(SampleData.AllProjects);
    context.Defects.InsertAllOnSubmit(SampleData.AllDefects);   
    context.NotificationSubscriptions.InsertAllOnSubmit           
        (SampleData.AllSubscriptions);                                     

    context.SubmitChanges();
}

I’m sure you’ll agree that’s not a lot of code—but all of it is new. Let’s take it one step
at a time. First we create a new data context to work with B. Data contexts are pretty
multifunctional, taking responsibility for connection and transaction management,
query translation, tracking changes in entities, and dealing with identity. For the pur-
poses of this chapter, we can regard a data context as our point of contact with the
database. We won’t be looking at the more advanced features here, but there’s one
useful capability we’ll take advantage of: at C we tell the data context to write out all
the SQL commands it executes to the console.

 The four statements at D add the sample entities to the context. The four proper-
ties of the context (Users, Projects, Defects, and NotificationSubscriptions) are

Listing 12.1 Adding a constructor to the User entity class

Listing 12.2 Populating the database with our sample data

B

Creates 
context to 
work inC Enables console logging

E
Flushes changes 
to database

DPopulates
entities
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each of type Table<T> for the corresponding type T (User, Project, and so on). We
access particular entities via these tables—in this case, we’re adding our sample data
to the tables.

 At this point nothing has actually been sent “across the wire” to the database—it’s
just in the context, in memory. All the associations in our model have been generated
bi-directionally (a user entity knows all the defects currently assigned to it, as well as
the defect knowing the user it’s assigned to, for example), which means that we could
have just called InsertAllOnSubmit once, with any of the entity types, and everything
else would have cascaded. However, I’ve explicitly added all the entities here for clar-
ity. The data context makes sure that everything is inserted once, only once, and in an
appropriate order to avoid constraint violations.

 Statement E is where the SQL is actually executed—it’s only here that we see any
log entries in the console, too. SubmitChanges is the equivalent of DataAdapter.
Update from ADO.NET 1.0—it calls all the necessary INSERT, DELETE, and UPDATE com-
mands on the actual database. 

 Running listing 12.2 multiple times will insert the data multiple times too. There
are many ways of cleaning up the database before we start populating it. We could ask
the data context to delete the database and re-create it, assuming we have enough
security permissions: the metadata captured by the designer contains all the informa-
tion required for simple cases like ours.

 Alternatively, we can delete the existing data. This can either be done with a bulk
delete statement, or by fetching all the existing entities and asking LINQ to SQL to
delete them individually. Clearly deleting in bulk is more efficient, but LINQ to SQL
doesn’t provide any mechanism to do this without resorting to a direct SQL command.
The ExecuteCommand on DataContext makes this easy to accomplish without worrying
about connection management, but it certainly sidesteps many of the benefits of using
an ORM solution to start with. It’s nice to be able to execute arbitrary SQL where nec-
essary, but you should only do so when there’s a compelling reason.

 We won’t examine the code for any of these methods of wiping the database clean,
but they’re all available as part of the source code you can download from the website.

 So far, we’ve seen nothing that isn’t available in a normal ORM system. What makes
LINQ to SQL different is the querying…

12.1.3 Accessing the database with query expressions

I’m sure you’ve guessed what’s coming, but hopefully that won’t make it any less impres-
sive. We’re going to execute query expressions against our data source, watching LINQ
to SQL convert the query into SQL on the fly. For the sake of familiarity, we’ll use some
of the same queries we saw executing against our in-memory collections in chapter 11. 
FIRST QUERY: FINDING DEFECTS ASSIGNED TO TIM
I’ll skip over the trivial examples from early in the chapter, starting instead with the
query from listing 11.7 that checks for open defects assigned to Tim. Here’s the query
part of listing 11.7, for the sake of comparison:



320 CHAPTER 12 LINQ beyond collections
User tim = SampleData.Users.TesterTim;

var query = from defect in SampleData.AllDefects 
                where defect.Status != Status.Closed
                where defect.AssignedTo == tim
                select defect.Summary;

The LINQ to SQL equivalent is shown in listing 12.3.

using (var context = new DefectModelDataContext())
{
    context.Log = Console.Out;

    User tim = (from user in context.Users 
                     where user.Name=="Tim Trotter"    
                     select user).Single();           

    var query = from defect in context.Defects     
                    where defect.Status != Status.Closed
                    where defect.AssignedTo == tim         
                    select defect.Summary;                   

    foreach (var summary in query)
    {
        Console.WriteLine(summary);
    }
}

We can’t use SampleData.Users.TesterTim in the main query because that object
doesn’t know the ID of Tim’s row in the DefectUser table. Instead, we use one query to
load Tim’s user entity, and then a second query to find the open defects. The Single
method call at the end of the query expression just returns a single result from a
sequence, throwing an exception if there isn’t exactly one element. In a real-life situa-
tion, you may well have the entity as a product of other operations such as logging in—
and if you don’t have the full entity, you may well have its ID, which can be used equally
well within the main query.

 Within the second query expression, the only difference between the in-memory
query and the LINQ to SQL query is the data source—instead of using Sample-
Data.Defects, we use context.Defects. The final results are the same (although the
ordering isn’t guaranteed), but the work has been done on the database. The console
output shows both of the queries executed on the database, along with the query
parameter values:1

SELECT [t0].[UserID], [t0].[Name], [t0].[UserType]
FROM [dbo].[DefectUser] AS [t0]
WHERE [t0].[Name] = @p0
-- @p0: Input String (Size = 11; Prec = 0; Scale = 0) [Tim Trotter]

SELECT [t0].[Summary]

Listing 12.3 Querying the database to find all Tim’s open defects

1 Additional log output is generated showing some details of the data context, which I’ve cut to avoid distracting
from the SQL.

Creates context 
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FROM [dbo].[Defect] AS [t0]
WHERE ([t0].[AssignedToUserID] = @p0) AND ([t0].[Status] <> @p1)
-- @p0: Input Int32 (Size = 0; Prec = 0; Scale = 0) [2]
-- @p1: Input Int32 (Size = 0; Prec = 0; Scale = 0) [4]

Notice how the first query fetches all of the properties of the user because we’re popu-
lating a whole entity—but the second query only fetches the summary as that’s all we
need. LINQ to SQL has also converted our two separate where clauses in the second
query into a single filter on the database.

NOTE An alternative to console logging: the debug visualizer—For a more interactive
view into LINQ to SQL queries, you can use the debug visualizer, which
Scott Guthrie has made available. This shows the SQL corresponding to
the query, and allows you to execute and even edit it manually within the
debugger. It’s free, and includes source code: http://weblogs.asp.net/
scottgu/archive/2007/07/31/linq-to-sql-debug-visualizer.aspx

LINQ to SQL is capable of translating a wide range of expressions. Let’s look at some
more examples from chapter 11, just to see what SQL is generated.
SQL GENERATION FOR A MORE COMPLEX QUERY: A LET CLAUSE
Our next query shows what happens when we introduce a sort of “temporary variable”
with a let clause. In chapter 11 we considered quite a bizarre situation, if you remem-
ber—pretending that calculating the length of a string took a long time. Again, the
query expression is exactly the same as in listing 11.11, with the exception of the data
source. Listing 12.4 shows the LINQ to SQL code.

using (var context = new DefectModelDataContext())
{
    context.Log = Console.Out;

    var query = from user in context.Users
                     let length = user.Name.Length
                     orderby length
                     select new { Name = user.Name, Length = length };

    foreach (var entry in query)
    {
        Console.WriteLine("{0}: {1}", entry.Length, entry.Name);
    }
}

The generated SQL is very close to the spirit of the sequences we saw in figure 11.5—
the innermost sequence (the first one in the diagram) is the list of users; that’s trans-
formed into a sequence of name/length pairs (as the nested select), and then the
no-op projection is applied, with an ordering by length:

SELECT [t1].[Name], [t1].[value]
FROM (
    SELECT LEN([t0].[Name]) AS [value], [t0].[Name]

Listing 12.4 Using a let clause in LINQ to SQL

http://weblogs.asp.net/scottgu/archive/2007/07/31/linq-to-sql-debug-visualizer.aspx
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    FROM [dbo].[DefectUser] AS [t0]
    ) AS [t1]
ORDER BY [t1].[value]

This is a good example of where the generated SQL is wordier than it needs to be.
Although we couldn’t reference the elements of the final output sequence when per-
forming an ordering on the query expression, you can in SQL. This simpler query
would have worked fine:

SELECT LEN([t0].[Name]) AS [value], [t0].[Name]
FROM [dbo].[DefectUser] AS [t0]
ORDER BY [value]

Of course, what’s important is what the query optimizer does on the database—the
execution plan displayed in SQL Server Management Studio Express is the same for
both queries, so it doesn’t look like we’re losing out.

 Next we’ll have a look at a couple of the joins we used in chapter 11.
EXPLICIT JOINS: MATCHING DEFECTS WITH NOTIFICATION SUBSCRIPTIONS
We’ll try both inner joins and group joins, using the examples of joining notification
subscriptions against projects. I suspect you’re used to the drill now—the pattern of
the code is the same for each query, so from here on I’ll just show the query expres-
sion and the generated SQL unless something else is going on.

// Query expression (modified from listing 11.12)
from defect in context.Defects
join subscription in context.NotificationSubscriptions
     on defect.Project equals subscription.Project
select new { defect.Summary, subscription.EmailAddress }

-- Generated SQL
SELECT [t0].[Summary], [t1].[EmailAddress]
FROM [dbo].[Defect] AS [t0]
INNER JOIN [dbo].[NotificationSubscription] AS [t1] 
ON [t0].[ProjectID] = [t1].[ProjectID]

Unsurprisingly, it uses an inner join in SQL. It would be easy to guess at the generated
SQL in this case. How about a group join, though? Well, this is where things get
slightly more hectic:

// Query expression (modified from listing 11.13)
from defect in context.Defects
join subscription in context.NotificationSubscriptions
     on defect.Project equals subscription.Project
     into groupedSubscriptions
select new { Defect = defect, Subscriptions = groupedSubscriptions }

-- Generated SQL
SELECT [t0].[DefectID] AS [ID], [t0].[Created], 
[t0].[LastModified], [t0].[Summary], [t0].[Severity], 
[t0].[Status], [t0].[AssignedToUserID], 
[t0].[CreatedByUserID], [t0].[ProjectID],
[t1].[NotificationSubscriptionID], 
[t1].[ProjectID] AS [ProjectID2], [t1].[EmailAddress],
    (SELECT COUNT(*)
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     FROM [dbo].[NotificationSubscription] AS [t2]
     WHERE [t0].[ProjectID] = [t2].[ProjectID]) AS [count]
FROM [dbo].[Defect] AS [t0]
LEFT OUTER JOIN [dbo].[NotificationSubscription] AS [t1]
ON [t0].[ProjectID] = [t1].[ProjectID]
ORDER BY [t0].[DefectID], [t1].[NotificationSubscriptionID]

That’s a pretty major change in the amount of SQL generated! There are two impor-
tant things to notice. First, it uses a left outer join instead of an inner join, so we would
still see a defect even if it didn’t have anyone subscribing to its project. If you want a
left outer join but without the grouping, the conventional way of expressing this is to
use a group join and then an extra from clause using the DefaultIfEmpty extension
method on the embedded sequence. It looks quite odd, but it works well. See the sam-
ple source code for this chapter on the book’s website for more details.

 The second odd thing about the previous query is that it calculates the count for
each group within the database. This is effectively a trick performed by LINQ to SQL to
make sure that all the processing can be done on the server. A naive implementation
would have to perform the grouping in memory, after fetching all the results. In some
cases the provider could do tricks to avoid needing the count, simply spotting when
the grouping ID changes, but there are issues with this approach for some queries. It’s
possible that a later implementation of LINQ to SQL will be able to switch courses of
action depending on the exact query.

 You don’t need to explicitly write a join in the query expression to see one in the
SQL, however. We’re able to express our query in an object-oriented way, even though
it will be converted into SQL. Let’s see this in action.
IMPLICIT JOINS: SHOWING DEFECT SUMMARIES AND PROJECT NAMES
Let’s take a simple example. Suppose we want to list each defect, showing its sum-
mary and the name of the project it’s part of. The query expression is just a matter
of a projection:

// Query expression
from defect in context.Defects
select new { defect.Summary, ProjectName=defect.Project.Name }

-- Generated SQL
SELECT [t0].[Summary], [t1].[Name]
FROM [dbo].[Defect] AS [t0]
INNER JOIN [dbo].[Project] AS [t1] 
ON [t1].[ProjectID] = [t0].[ProjectID]

Notice how we’ve navigated from the defect to the project via a property—LINQ to
SQL has converted that navigation into an inner join. It’s able to use an inner join
here because the schema has a non-nullable constraint on the ProjectID column of
the Defect table—every defect has a project. Not every defect has an assignee, how-
ever—the AssignedToUserID field is nullable, so if we use the assignee in a projection
instead, a left outer join is generated:

// Query expression
from defect in context.Defects
select new { defect.Summary, Assignee=defect.AssignedTo.Name }
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-- Generated SQL
SELECT [t0].[Summary], [t1].[Name]
FROM [dbo].[Defect] AS [t0]
LEFT OUTER JOIN [dbo].[DefectUser] AS [t1]
ON [t1].[UserID] = [t0].[AssignedToUserID]

Of course, if you navigate via more properties, the joins get more and more compli-
cated. I’m not going into the details here—the important thing is that LINQ to SQL
has to do a lot of analysis of the query expression to work out what SQL is required. 

 Before we leave LINQ to SQL, I ought to show you one more feature. It’s part of
what you’d expect from any decent ORM system, but leaving it out would just feel
wrong. Let’s update some values in our database.

12.1.4 Updating the database

Although insertions are straightforward, updates can be handled in a variety of ways,
depending on how concurrency is configured. If you’ve done any serious database
work you’ll know that handling conflicts in updates from different users at the same
time is quite hairy—and I’m not going to open that particular can of worms here. I’ll
just show you how easy it is to persist a changed entity when there are no conflicts.

 Let’s change the status of one of our defects, and its assignee, and that person’s
name, all in one go. As it happens, I know that the defect with an ID of 1 (as created
on a clean system) is a bug that was created by Tim, and is currently in an “accepted”
state, assigned to Darren. We’ll imagine that Darren has now fixed the bug, and
assigned it back to Tim. At the same time, Tim has decided he wants to be a bit more
formal, so we’ll change his name to Timothy. Oh, and we should remember to update
the “last modified” field of the defect too. (In a real system, we’d probably handle that
with a trigger—in LINQ to SQL we could implement partial methods to set the last
modified time when any of the other fields changed. For the sake of simplicity here,
we’ll do it manually.)

 Listing 12.5 accomplishes all of this and shows the result—loading it in a fresh
DataContext to show that it has gone back to the database.

using (var context = new DefectModelDataContext())
{
    context.Log = Console.Out;

    Defect defect = context.Defects        
                                    .Where(d => d.ID==1)
                                    .Single();             

    User tim = defect.CreatedBy;

    defect.AssignedTo = tim;                            
    tim.Name = "Timothy Trotter";                     
    defect.Status = Status.Fixed;                     
    defect.LastModified = SampleData.August(31);

    context.SubmitChanges();                 
}

Listing 12.5 Updating a defect and showing the new details
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using (var context = new DefectModelDataContext())
{
    Defect d = (from defect in context.Defects
                    where defect.ID==1                    
                    select defect).Single();            

    Console.WriteLine (d);
}

Listing 12.5 is easy enough to follow—we open up a context and fetch the first
defect B. After changing the defect and the entity representing Tim Trotter C, we
ask LINQ to SQL to save the changes to the database D. Finally, we fetch the
defect E again in a new context and write the details to the console. Just for a bit of
variety, I’ve shown two different ways of fetching the defect—they’re absolutely
equivalent, because the compiler translates the query expression form into the
“method call” form anyway.

 That’s all the LINQ to SQL we’re going to see—hopefully it’s shown you enough of
the capabilities to understand how it’s a normal ORM system, but one that has good
support for query expressions and the LINQ standard query operators. 

12.1.5 LINQ to SQL summary

There are lots of ORMs out there, and many of them allow you to build up queries pro-
grammatically in a way that can look like LINQ to SQL—if you ignore compile-time
checking. It’s the combination of lambda expressions, expression trees, extension
methods, and query expressions that make LINQ special, giving these advantages:

■ We’ve been able to use familiar syntax to write the query (at least, familiar when
you know LINQ to Objects!).

■ The compiler has been able to do a lot of validation for us.
■ Visual Studio 2008 is able to help us build the query with IntelliSense.
■ If we need a mixture of client-side and server-side processing, we can do both in

a consistent manner.
■ We’re still using the database to do the hard work.

Of course, this comes at a cost. As with any ORM system, you want to keep an eye on
what SQL queries are being executed for a particular query expression. That’s where
the logging is invaluable—but don’t forget to turn it off for production! In particular,
you will need to be careful of the infamous “N+1 selects” issue, where an initial query
pulls back results from a single table, but using each result transparently executes
another query to lazily load associated entities. Sometimes you’ll be able to find an
elegant query expression that results in exactly the SQL you want to use; other times
you’ll need to bend the query expression out of shape somewhat. Occasionally you’ll
need to write the SQL manually or use a stored procedure instead—as is often the case
with ORMs.

 I find it interesting just to take query expressions that you already know work in
LINQ to Objects and see what SQL is generated when you run them against a database.

Finds defect with 
query expression

E
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Sometimes you can predict how things will work, but sometimes there’s more going
on than you might expect. There’s sample code on the book’s website for various que-
ries, but query expressions are pretty easy to write, and I’d strongly encourage you to
write your own for fun. The SkeetySoft defects model is quite a simple one to query, of
course—but you’ve seen how Visual Studio 2008 makes it easy to generate entities, so
give it a try with a schema from a real system. I can’t emphasize enough that this brief
look at LINQ to SQL should not be taken as sufficient information to start building pro-
duction code. It should be enough to let you experiment, but please read more
detailed documentation before embarking on a real application!

 I’ve deliberately not gone into how query expressions are converted into SQL in
this section. I wanted you to get a feel for the capabilities of LINQ to SQL before start-
ing to pick it apart. 

12.2 Translations using IQueryable and IQueryProvider
In this section we’re going to find out the basics of how LINQ to SQL manages to con-
vert our query expressions into SQL. This is the starting point for implementing your
own LINQ provider, should you wish to. This is the most theoretical section in the
chapter, but it’s useful to have some insight as to how LINQ is able to decide whether
to use in-memory processing, a database, or some other query engine. 

 In all the query expressions we’ve seen in LINQ to SQL, the source has been a
Table<T>. However, if you look at Table<T>, you’ll see it doesn’t have a Where method,
or Select, or Join, or any of the other standard query operators. Instead, it uses the
same trick that LINQ to Objects does—just as the source in LINQ to Objects always
implements IEnumerable<T> (possibly after a call to Cast or OfType) and then uses
the extension methods in Enumerable, so Table<T> implements IQueryable<T> and
then uses the extension methods in Queryable. We’ll see how LINQ builds up an
expression tree and then allows a provider to execute it at the appropriate time. Let’s
start off by looking at what IQueryable<T> consists of.

12.2.1 Introducing IQueryable<T> and related interfaces

If you look up IQueryable<T> in the documentation and see what members it contains
directly (rather than inheriting), you may be disappointed. There aren’t any. Instead,
it inherits from IEnumerable<T> and the nongeneric IQueryable.IQueryable in turn
inherits from the nongeneric IEnumerable. So, IQueryable is where the new and
exciting members are, right? Well, nearly. In fact, IQueryable just has three proper-
ties: QueryProvider, ElementType, and Expression. The QueryProvider property is
of type IQueryProvider—yet another new interface to consider.

 Lost? Perhaps figure 12.2 will help out—a class diagram of all the interfaces
directly involved.

 The easiest way of thinking of IQueryable is that it represents a query that, when exe-
cuted, will yield a sequence of results. The details of the query in LINQ terms are held
in an expression tree, as returned by the Expression property of the IQueryable. Exe-
cuting a query is performed by beginning to iterate through an IQueryable (in other
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words, calling the GetEnumerator method) or by a call to the Execute method on an
IQueryProvider, passing in an expression tree.

 So, with at least some grasp of what IQueryable is for, what is IQueryProvider?
Well, we can do more than execute a query—we can also build a bigger query from it,
which is the purpose of the standard query operators in LINQ.2 To build up a query,
we need to use the CreateQuery method on the relevant IQueryProvider.3

 Think of a data source as a simple query (SELECT * FROM SomeTable in SQL, for
instance)—calling Where, Select, OrderBy, and similar methods results in a different
query, based on the first one. Given any IQueryable query, you can create a new query
by performing the following steps:

1 Ask the existing query for its query expression tree (using the Expression prop-
erty).

2 Build a new expression tree that contains the original expression and the extra
functionality you want (a filter, projection, or ordering, for instance).

2 Well, the ones that keep deferring execution, such as Where and Join. We’ll see what happens with the aggre-
gations such as Count in a little while.

3 Both Execute and CreateQuery have generic and nongeneric overloads. The nongeneric versions make it
easier to create queries dynamically in code. Compile-time query expressions use the generic version.

Figure 12.2 Class diagram based on the interfaces involved in IQueryable<T>
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3 Ask the existing query for its query provider (using the Provider property).
4 Call CreateQuery on the provider, passing in the new expression tree.

Of those steps, the only tricky one is creating the new expression tree. Fortunately,
there’s a whole bunch of extension methods on the static Queryable class that do all
that for us. Enough theory—let’s start implementing the interfaces so we can see all
this in action. 

12.2.2 Faking it: interface implementations to log calls 

Before you get too excited, we’re not going to build our own fully fledged query pro-
vider in this chapter. However, if you understand everything in this section, you’ll be
in a much better position to build one if you ever need to—and possibly more impor-
tantly, you’ll understand what’s going on when you issue LINQ to SQL queries. Most of
the hard work of query providers goes on at the point of execution, where they need
to parse an expression tree and convert it into the appropriate form for the target
platform. We’re concentrating on the work that happens before that—how LINQ pre-
pares to execute a query.

 We’ll write our own implementations of IQueryable and IQueryProvider, and
then try to run a few queries against them. The interesting part isn’t the results—we
won’t be doing anything useful with the queries when we execute them—but the
series of calls made up to the point of execution. We’ll write types FakeQueryProvider
and FakeQuery. The implementation of each interface method writes out the current
expression involved, using a simple logging method (not shown here). Let’s look first
at FakeQuery, as shown in listing 12.6.

class FakeQuery<T> : IQueryable<T>
{
    public Expression Expression { get; private set; }   
    public IQueryProvider Provider { get; private set; }
    public Type ElementType { get; private set; }          

    internal FakeQuery(IQueryProvider provider, 
                               Expression expression)
    {
        Expression = expression;
        Provider = provider;
        ElementType = typeof(T);
    }

    internal FakeQuery()
        : this(new FakeQueryProvider(), null)
    {
        Expression = Expression.Constant(this);
    }

    public IEnumerator<T> GetEnumerator()                  
    {
        Logger.Log(this, Expression);                      

Listing 12.6 A simple implementation of IQueryable that logs method calls

Declares simple 
automatic 
properties

B

Uses this query as 
initial expression

C
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        return Enumerable.Empty<T>().GetEnumerator();
    }

    IEnumerator IEnumerable.GetEnumerator()
    {
        Logger.Log(this, Expression);
        return Enumerable.Empty<object>().GetEnumerator();
    }

    public override string ToString()
    {
        return "FakeQuery";
    }
}

The property members of IQueryable are implemented in FakeQuery with automatic
properties B, which are set by the constructors. There are two constructors: a param-
eterless one that is used by our main program to create a plain “source” for the query,
and one that is called by FakeQueryProvider with the current query expression.

 The use of Expression.Constant(this) as the initial source expression C is just a
way of showing that the query initially represents the original object. (Imagine an
implementation representing a table, for example—until you apply any query opera-
tors, the query would just return the whole table.) When the constant expression is
logged, it uses the overridden ToString method, which is why we’ve given a short,
constant description E. This makes the final expression much cleaner than it would
have been without the override. When we are asked to iterate over the results of the
query, we always just return an empty sequence D to make life easy. Production imple-
mentations would parse the expression here, or (more likely) call Execute on their
query provider and just return the result.

 As you can see, there’s not a lot going on in FakeQuery, and listing 12.7 shows that
FakeQueryProvider is equally simple.

class FakeQueryProvider : IQueryProvider
{
    public IQueryable<T> CreateQuery<T>(Expression expression)
    {
        Logger.Log(this, expression);
        return new FakeQuery<T>(this, expression);
    }        

    public IQueryable CreateQuery(Expression expression)
    {
        Logger.Log(this, expression);
        return new FakeQuery<object>(this, expression);
    }

    public T Execute<T>(Expression expression)
    {
        Logger.Log(this, expression);
        return default(T);

Listing 12.7 An implementation of IQueryProvider that uses FakeQuery 

D
Returns empty 
result sequence

E
Overrides for 
sake of logging
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    }

    public object Execute(Expression expression)
    {
        Logger.Log(this, expression);
        return null;
    }
}

There’s even less to talk about in terms of the implementation of FakeQueryProvider
than there was for FakeQuery. The CreateQuery methods do no real processing but act
as factory methods for FakeQuery. The Execute method overloads just return empty
results after logging the call. This is where a lot of analysis would normally be done, along
with the actual call to the web service, database, or whatever the target platform is.

 Even though we’ve done no real work, when we start to use FakeQuery as the
source in a query expression interesting things start to happen. I’ve already let slip
how we are able to write query expressions without explicitly writing methods to han-
dle the standard query operators: it’s all about extension methods, this time the ones
in the Queryable class.

12.2.3 Gluing expressions together: the Queryable extension methods

Just as the Enumerable type contains extension methods on IEnumerable<T> to imple-
ment the LINQ standard query operators, the Queryable type contains extension
methods on IQueryable<T>. There are two big differences between the implementa-
tions in Enumerable and those in Queryable.

 First, the Enumerable methods all use delegates as their parameters—the Select
method takes a Func<TSource,TResult>, for example. That’s fine for in-memory
manipulation, but for LINQ providers that execute the query elsewhere, we need a for-
mat we can examine more closely—expression trees. For example, the corresponding
overload of Select in Queryable takes a parameter of type Expression<Func
<TSource,TResult>>. The compiler doesn’t mind at all—after query translation, it has
a lambda expression that it needs to pass as a parameter to the method, and lambda
expressions can be converted to either delegate instances or expression trees.

 This is the reason that LINQ to SQL is able to work so seamlessly. The four key ele-
ments involved are all new features of C# 3: lambda expressions, the translation of
query expressions into “normal” expressions that use lambda expressions, extension
methods, and expression trees. Without all four, there would be problems. If query
expressions were always translated into delegates, for instance, they couldn’t be used
with a provider such as LINQ to SQL, which requires expression trees. Figure 12.3
shows the two paths taken by query expressions; they differ only in what interfaces
their data source implements.

 Notice how in figure 12.3 the early parts of the compilation process are independent
of the data source. The same query expression is used, and it’s translated in exactly the
same way. It’s only when the compiler looks at the translated query to find the appro-
priate Select and Where methods to use that the data source is truly important. At that
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point, the lambda expressions can be converted to either delegate instances or expres-
sion trees, potentially giving radically different implementations: typically in-memory
for the left path, and SQL executing against a database in the right path.

 The second big difference between Enumerable and Queryable is that the
Enumerable extension methods do the actual work associated with the corresponding
query operator. There is code in Enumerable.Where to execute the specified filter and
only yield appropriate elements as the result sequence, for example. By contrast, the
query operator “implementations” in Queryable do very little: they just create a new
query based on the parameters or call Execute on the query provider, as described at
the end of section 12.2.1. In other words, they are only used to build up queries and
request that they be executed—they don’t contain the logic behind the operators. This
means they’re suitable for any LINQ provider that uses expression trees.

 With the Queryable extension methods available and making use of our IQueryable
and IQueryProvider implementations, it’s finally time to see what happens when we use
a query expression with our custom provider.

from user in users

where user.Name.StartsWith("D")

select user.Name

users.Where(user => user.Name.StartsWith("D")

     .Select(user => user.Name)             

Extension methods on Queryable
are chosen, which use expression
trees as parameters

Extension methods on Enumerable
are chosen, which use delegates
as parameters

Overload resolution

Query expression translation

IQueryable implementedIQueryable not implemented

IL to create expression trees, with
calls to Queryable.Where and
Queryable.Select

IL to create delegate instances, with
calls to Enumerable.Where and
Enumerable.Select

Figure 12.3 A query taking two paths, depending on whether the data source implements 
IQueryable or only IEnumerable
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12.2.4 The fake query provider in action

Listing 12.8 shows a simple query expression, which (supposedly) finds all the strings
in our fake source beginning with “abc” and projects the results into a sequence of the
lengths of the matching strings. We iterate through the results, but don’t do anything
with them, as we know already that they’ll be empty. Of course, we have no source
data, and we haven’t written any code to do any real filtering—we’re just logging
which calls are made by LINQ in the course of creating the query expression and iter-
ating through the results.

var query = from x in new FakeQuery<string>()
                where x.StartsWith("abc")
                select x.Length;

foreach (int i in query) { }

What would you expect the results of running listing 12.8 to be? In particular, what
would you like to be logged last, at the point where we’d normally expect to do some
real work with the expression tree? Here are the results of listing 12.8, reformatted
slightly for clarity:

FakeQueryProvider.CreateQuery
Expression=FakeQuery.Where(x => x.StartsWith("abc"))

FakeQueryProvider.CreateQuery
Expression=FakeQuery.Where(x => x.StartsWith("abc"))
                             .Select(x => x.Length)

FakeQuery<Int32>.GetEnumerator
Expression=FakeQuery.Where(x => x.StartsWith("abc"))
                             .Select(x => x.Length)

The two important things to note are that GetEnumerator is only called at the end, not
on any intermediate queries, and that by the time GetEnumerator is called we have all
the information present in the original query expression. We haven’t manually had to
keep track of earlier parts of the expression in each step—a single expression tree cap-
tures all the information “so far” at any point in time.

 Don’t be fooled by the concise output, by the way—the actual expression tree is
quite deep and complicated, particularly due to the where clause including an extra
method call. This expression tree is what LINQ to SQL would be examining to work
out what query to execute. LINQ providers could build up their own queries (in what-
ever form they may need) as calls to CreateQuery are made, but usually looking at the
final tree when GetEnumerator is called is simpler, as all the necessary information is
available in one place.

 The final call logged by listing 12.8 was to FakeQuery.GetEnumerator, and you may
be wondering why we also need an Execute method on IQueryProvider. Well, not all
query expressions generate sequences—if you use an aggregation operator such as Sum,

Listing 12.8 A simple query expression using the fake query classes
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Count, or Average, we’re no longer really creating a “source”—we’re evaluating a result
immediately. That’s when Execute is called, as shown by listing 12.9 and its output.

var query = from x in new FakeQuery<string>()
                where x.StartsWith("abc")
                select x.Length;

double mean = query.Average();

// Output
FakeQueryProvider.CreateQuery
Expression=FakeQuery.Where(x => x.StartsWith("abc"))

FakeQueryProvider.CreateQuery
Expression=FakeQuery.Where(x => x.StartsWith("abc"))
                             .Select(x => x.Length)

FakeQueryProvider.Execute
Expression=FakeQuery.Where(x => x.StartsWith("abc"))
                             .Select(x => x.Length)
                             .Average()

The FakeQueryProvider can be quite useful when it comes to understanding what the
C# compiler is doing behind the scenes with query expressions. It will show the trans-
parent identifiers introduced within a query expression, along with the translated calls
to SelectMany, GroupJoin, and the like.

12.2.5 Wrapping up IQueryable 

We haven’t written any of the significant code that a real query provider would need
in order to get useful work done, but hopefully our fake provider has given you
insight into how LINQ providers are given the information from query expressions.
It’s all built up by the Queryable extension methods, given an appropriate implemen-
tation of IQueryable and IQueryProvider.

 We’ve gone into a bit more detail in this section than we will for the rest of the
chapter, as it’s involved the foundations that underpin the LINQ to SQL code we saw
earlier. You’re unlikely to want to write your own query provider—it takes a lot of work
to produce a really good one—but this section has been important in terms of con-
ceptual understanding. The steps involved in taking a C# query expression and (at
execution time) running some SQL on a database are quite profound and lie at the
heart of the big features of C# 3. Understanding why C# has gained these features will
help keep you more in tune with the language.

 In fact, LINQ to SQL is the only provider built into the framework that actually uses
IQueryable—the other “providers” are just APIs that play nicely with LINQ to Objects.
I don’t wish to diminish their importance—they’re still useful. However, it does mean
that you can relax a bit now—the hardest part of the chapter is behind you. We’re still
staying with database-related access for our next section, though, which looks at LINQ
to DataSet.

Listing 12.9  IQueryProvider.Execute
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12.3 LINQ to DataSet
Seeing all the neat stuff that LINQ to SQL can achieve is all very well, but most develop-
ers are likely to be improving an existing application rather than creating a new one
from the ground up. Rather than ripping out the entire persistence layer and replac-
ing it with LINQ to SQL, it would be nice to be able to gain some of the advantages of
LINQ while using existing technology. Many ADO.NET applications use datasets,
whether typed or untyped 4—and4LINQ to DataSet gives you access to a lot of the bene-
fits of LINQ with little change to your current code.

 The query expressions used within LINQ to DataSet are just LINQ to Objects que-
ries—there’s no translation into a call to DataTable.Select, for example. Instead,
data rows are filtered and ordered with normal delegate instances that operate on
those rows.

 Unsurprisingly, you’ll get a better experience using typed datasets, but a set of
extension methods on DataTable and DataRow make it at least possible to work with
untyped datasets too. In this section we’ll look at both kinds of datasets, starting with
untyped ones.

12.3.1 Working with untyped datasets

Untyped datasets have two problems as far as LINQ is concerned. First, we don’t have
access to the fields within the tables as typed properties; second, the tables themselves
aren’t enumerable. To some extent both are merely a matter of convenience—we
could use direct casts in all the queries, handle DBNull explicitly and so forth, as well as
enumerate the rows in a table using dataTable.Rows.Cast<DataRow>. These
workarounds are quite ugly, which is why the DataTableExtensions and DataRow-
Extensions classes exist.

 Code using untyped datasets is never going to be pretty, but using LINQ is far nicer
than filtering and sorting using DataTable.Select. No more escaping, worrying
about date and time formatting, and similar nastiness.

 Listing 12.10 gives a simple example. It just fills a single defect table and prints the
summaries of all the defects that don’t have a status of “closed.”

DataTable dataTable = new DataTable();

using (var connection = new SqlConnection                       
    (Settings.Default.SkeetySoftDefectsConnectionString))
{                                                                              
    string sql = "SELECT Summary, Status FROM Defect";       
    new SqlDataAdapter(sql, connection).Fill(dataTable);  
}                                                                              

var query = from defect in dataTable.AsEnumerable()

4 An untyped dataset is one that has no static information about the contents of its tables. Typed datasets, usu-
ally generated in the Visual Studio designer, know the tables which can be present in the dataset, and the col-
umns within the rows in those tables.

Listing 12.10 Displaying the summaries of open defects from an untyped DataTable

B Fills table 
from 
database

Makes table 
enumerable

C
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            where defect.Field<Status>("Status") != Status.Closed
            select defect.Field<string>("Summary");

foreach (string summary in query)
{
    Console.WriteLine (summary);
}

Coming so soon after the nice, clean world of LINQ to SQL, listing 12.10 makes me
feel somewhat dirty. There’s hard-coded SQL, column names, and casts all over the
place. However, we’ll see that things are better when we have a typed dataset—and this
code does get the job done. If you’re using both LINQ to SQL and LINQ to DataSet, you
can fill a DataTable using the DataTableExtensions.CopyToDataTable extension
method, but I wanted to keep to just one new technology at a time for this example.

 The first part B is “old-fashioned” ADO.NET code to fill the data table. I haven’t
used an actual dataset for this example because we’re only interested in a single
table—putting it in a dataset would have made things slightly more complicated for
no benefit. It’s only when we reach the query expression (C D and E) that LINQ
starts coming in.

 The source of a query expression has to be enumerable in some form—and the
DataTable type doesn’t even implement IEnumerable, let alone IEnumerable<T>. The
DataTableExtensions class provides the AsEnumerable extension method (C), which
merely returns an IEnumerable<DataRow> that iterates over the rows in the table.

 Accessing fields within a row is made slightly easier in LINQ to DataSet using the
Field<T> extension method on DataRow. This not only removes the need to cast
results, but it also deals with null values for you—it converts DBNull to a null reference
for you, or the null value of a nullable type.

 I won’t give any further examples of untyped datasets here, although there are a
couple more queries in the book’s sample code. Hopefully you’ll find yourself in the
situation where you can use a typed dataset instead. 

12.3.2 Working with typed datasets

Although typed datasets aren’t as rich as using LINQ to SQL directly, they provide
much more static type information, which lets your code stay cleaner. There’s a bit of
work to start with: we have to create a typed dataset for our defect-tracking system
before we can begin using it.
CREATING THE TYPED DATASET WITH VISUAL STUDIO
The process for generating a typed dataset in Visual Studio 2008 is almost exactly the
same as it is to generate LINQ to SQL entities. Again, you add a new item to the project
(this time selecting DataSet in the list of options), and again you can drag and drop
tables from the Server Explorer window onto the designer surface.

 There aren’t quite as many options available in the property panes for typed
datasets, but we can still rename the DefectUser table, the DefectID field, along with
the associations. Likewise, we can still tell the Status, Summary, and UserType proper-
ties to use the enumeration types from the model. Figure 12.4 shows the designer
after a bit of editing and rearranging.

E
Selects

Summary field D

Accesses
Status

field
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Each table in the dataset has its own types for the table, rows, notification event han-
dlers, notification event arguments, and adapters. The adapters are placed into a sep-
arate namespace, based on the name of the dataset.

 Once you’ve created the dataset, using it is easy.
POPULATING AND QUERYING TYPED DATASETS
As in previous versions of ADO.NET, typed datasets are populated using adapters. The
adapters generated by the designer already use the connection string of the server orig-
inally used to create the dataset: this can be changed in the application settings. This
means that in many cases, you can fill the tables with barely any code. Listing 12.11
achieves the same results as the query on the untyped dataset, but in a considerably
cleaner fashion.

DefectDataSet dataSet = new DefectDataSet();
new DefectTableAdapter().Fill(dataSet.Defect);

var query = from defect in dataSet.Defect
                where defect.Status != Status.Closed
                select defect.Summary;

foreach (string summary in query)
{
    Console.WriteLine (summary);
}

Listing 12.11 Displaying the summaries of open defects from a typed dataset

Figure 12.4 The defect-tracking database in the dataset designer
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Creating and populating the dataset is now a breeze—and even though we use only
one table, it’s as easy to do that using a complete dataset as it would have been if we’d
only created a single data table. Of course, we’re pulling more data down this time
because we haven’t specified a SQL projection, but you can access the “raw” adapter of
a typed data adapter and modify the query yourself if you need to.

 The query expression in listing 12.11 looks like it could have come straight from
LINQ to SQL or LINQ to Objects, other than using dataSet instead of context or
SampleData.AllDefects. The DefectDataSet.Defect property returns a DefectData-
Table, which implements IEnumerable<DefectDataRow> already (via its base class,
TypedTableBase<DefectDataRow>) so we don’t need any extension methods, and each
row is strongly typed.

 For me, one of the most compelling aspects of LINQ is this consistency between dif-
ferent data access mechanisms. Even if you only query a single data source, LINQ is use-
ful—but being able to query multiple data sources with the same syntax is phenomenal.
You still need to be aware of the consequences of querying against the different tech-
nologies, but the fundamental grammar of query expressions remains constant.

 Using associations between different tables is also simple with typed datasets. In
listing 12.12 we group the open defects according to their status, and display the
defect ID, the name of the project, and the name of the user assigned to work on it.

DefectDataSet dataSet = new DefectDataSet();          

var query = from defect in dataSet.Defect      
                where defect.Status != Status.Closed
                group defect by defect.Status;         

new DefectTableAdapter().Fill(dataSet.Defect);  
new UserTableAdapter().Fill(dataSet.User);        
new ProjectTableAdapter().Fill(dataSet.Project);

foreach (var group in query)                                   
{                                                              
    Console.WriteLine (group.Key);                                    
    foreach (var defect in group)                             
    {                                                          
        Console.WriteLine ("  {0}: {1}/{2}",               
                                   defect.ID,
                                   defect.ProjectRow.Name,             
                                   defect.UserRowByAssignedTo.Name);
    }
}

Unlike in LINQ to SQL (which can lazily load entities), we have to load all the data
we’re interested in before we execute the query. Just for fun, this time I’ve populated
the dataset C after we’ve defined the query B but before we’ve executed it D. Apart
from anything else, this proves that LINQ is still working in a deferred execution
mode—it doesn’t try to look at the list of defects until we iterate through them.

Listing 12.12 Using associations in a typed dataset
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B
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 When we display the results D, the associations (ProjectRow, UserRowBy-
AssignedTo) aren’t quite as neat as they are in LINQ to SQL, because the dataset
designer doesn’t give us as much control over those names as the entity model designer
does. It’s still a lot nicer than the equivalent code for untyped datasets, however. 

 As you can see, Microsoft has made LINQ work nicely with databases and associated
technologies. That’s not the only form of data access we can use, though—in a world
where XML is so frequently used for storing and exchanging data, LINQ makes pro-
cessing documents that much simpler. 

12.4 LINQ to XML
Whereas LINQ to DataSet is really just some extensions to the existing dataset capabil-
ities (along with a new base class for typed data tables), LINQ to XML is a completely
new XML API. If your immediate reaction to hearing about yet another XML API is to ask
whether or not we need one, you’re not alone. However, LINQ to XML simplifies doc-
ument manipulation considerably, and is designed to play well with LINQ to Objects.
It doesn’t have much extra querying functionality in itself, and it doesn’t perform any
query translations in the way that LINQ to SQL does, but the integration with LINQ via
iterators makes it a pleasure to work with.

 It’s not just about querying, though—one of the major benefits of LINQ to XML
over the existing APIs is its “developer friendliness” when it comes to creating and
transforming and XML documents too. We’ll see that in a moment, when we create an
XML document containing all our sample data, ready for querying. Of course, this
won’t be a comprehensive guide to LINQ to XML, but the deeper topics that we won’t
cover here (such as XML namespace handling) have been well thought out to make
development easier.

 Let’s start by looking at two of the most important classes of LINQ to XML.

12.4.1 XElement and XAttribute

The bulk of LINQ to XML consists of a set of classes in the System.Xml.Linq
namespace, most of which are prefixed with X: XName, XDocument, XComment, and so
forth. Even though lots of classes are available, for our purposes we only need to know
about XElement and XAttribute, which obviously represent XML elements and
attributes, respectively.

 We’ll also be using XName indirectly, which is used for names of elements and
attributes, and can contain namespace information. The reason we only need to use it
indirectly is that there’s an implicit conversion from string to XName, so every time we
create an element or attribute by passing the name as a string, it’s converting it into an
XName. I mention this only so that you won’t get confused about what’s being called if
you look at the available methods and constructors in MSDN.

 One of the great things about LINQ to XML is how easy it is to construct elements
and attributes. In DOM, to create a simple document with a nested element you’d
have to go through lots of hoops:
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■ Create a document.
■ Create a root element from the document.
■ Add the root element to the document.
■ Create a child element from the document.
■ Add the child element to the root element.

Adding attributes was relatively painful, too. None of this would be naturally nested in
the code to give an at-a-glance indication of the final markup. LINQ to XML makes life
easier in the following ways:

■ You don’t need an XDocument unless you want one—you can create elements
and attributes separately.

■ You can specify the contents of an element (or document) in the constructor.

These don’t immediately sound important, but seeing the API in action makes things
clearer. Listing 12.13 creates and prints out an XML element with attributes and a
nested element containing some text.

var root = new XElement("root",
                                 new XAttribute ("attr", "value"),
                                 new XElement("child",
                                                           "text")
                                 );

Console.WriteLine (root);

Choosing how you format LINQ to XML creation code is a personal decision, in terms
of where to use whitespace and how much to use, where to place parentheses, and so
forth. However, the important point to note from listing 12.13 is how it’s quite clear that
the element “root” contains two nodes: an attribute and a child element. The child ele-
ment then has a text node (“text”). In other words, the structure of the result is apparent
from the structure of the code. The output from listing 12.13 is the XML we’d hope for:

<root attr="value">
  <child>text</child>
</root>

The equivalent code in DOM would have been much nastier. If we’d wanted to include
an XML declaration (<xml version="1.0" encoding="utf-8">, for instance), it would
have been easy to do so with XDocument—but I’m trying to keep things as simple as
possible for this brief tour. Likewise, you can modify XElements after creating them in
a DOM-like manner, but we don’t need to go down that particular path here.

The constructor for XElement accepts any number of objects using a
params parameter, but importantly it will also then recurse into any enu-
merable arguments that are passed to it. This is absolutely crucial when
using LINQ queries within XML creation expressions. Speaking of which,
let’s start building some XML with our familiar defect data.

Listing 12.13 Creating a simple piece of XML

XElement 

constructor 
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arguments
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12.4.2 Converting sample defect data into XML

We’ve currently got our sample data available in three different forms—in memory as
objects, in the database, and in a typed dataset. Of course, the typed dataset can write
XML directly, but let’s convert our original in-memory version for simplicity. To start
with, we’ll just generate a list of the users. Listing 12.14 creates a list of user elements
within a users element, and then writes it out; the output is shown beneath the listing.

var users = new XElement("users",
    from user in SampleData.AllUsers
    select new XElement("user",
                                new XAttribute("name", user.Name),
                                new XAttribute("type", user.UserType))
);

Console.WriteLine (users);

// Output
<users>
  <user name="Tim Trotter" type="Tester" />
  <user name="Tara Tutu" type="Tester" />
  <user name="Deborah Denton" type="Developer" />
  <user name="Darren Dahlia" type="Developer" />
  <user name="Mary Malcop" type="Manager" />
  <user name="Colin Carton" type="Customer" />
</users>

I hope you’ll agree that listing 12.14 is simple, once you’ve got your head around the
idea that the contents of the top-level element depend on the result of the embedded
query expression. It’s possible to make it even simpler, however. I’ve written a small
extension method on object that generates an IEnumerable<XAttribute> based on
the properties of the object it’s called on, which are discovered with reflection. This is
ideal for anonymous types—listing 12.15 creates the same output, but without the
explicit XAttribute constructor calls. With only two attributes, there isn’t much differ-
ence in the code, but for more complicated elements it’s a real boon.

var users = new XElement("users",
    from user in SampleData.AllUsers
    select new XElement("user", 
                                new { name=user.Name, type=user.UserType }
                                     .AsXAttributes()
                               )
);

Console.WriteLine (users);

For the rest of the chapter I’ll use the “vanilla” LINQ to XML calls, but it’s worth being
aware of the possibilities available with a bit of reusable code. (The source for the
extension method is available as part of the code for the book.)

Listing 12.14 Creating an element from the sample users

Listing 12.15 Using object properties to generate XAttributes with reflection
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 You can nest query expressions and do all kinds of other clever things with them.
Listing 12.16 generates an element containing the project information: the notifica-
tion subscriptions for a project are embedded within the project element by using a
nested query. The results are shown beneath the listing.

var projects = new XElement("projects",
    from project in SampleData.AllProjects
    select new XElement("project",
        new XAttribute("name", project.Name),
        new XAttribute("id", project.ProjectID),
        from subscription in SampleData.AllSubscriptions
        where subscription.Project == project
        select new XElement("subscription",
            new XAttribute("email", subscription.EmailAddress)
        )
    )
);

Console.WriteLine (projects);

// Output
<projects>
  <project name="Skeety Media Player" id="1">
    <subscription email="media-bugs@skeetysoft.com" />
    <subscription email="theboss@skeetysoft.com" />
  </project>
  <project name="Skeety Talk" id="2">
    <subscription email="talk-bugs@skeetysoft.com" />
  </project>
  <project name="Skeety Office" id="3">
    <subscription email="office-bugs@skeetysoft.com" />    
  </project>
</projects>

The two queries are highlighted in bold. There are alternative ways of generating the
same output, of course—you could use a single query that groups the subscriptions by
project, for instance. The code in listing 12.16 was just the first way I thought of tack-
ling the problem—and in cases where the performance isn’t terribly important it
doesn’t matter that we’ll be running the nested query multiple times. In production
code you’d want to consider possible performance issues more carefully, of course!

 I won’t show you all the code to generate all the elements—even with LINQ to
XML, it’s quite tedious just because there are so many attributes to set. I’ve placed it all
in a single XmlSampleData.GetElement() method that returns a root XElement. We’ll
use this method as the starting point for the examples in our final avenue of
investigation: querying.

12.4.3 Queries in LINQ to XML

You may well be expecting me to reveal that XElement implements IEnumerable and
that LINQ queries come for free. Well, it’s not quite that simple, because there are so

Listing 12.16 Generating projects with nested subscription elements
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many different things that an XElement could iterate through. XElement contains a
number of axis methods that are used as query sources. If you’re familiar with XPath,
the idea of an axis will no doubt be familiar to you. Here are the axis methods used
directly for querying, each of which returns an appropriate IEnumerable<T>:

All of these are fairly self-explanatory (and the MSDN documentation provides more
details). There are useful overloads to retrieve only nodes with an appropriate name:
calling Descendants("user") on an XElement will return all user elements under-
neath the element you call it on, for instance. A number of extension methods also
make these axes available to whole sequences of nodes: the result is a concatenated
sequence as if the method has been called on each node in turn.

 As well as these calls returning sequences, there are some methods that return a
single result—Attribute and Element are the most important, returning the named
attribute and the first descendant element with the specified name, respectively.

 One aspect of XAttribute that is particularly relevant to querying is the set of the
explicit conversions from an XAttribute to any number of other types, such as int,
string, and DateTime. These are important for both filtering and projecting results.

 Enough talk! Let’s see some code. We’ll start off simply, just displaying the users
within our XML structure, as shown in listing 12.17.

XElement root = XmlSampleData.GetElement();

var query = from user in root.Element("users").Elements()
                   select new { Name=(string)user.Attribute("name"),
                                      UserType=(string)user.Attribute("type") };

foreach (var user in query)
{
    Console.WriteLine ("{0}: {1}", user.Name, user.UserType);
}

After creating the data at the start, we navigate down to the users element, and ask it
for its direct child elements. This two-step fetch could be shortened to just
root.Descendants("user"), but it’s good to see the more rigid navigation so you
can use it where necessary. It’s also more robust in the face of changes to the docu-
ment structure, such as another (unrelated) user element being added elsewhere in
the document.

 The rest of the query expression is merely a projection of an XElement into an
anonymous type. I’ll admit that we’re cheating slightly with the user type: we’ve kept it
as a string instead of calling Enum.Parse to convert it into a proper UserType value.
The latter approach works perfectly well—but it’s quite longwinded when you only

■ Ancestors ■ DescendantNodes
■ AncestorsAndSelf ■ DescendantNodesAndSelf
■ Annotations ■ Elements
■ Attributes ■ ElementsAfterSelf
■ Descendants ■ ElementsBeforeSelf
■ DescendantsAndSelf

Listing 12.17 Displaying the users within an XML structure
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need the string form, and the code becomes hard to format sensibly within the strict
limits of the printed page.

 Listing 12.17 isn’t doing anything particularly impressive, of course. In particular,
it would be easy to achieve a similar effect with a single XPath expression. Joins, how-
ever, are harder to express in XPath. They work, but they’re somewhat messy. With
LINQ to XML, we can use our familiar query expression syntax. Listing 12.18 demon-
strates this, showing each open defect’s ID with its assignee and project.

XElement root = XmlSampleData.GetElement();

var query = from defect in root.Descendants("defect")
                   join user in root.Descendants("user")
                        on (int?)defect.Attribute("assigned-to") equals
                             (int)user.Attribute("id")
                   join project in root.Descendants("project")
                        on (int)defect.Attribute("project") equals
                             (int)project.Attribute("id")
                   where (string)defect.Attribute("status") != "Closed"
                   select new { ID=(int)defect.Attribute("id"),
                                      Project=(string)project.Attribute("name"),
                                      Assignee=(string)user.Attribute("name") };

foreach (var defect in query)
{
    Console.WriteLine ("{0}: {1}/{2}", 
                               defect.ID, 
                               defect.Project, 
                               defect.Assignee);
}

I’m not going to pretend that listing 12.18 is particularly pleasant. It has lots of string
literals (which could easily be turned into constants) and it’s generally pretty wordy. On
the other hand, it’s doing quite a lot of work, including coping with the possibility of a
defect not being assigned to a user (the int? conversion in the join of defect to
assignee). Consider how horrible the corresponding XPath expression would have to
be, or how much manual code you’d have to write to perform the same query in direct
code. The other standard query operators are available, too: once you’ve got a query
source, LINQ to XML itself takes a back seat and lets LINQ to Objects do most of the
work. We’ll stop there, however—you may have seen enough query expressions to make
you dizzy by now, and if you want to experiment further it’s easy enough to do so.

12.4.4 LINQ to XML summary

Like the other topics in this chapter, we’ve barely scratched the surface of the LINQ to
XML API. I haven’t touched the integration with the previous technologies such as DOM
and XPath, nor have I given details of the other node types—not even XDocument!

 Even if I were to go through all of the features, that wouldn’t come close to
explaining all the possible uses of it. Practically everywhere you currently deal with
XML, I expect LINQ to XML will make your life easier. To reiterate a cliché, the only
limit is your imagination.

Listing 12.18 Two joins and a filter within a LINQ to XML query
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 Just as an example, remember how we created our XML from LINQ queries? Well,
there’s nothing to stop the sources involved in those queries being LINQ to XML in
the first place: lo and behold, a new (and powerful) way of transforming one form of
XML to another is born.

 Even though we’ve been so brief, I hope that I’ve opened the door for you—given
you an inkling of the kind of XML processing that can be achieved relatively simply using
LINQ to XML. You’ll need to learn a lot more before you master the API, but my aim was
to whet your appetite and show you how LINQ query expressions have a consistency
between providers that easily surpasses previous query techniques and technologies.

 We’ve now seen all of the LINQ providers that are built into the .NET 3.5 Frame-
work. That’s not the same thing as saying that you’ve seen all the LINQ providers you’ll
ever use, however. 

12.5 LINQ beyond .NET 3.5
Even before .NET 3.5 was finally released, developers outside Microsoft were hard at
work writing their own providers, and Microsoft isn’t resting on its laurels either. We’ll
round this chapter off with a quick look at what else is available now, and some of
what’s still to come. In this section we’re moving even faster than before, covering pro-
viders in even less depth. We don’t need to know much about them, but their variety is
important to demonstrate LINQ’s flexibility.

12.5.1 Third-party LINQ

From the start, LINQ was designed to be general purpose. It would be hard to deny its
SQL-like feel, but at the same time LINQ to Objects proves that you don’t need to be
working with a database in order to benefit from it.

 A number of third-party providers have started popping up, and although at the
time of this writing most are “proof of concept” more than production code—ways of
exploring LINQ as much as anything else—they give a good indication of the wide
range of potential uses for LINQ. We’ll only look at three examples, but providers for
other data sources (SharePoint and Flickr, for example) are emerging, and the list will
only get longer. Let’s start off with a slightly closer look at the example we first saw in
chapter 1.
LINQ TO AMAZON
One of the flagship e-commerce sites, Amazon has always tried to drive technology
forward, and it has a number of web services available for applications to talk to. Some
cost money—but fortunately searching for a list of books is free. Simply visit http://
aws.amazon.com, sign up to the scheme, and you’ll receive an access ID by email.
You’ll need this if you want to run the example for yourself.

 As part of Manning’s LINQ in Action book, Fabrice Marguerie implemented a LINQ
provider to make requests to the Amazon web service.5 Listing 12.19 shows an exam-
ple of using the provider to query Amazon’s list of books with “LINQ” in the title.

5 See http://linqinaction.net for more information and updates.
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AmazonBookSearch source = new AmazonBookSearch(<Id>);

var webQuery = from book in source                
                    where book.Title.Contains("LINQ")
                    select book;                              

var query = from book in webQuery.AsEnumerable()
                orderby book.Year, book.Title             
                select book;                                     

foreach (AmazonBook book in query)                                 
{                                                                              
    Console.WriteLine ("{0}: {1}", book.Year, book.Title);
}

I’ve taken Fabrice’s provider and tweaked it slightly so that we can pass our own Ama-
zon Access ID into the provider’s constructor B. The source is part of the Visual Stu-
dio 2008 solution containing the examples for this chapter.

 You may be slightly surprised to see two query expressions in listing 12.19. As a
proof of concept, the LINQ to Amazon provider only allows a limited number of
operations, not including ordering. We use the web query C as the source for an
in-memory LINQ to Objects query expression D. The web service call still only takes
place when we start executing the query E, due to the deferred execution approach
taken by LINQ.

 The output at the time of this writing is included here. By the time you read this, I
expect the list may be considerably longer.

1998: A linq between nonwovens and wovens. (...)
2007: Introducing Microsoft  LINQ
2007: LINQ for VB 2005
2007: LINQ for Visual C# 2005
2007: Pro LINQ: Language Integrated Query in C# 2008
2008: Beginning ASP.NET 3.5 Data Access with LINQ , C# (...)
2008: Beginning ASP.NET 3.5 Data Access with LINQ, VB (...)
2008: LINQ in Action
2008: Professional LINQ

Even though LINQ to Amazon is primitive, it demonstrates an important point: LINQ
is capable of more than just database and in-memory queries. Our next provider
proves that even when it’s talking to databases, there’s more to LINQ than just LINQ
to SQL.
LINQ TO NHIBERNATE
NHibernate is an open source ORM framework for .NET, based on the Hibernate
project for Java. It supports textual queries in its own query language (HQL) and also
a more programmatic way of building up queries—the Criteria API.

 Prolific blogger and NHibernate contributor Ayende6 has initiated a LINQ to NHib-
ernate provider that converts LINQ queries not into SQL but into NHibernate Criteria
queries, taking advantage of the SQL translation code in the rest of the project. Aside

Listing 12.19 Querying Amazon’s web service with LINQ

6 www.ayende.com/Blog/

B
Creates provider 
with your access ID

Creates query 
for web service

C
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D
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results
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from anything else, this means that the feature of RDBMS independence comes for
free. The same LINQ queries can be run against SQL Server, Oracle, or Postgres, for
example: any system that NHibernate knows about, with SQL tailored for that particu-
lar implementation.

 Before writing this book, I hadn’t used NHibernate (although I am reasonably
experienced with its cousin in the Java world), and it’s a testament to the project that
within about an hour I was up and running with the SkeetySoft defect database, using
nothing but the online tutorial. Listing 12.20 shows the same query we used against
LINQ to SQL in listing 12.3 to list all of Tim’s open defects.

ISessionFactory sessionFactory =
    new Configuration().Configure().BuildSessionFactory();

using (ISession session = sessionFactory.OpenSession())
{
    using (ITransaction tx = session.BeginTransaction())
    {
        User tim = (from user in session.Linq<User>()
                        where user.Name == "Tim Trotter"
                        select user).Single();

        var query = from defect in session.Linq<Defect>()
                        where defect.Status != Status.Closed
                        where defect.AssignedTo == tim
                        select defect.Summary;

        foreach (var summary in query)
        {
            Console.WriteLine(summary);
        }
        tx.Commit();
    }
} 

As you can see, once the session and transaction have been set up, the code is similar
to that used in LINQ to SQL. The generated SQL is different, although it executes the
same sort of queries. In other cases, identical query expressions can generate different
SQL, mostly due to decisions regarding the lazy or eager loading of entities. This is an
example of a leaky abstraction7—where in theory the abstraction layer of LINQ might
be considered to isolate the developer from the implementation performing the
actual query, but in practice the implementation details leak through. Don’t fall for
the abstraction: it takes nothing away from the value of LINQ, but you do need to be
aware of what you’re coding against, and keep an eye on what queries are being exe-
cuted for you.

 So, we’ve seen LINQ working against both web services and multiple databases.
There’s another piece of infrastructure that is commonly queried, though: an enter-
prise directory.

Listing 12.20 LINQ to NHibernate query to list defects assigned to Tim Trotter

7 www.joelonsoftware.com/articles/LeakyAbstractions.html
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LINQ TO ACTIVE DIRECTORY
Almost all companies running their IT infrastructure on Windows use Active Direc-
tory to manage users, computers, settings, and more. Active Directory is a directory
server that implements LDAP as one query protocol, but other LDAP servers are avail-
able, including the free OpenLDAP platform.8

 Bart De Smet9 (who now works for Microsoft) implemented a prototype LINQ to
Active Directory provider as a tutorial on how LINQ providers work—but it has also
proved to be a valuable reminder of how broadly LINQ is targeted. Despite the name,
it is capable of querying non-Microsoft servers. He has also repeated the feat with a
LINQ to SharePoint provider, which we won’t cover here, but which is a more com-
plete provider implementation.

 If you’re not familiar with directories, you can think of them as a sort of cross between
file system directory trees and databases. They form hierarchies rather than tables, but
each node in the tree is an entity with properties and an associated schema. (For those
of you who are familiar with directories, please forgive this gross oversimplification.)

 Installing and populating a directory is a bit of an effort, so for the sample code
I’ve connected to a public server. If you happen to have access to an internal server,
you’ll probably find the results more meaningful if you connect to that.

 Listing 12.21 connects to an LDAP server and lists all the users whose first name
begins with K. The Person type is described elsewhere in the sample source code,
complete with attributes to describe to LINQ to Active Directory how the properties
within the object map to attributes within the directory.

string url = "LDAP://ldap.andrew.cmu.edu/dc=cmu,dc=edu";
DirectoryEntry root = new DirectoryEntry(url);
root.AuthenticationType = AuthenticationTypes.None;

var users = new DirectorySource<Person>(root, SearchScope.Subtree);
users.Log = Console.Out;

var query = from user in users 
                where user.FirstName.StartsWith("K")
                select user;

foreach (Person person in query)
{
    Console.WriteLine (person.DisplayName);
    foreach (string title in person.Titles)
    {
        Console.WriteLine("  {0}", title);
    }
}

Are you getting a sense of déjà vu yet? Listing 12.21 shows yet another query expres-
sion, which just happens to target LDAP. If you didn’t have the first part, which sets the

8 www.openldap.org
9 http://blogs.bartdesmet.net/bart

Listing 12.21 LINQ to Active Directory sample, querying users by first name
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scene, you wouldn’t know that LDAP was involved at all. As we’ve already noted, you
should be aware of the data source particularly with regard to the limitations of any
one provider—but I’m sure you understood the query expression despite not know-
ing LDAP. The plain text version is (&(objectClass=person)(givenName=K*)), which
isn’t horrific but isn’t nearly as familiar as the query expression should be by now.

 The third-party examples we’ve seen are all “early adoption” code, largely written
for the sake of investigating what’s possible rather than creating production code. I
predict that 2008 and 2009 will see a number of more feature-complete and high-qual-
ity providers emerging. At least two of these are likely to come from Microsoft.

12.5.2 Future Microsoft LINQ technologies

LINQ providers can work in very different ways. As we’ve already seen, LINQ to XML
and LINQ to DataSet are just APIs that offer easy integration with LINQ to Objects,
whereas LINQ to SQL is a more fully fledged provider, offering translation of queries
to SQL. There are more providers being developed by Microsoft at the time of this
writing, however—another ORM system, and an intriguing project to provide “no cost”
parallelism where appropriate.
THE ADO.NET ENTITY FRAMEWORK
While LINQ to SQL is far from a toy, it doesn’t have all the features that many develop-
ers expect from a modern ORM solution. For example, fetching strategies can be set
on a per-context basis, but they can’t be set for individual queries. Likewise, the entity
inheritance strategies of LINQ to SQL are somewhat limited. Also, LINQ to SQL only
supports SQL Server, which will obviously rule out its use for many projects that have
already chosen a different RDBMS.

 The “ADO.NET Entity Framework” forms the basis of Microsoft’s “Data Access Strat-
egy” and will ship with SQL Server 2008. The entity framework is a much more powerful
solution than LINQ to SQL, including its own text-based query language (Entity SQL, also
known as eSQL) and allowing a flexible mapping between the conceptual model (which is
what the business layer of your code will use) and the logical model (which is what the data-
base sees). An Object Services aspect of the entity framework deals with object identity and
update management, and an Entity Client layer is responsible for all queries. The LINQ
part of the entity framework is known as LINQ to Entities.

 As with so many aspects of software development, flexibility comes with the burden
of complexity—the two models and the mapping between them require their own
XML files, for example. Microsoft will release an update to Visual Studio 2008 when
the entity framework is released, with designers to help lighten the load of the various
mapping tasks. The framework itself is still more complicated than LINQ to SQL, how-
ever, and will take longer to master.

 Rather than provide yet another ORM query against the SkeetySoft defect data-
base—and one that would look nearly identical to those we’ve already seen—I’ve just
included some examples in the downloadable source code.10 

10 I will update these when the entity framework is released, if necessary.
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 All of the LINQ providers we’ve seen so far have acted on a particular data source,
and performed the appropriate transformations. Our next topic is slightly different—
but it’s one I’m particularly excited about.
PARALLEL LINQ (PLINQ)
Ten years ago, the idea of even fairly low-to-middling laptops having dual-processor
cores would have seemed ridiculous. Today, that’s taken for granted—and if the chip
manufacturers’ plans are anything to go by, that’s only the start. Of course, it’s only use-
ful to have more than one processor core if you’ve got tasks you can run in parallel.

 Parallel LINQ, or PLINQ for short, is a project with one “simple” goal: to execute LINQ
to Objects queries in parallel, realizing the benefits of multithreading with as few head-
aches as possible. At the time of this writing, PLINQ is targeted to be released as part of
Parallel Extensions, the next generation of .NET concurrency support. The sample I
describe is based on the December 2007 Community Technology Preview (CTP).

 Using PLINQ is simple, if (and only if) you have to perform the same task on each
element in a sequence, and those tasks are independent. If you need the result of
one calculation step in order to find the next, PLINQ is not for you—but many CPU-
intensive tasks can in fact be done in parallel. To tell the compiler to use PLINQ, you
just need to call AsParallel (an extension method on IEnumerable<T>) on your data
source, and let PLINQ handle the threading. As with IQueryable, the magic is just
normal compiler method resolution: AsParallel returns an IParallelEnumerable,
and the ParallelEnumerable class provides static methods to handle the standard
query operators.

 Listing 12.22 demonstrates PLINQ in an entirely artificial way, putting threads to
sleep for random periods instead of actually hitting the processor hard.

static int ObtainLengthSlowly(string name)
{
    Thread.Sleep(StaticRandom.Next(10000));
    return name.Length;
}
...

string[] names = {"Jon", "Holly", "Tom", "Robin", "William"};

var query = from name in names.AsParallel(3)
            select ObtainLengthSlowly(name);

foreach (int length in query)
{
    Console.WriteLine(length);
}

Listing 12.22 will print out the length of each name. We’re using a random11 sleep to
simulate doing some real work within the call to ObtainLengthSlowly. Without the

Listing 12.22 Executing a LINQ query on multiple threads with Parallel LINQ

11 The StaticRandom class used for this is merely a thread-safe wrapper of static methods around a normal
Random class. It’s part of my miscellaneous utility library.
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AsParallel call, we would only use a single thread, but AsParallel and the resulting
calls to the ParallelEnumerable extension methods means that the work is split into
up to three threads.12

 One caveat about this: unless you specify that you want the results in the same
order as the strings in the original sequence, PLINQ will assume you don’t mind get-
ting results as soon as they’re available, even if results from earlier elements haven’t
been returned yet. You can prevent this by passing QueryOptions.PreserveOrdering
as a parameter to AsParallel.

 There are other subtleties to using PLINQ, such as handling the possibility of mul-
tiple exceptions occurring instead of the whole process stopping on the first prob-
lematic element—consult the documentation for further details when Parallel
Extensions is fully released. More examples of PLINQ are included in the download-
able source code.

 As you can see, PLINQ isn’t a “data source”—it’s a kind of meta-provider, altering
how a query is executed. Many developers will never need it—but I’m sure that those
who do will be eternally grateful for the coordination it performs for them behind
the scenes.

 These won’t be the only new providers Microsoft comes up with—we should expect
new APIs to be built with LINQ in mind, and that should include your own code as well.
I confidently expect to see some weird and wonderful uses of LINQ in the future.

12.6 Summary
Phew! This chapter has been the exact opposite of most of the rest of the book.
Instead of focusing on a single topic in great detail, we’ve covered a vast array of LINQ
providers, but at a shallow level.

 I wouldn’t expect you to feel particularly familiar with any one of the specific tech-
nologies we’ve looked at here, but I hope you’ve got a deeper understanding of why
LINQ is important. It’s not about XML, or in-memory queries, or even SQL queries—it’s
about consistency of expression, and giving the C# compiler the opportunity to validate
your queries to at least some extent, regardless of their final execution platform.

 You should now appreciate why expression trees are so important that they are
among the few framework elements that the C# compiler has direct intimate knowledge
of (along with strings, IDisposable, IEnumerable<T>, and Nullable<T>, for example).
They are passports for behavior, allowing it to cross the border of the local machine,
expressing logic in whatever foreign tongue is catered for by a LINQ provider.

 It’s not just expression trees—we’ve also relied on the query expression translation
employed by the compiler, and the way that lambda expressions can be converted to
both delegates and expression trees. Extension methods are also important, as without
them each provider would have to give implementations of all the relevant methods. If

12 I’ve explicitly specified the number of threads in this example to force parallelism even on a single-core sys-
tem. If the number of threads isn’t specified, the system acts as it sees fit, depending on the number of cores
available and how much other work they have.
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you look back at all the new features of C#, you’ll find few that don’t contribute signif-
icantly to LINQ in some way or other. That is part of the reason for this chapter’s exist-
ence: to show the connections between all the features.

 I shouldn’t wax lyrical for too long, though—as well as the upsides of LINQ, we’ve
seen a few “gotchas.” LINQ will not always allow us to express everything we need in a
query, nor does it hide all the details of the underlying data source. The impedance
mismatches that have caused developers so much trouble in the past are still with us:
we can reduce their impact with ORM systems and the like, but without a proper
understanding of the query being executed on your behalf, you are likely to run into
significant issues. In particular, don’t think of LINQ as a way of removing your need to
understand SQL—just think of it as a way of hiding the SQL when you’re not inter-
ested in the details.

 Despite the limitations, LINQ is undoubtedly going to play a major part in future .NET
development. In the final chapter, I will look at some of the ways development is likely
to change in the next few years, and the part I believe C# 3 will play in that evolution. 



Elegant code
 in the new era
You’ve now seen all the features that C# 3 has to offer, and you’ve had a taste of
some of the flavors of LINQ available now and in the near future. Hopefully I’ve
given you a feeling for the directions C# 3 might guide you in when coding, and this
chapter puts those directions into the context of software development in general.

 There’s a certain amount of speculation in this chapter. Take everything with a
grain of salt—I don’t have a crystal ball, after all, and technology is notoriously dif-
ficult to predict. However, the themes are fairly common ones and I am confident
that they’ll broadly hit the mark, even if the details are completely off.

 Life is all about learning from our mistakes—and occasionally failing to do so.
The software industry has been both innovative and shockingly backward at times.
There are elegant new technologies such as C# 3 and LINQ, frameworks that do

This chapter covers
■ Reasons for language evolution
■ Changes of emphasis for C# 3
■ Readability: “what” over “how”
■ Effects of parallel computing
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more than we might have dreamed about ten years ago, and tools that hold our hands
throughout the development processes… and yet we know that a large proportion of
software projects fail. Often this is due to management failures or even customer fail-
ures, but sometimes developers need to take at least some of the blame.

 Many, many books have been written about why this is the case, and I won’t pre-
tend to be an expert, but I believe that ultimately it comes down to human nature.
The vast majority of us are sloppy—and I certainly include myself in that category.
Even when we know that best practices such as unit testing and layered designs will
help us in the long run, we sometimes go for quick fixes that eventually come back to
haunt us.

 There’s only so much a language or a platform can do to counter this. The only
way to appeal to laziness is to make the right thing to do also the easiest one. Some
areas make that difficult—it will always seem easier in some ways to not write unit tests
than to write them. Quite often breaking our design layers (“just for this one little
thing, honest”) really is easier than doing the job properly—temporarily.

 On the bright side, C# 3 and LINQ allow many ideas and goals to be expressed
much more easily than before, improving readability while simultaneously speeding
up development. If you have the opportunity to use C# 3 for pleasure before putting it
in a business context, you may well find yourself being frustrated at the shackles
imposed when you have to go back to C# 2 (or, heaven forbid, C# 1). There are so
many shortcuts that you may often find yourself surprised at just how easy it is to
achieve what might previously have been a time-consuming goal.

 Some of the improvements are simply obvious: automatic properties replace sev-
eral lines of code with a single one, at no cost. There’s no need to change the way you
think or how you approach design and development—it’s just a common scenario
that is now more streamlined.

 What I find more interesting are the features that do ask us to take a step back. They
suggest to us that while we haven’t been doing things “wrong,” there may be a better way
of looking at the world. In a few years’ time, we may look back at old code and be amazed
at the way we used to develop. Whenever a language evolves, it’s worth asking what the
changes mean in this larger sense. I’ll try to answer that question now, for C# 3.

13.1 The changing nature of language preferences
The changes in C# 3 haven’t just added more features. They’ve altered the idiom of
the language, the natural way of expressing certain ideas and implementing behavior.
These shifts in emphasis aren’t limited to C#, however—they’re part of what’s happen-
ing within our industry as a whole.

13.1.1 A more functional emphasis

It would be hard to deny that C# has become more functional in the move from ver-
sion 2 to version 3. Delegates have been part of C# 1 since the first version, but they
have become increasingly convenient to specify and increasingly widely used in the
framework libraries.



354 CHAPTER 13 Elegant code in the new era
 The most extreme example of this is LINQ, of course, which has delegates at its
very core. While LINQ queries can be written quite readably without using query
expressions, if you take away lambda expressions and extension methods they become
frankly hideous. Even a simple query expression requires extra methods to be written
so that they can be used as delegate actions. The creation of those delegates is ugly,
and the way that the calls are chained together is unintuitive. Consider this fairly sim-
ple query expression:

from user in SampleData.AllUsers
where user.UserType == UserType.Developer
orderby user.Name
select user.Name.ToUpper();

That is translated into the equally reasonable set of extension method calls:

SampleData.AllUsers
               .Where(user => user.UserType == UserType.Developer)
               .OrderBy(user => user.Name)
               .Select(user => user.Name.ToUpper());

It’s not quite as pretty, but it’s still clear. To express that in a single expression without
any extra local variables and without using any C# 2 or 3 features beyond generics
requires something along these lines:

Enumerable.Select
    (Enumerable.OrderBy
        (Enumerable.Where(SampleData.AllUsers,
                                  new Func<User,bool>(AcceptDevelopers)),
         new Func<User, string>(OrderByName)),
     new Func<User, string>(ProjectToUpperName));

Oh, and the AcceptDevelopers, OrderByName, and ProjectToUpperName methods all
need to be defined, of course. It’s an abomination. LINQ is just not designed to be use-
ful without a concise way of specifying delegates. Where previously functional lan-
guages have been relatively obscure in the business world, some of their benefits are
now being reaped in C#.

 At the same time as mainstream languages are becoming more functional, func-
tional languages are becoming more mainstream. The Microsoft Research “F#” lan-
guage1 is in the ML family, but executing on the CLR: it’s gained enough interest to
now have a dedicated team within the nonresearch side of Microsoft bringing it into
production so that it can be a truly integrated language in the .NET family.

 The differences aren’t just about being more functional, though. Is C# becoming a
dynamic language?

13.1.2 Static, dynamic, implicit, explicit, or a mixture?

As I’ve emphasized a number of times in this book, C# 3 is still a statically typed language.
It has no truly dynamic aspects to it. However, many of the features in C# 2 and 3 are those

1 http://research.microsoft.com/projects/cambridge/fsharp/fsharp.aspx
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associated with dynamic languages. In particular, the implicitly typed local variables and
arrays, extra type inference capabilities for generic methods, extension methods, and
better initialization structures are all things that in some ways look like they belong in
dynamic languages.

 While C# itself is currently statically typed, the Dynamic Language Runtime (DLR)
will bring dynamic languages to .NET. Integration between static languages and
dynamic ones such as IronRuby and IronPython should therefore be relatively
straightforward—this will allow projects to pick which areas they want to write dynam-
ically, and which are better kept statically typed.

 Should C# become dynamic in the future? Given recent blog posts from the C#
team, it seems likely that C# 4 will allow dynamic lookup in clearly marked sections of
code. Calling code dynamically isn’t the same as responding to calls dynamically, how-
ever—and it’s possible that C# will remain statically typed at that level. That doesn’t
mean there can’t be a language that is like C# in many ways but dynamic, in the same
way that Groovy is like Java in many ways but with some extra features and dynamic
execution. It should be noted that Visual Basic already allows for optionally dynamic
lookups, just by turning Option Strict on and off. In the meantime, we should be
grateful for the influence of dynamic languages in making C# 3 a lot more expressive,
allowing us to state our intentions without as much fluff surrounding the really useful
bits of code.

 The changes to C# don’t just affect how our source code looks in plain text terms,
however. They should also make us reconsider the structure of our programs, allowing
designs to make much greater use of delegates without fear of forcing thousands of
one-line methods on users.

13.2 Delegation as the new inheritance
There are many situations where inheritance is currently used to alter the behavior of
a component in just one or two ways—and they’re often ways that aren’t so much
inherent in the component itself as in how it interacts with the world around it.

 Take a data grid, for example. A grid may use inheritance (possibly of a type
related to a specific row or column) to determine how data should be formatted. In
many ways, this is absolutely right—you can build up a flexible design that allows for
all kinds of different values to be displayed, possibly including images, buttons,
embedded tables, and the like. The vast majority of read-only data is likely to consist of
some plain text, however. Now, we could have a TextDataColumn type with an abstract
FormatData method, and derive from that in order to format dates, plain strings,
numbers, and all kinds of other data in whatever way we want.

 Alternatively, we could allow the user to specify the formatting by way of a delegate,
which simply converts the appropriate data type to a string. With C# 3’s lambda expres-
sions, this makes it easy to provide a custom display of the data. Of course, you may well
want to provide easy ways of handling common cases—but delegates are immutable in
.NET, so simple “constant” delegates for frequently used types can fill this need neatly.
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 This works well when a single, isolated aspect of the component needs to be spe-
cialized. It’s certainly not a complete replacement of inheritance, nor would I want it
to be (the title of this section notwithstanding)—but it allows a more direct approach
to be used in many situations. Using interfaces with a small set of methods has often
been another way of providing custom behavior, and delegates can be regarded as an
extreme case of this approach.

 Of course, this is similar to the point made earlier about a more functional bias, but
it’s applied to the specific area of inheritance and interface implementation. It’s not
entirely new to C# 3, either: List<T> made a start in .NET 2.0 even when only C# 2 was
available, with methods such as Sort and FindAll. Sort allows both an interface-based
comparison (with IComparer) and a delegate-based comparison (with Comparison),
whereas FindAll is purely delegate based. Anonymous methods made these calls rela-
tively simple and lambda expressions add even more readability.

 In short, when a type or method needs a single aspect of specialized behavior, it’s
worth at least considering the ability to specify that behavior in terms of a delegate
instead of via inheritance or an interface.

 All of this contributes to our next big goal: readable code.

13.3 Readability of results over implementation
The word readability is bandied around quite casually as if it can only mean one thing
and can somehow be measured objectively. In real life, different developers find dif-
ferent things readable, and in different ways. There are two kinds of readability I’d
like to separate—while acknowledging that many more categorizations are possible.

 First, there is the ease with which a reader can understand exactly what your code
is doing at every step. For instance, making every conversion explicit even if there’s an
implicit one available makes it clear that a conversion is indeed taking place. This sort
of detail can be useful if you’re maintaining code and have already isolated the prob-
lem to a few lines of code. However, it tends to be longwinded, making it harder to
browse large sections of source. I think of this as “readability of implementation.”

 When it comes to getting the broad sweep of code, what is required is “readability
of results”—I want to know what the code does, but I don’t care how it does it right
now. Much of this has traditionally been down to refactoring, careful naming, and
other best practices. For example, a method that needs to perform several steps can
often be refactored into a method that simply calls other (reasonably short) methods
to do the actual work. Declarative languages tend to emphasize readability of results.

 C# 3 and LINQ combine to improve readability of results quite significantly—at the
cost of readability of implementation. Almost all the cleverness shown by the C# 3
compiler adds to this: extension methods make the intention of the code clearer, but
at the cost of the visibility of the extra static class involved, for example.

 This isn’t just a language issue, though; it’s also part of the framework support.
Consider how you might have implemented our earlier user query in .NET 1.1. The
essential ingredients are filtering, sorting, and projecting:
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ArrayList filteredUsers = new ArrayList();
foreach (User user in SampleData.AllUsers)
{
    if (user.UserType==UserType.Developer)
    {
        filteredUsers.Add(user);
    }
}

filteredUsers.Sort(new UserNameComparer());

ArrayList upperCasedNames = new ArrayList();
foreach (User user in filteredUsers)
{
    upperCasedNames.Add(user.Name.ToUpper());
}

Each step is clear, but it’s relatively hard to understand exactly what’s going on! The
version we saw earlier with the explicit calls to Enumerable was shorter, but the evalua-
tion order still made it difficult to read. C# 3 hides exactly how and where the filtering,
sorting, and projection is taking place—even after translating the query expression
into method calls—but the overall purpose of the code is much more obvious.

 Usually this type of readability is a good thing, but it does mean you need to keep
your wits about you. For instance, capturing local variables makes it a lot easier to
write query expressions—but you need to understand that if you change the values of
those local variables after creating the query expression, those changes will apply
when you execute the query expression.

 One of the aims of this book has been to make you sufficiently comfortable with
the mechanics of C# 3 that you can make use of the magic without finding it hard to
understand what’s going on when you need to dig into it—as well as warning you of
some of the potential hazards you might run into.

 So far these have all been somewhat inward-looking aspects of development—
changes that could have happened at any time. The next point is very much due to
what a biologist might call an “external stimulus.”

13.4 Life in a parallel universe
In chapter 12 we looked briefly at Parallel LINQ, and I mentioned that it is part of a
wider project called Parallel Extensions. This is Microsoft’s next attempt to make con-
currency easier. I don’t expect it to be the final word on such a daunting topic, but it’s
exciting nonetheless.

 As I write this, most computers still have just a few cores. Some servers have eight
or possibly even 16 (within the x86/x64 space—other architectures already support
far more than this). Given how everything in the industry is progressing, it may not be
long before that looks like small fry, with genuine massively parallel chips becoming
part of everyday life. Concurrency is at the tipping point between “nice to have” and
“must have” as a developer skill.

 We’ve already seen how the functional aspects of C# 3 and LINQ enable some con-
currency scenarios—parallelism is often a matter of breaking down a big task into lots
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of smaller ones that can run at the same time, after all, and delegates are nice building
blocks for that. The support for delegates in the form of lambda expressions—and
even expression trees to express logic in a more data-like manner—will certainly help
parallelization efforts in the future.

 There will be more advances to come. Some improvements may come through
new frameworks such as Parallel Extensions, while others may come through future
language features. Some of the frameworks may use existing language features in
novel ways, just as the Concurrency and Coordination Runtime uses iterator blocks as
we saw in chapter 6.

 One area we may well see becoming more prominent is provability. Concurrency is
a murky area full of hidden pitfalls, and it’s also very hard to test properly. Testing
every possibility is effectively impossible—but in some cases source code can be ana-
lyzed for concurrency correctness automatically. Making this applicable to business
software at a level that is usable by “normal” developers such as ourselves is likely to be
challenging, but we may see progress as it becomes increasingly important to use the
large number of cores becoming available to us.

 There are clearly dozens of areas I could have picked that could become crucial in
the next decade—mobile computing, service-oriented architectures (SOA), human
computer interfaces, rich Internet applications, system interoperability, and so forth.
These are all likely to be transformed significantly—but parallel computing is likely to
be at the heart of many of them. If you don’t know much about threading, I strongly
advise you to start learning right now.

13.5 Farewell
So, that’s C#—for now. I doubt that it will stay at version 3 forever, although I would per-
sonally like Microsoft to give us at least a few years of exploring and becoming comfort-
able with C# 3 before moving the world on again. I don’t know about you, but I could
do with a bit of time to use what we’ve got instead of learning the next version. If we
need a bit more variety and spice, there are always other languages to be studied…

 In the meantime, there will certainly be new libraries and architectures to come to
grips with. Developers can never afford to stand still—but hopefully this book has
given you a rock-solid foundation in C#, enabling you to learn new technologies with-
out worrying about what the language is doing.

 There’s more to life than learning about the new tools available, and while you may
have bought this book purely out of intellectual curiosity, it’s more likely that you just
want to get the most out of C# 3. After all, there’s relatively little point in acquiring a skill
if you’re not going to use it. C# 3 is a wonderful language, and .NET 3.5 is a great plat-
form—but on their own they mean very little. They need to be used to provide value.

 I’ve tried to give you a thorough understanding of C# 3, but that doesn’t mean that
you’ve seen all that it can do, any more than playing each note on a piano in turn
means you’ve heard every possible tune. I’ve put the features in context and given
some examples of where you might find them helpful. I can’t tell you exactly what
ground-breaking use you might find for C# 3—but I wish you the very best of luck.
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LINQ standard
 query operators
There are many standard query operators in LINQ, only some of which are sup-
ported directly in C# query expressions—the others have to be called “manually” as
normal methods. Some of the standard query operators are demonstrated in the
main text of the book, but they’re all listed in this appendix. For the examples, I’ve
defined two sample sequences:

string[] words = {"zero", "one", "two", "three", "four"};
int[] numbers = {0, 1, 2, 3, 4};

For completeness I’ve included the operators we’ve already seen, although in most
cases chapter 11 contains more detail on them than I’ve provided here. For each
operator, I’ve specified whether it uses deferred or immediate execution.

A.1 Aggregation
The aggregation operators (see table A.1) all result in a single value rather than a
sequence. Average and Sum all operate either on a sequence of numbers (any of the
built-in numeric types) or on a sequence of elements with a delegate to convert from
each element to one of the built-in numeric types. Min and Max have overloads for
numeric types, but can also operate on any sequence either using the default com-
parer for the element type or using a conversion delegate. Count and LongCount are
equivalent to each other, just with different return types. Both of these have two over-
loads—one that just counts the length of the sequence, and one that takes a predi-
cate: only elements matching the predicate are counted.

 The most generalized aggregation operator is just called Aggregate. All the other
aggregation operators could be expressed as calls to Aggregate, although it would
be relatively painful to do so. The basic idea is that there’s always a “result so far,”
starting with an initial seed. An aggregation delegate is applied for each element of
359
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the input sequence: the delegate takes the result so far and the input element, and pro-
duces the next result. As a final optional step, a conversion is applied from the aggre-
gation result to the return value of the method. This conversion may result in a
different type, if necessary. It’s not quite as complicated as it sounds, but you’re still
unlikely to use it very often.

 All of the aggregation operators use immediate execution.

A.2 Concatenation
There is a single concatenation operator: Concat (see table A.2). As you might expect,
this operates on two sequences, and returns a single sequence consisting of all the ele-
ments of the first sequence followed by all the elements of the second. The two input
sequences must be of the same type, and execution is deferred.

A.3 Conversion
The conversion operators (see table A.3) cover a fair range of uses, but they all come
in pairs. AsEnumerable and AsQueryable allow a sequence to be treated as IEnumerable
<T> or IQueryable respectively, forcing further calls to convert lambda expressions into
delegate instances or expression trees respectively, and use the appropriate extension
methods. These operators use deferred execution.

 ToArray and ToList are fairly self-explanatory: they read the whole sequence into
memory, returning it either as an array or as a List<T>. Both use immediate execution.

Table A.1 Examples of aggregation operators

Expression Result

numbers.Sum() 10

numbers.Count() 5

numbers.Average() 2

numbers.LongCount(x => x%2 == 0) 3 (as a long; there are three even numbers)

words.Min(word => word.Length) 3 ("one" and "two")

words.Max(word => word.Length) 5 ("three")

numbers.Aggregate("seed",
  (soFar, elt) => soFar+elt.ToString(),
  result => result.ToUpper())  

SEED01234

Table A.2 Concat example

Expression Result

numbers.Concat(new[] {2, 3, 4, 5, 6}) 0, 1, 2, 3, 4, 2, 3, 4, 5, 6
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 Cast and OfType convert an untyped sequence into a typed one, either throwing
an exception (for Cast) or ignoring (for OfType) elements of the input sequence that
aren’t implicitly convertible to the output sequence element type. This may also be
used to convert typed sequences into more specifically typed sequences, such as con-
verting IEnumerable<object> to IEnumerable<string>. The conversions are per-
formed in a streaming manner with deferred execution.

 ToDictionary and ToLookup both take delegates to obtain the key for any particular
element; ToDictionary returns a dictionary mapping the key to the element type,
whereas ToLookup returns an appropriately typed ILookup<,>. A lookup is like a dictio-
nary where the value associated with a key isn’t one element but a sequence of elements.
Lookups are generally used when duplicate keys are expected as part of normal oper-
ation, whereas a duplicate key will cause ToDictionary to throw an exception. More
complicated overloads of both methods allow a custom IEqualityComparer<T> to be
used to compare keys, and a conversion delegate to be applied to each element before
it is put into the dictionary or lookup.

 The examples in table A.3 use two additional sequences to demonstrate Cast and
OfType:

object[] allStrings = {"These", "are", "all", "strings"};
object[] notAllStrings = {"Number", "at", "the", "end", 5};

Table A.3 Conversion examples

Expression Result

allStrings.Cast<string>() "These", "are", "all", "strings"
(as IEnumerable<string>)

allStrings.OfType<string>() "These", "are", "all", "strings"
(as IEnumerable<string>)

notAllStrings.Cast<string>() Exception is thrown while iterating, at point of fail-
ing conversion

notAllStrings.OfType<string>() "Number", "at", "the", "end"
(as IEnumerable<string>)

numbers.ToArray() 0, 1, 2, 3, 4
(as int[])

numbers.ToList() 0, 1, 2, 3, 4
(as List<int>)

words.ToDictionary(word =>
  word.Substring(0, 2)
)

Dictionary contents:
"ze": "zero"
"on": "one"
"tw": "two"
"th": "three"
"fo": "four"
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I haven’t provided examples for AsEnumerable or AsQueryable because they don’t
affect the results in an immediately obvious way. Instead, they affect the manner in which
the query is executed. Queryable.AsQueryable is an extension method on    IEnumer-
able that returns an IQueryable (both types being generic or nongeneric, depending
on which overload you pick). If the IEnumerable you call it on is already an IQueryable,
it just returns the same reference—otherwise it creates a wrapper around the original
sequence. The wrapper allows you to use all the normal Queryable extension methods,
passing in expression trees, but when the query is executed the expression tree is com-
piled into normal IL and executed directly, using the LambdaExpression.Compile
method shown in section 9.3.2.

 Enumerable.AsEnumerable is an extension method on IEnumerable<T> and has a
trivial implementation, simply returning the reference it was called on. No wrappers
are involved—it just returns the same reference. This forces the Enumerable exten-
sion methods to be used in subsequent LINQ operators. Consider the following
query expressions:

// Filter the users in the database with LIKE
from user in context.Users
where user.Name.StartsWith("Tim")
select user;

// Filter the users in memory
from user in context.Users.AsEnumerable()
where user.Name.StartsWith("Tim")
select user;

The second query expression forces the compile-time type of the source to be
IEnumerable<User> instead of IQueryable<User>, so all the processing is done in
memory instead of at the database. The compiler will use the Enumerable extension
methods (taking delegate parameters) instead of the Queryable extension methods
(taking expression tree parameters). Normally you want to do as much processing as
possible in SQL, but when there are transformations that require “local” code, you
sometimes have to force LINQ to use the appropriate Enumerable extension methods.

// Key is first character of word
words.ToLookup(word => word[0])

Lookup contents:
'z': "zero"
'o': "one"
't': "two", "three"
'f': "four"

words.ToDictionary(word => word[0]) Exception: Can only have one entry per key, so 
fails on 't'

Table A.3 Conversion examples (continued)

Expression Result
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A.4 Element operations
This is another selection of query operators that are grouped in pairs (see table A.4).
This time, the pairs all work the same way. There’s a simple version that picks a single
element if it can or throws an exception if the specified element doesn’t exist, and a
version with OrDefault at the end of the name. The OrDefault version is exactly the
same except that it returns the default value for the result type instead of throwing an
exception if it can’t find the element you’ve asked for. All of these operators use
immediate execution.

 The operator names are easily understood: First and Last return the first and
last elements of the sequence respectively (only defaulting if there are no elements),
Single returns the only element in a sequence (defaulting if there isn’t exactly one
element), and ElementAt returns a specific element by index (the fifth element, for
example). In addition, there’s an overload for all of the operators other than
ElementAt to filter the sequence first—for example, First can return the first ele-
ment that matches a given condition.

A.5 Equality operations
There’s only one equality operation: SequenceEqual (see table A.5). This just com-
pares two sequences for element-by-element equality, including order. For instance,
the sequence 0, 1, 2, 3, 4 is not equal to 4, 3, 2, 1, 0. An overload allows a specific
IEqualityComparer<T> to be used when comparing elements. The return value is just
a Boolean, and is computed with immediate execution.

Table A.4 Single element selection examples

Expression Result

words.ElementAt(2) "two"

words.ElementAtOrDefault(10) null

words.First() "zero"

words.First(word => word.Length==3) "one"

words.First(word => word.Length==10) Exception: No matching elements

words.FirstOrDefault
  (word => word.Length==10)

null

words.Last() "four"

words.Single() Exception: More than one element

words.SingleOrDefault() null

words.Single(word => word.Length==5) "three"

words.Single(word => word.Length==10) Exception: No matching elements
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A.6 Generation
Out of all the generation operators (see table A.6), only one acts on an existing
sequence: DefaultIfEmpty. This returns either the original sequence if it’s not empty,
or a sequence with a single element otherwise. The element is normally the default
value for the sequence type, but an overload allows you to specify which value to use.

 There are three other generation operators that are just static methods in
Enumerable:

■ Range generates a sequence of integers, with the parameters specifying the first
value and how many values to generate.

■ Repeat generates a sequence of any type by repeating a specified single value
for a specified number of times.

■ Empty generates an empty sequence of any type.

All of the generation operators use deferred execution.

Table A.5 Sequence equality examples

Expression Result

words.SequenceEqual
  (new[]{"zero","one",
         "two","three","four"})

True

words.SequenceEqual
  (new[]{"ZERO","ONE",
         "TWO","THREE","FOUR"})

False

words.SequenceEqual
  (new[]{"ZERO","ONE",
         "TWO","THREE","FOUR"},
   StringComparer.OrdinalIgnoreCase)

True

Table A.6 Generation examples

Expression Result

numbers.DefaultIfEmpty() 0, 1, 2, 3, 4

new int[0].DefaultIfEmpty() 0 (within an IEnumerable<int>)

new int[0].DefaultIfEmpty(10) 10 (within an IEnumerable<int>)

Enumerable.Range(15, 2) 15, 16

Enumerable.Repeat(25, 2) 25, 25

Enumerable.Empty<int>() An empty IEnumerable<int>
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A.7 Grouping
There are two grouping operators, but one of them is ToLookup (which we’ve already
seen in A.3 as a conversion operator). That just leaves GroupBy, which we saw in sec-
tion 11.6.1 when discussing the group … by clause in query expressions. It uses
deferred execution, but buffers results.

 The result of GroupBy is a sequence of appropriately typed IGrouping elements.
Each element has a key and a sequence of elements that match that key. In many ways,
this is just a different way of looking at a lookup—instead of having random access to
the groups by key, the groups are enumerated in turn. The order in which the groups
are returned is the order in which their respective keys are discovered. Within a
group, the order is the same as in the original sequence.

 GroupBy (see table A.7) has a daunting number of overloads, allowing you to spec-
ify not only how a key is derived from an element (which is always required) but also
optionally the following:

■ How to compare keys.
■ A projection from original element to the element within a group.
■ A projection from a key and an enumeration of elements to a result type. If this

is specified, the result is just a sequence of elements of this result type.

Frankly the last option is very confusing. I’d recommend avoiding it unless it defi-
nitely makes the code simpler for some reason. 

A.8 Joins
Two operators are specified as join operators: Join and GroupJoin, both of which we saw
in section 11.5 using join and join … into query expression clauses respectively. Each
method takes several parameters: two sequences, a key selector for each sequence, a pro-
jection to apply to each matching pair of elements, and optionally a key comparison.

 For Join the projection takes one element from each sequence and produces a
result; for GroupJoin the projection takes an element from the left sequence (in the
chapter 11 terminology—the first one specified, usually as the sequence the extension
method appears to be called on) and a sequence of matching elements from the right

Table A.7 GroupBy examples

Expression Result

words.GroupBy(word => word.Length) Key: 4; Sequence: "zero", "four"
Key: 3; Sequence: "one", "two"
Key: 5; Sequence: "three"

words.GroupBy
  (word => word.Length,   // Key
   word => word.ToUpper() // Group element
  ) 

Key: 4; Sequence: "ZERO", "FOUR"
Key: 3; Sequence: "ONE", "TWO"
Key: 5; Sequence: "THREE"
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sequence. Both use deferred execution, and stream the left sequence but buffer the
right sequence.

For the join examples in table A.8, we’ll match a sequence of names (Robin, Ruth,
Bob, Emma) against a sequence of colors (Red, Blue, Beige, Green) by looking at the
first character of both the name and the color, so Robin will join with Red and Bob
will join with both Blue and Beige, for example.

 Note that Emma doesn’t match any of the colors—the name doesn’t appear at all
in the results of the first example, but it does appear in the second, with an empty
sequence of colors.

A.9 Partitioning
The partitioning operators either skip an initial part of the sequence, returning only the
rest, or take only the initial part of a sequence, ignoring the rest. In each case you can
either specify how many elements are in the first part of the sequence, or specify a con-
dition—the first part of the sequence continues until the condition fails. After the con-
dition fails for the first time, it isn’t tested again—it doesn’t matter whether later
elements in the sequence match or not. All of the partitioning operators (see table A.9)
use deferred execution. 

Table A.8 Join examples

Expression Result

names.Join // Left sequence
  (colors, // Right sequence
   name => name[0], // Left key selector
   color => color[0], // Right key selector
   // Projection for result pairs
   (name, color) => name+" - "+color
  )

"Robin - Red",
"Ruth - Red",
"Bob - Blue",
"Bob - Beige"

names.GroupJoin
  (colors,
   name => name[0],
   color => color[0],
   // Projection for key/sequence pairs
   (name, matches) => name+": "+
      string.Join("/", matches.ToArray())
  )

"Robin: Red",
"Ruth: Red",
"Bob: Blue/Beige",
"Emma: "

Table A.9 Partitioning examples

Expression Result

words.Take(3) "zero", "one", "two"

words.Skip(3) "three", "four"
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A.10 Projection
We’ve seen both projection operators (Select and SelectMany) in chapter 11. Select
is a simple one-to-one projection from element to result. SelectMany is used when there
are multiple from clauses in a query expression: each element in the original sequence
is used to generate a new sequence. Both projection operators (see table A.10) use
deferred execution.

 There are overloads we didn’t see in chapter 11. Both methods have overloads that
allow the index within the original sequence to be used within the projection, and
SelectMany either flattens all of the generated sequences into a single sequence with-
out including the original element at all, or uses a projection to generate a result ele-
ment for each pair of elements. Multiple from clauses always use the overload that
takes a projection. (Examples of this are quite long-winded, and not included here.
See chapter 11 for more details.)

A.11 Quantifiers
The quantifier operators (see table A.11) all return a Boolean value, using immediate
execution:

■ All checks whether all the elements in the sequence satisfy a specified condition.
■ Any checks whether any of the elements in the sequence satisfy a specified con-

dition, or if no condition is specified, whether there are any elements at all.
■ Contains checks whether the sequence contains a particular element, option-

ally specifying a comparison to use.

words.TakeWhile(word => word[0] > 'k') "zero", "one", "two", "three"

words.SkipWhile(word => word[0] > 'k') "four"

Table A.10 Projection examples

Expression Result

words.Select(word => word.Length) 4, 3, 3, 5, 4

words.Select
  ((word, index) => 
   index.ToString()+": "+word)

"0: zero", "1: one", "2: two", 
"3: three", "4: four"

words.SelectMany
  (word => word.ToCharArray())

'z', 'e', 'r', 'o', 'o', 'n', 'e', 't', 
'w', 'o', 't', 'h', 'r', 'e', 'e', 'f', 
'o', 'u', 'r'

words.SelectMany
  ((word, index) => 
   Enumerable.Repeat(word, index))

"one", "two", "two", "three", 
"three", "three", "four", "four", 
"four", "four"

Table A.9 Partitioning examples (continued)

Expression Result
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A.12 Filtering
The two filtering operators are OfType and Where. For details and examples of the
OfType operator, see the conversion operators section (A.3). The Where operator (see
table A.12) has overloads so that the filter can take account of the element’s index. It’s
unusual to require the index, and the where clause in query expressions doesn’t use
this overload. Where always uses deferred execution.

A.13 Set-based operations
It’s natural to be able to consider two sequences as sets of elements. The four set-
based operators all have two overloads, one using the default equality comparison for
the element type, and one where the comparison is specified in an extra parameter.
All of them use deferred execution.

 The Distinct operator is the simplest—it acts on a single sequence, and just returns
a new sequence of all the distinct elements, discarding duplicates. The other operators
also make sure they only return distinct values, but they act on two sequences:

■ Intersect returns elements that appear in both sequences.
■ Union returns the elements that are in either sequence.
■ Except returns the elements that are in the first sequence but not in the second.

(Elements that are in the second sequence but not the first are not returned.)

Table A.11 Quantifier examples

Expression Result

words.All(word => word.Length > 3) false ("one" and "two" have exactly three 
letters)

words.All(word => word.Length > 2) True

words.Any() true (the sequence is not empty)

words.Any(word => word.Length == 6) false (no six-letter words)

words.Any(word => word.Length == 5) true ("three" satisfies the condition)

words.Contains("FOUR") False

words.Contains("FOUR",
  StringComparer.OrdinalIgnoreCase)

True

Table A.12 Filtering examples

Expression Result

words.Where(word => word.Length > 3) "zero", "three", "four"

words.Where
  ((word, index) => 
   index < word.Length)

"zero",   // length=4, index=0
"one",     // length=3, index=1
"two",     // length=3, index=2
"three", // length=5, index=3
// Not "four", length=4, index=4
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For the examples of these operators in table A.13, we’ll use two new sequences: abbc
("a", "b", "b", "c") and cd ("c", "d"). 

A.14 Sorting
We’ve seen all the sorting operators before: OrderBy and OrderByDescending provide
a “primary” ordering, while ThenBy and ThenByDescending provide subsequent order-
ings for elements that aren’t differentiated by the primary one. In each case a projec-
tion is specified from an element to its sorting key, and a comparison (between keys)
can also be specified. Unlike some other sorting algorithms in the framework (such as
List<T>.Sort), the LINQ orderings are stable—in other words, if two elements are
regarded as equal in terms of their sorting key, they will be returned in the order they
appeared in the original sequence.

 The final sorting operator is Reverse, which simply reverses the order of the
sequence. All of the sorting operators (see table A.14) use deferred execution, but
buffer their data.

Table A.13 Set-based examples

Expression Result

abbc.Distinct() "a", "b", "c"

abbc.Intersect(cd) "c"

abbc.Union(cd) "a", "b", "c", "d"

abbc.Except(cd) "a", "b"

cd.Except(abbc) "d"

Table A.14 Sorting examples

Expression Result

words.OrderBy(word => word) "four", "one", "three", "two", 
"zero"

// Order words by second character
words.OrderBy(word => word[1])

"zero", "three", "one", "four", 
"two"

// Order words by length;
// equal lengths returned in original
// order
words.OrderBy(word => word.Length)

"one", "two", "zero", "four", 
"three"

words.OrderByDescending
  (word => word.Length)

"three", "zero", "four", "one", 
"two"  

// Order words by length and then
// alphabetically
words.OrderBy(word => word.Length)
     .ThenBy(word => word)

"one", "two", "four", "zero", 
"three"  
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// Order words by length and then
// alphabetically backwards
words.OrderBy(word => word.Length)
     .ThenByDescending(word => word)

"two", "one", "zero", "four",
"three"  

words.Reverse() "four", "three", "two", "one", 
"zero"

Table A.14 Sorting examples (continued)

Expression Result
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IDisposable 25, 92, 162, 223
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collection initializers 219
explicit interface implementation 90, 177
extension methods 58, 263, 277–278, 286
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iterator pattern 161
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parallelization 349
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immutability 240
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of Nullable 116
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impedance mismatch 276, 351
imperative programming 313
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delegates 140
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conversions 230
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overloading 251
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type inference 248
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arrays 223, 246, 248
guidelines 213
local variables 210, 215, 235, 267
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restrictions 212
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Increment 210
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IndexOfValue 101
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role in overloading 252
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of local variables 211, 213
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methods
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Integrated Development Environment (IDE) 111
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Intellisense 47, 64, 260, 263, 325
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and extension methods 58
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as reference types 49
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generic type names 93
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support for non-virtual calls 262
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Intersect. See Standard Query Operators, Intersect
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InvalidCastException 53
InvalidOperationException 116, 124
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Inversion of Control 92
invocation of delegates 36–38
Invoke 36, 239
IParallelEnumerable 349
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IQueryable<T> 261, 263, 286, 326–333, 360
IQueryProvider 326–328, 333
IronPython 22, 24, 355
IronRuby 355
IsGenericMethod 95
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IsGenericTypeDefinition 94
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IsNullOrEmpty 262
ITask 180
iterable 162
iteration

manual vs foreach 172
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iterator blocks 165–173, 177, 179, 258, 358
Microsoft implementation 172
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using method parameters 169
yield type 166

iterator pattern 161
iterators 161–182
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implementing in C# 1 162
iterator blocks. See iterator blocks

restarting within iterator block 167
yield statements. See yield statements
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influence over .NET 18

Java Virtual Machine (JVM) 19
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JIT. See Just-In-Time (JIT) compiler
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Join. See Standard Query Operators, Join
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Operators, joins
Just-In-Time (JIT) compiler 18, 25, 201
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JVM. See  Java Virtual Machine (JVM)
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key selectors 297
key/value pair 101
KeyPress 139
KeyPressEventArgs 141
KeyPressEventHandler 140–141
Keys 101
keys, in dictionaries 84
keystrokes 214
KeyValuePair<TKey,TValue> 67, 108, 220
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lambda expressions 10, 56, 137, 230–254, 277

body 234, 246, 251
built from query expressions 284–285, 288, 

290, 303, 330
conversion to expression trees 241
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in fluent interfaces 271
readability 356
role in LINQ 325
second phase of type inference 249
simplicity 12
use when filtering 265

Lambda method of Expression class 240
LambdaExpression 240, 362
language changes 208
language designers 113, 128, 136, 183, 204, 253
Language INtegrated Query (LINQ) 14, 21, 

56–57, 288–352
C# 2 as stepping stone 160–161
core concepts 275–281
deferred execution 279
functional style 354
joins 297
Standard Query Operators. See Standard Query 

Operators
type inference 251
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use of expression trees 239, 244
use of extension methods 256, 263, 265
use of lambda expressions 231, 235
use of projection initializers 226

language specification
collection initializers 220
embedded objects 218
extended type terminology 258
generics 85
iterator blocks 172
method group conversions 141
overload resolution 251
pragmas 197
query expression pattern 285
transparent identifiers 295, 297
type inference 248

language-lawyer 80
languages

adding functionality on nullable types 119
different behavior for nullable types 128

last in first out 100
Last. See Standard Query Operators, Last
LastOrDefault. See Standard Query Operators, 

LastOrDefault
laziness 214
lazy code generation 88
lazy loading 325, 337
LDAP. See Lightweight Directory Access Protocol
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left outer joins 301, 323
Length 295
LessThan 239
let clauses. See query expressions, let clauses
Libraries 25
library changes 208
library design 81
lifetime of captured variables 154
LIFO last in first out 100
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lifted operators 125, 128
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Lightweight Directory Access Protocol 347
limitations of generics 102
line breaks 146
LinkedList<T> 101
LINQ in Action 18, 315, 344
LINQ providers 244, 276–277, 281, 292, 

314, 333, 344
LINQ. See Language INtegraged Query (LINQ)
LINQ to Active Directory 347
LINQ to Amazon 18, 344
LINQ to DataSet 315, 334–338
LINQ to Entities 348
LINQ to NHibernate 345
LINQ to Objects 275–313

lambda expressions 244
using with LINQ to DataSet 333–334, 337
using with LINQ to XML 343

LINQ to SharePoint 347
LINQ to SQL 17, 22, 314–326

compared with Entity Framework 348
debug visualizer 321
implicit joins 323
initial population 318–319
joins 322
model creation 315–318
queries 319–324
updating data 324–325
use of expression trees 244
use of IQueryable 330

LINQ to XML 16, 315, 338–344
LINQ. See Language INtegraged Query (LINQ)
Lippert, Eric 106
List<T>

collection initializers 219
comparison with ArrayList 88, 96
ConvertAll 71, 267, 277
Enumerable.ToList 360
FindAll 153
ForEach 146
lambda expressions 235–236
unstable sort 369
use of delegates in .NET 2.0 160, 356
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local variables 151, 155, 285

declared in anonymous methods 146
implicit typing. See impicitly typed local variables
separate instances 155
stored in iterators 166

lock 209
lock statement 181
locking 192
log files 306
logging 188, 192, 228, 237, 318, 325, 332
logic 239
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logical AND operator for bool? 127
logical model 348
LongCount. See Standard Query Operators, 

LongCount
looping in anonymous methods 146
loops

and anonymous methods 159
captured variables 156
in lambda expressions 234
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as substitute for null 114
for faking nullity 13
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maintainability 159
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MakeGenericMethod 95
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management 353
Manning 315, 344
mapping ADO.NET Entity Framework 348
Marguerie, Fabrice 344
marshaller 199
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Max. See Standard Query Operators, Max
maybe sense of null bool? value 128
mcs 199
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MemoryStream 51, 88, 142, 257
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metadata 110, 315, 319
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method arguments
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compared with type arguments 69
in expression trees 243
used in type inference 80

method calls
in expression trees 243
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method chaining 354
method exit points 169
method groups 140, 230, 244, 246

ambiguous conversions 141
converting into delegates 140
covariance and contravariance 141–144
implicit typing 212
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method parameters
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contravariance 105
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method signatures, reading generics 72
MethodInfo 95, 243
MethodInvoker 143
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metrics 269
micro-optimization 266
Microsoft

C# compiler implementation 158, 172, 
197–198, 237

design guidelines 93, 95
language designers 120, 184, 358
language specification 85
LINQ 338, 344, 347–350
reasons for creating .NET 18, 20, 24, 31
Research 21, 354

Microsoft Robotics Studio 178
Min. See Standard Query Operators, Min
mindset 271
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mini-CLR 22
MinValue of DateTime 114
Miscellaneous Utility Library 174, 257, 349
MiscUtil. See Miscellaneous Utility Library
missing features of Stream 257
missing keys in Hashtables 132
mistakes 352
ML 231, 354
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Monty Python 221
MouseClick 139
MouseEventArgs 141
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MoveNext 162, 164, 166, 169, 172, 279
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LINQ standard query operators 281
LINQ to XML 338, 342

multi-core processors 357
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multi-threading 116, 178, 349
mutability wrappers for value types 115
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namespace aliases 193–194
namespace hierarchy 195
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for extension methods 262, 273
XML 338

naming 356
conventions for type parameters 71
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methods 258
nested types 191

partial types 185
used for iterator implementation 164

.NET
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non-nullable constraint 323
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Norås, Anders 272
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argument when invoking static methods 95
as empty delegate invocation list 39
as failure value 131
behavior as an argument value 53
comparisons in generics 81–82
DBNull 114, 335
default value for reference types 82
extension methods 262
implicit typing 212
initial value in iterator blocks 172
nullable types 13, 58, 112–136
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semantic meanings 114
target of extension methods 262–263, 273
type inference 223

null coalescing operator 128, 133
use with reference types 130

null literal 122
null value 335

See also nullable types, null value
Nullable class 119

Compare method 120
Equals method 120
GetUnderlyingType method 120

nullable logic 127–128
nullable types 58–59, 112–136, 258, 335

CLR support 118–119
conversions 124
conversions and operators 124–128
framework support 115–118
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logical operators 127
not valid with value type constraints 76
novel uses 131–136
null value 120
operators 125
syntactic sugar in C# 2 120
underlying type 116, 120
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explicit conversion to non-nullable type 117
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HasValue property 116
implicit conversion from non-nullable type 117
struct 116
ToString behavior 117
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Value property 116
wrapping and unwrapping 117

nullity check 149
NullReferenceException 82, 118–119, 262
numbers 272
numeric constraints 106
numeric types 125
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object creation 215
object initializers 215–218, 283, 355
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Object Relational Mapping (ORM) 22, 351

Entity Framework 348
LINQ to SQL 314, 325
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Object Services 348
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object-oriented data model 276, 300
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Office 2007 21
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open source 345
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default. See default value expressions
typeof. See typeof operator
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of join ... select 300
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OrderBy. See Standard Query Operators, OrderBy
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ordering 15, 267, 290

grouping 308
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ParallelEnumerable<T> 349
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types in anonymous method declarations 146
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for delegates 35
in expression trees 243
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Parse 342
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methods 188, 318
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partitioning
pass by reference. See parameter passing
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permissions 203
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pointers 199
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project management 269
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projection
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property descriptors 238
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token 203
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quantifiers. See Standard Query Operators, 

quantifiers
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query expression pattern 285
query expressions 14, 275–314

consistency across data sources 337
continuations 310
embedded within XElement constructors 340
from clauses 283, 303, 367
functional style 354
join ... into clauses 301
let clauses 295, 321
LINQ to SQL 325
nested 341
nesting 300
orderby clauses 292
Queryable extension methods 330
range variables. See range variables
readability 357
select clauses 283, 287, 292, 300, 303
translations 284
transparent identifiers. See transparent 

identifiers
type inference 246
where clauses 290, 321, 332, 368

query parameters 320
query translation 318
Queryable 263, 266, 326, 328, 330, 333, 362
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looping in C# 1 11
separating concerns in C# 2 11

QueryOptions 350
QueryProvider 326
Queue<T> 100
quirks in iterator block implementation 172
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range 174
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range variables 287, 290, 295, 300, 304, 306, 310

explicitly typed 289
Range. See Standard Query Operators, Range
Range<T> 264, 268
Read 257
readability 12, 208

anonymous methods 138, 151, 159, 230
C# 3 initializers 217, 222–223
C++ templates 108
extension methods 260, 263, 266, 270, 272
generic method type inference 80
generics 111
implicit typing 213
lambda expressions 10, 232, 234
namespace aliases 193
null coalescing operator 130–131, 133
of implementation 356
of nullable type syntax 120
of results 356
query expressions 291, 308, 312
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ReadOnly 98
read-only

automatically implemented properties 210
properties 215

recursion, XElement constructor 339
redundancy of specifying type arguments 79
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refactoring 21, 85, 133, 187, 316, 356
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obtained via boxing 53
passed a a parameter 52

reference parameters 210
reference types 48, 75

use with null coalescing operator 130
ReferenceCompare 135
reflection 77, 92, 238, 244, 340, 355
Reflector 123, 146, 172, 292
register optimizations 88
relational data model 300
relational model 276
relational operators 125

on nullable types 125
reliability 21
remote execution 245
Remove 38, 138
RemoveAll 97
RemoveAt 101

Repeat 98
Repeat. See Standard Query Operators, Repeat
Reset 172
resource requirements 175
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restoring warnings 198
restraint 208
return keyword, anonymous methods 148
return statements 169, 233, 253
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return type

covariance 46
inference 288
of object 64
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return types 108
covariance 141
covariance for delegates 143
lambda expressions 233
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of partial methods 189
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Reverse. See Standard Query Operators, Reverse
reversing 265

of ranges 175
RIA. See Rich Internet Applications (RIA)
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right associativity of null coalescing operator 130
Robotics Studio 178
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Ruby 22, 48
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safety 111
sample data 283
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schema 316

LDAP 347
Scheme 151
scientific computing 106
scope 151, 155

of finally blocks in iterators 171
range variables 311

scripting 24
SDK. See Software Development Kit (SDK)
sealed 255

implicit for static classes 191
sealed types 190
security 203
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select clauses. See query expressions, select clauses
Select, method of DataTable 334
Select. See Standard Query Operators, Select
SelectMany. See Standard Query Operators, 

SelectMany
semi-colons 234
sender events 237
sequence diagram 279
SequenceEqual. See Standard Query Operators, 

SequenceEqual
sequences 278, 290
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generated by multiple from clauses 306
infinite 278, 294
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untyped 289, 361

serialization 226
Server Explorer 316, 335
Service Oriented Architecture (SOA) 358
servlet 18
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set-based operations. See Standard Query 

Operators, set-based operations
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setter 192
SharePoint 344
sharing variables between anonymous 

methods 158
short-circuiting operators 127, 133
shorthand for nullable types 59
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complicated generics 250
of event handlers 142
of lifted operators 125
of methods 35
overloading in C# 3 251
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signed assemblies 203
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Silverlight 22
simplicity 151, 159, 175, 214
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Single. See Standard Query Operators, Single
SingleOrDefault. See Standard Query Operators, 

SingleOrDefault
singleton pattern 190
SkeetySoft 282, 289, 307
Skip. See Standard Query Operators, Skip
SkipWhile. See Standard Query Operators, 

SkipWhile
sloppiness 353

snippets 28–30, 264
expansions 28
meaning of ellipsis 29

Snippy 30, 144, 187, 241, 263
SOA. See Service Oriented Architecture (SOA)
software development 352
Software Development Kit (SDK) 123
software engineering 274
Sort 105, 148, 236, 369
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SortedList 101
SortedList<TKey,TValue> 101
sorting 133, 265, 267, 356

files by name and size 148
in C# 1 8
See also Standard Query Operators, sorting

source assembly 201
source code 25

available to download 30
source files 198
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special types, restrictions in derivation type 

constraints 78
specialization 255, 356

of templates 109
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Common Language Infrastructure 25
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speculation 352
SQL 15, 22, 275–276, 351

behavior of NULL values 128
joins 294, 300–301, 304, 322
LINQ to SQL 244, 314, 325
logging 318
ordering of clauses 286

SQL Server 346, 348
SQL Server 2005 21, 315

Express edition 316
SQL Server 2008 348
SQL Server Management Studio Express 322
square brackets 94
square root 267
stable sort 369
stack 50, 52, 54, 155–156, 201
stack frame 152, 155
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Standard Query Operators 274, 281, 327, 

343, 359–370
Aggregate 359
aggregation 332, 359
All 367
Any 367
AsEnumerable 360
AsQueryable 360
Average 333, 359
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Cast 289, 326, 361
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concatenation 360
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conversion 360
Count 301, 333, 359
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element operations 363
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ElementAtOrDefault 363
Empty 364
equality operations 363
Except 368
filtering 368
First 363
FirstOrDefault 363
generation 364
GroupBy 269, 308, 365
grouping 365
GroupJoin 303, 365
Intersect 368
Join 365
joins 365
Last 363
LastOrDefault 363
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Max 359
Min 359
OfType 289, 326, 361, 368
OrderBy 267, 271, 294, 369
OrderByDescending 267, 294, 369
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Range 264, 364
Repeat 364
Reverse 264, 281, 369
Select 266, 277, 281, 285, 292, 296, 367
SelectMany 306, 367
SequenceEqual 363
set-based operations 368
Single 320, 363
SingleOrDefault 363
Skip 366
SkipWhile 366
sorting 369
Sum 269, 332, 359
Take 366
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ThenBy 267, 271, 294, 369
ThenByDescending 267, 294, 369
ToArray 360
ToDictionary 361
ToList 360

ToLookup 361, 365
Union 368
Where 265, 285, 291, 368

standardization 19
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requirement for iterators 163

state machine 181
for iterators 166

static classes 190–197, 256, 258, 356
System.Nullable 119

static constructors 87, 221
static generic methods, workaround for lack of 

generic constructors 108
static languages 354
static members

of generic types 85
thread safety 209

static methods 190, 255, 258
as action of delegate 36

static modifier for static classes 191
static properties 209
static typing 42–43, 57, 65, 141, 211, 354

compiler enforcement 43
of Expression 240

StaticRandom 349
storage 278
Stream 51, 142, 257, 278
streaming 265, 279, 289–290, 306, 308
streamlining 353
StreamUtil 257
string

as a reference type 50
as example of immutability 39

StringBuilder 52
StringCollection 46
StringComparer 364
StringDictionary 99
StringProcessor 34
strong typing 42, 45, 56

of implementation 74
strongly typed interface 85
Stroustrup, Bjarne 109
struct. See value types
structs as lightweight classes 51
structure 222, 339
structures as generic types 67
SubmitChanges 319
subtraction of nullable values 123
Sum. See Standard Query Operators, Sum
Sun 18, 20, 24
symmetry 135
Synchronized 98
SynchronizedCollection<T> 99–100
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SynchronizedKeyedCollection 71, 100
synchronous code 179
syntactic shortcut for anonymous methods 149
syntactic sugar 13, 162, 181, 216, 276

for nullable types 120
syntax 25
System namespace 232
System.Linq namespace 263
System.Linq.Expressions namespace 239
System.Nullable class. See Nullable class
System.Nullable<T> struct. See Nullable<T> struct
System.Runtime.CompilerServices namespace 261
System.Web.UI.WebControls 193
System.Windows.Forms 193
System.Xml.Linq 338

T

Table 319, 326
Take. See Standard Query Operators, Take
TakeWhile. See Standard Query Operators, Take-

While
Tatham, Simon 182
TDD. See Test-Driven Development (TDD)
technology

history 18
milestones 22
pace of change 3

tedious coding 229
template arguments 109
template metaprogramming 109
templates 20, 83, 102, 108
terminology 253, 258, 297

automatically implemented properties 209
ternary operator. See conditional operator
test-bed for captured variables behavior 160
Test-Driven Development (TDD) 174
text editor 222
TextReader 278
ThenBy. See Standard Query Operators, ThenBy
ThenByDescending. See Standard Query 

Operators, ThenByDescending
thinking in C# 18
third party libraries 273
this 151, 155, 163, 221, 258, 329
Thread constructor 140
thread safe 39
thread safety 39, 116, 209, 226

uses for queues 100
threadpool 153
threads 153, 178
ThreadStart 34, 140, 143, 150, 152
throwaway code 209
TIME_ZONE_INFORMATION 199
TimeSpan 116, 125

ToArray. See Standard Query Operators, ToArray
ToDictionary. See Standard Query Operators, 

ToDictionary
ToList 236

See also Standard Query Operators, ToList
ToLookup. See Standard Query Operators, 

ToLookup
tooltips 211, 225, 260
ToString 53, 226, 238, 240, 268, 284, 318, 329
traditional managed developers 24
transaction management 318
transactions, NHibernate 346
transformations 161, 279
translations 284
transparent identifiers 294, 300, 306

erasure 297
trial and error 66
TrimExcess 98
TrimToSize 98
tri-state logic 127
trivial key selector 298
trivial properties 209, 228–229
Trojan horse 24
true operator 125
TrueForAll 96
truth tables 127
TryGetValue 99
TryParse 81, 132
TryXXX pattern 81, 131
T-SQL 316
two-phase type inference 248
type arguments 68, 74, 92, 246

inference 79
of anonyous types 225

type constraints 74–75, 185
combining 78
lack of operator/numeric 106
restricted combinations 78

type conversions and type safety 44
type declarations 185
type erasure 110
type hierarchy expression classes 240
type inference 43, 79, 288, 290, 355

anonymous types 225
changes in C# 3 245–253
in C# 2 74
local variables 210
return types of anonymous functions 247
two-phase in C# 3 248

type initialization 85
type parameter constraints 77
type parameters 67, 92, 109, 211

and typeof 93
constraints. See type constraints
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inference 80
unconstrained 75

Type property of Expression 239
type safety 42, 44, 103, 111
type system

characteristics of C# 42, 48
in C# 1 33
richness 45
summary of C# 1 48

type systems 42, 59
type variables, fixed and unfixed 248
typed datasets 335–338
typedef 106
TypedTableBase 337
typeless expressions 223
typeof 244

with nullable types 121
typeof operator 69, 81, 92
type-specific optimizations 109
typing, IComparer<T> 9

U

unary logical negation operator
for bool? 127

unary operators 125
unbound generic types 68, 92
unboxing 53–54, 89

of Nullable. See Nullable, boxing and unboxing
uncertainty 121
unconstrained type parameters 75
undefined behavior of IEnumerator.Current 173
unfixed type variables 248
unified data access 276
unintended comparisons with nullable values 126
Union. See Standard Query Operators, Union
unit testing 202, 353
unit tests 131, 222, 272
Unix 19
unknown values 13
UnmanagedType 201
unsafe code 42, 199
unsafe conversions 44
unsigned assemblies 203
untyped datasets 334–335
unwrapping 123
UPDATE 319
Update 319
URLs

comparison with references 49, 54, 113
fetching in new threads 153

user interface 269
user-defined operators 125
using directive 135, 193, 261

using statement 25, 28, 181, 193
implicit typing 213
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