Ayende Rahien

/Ill MANNING

DSLs in Boo

DSLs in Boo

DOMAIN-SPECIFIC . ANGUAGES IN .NET

OREN EINI
WRITING AS AYENDE RAHIEN

MANNING

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

Email: orders@manning.com

©2010 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine

Development editor: Tom Cirtin

Manning Publications Co. Copyeditor: Andy Carroll
Sound View Court 3B Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 978-1-933988-60-3
Printed in the United States of America
12345678910 - MAL - 15 14 13 12 11 10

For Mom
who told me it would take longer than I expected

brief contents

© 00 N O 00 N W N R

R R R R
W N R O

What are domain-specific languages? 1

An overview of the Boo language 22

The drive toward DSLs 39

Building DSLs 63

Integrating DSLs into your applications 86
Advanced complier extensibility approaches 108
DSL infrastructure with Rhino DSL 134
Testing DSLs 150

Versioning DSLs 173

Creating a professional Ul fora DSL 194
DSLs and documentation 221

DSL implementation challenges 239

A real-world DSL implementation 263

contents

1

preface xv

acknowledgments xvii

about this book xuviii

about the author xx

about the cover illustration xxi

What are domain-specific languages? 1

1.1 Striving for simplicicy 2
Creating simple code 3 = Creating clear code 3
Creating intention-revealing code 4

1.2 Understanding domain-specific languages 5
Expressing intent 6 = Creating your own languages 6

1.3 Distinguishing between DSL types 7
External DSLs 7 = Graphical DSLs 9 = Fluent interfaces 10
Internal or embedded DSLs 12

1.4 Why write DSLs? 13
Technical DSLs 14 = Business DSLs 14 = Automatic or
extensible DSLs 16

1.5 Boo’s DSL capabilities 16

1.6 Examining DSL examples 18

Brail 18 = Rhino ETL 19 = Bake (Boo Build System) 19
Specter 20

ix

CONTENTS

1.7 Summary 20

2 An overview of the Boo language 22

2.1 Why use Boo? 23

2.2 Exploring compiler extensibility 24

2.3 Basic Boo syntax 25

2.4 Boo’s built-in language-oriented features 29
String interpolation 29 = Is, and, not, and or 30 = Optional
parentheses 30 = Anonymous blocks 31 = Statement modifiers 31
Naming conventions 32 = Extension methods 33 = Extension

properties 34 = The IQuackFu interface 34
2.5 Summary 37

3 The drive toward DSLs 39

3.1 Choosing the DSL type to build 40
The difference between fluent interfaces and DSLs 40
Choosing between a fluent interface and a DSL 42

3.2 Building different types of DSLs 43
Building technical DSLs 43 = Building business DSLs 45
Building Extensibility DSLs 47

3.3 Fleshing out the syntax 47

3.4 Choosing between imperative and declarative DSLs 48

3.5 Taking a DSL apart—what makes it tick? 51

3.6 Combining domain-driven design and DSLs 53
Language-oriented programming in DDD 53 = Applying a DSL
in a DDD application 54

3.7 Implementing the Scheduling DSL 56

3.8 Running the Scheduling DSL 59

3.9 Summary 61

4 Building DSLs 63

4.1 Designing a system with DSLs 64
4.2 Creating the Message-Routing DSL 65
Designing the Message-Routing DSL 65

4.3 Creating the Authorization DSL 72
Exploring the Authorization DSL design 73 = Building the
Authorization DSL 76

4.4 The “dark side” of usinga DSL 78
4.5 The Quote-Generation DSL. 78

Building business-facing DSLs 80 = Selecting the appropriate
medium 83

CONTENTS

4.6 Summary 84

5 Integrating DSLs into your applications 86

5.1 Exploring DSL integration 86

5.2 Naming conventions 88

5.3 Ordering the execution of scripts 91
Handling ordering without order 91 = Ordering by name 92
Prioritizing scripts 92 = Ordering using external configuration 94

5.4 Managing reuse and dependencies 94

5.5 Performance considerations when usinga DSL 96
Script compilation 97 = Script execution 97 = Script
management 98 = Memory pressure 98

5.6 Segregating the DSL from the application 98
Building your own security infrastructure 99 = Segregating the
DSL 99 = Considerations for securing a DSL in your application 101

5.7 Handling DSL errors 102
Handling runtime errors 102 = Handling compilation errors 104
Error-handling strategies 104

5.8 Administrating DSL integration 105
5.9 Summary 106

6 Advanced complier extensibility approaches 108

6.1 The compiler pipeline 109

6.2 Meta-methods 110

6.3 Quasi-quotation 113

6.4 AST macros 115
The unroll macro 116 = Building macros with the MacroMacro 118
Analyzing the using macro 120 = Building an SLA macro 123
Using nested macros 124

6.5 AST attributes 126

6.6 Compiler steps 128
Compiler structure 129 = Building the implicit base class compiler
step 130

6.7 Summary 132

7 DSL infrastructure with Rhino DSL 134

7.1 Understanding a DSL infrastructure 135

7.2 The structure of Rhino DSL 136
The DslFactory 136 = The DslEngine 137 = Creating a custom
IDslEngineStorage 139

7.3 Codifying DSL idioms 143

xii CONTENTS

ImplicitBaseClassCompilerStep 143 = AutoReferenceFilesCompilerStep
AutolmportCompilerStep 144 » UseSymbolsStep 144
UnderscoreNamingConventionsToPascalCaseCompilerStep 145
GeneratePropertyMacro 146

7.4 Batch compilation and compilation caches 146
7.5 Supplying external dependencies to our DSL 148
7.6 Summary 149

8 Testing DSLs 150

8.1 Building testable DSLs 150

8.2 Creating tests fora DSL 151
Testing the syntax 152 = Testing the DSLAPI 155 = Testing the DSL
engine 158

8.3 Testing the DSL scripts 160
Testing DSL scripts using standard unit testing 160 = Creating the
Testing DSL 162

8.4 Integrating with a testing framework 166
8.5 Taking testing further 171
Building an application-testing DSL 171 = Mandatory testing 171

8.6 Summary 172
9 Versioning DSLs 173

9.1 Starting from a stable origin 174

9.2 Planning a DSL versioning story 175
Implications of modifying the DSL engine 175 = Implications of
modifying the DSL APl and model 176 = Implications of modifying the
DSL syntax 177 = Implications of modifying the DSL
environment 177

9.3 Building a regression test suite 178

9.4 Choosing a versioning strategy 179
Abandon-ship strategy 179 = Single-shot strategy 179 = Additive-
change strategy 180 = Tower of Babel strategy 181 = Adapter
strategy 182 = The great-migration strategy 184

9.5 Applying versioning strategies 185
Managing safe, additive changes 185 = Handling required breaking
change 187

9.6 DSL versioning in the real world 190
Versioning Brail 190 = Versioning Binsor 190 = Versioning Rhino
ETL 191

144

CONTENTS xiii

9.7 When to version 192
9.8 Summary 193

10 Creating a professional Ul for a DSL 194

10.1 Creating an IDE fora DSL 195
Using Visual Studio as your DSLIDE 196 = Using #develop as your
DSLIDE 198

10.2 Integrating an IDE with a DSL application 198
Extending #develop highlighting for our DSLs 200 = Adding code
completion to our DSL 203 = Adding contextual code completion
support for our DSL 206

10.3 Creating a graphical representation for a textual DSL 209
Displaying DSL execution 209 = Creating a UI dialect 211
Treating code as data 212

10.4 DSL code generation 216
The CodeDOM provider for Boo 216 = Specific DSL writers 217

10.5 Handling errors and warnings 219
10.6 Summary 220

11 DSLs and documentation 221

11.1 Types of documentation 222
11.2 Writing the Getting Started Guide 223

Begin with an introduction 224 = Provide examples 224

11.3 Writing the User Guide 225
Explain the domain and model 225 » Document the language
syntax 227 = Create the language reference 230 = Explain debugging
to business users 231

11.4 Creating the Developer Guide 232
Outline the prerequisites 232 = Explore the DSL’s
implementation 232 = Document the syntax implementation 233
Documenting AST transformations 236

11.5 Creating executable documentation 237
11.6 Summary 238

12 DSL implementation challenges 239
12.1 Scaling DSL usage 240

Technical—managing large numbers of scripts 240 = Performing
precompilation 241 = Compiling in the background 243
Managing assembly leaks 243

xiv

CONTENTS

12.2 Deployment—strategies for editing DSL scripts
in production 244
12.3 Ensuring system transparency 246
Introducing transparency to the Order-Processing DSL 246
Capturing the script filename 248 = Accessing the code at runtime 248
Processing the AST at runtime 250

12.4 Changing runtime behavior based on AST information 251

12.5 Data mining your scripts 253

12.6 Creating DSLs that span multiple files 254

12.7 Creating DSLs that span multiple languages 256

12.8 Creating user-extensible languages 256
The basics of user-extensible languages 256 = Creating the Business-
Condition DSL 258

12.9 Summary 262

13 A real-world DSL implementation 263

13.1 Exploring the scenario 264

13.2 Designing the order-processing system 265

13.3 Thinking in tongues 267

13.4 Moving from an acceptable to an excellent language 269

13.5 Implementing the language 271
Exploring the treatment of statement’s implementation 273
Implementing the upon and when keywords 274 = Tracking which file
is the source of a policy 276 = Bringing it all together 276

13.6 Using the language 278

13.7 Looking beyond the code 280
Testing our DSL 280 = Integrating with the user interface 281
Limited DSL scope 282

13.8 Going beyond the limits of the language 282
13.9 Summary 283

appendix A Boo basic reference 285
appendix B Boo language syntax 302

index 313

preface

In 2007, I gave a talk about using Boo to build your own domain-specific languages
(DSLs) at JAOO (http://jaoo.dk), a software conference in Denmark. I had been work-
ing with Boo and creating DSLs since 2005, but as I prepared for the talk, I was sur-
prised to see just how easy it was to build DSLs with Boo. (I find that teaching
something gives you a fresh perspective on it.)

That experience, and the audience’s response, convinced me that you don’t have
to be a compiler expert or a parser wizard to build your own mini-languages. I realized
that I needed to formalize the practices I had been using and make them publicly
available.

One of the most challenging problems in the industry today is finding a way of
clearly expressing intent in a particular domain. A lot of time and effort has been
spent tackling that problem. A DSL is usually a good solution, but there is a strong per-
ception in the community that writing your own language for a particular task is an
extremely difficult task.

The truth is different from the perception. Creating a language from scratch
would be a big task, but you don’t need to start from scratch. Today, there are lots of
tools and plenty of support for creating languages. When you decide to make an inter-
nal DSL—one that is hosted inside an existing programming language (such as
Boo)—the cost of building that language drops significantly.

I routinely build new languages during presentations (onstage, within 5 or 10 min-
utes), because once you understand the basic principles, it is easy. Easy enough that it

XV

http://jaoo.dk

XVi

PREFACE

deserves to be a standard part of your toolset, ready to be used whenever you spot a
problem that is suitable for a DSL solution.

That 2007 JAOO talk was the start of the journey that led to the creation of this
book. Finishing up this project took longer than expected, but I am very happy to say
that I have been successful in what I set out to do.

This book is meant to be an actionable guide, not a theory book. I go over the the-
ory in the relevant places, but my goal is that, by the time you are halfway through the
book, you'll be able to write your own DSLs.

acknowledgments

Like most books, this wasn’t a solo effort. I would like to send my heartfelt gratitude to
the people who made this book possible.

Thanks to Rodrigo B. de Oliveira, for creating the Boo language in the first place,
and Cedric Vivier, Daniel Grunwald, Dmitry Malyshev, Greg Nagel, Joao Braganca,
Martinho Fernandes, Paul Lang, and Avishay Lavie for helping to create such a won-
derful language.

To the people who worked on and extended the Rhino DSL project, Simone
Busoli, Nathan Stott, Jason Meckley, Craig Neuwirt, Tobias Hertkorn, Markus Zywitza,
Adam Tybor, Paul Barriere, and Leonard Smith, thanks for making my job so much
easier.

To everyone at Manning, especially publisher Marjan Bace and associate publisher
Mike Stephens, thanks for your guidance, support, and patience. To development edi-
tor Tom Cirtin, copyeditor Andy Carroll, and proofreader Katie Tennant, thanks for
being so patient with me, even when I took too long to get things done. Special thanks
to technical proofreader Justin Chase for carefully reading the final manuscript once
it was in production and for checking the code.

To the reviewers who read the manuscript numerous times during development,
thanks for your comments and valuable feedback: Andrew Glover, Jon Skeet, Derik
Whittaker, Freedom Dumlao, Justin Lee, Paul King, Matthew Pope, Craig Neuwirt,
Mark Seemann, Steven Kelly, Robert Wenner, Garabed “Garo” Yeriazarian, and Avi-
shay Lavie.

xvii

about this book

This book is meant for intermediate to advanced .NET developers who are interested
in using domain-specific languages in their applications.

If you are new to language-oriented programming, this book will teach you how to
create, build, and maintain your own languages.

If you are experienced with language-oriented programming, this book will give
you all the practical knowledge necessary to easily build DSLs using the Boo program-
ming language.

Note, however, that this book is focused on the practical side of building DSLs.
While I talk about the theory underlying this field, I focus on practical aspects. If you
are interested in learning more about DSLs, I also recommend reading Martin
Fowler’s forthcoming book on the topic: http://www.martinfowler.com/bliki/
DomainSpecificLanguage.html. The book isn’t finished yet, but much of the con-
tent can already be found on his site.

Roadmap

This book has five main sections.

Chapters 1-2 discuss DSLs in general, introduce the Boo language, and explain
why I chose to use it as the basis for my DSL adventures.

Chapters 3-5 walk through the implementation of several different DSLs, their
integration into applications, and all the various concerns you’ll have to deal with
when you add a DSL to your project.

xviii

http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html

ABOUT THIS BOOK xix

Chapters 6-7 dive into advanced language manipulation and the infrastructure
required to build an industry-strength DSL.

Chapters 8-11 go into the details surrounding a production-worthy DSL imple-
mentation: building testable languages and test languages, creating versionable DSLs,
working with user interfaces for the languages, and documenting them.

Chapters 12-13 talk about implementation challenges for DSLs and walk through
the steps of building a full real-world DSL example.

Two appendixes conclude the book. Appendix A is a basic Boo reference, familiar-
izing you with how to use Boo as a programming language, while appendix B covers
the Boo language syntax.

Code conventions and downloads

All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Source code for all working examples in this book is available for
download from the publisher’s website at www.manning.com/DSLsinBoo.

You can download the binary distribution of Boo from the Boo website at http://
boo.codehaus.org. For more information on using Boo once you've downloaded it,
please see page 23.

Author Online

The purchase of DSLs in Boo includes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/DSLsinBoo. This
page provides information about how to get on the forum once you're registered,
what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking him some challenging questions, lest his interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

http://boo.codehaus.org
http://boo.codehaus.org
www.manning.com/DSLsinBoo
www.manning.com/DSLsinBoo

about the author

Oren Eini is an independent consultant based in Israel. He is a frequent blogger at
www.ayende.com/Blog/ under his pseudonym Ayende Rahien, and he’s an interna-
tionally known presenter, having spoken at conferences such as DevIeach, JAOO, Ore-
dev, NDC, and Progressive.NET.

Oren’s main focus is on architecture and best practices that promote quality soft-
ware and zero-friction development. He is the author of Rhino Mocks, one of the most
popular mocking frameworks on the .NET platform, and he’s also a leading figure in
other well-known open source projects, including the Castle project and NHibernate.

Oren’s hobbies include reading fantasy novels, reviewing code, and writing about
himself in the third person. Oren is also a Microsoft MVP, a fact that he tends to forget
when writing a bio.

www.ayende.com/Blog/

about the cover illustration

The figure on the cover of DSLs in Boo is captioned “Le Dauber,” which means art stu-
dent. The illustration is taken from a 19th-century edition of Sylvain Maréchal’s four-
volume compendium of regional dress customs published in France. Each illustration
is finely drawn and colored by hand. The rich variety of Maréchal’s collection reminds
us vividly of how culturally apart the world’s towns and regions were just 200 years ago.
Isolated from each other, people spoke different dialects and languages. In the streets
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by their dress.

Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life-certainly for a more varied and fast-paced technologi-
cal life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

What are domain-specpfic
languages ?

In this chapter

Understanding domain-specific languages
Distinguishing between domain-specific language types
Why write a domain-specific language?

Why use Boo?

Examining domain-specific language examples

In the beginning, there was the bit. And the bit shifted left, and the bit shifted
right, and there was the byte. The byte grew into a word, and then into a double
word. And the developer saw the work, and it was good. And the evening and the
morning were the first day. And on the next day, the developer came back to the
work and spent the whole day trying to figure out what he had been thinking the
day before.

If this story rings any bells, you’re familiar with one of the most fundamental
problems in computer science. The computer does what it is told, not what the pro-
grammer meant to tell it. Often enough, what the programmer tells it to do is in
direct contradiction to what the programmer meant it to do. And that’s a problem.

1.1

What are domain-specific languages?

I've experienced this myself many times, and I’'m not particularly incompetent. How,
then, did I reach that point?

Striving for simplicity
Take a look at this piece of code:

for (p = freelist, oldp = 0;
p && p != (struct chunk *)brkval;
oldp = p, p = p->next) {
if (p->len > nelems) {
p->len -= nelems;
g = p + p->len;
g->next = 0;
g->len = nelems;
q++;
return (void *)q;
}
if (p->len == nelems) {
if (oldp == 0)
freelist = p->next;
else
oldp->next = p->next;
p->next = 0;
pt+;
return (void *)p;

}

You’re among a decided minority if you can take a single glance at this code and
deduce immediately what it’s doing. Most developers would have to decipher this piece
of code.

How does this connect to my difficulty in telling the computer what I want it to do?
The problem is the level at which I instruct the computer what to do. If I am working
down at the assembly level (or near assembly), I have to instruct the machine what to
do in excruciating detail. The preceding piece of code was taken from the FreeBSD
boot loader’s malloc method, and there are good reasons it looks the way it does, but
writing at this level has a big cost in productivity and flexibility.

Alternatively, I can instruct the computer to do things in higher-level terms, where
it can better interpret what I want it to do.

As developers, we always want to achieve the simplest, clearest way to talk to the
computer, regardless of the task at hand. Different tasks (low-level memory manipula-
tion, for example) require us to work at different levels, but we always strive for read-
able, easily maintainable code. Within a given context, we may need to sacrifice those
goals for other, more important goals (usually performance), but that should only
done very cautiously.

And when we are not working on low-level code, we will, at some point, have to
leave general-purpose programming languages behind to get the desired level of clar-
ity. Building our own languages, each focused specifically on a single task, is a great
way to achieve this simplicity and clarity.

111

112

Striving for simplicity 3

What we’d like to find are clear, concise, and simple ways to instruct the machine
what we want it to do, rather than to laboriously micromanage it.

Creating simple code

Producing code that’s readable, maintainable, and simple is a great goal. But simple
code is much harder to write than complex code. It’s easy to throw code at a problem
until it goes away. Simple code, on the other hand, is what you get when you remove
all the complexity from the code. That isn’t to say that it’s complicated to write simple
code; it’s just that writing complex code is easy. The amount of effort it takes to deci-
pher what a piece of code does is a good indication of how simple the code is.

Consider these two examples of getting the date in two weeks’ time. Which is more
readable?

C# code: DateTime.Now.AddDays (14) ;
C code: time() + 1209600;

I don’t think there’s any question about which is more readable. In fact, an even bet-
ter solution would be this:

DateTime.Now.AddWeeks (2) ;

But this isn’t part of .NET’s Base Class Library (BCL) DateTime API.

Using higher-level concepts means you can concentrate more on what you want to
be done, and less on how it should be done at the machine level. When using .NET or
Java, for instance, I rarely need to concern myself with memory allocation.

That’s helpful, but more often than not, you’ll need to do more interesting things
than merely calculate the date two weeks from now. You'll need to express concepts
and algorithms in ways that make sense, and you’ll need to be able to use them in
projects of significant size and complexity. Having clearer ways to express those con-
cepts translates directly into a more maintainable code base, which means reduced
maintenance costs and an easier time changing and growing the system.

NOTE It’s considered polite to express intent in code in a manner that will
make sense to the next developer who works with your code, particularly
because that poor person may be you. A good suggestion that I take to
heart is to assume that the next developer to touch your code will be an
axe murderer who knows where you live and has a short fuse.

Creating clear code

Code may be clear about how it’s doing things, but it might not be clear about what
it’s doing or why. Because we’re assuming that the next developer will be a vicious
killer with a nasty temper, we should make it easy to figure out what we’ve done and
what we meant.

We can make our code easier to understand by using intention-revealing program-
ming and concepts taken from domain-driven design, a design approach that says that
your API, code structure, and the code itself should express intent, be expressed in the

113

CuapTer 1 What are domain-specific languages?

language of the domain, and generally have a high correlation with the problem
domain that the application is trying to solve.

Even then, we quickly reach a point where our ability to express intent is ham-
pered by the syntax of the language that we’re using.

Creating intention-revealing code

Programming languages make it easy to tell the computer what it should do, but they
can be less effective at expressing developer intent. For that matter, most general-
purpose languages (such as C# or Java) are far less suited for a host of other tasks.

Let’s consider text processing, for example. Suppose you want to validate an Israeli
phone number like this: 03-9876543. You might do this with the code shown in
listing 1.1.

Listing 1.1 Validating a phone number

public bool ValidatePhoneNumber (string input)
{
if (input.Length != 10)
return false;
for (int i = 0; i < input.Length; i++)

{

if (i == 2 && input[i] !'= '-")
return false;
else if (char.IsDigit(input[i]) == false)

return false;
}

return true;
}
Can you look at this code and understand what input it will accept without deciphering
it? If you haven’t noticed by now, I consider the need to decipher code bad.
Now let’s look at a tool that’s dedicated to text processing: regular expressions. Val-
idating the phone number using a regular expression is as simple as the one-liner in
listing 1.2.

Listing 1.2 Validating a phone number using regular expressions

public bool ValidatePhoneNumber (string input)
{

return Regex.IsMatch (input, @"~\d{2}-\d{7}$");
}
In this case, the use of a specialized tool for text processing has made the intent much
easier to understand, but you need to understand the tool. Anyone who knows regular
expressions can glance at the code and figure out what input it will accept.
Another approach is to use masked input to define a mask for certain input, which
would result in code like this:

Mask.Validate (input, "##-#######4#");

1.2

Understanding domain-specific languages 5

The challenges of specialized tools

Regular expressions are notorious for being write-only tools because the results can
be difficult to read, particularly if you don’t write them carefully.

Using special tools to handle specialized tasks requires that you understand how to
use the tools. If you don’t understand regular expressions, and | hand you listing 1.2,
how will you deal with it?

We’ll touch on this topic later in the book; most of chapter 11 is dedicated to tech-
niques that can help people come to grips with custom languages.

Assuming you know that # is the character for matching a numeral, this is even easier
to understand than the regular expression approach. (The .NET framework doesn’t
have any masked-input validation facilities beyond WinForms’ MaskedTestBox.)

Querying and filtering are other situations where code is no longer sufficient. Let’s
say we want to retrieve data for all the customers in London. This isn’t a query that
you’ll want to handle by yourself. Building an optimized query plan, instructing the
data store which section of the data should be scanned, building manual filters for
each individual query ... all of that can be quite tedious. It’s quite a complex task, par-
ticularly if you want to handle it efficiently and in a transaction-safe manner.

It’s far easier to send a SQL statement to the database and let it sort out how it
wants to handle the request on its own. This allows us to speak at a much higher level
of abstraction and ignore the details of how the data is retrieved.

So far, I have been consciously avoiding the use of the term domain-specific lan-
guages, but it’s time we started discussing it.

Understanding domain-specific languages

Martin Fowler defines a domain-specific language (DSL) as “a computer language
that’s targeted to a particular kind of problem, rather than a general purpose lan-
guage that’s aimed at any kind of software problem” (http://martinfowler.com/bliki/
DomainSpecificLanguage.html).

Domain-specific languages aren’t a new idea by any means. DSLs have been around
since long before the start of computing. People have always developed specialized
vocabularies for specialized tasks. That’s why sailors use terms like port and starboard
and are not particularly afraid of gallows. Doctors similarly have a vocabulary that is
baffling to the uninitiated, and weather forecasters have specific terms for various
types of clouds, winds, and storms.

Regular expressions and SQL are similarly specialized languages:

Both are languages designed for a narrow domain—text processing and data-
base querying, respectively.

Both are focused on letting you express what you mean, not how the implemen-
tation should work—that’s left to some magic engine in the background.

http://martinfowler.com/bliki/DomainSpecificLanguage.html

1.2.1

122

What are domain-specific languages?

The reason these languages are so successful is that the focus they offer is incredibly
useful. They reduce the complexity that you need to handle, and they’re flexible in
terms of what you can make them do.

Expressing intent

From the beginning of computer programming, it was recognized that trying to
express what you mean in natural language isn’t a viable approach. A clearer, much
more focused, way to express intent was needed—that’s why we have code, which is
unambiguous (most of the time) and easy for the computer to understand.

But while code may be unambiguous to a computer, it can certainly be incompre-
hensible to people. Understanding code can be a big problem. You tend to write the
code once, and read it many more times. Clarity is much more important than brevity.
By ensuring that our code is readable, clear, and concise, we make an investment that
will benefit us both in the immediate future (producing software that is simpler and
easier to change) and in the long term (providing easier maintainability and a clearer
path for extensibility and growth).

But, as we’ve seen, code isn’t always the clearest way to express intent. This is where
intention-revealing programming comes into play, and one of the tools in that cate-
gory is creating a DSL to clearly and efficiently express intent and meaning in code.

Creating your own languages

Most people assume that creating your own computer language is a fairly complex
matter. This is because most of the literature out there assumes that you want to build
a full-blown general language. This puts a lot of burden on you, as the language
author.

It isn’t simple to create a general language, but it’s certainly possible. It just isn’t
something you’d want to do on a rainy afternoon or over a long weekend. The experi-
ence is out there, but the initial cost remains nontrivial.

But you don’t always have to write your own language from scratch. You can uti-
lize an existing language (called the host language or base language) to provide built-
in language and runtime facilities, and then add more syntax and behavior on top

Building your own compiler

| stated that building your own compiler or interpreter isn’t hard. This is true, to some
extent. The main difficulties in going that route are the scope of the work and the fact
that most of the work is arcane at worst and tedious at best. This is particularly true
if you want to write a full-fledged language.

Writing a general-purpose language is a big task. You need to deal with the details of
the syntax and worry about creating an execution engine (for interpreted languages)
or generating IL (Intermediate Language) or machine code (for compiled languages).
| don’t consider it to be a complex task, but it is a big one.

1.3

1.3.1

Distinguishing between DSL types 7

Building a single-purpose language is a far easier (and smaller) task, because the
scope is much reduced. A good example of that can be seen in rSpec, a Ruby library
for creating behavior-driven specifications. One of its capabilities is a story runner that
accepts specifications written in English (http://blog.davidchelimsky.net/articles/
2007/10/21/story-runner-in-plain-english). | suggest looking at how it works. It's
quite ingenious in its simplicity.

The problem with that approach for natural language processing is that you hit its lim-
its quickly. It works only when the statements follow a rigid format, so although it may
look like natural language, it is, in fact, nothing of the sort. If you want to make the
language more intelligent, you have to accept the additional complexity of building a
more full-featured language.

| once consulted for a company that had built a DSL for defining business rules. They
had over 100,000 lines of C++ code that they needed to maintain, and performance
was a big concern. It became apparent that they could have switched the whole thing
to an internal DSL (a DSL that’s hosted in an existing language, which we’ll talk about
shortly) and saved quite a bit of time, effort, and pain.

of it. A popular example is Ruby on Rails, which is, in essence, a DSL for building
web applications.

The tools for language-oriented programming had been improving for quite a
while, but it was the introduction of Ruby on Rails—a wildly popular DSL that was rec-
ognized as such—that really started to get things rolling.

Distinguishing between DSL types

In the world of DSLs, we often distinguish between several types:

External DSLs

Graphical DSLs

Fluent interfaces

Internal or embedded DSLs

We’ll discuss those types in turn, and look at their properties and uses.

External DSLs

When we talk about external DSLs, we’re discussing DSLs that exist outside the con-
fines of an existing language. SQL and regular expressions are two examples of exter-
nal DSLs.

Building an external DSL means starting work from a blank slate. You need to
define the syntax and required capabilities, and start working from there. This means
that you have a lot of power in your hands, but you also need to handle everything
yourself. And by “everything,” I do mean everything, from defining operator prece-
dence semantics to specifying how an if statement works.

http://blog.davidchelimsky.net/articles/2007/10/21/story-runner-in-plain-english
http://blog.davidchelimsky.net/articles/2007/10/21/story-runner-in-plain-english

What are domain-specific languages?

Common tools for building external DSLs include Lex, Yacc, ANTLR, GOLD Parser,
and Coco/R, among others. Those tools handle the first stage, translating text in a
known syntax to a format that a computer program can consume to produce execut-
able output. The part about “producing executable output” is usually left as an exer-
cise for the reader. There are few tools to help you with that.

NOTE One tool that comes to mind for producing executable output is the
Dynamic Language Runtime (DLR), a Microsoft project that aims to
give us dynamic languages in .NET. One basic underpinning of this
project is a set of classes that specify the behavior of a program (the
abstract syntax tree, or AST) that the DLR can turn into an executable.
There are other such tools, for sure, but the DLR is the only one I know
of in the .NET space.

Building rich external DSLs is similar to building a general purpose language. You
need to understand compiler theory before starting on that path. If you're interested
in that, I recommend reading Compilers: Principles, Techniques, and Tools, by Alfred V.
Aho, Ravi Sethi, and Jeffrey D. Ullman, which is a classic book on the subject.

This book focuses on building languages on top of existing languages, not starting
from scratch and going the whole way. Nevertheless, some background in compiler
theory is certainly helpful, even when building a DSL that uses an existing language, so
let’s take a quick look at the process of building a language from scratch.

First, the grammar and syntax are often defined using a notation such as BNF
(Backus-Naur Form) or a derivative, and then you use a tool to generate a parser.
Once you’ve done that, you can run the parser over a code string, which will produce
an abstract syntax tree (AST), which is the representation of the original string as an
AST based on your definition of the language.

An example will make this clearer. Consider the code in listing 1.3, written in a fic-
tional language.

Listing 1.3 An if statement in a fictional language

if 1 equals 2:

print "1 = 2"
else:

print "1 != 2"

The AST that was generated from the code in listing 1.3 is shown in figure 1.1.

You can then either build an interpreter that understands this AST and can exe-
cute it, or output an executable from the AST. Another common approach is to trans-
form the AST into a semantic model that’s easier to work with, but that has little
correlation to the original text.

External DSLs are extremely powerful, but they also carry with them a significant
cost. In general, I prefer to avoid going the external DSL route, mainly because of the
cost, but also because internal DSLs serve well in most cases.

1.3.2

Distinguishing between DSL types 9

Operator:

Equality

=

Method: print
I Method /
call
\m
Method |id
- call
\ m

Figure 1.1 A hierarchical
representation of the AST
generated from a simple
if statement

I would use an external DSL for specifying languages that are too far afield from exist-
ing programming languages. SQL is a good example of a DSL you couldn’t build as an
internal DSL. You could build something similar, but you couldn’t get it quite right, so
an external DSL would be the right approach for writing your own SQL dialect.

Graphical DSLs
Another form of DSL is the graphical DSL. This is a DSL that Customer
uses shapes and lines to express intent rather than using text. :\?Zlon,g i

ame : stnng

UML is a good example of a graphical DSL. UML is a DSL | Orders:Set<Order>
for describing software systems, and quite a lot of money and ~ [AddOrder(order:Order) :void
effort has been devoted to making UML the one true model gigyve 1.2 UML class
from which you can generate the rest of the application. Fig- diagram displaying the
ure 1.2 displays a small part of a typical UML diagram. Customer object
Graphical DSLs are great for expressing a lot of informa-

tion in a concise way. Often, it’s much easier to understand a problem when you see it
than when it’s explained in words. This visualization approach also allows for commu-
nication at a high level because of the physical limitations of the image. It’s much eas-
ier to understand what’s going on because there is less information, and you can see
the big picture.

A lot of effort has been invested in making it possible to write your own graphical
DSLs. Microsoft has the Visual Studio DSL Tools, which is a framework that allows you
to build tools similar to the class designer and generate code with them.

There are quite a few examples of graphical DSLs that you’ve probably heard about:

UML
BizTalk orchestrations and maps

10

133

What are domain-specific languages?

SQL Server Integration Services
Windows Workflow Foundation

I've had some experience with all of these graphical DSLs, and they all share common
problems inherent to the graphical DSL model.

The whole point of a graphical DSL is to hide information that you don’t want to
see, so you can see the big picture. This means that you can’t see the whole at the
same time, which leads to a lot of time spent jumping between various elements on
the DSL surface, trying to gather all the required data. Graphical DSLs are visually ver-
bose; they often need a lot of screen real estate to express notions that take a few lines
with a textual DSL.

And then there are important Ul issues. Searching is difficult in a graphical DSL, as
are search and replace operations. And mouse-driven development isn’t a good idea,
if only in consideration of your wrists.

Beyond that, there are serious difficulties working with graphical DSLs in a team
environment. It’s easy to pull out a code file and compare two versions (called a diff,
or diffing), but this breaks down for graphical DSLs, even those that persist their data
into XML files. Even assuming the XML persistence format is human-readable (and I
haven’t seen an example that was), comparing the XML defeats the whole purpose of
using a graphical DSL in the first place. You need some way to express a diff graphi-
cally, and I haven’t seen any good way to do that.

This makes graphical DSLs a problem in terms of source control. This is a huge
issue as far as I am concerned, and I have run into this issue more than once, with no
easy or good solutions in sight.

If you haven’t guessed so far, I'm not a fan of graphical DSLs for programming.
Graphical DSLs are great for documentation, but I find that they aren’t very good for
development when it comes to real-world scenarios.

Fluent interfaces

I had some doubts about including fluent interfaces in this list of DSL types because I
think of them as degenerate internal DSLs for languages with little syntactic flexibility
(such as C# or Java), which means their options for language extensibility are limited.
Fluent interfaces are ways to structure your API so that operations flow naturally and
provide more readable code. They tend to be valid only when used by developers dur-
ing actual development, which limits their scope compared to other DSLs.

It’s easier to demonstrate than explain, so take a look at listing 1.4, which runs a set
of transformations on an image using a fluent interface APL

Listing 1.4 Fluent interface for specifying graphical transforms

new Pipeline("rhino.png")
.Rotate (90)
.Watermark ("Mocks")
.RoundCorners (100, Color.Bisque)
.Save ("fluent-rhino.png") ;

Distinguishing between DSL types 11

The implementation of a fluent interface is simple. The Rotate () method is shown in
listing 1.5.

Listing 1.5 Implementation of a method in a fluent interface

public Pipeline Rotate(float degrees)

{
RotateFilter filter = new RotateFilter();
filter.RotateDegrees = degrees;
image = filter.ExecuteFilter (image) ;
return this;

}

On the surface, fluent interfaces are simply a type of method chaining, but they have
implications for the readability of the operations, as well as for the instructive nature
that can result from building good fluent interfaces. By carefully planning the return
values, we can create a good language with high readability and we can gain the sup-
port of IntelliSense to aid in the writing of the language statements.

The fluent interface in listing 1.4 isn’t particularly impressive, but listing 1.6
should be. This is valid C# 2.0 code, and even if you’ve never used it before, this code
will probably be instantly readable.

Listing 1.6 Using a fluent interface for querying

User.FindAll (

Where.User.City == "London" &&

Where.User.RegisteredAt >= DateTime.Now.AddMonths (-3)
)i
This code gives you all the users from London that registered in the last 3 months.
Unfortunately, this fluent interface is based on code generation, operator overload-
ing, and generics abuse; it was very hard to create and it isn’t something I’d want to
create again. (This code was written for G# 2.0; LINQ, in C# 3.0, makes this example
look aged.)

Listing 1.7 is another example that shows the fluent interface to configure Struc-
tureMap.

Listing 1.7 Configuring the StructureMap container using a fluent interface

registry.AddInstanceOf<IWidget> ()
.WithName ("DarkGreen")
.UsingConcreteType<ColorWidget> ()
.WithProperty ("Color") .EqualTo ("DarkGreen") ;

NOTE StructureMap (http://structuremap.sourceforge.net/) is an Inversion of
Control (IoC) container, probably the oldest on .NET. An Inversion of
Control container is a tool that helps you manage dependencies and life-
times of objects in your application. You can think about them as very
smart factories, although that doesn’t do them justice. You can read
more about IoC containers here: http://www.martinfowler.com/articles/
injection.html.

http://structuremap.sourceforge.net/
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html

12

134

CHapTER 1 What are domain-specific languages?

And, finally, listing 1.8 shows an example for specifying regular expressions in a com-
paratively readable way.

Listing 1.8 Using a fluent interface to create a regular expression

SmartRegex.Create("<div",

SmartRegex.Space >= 0,

"class='game'",

SmartRegex.Space >= 0,

")
Fluent interfaces are useful, and with G# 3.0 and VB.NET 9, we have some interesting
options for expressing ourselves. The query syntax in listing 1.6 could easily be
replaced by a LINQ query, but the other examples are still relevant. With the new
capabilities like extension methods and lambdas, you can take fluent interfaces quite
a long way.

Unfortunately, you usually can’t take them far enough. Mainstream languages are
too inflexible in their syntax to allow you the freedom to express yourself appropri-
ately. I have tried this approach, and I have bumped into the limits of the language
several times. This approach breaks down for the interesting scenarios.

This is particularly true when you want to express business requirements in a way
that would make sense even to non-programmers. It would be good indeed if you
could show businesspeople what you’re doing, in a way that made sense to them.

This leads us directly toward the last item on our list, internal DSLs.

Internal or embedded DSLs

Internal DSLs are built on top of an existing language, but they don’t try to remain
true to the original programming language syntax. They try to express things in a way
that makes sense to both the author and the reader, not to the compiler.

Obviously, the expressiveness of an internal DSL is limited by whatever constraints
are imposed by the underlying language syntax. You can’t build a good DSL on top of
G# or Java; they have too much rigidity in their syntax to allow it. You probably could
build a good DSL on C++, but it would probably include preprocessor macros galore,
and I wouldn’t place any bets on how maintainable it would be.

The popular choices for building internal DSLs are dynamic languages; Lisp and
Smalltalk were probably the first common choices. Today, people mostly use Ruby,
Python, and Boo. People turn to those languages for building DSLs because they have
quite a bit of syntactic flexibility. For example, listing 1.9 is valid Ruby code.

Listing 1.9 A Rake build script, specifying tasks to run at build time

task :default => [:test]
task :test do

ruby "test/unittest.rb"
end

14

Why write DSLs? 13

Listing 1.9 is part of a build script written using Rake, a build tool that uses a Ruby-
based DSL to specify actions to take during the build process (http://rake.rubyforge.
org/). Rake is a good example of using a DSL to express intent in an understandable
manner. Consider the amount of XML you’d need to write using an XML-based build
tool, such as NAnt or MSBuild, to do the same thing, and consider how readable that
would be.

Other features that usually appear in dynamic languages are also useful when
building DSLs: closures, macros, and duck typing.

The major advantage of an internal DSL is that it takes on all the power of the lan-
guage it’s written for. You don’t have to write the semantics of an if statement, or
redefine operator precedence, for instance. Sometimes that’s useful, and in one of my
DSL implementations I did redefine the if statement, but that’s probably not a good
thing to do in general, and it’s rarely necessary.

A DSL built on top of an existing language can also be problematic, because you
want to limit the options of the language to clarify what is going on. The DSL
shouldn’t be a full-fledged programming language; you already have that in the base
language, after all.

The main purpose of an internal DSL is to reduce the amount of work required to
make the compiler happy and increase the clarity of the code in question. That’s the
syntactic aspect of it, at least. The other purpose is to expose the domain. A DSL
should be readable by someone who is familiar with the domain, not the program-
ming language. That takes some work, and it’s far more important than mere syntax;
this is the core reason for building a DSL in the first place.

Or is it? Why do we need DSLs again?

Why write DSLs?

Why do you need a DSL? After all, you're reading this book, so you already know how
to program. Can’t you use “normal” programming languages to do the job, perhaps
with a dash of fluent interfaces and domain-driven design to make the code easier to
read?

So far, I've focused entirely on the how, which is somewhat hypocritical of me,
because this entire book is going to focus on abstracting the Aow. Let’s look at the why
—the different needs that lead the drive toward a DSL.

There are several reasons you might want a DSL, and they’re mostly based on the
problems you want to solve. These are the most common ones:

Making a technical issue or task simpler

Expressing rules and actions in a way that’s close to the domain and under-
standable to businesspeople

Automating tasks and actions, usually as part of adding scriptability and extensi-
bility features to your applications

We’ll look at each of those scenarios in detail and examine the forces that drive us
toward using DSLs and the implications they have on the languages we build.

http://rake.rubyforge.org/

14

14.1

142

What are domain-specific languages?

Technical DSLs

A technical DSL is supposed to be used by someone who understands the develop-
ment environment. It’s meant to express matters more concisely, but it’s still very
much a programming language at heart. The main difference is that a programming
language is more general, whereas a technical DSL is focused on solving the specific
problem at hand. As such, it has all the benefits (and drawbacks) of single-purpose
languages. Rake, Binsor, Rhino ETL, and Watir are examples of technical DSLs.

NOTE As mentioned earlier, Rake is a build tool that uses a Ruby-based DSL
to specify actions to be taken during the build process (http://
rake.rubyforge.org/). Binsor is a DSL for defining dependencies for
the Windsor IoC container (http://www.ayende.com/Blog/category/
451.aspx). Rhino ETL is a DSL-based extract-transform-load (ETL) tool
(http://www.ayende.com/Blog/category/545.aspx). And Watir is an
automation DSL for driving Internet Explorer, mostly used for integra-
tion testing (http://en.wikipedia.org/wiki/Watir).

It makes sense to build a technical DSL if you need richer ways to specify what you
want to happen. Technical DSLs are usually easier to write than other DSLs, because
your target audience already understands programming—it takes less work to create a
language that make sense to them.

In fact, the inclusion of programming features can make a sweet DSL indeed. We
already saw a Rake sample (listing 1.9); listing 1.10 shows a Binsor example.

Listing 1.10 A Binsor script for registering all controllers in an assembly

for type in AllTypesBased of IController ("MyApplication.Web") :
Component is a keyword that would register the type in the container
component type

It takes two lines to register all the controllers in the application. That’s quite expres-
sive. It’s also a sweet merge between the use of standard language operations (for
loops) and the DSL syntax (component).

This works well if your target audience is developers. If not, you’ll need to provide
a far richer environment in your DSLs. We usually call this type of DSL a business DSL.

Business DSLs

A business DSL needs to be (at the very least) readable to a businessperson with no
background in programming. This type of DSL is mainly expressive in terms of the
domain, and it has a lot less emphasis on the programming features that may still exist.
It also tends to be more declarative than technical DSLs. The emphasis is placed on the
declarative nature of the DSL and on matching it to the way the businesspeople think
about the tasks at hand, so the programming features are not necessary in most cases.

For example, you wouldn’t generally encourage the use of for loops in your
business DSL, or explicit error handling, null checking, calling base class libraries, or
any of the things that you would normally do in a technical environment. A business

http://rake.rubyforge.org/
http://rake.rubyforge.org/
http://www.ayende.com/Blog/category/451.aspx
http://www.ayende.com/Blog/category/545.aspx
http://www.ayende.com/Blog/category/545.aspx
http://en.wikipedia.org/wiki/Watir
http://en.wikipedia.org/wiki/Watir

Why write DSLs? 15

DSL should be a closed system that provides all the expected usages directly in the
language.

I can’t think of a good example of a non-proprietary business DSL. There are busi-
ness rule engines, but I wouldn’t call them DSLs. They’re one stage before that; they
have no association to the real domain that we work with.

A good example of a business DSL that I have seen was created by a mobile phone
company that needed to handle the variety of different contracts and benefits it
offered. It also needed a short time to market, to respond rapidly to market conditions.

The end result was a DSL in which you could specify the different conditions and
their results. For instance, to specify that you get 300 minutes free if you speak over
300 minutes a month, you would write something similar to listing 1.11.

Listing 1.11 A DSL for specifying benefits in a mobile phone company

when call_minutes_in_current_month > 300 and
has_benefit "300 Minutes Free!!!":
give_free_call_minutes 300, "300 Minutes Free!!!"
This DSL consists of a small language that can describe most of the benefits the com-
pany wants to express. The rest is a matter of naming conventions and dropping files
in a specified folder, to be picked up and processed at regular intervals. We’ll discuss
the structure of the engine that surrounds the DSL itself in chapter 5.

Listing 1.11 still looks like a programming language, yes. But although a business-
person may not always be able to write actions using a business DSL, they should be
able to read and understand them. After all, it’s their business and their domain that
you’re describing. We’ll see more complex examples later in the book, but for now
let’s keep this simple.

Using a business DSL requires business knowledge

This is something that people often overlook. When we evaluate the readability of a
DSL, we often make the mistake of determining how readable it is to the layperson.

A business DSL uses business language, which can be completely opaque to a lay-
person. | have no idea what it means to adjust a claim, but presumably it makes
sense to someone in the insurance business, and it's certainly something | would
expect to see in a DSL targeted at solving a problem in the insurance world.

Why wouldn’t a businessperson be able to write actions using a business DSL? One of
the main reasons is that even a trivial syntax error would likely stop most nonprogram-
mers in their tracks. Understanding and overcoming errors requires programming
knowledge that few businesspeople have. Although a DSL is supposed to be readable
for nonprogrammers, it’s still a programming language with little tolerance for such
things as omitting the condition in an if statement, and many businesspeople would
be unable to go over the first hurdle they faced.

16

143

1.5

What are domain-specific languages?

It’s important to know your audience—don’t assume anything about your audi-
ence’s ability or inability to write code. Although you might not expect them to under-
stand programming, they may have experience in automating small tasks using VBA
and Excel macros.

Matching the business DSL’s capabilities to that of the expected audience will
prove a powerful combination. You can provide the businesspeople with the tools, and
they can provide the knowledge and the required perspective.

Conversely, creating a DSL that misses the target audience is likely to result in prob-
lems. In a business DSL, expressing the domain and the concepts in the language is
only half the work; the other half is matching the language’s capabilities and require-
ments to the people who will use it.

I suggest making the decision about whether you’re creating a business-readable
or a business-writable DSL as early in the game as you can possibly can. This decision
will greatly affect the design and implementation of the DSL, and getting it wrong is
likely to be expensive.

Automatic or extensible DSLs

Automatic or extensible DSLs may also be called IT DSLs. This type of DSL is often
used to expose the internals of an application to the outside world.

Modern games are usually engines configured with some sort of scripting lan-
guage. Another use for this style of DSL would be to get into the internals of an appli-
cation and manage it. With such a DSL, you could write a script that would reroute all
traffic from a server, wait for all current work to complete, and then take the server
down, update it, and bring it up again.

Right now, it’s possible to do this with shell scripts of various kinds, but most enter-
prise applications have a rich internal state that could be made at least partially visible.
A DSL that would allow you to inspect and modify the internal state would be wel-
come. Many administrators would appreciate having more options for managing their
applications.

Another way to look at this is to consider all the VBA-enabled applications out
there, from Office to AutoCAD to accounting packages and ERP systems. VBA’s exten-
sibility enables users to create scripts that access the state of the system. The same
thing can be done for enterprise applications using automation DSLs (at far less cost
in licensing alone).

Boo’s DSL capabilities

I've mentioned Lisp, Smalltalk, Ruby, Python, and Boo as languages that are well
suited for writing internal DSLs, so why does this book focus on Boo? And have you
even heard of this language? Boo has yet to become a household name (but just you
wait), so we probably need to discuss what kind of language it is.

Boo is an object-oriented, statically typed programming language for the Common
Language Infrastructure (CLI) with a Python-inspired syntax and a special focus on
language and compiler extensibility. It’s this focus on extensibility that makes it ideally

Boo’s DSL capabilities 17

Boo runs on Java as well—say hello to Boolay

Boo is not just a CLR language; it's also a JVM language. You can learn more
about Boo on Java in the Boolay discussion group: http://groups.google.com/
group/ boojay/ .

This screencast will introduce you to what BooJay is capable of: http://blogs.

codehaus.org/people/bamboo/archives/001751_experience_boojay_
with_monolipse.html.

suited for building DSLs. That it runs natively on the Common Language Runtime
(CLR; the technical name for the .NET platform) is a huge plus, because it means that
your existing toolset is still relevant.

I dislike pigeonholing myself, but I'll readily admit that I mostly work on software
based on the .NET Common Language Runtime. This is a common, stable platform'
with a rich set of tools and practices. It makes sense to keep my DSL implementation
within this platform because I already know most of its quirks and how to work around
them. I can use my existing knowledge to troubleshoot most problems. Staying within
the CLR also means that I’ll have little problem when calling a DSL from my code, or
vice versa—both the DSL and my code are CLR assemblies and interoperate cleanly.

Figure 1.3 shows an application that makes use of several DSLs. Those DSLs can
access the application logic easily and natively, and the application can shell out to the
DSL for decisions that require significant flexibility.

As much as I like the CLR, though, the common languages for it aren’t well suited
to language-oriented programming—they’re too rigid. Rigid languages don’t offer
many options to express concepts. You have the default language syntax, and that’s it.

Boo isa CLR language with a default syntax that’s much like Python and with some
interesting opinions about compiler architecture. Because it’s a CLR language, it will
compile down to IL (Intermediate Language—the CLR assembly language), and it will
be able to access the entire base class library and any additional code you have lying
around. It also will perform as fast as any other IL-based language. You don’t sacrifice
performance when you choose to use a DSL—at least not if you go with Boo.

In fact, you can debug your Boo DSL in Visual Studio, profile it with dotTrace (a
really sweet .NET profiler from JetBrains: http://www.jetbrains.com/profiler/), and

HR application
Payroll Authorization
DSL

‘ ‘ ‘ ‘ ‘ ‘ Figure 1.3 DSLs used as integral
parts of an application

1

Stable as long as you don’t start playing with reflection emit and generics; there are dragons in that territory.

http://www.jetbrains.com/profiler/
http://groups.google.com/group/boojay/
http://groups.google.com/group/boojay/
http://blogs.codehaus.org/people/bamboo/archives/001751_experience_boojay_with_monolipse.html

18

1.6

1.6.1

What are domain-specific languages?

Using IronRuby or IronPython as host languages for DSLs

What about IronRuby and IronPython? They are CLR implementations of languages
that have already proven to be suited for building DSLs.

| have two major issues with using these host languages for my DSLs. The first is
that, compared to Boo, they don’t offer enough control over the resulting language.
The second is that both languages run on the Dynamic Language Runtime, which is
a layer on top of the CLR, which is what Boo runs on.

This means that calling into IronRuby or IronPython code from C# code isn’t as simple
as adding a reference and making the call, which is all you need to do in Boo’s case.

even reference it from any .NET language (such as C# or VB.NET). Similarly, your code
(in any .NET language you care to name) will be able to make calls into the DSL code.
This is the most common way to execute a DSL—by simply calling it.

What makes Boo special is that the compiler is open. And not open in the sense
that you can look at the code, which isn’t particularly useful unless you’re writing com-
pilers; what I mean is that you can easily change the compiler object model while it’s
compiling your code.

As you can imagine, this has some significant implications for your ability to use
Boo for language-oriented programming. In effect, Boo will let you modify the lan-
guage itself to fit your needs. I'll spend most of chapters 2 and 6 explaining this in
detail, and you’ll see what really made me choose Boo as the host language for my
DSL efforts.

Boo also contains some interesting features for language-oriented programming,
such as meta-methods, quasi-quotation, AST macros, and AST attributes.

As I mentioned, we’ll explore Boo’s language-oriented programming features in
full in chapters 2 and 6. But for now, let’s look at a few real-world DSLs written in Boo.

Examining DSL examples

Before we conclude this chapter, I want to give you a taste of the kind of DSLs you can
create in Boo. This should give you some idea about the flexibility of the language.

Brail

Brail will probably remind you strongly of classic ASP or PHP. It’s a text templating lan-
guage, built by me, in which in you can mix code and text freely. Here’s a sample:

<hl>My name is ${name}</hl>

<% for element in list: %>
${element}</1li>

<% end %>

This example will output a header and a list in HTML format based on the input vari-
ables passed to it.

1.6.2

1.6.3

Examining DSL examples 19

If you're interested, you can read up on Brail at the Castle Project: http://
www.castleproject.org/monorail/documentation/trunk/viewengines/brail /
index.html.

Rhino ETL

I built this DSL after I'd had enough of using an ETL tool that wasn’t top-notch, to say
the least. That ETL tool also used a graphical DSL as the building block, and the pain
of using it on a day-to-day basis is one of the main reasons I dislike graphical DSLs.

NOTE ETL stands for extract, transform, and load. It’s a generic term for mov-
ing data around in a data warehouse. You extract the data from one loca-
tion, transform it (probably with data from additional locations), and load
it into its final destination. The classic example is moving data from a
relational database to a decision-support system.

Rhino ETL employs the concept of steps, with data flowing from one step to the next.
Usually the first step will extract the data from some source, and the last will load it to
the final destination.

Here’s an example of a full ETL process:

operation split_name:
for row in rows:
continue if row.Name is null
row.FirstName, row.LastName = row.Name.Split ()
yvield row

process UsersToPeople:
input "source_db", Command = "SELECT id, name, email FROM Users"
split_names ()
output "destination_db", Command = """
INSERT INTO People (UserId, FirstName, LastName, Email)
VALUES (@UserId, @FirstName, @LastName, @Email)

row.UserId = row.Id

This code gets the users list from the source database, splits the names, and then saves
them to the destination database. This is a good example of a DSL that requires some
knowledge of the domain before you can utilize it.

There’s more information about Rhino ETL at http://www.ayende.com/Blog/
category/54b5.aspx.

Bake (Boo Build System)

NAnt is an XML-based build system that works for simple scenarios, but it gets very
complex very fast when you have a build script of any complexity. Bake, written by
Georges Benatti, takes much the same conceptual approach (using tasks and actions),
but it uses Boo to express the tasks and actions in the build script.

The resulting syntax tends to be easier to understand than the equivalent NAnt
script at just about any level of complexity. XML has no natural way to express condi-
tions and loops, and you often need those in a build script. It’s much easier to read a

http://www.castleproject.org/monorail/documentation/trunk/viewengines/brail/index.html
http://www.ayende.com/Blog/category/545.aspx

20

1.6.4

1.7

What are domain-specific languages?

build script when you’re using a programming language to natively express concepts
such as control flow. Interestingly enough, the ease of readability holds not only for
complex build scripts, but also for simple ones, if only because XML-based languages
have so much ceremony attached to them.
Here’s a simple example that will create the build directory and copy all DLLs to it:

Task "init build dir":

if not Directory.Exists("build"):

MkDir "build"

Cp FileSet("lib/*.dll").Files, "build", true
You can find out more about the Boo Build System at Google Code: http://
code.google.com/p/boo-build-system/.

Specter

Specter is a behavior-driven development (BDD) testing framework, written by
Andrew Davey and Cedric Vivier. It allows developers to build specifications for the
object under test instead of asserting their behavior. You can read more about BDD
here: http://behaviour-driven.org/.

Using Specter makes Boo behave in a way that’s a better match for BDD. Here’s an
example for specifying how a stack (the data structure) should behave:
context "Empty stack":

stack as Stack

setup:
stack = Stack()

specify stack.Count.Must == 0

specify "Stack must accept an item and count is then one":
stack.Push(42)
stack.Count.Must == 1

You can find out more about Specter here: http://specter.sourceforge.net/.

Summary

By now, you should understand what a DSL is. It used to be that the investment
required to create a DSL was only justified for the big problems, but the tools have
grown, and this book will help you understand how you can create a nontrivial lan-
guage on a rainy afternoon.

Of all the DSL types presented in this chapter, I most strongly favor internal DSLs
for their simplicity, extensibility, and low cost compared to the other approaches. Flu-
ent interfaces are also good solutions, but they are frustrating when you bump into
the limits of the (rigid) host language.

I have a strong bias against graphical DSLs for their visual verboseness, their com-
plexity of use, and, most importantly, for the mess they often make out of source con-
trol. A graphical DSL doesn’t lend itself to diffing and merging, which are critical in
any scenario that involves more than a single developer.

http://code.google.com/p/boo-build-system/
http://behaviour-driven.org/
http://behaviour-driven.org/
http://specter.sourceforge.net/

Summary 21

Fortunately, this book isn’t about graphical DSLs. It’s about internal (or embed-
ded) DSLs written in Boo. In chapter 2, we’ll take a quick dive into Boo; just enough to

get your feet wet and give you enough understanding of the subject to start building
interesting languages with it.

Without further ado, let’s get on with Boo.

An overv

of the Boo langfage

In this chapter

= Exploring the Boo language
= Writing a sample program
= Built-in DSL-friendly features

What is this Boo language anyway?

Boo is an object-oriented, statically typed language for the Common Language
Runtime (CLR) with a Python-inspired syntax and a focus on language and com-
piler extensibility. (We’ll discuss extensibility briefly in this chapter and in more
detail in chapter 6.) Boo is an open source project released under the BSD license,
which means you’re free to take, modify, and use the language and its products in
any way you want, without limitation, including for commercial use. (The license
can be found at http://svn.codehaus.org/boo/boo/trunk/license.txt.)

Rodrigo B. de Oliveira started the project in early 2004, and since then it has
grown significantly in popularity and features. The project is active and is continu-
ally evolving. As I write this, the released version of Boo is 0.9.1.

22

http://svn.codehaus.org/boo/boo/trunk/license.txt

Why use Boo? 23

Getting Boo

You can download the binary distribution of Boo from the Boo website: http://
boo.codehaus.org/.

You can execute booish.exe from the bin directory (either by double-clicking it in Win-
dows Explorer or issuing the command on the command line) to get a command inter-
preter that will allow you to experiment with Boo directly. It's convenient when you
want to quickly try out some ideas, or verify an assumption.

There is also booi.exe, which allows you execute Boo scripts without an explicit com-
pilation step. And the compiler itself is invoked using boo.exe much as you can
invoke the C# compiler by executing csc.exe.

NOTE Boo seems to be following the trend of many open source projects in that
it isn’t rushing toward a 1.0 release. Boo has been stable for a number of
years, and I have been using it for production for the last 4 years. I have a
high degree of trust in Boo, and it has not failed me yet.

Now that you know what Boo is, you’re probably wondering why I chose to use it.

2.1 Why use Boo?

Boo is a CLR-based language, which means that when we use Boo, we benefit from the
rich library that comes with .NET, JIT (just-in-time compilation) optimizations, and
plenty of good tools. Even without extending the compiler, Boo has the following to
offer:

Syntactic sugar for common programming patterns—List, hash, and array literals,
object initialization, string formatting, and regular expression matching are all
first-class concepts in Boo. There is direct support for all of them in a natural
manner.

Automatic variable declaration and type inference—The compiler takes care of
things for you, so you don’t have to type the same thing over and over again.
Some would say that this is bad, due to the lack of explicit typing, but it’s worth
trying. In my experience, it works. Take a look at listing 2.1.

Listing 2.1 Exploring Boo’s type inferencing

def random() :
return 4 # Selected by dice roll, guaranteed to be random

val = random/()

! C# 3.0 has introduced the var keyword, which allows the C# compiler to do much the same for local variables.
Boo supports this for just about everything (fields, properties, methods, local variables, and so on).

http://boo.codehaus.org/

24

2.2

CHAPTER 2 An overview of the Boo language

Why specify the type over and over again? The compiler can figure it out for itself and
not bother you with it. If you want to get a compiler error, you can explicitly specify
the type, as in listing 2.2.

Listing 2.2 Boo is statically typed—this code will cause a compiler error

val as string = random() # Will give error about type mismatch

= Automatic typecasting—The compiler will automatically cast variables to the appro-
priate type (if this is possible), without forcing you to explicitly cast variables. For
example, when you try to pass a variable of type Animal to a method that requires
a dog instance, the compiler will automatically cast it to a dog. The premise is that
you would have to do this anyway. The following example shows what automatic
typecasting does:
animal as Animal = Animal.CreateDog ("Spot")
dog as Dog
dog = animal # Will automatically cast animal to Dog
= Duck typing—Boo is a strongly typed language, but you can ask the compiler to
relax those constraints in certain situations and work like a dynamic language.
This makes some things much more natural, because you can get into this
dynamic invocation infrastructure and decide what to do at runtime. C# 4.0 will
have some of the same capabilities when it comes out.

Let’s see what we can do with the XmlObject in listing 2.3.

Listing 2.3 Using IQuackFu to get better syntax for working with XML

person = XmlObject (xmlDocument)
print person.FirstName
print person.LastName
This example resolves, at runtime, that we were asked to get the value of a property
called FirstName, and then a property named LastName. This is easy to implement, as
we’ll see in section 2.4.9.

These features take care of some rough spots you might encounter when using
string-based APIs, and they can be useful when building languages on top of Boo.

Exploring compiler extensibility
Boo is far more flexible than most other languages, and the option to reprogram the
compiler is valuable not only for creating DSLs, but for taking care of tedious tasks
that require repetitive code.

For example, suppose you want to implement the Singleton pattern. You’d need to
do several things to make it happen:

= Ensure that the creation of the singleton is thread-safe
= Lazily initialize the singleton
= Make all the constructors private

2.3

Basic Boo syntax 25

Ensure that serializing and deserializing the singleton will not create several
instances of the singleton

Create a static Instance property

Have no static members on the singleton class

To do this in most languages, you’d have to follow an implementation pattern and
write fairly repetitive code. In Boo, we can capture this implementation pattern in an
AST attribute that will do all of that for us (more on AST attributes in chapter 6).
Here’s how you would define a singleton in Boo.
[singleton]
class MySingleton:
pass

The [singleton] attribute isn’t a built-in capability of Boo; it’s a standard extension,
and the capabilities to extend the language are also exposed to our code. This makes
writing DSLs much easier.

By using a similar approach and the same language-extension capabilities, you can
use [disposable], [observable], and other advanced techniques, such as aspect-
oriented programming.

NOTE There’s lots to learn about Boo, but this book will focus on the things we
need for building DSLs. You can find more information about useful
things you can do with Boo here: http://docs.codehaus.org/display/
BOO/Useful+things+about+Boo.

But before we discuss all the hoops we can make Boo jump through, we should look at
the syntax.

Basic Boo syntax

Instead of explaining Boo’s syntax by just printing its formal Backus-Naur Form (BNF),
we’ll look at a few sample programs. They should give you a feeling for the language.

Our first sample program will be, of course, Hello World. To make it a bit more
interesting, we’ll use WinForms for it. Listing 2.4 shows the code.

Listing 2.4 Hello World using WinForms

import System.Windows.Forms

f = Form(Text: "Hello, boo!")

btn = Button(Text: "Click Me!", Dock: DockStyle.Fill)
btn.Click += do(sender, e): f.Close()
f.Controls.Add (btn)

Application.Run (f)

In this example, we start by importing the System.Windows.Forms namespace. This
statement is similar to the using statement in C#, but in Boo this also instructs the
compiler to load the System.Windows.Forms assembly if the namespace could not be
found in the loaded assemblies.

http://docs.codehaus.org/display/BOO/Useful+things+about+Boo

26

An overview of the Boo language

Significant-whitespace versus whitespace-aghostic mode

If you've done any work with Python, you’re probably aware that one of the major
gripes against the language is the significant-whitespace issue. Python uses the
indentation of the code to define control blocks. This means that you don’t need curly
braces or explicit block endings like end (in Ruby) or End If (in VB.NET).

The code looks like this:

if lives ==
print "Game over!"
game.Finish()
else:
lives--
print "${lives} more lives"

This is a major point of contention with Python, and because Boo uses the same con-
vention, the same complaint has been raised against it as well. But having spent sev-
eral years working with Boo, | can say that it rarely causes any problems.

“Rarely” isn’t the same as “never,” though. When | wrote Brail, a templating language
using Boo, the whitespace issue was a major issue. | wanted to use the usual HTML
formatting, but that messed up the formatting that Boo required.

Fortunately, Boo comes with a whitespace-agnostic mode, which you can utilize by
flipping a compiler switch. When using whitespace-agnostic mode, the previous code
would have to be written slightly differently:

if lives ==
print "Game over!"
game.Finish ()
else:
lives--
print "${lives} more lives"
end

The only difference that you’ll notice is the end at the end of the statement. This is
because Boo will now use the structure of the code to figure out where control blocks
begin and end. Usually, this means that a block starts when a statement ends with
a colon (:) and ends with an end keyword.

When writing DSLs, | tend to use the significant-whitespace mode, and only go to the
whitespace-agnostic mode when | find that the whitespace causes issues.

TIP When you aren’t sure how to do something in Boo, try doing what you
would in C# (with the obvious syntax changes). In most cases, it will work,
but note that it may not be the best way to do it in Boo.

Next, we create a Form and a Button. Boo supports property initialization at construc-
tion (G# 3.0 supports a similar notion, object initializers). Finally, we register the but-
ton Click event, add the button to the form, and start the application with the form as
the main form.

Basic Boo syntax 27

Not bad for a quick Hello World application. If you wish, you can type the code in
listing 2.4 directly into booish and experiment with the language.

Now, let’s try something a tad more complicated, shall we? Listing 2.5 creates an
HTTP server that allows you to download files from a directory.

Listing 2.5 An HTTP server in Boo

import System.Net
import System.IO

if argv.Length != 2:
print "You must pass [prefix] [path] as parameters"
return

prefix = argv([0]
path = argv[1]

if not Directory.Exists(path):
print "Could not find ${path}"
return

listener = HttpListener ()
listener.Prefixes.Add (prefix)
listener.Start ()

while true:

context = listener.GetContext ()

file = Path.GetFileName (context.Request.RawUrl)

fullPath = Path.Combine (path, file)

if File.Exists(fullPath):
context.Response.AddHeader ("Content-Disposition", \

"attachment; filename=${file}")

bytes = File.ReadAllBytes (fullPath)
context.Response.OutputStream.Write (bytes, 0, bytes.Length)
context.Response.OutputStream.Flush ()
context.Response.Close()

else:
context.Response.StatusCode = 404
context.Response.Close()

In this code we have a bit of argument validation, and then we set up an HttpListener
and start replying to requests. This isn’t the most interesting bit of code I have ever
seen, but it does touch on a lot of different topics.

There are a few things that you should pay attention to in this example:

= The argv parameter is a string array (defined by Boo) that holds the command-
line parameters passed by the user.

= The usage of HttpListener requires administrator privileges.

= You can execute the code using the following command from the command
line (assuming that you save the code as http_server.boo):

path\to\booi http_server.boo boo_server .\

You can then go to http://localhost/boo_server/http_server.boo to download
the http_server.boo file.

http://localhost/boo_server/http_server.boo

28

An overview of the Boo language

That annoying semicolon

One of the more annoying things when moving between languages is the semicolon.
When | move between C# and VB.NET code, | keep putting semicolons at the end of
VB.NET statements, and forgetting to end my C# code with semicolons.

Boo has optional semicolons, so you can put them in or not, as you wish. This makes
temporarily dropping into the language a far smoother experience, because you don’t
have to unlearn ingrained habits.

For anyone proficient in .NET, what we’re doing should be familiar. The language may
be a bit different, but the objects and methods we call are all from the Base Class
Library (BCL). This familiarity is welcome. We don’t need to learn everything from
scratch.

Let’s look at one last example before we get back to talking about DSLs. Listing 2.6
shows a simple implementation of GREP.

Listing 2.6 A simple GREP implementation

import System
import System.IO
import System.Text.RegularExpressions

Get all files matching a specific pattern from a directory
and all its subdirectories
Note: string* is a shorthand to IEnumerable<string>
def GetFiles(dir as string, pattern as string) as string*:
Get all subdirectories
folders = Directory.GetDirectories(dir)
For each subdirectory, recurse into that directory
and yield all the files that were returned
for folder in folders:
for file in GetFiles(folder, pattern):
yvield file
Yield all the files that match the given pattern
for file in Directory.GetFiles(dir, pattern):
yvield file

Argument validation
if argv.Length != 2:
print "Usage: grep [pattern] [regex]"

filePattern = argv[0]
textPattern = Regex(argv([1l])

Get all the files matching the pattern in the current directory
for file in GetFiles (Environment.CurrentDirectory, filePattern):
For each file, read all the lines
using sr = StreamReader (file):
while not sr.EndOfStream:
line = sr.ReadLine()
If the line match the given pattern, print it

24

24.1

Boo’s built-in language-oriented features 29

if textPattern.IsMatch(line):
print file, ":", line
In listing 2.6, GetFiles returns a type of string*, which is another Boo syntax short-
cut. string* is the equivalent of IEnumerable of string. And more generally, T* is
equivalent to IEunumerable of T, where T is any type. This code also uses yield to
return results in a streaming fashion.
You can execute this code using the following command:

path\to\booi grep.boo *.cs TextBox

This will search the current directory for all the C# files that make use of TextBox.

More Boo information

This chapter offers a high-level overview of Boo. If you're new to the language, | rec-
ommend reading the appendixes to complete your knowledge of the language:

Appendix A contains a Boo tutorial for beginners, which can guide you through
the initial steps in learning the language.

Appendix B contains a syntax reference comparing Boo with C#, which should
help you to translate your C# knowledge to Boo.

In general, Boo should be fairly easy to grab and use if you're already familiar with a
programming language of some kind.

I hope that this gave you a feel for the Boo language. Now let’s continue exploring
why Boo is a good language for writing DSLs.

Boo’s built-in language-oriented features

Let’s look at Boo’s language-oriented features, starting with the simplest and moving
on to the more complicated ones, always with an eye to how we can use them for
building DSLs. The first few examples involve no changes to the compiler. Boo comes
with a lot of features to support DSLs.

String interpolation

String interpolation is syntactic sugar on top of string builders, nothing more. This
means that you can put an expression like ${} inside a string, and anything inside the
curly braces will be evaluated and appended to the string.

Consider this example:
name = "dear reader"
print "Hello ${name}"
This code will print “Hello dear reader”. It’s a direct translation of the following C#
code (with no attempt to translate the semantics):

string name = "dear reader";
Console.WriteLine (

30

24.2

24.3

An overview of the Boo language

new StringBuilder ()
.Append("Hello ")
.Append (name)
)i
This is nice when you want to output text with variables, but without all the messy
string concatenation.

Note that this works for static strings only, because it’s a transformation that hap-
pens at compile time. You can’t do something like the following and get the same
experience:
str = "Hi ${" + PerferredNameFormat + "}"
print str.Evalute()

There is no way to take a string and evaluate it for string interpolation. If you need to
dynamically change how you build strings at runtime, you’ll need to use String-
Builder directly.

Is, and, not, and or

Is, and, not, and or are keywords in Boo. The is keyword is the reference equality
operator. And, not, and or have their usual meanings. By combining them, we can
structure sentences that are valid Boo code while being very readable.

Here’s an example:

customer.CurrentPlan is null and customer.RegisteredAt > SixMonthsAgo

This can be read almost like English and demonstrates that you can compose readable
statements using those keywords.

Optional parentheses

The ability to skip specifying parentheses on method calls might look like a small fea-
ture, but it has a significant effect on readability.
Compare this,

SuggestRegisterToClub ("Preferred")
and this:
SuggestRegisterToClub "Preferred"

Not much of a change, I’'ll admit, but the second version is easier to read. There is less
syntactic noise for you to parse.
In fact, I would generally write it as follows, to make it even easier:

suggest_register_to_club "Preferred"

We’ll revisit the idea of reducing the syntactic noise later in this chapter—the less
noise, the more clarity. This gets even more interesting with anonymous blocks, which
are another way Boo helps us reduce syntactic noise.

24.4

24.5

Boo’s built-in language-oriented features 31

Anonymous blocks

Anonymous blocks are a feature of Boo that allows you to use a more natural syntax

for passing delegates to a method. The way it works is quite simple: if the last parame-

ter of a method is a delegate, you can start a new code block and the compiler will

treat the new code block as the body of the delegate that you pass to the method.
What this means is that instead of using this C# code,

List<int> ints = GetListOfIntegers();
ints.ForEach(i => Console.WriteLine(i));

we can use this Boo code:

ints = GetListOfIntegers()
ints.ForEach do(i): print i

If we want to execute an action and don’t need parameters, we can do the same thing
like this:

ints.ForEach:

print "foo"
Those are fairly silly examples, but you’ll use these techniques regularly when writing
DSLs. Because the syntax flows more naturally, the DSL lets the user express intention
more clearly and easily.

Suppose you wanted to perform some action when a new message arrives. You
could write it like this:
msgBroker = MessageBroker ()
msgBroker.WhenMessageArrives:

print "message arrived"

In this instance, it’s just another way to perform event registration, but I'm sure you
can see the potential. It allows you to turn method calls into full-fledged keywords.

Statement modifiers

Statement modifiers are another tool for producing clearer code. By using them, you
can turn several statements into a single sentence. You can use the following state-
ment modifiers: if, unless, and while.

Consider this code:

if customer.IsPreferred:
ApplyDiscount (0.5)

We can make it more readable by using a statement modifier, like this:
ApplyDiscount (0.5) if customer.IsPreferred

The first example has a very code-like structure, whereas the second flows more natu-
rally. Statement modifiers allow you to change where you put the condition: instead of
keeping itas an independent statement, you can make it part of the statement it applies
to. This is a small change, moving the condition around, but like most of the topics
we’re discussing in this chapter, it can significantly enhance clarity when used properly.

32

2.4.6

An overview of the Boo language

In fact, we can make it even better by removing the parentheses and changing the
method name:

apply_discount_of 0.5 if customer.IsPreferred

Some people feel that statement modifiers are harder to read, because they have to
read to the end of the statement to figure out what is going on. For myself, I feel that
this is a natural representation of the way we speak.

But this example points out another interesting usage pattern. Naming is differ-
ent in code and natural language, and we can take advantage of that by using naming
conventions.

Naming conventions

The CLR comes with clear guidelines about naming, and the BCL follows them closely.
Names are in Pascal case for classes and members, and camelCase for parameters;
abbreviations should be Pascal case unless they’re two letters long, in which case both
letters are capitalized, and so on. After a while, this style becomes an ingrained habit.
But now I’'m going to ask you to forget all of that. We aren’t building an API to be con-
sumed by other developers, who can ReadPascalCaseStatementsJustFine. We’re build-
ing a language to be read, full stop.

When it’s time to name your methods and classes, you should do so in the context
of their usage, and their usage is in text, not in code. The previous example of chang-
ing ApplyDiscount to apply_discount_of is one example. It’s easier to read
apply_discount_of than the more visually condensed version.

Naming conventions and holy wars

The choice of naming conventions can be a heated topic. Some people swear by Pas-
cal case, others think that underscores are the pinnacle of clarity, and others are well
aware that camelCase is the way the universe was written. And so on.

| won’t take sides in this argument. I'll just say that | have found underscores to be
useful in reducing the density of some of my DSLs. As usual, you need to make your
decision based on the wide variety of factors in your own scenario.

| urge you to consider your naming conventions carefully when you build a DSL.
Regardless of your final choice, it’'s an important part of the way you structure your
language.

This isn’t just a matter of using underscores versus Pascal case. It’s a matter of consid-
ering the method name in the context of the language. For instance, I might have sev-
eral variants of a method name, depending on its usage, all forwarding to a single
method. This can be done for clarity of intent in a particular usage, or as a way to spec-
ify additional intent.

Let’s look at an example where we’re publishing a message to various sources. We
could have all of these methods call the same underlying method:

24.7

Boo’s built-in language-oriented features 33

publish_message_to_group "administrators"
publish_message_to_owner

publish_message_to_user "joe"

If we were writing code, we’d probably use something like PublishMessage (destina-
tion), but the different method names provide additional clarity in different con-
texts. They allow us to be clearer about what we want to express.

Another way to provide multiple names for a single method is to extend the Boo
compiler in such a way that it automatically translates from one naming convention to
the other. The Boo compiler has rich support for that, and we’ll discuss it extensively
in chapter 6.

It might be easier to provide a DSL facade over your application code, to isolate the
language-oriented naming from the CodeOriented naming. Extending classes using
extension methods and properties is one way of gaining clarity in the DSL while still
keeping the core code clear of different naming styles. We’ll look at extension meth-
ods and properties in the next couple of sections.

Extension methods

Another way to employ naming conventions is to provide them externally, using
extension methods. Classes in Boo are CLR classes, which means they follow the same
laws that you’re familiar with from C#. You can’t add methods to a class or modify
existing methods.? What you can do is to ask the compiler to pretend for you.

This Boo feature works like extension methods in C# 3.0, and it’s interoperable
with the G# 3.0 version. Boo is a bit more powerful, adding support for extension
properties as well as extension methods. Here’s a typical example of extending
System.String:

class StringExtensions:

[Extension]
static def ToPascalCase(str as string):
return char.ToUpper (str[0]) + str.Substring(l)

The definition of ToPascalCase here creates an extension method, which means that
we can now call ToPascalCase as if it were an instance method on System.String,
rather than a static method on a different class (and assembly). Unlike C#, where we
only need to reference the class’s namespace in the using block, in Boo we need to
import the class itself. So in order to use the ToPascalCase extension method we
need to write

import StringExtensions
"some string".ToPascalCase()

This is nice, but don’t go overboard with it. I don’t recommend writing extension
methods to your own classes in regular code, but different rules apply to DSLs.

2 Well, you probably could do this, if you really wanted to, but I don’t recommend it. It would require modifying
the compiler, and you’d still find that the CLR enforces some of those restrictions.

34

24.8

2.4.9

An overview of the Boo language

Extension properties

Extension properties are like extension methods, but they use properties.

For example, suppose we want to extend the IList interface to support the Length
property. We could use the compiler support for extension properties to attach this
property to everything that implements IList by using the following syntax:
class ListExtensions:

[Extension]

static Length[list as IList]:

get:
return list.Count

In general, extension properties can be used for the same reasons as extension meth-
ods: to get additional clarity without creating untidy code, and to create more expres-
sive expressions. As with extension methods, you need to import the class that exposes
the property before you can make use of the extension property. So, in order to use
the Length extension property, we would write the following:

import System.Collections
import ListExtensions

a = ArrayList()

print a.Length

Extension properties are quite useful when we want to construct sentences. For exam-
ple, we could extend the Int32 class so it knows about dates and times, making the fol-
lowing property chain valid:

2.minutes. from.now

This is done using extension properties and simple fluent interface, and it allows us to
express complex values in a natural manner.

So what if, instead of extending a type by a single property or method, we could
extend a type at runtime? Welcome to the world of duck typing ...

The IQuackFu interface

If it walks like a duck and it quacks like a duck, then it must be an IQuackFu. Other
languages call it duck typing or method missing (or message not understood) and
many dynamic languages support it. Because Boo is a statically typed language (unless
you explicitly tell the compiler that you want late-bound semantics), and because
method missing is such a nice concept to have, Boo includes the IQuackFu interface
to introduce this capability.

The IQuackFu interface, shown in figure 2.1, gives you the option to handle
dynamic dispatch on your own, instead of having to rely on the language semantics.

Duck typing basically means that you don’t care what the actual type of an object is.
As long as it supports the operations you need (as long as it walks like a duck), you can
treat it as a valid object (it is a duck).

Boo’s built-in language-oriented features 35

| IQuackFu @)

Interface

= Methods
¥ QuackGet(string name, object[Jparameters) : object

W' Quackinvoke(string name, params object[] args) : object . . .
@ QuackSet(string name, object[Jparameters, object value) : object Figure 2'1_ The IQuaCkF? u}terface 1S
/ Boo’s version of method missing.

So far, this sounds a lot like late-bound semantics (similar to VB.NET’s behavior when
you set option strict off), but there’s more. By default, when you ask Boo to use
duck typing, you’ll get late-bound semantics, but IQuackFu also allows an object to
take part in the decision about where to dispatch a call that cannot be made statically.

Don’t worry if this doesn’t quite make sense yet—it’ll be clearer once we look at an
example. Suppose we want to extract and display the first names from the XML in list-

ing 2.7.

Listing 2.7 The input XML structure

<People>
<Person>
<FirstName>John</FirstName>
</Person>
<Person>
<FirstName>Jane</FirstName>
</Person>
</People>

We could do this using any number of XML processing options, but the amount of
code required would make this awkward. We could also generate some sort of strongly
typed wrapper around it if we had a schema for the XML. Or we could use a tool to gen-
erate the schema if we didn’t have it already ... This is starting to look like a lot of work.

We could also do it as in listing 2.8. We’re using a generic object here, so how can
this work?

Listing 2.8 Using the XML object to output

doc = XmlObject (xmlDocument.DocumentElement)
for person as XmlObject in doc.Person:

print person.FirstName
The code in listing 2.8 works because we intercept the calls to the object and decide
how to answer them at runtime. This is what method missing means. We catch the call to
a missing method and decide to do something smart about it (like returning the data
from the XML document).

At least, this is how it works in dynamic languages. For a statically typed language,
the situation is a bit different; all method calls must be known at compile time. That’s
why Boo introduced IQuackFu. Take a look at the implementation of XmlObject in
listing 2.9, and then we’ll look at how it works.

36 CHAPTER 2 An overview of the Boo language

Listing 2.9 The XML object implementation—method missing over an XML document

class XmlObject (IQuackFu): # Implementing IQuackFu interface
_element as XmlElement # The element field

Get the XML element in the constructor and store it in a field
def constructor (element as XmlElement) :
_element = element

Intercept any property call made to the object.

This allows us to translate a property call to navigate

the XML tree.

def QuackGet (name as string, parameters as (object)) as object:

Get the node(s) by its name
elements = _element.SelectNodes (name)

if elements is not null: # Check that the node exists
Here we're being crafty. If there is only one node
selected, we'll wrap it in a new XmlObject and
return it. This allows us easy access throughout
the DOM.
return XmlObject (elements[0]) if elements.Count ==
If there is more than one, return a list of all
the matched nodes, each wrapped in an XmlObject.
xmlObjects = List[of XmlObject] ()
for e as XmlElement in elements:

xmlObjects.Add(XmlObject(e))

return xmlObjects

else:
return null

We don’t support invoking methods, so we ignore this

method. We could also raise NotSupportedException here.

def QuackInvoke (name as string, args as (object)) as object:
pass # ignored

If we wanted two-way communication, we could have built

it into this method, but we don't, so we ignore this

method as well.

def QuackSet (name as string, parameters as (object), value) as object:
pass # ignored

This is to make it easier to work with the node.
override def ToString():
return _element.InnerText

This code doesn’t implement the QuackInvoke and QuackSet methods, because they
aren’t relevant to the example. Implementing QuackGet is sufficient to make the
point.

Listing 2.10 shows how we could use the XmlObject if we didn’t have the compiler
doing it for us.

2.5

Summary 37

Listing 2.10 Manually calling IQuackFu methods

doc = XmlObject (xmlDocument)
for person as XmlObject in doc.QuackGet ("Person"):
print person.QuackGet ("FirstName")

When the compiler finds that it can’t resolve a method (or a property) in the usual
way, it then checks whether the type implements the IQuackFu interface. If it does, the
compiler translates the original method call into a method call using QuackGet,
QuackSet, or QuackInvoke. This means that we get to decide what will happen at run-
time, which allows us to do some nice things. The XmlObject example is just one of
the possibilities.

Convention-based methods are an interesting idea that’s widely used in Ruby.
Here’s an example that should be immediately familiar to anyone who has dabbled in
Rails’ ActiveRecord:

user as User = Users.FindByNameAndPassword("foo", "bar")
That will be translated by the compiler to this:
user as User = Users.QuackInvoke ("FindByNameAndPassword", "foo", "bar")

The User’s QuackInvoke method will parse the method name and issue a query by
name and password.

This is a neat trick, with serious implications for writing DSLs. IQuackFu is usually
the first tool that I reach for whenever I find that the standard mechanisms of the lan-
guage aren’t sufficient to express what I want.

There are also other tools that are useful, but we’ll learn about them in chapter 6.

Summary

We’ve gone over the major benefits of Boo as a language for creating DSLs: its basic
syntax and some of the things we can do with the built-in features.

In general, when building DSLs, I consider all of the aspects of Boo we’ve covered
so far as the low-hanging fruit: easy to pick, good, and nearly all you need. You can
build good DSLs by utilizing what the language gives you, without digging into Boo’s
more advanced options. Even when you do need to use some advanced options, you'll
still need those regular language concepts in most of the DSLs you build. I recom-
mend that you learn these options and think about how to use them effectively. But
the basic Boo features aren’t always enough, and they’re certainly not the sum of what
you can do using Boo.

I have chosen not to bore you with the usual language details, such as introducing
if statements and explaining how loops work. Boo is simple enough that it shouldn’t
be too difficult to grasp the fundamentals based on the examples in this chapter.
Because Boo runs on the CLR, it uses a familiar environment, so you're spared from
learning that as well.

38

An overview of the Boo language

If you want a more structured approach to learning the language, take a look at
appendix A, which contains a Boo language tutorial. Appendix B contains a syntax
reference, which will allow you to translate between C# and Boo. I recommend at least
skimming through appendix B.

As for reading Boo code, the overall structure of Boo means that it’s similar to G#.
In both you have classes, methods, operators, control statements, and so on. If you can
read C# code, you can read Boo code. More information about Boo the language can
be found on the Boo site (http://boo.codehaus.org/) and in the Boo language guide
(http://boo.codehaus.org/Language+Guide).

We’ll defer the dive into the deep end for a bit, and first discuss building an appli-
cation with a DSL. Once we’ve covered the underlying concepts, we’ll crack open the
compiler and start telling it how it should behave.

For now, the next step is building a DSL-driven application.

http://boo.codehaus.org/
http://boo.codehaus.org/Language+Guide

The drive toway:

In this chapter

Understanding DSL types

Building a DSL for scheduling tasks

Fleshing out a DSL syntax

Taking a DSL apart to see what makes it tick
Implementing the Scheduling DSL

In this chapter, we’re going to look at the different types of DSLs that we can build
and at how and when we should use them. We’ll then take a problem—the need for
a scheduling system—and begin solving it with a DSL—the Scheduling DSL. We’ll
start by looking at the problem, follow the reasoning that leads us to solving it using
a DSL, and then decide on the syntax and implementation.

In this chapter, we’ll build several implementations of the Scheduling DSL
and go through the entire process of building a DSL for real use, although it will
be a rather basic one.

39

40

3.1

311

The drive toward DSLs

Choosing the DSL type to build

The first step in building a DSL is deciding what type of a DSL to build. Our sample
scenario will be scheduling tasks, so we’ll take a look at several approaches to building
a scheduling DSL, which will help us compare fluent interfaces and DSLs.

First, we need to consider the steps involved in scheduling tasks, from the usage
perspective: defining named tasks, defining the repeatability of the task, and defining
the set of actions that will occur when the task is executed. Here are some examples of
each:

Define named tasks
Crawl site
Back up database
Check that service is online
Define when task should be executed
Once a day
Once a week
Every hour
Define actions to occur when task is executed
Check URL response
Send email
Generate report

When we get around to writing the engine responsible for taking all three parts and
making them into an executable, we’ll focus on how to schedule tasks, how to handle
errors, how to verify that tasks are completed, and so on. But from the point of view of
the domain we’re working on, those details aren’t meaningful. When we define a new
task, we should just deal with the scheduling semantics, not with implementation
mechanics.

We could get much of this abstraction—separating the scheduling semantics from
the scheduling implementation—by building facades and hiding the implementation
details under the facades’ abstraction, and we could get a fairly good syntax by using a
fluent interface. Why build a DSL?

The difference between fluent interfaces and DSLs

If you have a fluent interface, you already have a DSL. It’s a limited one, admittedly,
but it’s still a DSL for all intents and purposes. There are significant differences in
readability between a fluent interface and a DSL, because you have a lot of freedom
when you define the language for the DSL, but fluent interfaces have to work within
the limits of a typically rigid language to work."

! This, of course, assumes that we’re talking about common static languages. Fluent interfaces in dynamic lan-
guages are a different matter, and are much closer to a DSL.

Choosing the DSL type to build 41

Because of those limitations, I tend to use DSLs and fluent interfaces for different
tasks. I use a fluent interface when I need a touch of language-oriented programming,
and I go with a DSL when I need something with a bit more flexibility.

We’ll take a look at some code, and that should demonstrate the differences
between fluent interfaces and DSLs. Please don’t concern yourself with the implemen-
tation details for now; just look at the syntax.

First, listing 3.1 shows an example of a fluent interface.

Listing 3.1 Using a fluent interface to define a task to execute

new FluentTask("warn if website is down")
.Every(TimeSpan.FromMinutes (3))
.StartingFrom(DateTime.Now)

.When (() => new WebSite("http://example.org") .IsNotResponding)
.Execute(() => Notify("admin@example.org", "server down!"))
.Schedule() ;

Listing 3.2 shows the DSL equivalent.

Listing 3.2 Using a DSL to define a task to execute

task "warn if website is down":

every 3.Minutes/()

starting now

when WebSite("http://example.org") .IsNotResponding

then:

notify "admin@example.org", "server down!"

As you can see, the DSL code doesn’t have to work to make the compiler happy, nor
does it have the ugly lambda declaration in the middle of the code or all the syntactic
baggage (parentheses). It would be difficult to take anything away from the DSL exam-
ple without losing some meaning. There’s little noise there, and noise reduction is
important when we’re talking about language-oriented programming. The less noise
we have, the clearer the code is.

Now, remember that a fluent interface is also a DSL. This means that we can make
the fluent interface example clearer. Tim Wilde was kind enough to do that for us on
his blog (http://www.midnightcoder.net/Blog/viewpost.railsrpostld=38), reaching
the syntax outlined in listing 3.3.

Listing 3.3 A better fluent interface for scheduling tasks

Schedule.Task("warn if website is down").
Repeat.Every(3) .Minutes.
Starting(DateTime.Now).
If(Web.Site("http://example.org").IsNotResponding()).
Notify("admin@example.org", "Site down!");

But the catch, and there is always a catch, is that the complexity of the fluent interface
implementation grows significantly as we try to express richer and richer concepts. In
this case, the backend of the implementation got to eight classes and six interfaces, all

http://www.midnightcoder.net/Blog/viewpost.rails?postId=38

42

3.1.2

The drive toward DSLs

for five lines of code, whereas the DSL implementation is considerably simpler.
Toward the end of this chapter, we’ll look at how to implement the Scheduling DSL,
and the whole thing will be less than 150 lines, most of which are dedicated to
enabling testing and running the backend engine.

Fluent interfaces tend to be harder to scale than DSLs. We haven’t actually built a
DSL yet, but we’ll do that later in this chapter and you’ll be able to judge for yourself.
Does this mean that we should stop using fluent interfaces altogether? As usual, the
answer is that it depends, but in general the answer is no.

Choosing between a fluent interface and a DSL

I’ll admit that I tend to favor building DSLs over fluent interfaces, precisely because 1
leaned the other way in the past and got badly burned by trying to maintain something
of that complexity in a rigid language. But there is a time and place for everything.

I tend to ask the following questions when I'm deciding which to choose:

‘When will this DSL or fluent interface be used?
Who will use the DSL or fluent interface?
How flexible does the syntax need to be?

Fluent interfaces are usually useful only during the development process. A fluent
interface is probably a good choice if you intend to use it while you write the code,
because you won’t have to switch between two languages and can take advantage of
the IDE tooling. In contrast, if you want to allow modifications outside development
(for example, in production), a DSL tends to be a much better choice.

This leads to the question of who will use the DSL or fluent interface. If domain
experts are going to be the users, you’ll probably want a full-blown DSL in place,
because that will make it easier to work with the concepts of the domain. If the target
audience is programmers, and the expected usage is during normal development, a
fluent interface would be appropriate.

Last, but certainly not least, is the issue of the syntax that you want to use. DSLs are
more expressive. Getting a fluent interface to be expressive can be prohibitive in
terms of time and complexity.

One of most important differences between a DSL and a fluent interface shows up
when you want to perform actions outside the direct development cycle. While a flu-
ent interface is strongly tied to the development cycle, if only because we require an
IDE, a build process, and to push binaries to production, with a DSL we are dealing
with standalone scripts. It is very easy to treat them as such, edit them using a simple
text editor (or using a dedicated tool, as discussed in chapter 10), and simply upload
them to the production environment.

Iam not a fan of treating DSL changes as mere configuration changes and thus skip-
ping the test cycle, but in many organizations the ability to push such changes rapidly
is a major selling point for a DSL over a fluent interface. Chapter 12 discusses pushing
DSL changes to production in a disciplined, auditable, and controlled manner.

3.2

321

Building different types of DSLs 43

How to deal with language hopping

Some people have a theoretical issue with using more than one language at a time.
| say “theoretical” because it's usually more theoretical than practical.

In the web world, people have little problem hopping between HTML, JavaScript, and
server-side programming, so this disconnect isn’t a big problem. In many enterprise
applications, important parts of applications are written in SQL (stored procedures,
triggers, complex queries, and the like), and here too we need to frequently move
between code in C#, Java, or VB.NET and SQL queries. In my experience, language
hopping has rarely caused any confusion (it has other issues, but this isn’t the place
to talk about them).

If you remain consistent in your domain terminology in both languages, and keep your
language short and to the point, you shouldn’t need to worry about problems as a
result of language hopping.

Last, but not least, there is a hard limit to how much you can get from a fluent inter-
face in terms of language-oriented programming. A DSL is much more flexible in this
regard, and that is a major reason to favor a DSL over a fluent interface. On the plus
side for fluent interfaces, you can take advantage of your existing tool chain (IDE,
IntelliSense, and so on) instead of having to build your own.

Coming back to DSLs, let’s explore the reasons and motives for building different
types of DSLs, and how that affects the DSLs we’re building.

Building different types of DSLs

As I mentioned in chapter 1, different types of DSLs are written for different purposes:
Technical DSLs—Created to solve technical issues. You might use such DSLs to
create build scripts, set up system configuration, or to provide a natural syntax
for a technical domain (a DSL for behavior-driven design or for creating state
machines).

Business DSLs—Created to provide a common, executable language for a team
(including domain experts) in a specific domain.

Extensibility DSLs—Created to allow an application to be extended externally
without modifying the application itself but by providing external scripts to add
additional functionality. Usages include scripting, customer modifications, and
so on.

These DSL types have different constraints and requirements that affect how you need
to approach building them and where and how they are used in applications. We’ll
look at each type in depth, starting with technical DSLs.

Building technical DSLs

Technical DSLs are generally used to solve problems of clarity and complexity.

44

CHAPTER 3 The drive toward DSLs

A build tool is an obvious example. Compiling all the code is a single step in the
build process; copying all referenced assemblies to the output location is another
step. We arrange those steps into groups that are called targets, which have depen-
dency relationships between them. The job of the build script is to define the targets,
the steps within the targets, and the dependencies between the different targets.

The process of building software is a complex one. Components’ dependency
management, complier options, platform choices, and many other issues need to be
dealt with. In large projects needing a clear build process, the build scripts are a black
art, feared by many and understood by few. This make them an excellent target for a
technical DSL, because you can use the DSL to encapsulate the complexity and give
even those who aren’t familiar with the build the ability to understand and modify it.

Technical DSLs are built for technical people, usually developers. Having technical
people as the audience greatly simplifies the task of building a good DSL, but creating
a clear and expressive language is just as important for a technical DSL as for any other.

As a case in point, we can look at Apache Ant, a popular build tool in the Java
world. When James Duncan Davidson created Apache Ant, it was perfectly logical to
use an XML file to specify the syntax for the build script. After all, that’s what XML is
for, and using it avoided the need to create yet another parser. The problem is that
this will work for awhile, and then you’ll realize that you need conditionals and itera-
tions and the like. The result can look like listing 3.4.

Listing 3.4 An Ant XML script with a foreach loop and not the best syntax

<foreach item="File" property="filename">
<in>
<items>
<include name="${finished_spec.dir}*.d11l" />
</items>
</in>
<do>
<exec program="${build.dir}\document.exe"
commandline="${filename} ${build.dir}\docs"/>
</do>
</foreach>

James has reconsidered the decision to go with XML (http://weblogs.java.net/blog/
duncan/archive/2003/06/ant_dotnext.html).

For comparison, listing 3.5 has the same functionality, but expressed using the
Bake DSL.

Listing 3.5 A Bake script with a for loop

for file in Directory.GetFiles(finished_spec, "*.d1l1l"):
exec (Path: "${buildDir}\\document.exe",
CmdLine: "${file} ${buildDir}\\docs")
Listing 3.4 and listing 3.5 perform the same action, executing a program for each DLL
in a specific directory. The Ant script takes three times as many lines to express the

http://weblogs.java.net/blog/duncan/archive/2003/06/ant_dotnext.html

3.2.2

Building different types of DSLs 45

same thing as the Boo Bake script, and the actual meaning of the script is lost in the
XML noise.

This difference between the two styles can seem minor in such a small example,
but consider how it affects your ability to read and understand what the script is doing
in a real-world scenario.

TIP Look at what we’re iterating on in listing 3.5. We’re using the standard
CLR API in the DSL. This means that we have tremendous power in our
hands; we don’t need to supply everything to the DSL. We can make use
of anything that already exists on the CLR, and, even more importantly,
making use of the available API requires no additional effort.

As another example of a technical DSL where clarity is critical, consider listing 3.6,
taken from a Binsor configuration file. (Binsor is a Boo DSL for configuring the Castle
Windsor container.) This piece of code scans a set of assemblies and finds all the types
that implement the IController interface.

Listing 3.6 Binsor script to scan a set of assemblies

for type in AllTypesIn("MyApp.Controllers", "MyApp.Helpers"):

continue unless typeof (IController) .IsAssignableFrom(type)

component type
You can probably tell what the code in listing 3.6 is doing, even without a good under-
standing of how Binsor works. The combination between just enough DSL syntax and
the ability to use standard programming constructs makes for a very powerful
approach when building a technical DSL.

You aren’t limited to just using loops—you have the full power of a programming
language in your hands, which means that you can execute logic as part of configura-
tion scripts. Even for simple configuration tasks, the ability to execute logic is invalu-
able. Consider the case of selecting a connection string for test or development. You
could have several connection strings and select from them manually in the applica-
tion code, or you could have an if statement in your configuration make the decision
automatically.

The advantages of building a technical language are that you get the benefits of a
DSL (clearer semantics and a higher focus on the task) and keep most of the power
that you're used to having.

The disadvantage is that technical DSLs are still pretty close to programming lan-
guages, and as such tend to require programming skills to use. This is fine if you're
targeting developers, but not if you want a DSL that a business expert can use. For
those scenarios, you need a business DSL.

Building business DSLs

When you’re building a DSL for a business scenario, rather than a technical one, you
need to ask yourself a few questions. Who is going to write scripts using this DSL, and
who is going to read those scripts?

46

The drive toward DSLs

Talking with domain experts

In one of my projects, | had an ex-developer as a business analyst. The domain was
a complex one, and we often ran into subtleties. Being able to ping the analyst and
go over code with him was invaluable. He could tell me if | was doing it right, because
he could understand what the code was doing.

This was an extremely rare situation, but it made my work much easier, because we
could communicate on a level that both of us understood.

Having a shared language and terminology with the domain experts is invaluable, but
we can take it a few steps further by making that shared language be directly execut-
able by the machine. With a business DSL, there is no translation gap between what
the domain expert has told the developers and what the computer is executing.

Not only that, but we can have the domain experts review the executable instructions
(because they are written in a DSL that they can read) and tell us whether this is good
or bad. Many domain experts already do some level of programming in the form of
VBA or Microsoft Office programming. If they can work with that, they should be able
to write using a DSL.

A business DSL doesn’t necessarily have to be writable by the domain experts (business
users, analysts, and the like). Building a DSL doesn’t mean that you can offload all the
work to the domain experts and leave it at that. The main purpose of a DSL is to facili-
tate better communication between the developers and the businesspeople.

Examples of business DSLs can be seen in rules engines of various dispositions.
Usually those tools cost quite a bit of money and come with “easy to use and intuitive”
designers and wizards.

Usually, business rules are simple condition and action statements. Imagine that
we have a store and we want to calculate the final pricing on an order. The pricing
business rules change frequently, and we’d like to have the businesspeople’s direct
input on those. Listing 3.7 shows how we can specify the rules for calculating the final
pricing of an order using a DSL syntax.

Listing 3.7 A sample DSL for defining order-processing rules

when User.IsPreferred and Order.TotalCost > 1000:
AddDiscountPercentage 5
ApplyFreeShipping

when not User.IsPreferred and Order.TotalCost > 1000:
SuggestUpgradeToPreferred
ApplyFreeShipping

when User.IsNotPreferred and Order.TotalCost > 500:
ApplyFreeShipping

Any businessperson could read and understand these rules. Getting this type of DSL to
work takes about 10 minutes of work (the backend code for this DSL is only 68 lines

long). The ability to easily define such a DSL means that you get a lot of flexibility for
little cost.

3.23

3.3

Fleshing out the syntax 47

NOTE Look at the difference between the second and third conditions in
listing 3.7. The second uses not User.IsPreferred and the third uses
User.IsNotPreferred. When building a DSL, you need to put aside some
of your notions about good API design. What works for developers
doesn’t necessarily work well for language-oriented programming. Read-
ing not User.IsPreferred is awkward for some people, so User.IsNot-
Preferred is better from a readability standpoint.

Building Extensibility DSLs

You can use a DSL to extend an application. Consider the macro feature in Visual Stu-
dio or VBA in Excel. They’re useful tools, and most big applications have something of
that sort. Visual Studio has macros, Emacs has LISP, Office has VBA, many games use
scripting for the “game logic,” and so on.

Most of the approaches that we’ll look at in this book could be called extensibility
mechanisms, but true extensibility DSLs usually focus on enabling as much as possible,
whereas in most DSLs we want a language that’s expressive in a narrow domain. We’ll
talk about the implications of extensibility DSLs for an application in chapter 5.

Once you’ve decided to create a DSL, what’s next? How do you go from the wish to
be clear and expressive to having a DSL in hand?

Fleshing out the syntax

Let’s imagine we haven’t already seen the DSL syntax for the Scheduling DSL, and that
we need to start building such a thing from scratch. Before we begin the actual imple-
mentation, we need to know what we want to do in our DSL:

Define named tasks

Specify what happens when a task is executed

Define when a task should execute

Describe the conditions for executing the task

Define the recurrence pattern (how often we will repeat the task)

We also need to look at those goals from the appropriate perspective—the end user’s.
The clientwill pay for the DSL, but the end users are the people who will end up using the
DSL. There is a distinct difference between the two. Identifying who the end user is can
be a chore, but it’s important to accurately identify who the users of the DSL will be.

One of the major reasons to build a DSL is to hide the complexities of the imple-
mentation with a language that makes sense to the domain experts. If you get the
wrong idea about who is going to use the DSL, you will create something that is harder
to use. The budgeting people generally have a much fuzzier notion about what their
company is doing than the people actually doing the work. Once you have some idea
about what the end users want, you can start the design and implementation.

I try to start using a declarative approach. It makes it easier to abstract all the
details that aren’t important for the users of the DSL when they are writing scripts.
That means deciding what the DSL should do. After I have identified what I want to

48

3.4

The drive toward DSLs

use the DSL for, I can start working on the syntax. It’s usually easier to go from an

example of how you want to specify things to the syntax than it is to go the other way.

One technique that I have found useful is to pretend that I have a program that
can perfectly understand intent in plain English and execute it. For the Scheduling
DSL, the input for that program might look like the following:

Define a task named: "warn if website is down", starting from now, running
every 3 minutes. When website "http://example.org" is not alive, then
notify "admin@example.org" that the server is down.

This syntax should cover a single scenario of using the Scheduling DSL, not all scenar-

i0s. The scenario should also be very specific. Notice that I've included the URL and

email address in the scenario, to make it more detailed.

You should flesh out the DSL in small stages, to make it easier to implement and to
discover the right language semantics. You should also make it clear that you’re talk-
ing about a specific usage instance, and not the general syntax definition.

Once you have the scenario description, you can start breaking into lines, and
indenting by action groups. This allows you to see the language syntax more clearly:
Define a task named: "warn if website is down",

starting from now,

running every 3 minutes.

When web site "http://example.org" is not alive

then notify "admin@example.org" that the server is down.

Now it looks a lot more structured, doesn’t it? After this step, it’s a matter of turning

the natural language into something that you can build an internal DSL on. This

requires some level of expertise, but mostly it requires knowing the syntax and what
you can get away with.

We’ve already become somewhat familiar with the syntax of the Boo language and
all the ways we can work with it in chapter 2. We’ll look at more advanced options in
chapter 6, and the syntax reference in appendix B can help you get familiar with what
types of syntactic sugar you can build into your DSL.

Choosing between imperative and declarative DSLs

There are two main styles for building DSLs: imperative and declarative. These styles
are independent of the DSL types we discussed in chapter 1 (external DSLs, graphical
DSLs, and internal DSLs). Each of the three DSL types can be implemented using
either style, although there is a tendency to use a more imperative approach for tech-
nical DSLs and a more declarative approach for business DSLs.

An imperative DSL specifies a list of steps to execute (to output text using a tem-
plating DSL, for example). With this style, you specify what should happen.

A declarative DSL is a specification of a goal. This specification is then executed
by the supporting infrastructure. With this style, you specify the intended result.

The difference is really in the intention. Imperative DSLs usually specify what to do,
and declarative DSLs specify what you want done.

Choosing between imperative and declarative DSLs 49

SQL and regular expressions are examples of declarative
DSLs. They both describe what you want done, but not how
to do it. Build scripts are great example of imperative DSLs.
It doesn’t matter what build engine you use (NAnt, Rake,
Make), the build script lists actions that need to be executed

in a specified order. There are also hybrid DSLs, which are a
mix of the two. They are DSLs that specify what you want
done, but they also have some explicit actions to execute.
Usually, with declarative DSLs, there are several steps
along the way to the final execution. For example, SQL is a

Figure 3.1 Standard
operating procedure for
imperative DSLs

DSL that uses the declarative style. With SQL you can specify what properties you want
to select and according to what criteria. You then let the database engine handle the
loading of the data.

When you use an imperative DSL, the DSL directly dictates what will happen, as
illustrated in figure 3.1.

When you use a declarative DSL, the DSL specifies the desired output, and there is
an engine that takes any actions required to make it so. There isn’t necessarily a one-
to-one mapping between the output that the DSL requests and the actions that the
engine takes, as illustrated in figure 3.2.

You have to decide which type of DSL you want to build. Imperative DSLs are good
if you want a simple-to-understand but open-ended solution. Declarative DSLs work
well when the problem itself is complex, but you can express the specification for the
solution in a clear manner.

Regardless of which type of DSL you decide to build, you need to be careful not to
leak implementation details into the DSL syntax. Doing so will generally make it
harder to modify the DSL in the long run, and likely will confuse the users. DSLs
should deal with the abstract concepts, such as applying free shipping, or suggesting
registration as a preferred customer, and leave the implementation of those concepts to
the application itself. This is an important concept that we’ll come back to when we
talk about unit testing in chapter 8.

Sometimes I build declarative DSLs, and more often hybrid DSLs (more on them in
a minute). Usually the result of my DSLs is an
object graph describing the intent of the user

that I can feed into an engine that knows how [MyDSL) [Engine j
Let there Perform
be X action #1
Let there Perform
beY action #2
Perform
action #3

ing, because it’s usually used to express the Figure 3.2 Standard operating
procedure for declarative DSLs

to deal with it. The DSL portion is responsible
for setting this up, and not much more.

I rarely find a use for imperative DSLs. When
I use them, it’s usually in some sort of helper
functionality: text generation, file processing,

o

and the like. A declarative DSL is more interest-

complex scenarios.

50

The drive toward DSLs

I don’t write a lot of purely declarative DSLs. While those are quite interesting in
the abstract, getting them to work in real-world scenarios can be hard. But mixing the
styles, creating a hybrid DSL, is a powerful combination.

A hybrid DSL is a declarative DSL that uses imperative programming approaches to
reach the final state that’s passed to the backend engine for processing. For example,
consider this rule: “All preferred customers get 2 percent additional discount on large
orders on Sunday.” That rule is expressed in listing 3.8 using a hybrid of declarative
and imperative styles (look at the third line):

Listing 3.8 A hybrid DSL, using both imperative and declarative concepts

when User.IsPreferred and Order.TotalCost > 1000:

AddDiscountPercentage 5

AddDiscountPercentage 2 if today is sunday

ApplyFreeShipping
Note that this example uses the same syntax as before, but we’re adding additional
conditionals to the mix—we’re mixing both styles. This is a silly example of the power
of hybrid DSLs, but the ability to express control flow (loops and if constructs) and to
have access to declarative concepts makes a hybrid DSL a natural for specifying behav-
ior in more complex scenarios, and it can do so coherently.

Before we move on, listing 3.9 shows another approach, arguably a more declara-

tive one, for the same problem.

Listing 3.9 A more declarative approach to specifying rules

applyDiscount 5.percent:

when User.IsPreferred and Order.TotalCost > 1000
suggestPreferred:

when not User.IsPreferred and Order.TotalCost > 1000
freeShipping:

when Order.TotalCost > 500 and User.IsNotPreferred

when Order.TotalCost > 1000 and User.IsPreferred

I find the example in listing 3.9 to be more expressive, because it explicitly breaks

away from the developer mentality of ifs and branches and forces you to think about
actions and triggers, which is probably a better model for this particular problem.

The importance of clarity

In the initial draft of this book, one of the reviewers pointed out an inconsistency
between listings 3.7 and 3.9. I've left the inconsistency in place to show how differ-
ent syntaxes can change the way we understand the system.

If you look at the rules for free shipping, you can see that there’s an interesting incon-
sistency. Preferred users get free shipping for orders above $1,000, whereas non-
preferred users get free shipping for orders above $500.

In listing 3.7, you have to look at all the rules in order to understand what is going
on. In listing 3.9, this inconsistency is explicit. In chapter 13, we’ll talk extensively
about how to make such concepts explicit.

3.5

Taking a DSL apart—uwhat makes it tick? 51

| have been in situations where laying out the existing business rules close to one
another (in a format like listing 3.9) has highlighted logical problems in what the busi-
ness was doing, though sometimes they went ahead with the inconsistency. | try to
avoid using the term business logic, because | rarely find any sort of logic in it.

Nevertheless, both examples perform the exact same operations, and are equivalent in
terms of complexity and usage. In fact, there is a one-to-one mapping between the two.
That’s enough theory; let’s pull the concepts of a DSL apart, and see how it works.

Taking a DSL apart—what makes it tick?

We’ve looked at building DSLs from the point of view of the

outward syntax—how we use them. What we haven’t done is u J
cover how they’re structured internallyj—how we build and
integrate them into our applications.

In general, a DSL is composed of the building blocks m

shown in figure 3.3.
A typical DSL is usually split into several distinct parts:

Syntax—This is the core language or the syntax exten-

sions that you create. . .
Figure 3.3 A typical DSL

API—This is the API used in the DSL; it is usually built gtructure

specifically to support the DSL and its needs.

Model—This is the existing code base we reuse in our DSL (usually using a

facade). The difference between the API and the model is that the model usu-

ally represents the notions in our application (such as Customer, Discount, and

so on), whereas the API focuses on providing the DSL with convenient ways to

access and manipulate the model.

Engine—This is the runtime engine that executes the DSL and processes its

results.

The language and the API can be intrinsically tied together, but there is a fine line sep-
arating the two. The API exposes the operations that DSL users will use in the applica-
tion. Usually you’ll expose the domain operations to the DSL. You express those
operations through the language, but the API is focused on enabling a good syntax for
the operations, not on providing the operations themselves.

We’ll deal with language construction in the next two chapters, and we’ll see an
example of it in the next section. Broadly, we need to understand what features of the
language we can use and what modifications we’re able to make to the language to
better express our intent. Often, this is directly related to the API that we expose to
the DSL. As I mentioned earlier, if you're working in a domain-driven design manner,
you’re in a good position to reuse the same domain objects in your DSL (although
that causes problems, such as versioning, which we’ll look at in chapter 9). Often,

52

The drive toward DSLs

Keeping the layers separated

Several times in the past | have tried to combine different parts of the DSL—typically
the syntax and the APl—usually to my regret. It's important to keep each layer to
itself, because that brings several advantages.

It means you can work on each layer independently. Enhancing your API doesn’t break
the syntax, and adding a method call doesn’t require dealing with the internals of the
compiler.

You can use the DSL infrastructure from other languages, as well. Why would you
want to do that? Because this will avoid tying your investment in the DSL into a single
implementation of the syntax, and that’s important. You may want to have several
dialects of a single DSL working against a single infrastructure, or you may decide
that you have hit the limits of the host language and you need to build an external
DSL (or one using a different host language). You'll still want to use the same infra-
structure across all of them. Having an infrastructure that is not tied to a specific lan-
guage implementation also means that you can use this infrastructure without any
DSL, directly from your application.

A typical example of using the DSL infrastructure without a DSL language would be
an infrastructure that can also be used via a fluent interface to the application and
via a DSL for external extensibility.

though, the API will be composed of facades over the application, to provide the DSL
with coarse-grained access into the application (fine-grained control is often too fine
grained and is rarely useful in a DSL).

The execution engine is responsible for the entire process of selecting a DSL script
and executing it, from setting up the compiler to executing the compiled code, from
setting up the execution environment to executing the secondary stages in the engine
after the DSL has finished running (assuming you have a declarative DSL).

Extending the Boo language itself is probably the most powerful way to add addi-
tional functionality to a DSL, but it’s also the most difficult. You need to understand
how the compiler works, to some extent. Boo was built to allow that, but it’s usually
easier to extend a DSL by adding to the API than by extending the Boo language.
When you need to extend Boo to enrich your DSL, those extensions will also reside in
the engine and will be managed by it.

The API is part of the DSL. Repeat that a few times in your head. The API is part of
the DSL because it composes a significant part of the language that you use to commu-
nicate intent.

Having a clear API, one that reflects the domain you’re working in, will make build-
ing a DSL much easier. In fact, the process of writing a DSL is similar to the process of
fleshing out a domain model or ubiquitous language in domain-driven design. Like
the domain itself, the DSL should evolve with your understanding of the domain and
the requirements of the application.

DSLs and domain-driven design are often seen together, for that matter.

3.6

3.6.1

Combining domain-driven design and DSLs 53

Use iterative design for your DSLs

When sitting down to design a DSL, | take one of two approaches. Either | let it grow
organically, as new needs arise, or | try to think about the core scenarios that | need
to handle, and decide what | want the language to look like.

There are advantages to both approaches. The first approach is the one | generally
use when | am building a language for myself, because | already have a fairly good
idea what kind of a language | want.

| use the second approach if I’'m building a DSL for general consumption, particularly
to be used by non-developers. This isn’t to say you need to spend weeks and months
designing a DSL. | still very much favor the iterative approach, but you should seek
additional input before you start committing to a language’s syntax. Hopefully, this
input will come from the expected audience of the DSL, which can help guide you
toward a language that’s well suited for their needs. Then, once you start, assume
that you’ll not be able to deliver the best result in the first few tries.

We’ll tackle the problem of DSL maintenance and versioning in chapter 9, and the
techniques described there will help you build DSLs that can be modified in response
to your increasing understanding of the domain and the requirements that you place
on the DSL.

If you build a DSL when you're just starting to understand the domain, and you
neglect to maintain it as your understanding of the domain and its needs grows, it
will sulk and refuse to cooperate. It will no longer allow you to easily express your
intent, but rather will force you to awkwardly specify your intentions.

Combining domain-driven design and DSLs

Domain-driven design (DDD) is an approach to software design that’s based on the
premise that the primary focus should be on the domain and the domain logic (as
opposed to focusing on technological concerns) and that complex domain designs
should be based on a model.

If you aren’t familiar with DDD, you may want to skip this section, because it
focuses specifically on the use of DSLs in DDD applications.

TIP If you're interested in DDD, I highly recommend that you read Domain-
Driven Design by Eric Evans and Applying Domain-Driven Design and Patterns
by Jimmy Nilsson. Those books do an excellent job of describing how to
flesh out and maintain a domain model.

Language-oriented programming in DDD

The reason for using language-oriented programming is that humans are good at
expressing ideas using a spoken language. While spoken language is generally very
imprecise, people usually settle on a set of terms and phrases that have specific mean-
ings in a particular context.

54

3.6.2

The drive toward DSLs

Ubiquitous language and DSLs

Ubiquitous language is a term used in DDD to describe the way we talk about the soft-
ware. The ubiquitous language is a spoken language that's structured around the
domain model and is used by all members of the team when talking about the
domain.

A ubiquitous language isn’t a DSL, and a DSL isn’t a ubiquitous language. A ubiqui-
tous language is used to make communication clearer. Terms from the ubiquitous
language are then used in the code of the system.

A DSL, on the other hand, can be seen as taking the ubiquitous language and turning
it into an executable language. A DSL isn’'t always about a business domain, but
when it is, and when you’re practicing DDD, it's almost certain that your DSL will
reflect the ubiquitous language closely.

In short, the ubiquitous language is the language of communication inside a team,
whereas a DSL is a way to express intent. The two can (and hopefully will) be merged
in many scenarios.

In some fields, the domain terms are very explicit. In a Sarbanes-Oxley tracking sys-
tem, the domain terms are defined in the law itself. In many fields, some of the terms
are well defined (such as in accounting) but other terms are often more loosely
defined and can vary in different businesses or even different departments. The term
customer is probably the quintessential example of a loosely defined term. I once sat in
a meeting with two department heads, watching them fight for 3 hours over how the
system would define a customer, without any satisfactory result.

When you’re building software, you usually need to talk to the domain experts.
They can help clarify what the domain terms are, and from there you can build the
ubiquitous language that you’ll use in the project.

Once you have the ubiquitous language, you can start looking at what you want to
express in the DSL, and how you can use the ubiquitous language to express that.
From there, you follow the same path we outlined in section 3.3: break it up according
to the semantics, and then see what the language will allow you to get away with.

We’ll spend chapters 4 and 5 mostly dealing with how much we can get away with.
But before we get into that, let’s look at the result of combining DSLs and DDD. You
may have heard that the whole is greater than the sum of its parts.

Applying a DSL in a DDD application

It seems natural, when thinking about DSLs, to add DDD to the mix, doesn’t it?

Figure 3.4 shows a set of DSLs in a domain-driven application. In most applications,
you’ll have a set of DSLs, each of them targeted at one specific goal. You’ll also usually
have a DSL facade of some kind that will translate the code-driven API to a more
language-oriented API.

Combining domain-driven design and DSLs 55

@ Classic Domain-Driven Design
Aggregates

Value
objects
Layered -
architecture Repositories

| DSL A facade | DSL B facade | DSL C facade
1 I)
| DSLA | | DSLB | | DSLC

| Figure 3.4 DSLs used in a DDD context

There are quite a few domains where DDD doesn’t make sense. In fact, most of the
DSLs that I use daily aren’t tied to a DDD implementation. They’re technical DSLs,
used for such things as templating, configuration, ETL (extract, transform, and load),
and so on.

Technical DSLs rarely require a full-fledged domain model or a ubiquitous lan-
guage because the model used is usually implicit in the assumptions that we have as
software developers. A templating DSL doesn’t need anything beyond text-processing
instructions, for example. A configuration DSL needs little beyond knowing what it
configures.

But when it comes to business DSLs, we’re in a much more interesting position.

Let’s look at an example and start by assuming that we’ve defined a domain using the
techniques that Eric Evans suggests in his book, Domain-Driven Design.
Assuming that we have a CLR application (written in C#, VB.NET, or Boo) and assum-
ing we’re writing the DSL in Boo, we have immediate and unlimited access to the
domain. This means that, by default, our DSL can immediately take advantage of all
the work that went into building the ubiquitous language and the domain model.

All the ideas about the domain model and ubiquitous language are directly appli-
cable and exposed to the DSL. Think back to the business DSL example in listing 3.7,
repeated here in listing 3.10.

What if | don’t know DDD already?

If you haven’t read Evans’ book or are not familiar with the terminology used, DDD
calls for creating a ubiquitous language shared by all the stakeholders in the project
(which explicitly includes the developers and the businesspeople).

The ubiquitous language is not used solely for communication with the businesspeo-
ple; it is part and parcel of the actual structure of the code. The more closely the lan-
guage matches the way the businesspeople think about the processes to be
performed, the more closely the software will meet the needs of the business.

56

3.7

CHAPTER 3 The drive toward DSLs

Listing 3.10 A DSL that uses an existing DDD-based domain model

when User.IsPreferred and Order.TotalCost > 1000:

AddDiscountPercentage 5

ApplyFreeShipping
when User.IsNotPreferred and Order.TotalCost > 500:

ApplyFreeShipping
Notice that we’re using both IsPreferred and IsNotPreferred—having both of
them means that you get better readability. But consider the actions that are being
performed when the condition specified in the when clause is matched. We aren’t
modifying state, like this:

Order.TotalCost = Order.TotalCost - (Order.TotalCost * 0.05) #apply discount

That would probably work, but it’s a bad way to do it. It’s completely opaque, for one
thing. The code is clear about what it does, but there is no hint about the business
logic and reasoning behind it. There is a distinct difference between applying a dis-
count for a particular sale offer and applying a discount because of a coupon, for
example, and this code doesn’t explain that. It’s also probably wrong from the domain
perspective, because you will almost certainly want to keep track of your discounts.

In the domain, we probably would have something like this:

Order.ApplyDiscountPercentage (5)

That would be valid code that we could put into action as well. But in the DSL, because
we already know what the applicable operations are, we can make it even more
explicit by specifying the discount as an operation with a known context. This makes
those operations into part of the language that we use when writing functionality with
the DSL.

Now, let’s get back to the Scheduling DSL that we started to build at the beginning
of this chapter. Let’s dive into the implementation details.

Implementing the Scheduling DSL
Listing 3.11 will refresh your memory about what the Scheduling DSL looks like.

Listing 3.11 Sample code from the Scheduling DSL

task "warn if website is down":
every 3.Minutes/()
starting now
when WebSite("http://example.org") .IsNotResponding
then:
notify "admin@example.org", "server down!"

It doesn’t look much like code, right? But take a look at the class diagram in
figure 3.5.

This is the implicit base class for the Scheduling DSL. An implicit base class is one of
the more common ways to define and work with a DSL. We’ll spend some time talking
about this in chapter 4.

Implementing the Scheduling DSL 57

| BaseScheduler [
Abstract Class

=] Methods
W every(TimeSpan timeSpan) : void
Minutes(int number) : TimeSpan
notify(string who, string message) : void
Prepare() : void
Run() :void
starting(DateTime date) : void
task(string name, ActionDelegate taskDelegate) : void
then(ActionDelegate actionDelegate) : void Figure 3.5 Class diagram of
when(Expression expression) : Expression BaseScheduler, the implicit
R— - —— base class for the Scheduling DSL

For now, please assume that the DSL code you see is being magically placed in the Pre-
pare () method of a derived class. This means that you have full access to all the meth-
ods that the BaseScheduler exposes, because those are exposed by the base class.

What this means, in turn, is that you can now look at the DSL and the class diagram
and suddenly understand that most of what goes on here involves plain old method
calls. Nothing fancy or hard to understand—we’re merely using a slightly different
syntax to call them than you usually do.

We’re adding a minor extension to the language here. Two methods in the Base-
Scheduler aren’t part of the API, but rather are part of the language extension:

Minutes ()—This is a simple extension method that allows us to specify 3.Min-
utes (), which reads better than TimeSpan.FromMinutes (3), which is how we
would usually perform the same task.

when (Expression)—This is a meta-method, which is a method that can modify
the language. It specifies that the expression that’s passed to it will be wrapped
in a delegate and stored in an instance variable. We’ll see exactly how this works
in chapter 4.

That doesn’t make much sense right now, I know, so let’s start taking this DSL apart.
We’ll use the exact opposite approach from what we do when we’re building the DSL.
We’ll add the programming concepts to the existing DSL until we fully understand
how this works.

Let’s start by adding parentheses and removing some compiler syntactic sugar.
Listing 3.12 shows the results of that.

Listing 3.12 The Scheduling DSL after removing most of the syntactic sugar

task("warn if website is down", do()
self.every(self.Minutes(3))
self.starting (self.now)
self.when(WebSite("http://example.org") .IsNotResponding)
self.then(do():
notify("admin@example.org", "server down!")

58

CHAPTER 3 The drive toward DSLs

A couple of notes about this before we continue:

= self in Boo is the equivalent of this in C# or Java or of Me in VB.NET.
= do() : is the syntax for anonymous delegates in Boo.

That looks a lot more like code now (and a lot less like a normal language). But we’re
not done yet. We still need to resolve the when meta-method. When we run that, we’ll
get the result shown in listing 3.13.

Listing 3.13 The Scheduling DSL after resolving the when meta-method

task("warn if website is down", do()
self.every(self.Minutes(3))
starting (self.now)
condition = do():
return WebSite("http://example.org") .IsNotResponding
then(do():
notify("admin@example.org", "server down!")
)
)

As you can see, we completely removed the when method, replacing it with an assign-

ment of an anonymous delegate for the instance variable. This is the only piece of
compiler magic we’ve performed. Everything else is already in the Boo language.

Meta-methods and anonymous blocks

Take a look at the when and then methods. Both of them end up with a similar syntax,
but they’re implemented in drastically different ways. The when method is a meta-
method. It changes the code at compilation time. The then method uses an anony-
mous block as a way to pass the delegate to execute.

The reason we have two different approaches that end up with nearly the same end
result (passing a delegate to a method) has to do with the syntax we want to achieve.

With the when method, we want to achieve a keyword-like behavior, so the when
method accepts an expression and transforms that to a delegate. The then keyword
has a different syntax that accepts a block of code, so we use Boo’'s anonymous
blocks to help us out there.

We’ll talk about those things extensively in chapters 4 and 6.

Now we can take the code in listing 3.13 and make a direct translation to G#, which
will give us the code in listing 3.14.

Listing 3.14 The Scheduling DSL code, translated to C#

task("warn if website is down", delegate
{
this.every(this.Minutes(3));
this.starting (this.now);
this.condition = delegate

{

3.8

Running the Scheduling DSL 59

return new WebSite("http://example.org"). IsNotResponding;
Yi
this.then(delegate
{
this.notify("admin@example.org", "server down!");
1)
1)
Take a look back at the original DSL text in listing 3.11, and compare it to listing 3.14.
In terms of functionality, they’'re the same, but the syntactic differences between them
are huge, and we want a good syntax for our DSL.

We’ve skipped one important part; we haven’t talked yet about what the implicit
base class will do. The result of the implicit base class resolving its base class is shown
in listing 3.15, and the details of what the implicit base class is doing are discussed in
section 3.8.

Listing 3.15 The full class that was generated using the implicit base class

public class MyDemoTask (BaseScheduler):
def override Prepare():
task("warn if website is down"), def():
the rest of the code
Now that we have a firm grasp of what code we’re getting out of the DSL, we need to
get to grips with how we can run this code.

Running the Scheduling DSL

So far we’ve focused on the transformations we’re putting the code through, but we
haven’t talked yet about how to compile and execute a DSL. Remember, we aren’t
dealing with scripts in the strict sense of the word; we have no interpreter to run.
We’re going to compile our DSL to IL, and then execute this IL. The code that it takes
to do this isn’t difficult, just annoying to write time after time, so I wrapped it up in a
common project called Rhino DSL.?

The Rhino DSL project

The Rhino DSL project is a set of components that turned out to be useful across
many DSL implementations. It contains classes to aid in building a DSL engine,
implicit base classes, multifile DSLs, and so on.

We’re going to use Rhino DSL throughout this book; it's an open source project,
licensed under the BSD license, which means that you can use it freely in any type
of application or scenario. We’re also going to spend chapter 7 dissecting Rhino DSL,
to ensure that you understand how it works, so you could implement it on your own,
if you ever need to.

2 Rhino [Project Name] is a naming convention that I use for most of my projects. You may be familiar with
Rhino Mocks, for example, which is part of the same group of projects as Rhino DSL. There is no connection
to Mozilla’s Rhino project, which is a JavaScript implementation in Java.

60

The drive toward DSLs

Compilation is expensive, and once we load an assembly in the CLR, we have no way of
freeing the occupied memory short of unloading the entire AppDomain. To deal with
these two problems, we need to do at least some caching up front. Doing this on a
DSL-by-DSL basis is annoying, and it would be nice to get the cost of creating a DSL
down as much as possible.

For all of those reasons, Rhino DSL provides the Ds1Factory class, which takes care
of all of that. It works closely with the Ds1Engine, which is the class we derive from to
specify how we want the compilation of the DSL to behave.

Again, none of this is strictly necessary. You can do it yourself easily, if you choose
to, but using Rhino DSL makes it easier and allows us to focus on the DSL implemen-
tation instead of the compiler mechanics.

We’ve already looked at the BaseScheduler class. Now let’s take a peek at the
SchedulingDslEngine class. Listing 3.16 shows the full source code of the class.

Listing 3.16 The implementation of SchedulingDslEngine

public class SchedulingDslEngine : DslEngine
{
protected override void CustomizeCompiler (
BooCompiler compiler,
CompilerPipeline pipeline,
string[] urls)

pipeline.Insert (1,
new ImplicitBaseClassCompilerStep (
typeof (BaseScheduler),
"Prepare",
// default namespace imports
"Rhino.DSL.Tests.SchedulingDSL")) ;

}

As you can see, it doesn’t do much, but what it does do is interesting. The method is
called CustomizeCompiler, and you're going to learn a whole lot more about cus-
tomizing the compiler in chapter 4. For now, keep in mind that Boo allows you to
move code around during compilation, and the ImplicitBaseClassCompilerStep
does that.

The ImplicitBaseClassCompilerStep will create an implicit class that will derive
from BaseScheduler. All the code in the file will be placed in the Prepare derived
method. We can also specify default namespace imports. In listing 3.16, you can see
that we add the Rhino.DSL.Tests.ShedulingDSL namespace. This namespace will be
imported to all the DSL scripts, so we don’t have to explicitly import it. VB.NET users
are familiar with this feature, using the project imports.

We’re nearly at the point when we can execute our DSL. The one thing that’s still
missing is the DslFactory intervention. Listing 3.17 shows how we can work with that.

3.9

Summary 61

Listing 3.17 Executing a Scheduling DSL script

//initialization
DslFactory factory = new DslFactory();
factory.Register<BaseScheduler> (new SchedulingDslEngine()) ;

//get the DSL instance
BaseScheduler scheduler = factory.Create<BaseScheduler> (
@"path/to/ValidateWebSiteUp.boo") ;

//This i1s where we run the code from the DSL file
scheduler.Prepare() ;

//Run the prepared scheduler

scheduler.Run() ;

First, we initialize the DslFactory, and then create and register a DslEngine for the
specific base type we want. Note that you should only do this once, probably during
the startup of the application. This usually means in the Main method in console and
Windows applications, and in Application_Startup in web applications.

We then get the DSL instance from the factory. We pass both the base type we want
(which is associated with the Ds1Engine that we registered and the return value of this
method), and the path to the DSL script. Usually this will be a path in the filesystem,
but I have seen embedded resources, URLSs, and even source control links used.

Once we have the DSL instance, we can do whatever we want with it. Usually, this
depends on the type of DSL it is. When using an imperative DSL, I would tend to call
the Run() or Execute() methods. With a declarative DSL, I would usually call a
Prepare () or Build() method, which would execute the code that we wrote using the
DSL, and then I would call the Run() or Execute() method, which would take the
result of the previous method call and act upon it. In more complex scenarios, you
might ask a separate class to process the results, instead of having the base class share
both responsibilities.

In the case of the Scheduling DSL, we use a declarative approach, so we call the
Prepare () method to get whatever declarations were made in the DSL, and then we
run the code. The Run () method in such a DSL will usually perform some sort of regis-
tration into a scheduling engine.

And that’s it—all the building blocks that you need to write a good DSL. We're
going to spend a lot more time discussing all the things we can do with DSLs, how we
can integrate them into real applications, and version, test, and deploy them, but you
should now have an overall understanding of what’s involved.

Summary

We’ve gone over quite a bit of information in this chapter. We contrasted the imple-
mentation of a simple problem (scheduling tasks) using both fluent interfaces in C#
and a full-blown Boo-based DSL, and we saw that it’s very easy to take a DSL further
than a fluent interface. And that’s aside from the syntactic differences between the
two solutions.

62

The drive toward DSLs

We also explored why we might want to build DSLs and what types of DSLs we can
build: technical, business, and extensibility DSLs.

Then we rolled up our sleeves and went to work building the Scheduling DSL,
from the initial syntax, to implementing the DSL base class, to creating the DSL engine
and running the code.

Along the way we took a quick peek at combining DSLs and DDD, explored the dif-
ferences between imperative and declarative DSLs, and generally had fun. We covered
(at a high level) just about everything you’ll need to create a useful DSL.

But not quite everything. We're still focused at too high a level. It’s time to get
down into the details and start practicing what we’ve discussed so far. That’s up next.

Buildin

In this chapter

How to build an application based on DSLs

= Creating the Message-Routing DSL
= Creating the Authorization DSL
= Creating the Quote-Generation DSL

In this chapter, we’ll look at how to design an application that uses DSLs to do
much of its work. We’ll cover several of those DSLs in detail (and leave others for
later), and we’ll explore how to build, instantiate, and execute those DSLs in the
context of our application. We’re going to focus on two types of DSLs, the ones
most commonly used in business applications: technical DSLs and business DSLs.

Technical DSLs are generally used as bootstrapping and configuration mecha-
nisms to make it easier to modify a part of a system. In general, those DSLs enable
recurring tasks, usually of a one-off nature. Scripting is a common use for techni-
cal DSLs—configuration or build scripts, for example. Combining the power of a
flexible language with a DSL designed for the task at hand makes for a powerful
tool. Everything you do with a technical DSL can be done using code, but the DSL
should make it easier and simpler. A DSL makes it easy to produce a one-off
solution to a problem.

63

64

4.1

Building DSLs

Note that a one-off solution isn’t necessarily throwaway code. It’s a solution that
you usually need once in an application. Configuring the Inversion of Control con-
tainer is done once per application, for example, but it’s a c¢ritically important part of
the application, and it’s something that you’ll modify often as the application grows.
Similarly, you tend to have one build script per project, but you want it to be of very
high quality.

Business DSLs tend to be more declarative than technical DSLs and often focus
on business rules and the actions to be taken when the conditions of those rules are
met. A business DSL defines policy, whereas the application code defines the opera-
tions. Policy is usually where most changes are made; the operations of a system are
mostly fixed.

For example, a business DSL could define the rules for processing orders—rules
that would affect the following domain objects:

Discounts
Payment plans
Shipping options

Authorization rules

The application code would execute the business DSL scripts in order to get the policy
decisions that apply for a particular scenario. It would then take the policy decisions
and apply them to the system. We’ll see an example of that when we build the Quote-
Generation DSL.

You’re not limited to a single DSL per application. In fact, you’ll probably have sev-
eral, both technical and business DSLs. Each will handle a specific set of scenarios
(processing orders, authorizing payments, suggesting new products, and so on).

Before you can start writing a DSL, though, you need to understand the domain
and what kind of DSL you want. That’s what the next section is about.

Designing a system with DSLs

In the rest of this book, we’ll concentrate on building a system with DSLs in mind. To
ensure that the domain is familiar to all, we’ll use an online shop as our example. This
will give us a rich domain to play with and allow us to define several different DSLs to
show a variety of uses. We’ll probably go a tad overboard with DSL usage in order to
demonstrate all sorts of DSLs, so you can take that into consideration. You’ll likely not
make use of so many DSLs in a single application in real life.

There are cases where you’ll want to design a system as nothing but a set of DSLs,
each handling a specific task, and have the users manage the set of scripts that define
the actual behavior of the application. In that type of scenario, you would reverse the
usual roles of application code and DSLs—the application code would be focused on
infrastructure concerns and the requirements of the DSL. This approach would prob-
ably work best in backend processing systems. Creating a UI on top of a DSL is cer-
tainly possible, but you’re likely to hit the point of diminishing returns. Good Uls are
complex, and a DSL that’s complex enough to create a good Ul is a programming

4.2

4.2.1

Creating the Message-Routing DSL 65

language. You would probably want to work with an existing programming language
rather than a DSL.

I find that the best approach is to use a DSL to define policy, and application code
to define the framework and operations that are executed by the system.

Building such a system turns out to be almost trivial, because all you need to do is
write the basic operations that the system is supposed to perform (which are usually
fairly well understood), and then you can play around with the policy at will. Those
operations, in our sample application, are things such as applying discounts, notifying
users, and processing payments.

If you have done your job well, you’ll likely be able to sit down with the customer
and define the policy, and let them review it at the same time. How you notify users
about an action in the application will rarely change, but when and why you do it may
be changed more regularly. The same holds true for discount calculations; kow you
apply a discount is well known, but the business rules governing when you give a dis-
count change regularly.

We don’t want to deal with Uls or persistence in our example system, so we’ll deal
strictly with the backend processing only and fake services for the other parts of the
system. We can use DSLs for several purposes in this scenario:

Message translation and routing
Authorization

Quote generation

We’ll start with the easiest, routing and translating messages.

Creating the Message-Routing DSL

Suppose we have a backend order-processing system that uses messages as the primary
means of communication. Several external systems will communicate with the order-
processing system, including a web application, business partners, administration
tools, and the company’s warehouse system, and all of those will be built by different
teams, with different schedules, priorities, and constraints. The backend system is the
black hole in the middle, around which all the other systems orbit.

The Message-Routing DSL needs to take an incoming message and dispatch it to the
correct handler in the application. Message translation and routing is a simple domain,
but it usually looks fairly nasty in code. This is especially true if you want to take version-
ing into consideration, or if you want to deal with heterogeneous environments.

Designing the Message-Routing DSL

Let’s start with the simplest alternative: an endpoint that can accept JSON-formatted
messages and process them. We’ll take a peek at the big picture first, in figure 4.1.
We’ll start from an external application that sends a JSON message to a given end-
point. This endpoint will take the JSON string, translate it to a JSON object, and pass it
to the routing module. The routing module will use a set of DSL scripts to decide how

66

CHAPTER 4 Building DSLs

External app JSON endpoint Message-Routing DSL
1

1
I___JSON message
1

1
i
JSON object 1

1

1

1

i

H {Use DSL to route message
H r

1

1

1

1

Return results

< JSON'ed reply i
JSON endpoi i NSNS Figure 4.1 Routing
External app endpoint Message-Routing DSL messages using DSL

to route each message to the business component responsible for handling the mes-
sage. The business component will perform its job, and can return a reply that will be
sent to the client. So far, this is a fairly typical messaging scenario. We only need to add
asynchronous messages and we can call ourselves enterprise developers.

Now let’s consider the Message-Routing DSL part of figure 4.1. These are the
responsibilities of the routing modules:

= Accept messages in a variety of formats (XML, JSON, CLR objects, and so on)
= Translate messages from external representation to internal representation
= Dispatch internal messages to the appropriate handler

We now know what we need to build; we’re left with deciding on the syntax.

The main reason that we want to use a DSL here is to keep the system flexible and
make it easy to add new messages and transformations. This DSL will be used by tech-
nical people, most probably the developers on the project. This, in turn, means that
we can use a technical DSL here. Each script using this DSL will probably have the fol-
lowing responsibilities:

= Deciding whether the script can handle the message

= Transforming the message to the internal message representation

= Deciding where to dispatch the message
IMPLEMENTING THE MESSAGE-ROUTING DSL

With that in mind, we can start writing a draft of the Message-Routing DSL syntax, as
shown in listing 4.1.

Listing 4.1 Initial draft of the Message-Routing DSL

decide if this script can handle this message
return unless msg.type == "NewOrder" and msg.version == "1.0"

decide which handle is going to handle it
HandleWith NewOrderHandler:
define a new list
lines = []
add order lines to the list
for line in msg.order_lines:
lines.Add(OrderLine(line.product, line.gty))
create internal message representation
return NewOrderMessage (

Creating the Message-Routing DSL 67

msg.customer_id,

msg. type,

lines.ToArray (OrderLine))
This is a good place to start. It’s straightforward to read and to write, and it satisfies all
the requirements we have. It’s a highly technical DSL, but that’s fine, because it will be
used by technical people.

NOTE It’s easy to create technical DSLs, because you don’t have to provide a lot
of abstraction over what the language offers. You mostly need to provide
a good API and good semantics.

Let’s get to the implementation, starting with the <~================2x
. . | Router E3N'}
routing part. How do we get the messages in the | saticces :
first place? We need to handle several message : |:|J ot :
. . =/ Methods

types without placing undue burden on the devel- - i
Lo K % Route(IQuackFu msg) : string 1

opers. After all, avoiding the need to write adapters A

or translators for them is exactly why we went with
the DSL route. But we also want to keep our DSL
implementation as simple as possible. If I need to
do things like xmlDocument.SelectNodes ("/xpath/query") in the DSL on a routine

Figure 4.2 The Router class

basis, I probably have an abstraction issue somewhere.

Let’s take a look at figure 4.2, which shows how we can resolve this issue. As you
can see, we have a single method here, Route (), that accepts an IQuackFu. We covered
IQuackFu in chapter 2—it allows us to handle unknown method calls at runtime in a
smart fashion. We used it to build the XMLObject before, and here we can use it to sep-
arate the implementation of the message from its structure. This means that we don’t
care if the message is XML, JSON, or a plain CLR object. We can treat it as a standard
object, and let the IQuackFu implementation deal with the details. This gives us maxi-
mum flexibility with a minimum of fuss.

NOTE Route() has a string as its return type. In real-world scenarios, we’d prob-
ably want to return a message as well, but for our purposes, a string works
just fine.

Now we can get down to building the DSL. We’ll use Rhino DSL to take care of all the
heavy lifting of building the DSL. Don’t worry about understanding all of it; the whole
of chapter 7 discusses Rhino DSL and how to use it.

We’ll start with a typical first step; defining the implicit base class that will be the
basis of our DSL. Listing 4.2 shows the entire code of the base class.

Listing 4.2 The base class for the Message-Routing DSL

/// <summary>

/// This delegate is used by the DSL to return the
/// internal representation of the message

/// </summary>

Building DSLs

public delegate object MessageTransformer () ;

public abstract class RoutingBase

{
protected IQuackFu msg;
public string Result;

public void Initialize(IQuackFu message)
{
msg = message;

}

/// <summary>

/// Routes the current message. This method is overridden by the
/// DSL. This is also where the logic of the DSL executes.

/// </summary>

public abstract void Route() ;

public void HandleWith (Type handlerType, MessageTransformer transformer)
{
IMessageHandler handler =
(IMessageHandler) Activator.CreateInstance (handlerType) ;
Result = handler.Handle(transformer()) ;

}

How does it work? The Message-Routing DSL script will be compiled into a class that
inherits from RoutingBase, and all the code in the script will go into the Route ()
method, while the msg field will contain the current message during execution.

Implicit Base Class

The Implicit Base Class is one approach to building a DSL. With this approach, we
define a base class in the application code, and then a compiler step in Boo will turn
the DSL script into a class that’s derived from the defined base class. Hence the
base class moniker. The implicit part of the name comes from the fact that there is
no reference to the class in the DSL script itself—it’s implicit.

There are three major advantages to this approach.

The first is that we can refer to DSL script instances using the base class, by utilizing
standard OOP principals.

The second is that the base class can expose methods and properties that are useful
in the DSL. This means that the base class itself composes part of the language that
we'’re creating. We’ll discuss the mechanics of building this in more detail in
chapter 6, but the concept itself is important.

The last advantage is that if the class is implicit, we can replace it. This is extremely
helpful when we want to test a DSL or version it.

Using an implicit base class allows us to define the language keywords and con-
structs (as we did with the Scheduling DSL in chapter 2) easily.

Creating the Message-Routing DSL 69

When we execute the Route() method, the DSL code is executed. The second line
in listing 4.1 (return if the message is not the expected type or version) checks to see
if the message is a match, and if it isn’t, the message is ignored without performing
any action.

Then we have the HandleWith NewOrderHandler and the code beneath that. Here
we’re using Boo’s ability to infer things for us. In this case, we pass the type name as
the first parameter, and Boo will turn that into a typeof (NewOrderHandler) for us.
The code underneath the HandleWith line uses implicit blocks to pass the delegate
that will transform the message to its internal representation.

We now need a way to compile this DSL. We do it using a DSL engine, as shown in
listing 4.3.

Listing 4.3 The Message-Routing DSL engine

public class RoutingDslEngine : DslEngine
{
protected override void CustomizeCompiler (
BooCompiler compiler,
CompilerPipeline pipeline,
string[] urls)

// The compiler should allow late bound semantics
compiler.Parameters.Ducky = true;
pipeline.Insert (1,
new ImplicitBaseClassCompilerStep (
// the base type
typeof (RoutingBase),
// the method to override
"Route",
// import the following namespaces
"Chapter4 .MessageRouting.Handlers",
"Chapter4.MessageRouting.Messages")) ;

NOTE The DSL engine is part of the Rhino DSL set of tools, and it’s discussed
extensively in chapter 7. A DSL engine contains the configuration
required to change the behavior of the Boo compiler to support our DSL.

That’s it. Our DSL is ready to roll, almost. We just need to hook it up to the Router
class, as shown in listing 4.4.

Listing 4.4 The Router class handles message dispatch for the application

public static class Router
{
private static readonly DslFactory dslFactory;

static Router ()
{
dslFactory = new DslFactory();

70

CHAPTER 4 Building DSLs

dslFactory.Register<RoutingBase> (
new RoutingDslEngine()) ;

public static string Route (IQuackFu msg)
{
StringBuilder messages = new StringBuilder();
RoutingBase[] routings =
dslFactory.CreateAll<RoutingBase> (
Settings.Default.RoutingScriptsDirectory
)
foreach (RoutingBase routing in routings)
{
routing.Initialize (msg) ;
routing.Route () ;
if (routing.Result != null)
messages .AppendLine (routing.Result) ;
}
if (messages.Length==0)
{

return "nothing can handle this message";

}
return messages.ToString() ;

}

Listing 4.4 gives us a few concepts to discuss. In the constructor, we create a new DSL
factory and register our Message-Routing DSL engine, but the important parts are in
the Route (msg) method.

We ask the DSL factory to give us all the DSL instances in a specific folder (Create-
All will return instances of all the scripts in the given path). This is a nice way of han-
dling a set of scripts (though it tends to break down when you have more than a few
dozen scripts—at that point, you’ll want better management of them, and we’ll discuss
this in chapter 5). We get back an array of RoutingBase instances from Createall,
which we iterate over and run. This gives all the scripts a shot at handling the message.

The last pieces we’re missing are the JSON endpoint and the JsonMessageAdapter.
We’ll start from the endpoint, because this is simple ASP.NET stuff. We create an HTTP
handler class that accepts the messages and then sends them to be routed. Listing 4.5
shows how it’s done.

Listing 4.5 The JSON endpoint

public void ProcessRequest (HttpContext context)
{
//verify that we only allow POST http calls
if (context.Request.RequestType != "POST")
{
context.Response.StatusCode = 400;
context.Response.Write("You can only access this URL using POST") ;
return;
}
// translate from the post body to a JSON object

Creating the Message-Routing DSL 71

byte[] bytes = context.Request.BinaryRead (context.Request.TotalBytes) ;
string json = Encoding.UTF8.GetString (bytes) ;
JsonSerializer jsonSerializer = new JsonSerializer();
JsonReader reader = new JsonReader (new StringReader (json));
JavaScriptObject javaScriptObject =

(JavaScriptObject) jsonSerializer.Deserialize (reader) ;

// send the JSON object to be routed
string returnMessage =
Router.Route (new JsonMessageAdapter (javaScriptObject)) ;
context.Response.Write (returnMessage) ;
}

This code deals mostly with unpacking the data from the request and deserializing the
string into an object. The important part happens on the second-last line: we call
Router.Route () and pass a JsonMessageAdapter. This class is responsible for translat-
ing the JavaScriptObject into an IQuackFu, which is what we expect in the Message-
Routing DSL.

The code for JsonMessageAdapter is in listing 4.6.

Listing 4.6 The JsonMessageAdapter implementation

public class JsonMessageAdapter : IQuackFu
{

private readonly JavaScriptObject Jjs;

public JsonMessageAdapter (JavaScriptObject js)
{

this.js = js;
}

public object QuackGet (string name, object|[] parameters)
{
object value = js[name];
JavaScriptArray array = value as JavaScriptArray;
if (array!=null)
{
return array.ConvertAll<JsonMessageAdapter> (
delegate (object obj)
{
return new JsonMessageAdapter (
(JavaScriptObject) obj);
)
}

return value;

}

This listing only shows the QuackGet () method and ignores QuacksSet () and Quack-
Invoke (), because they aren’t implemented. About the only interesting thing here is
how we deal with arrays, because we need to convert them to JsonMessageAdapter
arrays.

That’s all, folks. Honest. We need around 200 lines of code to build this, and it
takes about an hour or so.

72

4.3

Building DSLs

Go back to listing 4.1 and look at the DSL that we wrote. We can now use it to pro-
cess JSON messages like the one in listing 4.7.

Listing 4.7 A JSON message that can be handled by our DSL

{

type: "NewOrder",

version: "1.0",

customer_id: 15,

order_lines:

[

{ product: 3, gty: 5 }
{ product: 8, qgty: 6 },
{ product: 2, gty: 3 },

}

Extending this infrastructure—to deal with XML objects, for example—is a simple
matter of creating an XmlMessageAdapter (or using the XmlObject that we created in
chapter 2) and adding a new endpoint that can accept it.

You have probably figured out that the Message-Routing DSL is a very imperative
DSL, but it’s more than just its syntax; it also does a lot. Calling Router.Route () takes
care of everything from invoking the DSL logic to selecting the appropriate handlers,
executing them, and returning the results. After calling the Message-Routing DSL,
there isn’t much left to be done.

In the space of a few pages, we created a DSL, implemented the structure around
it, and are ready to put it to use. It wasn’t complex, and we didn’t even have to use any
of the advanced options that are at our disposal.

The reason it was so simple is mostly that we can get away with having a very techni-
cal language. This means we could utilize the built-in syntactic sugar in Boo to get a
nice DSL, but not much more. Nearly everything we did was to create infrastructure
code and run the DSL.

The next DSL we’ll build—the Authorization DSL—will have a much higher focus
on the language than the infrastructure. The infrastructure is mostly the same from
one DSL implementation to the next, so we don’t need to focus on that any longer.

Creating the Authorization DSL

Most complex applications have equally complex authorization rules, often complex
enough to be their own domain. Authorization is a critical chore in an application.
You can’t avoid it, but it’s almost always annoying to deal with, and it can be very com-
plex. Worse, any bugs in the security system are critical by definition. Trying to under-
stand why a certain operation was allowed (or denied) can be a complex endeavor.

We’re going to build a DSL for making policy decisions about permissions in an
application. Getting security right is important, and security systems also have to be
flexible. All in all, it seems like a good fit for a DSL.

4.3.1

Creating the Authorization DSL 73

This is the specification for our Authorization DSL:

Limit the problem domain to reduce complexity.
Flexibility is important.

Clarity is critical.

The specification could use some more work, but let’s try to define the requirements
we have for the Authorization DSL:

It must be able to ask the security system if an operation is allowed.

It must be able to ask the security system if an operation on a specific entity is
allowed.

It must output reasonable information from the security system to allow easy
debugging.

In this list, an operation is something that the application does that needs to be
secured. Viewing customer information or authorizing a client to go above a credit
limit are both examples of operations in our online shop example.

I tend to use simple structured strings to represent operations. Here are two exam-
ples:

"/customer/orders/view"

"/customer/beyond_credit_limit/authorize"

If this reminds you of paths in a filesystem, that’s no coincidence. This is a natural way
to think about operations in our domain. It’s also a simple approach that supports
tooling well.

Enough with the chitchat—let’s see some code.

Exploring the Authorization DSL design

This time, we’ll start from the application and move to the DSL, rather than the other
way around. We’ll start with the Authorization class, which is the gateway to our secu-
rity infrastructure. It’s shown in figure 4.3.

The Authorization class contains two methods: one for checking an operation,
and the second for checking an operation on an entity. The WhyAllowed () method
lets you retrieve the reason for a certain operation being allowed or denied.

One thing to note is that the IsAllowed() methods return a nullable boolean.
This allows the method to return null when the security system has no opinion on the
subject. If that happens, the application needs to decide whether the operation is
allowed by default or is forbidden by default. This is a matter for the business logic
specific to each operation and cannot be dictated by the DSL implementation.

Now let’s think about what kind of authorization rules we’re going to need. We’re
going to use the Command pattern in the DSL—this is a fairly common approach in
DSL building, and implicit base classes will usually implement the command patterns.
The Command pattern is a design pattern in which an object represents a single

74

Building DSLs

e - -
| Authorization [
| static Class

[=l Methods
4" ExecuteAuthorizationRules(IPrincipal principal, string operation, object entity) : AuthorizationResult
W IsAllowed(IPrincipal principal, string operation) :bool?
W IsAllowed(IPrincipal principal, string operation, object entity) : bool?
¥ WhyAllowed(IPrincipal principal, string operation) : string
% WhyAllowed(IPrincipal principal, string operation, object entity) : string
[=l Nested Types

»|

" AuthorizationResult
Class

-

=/ Fields
¥ Allowed :bool?
¥ Message :string

T

Figure 4.3 The Authorization class, the gateway to the Authorization DSL

action (a command) in the application. For more details about the Command pat-
tern, see the explanation at the Data & Object Factory (http://www.dofactory.com/
Patterns/PatternCommand.aspx). Figure 4.4 shows the AuthorizationRule class.

There are a couple of interesting things to note about the implementation of this
class:

The Checkauthorization() method and the Operation property are both
abstract, so derived classes (and our DSL) have to implement them.

The Allow() and Deny() methods are the only ways for the derived class to
affect the state of the rule. Both methods accept a reason string, which means
that we’re automatically documenting the reason for the decision.

For the moment, we’ll skip over the DSL implementation (which we’ll get to in the
next section). We’ll assume that it exists and look at how we’re going to use it.

Listing 4.8 shows the ExecuteAuthorizationRules() method. It’'s a private
method in the Authorization class that performs the bulk of the work for the class.

' AuthorizationRule [
Abstract Class.

= Properties
ﬁ] Allowed { get;} :bool?
:;- Entity { get; } : object
' Message { get;}:string
' Operation { get;} :string
f‘ Principal { get;} :IPrincipal
= Methods
2% Allow(string reason) : void

CheckAuthorization() : void .
S Checkiuthorization(iz vof Figure 4.4 The base class for the
7% Deny(string reason) : void

e emenaasAsASAARSRARSRASASASASASAARSRSRSRASASASASAAASASRSRSRARASASASSSSSASASRSRSRASASASSSSSSSaSSSAS ; Authorization DSL—AuthorizationRule

http://www.dofactory.com/Patterns/PatternCommand.aspx

Creating the Authorization DSL 75

Listing 4.8 ExecuteAuthorizationRules () is the engine for the Authorization DSL

private static AuthorizationResult ExecuteAuthorizationRules (
IPrincipal principal,
string operation,
object entity)

// get all the authorization rules
AuthorizationRule[] authorizationRules =
dslFactory.CreateAll<AuthorizationRule> (
Settings.Default.AuthorizationScriptsDirectory,
principal,
entity) ;
foreach (AuthorizationRule rule in authorizationRules)
{
// check if the current rule operation equals
// the requested operation, we don't care about casing
bool operationMatched = string.Equals (
rule.Operation, operation,
StringComparison.InvariantCultureIgnoreCase) ;
// move on if this is not so.
if (operationMatched == false)
continue;

// execute the rule
rule.CheckAuthorization() ;
// return the result if the rule had any.
if (rule.Allowed != null)
{
return new AuthorizationResult (
rule.Allowed,
rule.Message

)

}
// return a default (negative) result if
// no rule matched this operation
return new AuthorizationResult (
null,
"No rule allowed this operation"
)
}

By now, you can probably guess what the DSL looks like, right?
Listing 4.9 shows the DSL engine for the Authorization DSL.

Listing 4.9 The Authorization DSL engine implementation

public class AuthorizationDslEngine : DslEngine
{
protected override void CustomizeCompiler (
BooCompiler compiler,
CompilerPipeline pipeline,
Uri[] urls)

76

4.3.2

Building DSLs

// The compiler should allow late-bound semantics
compiler.Parameters.Ducky = true;
pipeline.Insert (1,
new ImplicitBaseClassCompilerStep (
// the base type
typeof (AuthorizationRule) ,
// the method to override
"CheckAuthorization",
// import the following namespaces
"Chapter4d.Security")) ;

}

You may have noticed that the AuthorizationDslEngine displays a stunning similarity
to the RoutingDslEngine. This is almost always the case, because most of the hard work
is done in the Rhino DSL code. This leaves us with what is basically configuration code.
Building the Authorization DSL

Now let’s take a look at our DSL, shall we? We want to implement the following rules:

Users can log in between 9 a.m. and 5 p.m.
Administrators can always log in.

The script in listing 4.10 satisfies those requirements.

Listing 4.10 A simple authorization script for account login

operation "/account/login"

if Principal.IsInRole("Administrators"):
Allow("Administrators can always log in")
return

if date.Now.Hour < 9 or date.Now.Hour > 17:

Deny ("Cannot log in outside of business hours, 09:00 - 17:00")

return
This looks almost boringly standard, right?! We make use of the Boo date keyword
to reference System.DateTime, which we haven’t seen before, but that isn’t very
interesting.

There is one interesting thing here: the first line isn’t something that we’ve seen so
far. We know that we need to provide an implementation of the Operation property,
but how can we do it?

It’s done using a macro, which takes the first argument of the macro, generates a
property, and returns that argument from the property. The code for this is shown in
listing 4.11.

! The job of an architect is to make everyone in the team expire out of sheer boredom. The more complexity
we can shift into the infrastructure, the less complexity we need to deal with during our day-to-day coding.

Creating the Authorization DSL 77

Listing 4.11 OperationMacro creates a property returning its first argument

public class OperationMacro : GeneratePropertyMacro
{
public OperationMacro ()
: base("Operation")

}

The GeneratePropertyMacro that we inherit from is the class that does all the work. We
only need to extend it and pass the desired property name. The end result of this line,

operation "/account/login"
is this code:

Operation:
get:
return "/account/login"
And that’s it, more or less. We can now ask the authorization system questions, which
will be answered by the DSL. We can execute the code in listing 4.12 to do just that.

Listing 4.12 Using the authorization system

WindowsPrincipal principal = new WindowsPrincipal (
WindowsIdentity.GetCurrent()) ;

bool? allowed = Authorization.IsAllowed(principal, "/account/login");
Console.WriteLine("Allowed login: {0}", allowed);
Console.WriteLine (Authorization.WhyAllowed (principal, "/account/login"));
Note that in listing 4.8, we assumed a denied-unless-allowed policy. This means that
our scripts don’t have to explicitly deny anything—they can simply not allow it. This is
a nice option to have in certain circumstances.

Let’s try another example to see how useful our DSL is. Suppose we want to specify
that only managers can approve orders with a total cost of over $10,000. Listing 4.13
shows the DSL script that validates this rule.

Listing 4.13 Authorization script that ensures only managers can approve costly orders

operation "/order/approve"

if Principal.IsInRole ("Managers"):
Allow("Managers can always approve orders")
return

if Entity.TotalCost >= 10_000:
Deny ("Only managers can approve orders of more than 10,000")
return

Allow("All users can approve orders less than 10,000")

TIP Boo supports the use of the underscore character as a thousands separa-
tor in integers. This makes it easier to read big numbers.

78

44

4.5

Building DSLs

Listing 4.14 shows how we can use this script.

Listing 4.14 Using the authorization script for approving orders

bool? allowed = Authorization.IsAllowed (principal,
" /order/approve", order);
Console.WriteLine("Allowed login: {0}", allowed);
Console.WriteLine (Authorization.WhyAllowed (principal,
" /order/approve", order)) ;

In only a few pages, we’ve built ourselves a flexible authorization system. It isn’t pro-
duction-ready yet—we need to add all the usual error handling, edge cases, tuning,
and priming—but it’s a great example of using a DSL to easily extend your application.

The Authorization DSL is a more declarative example than the Message-Routing
DSL. While the syntax is very imperative, the end result of the Authorization DSL is a
value that is then processed by the application.

The “dark side” of using a DSL

We also need to explore the dark side of using DSLs such as the Authorization DSL.
Our system allows us to easily express authorization rules related to business logic, but
it suffers from a couple of weaknesses. It doesn’t have a friendly UI; we can’t do much
with it except by editing the code.? And it doesn’t really permit programmatic modifi-
cation—if you find yourself generating DSL scripts on the fly, you probably need to
rethink your DSL editing strategy.

Most security systems are based on the concepts of users and roles for a reason.
Those are easy to handle Ul-wise, and it’s easy to programmatically add a user to a
role or remove a user from a role. The same approach won’t work using a DSL. You
could certainly use roles in the DSL, and you could do other smart things (the DSL has
access to the application, so you could store the state in a database and let the DSL
query that). But a good DSL is intentionally limited, to reduce the complexity that you
have to deal with.

If a task is awkward to deal with, you build a DSL to handle the complexity. If the
DSL is awkward to deal with, you may want to rethink your approach.

Let’s see how we can integrate a DSL with a user interface, shall we? The secret is to
separate the responsibilities so the DSL is based on rules, and the rules feed on the
data from the UL The Quote-Generation DSL is a good candidate for a DSL that can
accept data from the user. We’ll discuss it next. In chapter 10, we’ll do the reverse, tak-
ing the DSL output and working with it in the UL

The Quote-Generation DSL

Let’s say that our online shop sells enterprise software, and our customers want to buy
our system. The price will vary depending on the options they want, the number of

2 This is not strictly true. You can build a designer for this, but that’s not really what this sort of DSL is meant

to do.

The Quote-Generation DSL 79

expected users, the underlying platform, the application dependencies, and a host of
other things. Generating the quote can get pretty complex. Quote generation is also
an extremely fluid field; quotes and the rules governing them change frequently, mak-
ing this task a good candidate for a DSL.

NOTE I used the software sales example here because it’s easy to understand,
but you could use the same approach to generate quotes for custom cars,
house purchasing, and so on.

Figure 4.5 shows an example of a quote-generation Ul for a single application. It
doesn’t represent all the options that exist in the application. This is much more than
a Ul—there is a full-fledged logic system here. Calculating the total cost is the easy
part; first you have to understand what you need.

Let’s define a set of rules for the application. It will be clearer when we have the list
in front of us:

The Salaries module requires one machine for every 150 users.

The Taxes module requires one machine for every 50 users.

The Vacations module requires the Scheduling Work module.

The Vacations module requires the External Connections module.

The Pension Plans module requires the External Connections module.

The Pension Plans module must be on the same machine as the Health Insur-
ance module.

The Health Insurance module requires the External Connections module.

The Recruiting module requires a connection to the internet, and therefore
requires a firewall from the recommended list.

The Employee Monitoring module requires the CompMonitor component.

This example is still too simple. We could probably come up with 50 or more rules
that we would need to handle. Handling the second-level dependencies alone (Exter-
nal Connections, CompMonitor, and so on) would be a big task.

Quote Generation for HR system

Required features:
|Z[Salaries

Er Taxes
Number of employees:

Er Vacations _WOO - 250
Br Fension plans n

D Health insurance Database platform:
m Work scheduling | Microsoft SQL Server 2008 | Vl

|Z[Recruiting
[Employee monitoring Figure 4.5 The quote-generation Ul

allows us to pass information from the
application to the DSL.

80

4.5.1

Building DSLs

Now that we’ve established that this is a complex field, let’s think about how we
could utilize a DSL here. We have a set of independent rules that affect the global
state, which makes this a great candidate for a DSL. We can define each of the rules in
its own script, and execute them as we’d normally do. This gives us the flexibility that
we want.

But unlike the previous two examples (the Message-Routing and Authorization
DSLs), we aren’t dealing with a primarily technical DSL here. The Quote-Generation
DSL is a business-facing DSL. Some of the information may be technical, but a lot of it
is related to business requirements, and the DSL will reflect that.

Business-facing DSLs tend to take a bit more work to create than technical DSLs. So
far, we haven’t paid much attention to the language itself—it was fairly obvious what it
was supposed to be, because the target audience was developers. Now we need to think
about it, and we need to explore a few possibilities.

The code in listing 4.15 solves the Quote-Generation DSL problem using the same
approach that we have taken so far.

Listing 4.15 A technical DSL for quote generation

if has("Vacations"):
add "Scheduling"

number_of_machines["Salary"] = (user_count % 150) +1
number_of_machines["Taxes"] = (user_count % 50) +1

This could work, but trying to express something like “must reside on the same
machine as another module” would be complex. The whole thing ends up looking
like code, and we won’t gain much in the process.

Building business-facing DSLs

The rules listed previously for our application include a few basic conditionals, num-
bers of users, and dependencies. We can make them (and any other common require-
ments) part of our DSL.

Listing 4.16 shows one way to specify the rules from the previous list.

Managing DSL snippets

I’'ve mixed a few rules together in listing 4.15 to make it easier to see what’s going
on. When the scripts are this small, we’'re likely to want to handle them in a way that’s
a bit different than the one file per script that we have had so far.

In this case, most rules will end up being a line or two long. Those are what | call
snippets—they’re simple to write, and we’re going to have a lot of them. The combi-
nation of all those snippets gives us a rich behavior, as all the small pieces come
together to perform a single task.

We’ll discuss the management of a system composed of many small snippets in
chapter 5.

The Quote-Generation DSL 81

Listing 4.16 Business-facing, declarative DSL for solving the quote-generation problem

specification @vacations:
requires @scheduling work
requires @external_connections

specification @salary:
users_per_machine 150

specification @Qtaxes:
users_per_machine 50

specification @pension:

same_machine_as @health_insurance
This looks much better. This is a purely declarative DSL that allows us to specify easily
the information that we want, and to defer any decisions or calculations to the engine
that runs the application.

TIP When I originally created this example, I hadn’t intended to create a
declarative DSL. But sometimes the model insists on a given approach,
and it’s usually worth going along with it to see what the result is.

Let’s explore the implementation of this DSL.? The implicit base class for this DSL is
the QuoteGeneratorRule, shown in figure 4.6.

We need to note a few things about QuoteGeneratorRule. The first is that we use a
strange naming convention for some of the methods (requires, same_machine_as,
specification, and users_per_machine do not follow the standard .NET naming
convention). This is the easiest way to get keywords in the DSL. We can take more
advanced routes, like convention-based mapping, but doing so requires us to perform
our own method lookup, and that isn’t trivial. Changing the naming convention on
the implicit base class is the easiest, simplest solution for the problem. Note that the
specification() method accepts a delegate as the last parameter, so we’re using
anonymous blocks again, like we did in the Message-Routing DSL Handle method.

The second thing to note is all the @ signs scattered through the DSL (listing 4.16).
Those are called symbols, and they translate to string literals without the annoying

)

' QuoteGeneratorRule
Abstract Class

=

= Methods

% Evaluate() : void

#% QuoteGeneratorRule(Requirementsinformation information)

& requires(string moduleName) : void

% same_machine_as(string moduleName) : void

& specification(string moduleName, Action action) : void

& users_per_machine(int count) : void |
[* Nested Types § Figure 4.6 Implicit base class for the

Quote-Generation DSL

® T am not going to implement the quote-generation engine, because this is both complex and beyond the
scope of the book.

82

CHAPTER 4 Building DSLs

quotes. This may seem like a small thing, but it significantly enhances the readability
of the language.

Boo doesn’t support symbols natively, but they’re trivial to add. In fact, the func-
tionality is already there in Rhino DSL, which makes our DSL engine boring once
again. Listing 4.17 shows what we need to add to the engine to support symbols.

Listing 4.17 Adding support for symbols

public class QuoteGenerationDslEngine : DslEngine
{
protected override void CustomizeCompiler (
BooCompiler compiler,
CompilerPipeline pipeline,
Uri[] urls)

pipeline.Insert (1,
new ImplicitBaseClassCompilerStep (
typeof (QuoteGeneratorRule) ,
"Evaluate",
"Chapter4.QuoteGeneration")) ;
// add symbols support
pipeline.Insert (2, new UseSymbolsStep());
}
}

The last thing that’s worth noting about the QuoteGeneratorRule class is that it
accepts a RequirementsInformation class. This allows it to understand what context it
runs in, which will be important later on.

The QuoteGeneratorRule class is responsible for building the object model that
will later be processed by the quote-generation engine. We aren’t going to write a
quote-generation engine, because it is not fairly simple to do, and building it requires
absolutely no DSL knowledge. Listing 4.18 shows the implementation of a few of the
methods in the QuoteGeneratorRule class.

Listing 4.18 A few interesting methods from the QuoteGeneratorRule class

public void specification(string moduleName, Action action)
{
this.currentModule = new SystemModule (moduleName) ;
this.Modules.Add (currentModule) ;
action() ;

}

public void requires (string moduleName)

{

this.currentModule.Requirements.Add (moduleName) ;
}
The end result of evaluating a rule is an object model describing the requirements
for a particular quote. For each module, we have a specification that lists what the
required modules are, what other modules must run on the same machine, and how

4.5.2

The Quote-Generation DSL 83

many users it can support. A different part of the application can take this descrip-
tion and generate the final quote from it. This DSL was pretty easy to build, and we
have a nice syntax, but why do we need a DSL for this? Isn’t this a good candidate for
using XML?

Selecting the appropriate medium

We could have expressed the same ideas with XML (or a database) just as easily as with
the DSL. Listing 4.19 shows the same concept, expressed in XML.

Listing 4.19 The Quote-Generation DSL expressed in XML

<specification name="vacation">
<requires name="scheduling_work"/>
<requires name="external_connections"/>
</specification>

<specification name="salary">
<users_per_machine value="150"/>
</specification>

<specification name="taxes">
<users_per_machine value="50"/>
</specification>

<specification name="pension">
<same_machine_as name="health_insurance"/>

</specification>
We have a one-to-one mapping between the DSL and XML. The Quote-Generation
DSL is a pure declarative DSL, which means that it only declares data. XML is good for
declaring data, so it isn’t surprising that we’d have a good match between the two.

Personally, I think the DSL syntax is nicer, and the amount of work it takes to get
from a DSL to the object model is small compared to the work required to translate
from XML to the same object model. But that’s a personal opinion. A pure declarative
DSL is comparable to XML in almost all respects.

It gets interesting when we decide that we don’t want a pure declarative DSL. Let’s
add a couple of new rules to the mix, shall we?

The Pension Plans module must be on the same machine as the Health Insur-
ance module if the user count is less than 500.

The Pension Plans module requires a distributed messaging backend if the user
count is greater than 500.

Trying to express thatin XML can be a real pain. Doing so would involve shoving pro-

gramming concepts into the XML, which is always a bad idea. We could try to put this

logic into the quote-generation engine, but that’s complicating it for-no good reason.
Using our DSL (with no modification), we can write it as shown in listing 4.20.

Building DSLs

Listing 4.20 Dealing with business logic in the DSL

specification @pension:
if information.UserCount < 500:
same_machine_as @health_insurance
else:
requires @distributed_messaging_backend
This is one of the major benefits of using DSLs—they scale well as the application com-
plexity grows.

Now all we’re left with is writing the backend for this, which would take the data
we’ve built and generate the pricing. That’s a simple problem, with all the parameters
well specified. In fact, throughout the whole process, there isn’t a single place where
there’s overwhelming complexity. I like that.

Code or data?

Some people attempt to use DSLs in the same way they would use XML. They use
them as data storage systems. Basically, the DSL is relegated to being a prettier ver-
sion of XML.

From my point of view, this is a waste of time and effort. It’s the ability to make deci-
sions that makes DSLs so valuable. Making all the decisions in the engine code will
complicate the engine with all the decisions that we may ever need to make. Putting
the decisions in the DSL and feeding the final result to the engine means that the
engine is much simpler, the DSL scripts are not more complex, and we still get the
flexibility that we want.

Summary

We started this chapter by defining a domain model, and then we built a DSL or three,
representing three different approaches to building DSLs.

The Message-Routing DSL is an example of an imperative DSL. It’s executed to
perform some goals.

The Authorization DSL is a more declarative example (but still mostly impera-
tive). It’s executed to produce a value, which is later used.

The Quote-Generation DSL is a mostly declarative example. It produces an
object graph that’s later taken up by the processing engine.

We’ve also seen why such DSLs are useful: they can contain logic, which affects the out-
putted object graph.

We also have another observation to make. Consider the following methods:

QuoteGeneratorRule.Evaluate()
RoutingBase.Route ()

AuthorizationRule.CheckAuthorization/()

Summary 85

As you would discover if you could refer to The lllustrated Design Patterns Spotter Guide,*
we have a match: the Command pattern. As a direct result of using the Implicit Base
Class approach, we get an implementation of the Command pattern. This means we
get a lot of the usual strengths and weaknesses of using the Command pattern, and it
also means that the usual approaches to solving those issues are applicable.

NOTE I tend to use the Command pattern often, even outside of writing DSLs.
It’s a good way to package functionality and handle complexity in many
areas.

In section 4.1, we talked about building a system using DSLs, and we did so by creating
three DSLs. In many applications, you won’t have a single DSL, but several, each for a
particular domain and task. You can use the same techniques (and sometimes similar
syntax) to tailor a language to its particular domain. All of those languages work
together to create a single application.

We’ve now built our share of DSLs, and even written a DSL script or two. But we
haven’t talked about how to manage them in any meaningful way. We’ve focused on
the details, so now it’s time to take a broader look and see how to make use of a DSL in
an application. In the next chapter, we’ll look at how to integrate a DSL with an appli-
cation, develop with it, and go to production with it. We’ll look at the overall develop-
ment lifecycle.

4 Such a book doesn’t, unfortunately, exist.

5.1

Integrating
into your applicatiofs

In this chapter

= Structuring and managing DSL integration
= Reusing DSL scripts

= Performance considerations

= Separating the DSL from the application

We’ve covered a lot of ground, but only at the micro level so far. We’ve talked about
how to build a DSL, how to ensure you have a good language, what the design
parameters are, and so on. But we haven’t yet touched on the macro level: how to
take a DSL and integrate it into an application. Chapter 4 covered this at the micro
level (building the languages themselves), but in this chapter we’re going to discuss all
that surrounds a DSL in an application. We’ll talk about when and where to integrate
a DSL, how to handle errors, how to handle dependencies between scripts, and how
to set up a DSL structure that will be easy to work with.

Exploring DSL integration

The first thing we’ll do is explore a DSL-integrated application to see what it looks
like. That will give you an idea of the things you need to handle.

86

Exploring DSL integration 87

Figure 5.1 shows the DSLs integrated into our
online shop example. We explored some of

Message-
Routing DSL

those DSLs in chapter 4 from the language-
building perspective. Now we’ll explore them
from the application-integration perspective.
This will be somewhat easier, because you’ve

already seen how to make the calls to the DSL Online

. . . _ Sho
scripts. But in chapter 4 we were focusing on the / o
Authoﬁzaﬁon\

language, and the integration approaches we

Quote-
[Generation

used were trivial. QSL / st
Let’s take the Message-Routing DSL as our 7/ -~

first example. Listing 5.1 shows the integration

i) . Figure 5.1 The integrated DSLs in
of the Message-Routing DSL into the applica- our online shop example

tion. To refresh your memory, this method is
part of the Router class, which dispatches incoming messages to the application ser-
vices using the DSL scripts.

Listing 5.1 Router.Route () integrates the Message-Routing DSL into the application

public static string Route (IQuackFu msg)
{
RoutingBase[] routings =
dslFactory.CreateAll<RoutingBase> (
Settings.Default.RoutingScriptsDirectory
)i
foreach (RoutingBase routing in routings)
{
routing.Initialize(msg) ;
routing.Route() ;
}
//removed for brevity's sake
return null;

}
The Route () method seems almost ridiculously
simple, right? It just grabs all the items from
the specified directory and executes them all. |— @ Routing
For simple scenarios, dumping everything into
a single directory works; take a look at figure approve_order.boo
5.2 to see what such a directory might look like.
This looks good, right? But what happens if
I don’t need to handle just five messages? What
happens if I need to handle a hundred, or
twelve thousand? I assume that, like me, you

cancel_order.boo
change_user_password.boo

X K new_user.boo
won’t want to hunt down one file in a huge

directory. Also, if we have a large number of
DSL scripts, and we scan all of them for every
message that we route, we’re going to have a

route_order.boo

000060

. Figure 5.2 A sample directory of
performance issue on our hands. Message-Routing DSL scripts

88

5.2

Integrating DSLs into your applications

NOTE Having a large number of scripts in a
single directory will also have other - B
effects. Rhino DSL batch compiles all
. . . o + Users
scripts in a directory, and compiling
takes time. This is a one-time cost,
R _ Orders
but it’s a real cost.

It’s clear that we need some sort of structure in approve_orderboo
place to select which DSL scripts we’re going to
run. We already store the scripts in the filesys- route_order.boo
tem, and filesystems long ago solved the prob-
lem of organizing large number of files using

directories. So we could create a directory for
-|— Products

cancel_order.boo

000

all related scripts, and that would immediately
give us a natural structure. But we’ll still need
to scan all the scripts for a match, right? Figure 5.3 A directory structure mirroring

Well, not if we’re smart about it. We can use ©Ur messaging structure
the filesystem structure as a mirror of our mes-
saging structure. Figure 5.3 shows a directory structure based on this idea. Now, when
we get a message, we can check to see which broad category it’s relevant for, and then
execute only the scripts that are in that directory.

In fact, we can take that one step further by saying that the filename should match
the message name. This way, once we have the message, we know which script we
should run to handle it. Using a naming convention like this is an important friction-
free way to integrate a DSL into your applications. A naming convention like that is a
special case of using the convention over configuration principle.

Convention over configuration is a design paradigm that states that we should only
have to explicitly specify the unusual aspects of our application. Everything that is con-
ventional should be implicitly understood by the application. You can read more
about it here: http://en.wikipedia.org/wiki/Convention_over_configuration.

Naming conventions

One of the key reasons for using a DSL is to reduce the effort required to make
changes to the application. The main focus when building a DSL is usually on the lan-
guage and the resulting API, but it’s as critical to think about the environment in
which the DSL will be used.
The Message-Routing DSL, for example, has Table 5.1 A sample message

a problem. It can’t handle large numbers of
messages with the approach that we’ve taken.
Just scanning through all the scripts would take Type orders/new_order

too much time. Version 1.0

To solve this problem, we can use a naming CustomerTd | 15
convention. Let’s assume that we receive the
message shown in table 5.1.

TotalCost $10

http://en.wikipedia.org/wiki/Convention_over_configuration

Naming conventions 89

What about encapsulation?

It seems like the directory structure for our DSL scripts is directly responsible for the
type of messaging that we send, so isn’t this a violation of encapsulation?

Well, not really. What we have here is a hierarchical structure for our messages,
which is mirrored in both the DSL scripts and the message types. This doesn’t break
encapsulation; it simply lets us see the exact same thing from different perspectives.

Not a realistic message, I admit, but bear with me. Table 5.1 shows a structured mes-
sage format with a field called Type, whose value is the name of the message-routing
script to be run. This allows the Message-Routing DSL engine to go directly to the rel-
evant script, without having to execute all the routing scripts.

Once we have read the message type, we can try to find a matching script by name,
first for <type>_<version>.boo and then for <type>.boo. This means that we can match
script versions to message versions for free as well, if we have different versions of par-
ticular message types that need different script versions.

When we need to handle a new type of message, we know immediately where to
put the script that handles this message and how to name the script file. The reverse is
also true. When we need the script that handles a given message type, we know where
to look for it. This is the power of conventions, and I urge you to find a good conven-
tion when it comes to integrating your DSLs into applications.

TIP When you come up with a convention, be sure to document it and how
you got to it! A convention is only as good as it is conventional. If you have
an uncommon convention, it is not only useless, it is actively harmful.

The naming convention and structure outlined here is important if you expect to
have a large number of scripts, but it’s of much less importance if you only have a few.
Examples of DSLs where you might have few scripts are application-configuration
DSLs, build-script DSLs, code-generation DSLs, and so on. In those cases, the DSL is
usually composed of a single script (maybe split into several files, but conceptually a
single script) that is used in narrow parts of the application or application lifecycle.

In those cases, the structure of the script files isn’t relevant; you’re only ever going
to have a single one of those scripts, so it doesn’t matter. The only interesting aspect of
those DSLs from the application-integration perspective is how you execute them, and
we more or less covered that already in chapter 4.

Let’s look at another example of conventions in the context of the Authorization
DSL (which was discussed in chapter 4). Listing 5.2 shows an example script for that
DSL to refresh your memory.

90

CHuapTER 5 Integrating DSLs into your applications

Listing 5.2 A simple Authorization DSL script

operation "/account/login"

if Principal.IsInRole("Administrators"):
Allow("Administrators can always log in")
return

if date.Now.Hour < 9 or date.Now.Hour > 17:
Deny ("Cannot log in outside of business hours, 09:00 - 17:00")
return

In the first line of listing 5.2, the operation name has an interesting property. It’s
already using a hierarchical structure, which is ideally suited for the type of conven-
tion-based structure we have been looking at.

Listing 5.3 shows how we can take advantage of the hierarchical nature of authori-
zable operations to handle the simple scenario where you have one script per opera-
tion and need to match them up.

Listing 5.3 Using operation names as conventions for the script names

private static AuthorizationResult ExecuteAuthorizationRules (
IPrincipal principal,
string operation,
object entity)

//assume that operations starts with '/’
string operationUnrooted = operation.Substring(l);
//create script path
string script = Path.Combine (
Settings.Default.AuthorizationScriptsDirectory,
operationUnrooted+".boo") ;
// try get the executable script
AuthorizationRule authorizationRule =
dslFactory.TryCreate<AuthorizationRule> (script, principal, entity);
if (authorizationRule == null)
{
return new AuthorizationResult (false,
"No rule allow this operation");
}
// perform authorization check
authorizationRule.CheckAuthorization() ;
return new AuthorizationResult (
authorizationRule.Allowed,
authorizationRule.Message
)
}

The code is even simpler than the version in chapter 4 (see listing 4.8 for comparison),
and it’s obvious what is going on. But I did say that this was for the simplest scenario.
Consider a more complicated case where we have multiple rules for authorizing an
operation. The /account/login operation, for instance, might be ruled by work
hours, rank, remote worker privilege, and other factors. Right now, if we want to

5.3

53.1

Ordering the execution of scripts 91

express all of this in the account/login.boo script, it’s fairly simple, but what happens
when it grows? What happens if we want to split it up based on the different rules?

Again, we run into problems in scaling out the complexity. Never fear,
though—there is a solution. Instead of putting all the logic for the operation inside
account/login.boo, we’ll split it further, so the login operation will be handled by
three different scripts:

account/login/work-hours.boo
account/login/remote-workers.boo
account/login/administrators.boo

This allows us to separate the rules out into various well-named files, which reduces
the number of balls we have to juggle whenever we need to edit an operation’s logic.

In this case, ExecuteAuthorizationRules() will look almost identical to
listing 4.8, except that it will append the operation to the base directory name when it
searches for all the relevant scripts.

Our problems aren’t all solved yet: what happens if we have dependencies and
ordering requirements for the different scripts? Let’s say that administrators should
always have access, even outside of work hours. If the work-hours rule is executed first,
access will be denied.

We need some way to specify ordering, or at least dependencies.

Ordering the execution of scripts

Fairly often, we’ll need to execute scripts in some order. Security rules, where the first
rule to allow or deny is the deciding one, are good examples. Many business rules fol-
low the same pattern. This means we need to handle ordering in our DSL whenever
we have to execute more than a single script for a certain action. (If we’re executing
only a single script, we obviously don’t need to handle ordering.)

In general, there are several ways to enforce ordering in script execution:

Providing no guaranteed ordering
Ordering by naming

Ordering with script priorities
Ordering by external configuration

We’ll look at each of these in order.

Handling ordering without order

Handling ordering by forgoing order is a strategy that surprises many people. The
main idea here is to set things up in such a way that explicit ordering of the scripts
isn’t mandatory.

Let’s take the example of authorization rules; we can decide that it’s enough to
have at least a single rule that says that we’re allowed to perform an operation. (This
may not be a good idea from the point of view of an authorization system, but it will
suffice to make my point.) With this system, we don’t care what the execution order is;

92

5.3.2

5.3.3

Integrating DSLs into your applications

we want to aggregate all the results and then check whether any authorization rule has
allowed us in. This is probably the least-expensive approach (you don’t have to do any-
thing), but it has serious implications.

For example, it requires that the scripts have no side effects. You can’t perform any
state changes in the script because we execute all of them. If the script will change the
state of the application, we must know that it is valid to execute, and not just rely on
discarding results that we don’t care about. For something like the Authorization DSL,
this is not only acceptable but also highly desirable. On the other hand, doing this
with the Message-Routing DSL is impossible.

For that matter, you could argue that this approach isn’t appropriate for authoriza-
tion either, because authorization rules are generally naturally ordered. In most cases,
we can’t avoid some sort of ordering, so let’s explore some of the other options.

Ordering by name

This is somewhat related to the naming-convention approach we used earlier. When
you order scripts by name, you need to name your scripts in order. For example, in
the Authorization DSL example, we’d have the following script names:

account/login/01-administrators.boo
account/login/02-work-hours.boo
account/login/03-remote-workers.boo

This is a simple approach, and it works well in practice. In our code, we execute each
script until we get a decisive answer. In fact, listing 4.8, unmodified, supports this exact
model (Rhino DSL ensures that you get the script instances in ascending alphabetical
order).

Although this works, it isn’t a favorite approach of mine. I don’t like this naming
scheme because it’s a bit painful to change the order of scripts, particularly if you want
to add a new first script, which necessitates renaming all the other scripts (unless you
plan ahead and leave enough gaps in your numbering system).

This isn’t too onerous a task, but it is worth exploring other options, such as script
priorities.

Prioritizing scripts

. ".-MstIBase)
Script prioritization is a fancy name for a simple concept: Class
giving each script a priority number and then executing = Properties
each script according to its priority order. Figure 5.4 shows 2 Priority :int

= Methods

he main con .
the main concept @ Execute():void

In the DSL, we make use of a generated property (like
the Authorization DSL’s Operation property) to set the pri- Figyre 5.4 A base class
ority in the script. Listing 5.4 shows an example of how it for a DSL that supports

works. script prioritization

Ordering the execution of scripts 93

Listing 5.4 A DSL script using prioritization

specifying the priority of this script
priority 10

the actual work done by this script
when order.TotalCost > 10_000:
add_discount_precentage 5
Now all you have to do is sort the scripts by their priority and execute the top-ranking
script. Listing 5.5 shows the gist of it.

Using priorities encoded in the scripts does mean that we have to compile and exe-
cute a full directory to figure out the order in which we will execute the scripts. This
isn’t as big a problem as it might sound at first, because we aren’t dealing with all the
scripts, just the much smaller number of scripts for a particular operation.

Listing 5.5 Executing the highest priority script

MyDslBase [] dslInstances = Factory.CreateAll<MyDslBase>(pathToScripts);
Array.Sort(dslInstances, delegate (MyDslBase x, MyDslBase V)
{

// reverse order, topmost first
return y.Priority.Compare (x.Priority) ;
é;ilnstances[O].Execute();
This is trivial to implement, both from the DSL perspective and in terms of selecting
the highest priority script to execute. Usually, you won’t simply execute the highest
priority script; you’ll want to execute them all in order until you have a valid match.
In the case of the Authorization DSL, you’d execute all the scripts until you get an
allow or deny answer from one of the scripts. A “doesn’t care” response will cause the
application to try the next script in the queue.
Script prioritization does have some disadvantages:

= You have to go into the scripts to retrieve the priority order. This can be cum-
bersome if there are many scripts.

= You have no easy way of avoiding duplicate priorities, which happens when you
assign the same priority to more than one script.

= Changing script priorities requires editing the scripts, which might cause prob-
lems if you want to reprioritize them at runtime. We had a similar issue when
ordering using a naming convention.

= Responsibilities are mixed. The script is now responsible for both its own order-
ing and whatever action it’s supposed to perform.

For these reasons, you might consider using a completely different approach, such as
handling the ordering externally.

94

5.3.4

5.4

Integrating DSLs into your applications

Ordering using external configuration

External ordering of scripts is useful mainly when you want to control ordering (and
execution) at runtime, probably programmatically, using some sort of user interface
that allows an administrator to configure it.

We’ll talk more about this approach when we get to section 5.8, where we’ll con-
sider how to manage and administer a DSL. For now, let’s focus on the implementa-
tion itself.

The simplest way to set up external configuration is to have a files.1st file in the
scripts directory, which lists all the relevant scripts in the order they’re required. We
can get this by overriding the GetMatchingUrlsIn(directory) method in our DSL
engine. Listing 5.6 shows the code for doing just that.

Listing 5.6 Getting an ordered list of scripts from a file

public override Uri[] GetMatchingUrlsIn(string directory)
{ string fileListing = Path.Combine(directory, "files.lst");
string[] scriptsToRun = File.ReadAllLines(fileListing) ;
return Array.ConvertAll<string, Uri>(scriptsToRun,

delegate(string input)

{ return new Uri(Path.Combine(directory, input));

)i
}
Other options include putting the information in an XML file or a database, but the
overall approach is the same.

This is the most flexible solution, but it does come with its own problems. Adding
a new script is now a two-step process: creating the script file and then adding it to
whatever external configuration system you have chosen. My main concern in that sit-
uation is that handling the external configuration system will take a significant
amount of time, not because it takes a long time to update, but because it’s another
step in the process that can be forgotten or missed. You can avoid that by making the
external configuration smart (by adding more conventions to it), but it’s still some-
thing to consider.
Now that we have ordering down pat, it’s time to consider reuse and dependencies

between scripts.

Managing reuse and dependencies

Quite often, you’ll write a piece of code that you want to use in several places. This is
true of DSLs too. There are several ways of reusing code when you’re using a DSL.

The first, and most obvious, method is to remember that you're using Boo as the
DSL language, and that Boo is a full-fledged CLR language. As such, it’s capable of call-
ing your code without any hassle. That works if you want to express the reusable piece
in your application code.

Managing reuse and dependencies 95

Often, though, you’ll want to take a piece of the DSL code and reuse that. Doing so
allows you to take advantage of the benefits of using a DSL, after all. In this situation,
reuse is more complex.

The first thing you need to recall is that although we have been calling the DSL
files “scripts,” they don’t match the usual script terminology. They’re compiled to IL in
an assembly that we can then load into an AppDomain and execute. The DSL itself does
fancy footwork with the compiler, after all.

Because the DSL is compiled to assemblies, we can reference the compiled assem-
bly and use that. Boo makes it easy, because it allows you to create an assembly refer-
ence from code, not using the compiler parameters.

Listing 5.7 shows a piece of reusable code that we want to share among several
scripts.

Listing 5.7 A reusable piece of DSL code

import System.Security.Principal

class AuthorizationExtension:

here we use an extension property to extend the IPrincipal interface

[Extension]

static IsManager|[principal as IPrincipal] as bool:

get:
return principal.IsInRole ("Managers")

We need to compile it to an assembly (by adding the SaveAssembly step to the pipe-
line, or by executing booc . exe) and save it to disk. This gives us the CommonAuthori-

zationMethods.dll assembly. Listing 5.8 shows how we can use that.

Listing 5.8 Using an import statement to create an assembly reference

import the class and create assembly reference
import AuthorizationExtension from CommonAuthorizationMethods.dll
use the extension property
if Principal.IsManager:
Allow("Managers can always log in")
return

if date.Now.Hour < 9 or date.Now.Hour > 17:

Deny ("Cannot log in outside of business hours, 09:00 - 17:00")
This works well, but it forces you to deal with the compiled assembly of the DSL scripts.
This is possible, but it’s awkward. It would be better to preserve the feeling that we’re
working in an infrastructure-free environment. Having to deal with assembly refer-
ences hurts this experience.

Luckily, there’s another way of dealing with this. Script references use the exact
same mechanism that we have looked at so far (compiling the referenced script, add-
ing a reference to the compiled assembly, and so on), but it’s transparent from our
point of view. Listing 5.9 does exactly the same thing as listing 5.8, but it uses script ref-
erences instead of assembly references.

96

Integrating DSLs into your applications

Listing 5.9 Using an import statement to create a script reference

create the script reference
import file from CommonAuthorizationMethods.boo
import the class
import AuthorizationExtension
use the extension property
if Principal.IsManager:
Allow("Managers can always log in")
return

if date.Now.Hour < 9 or date.Now.Hour > 17:

Deny ("Cannot log in outside of business hours, 09:00 - 17:00")
As you can see, they’re practically identical. The only difference is that we use the
import file from <filename> form to add a script reference, and we need a second
import statement to import the class after we create the script reference. (We need to
import the class so it will be recognized for looking up extension properties.)

Script references aren’t part of Boo

Script references are another extension to Boo; they aren’t part of the core language.
You can enable support for script references by adding the following statement in the
CustomizeCompiler () method in your Ds1Engine implementation:

pipeline.Insert (2, new AutoReferenceFilesCompilerStep()) ;

It’s important to understand that script references aren’t #include statements. What
happens is that the code is compiled on the fly, and the resulting assembly is refer-
enced by the current script. (It’s actually a bit more involved than that, mostly to
ensure that you only compile a script reference once, instead of multiple times.) This
allows you to reuse DSL code between scripts, without causing issues with the usual
include-based approach (such as increased code size and compilation time).

Speaking of which, it’s time to take another look at an issue that most developers
see as even more important than reuse: performance.

Performance considerations when using a DSL

A lot of programmers will tell you that their number-one concern is performance. I
personally give positions 0 through 7 to maintainability, but that doesn’t excuse bad
performance, so let’s talk about it a bit.

TIP There is also much to learn from the wisdom of the ages: “We should for-
get about small efficiencies, say about 97% of the time: premature opti-
mization is the root of all evil” (Donald Knuth).

Let’s consider what effect using a DSL will have on the performance of an application.
Here are some costs of integrating a DSL into an application:

Script compilation
Script execution

5.5.1

5.5.2

Performance considerations when using a DSL 97

Script management
Memory pressure

Script compilation

Script compilation is the most easily noticeable issue. This is particularly true when
you're compiling large amounts of code or continuously reinterpreting the same
code.

If you’re rolling your own DSL, you should be aware of this; make sure that you
cache the results of compiling the DSL. Otherwise you’ll pay a high price every time
you execute a script. Rhino DSL takes care of that for you already, so this isn’t some-
thing that you’ll generally need to worry about.

TIP One of the major problems with caching is that you need to invalidate the
cache when the underlying data changes. If you decide to roll your own
caching infrastructure, make sure you take this into account. You don’t
want to have to restart the application because you changed a script.

We’ll look at Rhino DSL’s caching and batching support in chapter 7.

Script execution

Script execution tends to be the least time-consuming operation when using a DSL.
The DSL code is compiled to IL, and, as such, it enjoys all the benefits that the CLR
has. This means that the DSL code is optimized by the JIT (just-in-time) compiler, runs
at native speed, and in general has little runtime overhead.

This doesn’t mean that it isn’t possible to build slow DSL scripts. It means that the
platform you choose to run on won’t be an issue, even if you want to use a DSL in a
common code path, where performance is an important concern.

Another important advantage of building your DSL in Boo is that if performance
problems result from script execution, you can pull out your favorite profiler and pin-
point the exact cause of the issue. It looks like basing the DSL on a language that’s
compiled to IL has significant advantages.

DSL startup costs

One thing that might crop up is the startup cost of the DSL. Compilation does take
time, even if the results of the compilation are cached after the first round.

For many applications, this isn’t an important consideration, but for others, the
startup time can be a make-or-break decision regarding DSL usage.

For scenarios where startup time is critical, you can retain all the advantages that the
DSL offers but also get the best startup speed by precompiling the DSL. (We’ll look
at precompilation in chapter 12.) By using precompilation, you lose the flexibility of
changing scripts on the fly, but you still have the richness of the language and you
get a startup cost that’s near zero.

98

5.5.3

5.5.4

5.6

Integrating DSLs into your applications

Script management

Script management is probably the main cause for performance issues when using a
DSL. By script management 1 mean the code that decides which scripts to execute. For
example, having to execute 500 scripts when we could execute 2 will cost us.

We spent some time exploring naming conventions and how to structure our DSL
previously in this chapter. Then we talked about the advantages from the point of view
of organization and manageability of the DSL.

Those aren’t the only benefits of good organization; there is also the issue of per-
formance. Good organization often means that we can pinpoint exactly which script
we need to run, instead of having to speculatively run many scripts.

Memory pressure

The last performance issue we need to consider is memory pressure. But these aren’t
memory issues in the traditional C++ sense; our DSLs aren’t going to suffer from mem-
ory leaks, and garbage collection will still work the way you’re used to. By memory pres-
sure, I mean assembly leakage. This is probably going to be a rare event, but as long as
we’re talking about performance...

The DSL code that we use is compiled to IL, which resides in an assembly, which is
loaded into an AppDomain. But an AppDomain can’t release assemblies, so once you
load an assembly into an AppDomain, you can’t unload it without unloading the entire
AppDomain. Because you probably want to have automatic refresh for scripts (so that
when you change the script, it’s automatically compiled on the fly), you need to pay
attention to that. Each compilation causes a new assembly to be loaded,' which can’t
be unloaded.

If you have many script changes, and you have a long-running application, all
those assemblies being loaded can eventually cause memory issues. The usual solution
is to segregate the DSL into a separate AppDomain and reload it after a certain number
of recompilations have occurred.

This solves the problem, and it has other advantages besides reducing the number
of in-memory assemblies. For example, it segregates the DSL from the rest of the
application, which allows you to add security measures and protect yourself from
rogue scripts. This segregation is our next topic.

Segregating the DSL from the application

Although having a DSL (or a set of DSLs) in place can make many things much easier,
DSLs bring their own set of issues. You're letting external entities add code to your
application, and if you, or your team, are the ones adding those scripts, it’s all well and
good. If it’s a separate team or business analysts who are doing so, you need to take
precautions against unfortunate accidents and malicious attacks.

' Well, that’s not technically correct, but it’s close enough for now. We’ll get to the technicalities in chapter 7.

5.6.1

5.6.2

Segregating the DSL from the application 99

There are several vectors of attack that can be used when you have DSL code run-
ning in your application. These are the most common ones (but by no means the only
ones):

Malicious actions, such as deleting or corrupting data, installing malware, and
the like

Denial of service, hogging the CPU, leaking memory, or trying to kill the host
application by triggering faults in the runtime or the OS

There are several options for limiting what a script can do, such as building your own
security infrastructure to separate the DSL from the rest of the application, limiting
the time that a script can run, or executing it under a lower security context.

Building your own security infrastructure

The first option is to dig into the compiler and try to build your own security infra-
structure by disallowing all calls except a certain permitted set.

For myself, I am extremely nervous about doing such things. Rolling your own
security is almost always a bad thing. You are going to miss something, and few solu-
tions will be able to protect you from the code in listing 5.10.

Listing 5.10 A trivial malicious script

Denial of service attack using a DSL
this script never returns and takes 100% CPU
while true:
pass

You can try to detect that, but you’ll quickly get into the halting problem (proving that
for all input, the program terminates in a finite amount of time), and Alan Turing?
already proved in 1935 that it can’t be solved.

That said, we don’t have to roll our own security (nor should we). We can use the
security infrastructure of the platform.

Segregating the DSL

The problem of segregating the DSL from the application is a subset of protecting a
host application from add-ins. There is a lot of information available on that topic,
and because we’re using IL all the way, everything that’s relevant to an add-in is also
relevant to a DSL. It isn’t possible to cover all the options that the CLR offers to control
add-ins. That’s a topic for whole book on its own, but we can touch on the high points.

The first thing to realize is that the unit of isolation on the CLR is the AppDomain,
both in terms of loading and unloading the assembly, as we mentioned earlier, and in
terms of permissions, safety, boundaries, and so on. In general, when the time comes
to erect a security boundary, you’ll usually create a new AppDomain with the desired

2 Alan Turing (1912-1954) was a British mathematician and computer scientist and is considered to be the
father of modern computer science.

100

Integrating DSLs into your applications

permission set and execute the suspected code there. Listing 5.11 shows how we can
do that.

Listing 5.11 Creating a sandboxed AppDomain

// Create local intranet permissions
// This is what I would generally use for DSL
Evidence intranetEvidence = new Evidence (
new object[] { new Zone(SecurityZone.Intranet) 1},
new object[] { });
// Create the relevant permission set
PermissionSet intranetPermissions =
SecurityManager .ResolvePolicy (intranetEvidence) ;

AppDomainSetup setup = new AppDomainSetup () ;
setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory;

// create a sandboxed domain
AppDomain sandboxedDomain = AppDomain.CreateDomain (
"DSL Domain", intranetEvidence, setup,
intranetPermissions) ;
// Create an instance of a class that we can use to execute
// our DSL in the remote domain
DslExecuter unwrap = (DslExecuter)
sandboxedDomain.CreateInstanceAndUnwrap (
typeof (DslExecuter) .Assembly.FullName,
typeof (DslExecuter) .FullName) ;

The DslExecuter is something that you’ll have to write yourself; its code will depend
on what you want done in the sandboxed domain. Using a separated AppDomain with
lower security settings, you’re mostly protected from whatever malicious acts the
scripts can perform. You can enhance that by applying code access security policies,
but those tend to be fairly complex, and I have rarely found them useful. Since you’re
running the scripts in a separate AppDomain, they can’t corrupt application state. This
is almost the perfect solution.

It’s almost perfect because there are two additional vectors of attack against which
the CLR doesn’t give us the tools to protect ourselves. Unhandled thread exceptions
and stack overflows are both exceptions that the runtime considers critical, and they’ll
cause the termination of the process they occurred on. And there are also denial of
service attacks like the example in listing 5.10.

It’s important to note that those critical exceptions will kill the process, not just the
responsible AppDomain. There are no easy solutions for this problem, and the two
options I have found aren’t ideal. The first involves writing unmanaged code to host
the CLR, so you can control how it will behave under those scenarios. The second is
spinning off another process and handling the possibility of it crashing by spinning it
up again.

Neither option makes me happy, but that’s the way it is. Most of the time, I believe
that running DSL code in a separate AppDomain is an acceptable risk and carry on with-
out the additional complexity each option involves.

Segregating the DSL from the application 101

5.6.3 Considerations for securing a DSL in your application

As a result, when it comes time to protect my applications from rogue scripts, I focus
on two main subjects:

Protecting the application by limiting what the script can do (using a separate
AppDomain with limited permissions)

Protecting the application by limiting how long a script can run (executing
scripts with a timeout, and when the time limit is reached, killing the thread
executing the DSL code and reporting a failure)

Most of the time, I don’t bother with all of that. It all depends on the type of applica-
tion that you write, the people who are developing the scripts, what level they’re at,
and how trustworthy they are.

Table 5.2 outlines the options you have for segregating the DSL, and the implica-
tions of each option.

In general, I would recommend that you go with the first approach (no segrega-
tion) unless you have solid reasons to do otherwise. In nearly all scenarios, this is the

easiest and simplest way to go, and it will handle most requirements well.

Table 5.2 Summary of segregation options

Segregation approach

No segregation—
run DSL code in the
same AppDomain

High segregation—
run DSL code in a
different AppDomain

Complete segregation—
run DSL code in a
separate process

Implications

Fastest performance

DSL code runs under the same privi-
leges as application code

Frequent changes in DSL scripts may
necessitate application restart

High level of separation from the
application

Permissions can be tuned down, so
the DSL can do little

Can reload the AppDomain after a
certain number of recompilations
Slower performance (cross-
AppDomain communication is
slower than just calling a method on
an object in the current AppDomain)

High cost for communication
between processes

High level of separation from the
application

Permissions can be tuned down as
needed

Supports AppDomain reloading
DSLs can’t take application down

Suitable for

This is ideal when the DSL code has
the same level of trust as the appli-

cation code itself. But if you expect

to have frequent changes to the DSL
scripts, you may want to consider the
next level to prevent assembly leak-
age.

This is appropriate when the DSL
code isn’t as trusted as the applica-
tion code and you want to ensure
separation between the two. It’s also
important when you suspect that
you’ll have many changes in the
scripts and you want to be able to
perform an AppDomain restart when
needed. Malicious scripts can take
down the application if they really try.

This is suitable when you do not
trust the DSL or when you want to
ensure even greater separation of
application and DSL. It requires you
to take care of recovering the pro-
cess if it dies.

102

5.7

571

Integrating DSLs into your applications

Handling isolation with System.AddIns

System.AddIns is a namespace in .NET that offers support for those scenarios when
you want to run untrusted plug-in code in your application. | haven’t had time to inves-
tigate it in detail, but it supports isolation on the AppDomain and process levels, and
it takes care of much of the grunt work.

If isolation is important for your application, | suggest taking a look at System.
Addins before rolling an isolation layer independently.

Even the main reason for moving to the other approaches (AppDomain reload, and
the subsequent assembly unload that frees the loaded assemblies) isn’t a real issue in
most systems. Most script changes happen during development, when the application
is rarely operating continuously for significant enough amounts of time to cause
problems.

In practice, I have found the problem of DSL segregation to be a minor concern.
The handling of script errors is a far bigger concern.

Handling DSL errors

In general, errors in DSLs are divided into two broad categories: compilation errors
(which might include problems with the syntax or with transformation code), and
runtime errors when executing scripts. We’ll look at the second one first, since it’s the
more familiar.

Handling runtime errors

As you can imagine, because a DSL compiles to IL, any runtime error will be an excep-
tion. This means that you already know how to handle it. You just use a try ... catch
block when you execute the DSL code, and handle the error according to your excep-
tion policies. That’s it, almost.

There is one issue to deal with. Because the whole purpose of the DSL is to give you
a better way to express yourself, the DSL code and what is executing aren’t necessarily
the same. In fact, they’re often radically different.

Take a look at listing 5.12, which shows a Message-Routing DSL script that will
cause a runtime exception.

Listing 5.12 A Message-Routing DSL script that will cause a runtime exception

HandleWith NewOrderHandler:
zero = 0
print 1/zero # will cause error

When you execute this script, you’ll get the exception in listing 5.13.

Handling DSL errors 103

Listing 5.13 The exception message from executing listing 5.12

System.DivideByZeroException: Attempted to divide by zero.
at RouteNewOrder.Route$Sclosures$l ()
in Source\Scripts\Routing\RouteNewOrder.boo:1line 7
at CompilerGenerated.$adaptor$_ callableO$MessageTransformer$0.Invoke ()
at RoutingBase.HandleWith (Type handlerType,
MessageTransformer transformer)
in Source\BDSLiB\MessageRouting\DSL\RoutingBase.cs:1line 55
at RouteNewOrder.Route ()
in Source\Scripts\Routing\RouteNewOrder.boo:1line 5
at Router.Route (IQuackFu msg)
in Source\BDSLiB\MessageRouting\Router.cs:line 32
at JSONEndPoint.ProcessRequest (HttpContext context)
in Source\BDSLiB.EndPoints\JSON.EndPoint.ashx.cs:1line 29

In this case, it’s pretty clear what’s going on. We have a divide by zero error. But where
did it happen? In RouteNewOrder.Route$closure$l (), of all places. How did we get
that?

This is a good example of the type of changes between DSL and IL that can confuse
you when you try to figure out exactly where the error is. In this case, because of the
structure of the Message-Routing DSL, the code inside the handle statement is a clo-
sure (or block or anonymous delegate), which explains why it has this strange name.

When you want to analyze exactly where this error happened, the method name
isn’t much help—you won’t be able to make the connection between the method
name and the code in the DSL unless you’re well versed in the internals of the Boo
compiler. I know that I certainly can’t.

But while we don’t know which statement in the DSL caused the error, we do have
the line-number location in the file that caused the error (and this is why we’ll look at
lexical info in detail in chapter 6). This location information allows us to go to the file
and see exactly where the error occurred. This is incredibly useful when you need to
deal with errors.

Now that | have the error, what do | do with it?

This section discusses how to get the error and how to catch the exception. But what
should you do with the error once you get it?

You can start from the assumption that you’ll have errors in your scripts and runtime
errors when you execute them. As such, error handling should be a key consideration
when designing your DSLs.

One approach is to let the error bubble up, and let the application code handle this.
Another is to consider a DSL script that failed compilation to be invalid and ignore
the error, whereas an error in executing the script would be passed to higher levels.

There is no one-size-fits-all solution here. You need to tailor the error-handling strat-
egy to the purpose of the DSL.

104

5.7.2

5.7.3

Integrating DSLs into your applications

That’s about all you need to do to deal with runtime errors. And with the one caveat
of finding the exact error location, we handle DSL errors in the same way we handle
application code errors.

Now we can talk about compilation errors and how to handle them.

Handling compilation errors

Compilation errors are divided into three broad categories: syntax errors, invalid
code, and errors thrown by extensions to the compiler.

Syntax errors are caused by mistakes like forgetting to put a colon at the end of an
if statement. They will usually cause an error of the “unexpected token” variety.

Invalid code is when you use correct syntax but the code is wrong. Calling
int.LaunchRocket () is valid syntax, but int doesn’t have a LaunchRocket () method
(at least not the last time I checked), so it will generate an error similar to this one:
“ERROR: ‘LaunchRocket’ is not a member of ‘int’.”

There isn’t much that can be done for those first two categories of errors, although
Boo is smart enough in many cases to suggest alternatives for misspelled identifiers.
For example, trying to call int.Prase() will generate the following error: “ERROR:
‘Prase’ is not a member of ‘int’. Did you mean ‘Parse’?”

The third category of compilation error is errors that are thrown from your exten-
sions to the compiler. This code is run as part of the compilation process, and errors
in this code will be reported as compilation errors. These errors (unless they’re inten-
tional) are plain old bugs, and should be treated as such. The compiler will show the
exception information from your extensions, which will allow you to pinpoint the
issue and create a fix for it. You could also execute the compiler while in the debugger
and debug your compiler extensions.

Error-handling strategies

Now that we’ve covered error management in DSLs specifically, I want to recommend
a few best practices for handling those errors.

First, you should log all errors (compilation and runtime errors) to someplace
where you can analyze them later. This is particularly true after you go to production.
This log should be accessible to the developers.

TIP I was once denied read privileges to the production application logs,
which meant that I had to guess what the problem was. Make sure that you
log the errors to an operation database that is explicitly defined as acces-
sible to developers, rather than the production database, where regula-
tory concerns may prevent developer access.

Second, refer to management of faulty DSL scripts (ones that cannot be compiled). If
a script fails to compile, you should make a note of that and ignore it until the next
time it has been changed (in which case you can try compiling it again).

Attempting to execute a script that compiles successfully but fails every time it is
executed is a waste of CPU cycles, so allowing a script a certain number of consecutive

5.8

Administrating DSL integration 105

Circuit breakers

When you suspend a script that keeps failing, you’'re using the Circuit Breaker pat-
tern.3 It’s used to minimize the effects of failure in one part of a system on the rest
of the system.

You'll probably want to set a time limit for the script’s suspension, after which it’s
valid for execution again (or after it has been changed, presumably fixing the error).
Also, make sure you take into account that the input might have caused the error; if
a script fails on invalid input, it isn’t the script’s fault.

Note that this technique is not always appropriate. For example, if the authentication
module is throwing errors, it’s probably a bad idea to disable authentication and allow
full access for everyone. But it’s often a good way to stop propagating failures.

failures and then suspending its execution would also be a good idea. Keep in mind,
though, that suspending a script that contains critical business logic is probably not a
good idea. At that point, you would want the entire application to come to a screech-
ing halt until someone can fix it.

I can’t stress how important it is that administrators should be notified when
scripts are turned off. For example, they should see when account/login.boo has been
disabled because it keeps throwing errors (perhaps because the LDAP directory was
taken down). Something like this certainly requires administrator intervention.

This brings us to the last topic for this chapter—administrating our DSL integration.

Administrating DSL integration

When I talk about administrating an application’s DSL integration, I'm really talking
about several related tasks.

Usually, you’ll administer DSLs using the administration section of your applica-
tion, although sometimes you will use a custom application for administering the DSLs
in an application. We’ll discuss building such tools in chapter 10.

Administrating the DSL and the DSL scripts consists of several tasks:

Reviewing logging and auditing information—Logging is particularly important
when it’s related to errors, but other information is also important. You can use
this information to track the usage of certain scripts, check the timing of scripts,
review the success of particular operations, and so on.

Reviewing information about suspended and ignored scripts—This information will
let you know which scripts have failed to run, so you can fix them. Ignored scripts
are those with compiler errors, whereas suspended scripts are those that tripped
the circuit breaker and have been disabled for a time.

% Circuit Breaker is the name of a pattern in Release It! Design and Deploy Production-Ready Software by Michael T.
Nygard. I highly recommend this book. It’s available from http://www.pragprog.com/titles/mnee.

106

5.9

Integrating DSLs into your applications

Select rules for operation

Operation: | /account/login n

Available rules: Rules to execute (in order of appearance):

remote_workers.boo deny_login_for_anonymous.boo
administrators_can_always_login.boo
work_hours.boo

Figure 5.5 An administration screen
for specifying which rules to execute on
an operation

Configuring the order of scripts—We looked at the ordering of scripts in
section 5.3. In your application administration UI you can configure the mecha-
nism that you use to set the script execution order, which gives you more flexi-
bility at deployment time.

Configuring which scripts should run for certain actions—You can treat scripts as part
of the rules in the system, and work with them dynamically. This approach, of
dynamic rule composition, is useful when you have rapidly changing environ-
ments. With DSLs, making changes is easy, and providing a user interface to
decide which scripts to run in response to what actions makes change manage-
ment easy (we’ll talk about DSL change management in chapter 12). Figure 5.5
shows a sample user interface that could be used to administer such rules.
Updating scripts—You can also use the administration section of the application
to update scripts, but this should be considered carefully, because production
code changes are not something you want to make foo easy. Change manage-
ment and source control are two things that you definitely want in place for
DSLs, and we’ll discuss them in chapter 12.

The list just enumerates common tasks that come up in most DSL implementations. I
generally implement each of those on an as-needed basis, and there are others (audit
information, for example) that you might want to implement as well. The DSL admin-
istration should be considered as part of the DSL design, and chapter 12 talks exten-
sively about that topic.

Summary

We’ve covered quite a bit of ground in this chapter. We talked about the macro con-
cerns of using a DSL in your application and how the DSL solution can scale easily as
the complexity of the application grows.

We looked at using naming and ordering conventions to allow our DSLs to find the
appropriate scripts to run and the order in which to run them with as little work as
possible. Reducing the work required to find the right set of scripts to handle a cer-
tain action is important, both in terms of the amount of work that the DSL has to do
and our own mental processes when we try to add a new script or find out how partic-
ular scripts work.

Summary 107

We also explored the reuse, performance, and segregation aspects of using a DSL.
In all three cases, we saw that compiling the scripts to IL gives us the advantages of
native CLR code, which means that we can take advantage of all the CLR services, from
easily reusing scripts, to profiling a DSL, to using the built-in sandboxing features of
the runtime.

We also looked at error handling. Again, because our DSLs are based on Boo,
which compiles to IL, we can use all our familiar tools and concepts.

Looking at the big picture, you should now be starting to see how you can plug a
DSL implementation into an application to make the implementation of policies more
convenient, readable, and dynamic.

Throughout this chapter, we continued building the DSL, looking at how to deal
with the compiler and use Rhino DSL. We touched briefly on cache invalidation, script
references, and some other goodies, but we haven’t looked at those topics in detail.
It’s now time to discover exactly what the compiler can do for us. That’s the topic of
the next chapter.

extensibility ap

In this chapter

= Cracking open the Boo compiler

Quasi-quotation and meta-methods
Extending the compiler

= Changing the language

Boo offers a rich set of extensibility mechanisms that you can use. We’ll look at
them for a couple of reasons: to make sure you understand what is possible, and to
expose you to the way they can be used to create easily readable, intuitive, and nat-
ural DSLs.

But before we can start talking about compiler extensibility, we need to look at
the compiler itself and define some common terms. A lot of Boo’s capabilities are
exposed in ways that only make sense if you understand these concepts. I'll assume
compilers aren’t your area of expertise and make sure that you can understand and
use the capabilities we’ll look at.

You won’t need this knowledge on a day-to-day basis. You can build most DSLs
without going deep into the compiler, but it’s important to understand how things
work under the hood. There are some situations when it’s easier to go into the

108

6.1

The compiler pipeline 109

compiler and make a change than work around the problem with the tools that are
exposed on the surface.

The basic structure of the Boo compiler is the pipeline—it’s how the compiler trans-
forms bits of text in a file into executable code.

The compiler pipeline
When the compiler starts to compile a set of files, it runs a set of steps to produce the
final assembly. This series of steps is called the compiler pipeline.

Figure 6.1 shows a partial list of the steps in a standard compilation. Right now, a
typical Boo compiler pipeline has over 40 steps, each of which performs a distinct task.
When you write a step, you only have to focus on that particular task, nothing else.

TIP There are several Boo compiler pipelines that you can choose from, but
switching pipelines is fairly advanced stuff, and not something you usu-
ally need to do for DSLs.

Let’s focus on the first step, parsing the code. In this step, the parser reads the code
and outputs a set of objects that represent that code. We’ve seen that done in
chapter 1, when we talked about abstract syntax trees (ASTs). ASTs are the object mod-
els that the compiler uses to represent the code.

The parser takes code like this,

if 1 ==

print "1 = 2"
else:

print "1 != 2"

and turns it into an object model that looks like figure 6.2.

You can think of AST as the compiler’s DOM, such as the XML and HTML DOM that
you’re probably already familiar with. Like them, the AST can be manipulated to get
different results. In fact, this is what most of the compiler steps do. The first step, pars-
ing, takes the code and translates it to AST; all the other steps scan and transform the
AST. There are several extension points into the compiler pipeline, from custom com-
piler steps to meta-methods, and from AST attributes to AST macros. We will discuss all
of them in this chapter.

Manipulating the AST takes some getting used to. I have shocked people when I
suggested changing if statement semantics as one of the options for extending the

‘ Boo compiler pipline }
Initialize Merge e Bind Process Emit Save
Parse type partial method :
macros methods . assembly to file
system classes bodies

Figure 6.1 A selection of Boo’s compiler steps

110

6.2

CHAPTER 6 Advanced complier extensibility approaches

Operator:

Equality

Binary
expression
m p Method: print

call

L]

m /
- call
\
Figure 6.2 Abstract syntax

tree of an if statement

language. Hopefully, when we go over all the extensibility options in the compiler, it
will become clearer. Mind you, you’ll want to exercise some self-control when doing
this. Although an if loop is an interesting idea, it seems to bother some people.

Now let’s use what we’ve learned about the compiler and look at how it works and
how we can modify it.

Meta-methods

The first level of extending the compiler is easy—we covered it in chapter 2 when we
talked about duck typing and IQuackFu. The next level is when we start working with
the compiler’s AST that represents your source code and from which the compiler
generates the IL to build assemblies. And the first step in that direction is building
meta-methods.

A meta-method is a shortcut into the compiler. It’s a method that accepts an AST
node and returns an AST node. AST node is a generic term for all the types of nodes
that compose the AST.

Let’s implement an assert method. But, because Boo already has an assert state-
ment, we’ll use “verify” as the method name. Listing 6.1 shows the method imple-
mentation in its entirety.

Listing 6.1 Implementing the verify method

[Metal
static def verify(expr as Expression):
return [|
unless S$Sexpr:
raise $(expr.ToCodeString())

Meta-methods 111

Exploring the AST

We’ll do a lot of work in this chapter and the rest of the book that touches the AST
directly, and | highly recommend that you explore it yourself. Although | can explain
the concepts behind the methods we’re going to use, there is no substitute for expe-
rience, particularly when it comes to understanding how to use the AST.

The best way to explore it is to ask the Boo compiler to print the resulting AST from
a given piece of code. You can do that by including the PrintAst step in the compiler
pipeline.

Another option is to use quasi-quotation (discussed later in this chapter) and .NET
Reflector (http://www.red-gate.com/products/reflector/) to get an understanding of
how the AST is composed and used. | suggest spending some time familiarizing your-
self with the AST. It's important to get a good understanding of how the compiler
works so you can fully utilize the compiler’s capabilities.

The code in listing 6.1 creates a new keyword in the language. We can use it to ensure
that a given condition is true; if it isn’t true, an exception will be thrown. We can use
verify in the following manner:

verify arg is not null

The verify implementation instructs the compiler to output a check and to raise an
exception if the check fails. For now, please ignore any syntax you don’t understand.
I’ve used quasi-quotation to save some typing; we’ll look at quasi-quotation in the next
section.

Listing 6.1 shows a static method that’s decorated with the [Meta] attribute and
that accepts an AST expression. This is all you need to create a meta-method.

When you have a meta-method, you can call it like a regular method:

verify (1 == 2)

A note about the code in this chapter

In this chapter, | will show the compiler manipulation code in Boo and provide several
examples in C#. Boo is more suited to writing code for compiler manipulation, but
most languages will do.

We’ll discuss code management (IDEs, compilation, and the like) in chapter 10
(which focuses on Uls) and in chapter 12 (on managing DSL code).

If you want to use an IDE for the code in this chapter, you will need to use Sharp
Develop (http://www.icsharpcode.net/OpenSource/SD/).

The code in this chapter was compiled using Boo 0.9.2 and Sharp Develop
3.1.0.4977.

http://www.icsharpcode.net/OpenSource/SD/
http://www.red-gate.com/products/reflector/

112

Advanced complier extensibility approaches

Because Boo supports method invocations without parentheses, you can also call it in
the following fashion:

verify 1 == 2

When the compiler sees a call to a meta-method, it doesn’t emit code to call the meta-
method at runtime. Instead, the meta-method is executed during compilation. The
compiler passes the meta-method the AST of the arguments of the method code
(including anonymous blocks), and then we replace this method on the AST with the
result of calling the meta-method. Figure 6.3 shows the transformation that is caused
by the meta-method.

This process is similar to text-substitution macros in C and C++ (and even more
like Lisp and Scheme macros, if you're familiar with them), but this not mere text pre-
processing. It’s actual code that runs during compilation and outputs any code it
wants back into the compilation process. Another difference is that we’re dealing
directly with the compiler’s AST, not just copying lines of text.

A lot of people seem to have a hard time grasping this distinction. The compiler
will ask you, at compilation time, what kind of transformation you want to do on the
code. It then takes the results of the transformation (the method’s return value, which
is an AST expression) and replace the method call with the returned expression.

Note the difference between a method returning a value at runtime and what
meta-methods are doing. The return value from a meta-method is an AST expression
that is replacing the method call. When the compiler emits the

final IL, it is the returned expression that will end up in the

compiled DLL, not the method call.
The idea of code running at compilation time and modify-

ing the compiled output is the main hurdle to understanding

how you can modify the Boo language. I suggest taking a look
at the compiled output with Reflector—it usually help clear

things up. Figure 6.3 also shows the transformation happening ’
at compile time. unless 1 ==2:
raise "1 ==2"

The Boo code in listing 6.1 can also be translated to the C#
shown in listing 6.2. This version shows what happens under the Figure 6.3 The code
covers, and it’s a bit more explicit about what is going on. Both ~ transformation caused

. . . by the verify meta-
method implementations have exactly the same semantics. method

Listing 6.2 A C# implementation of the verify method

[Metal

public static UnlessStatement verify (Expression expr)

{
UnlessStatement unless = new UnlessStatement () ;
unless.Condition = expr.Clone();
RaiseStatement raise = new RaiseStatement () ;
raise.Exception = new StringLiteralExpression (expr.ToCodeString()) ;
unless.Statements.Add (raise) ;
return unless;

6.3

Quasi-quotation 113

We’ve used meta-methods before, when we implemented the when keyword for the
Scheduling DSL, in chapter 3. Meta-methods are often used in DSLs. When you run
into the limits of what the compiler offers out of the box, meta-methods are your next
best option.

It’s important that you come to grips with the idea of AST manipulation; this is the
key to what we’ll discuss in the rest of the chapter. Further on in this chapter, we’ll talk
about AST macros and AST attributes, both of which are similar to meta-methods, and
rightfully so. They take the same AST manipulation approach, but they’re used differ-
ently and generally have more power at their disposal.

But before we get to them, we should take a look at quasi-quotation and why it’s
useful.

Quasi-quotation

You've already seen quasi-quotation in the verify method (listing 6.1). Quasi-
quotation is a way to use the compiler’s existing facilities to translate text into code.
But in this case, instead of translating text to code, the compiler is translating the orig-
inal text into code that produces the code. Confusing, isn’t it? It will be easier to look
at some examples.

Let’s say you wanted to create the AST for a trivial 1 f statement. The code that you
want to generate looks like this:
if date.Today.Day ==

print "first of month"

Remember the AST diagrams you have seen so far? Let’s see what it takes to generate
the AST for this statement. We’d need all the code in listing 6.3 to make this work.

Listing 6.3 Generating the AST for a trivial 1f statement

ifStmt = IfStatement (
Condition: BinaryExpression (
Operator: BinaryOperatorType.Equality,
Left: AstUtil.CreateReferenceExpression("date.Today.Day"),
Right: IntegerLiteralExpression (1)
))
write = MethodInvocationExpression (
Target:
AstUtil.CreateReferenceExpression("System.Console.WriteLine")
)
write.Arguments.Add(StringLiteralExpression('first of month'))
ifStmt.TrueBlock = Block()
ifsStmt.TrueBlock.Add (
write

)

If you're like me, you’re looking at this code and thinking that programming sud-
denly seems a lot harder than it used to be. In truth, though, it’s not much different
than working with the XML or HTML DOM, which you’re likely already familiar with. If
you’ve ever done any work using System.CodeDOM, for that matter, the code in

114

CHAPTER 6 Advanced complier extensibility approaches

listing 6.3 should be instantly familiar to you. Nevertheless, if you’'ve ever done any
work with any type of DOM, you’ll know that it’s extremely tedious. It’s easy to get lost
in the details when you have even slightly complex scenarios.

You likely won’t need to write much AST—usually just wrappers and the like—but
this is probably the most tedious and annoying part of having to deal with the com-
piler. For that reason, we have quasi-quotation, which allows us to produce the AST we
want without the pain.

The 15 lines of code in listing 6.3 can be written in 4 lines by using quasi-quotation,
as shown in listing 6.4.

Listing 6.4 Generating the AST of a trivial i f statement by using quasi-quotation

ifstmt = [|

if date.Today.Day == 1:

System.Console.WriteLine ("first of month")

[]
Listing 6.4 produces the exact same results as listing 6.3. When the compiler encoun-
ters this code, it does the usual parsing of the code, but instead of outputting the IL
instructions that would execute the code, it outputs the code to build the required
AST, much in the same way we did in listing 6.3.

The fun part is that you aren’t limited to generating the AST code statically; you
can also generate it dynamically. You can use $variable to refer to an external vari-
able or $ (variable.SomeValue) to refer to a more complex expression, and they will
be injected into the generated AST building code. Let’s look at an example.

Let’s say you want to generate code that will output the date that this code was
compiled. You could do it with the code in listing 6.5.

Listing 6.5 Generating code that outputs date this code was compiled

currentDate = date.Today.ToString ()
whenThisCodeWasCompiled = [|

System.Console.WriteLine($currentDate);
]
I believe this is the cue for a light-bulb-over-the-head moment. You aren’t limited to
using strings to pass to quasi-quotation blocks; you can use anything that’s directly
translatable to AST. Listing 6.6 shows a more interesting example, if not a particularly
useful one.

Listing 6.6 Composing AST using quasi-quotation

if compilingOnMono:
createConnection = []
Mono.Data.Sglite.SgliteConnection ()
|1
else:
createConnection = []

6.4

AST macros 115

System.Data.Sglite.SgliteConnection()

|1
connectToDatabase = [|
using con = S$ScreateConnection() :
con.ConnectionString = GetConnectionString/()
con.Open () ;
make use of the opened connection...
|1

Consider using this code when you want to generate conditional code. As shown in
listing 6.6, we choose, at compile time, which library to use to connect to a database,
based on the platform we’re running on. Different code will be generated for each
platform. This will make those things a piece of cake.

Does this mean that we’re limited to building in Boo?

No, it doesn’t. The Boo AST is composed of standard CLR classes, and it can be used
from any CLR language. As such, you can use any CLS-compliant language to interact
with the Boo compiler. | have quite a few Boo DSLs in use right now that use C# to
manipulate the AST.

But Boo does have facilities to make AST manipulation easier, quasi-quotation being
chief among them. You’ll have to decide for yourself what is easier for you.

You can also use the $ () syntax directly, as in listing 6.7.

Listing 6.7 Using complex expressions in quasi-quotation

whenThisCodeWasCompiled = [|
System.Console.WriteLine($(date.Now));
[
We’ll make heavy use of this technique as we get more involved with AST manipulations.
Now, let’s see how we can use this knowledge to do some really interesting things.

AST macros

Meta-methods and AST macros differ in several ways:

An AST macro has full access to the compiler context and the full AST of the
code, and it can collaborate with other macros, compiler steps, and AST attri-
butes to produce the final result. A meta-method can only affect what was
passed to it via its parameters. Meta-methods can produce the same results as
AST macros, but not as easily.
An AST macro can’t return values, but a meta-method can.
An AST macro is exposed by importing its namespace; a meta-method must be
referenced by namespace and class. This is a minor difference.

Let’s look at a simple example—a macro that will unroll a loop.

116 Advanced complier extensibility approaches

Generating blocks with quasi-quotation and macros

When we’re using quasi-quotation, we're using the standard Boo parser and compiler
to generate the AST code. This is great, because it means that we can use quasi-
guotation to generate any type of AST node that we can write on our own (classes,
namespaces, properties, method, statements, and expressions). But it means that
when the compiler is parsing the code inside the quasi-quotation, it must consider
that you can put any type of AST node there.

This means that when the compiler encounters the following piece of code, it will out-
put an error:

block = []
val = 15
if val == 16:
return

]

Here the parser believes that we’re starting with field declarations because a quasi-
quotation can be anything. It can be a class declaration, a method with global param-
eters, a single expression, or a set of statements. Because of that, the parser needs
to guess what the context is. In this particular edge case, the compiler gets it wrong,
and we need to help it figure it out.

The problem in the previous example is that we’re parsing field declarations (which
means that we are in a class declaration context), and then we have an if statement
in the middle of that class declaration. This is obviously not allowed, and it causes
the compiler error.

Here’s a simple workaround to avoid this problem:

code = [|
block:
val = 15
if val == 16:
return
|1
block = code.Body

Adding block in this fashion has forced the parser to consider the previous code as
a macro statement, which means it's inside a method where if statements are
allowed. We’re only interested in the content of the block, so we extract the block of
code from the macro statement that we fooled the parser into returning.

6.4.1 The unroll macro

Listing 6.8 shows the code using the macro, and listing 6.9 shows the results of compil-
ing this code.

Listing 6.8 Using the unroll macro

unroll i, 5:
print i

AST macros 117

Listing 6.9 The compiled output of the unroll macro

i=0
print i
i=1
print 1
i=2
print i
i=3
print i
i=4
print 1

Now look at listing 6. 10, which shows the code for the unroll macro.

Listing 6.10 The unroll macro

Create a class for the macro. The class name is

meaningful: [macro name]Macro allows us to later refer
to the macro using [macro name].

Note that we inherit from AbstractAstMacro

class UnrollMacro (AbstractAstMacro) :

Perform the compiler manipulation.

The compiler hands us a macro statement, and we have

to return a statement that will replace it.

override def Expand(macro as MacroStatement) as Statement:

Define a block of code
block = Block()

Extract the second parameter value
end = cast (IntegerLiteralExpression, macro.Arguments([1l]) .Value

for i in range(end) :
Create assignment statement using the block: trick
and add it to the output
assignmentStatement = [|
block:
$ (macro.Arguments[0]) = $i
|1.Body
block.Add (assignmentStatement)

Add the original contents of the macro
to the output
block.Add (macro.Body)

return block

We’ll go over listing 6.10 in detail, because AST macros can be confusing the first time
you encounter them. AST macros are capable of modifying the compiler object
model, causing it to generate different code than what is written in the code file.
First, we define a class that inherits from AbstractAstMacro, and then we override
the Expand () method. When the compiler encounters a macro in the source code, it
instantiates an instance of the macro class, calls the Expand () method (passing the

118

6.4.2

Advanced complier extensibility approaches

The macro class versus the macro statement

It’s important to make a distinction between a class that inherits from Abstract-
AstMacro (a macro class) and one that inherits from MacroStatement (a macro
statement).

The first is the class that implements logic to provide a compile-time transformation.
The second is part of the compiler object model, and it's passed to the macro class
as an argument for the transformation.

macro statement as an argument), and replaces the original macro statement with the
output of the call to Expand ().

The MacroStatement argument that the compiler passes to the macro class con-
tains both the arguments (the parameters passed after the call to the macro) and the
block (the piece of code that’s inside the macro statement).

In the case of the unroll macro, we take the second argument to the macro and
extract it from the compiler object model. Then we run a for loop, and in each itera-
tion we perform four basic actions:

Generate an assignment of the current value to the first argument to the macro
Generate a call to the macro body

Add both statements to the output code

Return the output of the code to the compiler, which will replace the Macro-
Statement that was in the code

Note that you can return a null from the Expand () method, in which case the node
will be completely removed. This is useful in various advanced scenarios, as we’ll see
when we discuss correlated macros in section 6.4.5.

Building macros with the MacroMacro

The Boo compiler can do a lot of stuff for us, so it should come as no surprise that it
can help us with building macros. The MacroMacro is an extension to the compiler
that makes it simpler to write macros. You don’t need to have a class, inherit from
AbstractAstMacro, override methods, and so on. All you need to do is write the code
to handle the macro transformation.

Let’s write the unroll macro again, this time using the MacroMacro. Listing 6.11
contains the code.

Listing 6.11 Using the MacroMacro to write the UnrollMacro

Using the MacroMacro, we don't need a class,
just to define what we want the macro to do
macro Unroll2:

extract the second parameter value
end = cast(IntegerLiteralExpression, Unroll2.Arguments[1l]).Value

AST macros 119

for i in range(end) :
create assignment statement, using the block:
trick and add it to
the output
statement = [|
block:
$ (Unroll2.Arguments[0]) = $i
| 1.Body
yvield statement

add the original contents of the macro
to the output
yield Unroll2.Body

As you can see, the main differences between this and listing 6.10 is that the Macro-
Macro removes the need to create a class. We can also yield the statements directly,
instead of gathering them and outputting them in a single batch. Inside the macro
block, we can refer to the macro statement using the macro’s name. This means that
whenever you see Unroll2 inside the macro in listing 6.11, it refers to the Macro-
Statement instance that’s passed in to the macro implementation (the MacroMacro
creates a MacroStatement variable named Unroll2 behind the scenes).

From the point of view of the code, we’ve been using macros throughout the book.
I just didn’t tell you about them until now. Let’s take a look at the most common
macro:

print "hello there, I am a macro"

Print will translate to calls to Console.WriteLine. Let’s take a look at the slightly sim-
plified version of this implementation in listing 6.12.

Listing 6.12 Boo’s print macro code

This is a helper method that's useful for all sorts of "write line"
type macros, such as print, debug, warn, etc.
It accepts the macro and two method invocation expressions: one for
outputting text and the second for outputting text and a line break.
This method will take the arguments of the macro and print them all.
def expandPrintMacro(macro as MacroStatement,

write as Expression,

writelLine as Expression) :
If the macro is empty, output an empty line
if len(macro.Arguments) ==

return [| $writeLine() |]

HH H H H I

Create a block of code that will contain the output

methods that will be generated

block = Block()

-1 in Boo's lists means the last element

last = macro.Arguments[-1]

for arg in macro.Arguments:
if arg is last: break
Add method call to output a single macro argument
block.Add([| $write($arg) |].withLexicalInfoFrom(arg))

120

6.4.3

Advanced complier extensibility approaches

block.add([| $write(' ') |1)
Output the last macro argument with a line break
block.Add([| $writeLine($last) |].withLexicalInfoFrom(last))
return block

The macro, which does a simple redirect
macro print:
return expandPrintMacro (print,
[| System.Console.Write |],
[| System.Console.WriteLine |])
Note that the macro will direct you to the expandPrintMacro method. This method is

also used elsewhere, such as in the debug macro, to do most of the work.

Lexical info

You’ll note that we’re using the withLexicalInfoFrom(arg) extension method in
listing 6.12. This is a nice way of setting the LexicalInfo property of the node.

Lexical info is the compiler’s term for the location this source code came from, and
it’s important for things like error reporting and debugging. We’re going to do a lot of
code transformations, and it’s easy to lose lexical info along the way.

Keeping track of the lexical info is simply a matter of carrying it around, either by
using withLexicalInfoFrom(arg) or by setting the LexicalInfo property directly.
Put simply, whenever we make any sort of transformation, we must also include the
original code’s lexical info in the transformation output.

Without lexical info, the compiler couldn’t provide the location for an error. Imagine
the compiler giving you the following error: “Missing ; at file: unknown, line: unknown,
column: unknown.” This is why keeping the lexical info around is important.

The print macro also passes two methods to the expandPrintMacro() helper
method: Write and WriteLine. Those use quasi-quotation again to make it easier to
refer to elements in the code. The interesting part, and what makes Boo easy to work
with, is that we can still take advantage of things like overloading when we’re rewriting
the AST. The method resolution happens at a later stage, which makes our work a lot
simpler.

The expandPrintMacro () method checks whether we passed any arguments to the
macro. If we did, it will output all of them using the write() method and output the
last one using writeLine ().

This explanation of how the print macro works took a lot more text than the
macro itself, which I consider a good thing. We’ll take a peek at another well-known
macro, the using macro, and then we’ll write one of our own.

Analyzing the using macro

In C#, using is a language keyword. In Boo, it’s a macro, and it has a tad more func-
tionality. Take a look at listing 6.13, which makes use of Boo’s using statement.

AST macros 121

Listing 6.13 The using statement in Boo, with multiple parameters

using file = File.Create("myFile.txt"), reader = StreamWriter (file):
reader.WriteLine ("something")

You can specify multiple disposables in Boo’s using macro, which often saves nested

scoping. When the Boo compiler sees the code in listing 6.13, it attempts to find a

macro for any unknown keywords it finds. It will only generate an error if it can’t find

a matching macro.

The compiler finds relevant macros by searching the imported namespaces. Boo
has no problem if several macros have the same name in different namespaces
(though there may be some confusion on the part of the user).

The macro in listing 6.13 will generate the AST shown in figure 6.4. This is the
MacroStatement instance that the using macro implementation will get. As you’ll
notice, it’s split into two major parts: the Arguments collection contains everything
that was written after the macro name, and the Block contains all the code that was
written within this macro.

At compilation time, the compiler will create a new instance of the macro class and
pass it the MacroStatement object. It will also replace the macro statement with the
output that was returned from the macro. If this sounds familiar, that’s because it’s
precisely the way meta-methods work.

Listing 6.14 shows the implementation of the using macro.

Listing 6.14 The using macro’s implementation

macro using:
Get the content of the using statement
expansion = using.Body
Iterate over all the macro expressions in reverse order
for expression as Expression in reversed(using.Arguments) :
Create a temporary variable and assign it the
current expression.
temp = ReferenceExpression(_
context.GetUniqueName ("using", "disposable"))
assignment = [|
Stemp = Sexpression as System.IDisposable
|].withLexicalInfoFrom(expression)

Create a try/ensure block, with the current expansion, and
place it in the expansion variable, so it will be wrapped

MacroStatement:
Using

Figure 6.4 A simplified AST
representation of a using
macro statement

Advanced complier extensibility approaches

by the next macro argument
expansion = []|
Sassignment
try:
Sexpansion
ensure:
if Stemp is not null:
Stemp.Dispose ()
Stemp = null
|1

return expansion

In listing 6.14, we gain access to the MacroStatement using the macro name—in this
case, using. Then we assign the using.Body to the expansion variable.

Once that’s done, we iterate over the argument collection in reverse order. On
each iteration, we create a new try ... ensure statement (the Boo equivalent for C#’s
try ... finally) and dispose of the argument properly in the ensure block. We then
take the content of the expansion variable and place it inside the try block. We set
the newly created try ... ensure statement as the new value of the expansion vari-
able, which we carry forward to the next iteration.

The end result of the code in listing 6.14 is shown in listing 6.15.

Listing 6.15 The code outputted by the using macro

using2 = ((file = File.Create('myFile.txt')) as System.IDisposable)
try:
_usingl__ = ((reader = StreamWriter (file)) as System.IDisposable)
try:
reader.WriteLine ()
ensure:
if _ _usingl__ is not null:
__usingl__ .Dispose()
__usingl__ = null
ensure:
if _ _using2__ is not null:
_ using2__ .Dispose()
__using2__ = null
I'm sure you’ll agree that this isn’t pretty code—not with all those underscores and
variable names that differ only by a numeral. But it’s what the compiler generates, and
you won’t usually see it. I should note that this isn’t code in the style of
Forml.Designer.cs. This code is generated by the compiler; it’s always regenerated
during compilation and never sees the light of day, nor is it saved.

You can see, in the second try block, the code that we originally placed in the
using block: in the ensure block we dispose of the reader safely. The inner try block
is wrapped in another try block, which disposes of the file safely.

Now, if you go back to listing 6.14, you’ll see that we’re making use of a strange
Context.GetUniqueName () method. Where did this come from?

The availability of the context is one of the main differences between macros and

meta-methods. The context lets you access the entire state of the compiler. This

6.44

AST macros 123

means you can call the GetUniqueName () method, which lets you create unique vari-
able names, but it also means that you can access more interesting things:

= Compiler services, which include such things as the Type System Service, Boo
Code Builder, and Name Resolution Service

= The compilation unit—all the code being compiled at that moment

= The assemblies referenced by the compiled code

= The compiler parameters, which include the compiler pipeline, inputs, and
other compilation options

= The errors and warnings collections

Those are useful for more advanced scenarios. But before we make use of them, we’ll
write a more complex macro, to see how it goes.

Building an SLA macro

Recently I needed to check how long particular operations took and to log warnings if
the time violated the service level agreement (SLA)' for those operations. The code
was in G#, and I couldn’t think of any good way of doing this except by manually cod-
ing it over and over again. All the ideas I had for solving this problem were uglier than
the manual coding, and I didn’t want to complicate the code significantly. Let’s see
how we can handle this with Boo, shall we?

First, we need to define how we want the code using the SLA to look. Listing 6.16
contains the initial draft.

Listing 6.16 Initial syntax of a macro that logs SLA violations

limitedTo 200ms:
PerformLongOperation ()
whenExceeded:
print "Took more than 200 ms!"

Let’s start small by creating a macro that will print a warning if the time limit is
exceeded. We should note that Boo has built-in support for time spans, so we can say
200ms (which is equal to TimeSpan.FromMilliseconds(200)) and it will create a
TimeSpan object with 200 milliseconds for us.

Listing 6.17 shows an initial implementation.

Listing 6.17 Initial implementation of the 1imitedTo macro

macro limitedTo:

Get the expected duration from the macro arguments
expectedDuration = limitedTo.Arguments[0]

Generate a unique variable name to hold the duration

durationName = ReferenceExpression (Context.GetUnigqueName ("duration"))
Generate a unique variable name to hold the start time

startName = ReferenceExpression (Context.GetUniqueName ("start"))

1

SLA (service level agreement) refers to the contracted delivery time of the service or its performance.

124

6.4.5

Advanced complier extensibility approaches

Use quasi-quotation to generate the code to write
#a warning message
actionToPerform = [|
block:
print "took too long"
|1.Body

Generate the code to mark the start time, execute the code, get
the total duration the code has run, and then execute the action
required if the duration was more than the expected duration

block = []
block:
$startName = date.Now
$(limitedTo.Body)
SdurationName = date.Now - S$startName
if SdurationName > S$expectedDuration:
SactionToPerform
|1.Body

return block

We define the macro itself. Quasi-quotation is useful, but it has its limitations, so we
use the block: trick to force the compiler to think that we’re compiling a macro state-
ment, from which we can extract the block of code that we’re actually interested in.

Now, if we write this code, it will print “took too long”:
limitedTo 200ms:

PerformLongOperation ()

We aren’t done yet. We still need to implement the whenExceeded part, and this leads
us to the idea of nested macros.

Using nested macros

When we talk about nested macros, we’re talking about more than nesting a print
macro in a using macro. Nested macros are two (or more) macros that work together
to provide a feature. The 1imitedTo and whenExceeded macros in the previous section
are good examples of nested macros.

Before we get to the implementation of nested macros, we need to understand
how Boo processes macros. The code in listing 6.18 will produce the AST in figure 6.5.

Arguments H 200ms
Thread.Sleep(201)

Figure 6.5
Voass The AST
acroStatement:)
whenExceeded H printmsg generated from

listing 6.18

AST macros 125

Listing 6.18 Using the 1imitedTo and the nested whenExceeded macros

limitedTo 200ms:
Thread.Sleep (201) ;
whenExceeded:
print "Took more than 200 ms!"

Macros are processed in a depth-first order, so the whenExceeded macro will be evalu-
ated before the 1imitedTo macro. Keeping this in mind, we can now write the when-
Exceeded macro, as shown in listing 6.19.

Listing 6.19 The implementation of the nested whenExceeded macro

macro limitedTo:
macro whenExceeded:
limitedTo["actionToPerform"] = whenExceeded.Block

The whenExceeded macro is decidedly simple. It merely puts the block of code that
was under the whenExceeded macro in a well-known location in that limitedTo dic-
tionary. This ability to annotate AST nodes is useful, because it allows different parts of
the compilation process to communicate by adding information to the relevant node,
as we did here.

To finish the implementation, we need to modify listing 6.17 and change the
actionToPerform initialization as follows:

actionToPerform as Block = limitedTo["actionToPerform"]

Because whenExceeded is evaluated before limitedTo, we’ll have the block of code
that was passed to whenExceeded in the limitedTo dictionary by the time we execute
the 1imitedTo macro. This pattern is common with nested macros: the nested macros
pass their state to the parent macros, and the parent macros do all the work. The only
thing we need to do now is add some error handling and we’re ready to go.

Correlated macros

What would happen if we didn’t want to nest the whenExceeded macro? What if we
wanted this code instead:

limitedTo 200ms:
Thread.Sleep (201) ;
whenExceeded:
print "Took more than 200 ms!"

This looks like a language feature, similar to the try ... except statement. There’s
no nesting, and the 1imitedTo macro is evaluated before the whenExceeded macro.
We use the 1imitedTo macro to find the whenExceeded macro (by going to the par-
ent node and finding the next node, which is the whenExceeded macro) and move the
limitedTo state to it.

Because whenExceeded is the macro that’s evaluated last, it will be in charge of pro-
ducing the final code. This is a simple extension of what we did with the nested macros.

126 CHAPTER 6 Advanced complier extensibility approaches

One thing that’s worth remembering is that quasi-quotation doesn’t generally work
with macros; you won’t be able to use a macro inside a quasi-quotation expression.
Usually, you can unpack them manually and it’s rarely a bother.

Macros are one of the key extensibility points of the compiler. They can be used
inside a method or inside a class definition (to modify fields, methods, and proper-
ties),? but they can’t modify the class itself. You will occasionally want to do this, and
there’s a solution for that: AST attributes.

6.5 AST attributes

An AST attribute applies the same concepts that we’ve looked at so far, but it does so
on a grander scale. Instead of dealing with a few parameters and maybe a block of
code, you can use an AST attribute anywhere you can use a typical attribute. The dif-
ference between an AST attribute and a standard attribute is that AST attributes take
an active part in the compilation process.

We’ve already covered the basics of AST manipulation, so we’ll go directly to the
code, and then discuss how it works. Listing 6.20 shows an example of adding post
conditions on the class level that apply to all the class’s methods.

Listing 6.20 Sample usage of an AST attribute

[Ensure (name is not null)]
class Customer:

name as string

def constructor (name as string) :
self.name = name

def SetName (newName as string):
name = newName

This attribute ensures that if we call the Customer.SetName method with a null, it will
throw an exception.

But what does it take to make this happen? Not much, as it turns out. Take a look
at listing 6.21.

Listing 6.21 Implementing an AST attribute

AST attributes inherit from AbstractAstAttribute
class EnsureAttribute (AbstractAstAttribute):
expr is the expression that we were supplied by the compiler
during the compilation process
expr as Expression
Store the expression in a field
def constructor (expr as Expression) :
self.expr = expr

2 For more information about using macros for changing class definitions, see the “Boo 0.9—Introducing Type
Member Macros” entry in the Bamboozled blog: http://blogs.codehaus.org/people/bamboo/archives/
001750_boo_09_introducing_type_member_macros.html.

http://blogs.codehaus.org/people/bamboo/archives/001750_boo_09_introducing_type_member_macros.html
http://blogs.codehaus.org/people/bamboo/archives/001750_boo_09_introducing_type_member_macros.html

AST attributes 127

Make the changes that we want
def Apply(target as Node) :

Cast the target to a ClassDefinition and
start iterating over all its members.
type as ClassDefinition = target

for member in type.Members:
method = member as Method
We do not support properties to
keep the example short
continue if method is null

If the member is a method, modify

it to include a try/ensure block, which
asserts that the expression must

be true. Then override the method body with
this new implementation.

methodBody = method.Body

H o

method.Body = [|
try:
$ methodBody
ensure:
assert Sexpr
[
We first inherit from AbstractAstAttribute; this is the key. We can accept expres-
sions in the constructor, which is helpful, because we can use them to pass the rule
that we want to validate.

The bulk of the work is done in the Apply method, which is called on the node
that the attribute was decorating. We assume that this is a class definition node and
start iterating over all its members. If the type member is a method (which includes
constructors and destructors), we apply our transformation.

The transformation in this example is simple. We take all the code in the method
and wrap it up in a try ... ensure block. When the ensure block is run, we assert
that that expression is valid.

In short, we got the node the attribute was decorating, we applied a simple trans-
formation, and we’re done. Vidi, vicissitude, vici—I saw, I transformed, I conquered
(pardon my Latin).

We can apply AST attributes to almost anything in Boo: classes, methods, proper-
ties, enums, parameters, fields, and so on. Boo has several interesting AST attributes,
as listed in table 6.1.

AST attributes are a great way to package functionality, particularly for avoiding
repetitive or sensitive coding. Implementing the Singleton pattern, the Disposable
pattern, or validation post conditions are all good examples.

However good AST attributes are, they only apply to a single node. This can be use-
ful when you want specialized behavior, but it’s a pain when you want to apply some
cross-cutting concerns, such as adding a method to all classes in a project or changing
the default base class.

128

CHAPTER 6 Advanced complier extensibility approaches

Table 6.1 Interesting attributes in Boo

Attribute

[property]

[required]

[required(arg!=

0)]

[default]

[oncel]

[singleton]

Description

Applies to fields and will generate a prop-
erty from a field.

Applies to parameters and will verify that a
non-null reference was passed to the
method.

Applies to parameters and will verify that
the parameter matches the given con-
straint.

Applies to parameters and will set the
parameter to a default value if null was
passed.

Applies to methods and properties. It will

ensure that a method only executes once;
any future call to this method will get the

cached value.

Applies to classes and ensures the correct
implementation of the Singleton pattern.

Sample

[property (Name)]
name as string

def Foo([required] obj):
pass

def Foo([required] 1 as int):
pass

def Foo([default ("novice")]
level as string):
pass

[once]
def ExpensiveCall():
pass

[singleton]
class MySingleton:
pass

As you probably have guessed, Boo has a solution for that as well. Welcome to the
world of compiler steps.

AST attributes with DSL
| have used AST attributes with a DSL several times. Mostly, it was to supply addi-
tional functionality to methods that were defined in the DSL or to specific parameters
of those arguments.

Here’s a trivial example:

[HtmlEncode]
def OutputFile(\

[requires (File.Exists (file)]

return File.ReadAllText (file)

6.6 Compiler steps

At the beginning of this chapter, we looked at the compiler pipeline and saw that it
was composed of a lot of steps executed in order to create the final executable assem-

file as string):

bly. Most modern compilers work in this fashion,® but most modern compilers don’t

% 1 have quite a bit of respect for older compilers, which had to do everything in a single pass. There was some
amazing coding involved in them.

6.6.1

Compiler steps 129

boast an extensible architecture. Because Boo does have an extensible compiler archi-
tecture, you shouldn’t be surprised that you can extend the compiler pipeline as well.

Compiler structure

Let’s look again at how the compiler is structured. Figure 6.6 shows a list of compiler
steps, along with a custom step that you can write and inject into the compiler pipeline.
But what, I hear you asking, is a compiler step in the first place? That’s a good ques-
tion. A compiler step is a class that implements ICompilerStep and is registered on the
compiler pipeline. When a compiler step is run, it has the chance to inspect and mod-
ify the AST of the current compilation. The entire Boo compiler is implemented using
a set of compiler steps, which should give you an idea of how powerful compiler steps
can be.

We can do anything we want in a compiler step. I’ve seen some interesting com-
piler steps that do the following things:

Introduce an implicit base class for any code that isn’t already in a class
Transform unknown references to calls to a parameters collection

Modify the if statement to have clearer semantics for the domain at hand (to
be done with caution)

Extend the compiler naming convention so it will automatically translate
apply_discount to ApplyDiscount

Perform code analysis (imagine FxCop integrated into the compiler)

Perform compile-time code generation, doing things like inspecting the struc-
ture of a database and creating code that matches that structure

As you can imagine, this is a powerful technique, and it’s useful when you want to
build a more complex DSL.

Up until now, everything that we built could be executed directly by the compiler,
because we used the well-known extension paths. Compiler steps are a bit different;
you need to add them to the compiler pipeline explicitly.

There are two ways to do that. The first involves creating your own pipeline and
inserting the compiler step into the list of steps in the appropriate location. Then you
can ask the compiler to use that custom pipeline. The second approach involves set-
ting up the compiler context yourself, and directly modifying the pipeline.

We’ll see both approaches shortly. First, though, because implicit base classes are
so useful, let’s take a look at how we can implement them.

B
here

Figure 6.6 The structure of the Boo compiler pipeline, shown with a custom step

Boo compiler pipline

Maerrt?:l Expand Bind r:rztchec:; Emit Save
Sasses macros methods bodies assembly to file

Initialize
type
system

130

6.6.2

CHAPTER 6 Advanced complier extensibility approaches

TIP The Rhino DSL project already contains a generic implementation of the
implicit base class compiler step, and the DslFactory introduced in
chapter 2 makes it easy to use. The example in section 6.6.2 shows how to
build a simple compiler step. I suggest you take advantage of the Rhino
DSL project for such common operations. The steps included in Rhino
DSL are much more robust than the simple implementation that we will
build shortly.

Building the implicit base class compiler step

The first thing we need to do when we create an implicit base class is create the base
class. Listing 6.22 contains a trivial example. Instead of using one of the DSLs that we
introduced in chapter 4, we will use a trivial DSL. In this case, we want to talk only
about the mechanics of modifying the compiler, not about a specific DSL.

Listing 6.22 A trivial base class for a trivial DSL

abstract class MyDsl:
[getter (Name)]
name as string
abstract def Build():
pass

Listing 6.23 contains the compiler step to perform the transformation from a free-
standing script to one with an implicit base class.

Listing 6.23 A compiler step for creating implicit base classes

Inheriting from AbstractTransformerCompilerStep gives us a lot of
convenience methods
class MyDslAsImplicitBaseClassStep (AbstractTransformerCompilerStep) :

This is the method that the compiler pipeline will execute
override def Run():

The Visitor pattern makes it easy to pick and choose

what we want to process

super.Visit (CompileUnit)

Choose to process all the modules
override def OnModule (node as Module) :
Use quasi-quotation to generate a class definition
with all the code that was in the module inside it.
Use the same name as the module and inherit from MyDsl
baseClass = [|
class $(node.Name) (MyDsl):
override def Build():
$ (node.Globals)
|1
Clear the module's globals and add the newly
created class to the node's members.
node.Globals = Block()
node.Members.Add (baseClass)

Compiler steps 131

We start off by inheriting from the AbstractTransformerCompilerStep class, which
makes it easier to surgically get the information we want by overriding the appropriate
On[NodeType] method and transforming only that node.

In this case, we call Visit (CompileUnit) when the compiler step is executed. This
uses the Visitor pattern to walk through the entire AST node and call the appropriate
methods, which makes navigating the AST much easier than it would be otherwise.

In the OnModule() method, we create a new class that inherits from the MyDsl
class. We take the contents of the module’s Globals section and stick it in the Build()
method of the newly created class. We also give the class the module name. This is
usually the name of the file that originated this module.

Finally, we clear the module’s Globals section and add the new class to the mod-
ule’s members.

Now we need to understand how to plug this into the compiler. That also turns out
to be fairly uncomplicated. We start by creating a new pipeline that incorporates our
new compiler step, as shown in listing 6.24.

Listing 6.24 A compiler pipeline that incorporates our custom steps

class WithMyDslStep (CompileToFile):
def constructor():
super ()
Insert(1, MyDslAsImplicitBaseClassStep())
This compiler pipeline will add our new compiler step as the second step in the pipe-
line. The first step in the pipeline is the parsing of the code and the building of the
AST, and we want to get the code directly after that.
Now let’s compile this code. We can do it from the command line, because the
compiler accepts a parameter that sets the compiler pipeline. Here’s how it’s done:

booc "-p:WithMyDslStep, MyDsl" -r:MyDsl.dll -type:library test.boo
Assuming that the test.boo file contains this line,
name = "testing implicit base class"

we’ll get a library that contains a single type, test. If you examine this type in .NET
Reflector, you’ll see that its Build () method contains the code that was in the file, and
that the name variable is set to the text “testing implicit base class”.

Where to register the compiler step?

In general, the earlier that you can execute your compiler step, the better off you'll
be. The code you move or create will still need to go through all the other compiler
steps for successful compilation.

You want the code that you add to benefit from full compiler processing, so it’s best
to add the compiler step as early as possible.

132

Advanced complier extensibility approaches

TIP .NET Reflector is a tool that allows you to decompile IL to source code.
You can find out more at http://www.red-gate.com/products/reflector/.

When you’re building a DSL, though, you’ll usually want to control the compilation
process yourself, and not run it from the command line. For that, you need to handle
the compilation programmatically, which listing 6.25 demonstrates.

Listing 6.25 Adding a compiler step to a pipeline and compiling programmatically

compiler = BooCompiler();

compiler.Parameters.Pipeline = new CompileToFile() ;

AddInputs (compiler.Parameters) # Add files to be compiled
compiler.Parameters.Pipeline.Insert (1, MyDslAsImplicitBaseClassStep())
compilerContext = compiler.Run/()

The DslFactory and DslEngine in the Rhino DSL project already handle most of this,
so we’ll usually not need to deal with setting the pipeline or building the compiler
context manually. Knowing how to do both is important, but for building DSLs I would
recommend using Rhino DSL instead of writing all of that yourself.

Summary

In this chapter, you’ve seen most of the extensibility mechanisms of Boo, both from
the language perspective and in terms of the compiler’s extensibility features. You
have seen how to use the language to extend the syntax so you can expose a readable
DSL to your end users.

Meta-methods, AST macros, AST attributes, and compiler steps compose a rich set
of extension points into which you can hook your own code and modify the language
to fit the domain that you’re working on at the moment. But those aren’t the only
tools you have available when you build a language; the standard features of the Boo
language (covered in chapter 2) make for a flexible syntax that can easily be made
more readable. You can often build full-fledged DSLs without dipping into the more
advanced features of compiler extensibility.

You’ve also seen that features such as quasi-quotation make extending the com-
piler a simple matter. It’s not much harder to extend the compiler without using
quasi-quotation, but this is somewhat tedious. Using quasi-quotation also requires far
less knowledge about the AST, because you can utilize the compiler to build the AST.
This isn’t entirely a good thing, though, and I encourage you to learn more about the
AST and how to work with it. All abstractions are leaky, and it’s good to understand
how to plug the leaks on your own. An easy way to do this is to look at the code that
Boo generates for quasi-quotations using .NET Reflector. You’ll see the AST building
code that way.

So far, we’ve dealt only with the mechanics of extending the language. The fea-
tures we’ve explored are powerful, but we’re still missing something: how to take the
language extensibility features and build a real-world DSL. There is much more to that

http://www.red-gate.com/products/reflector/

Summary 133

than extending the language. Concerns such as ease of use, readability, maintainabil-
ity, versioning, documentation, and testing all need to be considered when you design
and implement a DSL.

We’ve also talked a bit about how Rhino DSL can take care of a lot of the common
things that we need to do. I keep saying that we’ll get to that in a bit. The next chapter
is dedicated to exploring what we can shuffle off for Rhino DSL to handle.

DSL infrastructygre
with Rhino HSL

In this chapter

= Understanding DSL infrastructure
= Rhino DSL structure

= Common DSL idioms

= Batch compilation and caching

By now, you’ve heard about Rhino DSL several times. I keep saying that it’s a library
that makes building DSLs easier, but I've never gone into the details. This chapter
will address that omission.

We’ll go over Rhino DSL in detail and see what it has to offer and under what
circumstances you might want to roll your own DSL infrastructure instead. This
chapter isn’t intended to replace API documentation; it’s intended to review what a
DSL infrastructure should offer and how Rhino DSL measures up.

To be clear, you don’t need to use Rhino DSL to build DSLs in Boo. Rhino DSL is
merely an aggregation of idioms that I have found useful across many DSL examples.

134

7.1

Understanding a DSL infrastructure 135

Understanding a DSL infrastructure

Before we get into Rhino DSL, let’s consider what we want from a DSL infrastructure,
and why we need one in the first place. There is a set of problems that we need to deal
with and resolve in order to build production-quality DSLs, including the following:

Dealing with the compiler directly is awkward. It involves a fair amount of work,
which needs to be done for each DSL you build. Many DSL implementations
share common idioms (as discussed in chapters 4 and 5), and there is little
sense in duplicating them all over the place.

Compiling scripts time after time is inefficient. Caching reduces compilation
costs, but caching comes with its own set of problems. To begin with, you need
to perform cache invalidation and recompile scripts that have been changed.
Compiling each script individually is costly in terms of performance. Compila-
tion costs can be significantly reduced if you compile many files at once, instead
of doing them one by one. This also helps to reduce the number of loaded
assemblies in the AppDomain, which reduces memory consumption.

None of those problems are particularly difficult to resolve. Rhino DSL does so, and
it’s a tiny library (not even two thousand lines of code, at the time of writing).

A DSL infrastructure also needs to be able to handle some of the things that we
talked about in chapter b, such as ordering of DSLs and managing which are run and
when, for example.

Here are the main requirements that a DSL infrastructure should meet:

Codify common DSL idioms so you don’t have to keep rewriting them
Handle caching of DSL scripts

Abstract the compiler bootstrapping

Batch compile DSLs

Manage ordering and script discovery

Not harm the DSL’s extensibility

Rhino DSL is the result of several years’ experience building DSLs and dealing with
these issues. It isn’t a masterpiece of programming, but it can save you a lot of time. I
suggest that you use Rhino DSL instead of rolling your own infrastructure, at least
while you are getting started building DSLs.

Rhino DSL is an active project

Rhino DSL is updated regularly. Most of these updates are either bug fixes or
enhancements to support the more advanced scenarios (which are less generically
applicable).

As a result, this chapter covers most of Rhino DSL, but it doesn’t cover everything.
| don’t cover the parts that are of interest only to a small minority of language
implementers.

136

7.2

7.2.1

DSL infrastructure with Rhino DSL

Before we get into the nitty gritty details, we should take an overall look at the struc-
ture of Rhino DSL.

The structure of Rhino DSL

Rhino DSL is composed of two important classes, both of which you’ve probably famil-
iarized yourself with by now: Ds1Engine and DslFactory. You can see both of them in
figure 7.1.

The DslFactory is the external facing interface, used by clients of the DSL, and it
uses the Ds1Engine to perform all the DSL-specific work. The Ds1Engine is an abstract
class that DSL authors are expected to derive from. It provides the standard services
out of the box, but it allows you to override most of them as needed. Both classes pro-
vide most of the infrastructure services that we’ve talked about so far in this chapter.

There are implementations for IDslEngineStorage and IDslEngineCache as well,
which deal with less common scenarios. We’ll look at them in detail later in this chapter.

Aside from those classes, Rhino DSL includes a few others that codify common DSL
idioms (implicit base class, script references, and so on).

The end result of using Rhino DSL is that you can get a DSL out the door quickly
and extend it as your needs grow.

Let’s focus on each class in turn, starting with the Ds1Factory:.

The DslIFactory

The DslFactory contains all the DSL infrastructure logic that’s common to all DSLs,
regardless of their implementation. There isn’t much of that, though. The Dsl-
Factory mainly contains logic for managing the DSL engines, handling batch compi-
lations, and performing cache invalidation.

Listing 7.1 shows a typical usage of a DslFactory.

)
»|

| DslEngine

DslEngine
Abstract Class Class
r r

I properties =l properties

#F Cache “ BaseDirectory

ﬁ" CompilerContextCache [= Methods

j CompilerQutputType W Create<TDsIBase>
~1&r Storage W CreateAll<TDsIBase>
= Methods ¥ IsRegistered<TDsIBase>

W CanonizeUrl ¥ Register<TDsl|Base>

¥ Compile % TryCreate<TDslBase>

2% CreateCompilerException = Events

W Createlnstance # Compilation

2% CustomizeCompiler F Recompilation

" DslEngine [* Nested Types

W ForceCompile |

V¥ GetTypeForUrl

A

HandleWarnings Figure 7.1 The structure of Ds1Engine
- and Ds1lFactory

7.2.2

The structure of Rhino DSL 137

Listing 7.1 Using the Ds1lFactory

// This should happen once in the application

DslFactory factory = new DslFactory();

factory.Register<MyDslBaseClass> (new MyDslEngine()) ;

// Use the factory to create DSL instances

MyDslBaseClass dsl = factory.Create<MyDslBaseClass>("my_dsl_name") ;
dsl.Execute();

As you can see in the code comments, you're supposed to create the DslFactory
once, and only once. The DslFactory also manages the compilation cache for each
DslEngine, so keeping only one of those around ensures that you don’t recompile
unnecessarily.

Then the Ds1Engine instances, along with their associated implicit base classes, are
registered in the factory, and then you can request an instance by name.

At that point, the DslFactory asks the DslEngine to compile the script (it’s more
complex than that, but we’ll discuss it in section 7.4), create an instance of it, and
then return it to the caller.

Orchestrating the DSL engine is the main job of the DSL factory, so this is a good
time to look at DSL engines.

The DslEngine

The DslEngine class is where most of the action happens. It’s structured so you can
override specific functionality without having to take on too big a burden. The Ds1En-
gine class contains the default (and most common) implementation, and it performs
most of its work in virtual methods, so you can override and modify the behavior at
specific points.

The most important extension point, which we’ve already seen, is the Customize-
Compiler method. This method allows us to modify the compiler pipeline, modify the
compiler parameters, and in general set up the compiler infrastructure that we want.

Listing 7.2 shows a typical use of CustomizeCompiler.

Listing 7.2 Using the CustomizeCompiler method to add the implicit base class

// Customize the compiler for the Authorization DSL
protected override void CustomizeCompiler (
BooCompiler compiler,
CompilerPipeline pipeline,
Uri[] urls)

// The compiler should allow late-bound semantics
compiler.Parameters.Ducky = true;
pipeline.Insert (1,
new ImplicitBaseClassCompilerStep (
// The base type
typeof (AuthorizationRule),
// The method to override
"CheckAuthorization",

138

CHAPTER 7 DSL infrastructure with Rhino DSL

// Import the following namespaces
"BDSLiB.Authorization")) ;
pipeline.Insert (2, new AutoReferenceFilesCompilerStep());

}
As you can see, this code does three things:

1 It tell the compiler to use late-bound semantics if it can’t use early-bound ones
(this is what Ducky = true means).

2 It registers the ImplicitBaseClassCompilerStep as the second step on the
pipeline (the first step is parsing the code into the AST).

3 Itregisters the AutoReferenceFilesCompilerStep as the third step on the pipe-
line, which will support script references.

With that, our job of writing the DSL is more or less done. We may need to do some
additional things in the implicit base class, or introduce an AST macro or attribute,
but the main work in creating our DSL is done.

Table 7.1 lists the other methods that you can override to provide additional func-
tionality for your DSL. Those are less commonly used, though.

Other extension points relate to the DslEngine local cache, change notifications
when a script is changed, the location where the scripts are stored, and so on. In order
to keep those concerns outside the code that builds the DSLs, they are split into two
interfaces: IDslEngineStorage and IDslEngineCache.

IDslEngineStorage handles everything that relates to the storage of scripts: enu-
merating them, sending notifications on changes, and retrieving script content from
storage. The default implementation of IDs1EngineStorage is FileSystemDs1Engine-
Storage, which is what we’ve used so far.

IDs1EngineCache holds the compilation results of scripts. Its default implementa-
tion is an in-memory cache linking each script URL (the path to the actual script file)
to the compiled script type generated from that script, but an interesting extension of
the cache would be a persistent cache that would allow you to compile the script once
and keep the compilation result around, surviving application restarts, until the script
is changed.

Figure 7.2 shows the class diagrams of IDs1EngineStorage and IDslEngineCache.

Table 7.1 The less-common extension points that the Ds1Engine provides

Method Purpose Notes
Compile Allows you to completely modify the Generally it’s better to use the
compilation process CustomizeCompiler method.

CreateCompilerException Handles compilation errors and adds | The default implementation throws an

additional information or guidance exception with the full compiler output.

CreateInstance Creates an instance of the DSL This is useful if you want to create a

DSL instance by using a special fac-
tory, or by using an loC container.

7.2.3

The structure of Rhino DSL 139

»)
»|

| IDsIEngineStorage IDsIEngineCache
Interface Interface
—» IDisposable

= Methods
=l Methods

v Get
@ Createlnput @ Remove
@ GetMatchingUrlsin & Set
© GetTypeNameFromUrl \
@ IsUrlincludeln . s
@ NotifyonChange Figure 7.2 The IDslEngineStorage
and IDslEngineCache class diagrams

Although overriding CustomizeCompiler usually works, let’s see a more complex
example of extending IDslEngineStorage to create a script storage system based on
an XML file.

Creating a custom IDsIEngineStorage

For this example, we aren’t interested in the language of the DSL; we’re interested in
its surroundings. We’ll create a DSL system whose scripts aren’t located on a filesystem,
but in an XML file instead.

NOTE Storing the scripts in an XML file is the simplest way to show the full
range of the DSL extensibility, but more interesting applications would
use source control-based script storage, or database storage. Unfortu-
nately, those approaches are significantly more complex, and aren’t
appropriate as simple examples.

We’ll take the Authorization DSL and make it store its scripts in an XML file.
Listing 7.3 shows the structure of that XML storage file.

Listing 7.3 The XML storage file for the Authorization DSL

<?xml version="1.0" encoding="utf-8" ?>
<authorizationRules>
<rule operation="/account/login" name="administrators can always login">
<! [CDATA[
if Principal.IsInRole("Administrators"):
Allow("Administrators can always log in")
return
11>
</rule>
<rule operation="/account/login" name="work hours">
<! [CDATA[
if date.Now.Hour < 9 or date.Now.Hour > 17:
Deny ("Cannot log in outside of business hours, 09:00 - 17:00")
11>
</rule>
</authorizationRules>

Now that we have the structure of the XML file, let’s analyze the XxmlFileDslEngine-
Storage class. Listing 7.4 shows the code for the class, minus some methods that we’ll
examine in the following discussion.

140 CHAPTER 7 DSL infrastructure with Rhino DSL

Listing 7.4 The XmlFileDslEngineStorage class

public class XmlFileDslEngineStorage : IDslEngineStorage
{
private readonly XmlDocument xdoc;

public XmlFileDslEngineStorage (string pathToXmlFile)
{

xdoc = new XmlDocument () ;

xdoc.Load (pathToXmlFile) ;
}

public void NotifyOnChange (IEnumerable<string> urls,
Action<string> action)

// Not supporting this
}

public string GetTypeNameFromUrl (string url)
{
return url;

}

public void Dispose()
{
// Nothing to do here

public string[] GetMatchingUrlsIn(string parentPath, ref string url)

// Discussed later (shown in listing 7.5)

public ICompilerInput CreateInput (string url)

// Discussed later (shown in listing 7.6)

public bool IsUrlIncludedIn(stringl[] urls,
string parentPath,
string url)

// Discussed later (shown in listing 7.7)

}

The NotifyOnChange method should call the action delegate when any of the URLSs
that were passed have changed, but we aren’t supporting this, so we’ll ignore it. A
more thorough implementation would watch the XML file for changes and autoload
on change, but that isn’t necessary for our example.

The GetTypeNameFromUrl method is useful for cases where the type name and the
URL are different. This is the single case where the DslEngine and the IDslEngine-
Storage need to work in concert.

Now let’s look at the methods we ignored in listing 7.4. Listing 7.5 shows the Get-
MatchingUrlsIn method.

The structure of Rhino DSL 141

Listing 7.5 The GetMatchingUrlsIn method implementation

public string[] GetMatchingUrlsIn(string parentPath, ref string url)
{
List<string> ruleNames = new List<string>();
foreach (XmlNode node in xdoc.SelectNodes ("/authorizationRules/rule"))
{
if (node.Attributes|["operation"].Value == url)
ruleNames.Add (node.Attributes["name"] .Value) ;
}
if (ruleNames.Count > 0)
url = ruleNames[O0];
return ruleNames.ToArray () ;

}

There’s nothing particularly interesting here, except that the URL that was passed in is
areference parameter. It gets set to the first rule name we find, but why? Doing so gives
us the canonized URL. This is a common problem with paths, because there are many
ways to refer to the same file. The canonized format is the one that is returned by the
IDslEngineStorage and is ensured to be included in the returned URLs. Otherwise,
we might run into an issue where we pass a URL in, get a list of matching URLs from the
method, but can’t figure out which URL is the one matching our original one.

In this case, the original URL is the operation name, but the canonized URL is the
name of the rule. The URL goes in with the value “/account/login” and comes out
with the value “administrators can always login”.

Listing 7.6 shows the CreateInput method, which extracts the code from the XML
document.

Listing 7.6 The CreateInput method

public ICompilerInput CreateInput (string url)
{
string xpath = string.Format (
"/authorizationRules/rule[@name="'{0}"']/text ()", url);
string text = xdoc.SelectSingleNode (xpath) .Value;
return new StringInput (url, text);

}
In this method, we extract the content of the rule and return a StringInput with the
URL of the rule as the name, and the text of the rule as the context. This will ensure
that if there are errors in the script, we’ll get good error messages back, with a pointer
to the right location.

Last (and probably also least), listing 7.7 shows the IsUrlIncludedIn method.

Listing 7.7 The IsUrlIncludedIn method

public bool IsUrlIncludedIn(string[] urls, string parentPath, string url)
{
return urls.Length != 0;

—

142

DSL infrastructure with Rhino DSL

This is a trivial implementation, but the method is important. In batching scenarios
(discussed further in section 7.4), it’s common to do a batch compilation of the whole
directory, even if the script that you’re searching for isn’t there. This is simply an opti-
mization—the directory was accessed, so it might as well be compiled, because other
scripts from that directory are likely to be accessed soon. To avoid that scenario, the
IsUrlIncludedIn method checks that the batch to be compiled contains the script we
want to execute.

That’s it for our XML-based storage. Now we need to hook it up to the DSL engine.
Listing 7.8 shows the code for this.

Listing 7.8 Integrating XmlFileDslEngineStorage with the DSL engine

public class AuthorizationDslEngine : DslEngine

{
public AuthorizationDslEngine ()
{
Storage = new XmlFileDslEngineStorage (
@"Authorization/AuthorizationRules.xml") ;

}

// implementation ...
}
As you can see, all it involves is setting the proper implementation in the constructor.
We can now run all our code, and it would work against the XML file.

The names of the scripts are also important, since those will be the class names
generated for those scripts. Now consider figure 7.3, which shows the compiled out-
put of a few Authorization DSL scripts.

As you can see, we have some strangely named classes. This is valid from the CLR
perspective, but not from the perspective of most programming languages. It works,
but it’s amusing.

Prefer file-based solutions

Although it’s good that we have the option to store scripts in other mediums, | strongly
recommend that you keep to the tried and true method of storing scripts in the file-
system. This offers a couple of important advantages over the other approaches.

First and foremost, it makes it easy to put the scripts in source control and perform
all the usual source-control actions on them (such as diffing changes in scripts or
merging a development branch into the production branch).

Second, we can debug scripts. | haven't discussed it so far, but debugging scripts is
just an F11 key away. But this doesn’t work unless the scripts are compiled from the
filesystem. Otherwise, the debugger has no real way to find the script’s source code.

The source-control advantage is the more critical consideration, in my opinion. |
strongly prefer to be able to make use of source control without having to jump
through hoops, and | have never seen anything that works better than simple text
files in a folder hierarchy. It’s the simplest solution, and it’s also the best.

7.3

7.3.1

Codifying DSL idioms 143

[Serializable]
public class administrators can always login : AuthorizationRule

{1 Methods

public administrators can always login{IPrincipal principal, object entity) : base{principal, entity) L

¥ [Serializable]

public class work hours : AuthorizationRule

public override void CheckAut 1 et

if (this.Principal. IsInRole("Ad ﬁublic work hours{IPrincipal principal, object entity) : base{principal, entity)
' ' {

— =) 1
% = “3 administrators can always login

} = W% administrators can always login ithorization()
3 3l References
) g - 1 || (DateTime.Mow.Hour > 0x11))
g$ <Module> outside of business hours, 09:00 - 17:00");

“4% administrators can always login
“% work hours
e

Figure 7.3 The application of the law of unintended consequences: our authorization
rules in Reflector

Anyway, we have a whole library to explore yet. Let’s jump directly into the DSL idioms
that we get from Rhino DSL.

Codifying DSL idioms
Most DSL idioms are widely useful across many types of DSLs. The Implicit Base Class
pattern, for example, is useful for nearly all DSLs. But after covering the common
ground, most DSLs take wildly differing paths.

Rhino DSL contains six reusable idioms (at the time of this writing, at least). You’re
probably familiar with most of them by now:

ImplicitBaseClassCompilerStep
AutoReferenceFilesCompilerStep
AutoImportCompilerStep

UseSymbolsStep
UnderscoreNamingConventionsToPascalCaseCompilerStep

GeneratePropertyMacro

These six common idioms are the ones I've found most useful across many DSL imple-
mentations. Let’s look at them each in turn.

ImplicitBaseClassCompilerStep

The good old Implicit Base Class is codified as ImplicitBaseClassCompilerStep. We
need to insert it into the pipeline (preferably in the second position), and it will move
all the code not inside a class into an overridden method in the implicit base class.

Listing 7.9 shows a sample use of this class, taken from the Authorization DSL
code.

144

7.3.2

7.3.3

7.34

CHAPTER 7 DSL infrastructure with Rhino DSL

Listing 7.9 Using the ImplicitBaseClassCompilerStep

pipeline.Insert (1,
new ImplicitBaseClassCompilerStep (
// the base type
typeof (AuthorizationRule) ,
// the method to override
"CheckAuthorization",
// import the following namespaces
"BDSLiB.Authorization")) ;
In addition to specifying the base type and the method to move the code to, we can

specify namespaces that we want to auto-import.

AutoReferenceFilesCompilerStep

AutoReferenceFilesCompilerStep supports script references, which we talked about
in chapter 5. This class just needs registration in the pipeline to work. Again, it’s best
placed near the start of the pipeline.

The code to make this happen is trivial:

pipeline.Insert (2, new AutoReferenceFilesCompilerStep());

Once that’s done, the following syntax will cause the referenced script to be compiled
and then referenced on the fly:

import file from AnotherScript.boo

AutolmportCompilerStep

Auto-import support is usually handled by the ImplicitBaseClassCompilerStep, but
you can also configure it separately, using AutoImportCompilerStep. Listing 7.10
shows how to use this compiler step.

Listing 7.10 Using the AutoImportCompilerStep to reference System.Xml

compiler.Parameters.References.Add (typeof (XmlDocument) .Assembly) ;
pipeline.Insert (1, new AutoImportCompilerStep (

"System.Xml",

"System.Xml.XPath")) ;
You should note that this is a two-stage process. You need to add a reference to the rel-
evant assembly (which is done on the first line of listing 7.10) and then you add the
auto-import compiler step and pass it the namespaces that will automatically be
imported to all compiled files.

UseSymbolsStep

The symbols compiler step is codified as UseSymbolsStep. Symbols represent a nicer,
more fluent way of handling string literals.
Consider this snippet,

send_to "administrator"

7.3.5

Codifying DSL idioms 145

versus this one:
Getting even better syntax

Boo allows you to have a far more
UseSymbolsStep will convert all identifiers natural syntax, like this:

starting with @ to string literals. The differ- sendl te Adiindstratens
ence between the two approaches is syntac-
tic only, but this is often important when

send_to @Qadministrator

This will work, but it requires special
treatment: an AST macro or compiler

you want to make certain parts of a DSL step with more context than a
clearer. The @identifier approach makes generic step offers. A compiler step
a clear distinction between strings that you that transforms all unknown refer-

pass and elements of the language. ences to strings is easy to write, but
it tends to produce ambiguous

As you've probably figured out already, errors, so | suggest creating one only
UseSymbolsStep repeats the usage pattern after careful consideration.
we’ve seen so far:

pipeline.Insert (2, new UseSymbolsStep());

Like the other compilers steps, it should be registered at the beginning of the pipe-
line. Usually I recommend clustering all our compiler steps one after another, directly
after the parsing step.

UnderscoreNamingConventionsToPascalCaseCompilerStep

The CLR has well-defined naming conventions, and deviations like send_to are annoy-
ing. At the same time, send_to is easier to read in DSL code than SendTo. If only there
were a way to resolve this automatically ...

Luckily, we have such a way: UnderscoreNamingConventionsToPascalCaseCompil-
erStep can automatically translate send_to to SendTo. This compiler step will auto-
matically make this transformation for any member call that contains an underscore.
Because I never use underscores in my applications, this works fine for me. You may
have to decide on extending UnderscoreNamingConventionsToPascalCaseCompiler-
Step to understand your convention if you're using underscores in method or prop-
erty names.

The process for registering this compiler step is a bit different than all the rest.
Unlike the previous steps, we don’t want this one to run as soon as possible. Quite the
reverse—we want it to run as late as possible, which means before we start to process
the method bodies.

As a result, we register it using the following snippet:
pipeline.InsertBefore(

typeof (ProcessMethodBodiesWithDuckTyping),
new UnderscoreNamingConventionsToPascalCaseCompilerStep());

We haven’t used it so far, but we’ll make use of it the next time we create a language.

That’s it for compiler steps.

146

7.3.6

74

DSL infrastructure with Rhino DSL

GeneratePropertyMacro

We have one last thing to explore, the GeneratePropertyMacro. It allows us to take a
snippet like this,

operation "/account/login"

and turn it into a property that will return the parameters we called.
Enabling its use is simple, as you can see in listing 7.11.

Listing 7.11 Using the GeneratePropertyMacro

public class OperationMacro : GeneratePropertyMacro
{
public OperationMacro ()
: base("Operation")

{

}
}
We create a class that inherits from GeneratePropertyMacro, and we specify in the
constructor the property name it needs to generate. The name of the derived class is
important, because it’s the name we’ll use in the DSL to refer to this macro (without
the Macro suffix).

Those six common idioms are useful across many DSL implementations. For
advanced DSL, you will likely want to add your own custom steps and macros to the
mix, and we discussed many of those options in chapter 4. But as you can see, you get
quite a bit with what’s “in the box,” so to speak.

Now that we are done discussing what idioms Rhino DSL offers, we need to cover
the caching and batch compilation infrastructure. More specifically, we have to under-
stand how they work and why they work as they do.

Batch compilation and compilation caches

Compiling code is a costly process, and when you’re creating a DSL, you have to con-
sider ways to reduce this cost. We already talked a bit about that in previous chapters.
Now we’ll look at the design of Rhino DSL’s compilation process, and at why it was
built in such a way.

To save on compilation costs, we introduce a cache (and cache invalidation policy)
so we only compile a script once. But assuming that we have many scripts, we’re still
going to pay the compilation cost many times over.

NOTE Compiling each script individually will also create many small assemblies.
The general recommendation for .NET applications is to prefer a few
large assemblies over many small assemblies. Batching helps us reduce
the number of assemblies that we compile.

Batch compilation and compilation caches 147

You might wish that you could compile everything once, instead of performing many
small compilations. The problem with that, though, is that you run into issues with
compilation time when you have large numbers of scripts.

The best solution is a compromise. We want some batching in our compilation, but
we don’t want to compile everything at once and pay the high cost of a large compila-
tion.

NOTE We’ll assume here that we’re talking about scripts that reside on the file-
system. For scripts stored elsewhere, the concepts are similar, but the
implementation depends on the concept of hierarchy in the selected
storage mechanism.

When we geta request to execute a certain script, we perform the following operations:

Check if the script has already been compiled and exists in the cache.

If it’s in the cache, instantiate and return the new instance, and we’re done.
Ifitisn’t in the cache, compile all the scripts in the script directory.
Register all the scripts in the cache.

a & WO N B

Instantiate the compiled script and return the new instance.

The key here is in step number 3. Instead of compiling only the script we’re interested
in, we compile all the scripts in the current directory and register them in the cache.
This means that we pay the compilation cost once per directory. It also means that we
have bigger (and fewer) assemblies. We can now rely on the natural organization of
the filesystem to limit the number of scripts in a directory to a reasonable number.

Because we usually place scripts on the filesystem according to some logic, and
because we usually access them according to the same logic, this turns out to be a
pretty good heuristic to detect which scripts we should compile.

Cache invalidation puts a tiny wrinkle in this pretty scenario, though. When a
script changes, we remove it from the cache, but we also note that this is a script that
we have already compiled. When a new request comes for this script, we won’t find it
in the cache, but we will find it in the list of files that were compiled and then
changed. As a result, we won’t perform a batch compilation in this scenario; we’ll
compile only the current script. The logic is simple: if we had to recompile the script,
we already performed a batch compilation on its directory, so we don’t need to com-
pile the entire directory again. The end result is a tiny assembly that contains the com-
piled type from the script that was changed.

This process isn’t my own idea. ASPNET operates in a similar way when it compiles
ASPX files. I used the same ideas when the time came to build the compilation and
caching infrastructure of Rhino DSL.

This just about wraps things up for Rhino DSL (it’s a tiny library, remember?). We
just have one final topic to cover: handling external dependencies and integration
with external factories.

148

7.5

CHAPTER 7 DSL infrastructure with Rhino DSL

Supplying external dependencies to our DSL

Although the default approach of creating new instances of the DSL using the default
constructor is fine for simple cases, it gets tricky for more complex situations. For
complex DSLs, we need access to the application’s services and infrastructure.

In most applications, this is handled by using either a static gateway (a static class
that provides the given service) or by using dependency injection (passing the services
to the instance using the constructor or settable properties).

The advantage of static gateways is that the DSL can call them. Listing 7.12 shows
an Authorization DSL that makes additional calls to the Authorization static gateway to
perform its work.

Listing 7.12 An Authorization DSL script that calls back to the Authorization gateway

canApprove = Authorization.IsAllowed(Principal, "/order/approve")
canDispatch = Authorization.IsAllowed (Principal, "/order/dispatch")

if canApprove and canDispatch:

return Allow("Can both approve and dispatch")
else:

return Deny ("Cannot both approve and dispatch")
This is easy to build, but I dislike this approach. It tends to make testing awkward (we’ll
discuss DSL testing in the next chapter). I much prefer to use dependency injection.

Depending on the infrastructure of our application, we have different ways of han-

dling external dependencies, but the built-in option is to pass the parameters to the
constructor. That’s what we did when we built the Quote-Generation DSL, as you can
see in listing 7.13.

Listing 7.13 Passing parameters to the Quote-Generation DSL instance

QuoteGeneratorRule rule = dslFactory.Create<QuoteGeneratorRule> (url,
new RequirementsInformation (200, "Vacation"));

rule.Evaluate() ;
Listing 7.13 shows the bare-bones approach to dependency injection, but we may want
to use a more advanced technique. The advanced options all essentially amount to
overriding the Ds1Engine CreateInstance method and modifying how we create an
instance of our DSL.

Listing 7.14 shows how we could create an instance of a DSL by routing its creation
through an IoC container (such as Windsor or StructureMap).

Listing 7.14 Routing DSL creation through an loC container

public override object CreatelInstance (Type type,
params object[] parametersForConstructor)
{

return container.CreateInstance (type);

7.6

Summary 149

Now all the DSL dependencies can be satisfied by the container, instead of having to
be manually supplied.

NOTE The type we created in listing 7.14 was not previously registered in the
container (we just compiled it, after all). The IoC container needs to sup-
port creating instances of unregistered types, but most of them do.

Note that although it works, directly using the application services from the DSL is an
approach you should consider carefully. IoC containers aren’t often written with an
eye toward their use in DSLs, and they may allow leakage of programming concerns
into the language.

It’s generally better to handle the application services inside the DSL base class,
and then to expose methods that properly match the style of the DSL. This also helps
significantly when you need to create a new version of the DSL, and you need to
change those services. If you have a facade layer, your job is that much easier. We’ll
talk about this more in chapter 9.

Summary

In this chapter, we looked at the requirements of a DSL infrastructure and saw how
they’re implemented by Rhino DSL. We looked at caching and batching, and at how
those work together to produce a well-performing system.

We explored the extensibility options that Rhino DSL offers and we wrote a DSL
engine storage class that could load scripts from an XML file, as an example of how to
deal with non-filesystem-based storage (databases, source control, and so on). And
last, but not least, we discussed the issue of providing dependencies to our DSL scripts.

This chapter is short, but it provides a thorough grounding in the underlying
infrastructure that we build upon, as well as outlining the design requirements that
have led to building it in this fashion.

With this knowledge, we can now start managing DSLs in real-world applications.
We’ll look next at how we can integrate our DSLs with test-driven development prac-
tices and test both the DSL implementations and the DSLs themselves.

8.1

lesting

In this chapter

= Why create testable DSLs?

= Approaches for building testable DSLs

= Building a Testing DSL

= |ntegrating the Testing DSL with a unit-testing framework

The reasons for creating testable systems have been debated elsewhere for years, so
we won’t go over them again here. It’s well accepted that testable and tested systems
have lower maintainability costs, are easier to change and grow, and generally are
more effective in the long run. I have a high regard for testability, and I consider it
a first-level concern in any application or system that I build.

Unlike most systems, a DSL isn’t a closed environment. DSLs are built explicitly
to enable greater openness in the environment. It’s almost guaranteed that your
DSL will be used in ways that you can’t predict. To ensure that you can grow the lan-
guage as needs change, you need to know what can be done with your language in
the first place, and ensure that you have tests to cover all those scenarios.

Building testable DSLs

It’s hard to find breaking changes (or regression bugs) in a language. We tend to
ignore the possibility of bugs at the language level, so it’s doubly hard to track them
down.

150

8.2

Creating tests for a DSL 151

Testability, regressions, and design

So far in this book, | have ignored the effect of testability on the design of a system.
Ask any test-driven development (TDD) advocate, and they’ll tell you that the ability
to run the tests against the application to find regressions is a secondary benefit
compared to the impact on the design that using a TDD approach will have.

| can certainly attest to that. Building a DSL in a TDD manner, with tests covering all
your corners, will give you a language design that’s much more cohesive. Such a lan-
guage will be much easier to evolve as time goes on.

Regression tests help identify this sort of bug by ensuring that all the scenarios your
language supports are covered. Users may still find ways to use the language that you
didn’t anticipate—ways that your future releases may break—but regression testing
reduces that risk by a wide margin. DSLs are usually focused on specific scenarios, so
you can be fairly certain that you can cover the potential uses. This gives you a system
that can be worked on without fear of breaking existing DSL scripts.

Before we try to figure out what we need to test, let’s review the typical structure
for a DSL, as shown in figure 8.1.

The syntax, API, and model compose the language of
the DSL, and the engine is responsible for performing
the actions and returning results. Note that, in this context, m
the engine isn’t the class that inherits from DslEngine. It’s
the generic concept, referring to the part of the application m
that does the work, such as the part of the Quote-Generation
DSL that takes the generated quotes and does something w
with them.

Given that there are four distinct parts of the DSL, it m
shouldn’t come as a surprise that we test the DSL by testing

each of those areas individually, and finally creating a set of Figure 8.1 A typical

integration tests for the whole DSL. structure for a DSL

Creating tests for a DSL

The Message-Routing DSL that we created in chapter 5 routes messages to the appro-
priate handlers. Listing 8.1 shows a simple scenario using this DSL.

Listing 8.1 A simple example using the Message-Routing DSL

HandleWith RoutingTestHandler:
lines = []
return NewOrderMessage(15, "NewOrder", lines.ToArray (OrderLine))

When I start to test a DSL, I like to write tests similar to the one in listing 8.2.

152

8.21

Testing DSLs

Listing 8.2 The first DSL test usually verifies that the script compiles

[Test]

public void CanCompile ()

{
DslFactory dslFactory = new DslFactory();
dslFactory.Register<RoutingBase> (new RoutingDslEngine()) ;
RoutingBase routing =

dslFactory.Create<RoutingBase> (@"Routing\simple.boo") ;

Assert.IsNotNull (routing) ;

}

This may not seem like a interesting test, but it’s a good place to start. It checks that

the simplest scenario, compiling the script, will work. As a matter of fact, I create a
CanCompile() test for each of the features I build into the language.

Rhino DSL and testability

One of the design principles for Rhino DSL is that it must be testable, and easily so.
As such, most of the internal structure is built in such a way that it’s easily replace-
able. This principle allows you to replace the infrastructure when you write your own
tests, and it makes it easier to separate dependencies.

I am using basic tests, such as CanCompile (), to go from a rough idea about the syntax
and user experience of the language to a language implementation that can be suc-
cessfully compiled (but not necessarily run or do anything interesting).

Once we have a test that shows that our syntax works and can be successfully com-
piled, we can start working on the more interesting tests ...

Testing the syntax

What do I mean when I talk about testing the syntax? Didn’t we test that with the Can-
Compile () test? Well, not really.

When I talk about testing the syntax, I don’t mean simply verifying that it compiles
successfully. We need to make sure the syntax we created has been compiled into the
correct output. The CanCompile() testis only the first step in that direction.

Testing syntax in external DSLs

In general, when you hear someone talking about testing the syntax of a DSL, they’re
talking about testing whether they can parse the textual DSL into an AST, whether
the AST is valid, and so on. This is a critical stage for external DSLs, but not one you'’ll
usually have to deal with in internal DSLs.

By building on a host language, we can delegate all of those issues to the host lan-
guage compiler. Our syntax tests for internal DSLs run at a higher level—we test that
our syntax will execute as expected, not that it’s parsed correctly.

Creating tests for a DSL 153

Take a look at listing 8.1 for a moment. What’s going on there? If you recall from
chapter 5, the compiler will translate the code in listing 8.1 to code similar to what you
see in listing 8.3.

Listing 8.3 C# representation of the compiled script in listing 8.1

public class Simple : RoutingBase

{

public override void Route()

{
this.HandleWith (typeof (RoutingTestHandler), delegate

{

return new NewOrderMessage(15, "NewOrder", new OrderLine[0])
)i

}

We want to test that this translation has happened successfully, so we need to write a
test for it. But how can we do this?

Interaction-based testing for syntax

Interaction-based testing is a common approach to testing DSLs. It is particularly use-
ful for testing the syntax of a DSL in isolation.

It may seem strange to use interaction-based testing to test the syntax of a language,
but it makes sense when you think about what we’re trying to test. We’re testing that
the syntax we created interacts with the rest of the DSL infrastructure correctly. The
easiest way to test that is through interaction testing.

In general, | use Rhino Mocks to handle interaction-based testing. However, | don’t
want to introduce any concepts that aren’t directly tied to the subject at hand, so we’ll
create mock objects manually, instead of using Rhino Mocks.

We need some way to know whether the HandleWith method is called with the appro-
priate values when we call Route (). To do this, we’ll take advantage of the implicit
aspect of the implicit base class and replace the base class for the Message-Routing
DSL with a testable implementation. This will allow us to override the HandleWith
method and verify that it was called as expected.

We’ll start by creating a derived class of RoutingBase that will capture the calls to
HandleWith, instead of doing something useful with them. The StubbedRoutingBase
class is shown in listing 8.4.

Listing 8.4 A routing base class that captures the values for calls to HandleWith

public abstract class StubbedRoutingBase : RoutingBase
{

public Type HandlerType;

public MessageTransformer Transformer;

154 CHapTER 8 Testing DSLs

public override void HandleWith(
Type handlerType,
MessageTransformer transformer)

this.HandlerType = handlerType;
this.Transformer = transformer;

}

Now that we have this base class, we need to set things up in such a way that when we
create the DSL instance, the base class will be StubbedRoutingBase, instead of
RoutinBase. We can do this by deriving from RoutingDslEngine and replacing the
implicit base class that’s used. Listing 8.5 shows how it can be done.

Listing 8.5 Replacing the implicit base class with a stubbed class

public class RoutingDslEngine : DslEngine
{
protected override void CustomizeCompiler (
BooCompiler compiler,
CompilerPipeline pipeline,
string[] urls)

// The compiler should allow late-bound semantics
compiler.Parameters.Ducky = true;
pipeline.Insert (1,
new AnonymousBaseClassCompilerStep (
// the base type
BaseType,
// the method to override
"Route",
// import the following namespaces
"BDSLiB.MessageRouting.Handlers",
"BDSLiB.MessageRouting.Messages")) ;
}

protected virtual Type BaseType
{
get { return typeof (RoutingBase); }
}
}

public class StubbedRoutingDslEngine : RoutingDslEngine
{
// Uses the stubbed version instead of the real one
protected override Type BaseType
{
get
{
return typeof (StubbedRoutingBase) ;

}

In this listing, we extract the BaseType into a virtual property, which we can override
and change in the StubbedRoutingDslEngine. I find this to be an elegant approach.

822

Creating tests for a DSL 155

Now that we’ve laid down the groundwork, let’s create a full test case for syntax
using this approach. Listing 8.6 shows all the details.

Listing 8.6 Testing that the proper values are passed to HandleWith

[Test]
public void WillCallHandlesWith_WithRouteTestHandler WhenRouteCalled()
{

const IQuackFu msg = null;
dslFactory.Register<StubbedRoutingBase> (new StubbedRoutingDslEngine());

var routing = dslFactory.Create<StubbedRoutingBase> (
@"Routing\simple.boo") ;

routing.Initialize (msg) ;
routing.Route() ;
Assert.AreEqual (typeof (RoutingTestHandler), routing.HandlerType) ;

Assert.IsInstanceOfType (

typeof (NewOrderMessage) ,

routing.Transformer ()

)
}
First, we register the stubbed version of the DSL in the DslFactory, and then we ask
the factory to create an instance of the script using the stubbed version. We execute
the DSL, and then we can inspect the values captured in the StubbedRoutingBase
when HandleWith is called.

NOTE In the sample code for this chapter, you will find a test called
WillCallHandlesWithRouteTestHandlerWhenRouteCalled UsingRhino
Mocks, which demonstrates how you can use Rhino Mocks to test your
DSL syntax.

Note that the last line of this test executes the delegate that received from the script to
test that it produces the expected response (a type of NewOrderMessage, in this case).
What does this test do for us? It ensures that the syntax in listing 8.1 produces the
expected response when the script is executed.
This is an important step, but it’s only the first in the chain. Now that we can test
that we’re creating compilable scripts and that the syntax of the language is correct,
we need to move up the ladder and start testing the API that we expose to the script.

Testing the DSL API

What exactly isa DSL API? In general, it’s any API that was written specifically for a DSL.
The methods and properties of the implicit base class are an obvious candidate (if they
aren’t directly part of the DSL syntax, such as RoutingBase.HandleWith in our case).

Because the Message-Routing API has little API surface area worth talking about,
we’ll use the Authorization DSL as our example for testing the API. Figure 8.2 shows
the class diagram for the Authorization DSL’s base class.

156

Testing DSLs
| AuthorizationRule 2) |
Abstract Class
>
J g -
f N =
= Properties IPrincipal S
ok Interface
j Allowed - -
T Entit m oo
ﬁj Y 7' Principal = Properties
ﬁ‘ Message -
5 Identity
=/ Methods
= Methods
2% Allow
W IsinRole

2% AuthorizationRule
W CheckAuthorization
+¥ Deny

Figure 8.2 The Authorization DSL class diagram

As you can see in figure 8.2, there are several API calls exposed to the DSL. Allow()
and Deny () come to mind immediately, and Principal.IsInRole() is also important,
though in a secondary manner (see sidebar on the difference between the DSL API
and the model). I consider those to be the DSL API because they’re standard API calls
that we explicitly defined as part of our DSL.

The rules we follow for the API are different than those we follow when we write
the rest of the application. We have to put much more focus on language orientation
for those calls. The DSL API is here to be used by the DSL, not by other code, so mak-
ing the API calls easier to use trumps other concerns. For example, in the case of the
Authorization DSL, we could have provided a method such as Authorized(bool
isAuthorized), butinstead we created two separate methods, Allow() and Deny (), to
make it clearer for the users of the DSL.

The difference between the DSL API and the model

In figure 8.1, we distinguished between the DSL API and the model. But what is the
difference between the two?

A DSL APl is an API built specifically to be consumed by the DSL, whereas the appli-
cation model, which the DSL often shares, is a more general concept describing how
the application itself is built.

The domain model of the application is composed of entities and services that work
together to perform the application’s tasks. This domain model isn’t designed first
and foremost to be consumed by the DSL. You may find that it’s suitable for the DSL
and make use of it, but that isn’t its main purpose.

A DSL API, however, is intended specifically for the DSL. You can create DSL API
facades on top of existing models to supply better semantics for what you intend
to do.

When you test your DSL, there is no need to test the model. The model is used by
the DSL but isn’t part of it. The tests for the model should have been created when
the model was created.

Creating tests for a DSL 157

Once you’ve identified your DSL API, how do you test it? My personal preference (and
recommendation) is that you should test the API without using the DSL at all. This
goes back to testing in isolation. You’re testing the API, not the interaction of the API
and the DSL (which was tested with syntax tests). This has the side benefit of ensuring
that the API is also usable outside the DSL you’re currently building, which is impor-
tant, because you’ll probably want to reuse the API in your tests, if not in a different
DSL altogether (see section 8.3.2 on creating the Testing DSL).

To test your DSL API without using the DSL infrastructure, you use standard testing
techniques. Listing 8.7 shows how you can test that the Allow() and Deny () methods
perform their duties appropriately.

Listing 8.7 Testing the Allow() and Deny () methods

// Pretends to be a DSL that allows access
public class AllowAccess : AuthorizationRule
{
public override void CheckAuthorization/()
{
Allow("just a test");

}

// Pretends to be a DSL that has no opinion on the matter
public class AbstainFromVoting : AuthorizationRule
{
public override void CheckAuthorization()
{
}
}

// Pretends to be a DSL that denies access
public class DenyAccess : AuthorizationRule
{
public override void CheckAuthorization()
{
Deny ("just a test");

}

[Test]

public void WhenAllowCalled_WillSetAllowedToTrue ()

{
AllowAccess allowAccess = new AllowAccess (null, null);
allowAccess.CheckAuthorization() ;

Assert.IsTrue(allowAccess.Allowed.Value) ;
Assert.AreEqual ("just a test", allowAccess.Message) ;
}

[Test]
public void WhenAllowOrDenyAreNotCalled_AllowHasNoValye ()
{

AbstainFromVoting allowAccess = new AbstainFromVoting (null, null);

158

8.2.3

Testing DSLs

allowAccess.CheckAuthorization () ;

Assert.IsNull (allowAccess.Allowed) ;
}

[Test]
public void WhenDenyCalled _WillSetAllowedToFalse ()
{

DenyAccess allowAccess = new DenyAccess (null, null);
allowAccess.CheckAuthorization() ;

Assert.IsFalse(allowAccess.Allowed.Value) ;

Assert.AreEqual ("just a test", allowAccess.Message);
}
In this example, we start by defining a few classes that behave in a known manner
regarding the methods we want to test (Allow () and Deny ()). Once we have those, it’s
a simple matter to write tests to ensure that Allow() and Deny () behave the way we
expect them to. This is a fairly trivial example, but it allows us to explore the approach
without undue complexity.

The next step would be to test the model, but we’re not going to do that. The
model is used by the DSL, but it isn’t part of it, so it’s tested the same way you would
test the rest of your application. Therefore, it’s time to test the engine ...

Testing the DSL engine

When I talk about the DSL engine in this context, I'm referring to the code that man-
ages and uses the DSL, not classes derived from the Ds1Engine class. The DSL engine is
responsible for coordinating the use of the DSL scripts.

For example, the Authorization class in the Authorization DSL, which manages
the authorization rules, is a DSL engine. That class consumes DSL scripts, but it isn’t
part of the DSL—it’s a gateway into the DSL, nothing more. The DSL engine will often
contain more complex interactions between the application and the DSL scripts.

Because the engine is usually a consumer of DSL instances, you have several
choices when creating test cases for the engine. You can perform a cross-cutting test,
which would involve the DSL, or test the interaction of the engine with DSL instances
that you provide to it externally. Because I generally want to test the engine’s behavior
in invalid scenarios (with a DSL script that can’t be compiled, for example), I tend to
choose the first approach.

Listing 8.8 shows a few sample tests for the Authorization class. These tests exer-
cise the entire stack: the syntax, the API, and the DSL engine.

Listing 8.8 Testing the Authorization class

[TestFixturel]
public class AuthorizationEngineTest
{

private GenericPrincipal principal;

[SetUp]
public void Setup()

Creating tests for a DSL 159

Authorization.Initialize(@"Auth/AuthorizationRules.xml") ;
principal = new GenericPrincipal (new GenericIdentity("foo"),
new string[]{"Administrators"});

}

[Test]
public void WillNotAllowOperationThatDoesNotExists ()
{
bool? allowed = Authorization.IsAllowed (
principal, "/user/signUp");
Assert.IsFalse(allowed.Value) ;

}

/// <summary>
/// One of the rules for /account/login is that administrators
/// can always log in
/// </summary>
[Test]
public void WillAllowAdministratorToLogIn ()
{
bool? allowed = Authorization.IsAllowed (
principal, "/account/login");
Assert.IsTrue(allowed.Value) ;
}

[Test]
public void CanGetMessageAboutWhyLoginIsAllowed ()
{
string whyAllowed = Authorization.WhyAllowed (
principal, "/account/login");
Assert.AreEqual ("Administrators can always log in",
whyAllowed) ;

}

As you can see, there’s nothing particularly unique here. We define a set of rules in
the AuthorizationRules.xml files and then use the Authorization class to verify that
we get the expected result from the class. This is an important test case, because it val-
idates that all the separate pieces are working together appropriately.

I would also add tests to check the order in which the Authorization DSL engine
executes the scripts and how the engine handles errors in compiling the scripts and
exceptions when running them. I would also test any additional logic in the class, but
now we’re firmly in the realm of unit testing, and this isn’t the book to read about
that.

TIP For information on unit testing, you should take a look at The Art of Unit
Testing, by Roy Osherove (http://www.manning.com/osherove/).
Another good book is xUnit Test Patterns, by Gerard Meszaros (http://
xunitpatterns.com/).

So far, we’ve talked about testing each component in isolation, and using some over-
arching tests to ensure that the entire package works. We’ve tested the syntax, the API,

http://www.manning.com/osherove/
http://xunitpatterns.com/

160

8.3

83.1

CHapTER 8 Testing DSLs

and the engine, and I've explained why we aren’t going to test the model in our DSL
tests. That covers everything in figure 8.1.
But we haven’t yet talked about testing the DSL scripts themselves.

Testing the DSL scripts

Considering the typical scenarios for using a DSL (providing a policy, defining rules,
making decisions, driving the application, and so on), you need to have tests in place
to verify that the scripts do what you think they do. In fact, because DSLs are used to
define high-level application behavior, it’s essential to be aware of what the scripts are
doing and protect ourselves from accidental changes.

We’ll explore two ways to do this, using standard unit tests and creating a full-
blown secondary testing DSL to test our primary DSL.

Testing DSL scripts using standard unit testing

One of the more important things to remember when dealing with Boo-based DSLs is
that the output of those DSLs is IL (Intermediate Language, the CLR assembly lan-
guage). This means that this output has all the standard advantages and disadvantages
of other IL-based languages.

For example, when testing a DSL script, you can reference the resulting assembly
and write a test case directly against it, just as you would with any other .NET assembly.
Usually, you can safely utilize the implicit base class as a way to test the behavior of the
scripts you build. This offers a nearly no-cost approach to building tests.

Let’s take the Quote-Generation DSL as our example and write a test to verify that
the script in listing 8.9 works as expected.

Listing 8.9 Simple script for the Quote-Generation DSL

specification @vacations:
requires @scheduling_work
requires @external_connections

specification @scheduling_work:
return # Doesn't require anything

Listing 8.10 shows the unit tests required to verify this behavior.

Listing 8.10 Testing the DSL script in listing 8.9 using standard unit testing

[TestFixture]
public class QuoteGenerationTest
{
private DslFactory dslFactory;

// Set up the DSL factory appropriately
[SetUp]
public void SetUp()
{
dslFactory = new DslFactory();
dslFactory.Register<QuoteGeneratorRule> (

Testing the DSL scripts 161

new QuoteGenerationDslEngine()) ;

}

// Standard test to ensure we can compile the script
[Test]
public void CanCompile ()
{
QuoteGeneratorRule rule =
dslFactory.Create<QuoteGeneratorRule> (
@"Quotes/simple.boo",
new RequirementsInformation (200, "vacations"));
Assert.IsNotNull (rule) ;
}

// Positive test, to ensure that we add the correct information
// to the system when we match the requirements of the current
// evaluation
[Test]
public void Vacations_Requirements ()
{
QuoteGeneratorRule rule =
dslFactory.Create<QuoteGeneratorRule> (
@"Quotes/simple.boo",
new RequirementsInformation (200, "vacations"));
rule.Evaluate() ;

SystemModule module = rule.Modules[0];

Assert.AreEqual ("vacations", module.Name) ;

Assert.AreEqual (2, module.Requirements.Count) ;

Assert.AreEqual ("scheduling_work", module.Requirements([0]) ;

Assert.AreEqual ("external_ connections",
module.Requirements[1]) ;

}

// Negative test, to verify that we aren't blindly doing
// things without regard to the current context
[Test]
public void WhenUsingSchedulingWork_HasNoRequirements ()
{
QuoteGeneratorRule rule =
dslFactory.Create<QuoteGeneratorRule> (
@"Quotes/simple.boo",
new RequirementsInformation (200, "scheduling work")) ;
rule.Evaluate() ;

Assert.AreEqual (0, rule.Modules[0].Requirements.Count) ;

}

In this test, we use the DslFactory to create an instance of the DSL and then execute
it against a known state. Then we make assertions against the expected output from
the known state.

This test doesn’t do anything special—these are standard methods for unit test-
ing—but there is something disturbing in this approach to testing. The code we’re try-
ing to test is exactly 5 lines long; the test is over 45 lines of code.

162

83.2

Testing DSLs

There is some repetitive code in the test that could perhaps be abstracted out, but
I tend to be careful with abstractions in tests. They often affect the clarity of the test.
And although I am willing to accept a certain disparity in the number of lines between
production and test code, I think that when the disparity is measured in thousands of
percent, it’s time to consider another testing approach.

Creating the Testing DSL

The main reason there’s such a disparity between the DSL script and the code to test it
is that the DSL is explicitly designed to express information in a concise (yet readable)
form. When we try to test the DSL script with C# code, we have to deal with well-
abstracted code using relatively few abstractions, so it’s no wonder there’s a big dispar-
ity in the amount of code.

Clearly we need a different approach. This being a book about DSL, my solution
is to introduce another DSL, a Testing DSL, that will allow us to handle this at a
higher level.

Don’t we need a testing DSL to test the Testing DSL?

If we create a Testing DSL to test the primary DSL, don’t we also need another testing
DSL to test the Testing DSL? Taken to the obvious conclusion, that would require a
third testing DSL to test the second testing DSL used to test the first testing DSL,
and so on, ad infinitum. Who watches the watchers? Do we need an infinite series of
testing DSLs?

Fortunately, we don’t need recursive testing DSLs. We only need one testing DSL for
each DSL we’re testing. We'll use the old idea of double-entry booking to ensure that
we’re getting the right results.

The chance of having complementing bugs in both DSLs is small, so we’ll use each
DSL to verify the other when we’re testing. A bug in the testing DSL would manifest
itself because there wouldn’t be a matching bug in the primary DSL.

We’ll use the same approach in building the Testing DSL as we’d use for any DSL. We
first need to consider what kind of syntax we want to use, in order to test that. Look
back at the script in listing 8.9 and consider what kind of syntax would express the
tests in the clearest possible manner.

We also need to identify the common things we’ll want to test. Judging by the tests
in listing 8.10, we’ll generally want to assert on the expected values from the script
under various starting conditions.

Listing 8.11 shows the initial syntax for the Testing DSL.

Listing 8.11 Testing DSL syntax for Quote-Generation DSL scripts

script "quotes/simple.boo"

with @vacations:
should_require @scheduling work

Testing the DSL scripts 163

should_require @external_connections

with @scheduling_work:

should_have_no_regquirements
Let’s try to build that. We’ll start with the implicit base class, using the same tech-
niques we applied when building the DSL itself.

DSL building tip

A good first step when building a DSL is to take all the keywords in the language
you're building and create matching methods for them that take a delegate as a
parameter. You can then use anonymous blocks to define your syntax.

This is a low-cost approach, and it allows you to choose more complex options for
building the syntax (such as macros or compiler steps) later on.

We’ll first look at the structure of the implicit base class in listing 8.12. Then we’ll
inspect the keyword methods in detail.

Listing 8.12 Implicit base class for testing Quote-Generation DSL scripts

/// <summary>
/// Implicit base class for testing the Quote-Generation scripts.
/// </summary>
public abstract class TestQuoteGeneratorBase
{
private DslFactory dslFactory;
private QuoteGeneratorRule ruleUnderTest;
private string currentModuleName;

protected TestQuoteGeneratorBase ()
{
ruleUnderTest = null;
dslFactory = new DslFactory();
dslFactory.Register<QuoteGeneratorRule> (
new QuoteGenerationDslEngine()) ;

}

/// <summary>
/// The script we're currently testing
/// </summary>
public abstract string Script { get; }

// removed: with
// removed: should_require
// removed: should_have_no_requirements

public abstract void Test();
}
There is only one thing worth special attention in listing 8.12: the abstract property
called Script holds the path to the current script. This will be mapped to the script
declaration in the Testing DSL using a property macro (property macros are discussed
in chapter 7).

164

CHapTER 8 Testing DSLs

Now that we have the overall structure, let’s take a deeper look at the language key-
words. We’ll start with the with keyword, in listing 8.13.

Listing 8.13 The implementation of the with keyword

/// <summary>
/// A keyword
/// The scenario that we’re testing.
/// Execute the script and then test its state.
/// </summary>
/// <param name="moduleName">The module name we're using
/// as the starting requirement</param>
/// <param name="action">Action that verified the state under the
/// specified module</param>
public void with(string moduleName, Action action)
{
Assert.IsNotEmpty (Script, "No script was specified for testing");

ruleUnderTest = dslFactory.Create<QuoteGeneratorRule> (
Script,
new RequirementsInformation (0, moduleName)) ;
ruleUnderTest.Evaluate () ;

currentModuleName = moduleName;

action();
}
In listing 8.13, we create and execute the specified DSL and then use the last parame-
ter of the with method, which is a delegate that contains the actions to verify the cur-
rent state.
Listing 8.14 shows one of the verification keywords, should_require. The imple-
mentation of should_have_no_requirements is similar, so I won’t show it.

Listing 8.14 The implementation of one of the verification keywords in our Testing DSL

/// <summary>
/// A keyword
/// Expect to find the specified module as required for the current module
/// </summary>
public void should_require(string requiredModule)
{

// Search for the appropriate module

SystemModule module = ruleUnderTest.Modules.Find(

delegate (SystemModule m)

return m.Name == currentModuleName;
)i
// Fail if not found
if (module == null)
{
Assert.Fail ("Expected to have module: " +
currentModuleName +
" but could not find it in the registered modules");

Testing the DSL scripts 165

// Search for the expected requirement
foreach (string requirement in module.Requirements)
{
if (requirement == requiredModule)
return;
}
// Not found, we fail the test
Assert.Fail (currentModuleName +
" should have a requirement on " +
requiredModule +
" but didn't.");
}

We use methods like should_have_no_requirements and should_require to abstract
the verification process, which gives us a high-level language to express the tests. This
approach significantly reduces the amount of effort required to test DSL scripts.

We’re not done yet

A word of caution. The Testing DSL created here can test only a limited set of scenar-
ios. If you want to test a script with logic in it, you need to extend it. For example,
what we have so far couldn’t test the following script:

specification @vacations:
requires @scheduling_work
requires @external_connections if UserCount > 50

Extending the Testing DSL to support this is easy enough, but I'll leave that as an
exercise for you (the solution is in the sample code). If you'd like a hint, this is the
syntax | used:

script "quotes/WithLogic.boo"

with @vacations, UserCount=51:
should_require @scheduling_work
should_require @Qexternal_connections

with @vacations, UserCount=49:
should_require @scheduling_work
should_not_require @external_connections

Now that we’ve built the Testing DSL, are we done? Not quite. We still have to figure
out how to execute it. Listing 8.15 shows one way of doing this.

Listing 8.15 Manually executing the Testing DSL

[TestFixture]
public class TestQuoteGenerationTest
{
private DslFactory dslFactory;

[SetUp]

public void SetUp()

{
dslFactory = new DslFactory();
dslFactory.Register<TestQuoteGeneratorBase> (

166

8.4

Testing DSLs

new TestQuoteGenerationDslEngine()) ;

}

[Test]
public void CanExecute_KnownGood ()
{
TestQuoteGeneratorBase test =
dslFactory.Create<TestQuoteGeneratorBase> (
@"QuoteGenTest.Scripts/simple.boo") ;
test.Test () ;

}

Although this will work, I don’t like this method much. It has too much friction in it.
You’d have to write a separate test for each test script. Much worse, if there’s an error
in the test, this manual execution doesn’t point out the reason for the failure; it points
to a line, which you’d then have to go and read, as opposed to reading the name of
the test.

A better method is to integrate the Testing DSL with the unit-testing framework.

Integrating with a testing framework

When we’re talking about integrating the Testing DSL scripts with a unit-testing frame-
work, we generally want the following:

To use standard tools to run the tests
To get pass or fail notification for each separate test
To have meaningful names for the tests

Ideally, we could drop Testing DSL scripts in a tests directory, run the tests, and get all
the results back.

Probably the simplest approach is to write a simple script that would generate the
explicit tests from the Testing DSL scripts on the filesystem. Adding this script as a
precompile step would ensure that we get the simple experience we’re looking for.
This approach is used by Boo itself in some of its tests, and it is extremely simple to
implement.

But this approach isn’t always suitable. For example, consider the syntax we have
for testing:
with @vacations:

...
with @scheduling_work:

#
We have two distinct tests here that happen to reside in a single file. We could split
them so there’s only one test per file, but that’s an annoying requirement, particularly
if we have three or four such tests with a few lines in each. What I'd like is to have the
test figure out that each with keyword is a separate test.

As it turns out, it’s pretty easy to make this happen. Most unit-testing frameworks
have some sort of extensibility mechanism that allows you to plug into them. In my

Integrating with a testing framework 167

experience, the easiest unit-testing framework to extend is xUnit.NET, so that’s what
we’ll use.

Listing 8.16 shows a trivial implementation of a test using xUnit. You can take a
look at the xUnit homepage for further information: http://xunit.codeplex.com.

Listing 8.16 Sample test using xUnit

public class DemoOfTestUsingXUnit
{
[Fact]
public void OnePlusOneEqualTwo ()
{
Assert.Equal (2, 1+1);

}

Before we can start extending xUnit, we need to make sure we have a way to differen-
tiate between the different tests in a single file. We’ll do this by defining with as a
unit test. What do I mean by that? Figure 8.3 shows the transformation I have in
mind.

We’ll take each with section and turn it into
its own method, which will allow us to treat
them separately.

with @vacations:
should_require @scheduling_work
should_require @external_connections
NOTE Because this chapter presents two

radically different ways to unit test with @scheduling_work:

K s A 3 should_have_no_requirements
a DSL, this chapter’s code is split
into two parts: /Chapter8 contains
the code for sections 8.1 through
8.3, and /Chapter8.UnitTestInte-
gration contains the source code Ve
for section 8.4 through the end of public class Simple(TestQuoteGenerationBase):
the chapter.

def with_vacations:
WithModule @vacations:

If you look at figure 8.3 closely, you’ll notice should_require @scheduling_work
. . hould i

that we now have a WithModule () instead of the HHSELLIIE

with. This helps us avoid naming collisions. def with_scheduling_work:

WithModule @scheduling_work:
should_have_no_requirements
AN J

After renaming the with() method to With-
Module (), all we have to do is create a method
each and every time with is used. We can do Figyre 8.3 The transformation from the
this with a macro, as shown in listing 8.17. test script to multiple tests

Listing 8.17 A macro that moves a with block to its own method

/// <summary>

/// Move the content of a with block to a separate method
/// and call the WithModule method.

/// </summary>

public class WithMacro : AbstractAstMacro

http://xunit.codeplex.com

168 CHapTER 8 Testing DSLs

public override Statement Expand(MacroStatement macro)

{
// Create a call to WithModule method
var mie = new MethodInvocationExpression (macro.LexicalInfo,

new ReferenceExpression ("WithModule")) ;

// with the arguments that we were passed
mie.Arguments.Extend (macro.Arguments) ;
// as well as the block that we have there.
mie.Arguments.Add (new BlockExpression (macro.Block)) ;

// Create a new method. Note that the method "name"

// is the content of the with block. This is allowed by
// the CLR, but not by most languages.

var method = new Method (macro.ToCodeString()) ;

// Add the call to the WithModule to the new method.
method.Body.Add (mie) ;

// Find the parent class definition

var classDefinition = (ClassDefinition) macro.GetAncestor (
NodeType.ClassDefinition) ;

// Add the new method to the class definition

classDefinition.Members.Add (method) ;

// Remove all the code that was where this macro used to be
return null;

}

During compilation, whenever the compiler encounters a with block, it will call the
WithMacro code. When that happens, this code will create a new method whose name
is the content of the with block, and move all the code in the with block to the
method, removing it from its original location. It also translates the with block to a
call to the newly renamed WithModule method.

With this new macro in place, compiling the script in listing 8.11 will produce the
output in listing 8.18 (translated to pseudo C# to make it easier to understand).

Listing 8.18 The result of compiling listing 8.11 with the withMacro macro

public class Simple : TestQuoteGeneratorBase
{

public void with 'scheduling_work':
should_have_no_requirements ()

public void with 'vacations':
should_require('scheduling work')
should_require('external_connections')

public override string Script { get { ... } }

Integrating with a testing framework 169

The method names aren’t a mistake; we have a method name with all sorts of interest-
ing characters in it such as spaces, line breaks, and even parentheses. It doesn’t make
sense as C# code, but it does make sense as IL code, which is what I translated listing 8.18
from. This is one way to ensure that tests will never have misleading names.

Now that we have each individual test set up as its own method, we can integrate
the tests into xUnit fairly easily. Listing 8.19 shows the most relevant piece for integrat-
ing with the unit-testing framework.

Listing 8.19 Integrating our DSL with xUnit

public class DslFactAttribute : FactAttribute
{

private readonly string path;

public DslFactAttribute(string path)
{

this.path = path;
}

protected override IEnumerable<ITestCommand>
EnumerateTestCommands (MethodInfo method)

DslFactory dslFactory = new DslFactory () ;
dslFactory.Register<TestQuoteGeneratorBase> (
new TestQuoteGenerationDslEngine());

TestQuoteGeneratorBase test =
slFactory.Create<TestQuoteGeneratorBase> (path) ;
Type dslType = test.GetTypel() ;

BindingFlags flags = BindingFlags.DeclaredOnly |
BindingFlags.Public |
BindingFlags.Instance;

foreach (MethodInfo info in
dslType.GetMethods (flags))

if (info.Name.StartsWith("with"))
{
vield return new DslRunnerTestCommand (
dslType, info);

}

This code is straightforward. We accept a path in the constructor for the script we
want to test. When the time comes to find all the relevant tests, we create an instance
of the script and find all the test methods (those that start with with). We then wrap
them in Ds1RunnerTestCommand, which will be used to execute the test.

The Ds1RunnerTestCommand class is shown in listing 8.20.

170

CHapTER 8 Testing DSLs

Listing 8.20 DslRunnerTestCommand can execute a specific test in the DSL

public class DslRunnerTestCommand : ITestCommand
{
private readonly MethodInfo testToRun;
private readonly Type dslType;

public DslRunnerTestCommand (Type dslType, MethodInfo testToRun)
{

this.dslType = dslType;

this.testToRun = testToRun;
}

public MethodResult Execute(object ignored)

{
object instance = Activator.CreatelInstance (dslType) ;
return new TestCommand (testToRun) .Execute (instance) ;

}

public string Name
{

get { return testToRun.Name; }

}

We need a specialized test command to control which object the test is executed on.
In this case, we pass the DSL type in the constructor, instantiate it during execution,
and then hand off the rest of the test to the xUnit framework.

All we have left to do is use Ds1Fact to tell the unit-testing framework how to find
our tests, which is shown in listing 8.21.

Listing 8.21 Using Ds1Fact to let xUnit find our tests

public class UsingUnitTestingIntegration
{
[DslFact ("QuoteGenTest.Scripts/simple.boo")]
public void Simple/()
{
}

[DslFact ("QuoteGenTest.Scripts/WithLogic.boo")]
public void WithLogic ()

{

}

What about integrating with other unit-testing frameworks?

All the major unit-testing frameworks have some extensibility mechanism that you
can use. Personally, | think that xUnit is the simplest framework to extend, which is
why | chose it to demonstrate the integration. Integrating with other frameworks isn’t
significantly more complicated, but it does require more moving parts.

8.5

8.5.1

8.5.2

Taking testing further 171

What did this integration with the unit-testing framework give us? Here is the result of
a failing test:
1) with 'vacations', 49:
should_require('scheduling work')
should_require('external_connections')
: AssertionException : vacations should have a requirement on
external_connections but didn't.
Compare that to the output we’d have gotten using the approach we took in
listing 8.15. This approach gives us a much clearer error, and it’s that much easier to
understand what is going on and fix it.

Note that you still have to write a dummy test for each script you want to test. To
improve on this, you could change DslFact so it will handle a directory instead of a
single file. This would let you drop test scripts into a directory, and they would imme-
diately be picked up by the unit-testing framework.

Taking testing further

We’ve looked at testing DSLs, but you could use DSLs to take testing further, by build-
ing a DSL to test your application, or by building testing into your language.

Building an application-testing DSL

Something that deserves a bit of attention is using testing DSLs not to test another
DSL, but to test your application. This is an offshoot of automation DSLs, targeted spe-
cifically at testing applications.

The Fit testing tool (http://fit.c2.com/wiki.cgi’IntroductionToFit) can be used to
let the customer build acceptance tests without understanding the code, and a testing
DSL could be used for similar purposes. Frankly, having used Fit in the past, I find it
significantly easier to build a DSL to express those concepts, rather than to use Fit fix-
tures for the task.

There isn’t anything special in such an application-testing DSL; you can use the
same tools and approaches as when building any DSL.

Mandatory testing

There is one approach to testing that we haven’t talked about: mandatory testing as
part of the language itself.

Imagine that when you create an instance of a script, the DSL engine looks for a
matching test script (for example, the work-scheduling-specs.boo script would match
to the work-scheduling-specs.test test). This test script would be compiled and exe-
cuted the first time you request the primary script. That would ensure that your
scripts are tested and working—a missing or failed test would stop the primary script
from running.

There are problems with this approach. Tests might require a special environment,
or take a while to run, or modify the state of the system in unacceptable ways for

http://fit.c2.com/wiki.cgi?IntroductionToFit

172

8.6

Testing DSLs

production, and so on. But it would be a good approach to use during development
and staging. It would give you more motivation to write tests for your DSL scripts.

NOTE This approach to mandatory testing is just an idea at the moment. I
haven’t tried implementing it in a real project yet. The technical chal-
lenges of implementing such a system are nil, but the implications on the
workflow and the ease of use of such a system are unknown. On the sur-
face, checked exceptions are great. In practice, they’re very cuambersome.
This is why I have only toyed with the idea so far.

Summary

Testing is a big topic, and it can significantly improve the quality of software that we
write. This chapter has covered several approaches for testing DSLs, but I strongly rec-
ommend reading more about unit testing if you aren’t already familiar with the con-
cepts and their application.

We covered quite a few topics in this chapter. We saw how to test each area of a DSL
in isolation, and how to test the language as a whole. Having a layer of tests for the lan-
guage itself is critically important—you need it the moment you make a change to the
language. That layer of tests is your safety net. In the next chapter, we’ll look at how to
safely version a DSL, and having a solid foundation of regression tests is a baseline
requirement for successfully doing so.

Beyond testing the language itself, we’ve also seen how to test the language arti-
facts: the DSL scripts. We started with executing DSL scripts in our unit tests, moved on
to building a Testing DSL to test the primary DSL, and finished up by integrating the
Testing DSL into a unit-testing framework, which provides better error messages and
allows us to have the unit tests automatically pick up new test scripts as we write them.

With that solid foundation of tests under our feet, we can move on to the next
stage in our DSL lifetime, version 2.0. Let’s look at how to deal with that.

Versionin

In this chapter

= DSL versioning considerations
= DSL versioning strategies

= DSL versioning in the real world

Versioning refers to creating a second version of a language (or a product) that’s
compatible with the previous version. Code and other artifacts from the previous
version can either run on the new version or there is a well-defined process for
moving from one version to the next.

The development of the second version is a critical point in the lifecycle of any
language. At that point, you no longer have a blank slate to draw upon; you need to
take into account the existing investments in the previous version as well. The alter-
native would be to stop with a single release, or to abandon all the time and money
invested in the previous version. These aren’t choices most people would make.

In this chapter, we’ll lay the foundations we need to create the versioning story
for our DSLs. After that, we’ll touch on several different approaches to versioning a
language.

Many of the approaches that we’ll discuss in this chapter are applicable to
existing languages, but these approaches and techniques are most effective if
they’re used when you initially design and build the language. I strongly suggest
that, even for small languages, you take the time to consider the versioning strat-

egy you’ll apply.

173

174

9.1

Versioning DSLs

Starting from a stable origin

The obvious first step in any versioning scenario is to determine where things are right
now. In order to make sure that the next version can accommodate the current ver-
sion, you need to know what the state of the current version is. For example, if you
want your next version to support existing scripts, you need to know what can be done
with the language as it is now. This isn’t the obviously redundant step that it may
appear to be at first glance.

Trying to reverse engineer language syntax from its implementation is challeng-
ing. It’s possible, for sure, but hard. The main hurdle is that a language is usually flexi-
ble in its input, and two people will often express the same thing in different ways.

You need some sort of baseline to ensure that you understand how the language is
used. In general, I like to have this baseline in two forms:

Executable form—This consists of unit and integration tests that use the language
features. These tests allow you to see how various elements of the language are
used in context. The tests we discussed in chapter 8 will do nicely here, and
they’ll ensure that we also have a regression test suite for the next version.
Documentation—Although tests are my preferred method of diving into a code
base, additional documentation will give you the complete picture, so you don’t
have to piece it together. This is particularly important when you want a cohe-
sive picture of how all elements of the language play together. We’ll discuss how
best to approach writing documentation for a DSL in chapter 11.

With both tests and documentation in place, you’ll have a good understanding of how
the language is supposed to behave, and you can go on to extend and change it from
a well-known position, rather than blindly.

Once you know where you are, you need to figure out where you’re going, what
kind of changes you need to make, and what their implications will be on the version-
ing story.

The lone language developer

You might think that versioning isn’t an issue for languages that are written by and
for a single developer, but this is most certainly not the case. There are always at
least two people on any project: the developer who writes the code, and the developer
who reads it. Even if they’re the same physical person, they’re looking at the code at
different times.

Even if you wrote the code, you can’t count on being able to remember and under-
stand all the implications and use cases six months from now. I've made that mis-
take several times in the past, and it resulted in a lot of delay.

9.2

9.21

Planning a DSL versioning story 175

Planning a DSL versioning story

A DSL versioning story defines the overall approach you take to versioning the DSL over
time—what versioning strategies you employ and what versioning guarantees you give
to DSL users.

In chapters 3 and 5, we defined the parts that a DSL is composed of:

Engine—The code that executes the DSL script and processes the results
Model and API—The data and operations exposed to the DSL
Syntax—The syntax of the language

Environment—The execution environment of the DSL

When we talk about versioning a DSL, we’re talking about making a change to one of
those parts (or all of them), while maintaining some desired level of compatibility
with the previous version. We’ll examine each of them and look at the implications of
each type of change.

Implications of modifying the DSL engine

There are several ways to modify the DSL engine.

The best scenario from a versioning perspective is a nonfunctional change, which
means the behavior of the engine remains the same in all cases; the change is focused
on internal behavior, optimizations, and the like. Any change in observable behavior
is a bug, so there can’t be any compatibility issues.

A functional change is when you’ve made some sort of change to the behavior of
the engine. In this situation, you need to determine the implications of this change on
existing DSL scripts.

In many cases, functional changes to the engine are safe changes to make. The
engine is responsible for processing the results of executing the DSL, so the DSL will
rarely be affected by this change. By the time the engine is running, the DSL has
completed.

But there is one scenario in which a change in the engine can cause compatibility
issues for the DSL. Restricting the legal values or operations that a DSL specifies can
cause a DSL to fail, because formerly valid values may no longer be valid.

Listing 9.1 shows a valid snippet of a Quote-Generation DSL script.

Versioning means worrying about intended consequences

Although it's entirely possible for a change to cause unforeseen incompatibilities with
previously written DSL scripts and code, that isn’t something that | care about when
| am talking about versioning strategies.

If | make a change that has an unforeseen compatibility issue, what | have is a bug,
and this should be caught using the regression test suite. Versioning, on the other
hand, deals with how one can mitigate the issue of planned incompatibilities.

176

9.2.2

Versioning DSLs

Listing 9.1 A snippet from a Quote-Generation DSL script

specification @vacations:

requires @scheduling work

requires @external_connections
Let’s say that you changed the engine to only allow a single requirement for each
specified model; this previously valid snippet would become illegal.

We need more information about the reasons for this change to decide how to
deal with this issue, so we’ll defer dealing with this for now and move to dealing with
changes in the model and the APL

Implications of modifying the DSL API and model

The API and the model exposed to the DSL compose a large part of the syntax that the
DSL has. This means your existing investment in building a clear API and a rich model
can be used directly in the DSL, which will save you quite a bit of time.

There is a problem with exposing the application’s core API and model to the DSL:
any change you make in the core API has to be tested with regard to how it will affect
the DSL. In effect, the DSL becomes yet another client of the code, with all the usual
implications that has on creating public APIs, worrying about versioning conflicts, and
so on.

I don’t expect you to be surprised that I recommend against directly exposing the
API and model that are used in the application to the DSL. What I recommend is cre-
ating a facade layer between the two—you expose the application concepts that you
need to use in the DSL only through a facade. This approach simplifies versioning,
because changing the core API will not affect DSL scripts created previously. All the
changes stop at the facade layer, which remains static. This allows parallel develop-
ment of both the DSL and the model, without worrying about versioning issues
between the two. What makes for nice, fluent, readable code doesn’t necessarily make
for good DSL syntax, so separating the two is useful even if you haven’t reached the
point where you’re considering versioning concerns.

Versioning an external DSL

The problem with versioning an internal DSL is that there isn’t usually a formal defi-
nition of the syntax. Most of the tools for building external DSLs work by building on
a formal syntax definition, which is usually in the form of BNF (Backus-Naur Form, a
language for formally defining a language syntax) or syntax derivative.

When you have a formal syntax definition, it’s quite easy to create a diff between ver-
sions 1.0 and 2.0 of the language, and see what the syntactic differences between
the two are. This is something you need to do yourself when building an internal DSL.

But syntax is a small part of versioning a DSL. The model, API, behavior, and appli-
cation integration are all parts of the versioning story, and they all require the version-
ing approach that’s outlined in this chapter.

9.2.3

9.24

Planning a DSL versioning story 177

WARNING Remember the client audience for your DSL. If you make a change to
your DSL, you need to communicate that to the users of the DSL and
ensure that they understand what changed, why, and how they should
move forward in working with the DSL. This can be a much greater
challenge than the mere technical problems you’ll run into.

At the same time, I don’t like having to start with a facade when I have a one-to-one
relationship between the facade and the model. I like to use what I call a lazy facade
approach: use the real objects until I run into the first situation where the needs of
the DSL and the needs of the application diverge, and create the facade at that point.

This approach is often useful when you’re starting development, because it frees
you from maintaining a facade when the code and the DSL are both under active
development.

Now let’s consider the effect of changing the syntax.

Implications of modifying the DSL syntax

Modifying the syntax is generally what comes to mind when people think about ver-
sioning a DSL. This seems to be the most obvious place where incompatibilities may
occur, after all.

Indeed, this isa troublesome spot, which requires careful attention to detail (and a
robust regression test suite). We’ll look at how to deal with it in detail when we discuss
versioning strategies in section 9.4. There are quite a few tools that can help us deal
with this issue.

That’s about it from the point of view of changes that can affect the DSL. But we
should consider one other thing that may change over time and that can certainly
cause incompatibilities down the road—the DSL environment.

Implications of modifying the DSL environment

The DSL environment is as much a part of the DSL as its syntax, but it’s easy to forget
that. So easy, in fact, that I forgot to include it in the first draft of this chapter. We
talked about the DSL environment in chapter 5. It includes everything from the nam-
ing convention, to the script ordering, to where you execute each DSL script.

Let’s look at an example system where a DSL is used to provide additional business
behavior. The DSL scripts are located in the following hierarchy:

4 . Account
4 | Create
Generate Account Id.boo
Send New Account Greeting.boo

4 || Delete
Send Goodbye Note.boo
s | Update
4 | Order
4 | Create
Generate Order Id.boo
4 || Delete

4 || Update

178

9.3

Versioning DSLs

As you can see, this system uses the filesystem structure to associate an event to the
script that should run when that event fires. It has been humming along nicely, and
the client is happy. Along comes version 2.0 of the DSL, and we know that we haven’t
touched any of the DSL code, so we can safely expect to run all the application tests
and have them work. Except, version 2.0 renamed Account to Client, and we haven’t
made the same modification to the DSL directory. I’ll leave you to guess what happens.

Or consider modifying the way the Authorization DSL determines the ordering of
rules for a particular action. That can wreak havoc with the system, but it’s unlikely to
cause a problem with the DSL itself, or to reveal itself in any test that verifies the behav-
ior of a single script.

If you want to detect such issues, you need to have a good regression test suite.
Incidentally, that’s our next topic.

Building a regression test suite

If you want to have a good versioning story, you need to have a good regression test
suite. If you don’t have one yet, you need to build one before you start working on the
next version. Otherwise, you have no real way to know whether your changes are safe
or not.

A regression test suite should include the following:

Tests for the engine

Tests for the API and model that are exposed to the DSL
Tests for the syntax

Tests that verify that the conventions used are kept

This regression test suite is usually the product of developing your DSL in a test-driven
manner, or even by testing all the aspects of the DSL after you have built it.

It’s important that these tests be automated, and that any breaking test should
raise a compatibility alert, because such alerts mean that you’re no longer compatible
with the previous version.

In addition, the best-case scenario is to have test cases for each of the scripts you
have created for the DSL. You can incorporate all of those tests into your regression
test suite, and be very confident that you will be able to detect compatibility issues
between versions.

Failing that, you can create a set of regression tests that mimic common functional-
ity in the existing scripts. Those tests are full integration tests of the entire DSL imple-
mentation, and they should exercise as many of the supported language features as
possible.

With a regression test suite in place, you can start making modifications to your
DSL, knowing that if any compatibility issues arise, you will be alerted to them. The
question is how to dealwith them.

9.4

9.4.1

9.4.2

Choosing a versioning strategy 179

Choosing a versioning strategy

By now, you’ve probably realized that versioning is neither easy nor simple. It takes
both time and effort to ensure that your DSL remains consistent from one version
to the next. As such, you need to carefully consider whether the changes are worth
the cost.

If you have a DSL that’s in limited distribution with a limited number of scripts and
a well-known (and small) number of users, you may decide that it isn’t worth taking
the time to have a formal versioning strategy, and just deal with any issues when they
pop up. In most cases, however, you will care about making the migration to the next
version easy. You can use the following strategies to manage your DSL versioning story:

Abandon ship
Single shot
Additive change
Tower of Babel
Adapter

Great migration

We will discuss them in turn here and then spend section 9.5 applying the theory with
real code and examples.

Abandon-ship strategy

The abandon-ship strategy is also known as, “Versioning? We don’t need no stinking
versioning.” It’s extremely simple. You don’t do any sort of versioning. Any problems
with scripts as a result of updating the DSL are considered to be bugs in the scripts and
are fixed there.

What this usually means is that after modifying the DSL, you test all your existing
scripts and update them as necessary. For many scenarios, this is the preferred
approach, because it has the best return on investment.

This isn’t applicable if you have a large number of scripts, or if you need to support
scripts that you don’t control. If, for example, you used the DSL to allow other teams,
business experts, or even third parties to extend your application, it isn’t applicable.

Single-shot strategy

The single-shot strategy is also known as, “You’ve got only one shot at making this
work, so make it work 7ight!” In this case, you only have one chance to build the DSL.
Once you’ve built it and people have started using it, no changes of any sort can be
made to the DSL.

As a versioning strategy, it has the benefits of being ironclad; you know that you
won’t have any compatibility issues. But it leaves a lot to be desired in terms of allow-
ing you to deal with changing requirements and the need to update your software. I
would rarely call this a viable approach. I would seek a better alternative.

180

9.4.3

Versioning DSLs

Additive-change strategy

The additive-change strategy is the most common approach, by far, to handling lan-
guage versioning—all the mainstream languages (C#, C++, Java, and so on) use this
strategy to maintain backward compatibility. By using this model, you can ensure that
if the code was correct in a previous version, it’s correct for any future version.

You can ensure this in two ways:

Run a full regression suite for all supported scenarios and never allow a change
to break them. If there’s a scenario that users are using and that isn’t in the
regression suite, you might get a compatibility error, but you could treat that as
a bug and fix it (and then add the scenario to the regression suite).

Only ever perform additive changes. If you only ever add new things to the lan-
guage, and never remove anything, you’ll greatly reduce the chances of creat-
ing breaking changes.

Version nhumbering

One way of handling versioning is to ensure backward compatibility within a major ver-
sion of the software, but not guaranteeing backward compatibility between major ver-
sions. For example, if you have version 1.0, revisions 1.1, 1.5, and 1.8 are all
backward compatible. But version 2.0 isn’t necessarily backward compatible with the
1.x versions.

This version-numbering system is widely used and is easy to follow. It has the advan-
tage of making it clear what expectations you have for backward compatibility. It also
provides a guideline for features. If you can’t provide a new feature without breaking
backward compatibility, that feature will have to wait until the next major version. If
you can provide it without breaking backward compatibility, it can go into the next revi-
sion (1.1, for example).

This approach has its limits. Over time, it adds significantly to the complexity of the
language, on both implementation and usage fronts. Sooner or later, the point of
diminishing returns is reached, and further progress is extremely difficult. There is lit-
tle doubt that Java, for example, has either reached this point or is near it. Most of the
new language features that pop up in the Java world aren’t based on Java, but on other
languages (such as JRuby and Groovy) running on the JVM. C++, interestingly
enough, has not reached this point, even though it’s significantly older.

You probably don’t have the same use case as Java, so you can push it further if you
choose, but this is a major issue with this approach, and you need some way of han-
dling it eventually.

The additive-change strategy is the recommended approach for starting out,
because although it adds some complexity, it takes time for that to become onerous.
Only when you have a radical change or have hit the ceiling of complexity do you
need to look at other strategies to deal with versioning.

9.4.4

Choosing a versioning strategy 181

Tower of Babel strategy

The Tower of Babel strategy deals with

the versioning problem head on, instead
of avoiding dealing with it. This

approach is applicable for radical m ‘:

changes; if you have lesser changes to

make, you should prefer the additive- m ‘ ’ ‘ ’
change strategy.

Broadly, this approach consists of

never modifying a released version of a Figure 9.1 Handling versioning using the Tower of
Babel strategy

DSL. Once you ship version 1.0, it’s fro-
zen and can’t be changed. When you
build version 2.0, you start from a copy of version 1.0 and modify it until you get to
shipping version 2.0, at which point it’s frozen. Then you work on a copy of version
2.0 until you ship 3.0. And so on. Figure 9.1 illustrates this approach.

This closely follows the way a source control system works, with each version repre-
senting a parallel branch. It also ensures that scripts that worked in the past will con-
tinue to work in the future; you won’t be burdened with the heavy weight of backward
compatibility concerns.

Unlike the additive-change strategy, you aren’t limited to additive changes
between versions; each version is free to have breaking changes from the previous
one. All versions of the DSL exist concurrently, and each script contains the version of
the DSL that it was written against. When you execute a script, you choose the appro-
priate version of the language based on the DSL version that the script was written to.

Using the Tower of Babel strategy does pose a problem. Because several versions of
the DSL may be in use at the same time, you need to select which version of the DSL
you’ll execute for a given DSL script.

IDENTIFYING SCRIPT VERSIONS
There are various ways to identify which DSL version a particular script is written for,
but I like to use extensions for this purpose. Here are a few examples:

some-dsl-script. quote-generator—A quote-generator DSL, version 1.0
some-dsl-script. quote-generator-2—A quote-generator DSL, version 2.0

some-dsl-script. quote-generator-3—A quote-generator DSL, version 3.0

When you want to execute a particular script, you can check the extension and select
the appropriate version of the DSL factory to create an instance of the script.
Another approach is to encode the version using a folder-hierarchy convention:

4 | Quote-generator

4 1.0
some-dsl-script
420
some-dsl-script
« 30

some-dsl-script

182

9.4.5

Versioning DSLs

r—
Engine v1.0 Engine v4.0
API/Model API/Model API/Model
v1.0 v2.0 v4.0
[' | I
1 1 1
Syntax v1.0 Syntax v2.0 Syntax v3.0 Syntax v4.0

Figure 9.2 The copy-on-change alternative to the Tower of Babel strategy

There are probably other approaches that you could use, but these make the most
sense and they’re easier to implement in most scenarios. They’'re also the ones that
make the most sense from the end user’s perspective, because they clearly identify the
script’s version.

There is one big disadvantage to this Tower of Babel strategy. It makes code dupli-
cation a design choice.

CODE DUPLICATION

Code duplication is considered harmful for many reasons. Chief among them is that
when you make a change in a code base that has duplicate code (such as when fixing
a bug) you need to make the modification in several places.

A variation on the Tower of Babel strategy is to only create a copy of the code
you’re modifying (the copy-on-change approach). In this case, you’ll end up with the
situation depicted in figure 9.2.

I want to emphasize that both alternatives are valid design choices, because you lit-
erally freeze a version (or parts of a version). You aren’t employing copy and paste as a
reuse technique.

But this approach still makes me feel somewhat uncomfortable. A better approach
is still waiting to be discovered ...

Adapter strategy

The adapter strategy is just what it sounds like. Instead of duplicating the entire lan-
guage code for each version, you create adapters between the existing version and the
new version. When you make a breaking change in the language, you change the pro-
cessing for the current version of the language so it preserves the same behavior as in
the previous version, but it uses the new version of the engine and model. This
approach is applicable for radical changes; again, if you’re making non-radical
changes, you should prefer the additive-change strategy.

Choosing a versioning strategy 183

As you can see in figure 9.3, an old version of the —
language consists of the syntax and an adapter to the v1.0
current version. This is another common approach

used by mainstream languages (check out the nearest ‘
C++ compiler switches).

This strategy has the following workflow:

= Modify the existing language to meet the new
requirements. Syntax

= Take the existing regression tests for version 1.0

and create an adapter that will satisfy them. /\

The version 1.0 language is now a new DSL for map- ReEE

ping between the version 1.0 and 2.0 syntaxes. You

can build it the same way you’d build any DSL. You just
Figure 9.3 The adapter strategy

need to keep in mind that the purpose is to adapt, not Adapter ‘
tov3.0
consists of keeping the existing

to do anything else.
Adapting a DSL version at runtime mostly consists behavior as a facade and adapting
of modifying the API and model facade for version 1.0 It to match the next version.
to map calls and concepts to the API and model of ver-
sion 2.0. This is simple to do in most cases, as shown in figure 9.4.

Al;;/cl\:g:el API/Model Engine Figure 9.4
0 ’- v2.0 " v2.0 Adapting DSL

versions at runtime

This adaptation can be done at runtime or at com-
pilation time.

In general, runtime adaptation is the preferred approach, but it isn’t always possi-
ble (usually, when you have drastic changes between versions). In that case, you
need to consider using an adapter implementation that works during compilation.
This lets you modify the output more directly and produce a syntax that looks like
version 1.0 but that works directly against version 2.0 of the DSL, as illustrated in fig-
ure 9.5. This tends to be more work than the runtime adaptation approach, but it
offers more options.

API/ . et A0 Figure 9.5 Adapting

- Model v2.0 - DSL versions during
compilation

Syntax v1.0

184

9.4.6

Versioning DSLs

We’ve now looked at how to make a new version of the engine accept scripts written
for the old version, but we’ve only briefly touched on going in the other direction:
changing old scripts to match the new version of the DSL.

The great-migration strategy

We discussed the possibility of updating all your scripts to match the new DSL version
(the abandon-ship strategy, in section 9.4.1), but that’s only practical if you can
update all the scripts. This often isn’t possible, but there is another way of handling
this: automatic updates.

Migrations

The database world faces a similar problem of change management and versioning.
Some of the strategies that were developed to deal with the problem are similar to
those discussed here (the additive-change strategy is a common approach).

One of the more interesting strategies developed for databases is the migration. A
migration describes the differences between two database versions, allowing you to
move between any two versions by applying the differences to the database.

In essence, the great-migration strategy is an application of the same idea, of auto-
matically moving a DSL script from one version to another. If you choose this
approach for versioning, | strongly recommend that you come up with a way to
describe the differences between DSL versions and have an engine apply them to the
script.

Implementing this is beyond the scope of this book, but I’ll point you to Boo’s quasi-
quotation and the BooPrinter compiler step, which will allow you to parse a file into
an AST, change the AST, and then print the AST back to Boo code.

Imagine having a migration wizard that automatically updates scripts from one DSL
version to the next. This would allow you to update even a large number of scripts
quickly, and you could offer it to third parties so that they could update their scripts
before deploying the new DSL version. This is a good solution, because it allows you to
keep forging forward with the DSL, without being hindered by backward-compatibility
concerns.

Unfortunately, this approach also has its own set of issues:

Developing a migration wizard that can handle real-world DSL usage can be
complex.

You need some way to ensure that the before and after behavior of scripts is
consistent. For example, you might also need to update tests during the migra-
tion process.

Automatic migration means automatic code generation, and that’s rarely a
good way of getting concise, easy-to-read and understand code. It can be done,
but it’s not easy.

9.5

9.5.1

Applying versioning strategies 185

My favorite approach for handling this is to parse the version 1.0 DSL script into an
AST, adapt it to the version 2.0 approach, and save it.

The major difference between this approach and the adapter strategy (shown in
section 9.4.5) is that migrations will explicitly move you to the new version, whereas,
with an adapter, you keep the old syntax around, so for version 3.0 you would need to
map version 1.0 concepts to version 3.0 concepts. I find it easier when there’s only a
single version boundary to bridge.

Because this is a common use case for adding graphical interfaces on top of textual
DSLs, I'll not go over the technique here, but rather point you to section 10.4 in chap-
ter 10. We’ll talk about persisting in-memory DSL models to a file.

And that’s quite enough theory. It’s time to see how those versioning strategies are
used.

Applying versioning strategies

Before we start applying versioning strategies, let’s look at what we’re going to change.
We’ll create a new version of the Quote-Generation DSL, adding the following

features:

A set of new operations: minimum memory and minimum CPU counts

An explanation for the requires operation

Listing 9.2 shows an example script that uses the current version of the DSL.

Listing 9.2 A script using the current version of the Quote-Generation DSL

specification @vacations:
requires @scheduling_work
requires @external_connections

specification @salary:
users_per_machine 150

specification @Qtaxes:
users_per_machine 50

specification @pension:
same_machine_as @health_insurance

We’ll start by adding new operations.

Managing safe, additive changes

Adding a new operation is generally a safe change, because you don’t modify the lan-
guage; you merely extend it. Anything that used to work will continue to work.

The requirement is to support operations that specify minimum memory and min-
imum CPU counts. As usual, we start by considering the desired syntax. The simplest
and most elegant solution for the problem is this (new syntax is shown in bold):

specification @taxes:
users_per_machine 50

186

CHAPTER 9 Versioning DSLs

min_memory 2048
min_cpu_count 2
This is a clear indication of what we want, so we’ll go with this approach. We’ll imple-
ment this change in small steps.
The first step is to run all the tests for the Quote-Generation DSL, and ensure they
all pass. Next, we can start defining the test scripts. Listing 9.3 shows them.

Listing 9.3 Test scripts for the new changes in the Quote-Generation DSL

UsingMinCpu.boo

specification @taxes:
users_per_machine 50
min_cpu_count 2

UsingMinMemory.boo

specification @taxes:
users_per_machine 50
min_memory 2048

Now we can write the tests for the script in listing 9.3, as shown in listing 9.4.

Listing 9.4 Tests for the new functionality in the Quote-Generation DSL

[Test]
public void Can_specify min_memory ()
{
var rule = dslFactory.Create<QuoteGeneratorRule> (
@"Quotes/UsingMinMemory.boo",
new RequirementsInformation (49, "taxes"));
rule.Evaluate() ;
Assert.AreEqual (2048, rule.Modules[0].MinMemory) ;
}

[Test]
public void Can_specify min_cpu_count ()
{
var rule = dslFactory.Create<QuoteGeneratorRule> (
@"Quotes/UsingMinCpu.boo",
new RequirementsInformation (49, "taxes"));
rule.Evaluate() ;
Assert.AreEqual (2, rule.Modules[0].MinCpuCount) ;
}

Now that we have the tests, we can start implementing the changes. We first add the
MinCpuCount and MinMemory properties to the Quote-Generation DSL’s System-
Module, as shown in listing 9.5.

Listing 9.5 Additions to the Quote-Generation DSL’s implicit base class

// on QuoteGeneratorRule.cs
public void min_memory (int minMemory)
{

currentModule.MinMemory = minMemory;

9.5.2

Applying versioning strategies 187

public void min_cpu_count (int minCpuCount)

{ currentModule.MinCpuCount = minCpuCount;

}

Now we can run all the tests to ensure that the new and old functionality both work
and that we haven’t got any regressions.

As you can imagine, the chance of introducing a breaking change using this
approach is small if you’re careful to make only additions, never modifications, to the
code. If you do need to modify existing code to support the new functionality, keep it
to a minimum and have tests in place to ensure that the observed behavior of the code
isn’t changed.

The change here was easy to make in a safe way, but not all changes are like that.
Let’s look at a change that requires modifying behavior in a way that results in a break-
ing change.

Handling required breaking change

In version 1.0 of the Quote-Generation DSL, the code in listing 9.6 is valid.

Listing 9.6 Valid version 1.0 Quote-Generation DSL script

specification @vacations:

requires @scheduling work

requires @external_connections
When starting to work with the Quote-Generation DSL for real, though, we discover a
problem: it isn’t clear why a particular module is required. Trying to figure out why
certain modules were required in certain configurations increases costs for the organi-
zation. We decide to request a reason, in the form of a human-readable string, when
requiring a module. This will make it clear why a certain module is required, without
any extensive debugging or effort. The benefits of better audit information are worth
the costs associated with updating all the rules.

We want something similar to listing 9.7.

Listing 9.7 Adding explanations to the Quote-Generation DSL

specification @vacations:
requires @scheduling work, "We need to schedule vacations as well"
requires @external_connections, "Needed in order to reserve places"

This is a easy change. Listing 9.8 shows the test for this feature.

Listing 9.8 Test that verifies explanation is attached to a requirement

[Test]
public void Can_specify_a_reasoning_for_requiring_a_module ()
{
var rule = dslFactory.Create<QuoteGeneratorRule> (
@"Quotes/WithRequiresExplanation.boo",
new RequirementsInformation (49, "vacations"));

188

CHAPTER 9 Versioning DSLs

rule.Evaluate() ;

Assert.AreEqual ("We need to schedule vacations as well",
rule.Modules[0] .RequirementsExplanations|["scheduling_work"]) ;
Assert.AreEqual ("Needed in order to reserve places",
rule.Modules[0] .RequirementsExplanations|["external_connections"]) ;

}

The implementation is just as simple. Adding a RequirementsExplanations dictionary
to the SystemModule and modifying the requires () method is shown in listing 9.9.

Listing 9.9 The modification to support explanations for required modules

public void requires(string moduleName, string explanation)

{
currentModule.Requirements.Add (moduleName) ;
currentModule.RequirementsExplanations.Add (moduleName, explanation) ;

}
That only took a few minutes, and we’re done. We need to update the tests as well, but

once that’s done, we’re ready to release it to user testing. Right?
Well, it’s not that simple. Here’s a bug report that this change would cause:

Boo.Lang.Compiler.CompilerError : simple.boo(2,5): BCE0017:

Boo.Lang.Compiler.CompilerError: The best overload for the method

BDSLiB.QuoteGeneration.QuoteGeneratorRule.requires (string, string)' is not

compatible with the argument list '(string)'.

And that bug is not alone. The issue is that there’s no association between the com-

piler error and the action that the user needs to take. We need better error handling.
We have an existing infrastructure in the .NET platform for handling such scenar-

ios. It’s called System.ObsoleteAttribute. We can use it as shown in listing 9.10.

Listing 9.10 Using the Obsolete attribute in your DSL

[Obsolete("use requires (moduleName, explanation) instead", true)]
public void requires (string moduleName)
{
throw new NotSupportedException() ;

}
Here’s the result from trying to execute an old version of the scripts:

BCEO144: Boo.Lang.Compiler.CompilerError:
'BDSLiB.QuoteGeneration.QuoteGeneratorRule.requires (string)' is obsolete.
use requires (moduleName, explanation) instead
This is a good, low-cost approach, but although this is much better than the original
error, we can do better.

What we’ll do is create a meta-method that matches the old requires () signature,
and generate a compiler error or a warning with context about the issue. Listing 9.11
shows such an example.

Applying versioning strategies 189

Listing 9.11 Generating context-sensitive compiler errors

[Metal

public static Expression requires (Expression moduleName)
{

var message = @"
Requiring a module without supplying an explanation is not allowed.
Please use the following syntax:
'requires " + moduleName + "', '" + moduleName +
@" is required because...";

CompilerContext.Current.Errors.Add (

new CompilerError (moduleName.LexicalInfo, message));

// Map to the correct call, by output call to
// requires (string, string), which is useful if I want a warning
// not an error
return new MethodInvocationExpression
{
Target = new ReferenceExpression("requires"),
Arguments = new ExpressionCollection
{
moduleName,
new StringLiteralExpression("No explanation specified")

}i
}

Now, when we execute an invalid script on this system, we’ll get the following error:

BCEOO000: Boo.Lang.Compiler.CompilerError:

Requiring a module without supplying an explanation is not allowed.
Please use the following syntax:

'requires 'scheduling work', 'scheduling work' is required because...'
I think you’ll agree that this is a much better error message to give to the user.

We have two different approaches for handling the deprecated requires signature.
We can either completely fail to compile this by creating a compiler error, as we’ve seen
in listing 9.11, or we can emit a warning about it. We can do this by modifying the code
in listing 9.10—change the second attribute parameter to false. In listing 9.11,
change Errors.Add(new CompilerError()) to Warnings.Add(new CompilerWarn-
ing (). We could also use [Obsolete] as a warning flag and forward the call to the new
requires method overload at runtime. Or we could do the same using the Meta
method.

We’ve given the user a much better error message, but what if there are 15,000
scripts to update? At this point, it’s a business decision about whether or not to
update all of those. A person would have to go over each and every one of them,
reverse engineer those scripts, and figure the business reasoning behind them. That’s
a long and expensive process, and businesses will often abort the attempt. But the
decision to go ahead with this or not should be driven by business considerations, not
by technical ones.

190

9.6

9.6.1

9.6.2

Versioning DSLs

Accommodating both options

In many cases, you’ll need to accommodate both options, at least for a certain period
of time. Using warnings instead of errors is a good way to start. You could add warn-
ing handling to the DSL environment (in the editor, for example).

You could also add logging to the DSL so you can track troublesome scripts and pin-
point scripts that haven’t been converted. A crazy option would be to have the com-
piler email the script author a request to update the script whenever the script is
compiled. This might motivate users to update their scripts, but | suggest moving far
away before you load this into production.

We’ve discussed several examples of implementing versioning in our systems. Let’s see
how it’s done in some real-world projects.

DSL versioning in the real world

In the real world, there are much harsher constraints than I have outlined so far. The
DSL changes and business implications described in section 9.5.2 are only a few of the
constraints you’ll have to deal with when you release your DSL into the wild and need
to support new versions. In this section, we’ll look at the versioning strategies of three
different DSLs, all of them used in the wild by third parties, and at how each has dealt
with versioning over time.

Versioning Brail

Brail is a text-templating language based on Boo that’s primarily used in MVC frame-
works. Brail was born as a view engine for the Castle MonoRail MVC framework, and
there is a version available for the ASP.NET MVC framework as well. The initial release
of the language (then called Boo on Rails) was in July 2005. Since then, it has been
actively developed, and new features and versions have come out at a regular pace.

Brail is used by a wide variety of people, for a large number of scripts, so any break-
ing changes in the language have significant implications for all users. Because of
that, major efforts have been made to ensure that every feature of the language is cov-
ered with tests, and, as a general rule, a change that breaks the tests doesn’t get into
the language.

Over time, there have been a few cases where a change has broken functionality
that people were relying on. They were treated as bugs, regression test cases were cre-
ated, the bug was fixed, and Brail was re-released. In this case, backward compatibility
is the Holy Grail. If there is a choice between a new feature and a breaking change,
the new feature is dropped.

Not all languages are treated this way. Let’s examine a different approach.

Versioning Binsor

Binsor has been around since September 2006. It’s a configuration DSL for the popu-
lar IoC Castle Windsor container. In fact, it started life somewhere around March

9.6.3

DSL versioning in the real world 191

2006, but it took a while for the idea to come to fruition. Binsor has been actively
developed ever since, and has had several major releases since its inception.

One of the major differences between Brail and Binsor is that Binsor scripts tend
to be far fewer in number than Brail templates. Where a typical application can have a
minimum of a few dozen Brail templates (and I have seen applications with hundreds
and thousands), most applications where Binsor is used have only a small number of
Binsor scripts, typically one or two. As such, the effect of a breaking change is much
less severe. It’s feasible to modify the scripts if necessary.

The versioning approach for Binsor is much more lax than the one used for Brail,
but that isn’t to say that breaking changes are acceptable. Breaking changes are still a
hassle to deal with, and they should be avoided. But given a good enough reason,
breaking changes do and will occur. They tend to be small and focused to limit their
effects, but they exist.

This is the middle road, and it works well when your next version has a high level
of fidelity to the previous version. Now let’s consider the case where there’s a high
level of change.

Versioning Rhino ETL

Rhino ETL is a project that started in July 2007. It aims to be a programmer-friendly
extract-transform-load (ETL) tool. It’s textual, concise, and rather nice, if I say so
myself. The current version has two sets of APIs, so you can write client code in G# or
use a DSL to gain additional clarity. The first version relied heavily on the DSL alone,
and was not accessible outside the DSL.

Shortly after Rhino ETL was first released, several issues were identified that made
it hard to deal with. These specifically related to the way you would debug scripts and
the entire ETL process. There were also performance problems related to the way the
project moved data around. These interesting problems necessitated the need for a
new version.

A new model was chosen for the new version—one that was more performant and
scalable—and the decision was made to ensure that the API would be accessible from
both C# and the DSL. That caused significant issues for backward compatibility.
Because of the youthfulness of the tool, it wasn’t that much of a problem, but even if it
had been, there was no easy way to reconcile the differences between the two models.

Listing 9.12 shows the original syntax of Rhino ETL, and listing 9.13 shows the cur-
rent syntax. Both listings perform the same task.

Listing 9.12 The original syntax of Rhino ETL

import file from connections.retl

source UsersSource, Connection="Connection":
Command: "SELECT Id, Name, Email FROM Users_Source"

transform SplitName:
Row.FirstName = Row.Name.Split (char(' '))[0]
Row.LastName = Row.Name.Split(char(' '))I[1]

192

9.7

Versioning DSLs
destination UsersDestination, Connection = "Connection":
Command: """INSERT INTO Users_Destination
(UserId, [First Name], [Last Name], Email)

VALUES (@Id, @FirstName, @LastName, @Email)

pipeline CopyUsers:
UsersSource >> SplitName
SplitName >> UsersDestination

target default:
Execute ("CopyUsers")

operation split_name:
for row in rows:
continue if row.Name is null
row.FirstName = row.Name.Split (
row.LastName = row.Name.Split()

) [0]
[11]
yvield row
process UsersToPeople:
input "test", Command = "SELECT id, name, email FROM Users"
split_name ()
output "test", Command = """
INSERT INTO People (UserId, FirstName, LastName, Email)

VALUES (@QUserId, @FirstName, @QLastName, @Email)

row.UserId = row.Id

As you can see, there are significant differences between the two. I don’t want to get
into a comparison of the two models, but there are differences not just in the syntax,
but in the ideas that they represent.

This is a good example of a situation when the abandon-ship strategy was used to
the benefit of all. When there is a radical model change, it’s much easier to start from
a blank slate and end up with a DSL that closely represents the model rather trying to
shoehorn one model into another.

If you have existing clients relying on the old behavior, it may be beneficial to
retain the old system for a while, or to write an adapter from the old system to the new,
but in general the old system should be retired as soon as is practical.

So far we’ve talked a lot about versioning scenarios, but we haven’t touched on one
important concept. When should we version?

When to version

A versioning boundary is the point at which you decide you need to start worrying
about versioning. In general, there are two types of these boundaries that you should
care about: the first one, and all the rest.

Until you reach the first cutoff point, you have no versioning concerns. After that
point, which is typically associated with a 1.0 release of the software, you need to start
considering versioning with each decision that you make.

At the same time, you don’t need to care about the versioning of anything new that
you create until you reach the next boundary. None of the changes you make from

9.8

Summary 193

versions 1.0 to 2.0 have versioning implications until you’ve released 2.0. This is
important when it comes to considering the regression suite. You shouldn’t include
tests there for new features—not until they have been released and instantly become
regression tests that you must never break or change.

Deciding when to define a versioning boundary is important, and something that
should be made explicit in the tests and the release process. Otherwise you might trig-
ger regression bugs (typically of higher priority than standard bugs, and there is a lot
more consideration involved before making a change to a regression test).

Summary

In this chapter, we looked at how to ensure the longevity of our languages and how to
help them survive and prosper from one version to the next. Of particular importance
are the tests and regression test suite, which ensure that existing behavior isn’t
changed in an incompatible way, breaking client scripts.

We also considered the implications of versioning on the design and implementa-
tion of DSLs. In particular, facades are important in separating the DSL from the appli-
cation’s model and API, allowing them to be developed independently. This
separation goes a bit further than merely a facade. It can ensure that the DSL engine is
usable even without the DSL.

This seems like a strange requirement, but it’s an important one. You want to be
able to modify the engine without modifying the DSL, and vice versa. In addition, you
might want to have several dialects of the same language (typically several versions)
based on the same engine. This tends to be difficult or impossible if there isn’t a good
degree of isolation between the two.

Finally, the DSL environment (evaluation order, invocation call sites, and naming
conventions) and its implication on versioning are something that most people tend
to forget about, until they find out how critical it is for the usage of the language.

We walked through several versioning strategies, from always starting fresh, to
allowing no changes, to languages with multiple versions, and even automatic migra-
tion tools. We also applied a few of those strategies to the Quote-Generation DSL.
Then we saw how real-world DSLs have dealt with the versioning problem, and how
various constraints led to the different choices that were made.

Versioning is a big topic, and there isn’t enough room in a single chapter to cover
it all. Most of the guidance about versioning is directly applicable for APIs as well, and
I strongly recommend referring to other sources to learn more about this topic. One
interesting source is the .NET Framework Standard Library Annotated Reference, volume 1,
by Brad Abrams (Addison Wesley Professional), where you can see how much atten-
tion was paid to versioning concerns.

At this point, we’re surely ready to release our DSL to the world, right? Well, from
the technical perspective, certainly. But we’re still missing something: a bit of shine, a
hint of polish. Creating a DSL is easy, but making it slick and professional is another
matter. That’s what we’ll spend the next chapter discussing.

In this chapter

Creating an IDE for your DSL
Integrating an IDE into your application
Displaying DSL execution

DSL code generation

We’ve talked about building DSLs, structuring them, adding advanced language
options to them, integrating them into our applications, creating unit tests, and
even creating test languages. We even looked at versioning them after they were in
production. We can create working DSLs, and quite useful ones, but creating a pro-
fessional-level DSL takes a bit more. Sometimes it takes a lot more.

A professional DSL is composed of more than the language’s code; it also
includes the DSL environment, the tools that are provided, and the overall experi-
ence of using it. That generally means some sort of an IDE, and it also means a
greater investment in the tooling that you provide.

The IDE is usually the least of your worries. It’s the overall tooling that should
concern you. For simple DSLs, you can get away with editing the language in

194

10.1

Creating an IDE for a DSL 195

Notepad, and managing everything on your own. For more complex DSLs, you have to
provide additional tool support to make the DSL easier to use.

We’ll use the Quote-Generation DSL as our example for this chapter. This DSL is a
rule engine, at its heart. This implies that we’re going to have a lot of rules: 15,000
rules is a figure from one real-world quote-generation system. Even managing hun-
dreds of rules is a challenge, and we need to consider that when we build the DSL.
The approach we have right now, of keeping a set of files in a directory, obviously isn’t
going to scale to that level. The DSL could handle it, but the complexity of managing
it is too cumbersome. And that’s only considering the naming issues.

An additional problem we’ll face is tracing. Suppose we don’t like the quote we get
for a certain scenario, and we need to understand how the DSL came up with it. We
can’t physically debug 15,000 scripts in any reasonable amount of time, so we need
another way of handling that. Usually, this means tracing, which involves active coop-
eration from the DSL itself.

Furthermore, although the textual representation of a DSL has a lot of advantages
(such as clarity, and the ability to use source control and grep), it’s often advantageous
to have a graphical representation as well. It can be clearer in some situations, it might
help sell the DSL, or it could be used as a full-fledged editable view of the DSL.

Last, but not least, you might need to provide an IDE environment for your appli-
cation, with syntax highlighting and code completion. We’ll start with this topic first,
because this is likely what you’re most interested in.

Creating an IDE for a DSL

An IDE can make or break your DSL in terms of acceptance. Regardless of anything
else, having an IDE available implies a high level of dedication to this DSL, and thus a
high- quality product.

As it turns out, creating an IDE is not that dif-

-d U - - B

ficult. We’ll look at several off-the-shelf compo-
specmication E

nents, but before we do, take a look at figure requires

10.1. It shows a trivial implementation of syntax RIENES

highlighting for the Quote-Generation DSL. =

You probably won’t be able to see the differ-
. specification 2
ence all that clearly in the figure, but the key- users_per_machine 50

words have different syntax highlighting. It’s easy | [specfication :

to create basic effects like this, as the code in list- same_machine_as
ing 10.1 shows, but the complexity grows signifi-
cantly if you decide to roll your own IDE without Figure 10.1

using existing components. Hand-rolled syntax highlighting

Listing 10.1 Implementing hand-rolled syntax highlighting

private void codeTextBox_TextChanged (object sender, EventArgs e)
{

// Save current selection

196

10.1.1

Creating a professional UI for a DSL

int prevSelectionStart = codeTextBox.SelectionStart;
int prevSelectionLength = codeTextBox.SelectionLength;

// Reset coloring

codeTextBox.SelectionStart = 0;
codeTextBox.SelectionLength = codeTextBox.TextLength;
codeTextBox.SelectionColor = DefaultForeColor;

// Define keywords
var keyWords = new[] { "specification", "requires",
"users_per_machine", "same_machine_as" };
foreach (string keyWord in keyWords)
{
// Match keywords using regex and color them
MatchCollection matches = Regex.Matches (codeTextBox.Text, keyWord) ;
foreach (Match match in matches)
{
codeTextBox.SelectionStart = match.Index;
codeTextBox.SelectionLength = match.Length;
codeTextBox.SelectionColor = Color.DarkOrchid;

}

// Match references (@name) and color them

foreach (Match match in Regex.Matches (codeTextBox.Text, @"@[\w\d_]+"))

{
codeTextBox.SelectionStart = match.Index;
codeTextBox.SelectionLength = match.Length;
codeTextBox.SelectionColor = Color.DarkSeaGreen;

}

// Find numbers and color them

foreach (Match match in Regex.Matches (codeTextBox.Text, @" \d+"))

{
codeTextBox.SelectionStart = match.Index;
codeTextBox.SelectionLength = match.Length;
codeTextBox.SelectionColor = Color.DarkRed;

}

// Reset selection
codeTextBox.SelectionStart = prevSelectionStart;
codeTextBox.SelectionLength = prevSelectionLength;
}
I will say up front that the code in listing 10.1 suffers from multiple bugs, issues, and is
generally not suited for anything but the simplest scenarios. Syntax highlighting can
be done, but it generally suffers from far too much complexity to be useful.

I strongly suggest avoiding rolling your own components for this. The scope of the
work is huge—much bigger than you would initially assume. You’re far better off
using an existing component, and you’re probably already familiar with one called
Visual Studio.

Using Visual Studio as your DSL IDE

Using Visual Studio as your DSL IDE seems ideal. It’s a mature product with a lot of
options and capabilities. With Visual Studio 2008, there is also the option of using

Creating an IDE for a DSL 197

Visual Studio 2008 Shell, which allows you to plug your own language into the IDE. It’s
even freely redistributable, and you can create standalone applications that are based
on Visual Studio (using isolated mode). For all intents and purposes, this seems like
the ideal solution. But there are a few problems with this approach.

NOTE Visual Studio 2010 promises much easier integration options, but I
haven’t had the chance to really take it for a spin, so I can’t comment on
how it compares with VS 2008 from the extensibility standpoint when
adding a custom language.

First, Visual Studio isn’t an embeddable solution. You can’t add it as part of your own
application. Second, and far more critical, the API that Visual Studio exposes is COM
based (there is a managed API, but it’s a thin wrapper) and it isn’t friendly to use. In
addition to that, Visual Studio assumes that if you host a language inside it you’ll pro-
vide all the services that a language needs, and that’s usually a far bigger task than
you’ll want to take on.

There are other issues, mostly related to the development and deployment of
Visual Studio’s language service, that make this more difficult than it might be. On
the plus side, though, there’s quite a lot of documentation on how to develop exten-
sions for Visual Studio, and there are several screencasts on MSDN that can take you a
long way.

There’s also a project being developed that performs most of the work for you:
Boo Lang Studio (http://codeplex.com/BoolangStudio) is an add-on for Visual Stu-
dio that provides Boo support in Visual Studio. It’s an open source project, so you can
take the code, modify it to fit your own language, and save a significant amount of
time. The major detraction, from my point of view, is that you’re forced into Visual
Studio’s way of working. You have an IDE in your hands, not an application that
embeds a DSL editor. Depending on your needs, that might be exactly what you want,
but I like having something that’s lightweight in my hands. As we’ll see in the rest of
the chapter, creating a usable IDE for a DSL shouldn’t take long. Using Visual Studio
to do the same task takes an order of magnitude longer and is much more involved.

NOTE As I write this, Boo Lang Studio hasn’t been completed because of the
difficulty of working with the Visual Studio API; it is currently waiting for
the release of Visual Studio 2010 to see if developing a language service
there will be easier.

Because of this issue, and the extensive information already available on Visual Stu-
dio, I won’t discuss it further. If you’re interested in this approach, though, you can
start with the following two videos from MSDN and go from there:

How Do I: Create a Language Service? http://msdn.microsoft.com/en-us/
vstudio/bb851701.aspx

How Do I: Add Intellisense Functionality to My Language Service? http://
msdn.microsoft.com/en-us/vstudio/bb985513.aspx

http://codeplex.com/BooLangStudio

198

10.1.2

10.2

Creating a professional UI for a DSL

If you choose to go with this approach, I strongly recommend using Boo Lang Studio
as a base instead of starting from scratch.

If you don’t like the full-blown Visual Studio approach, what other options are
there?

Using #develop as your DSL IDE

Visual Studio isn’t the only IDE that we can extend. We also have SharpDevelop
(#develop).

#develop is an open source .NET IDE that provides a comparable experience to
Visual Studio. Because #develop is built on .NET and doesn’t have many years of leg-
acy code behind it, it tends to be much easier to work with.

For example, setting up a new syntax highlighting scheme in Visual Studio
involves building a lexer and parser. Setting up the same thing in #develop involves
writing a simple (and readable) XML file. The Visual Studio approach is focused on
providing maximum capabilities, whereas the #develop approach is focused on a low
learning curve.

Like in Visual Studio, you can extend #develop to provide your own IDE experi-
ence. There’s a free ebook, called Dissecting a C# Application: Inside SharpDevelop, that
discusses the design and implementation of #develop in depth (available from http://
damieng.com/blog/2007/11/08/dissecting-a-c-application-inside-sharpdevelop).

But again, building a complete IDE is something I'd like to avoid. #develop supports
Boo natively, so you might be able to get away with providing #develop to your users as-
is, perhaps with a customized syntax highlighting scheme (which is a simple XML file).
But the scenario I want to focus on isn’t building IDEs—it’s integrating the DSL into
your application. And for that, we don’t need an IDE; we need an IDE component.

Integrating an IDE with a DSL application

The main difference between creating an IDE and integrating an IDE lies in the capa-
bilities that you provide the user with. In the IDE scenario, you're providing the user
with the tools to do development. In the integration scenario, you’re allowing the user
to work with the DSL.

This is an important difference, because it has big implications for your target
audience. You would give an IDE to developers, but that isn’t an appropriate tool to
give to non-developers, and it doesn’t demo as well as a tailored tool.

When you’re working with code, syntax highlighting and code completion aren’t
something you want to build yourself, but there are existing packaged components
that will do it for you. For example, the following IDE components can greatly ease
creating an integrated editing experience inside your application:

Actipro SyntaxHighlighter—On the commercial side, Actipro SyntaxHighlighter
comes highly recommended. I haven’t used it myself, but several people I trust
have recommended it. It’s available at http://www.actiprosoftware.com/
Products/DotNet/WindowsForms/SyntaxEditor/Default.aspx.

http://damieng.com/blog/2007/11/08/dissecting-a-c-application-inside-sharpdevelop
http://www.actiprosoftware.com/Products/DotNet/WindowsForms/SyntaxEditor/Default.aspx

NOTE

Integrating an IDE with a DSL application 199

#develop—I1 have used #develop, and one of the nicer things about it is that
you can extract pieces of the IDE and use them in your own application. In
order to create an IDE for a DSL, you’ll want to use the ICSharpCode.Text-
Editor DLL, which contains the text editor and the baseline facilities to enable
code completion.

AqiStar. TextBox—For WPF applications, I can’t say enough good things about
AqiStar (http://www.aqistar.com/) text editor. It’s similar to ICSharpCode.Text-
Editor from the point of view of configuration (down to using the same XML
syntax), it’s simple to work with, and it provides all the features I require.

I will refer to the ICSharpCode.TextEditor component as #develop for
the rest of this chapter. #develop is a .NET IDE that you can make use of
in any .NET language, but more to the point, it comes prebuilt with sup-
port for Boo, which you can customize. #develop is open source and is
provided under the LGPL license, so you can make use of it in commer-
cial applications.

Listing 10.2 shows how you could use #develop to embed a syntax highlighting text-
box into your application. Because #develop natively supports Boo, it’s fairly easy to
get the Boo syntax.

Listing 10.2 Embedding a Boo editor in our application

public class TextEditorForm : Form

{

public TextEditorForm()

{

}

// Create a new text editor and add it to the form
var editorControl = new TextEditorControl
{
Dock = DockStyle.Fill
Y
Controls.Add(editorControl) ;
// This controls how the editor handles indentation
editorControl.Document.FormattingStrategy =
new BooFormattingStrategy () ;
// Set the syntax highlighting options
editorControl.SetHighlighting ("Boo") ;

// This class was copied from #develop's Boo Binding
public class BooFormattingStrategy : DefaultFormattingStrategy

{

// Disable the default way of handling lines
public override void IndentLines (TextArea textArea, int begin, int end)

{
}

// Indent the next line whenever the line ends with a colon
protected override int SmartIndentLine (TextArea area, int line)

http://www.aqistar.com/

200 CHAPTER 10 Creating a professional Ul for a DSL

IDocument document = area.Document;
LineSegment lineSegment = document.GetLineSegment (line - 1);
if (document.GetText (lineSegment) .EndsWith(":"))
{
LineSegment segment = document.GetLineSegment (line) ;
string str = base.GetIndentation(area, line - 1)
+ Tab.GetIndentationString (document) ;
document .Replace (segment .Offset, segment.Length, str
+ document.GetText (segment)) ;
return str.Length;
}

return base.SmartIndentLine (area, line);

}

The code in listing 10.2 is all you need. If you run
this application, you’ll get a working Boo editor that ;| gef Tesc():
you can play around with, as shown in figure 10.2. g SRR T S
This is impressive, particularly when you con-
sider that it takes less code to wire up the editor
component than it took to (badly) handle syntax
highlighting manually (in listing 10.1).
But this is still not enough. We have a Boo edi-
tor, but what we want is an editor for our DSL. Figure 10.2 A standalone Boo editor

|

10.2.1 Extending #develop highlighting for our DSLs

I already mentioned that you can use XML to change the way the #develop TextEditor
handles highlighting, so let’s examine this in more depth.

Listing 10.3 shows a simplified version of the Boo language definition. (The full
language definition is part of the #develop source code, and can also be found in the
source code for this book.)

Listing 10.3 A simplified version of the Boo language definition

<?xml version="1.0"?>
<SyntaxDefinition name="Boo"
extensions=".boo">
<Environment>
<Default bold="false"
italic="false"
color="SystemColors.WindowText"
bgcolor="SystemColors.Window" />
<Selection bold="false"
italic="false"
color="SystemColors.HighlightText"
bgcolor="SystemColors.Highlight" />
</Environment>

<Digits name="Digits"
bold="false"

Integrating an IDE with a DSL application 201

italic="false"
color="DarkBlue" />

<RuleSets>
<RuleSet ignorecase="false" >
<Delimiters>
& &1t; >~1@8% % () —+=|\#/{}[1:;"" , .?
</Delimiters>

<Span name="LineComment"
stopateol="true"
bold="false"
italic="false"
color="Gray" >
<Begin >#</Begin>

<KeyWords name="JumpStatements"
bold="false"
italic="false"
color="Navy" >
<Key word="break"/>
<Key word="continue"/>
<Key word="return"/>
<Key word="yield"/>
<Key word="goto" />
</KeyWords>

</RuleSet>
</RuleSets>
</SyntaxDefinition>
Of particular interest in this listing is the way the syntax highlighting is defined. You
don’t have to perform your own parsing; you can instead define the rules for parsing,
and #develop will figure out the parsing rules on its own.

For example, you can see how a LineComment is defined. That’s how #develop
knows that # starts a line comment. Another example is defining keywords. All you
need to do is register them, and #develop will take it from there.

Armed with that knowledge, you can start extending the language definition to
support your own keywords. Doing so is as simple as adding the contents of listing 10.4
to the <RuleSet> element defined in the existing highlighting definition (in
listing 10.3).

Listing 10.4 Adding keywords to the language definition

<MarkFollowing markmarker="true"
bold="false"
italic="false"
color="Purple">@</MarkFollowing>

<KeyWords name="DslKeywords"
bold="false"
italic="false"
color="DarkOrange" >

202

CHAPTER 10 Creating a professional Ul for a DSL

<Key word="specification"/>

<Key word="users_per_machine"/>

<Key word="requires"/>

<Key word="same_machine_as"/>
</KeyWords>
When you do this, remember to change the language name, or you’ll get naming col-
lisions with the default Boo language. For example, I named my new language defini-
tion “dsl”.

NOTE When adding listing 10.4 to the existing Boo definition file (Boo.xshd),
you need to place this code between the last <MarkPrevious> and the
first <KeyWords> elements in the first ruleset in the file, in order to main-
tain the file schema.

The <MarkFollowing> tag is an interesting one. In listing 10.4, it paints all module ref-
erences (such as @vacations) in purple. This tag will mark all non-delimiters (delimit-
ers are specified in listing 10.3) following the at sign (@) with the appropriate color.
It’s surprisingly easy to plug everything together.

To make the text editor recognize your language, you also need to modify
listing 10.2 to register the new file. Listing 10.5 shows how to do this (replace the last
line in the TextEditorForm constructor in listing 10.2 with the full text in listing 10.5).
The results are shown in figure 10.3.

Listing 10.5 Registering the language definition and setting the highlighting strategy

HighlightingManager .Manager.AddSyntaxModeFileProvider (

new FileSyntaxModeProvider (@"C:\Path\to\language\definition"));
//.. setup text editor
editorControl.SetHighlighting("dsl") ;
The full syntax definition is covered in depth in chapter 9 of Dissecting a C# Applica-
tion: Inside SharpDevelop. 1 strongly suggest that you read it, and use the #develop
forums, when creating Uls based on ICSharpCode.TextEditor.

I hope that I have given you a sense of how easy it is to define the syntax highlight-
ing rules and create a rich editor experience. Now let’s look at code completion.

i Smarter Sytax Highlighting =10l xI
L Er——y— =

specification @vacations:
egq ez @scheduling_work
= @external connections

AN

5 specification @salary:

6 users_per machine 150

8 ification @taxes:

9 users per I ine 50

I n @pension:

iz same_machine_as @health_insurance

: _l;l Figure 10.3 Custom keywords
i | 4 highlighting in action

Integrating an IDE with a DSL application 203

10.2.2 Adding code completion to our DSL

Code completion is a killer feature that can make all the difference in using a lan-
guage, butit’s significantly more difficult to define than syntax highlighting rules. The
main problem is that you need to deal with the current context.

Let’s take a look at what code completion could do for the Quote-Generation DSL.

On an empty line, show specification

On a specification parameter, show all available modules

On an empty line inside a specification block, show all actions (requires,
users_per_machine, same_machine_as)

On an action parameter, find appropriate values (available modules for the
requires and same_machine_as actions, prespecified user counts for the
users_per_machine action)

This doesn’t even deal with code completion
for the CLR API that we could use.

#develop offers the baseline facilities to
deal with code completion, but the logic of
deciding what goes where needs to be writ-

You can’t re-create
Visual Studio in an hour

The approach that | outline here
will give you a functional IDE for a

ten, and you have to deal with it in some
fashion. We will explore the facilities that
#develop gives us for handling code comple-
tion in the following sections.

There are a couple of interesting infra-
structure classes that we can make use of.
First, there’s the CodeCompletionWindow,
which will display the members that the code
completion code will suggest to the user.
Next, there’s the implementation of ICom-
pletionDataProvider, which is how you
provide #develop with the information to be
displayed.

Listing 10.6 shows how you can hook up
the code for code completion.

small cost. But if you're truly inter-
ested in a full-fledged IDE, rather
than embedding DSL editing into
the application, this isn’t the
approach you should take.

Instead, you should focus on cre-
ating a language binding to either
#develop or Visual Studio. Both
already have base binding for Boo,
which you can extend to map to
your own language. But this is not
a trivial task. Having the full Visual
Studio experience will take a sig-
nificant investment.

Listing 10.6 Hooking up the events to support code completion

private void RegisterCodeCompletionHandling()

{

var textArea = editorControl.ActiveTextAreaControl.TextArea;
textArea.KeyDown += delegate(object sender, KeyEventArgs e)

{

if (e.Control == false)
return;
if (e.KeyCode != Keys.Space)

return;

204

Creating a professional UI for a DSL

e.SuppressKeyPress = true;
ShowCodeCompletion ((char) e.KeyValue) ;
}i
}

private void ShowCodeCompletion (char value)
{
ICompletionDataProvider completionDataProvider =
new QuoteGenerationCodeCompletionProvider (intellisenseImagelList) ;

codeCompletionWindow = CodeCompletionWindow.ShowCompletionWindow (
this, // The parent window for the completion window
editorControl, // The text editor to show the window for
"", // Filename - will be passed back to the provider
completionDataProvider, // Provider to get the list of completions
value // Key pressed - will be passed to the provider
)

if (codeCompletionWindow != null)

{
// ShowCompletionWindow can return null when the provider
// returns an empty list
codeCompletionWindow.Closed += CloseCodeCompletionWindow;

}

The code in listing 10.6 registers to the KeyDown event and invokes code completion if
Ctrl-Space is pressed. The ShowCodeCompletion () method is where we start to deal
with the #develop code completion APL

We start by creating an instance of QuoteGenerationCodeCompletionProvider.
This class is the heart of our code completion effort, and we’ll discuss it shortly. For
now, all you need to know is that it’s where we decide what the user will be shown.
Note that the intellisenseImageList is passed to the code completion provider so it
can later show the list to the user using the code completion window. (Yes, the code
completion provider and the code completion window work closely together.)

Next, we create the code completion window, which will call our code completion
provider to check what needs to be done. The parameters for this should be fairly
obvious.

Last, we register to close the window when needed.

That’s about it for the common infrastructure. Now we need to start digging into
QuoteGenerationCodeCompletionProvider. Figure 10.4 shows the interface that it
implements. It has three properties:

»)|

| ICompletionDataProvider
Interface
2
[= Properties
f Defaultindex
- Imagelist
ﬁ} PreSelection
= Methods
© GenerateCompletionData
© InsertAction
V ProcessKey

Figure 10.4 The ICompletionDataProvider
is used by the #develop API to figure out how to
show code completion information to the user.

Integrating an IDE with a DSL application 205

= DefaultIndex—The index of the item you want to be foo.tos|

selected in the list of suggestions you show the user. ficstmg
= ImageList—The icons for the items in the list. Figure 10.5 How

= PreSelection—This one is a bit complex to explain. Fig- preselecting is
ure 10.5 shows an example of preselection. presented to the user
Let’s say that the user has invoked code completion and started
to type. In the example in figure 10.5, the user typed “tos”. The code completion
provider has determined that a good match for that is the ToString method. The user
selects that option and presses Enter.

At this point, inserting the text into the document would be a mistake, because it
would resultin foo.tosToString (), which is obviously not a desirable result. Preselec-
tion helps out by instructing #develop what should be included in the selection and
what should be removed when the new code is inserted.

The ProcessKey method decides whether to continue with the code completion
dialog or bring it to its conclusion. A typical implementation of that is shown in
listing 10.7.

Listing 10.7 Deciding whether to continue code completion based on current character

public CompletionDataProviderKeyResult ProcessKey (char key)
{
if (char.IsLetterOrDigit(key) || key == '_")
{
return CompletionDataProviderKeyResult.NormalKey;
}
return CompletionDataProviderKeyResult.InsertionKey;

}
In this case, if the user is typing a symbol (alphanumeric or underscore), code com-
pletion should continue; otherwise, it terminates the code completion and inserts the
selected item.

The InsertAction() method decides where to place that selected item. A simple
implementation of that is shown in listing 10.8.

Listing 10.8 Inserting code completion item into the document

/// <summary>
/// Called when an entry should be inserted. Forward to the insertion
/// action of the completion data.
/// </summary>
public bool InsertAction(
ICompletionData data,
TextArea textArea,
int insertionOffset,
char key)

textArea.Caret.Position = textArea.Document.OffsetToPosition/(
Math.Min (insertionOffset, textArea.Document.TextLength)
)i

return data.InsertAction(textArea, key);

206

10.2.3

Creating a professional UI for a DSL

In listing 10.8, we first find the appropriate place to insert the text (by changing the
caret position based on the text offset) and then insert the data at that location by call-
ing InsertAction.

So far, we’ve dealt only with the UI of code completion, and there’s nothing
that’s particularly important for the application. Even this tiny API has a lot of func-
tionality built in, and you can add a lot of capabilities to streamline the workflow
using the options we’ve just looked through. You can find more information about
creating a good user experience in the #develop book and in the #develop forums:
http://community.sharpdevelop.net/forums/.

Let’s now focus on the functionality of the code completion provider, rather than
on the Ul issues.

Adding contextual code completion support for our DSL

Regardless of the infrastructure that you use to implement it, a good code completion
function is based on a simple question: from the current position of the caret (the
term used in #develop to refer to the cursor position in the document), what are the
possible valid options the user could write?

In order to implement this, we need to know two things. First, we need to know
where we are in the text, and not only the caret position, but what this position means.
Going back to the Quote-Generation example, are we at the beginning of an empty
line? Are we at the end of a specification statement? Are we at the end of a
requires statement? Once we know that, we need to look at the overall context to
decide what the user’s options are.

These two actions are completely independent of how you display the selections
(whether by using #develop, integrating a commercial control, or using Visual Stu-
dio). We’re going to look at them in the context of a specific tool (#develop), but the
same approach is used with any tool. And with that said, let’s get right to the task of
figuring out the current context.

The basic approach is simple: we know the current caret position, and we have the
text in the editor. Now we need to figure out what the current context is. This gener-
ally involves parsing the text and finding the node that matches the position of the
caret. With Boo, we can invoke the BooParser.ParseString() method to get the
abstract syntax tree (AST) of the code in question, which we can traverse to find the
appropriate node.

This is a good solution for high-end needs, but for a simple scenario there’s an
even simpler solution. #develop has already parsed the code to display it properly, and
it makes this information available to us. This way, we don’t have to do any extra work.
Another point in favor of the #develop approach is that it’s already highly focused on
displaying the items, whereas the Boo parser’s approach is more focused on textual
and processing needs.

The #develop parser isn’t sophisticated, but as long as it fits your needs, you can
get a long way fast with it. Listing 10.9 shows how to retrieve and use the parser
information.

http://community.sharpdevelop.net/forums/

Integrating an IDE with a DSL application 207

Listing 10.9 Getting the current context and making decisions based upon it

public ICompletionData[] GenerateCompletionData (
string fileName, TextArea textArea, char charTyped)

TextWord prevNonWhitespaceTerm = FindPreviousWord (textArea) ;
if (prevNonWhitespaceTerm == null)
return EmptySuggestion (textArea.Caret) ;

string name = prevNonWhitespaceTerm.Word;
if (name == "specification" || name == "requires" ||
name == "same_machine_as" || name == "@")

return ModulesSuggestions() ;
}
int temp;
if (name == "users_per_machine" || int.TryParse (name, out temp))
{
return NumbersSuggestions() ;
}
return EmptySuggestion (textArea.Caret);

}

private static TextWord FindPreviousWord (TextArea textArea)
{
LineSegment lineSegment =
textArea.Document.GetLineSegment (textArea.Caret.Line) ;
TextWord currentWord = lineSegment.GetWord (textArea.Caret.Column) ;
if (currentWord == null && lineSegment.Words.Count > 0)
currentWord = lineSegment.Words|[lineSegment.Words.Count - 1];
// We want the previous word, not the current one,
// in order to make decisions on it.
int currentIndex = lineSegment.Words.IndexOf (currentWord) ;
if (currentIndex == -1)
return null;

return lineSegment.Words.GetRange (
0,
currentIndex)
.FindLast (word => word.Word.Trim() != "");
}
The FindPreviousWord () method (or its more generic cousin, FindRelevantExpres-
sion()) is responsible for answering, “What is the current DSL context for the current
caret position?” This method takes the text editor as an argument and uses the
#develop API to find the current word. A word, in #develop terms, is a token that’s
being highlighted in a certain way.
We want the previous word, not the current one, because it’s the previous word

that will provide the context. For example, assume that we currently have this text in
the editor:

specification [caret position]

If the user invokes code completion now, there is no current word, because it’s posi-
tioned at the end of the line, so we go back to the previous one.

208

Creating a professional UI for a DSL

Another scenario is when we have this text in the editor:
specification @vac[caret position]

In this case, the current word is still empty, because it’s positioned at the end of the
line again, but we select the vac as the current word, back off one to the @, and return
@ as the previous word.

The last condition occurs if the user invokes code completion when they’re in the
middle of a sentence, like this:

specification [caret position]@vac

Now the current word is the @, and we back off to specification, which is what we’ll
return.

The GenerateCompletionData() method makes the decisions. This method
receives the current word and decides how to act. In more complex scenarios, we’d
probably want to deal with the current context, such as what items are in scope, and
GenerateCompletionData() can delegate the final decision about what to display to
one of several functions, depending on the context.

If we’re at the beginning of a line, we’ll show the empty selection. If we’re in a
specification (or same_machine_as or requires), we’ll show the modules collec-
tion. For users_per_machine or for a numeric, we’ll display a list of predefined num-
bers. It’s as simple as that. Grab the current context and make a decision about it.

Listing 10.10 shows the implementation of ModulesSelection() to show how it’s
done. In a real-world scenario, you would probably get the modules collection from a
database or configuration file. Here, I've hard-coded the values.

Listing 10.10 Generating the code completion list

private ICompletionDatal[] ModulesSuggestions ()
{
return new ICompletionDatal]
{
new DefaultCompletionData("@vacations", null, 2),
new DefaultCompletionData ("@external_connections", null, 2),
new DefaultCompletionData("@salary", null, 2),
new DefaultCompletionData("@pension", null, 2),
new DefaultCompletionData("@scheduling work", null, 2),
new DefaultCompletionData("@health_ insurance", null, 2),
new DefaultCompletionData("@taxes", null, 2),
}i
}

The first parameter for DefaultCompletionData is the text that the user will see in the
completion list, the second is an optional description, and the third is the image
index from the image list we expose.

Figure 10.6 shows how everything comes together.

I want to point out again that this is an 80 percent solution. This can get you going
and give you a good experience, but it has limits. When you reach those limits, you

10.3

10.3.1

Creating a graphical representation for a textual DSL 209

need to start working with the parser, or *°

@pension:

maybe use a more advanced text editor. Buta == - machine_as @health_insurance

more advanced solution will use the same

(z) @external_connections
(z) @health_insurance

approach of identifying the context and mak-

ing a decision based upon that. igspelnsion
= alary
Syntax highlighting and code comple- @ @scheduling_work
. , . @ @t
tion aren’t the only options you have for cre- g@a’aa)(ceaiions

ating professional-looking DSLs. You can also
Figure 10.6 Showing off our new code

provide a graphical representation of a tex- !
completion support

tual DSL.

Creating a graphical representation for a textual DSL

The idea of creating a graphical representation for a textual DSL seems nonsensical at
first, but doing so can be useful. Consider class diagrams in Visual Studio, or having
designer and code views of the same web page.

A common problem with graphical representations is that they are, by their very
nature, a high-level form of communication. This makes them extremely useful when
we want to talk at that high level, but not so helpful in many DSL scenarios, because
they tend to hide too much.

Another common problem with graphical DSLs is the serialization format, which
tends to cause severe issues with source control usage. It’s hard or impossible to
resolve merge conflict errors along the common development path.

But nothing helps sales as much as a pretty diagram, so we need to explore our
options.

NOTE Iam nota designer, so I decided to build a functional design rather than
a pretty one. This will demonstrate the principals of Uls and DSLs, but it
shouldn’t be taken as design advice.

Displaying DSL execution

The first thing to remember is that our DSLs are standard .NET code. That means we
can use simple code to build the UI from the information that’s given to us.
Listing 10.11 shows the essential details.

Listing 10.11 Displaying the results of evaluating a quote-generation rule

private void VisualizeScript_Load(object sender, EventArgs e)
{
var rule = factory.Create<QuoteGeneratorRule> (
@" Scripts\QuoteGenerator\sample.boo",
new RequirementsInformation (50, "vacations", "work_scheduling")) ;
rule.Evaluate() ;
foreach (var module in rule.Modules)
{
ListViewItem item = modulesListView.Items.Add(module.Name) ;
item.Tag = module;

210

Creating a professional UI for a DSL

private void modulesListView_SelectedIndexChanged (
object sender, EventArgs e)

if (modulesListView.SelectedItems.Count==0)
return;
var module = (SystemModule)modulesListView.SelectedItems[0].Tag;

requiresListView.Items.Clear () ;
sameMachineAsListView.Items.Clear () ;

foreach (var requirement in module.Requirements)
{

requiresListView.Items.Add (requirement) ;

}

foreach (var anotherModule in module.OnSameMachineWith)
{

sameMachineAsListView.Items.Add (anotherModule) ;

}

In visualizeScript_Load, we create a new instance of the DSL script, evaluate the
rule with the rule state, and display all the valid modules. In modulesListview_
SelectedIndexChanged, we extract additional information from the selected system
module and display that to the user.

This is pretty trivial, but I’'ve shown it for two reasons. The first is to remind you how
simple it is to work with the DSL instance. The second is to demonstrate how you can
visualize the result of executing a DSL script. Figure 10.7 shows the result in all its glory.

But, however useful seeing the results of executing the DSL might be, it doesn’t
help us visualize the DSL. Did you notice that only the vacations module is visible?
That’s because it’s the only one that was selected by the rule. What happens when we
want to show the user everything that this script can do? With the current implemen-
tation, we don’t have any way of doing that. The code doesn’t execute if the condition
isn’t met, and we can’t know up front what all the conditions are.

This is a problem. Luckily, there are several solutions for that.

@vacations:

@scheduling work, "need to schedule around vacations"

@external connections, "needs to contact resort for discount"
@health_insurance

sualizeScript j =] 3]
@salary: vacations — Requires:
150 scheduling_ work
extemal_connections
@taxes:
50
@pension: [~ Same machine as:

@health_insurance health_insurance

Figure 10.7 Showing the result of executing a quote-generation rule

Creating a graphical representation for a textual DSL 211

10.3.2 Creating a Ul dialect

The easiest way to extract the information from the DSL script without executing it is
to create another backend language implementation for the same DSL syntax. One
DSL implementation would be used for the execution and the second for UI purposes.
Let’s see what we need to do to get this running.

The first order of business is to investigate what part of the execution engine is
causing us to see only the selected modules. Listing 10.12 shows the relevant code.

Listing 10.12 QuoteGeneratorRule.specification selects the module

public void specification(string moduleName, Action action)
{

if (Array.IndexOf (information.RequestedModules, moduleName)==-1 &&
Modules.Exists (module=> module.Name == moduleName) == false)
return;

currentModule = new SystemModule (moduleName) ;
Modules.Add (currentModule) ;
action();

}
As you can see, it’s only the if statement that’s causing issues for us. If we could some-
how remove it, we’d get the UI that we want.

Listing 10.13 shows a derived implementation of QuoteGeneratorRule, meant spe-
cifically for the UI (with specification() made virtual).

Listing 10.13 Derived dialect for quote-generation rules user interface

public abstract class QuoteGeneratorRuleForUI : QuoteGeneratorRule
{
protected QuoteGeneratorRuleForUI ()
// We don't care about the runtime values; they are unused
: base(new RequirementsInformation(0))
{
}

public override void specification(string moduleName, Action action)
{

currentModule = new SystemModule (moduleName) ;

Modules.Add (currentModule) ;

action();

}

NOTE We also need to create a DslEngine implementation that can process
QuoteGeneratorForUI. Using the same approach, I derived from Quote-
GenerationDslEngine and changed the implicit base class. In the inter-
est of brevity, I haven’t included that here—you can check the
implementation in the book’s source code.

212

10.3.3

CHAPTER 10 Creating a professional Ul for a DSL

VisualizeScript (o] x|
vacations —Requires:

salary
taxes
pension

scheduling_work
extemal_connections

Same machine as:)
[heatth_insurance Figure 10.8 All the

options, not just the ones
that were selected by the
rule evaluation of the
current context

By changing the type of implicit base class (which is the DSL execution engine), we can
get (from the same script) the results shown in figure 10.8. The code in listing 10.14
shows the updates required to make listing 10.11 support the new DSL dialect.

Listing 10.14 Selecting which rule implementation to create at runtime

private void VisualizeScript_Load(object sender, EventArgs e)
{
QuoteGeneratorRule rule;
// We can create either a rule that we can execute to get
// an answer for the current state or a rule instance that
// describes all the potential states
if (GenerateRuleForUI)
{
rule = factory.Create<QuoteGeneratorRuleForUI> (
@" Scripts\QuoteGenerator\sample.boo") ;

}

else
{
rule = factory.Create<QuoteGeneratorRule> (
@" Scripts\QuoteGenerator\sample.boo",
new RequirementsInformation (50, "vacations", "work_scheduling"));

3/ same as Listing 10.11
By performing a simple change, we were able to go from an opaque structure at run-
time to a fully discoverable model at runtime. But not all DSLs will be as easy to mod-
ify; there will be cases where it is not possible to expose the DSL model so easily.

In those cases, you’ll often be able to create a new DSL engine (implicit base class)
that has the same API as the runtime execution engine. But the implementation
would be focused on gathering the information required to deal with the UL

This approach covers an even wider range of scenarios, but it’s still not enough.
The Authorization DSL is a good example of one that can’t be treated this way. But
there are ways of handling even this situation ...

Treating code as data

Extracting runtime information from our DSLs often won’t be enough to build a
graphical representation—we’ll need to deal with things at a lower level than the

Creating a graphical representation for a textual DSL 213

The M language and the Oslo toolset

The Oslo Modeling Language (M) is a language from Microsoft that’s aimed at build-
ing DSLs. According to Microsoft, “‘M’ lets users write down how they want to struc-
ture and query their data using a textual syntax that is convenient to both author and
reader” (http://msdn.microsoft.com/en-us/library/dd129519%28VS.85%29.aspx).

The most relevant point for the purposes of this chapter is that M comes with a set
of tools, including one called Quadrant, which can inspect an M grammar definition
and provide the IDE Ul for it.

It’s still early, and | have some doubts about the way it will turn out, but it’s certainly
something to keep an eye on. It is worth pointing out that, even in this state, M is
intended for creating external DSLs, rather than internal ones. You can refer back to
our discussion about the different DSL types in chapter 1 to see why | would much
rather write an internal DSL than take on the challenge of writing an external one.

compiled code will give us. The distinction is clear when we compare declarative DSLs
to imperative DSLs. We can’t execute an imperative DSL the way we can a declarative
DSL because that would perform the action, not just build the description of the
desired action.

The Authorization DSL is a good example of this. Look at listing 10.15 for a
reminder about how the Authorization DSL looks and behaves.

Listing 10.15 An Authorization DSL example

if Principal.IsInRole('Administrators'):
Allow('Administrators can always log in')
return

if Principal.IsInRole('Everyone'):
Deny ('We do not allow just anyone, you know')
return

We can’t take this syntax and deal with it at runtime in some fashion. The interesting
part here is the condition in the if statement, not the structure we’re building. How
can we create a user interface on top of that?

At this point, we have to start dealing with the DSL as data, not as executable code.
And we’ll do it by utilizing the same approach that the compiler does. Say hello to the
BooParser class. The BooParser will take a piece of text and return a graph (AST) that
represents this text in Boo terms. This allows you to manually process the code and
generate the UI that you want.

Let’s take a look at how we can use the power of BooParser and some conventions
to build a nice UI to manage the Authorization DSL. Once again, we’re going to touch
just the tip of the iceberg here, and we’ll intentionally use the simplest approach to
demonstrate the technique.

At the heart of this approach is the idea of pattern recognition. For example, in
listing 10.15, we identify the pattern of allowing or disallowing by role. Once we have

http://msdn.microsoft.com/en-us/library/dd129519%28VS.85%29.aspx

214 CHAPTER 10 Creating a professional Ul for a DSL

identified such a pattern, we can automatically recognize it and build the appropriate
UI for it. Listing 10.16 shows the highlights of this approach.

Listing 10.16 Recognizing repeating patterns in the Authorization DSL

public class AuthorizationRulesParser
{
public IEnumerable<Control> GetControlsFor (CompileUnit compileUnit)
{
if (compileUnit.Modules.Count != 1)
throw new NotSupportedException (
"we support only a single file parsing");
var module = compileUnit.Modules[0];
foreach (var stmt in module.Globals.Statements)
{
var ifStatement = (stmt as IfStatement);
if (ifStatement == null)
throw new NotSupportedException (
"Only if statements are parsable by the UI");
yvield return GetControlFor (ifStatement) ;

}

private Control GetControlFor (IfStatement statement)
{
var mie = statement.Condition as MethodInvocationExpression;
if(mie != null &&
((ReferenceExpression)mie.Target) .Name=="IsInRole")

//We recognize this pattern...
return AllowByRoleControl (statement, mie);
}
throw new NotSupportedException ("Could not understand...");

}

private Control AllowByRoleControl (IfStatement statement,
MethodInvocationExpression mie)

var stmt = ((ExpressionStatement)statement.TrueBlock.Statements[0]);
var action = (MethodInvocationExpression) stmt.Expression;

return new AllowByRole

{

Role = ((StringLiteralExpression)mie.Arguments[0]).Value,
Allow = ((ReferenceExpression)action.Target) .Name=="Allow",
Reason = ((StringLiteralExpression)action.Arguments[0]) .Value

}

In GetControlsFor (CompileUnit), we get the compile unit. This holds the parsed
code AST (we only support a single file for this demonstration). We start by reading all
the code in the globals section, which is where code that isn’t in a method or a class
is located. We go over it statement by statement, failing if we encounter a statement
that is not an if statement.

Creating a graphical representation for a textual DSL 215

How is this better than using XML?

We’re doing all this hard work to go from the DSL code to the Ul. Wouldn't it be easier
to go with something XML-based instead of doing all this work?

Not really, in my opinion. The major benefit of XML is that you don’t have to write a
parser, but aside from that, you’re on your own. Using this approach, we don’t need
to write a parser; we use an existing one that already contains most of the ideas that
we’'re dealing with.

Trying to express concepts such as the if statement using XML is a lot of manual
work. Doing the same with Boo is a matter of asking the parser for the AST. From
there, the amount of work you have to do is more or less identical.

The main problem is that we’'re trying to represent concepts that are difficult to deal
with in nontextual form. The way we store them doesn’t make a lot of difference.

When we find an if statement, we pass it to GetControlFor (IfStatement). This class
is responsible for doing the pattern recognition. In this example, we set it to recognize
if statements where the condition is a method invocation for IsInRole. When we
find that particular pattern, we call AllowByRoleControl (), which extracts the perti-
nent information from the AST and creates the appropriate control.

Listing 10.17 shows the setup code that uses the AuthorizationRulesParser.

Listing 10.17 Using the AuthorizationRulesParser to generate the Ul

public partial class ViewAuthorizationRules : Form
{
public ViewAuthorizationRules()
{
InitializeComponent () ;
var compileUnit = BooParser.ParseString("test", @"

if Principal.IsInRole('Administrators'):
Allow('Administrators can always log in')
return

if Prinicpal.IsInRole('Everyone'):
Deny ('We do not allow just anyone, you know')
return") ;

var parser = new AuthorizationRulesParser () ;
foreach (var control in
parser.GetControlsFor (compileUnit) .Reverse())

control.Dock=DockStyle.Top;
Controls.Add (control) ;

216

10.4

104.1

Creating a professional UI for a DSL

We use the BooParser.ParseString() (ol x|
method to turn a piece of code into an Deny

. . wh ie il I ¢ . . =
AST, which we then pass to the Authori- T Tl i sretors |

zationRulesParser (). From there, it’s Reason: [Administrators can always log in
pretty straightforward. We get all the con- o
. * Deny .
trols from the rule parser and display) Becesiey e R | Fveryone =
low

them (in reverse order because of the way
WinForm’s DockStyle.Top works, to get
the same ordering as in the text). The
result is shown in figure 10.9.

Reason: IWe do not allow just anyone, you know

Figure 10.9 The Ul representation for the

.) Authorization DSL rules shown in listing 10.15
There isn’t much to this approach, as

you can see—only the pattern recognition
and the specialized UI for each pattern. But although this is a cool demo, there are
significant costs in pushing this to its ultimate limits. I would much rather have the
textual version than this one. The textual version is richer, just as readable, and easier
to work with. Of course, I am a developer, so I am slightly biased.

So far, we’ve seen only half of the solution. We’ve taken an existing script and dis-
played it. But how do we go the other way around? How can we get from figure 10.9 to

the code in listing 10.15?

DSL code generation

We’ve taken DSL code, parsed it, and made it graphical. That was the hard part. The
easy part is going the other way, from the abstract concept down to the DSL code.

At least, that’s how it might seem at
first. Let’s take a look at our options for
code generation and the benefits each

approach buys us.

The CodeDOM
provider for Boo

The CodeDOM API is the official API that
the CLR provides for generating code
without being dependant on a particular
language. Using this API, we can build an
AST and generate the code in a variety of
languages, including Boo.

The Boo implementation of the Code-
DOM API is located in Boo.Lang.Code-
DOM.dI], and it’s fairly complete. Using it
is a good approach (if tedious) when you
need to programmatically generate code
artifacts.

Using BooParser
versus executable code

Why bother with the parser when we
could probably get the AST of the
code at runtime and represent the
same structure without all the pars-
ing work? (We’ll look at how to get
the AST at runtime in chapter 12,
section 12.3.3.)

One major reason is that the parser
is much more robust. A compilation
error that would stop us in our tracks
at runtime will still probably generate
a usable AST that we can access with
the parser. The ability to handle
slightly off code is important for a tool
that needs to accept code written by
people. Error handling and recovery
isn’t an optional feature.

DSL code generation 217

On the other hand, it doesn’t work at all when you want to generate anything that
doesn’t look like code. Because the implementation is built to be as safe as possible, it
intentionally specifies nearly everything it can. From the point of view of creating
readable, language-oriented output, it’s a failure.

The best way I've found to handle this scenario is to build your own DSL writers
that understand the language and conventions, and how to express things in the most
meaningful way.

10.4.2 Specific DSL writers

A DSL writer is exactly what it sounds like. It’s a class that, given some sort of input, will
produce textual output that’s valid input for a DSL. How’s that for an extremely dry
definition?

A DSL writer is a glorified name for a class that writes to a TextWriter. The only
thing of importance about this class is that it understands how to output the DSL well
enough to generate readable output, instead of the usual cautionary output that the
CodeDOM API generates, with everything explicitly specified and tediously repeated.

I intentionally put the DSL writer definition in those terms to make it clear that
there is absolutely nothing special about DSL writers. And yes, that does leave you on
your own to escape strings, handle keywords, and so on. Again, this is mostly inten-
tional; we need to move away from the code-centric way of thinking about the DSL, to
get human-readable' output. In practice, this isn’t much of an issue, because there
tends to be a fairly limited set of inputs for a DSL writer, but it’s important to note that
we do have to deal with issues like keyword escaping on our own.

Let’s look at how we can implement a DSL writer for the Authorization DSL, which
will allow us to save modifications that are made in the UI in figure 10.10.

NOTE The scenarios in which you use DSL writers tend to be narrowly
focused. That’s the whole point. You have enough information to make
a lot of important assumptions, instead of having to support all the pos-
sible options.

=0x) ——]

(:Deny

access when useris in role: I 1 I
" Allow Employees 2 if Principal.IsInRole(Employees’):

Deny(Employees can always log in")

Reason: IEranoyees can always log in return
if Principal.IsInRole(Random Users'):
" Deny Allow(The gates are open, just come onin...")
access when useris in role: IRandom Users v I return
@ Alow
Reason: lThe gates are open, just come on in...

| Generate Code I

Figure 10.10 The output of a simple DSL writer

! T have very strict standards about what is human-readable. Most XML formats aren’t human-readable, for
example.

218

CHAPTER 10 Creating a professional Ul for a DSL

The implementation of this DSL writer is as simple as you might imagine. You can see
itin listing 10.18.

Listing 10.18 A simple DSL writer can have a lot of value

public class AuthorizationDslWriter
{
public string Write (IEnumerable<Control> controls)
{
var sw = new StringWriter();
foreach (var control in controls)
{
var role = control as AllowByRole;
if (role != null)
WriteRoleRule (role, sw);
}
return sw.GetStringBuilder () .ToString() ;
}

private void WriteRoleRule (AllowByRole role, StringWriter sw)

{

sw.WriteLine("if Principal.IsInRole('{0}'):", role.Role);
if(role.Allow)

sw.WriteLine ("\tAllow('{0}')", role.Reason.Escape()):;
else

sw.WriteLine("\tDeny('{0}')", role.Reason.Escape());

sw.WriteLine("\treturn") ;
sw.WriteLine() ;

}

public static class Extensions
{

public static string Escape(this string self)

{

return self.Replace("'", "\\'");

}

As you can see in listing 10.18, the implementation of DSL writers can be simple. The
value that they bring is in being able to understand the DSL that they’'re writing.

In this case, we’re feeding the DSL writer directly from the UI, although in most
scenarios we’d have an intermediate object model in place. In fact, the most common
scenario is to use the DSL instances themselves as the source for the DSL writer. This
allows us to take a DSL instance, modify it, and save it back to text.

Another scenario where DSL writers are useful is when you want to use code gener-
ation to create a whole bunch of DSL scripts. In my opinion, it doesn’t make a lot of
sense to code-gen the DSL scripts. They’'re being created to be human-readable and
-editable, and if you need to code-gen them with some other tool, something there
needs a tune-up. Nevertheless, this is an important technique when you want to deal
with migration from one form of DSL to another (such as when performing automatic

10.5

Handling errors and warnings 219

version updates on existing DSL scripts), or when you’re creating the system for the
first time and duplicating rules that exist in non-DSL format.

This is a good tool to have in your toolbox, but its usage should be considered
carefully. It’s all too easy to reach for the code-generation hammer without consider-
ing whether there is another way to express what you want, perhaps with a different
DSL that has more expressiveness than the existing one.

And with that, we’re nearly done creating a professional DSL. We have one last
important topic to talk about: error handling.

Handling errors and warnings

There is nothing that screams “Unprofessional!” like sloppy error handling. That
nasty message box with “Unexpected Error” that pops up is about the most annoying
thing that can happen, short of a blue screen just before you hit the Save button.

When dealing with a DSL, you need to be prepared to deal with scripts that are
invalid. They may contain garbage, invalid code, code that’s valid but will fail at run-
time, code for a completely different DSL dialect, or even valid, but nonsensical, code.
Those can all be divided into two broad categories: compiler errors and warnings, and
runtime errors and warnings.

NOTE What are these warnings? You’re familiar with compiler warnings, which
let you know that you’re doing something that you probably shouldn’t.
Well, you can generate the same types of warnings at runtime, to actively
detect and alert against behavior that’s likely to cause issues or errors at a
later date.

Compiler errors mean that you can’t execute the script, and you have to be able to
handle that gracefully. Usually this means showing the user the error message and
allowing them to navigate to the precise location of the fault. Rhino DSL will automat-
ically throw a detailed exception (aided by the Boo compiler) for any compiler errors,
so it’s fairly easy to deal with these.

Remember to take care of the lexical info when you extend the language. It allows
the compiler to report exactly where an error occurred, and that can be important in
troubleshooting. The lexical information is also important when runtime exceptions
are raised, because the runtime will use this information to trace back the exception
location to the DSL code.

With both compiler and runtime errors, you want to expose them to the user and
offer the ability to go directly to the offending line in the DSL script. Think about the
Errors & Warning pane in Visual Studio, where a double-click will take you to a com-
piler error. You want this kind of experience because it makes troubleshooting so
much easier.

Compiler warnings occur when the compiler notices something that isn’t quite
right, but that isn’t wrong enough to be a bug. The use of obsolete members is a good
example of code that would generate a warning.

220

10.6

Creating a professional UI for a DSL

In addition to compiler warnings, your own code can issue warnings (by adding
them to the CompilerContext’s Warnings collection). You can, and should, do that
any time you discover some behavior that’s likely to be wrong, but about which you
aren’t certain.

Because warnings are, well, warnings, Rhino DSL won’t force you to deal with them
the way it does with errors. You can access the warnings collection for the current
compilation by overriding Ds1Engine.HandleWarnings (). I strongly recommend you
do that and find a way to show them to the user in a meaningful way.

The rest of it is standard error handling, and that’s not what this book is about.

Summary

In this chapter, I focused on the DSL mechanics rather than the UI particulars. This
makes explaining the concepts easier, and it allows you to easily transfer your knowl-
edge from one particular technology to another.

In many cases, the solutions I have presented are the trivial ones, just barely func-
tional. That’s intentional. Covering code completion in depth, for instance, would be
a topic for a book of its own (and I recommend reading the free #develop ebook to
get an idea of what building a full-fledged IDE means).

That doesn’t mean you shouldn’t use the techniques shown here. Indeed, I'm
using them in several projects. They aren’t appropriate for complex scenarios, but
they’re suitable for most reasonable situations, and they can take you a long way
before you have to consider alternative approaches.

We covered two different approaches for creating Uls in this chapter. First, we
looked at how to create a good text-editing experience for the DSL, providing such
features as syntax highlighting and code completion. Then we looked at creating visu-
alizations and a graphical editing experience for the DSL. We saw two different
approaches to that: one using the DSL runtime itself, and the second using the AST of
the code as it was provided by the Boo parser.

Finally, we touched on how to move from the graphical representation back to a
textual representation, using an intentionally simple approach whose main advantage
is the embedded knowledge of DSL operation modes.

Error handling is an important part of the UI in any application, and it must be
considered when building a UI for a DSL. Compiler and runtime errors and warnings
should have a well-thought-out place because they will happen, and the user will
expect a good experience when they do.

Now it’s time to move on to another topic that’s critical for producing professional
DSLs, although one that most developers would prefer to avoid: documenting the DSL.

DSLs and docwimentat

In this chapter

Essential documentation for your DSL

= Writing the user guide

Documenting the language syntax

= Creating an implementation guide

Documentation is a task that most developers strongly dislike. It’s treated as a
tedious, annoying chore, and it often falls to the developer who protests the least.
Furthermore, developers trying to document their own work often don’t do a good
job. There are too many things they take for granted in their own code, and they
tend to write to developers, in a way that makes little sense to non-developers.

At least, that’s what I say when I'm asked to write documentation. It doesn’t usu-
ally get me out of the task, but the problems are real.

Solid documentation is an important part of quality software. If the developers
of the system are needed to handle routine matters, something is wrong. DSLs are
no different in this regard. In fact, documentation is extremely important for DSLs,
because you don’t have a friendly UI that you can explore using trial and error.

You also need to keep in mind that DSLs are still rare in the industry
(although they’re a rapidly growing trend). Handing another developer a real-
world DSL implementation will require some effort if the DSL implementation
isn’t documented.

221

222

11.1

DSLs and documentation

Types of documentation

The anticipated users of your DSL will determine the level of the documentation and
the assumptions you can make in that documentation. If the users are expected to be
developers (or hobbyist developers), you can assume they’ll know some things that
non-developers would not.

The documentation for a DSL can be divided into two main parts:

User documentation—The Getting Started Guide and User Guide, and perhaps
some executable documentation

Developer documentation—The Developer Guide and executable documentation,
discussing the actual language implementation

NOTE There are whole books written about documentation approaches, and
I'm not going to attempt to cover the whole subject. Instead, I’ll touch on
several approaches that I have found useful when creating documenta-
tion for DSLs. This is the tip of the iceberg in terms of proper documenta-
tion, so take that into account.

In this chapter, we’ll assume that the DSL will be used by business users with minimal
programming experience. This is one of the toughest audiences to write documenta-
tion for. Teaching someone who doesn’t know even the basics of programming to
understand and use a DSL is a challenge. I haven’t seen any DSL that has managed to
avoid this issue (nor have any of the graphical tools I've seen).

Let’s consider the Quote-Generation DSL. At first glance, it seems that no pro-
gramming knowledge is required to write a script—it’s a simple listing of require-
ments. The problem is that when you’re writing such a script, you need to understand
the execution environment and how the scripts will interact with each other.

There isn’t a lot of programming knowledge required. You need to understand
how the if statement works and that your script might not be the only one to run (so
it might not produce the final results), but that’s about all.

Let’s consider what information we’d need to give someone who doesn’t have a lot
of programming knowledge in order for them to use our DSL:

The syntax of the DSL

The conventions used (if the folder structure has meaning, this should be
spelled out)

A list of commands that can be issued

An overview of the execution semantics of the DSL—when and in what order
the scripts are executed

Tooling support—what kind of tools are provided for use with the DSL (IDE,
trace viewer, GUI, and so on)

Samples that shows how to do common things (for the express purpose of
allowing copy, paste, and modify cycles)

An explanation of how to deploy scripts

11.2

Writing the Getting Started Guide 223

An explanation of how to execute DSL scripts
An explanation of how to get the results of a DSL execution
An explanation of how to handle common errors and issues

This list isn’t final, but it’s still pretty big—each DSL is likely to have a slightly different
list of things that need documenting. The list also uses some technical terms that users
probably wouldn’t understand. This is the kind of information you need to give users,
but not how you should present it.

Ensure a positive first impression

| can’t emphasize enough the importance of making a good first impression with your
DSL. It can literally make or break your project. You need to make a real effort to
ensure that the user’s first impression of your system will be positive.

This includes investing time in building a good-looking Ul with snappy graphics. Such
features might not have a lot of value from a technical perspective, and perhaps not
even in day-to-day usage, but they’re crucially important from a social engineering per-
spective. A project that looks good is pleasant to use, easier to demo, and generally
easier to get funding for.

From the documentation perspective, we want to give users some low-hanging fruit
that they can grab easily—making the user feel that using the DSL is easy and that
it can produce results quickly is important to gaining acceptance. The first stage
should be an easy one, even if you have to specifically design to enable that.

Nevertheless, you should be wary of creating a demoware project—one that’s strictly
focused on providing a good demo, but that doesn’t add value in real-world condi-
tions. Such projects may look good, and get funding and support, but they tend to
become tortureware rapidly, making tasks harder to do instead of easier.

Writing the Getting Started Guide

The purpose of the Getting Started Guide is to get the user past the Hello World stage
(or its equivalent) as quickly as possible. It’s a highly focused document, meant to give
someone who already understands the domain the basics of working with the DSL. It
should be focused on giving clear instructions for achieving a specific set of tasks, for
example, how to add a rule to calculate a new quote. In-depth discussion should be
reserved for the User Guide.

The Getting Started Guide is the first thing that most users will see. Giving them a
good first impression will create a lasting effect, and it can help tremendously in gen-
erating acceptance for the DSL.

The Getting Started Guide consists of an introduction to the DSL and its usage,
and a set of examples that users can go through to familiarize themselves with the DSL
at a high level.

224

11.2.1

11.2.2

DSLs and documentation

Begin with an introduction

Ideally, the Getting Started Guide should begin with a short introduction explaining
why you’re utilizing a DSL. This introduction should not go beyond two or three para-
graphs. Here’s an example of how you could start the Quote-Generation DSL Getting
Started Guide:

The Quote-Generation Language aims to simplify the way that you set up and manage
the quote-generation rules. It was built to express both the business and technical
constraints involved in creating a quote for a customer.

Using this approach, you will gain more control over how you generate the quote, and
you'll see why certain items were added to the quote (by what rule, and based on what
logic).

The following screenshot shows a generated quote, with tracking from each item to
the specific rule that added it ...

I like to use relatively informal language when writing the Getting Started Guide. I
find that it forces me to speak in terms that are more readily understood. Note that
there is no mention of a “DSL” or any other technical term in the introduction.

Interspacing your documentation with figures, screenshots, and other visual aids
helps create a document that is more readable. It divides up the text, making it seems
more approachable, and appropriate use of images can also significantly help readers.
Appropriate images can clarify concepts better than any amount of text.

Provide examples

Following the introduction, it’s a good idea to take users through the process of build-
ing a couple of example scripts from start to finish. You can talk about concepts for as
long as you like, but until you take users through the motions of performing a task, it
won’t get through to many of them. Even those who are interested in the concepts
and high-level overview will find it useful to see how things work.

I generally like to start the first example with something that can stand on its own.
This doesn’t include discussing the language in isolation. It’s often better to show the
language in use. If you can demonstrate how the DSL eliminates pain points in the
current approach, do so. Relieving pain is great for acceptance.

The next step is to demonstrate how to create this script in the system, where to
put it, how to get the application to accept it, and how to see that it’s working. This
part is important, and it should be as detailed as you can make it. Ideally, this is also an
idiot-proofed scenario; try to anticipate all the mistakes a user might make.

There will always be something you’ll miss, but do dedicate some time to address-
ing the obvious issues. For example, a simple common mistake is attempting to
upload a Word document with the script in it. This is likely to fail, so outline that in
the documentation and check for it in the code. I suggest accompanying each step in
the walkthrough with a screenshot that shows what needs to be done. Text alone will
not suffice.

11.3

11.3.1

Writing the User Guide 225

TIP Don’t be shy about using screenshots to demonstrate functionality. A

user is unlikely to be interested in the syntactic purity of the language,

but they’re most certainly interested in the tools and how they interact

with it.
I tend to give three to five such examples, all at the same level of detail. They should
be progressively more complex, although you should make sure that the first example
is the most attractive one. You can skip the setup for each example if the setup is the
same for all tasks; if it isn’t the same, you should point out the differences explicitly.

Make sure you end each example with an explanation of how users can check that
it worked. It’s important to give users feedback that whatever they did produced the
expected results.

You should also include examples that the user can copy, paste, tweak, and run. It’s
likely that you’ll have several commonly repeated themes in the DSL, and providing an
example of each of them that the user can immediately start experimenting with will
be helpful.

That’s it for the Getting Started Guide. Because the main purpose of this guide is
to be short and to the point, it skips over a lot of details, most of which are important
to users. That level of documentation belongs in the User Guide, our next topic of
discussion.

Writing the User Guide

The Getting Started Guide is focused on taking users through their first steps, but the
User Guide has a far bigger role. It’s tasked with helping users understand how to use
the DSL, the reasons behind the semantics of the syntax and behavior, and the full
capabilities of the DSL. It also needs to cover the model and how to approach it,
because you can’t assume that anyone who learns to use the DSL is also a domain
expert. (In fact, the DSL often is the way to become a domain expert.)

There are four main things that need to be documented in the User Guide:

The domain and model
The language syntax
Other language aspects
User-level debugging

Let’s look at them each in turn.

Explain the domain and model

I usually start the User Guide with a discussion of the domain and the problems that
the DSL is trying to solve. For the Quote-Generation DSL, I would write something
like this:

Generating quotes has always been a chore. The problem is that the dependency matrix
between the various components of a system has exploded exponentially ever since
[some business event]. As a result, the process of turning a client’s requirements into

226

DSLs and documentation

a quote (the list of items and components needed, the amount of onsite work, the sup-
port contracts and ongoing maintenance) became a laborious, error-prone, and manual
process.

At the end of 2006, a quote for [client name] missed a dependency on [system name],

causing over $250,000 in additional costs during system installation. As a result, the
need for an automated and reliable quote-generation system became obvious.

This isn’t part of any real-world documentation, but that’s the style I would use. It
gives users the relevant background on the business conditions that led to the devel-
opment of the system. This is necessary for them to gain a good understanding of the
system.

I then describe the model that’s exposed to the user. This doesn’t necessarily
match perfectly with the way the DSL works, but it’s the way I want the user to think it
works. This is the mental model they’ll develop in order to work with the system. I like
to think about this part as telling a story that will affix the mental model of the system
in the user’s head.

NOTE Although it’s possible to diverge from the model in the implementation,
I don’t recommend it. It’s best to give users an understanding of how the
system really works, even if it’s only at a very high level.

I also recommend explaining the model in the context of the business problem.
Here’s another snippet of the Quote-Generation DSL documentation:

A quote is generated using the concepts of components, dependencies, and con-
straints. With those concepts, you can build all the requirements for the Voice Mail
system. When you generate the quote, you give the system all the relevant informa-
tion (number of users, existing infrastructure, required features, and so on) and it will
read all the dependencies and constraints of the components, resolving them to a
valid quote.

For example, consider the Voice Mail component. It can support up to 5,000 mail
boxes per machine (constraint) and it requires the IVR component (dependency). This
is obviously a simplified example, but it will do. You can specify these requirements
like this:

specification @VoiceMail:
requires @QIVR
users_per_machine 5000

This specification is readable, and it specifies the constraints on the Voice Mail com-
ponent and its dependencies. It can be written by the Voice Mail team without regard
to constraints that other components have. It is the system’s responsibility to gener-
ate the full quote for the customer based on the component specification that each
team provides. Using this approach, you can unambiguously express all the require-
ments for the whole system.

It's important to understand that each component owner will have to write their own
requirements specification, which is then rolled into the Quote-Generation System.
The system is smart enough to be able to ...

11.3.2

Writing the User Guide 227

The next step is to take a few examples from the Getting Started Guide and explain
what is going on in detail. I suggest picking at least two examples, with enough differ-
ences to show different aspects of your language usage, or show things from different
angles. Once you’ve worked through those, the user should have a good understand-
ing of how things are supposed to work.

At that point, I usually move on to a reference style, instead of storytelling. And
one of the first things that needs to be covered is the language syntax.

Document the language syntax

What makes for a good language reference? You’ll need to cover the following topics
at a minimum:

Code file structure
Keywords

Notations

Actions and commands
Basic syntax rules
Common operations

You will probably want to include additional documentation relevant to your specific
scenario. For each of these points, you should also include examples, examples, exam-
ples. Let’s look at them each in turn.

CODE FILE STRUCTURE

The code file structure is what a script file should look like. This section should out-
line whether users should include documentation comments, whether there are
expected elements in the files, and so on. Let’s look at how you might document the
Routing DSL’s file structure.

A typical file structure for the Routing DSL includes a documentation header, a filter,
and one or more handle sections. A typical example is shown here:

This is the documentation header;
Discussing what this file is doing

This is the filter; it decides whether
we should handle this message

or not

return if msg.type != "NewOrder"

This is a handle section

HandleWith NewOrderHandler:
Inside the handle section we transform the
external message to its internal representation
Return NewOrderMessage (msg.customer_id)

There can be more than a single handle section
HandleWith LoggingHandler:
We can return the message in its raw form
return msg

228

DSLs and documentation

Should the User Guide contain the syntax for Boo?

That's a good question, and it usually depends on how technical your target audience
is expected to be.

In almost all cases, | would include the syntax for common operations such as if,
unless, and for statements. Those are too useful to keep from your users. Error
handling (try, except, and ensure), resource management (using), and things of
that nature should generally stay out of the DSL scripts, and | would avoid pointing
them out.

Boo also has the notion of statement modifiers, and | recommend documenting and
using them where it makes sense. For example, you can write a statement like this:

apply_discount 5.percent unless user.is_high_risk

Statement modifiers are applicable for if and unless. List comprehensions can
use a similar syntax, but that’s not usually something that you would want to use in
a DSL.

After showing users an example file, you should go over each section and explain what
they do while the user has the sample script in front of them.

The Routing DSL is a very technical DSL, so a lot of its syntax is derived from the
Boo syntax, but that isn’t always the case. The Quote-Generation DSL is a good exam-
ple of a DSL that doesn’t look much like a programming language. I would document
the Quote-Generation DSL file structure as shown in listing 11.1.

Listing 11.1 The Quote-Generation DSL file structure

This is the documentation header, where we document what
this file is doing.
A specification refers to a single module
specification @moduleName:
A specification denotes actions about
the system as a whole
requires @anotherModuleName, "reason for requiring module"
same_machine_as @anotherModuleName

We can have multiple specifications
in a single file
specification @anotherModuleName:

users_per_machine 150
Like in the previous example, you need to explain the structure (how things are parti-
tioned) but you don’t need to discuss the actual details. The high-level details were
already discussed in the Getting Started Guide, and the nitty-gritty stuff should be dis-
cussed when we talk about each keyword in isolation.

Writing the User Guide 229

KEYWORDS
You need to document the keywords in the language. I don’t mean only things like 1if,
try, and using. I'm talking about the DSL keywords. In the Quote-Generation DSL, for
example, that would include keywords such as specification, requires,
same_machine_as, and so on. Those are the keywords of the language.

Here is how I would document specification for the Quote-Generation DSL:

specification @moduleName:
<< gpecification actions goes here >>

The specification keyword is used to set up a context for all the requirements of
a particular module. The module is specified using the @name notation, described in
the next section. Valid module names are names of components as specified in the
ERP system.

The specification ends with a colon (:) and is followed by a list of requirements and
constraints (see the Constraints section below). Those let the Quote-Generation
system ...

I generally find that it’s good to display the syntax of each keyword before discussing
it. It gives the user something to glance at while reading the explanation.
NOTATIONS
A notation is a way of writing down something. Usually it allows a shorthand way to
refer to something you use often, or to permit a better syntax. The @moduleName nota-
tion in the Quote-Generation DSL is a good example of that.

In the Quote Generation example, I would discuss notations as follows:

The @name notation is a shorthand for a component. This notation allows using
component names (as defined in the ERP system under System > Administration >
Setup > Components) directly in the text (replacing the hard-to-read Component IDs)

The @name notation is used whenever we want to refer to a component, in the
specification, requires, and same_machine_as keywords.

Although we documented the @moduleName notation in the keywords example, it is
important to also give them their own place, since users might want to refer to them
specifically. This is especially true if you have a limited set of valid values in certain
places, and they want to look at a particular value.
ACTIONS AND COMMANDS
Actions and commands are the operations that you allow the user to specify using the
DSL. In the Quote-Generation DSL, requires and same_machine_as are operations
(exposed as keywords), as are the Deny and Allow calls in the Authorization DSL.

For the Quote-Generation DSL, here is how I would document the requires
keyword:

requires @moduleName

The requires keyword can appear inside a specification block. It has a single
argument, a module name.

230

11.3.3

DSLs and documentation

This keyword creates a dependency between the component specification it appears
on and the components specified as required. This dependency is taken into account

I usually like to make action documentation terse, because it is mostly used only for

reference. Discussing the usage of each keyword in the context where it is used is usu-

ally left for the common operations section (discussed next).

BASIC SYNTAX RULES

Don’t forget to document basic syntax rules, such as using indentation in the code

(or using the end keyword, if you choose to use the whitespace-agnostic version of

Boo). Or remembering to put the colon (:) character at the end of the line when

you’re creating a new block. And so on.

COMMON OPERATIONS

Take a look at common scenarios and show users what they look like. Show users how

they can write their own scripts by giving them a wide range of examples to peruse.
Here’s an example of documenting a common operation:

This example will specify the required dependencies for a single component. In the
Quote-Generation system, constraints are set at the component level. We can set the
following constraints on a component specification:

requires @moduleName

same_machine_as @moduleName

users_per_machine [numeric: number of users]

The following specification for the Voice Mail component sets dependencies on IVR
and SMS components and specifies that 500 users are supported per machine.

specification @VoiceMail:
requires @IVR
requires @SMS
users_per_machine 500

As you can see, there is a direct translation between the way we think about the
dependencies of the Voice Mail component and how we specify it. This is a fairly sim-
ple specification. A more interesting one would be handle conditions ...

So far we’ve only talked about the syntax, and the syntax is only a small part of a lan-
guage. There are other things in a language implementation that need to be docu-
mented. We’ll discuss those in the language reference.

Create the language reference

The difference between the language syntax and the language reference may sound
artificial, but I consider it important. A language isn’t just its syntax. The way a DSL is
used is also part of the DSL, and you need to take that into account when document-
ing the DSL.

Usually, when the time comes to document a DSL, there is a lot of focus on the syn-
tax, and some focus on how the engine works. There is little focus on how the environ-
ment and the usage of the DSL affect the DSL itself. Here are a few examples of topics
that tend to be forgotten when documenting a DSL:

11.3.4

Writing the User Guide 231

Naming conventions—How to name script files and elements inside them

Script ordering—How the engine determines the order of scripts to run and how
to modify this order

Execution points—What events will run the scripts

All of those are important in many DSLs, not only for the scripts’ execution, but for
how the scripts are written.

In chapter 9, we modified the Quote-Generation DSL to include a string that
explains why a certain module is required by another, and the language reference
should explain how we can get to that data from the final result of executing the
script. After executing a set of scripts, we want to be able to examine the messages that
the scripts generated. The documentation ought to contain detailed instructions
about how to get them and include several references to the fact that you can get this
information.

A final topic for documentation is the tools that are provided for the DSL, such as
the IDE, the output viewer, and so on. I have seen users miss out on important tools
because they weren’t aware that they existed. It is preferable to avoid that.

And now, once you’ve documented how the DSL is supposed to work, you need to
explain how to deal with the unexpected.

Explain debugging to business users

One of the key things you need to cover in the User Guide is how to deal with the
unexpected. I generally think of this as debugging, but the actions users will perform
are different from developer debugging (which is not a user-level concept).

When I talk about user-level debugging, I'm talking about looking at the result of
a script’s execution and understanding what has caused that particular result. If
users can figure out what is happening on their own, it means one less debugging
session that a developer has to go through. Increasing transparency in the applica-
tion should be a key goal. These features should be documented prominently and
referred to often.

Let’s take the Quote-Generation DSL as an example again. The end result of the
Quote-Generation DSL is a quote. It’s a list of items and their prices (and also taxes,
discounts, bundles, and offers, which we’ll ignore here for the sake of simplicity).
The Quote-Generation DSL figures out all the complex dependencies and configura-
tions, and a common problem is figuring out why a particular item appears in the
resulting quote.

We deal with that by adding the reason parameter to the requires action. The UI
should also display all the reasons why an item was selected. This small feature alone
provides a lot of value to the system. Expanding on that, you could allow the user to go
from the quote item to all the scripts that mandated the item’s selection. That would
give the user a high level of control over what is going on in the application. (We’ll
look at this in more detail in chapter 12.)

232

114

114.1

11.4.2

DSLs and documentation

That’s the basics of the User Guide. The language syntax, the language reference,
and the debugging and troubleshooting information are the key highlights. Now it’s
time to move on to documenting the language for other developers.

Creating the Developer Guide

Unlike the user documentation, you're on familiar ground when writing documenta-
tion for other developers. You can discuss things much more concisely, and you no
longer have to deal with the pesky business details. You can discuss pure technological
details to your heart’s content. Okay, maybe not that last one.

But it’s easier to write documentation for developers because there’s a lot of
ground you don’t need to cover—they’re already familiar with programming. That
said, DSLs are still a niche topic, so they do require some explanation.

I strongly believe that the best documentation is the code itself, but not knowing
which code to read can be a problem. That’s why I recommend focusing your docu-
mentation on what the DSL does and where it happens, rather than on how it’s imple-
mented.

I usually partition the developer documentation using the following scheme:

Prerequisites—Outline what you expect the developer will already understand
when approaching the system.

Implementation—Explore all the moving parts in the DSL implementation.
Syntax—Document how the syntax for the DSL was implemented.

Outline the prerequisites

I like to start the Developer Guide by identifying the prerequisites for understanding
what is going on. Usually, this comes down to having at least some understanding of
the problem domain and the foundations of DSL building.

There are usually enough external resources on the problem domain that will give
the developer a good idea about what you’re trying to do. As for learning how to build
DSLs ... that’s what this book is all about.

Once you’ve covered the prerequisites, you can move on to the real meat: discuss-
ing the DSL implementation itself.

Explore the DSL’s implementation

As I've explained elsewhere in this book, thinking about a DSL only in terms of syntax
doesn’t make sense. A DSL is composed of several parts, the syntax being the front
end. The engine, the model, and the API are also intrinsic parts of the DSL and should
be included in your documentation.

I don’t intend to describe how to document the model or the API; those are fairly
standard and there is nothing new that I can add here beyond outlining standard
development documentation techniques. The syntax and the engine require special
attention, because they are closely tied to the way the DSL works.

1143

Creating the Developer Guide 233

Using tests as documentation

| have several DSLs that have no documentation beyond their source and tests.
They’re usable, useful, and have been helpful. But I've run into situations where |, as
the developer, could not answer a question about the language without referring to
the code. | strongly recommend investing the time in creating good documentation
for your DSLs.

Even behavior-driven design tests aren’t quite enough. Those types of tests can help
make it clear what the language is doing, but they aren’t the type of documentation
that you can hand to an end user to get them started using the language. Even if your
users are developers, it’s not a good enough approach.

It’s your responsibility to make the system easy for users to use, and documentation
is a key part of that. Handing users the tests is a good way to handle complex cases
if your users are developers, but it’s not a good way to reduce the learning curve.

Before diving into the details in the Developer Guide, it’s important to provide a
broad overview of how the different parts of the DSL work together. For example, if
you’re using the model directly in your DSL, you should make it clear that changing
the model will also change the DSL.

On the other hand, as we’ve seen in chapter 9, this approach suffers from version-
ing problems, so we tend to use a facade layer between the model and the DSL to allow
for easier versioning. In that case, we need to document that, outlining the versioning
concerns and explaining how to add new functionality using the facade.

Giving developers a good grasp of how everything comes together is important in
enabling them to work effectively with the DSL.

Document the syntax implementation

Documenting the syntax implementation is
different from documenting the syntax
(which we did in the User Guide). When

we’re talking about the syntax, we’re mostly Developer documentation
concerned with what to write and how to isn’t just Word documents
write it. When we talking about the syntax Although the term documentation
implementation, we’re focusing on how to usually brings to mind wordy spec-
map the text to the language concepts. ifications and long sessions with a

word processor, that isn’t neces-
sarily the best way to provide doc-
umentation when the target audi-
ence is developers.

When you have an internal DSL with a
host language like Boo, you don’t have a lot
of work to do in this area, but you still have
some. For example, your language will have
keywords, behaviors, conventions, notations,
and external integrations that you’ve built

Well-structured code with inline
comments, accompanied by tests,

‘ } - is usually the best form of docu-
into it to talk about the problem domain in a mentation that a developer could

meaningful way. You need to document how ask for.
they work.

234

DSLs and documentation

We’ll cover each of the syntax implementation parts, starting with the language

keywords.

KEYWORDS

When documenting keywords, I tend to list each keyword, along with a short descrip-
tion of what it is responsible for and how it is implemented (method call, meta-
method, macro, and so on).

That may not always be possible when you’re extending the language externally
(using the model or a facade, for example), so in those scenarios, I point out explic-
itly that extending the language is done externally to the actual language implemen-
tation and try to provide a tool that can automatically generate a reference for the
documentation.

Building a list of keywords and their implementation semantics is a good first step
toward documenting a language, but it isn’t enough. You also need to document the
implementation semantics—the way the DSL behaves.

BEHAVIORS

The term behavior refers to how the system performs operations, often complex ones.
There are plenty of cases where what the DSL script appears to do and its behavior
during execution are drastically different.

In the Quote-Generation DSL, for example, you execute the DSL to get a data
structure and then process it further, without referring to the DSL itself anymore. In
the Scheduling DSL, you’re building both a description of how you want the system to
behave as well as the condition and actions to be executed. Understanding the transla-
tion between the different parts of the DSL (the resulting model and the engine that
processes it) and how a change in one can affect the other is a common cause for con-
fusion in advanced scenarios.

Whenever the behavior of the system isn’t obvious, it’s a good idea to explain how
and why it works. In chapter 12, we’ll cover some advanced techniques that allow you
to play with the language at a far deeper level. These techniques allow great freedom
and the creation of very nice syntax and semantics for your DSLs, but they can be
daunting if you come across them without some prior warning.

For example, take a look at listing 11.2, which shows a DSL that represents a rule
engine for order processing.

Listing 11.2 A sample of an order-processing DSL

when customer.is_preferred and order.total_amount > 500:

apply_discount 5.percent
In this example, we access both customer and order to make a decision. So far, it
looks simple. But let’s assume that customer can be null (if the customer doesn’t
have an account and makes a onetime purchase). How will we handle that?

One solution would be to rewrite listing 11.2 as shown in listing 11.3.

Creating the Developer Guide 235

Listing 11.3 A sample of an order-processing DSL, with null handling

when customer is not null and customer.is_preferred \
and order.total_amount > 500:
apply_discount 5.percent

I'm pretty sure you’ll find listing 11.3 less readable than 11.2, because in listing 11.3
the error-handling code obscures the way we handle the business scenario.

NOTE A simple alternative approach to the problem of null customers would
be to use the Null Object pattern (a null object is an object with defined
neutral, null, behavior). Instead of a null reference, we could pass an
anonymous customer. That’s not always easy to do, however.

We could improve on this by checking whether the customer is null at the DSL level,
instead of at the script level. We could state that if a rule references a variable that is
null, we won’t run it. This is an example of advanced behavior that’s not self-evident in
the code, but it’s an important part of the DSL. This should be documented, both to
point out this behavior and explain how it is implemented. (The full details on how to
implement this are covered in chapter 12.)

Behaviors concern how the system does things, and it’s closely related to how the
system is organized. This is where the system’s conventions come into play.
CONVENTIONS
A convention is a standard way of dealing with particular aspects of your application.

Conventions result in common, well-defined structures for our software, and that’s
a major plus, but it’s just the tip of the iceberg. The fun part starts when the applica-
tion is aware of those conventions and can make use of them. The use of naming and
directory structures are typical conventions in our DSL implementations.

I mentioned earlier that these conventions should be documented in the User
Guide; in the Developers Guide you need to document how they’re implemented. For
example, do you rely on external ordering? Is the ordering by filename?

I usually use the term convention for anything that’s outside the code; I refer to con-
ventions in the code as notations.

NOTATIONS

A notation is a way to express an idea in another manner, usually to gain either clarity or
conciseness or both. In the Quote-Generation DSL, for example, you can use @émodule-
Name as a notation to reference modules. Another notation might be the use of
underscores_between_words instead of using PascalCase.

TIP Notations and conventions seem innocent when you start to use them,
but it’s easy to forget about them. They’re there to make things friction
free, after all. But if you do forget about them, you may have to dig deep
to figure out why something isn’t working when you aren’t following the
proper convention or using a notation properly. It’s important to make
sure conventions and notations are documented explicitly.

236

11.4.4

DSLs and documentation

As with conventions, notations should be documented in the User Guide, and the
implementation semantics should be documented in the Developer Guide. In the two
previous examples, those involve registering compiler steps to process the code during
compilation, and usually you would use the UseSymbolsStep and UnderscoreNaming-
ConventionsToPascalCaseCompilerStep compiler steps that are part of the Rhino
DSL project. Spelling this out may seem redundant now, but it’s likely to help in the
future, particularly for more-complex DSLs that may contain many such notations.

One topic you still need to document is when you reach outside the DSL implemen-
tation to get your information.

EXTERNAL INTEGRATION

One of the more interesting DSL approaches I have seen is reaching outside the
source files and the compiler into external systems to get additional information to
solve a business problem.

For example, imagine that you're writing a Quote-Generation DSL and you have a
typo in a module name. During compilation, the compiler interrogates the ERP system
to check whether all the specified module names are valid. This allows it to give you a
compiler error instead of a runtime error. Another example is generating code at the
compiler level from external resources, such as a database, web service, and so on.

Those external resources are also part of the DSL, but they aren’t things that you
would usually notice (until they break, or are broken). Make sure that you document
them adequately; I usually consider a list of all the external integration points and
how they’re configured to be adequate.

I mentioned earlier that I consider the code the best documentation. But that
approach fails when you start to play underhanded tricks with the compiler.

Documenting AST transformations

An AST transformation is when you take a piece of AST (the compiler object model) and
modify it during compilation, affecting the output of the compiler. A common AST
transformation is the creation of the implicit base class.

Another example of AST transformation that you’re probably familiar with is creat-
ing an XML document programmatically by manipulating the DOM—the DOM is the
AST of the XML document. The code for doing that is usually long and complex, not
because of what it’s doing, but because it’s full of details on how to manage the pro-
grammatic representation of an XML document. AST transformations written using
the AST API directly require a lot of code. (Using quasi-quotation, which is covered in
chapter 6, tends to simplify this by an order of magnitude or more, but it’s only possi-
ble if your DSL is implemented in Boo.)

The main problem with code that performs AST manipulations is that it’s hard to
look at the code and see what the end result will be. For that reason, I recommend
documenting most AST manipulation code with the code that it’s generating. I usually
do this as a comment directly in the code. An example of documenting AST manipula-
tion can be seen in listing 11.4.

11.5

Creating executable documentation 237

Listing 11.4 AST manipulation code with documentation

// compilerContext = BrailViewComponentContext (macroBodyClosure,

// "componentName", OutputStream, dictionary)
block.Add (new BinaryExpression (BinaryOperatorType.Assign,
new ReferenceExpression (componentContextName), initContext));

// AddViewComponentProperties(compilerContext.ComponentParams)
MethodInvocationExpression addProperties =

new MethodInvocationExpression (

AstUtil.CreateReferenceExpression (
"AddViewComponentProperties")) ;
addProperties.Arguments.Add (
AstUtil.CreateReferenceExpression (componentContextName +
" .ComponentParameters")) ;

The code in listing 11.4 comes from the Brail DSL, which is a text-templating lan-
guage. As you can see, there is little to compare between the resulting code (which is
shown in the comments) and the code that’s used to generate the AST to produce the
end result.

This is one of the few cases where I am in favor of verbose commenting, because
there is such a gap between the concept and the code that creates it. Such comment-
ing is particularly important for people who aren’t used to reading this type of code.

So far, we’ve focused on documentation in the form of documents and comments,

but that’s not the only way to document code.

Creating executable documentation

Most documentation is inanimate words on paper (or on the screen). You can pro-
duce screencasts that provide much higher bandwidth communication, but they tend
to be a poor way to discuss details. The details are usually left to documents, but they
don’t have to be.

Executable documentation is documentation that you execute in order to learn
from. I consider tests a form of executable documentation, because I can look at the
tests (and step through them) to see how various parts of the system are implemented.
In fact, given a choice between a system with documentation but no unit tests, and
one with unit tests but no documentation, I would take the system with the unit tests
in a heartbeat.

Documentation goes out of date, and there is no real way to verify that it’s accurate
except by poring over the code. Tests tend to be up to date, and they can actively tell
you if they aren’t.

Tests as a form of documentation are usually only valuable to developers, but
there’s another option for creating executable documentation. You can create a set of
examples that show how the system works. You can provide a tool that will allow users
or developers to play with the examples and see the results of their actions. Microsoft
did a good job of this with the 101 LINQ Examples. Not only did they provide a lot of
examples, there’s a GUI that allows you to modify them and play with different

238

11.6

DSLs and documentation

options. (The C# version of the examples can be found at http://msdn.microsoft.
com/en-us/vesharp/aa336746.aspx, and the VB.NET version is at http://msdn2.
microsoft.com/en-us/bb688088.aspx.)

This type of documentation is valuable for both developers and users, and it’s an
approach you should consider when creating documentation for your DSL.

Summary

In this chapter, we’ve gone over the major points that should be documented in a DSL
implementation, both from the end user’s perspective and from the point of view of a
developer coming on board the project.

Again, this is by no mean a comprehensive discussion of documentation. I've
merely pointed out the highlights, indicating what should be documented and what
type of documentation you should strive for.

Like most developers, I find writing documentation boring and maintaining docu-
mentation even worse, but it’s important. You may never see the payoff of your docu-
mentation efforts yourself, because they usually come in the form of user acceptance
of the DSL and an easier ramping-up process for new developers that are added to the
team. But those are valuable results nevertheless.

We’ve now looked at documentation, user interfaces, versioning, and testing, all of
which are high-level concepts in building DSLs. It’s time to investigate common imple-
mentation issues and the patterns that are used to deal with them. That’s the topic of
chapter 12—DSL implementation challenges.

http://msdn.microsoft.com/en-us/vcsharp/aa336746.aspx
http://msdn2.microsoft.com/en-us/bb688088.aspx

DSL 1m

In this chapter

= Scaling DSL implementations

= Deploying DSL scripts in production
= Treating code as data

= Creating user-extensible languages

The first part of this book dealt with building a DSL from scratch, and the second
part with testing, documenting, versioning, and presenting the DSL. Between the
two, there are still some gaps—details that are important for creating successful DSLs
that we couldn’t look at before you gained some experience building DSLs in Boo.

In this chapter, we’re going to look at some of the more interesting challenges
for DSLs, and in the next chapter we’ll make use of many of the solutions outlined
in this chapter to build a real-world DSL.

NOTE Many of the topics in this chapter involve AST manipulation, which we
covered in chapter 6. As a quick reminder, the abstract syntax tree
(AST) is how the compiler represents the code text internally. Boo
allows you to access and modify the AST, and these modifications will
affect the generated code, producing the result that you want.

239

240

12.1

tem reaches a critical mass, when it has

DSL implementation challenges

Scaling DSL usage

A common goal for DSLs is to create a
more transparent environment, one in
which it’s clear what the system is doing
and why. It usually works beautifully in the
demo, and as long as the system remains

Deployment Transparency

Technical Clarity

Scaling

small. Where it often fails is when the sys- aDSL

hundreds or thousands of scripts working
together to produce the appropriate
results. In one such system I worked on, we
had well over 15,000 scripts; in another, we had close to 4,000. As you can imagine, we

Figure 12.1 What it takes to scale a DSL

ran into several problems with these systems that we hadn’t seen when they were small.
A lot of the solutions in this chapter resulted from working in that type of scenario.
They’re applicable and valuable in smaller-scale languages, but their value will truly
become apparent after your system has become successful and sees a lot of use.
In general, the challenges (and their solutions) can be divided into several general
areas, as shown in figure 12.1:

Technical—Technical problems include startup time, response time, memory
usage, and cold restart time (the time it takes to execute a script or a set of
scripts the very first time). This generally covers the system not being ready for
the scale of the problems it’s given.

Deployment—Unlike most code, DSL scripts are expected to be changed in pro-
duction quite often. Doing so safely requires some prior planning.
Transparency—In a big system, understanding why the system performed a par-
ticular operation can be decidedly nontrivial.

Clarity—In a big system, it’s often hard to make sure that you're expressing
yourself clearly. This happens when the complexity of the problems increases,
and you need to match that with complex solutions. Clarity is lost if you fail to
take advantage of such a scenario to get to a higher level of expressiveness and
understanding.

All the challenges we will deal with in this chapter can be assigned to one of these areas.

12.1.1 Technical—managing large numbers of scripts

Let’s assume we have a system with several thousand scripts. What kind of issues are we
going to run into?

Startup time—Compilation time will be a significant factor, because the scripts
will be compiled on the fly. Yes, we’re caching the compiled assembly, but the
startup time can be significant in such a system.

Memory—There will almost certainly be a significant number of changes to the
scripts that will have to be recompiled, loading more assemblies into memory.

12.1.2

Scaling DSL usage 241

Because we can’t release assemblies on the CLR, we have to either accept this
issue or deal with AppDomains to manage it.

Of the two, startup performance is the more worrying concern. An assembly isn’t that
big most of the time, and even a hundred changed scripts would add less than half a
megabyte to the application. It’s not ideal, but it’s something we can live with. The
startup time can be measured in minutes if you have enough scripts.

NOTE In this scenario, a large number of scripts is several hundred that need
to be accessed immediately after system startup. If you have fewer scripts
than that, or if not all the scripts need to be accessed shortly after sys-
tem startup, you generally won’t have to worry about startup perfor-
mance issues.

There are two factors that relate to the speed of compiling a set of scripts: the number
of the files and the number of times the compiler is called.

In general, it’s best to invoke the compiler as few times as possible, with as many
scripts as possible. This tends to produce fewer bigger assemblies, which is preferred
over smaller, but more numerous, assemblies. There is also a cost for invoking the
compiler itself, but this is usually only significant if you invoke it for each individual
script, rather than compiling in batches.

It’s a fine balancing act. On the one hand, it’s slower to compile more files, but it’s
even slower to compile each script independently. The solution chosen for Rhino DSL
(and described in chapter 7) is to compile all the scripts in the target script directory
(though this can be overridden if you choose). This approach compiles scripts in
batches but doesn’t attempt to compile all the scripts in one go. In that way, it bal-
ances the need to keep the system responsive and overall system performance.

But even that’s not a good enough solution in some cases. There are situations
where you must compile a large number of scripts quickly. You have several options in
that scenario. You can live with the performance hit, perform precompilation, or per-
form background compilation.

Performing precompilation

Although I tend to refer to DSL code as “scripts” to express how flexible they usually
are, there is no real reason to treat them as such. In a mostly static system, you could
easily compile all the scripts as part of the build process, and be done with them.

Listing 12.1 shows how you could compile a set of scripts ahead of time. We will dis-
cuss its usage immediately.

Listing 12.1 Precompiling a directory of scripts

public class DslPreCompiler
{
public static void PreCompile(DslEngine engine,
string directory, string destinationFile)

{

242

CHAPTER 12 DSL implementation challenges

var allFiles = FileHelper.GetAllFilesRecursive (directory, "*.boo");

// Compile all the files

var compilerContext = engine.Compile(allFiles);

// Copy generated assembly to destination

File.Copy (compilerContext.GeneratedAssemblyFileName,
destinationFile, true);

}

As you can see, the Ds1PreCompiler takes a DSL engine and a directory of scripts, and
it produces the compiled output.

But that only deals with the first part of the problem, compiling all the scripts in
one go. How do you tell Rhino DSL that it should look for those scripts in the assem-
bly? You can override the cache behavior to look at the compiled assembly file, as
shown in listing 12.2.

Listing 12.2 Overriding the cache behavior

public class PrecompiledCache : IDslEngineCache
{
private readonly Assembly assembly;

public PrecompiledCache (Assembly assembly)
{

this.assembly = assembly;
}

public Type Get(string path)
{
var type = assembly.GetType (
Path.GetFileNameWithoutExtension (path)) ;
if (type!=null)
return type;
throw new InvalidOperationException("Could not find " + path

+ " in the precompiled assembly");
}

// Other methods omitted for brevity's sake; they all
// throw NotSupportedException
}

In this example, the precompiled cache always goes to the assembly to find its types,

and the PrecompiledCache intentionally throws an error if the type isn’t found. That’s

done to keep the implementation simple. A more complex implementation would

also handle the case where the scripts are modified from the precompiled version.
Now all you have to do is execute the precompilation:

DslPreCompiler.PreCompile (
new QuoteGenerationDslEngine(), scriptDirectory, "test.dll");

Then you need to let the DSL engine know about the cache, as in listing 12.3.

12.1.3

12.1.4

Scaling DSL usage 243

Listing 12.3 Letting the DSL engine know about the precompiled cache

var factory = new DslFactory();
factory.Register<QuoteGeneratorRule> (new QuoteGenerationDslEngine

{
Cache = new PrecompiledCache (Assembly.LoadFrom("test.dl1l"))
)i
var rule = factory.Create<QuoteGeneratorRule> (
Path.Combine (scriptDirectory, "sample.boo")
, new RequirementsInformation(50)) ;
As you can see, this is pretty easy and noninvasive. All requests for a DSL instance will

be satisfied from the precompiled assembly.

Compiling in the background

Rhino DSL caches the results of compiling a script, so all you need to do to perform
background compilation is create a thread that will ask for instances of all the scripts.
This will cause all the scripts to be compiled before the first request, saving you the
compilation time.

Rhino DSL is thread-safe, so you can spin off a thread that would request an
instance of all the scripts. A simple example is shown in listing 12.4.

Listing 12.4 Compiling all the scripts in a background thread

var factory = new DslFactory();
factory.Register<QuoteGeneratorRule> (new QuoteGenerationDslEngine()) ;
ThreadPool.QueueUserWorkItem(delegate
{
var allFiles = FileHelper.GetAllFilesRecursive (
scriptdirectory, "*.boo");
foreach (var file in allFiles)
{
factory.Create<QuoteGeneratorRule> (file,
new RequirementsInformation (50)) ;

)i

Because the scripts are cached once they’re compiled, all you have to do is request
them once and, presto, they’re cached.

NOTE By default, Rhino DSL caching is persistent, so it survives application
restarts. Take that into account when you consider system performance.

Managing assembly leaks

I already mentioned that an assembly isn’t a resource that can be freed easily. If you
want to unload assemblies, you must load the entire AppDomain. Assembly leaks will
only be an issue if you expect a large number of changes in production between appli-
cation restarts. Again, a large number, in this context, is thousands of changes occurring

regularly.

244

12.2

DSL implementation challenges

This is a common issue for development, but system uptime in development is
rarely long enough for this to be a problem. In production, this situation occurs much
less commonly than it’s talked about, so I'll merely identify the solutions for this prob-
lem rather than demonstrate them in detail.

The first option, as I’'ve mentioned, is not dealing with the issue. This is a valid
response if you don’t expect to have many changes in production. It’s what I usually
recommend doing.

The second option is to move the DSL to a separate AppDomain and perform all
communication with the DSL instance over an AppDomain boundary. This has its own
performance issues, and it requires that all the objects you send to the DSL instance
either be serializable or inherit from MarshalByRefObject. It’s not a solution that I
like much.

The third option is to move much of the application itself to an AppDomain and
rely on a small core to manage those AppDomains. This way, at given times, the applica-
tion core could spin off a new AppDomain and unload the old one, freeing the mem-
ory. This approach is similar to the way IIS and Windows Process Activation work, and
I suggest taking a look at them as well, because it’s entirely possible to make use of the
existing infrastructure for this purpose.

As you can see, the technical challenges are easily overcome using well-known
technical solutions, such as background compilation, caching, and precompilation.

A more complex problem isn’t strictly technical in nature: deployment. We’ve
looked at the implications of editing scripts in production from the technical side, but
not from the control and management sides.

Deployment—strategies for editing DSL scripts
in production

Once the application is in production, how are users supposed to edit the DSL scripts?
It’s likely that some important behaviors are defined in the DSL and that users will
want to make modifications to them. This is a question that comes up often. Yes, the
DSL is easy to change, but how should you deal with changes that affect production?

Let’s first assume we’re talking about a web application or a backend system, not a
Windows application. There are several aspects to this problem. First, there is the prac-
tical matter of creating some sort of Ul to allow users to make the changes. This is gen-
erally not something trivial to produce as part of the admin section of an application.

There are also many other challenges in this scenario that need to be dealt with,
such as handling frequent changes, cascading updates, debugging, invasive execution,
error handling, and so on. Just making sure that all the scripts are synchronized across
all the nodes in a web farm can be a nontrivial task. You also have to deal with issues
such as providing auditing information, identifying who did what, why, and when, and
you need to be able to safely roll back a change.

In development mode, there is no issue, because you can afford to be unsafe there.
The worst thing that can happen is that you’ll need to restart the application or revert
to a clean checkout. For production, this isn’t an option. This is nota simple matter.

Deployment—strategies for editing DSL scripts in production 245

My approach, usually, is to avoid this requirement as much as possible. I don’t
allow such changes to be made in production. It’s still possible, but it’s a manual pro-
cess that’s there for emergency use only. Like the ability to log in to the production
database and run queries, it should be avoided if possible.

But disallowing changes isn’t always possible. If the client needs the ability to edit
DSL scripts in production, you need to provide a way for them to do so. What I have
found to be useful is to provide a way to not work directly on production. Instead, we
work on scripts stored in a source control server that is considered part of the applica-
tion itself. You can see how it works in figure 12.2.

If you want to access the scripts, you check them out of source control. Then you
can edit them with any tool you want (often the same tools that you use during devel-
opment), and finish by committing them back to the repository. The application
monitors the repository and will update itself when a commit is done to the produc-
tion branch.

This approach has several big advantages. First, you don’t have the problem of par-
tial updates, you get a pretty good audit trail, and you have built-in reversibility. In
addition to that, you avoid the whole problem of having to build a UI for editing the
production scripts; you use the same tools that you used during development.

As a side benefit, this approach also takes care of pushing script changes to a
farm, so you don’t have to provide a separate solution for that. And yes, this method
of editing scripts in production incorporates continuous integration as part of the
application.

Production Servers

Source control server
holds the scripts

User edits the DSL scripts

Figure 12.2 Using a source control
server to hold the scripts for the system
offers big benefits, such as authorization,
auditing, and distribution.

246

12.3

12.3.1

CHAPTER 12 DSL implementation challenges

Ensuring system transparency

Ensuring that the system is transparent (that it’s possible to understand what goes on
in the bowels of the system) can be hard work, particularly if you don’t have a good
grasp of the system’s internals. In this section, we’ll discuss the tooling that you have
available to make the system transparent.

We’ll also look at a new DSL that will allow us to discuss those patterns in greater
depth. Chapter 13 discusses the implementation of the DSL in detail; this is a short
overview.

Introducing transparency to the Order-Processing DSL

The Order-Processing DSL is used to define business rules regarding (surprise!) order
processing. The syntax of the Order-Processing DSL is as follows:

when someBusinessCondition:
takeActionl
takeAction2

Listing 12.5 shows an example of an Order-Processing script.

Listing 12.5 An example of the Order-Processing DSL

when customer.IsPreferred:

apply_discount 5.percent ()
With that knowledge, let’s take on our first challenge. Users want to know which rules
took active part in the processing of a specific order. If there is a problem, that would
make it much easier to track down. Users would know what rules had executed, in
what order, and what the result of that execution was. With that feature in mind, let’s
go about implementing it.

When I built the Order-Processing DSL, I choose to use when, rather than if, for
the common conditional. That’s because when makes for a clearer distinction between
business conditions and code conditions. If is a keyword, and when isn’t, but it’s possi-
ble to make a keyword out of when using a meta-method or a macro.

In most scenarios, I prefer to use a meta-method (though there is no real objective
reason). Listing 12.6 shows one possible implementation of the when () meta-method.

Listing 12.6 The when () meta-method

[Metal
public static MethodInvocationExpression when (
Expression condition, BlockExpression action)
{
var conditionBlock = new Block(condition.LexicalInfo);
conditionBlock.Add (new ReturnStatement (condition)) ;
return new MethodInvocationExpression (
// the init method
new ReferenceExpression("Initialize"),
// a delegate with the condition
new BlockExpression(conditionBlock),

Ensuring system transparency 247

// a delegate with the action
action
)i
}
The when () meta-method decomposes the when keyword into its component parts and
sends each part to the Initialize() method.
The when() meta-method shown in listing 12.5 will transform the code in
listing 12.3 into the code shown in listing 12.7 (translated to C# to make it easier to
understand).

Listing 12.7 The when () meta-method output (translated to C#)

Initialize(delegate { return customer.IsPreferred; }, delegate
{
apply_discount (5.percent ()) ;

1)

We have decomposed the code using the when keyword into two parts, the conditions
and the action. Now we can implement the OrderRule implicit base class, as shown in
listing 12.8.

NOTE The when keyword implementation is split between the when() meta-
method, which captures the appropriate information at compile time,
and the Execute () method, which executes the code. The Initialize()
method is called from the code generated by the when() meta-method,
which is placed in the Prepare() method. We’ll walk through this in
chapter 13, so don’t worry if you don’t fully understand it yet.

Listing 12.8 The OrderRule implementation of conditional semantics

public void Initialize (Func<bool> condition, Action action)
{

Condition = condition;

Action = action;

}

public void Execute()
{
// Execute the condition
var result = Condition();
// Log the result of this condition

RuleContext.AddConditionResult (this, result);
if (result) // Execute the action if condition evaluates to true.
Action() ;

}
Using this approach, we can create what is effectively an auditable if statement. The
only thing we have left to do is to display the results of the execution to the user. The
when () meta-method generates the code to call the Initialize() method with the
condition and actions wrapped in delegates. We later execute those delegates when
calling the Execute method and then record the result of the condition.

248

12.3.2

12.3.3

DSL implementation challenges

That’s not quite the end of adding transparency to a DSL. It would be nice if we
could go directly from a script instance to its source. That would allow us to show the
user the source of each rule, so they can understand what it does.

Capturing the script filename

We want to capture a script’s filename so we can display it. The question is, how? We
have the filename of the script during compilation, so what we need to do is record
this in the script in a manner that will allow us to access it at runtime.

One way of doing this is to pass the filename to the Initialize() method. The
new implementation is shown in listing 12.9.

Listing 12.9 Recording the filename

[Metal
public static MethodInvocationExpression when (
Expression condition, BlockExpression action)

var conditionBlock = new Block(condition.LexicalInfo);
conditionBlock.Add (new ReturnStatement (condition)) ;
return new MethodInvocationExpression (

// The init method

new ReferenceExpression("Initialize"),

// A delegate with the condition

new BlockExpression (conditionBlock),

// A delegate with the action

action,

new StringLiteralExpression(condition.LexicalInfo.FileName)
)

}

public void Initialize(Func<bool> condition, Action action,
string filename)

Filename = filename;

Condition = condition;

Action = action;
}
That was pretty easy, wasn’t it? We could also go with more complex semantics, using a
compiler step to add a property to all the scripts. But the solution in listing 12.9 is
short and simple and it works, so there’s no reason to go there yet.

Because we now have access to the filename of the script at runtime, we can show
the user which script it is, and let them immediately see what caused a particular deci-
sion. But that might be too cumbersome for some scenarios. We don’t necessarily
want the entire script—we only want the condition. How do we get that?

Accessing the code at runtime

Let’s take a deeper look at the problem. Assume the condition in use is the code in
listing 12.10.

Ensuring system transparency 249

Listing 12.10 Sample code in the Order-Processing DSL

when Order.Amount > 10:
print "big sale!"
We’d like to give users the following information: “Because ‘Order.Amount > 10’ eval-
uated to true, executing the rule action.” The problem is how to get the string that
represents the rule.
It turns out it’s simple to do. We ask the compiler nicely, as shown in listing 12.11.

Listing 12.11 Providing the Initialize () method with the condition string

[Metal
public static MethodInvocationExpression when (
Expression condition, BlockExpression action)

var conditionBlock = new Block(condition.LexicalInfo);
conditionBlock.Add (new ReturnStatement (condition)) ;
return new MethodInvocationExpression (
// The init method
new ReferenceExpression("Initialize"),
// A delegate with the condition
new BlockExpression (conditionBlock),
// a delegate with the action
action,
new StringLiteralExpression(condition.LexicalInfo.FileName),
// Will translate the code into a string, and turn that into
// a string Literal, so we can pass that as a parameter
// to the When method
new StringLiteralExpression (condition.ToCodeString())
)
}

public void Initialize(Func<bool> condition, Action action,
string filename, string conditionString)

Filename = filename;

Condition = condition;

Action = action;

ConditionString = conditionString;

}

The important part here happens in the when () meta-method. We translate the call to
the when keyword into a call to the Initialize() method. We’re passing the argu-
ments that we got, and also a string literal with the code that was extracted from the
relevant expression.

Our ability to play around with the AST has allowed us to handle this scenario
gracefully. What this means is that now we can access the condition as a string at run-
time by accessing the property. We can display that information to the user, log it, or
store it as part of the audit process.

Strings are good if you need the information for display purposes, but if you want
to process a piece of code at runtime, and you want to get access to the code object
model, strings aren’t useful. For that, there’s another solution.

250 DSL implementation challenges

12.3.4 Processing the AST at runtime

We don’t have to do anything complex in order to implement the ability to inspect the
compiler AST at runtime. As we saw in chapter 6, when we talked about quasi-
quotation, Boo already has the facilities to take a compiler’s AST and translate that
into the code that would re-create the originating AST.

This makes our task a lot easier, because we can utilize this functionality instead of
trying to roll our own (been there, done that, wasn’t fun). Listing 12.12 shows what we
need to do.

Revisiting serialized AST nodes

The code in listing 12.12 contains something we haven’t looked at so far: a call to
CompilationHelper.RevisitSerializedExpression. What is this, and why is it
needed?

Each step in the compiler pipeline adds additional information to the AST, which is
required by the following steps. Meta-methods are executed fairly late in the compiler
pipeline, after some of the steps required to compile serialized AST have been run.

We solve the problem of wanting to serialize AST too late in the pipeline by re-executing
the steps to serialize the AST on the serialized node, which means that we can con-
tinue with the compilation process successfully.

Listing 12.12 Serializing the condition expression and passing it to Initialize()

[Metal
public static MethodInvocationExpression when (
Expression condition, BlockExpression action)

//Translate the expression to code that will recreate this expression
//at runtime
Expression serializedCondition =

new CodeSerializer().Serialize(condition) ;
// Revisit condition to ensure proper compilation.
CompilationHelper.RevisitSerializedExpression(serializedCondition) ;

var conditionBlock = new Block(condition.LexicalInfo);
conditionBlock.Add (new ReturnStatement (condition));
return new MethodInvocationExpression (
new ReferenceExpression("Initialize"),
new BlockExpression(conditionBlock),
action,
new StringLiteralExpression(condition.LexicalInfo.FileName),
new StringLiteralExpression(condition.ToCodeString()),
serializedCondition
)i
}

public void Initialize(Func<bool> condition, Action action,
string filename, string conditionString,
Expression conditionExpression)

124

Changing runtime behavior based on AST information 251

3 @ rule {Script}

@ [Script] {Script}

j‘ Action {Method = {Void Preparesclosures2(}}
—® 8 Condition {Method = {Boolean Preparesclosures1(}}

= ﬁ‘ ConditionExpression {Order.Amount > 10}
&) @ [Boo.Lang.Compiler.Ast.BinaryExpression] | {Order.Amount > 10}

Figure 12.3 Executing the code

@ base {Order.Amount > 10} in listing 12.12 on the script in
P Left {Order.Amount} listing 12.10 allows access to the
‘:f NodeType BinaryExpression Conditi onExpress ion
5 Operator GreaterThan

property as an AST node at

Right {10} .
= - runtime.

@ Non-Public members

Filename = filename;

Condition = condition;

Action = action;

ConditionString = conditionString;

ConditionExpression = conditionExpression;
}
Using this code, we can take the script in listing 12.10 and get the results shown in fig-
ure 12.3.

It displays both the compiled expression and the AST that describes it. This is criti-
cally important, because you can now take this piece of AST and do transformations or
views on it.

There are a lot of things that you can do with the AST once you have it. In fact, this
is how LINQ works (see sidebar on the similarities between LINQ and the AST). A sim-
ple enough example is that you could take the condition AST and translate it to some
graphical representation. But we covered the UI exhaustively in chapter 10; let’s
explore a more interesting use for processing the AST at runtime.

Changing runtime behavior based on AST information

One of the more annoying problems when building an internal DSL is that you have
to deal with code-related issues, such as the NullReferenceException.
For example, let’s say that we have the following order rule:

when Order.Amount > 10 and Customer.IsPreferred:
ApplyDiscount 5.percent

We have a problem with this rule because we also support an anonymous-checkout
mode in which a customer can create an order without registering on the site. In that

Similarities between LINQ and the AST

You might have noticed that there is a remarkable similarity between LINQ’s expres-
sion trees (Expression<T>) and the AST. Indeed, an expression tree is an AST that’s
limited to expressions only. You can use the AST to do everything that you do with
expression trees, and usually do it the same way.

If you have any prior knowledge of expression trees, it’ll be applicable to AST manip-
ulation, and if you understand the Boo AST, that knowledge is transferable to working
with expression trees.

252

CHAPTER 12 DSL implementation challenges

mode, the Customer property is null, and trying to access the IsPreferred property
will throw a Nul1lReferenceException.
We could rewrite the rule to avoid the exception, like this:

when Order.Amount > 10 and Customer is not null and Customer.IsPreferred:
ApplyDiscount 5.percent

But I think this is extremely ugly. The business meaning of the code gets lost in the
technical details. We could also decide to return a default instance of the customer
when using anonymous checkout (using the Null Object pattern), but let’s look at
another way to handle this.

We can define the rule as invalid when Customer isn’t there. This way, a rule
shouldn’t run if it references Customer when the Customer is null. The dirty way to
hack this is shown in listing 12.13.

Listing 12.13 Hacking around the Null1ReferenceException

var referencesCustomer = File.ReadAllText (ruleName) .Contains ("Customer") ;
if (referencesCustomer && Customer == null)
return;

If you grimaced when looking at this code, that’s a good sign. Let’s solve this properly,
without hacks.

First, we already have help from the compiler because we have access to the condi-
tion expression (as shown in listing 12.12). We can utilize this to make decisions at
runtime. In this case, we’ll use this to detect when we’re referencing a null property
and mark the rule as invalid. You can see this in listing 12.14.

Listing 12.14 Deciding whether to execute the rule based on the Customer property

public void Execute()
{
var visitor = new ReferenceAggregatorVisitor();
visitor.Visit (ConditionExpression) ;
if (visitor.References.Contains ("Customer") && Customer == null)
return;// Rule invalid

bool result = Condition(); // Execute the condition
RuleContext.AddConditionResult (this, result);
if (result) // Execute the action if condition evaluates to true.
Action() ;
}

The ReferenceAggregatorVisitor that’s used in listing 12.14 is shown in listing 12.15.

Listing 12.15 ReferenceAggregatorVisitor finds references in a piece of code

public class ReferenceAggregatorVisitor : DepthFirstVisitor

{

public IList<string> References = new List<string>();

public override void OnReferenceExpression (ReferenceExpression node)

{

12.5

Data mining your scripts 253

References.Add (node.Name) ;
base.OnReferenceExpression (node) ;

}

This is a simple example of how you can add smarts to the way your code behaves, and
this technique is the foundation for a whole host of options. I use a similar approach
for adaptive rules and for more complex auditable actions.

Data mining your scripts
Working with the AST doesn’t just mean dealing with compiler transformations. There
is a lot of information in the AST that you can use in ways you may find surprising.
For example, suppose you have a set of DSL scripts, and you want to see what users
are using the DSL for. You can try to read it all, but it’s much more interesting (and
feasible) to use the compiler to do so, because this opens more options.
Take a look at the DumpExpressionsToDatabaseVisitor in listing 12.16. It extracts
all the information from a script, breaks it down to the expression and statement level,
and puts it in a database.

Listing 12.16 Extracting expressions from a script for use in data mining

public class DumpExpressionsToDatabaseVisitor
DepthFirstVisitor

readonly string connectionString;

public DataMiningVisitor (string connectionString)
{
this.connectionString = connectionString;

}

public override bool Visit (Node node)
{
using (var con = new SglConnection (connectionString))
using (var command = con.CreateCommand())
{
con.Open () ;
command.CommandText = @"
INSERT INTO Expressions (Expression, File)
VALUES (@Expr, @File) ";
command . Parameters.AddWithValue ("@Expr", node.ToString()) ;
command .Parameters.AddWithvalue ("@File",
node.LexicalInfo.File);
command . ExecuteNonQuery () ;
}
Console.WriteLine (node) ;
return base.Visit (node) ;

}

You can make use of the DumpExpressionsToDatabaseVisitor by executing it over all
your scripts, as shown in listing 12.17.

254

12.6

DSL implementation challenges

Listing 12.17 Extracting expression information from all scripts in a directory

foreach (var file in Directory.GetFiles(dsl, "*.boo"))
{

var compileUnit = BooParser.ParseFile(file);

new DumpExpressionsToDatabaseVisitor (connectionString)

.Visit (compileUnit) ;

}
Note that this is disposable code, written for a single purpose and with the intention of
being thrown out after it’s used. But why am I suggesting this?

Well, what would happen if you ran this code on your entire DSL code base and
started applying metrics to it? You could query your code structure using SQL, like this:

select count(*), Expression from Expressions
group by Expression
order by count(*) desc
This will find all the repeated idioms in your DSL, which will give you a good idea about
where you could help your users by giving them better ways of expressing themselves.

For example, let’s say you found that this expression was repeated many times:
user.IsPreferred and order.Total > 500 and \

(order.PaymentMethod is Cash or not user.IsHighRisk)

This is a good indication that a business concept is waiting to be discovered here. You
could turn that into a part of your language, with something like this:

IsGoodDealForVendor

Here we aren’t interested in the usual code-quality metrics; we’re interested in busi-
ness-quality metrics. Getting this information is easy, and it'll ensure that you can
respond and modify the language based on user actions and input.

Creating DSLs that span multiple files

It’s common to think about each DSL script independently, but this is a mistake. We
need to consider the environment in which the DSL lives. In the same way that we
rarely consider code files independently, we shouldn’t consider scripts independently.

For example, in the Message-Routing DSL we might have a rule like this:
priority 10
when msg is NewOrder and msg.Amount > 10000:

dispatch_to "orders@strategic"

While building our DSL our focus might be mainly on the actual language and syntax
we want. But we may need to perform additional actions, rather than just dispatch the
message, such as logging all strategic messages. As you can see, we can easily add this
to the DSL:

priority 10

when msg is NewOrder and msg.Amount > 10000:
log "strategic messages" , msg
dispatch_to "orders@strategic"

Creating DSLs that span multiple files 255

routing_scripts
, behaviors
after
ﬁ dispatch_to_error_queue_if_not_dispatched
% log_strategic_messages
| routes
orders

%4 dispatch_big_new_orders_to_strategic_customers_handling Figure 12.4 A suggested folder
% dispatch_standard_new_orders_to_normal_customers_handling structure for the Message-Routing DSL

But this is a violation of the single responsibility principle, and we care about such
things with a DSL just as much as we do with code. So we could leave the original snip-
pet alone and add another script:
when destination.Contains("strategic"):

log "strategic messages", msg
Now the behavior of the system is split across several files, and it’s the responsibility of
the DSL engine to deal with this appropriately. One way to arrange this would be to
use the folder structure shown in figure 12.4.

The DSL engine can tell from the information in the message that it needs to exe-
cute only the routing rules in /routes/orders, and it can execute the after actions
without getting the routing scripts tied to different concerns.

If you want to be a stickler, we’re dealing with two dialects that are bound to the
same DSL engine. In this case, they’re similar to one another, but that doesn’t have to
be the case.

Multifile DSLs don’t have to combine the execution of several scripts for the differ-
ent dialects; they could also be used to execute different scripts in the same dialect.
Consider the possible folder structure shown in figure 12.5.

In this case, the DSL is based on the idea of executing things in reverse depth
order. When a message arrives, we try to match it to the deepest scope possible (in this
case, handling strategic customers), and we go up until we reach the root.

Nevertheless, this is still just another way of bringing several scripts of the same
DSL together, albeit in a fairly interesting way. In section 12.8, we’ll deal with a single
DSL that’s built of several files, each of them belonging to a different DSL implementa-
tion. We still have a bit to cover before going there, though.

For now, remember that when you’re designing and building a DSL, thinking
about a single file is the easiest way to go, but you ought to consider the entire envi-
ronment when you make decisions. A language that doesn’t support separation of
concerns (the process of separating a computer program into distinct features that

routing_scripts
routes
orders
%, dispatch_big_new_orders_to_strategic_customers_handling
%% convention_based_dispatching Figure 12.5 A convention-based folder
% log_strategic_messages structure for the Message-Routing DSL

256

12.7

12.8

12.8.1

DSL implementation challenges

overlap in functionality as little as possible, discussed in detail at http://en.wikipe-
dia.org/wiki/Separation_of_concerns) is bound to get extremely brittle quickly.

Creating DSLs that span multiple languages

Another common misconception about DSLs is that you can only have a single lan-
guage in a DSL. We’ve already looked at including several dialects of a language in a
DSL for versioning purposes, but that’s not what I'm talking about here. What I have
in mind is a single DSL composed of several different languages, each with its own pur-
pose. Each language implementation contributes toward the larger collective DSL.

Conceptually, those different languages compose a single DSL with a single lan-
guage that has different syntax for different parts of the system. From the implemen-
tation perspective, we are talking about different DSLs with a coordinator that
understands how they all work and how to combine them.

As a simple example, let’s consider the Message-Routing DSL again. Currently it is
used for two separate purposes: message routing, and translating the message from an
external representation to its internal one. This works for now, but it’s likely to cause
problems when the system grows. How will we handle a single message arriving at mul-
tiple endpoints and needing to be dispatched to several endpoints, but having to go
through the same transformation?

A good solution would be to split the functionality of translating messages from
that of the message routing. We’d have a DSL for translating messages, and another
for routing messages, and both would work in concert to achieve their goals.

I know that this is a bit abstract, but the next section will go into all the implemen-
tation details you could want.

Creating user-extensible languages

Developers aren’t the only ones who can extend languages. You can build a language
that allows users to extend it without requiring any complex knowledge on their part.

Once you release a language into the hands of your users, it will take a while before
you can release a new version. That means that if users don’t have a way to solve a
problem right now, they will brute force a solution. By giving users the ability to
extend the language themselves (and remember, we’re talking about business users
here, not developers), you can reduce the complexity that will show up in your DSL
scripts (reducing the maintenance overhead).

The basics of user-extensible languages

Suppose we wanted to build a DSL to handle order management. Here’s a typical
scenario:

when is_preferred_user and order_amount > 500:
apply_discount 5.percent

This rule sounds reasonable, right? Except that it isn’t a good example of a business
rule. A business rule usually has a lot more complexity to it.

http://en.wikipedia.org/wiki/Separation_of_concerns

Creating user-extensible languages 257

Listing 12.18 shows a more realistic example.

Listing 12.18 A typical order-management business rule

when user.payment_method is credit_card and \

((order_amount > 500 and order_amount < 1200)\

or number_of_payments < 4) and \

user.is_member_of ("weekend buy club") \

and Now.DayOfWeek in (DayOfWeek.Sunday, DayOfWeek.Saturday)

and applied_discounts < 10:

apply_discount 5.percent
At a glance, it’s hard to understand exactly what this rule does. This is a good example
of a stagnant DSL. It’s no longer being actively developed (easily seen by the use of
framework terms such as DayOfWeek, which in most cases you’ll want to abstract away),
and the complexity is growing unchecked.

Usually, this happens when the DSL design has not taken into account new func-
tionality, or when it relies on the DSL developers to extend the language when
needed. Because it requires developer involvement, it’s often easier for users to solve
problems by creating complex conditionals rather than expressing the business logic
in a readable way.

A good way to avoid additional complexity and reduced abstraction is to incorpo-
rate known best practices from the development side in your DSLs, such as allowing
encapsulation and extensibility.

As a simple example, we could allow the user to define conditions, as shown in list-
ing 12.19. Those conditions allow users to define their own abstraction, which then
becomes part of the language.

Listing 12.19 Defining business conditions in a user-editable script

define weekend_club_member:
user.is_member_of ("weekend club member")

define sale_on_weekend:
Now.DayOfWeek in (DayOfWeek.Sunday, DayOfWeek.Saturday)

define good_payment_option: # Yes, I know, it is a bad name, sorry
((order_amount > 500 and order_amount < 1200) \
or number_of_payments < 4)

Now the condition becomes much simpler, as shown in listing 12.20.

Listing 12.20 With user-defined abstractions, the rule becomes much simpler

when user.payment_method is credit_card and good_payment_option \
and sale_on_weekend and weekend_club_member and \
applied_discounts < 10:
apply_discount 5.percent

This is important, because it avoids language rot and allows the end user to add
abstraction levels. But how can we implement this?

258

12.8.2

DSL implementation challenges

Build the facilities for abstractions

If you want to create a language that’s both usable and maintainable, you have to
give users the facilities to create and use abstractions. This is a common theme in
this chapter.

Just because the code that users write is a DSL script doesn’t mean that good design
guidelines should be ignored. The separation of concerns principle and the DRY
(Don’t Repeat Yourself) principle are important even here.

We can ignore them to some degree when we’re building our languages, because with
languages that aren’t aimed at developers, too much abstraction can cause the lan-
guage to be inaccessible, but we can’t truly disregard them.

We’ll do it by integrating another DSL into our DSL. You’ve already seen that DSL (the
Business-Condition DSL) in listing 12.19—it’s focused on capturing business condi-
tions, and it works alongside the Order-Processing DSL to give users a good way of cap-
turing common conditions and abstracting them.

And now, let’s get into the implementation details.

Creating the Business-Condition DSL

The first thing you need to know about the Business-Condition DSL is that it’s hardly a
DSL. In fact, we’ll cheat our way out of implementing it.

The problem is simple. If we wanted to make this a full-blown DSL, we’d have to
deal with quite a bit of complexity in making sure that we map the concepts from the
Business-Condition DSL to the Order-Processing DSL. Instead, we’re going to simply
capture the business condition and transplant it whole into the Order-Processing DSL.

Listing 12.21 shows how we can extract the business condition from a set of defini-
tion files that follow the format shown in listing 12.18.

Listing 12.21 The Business-Condition DSL extracts definitions from the file

public class Define

{

private Expression expression;

public Expression Expression

{
get { return expression == null ? null : expression.CloneNode(); }
set { expression = value == null ? null : value.CloneNode(); }

}

public string Name {get;set; }
}

public class BusinessConditionDslEngine
{
private readonly string path;

Creating user-extensible languages 259

public BusinessConditionDslEngine(string path)
{

this.path = path;
}

public IEnumerable<Define> GetAllDefines()
{
foreach (var definition in
FileHelper.GetAllFilesRecursive (path, "*.define"))

var compileUnit = BooParser.ParseFile(definition) ;

foreach (MacroStatement defineStatement in
compileUnit.Modules[0].Globals.Statements)

string name = ((ReferenceExpression)
defineStatement.Arguments[0]) .Name;
var statement = ((ExpressionStatement)

defineStatement.Block.Statements[0]) ;
Expression expression = statement.Expression;

yvield return new Define
{
Name = name,
Expression = expression

}i

}

What is going on here? The Define class is trivial, but it has a subtle gotcha that you
should be aware of. You must not share an AST node (expression or statement) if you
intend to reuse it afterward. AST nodes are mutable, and the compilation process will
change them. When you need to share an AST node, always share a copy of the node.

The code in the GetAllDefines () method in listing 12.21 is a lot more interesting,
though. Here we use the Boo parser to get the AST from the file, and then we walk
through the AST and extract the information that we want.

The AST is structured as a compilation unit, containing a list of modules, each
mapping to a single input file. A module is composed of namespace imports, type def-
initions, and globals; all the free-floating statements end up in the globals section in
the AST. Because we only passed a single file, we have only a single module.

Listing 12.21 assumes that the file is composed of only macro statements (there is
no error handling in the code, because we also assume correct input). For each of
those statements, we get the define name (which is the first argument) and the sin-
gle expression inside the macro block. We stuff them into the define class, and
we’re done.

260

DSL implementation challenges

Why is define a macro?

We haven’t created a DefineMacro class inheriting from an AbstractAstMacro, SO
why does the compiler think that this is a macro?

The short answer is that the compiler doesn’t; the compiler isn’t even involved. It’s
the Boo parser we're using here, and the parser doesn’t care about such things. The
parser contains a rule for recognizing things that look like macro statements.

When the parser finds something that looks like a macro statement, it creates an
instance of the MacroStatement AST node. Later in the compiler pipeline, there is a
step (MacroExpander) that will look at the macro statement and decide whether
there is a matching macro implementation.

Because we never involve the compiler pipeline in listing 12.21, we can directly
access the AST and rely on the parser to do this work for us.

Once we have those definitions, plugging them into the Order-Processing DSL is easy.
Listing 12.22 shows the important details.

Listing 12.22 Finding references to definitions and replacing them with values

public class ReplaceDefinitionsWithExpression :
AbstractTransformerCompilerStep
{

private readonly Define[] defines;

public ReplaceDefinitionsWithExpression(Define[] defines)
{

this.defines = defines;

}

public override void Run()
{

Visit (CompileUnit) ;
}

public override void OnReferenceExpression (ReferenceExpression node)
{
Define define = defines.FirstOrDefault(x => x.Name == node.Name) ;
if (define != null)
{
ReplaceCurrentNode (define.Expression) ;

}

This is a pretty straightforward implementation. This compiler step will search for all
reference expressions (the names of things, such as variables, methods, types, and so
on). If it finds a reference expression whose name matches the name of a definition, it
will replace the reference expression with the definition expression.

For example, given the following definition,

Creating user-extensible languages 261

define strategic_order:
Order.Amount > 1000

and the following order rule,

when strategic_order:
print "big sale!"
the strategic_order reference expression will be replaced with Order. Amount > 1000.
Now, all we have left to do is to plug ReplaceDefinitionsWithExpression into the
DSL engine. Listing 12.23 shows how this is done.

Listing 12.23 oOrderRuleDslEngine modified to understand definitions

public class OrderRuleDslEngine : DslEngine
{

private readonly Define[] defines;

public OrderRuleDslEngine (Define[] defines)
{

this.defines = defines;

}

protected override void CustomizeCompiler (BooCompiler compiler,
CompilerPipeline pipeline, string[] urls)

compiler.Parameters.References.Add (typeof (BooCompiler) .Assembly) ;
pipeline.Insert (1,
new ImplicitBaseClassCompilerStep (
typeof (OrderRule) ,
"Prepare")) ;
pipeline.Insert (2, new ReplaceDefinitionsWithExpression(defines)) ;

}

The OrderRuleDSLEngine class accepts the definitions in the constructor and registers
the ReplaceDefinitionsWithExpression compiler step as the second step in the
pipeline. That’s all we need to do. Because the step is one of the first to run, as far as
the compiler is concerned, we’re compiling this:

when Order.Amount > 1000:
print "big sale!"

Listing 12.24 brings it all together.

Listing 12.24 Adding defines to a Quote-Generation script

DslFactory factory = new DslFactory();

var defines = new BusinessConditionDslEngine("Defines") .GetAllDefines();
factory.Register<OrderRule> (new OrderRuleDslEngine (defines)) ;

var rule = factory.Create<OrderRule> ("Script.boo");

Now, users can introduce new keywords and concepts into the language themselves,
without requiring developers to modify it for them.

262

12.9

DSL implementation challenges

The difference between Business-Condition DSL
defines and C or C++ defines

If you have ever worked with C or C++, you're probably familiar with the #define
statement, which allows you to do pretty much what | have outlined in section 12.8.2.

The main difference between the two approaches is that in the C/C++ approach,
defines use text substitution, which exposes a whole host of problems. You only have
to remember the guidance about proper use of parentheses in defines to realize that.

The approach outlined here uses AST substitution, which means that it’s far more
robust, easy to extend, and safer to use.

In one project where I introduced this approach, I also allowed users to extract a busi-
ness condition from a rule and automatically refactor. Not only did it create the
appropriate definition file, but it also scanned all the other existing rules and modi-
fied them if they had the same extracted rule. (If you want to try this yourself, con-
sider using Node.Matches () to compare the different nodes.)

Summary

In previous chapters, we focused on the baseline knowledge, on building simple DSLs
in Boo, and on understanding the AST and how DSLs fit in with the development life-
cycle. In this chapter, we finally started to bring it all together.

We looked at scaling a DSL up (in terms of numbers of scripts and usage), manag-
ing deployment, and ensuring that we have sufficient control over how we deploy new
DSL scripts to production.

We also focused on AST manipulation, and how we can use that to get all sorts of
interesting results from our DSL. I am particularly fond of the ability to capture and
manipulate the AST at runtime, because that gives us almost limitless power.

Finally, we touched on refactoring and giving users the ability to build their own
abstractions. I find this to be an essential step for giving users a rich language that can
evolve over time with minimal developer effort. It also helps keep language rot from
setting in. (If users have to call a developer to get a change, that change will often
either not be made or be made late, necessitating awkward workarounds.) We’ll talk
more about abstractions and how to ensure that we build the right ones in chapter 13.

This chapter has been a whirlwind of various implementation details and ways to
utilize them. At the moment, it may seem hard to tie all of them together, and,
indeed, they’re used in different stages of the project and for different reasons. I hope
that the next chapter, in which we build a full-blown DSL implementation from
scratch, will clear things up. Let’s begin ...

rea
DSL implementati

In this chapter

= Building real-world DSLs
= Exploring the language usage
= Going beyond the code

We’ve covered a lot of ground in our journey to learn about and build DSLs. We’ve
explored the reasons for building them, the intricacies of their implementation,
and how to extend a language to meet specific needs. We considered what’s
involved in creating a good language: testing, versioning, documentation, user
interface, and supporting tools. We also spent the previous chapter reviewing a
host of implementation challenges related to particular needs, along with
approaches for solving them.

The only thing we haven’t done yet is use all that knowledge in a cohesive man-
ner. The languages we’ve built so far were meant to showcase specific features, so
they were fairly focused and simplistic.

This chapter will demonstrate how to create and use a DSL, how to evolve it along
with a project, and how to understand the domain and the requirements. The first

263

264

13.1

A real-world DSL implementation

half of the chapter is dedicated to concepts, and to designing and building a DSL. The
second half is dedicated to the implementation details of that DSL. We’ll start as we
would in the real world, by looking into the scenario where a DSL might be useful.

Exploring the scenario

In this chapter, suppose we’re building an order-processing backend for an online
shop. These types of systems tend to grow in both size and complexity quickly, because
they’re the heart and soul of the store—the place where the business can truly differ-
entiate itself from countless other competitors. Having a better backend system allows
you to change the business direction more rapidly, and this is a significant competitive
advantage.

We’ll put special emphasis on the extensibility of the system, and we’d like to
define the policy of the system externally, because this is the aspect that so often
changes. To that end, we have settled on the following design decisions:

Much of the policy of the system will be defined using a DSL or a set of DSLs.
The system behavior will be implemented normally, using our standard pro-
gramming language.

At various points in the lifetime of the system, we’ll shell out decisions to the
DSL (or DSLs), and then act upon them.

We’ll use a DSL because we need the flexibility. We want a clear separation between
implementation and policy, and we want to be able to define the policy in terms the
customer can grasp, follow, and extend. Remember, no business system ever suc-
ceeded because it was good at parsing XML. The value of a system comes from being
able to change in response to market conditions.

Given all of that, what usage do we expect for our DSL? I generally start with the
explicit assumption that whatever I come up with will need recalibration later on. Try-
ing to figure out everything up front is expensive, and will blind us to better options
along the way. Even if we get it perfect, the business will have changed by the time we
finish writing the system, and we’d need to change it anyway. Because of that, I prefer

Separating policy and execution behavior

An approach that | take in most of my projects is to create a strict separation between
the policy of the system and the execution behavior.

What do | mean by that? Being able to process a discount on an order is part of the
execution behavior of the system. Deciding who should get a discount is a policy
decision.

The execution behavior of a system tends to be fairly fixed, but the policy changes
frequently. If you maintain a proper separation between the two, you’ll find that you
can make changes to the policy in isolation. Putting much of the policy in a DSL cre-
ates an explicit boundary between the two.

13.2

Designing the order-processing system 265

to start working in a changing environment from the get go. It usually means that I get
good at handling changes.
With that said, we will initially plan for the DSL to be used in two ways:

Order authorization—We may want to perform different actions based on credit
rating, payment plans, and purchase history. This is a place where I want to be
able to express myself in a way that is both unambiguous and crystal clear, so it
is a good candidate for a DSL.

Shopping cart modifications—This is where we manage offers, packaging, and sim-
ilar order choices. For example, perhaps buying two books by the same author
will give you a discount for a third one by the same author. Or buying three
DVDs may grant you free shipping. The result of the DSL will affect the user
interface of the system.

Implementing this will be a challenge, even though I've limited the scope of the proj-
ect to fit it in a single chapter. Let’s get to work.

Designing the order-processing system

We need to build the system in such a way that we can easily communicate intent and
move between the DSL view of the world and the system implementation view of the
world. I’'m not going to expand on the subject of building systems that express intent.
That’s a subject for a book all its own, and Eric Evans did a great job of that when he
wrote Domain-Driven Design.

I will touch on the parts of the system that relate directly to system implementation
and interaction with the DSL. We’ll start by looking at what we know we’re going to
need, and then start drafting an application design for it. Note that this isn’t a DSL
design; we’re going to think about how the application will behave. This is important,
because we don’t want to tie the logic and behavior of the application to our DSL.
Instead, we want the DSL to use the application behavior.

Let’s look at the shopping cart as a specific example. We already know that we have
rules that allow us to modify the shopping cart, and we can envision those rules per-
forming the following actions:

Add and remove shopping cart items
Add and remove item discounts

Add and remove shopping cart discounts
Add messages to items

Add messages to shopping carts

Using those simple rules, it’s possible to produce complex behavior.

But how are we going to implement this? Figure 13.1 shows a rough outline of the
initial design. This is still a simplified example, and in the real world you’d likely need
to do more, but it’s a good example of an important concept.

It’s likely that you’ve created a shopping cart in the past, but this design is slightly
different. In figure 13.1, you can see that we have the fairly standard ShoppingCart,

266

A real-world DSL implementation

« |

MessagePriority (=& | ShoppingCartView |2] | ShoppingCart B) | Product
Enum Class Class Class
T
Notification [=] Properties I=I Properties
Discount = Jtems = Changes - =,
Warnin gt Item 63
g B Messages ;‘T‘ Customer al
Error i = ass
= Total 5 Discounts 7
S : ﬁ‘ itEms I=I Properties
_ . _ N ' Messages PR
(i (& i = = = Discounts
Discount ES Message 2 =l Methods f Messa
Class Class . ~ 9es
¥ GenerateView ZF Product
- - W ShoppingCart g N
[Properties [= Properties ; | T Quantity
ﬁ? Percentage 21 MessagePriority -

Z2 Reason ' Text

»|

States
Enum

»] |

(ChanageltemQuantity
Class

BadCredit
= X CartUpdate
= Erf)pertles PriceChange

3: AmountToChangeQuantity
= ltem

Figure 13.1 A shopping cart design for use with a DSL rule engine

Product, and Item classes, where the Item class’s Quantity property specifies the
quantity of a particular product in the shopping cart.

But why do we need Discount and ChangeItemQuantity classes? And why does a
shopping cart need the concept of messages?

This shopping cart is built in this manner to make sure that we can easily integrate
a versatile backend without creating cascading changes throughout the system. It’s
also a good way to structure things in general, because it gives us an object model in
which we’re mostly adding to the shopping cart, and only rarely modifying the user
choices directly. This is important, because by using the addition-only approach we
have a domain model that’s auditable. This means that we can ask any shopping cart
to explain what caused it to reach that particular total.

Another important design consideration is differentiating between items users
place in the cart from item quantity changes the backend may have changed based on
some policy decision.

As usual, an example tends to make everything clearer. Suppose we have the fol-
lowing requirement: if you buy all seven Harry Potter books, you’ll pay for the Harry
Potter bundle (a reduced price). This means the user either can select the bundle
explicitly or can order each of the books without being aware of the existence of that
special deal.

In the domain model in figure 13.1, we’ll model the second case as a shopping cart
with one item for each of the Harry Potter books. The backend will then make the fol-
lowing changes:

Create one ChangeItemQuantity for each of the Harry Potter books, with
AmountToChangeQuantity set to -1 (removing all the books that the user has
selected from the cart, but not changing the ShoppingCart.Items collection)

13.3

Thinking in tongues 267

= Create one ChangeItemQuantity for the Harry Potter bundle, with Amount-
ToChangeQuantity set to 1 (adding it to the cart)

= Add a message saying that you’re now buying the Harry Potter bundle for a
reduced price

Note that to get that requirement working, we didn’t have to modify the items that the
user has selected—that list is still unmodified in the ShoppingCart.Items collection.
For presentation purposes, we also have a simplified view on top of the shopping cart,
called ShoppingCartView.

The ShoppingCartView is similar to a traditional shopping cart, but it only has the
concepts of items and messages. Items are what the user will end up buying (one bun-
dle of Harry Potter books, in this example), and messages are information for the
user. A discount, for example, is translated in the view into a modified price for an
item and a message notifying the user of the discount. You’ll see the advantages of this
approach when we start to implement the DSL engine.

Having designed our application and having a firm idea about how we’ll build the
system behavior, we can move on to see what kind of language and semantics we can
put on top of that.

Thinking in tongues

The next step to take is to build a DSL that would integrate with the design of our
Shopping-Cart DSL. That DSL will be a rule engine, which is almost the default starting
place for DSLs because they’re the easiest to build. I have a default syntax and
approach for such rule engines, as shown in listing 13.1.

Listing 13.1 Default syntax for a rule engine

when [some business condition]:

[some action]

[another action]
In listing 13.2, you can see the syntax used for a real scenario: giving a preferred mem-
ber a discount for large orders.

Listing 13.2 An example of using the rule engine syntax for a real-world rule

when cart.Total > 1000 and customer.TotalPurchaseAmount > 5000:
msg = "Preferred members get 5% discount for orders over 1,000$"
add_cart_discount 5, msg
By now you should be familiar with the mechanics of building such a DSL. If you need
arefresher, take a look at the languages we built in chapter 4 and the syntax options in
chapter 12.

Beyond the basics, tracing and auditing support is important, and you’ll probably
want to keep that in mind as you write your DSLs. This means that all actions that orig-
inate from a DSL script should be traced back to that DSL script, and hopefully also
back to the business decision that prompted them.

268

CHAPTER 13 A real-world DSL implementation

Ordinarily, I would start implementing the DSL at this point, and we’ll do that in
the second half of this chapter. But for now, let’s focus on the design considerations
and on how different needs can (and should) influence a DSL’s implementation and
syntax to fit the DSL’s requirements and purposes. In keeping with this, let’s look at
how we’ll apply the syntax we used for the Shopping-Cart DSL to order authorization,
and then we can identify the problems that will lead us to a better design.

From the syntax point of view, the Order-Processing DSL initial syntax is similar to
the Shopping-Cart DSL, as listing 13.3 shows.

Listing 13.3 Initial syntax for the Order-Processing DSL

when state is auth_denied and customer.TotalPurchaseAmount > 5000:
delay_order_until_payment_is_authorized "preferred customer benefit"

when state is auth_denied and customer.TotalPurchaseAmount <= 5000:
cancel_order "no pay, no product"

The problem with this syntax is that there is something missing here. It’s not nearly as

expressive as it could be, and we’re drowning in the details. Listing 13.4 shows an

alternative, in which we make the concept of the order state an explicit notion in the

language.

Listing 13.4 Order-Processing DSL with explicit order state

upon auth_denied:

when customer.TotalPurchaseAmount > 5000:
delay_order_until_payment_is_authorized "preferred customer benefit"

when customer.TotalPurchaseAmount <= 5000:
cancel_order "no money, no order"
The DSL now makes the concept of order state explicit. Before it was part of the condi-
tion to check, and now it’s an explicit concept in the language, which allows us to dis-
cuss what is going on more clearly.
We can make use of this syntax to handle the behavior of the system in other states,
such as the rule in listing 13.5.

Listing 13.5 Using the syntax to handle a customer having a low credit rating

upon low_credit_rating:

when customer.TotalPurchaseAmount > 5000:
authorize_funds cart.Total * 0.5, \
"Preferred customers authorize half the amount"

when customer.TotalPurchaseAmount <= 5000:
authorize_funds cart.Total, \
"Full authorization for low credit rating scenarios"
One thing that’s implicit in listings 13.2 through 13.5 is the notion of preferred cus-
tomers being those whose total purchase amount exceeds 5,000. In general, it’s best to

134

Moving from an acceptable to an excellent language 269

avoid implicit concepts, and to make them explicit instead. The problem is that
although this example is very narrow, showing only a few concepts and examples,
there will be many more in real-world situations. We can’t turn them all into explicit
language concepts, if only because that would make the language so much bigger and
heavier than it needs to be.

This is where the notion of allowing users to add their own concepts to the lan-
guage comes into play. We’ve looked at the implementation details for this feature in
chapter 12. By implementing this feature, we can make our language much more
expressive and allow users to extend it without requiring developer involvement.

WARNING When you give users the ability to extend the language, you should
beware of unauthorized extensions. The DSL is a communication tool,
not a programmatic tool. As such, new concepts should only be intro-
duced into the language once they’ve been discussed and agreed
upon by the users and business experts.

But even after this feature is implemented, there is still an implicit concept in place
that we need to take care of. In fact, there are several. What we have at this point is a
language that works, but it’s not polished yet. It’s important to find those missing con-
cepts and add them to the language—that will change your language implementation
from an acceptable to a truly excellent language. With DSLs, we want to turn implicit
concepts into explicit ones.

Moving from an acceptable to an excellent language

The difference between acceptable and excellent languages is hard to define. Often,
it’s a small difference from the language implementer’s point of view, but one that
allow us to express our intent in a much clearer fashion. It’s also a difference that you

Avoid implicit concepts

The whole purpose of a DSL is to make things clearer, and implicit concepts are any-
thing but that. In many cases, you'll find your domain model and domain thinking get-
ting bent out of shape until you realize that there’s an implicit concept involved. At
that point, you'll realize that you need to introduce a new explicit concept.

A quick way to find out if you have an implicit concept is to check whether there are
any questions about the model that can only be answered by looking at all the DSL
scripts. With the preferred customer example, that question is, “What are the bene-
fits of a preferred customer?” As it stands (in listings 13.4 and 13.5), we would have
to look at all the scripts where we make a decision about whether a customer is pre-
ferred or not in order to answer that question.

Because making policy decisions based on customer type is a common occurrence,
we have an implicit concept here that we need to make explicit. The notion of a cus-
tomer type needs to be explicit in both the Shopping-Cart DSL and the Order-
Processing DSL.

270

A real-world DSL implementation

can’t plan for; you just need to be aware of friction points in the language and try to
eliminate them.

Let’s look at some implicit concepts. In listings 13.4 and 13.5 there is an implicit
concept waiting to be discovered—the notion of the preferred customer.

Can we fix it by changing the way we define preferred customer? Using the same
method we discussed in section 12.8.2 (Creating the Business-Condition DSL), we can
define what a preferred customer is explicitly. Listing 13.6 shows a refactored version
of 13.4.

Listing 13.6 Refactoring listing 13.4 to introduce explicit preferred customer notion

upon auth_denied:
when preferred_customer:
delay_order_until_payment_is_authorized "preferred customer benefit"

when default_customer:
cancel_order "no money, no order"
Well, not quite. We have the notions of pre-
ferred customers and default customers, but The of keyword
we haven’t defined what they mean—what does | introduced a new concept in
it mean to be a preferred customer? I'm not listing 13.7, from a syntactic

. point of view: the use of the of
referring to the selection criteria for being a keyword in the language. We'll

preferred customer (that you have to buy over talk about this particular feature
some amount). What I am looking for is what of the language in greater detail
being a preferred customer entails (what the in section 13.5. | considered
benefits are of being a preferved customer). using for instead, which might

have been more natural, but
that’s not valid Boo code and
would require modifying the

You could try to identify the benefits of a
preferred customer now, but doing so would

require going through many scripts and trying parser. of is just as good, and
to figure out which of them reference a pre- we can make direct use of it
ferred customer. The special treatment of cer- without any modifications.

tain customers is based on their characteristics,
and that’s something that can and should be
made explicit. The business gives benefits to certain customers as a grouping of actions
in certain scenarios. Gold customers get a 5 percent discount and free shipping, silver
customers get free shipping and a coupon code, and so on. Businesses do not usually
think first about the action and then about the cause.

Listing 13.7 shows how we can take the notion of making decisions based on the
customer type and make it an explicit concept in the language.

Listing 13.7 A new syntax for the language, making the role of the customer explicit

treatment of preferred_customer

upon bad_credit:
msg = "For preferred customers we only authorize half the amount"
authorize_funds cart.Total * 0.5, msg

13.5

Implementing the language 271

upon cart_update:
when cart.Total > 1000:
msg = "Preferred members get 5% discount over 1,0008"

add_cart_discount 5, msg

Now that we’ve made the state of the customer explicit, we can take it one step further
and ask the system to give us a description of how different types of customers are
treated. In several cases, the result can be quite surprising for the business.

The code in listing 13.7 also implies the existence of a treatment specification for a
default customer, and the DSL engine needs to take care of selecting the appropriate
specification based on the customer selection criteria.

Don’t get caught on the exact syntax

The syntax in listing 13.7 is one way of representing the concepts we’ve talked about,
but it's an approach that’s suitable when the number of rules and states is low. If
we’re going to have several hundred of each, we’ll likely need help in managing that.
One way of doing this is through a Ul, based on the syntax shown in listing 13.7.

For example, we could show the user what will happen to a preferred customer with
a low credit rating, or what the treatment is for all customer types with a low credit
rating. We looked at how to do such things in chapter 10, and we’ll see another exam-
ple of that in section 13.7.2.

Another way of handling this is to use the directory structure we discussed in chapter
5 to help organize the different aspects of the DSL’s behavior in each state and for
each customer type.

But that’s enough theory for now. Let’s move on to the second part of this chapter,
and implement this DSL.

Implementing the language

To discuss the language implementation properly, we’ll first look at the syntax, then
discuss how it’s implemented, and finally consider the implications of the implemen-
tation decisions.

The DSL syntax that we’ll focus on is shown in listing 13.8. Figure 13.2 shows an
overview of the DSL implementation.

Listing 13.8 An example of the Shopping Cart DSL

treatment of preferred_customer

upon bad_credit:
authorize_funds cart.Total * 0.5, L.

upon cart_update:
when cart.Total > 1000:
add_cart_discount 5, "..."

272

A real-world DSL implementation

| CustomerPolicies (¥ | AbstractCustomerPolicy (¥ |
Class Abstract Class
| CustomerPolicyDslEngine (¥ | | BusinessConditionDslEngine ¥ | Treatment ¥
Class Class Class
-+ DslEngine
| WhenMacro ¥ | | UponMacro ¥ | Define ¥
Class Class Class
¥ AbstractAstMacro =t AbstractAstMacro
| AddFileNameProperty (¥ | | TreatmentOfToMethodCall ¥
Class Class .
= AbstractVisitorCompilerStep b AbstractTransformerCompilerStep Flgure 13.2 The DSL

implementation class diagram

We’ll tackle each of the components in figure 13.2 in turn:

CustomerPolicies—This class is the engine, which is in charge of taking a set
of DSL scripts and turning them into something that the application can make
use of. This is the entry point to the DSL, and it should completely hide all
details of the DSL from the application.

AbstractCustomerPolicy—This is the implicit base class and is similar to the
ones we’ve used elsewhere. This class describes the treatment in a given state
for a particular type of customer.

Treatment—This class contains the action that’s taken for a particular customer
type in a particular state.

CustomerPolicyDslEngine—This class hooks together everything required to
get the DSL compiled and running. We’ll take a deeper look at it in the rest of
this section.

BusinessConditionDslEngine and Define—These classes were discussed in
chapter 12; they allow users to define their own abstractions. In this implemen-
tation, I've adapted and extended how it works slightly. We’ll look at this in
detail when we look at how the first line in listing 13.8 works.

WhenMacro and UponMacro—These classes are the macro implementations of
the when and upon keywords.

AddFileNameProperty—This class is a compiler step that adds a FileName prop-
erty to the compiled code, which allows us to track which script generated the
compiled code.

TreatmentOfToMethodCall—This class implements the treatment of state-
ment. We’ll look at it in depth in the next section.

We will spend the rest of the chapter going over how all of those classes fit together to
build a usable DSL.

Implementing the language 273

13.5.1 Exploring the treatment of statement’s implementation

As promised, we’re going to dig into the implementation of the treatment of
statement.

The first line in listing 13.8 uses a syntax we haven’t talked about so far. The of key-
word is used to specify generic arguments in Boo, and we’re taking advantage of that
syntax to parse this line, but this line isn’t handled by the compiler. We’re handling it
ourselves, using the TreatmentOfToMethodCall compiler step.

The reason we’re going that route is because the language has no other facilities
that allow us to get what we want (or rather, no facilities that won’t cause us too much
trouble during implementation). Luckily, compiler steps are simple to write.

Listing 13.9 contains the full code of the TreatmentOfToMethodCall.

Listing 13.9 Converting treatment of into a TreatmentOf method call

public class TreatmentOfToMethodCall:
AbstractTransformerCompilerStep

private readonly Define[] defines;

public BehaviorOfToBehaviorMethodCall (Define[] defines)
{

this.defines = defines;
}

public override void Run()
{

Visit (CompileUnit) ;
}

public override void OnGenericReferenceExpression (
GenericReferenceExpression node)

// Verify that we are indeed trying to work with
// 'treatment of' generic reference expression
var methodName = node.Target as ReferenceExpression;

if (node.GenericArguments.Count != 1 ||
methodName == null ||
methodName.Name != "treatment")
return;

// Get the generic argument, which is the business definition name
var genericArg = ((SimpleTypeReference)node.GenericArguments([0]) ;
// Find a business-level definition matching the arg name
var define = defines.Where(x => x.Name == genericArg.Name)
First();
// Create a method call for this
var replacement = new MethodInvocationExpression (
new ReferenceExpression("TreatmentOf"),
define.ExpressionAsFunction,
new StringLiteralExpression(define.Expression.ToCodeString())
)

ReplaceCurrentNode (replacement) ;

274

13.5.2

CHAPTER 13 A real-world DSL implementation

The gist of this compiler step is that it takes a line such as this,
treatment of preferred_customer
and turns it into one like this:

TreatmentOf (customer.TotalPurchaseAmount > 5000,

"customer.TotalPurchaseAmount > 5000")
As you can see, the preferred_customer symbol was resolved into something mean-
ingful. We make use of our ability to create a business-level definition to resolve the
preferred_customer to the preferred customer selection criteria. We specify the map-
ping between the preferred_customer and its selection criteria in a definition file,

which looks like listing 13.10.

Listing 13.10 Defining business-level concepts

define preferred_customer:
customer.TotalPurchaseAmount > 5000

define default_customer:
customer.TotalPurchaseAmount <= 5000

We parse the definitions in listing 13.10 and pass them to the TreatmentOfToMethod-
Call compiler step, which then searches for generic type references named behavior.
When it finds them, it turns them into TreatmentOf method calls, using the defini-
tions in listing 13.10 to turn the generic argument name into the appropriate cus-
tomer-selection specification. By doing this, we get a fairly natural syntax for
specifying which customer type we’re processing.

Unlike the treatment keyword, when and upon, the next most important keywords
in our language, don’t rely on a compiler hack but use the compiler extensibility
mechanism that we explored in chapter 6. Let’s look into them in detail.

Implementing the upon and when keywords

The upon keyword is implemented using a macro that is responsible for translating
the upon keyword to the UponState method. The UponMacro macro is shown in list-
ing 13.11.

Listing 13.11 The UponMacro implementation

public class UponMacro : AbstractAstMacro
{
public override Statement Expand(MacroStatement macro)
{
// Get the first argument for the macro
var name = (ReferenceExpression)macro.Arguments[0];
// Resolve that name to a reference to the particular state
// in the States enumeration
var stateExpr = new MemberReferenceExpression (
new ReferenceExpression("States"),
UnderscoreCaseToPascalCase (name)) ;

Implementing the language 275

// Create new anonymous delegate with single parameter 'cart'
var action = new BlockExpression (macro.Body) ;
action.Parameters.Add (new ParameterDeclaration("cart",

new SimpleTypeReference (typeof (ShoppingCartView) .FullName))) ;

// Call the UponState method with the state enumeration,
// the delegate to execute, and a string representation of
// the action to be executed.
return new ExpressionStatement (
new MethodInvocationExpression (
new ReferenceExpression ("UponState"),
stateExpr,
action,
new StringLiteralExpression (macro.Body.ToCodeString())

)

}

The implementation is fairly straightforward. We grab the name of the first argument,
change the naming convention from using underscores to Pascal casing, and generate
a reference to the States enumeration. Then we take the body of the macro state-
ment and generate a delegate from the macro body. We add a cart parameter to the
generated delegate. Finally, we return a call to the UponState method, with the
States enumeration value, a delegate that specifies what actions should be taken, and
a string representation of those actions.
The end result is that this code,

upon bad_credit:
authorize_funds cart.Total * 0.5, R

is translated to this code:

UponState (States.BadCredit,
delegate (ShoppingCart cart)
{
AuthorizeFunds (cart.Total * 0.5, "...");
},
"authorize_funds((cart.Total * 0.5), '...")"
)i

In contrast, the when keyword is merely aliased to the if statement, as shown in

listing 13.12. Ideally, this should be implemented as an auditable if, but I’ll leave the
implementation of that to you.

Listing 13.12 The when keyword is merely an alias for the if statement

public class WhenMacro : AbstractAstMacro
{
public override Statement Expand(MacroStatement macro)
{
return new IfStatement (macro.Arguments[0],
macro.Block, null);

276

13.5.3

13.5.4

A real-world DSL implementation

The auditable if is an important concept in creating debuggable DSLs. In essence, it’s
an if that tracks what the if condition evaluated to and records that in a place that’s
available for the user to inspect. (Other variations include creating a true audit log for
regulatory purposes.) This gives the user a lot of information when they want to know
why the system behaved in this way or that.

Speaking of audit information, it’s not only decisions that need to be tracked.
Source files and DSL scripts are also important, and we should make them as explicit
as possible. Let’s look at how.

Tracking which file is the source of a policy

Tracking which file was the source of a policy is a great help during auditing and
debugging, so I usually make this an integrated part of my DSLs. The implementation
is simple, as shown in listing 13.13.

Listing 13.13 Adding a property identifying the script that generated the class

public class AddFileNameProperty : AbstractVisitorCompilerStep
{
public override void Run()
{
Visit (CompileUnit) ;
}

public override void OnClassDefinition(ClassDefinition node)
{
var fileNameProperty = new Property("FileName")
{
Getter = new Method("GetFileName")
Y
var fileName = new StringLiteralExpression (
node.LexicalInfo.FullPath) ;
fileNameProperty.Getter.Body.Add (new ReturnStatement (fileName)) ;
node.Members.Add (fileNameProperty) ;

}

The code in listing 13.13 looks for a class definition, and when it finds one, it adds a
syntactic property, FileName, to the class. This property will return the filename that
represents the source of that class definition. Adding this property allows us to
inspect, at runtime, the source of a particular class without trying to parse PDB files
full of debugging symbols.

And now we just need to bring our DSL implementation back together.

Bringing it all together

The final implementation aspect we need to explore is how to take all of those compo-
nents and turn them into a real language. The answer, as you’ve probably guessed, is
that we use the CustomerPolicyDslEngine and AbstractCustomerPolicy classes, the
second of which is shown in figure 13.3.

Implementing the language 277

)|

" AbstractCustomerPolicy . Figure 13.3 The AbstractCustomerPolicy
Abstract Class class diagram

=

[zl Properties
E CustomerSpecification :string
ﬁ DiscountsToAdd : IList<Discount>
ﬁ FileName : string
f SupportedStates : [Enumerable<States>

= Methods | 2
#" AddCartDiscount() : void (I:'::t'“e“t B
2% AuthorizeFunds() : void
W HasTreatmentFor() :bool =l Properties
W IsMatch() : bool 7 Description :string
W Prepare() : void Zéf Execute : Action<ShoppingCartView>
% TreatmentForState() : Treatment
7% TreatmentOf() :void !
5% Uponstate() void Figure 13.4 The Treatment

class diagram

Note that the protected methods (AddCartDiscount, AuthorizeFunds, TreatmentOf,
and UponState) are all part of either the DSL syntax (the first two) or the DSL imple-
mentation (the last two).

The public methods are how we’ll work with the policy. As you can see in
figure 13.3, this is mostly a simple matter. The only interesting tidbit here is the
TreatmentForState() method’s result, the Treatment class, which is shown in
figure 13.4.

The Treatment class holds the Description (a string representation of the treat-
ment code), and the delegate held in the Execute property will be executed to per-
form the action this treatment is supposed to have.

It starts to get interesting in the CustomerPolicyDslEngine, which is presented in
listing 13.14. It brings everything we’ve seen so far together.

Listing 13.14 The CustomerPolicyDslEngine brings everything together

public class CustomerPolicyDslEngine : DslEngine
{

private readonly Define[] defines;

public CustomerPolicyDslEngine (Define[] defines)
{
this.defines = defines;

}

protected override void CustomizeCompiler (
BooCompiler compiler, CompilerPipeline pipeline, string[] urls)

pipeline.Insert (1,
new ImplicitBaseClassCompilerStep (
typeof (AbstractCustomerPolicy),
"Prepare",
"Chapterl3.DSL",
"Chapterl3.Model")) ;

278

13.6

A real-world DSL implementation

pipeline.Insert (2, new TreatmentOfToMethodCall (defines)) ;
pipeline.Insert (3, new AddFileNameProperty());
pipeline.InsertBefore (
typeof (ProcessMethodBodiesWithDuckTyping),
new UnderscoreNamingConventionsToPascalCaseCompilerStep());

}

There isn’t much here that’s special. It’s all fairly common stuff, although we haven’t
seen it used together in the past. We mostly add a set of steps at the beginning of the
compilation process to add the implicit base class, to handle the treatment of key-
word, and to add the FileName property.

There are two subtleties you should be aware of in the ImplicitBaseClassCompil-
erStep class. First, we’re adding Chapterl3.DSL and Chapterl3.Model as namespaces
to be imported by default. We do this often enough, but here it’s important because
it’s the import of Chapter13.DSL that makes the when and upon macros visible to the
DSL and transforms them into keywords.

Second, we add the AddFileNameProperty after the ImplicitBaseClassCompil-
erstep. This is mandatory, because it is the ImplicitBaseClassCompilerStep that
will create the ClassDefintion that AddFileNameProperty adds the FileName prop-
erty to.

So far, though, we’ve only explored the infrastructure-level implementation. We
still need to see how this DSL is being used.

Using the language

Usually, when you build a DSL, you won’t want the rest of the system to directly use
low-level constructs like Ds1Factory to interact with it. You’ll want to put a layer in
between, to ensure that the DSL is accessed consistently, and that the application does
things properly to make sure that everything works (like calling Prepare() before
using the script instances).

In the Shopping Cart DSL, the class that’s responsible for ensuring proper usage of
the DSL is called CustomerPolicies. You can see how it’s used in listing 13.15.

Listing 13.15 Using the CustomerPolicies class

var preferredCustomer = new Customer
{
TotalPurchaseAmount = 6000
}i
var policies = new CustomerPolicies("Scripts");
var policy = policies.For (preferredCustomer) ;
Console.WriteLine("Selected policy for {0}: {1} ",
policy.CustomerSpecification,
policy);

var treatment = policy.TreatmentForState(States.BadCredit) ;
Console.WriteLine ("Treatment for bad credit is: {0}", treatment.Description);

Using the language 279

This is the output of listing 13.15:

Selected policy for customer.TotalPurchaseAmount > 5000: PreferredCustomer
Treatment for bad credit is:
authorize_funds((cart.Total * 0.5), '...")

As you can see, this is pretty simple. If we wanted to execute that treatment, we’d need
to get a ShoppingCartView instance (which we can get from a ShoppingCart instance)

and execute the treatment on the cart view. The implementation is shown in
listing 13.16.

Listing 13.16 CustomerPolicies is the entry point for our DSL

public class CustomerPolicies

{
private readonly DslFactory dslFactory;
private AbstractCustomerPolicy[] policies;

public CustomerPolicies(string rootFolder)
{
dslFactory = new DslFactory();
Define[] defines = new BusinessConditionDslEngine (rootFolder)
.GetAllDefines () ;
dslFactory.Register<AbstractCustomerPolicy> (
new CustomerPolicyDslEngine (defines));
policies = dslFactory.CreateAll<AbstractCustomerPolicy> (
rootFolder) ;
foreach (var policy in policies)
{

policy.Prepare() ;

}

public AbstractCustomerPolicy For (Customer customer)
{
return policies
.Where(x => x.IsMatch(customer))
.FirstOrDefault () ;

}

There isn’t much here. We start by scanning for definition files (*.define files), which
we then send to the DSL engine. Then we create all the policies and prepare them.
When we request a particular policy, we return the first policy whose selection criteria
matches the given customer.

And that’s about it. This is the entire implementation of the DSL. This isn’t a real-
world scenario in the sense that you couldn’t take the DSL out and use it as is; you’d
need to plug in implementations for things like authorizing funds, canceling orders,
and so on. But it’s a real-world example in the sense that the complexity of the DSL
implementation (as opposed to the real system making use of the DSL) matches that
of a real-world DSL.

But looking at the code isn’t enough. There are some topics outside the realm of
the DSL code that we should look at.

280

13.7

13.7.1

A real-world DSL implementation

Looking beyond the code

One of the things I've tried to focus on in this book is that writing the code to make
things work isn’t enough. There is a whole host of additional responsibilities you need
to take care of beyond giving users the ability to type in your DSL, such as creating
tests, providing a UI, and permitting integration with tools such as the IDE or inspect-
ing execution results.

In this section, we’ll look at those responsibilities and see how we can apply them
to the DSL we’re creating. So far we’ve gone over those concepts only in isolated
examples; here we’ll look at them all in the context of the Shopping Cart DSL.

Testing our DSL

You can look at the sample code to see how I tested the Shopping Cart DSL, so I won’t
bore you with that. But I will repeat how important tests are for correctness, for ver-
sioning, and for creating a language that you can rely on over time. It’s easy to break
something in a language if you don’t have tests to cover you when you modify the lan-
guage, and it’s not pleasant to figure it out only when users report problems.

Chapter 8 covers testing in detail, so I'll just make one last suggestion for testing
your DSLs: make sure that you clearly distinguish between tests that test the language
implementation and tests that test policy decisions made by the language.

What do I mean by this? Look at the code in listing 13.17, which is taken from the
test suite of the Shopping Cart DSL.

Listing 13.17 A test from the test suite of the Shopping Cart DSL

[Test]

public void CheckIfCustomerHasTreatmentForState ()

{
var policies = new CustomerPolicies("Scripts");
var preferredCustomer = new Customer

{
TotalPurchaseAmount = 5001m

iér policy = policies.For (preferredCustomer) ;
Assert.IsTrue(policy.HasTreatmentFor (States.BadCredit)) ;
Assert.IsFalse(policy.HasTreatmentFor (States.PriceChange)) ;
}
In the context of the test, we've defined a treatment for bad credit, but we have no
behavior for price changes because the test also assumes that you’ve defined a script
like the one shown in listing 13.8.

This is a good test for the language feature, but tests for policy decisions made by the
DSL should be separate from language tests. They’re going to test a completely differ-
ent set of scripts in a wildly different context.

It’s easy, particularly when you begin to implement a DSL from ideas that you're
going to immediately use in your application, to mix the two types of tests. The prob-
lem with doing so is that your language tests end up being tied to policy decisions
that have nothing to do with the language implementation. If we add a treatment to

13.7.2

Looking beyond the code 281

change the price for preferred customers, the language implementation tests should
not break. This sounds obvious, but I have seen this happen, so take care to avoid
this mistake.

Now let’s look at an even more challenging problem—creating a user interface for
our DSL.

Integrating with the user interface

The user interface is often seen as an [Cosomers toatment

external piece of the DSL, somethin
p ? g Show treatment of customers in [bad credit [¥] state

Ci type Treat

that’s completely separate from the lan-

guage. Although this is one way to handle

things, it’s not necessarily the only way.
When you design a DSL, you should

Preferred authorize_funds order.Total * 0.5

Default authorize_funds order.Total

also think about the user interface that
you intend to give your users. That will
often change the way you build the lan- Figyre 13.5 A mockup screen showing the DSL
guage, not only because you need to give specification for treatment of the customers
the UI more information, but also
because you can utilize the UI to make things easier for users.

In particular, a good UI will allow you to give users more information. For exam-
ple, the Shopping Cart DSL can utilize the UI to show users what actions will be taken

on bad credit for all types of customers, or what it means to be a preferred customer.
This is an efficient way of writing documentation, and it’s always guaranteed to be
updated. Figure 13.5 shows a mockup of this UL

Embracing external inputs as part of your domain

The Ul isn’t the only thing you can integrate your DSL with. In one project | worked on,
the team made data a core concept in the DSL.

Many of the scripts in that project had to refer to specific items in the database and
sometimes manipulate them. Instead of going with an APl approach, we decided that
because the items in the database had SKUs (stock-keeping units—IDs for the com-
ponents in the system), and because users usually referred to them by their SKUs,
we could make this an explicit concept in the model. Henceforth, the DSL knew that
SKU1234 referred to an item SKU with the identifier 1234, and was able to pull it out
of the database and give users access to its details by accessing its members. (Well,
it was a bit more complex than that, because we had some performance concerns to
deal with, but that was the gist of it.)

In another project, the DSL itself was composed of part Boo DSL and part XML files,
which were used together to process the appropriate results. XML was mainly used
to get a machine-readable format for lists and data, and the DSL was mainly used for
logic and more complex operations.

These approaches do not always lead to good solutions, but they should be
considered.

282

13.7.3

13.8

A real-world DSL implementation

This interface shows the user data that the DSL scripts aren’t able to show. It’s display-
ing aggregated data across all treatments and in all states—something that you other-
wise would have to remember or research every time you wanted to find out what is
happening.

In short, don’t limit yourself to the typical IDE options. A DSL can and should give
you a lot more information, and using this information can give you a lot of insight
into your business.

Now, although I've advised you not to limit yourself to the same old IDE clichés,
there is one thing that you should limit: the scope of your DSL.

Limited DSL scope

When you’re writing a DSL inside an existing language, you have the full power of the
host language, which can provide great flexibility and also be a liability.

One of the most interesting capabilities of such a DSL is that it can go outside the
box you'’ve allocated to it. Occasionally, this approach can allow your DSL to jump the
gap and become truly useful. This capability is what made Binsor (a Boo DSL for con-
figuring the Windsor IoC container) a success.

But more often, this is a sign that your DSL isn’t pulling its own weight and that you
need to take action to rectify it. By definition, a DSL has a limited scope, and you
should strive to make this scope as limited as possible. If you want a general-purpose
programming language, I strongly suggest you don’t write one yourself but use one of
the hundreds that already exist.

I still remember quite distinctly the time when my configuration DSL morphed
into an HTTP server to auto-update parts of the system on the fly. That kind of thing is
a misuse, plain and simple, and should be avoided whenever possible. You should
have a well-defined scope for what the DSL is supposed to do. There is a lot more value
in having two DSLs, each of them focused on their own specific areas, than having a
single DSL that attempts to serve both needs.

But even when you have several DSLs, you may still find yourself without the proper
means of expressing what you want the way you want it using Boo. That’s where Boo’s
openness comes to our aid again, allowing us to remake the basic language syntax to
fit our needs.

Going beyond the limits of the language

Boo is a versatile language, and it can do quite a lot for you. We’ve spent this entire
book playing within the confines of Boo, and it wasn’t overly confining. Its flexible
syntax can allow you to go a long way. That said, there will be situations in which what
you want is beyond the scope of the language. In those cases, I have an alternative
solution to creating an external DSL.

As I mentioned in chapter 1, Boo is an open language, but so far we’ve only talked
about what you can do within the limits of Boo’s default syntax. You can easily modify
the parser that Boo uses to make it accept a different syntax, while keeping everything

13.9

Summary 283

else the same so you still have the benefit of running on the CLR, using the open com-
piler to modify the code, and so on.

The Boo parser is defined using ANTLR, a parser generation tool (http://
antlr.org). If you decide to modify the parser, I strongly recommend first reading Ter-
ence Parr’s The Definitive ANTLR Reference: Building Domain-Specific Languages.

Before jumping headfirst into the Boo parser definition, there are a few other
alternatives for generating parsers you may want to consider. The M language from
Microsoft is, at the time of this writing, in early alpha stage, but it’s supposed to deliver
an easy syntax for defining languages. It also comes with a toolset that might well
prove useful and interesting. I also find the GOLD parser (http://www.devincook.
com/goldparser/) to be a very nice parser generator to work with. As it currently
stands, both are useful for defining parsers for external DSLs, because they can turn a
piece of text into an object graph.

An interesting experiment would be to use one of those parser generators to pro-
duce Boo AST, which you could then plug into the rest of the compiler pipeline. The
Boo parser is just another step in the pipeline, which you can replace at will.

Another option, which I personally consider the most interesting one, would be to
make use of Boo.OMeta. OMeta is a parser generator specification that is easy to work
with and implement. The Boo compiler has been extended to support it, and in the
future I expect to see not only compiler extensibility from Boo, but also parser exten-
sibility using Boo.OMeta. You can see some of the experiments in that direction in the
bamboozled archives: http://blogs.codehaus.org/people/bamboo/archives/001722_
boo_ometa_and_extensible_parsing_i.html.

The future seems to be quite promising in this regard, and if you want to extend
the Boo parser, I strongly suggest taking a look at Boo.OMeta before looking at other
technologies.

Summary

The purpose of this chapter wasn’t so much to impart new knowledge, but to set what
we’ve already discussed in a real-world context, where you could see the forces and
constraints that you’ll need to deal with when building your own DSLs.

We started with a requirement to build an order-management system and then lim-
ited our scope to handling the shopping cart.

We proceeded to build a domain model that would allow us to plug in our behav-
ior at runtime without undue difficulty. This was an important step, because actually
managing the shopping cart is outside the responsibility of the DSL, yet it directly
affects the DSL.

The model we built was designed to support external automated agents mucking
about in the shopping cart. The explicit separation between actions that the user per-
forms and actions that the DSL scripts initiate helps ensure system maintainability and
debuggability in the long term.

http://antlr.org
http://www.devincook.com/goldparser/
http://blogs.codehaus.org/people/bamboo/archives/001722_boo_ometa_and_extensible_parsing_i.html

284

A real-world DSL implementation

After looking at the domain model, we started experimenting with various dialects
of the DSL to see if we could devise one that would match our requirements. We went
through three iterations before we settled on one that worked. In each case, the prob-
lem was an implicit concept that we sought to make explicit. Explicit concepts are
important for clarity, because as long as they’'re implicit, their effect on the system is
hard to understand and trace.

We then moved on to the implementation of the DSL, examining all the bits and
pieces and assembling them together into a cohesive whole.

We also considered the separation between the DSL infrastructure and the inter-
face that the rest of the application uses to communicate with the DSL. We kept them
separated for a reason; that separation gave us the ability to contain the DSL imple-
mentation details in a small section of the application, instead of having it scattered all
over the place.

Finally, we covered some advanced topics, like testing, UI integration, and integra-
tion with non-DSL sources in general.

In the space of a single chapter, I attempted to give you the sense of what it’s like to
create a real-world DSL project. A single chapter can’t really cover all the details of a
real-world project, but I hope that this has given you a good idea of what it’s like.

The most important concept to take away from this chapter is that you should not
try to fixate on a particular implementation, but be ready and willing to change the
implementation of the DSL (indeed, of the application as a whole, sometimes) when
new information makes it clear that the current path doesn’t lead to a good place. I
have been involved in several projects in which the first few months of DSL use
exposed weaknesses in the model we were using. After we restructured the DSL, we
had a far easier time dealing with the complexities that we had previously been strug-
gling with. Flexibility is important, and not only when it comes to DSLs.

Al

A2

appendix A
Boo basic reference

This appendix deals with how to use Boo as a programming language, and aims
mostly to get you familiarized with its syntax and behavior. It intentionally leaves out
some details in order to speed the learning process and to provide a smooth path for
learning to both write and read Boo programs. Appendix B supplies the details and is
more rigorous in presenting the language.

For additional information about Boo, please visit Boo's site (http://boo.
codehaus.org). For more information about the advanced features of Boo (those that
make it so applicable as a DSL host language), please refer back to chapters 2 and 6.

NOTE This appendix was adapted from a Boo tutorial by Brent W. Hughes
(http://home.comcast.net/~brent.hughes/BooWho.htm). I would like
to thank Brent for writing this tutorial and allowing me to reuse it.

Prerequisites

It is assumed that you already know a little about programming—for example, what
variables and functions are. It is also assumed that you have ready access to Boo’s
interpreter, complier, and interactive shell so you can experiment with the language
as we go along. You can download these materials from Boo’s website at http://
boo.codehaus.org/.

The Boo interactive shell, interpreter, and compiler

For many of our examples, we will use booish, the Boo interactive shell. It acts much
like a Boo-powered calculator, which is very convenient when you wish to quickly try
out some ideas.

You start the Boo interactive shell by just entering booish at the command-line
prompt. (If you’re using Windows, you will first need to open a command-line win-
dow.) When booish is ready for you to type something in, it displays three greater-than
signs as a prompt. After the prompt, you can calculate 2 + 2.

285

http://boo.codehaus.org
http://home.comcast.net/~brent.hughes/BooWho.htm
http://boo.codehaus.org/

286

A21

Boo basic reference

>>> 2 + 2
4

You could also type this:

>>> print 2 + 2

4

Why would you type print if you didn’t need to? Well, you might not do this in the
interactive shell, but when you’re writing a program to be run by the interpreter
(booi) or compiled by the compiler (booc), you will need to use print (or an equiva-
lent function) to display the information on the screen. In our examples, we use
print to help you keep this in mind.

For some of the longer examples in this documentation, we will use booi instead of
booish. That is, we will use a text editor to create a source file that we will name with a
.boo extension. For example, you might name the file testl.boo. You would then run
the program from the command line using the Boo interpreter, like this:

booi testl.boo
You could also compile the program like this:
booc testl.boo

This would produce an executable file with the name testl.exe. You would then run it

like this:
testl

Let’s begin.

Expressions

Boo can display information. Here, we show a string of characters (or more simply, a
string).

>>> print "Hello, world!"

Hello, world!

“Hello, world!” is printed (displayed) on your monitor’s screen. Boo can also display
numbers:

>>> print 23

23

>>> print 3.14
3.14

You can print more than one item at a time:

>>> print 42, 12.34, "Hi, there."
42 12.34 Hi, there.

Besides simple items, you can print the values of expressions:

>>> print 5 + 6 * 7
47

>>> print 7 * (5 + 6)
77

A22

The Boo interactive shell, interpreter, and compiler 287

NOTE Operators, like addition and multiplication in the previous examples,
each have an assigned precedence that determines the order in which
the operators are applied. You can use parentheses to change that order.

Variables can be assigned values like this:

>>> a = 5

5

>>> Db =3 * a + 4
19

>>> ¢ = 2.718
2.718

>>> print a, b, ¢
5 19 2.718

Since b5 is an integer, so is the variable a. And because 2.718 has a decimal point, the
variable c is a floating-point number.

NOTE Variable names begin with either a letter or an underscore and may then
contain letters, digits, and underscore characters.

Most programs take some input, process it in some way, and produce some output.
So far, you’ve seen one way to output information using the print statement. You've
also seen how to process data using expressions. Let’s look at one way to input some
information.

>>> Name = prompt ("What is your name? ")

What is your name? Brent

'Brent'

>>> print Name

Brent

Here, we called the prompt function, which displayed the string “What is your name?”
and then read what was typed at the keyboard (“Brent” in this example). It then
returned that string, which was then assigned to the variable Name. Booish printed that
out. On the next line we told booish to print Name, which it did.

Boolean values and Boolean expressions

The expression 3 + 5 is an integer expression because it evaluates to 8, which is an
integer.

The expression 3 > 5 is a Boolean expression because it evaluates to False, which is
a Boolean value. The other Boolean value is True. Boolean values can be combined
with the and operator (which evaluates to True if both operands are True; otherwise,
False) and with the or operator (which evaluates to True if either operand is True;
otherwise, False). The not operator evaluates to True if its operand is False; other-
wise, it evaluates to False.

Here are a few examples of Boolean expressions:
>>> print 23 + 46 > 50

True
>> print 4 > 5 and 6 > 3

288

A3

A4

A4.1

Boo basic reference

False

>>> print 4 > 5 or 6 > 3
True

>>> print not 4 > 5
True

>>> gtl = 10 > 8
true

>>> gt2 = 3 > 4
false

>>> gt3 = b and ¢
False

>>> print gtl, gt2, gt3
True False False

Comments

A comment in Boo is text that the Boo parser ignores; it is only there for the enlighten-
ment of the programmer. A comment can begin with a # character or a double slash
(//) and continues to the end of the line. Here are a few examples:

get the age of the user

AgeStr = prompt ("What is your age? ")

Age = int.Parse(AgeStr) // convert the string to an integer

InSeconds = Age * 365.25 * 24 * 60 * 60

print "You are ${InSeconds} seconds old."

A comment can also begin with a slash followed by an asterisk (/*) and end with the
reverse (*/) making multiline comments possible, like this:

/*

This program was written by Brent W. Hughes

in July of 2005.

*/

Note that booish doesn’t support multi-line comments unless you use the backward
slash (\) line continuation character.

Control statements

Control statements allow you to change the flow of the program based on your logic.
The most common control statement is the condition statement, of which Boo has
two variants, the 1f statement and the unless statement. Loops are also control state-
ments, and Boo has the while and for loops in its arsenal.

If statement

If evaluates the following Boolean expression, and, if True, executes the then part of
the statement. (To understand the ellipses, see the sidebar.)

>>> a =7

7

>>> if a > 3:
print a

. print "end of first part"

Control statements 289

end of first part

>>> a = 2

2

>>> if a > 3:
print a

. print "end of second part"

end of second part
Here is a general way of describing the simple if statement:

if <BooleanExpression>:
<Statement>
<...>

That is, the if statement is followed by one or more contingent statements that we’ll
call a statement block. Here’s an example from a Boo source file (rather than from
booish):

if x > 1.5:
v = 5.0
z = 3.5
print "Okay"
print "After the if statement."

In this example, if x is greater than 1.5, all three of the following statements (the state-
ment block) will be executed; otherwise, none of them will be executed. In either
case, the following print statement will be executed.

Here’s another general form of the 1f statement:

if <BooleanExpression>:
<StatementBlock>
else:
<StatementBlock>

Indentations in booish

When booish sees a colon at the end of a line, it knows that the statement isn’t com-
plete. It will then prompt you with an ellipsis (. . .) instead of the regular prompt (>>>)
until you enter an empty line. Booish will then execute the code. If this same code
were entered into a file for later execution, it would look like this:

a =7
if a > 3:
print a
print "end of first part"
a =2
if a > 3:
print a
print "end of second part"

When run, the preceding code would output this:

7
end of first part
end of second part

290 Boo basic reference

And here is an example of using the else block in an if statement:

if Count > 100:
Count = 0
print "Goodbye"
else:
a=a+1
print "Hi, again."
print "After the if statement."

This is one final form of the if statement:

if <BooleanExpression>:

<StatementBlock>
elif <BooleanExpression>:

<StatementBlock>
<more elif's>
else:

<StatementBlock>

Here’s an example of it in use:

Name = prompt ("What is your name? ")

if Name == "Stanley":
print "Hi, Stan."
elif Name == "William":
print "Hi, Bill."
elif Name == "Robert":
print "Hi, Bob."
else:

print "How's it going, ${Name}"

A4.2 While statement
The general form of a while statement is as follows:

while <BooleanExpression>:

<StatementBlock>
First, the BooleanExpression is evaluated. If it is True, then the StatementBlock will
be executed, and control then returns to the top of the while statement where the
BooleanExpression will be evaluated again, and so on. If the BooleanExpression
evaluates to False, the StatementBlock will be skipped, and control will continue
after the while statement.

Let’s look at some examples:

i=1

j =1

while 1 < 5:
j=3*2
i=1+1

print 1, J
print "The final value of j is S${j}."

A4.3

Control statements

The preceding code will print the following:

2

4

8

16

The final value of j is 16.

uos W N

Here’s another example:

Count = 10
while Count > O:
print Count
Count = Count - 1
print "Done"

The preceding code is equivalent to this:

Count = 10

:loop

if not Count > 0:
goto next

print Count

Count = Count - 1
goto loop
:next

print "Done"

You can exit a while loop early with the break statement:

i=0
while i < 100:
i=1i+1
if 1 > 10:
break
print 1

next statement will print "The final value of i: 11"
print "The final value of i: ${i}."

You can start the next iteration of the while loop early with a continue statement:

i=0
while i < 100:
i=1+1
if 1 % 10 == 0: # 1if the remainder of i divided by 10 is 0
continue
print i # prints 1 to 99 except for multiples of 10
For statement

A for statement has the following general form:

for <Variable> in <RangeOrSequence>:
<StatementBlock>

291

292 Boo basic reference

Boo’s for statement versus C#’s for statement

Unlike C-based languages, Boo’s for statement isn’t meant to iterate over a range
of integers. Boo’s for statement is similar to C#’s foreach statement. You can
mimic the C#’s for statement behavior using this:

for i in range(10):
print i

This code will print O through 9 to the console.

Here’s an example:

>>> for i in [2,4,6,8]:
print i + 1

O J U W

>>> for Name in ["Stephanie", "Jody", "Jill"]:
print Name

Stephanie

Jody

Jill

The for statement may be combined with the range method (which will be described

in section A.5.2):

>>> for i1 in range(5): # see below for range
print 1 * i

= o P o

6

You can exit a for loop early with the break statement:

>>> for 1 in range(100): # see below for range
if i >= 5:
break

print i * i

= O > - o -

6
You can start the next iteration of a for loop with the continue statement:

see below for range

>>> for i1 in range(5):
= 0: # if the remainder of i1 divided by 3 is 0

if 1 & 3 =

A5

A5.1

Types 293

continue
print i * i

0
1
4
16

Types
Boo is a CLR language, and as such it uses the usual .NET types. Nevertheless, there are

several types that have builtin support directly in the language, such as lists, hashes,
and arrays.

Lists

Alist in Boo is a sequence of items, each of which is an int, a double, a string, another
list, and so on. A literal list can be typed by separating the items by commas and sur-
rounding them with brackets. Here’s an example using booish again:

>>> a = [4, 9.82, "Help"]

[4, 9.82, "Help"]

>>> b = [["cat", "mouse"], ["lion","gazelle"] 1

[["cat", "mouse"], ["lion", "gazelle"] 1]

print the length (number of elements) in the lists
>>> print len(a), len(b)

32

An item in a list can be accessed using an integer index. The first item in a list is at
index 0.

>>> MyList = [2, 4, 6, 8]

[2, 4, 6, 8]

>>> print MyList[0]

2

>>> print MyList[len(MyList)-1]
8

Negative indexes can be used to count from the end of a list, like this:

>>> print MyList[-1]
8
>>> print MyList[-2]
6

New items can be added to the end of a list using the list’s Add method.

>>> MyList.Add(10)
[2, 4, 6, 8, 10]

You cannot access the list beyond its length:

>>> print MyList[5] # Error: index is out of range

294

A.5.2

A.5.3

Boo basic reference

Range

Boo doesn’t really have anything like C’s for statement, so we need another way to
handle iterating over numeric ranges. For that, we use the following syntax:
for i in range(5):

print i
Here, range (5) returned the integer values 0 through 4, which were, one at a time,
assigned to the variable i. In general, range (Max) will return the values 0 through
Max — 1.

Another form of the range method is range (Min, Max). This returns the integers
Min through Max - 1:

>>> for 1 in range(5,10):
print i

w oo J o Ul

Another form is range (Min, Max, Step):

>>> for i1 in range(5,10,2):
print i

5
7
9

And let’s see if you can figure this one out:

>>> for 1 in range(10,5,-2):
print i

10
8
6

Arrays

An array, like a list, is a sequence of items of any type. The difference is that an array
isn’t as flexible as a list, but it’s generally faster to manipulate.

An array literal can be typed with its items separated by commas and enclosed in
parentheses:

MyArray = (3, 5, 7, 9)
MyStrArray = ("one", "two", "three")

An item of an array is accessed with an integer index. The first item has index 0:

displays a 3
print MyArray[0]
displays "three"

A.5.4

Types 295

print MyStrArray[2] MyArray[0] = MyArray[l] + MyArrayl[2]
displays 12

print MyArray[0]

displays the length of MyArray, namely, 4

print len (MyArray)

Here’s one way of swapping two items in an array:

Temp = MyArray[2]
MyArray[2] = MyArrayl[3]
MyArray[3] = Temp

Here’s a way of swapping the items without needing a temporary variable:
MyArray[2], MyArray[3] = MyArray([3], MyArray[2]

Here’s another way of creating an array; notice the parentheses around the int to the
left of the equals sign (=). This stands for int array. To the right of the equals sign,
we indicate that we want a new array with room for 5 integers. The integers will be ini-
tialized to 0.

theArray as (int) = array(int,5)

Hashes

A hash is a way of associating pairs of items. The first item in each pair is called the key,
and the second item is called the value.

A literal hash can be typed by separating the key and value of each pair with a
colon, separating the pairs from other pairs with a comma, and surrounding the
whole series of pairs with braces:

MyHash = { "Susan":3, "Melanie":9, "Cathy":27 }
Given the key, you can access the value like this:

get the value 9 and assign it to Age

Age = MyHash["Melanie"]

Set the value associated with Melanie to 10
MyHash["Melanie"] = Age + 1

Both the key and the value can be any type.
Here are some other things you can do with a hash:

Passwords = { } # create an empty hash
Passwords["John"] = "Spot" # add the pair John:Spot
Passwords["Mary"] = "Fluffy" # add the pair Mary:Fluffy
Passwords["Chris"] = "Sniffles" # add the pair Chris:Sniffles

Print "The number of pairs is #{Passwords.Count}"

for Item in Passwords: # print out all of the pairs
Print Item.key, ":", Item.Value
for Key in Passwords.Keys: # also print out all of the pairs

print Key, "=>", Passwords[Key]

296 Boo basic reference

A.b.5 Strings

A string variable can hold a sequence of characters:

>>> Color = "green"
'green'’
>>> Food = "tomato"
'tomato’

Strings can be concatenated (joined together) using the plus (+) operator:

>>> Meal = "fried " + Color + " " + Food
'fried green tomato'

Boo also supports a feature called string interpolation:

>>> Meal = "fried ${Color} ${Food}"
'fried green tomato'

Strings can be repeated using the asterisk (*) operator:

<<< print 'Help' * 3
'HelpHelpHelp'

Individual characters of a string can be accessed using integer indexes. However, they
cannot be changed; strings are immutable.

>>> print Meall[l]

r

>>> Meal[l] = Meall[2]

ERROR: Property 'System.String.Chars' is read only.

A.5.6 Slicing

Slicing is a way of specifying a part of a sequence:

>>> Vowels = "aeiou"
'aeiou’

>>> print Vowels[2:4]
liol

>>> print Vowels[0:3]
'aei’

>>> print Vowels[l:-2]
leil

The first number within the brackets specifies the first item in the slice. The second
number within the brackets specifies one beyond the last item in the slice.
The following table might make the previous example more clear:

-5 -3 -3 -2 -1
a e i o) u
0 1 2 3

If you leave out the first number within the brackets, 0 is assumed. If you leave out the
second number within the brackets, the length of the rest of the sequence is assumed.

A.5.7

A.6

Creating real programs 297

>>> print Vowels[:3]
'aei'

>>> print Vowels[3:]
ou!

>>> print Vowels|[:]
'aeiou’

Besides strings, slicing also works with arrays and lists:

>>> MyArray = (0,1,2,3,4)
(0, 1, 2, 3, 4)
>>> print MyArray[l:4]

(1,2,3)

>>> MyList = ["zero","one","two", "three"]
['zero', 'one', 'two', 'three']

>>> print MyList[2:3]

["two']

Declaring types explicitly

In Boo, all data must have an associated type determined at compile time (except for

duck types, which were covered in chapter 2). Much of the time, Boo can determine

the type of a variable just by the way it is used. You don’t have to explicitly specify the

type in those cases. However, if the type is ambiguous, you must specify it in your code.
Here’s an example of declaring types:

Count as int
Cost as double

Count = 5

Cost = 1.98

In the preceding example, we first specified the types of the two variables and then
assigned values to them. In the next example, we do both at once:

Count as int = 5

Cost as double 1.98

And, of course, in the following case, we don’t have to explicitly specify the types
because Boo can figure it out:

Count = 5
Cost = 1.98

In method definitions, you will usually have to specify the types of the parameters as
well as the return type.

Creating real programs

When building real programs with Boo, we need more structure than just statements
and variables. Boo, being an object-oriented language, offers us methods, classes,
namespaces, and assemblies as the main ways to structure our programs.

298

A.6.1

A.6.2

Boo basic reference

Methods

A method is like a mini-program. It can have input, processing, and output. It has a
name by which you can refer to it. It is defined beginning with the keyword def, like
this:
def GetTotal (Product as string, \
Price as double, \
Quantity as int) as double:
Total = Price * Quantity

print "Total cost of ${Product} is S${Total}"
return Total

thePrice = 1.98
TotalCost = GetTotal ("Widget", thePrice, 5 * 2)

NOTE Here we’re showing code within a source file rather than code typed into
booish.

The preceding code defines a method named GetTotal. It takes three pieces of infor-
mation as input: the variables Product, Price, and Quantity. These variables are
referred to as the parameters or arguments of the GetTotal method. Product is declared
as a string, Price is declared as a double (a floating-point number), and Quantity is
declared as an int (an integer). In general, a parameter can be any type. The last as
double on the def line before the colon specifies that the method returns a floating-
point number as its output value.

Note that the names of the actual arguments that are passed to the method when
calling it may be different than the names of the formal parameters used in the decla-
ration of the method. Also, you can pass expressions as arguments to a method. These
expressions are evaluated before assigning them to the formal parameters.

Some methods might not have any parameters or might not return a value, and
types do not need to be declared in that case:

def SayHi():
print "Hi, Mom!"

SayHi ()

Classes and objects

Think of a class as a box that contains variables and methods. You can create objects
(other boxes) based on that class. Each object (box) gets its own independent copy of
the variables, whereas all of the objects share the methods. Creating an object from a
class is called instantiation, and the object that’s created is often called an instance of
its class. We will use both terms interchangeably.
Let’s explore that with the usual bank account example:
class BankAccount:
public Balance as double

def constructor():
Balance = 0.0

A.6.3

Creating real programs 299

def Deposit (Amount as double) :
Balance = Balance + Amount
def Withdraw (Amount as double) :
note: no error checking for simplicity
Balance = Balance - Amount
The BankAccount class contains one variable and three methods. We can instantiate as
many objects as we like from this one class. Here we create two new instances of the
class:
Accountl = BankAccount ()
Account2 = BankAccount ()
Accountl and Account2 each have their own independent copy of the variable
Balance (which is declared public for pedagogical purposes). Both objects share the
three methods.

An element of one of the objects can be accessed by using the object name, fol-
lowed by a period, followed by the element name:

Accountl.Deposit (400.0)

Accountl.Withdraw(50.0)

print Accountl.Balance # prints 350

print Account2.Balance # prints 0

The constructor method is special. It is automatically called when a new object is cre-
ated. This is where the initialization of the object occurs.

Sometimes you’ll have a variable that you want to be shared among all the
instances of a class. We call this a class variable or a static variable. To create a static vari-
able, precede the declaration of the variable with the keyword static:
class BankAccount:

static InterestRate as double = 4.5

public Balance as double

def constructor():

Balance = 0.0
def Deposit (Amount as double) :
Balance = Balance + Amount
def Withdraw(Amount as double) :

note: no error checking for simplicity
Balance = Balance - Amount

Imports

Suppose you want to use System.Console.WriteLine as found in the .NET Framework.
At the top of your program, you would use the import statement:

import System
Console.WriteLine("Hello, Mom!")
You could also do this:

import System.Console

WriteLine("Hello, Mom!")

300

A.7

Boo basic reference

Generators

Generators are similar to LINQ expressions in C# 3.0. They provide a special syntax for
processing a set of items. Consider the following code:

SquareList = [] # initialize to empty list
for i in range(5):
SquareList.Add (i * 1i) # append to end of SquarelList

print SquareList

This prints [0, 1, 4, 9, 16].
Now consider this:

SquareList = [1 * i for i in range(5)]
print SquareList

This is called a list generator or list comprehension, and it also prints [0, 1, 4, 9, 16].
Now consider this example:

EvenSquareList = []

for i in range(5):

if 1 $ 2 == 0: # % is the mod or remainder operator
EvenSquareList.Add (i * 1)

print EvenSquareList

(

It prints a list containing the squares of all even integers from 0 to 4, namely [0, 4, 16].
Now look at the comparable list generator:

EvenSquareList = [i1 * i for i in range(5) if 1 % 2 == 0]
print EvenSquarelist

It also prints [0, 4, 16].
Let’s generalize what we’ve just done.

allist = [<Expression> for i in <Range> if <BooleanExpression>]
is equivalent to

aList = []
for i in <Range>:
if <BooleanExpression>:
aList.Add (<Expression>)
Now let’s talk about generator expressions. The following code assigns a list expres-
sion to a variable:

>>> Cubes = Num * Num * Num for Num in range(4)
generator (System.Int32)

Cubes is now a generator of integers. You can use it like this:

>>> for n in Cubes:
print n

N O O -

Generators 301

Generator expressions can be used as arguments to functions:

def ShowSquare (Num as integer) :
print Num * Num

ShowSquare (i for i in range(5))
Generator expressions can also be returned from functions:

def CubeGen() :
return c*c*c for c in range(5)

cg = CubeGen ()
for n in cg:
print n # prints 0, 1, 8, 27, 64 on separate lines

Let’s now look at a generator method. Any method that uses the yield statement
rather than the return statement is a generator method.

The Fibonacci series is 0, 1, 1, 2, 3, 5, 8, 13, 21, and so on, where, except for the
first two, each number is the sum of the previous two numbers. We can write a method
that returns the Fibonacci numbers like this:

def Fibonacci():
a,b =20,1
while true:
vield a # returns a
a,b = b,a+b

g=20
for £ in Fibonacci () :

print £

g=9g+ 1

if g > 10:

break; # Without the break, this would be an infinite loop.

Actually, an exception would be thrown when
a+b got too big.

£

B.1

appendix B
Boo language syntax

This appendix is intended as a language reference. It lists the Boo syntax, compares it
to the C# equivalent, and provides a few words of explanation. In many cases, the Boo
and C# syntax are similar, in both shape and intent.

NOTE For a more explanatory guide to Boo, see appendix A.

Interesting keywords
Assuming that you are already familiar with another programming language, the Boo
syntax should be familiar to you. Table B.1 compares Boo syntax to the equivalent C#

syntax.

Table B.1 Boo syntax compared to C# syntax for keywords

Boo syntax C# equivalent

class Car: public class Car
pass {

}

Because Boo has significant whitespace, specifying an empty declaration can be a bit of a problem. The
pass keyword solves this issue nicely.

employee is null employee == null

The is keyword is used to make reference equality checks.

"foo" is "bar" ReferenceEquals("foo", "bar")
employee isa Manager employee is Manager

The isa keyword is used to ask about the type of the object.

employee is not null employee != null

The ability to use is not makes statements like this example extremely readable.

302

B.2

Conditionals 303

Table B.1 Boo syntax compared to C# syntax for keywords (continued)

Boo syntax C# equivalent

not employee.IsTemporary lemployee.IsTemporary

You can use not in a standalone manner.

employee is not null and employee != null &&
employee isa Manager employee is Manager

Boo uses the and keyword, where C-based languages use &&. This helps make Boo easier to read.

employee isa Manager or not (employee is Manager) |
employee.IsTemporary (lemployee.IsTemporary)

You use or in Boo instead of | | in C#.

cast (int, variable) (int)variable

You usually won’t need casting in Boo, because the compiler does it for you, but when you do, you can
use the built-in cast () method.

name = variable as string string name = variable as string;

You can do conditional casting using the same as syntax.

typeOfString = typeof (string) Type typeOfString = typeof (string);

The built-in typeof () method is identical in Boo and C#.

typeOfString = string Type typeOfString = typeof (string);

The use of typeof () can be skipped if the meaning is unambiguous. This is useful in many APIs that
accept type parameters.

TIP Boo supports both significant-whitespace and whitespace-agnostic
modes, which can be controlled by a compiler switch. That choice gives
you a lot of flexibility in deciding which mode your language should use.
This is discussed in more detail in chapter 2.

That’s the bare bones of the syntax, and it should indicate why Boo makes a good lan-
guage for DSLs. It’s already quite expressive on its own, before you start to add on top
of it.

Conditionals

Boo supports the if and unless conditionals. Boo doesn’t support switch/case, but
that is arguably a good thing. Case statements are frowned upon as code smells in cer-
tain circles.

Also note that Boo doesn’t have when as a keyword. This is important for building
DSLs, because you can use when in your DSLs more easily.

304 ApPENDIX B Boo language syntax

Table B.2 compares the Boo conditionals’ syntax to the equivalent C# syntax.

Table B.2 Boo syntax compared to C# syntax for conditionals

Boo syntax C# equivalent

if lives == 0: if (lives == 0)
print "game over" Console.WriteLine ("game over");

A simple if statement.

if lives == 0: if(lives == 0)
print "game over" {
game.Finish() Console.WriteLine ("game over");

game.Finish() ;

}

Boo syntax compared to C# syntax for conditionals

if not lives: if (lives == 0)
print "game over" Console.WriteLine ("game over") ;

Boo considers O and null to be equivalent to false when used in a conditional.

unless lives: if (lives == 0)
print "game over" Console.WriteLine ("game over") ;

The unless keyword simply translates to if not and has all the usual semantics.

print "game over" unless lives if (lives == 0)
Console.WriteLine ("game over") ;

print "game over" if lives == 0

Boo supports statement modifiers. This allows you to form a fairly natural statement: do this if X, do
this unless Y.

if lives == 0: if (lives == 0)

print "game over" Console.WriteLine ("game over") ;
else: else

print "carry on" Console.Writeline("carry on");

An if statement with an else clause.

if lives == 0: if (lives == 0)

print "game over" Console.WriteLine ("game over") ;
elif lives == 1: else if (lives == 1)

print "Last life" Console.WriteLine("last life")
else: else

print "carry on" Console.Writeline("carry on");

Boo has a special syntax for multilevel i f statements. This compensates for not having the switch/
case statement.

As you can see, Boo has quite a few options for expressing conditionals. When it
comes to writing a DSL, these will be very useful.

B.3

Loops and iterations 305

Some people say that this is confusing to them:

raise ArgumentNullException("username") if not username

For me, this is a very natural read, especially since you can also write this:
raise ArgumentNullException("username") if username is null

Now this is very nearly grammatically correct English statement.

Loops and iterations

Loops work just as you would expect them to. Boo’s for loop is equivalent to G#’s
foreach loop. Boo does have the range () function that allows a very similar construct,
though. Table B.3 compares the loop syntax in Boo and C#.

Table B.3 Boo syntax compared to C# syntax for loops

Boo syntax C# equivalent

while lives != O0: while(lives!=0)
PlayRound () PlayRound () ;

You could just say while lives:, but clarity should be preferred.

for i in range(0,10): for (int 1i=0;1i<10;i++)
print i Console.WriteLine (1) ;

Boo doesn’t have a for loop that matches the one in C-based languages. The Boo for loop is the
equivalent of the C# foreach loop, but Boo has the range () function, which allows very nearly the
same syntax.

for user in users: foreach (User user in users)
print user.Name Console.WriteLine (user.Name) ;
for user in users: foreach(User user in users)
{
if user.Name is null: if (user.Name == null)
continue continue;
print user.Name Console.WriteLine (user.Name) ;

}

continue works as expected, and it will work on while loops as well.

index = 0 int index = 0;

for user in users: foreach (User user in users)
break if index > 10 {
print user.Name if (index > 10)
index += 1 break;

Console.WriteLine (user.Name) ;
index += 1;

}

break will terminate the current loop, and works exactly like it does in C#.

while ie.Busy: while(ie.Busy)
Thread.Sleep (50ms) Thread.Sleep (50) ;

Statement modifiers work with loops as well.

306

B.4

APPENDIX B Boo language syntax

I haven’t touched on generators here, although they are arguably related, because this
is a syntax form that is rarely used in DSLs. Generators are too programmer-focused to

be useful in that arena.

Type declarations

Now that we’ve gone through all the syntax that we can define inside a method’s
block, let’s climb a bit higher and take a look at the real building blocks: the types that

make our programs.

Table B.4 explores the differences between the Boo and C# syntaxes for defining

types.

Table B.4 Boo syntax compared to C# syntax for type declaration

Boo syntax C# equivalent

class Car: public class Car
wheels as int {
def StartEngine(): protected int wheels;
pass public void StartEngine()

{
}

Type declarations are public by default.
Field declarations are protected by default.
Method and property declarations are public by default.

internal class Car: internal class Car {}
pass

You can explicitly state the visibility of a class, specifying internal, protected, and so on.

struct Point: public struct Point
X as int {
Y as int public int X;

public int Y;

You can define structures, as well.

class Truck(Car) : public class Truck : Car
pass {

Inheritance is simple.

class Car (IDisposable) : public class Car : IDisposable
def Dispose(): {
pass public void Dispose()

{
}
}

You inherit from an interface in order to implement it.

B.5

Methods, properties, and control structures 307

Table B.4 Boo syntax compared to C# syntax for type declaration (continued)

Boo syntax C# equivalent

enum TddStages: public enum TddStages
Red {
Green Red,
Refactor Green,
Refactor

An example of defining an enumeration.

That’s how you can deal with types, but there’s still something missing here, for bridg-
ing the gap between the method’s block and the type itself ...

Methods, properties, and control structures
We’ll start with methods and move downward, trying to cover everything from errors
to event handling.

Table B.5 compares the syntax options.

Table B.5 Boo syntax compared to C# syntax for methods

Boo syntax C# equivalent

def Start(): public void Start()
pass {
}

In Boo, method declarations start with def.

def Start (async as bool): public void Start (bool async)
pass {
}

Parameters are specified in the method parentheses, using the <param name> as <param type>
syntax.

def Start(async as bool) as public WaitHandle Start (bool async)
WaitHandle: {
raise NotImplementedException () throw new

NotImplementedException () ;
}

The method return type is specified after the closing parentheses using the as <return type>
syntax.

def GetInteger(): public int GetInteger ()
return 1 {
return 1;

}

You can let the compiler figure out the return type on its own.

308 ApPENDIX B Boo language syntax

Table B.5 Boo syntax compared to C# syntax for methods (continued)

Boo syntax C# equivalent

def SetItem(key,val): public void SetItem(object key, object
pass val)
{

}

If you skip specifying the type in the parameter list, Boo will assume that you want an object there.

def VarArgs(*args as (object)): public void VarArgs (params object[]
pass args)
{
}

You can specify the last parameter as an array that can accept a variable number of arguments, so you
can call this method like this:
VarArgs (1, "foo");

Name : public string Name
get: {
return "Boo" get { return "C#"; }

A simple read-only property.

Email: public string Email
get: {
return email get { return email; }
set: set { email = value; }
email = value }

A read-write property.

Email: public string Email
get: return email {
set: email = value get { return email; }
set { email = value; }

}

You can also use one-line blocks, in which case you don’t need the line breaks.

[property (Email)] public string Email { get; set; }
email as string

Automatic properties exist in Boo and in C# 3.0.

xml = XmlDocument () XmlDocument xml = new XmlDocument ()

Boo doesn’t have the new operator. The type name followed by () is treated as a constructor invocation.

emp = Employee (Name: "foo", Id: 15) var emp = new Employee{ Name = "foo",
Id = 15};

Boo can set named properties in the constructor. C# 3.0 introduced a similar feature.

Methods, properties, and control structures 309

Table B.5 Boo syntax compared to C# syntax for methods (continued)

Boo syntax C# equivalent

class Car(): public class Car
def constructor(): {
print "Car created!" public Car()

{
Console.WriteLine ("Car
created!") ;
}
}

Boo uses an explicit constructor keyword rather than the class name.

class Car(): public class Car
def destructor () : {
print "died" public ~Car ()
{

Console.WriteLine("died") ;

}

Use the destructor keyword to define a destructor instead of using the class name prefixed with a
tilde (~).

raise NotImplementedException () throw new NotImplementedException();

Throwing an exception.

raise "error happened" throw new Exception("error happened") ;

This is a nice feature for quick and dirty error handling. If you raise a string, it is automatically wrapped
in System.Exception.

try: try
do something {
except: // do something
print "error happened" }
catch

{

Console.WriteLine ("error
happened") ;
}

Yes, this is as bad form in Boo as it is in C#.

310 ApPENDIX B Boo language syntax

Table B.5 Boo syntax compared to C# syntax for methods (continued)

Boo syntax C# equivalent

try: try
do something {

except e as SoapException: // do something
print e.Detail }

except e: catch (SoapException e)
print e {

Console.WriteLine (e);
}
catch (Exception e)
{

Console.WriteLine (e) ;

}

This is an example of much better error handling than in the previous example, but you will want more-
legible error handling in real applications.

try: try
do something {

except e: // do something
print e }

ensure: catch (Exception e)
print "done" {

Console.WriteLine (e);
}
finally
{
Console.WriteLine ("done") ;

}

A try, catch, finally block in C# matches a try, except, ensure block in Boo.

try: try
do something {
except e: // do something
print e }
raise catch (Exception e)
{

Console.WriteLine(e) ;
throw;

}

As with C#, calling raise in an except block will re-throw the exception while preserving the original
stack trace.

save.Click += do(sender,e): save.Click += delegate(
print "Clicked" object sender,
EventArgs e

Console.WriteLine("Clicked") ;

}

This creates a closure (also called anonymous delegates, lambda, and blocks) that you can call at a
later time. This is useful for events, and for a lot of other things.

Methods, properties, and control structures 311

Table B.5 Boo syntax compared to C# syntax for methods (continued)
Boo syntax C# equivalent
save.Click += { print "Clicked" } save.Click += (sender, e) =>

Console.WriteLine ("Clicked") ;

This is an inline block, contrasted with a lambda expression from C# 3.0.

myList.Find({ i | 1 > 5 }) myList.Find(delegate(int 1)
{
return I > 5;
1)

You can also specify the parameters of an inline block explicitly.

namespace Foo.Bar.Baz namespace Foo.Bar.Baz
{
class Foobar: public class Foobar
pass {

}
}

Namespaces in Boo are not blocks. You don’t need to indent everything after them to include them in
the namespace.

self.name = "foo"; this.name = "foo";

The self keyword in Boo has the same meaning as this in C#.

super.name = "foo"; base.name = "foo";

The super keyword in Boo has the same meaning as base in C#.

single line comment // single line comment
// and this is one as well /*

/* Multi line comment
And here is a multi */

line comment

*/

Boo has several ways to specify comments.

That about concludes the basic syntax. Now we can move on to the more interesting
parts. For instance, major parts of Boo are implemented using Boo’s own extension
mechanism. Let’s look at Boo’s built-in macros.

312

B.6

APPENDIX B Boo language syntax

Useful macros

One of the interesting features of Boo is macros. Those are so useful that some of the
things that we think of as language features are actually implemented as extensions,
instead. Table B.6 lists a few of the more common ones.

Table B.6 Useful built-in macros in Boo

Boo syntax C# equivalent

assert user is not null Debug.Assert(user != null, "user is
not null")

The Boo version is definitely the clearer one.

print "foo" Console.WriteLine("foo");

Printing to the console.

using db = RhinoConnection() : using (RhinoConnection db = new
pass RhinoConnection())
{
}

Boo supports a using statement with syntax similar to C#.

lock syncLock: lock (syncLock)
#code under lock {
// code under lock

}

Boo supports locking objects with syntax similar to C#.

This appendix has covered the basic building blocks of Boo, but I suggest taking a
look at the Boo website (http://boo.codehaus.org/) for further information. A lan-
guage is more than just its syntax, and if you want to program in Boo (and not just
build DSLs using it), I strongly recommend reading the documentation on the site
and joining the Boo community.

http://boo.codehaus.org/

mdex

Numerics

101 LINQ Examples 237

A

abandon-ship strategy 179
example 192
when suitable 184
See also versioning
abstract syntax trees 8, 109,
206, 239
printing 111
AbstractAstAttribute 127
AbstractAstMacro 118, 260
abstraction 5, 40, 67, 257
AbstractTransformerCompil-
erStep class 131
actions 13, 19, 40, 50, 74, 106
commands, and 229
language reference best
practices 227
Actipro
SyntaxHighlighter 198
adapter strategy 182
See also versioning
adapters 67
AddFileNameProperty 278
additive-change
strategy 180-182, 184
backward compatibility 180
See also versioning
administrators 76, 91, 105
after actions 255
Aho, Alfred 8
algorithms 3
analysts 46

anonymous base class 154
anonymous blocks 30, 58, 81,
112
ANTLR 8, 283
Apache Ant 44
APIs 51
API surface area 155
design 47
public APIs 176
AppDomain 98-100, 135, 241,
243
sandboxed
AppDomain 100
application code 65, 68
application design 265
application integration 87
perspective 89
application services 149
application-configuration
DSLs 89
application-testing DSL 171
AqiStar.TextBox 199
arrays 71, 293-294
creating 295
slicing 297
ASP.NET 70, 147
See also NET 70
aspect-oriented
programming 25
ASPX files 147
assemblies 95, 98, 110, 123,
297
in-memory assemblies 98
assembly leakage 98
assembly leaks 243
assembly level 2
assert method 110

313

ASTs 8,109, 138, 213, 249
attributes 18, 25, 109, 113,
126
compiler
transformations 253
diagrams 113
expression 111-112
generating AST code
dynamically 114
macros 18,109, 113, 115,
117,138
manipulations 115, 239
nodes 110, 125, 259
parsing 109
parsing textual DS into 152
scanning 109
similarities with LINQ 251
substitution 262
transformations 251
transforming 109
use of processing at
runtime 251
views 251
See also abstract syntax trees
asynchronous messages 66
audit
information 106, 276
process 249
trail 245
auditable actions 253
auditing 244, 276
authentication module 105
authorization 65, 72, 245
rules 72-73, 78, 91, 158
script 76
system 77-78, 91
Authorization class 73-74

314

Authorization DSL 63, 80,
84, 89, 143
Authorization class 158
AuthorizationRules.xml
files 159
BooParser 214
callback to the Authoriza-
tion gateway 148
class diagram 156
creating 72
dark side of 78
design of 72
DSL writer 217
engine 75
implementation of 73, 76
Operation property 92
requirements 73
rules, Ul representation 216
specification 73
test case 159
testing 155-156, 158
tests for engine error
handling 159
visualization 213
AuthorizationDslEngine 76
AuthorizationRule class 74
AuthorizationRulesParser 215
AutoCAD 16
auto-import compiler step 144
AutoImportCompilerStep 144
automatic DSLs 16
automatic typecasting 24
automatic variable
declaration 23
AutoReferenceFilesCompiler-
Step 138, 144

backend processing systems 64
background compilation 244
Backus-Naur Form 8, 25, 176
backward compatibility 180
Bake 19

Bake DSL. 44
Base Class Library 28
base class moniker 68
base language 6
batch compilation 134, 136,

146

INDEX

BDD. See behavior-driven devel-

opment
behavior-driven
development 20
behavior-driven
specifications 7
behaviors, documenting
implementation 234
Benatti, Georges 19
best practices 257
Binsor 14, 190, 282
configuration file 45
versioning 190
BizTalk orchestrations 9
BNF. See Backus-Naur Form
Boo 12,94
AbstractAstMacro 117
adding keywords 201
additional information 285
advanced features 285
array literal 294
arrays 294
assert statement 110
AST 115, 251
attribute, built-in 128
attributes 126-127
attributes, using with a
DSL 128
manipulation 239
modifications 239
basic reference 285
basic syntax 25
behavior 285
benefits 37
blocks 307
Boo 0.9.2 111
Boo DSL 17
Boo editor 199-200
.boo extension 286
Boo syntax shortcuts 29
Boolean expressions 287
Boolean values 287
Brail 190
building blocks 312
building simple DSLs 262
built-in macros 312
class declaration 302
CLR classes 33
CLR language 17, 293
CLR-based language 23

CodeDOM 216
comments 288
commercial use 22
comparison with C# 29, 38
compiler 18, 69
extensibility 24
pipeline 109, 128, 131
pipeline, compiling with a
custom pipeline 131
steps 128
transformations 111-112
conditionals 303
comparison with C# 304
control statements 288
correlated macros 125
custom keywords 164
custom parsing 282
date keyword 76
defines 258
definition 16
description of 22
#develop 199
DSL to UI 215
DSLs 239
enumeration 307
errors 104
explicit types 297
extending 52
extending parser 283
extensibility
mechanisms 132
extensible architecture 129
extension mechanism 311
for statement 292
generators 300
generic arguments 273
global namespace
import 144
hashes 295
host language for DSLs 18
imports 299
inheritance 306
interactive shell 285
internal DSLs 16
interpreter 285
iterations 305
Java 17
keywords 30, 302
language definition 200
language reference 302
language syntax 302

Boo (continued)
language-oriented
features 29
lexical info 120
lists 293
locking objects 312
loops 305
macros 76,112,115, 167,
274, 312
comparison with C# 312
correlated 125
nested 124
reasons to prefer over
meta-methods 123
MacroStatement 118
meta-methods 246
method declarations 307
method definitions 297
method return type 307
method syntax comparsion
with C# 307
methods 298, 307
multilevel if statements 304
nested macros 124
null 304
objects 298
of keyword 270, 273
operators 287
overview 22
parameter types 297, 308
parameters 307
parser 116, 259, 283
parsing 206
processing macros 124
programming language 285
programs 285
Python-inspired syntax 22
quasi quotations 113, 116
range 294
real programs 297
relaxed symbols 145
Rhino DSL 134
runtime AST processing 250
script references 96
self 58
sequences 296
similarity to C# syntax 302
singletons 25
slicing 296
standard parser 116
statement modifiers 304

INDEX

statements 297
string interpolation 296
strings 296
structures 306-307
suitability for DSLs 304
symbols 82, 144
syntactic sugar 72
syntax 48, 285
syntax documenting 228
time spans 123
try ... ensure 122
types compared with C#
types 306
underscore character 77
upon keyword 274
using macro 120
variable names 287
website 23
whitespaces 303
why use 1
Boo Build System 19-20
Boo Code Builder 123
Boo compiler 219
Boo.OMeta 283
CLS-compliant language 115
compiler steps 129
extending 33
extensibility 108
internals 103
pipeline 109
structure 109
See also compiler
Boo Lang Studio 197
Boo on Rails 190
Boo.OMeta 283
booc 286
booi 286
booish 285, 287, 293, 298
indentation 289
multi-line comments 288
BooJay 17
Boolean expressions 287
Boolean values 287
BooleanExpression 290
BooParser 213
vs executable code 216
BooPrinter 184
bootstrapping 63
boundaries 99
Brail 18, 26
versioning 190

315

versioning compared with
Binsor 191
break statement 291-292
breaking changes 190
brittle language 256
BSD license 22
build engine 49
build process 14
build scripts 43
build tool 44
building DSLs 43, 48, 51, 63
styles 48
build-script DSLs 89
business analysts 98
business domain 54
business DSLs 14, 45, 48, 55,
63-64
building 45-46, 80
examples 46
purpose 43
business knowledge 15
business logic 51, 56, 78, 84,
105, 257
business rule engines 15
business rules 7, 46, 51, 64—65,
91
Business-Condition DSL 258
creating 258
defines 262
defines compared with C/
C++ defines 262
extracting definitions 258
business-facing DSLs 80
building 80
byte 1

C

C, text-substitution macros 112
C# 4,10, 18, 25, 153
2.0 11
3.0 11, 33
4.0 24
compiler 23
pseudo C# 168
verify method 112
C++ 7,12, 98, 180
compiler switches 183
defines 262
text-substitution macros 112

316

cache
invalidation 136
precompiled 242

caching 60, 134-135, 146, 244
cache invalidation 135, 147
cache invalidation policy 146
compilation costs 135
Rhino DSL 97

cascading updates 244

case statements 303

Castle MonoRail 190

Castle Project 19

Castle Windsor 45

circuit breakers 105
Circuit Breaker pattern 105

clarity 73, 284
issues in scaling 240

class definition 276

class designer 9

class diagram 57

class variable 299

ClassDefinition 278

classes 297
instance 298

clear code 3, 6

CLI. See Common Language

Infrastructure

client 47

closed environment 150

closures 13, 103

CLR 97, 142, 283
assemblies 17
assembly language 17
CLR API 45
CLR application 55
CLR assembly language 160
CLR classes 115
control add-ins 99
naming conventions 32
objects 66—67
See also Common Language

Runtime

Coco/R 8

code base 3

code completion 195, 198, 202
current context 207-208
current word 207
Defaultlndex property 205
displaying selections 206
generating list 208
hooking up events 203

INDEX

image index 208
ImageList property 205
location to insert selected
item 205
PreSelection property 205
problem 203
provider 204
provider functionality 206
UI 206
when to continue 205
code duplication 182
code file structure 227
code generation 11, 216
DSL writers 218
code management 111
code string 8
CodeCompletionWindow 203
CodeDOM API 216-217
Boo implementation 216
code-driven API 54
code-generation DSLs 89
CodeOriented naming 33
collections 123
Command pattern 73, 85
commands 74, 227, 229
comments 288
Common Language
Infrastructure 16
Common Language
Runtime 17, 22
See also CLR
CommonAuthorization-
Methods.dll assembly 95
compilation cache 137
compilation errors 102
categories 104
handling 104
compilation unit 123
compile, modern
compilers 128
compiled expression 251
compiled languages 6
compiler 12, 252, 286
auto-import step 144
compilation process 104
compile-time
transformation 118
context 129
creating 6
dealing with directly 135

extensibility 16, 22, 24, 108
mechanisms 108
options 110

extensions 104

extensions errors 104

imported namespaces 121

inspecting runtime AST 250

macro statement 124

MacroMacro extension 118

macros as extensibility
points 126

manipulation code 111

meta-methods 110

naming convention 129

number of times
invoked 241

object model 117-118

options 44

parameters 95, 123, 137

security infrastructure 99

services 123

steps 109, 115, 128

structure 129

switch 303

theory 8

transformation 112

verify implementation 111

with block 168

See also Boo compiler

compiler pipeline 109, 123,
129, 137, 250, 261
compiling
programmatically 132
compiling with custom
pipeline 131

extension points 109

incorporating compiler
steps 131

meta-methods 250

PrintAst step 111

compiler steps 163, 248, 260
adding to compiler
pipeline 129

clustering 145

code analysis 129

compile-time code
generation 129

definition 129

examples 129

implicit base class compiler
step 130

compiler steps (continued)

registration 131

Rhino DSL 130
complex code 3
computer science 1
concise code 6
condition expression 252
condition statement 288
conditional semantics 247
conditionals 303
ConditionExpression 251
configuration 55
configuration DSL 55
configuration scripts 45
configuration tasks 45
connection strings 45
constructor method 299
continue statement 291-292
control add-ins 99
control blocks 26
control flow 50
control statements 288
convention over configuration

principle 88

convention-based methods 37
convention-based structure 90
conventions 89-90
copy-on-change approach 182
correlated macros 125
CPU cycles 104
current context 212

caret position 207
current version 182
custom languages 5
CustomizeCompiler

method 137

D

data mining

extracting expressions from
scripts 253

data store 5

data warehouse 19

database
engine 49
migration 184
querying 5
storage 139
versioning 184

Davey, Andrew 20

INDEX

Davidson, James 44
DDD 55, 62
combining with DSLs 54
DDD-based domain
model 56
implementation 55
See also domain-driven design
debuggability 283
debugger 142
debugging 73, 244, 276
documenting 231
decision-support system 19
declarative approach 47, 50, 78
declarative DSLs 48-49, 52, 61,
81, 83
examples 49
intention 48
operating procedure 49
purely declarative DSLs 50
when to use 49
DefineMacro 260
definition files 258, 274, 279
delegate 57, 69, 155, 164, 247
action delegate 140
anonymous blocks 31
anonymous delegate 58, 103
generated delegate 275
generating from macro
statement 275
parameter, as 81, 163
when meta-method 57
demoware project 223
denial of service 99-100
denied-unless-allowed
policy 77
dependencies 11, 44, 80, 86
dependency
management 44
dependency injection 148
deployment 244
issues in scaling 240
depth order 255
derived classes 74
design approach 3
design parameters 86
design pattern 73
designing applications 63
#develop 198
API 207
Boo support 198
caret position 206

317

code completion 203-204,
206
creating Uls 202
displaying code completion
selections 206
ICSharpCode.TextEditor
199
keywords 201
language binding 203
parser 206
parsing rules 201
TextEditor 200
word 207
See also SharpDevelop
developer documentation 222
Developer Guide
creating 232
documenting
advanced behaviors 235
behaviors
implementation 234
conventions
implementation 235
DSL 233
DSL implementation 232
external
implementations 236
external integration 236
external resources 232,
236
keywords
implementation 234
notations
implementation 235
prerequisites 232
syntax 232
syntax
implementation 233
versioning 233
documenting DSL
implementation 232
importance of documenting
notations and
conventions 235
including code and tests 233
scheme 232
using tests as
documentation 232
development environment 14
development mode 244
diff 10

318

diffing 10
disposable code 254
Disposable pattern 127
distributed messaging
backend 83
distribution 245
DLL 44
DLR. See Dynamic Language
Runtime
documentation 10, 221, 263,
281
101 LINQ Examples 237
approaches 222
audience 222
comments 227
common operations
example 230
conventions
implementation 235
documenting
actions and
commands 230
AST transformations 236
behaviors
implementation 234
debugging 231
DSL implementation 232
external integration
points 236
prerequisites 232
syntax
implementation 233
tools 231
example scripts 224
examples of forgotten
topics 230
executable
documentation 237
for developers 232
importance of 221
including comments 237
including examples 225
language reference 230
language syntax 227
maintaining 238
making readable 224
multiple examples 225
samples 222
screenshots 224
style 226
syntax 227

INDEX

syntax rules 230
tests as a form of 237
types 222
user guide 225
user guide style 226
using tests as 233
what to include in 222
domain 225
domain experts 42-43, 46-47,
54
domain logic 53
domain model 84, 156, 266,
269
auditable 266
domain operations 51
domain terms 54
domain-driven application 54
Domain-Driven Design 265
domain-driven design 3, 51-53
ubiquitous languge and
DSLs 54
domain-specific languages 1, 5
language types 1
dotTrace 17
DSL API 156
facades 156
testing 157
See also APIs
DSL engine 69, 82, 255, 267,
271, 279
Authorization class 158
modifying 175
nonfunctional change 175
optimizations 175
precompiled cache 243
DSL environment 175, 177, 194
DSL execution
engine 212
how to get results of 223
DSL files. See DSL scripts
DSL IDE
#develop 198
problems with Visual
Studio 197
UI 213
using Visual Studio 196
DSL implementation 264
bringing it all together 276
infrastructure-level
implementation 278
real-world 263, 279

DSL infrastructure 134
logic 136
requirements 135
DSL instances 210
DSL integration,
administrating 105
DSL model and API 175
DSL rule engine 266
DSL scripts 276
breaking 151
directory structure 89
editing in production 244
filesystems 88
performance issue 87
reducing complexity 256
testing 160
See also scripts
DSL segregation 102
options 101
DSL syntax 14, 175-176, 222,
271
DSL types 7, 10, 20
DSL writer 217
DslEngine 60-61, 69, 136, 140,
151
class 158
extension points 138
local cache 138
virtual methods 137
DslExecuter 100
DslFact 170
DslFactory 60-61, 136, 155,
161, 278
DslPreCompiler 242
DsIRunnerTestCommand 169
DSLs 5,7
accessing code at
runtime 248
adding transparency 248
administrating 105
administration 106
aggregated visualization 281
AST attributes 128
auditable if 246, 275
auditing support 267
avoiding implicit
concepts 269
background
compilation 243
base class 149
batch compilation 135

DSLs (continued)

behaviors 271

benefits 84

best practices 257

beyond the code 280

Boo-based 160

building blocks 51

building DSLs 43, 50, 63

business keywords 258

capturing script
filename 248

challenges 239-240
editing scripts in

production 244

change management 106

code as data 212, 239

code generation 194, 216

combining with domain-
driven design 53

command pattern, and 73

compilation time 240

components 175

constraints 43

conventions 222

creating a professional-level
DSL 194

creating an IDE for 194-195

creating and using 263

creating positive first
impression 223

creating single purpose
dialects 211

custom DSL writers 217

dark side of 78

data as a core concept 281

data mining 253

debuggable 276

declarative DSLs 213

dependencies 149

deploying scripts in
production 239

design of 47, 53, 264-265

designing 264

designing a system with 64,
264

designing applications 63

dialect 212

dialect explosion 269

dialects 284

difference with fluent
interfaces 40

INDEX

differences between API and
model 156
displaying DSL
execution 194
documentation 174, 221
documenting
implementation 221
DSL-integrated
application 86
editing strategy 78
engine 51, 94, 136
error management 104
error-handling strategy 103
errors 102
excellent language 269
execution of 59
expected usage 264
explicit concepts 270
extensibility 139
external inputs 281
extracting runtime
information 212
facade 33, b4
facilities for abstraction 258
factory 70
file-based solutions storage
medium,
recommendation 142
for testing 162
generators 306
graphical representation
212
graphical representations for
textual DSLs 209
hybrid 50, 84
idioms 134-136, 143, 146
imperative DSLs 213
implementation 49, 264
challenges 239
class diagram 272
of keywords 164
infrastructure 52, 134
infrastructure concerns 64
instances 61, 70, 158
integrated DSLs 87
integrating into
applications 86
integration tests 151
keywords 81
language usage 263
layers 52

319

logic 72
maintenance 53
making expressive 269
making extensible 269
making the implict
explicit 268
managing large number of
scripts 240
managing snippets of 80
memory usage 240
merging scripts 258
multi-dialect languages 256
multifile scripts 254
NET 209
open environment 150
ordering 91, 135
organization 98
Oslo project 213
performance 86
considerations 96
issues 98
policy, behavior
separation 264
precompilation 241
problems 135
production-quality 135
real-world
implementation 263-264
reason to use 64
refactoring 270
reusing 94
reusing scripts 86
scaling 240, 262
complexity 240
implementations 239
issues 240
scheduling tasks 39, 41
scope 282
securing in applications 101
segregating from the
application 98-99
single language 256
single-file design 255
source control 106
startup costs 97
startup time 240
strategies for editing scripts
in production 244
structure 51, 86, 151
symbols 81
syntax 39, 83

320

DSLs (continued)
tasks in
implementations 106
technical issues 240
testable DSLs 150
test-driven development 151
testing 150
textual DSLs 185
tooling 194
tooling support 222
tracing 231
tracing execution 195
tracking script filename 276
transparency 246
turning implicit concepts to
explicit concepts 269
types 39
types of DSLs 43
Ul 194
Ul integration 281
user-extensible
languages 239, 256
version 1.0 193
version 2.0 178, 181
versioning 173
visualization of 209
why 13
XML files 281
See also domain-specific lan-
guage
duck types 297
duck typing 13, 24, 34, 110
DumpExpressionsToDatabase-
Visitor 253
dynamic dispatch 34
Dynamic Language Runtime 8,
18
dynamic languages 8, 12-13,
34-35

E

early-bound semantics 138
edge cases 78
Emacs 47
embedded DSLs 7, 21
empty selection 208
encapsulation 89
end users 47
endpoints 65, 70

multiple endpoints 256

INDEX

ERP systems 16
error handling 78, 244, 259
€rror management
emitting errors 189
lexical info 219
errors
divide by zero error 103
logging 104
operation database 104
ETL process 19
Evans, Eric 53, 55, 265
exact syntax 271
Excel
macros 16
VBA 47
exception policies 102
executable
documentation 222, 237
tests 237
executable language 54
executable output 8
execution behavior 264
execution engine 6, 52
execution environment 52, 222
execution points 231
execution semantics 222
explicit concepts 269-270, 284
preferred customer 270
explicit typing 23
expressing intent 6
expression trees 251
expressions 286
extensibility 6, 135, 149, 264
unauthorized extensions 269
extensibility DSLs 62
building 47
implications 47
purpose 43
extensibility mechanisms 47
extensible DSLs 16
extension methods 12, 33, 57
extension points 138
extension properties 34
extensions 52
external dependencies 148
external DSLs 7-8, 48, 213, 282
tools 8
extract, transform, and
load 14,19, 55
extract-transform-load (ETL)
tool 191

F

facade layer 149
facades 40, 52
failing test 171
Fibonacci series 301
numbers 301
field declarations 306
filesystem
organization 147
structure 88
filtering 5
fine-grained control 52
Fit testing tool 171
Fit fixtures 171
flexibility 2,17, 41, 46, 73
host language 282
importance of 284
using DSL 264
fluent interface API 10
fluent interfaces 7, 10, 12, 20,
40-41, 61
choosing over DSLs 42
implementation 11
scaling 42
folder-hierarchy
convention 181
for loops 14, 305
for statement 291-292
Fowler, Martin 5
FreeBSD 2
full-fledged language 6

G

game logic 47
garbage collection 98
general-purpose languages 2,
GeneratePropertyMacro 77,
146
generator expressions 301
generators 300, 306
generic object 35
generics 11
Getting Started Guide 223
examples 224, 227
high-level details 228
introduction 224
what to include in 223
globals 259

GOLD Parser 8, 283
grammar 8
graphical DSLs 7, 9, 20, 48
representations
problems 209
great-migration strategy 185
See also versioning
GREP 28
grep 195
Groovy 180

H

hashes 293, 295
literal hash 295
heterogeneous
environments 65
highest priority script 93
hogging the CPU 99
host language 6, 20, 282
host-language compiler 152
HTML DOM 113
HTTP server 27
HttpListener 27
Hughes, Brent 285
hybrid DSLs 49-50
declarative concepts 50

ICompilerStep 129
ICompletionDataProvider 203
ICSharpCode.TextEditor 202
ICSharpCode.TextEditor
DLL 199
IDE 222
code completion 203
contextual code
completion 206
customizing for a specific
DSL 200
environment 195
integrating into your DSL
application 198
tooling 42
using SharpDevelop 198
idioms 134
finding repeated idioms 254
IDslEngineCache 136, 138
IDslEngineStorage 136, 138,
140-141

INDEX

if statement 288, 304
ignored scripts 105
IIS 244
IL 95, 97,102,110, 112, 169
IL instructions 114
IL-based languages 160
See also Intermediate Lan-
guage
imperative DSLs 48, 84
build scripts 49
intention 48
operating procedure 49
when to use 49
imperative programming 50
implementation guide 221
implementation pattern 25
Implicit Base Class 68
approach 68, 85
pattern 143
implicit base class 67-68, 73,
81, 129, 137, 153
creating 130
OrderRule 247
structure 163
testing scripts 160
testing the DSL API 155
Implicit Base Class pattern 143
implicit blocks 69
implicit concepts 269
preferred customer 270
refactoring 270
ImplicitBaseClass 143
ImplicitBaseClassCompilerStep
138, 143, 278
imports 299
infrastructure 72
in-memory cache 138
integrated DSLs 87
integration testing 14
IntelliSense 11, 43
intention-revealing
programming 3, 6
interaction-based testing
Rhino Mocks 153
interactive shell 286
Intermediate Language 6, 17,
160
See also IL
internal DSLs 7-8, 10, 12, 20,
213
advantage 13

code-related issues 251
testing DSLs 152
internal messages 66
Internet Explorer 14
interpreted languages 6
interpreter 6, 8, 286
executable file 286
invalid code 104
invasive execution 244
Inversion of Control 11
container 11, 64
IoC Castle Windsor
container 190
IoC container 148

321

IoC. See Inversion of Control

IQuackFu 67,71, 110
interface 34-35, 37

IronPython 18

IronRuby 18

is keyword 302

is not keyword 302

isa keyword 302

isolation 102

IT DSLs 16

iterations 305

iterative design 53

Java 3-4, 10

JetBrains 17

JIT 23,97

JRuby 180

JSON 66-67
formatted messages 65
JSON endpoint 70
JSON messages 72
JsonMessageAdapter 70
object 65
string 65

K

keyword, and 303

keywords 163-164, 201, 227,

229
documenting
implementation 234
Knuth, Donald 96

322

L

lambda declaration 41
lambdas 12
language extensibility 10
language hopping 43
language reference 227, 230
language semantics 48
language syntax 12, 225, 227
difference with language
reference 230
documenting 221
language-oriented API 54
language-oriented
programming 7, 17, 41,
43,53
noise reduction 41
late-bound semantics 34-35,
138
law of unintended
consequences 143
LDAP directory 105
leaking memory 99
Lex 8
lexer 198
lexical info 103, 219
Lexicallnfo property 120
limitedTo macro 123-125

LINQ 11, 251
query 12
LISP 47

Lisp 12,16, 112
list comprehension 300
list generator 300
lists 293
literal list 293
slicing 297
logging information 105
logic system 79
loops 288, 305
low-level code 2

M

M language 283
See also Oslo Modeling Lan-
guage
machine code 6
machine level 3
MacroExpander 260

INDEX

macros 13, 146, 163, 312
block 259
correlated macros 125
debug macro 120
define macro 260
level 86
limitedTo macro 123
macro block 119
macro class 118
macro statements 118, 259
macro transformation 118

MacroMacro macro 118-119

nested macros 124-125
print macro 119-120
unroll macro 116, 118
UponMacro macro 274
using macro 120-121
whenExceeded macro 124

MacroStatement 119, 121-122,

260
mainstream languages 12
maintainability 6, 96, 283
maintainable code 2-3
maintainable language 258
maintenance costs 3
Make 49
malicious actions 99
malloc method 2
malware 99
manageability 98
mandatory testing 171
manual filters 5
maps 9
market conditions 264
MarshalByRefObject 244
masked-input validation
facilities b

MaskedTestBox 5
memory

allocation 3

consumption 135

issues 98

leaks 98

manipulation 2

pressure 97-98

usage 240
memory usage 240
message

dispatch 69

not understood 34

routing 256

translation 256
translation and routing 65
Message-Routing API 155
Message-Routing DSL 65, 80,
92,102, 151, 153
base class 67
creating 65
designing 65
engine 69-70, 89
folder structure 255
implementation of 66-67
integration into
application 87
mulifile scripts 254
multilanguage 256
RoutingBase 68
scripts directory 87
simplicity 72
structure 103
syntax 66
message-routing script 89
messages 89
message types 89
message versions 89
messaging structure 88
Meszaros, Gerard 159
meta-methods 18, 109-113,
132, 246
anonymous blocks 58
compared with AST
macros 115, 122
compiler pipeline 250
versioning 188
when keyword 247
when meta-method 247, 249
method chaining 11
method declarations 306
method missing 34-35
methods 297
metrics 254
business-quality metrics 254
code-quality metrics 254
micro level 86
Microsoft 8-9
M 283
Oslo Modeling
Language 213
migration wizard 184
issues 184
migrations. Seeversioning

model 51, 225

modules 259
MSBuild 13
multifile DSLs 255
MVC frameworks 190

N

Name Resolution Service 123
named tasks 40, 47
namespace imports 60
namespaces 144, 297
naming collisions 167, 202
naming conventions 32, 88-89,
106
CLR 145
creating language
reference 231
extension methods 33
implicit base class 81
.NET naming convention 81
underscores 275
naming issues 195
naming styles 33
naming-convention
approach 92
NAnt 13, 19, 49
natural language processing 7
NET 3, 8, 11, 23, 28, 102
Common Language
Runtime 17
framework 5
IDE 198
platform 17
Reflector 111, 131
space 8
types 293
versioning 188
non-DSL sources 284
not keyword 303
notations 227, 229
null checking 14
Null Object pattern 252
NullReferenceException 251

o

object graph 49

object lifetimes 11

object models 83, 109, 266
object-oriented language 22,

297

INDEX

objects 298
of keyword 270, 273
Office 16, 47
Oliveira, Rodrigo 22
OMeta. See Boo.OMeta
one-off solution 63
OOP principals 68
open language 282
open source projects 23
Operation property 74, 76
OperationMacro 77
operations 64, 73, 227
authorizable operations 90
operator overloading 11
operator precedence 13
semantics 7
optimized query plan 5
or keyword 303
or operator 287
order authorization 265
ordering 91, 135, 231
by name 92
external configuration 94
handling externally 93
without order 91
ordering conventions 106
order-management system 283
Order-Processing DSL. 249, 258
definitions 260
design 267
explicit concept 269
explicit order state 268
implementation 271
initial syntax 268
system design 265
transparency 246
Ul integration 281
usage 278
order-processing rules 46
order-processing system 264
OrderRule 247
OrderRuleDslEngine 261
Osherove, Roy 159
Oslo Modeling Language 213

P

parentheses 30, 32, 41, 112
Parr, Terence 283

parser 8

partial updates 245

323

Pascal case 32
Pascal casing 275
pass keyword 302
pattern recognition 213, 215
PDB files 276
performance 96-97
assembly leaks 243
memory leak 243
performance issues 244
permissions 72, 99
AppDomain 101
persistence 65
PHP 18
pipeline 109
See also compiler pipeline
plug-in code 102
policy 64-65, 72
denied-unless-allowed
policy 77
policy decision 264
precompilation 97, 244
PrecompiledCache 242
priming 78
print macro 119, 124
print statement 287, 289
prioritization 93
problem domain 4
production
application logs 104
code 106
database 245
environment 42
mode 244
productivity 2
professional DSLs 194, 219
error management 219
professional Ul
DSL engine 212
exposing the DSL model 212
professional-looking DSLs 209
graphical representation of a
textual DSL. 209
profiler 97
programming languages 4
programming patterns 23
prompt function 287
property macros 163
pure declarative DSL 83
Python 12, 16-17, 26

324

Q

Quadrant 213
quality software 221
quasi-quotations 18, 113-114
complex expressions 115
conditional code 114
extending the compiler 132
generating blocks 116
incompatibility with
macros 126
limitations 124, 126
meta-methods, and 108
quasi-quotation blocks 114
using AST 111
query syntax 12
querying 5, 11
quote generation 65
Quote-Generation DSL 63-64,
78,148, 151, 195
adding explanations 187
as XML 83
code completion 203-204
contextual code
completion 206
creating test DSL 162
declarative DSL. 83-84
design of 78
Developer Guide 234-235
documentation 226
documenting 222, 228
debugging 231
operations 229
file structure 228
implicit base class 186
keywords 229
language reference 231
notations 229
script structure 228
syntax highlighting 195, 200
testing 160, 163
User Guide 225
versioning 185-187
visualization of 209
quote-generation engine 82
quote-generation rules
derived dialect 211
evaluating 209
result of executing 210
QuoteGenerationCode-
CompletionProvider 204

INDEX

QuoteGenerationDslEngine
211

QuoteGeneratorForUI 211

QuoteGeneratorRule 81-82,
211

R

Rake 12, 14, 49
range 294
method 294
numeric ranges 294
readability 11, 56, 82
readable code 2-3, 6, 10, 30
real-world DSL. 265, 284
implementing 268
order authorization 265
shopping cart
modifications 265
testing 280
tests 280
tools integration 280
UI 280
real-world system
DSLs 264
implementing behavior 264
policy 264
system behavior 267
recurrence pattern 47
refactoring 262
reference equality operator 30
reference expressions 260
ReferenceAggregatorVisitor
252
Reflector 112, 143
regressions 151, 187
regression bugs 150, 193
regression test suite 178
test suite 174, 177
tests 151
regular expression approach 5
regular expressions 4-5, 7, 12,

relational database 19
repetitive code 25
ReplaceDefinitionsWith-
Expression 261
repository 245
response time 240
reusing code 94
reversibility 245

RevisitSerializedExpression
250
Rhino DSL 59, 67, 76, 82, 92,
97
AutoImport 144
background
compilation 243
batch compilation 88, 146
batching 97
bug fixes 135
building compiler step 130
building DSLs 132
caching 146, 241, 243
caching, using precompiled
assembly 242
common DSL idioms 143
compilation costs,
reducing 135
error management 219
external script
dependencies 148
idioms 146
IDslEngineStorage 139
infrastructure 147, 149
instance management 148
overriding cache
behavior 242
reasons for use 135
reducing compilation costs,
reducing 146
reusable idioms 143
storage 139
structure 134, 136
testability 152
UseSymbolsStep 144
warnings 220
Rhino ETL 14, 19
syntax changes 191
versioning 191
Rhino Mocks 153
testing DSL syntax 155
Router class 67, 69, 87
Routing DSL
design of 65
documenting 227
testing 152
routing modules 65-66
routing rules 255
routing scripts 89, 255
RoutingBase 70, 154
RoutingDslEngine 76, 154

rSpec 7

Ruby 12, 16, 26, 37

Ruby library 7

Ruby on Rails 7

Ruby-based DSL 13-14

rule engine 267
syntax 267

rules 13, 50, 195

rules engines 46

runtime engine 51

runtime errors 102-103
handling 102

S

Sarbanes-Oxley tracking
system 54
scaling DSLs 240
clarity issues 240
deployment issues 240
technical issues 240
transparency issues 240
Scheduling DSL. 39, 42, 47-48,
57,68, 113
documenting behaviors
implementation 234
implementing 56
meta-method 58
running 59, 61
translation to G# 58
scheduling engine 61
scheduling implementation 40
scheduling semantics 40
scheduling system 39
SchedulingDslEngine 60
Scheme macros 112
script prioritization
disadvantages 93
duplicate priorities 93
priority order 93
scripting 63
scripts
administrating 105
background
compilation 243
batch compilation 142
caching 243
capturing filename 248
change notifications 138
compiled assembly 95

INDEX

compiling 135
compiling in batches 241
configuring execution
order 106
data mining 253
debugging 142
dependencies 91, 94
diffing changes 142
faulty DSL scripts 104
filesystem 147
highest priority script 93
how to deploy 222
how to execute 223
ignored scripts 105
malicious script 99
names 142
numbering system 92
order of execution 91
ordered list 94
precompilation 241
prioritization 92
prioritization
disadvantages 93
reuse 94
script
changes 102
compilation 96-97
discovery 135
execution 96-97, 147
management 97-98
priorities 91
references 95-96
versions 181
slow DSL scripts 97
source control 142
state changes 92
storage 139
storing in filesystem 142
suspended scripts 105
top-ranking script 93
updating 106
XML file 139, 149
See also DSL scripts
security 72
code access security
policies 100
infrastructure 73, 99
measures 98
rules 91
systems 72, 78
selection criteria 279

325

semantic model 8
semantics 248
complex 248
semicolon 28
separation of concerns
principle 255, 258
serialization format 209
serialized AST nodes 250
service level agreement 123
Sethi, Ravi 8
SharpDevelop 111, 198
code completion 203
embedding in your
application 199
extending to understand a
DSL 200
See also #develop
Shopping Cart DSL 267-268,
278
AbstractCustomerPolicy 272
AddFileNameProperty 272
BusinessConditionDslEngine
272
CustomerPolicies 272
CustomerPolicyDslEngine
272
example 271
explicit concept 269
test for language feature 280
test suite 280
Treatment 272
TreatmentOfToMethodCall
272
UI 281
WhenMacro 272
shopping cart
modifications 265
significant-whitespace mode 26
simple code 3
simplicity 2
single responsibility
principle 255
single-purpose language 7
single-shot strategy 179
See also versioning
Singleton pattern 24, 127
SLA
macro building 123
violations 123
See also service level agree-
ment

326

slicing 296
Smalltalk 12, 16
smart factories 11
software design 53
software problem 5
source control 10, 142, 195,
245

system 181

use in production 245
source database 19
source files 276
specialized tasks 5
specialized tools, challenges 5
specialized vocabularies 5
Specter 20
SQL 7,9, 43,49

querying code structure 254
SQL Server Integration

Services 10

stack 20

overflows 100
stagnant DSL. 257
startup performance 241
startup time 240-241
statement block 289
statement modifiers 31, 305
StatementBlock 290
static gateways 148
static strings 30
static variable 299
statically typed language 22
string builders 29
string interpolation 29
StringBuilder 30
strings 296
strongly typed wrapper 35
structured message format 89
StructureMap 11, 148
stubbed class 154
StubbedRoutingBase 154-155
StubbedRoutingDslEngine 154
suspended scripts 105
switch/case statement 304
symbols 81

compiler step 144
syntactic flexibility 10, 12
syntactic noise 30
syntactic sugar 29, 48, 57
syntax 4, 8

errors 104

extensions 51

INDEX

implementation 233
rigidity 12
syntax highlighting 195, 198,
200-201
complexity 196
customizing 200
hand rolled 195
SharpDevelop 198
strategy 202
Visual Studio 196
syntax rules 227
documenting 230
system configuration 43
system transparency 246
System.AddIns 102
System.CodeDOM 113
System.Console.WriteLine 299
System.DateTime 76
System.Windows.Forms
namespace 25

T

targets 44
tasks 2,13, 19
repeatability 40
TDD. See test-driven develop-
ment
team environment 10
technical domain 43
technical DSLs 14, 48, 55, 64,
6667
advantages 45
building 43, 45
common use 63
disadvantages 45
purpose 43
quote generation 80
technical issues in scaling 240
templating 55
DSL 48, 55
test case 160
test cycle 42
testability 150-151
testable DSLs 150
testable systems 150
maintainability costs 150
test-driven development 151,
178
testing 284
application-testing DSL 171

assertions 161
interaction-based 153
mandatory testing 171
primary DSL 160
secondary testing DSL. 160
test case 155

testing the API 155

with C# code 162

Testing DSL 150, 157, 162

approach in building 162

executing 165

extending 165

initial syntax 162

integrating with unit-testing
framework 166

precompile step 166

primary DSL 162

property macros 163

recursive testing DSLs 162

testing a script with logic 165

testing DSL to test 162

verification keywords 164

tests 151

abstractions in 162

acceptance tests 171

basic 151

breaking test 178

creating test DSL 162, 171

dependence of language
tests on policy
decisions 280

dummy test 171

effects on versioning 174

engine 178

failing test 171

for API 155

for Engine 158

for language
implementation 280

for policy decisions 280

for scripts 160

for syntax 152

for the APT 178

for the syntax 178

importance of 280

integrating with
XUnit.NET 166

integration tests 178

interaction based 153

language tests 280

tests (continued)

mandatory tests 171
multiple tests 167
no-cost approach to

building 160
quality of software 172
reasons to have for DSLs 150
regression 151, 174, 178
syntax in external DSL 152

U

INDEX

ubiquitous language 54-55

Uls 78, 106, 209, 223, 245, 251

approaches to creating 220
BooParser 213

DSL code to 215

feeding the DSL writer 218
functional design 209

test code 162
test methods 169
to verify conventions 178
text editor 42
text generation 49
text processing 4-5
specialized tool 4
thread exceptions 100
thread-safe 243
time changing system 3
TimeSpan object 123
tool chain 43
Tower of Babel strategy 181
code duplication 182
copy-on-change
alternative 182
drawback 181
variation 182
See also versioning
trace viewer 222
tracing 267
transaction-safe manner 5
translators 67
transparency 246, 248
issues in scaling 240
treatment of keyword 278
treatment of statement 273
triggers 50
true audit log 276
try ... ensure block 127
try ... except statement 125
tuning 78
Turing, Alan 99
type declarations 306
type definitions 259
type inference 23
Type System Service 123
types 293
declaring 297

good Uls 64
integration 284
issues 10
mockup 281
pattern recognition 216
quote-generation UI 79
to DSL code 216
Ul dialect 211
Ullman, Jeffrey 8
UML 9
UML diagram 9
underscores 145
unexpected token 104
unit testing 49, 159, 161
extensibility mechanism in
frameworks 166

unit-testing framework 166,

169
unless keyword 304
upon keyword 274
upon macro 278
UponState method 274-275
usable DSL 272
user documentation 222
User Guide 225
actions 229
actual details 228
Boo syntax 228
commands 229
common operations 230

documenting notations 236

documenting syntax 233
domain 225

explaining dealing with the

unexpected 231
keywords 229
language syntax 227
notations 229

Quote-Generation DSL 226

role 225
syntax rules 230

327

troubleshooting
information 232

what to include 225
user-defined abstractions 257
user-editable script 257
user-extensible languages 256
user-level debugging 225
UseSymbolsStep 145
using macro 121-122, 124
using statement 312

Vv

VB.NET 18, 26, 28, 55
VB.NET 9 12
VBA 16, 47
verify method 113
versioning 65, 173, 263
abandon-ship strategy 179
adapter strategy 182
adapters 182-183
adapting during
compilation 183
additive change 180, 185
application integration 176
approaches 173
automatic migrations 184
backward compatibility 180
baseline 174
Binsor 190
boundary 192
Brail 190
business implications 190
considerations 173
current version 174
definition 175
documentation 174
DSL API 176
DSL model 176
error handling 190
executable form 174
for external DSLs 176
freezing a version 182
functional changes 175
great-migration strategy 184
handling breaking
changes 187
in the real world 173
incompatability
strategies 180
internal DSLs 176

328

versioning (continued)
logging 190
migration wizard 184
modifying DSL AP1/
model 176
modifying DSL engine 175
modifying DSL
environment 177
modifying DSL syntax 177
non-radical changes 182
planned
incompatibilities 175
Quote-Generation DSL 175
radical changes 182
real-world examples 190
reverse engineering 174
Rhino ETL 191
runtime adaptation to a
version 183
script versions 181
second version 173
single-shot strategy 179
strategies 173,175, 179
strategies, application of 185
testing, for backward
compatability 151
Tower of Babel strategy 181
users experience 177
version 1.0 183
version 2.0 183
version 3.0 185
version numberings 180
versioning story 175
when to apply 192
versioning boundary, types 192
version-numbering system 180

INDEX

Visitor pattern 131
Visual Studio 17, 203, 219
API 197
Boo support 197
class diagrams 209
developing extensions 197
macro feature 47
Visual Studio 2008 196
Visual Studio 2008 Shell 196
Visual Studio 2010 197
Visual Studio DSL Tools 9
visualization approach 9
Vivier, Cedric 20

w

Watir 14

web farm 244-245

when keyword 275, 303

when macro 278

whenExceeded macro 124-125

implementation 125

while loops 305

while statement 290

whitespace-agnostic modes 26,
303

Wilde, Tim 41

Windows 285

Windows Explorer 23

Windows Process
Activation 244

Windows Workflow
Foundation 10

Windsor 148

Windsor IoC container 14, 282

WinForms 5, 25

word 207
current word 207
previous word 207

X

XML 13, 44, 66, 83, 113, 281
#develop 198
#develop TextEditor 200
DSL code to UI 215
DSLs 84
external configuration for
ordering 94
files 10
one-to-one mapping 83
persistence format 10
pure declarative DSL. 83
Quote-Generation DSL. 83
storage file 139
XML noise 45
XML objects 72
XML-based storage 142
XmlFileDslEngineStorage
class 139
XmlMessageAdapter 72
XMLObject 67
XmlObject 24, 35-37, 72
xUnit
extending 167
integrating tests into 169
sample test 167
xUnit.NET 167

Y

Yacc 8

.NET PROGRAMMING

DSLsin BOO

Ayende Rahien

general purpose language like C# is designed to handle all

programming tasks. By contrast, the structure and syntax of

a Domain-Specific Language are designed to match a par-
ticular applications area. A DSL is designed for readability and
easy programming of repeating problems. Using the innovative
Boo language, it’s a breeze to create a DSL for your application
domain that works on .NET and does not sacrifice performance.

DSLs in Boo shows you how to design, extend, and evolve DSLs
for NET by focusing on approaches and patterns. You learn to
define an app in terms that match the domain, and to use Boo
to build DSLs that generate efhicient executables. And you won’t
deal with the awkward XML-laden syntax many DSLs require.
The book concentrates on writing internal (textual) DSLs that
allow easy extensibility of the application and framework. And
if you don’t know Boo, don’t worry—you’ll learn right here all
the techniques you need.

What's Inside

¢ Introduction to DSLs, including common patterns
¢ A fast-paced Boo tutorial

* Dozens of practical examples and tips

* An entertaining, easy-to-follow style

A leader in the NET community, Ayende Rahien, whose real
name is Oren Eini, contributes to numerous open-source projects
including NHibernate, Castle, and Rhino Mocks. He blogs and

speaks on architecture, data access, testing, and other topics.

For online access to the author, and a free ebook for owners
of this book, go to manning.com/DSLsinBoo

$49.99 / Can $62.99 [INCLUDING eBOOK]

{ee eb,
SEE IN

“A great gateway into Boo
and Domain-Specific
Languages.”

—Justin Chase, Microsoft

“Useful, readable, and
empowering—really
captures the Boo spirit.”

— Avishay Lavie, Contributor to
The Boo Programming Language

“Goes way beyond Boo
particulars into universally

applicable guidance.”

—Mark Seemann, Safewhere

“... will erase any doubts
you may have about
writing your own DSL.”

— Garabed “Garo” Yeriazarian

Baker Hughes, Inc.

ISBN 13: 978-1-933988-k0-3
ISBN 10: 1.-933988-k0-b

“ 5‘499“9
IM7819331988603

	Home Page
	DSLs in Boo
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Author Online

	about the author
	about the cover illustration
	Chapter 1 What are domain-specific languages?
	1.1 Striving for simplicity
	1.1.1 Creating simple code
	1.1.2 Creating clear code
	1.1.3 Creating intention-revealing code

	1.2 Understanding domain-specific languages
	1.2.1 Expressing intent
	1.2.2 Creating your own languages

	1.3 Distinguishing between DSL types
	1.3.1 External DSLs
	1.3.2 Graphical DSLs
	1.3.3 Fluent interfaces
	1.3.4 Internal or embedded DSLs

	1.4 Why write DSLs?
	1.4.1 Technical DSLs
	1.4.2 Business DSLs
	1.4.3 Automatic or extensible DSLs

	1.5 Boo’s DSL capabilities
	1.6 Examining DSL examples
	1.6.1 Brail
	1.6.2 Rhino ETL
	1.6.3 Bake (Boo Build System)
	1.6.4 Specter

	1.7 Summary

	Chapter 2 An overview of the Boo language
	2.1 Why use Boo?
	2.2 Exploring compiler extensibility
	2.3 Basic Boo syntax
	2.4 Boo’s built-in language-oriented features
	2.4.1 String interpolation
	2.4.2 Is, and, not, and or
	2.4.3 Optional parentheses
	2.4.4 Anonymous blocks
	2.4.5 Statement modifiers
	2.4.6 Naming conventions
	2.4.7 Extension methods
	2.4.8 Extension properties
	2.4.9 The IQuackFu interface

	2.5 Summary

	Chapter 3 The drive toward DSLs
	3.1 Choosing the DSL type to build
	3.1.1 The difference between fluent interfaces and DSLs
	3.1.2 Choosing between a fluent interface and a DSL

	3.2 Building different types of DSLs
	3.2.1 Building technical DSLs
	3.2.2 Building business DSLs
	3.2.3 Building Extensibility DSLs

	3.3 Fleshing out the syntax
	3.4 Choosing between imperative and declarative DSLs
	3.5 Taking a DSL apart—what makes it tick?
	3.6 Combining domain-driven design and DSLs
	3.6.1 Language-oriented programming in DDD
	3.6.2 Applying a DSL in a DDD application

	3.7 Implementing the Scheduling DSL
	3.8 Running the Scheduling DSL
	3.9 Summary

	Chapter 4 Building DSLs
	4.1 Designing a system with DSLs
	4.2 Creating the Message-Routing DSL
	4.2.1 Designing the Message-Routing DSL

	4.3 Creating the Authorization DSL
	4.3.1 Exploring the Authorization DSL design
	4.3.2 Building the Authorization DSL

	4.4 The “dark side” of using a DSL
	4.5 The Quote-Generation DSL
	4.5.1 Building business-facing DSLs
	4.5.2 Selecting the appropriate medium

	4.6 Summary

	Chapter 5 Integrating DSLs into your applications
	5.1 Exploring DSL integration
	5.2 Naming conventions
	5.3 Ordering the execution of scripts
	5.3.1 Handling ordering without order
	5.3.2 Ordering by name
	5.3.3 Prioritizing scripts
	5.3.4 Ordering using external configuration

	5.4 Managing reuse and dependencies
	5.5 Performance considerations when using a DSL
	5.5.1 Script compilation
	5.5.2 Script execution
	5.5.3 Script management
	5.5.4 Memory pressure

	5.6 Segregating the DSL from the application
	5.6.1 Building your own security infrastructure
	5.6.2 Segregating the DSL
	5.6.3 Considerations for securing a DSL in your application

	5.7 Handling DSL errors
	5.7.1 Handling runtime errors
	5.7.2 Handling compilation errors
	5.7.3 Error-handling strategies

	5.8 Administrating DSL integration
	5.9 Summary

	Chapter 6 Advanced complier extensibility approaches
	6.1 The compiler pipeline
	6.2 Meta-methods
	6.3 Quasi-quotation
	6.4 AST macros
	6.4.1 The unroll macro
	6.4.2 Building macros with the MacroMacro
	6.4.3 Analyzing the using macro
	6.4.4 Building an SLA macro
	6.4.5 Using nested macros

	6.5 AST attributes
	6.6 Compiler steps
	6.6.1 Compiler structure
	6.6.2 Building the implicit base class compiler step

	6.7 Summary

	Chapter 7 DSL infrastructure with Rhino DSL
	7.1 Understanding a DSL infrastructure
	7.2 The structure of Rhino DSL
	7.2.1 The DslFactory
	7.2.2 The DslEngine
	7.2.3 Creating a custom IDslEngineStorage

	7.3 Codifying DSL idioms
	7.3.1 ImplicitBaseClassCompilerStep
	7.3.2 AutoReferenceFilesCompilerStep
	7.3.3 AutoImportCompilerStep
	7.3.4 UseSymbolsStep
	7.3.5 UnderscoreNamingConventionsToPascalCaseCompilerStep
	7.3.6 GeneratePropertyMacro

	7.4 Batch compilation and compilation caches
	7.5 Supplying external dependencies to our DSL
	7.6 Summary

	Chapter 8 Testing DSLs
	8.1 Building testable DSLs
	8.2 Creating tests for a DSL
	8.2.1 Testing the syntax
	8.2.2 Testing the DSL API
	8.2.3 Testing the DSL engine

	8.3 Testing the DSL scripts
	8.3.1 Testing DSL scripts using standard unit testing
	8.3.2 Creating the Testing DSL

	8.4 Integrating with a testing framework
	8.5 Taking testing further
	8.5.1 Building an application-testing DSL
	8.5.2 Mandatory testing

	8.6 Summary

	Chapter 9 Versioning DSLs
	9.1 Starting from a stable origin
	9.2 Planning a DSL versioning story
	9.2.1 Implications of modifying the DSL engine
	9.2.2 Implications of modifying the DSL API and model
	9.2.3 Implications of modifying the DSL syntax
	9.2.4 Implications of modifying the DSL environment

	9.3 Building a regression test suite
	9.4 Choosing a versioning strategy
	9.4.1 Abandon-ship strategy
	9.4.2 Single-shot strategy
	9.4.3 Additive-change strategy
	9.4.4 Tower of Babel strategy
	9.4.5 Adapter strategy
	9.4.6 The great-migration strategy

	9.5 Applying versioning strategies
	9.5.1 Managing safe, additive changes
	9.5.2 Handling required breaking change

	9.6 DSL versioning in the real world
	9.6.1 Versioning Brail
	9.6.2 Versioning Binsor
	9.6.3 Versioning Rhino ETL

	9.7 When to version
	9.8 Summary

	Chapter 10 Creating a professional UI for a DSL
	10.1 Creating an IDE for a DSL
	10.1.1 Using Visual Studio as your DSL IDE
	10.1.2 Using #develop as your DSL IDE

	10.2 Integrating an IDE with a DSL application
	10.2.1 Extending #develop highlighting for our DSLs
	10.2.2 Adding code completion to our DSL
	10.2.3 Adding contextual code completion support for our DSL

	10.3 Creating a graphical representation for a textual DSL
	10.3.1 Displaying DSL execution
	10.3.2 Creating a UI dialect
	10.3.3 Treating code as data

	10.4 DSL code generation
	10.4.1 The CodeDOM provider for Boo
	10.4.2 Specific DSL writers

	10.5 Handling errors and warnings
	10.6 Summary

	Chapter 11 DSLs and documentation
	11.1 Types of documentation
	11.2 Writing the Getting Started Guide
	11.2.1 Begin with an introduction
	11.2.2 Provide examples

	11.3 Writing the User Guide
	11.3.1 Explain the domain and model
	11.3.2 Document the language syntax
	11.3.3 Create the language reference
	11.3.4 Explain debugging to business users

	11.4 Creating the Developer Guide
	11.4.1 Outline the prerequisites
	11.4.2 Explore the DSL’s implementation
	11.4.3 Document the syntax implementation
	11.4.4 Documenting AST transformations

	11.5 Creating executable documentation
	11.6 Summary

	Chapter 12 DSL implementation challenges
	12.1 Scaling DSL usage
	12.1.1 Technical—managing large numbers of scripts
	12.1.2 Performing precompilation
	12.1.3 Compiling in the background
	12.1.4 Managing assembly leaks

	12.2 Deployment—strategies for editing DSL scripts in production
	12.3 Ensuring system transparency
	12.3.1 Introducing transparency to the Order-Processing DSL
	12.3.2 Capturing the script filename
	12.3.3 Accessing the code at runtime
	12.3.4 Processing the AST at runtime

	12.4 Changing runtime behavior based on AST information
	12.5 Data mining your scripts
	12.6 Creating DSLs that span multiple files
	12.7 Creating DSLs that span multiple languages
	12.8 Creating user-extensible languages
	12.8.1 The basics of user-extensible languages
	12.8.2 Creating the Business-Condition DSL

	12.9 Summary

	Chapter 13 A real-world DSL implementation
	13.1 Exploring the scenario
	13.2 Designing the order-processing system
	13.3 Thinking in tongues
	13.4 Moving from an acceptable to an excellent language
	13.5 Implementing the language
	13.5.1 Exploring the treatment of statement’s implementation
	13.5.2 Implementing the upon and when keywords
	13.5.3 Tracking which file is the source of a policy
	13.5.4 Bringing it all together

	13.6 Using the language
	13.7 Looking beyond the code
	13.7.1 Testing our DSL
	13.7.2 Integrating with the user interface
	13.7.3 Limited DSL scope

	13.8 Going beyond the limits of the language
	13.9 Summary

	Appendix A Boo basic reference

	A.1 Prerequisites
	A.2 The Boo interactive shell, interpreter, and compiler
	A.2.1 Expressions
	A.2.2 Boolean values and Boolean expressions

	A.3 Comments
	A.4 Control statements
	A.4.1 If statement
	A.4.2 While statement
	A.4.3 For statement

	A.5 Types
	A.5.1 Lists
	A.5.2 Range
	A.5.3 Arrays
	A.5.4 Hashes
	A.5.5 Strings
	A.5.6 Slicing
	A.5.7 Declaring types explicitly

	A.6 Creating real programs
	A.6.1 Methods
	A.6.2 Classes and objects
	A.6.3 Imports

	A.7 Generators

	Appendix B Boo language syntax
	B.1 Interesting keywords
	B.2 Conditionals
	B.3 Loops and iterations
	B.4 Type declarations
	B.5 Methods, properties, and control structures
	B.6 Useful macros

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

