
M A N N I NG

Peter Armstrong

Flex 4
Hello

Advance Praise for Hello! Flex 4

“Everything I know about Flex I learned from Peter. Absolutely true state-
ment. And here’s the cool part: I can’t think of a better way to learn it…you
may not be lucky enough to sit beside him as you learn Flex, but this book is the
next best thing. It is Peter’s voice you’re hearing as you read through the book:
hyper-caffeinated, fast-talking, smart, and (extremely!) knowledgeable and
opinionated about what makes good Flex code.”

Scott Patten, Cofounder
Ruboss Technology Corp.

“I wish I’d had this book when I started developing in Flex. Manages to cover
nicely some in-depth topics while still remaining a great introductory text.”

Joe Hoover, Web Developer
Tech Lead at RMG Connect

“If you were using time as an excuse, that excuse is now gone…you’ll be mak-
ing cool apps in no time…The fastest read on Flex I’ve seen to date.”

Tariq Ahmed, Author of
Flex 4 in Action

“This book provides an outstanding overview of the latest version of Flex.
You’ll learn how to build Flex projects for the real world from start to finish.”

Sean Moore, Lead Flex Developer
Kannopy, Inc.

Hello! Flex 4

Peter Armstrong

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830
Email: manning@manning.com

©2010 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

User Friendly artwork, characters, and strips used by permission from UserFriendly.Org.
All Rights Reserved.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books we publish printed on acid-free paper, and we exert our best efforts to that
end. Recognizing also our responsibility to conserve the resources of our planet, Manning
books are printed on paper that is at least 15% recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development Editor: Cynthia Kane
209 Bruce Park Avenue Copyeditor: Liz Welch
Greenwich, CT 06830 Typesetter: Marija Tudor

Cover designer: Leslie Haimes

ISBN: 978-1-933988-76-4

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09

For Caroline and Evan

Brief contents
1 GETTING STARTED 1

2 ACTIONSCRIPT 3, XML, AND E4X 25

3 HELLO SPARK: PRIMITIVES, COMPONENTS,
FXG AND MXML GRAPHICS, AND EVEN VIDEO 50

4 SPARK CONTAINERS, VIEW
STATES, EFFECTS, AND STYLING 89

5 HALO FLEX 4: USING DATAGRID,
NAVIGATOR CONTAINERS, AND POPUPS 121

6 BUILDING USER-FRIENDLY FORMS
USING FLEX FORMATTERS AND VALIDATORS 136

7 CAIRNGORM IN ACTION:
SOCIALSTALKR (TWITTER + YAHOO! MAPS) 157
vii

Contents
Preface xiii
Acknowledgments xvi
About this book xix
About Hello! books xxii

1 Getting started 1
Why Flex 4? 1

Flex 4 overview 2 ❍ Flex vs. Ajax? Flex and Ajax? 3
Getting Flex 4 and Flash Builder 4 3 ❍ Beginning the
workshop 5

SESSION 1 Hello! Flex 6
Key Points 7

SESSION 2 Dispatching and listening for events 7
Key points 9

SESSION 3 The Bindable annotation and data binding 10
Key points 14

SESSION 4 Flex application structure overview 15
Key points 20

SESSION 5 Spark, Halo, and Flex 4 namespaces 20
Key points 24 ❍ What’s next? 24
ix

x Contents
2 ActionScript 3, XML, and E4X 25
SESSION 6 Variables, functions, types, and scope 26

Key points 31

SESSION 7 Objects, Arrays, Collections, and Looping 31
Key points 34

SESSION 8 Interfaces, casting, is, and as 35
Key points 40

SESSION 9 Inheritance 41
Key points 44

SESSION 10 E4X, XML, XMLList, and XMLListCollections 45
Key points 49 ❍ What’s next? 49

3 Hello Spark: primitives, components, FXG and
MXML graphics, and even video 50

SESSION 11 Spark primitives 51
Key points 54

SESSION 12 Simple Spark components 55
Key points 58

SESSION 13 Data-driven Spark components (Lists) 59
Key points 62

SESSION 14 FXG and MXML graphics—building a
 game 62

Key points 84

SESSION 15 Camera and video—a fake Twitter client 85
Key points 87 ❍ What’s Next? 87

4 Spark containers, view states, effects, and
styling 89

SESSION 16 Spark containers and layouts 90
Key points 99

SESSION 17 View states 99
Key points 105

Contents xi
SESSION 18 Effects and animation 106
Key points 109

SESSION 19 CSS styling 110
Key points 112

SESSION 20 Peeking behind the MXML curtain 113
Key points 115

SESSION 21 The Spark component lifecycle 116
Key points 119 ❍ What’s next? 120

5 Halo Flex 4: Using DataGrid, Navigator Containers,
and Popups 121

SESSION 22 List and DataGrid 123
Key points 127

SESSION 23 TabNavigator, ViewStack, and Accordion 127
Key points 130

SESSION 24 Alert.show and the PopupManager 131
Key points 135 ❍ What’s next? 135

6 Building user-friendly forms using Flex formatters
and validators 136

SESSION 25 Formatters and validators 138
Key points 140

SESSION 26 Real-world forms, formatters, and
 validators 141

Key points 155 ❍ What’s next? 156

7 Cairngorm in Action: SocialStalkr
(Twitter + Yahoo! Maps) 157

Creating the SocialStalkr project 158
Getting started with Twitter 161
Getting started with Yahoo! Maps 163
Cairngorm 165

Cairngorm history and motivation 166

xii Contents
Downloading and installing Cairngorm 2.2.1 168
Cairngorm event sequence overview 169
Creating the main application 170
Creating the ModelLocator 171
Creating the control package 174

EventNames.as 174 ❍ SocialStalkrController.as 175

Creating CairngormUtils and ServiceUtils 176
CairngormUtils.as 176 ❍ ServiceUtils.as 177

Creating the TwitterDelegate 179
Creating the commands 182
Creating the visual components 187

Key points 203 ❍ What’s next? 204

 Index 205

Preface
All books have a low point during writing, and this book had a lower one
than most. Specifically, this book was born out of three almost simultane-
ous failures at the end of 2008:

❂ The failure of the Ruboss Framework as a commercial product
❂ The failure of Enterprise Flexible Rails as a book
❂ The failure of the format of Hello! Flex 3

In the immortal words of hip-hop superstar Friedrich Nietzsche,1 “That
which does not kill us makes us stronger,” and this perfect storm of fail-
ure that ended 2008 for me definitely made me stronger—and made Hello!
Flex 4 a much better book.

That is the short version; if you want the long one, read on…

Shortly after Flexible Rails was published by Manning in early 2008, I
began working full-time on my company Ruboss and recruited a co-
founder, Dima Berastau. We were bootstrapping a product called the
Ruboss Framework by doing consulting. The Ruboss Framework was
licensed under GPL v3 and a commercial license, so it was free for Flex
and $499 for the AIR version. I wanted to market the Ruboss Framework
by writing a book about it, so I discussed with Mike Stephens at Man-
ning a sequel to Flexible Rails, titled Enterprise Flexible Rails, which would pick
up where Flexible Rails left off and lead readers to using the Ruboss Frame-
work for their Flex projects.

1 What, you thought I was quoting German philosopher Kanye West?
xiii

xiv Preface
In parallel to my working on the Ruboss Framework and Enterprise Flex-
ible Rails, Mike approached me in early 2008 and asked if I had any rec-
ommendations for someone to write Hello! Flex 3 for Manning. The
publisher was creating a new series of books called “Hello! X,” and the
format was going to be a fun, lighthearted introduction to a topic, fea-
turing cartoons. In a true Dick Cheney moment, I said, “I pick me.” I
knew J.D. Frazer (a.k.a. “Illiad,” the creator of the web comic User
Friendly), so I proposed to Manning that they use User Friendly cartoons
in the Hello! series and I made the introduction. Since I had just finished
a book about using Flex 3 with Rails, I thought it would be fairly sim-
ple to write another one, adding cartoons and removing Rails. Just like
runners at the end of a marathon, I must have been on an endorphin
rush, since Hello! Flex 3 seemed easy in comparison to Flexible Rails. Mike
said that they strongly discourage anyone from trying to write two
books at once. However, in a moment of supreme hubris, and against
Mike’s better judgment, I prevailed. So, I started writing Hello! Flex 3.

Over the course of 2008, I wrote six chapters of Hello! Flex 3, using the
same iterative code example format that I had used in Flexible Rails, but
with the addition of cartoons. I also wrote two chapters of Enterprise
Flexible Rails. That sounds respectable, but basically it was a washout.
(Hubris breeds nemesis, after all!)

First, Enterprise Flexible Rails was selling moderately well for a niche
book, but with the direction it was headed, it didn’t have a broad
enough appeal. Also, the book was not progressing fast enough. It
turned out that I didn’t have the time, so Mike was right: I shouldn’t
have attempted two books at once. Mike and I agreed to cancel Enter-
prise Flexible Rails. (Also, Ruboss subsequently changed the name of the
Ruboss Framework to the RestfulX framework, made the product free,
and changed the license to the MIT license.)

Second, Hello! Flex 3 had an identity crisis. We realized that “Flexible
Rails plus cartoons” did not make a good Hello! series book. Hello! Flex 3
was going to need to be completely rewritten—both to update the for-
mat to one better suiting the series, and also to rewrite the book to tar-
get Flex 4 (which was due to be released in the second half of 2009).

Preface xv
So, Hello! Flex 3 was scrapped, and the code in its six chapters was used
as the basis of one chapter in this book: the “SocialStalkr” example in
chapter 7, which I rewrote to use Flex 4 and the Spark components. I
also realized that the best format for the remainder of the book was
that of a fake workshop. I thought it would be funny to do a cartoon
mashup, so I drew a stick figure (yes, inspired by that famous web
comic) to represent me giving a workshop to the User Friendly cartoon
characters. This would be a meeting of Web 2.0 (the stick figure) and
Web 1.0 (the User Friendly characters), with lots of opportunity for
humor as well as instruction.

I spent the next three months working ridiculous hours, writing chapters
1–6 from scratch. I got the book done in late summer 2009, and we pro-
ceeded to edit and produce the book. Manning excels at the production
process, which is one reason their books have such a great reputation.

The story ended happily—and I feel that a really good book is the result.

Acknowledgments
First and foremost, I’d like to thank my wife Caroline for her amazing
patience and support throughout the writing of this book—since I was
also starting my company Ruboss and attempting to write Enterprise Flexible
Rails all at the same time. Anyone who has written a book or started a
company knows how much time these things take, so the fact that over
the past two years I wrote this book, started a company, and attempted to
write a second book means that Caroline has made a lot of sacrifices.

Second, I’d like to thank my son Evan for his understanding. I managed
to have enough time to play “Super Mario Galaxy” and other games with
him, but not enough time to finish building the second Lego Mindstorm
robot we’ve been working on. Now I will, and Robogator won’t just be a
snapping mouth with eyes, but it will have legs and a tail! (Someday I
look forward to teaching him how to program these things too…)

I’d also like to thank Dima Berastau. He made huge contributions to
Ruboss during 2008, and even contributed a couple of pages to this book
and helped with the Yahoo! Maps integration code in chapter 7. The
RestfulX Framework is pleasant to work with, and that’s Dima’s doing.
Finally, I made a lot of mistakes during our year of working together
building Ruboss 1.0, and I’d like Dima to know that I appreciated the
opportunity to work with him.

Next, I’d like to thank Scott Patten. Scott became employee No. 1 at
Ruboss in March 2008, and his tireless efforts, coding prowess, and ability
to understand the needs of clients has been instrumental to our success.
When Dima left and Ruboss pivoted from being Ruboss 1.0 (a company
xvi

Acknowledgments xvii
trying to sell a framework) to Ruboss 2.0 (a company building a Web
2.0 product), Scott stepped up and became a true cofounder.

I’d also like to thank Steve Byrne. Not only did Steve jump in at the
last minute to do the technical proofreading for me, but he also did a
phenomenally thorough job of it. I expected this, since I learned Flex
from him (and Matt Wyman) five years ago, so I already knew what
depth of knowledge Steve had. Steve knows Flex better than I do, and
he’s an outstanding architect and technical mind. If Steve ever writes a
book, I’ll be the first to buy it, and you should be the second.

Next, I’d like to thank Jason McLaren and Ken Pratt, since both of
their efforts enabled me to have a lot more time for this book. Also,
helping Jason learn Flex sharpened my focus and helped this book;
sometimes one forgets what the right questions are.

I’d also like to thank Duane Nickull, Adobe’s evangelist in Vancouver,
who has been a source of encouragement for me over the years, letting
me speak about Flexible Rails and RestfulX at his events and letting me
chip in a couple paragraphs to his Web 2.0 Architectures book.

Next I’d like to thank Dane Brown, who kept me well caffeinated over
the year that Ruboss was working out of WorkSpace. Without your
espresso macchiatos keeping me going, this book might not have hap-
pened at all!

I’d also like to thank J.D. and David from User Friendly for letting Man-
ning use the User Friendly cartoons in the Hello! series. J.D., I’ve had a
good time putting words in the mouths of your characters, and I hope
you get a couple laughs out of them if you read this book.

Special thanks to the following reviewers who read the manuscript at
different stages during its development, taking time out of their busy
schedules to provide feedback—their comments made this a better
book: Andrew Siemer, Doug Warren, Joe Hoover, Justin Tyler
Wiley, Robert Dempsey, Sean Moore, Tariq Ahmed, Tony Obermeit,
Philipp K. Janert, Jeffery Pickett, Robert Glover, Reza Rahman,
Maris Whetstone, Edmond Begoli, Dusty Jewett, Andrew Rubalcaba,
Nikolaos Kaintantzis, Jeff Pickett, and Lester Lobo.

xviii Acknowledgments
Finally, I’d like to thank the team at Manning.

First, I’d like to thank Marjan Bace and Mike Stephens for having the
idea for the Hello! series and for letting me contribute to it.

Second, I’d like to thank development editor Cynthia Kane. Cynthia
endured the brunt of the format frustrations, maintaining her cool and
sense of humor while I vented about “this isn’t a book, it’s a science
project!” and other similar sentiments. I appreciate her encouragement
and composure, especially as I hit reset on the whole book and started
over. I’m not sure if she believed I would actually ever finish the book,
but if she didn’t, she did a good job of hiding that fact.

Next, I’d like to thank Liz Welch for her amazing job of copyediting. I
needed to do a few passes through each chapter, so that I could see her
formatting changes and her insertions and deletions without them
drowning out her comments. The best compliment I can pay her is that
the book still felt like my writing, only better—not some “designed by
committee” neutered prose. The second-best compliment I can pay her
is that Maureen Spencer’s job of proofreading actually seemed pretty
easy. Of course, Maureen is great, but this seems like an easier trip
than Flexible Rails was for her. So Liz and Cynthia get credit for that.

One more thing: I’d like to thank Ruboss’s clients. Besides being fun to
work with, without you we wouldn’t be able to build our own product
and I wouldn’t have been able to write this book. (Oh yeah, we wouldn’t eat
either!) We love you.

About this book
You can think of this book as a two- or three-day workshop, transcribed
into book form—and much cheaper! The stick figure character is a stand-in
for me teaching the workshop, and the cartoon characters are your class-
mates. The questions they’ll ask or the opinions they express may be
your own.

I have two goals for this book: first, to teach Flex 4 in a way that exposes
you to real-world Flex problems in an accessible way, and second, to
have a bit of fun with this book, without being cutesy, distracting, or
insulting. The purpose of the cartoons in this introductory section is to
provide an amusing backstory; in the rest of the book I’ll use them to
draw attention to important concepts.

Who should read this book

You should read this book if you’re a software developer who is either
completely new to Flex or new to Flex 4 in particular. My assumption is
that you do know how to write computer programs, and that you know
how to use the web. I don’t explain either of those, and if something is
better referred to by a URL instead of paraphrased (poorly), that’s what
I do. If you’ve done a bit of Flex programming or seen articles or blog
posts about Flex, that’s great—but I don’t assume any Flex knowledge in
this book. Also, if (like me) you’ve already shipped production Flex 1, 2,
or 3 code, you can still read this book to learn Flex 4—since the book is
short and fast-paced, my hope is that blasting through it will get you up
to speed faster than any alternative. Finally, since this book includes 27
xix

xx About this book
self-contained examples, if you already know what’s in one of them,
you can just skip it and move on to the next one.

How this book is organized

Briefly, this book is divided into seven chapters.
The first six chapters contain 26 workshop ses-

sions, and every example is stand-alone. These
examples are toy examples, focused on what

you’re trying to learn in that workshop ses-
sion—and nothing else. (Most of the workshop session
examples fit on one or two pages, with the exception of

the Only Connect game we’ll build in workshop session
14.) In the last chapter, we’ll build a real Flex 4 applica-
tion. This chapter is essential, since it provides you with

the big picture that toy examples can’t provide. Further-
more, it will teach you Cairngorm, which is the dominant
Flex 4 application framework.

Oh yeah, the application: it’s called SocialStalkr, and it’s a Twitter and
Yahoo! Maps mashup. (Can you get any more Web 2.0 compliant than
that?) Besides, there are actual books entirely about Twitter now, so
it’s like you’re getting a free book here.

About the code

All source code in listings or in text is in a fixed-width font like this
to separate it from ordinary text. Method and function names, object
properties, XML elements, and attributes in text are presented using
this same font. In many cases, the original source code has been
reformatted: we’ve added line breaks and reworked indentation to
accommodate the available page space in the book.

Code annotations accompany many of the listings, highlighting impor-
tant concepts. Numbered cue balls link to explanations of the code that
follow the listings.

The source code for all the code examples in the book is available from
the publisher’s website at www.manning.com/HelloFlex4.

About this book xxi
Author Online

Purchase of Hello! Flex 4 includes free access to a private web forum run
by Manning Publications where you can make comments about the
book, ask technical questions, and receive help from the author and
from other users. To access the forum and subscribe to it, point your
web browser to www.manning.com/HelloFlex4. This page provides
information on how to get on the forum once you’re registered, what
kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a
meaningful dialogue between individual readers and between readers
and the author can take place. It’s not a commitment to any specific
amount of participation on the part of the author, whose contribution to
the book’s forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions, lest his interest stray!

The Author Online forum and the archives of previous discussions will
be accessible from the publisher’s website as long as the book is in print.

About the author

Peter Armstrong is the cofounder of Ruboss Technology Corp., a Van-
couver, BC, company focusing on Adobe Flex and Ruby on Rails devel-
opment and consulting, typically using the RestfulX framework. He’s
the author of Flexible Rails (www.manning.com/armstrong), the book
that inspired the creation of the MIT-licensed RestfulX framework for
building RESTful Flex applications that easily integrate with server-
side frameworks like Ruby on Rails. He was a key part of the team that
won the 2006 Adobe MAX Award for RIA/Web Development, and is a
frequent conference speaker on using Flex and Rails together.

Peter’s blog is http://peterarmstrong.com. You can follow him on Twit-
ter at @peterarmstrong. Peter’s email address is peter@ruboss.com.

mailto:peter@ruboss.com
mailto:peter@ruboss.com

About Hello! books
At Manning, we think it should be just as much fun to learn new tools as
it is to use them. And we know that fun learning gets better results. Our
Hello! series demonstrates how to learn a new technology without getting
bogged down in too many details. In each book, User Friendly cartoon char-
acters offer commentary and humorous asides, as the book moves quickly
from Hello World into practical techniques. Along the way, readers build
a unique hands-on application that leverages the skills learned in the book.

Our Hello! books offer short, lighthearted introductions to new topics,
with the author and cartoon characters acting as your guides.
xxii

1
Getting started

n this chapter, you’ll learn how to get Flex 4
and how to build a few basic Flex 4 apps. Your
goal is to grasp the basic structure and syntax
of a Flex 4 application. We’ll also explore a
high-level picture of the Flex 4 ecosystem.

Why Flex 4?
Chances are you already know why you want to
use Flex, so I won’t bore you. In case you don’t,
what follows is the one-paragraph version.

Flex 4 is a sexy framework that lets you write
code that feels more like coding a desktop
application—except it runs inside the Flash
Player. Because it targets the Flash Player, you
can build new rich Internet applications
(RIAs) without worrying about browser com-
patibility nonsense, JavaScript, CSS, and so

I

1

2 CHAPTER 1 Getting started
on. Because Flex 4 targets one platform (Flash 10),
you don’t have to worry about platform compatibility
issues. The write once, run anywhere (WORA) dream
that client-side Java programmers had—before it
turned into write once, debug everywhere—can
finally be realized, but with Flex. Flex achieves what
previous technologies such as Java applets failed mis-
erably in attempting: applications that feel like desk-
top applications but that run inside any modern web

browser on Windows and Mac. We can use Flex 4 to build RIAs today
that look and feel more like Web 3.0 than many of the “me too [point
oh]” sites you see copying 37signals and each other today.

Flex 4 overview
Now that you’re excited about Flex 4, let’s take a deep breath and get
an overview of the platform. This section will present a high-level over-
view; don’t worry if you don’t understand a particular point here; rest
assured I’ll explain it later.

In Flex 4, we write code in MXML (XML files with an .mxml exten-
sion; M for Macromedia, the company that created Flex and that was
acquired in 2005 by Adobe) and ActionScript (text files with an .as
extension) files and compile them into an SWF file (that is, a Flash
movie), which runs in the Flash Player. This SWF is usually referenced
by an HTML file, so that when a user with a modern web browser
loads the HTML file, it plays the Flash movie (prompting the user to
download Flash 10 if it’s not present). The SWF contained in the web
page can interact with the web page it’s contained in and with the
server it was sent from.

Even if you’ve never created a Flash movie in your life, don’t consider
yourself a designer, and wouldn’t recognize the Timeline if you tripped
over it, you can use Flex to create attractive applications that run in the
Flash Player. Flex development is easily learned by any intermediate-
level developer with either web (HTML and JavaScript) or desktop UI
(such as Windows Forms or Java Swing) programming experience. A
Flex 4 application is just a Flash movie (SWF), which lives inside a web
page loaded by a web browser that has Flash 10 installed.

Why Flex 4? 3
Flex vs. Ajax? Flex and Ajax?

Now that we have seen what Flex is, let’s consider the main alternative
to Flex: Ajax. (Silverlight doesn’t count—yet—since it doesn’t have a
large enough installed base to be
a pragmatic choice for a con-
sumer-facing application.)

The question of when to use Flex,
when to use Ajax, and when to
use both is extremely controversial. There’s no one right answer: it
depends on many factors, including the size of your application, the
skills of your developers, how important search engine optimization is,
and so on. Furthermore, as both Flex and Ajax frameworks evolve, the
answer itself evolves. That said, there’s one question I like to use: “Are
you building a publication or an application?” The more “application
like” what you’re building is, the better a fit Flex usually is. (Another
way of thinking about this is to ask yourself if you could visualize your
app being or competing with a desktop application.)

Getting Flex 4 and Flash Builder 4
So, since this is a book about Flex 4, and since you’re presumably
interested enough in Flex 4 to be reading or browsing it, the next step
is for us to actually download Flex 4 and play with it. Somewhat con-
fusingly, Flex 4 applications are built using something called Flash
Builder 4. (In Flex 1, 2, and 3 this was called Flex Builder.) The mar-
keting rationale for this is as follows: Flex applications can be built in

AREN’T YOU
IGNORING
JAVA FX?

Yes, just like everyone
else is. (Oh, snap!)

4 CHAPTER 1 Getting started
conjunction with designers using something called Flash
Catalyst, so it makes sense for them to both be called Flash

Something, to emphasize that they play nicely together. Sec-
ond, Flex applications are compiled into Flash movies (SWFs), just
as Flash applications developed in Adobe Flash CS4 are compiled
into SWFs. However, since the code editor in Flex Builder 3 was
so much better than in Flash CS4, many Flash developers were

using Flex Builder to build SWFs, without actually using the Flex
framework. Or, they’d use Flex Builder and Flash CS4 together. So,

Adobe realized that since they had Flash
CS4 and Flash Catalyst, they should rename
Flex Builder to Flash Builder to fit in.

Looking a little deeper, the real reason Flex
Builder could be renamed Flash Builder is

that Flex has been so
successful in making
the Flash Platform

something that’s
considered suitable
for enterprise use,
not something that’s dismissed as intended
for games and annoying ads. So, instead of
the Flex name having to essentially run
away from the Flash brand, it can be used
for the open source Flex framework and all
the corporate branding can be Flash.

Let’s begin by downloading Flash Builder 4.
Currently it’s available at http://labs.adobe.com/
technologies/flashbuilder4/; once the final rele-
ase of Flex 4 is made, this URL will change
and you’ll find the new URL on Adobe.com
easily enough (hint: Google). A trial version

http://labs.adobe.com/technologies/flashbuilder4/

Why Flex 4? 5
is available that
should last long
enough for you to
follow along with
this book. Down-
load the stand-
alone version, not
the Eclipse plug-in
version, if you want to follow along with the
book verbatim.

Flash Builder is Adobe’s Eclipse-based IDE
for building Flex applications. However, you
can also do Flex development using the Flex Software Development
Kit (SDK) without Flash Builder: just use your favorite text editor
and the command-line compiler that comes with the SDK. This book
won’t go into how to do that, since most people will end up using
Flash Builder.

Beginning the workshop
With this completed, we begin the workshop sessions. These workshop
sessions will be grouped into chapters containing thematically related
sessions. However, each of these is stand-alone, so they all begin on
new pages.

Each workshop session is a separate project in the code zip file. You can
follow along with each workshop session by creating a new project in
Flash Builder 4. Just choose File > New > Flex Project to open the New

Should I use Flash Builder Or JUST the Flex SDK?
While the SDK is free, using it isn’t as easy as using Flash Builder. So, even if you

plan to use the SDK, I recommend using Flash Builder to learn Flex: not only do

you get to defer your decision long enough to finish the book (during which time

you may decide you like Flash Builder enough to pay for it), you’ll also learn Flex

faster with Flash Builder providing code-completion support and the design

mode, which lets you drag and drop Flex components to lay out a UI.

6 CHAPTER 1 Getting started
Flex Project dialog. Enter a name for the project in the Project name
field and click Finish. It doesn’t matter what you name the projects; I
named them all session01, session02, and so on in the code zip file.
However, note that the project name is used to name the main applica-
tion, so if you want the main application to be named appropriately, use
CamelCase for the name. (In chapter 7, for example, the main applica-
tion is SocialStalkr so that’s what the project should be named.)

This is the first workshop session. In it, we build our first complete
Flex application, shown next. Note that the code listing titles show you
the exact path to the files in the code zip file, which you can download
from http://manning.com/armstrong3/.

SESSION01/SRC/HELLO.MXML

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo">
 <s:Label="Hello! Flex 4"
 fontSize="128"/>
</s:Application>

SESSION 1 Hello! Flex

SESSION 2 Dispatching and listening for events 7
The root of a Flex
application is the
Application tag. This
application contains a
Label component with the text “Hello! Flex 4.” (For now, ignore the
various xmlns lines; we’ll get to that later in this chapter.) Running this
application gives us our first Flex application.

➼ Key Points

❂ Flex applications start with an Application tag.
❂ Flex applications can be built with very little code.

After you get past all the hype about RIAs,
Flex development is distinguished by the per-
vasiveness of two main things: events and data
binding. In this session, we’ll see how events
work; in the next, we’ll explore data binding. It
may seem odd to dive right into events and
data binding before even looking at how Flex
applications are structured, but since events and data binding are
everywhere in Flex, it’s preferable to confront them right away so that
the other examples aren’t mysterious.

In this section, we’ll create an app that contains
three Buttons: button1, button2, and button3. All
Buttons dispatch a MouseEvent of type click (actu-
ally MouseEvent.CLICK) when the user clicks
them; we’ll show how to handle this in three dif-
ferent ways in this session. We’ll make clicking
one of the buttons add the text “Button 1
clicked” (or 2 or 3) to a Label text component.
For layout, we’ll put these Buttons and the Label
into a VGroup, as shown here.

SESSION 2 Dispatching and listening for events

8 CHAPTER 1 Getting started
session02/src/Hello.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 initialize="init()">
<fx:Script><![CDATA[
 private function init():void {
 button3.addEventListener(MouseEvent.CLICK, handleClick);
 }
 private function handleClick(event:MouseEvent):void {
 if (event.target == button2) {
 label.text += 'Button 2 clicked\n';
 } else if (event.target == button3) {
 label.text += 'Button 3 clicked\n';
 }
 }
]]></fx:Script>
 <s:VGroup width="100%">
 <s:Button id="button1" label="Button 1"
 click="label.text += 'Button 1 clicked\n'"/>
 <s:Button id="button2" label="Button 2"
 click="handleClick(event)"/>
 <s:Button id="button3" label="Button 3"/>
 <s:Label id="label"/>
 </s:VGroup>
</s:Application>

q We are including ActionScript 3 code inline for the first time. The
<![CDATA[and]]> is essential inside the <fx:Script> tag (so you can
type code as you want to without having to worry about special
XML character sequences), so Flash Builder adds it for you after
you type <fx:Script>.

w We call the init() function in response to the initialize event
being automatically dispatched by the application. (Many events,
such as initialize, creationComplete, and applicationComplete, are
fired when a Flex application starts; you can write code that han-
dles them. We’ll do this later in the book.)

q

w

e

r

t

y

SESSION 2 Dispatching and listening for events 9
e The handleClick event handler takes a single MouseEvent event
parameter; the handler uses the target property of the event param-
eter to determine which button was clicked.

r We’re putting the Buttons and the Label into a VGroup, which
arranges its children vertically. (Had we used an HGroup, they’d
have been laid out horizontally.) VGroup and HGroup are Group sub-
classes.

t We can also add a handler for the click event in the attribute value.

y The click event automatically creates a variable called event, which
in this case is of type MouseEvent. We pass this into the handleClick
method.

Running the application and click-
ing the button1, button2, and button3
Buttons in order produces the
screenshot shown here.

➼ Key points

❂ Events can be handled either in the attributes directly or in explicitly
written event handler functions.

❂ Event handlers can be attached to UI components in MXML attri-
bute values or in ActionScript addEventListener calls.

❂ Event objects have a target property, which is the source of the event.
❂ In MXML, components can be nested in Group objects. HGroup and

VGroup are subclasses of Group that lay out their children horizontally
and vertically.

10 CHAPTER 1 Getting started
Now that we have seen how to use events,
let’s look at data binding. Data binding is the
most unique1 thing about Flex. It’s a powerful
feature that’s easy to use, and Flex 4 has
added a new two-way data binding feature to
make it even easier. Data binding is also easy
to abuse, with negative consequences for per-
formance (this is covered in great depth in an
excellent one-hour presentation titled “Diving
in the Flex Data Binding Waters,”2 by Michael Labriola. Once you’re
comfortable enough with Flex 4 and data binding that you’re curious
about how it works under the covers, I highly recommend spending the
time to watch this presentation.)

In this session, we’ll learn the basics of one-way and two-way data
binding. We’ll start by building an example that uses one-way data
binding twice, to copy the text of two text inputs into each other. We’ll
also create a Label that uses data binding to show the length of the
String in the textInput1.

session03/src/OneWay.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo">
 <s:layout>
 <s:VerticalLayout paddingLeft="5" paddingTop="5"/>
 </s:layout>
 <s:TextInput id="textInput1" text="{textInput2.text}"/>
 <s:TextInput id="textInput2" text="{textInput1.text}"/>
 <s:Label text="# chars: {textInput1.text.length}"/>
</s:Application>

SESSION 3 The Bindable annotation and data binding

1 Flex data binding is no longer as unique—other frameworks such as JavaFX have added their own
implementations of data binding, largely in response to the popularity of data binding in Flex.

2 http://www.slideshare.net/michael.labriola/diving-in-the-flex-data-binding-waters-presentation?src=embed

q

SESSION 3 The Bindable annotation and data binding 11
q Each TextInput’s text property is bound (with the {} syntax) to the
other TextInput’s text property.

Running the application, we can type
text in and see the following screen.

Well, that was pretty cool! However,
let’s not stop there: let’s get even
lazier. What if we want to bind the
text properties of both TextInputs to each other, but we want to type
even less? Flex 4 introduces a new feature to Flex: two-way data bind-
ing. Let’s see how that works.

session03/src/TwoWay.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo">
 <s:layout>
 <s:VerticalLayout paddingLeft="5" paddingTop="5"/>
 </s:layout>
 <s:TextInput id="textInput1" text="@{textInput2.text}"/>
 <s:TextInput id="textInput2"/>
 <s:Label text="# chars: {textInput1.text.length}"/>
</s:Application>

q The textInput1 text property binding has the even more magical @{}
syntax, which means “bind this both ways.” Note that the text
property of the textInput2 has no binding now, whereas before it
used to have the binding text="{textInput1.text}".

Running the application, we see the identical output as before.

Binding isn’t just for stupid UI tricks, however: it’s primarily used to
get data in and out of ActionScript 3 model objects. So, let’s create a
model object now in ActionScript, and then see how binding works
with it. In Flex 4 you write code in one of two ways: in MXML (.mxml)
files or in ActionScript 3 (.as) files. We’ll create our first ActionScript
file now and cover ActionScript more thoroughly in chapter 2.

q

12 CHAPTER 1 Getting started
session03/src/model/Task.as

package {
 public class Task {
 [Bindable]
 public var name:String;

 public function Task(name:String = "") {
 this.name = name;
 }
 }
}

q The Bindable annotation on the name variable ensures it can be the
source of a data binding.

Next, let’s create a new application that uses this model. (You can copy
and paste, then modify the OneWay.mxml application to save time.)

session03/src/BindingToModel.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo">
<fx:Script>
<![CDATA[
 [Bindable]
 private var _task:Task = new Task("Learn Binding");
]]>
</fx:Script>
 <s:layout>
 <s:VerticalLayout paddingLeft="5" paddingTop="5"/>
 </s:layout>
 <s:TextInput id="textInput1" text="{_task.name}"
 focusOut="_task.name = textInput1.text;"/>
 <s:TextInput id="textInput2" text="{_task.name}"
 focusOut="_task.name = textInput2.text;"/>
</s:Application>

q We create a new Task variable, _task, which is Bindable, and initial-
ize the name property to Learn Binding.

q

q

w

SESSION 3 The Bindable annotation and data binding 13
w The _task variable’s name property (which is also Bindable) is bound
to the text property of both textInput1 and textInput2.

Running the application, we see that the TextInputs are both bound to
the name property. Typing in either of them and then focusing out (by,
say, pressing the Tab key) assigns
the text to the model’s name prop-
erty, which then updates the other
TextInput’s text.

But we’re feeling lazy; why don’t we
try using two-way data binding?

session03/src/TwoWayBindingClobbersModel.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo">
<fx:Script>
<![CDATA[
 [Bindable]
 private var _task:Task = new Task("Don’t do this!");
]]>
</fx:Script>
 <s:layout>
 <s:VerticalLayout paddingLeft="5" paddingTop="5"/>
 </s:layout>
 <s:TextInput id="textInput1" text="@{_task.name}"/>
 <s:TextInput id="textInput2" text="@{_task.name}"/>
</s:Application>

q We initialize a new Task just like before.

w We use two-way data binding with interesting results.

Once we run the application,
we see a surprise. (Well, if you
looked at the filename, it’s not
a surprise.)

q

w

14 CHAPTER 1 Getting started
The _task.name got clobbered by the initially blank text of the TextIn-
puts! (Note that typing in them does work, however.) So, be careful,
especially with two-way data binding.

Now that we introduced events and data binding, let’s see what a
slightly larger Flex application looks like, so that we can explore the
structure of Flex applications.

➼ Key points

❂ Data binding “magically” copies the value of one property to another
property. (Well, it’s not magic: PropertyChangeListeners are used. But
for the purposes of chapter 1 of this book, it’s magic.)

❂ For data binding to work (and not generate compiler warnings), the
[Bindable] annotation must be used on the property that’s the source
of the data binding as well as on the variable that contains the refer-
ence to the Object with the property in question.

❂ Two-way data binding saves time when dealing with UI components,
but be careful when using it with models.

SESSION 4 Flex application structure overview 15
Now that we’ve seen the required Hello World exam-
ple (this is a Hello book after all!), let’s get a sense of
the structure of a real Flex application by building
one. Specifically, we’re going to build a to-do list. We
want to build something like this screenshot.

This application has a panel with a title of “Todo List,” a label with the
text “New Task,” a text input to enter the new task name, a button for
the user to click to create the new task, a big area to list tasks, and a
typically overstuffed delete button. (We need at least one gratuitously
huge button if we’re going to be Web 2.0 compliant! There’s no benefit
to the panel itself, but it looks nicer than just putting the controls

directly in the application—it lets us pretend we’re put-
ting some thought into design.)

Next, we’re going to build this UI. We’ll lay out the
application UI with MXML, and add logic with Action-
Script. (XML is a good markup language for laying out a

UI, but it’s a terrible language to write real procedural logic
in. Thankfully, Flex doesn’t force us to do that!) We’ll see how
we can introduce behavior by adding ActionScript 3 code to both
our MXML file (in a Script tag) and to a stand-alone ActionScript
3 file.

SESSION 4 Flex application structure overview

16 CHAPTER 1 Getting started
Note that the purpose of this workshop session is just to show the big
picture; the details of how everything works aren’t especially important
right now. (I’ll explain them at a very high level so that the example
makes a bit of sense, but I don’t want us to get bogged down.) I want
this session to give you a sense of the big picture, of why we’re here
and what we’re trying to do. We’ll untangle the details in the workshop
sessions ahead.

First, we create a new Task ActionScript class, which is inside a text file
with an .as extension. In Flex 4 you write code in one of two ways: in
MXML (.mxml) files or in ActionScript 3 (.as) files. (You can actually
create multiple classes in one file, but we’ll ignore that for now.)

We’re going to create this Task class inside a package, specifically the
com.pomodo.model package. Flex supports packages in the same way
that languages such as Java do, and the backward domain name syntax
is a convention just as it is in Java. So, next we create a
com\pomodo\model directory structure in the src directory. (Pomodo
is just a meaningless fake company name, derived from the Italian
word “pomodoro”—I like to do book examples using the Pomodo
name since I own the pomodo.com domain name and thus can do what
I want with it. So, since pomodo.com would be its domain name, the
backward domain name for use in package names is com.pomodo.)

session04/src/com/pomodo/model/Task.as

package com.pomodo.model {
 public class Task {
 [Bindable]
 public var name:String;

 public function Task(name:String = "") {
 this.name = name;
 }
 }
}

q This is the com.pomodo.model package. ActionScript 3 typically
uses the same “backwards domain name” convention as Java, so
we create a com.pomodo.model.Task class in the com\pomodo\model.

q

w

e

SESSION 4 Flex application structure overview 17
w We’re also creating a variable called name of type String, which
we’re indicating can be the source of a data binding with the [Bind-
able] annotation. Briefly, this annotation means that other code can
be automatically notified when the value changes.

e We’re creating a constructor, with a default value of an empty
String for the Task name parameter. Since this parameter has a
default value, we can omit it and invoke the constructor with no
arguments. In this constructor, we set the name variable to the name
passed in, using the this keyword to establish which name we’re
referring to.

NOTE ActionScript 3 supports packages with fewer restrictions than it did in
ActionScript 2. It also supports namespaces. There are many details
about what you can and can’t do with classes, packages, and
namespaces; we’ll keep things simple and use the “one class per file” and
“package in its folder” approach because it’s the most straightforward.

Next, we lay out the UI and add code to create and destroy Tasks.

session04/src/TodoList.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo">
<fx:Script>
<![CDATA[
 import mx.collections.ArrayCollection;
 import com.pomodo.model.Task;

 [Bindable]
 private var _tasks:ArrayCollection = new ArrayCollection();

 private function createTask():void {
 _tasks.addItem(new Task(newTaskTI.text));
 }

 private function deleteSelectedTask():void {
 _tasks.removeItemAt(taskList.selectedIndex);
 }

q

w

e

r

t

18 CHAPTER 1 Getting started
]]>
</fx:Script>
 <s:Panel title="Todo List" width="100%" height="100%">
 <s:VGroup width="100%" height="100%">

 <s:HGroup width="100%" verticalAlign="middle">
 <s:Label text="New Task"/>
 <s:TextInput id="newTaskTI" width="100%"
 enter="createTask()"/>
 <s:Button label="Create"click="createTask()"/>
 </s:HGroup>
 <s:List id="taskList" width="100%" height="100%"
 labelField="name"
 dataProvider="{_tasks}"/>
 <s:HGroup width="100%">
 <s:Button label="Delete" width="100%" height="30"
 enabled="{taskList.selectedItem != null}"
 click="deleteSelectedTask()"/>
 </s:HGroup>
 </s:VGroup>
 </s:Panel>
</s:Application>

q We begin by creating an fx:Script element to hold ActionScript
code inside a CDATA block.

w Next, we add imports, which make the classes accessible in this class.

e We then create a _tasks variable of type ArrayCollection, and initialize
it to a new ArrayCollection. This variable is the source of a data bind-
ing in the List, so we need to mark it with the [Bindable] annotation.

r The createTask function calls the addItem method of the _tasks
ArrayCollection with a new Task whose name is the value of the
newTaskTI.text. This function has a void return value, meaning it
returns nothing.

t The deleteSelectedTask function calls the removeItemAt method of
the _tasks ArrayCollection, removing the task whose index is the
taskList.selectedIndex.

y Next, we create a Panel whose title is “Todo List.” It has a width
and height of 100 percent, meaning it will take up the full width
and height that are left after taking into account the padding of the
parent application.

y

u

i
o

a

s

d

f

g

SESSION 4 Flex application structure overview 19
u The first component we create inside the Panel is a VGroup, which is
a container for other components that lays out its children vertically.

i The first of these children is an HGroup, which is also a container of other
user interface components and lays out its children horizontally.
Inside the HGroup, we create a Label, a TextInput, and a Button.

o This is the New Task label.

a The TextInput has an id of newTaskTI. In MXML, the id property of a
component becomes its variable name (the MXML file is a class,
and the id is the name of a public member variable inside that
class). If we don’t provide an id for a component, Flex provides one
for us—but then we don’t know what it is, so we can’t refer to the
component in our code. Sometimes this is fine: we don’t need to
refer to the Button, so we don’t bother giving it an id. Note that the
newTaskTI calls createTask whenever it broadcasts the enter event.

s We also modify the Create button to call createTask when it broad-
casts its click event.

d The taskList has a labelField of name (since that is the property of
the Task that we want displayed).

f The taskList has its dataProvider bound to the _tasks. This means
that the List component displays a vertical list of items that are
driven by data supplied from a data provider, in this case the Array-
Collection _tasks. Specific properties of the members of the data
provider object can be chosen as the values to display, in this exam-
ple, the name property of the Task object is chosen for that role by
being supplied as the value of the labelField attribute.

g Finally, the Delete button has its enabled property bound to
whether there’s a non-null selectedItem in the taskList (thus pre-
venting a user from trying to delete a nonexistent Task) and has its
click event handled and trigger the deleteSelectedTask function.
We only want the Delete button to be visibly available (as opposed
to being grayed out and inactive) when the user has clicked on a
specific item in the list. The selectedItem property of the list is
bound to whatever item in the list is selected, and will be null if
none are selected. So, we capitalize on this fact to control the
enabled state of the Delete button.

20 CHAPTER 1 Getting started
➼ Key points

❂ Flex applications typically consist of many MXML and ActionScript
components, which are stored in .mxml and .as files. These compo-
nents are organized into packages.

❂ MXML is used for UI layout and ActionScript (both in MXML
Script blocks and in ActionScript files) is used for behavior. You can
even put ActionScript code (for example, function calls) inside the
values of MXML attributes, such as click="deleteSelectedTask()".

❂ These components communicate via data binding and by manually
dispatching events.

Before we go further, we should confront something that stares at you
when you first look at a Flex 4 application: namespaces, and why we
need three of them. To grasp this, we need to understand the story of
Flex components.

Once upon a time (in Flex 1.0, 1.5, 2, and 3), all the
components were something called “Halo” compo-
nents, since they had a nice glow. (If my memory is
correct, in Flex 1 and 1.5 this used to be green; in Flex
2 and 3 it was blue.) Anyway, since there was one set
of components, they were all in the same namespace.
In Flex 3, this namespace was http://www.adobe.com/
2006/mxml, so Flex applications looked like this:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">
 <mx:Button label="Hello World"/>
</mx:Application>

Simple, isn’t it? One namespace, which gets assigned the prefix mx, let-
ting you write things like mx:Button, mx:Application, and so forth. This

SESSION 5 Spark, Halo, and Flex 4 namespaces

http://www.adobe.com/2006/mxml

SESSION 5 Spark, Halo, and Flex 4 namespaces 21
simplicity hid a big problem, however: the Halo
components weren’t easily “skinnable” by design-
ers, meaning that their visual appearance couldn’t
be changed easily without lots of programming. To
“skin” them beyond what you control with Cascad-
ing Style Sheets (CSS), you’d typically have to sub-
class them and do a lot of
custom coding. Since
Flash and Flex are mak-

ing their way into a lot of design-oriented
development shops like agencies, this kind of
thing happens more than the average Java or
.NET developer would expect. And nobody
wants to be wrestling with overriding core

Flex component behavior agency
timetables and deadlines.

So, since Adobe understands designers better than most
large companies, one of the themes Adobe had for Flex 4 is

“Design in Mind.” In marketing terms, this means that
Adobe cares about designer-developer workflow and is striv-
ing to optimize it.

In this workshop session, we’re going to see what a Flex 4
application using only Halo components looks like. We’ll build the
same application as the previous workshop session, a Todo List. This is
useful since, as a Flex developer, you’ll probably still need to use some
Halo components on a daily basis (we’ll go into which ones more in
chapter 5). Those of you who have developed Flex 3 applications
before will find this code very familiar.

session05/src/TodoList.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo">
<fx:Script>
<![CDATA[

q
w

22 CHAPTER 1 Getting started
 import mx.collections.ArrayCollection;
 import com.pomodo.model.Task;

 [Bindable]
 private var _tasks:ArrayCollection = new ArrayCollection();

 private function createTask():void {
 _tasks.addItem(new Task(newTaskTI.text));
 }

 private function deleteSelectedTask():void {
 _tasks.removeItemAt(taskList.selectedIndex);
 }
]]>
</fx:Script>
 <mx:Panel title="Todo List" width="100%" height="100%"
 layout="vertical">
 <mx:HBox width="100%" verticalAlign="middle">
 <mx:Label text="New Task"/>
 <mx:TextInput id="newTaskTI" width="100%"
 enter="createTask()"/>
 <mx:Button label="Create" click="createTask()"/>
 </mx:HBox>
 <mx:List id="taskList" width="100%" height="100%"
 labelField="name"
 dataProvider="{_tasks}"/>
 <mx:ControlBar width="100%">
 <mx:Button label="Delete" width="100%" height="30"
 enabled="{taskList.selectedItem != null}"
 click="deleteSelectedTask()"/>
 </mx:ControlBar>
 </mx:Panel>
</mx:Application>

q For those who are new to Flex, the root tag is an mx:Application,
since it is a Halo application. (If you look back at the previous
workshop sessions, you’ll see that the root tag we’ve been using has
been s:Application [for a Spark application].)

w We create the three XML namespaces: First, the fx prefix for the
core Flex namespace (http://ns.adobe.com/mxml/2009); second, the s
prefix for the new Spark components namespace (library://
ns.adobe.com/flex/spark); and third, the mx prefix for the old Halo
components namespace (library://ns.adobe.com/flex/halo).

e

SESSION 5 Spark, Halo, and Flex 4 namespaces 23
e Finally, we create a bunch of Halo components, like Panel, HBox,
Label, List, and ControlBar. HBox and VBox are the Halo functional
equivalent of HGroup and VGroup in Spark.

Next, we create a Task class that’s identical to the Task class in work-
shop session 3.

session05/src/com/pomodo/model/Task.as

package com.pomodo.model {
 public class Task {
 [Bindable]
 public var name:String;

 public function Task(name:String = "") {
 this.name = name;
 }
 }
}

Running this applica-
tion, we see the applica-
tion shown here:

Those of you who have Flex 3 experience
may be surprised: this doesn’t look like a
Halo application in Flex 3! The reason for
this is simple: Adobe understands that you
need to mix and match Halo and Spark
components in Flex 4, so they changed the
style of the Halo components in Flex 4 to
match the Spark components.

24 CHAPTER 1 Getting started
➼ Key points

❂ Flex 4 applications typically use three XML namespaces, since Flex
4 is introducing an entirely new set of components (the Spark com-
ponents).

❂ The old school Halo components are what were used in Flex 1-3.
They have the mx prefix by convention, since that’s what was used in
Flex 1 through 3. The namespace for the Halo components is
library://ns.adobe.com/flex/halo. You still need to use the Halo com-
ponents where there are no Spark equivalents yet, such as DataGrid.

❂ The new Spark components use, by convention, an s prefix for the
new namespace of library://ns.adobe.com/flex/spark. These compo-
nents have “Design in Mind,” which will allow designers and devel-
opers to work together in a more harmonious way.

❂ The fx prefix is for the core Flex namespace (http://ns.adobe.com/
mxml/2009). This is for things like declarations, metadata, and script
blocks—basically, for nonvisual language elements.

What’s next?
In this chapter we had a quick tour of Flex 4, got
up and running, learned the basics of events and
data binding, and even explored what the heck all
these xmlns things mean. In the next chapter full
of workshop sessions, we’ll go a bit slower, learn-
ing ActionScript 3 and the Flex 4 fundamentals.

No, I won’t bore you with an introduction to
object-oriented programming; in this book I’m
assuming you are a software developer already
—just not a Flex one (yet).

2
ActionScript 3, XML, and E4X

f you don’t know a decent amount of ActionScript 3, Flex 4 will always be
a mystery. So in this chapter, you’ll learn the basics of ActionScript 3. Once
again, we’ll build a series of self-contained workshop sessions. However,
to minimize context switching we’ll base them on a similar toy example.
These workshop sessions will explain numerous concepts at once, since it’s
hard to explain arrays without involving looping, and vice versa. Also, we’ll
cover multiple concepts at once out of necessity: there are entire books
devoted to learning ActionScript 3—and this is not one of those books.

I

25

26 CHAPTER 2 ActionScript 3, XML, and E4X
Instead, we’ll explore the basics of ActionScript 3 in
five workshop sessions. This obviously will be a very
high-level treatment, but you should absorb enough

that you can use Flex 4
comfortably even if you’ve
never seen ActionScript
before.

If you’re an experienced
Flex 3 developer who is
just reading this book for
the Flex 4 stuff, you can
safely skip this chapter.

In this workshop
session, we’ll begin
tackling the basics
of ActionScript 3.
These include vari-
ables, functions,
and accessors and
mutators (better
known as getters
and setters). These also include the types
and access control namespace (commonly
referred to as “scope”) attributes (better
known as public, protected, internal, and
private) of these variables and functions. As
always, you’ll learn by doing. Let’s start by
creating a model package and a Task class
inside it.

SESSION 6 Variables, functions, types, and scope

SESSION 6 Variables, functions, types, and scope 27
session06/src/model/Task.as

package model {
 public class Task {
 public var name:String;
 public var something:*;
 protected var someDate:Date;
 internal var anInt:int;
 private var _aNumber:Number;

 public function Task(name:String = "") {
 this.name = name;
 something = "Ostrich";
 someDate = new Date();
 anInt = Math.random() * 10;
 _aNumber = Math.random() * 10;
 }

 public function getDate():Date {
 return someDate;
 }

 public function getAnInt():int {
 return anInt;
 }

 public function get aNumber():Number {
 return _aNumber;
 }

 public function set aNumber(value:Number):void {
 _aNumber = value;
 }
 }
}

q The Task class is in the model package.

w Variables are created with declarations like public var name:String;
that specify the access control (public), the variable name (name),
and the type (String). Access control can be public, protected,
internal, or private. (You can also use your own custom access con-
trol namespaces—if you’re interested, see the “Packages and
namespaces” section of Chapter 4 of Adobe’s Programming ActionScript

q

w

e

r

t

y

u

i

o

28 CHAPTER 2 ActionScript 3, XML, and E4X
3 book for details. Note that this language feature is almost never
used when writing typical Flex applications; I’m only mentioning it
here for completeness.)

e The special type * can be used to indicate any type. You can also
skip the type declaration, but doing so produces compiler warnings.
Type checking is your friend, so use explicit types when you can.

r These variables are examples of both primitives (Boolean, int, uint,
Number, and String) and of core classes (such as Date) that don’t need
to be imported.

t The constructor function is used to initialize the object. Functions
can take parameters, which can have default values. If a function
parameter has a default value, the actual argument can be omitted.
All functions except the constructor function can—and
should—have return types.

y If something is untyped, it can be anything—even an ostrich.

u This public function returns a Date (someDate), which is protected.
The return type of a function is specified after the argument list.

i This getter returns _aNumber. Note that the function keyword is fol-
lowed by the get keyword.

o This setter sets _aNumber to value. All setter functions return
void—that is, nothing. Note that the function keyword is followed
by the set keyword. By convention, the parameter to a set function
is always called value.

The access control of a variable determines who can access it. The
choices are public (any class), protected (the class itself or subclasses),
internal (classes in the same package) or private (the class itself). Unlike
in Java, protected does not give access to classes in the same package.

We also encountered types in the Task model earlier, such as the String
in public var name:String. Type checking is done at both compile time
and runtime. Compile-time type checking is disabled when either the
type is omitted (which produces a compiler warning in Strict mode) or
explicitly left unspecified with the * (which prevents the compiler warn-
ing). To avoid type errors at runtime it’s best to do as much compile-
time type checking as possible, so it’s a good idea to type your variables.

SESSION 6 Variables, functions, types, and scope 29
(When I work with Ruby programmers on Flex projects, I don’t even
tell them that compile-time type checking is optional!)

There are two kinds of types that we encountered earlier. The primitive
types in ActionScript are Boolean (true/false), int (a 32-bit signed inte-
ger), uint (a 32-bit unsigned integer), Number (a 64-bit floating point),
and String (which stores text). There are also a number of “core
classes,” which are Objects but that are imported automatically by the
compiler so you don’t need to add import statements yourself. The core
classes include Object (everything that isn’t primitive is an Object),
Array, Date, Error (for exceptions), Function (which are called methods
when they’re part of objects), RegExp, XML, and XMLList. As we’ll see later
in this chapter, ActionScript 3 features outstanding XML support using
something called E4X.

Now that we’ve created the Task class, let’s use it. We’ll build a top-
level Flex app called Tester to do just that.

session06/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%"
 initialize="init()">
<fx:Script>
<![CDATA[
 import com.pomodo.model.Task;

 private function init():void {
 var task:Task = new Task("learn ActionScript 3");
 outputTA.text = "Name: " + task.name + "\n" +
 "Something: " + task.something + "\n" +
 "Date: " + task.getDate() + "\n" +
 "Int: " + task.getAnInt() + "\n" +
 "Number: " + task.aNumber;
 task.something = 5;
 outputTA.text += "\nNow something is: " + task.something;
 task.aNumber = 3.14;

q

w

e

r

t

30 CHAPTER 2 ActionScript 3, XML, and E4X
 outputTA.text += "\nNow aNumber is: " + task.aNumber;
 }
]]>
</fx:Script>
 <s:TextArea id="outputTA" width="100%" height="100%"/>
</s:Application>

q Our Task class isn’t a “core class,” so it needs to be imported using
import.

w Create a new Task object, passing the name into the constructor.

e We assign the text property of the outputTA TextArea with a String
showing the state of the Task. For non-public variables we use the
functions. Note that the aNumber getter is accessed using the same
property syntax as variables like name and something. (We will cover
TextArea in greater detail in subsequent chapters; for now, just
think of it as a big rectangular component that can edit text.)

r Since something is untyped, it can go from being the String

“Ostrich” to the number 5.

t Assign 3.14 to _aNumber via the aNumber setter. Note that this prop-
erty assignment looks the same as the assignment to the something
variable of the Task object.

Let’s see what this does. Run the Tester app; you’ll see a screen like the
following—except your Date will almost certainly be different and your
random number will (almost!) certainly be different.

That’s it! Now that we’ve seen the basics of variables, functions, access
control, and types, we can move on to the next workshop session where
we play with Objects, Arrays, and control flow (branching and looping).

SESSION 7 Objects, Arrays, Collections, and Looping 31
➼ Key points

❂ Variables are declared with var.
❂ Functions are declared with function.
❂ All functions can take arguments, and all functions except the con-

structor function can return values.
❂ If a non-constructor function doesn’t return anything, specify that it

returns nothing by using the void keyword.
❂ Variables and functions can (and should) have a public, private, pro-

tected, or internal access level. (I say should since by default you’ll get
a warning unless you specify the access level. Just do it.)

❂ Getters and setters can be used to provide property-style access to
private variables that looks indistinguishable to a variable from the
outside world but that can do other interesting things.

In this workshop session, we’ll learn more ActionScript. We take a fast-
paced tour of the Object class, anonymous objects, Array and ArrayCol-
lection, branching (if/else, switch, and the ternary operator) and loop-
ing (for, for each, for in, while, do while). The assumption here is that
you’ve seen arrays, if statements, and loops before—just not in Action-
Script. Almost any popular programming language has them, and
they’re just as unsurprising here as elsewhere. (If you need a more thor-
ough treatment of ActionScript 3 than this chapter provides, I highly
recommend the Programming ActionScript 3 PDF that comes with the Flex
3 documentation at http://livedocs.adobe.com/flex/3/progAS_flex3.pdf.
Once it’s updated for Flex 4, presumably later in 2009, there will be a
newer URL. Again, Google is your friend here.) Furthermore, we’ll do
all this in one function inside one carefully constructed code example,
shown next.

SESSION 7 Objects, Arrays, Collections, and Looping

32 CHAPTER 2 ActionScript 3, XML, and E4X
session07/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%"
 initialize="init()">
<fx:Script>
<![CDATA[
 import mx.collections.ArrayCollection;

 private function init():void {
 var foo:Object = new Object();
 var house:Object = {country: "Canada", province: "BC",
 city: "Vancouver"};
 var ary:Array = [foo, house, 1];
 ary.push("last");
 ary.unshift(true);

 var output:String = "Join:\n" + ary.join(", ") + "\n";
 output += "for loop over Array:\n";
 for (var i:int = 0; i < ary.length; i++) {
 output += ary[i] + (i == ary.length - 1 ? "\n" : ", ");
 }
 output += "for loop over ArrayCollection:\n";
 var ac:ArrayCollection = new ArrayCollection(ary);
 for (var j:int = 0; j < ac.length; j++) {
 output += ac.getItemAt(j);
 switch(j) {
 case ac.length - 1:
 output += "\n";
 break;
 default:
 output += ", ";
 break;
 }
 }
 output += "for each loop over ArrayCollection:\n";
 var k:int = 0;
 for each (var item:Object in ac) {
 output += item;
 if (k != ac.length - 1) {

q

w

e

r

t

SESSION 7 Objects, Arrays, Collections, and Looping 33
 output += ", ";
 } else {
 output += "\n";
 }
 k++;
 }
 output += "for in over Object properties:\n"
 for (var key:String in house) {
 output += house[key] + ", ";
 }
 outputTA.text = output;
 }
]]>
</fx:Script>
 <s:TextArea id="outputTA" width="100%" height="100%"/>
</s:Application>

q Objects can be constructed with either the new Object() syntax or
by creating an anonymous Object using curly braces. Don’t con-
fuse this use of curly braces with data binding: both use curly
braces ({}), but the compiler figures out what you are doing based
on context. Similarly, Arrays can be constructed using the new
Array() syntax or by using square brackets, [].

w Arrays have a join function that’s useful for producing Strings with-
out the need for a tedious loop. Arrays also have a map function,
which is useful for functional programming–style code. Note that
push adds something to the end of an Array, while unshift adds
something to the beginning of an Array.

e ActionScript 3 has a standard for loop, as well as while and do while
loops, which work the same way they do in every other language.
Note the use of the ternary a ? b : c operator. I use int rather than
uint as my loop index since that’s the typical convention—while
some people may complain that you should use uint since the loop
indexes can’t be negative, using int runs slightly faster. Also, I’ve
never accidentally gotten a negative loop index while looping, so
using uint is pedantic.

r Flex code often uses an ArrayCollection, which is in the mx.collec-
tions package. The ArrayCollection is more suitable for data binding

y

34 CHAPTER 2 ActionScript 3, XML, and E4X
than Array is, and Flex is all about data binding. This example
shows that looping over an ArrayCollection is similar to an Array,
except the getItemAt(index) method is used instead of the someAr-
ray[index] subscript notation. This example also shows the switch/
case statement, which is used for multiway branching. Finally, note
something very subtle: I used j and not i for my loop index vari-
able, since I had already used a loop index variable i earlier in the
function and since variables inside a function are all in the same scope. Yes,
you read that correctly: the for loop does not create its own variable
scope. (This is fairly atypical among programming languages, so be
careful here!)

t ActionScript 3 has a for each ... in loop, which iterates over the
values in a collection. This example also shows the standard if/else
statement.

y ActionScript 3 has a for ... in loop, which iterates over the keys in
a collection (or in an Object). These keys can be used to get the val-
ues, as shown here.

Running this example we, see the following screen.

That’s it!

➼ Key points

❂ Objects can be constructed with the new Object() or {key1: value1 ,
... } syntax.

SESSION 8 Interfaces, casting, is, and as 35
❂ ActionScript features the ternary operator, if/else, and switch state-
ment, as well as the for, while, and do while loops you use all the time.

❂ ActionScript features for ... in and for each ... in loops.
❂ Flex often uses ArrayCollections to wrap Arrays and play nicely with

data binding. Iterating over these ArrayCollections is straightfor-
ward.

Having explored the basics of objects in ActionScript 3 in the previous
two sessions, we’ll now dive deeper in this workshop session and dis-
cuss interfaces, casting, and the is and as operators. After this, and our

discussion of inheritance in the next work-
shop session, we’ll have a good handle on the
basics of objects in ActionScript.

Briefly, an interface is a contract (that is, a set
of methods) that a class must honor if it im-

plements the inter-
face. The advantage
of interfaces is that it
lets you write more

reusable code that’s
more abstracted and
less coupled to im-
plementation details.
If you’re familiar
with interfaces from languages such as Java,
you’ll be happy to know that they work pretty
much the same way in ActionScript 3.
(Unfortunately, unlike Java, you can’t add
constants to ActionScript 3 interfaces.) Also, ActionScript 3 interfaces
have support for property getters and setters, which is important since

SESSION 8 Interfaces, casting, is, and as

36 CHAPTER 2 ActionScript 3, XML, and E4X
otherwise they’d be virtually useless given how property-centric Flex is.
(Although, unfortunately, you can’t implement an interface and use a
public var in the place of the getters and setters, which would have been
a nice shortcut in trivial cases.) Understanding how to use interfaces
will let us write more elegant code that’s more flexible and less tied to
one specific implementation.

In this session we’ll create an IThing interface, which will be imple-
mented by Task and Project classes. I use an agile project management
tool called Pivotal Tracker every day, so I think about Tasks having
“story points,” which indicates how much work a Task should take.
Since the number of story points in a project is the sum of its Tasks, we
can put the points into the IThing interface and show a somewhat
meaningful example.

session08/src/model/IThing.as

package model {
 public interface IThing {
 function get name():String;
 function set name(value:String):void;
 function getPoints():int;
 }
}

q Property get and set functions can go in an interface.

w Normal functions can go in an interface as well.

Note that no access control specifier is needed (or permitted), since all
functions in an interface are public.

Next, we create a Task class that implements IThing.

session08/src/model/Task.as

package model {
 public class Task implements IThing {
 private var _name:String;
 public var points:int;
 public var due:Date;
 public static const ONE_DAY_IN_MSEC:Number = 24*60*60*1000;

q

w

q

w

SESSION 8 Interfaces, casting, is, and as 37
 public function Task(name:String = "") {
 this.name = name;
 due = new Date();
 due.setTime(due.getTime() + ONE_DAY_IN_MSEC);
 }
 public function getPoints():int {
 return points;
 }
 public function get name():String {
 return _name;
 }
 public function set name(value:String):void {
 _name = value;
 }
 }
}

q Task implements IThing. Note that the use of underscores for pri-
vate instance variables is a convention, not a language require-
ment. For a list of many useful Flex coding conventions see http://
opensource.adobe.com/wiki/display/flexsdk/Coding+Conventions.

w The static keyword means that it belongs to the class itself; that is,
it’s independent of the instances of this class. The const keyword
means that it’s a constant, not a variable. (I used multiplication
instead of just the result to be more readable. Note that the
Date#getTime() method returns a Number, not an int.)

e Note that the method signatures match the interface, meaning the
class must provide an implementation of the methods defined in
the interface.

Next, we create a Project class that also implements IThing.

session08/src/model/Project.as

package model {
 import mx.collections.ArrayCollection;

 public class Project implements IThing {
 private var _name:String;
 public var tasks:ArrayCollection;

e

q

38 CHAPTER 2 ActionScript 3, XML, and E4X
 public function Project(name:String = "") {
 this.name = name;
 tasks = new ArrayCollection();
 }
 public function get name():String {
 return _name;
 }
 public function set name(value:String):void {
 _name = value;
 }
 public function getPoints():int {
 var pointsTotal:int = 0;
 for each (var task:Task in tasks) {
 pointsTotal += task.points;
 }
 return pointsTotal;
 }
 }
}

q Project implements IThing.

w The getPoints method calculates the points based on the tasks in
the project.

Finally, we develop a Tester app that creates some Tasks and Projects
and shows how they can be treated as IThings. It also illustrates the use
of the is and as keywords.

session08/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%"
 initialize="init()">
<fx:Script>
<![CDATA[
 import mx.collections.ArrayCollection;
 import model.Task;
 import model.Project;
 import model.IThing;

w

SESSION 8 Interfaces, casting, is, and as 39
 private function init():void {
 var project1:Project = new Project("project 1");
 var project2:Project = new Project("project 2");
 var task1:Task = new Task("task 1");
 task1.points = 3;
 var task2:Task = new Task("task 2");
 task2.points = 1;
 project1.tasks = new ArrayCollection([task1, task2]);
 var things:ArrayCollection = new ArrayCollection([
 task1, task2, project2]);
 things.addItemAt(project1, 2);
 var output:String = "";
 for each (var thing:IThing in things) {
 output += thing.name + " (points: " + thing.getPoints() + ")";
 if (thing is Task) {
 var task:Task = Task(thing);
 output += ", due: " + task.due;
 }
 var project:Project = thing as Project;
 if (project != null) {
 output += ", " + project.tasks.length + " tasks";
 }
 output += "\n";
 }
 outputTA.text = output;
 }
]]>
</fx:Script>
 <s:TextArea id="outputTA" width="100%" height="100%"/>
</s:Application>

q We start by creating a couple of Projects and Tasks.

w The literal Array syntax can be used to create the argument to the
ArrayCollection constructor, which takes an Array.

e Note the use of addItemAt to put a project into the ArrayCollection.

r We can loop over the ArrayCollection of Tasks and Projects and treat
each of them as IThings.

t The is operator returns true if the thing is a Task (or a subclass of
Task). If it is a Task, we can safely cast the thing to a Task using the
Task(thing) syntax. Note that this is Task(thing) not (Task)thing,
unlike in some other languages.

q

w

e

r

t

y

40 CHAPTER 2 ActionScript 3, XML, and E4X
y The as operator can be used safely where casting might blow up (if
the object was the wrong type). If the type doesn’t match, it just
returns null. So, we use a null check.

Running this app produces the following output:

Note that Task and Project objects both show their number of points,
which is done generically for IThings. However, the Tasks also show
when they’re due using code that only executes for Task objects (with
the is check), and the Projects show how many Tasks they contain using
code that only executes for Project objects (with the as and null checks).

That’s it!

➼ Key points

❂ Interfaces can be used to specify a contract that objects must imple-
ment, in terms of public functions and getter and setter functions.

❂ The is keyword can be used to test whether an object is an instance
of a class (which includes a subclass of that class).

❂ Casting can be used for explicit type conversion. Be careful, though,
since if you cast and get it wrong, your program will explode.
Guarding a cast with an is check is a good way to be careful—and is
preferable to instanceof, which is an old way of doing this test that
we won’t discuss in this book.

❂ The as keyword lets you cast safely without an is test, and returns null
if the type doesn’t match. Of course, then you need to test for null…

SESSION 9 Inheritance 41
In this workshop session, you’ll learn about inheri-
tance. Inheritance is the “is a” kind of reuse, in
which one “child” class is a subclass of a “parent”
class (or superclass), and has all of its parent’s
properties and adds or overrides its own. The Flex
framework has an extensive class hierarchy, defined
(as all class hierarchies are) by inheritance.

The IThing interface and Tester application are
unchanged from session 7. The Tester application is
fairly long, so I won’t show it again. To refresh your
memory, here’s the IThing interface:

session09/src/model/IThing.as

package model {
 public interface IThing {
 function get name():String;
 function set name(value:String):void;
 function getPoints():int;
 }
}

Now, one thing you might have noticed in the previous session was
that there was duplicate code for setting the name. So, let’s fix that.
Let’s create a Thing class that implements the common code for all
Things, and that will throw an Error for functionality that must be
implemented by subclasses. (If you’re wondering “Why not just make
an abstract class?” the simple answer is that abstract classes don’t exist
in ActionScript 3. So, this is how you fake it.)

session09/src/model/Thing.as

package model {
 public class Thing implements IThing {
 protected var _name:String;
 public function Thing(name:String = "") {

SESSION 9 Inheritance

q

w

42 CHAPTER 2 ActionScript 3, XML, and E4X
 this.name = name;
 }
 public function getPoints():int {
 throw new Error("Unimplemented getPoints method");
 }
 public function set name(value:String):void {
 _name = value;
 }
 public function get name():String {
 return _name;
 }
 }
}

q Thing implements IThing.

w Thing has a protected _name variable. When building something you
intend to be subclassed, you can use protected instead of private if
you want to allow subclasses to have more access to the internals of
the parent class. Or, you can take the approach of making the vari-
able private and providing get/set methods, in order to ensure that
subclasses access variables the same way as the outside world.

e Thing throws an Error if getPoints() isn’t overridden. An Error is the
ActionScript 3 version of an exception.

r Thing defines the get and set functions for name.

Now we’re going to create Task and Project classes that extend Thing
and thus implement IThing by inheritance. You can modify the code
from the previous session, or create new code if you’re creating differ-
ent projects for each session.

session09/src/model/Task.as

package model {
 public class Task extends Thing {
 public var points:int;
 public var due:Date;
 public static const ONE_DAY_IN_MSEC:Number = 1000*60*60*24;

 public function Task(name:String = "") {
 super(name);

e

r

q
w

SESSION 9 Inheritance 43
 due = new Date();
 due.setTime(due.getTime() + ONE_DAY_IN_MSEC);
 }
 public override function getPoints():int {
 return points;
 }
 }
}

q Task extends Thing (which implements IThing).

w Task has a points variable.

e Task overrides the getPoints function from Thing with the override
keyword. This keyword is mandatory.

Next, we create a Project class that also extends Thing and thus imple-
ments IThing.

session09/src/model/Project.as

package model {
 import mx.collections.ArrayCollection;

 public class Project extends Thing {
 public var tasks:ArrayCollection;

 public function Project(name:String = "") {
 super(name);
 tasks = new ArrayCollection();
 }
 public override function getPoints():int {
 var pointsTotal:int = 0;
 for each (var task:Task in tasks) {
 pointsTotal += task.points;
 }
 return pointsTotal;
 }
 }
}

q The Project class also extends the Thing class.

w The Project class also overrides the getPoints function, summing
the points of its tasks.

e

q

w

44 CHAPTER 2 ActionScript 3, XML, and E4X
Running the Tester application results in the same output we saw earlier:

That’s it for the “See Spot Run” stuff! In the next section we get to talk
about XML, XMLListCollection, and E4X!

➼ Key points

❂ Inheritance is a useful way of preventing copy and paste code.
(However, the older and more cynical I get, the more I prefer com-
position.)

❂ To subclass a class, use the extends keyword.
❂ When overriding a function, use the override keyword.

SESSION 10 E4X, XML, XMLList, and XMLListCollections 45
The previous four sessions showed the
basics of ActionScript 3, which resemble
the basics of any object-oriented program-
ming language. Frankly, you may have
been a little bored. Well, after my many
years of software development and writing
experience, I know the surefire way to cure
boredom: XML.

Actually, in all seriousness, the way that
Flex and ActionScript 3 support XML is
pretty cool. Or, if you don’t think it’s cool,
at least admit it’s not as uncool as it is
everywhere else!

In this workshop session, you’ll learn how
to use XML in Flex. This includes learning
the built-in XML and XMLList types, as well as
Flex’s XMLListCollection. As a bonus, we’ll
learn how to sort collection classes that, like
XMLListCollection and ArrayCollection, extend ListCollectionView and
implement ICollectionView: this is a Flex book after all.

What we’re going to do is create a new Tester app. This one will be
stand-alone. Its entire purpose in life will be to create some XML and
then do some stuff to it.

session10/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%"
 initialize="init()">
<fx:Script>

SESSION 10 E4X, XML, XMLList, and XMLListCollections

46 CHAPTER 2 ActionScript 3, XML, and E4X
<![CDATA[
 import mx.collections.XMLListCollection;
 import mx.collections.Sort;
 import mx.collections.SortField;

 private var _projectsXML:XML =
<projects>
 <project id="1" name="Proj1">
 <task id="1">
 <name>Understand E4X</name>
 <notes>cool, for XML anyway</notes>
 </task>
 <task id="2">
 <name>Learn XMLList</name>
 <notes>simple</notes>
 </task>
 </project>
 <project id="2" name="Proj2">
 <task id="3">
 <name>Learn XMLListCollection</name>
 </task>
 <task id="4">
 <name>Get a coffee</name>
 <notes>very necessary</notes>
 </task>
 </project>
</projects>;

 private function init():void {
 var output:String = "";
 output += "Full XML:\n" + _projectsXML;
 output += "\n\nUsing E4X and XMLList:\n";
 output += _projectsXML.project[0].task[0].name + "\n";
output += _projectsXML.project.(@name=="Proj2").task.(@id==3).name;
 var projects:XMLList = _projectsXML.children();
 for each (var project:XML in projects) {
 output += "Project: " + project.@name + "\n";
 for each (var task:XML in project.task) {
 output += " Task " + task.@id + ": " + task.name;
 if (task.hasOwnProperty('notes')) {
 output += " (" + task.notes + ")";
 }
 output += "\n";

q

w

e

r

t

y

SESSION 10 E4X, XML, XMLList, and XMLListCollections 47
 }
 }
 output += "\nLearning XMLListCollection and Sorting:\n"
 var allTasks:XMLListCollection = new XMLListCollection(
 _projectsXML.descendants("task"));
 var sort:Sort = new Sort();
 sort.fields = [new SortField("name",true)];
 allTasks.sort = sort;
 allTasks.refresh();
 for each (var sortedTask:XML in allTasks) {
 output += sortedTask.name + "\n";
 }
 outputTA.text = output;
 }
]]>
</fx:Script>
 <s:TextArea id="outputTA" width="100%" height="100%"/>
</s:Application>

q XMLListCollection, Sort, and SortField are Flex framework classes
so they must be imported.

w We create literal XML and assign it to a variable of type XML. Yes,
this is XML inside a CDATA tag inside XML. Note that ActionScript
natively understands XML literals; there is no special syntax
required when using XML literal expressions.

e You can use E4X (an acronym for ECMAScript 4 XML; Action-
Script is based on ECMAScript) to get child nodes by index or by
searches on attribute values such as @name=="Proj2".

r Getting the children of an XML object gets an XMLList, which can
be iterated on with a for each loop.

t E4X, attribute, and child element values can be retrieved with dot
(.) syntax. For an attribute value, just add the @ prefix.

y You can use the hasOwnProperty function to check whether a prop-
erty (element or attribute) exists.

u We construct a new XMLListCollection of all the tasks by getting all
the descendant elements of the root node that are named task. Note
that this does not include text nodes, XML comments, processing
instructions or attributes.

u

i

o

48 CHAPTER 2 ActionScript 3, XML, and E4X
i We then create a new Sort object and add a SortField of name (with
caseInsensitive set to true with the second parameter to the con-
structor). This Sort is then assigned to the allTasks collection and
then the collection’s refresh() method is called to update the collec-
tion to be sorted by the Sort.

o Now that the collection is sorted, we can iterate through the sorted
collection and output the names.

Run the app; you’ll see the following screen:

Note the nice display of the projects and the tasks they contain, which
was produced by the nested loops. Also, note that the XMLListCollection
is sorted: “Get a coffee” comes before “Understand E4X,” as it should!

What’s next? 49
➼ Key points

❂ E4X, which stands for ECMAScript for XML, is a great way to han-
dle XML. You’ll never want to touch the DOM or have SAX again.

❂ XMLListCollection is a nice, friendly way to work with XMLList, and lets
you sort the data using the same approach that can be used with any
Flex collection, such as ArrayCollection, that implements ListCollec-
tionView. We will see ArrayCollections and XML used extensively in
the book, so don’t worry if this seems a bit like drinking from a fire-
hose. That’s the intent; I want to get back to Flex as fast as possible.

❂ XML and XMLList are native types in ActionScript 3 and don’t need to
be imported.

What’s next?
What’s next? Simple: we’re going back to Flex!

Well, that’s kind of a misnomer: since all Flex 4 programming is done
in ActionScript 3, we never really left: writing MXML typically
involves writing nested ActionScript in CDATA tags, and even the MXML
itself is all translated behind the scenes by the MXML compiler into
ActionScript 3 before being compiled again.

But you probably didn’t buy this book to learn about interfaces or E4X,
so we rushed through this chapter so that we could get to the cool stuff
as soon as possible. Now that we’ve made it through this chapter, and
you learned a bit of ActionScript along the way, we’ll slow down a bit
and do what we came here to do: learn Flex 4, specifically, the shiny
Flex 4 that impressed you enough to buy the book in the first place.

Specifically, in chapters 3 and 4 we’ll focus on the new Spark primitives
and components that you use daily in Flex 4: text controls, buttons,
combo boxes, lists, and so forth. In chapter 5 we’ll explain the Halo com-
ponents you still need to know about. In chapter 6 we’ll take a deep dive
into formatting and validation, which hasn’t changed much from Flex 3
but that’s still essential knowledge for any Flex developer. Finally, in
chapter 7 we’ll build the Twitter + Yahoo! Maps example that the entire
interweb is buzzing about. In all these chapters, however, your knowl-
edge of ActionScript 3 will be both used and deepened.

3
Hello Spark: primitives,
components, FXG and MXML
graphics, and even video

n this chapter, you’ll start learning Spark, which is
the new set of components, containers, and
graphics primitives in Flex 4. This will be a “how-
to” chapter: we’ll save diving into the Spark
component model until the next chapter (which
discusses view states, containers, CSS styling, and
skinning). This chapter provides enough examples
of using Spark that when it comes time to tackle the
theory you’ll have plenty of examples in your head.

In four of the five workshop sessions in this chap-
ter, we’ll build a fairly small, self-contained Tes-
ter.mxml app that has all the code in the example. In session 14, however,
I’ll mix things up a little: we’ll build an “Only Connect” game (that bears
strong resemblance to a certain trademarked game). We’ll start with a
game board that I drew in Adobe Illustrator and saved as FXG. (I’m pro-
viding the FXG file I created, so you don’t need to have Adobe Illustra-
tor.) We’ll then build a fully functioning game based on this FXG, before

I

50

SESSION 11 Spark primitives 51
refactoring it and then adding logic for detecting victory. The victory
detection logic is more complex code than you saw in the previous
chapter, so if you’re new to ActionScript 3 it will be good to read
through it. (And if you’re a “rock star” developer, you can refactor my
code to be a lot more efficient.)

Session 14 is pretty long, so after we finish it, we’ll do a toy example in
session 15, in which we build the UI (minus logging in and posting to
Twitter) of the world’s most narcissistic (fake) Twitter client. This will
let us see how to play with the user’s camera and video.

At the end of this chapter, you’ll have a good understanding of the
basics of the primitives and components that form the building blocks
of a Flex application. Furthermore, you’ll understand both how to cre-
ate these manually and how to start using FXG generated by tools like
Adobe Illustrator.

So, let’s get started!

In this workshop session, we’ll start work with the primitives that are
the basic building block classes used by Spark components. (When I say
“primitives” in this chapter, I mean Spark primitives, not ActionScript
language primitive types like int.) These classes live in the spark.primi-
tives package, except for the Label which lives in the spark.components
package. (There used to be a SimpleText component in the spark.primi-
tives package, but Adobe replaced it with the spark.components.Label
class in Flex 4 Beta 2. This book went to press very soon after Flex 4
Beta 2 was released, but we updated it to Beta 2.) The classes in the
spark.primitives package include BitmapImage, Ellipse, Graphic, Line, Path,
Rect, RichEditableText, and RichText. We’ll see Graphic and some of the
other classes in session 14, and explore the rest of them now.

SESSION 11 Spark primitives

52 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
We’ll build an app that looks like this:

So, let’s see the code.

session11/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%">
<fx:Script><![CDATA[
 import mx.graphics.SolidColorStroke;

 private const _scs:SolidColorStroke =
 new SolidColorStroke(0x000000, 5, 1.0);

]]></fx:Script>
 <s:Panel width="100%" height="100%" title="Primitives!">
 <s:Ellipse x="12" y="39" width="50" height="40"
 stroke="{_scs}"/>
 <s:Rect x="127" y="40" width="50" height="40" stroke="{_scs}"/> e
 <s:Line xFrom="90" yFrom="80" xTo="60" yTo="140"
 stroke="{_scs}"/>
 <s:Path data="M30 168L132 186 162 144 50 165" stroke="{_scs}"/> t
 <s:Label="In session 16 we'll take this further!"
 x="190" y="130" rotation="-30"/>
 <s:RichText textRotation="rotate90" fontWeight="bold"
 text="HELLO WORLD"/>
 <s:RichEditableText text="(select and type!)" x="260" y="120"/> i

q

w

r

y

u

SESSION 11 Spark primitives 53
 <s:BitmapImage x="221" y="145" source="@Embed('HF4.png')"/>
 </s:Panel>
</s:Application>

q We create a SolidColorStroke that we assign to the various shapes.
This stroke defines how the lines will appear for components that
use it.

w The left eye is an Ellipse, which is a FilledElement (see inheritance
hierarchy in a moment).

e The right eye is a Rect.
r The nose is a Line.
t The mouth is a Path. Note the nice short syntax, where M means

“Move the pen,” L means “Line from,” and the rest are space-
separated x and y values.

y The Label is not selectable with the cursor.
u The eyebrows are RichText. RichText is not selectable either, but it

uses FXG so you can do stuff like rotate the text with the textRota-
tion property.

i The RichEditableText is selectable and editable (try selecting it and
typing).

o The BitmapImage class shows part of the book cover.

The following inheri-
tance hierarchy
shows how this all fits
together. (The classes
we are discussing in
this chapter have
shadows.)

o

Object

EventDispatcher

GraphicElement DisplayObject

InteractiveObject

DisplayObjectContainer

StrokedElement

FilledElement Line

Ellipse

TextBase

RichText

RichEditableText

Label

Rect Path

Sprite

FlexSprite

UIComponent

GroupBase

Group

Graphic

54 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
Note that Ellipse, Rect, and Path are all FilledElement subclasses, so
they can have fills. Fills are the colors or patterns inside a shape.
(You’ll see this in session14 when we build the Only Connect game.)
Since FilledElement and Line both extend StrokedElement, the Ellipse,
Rect, Path, and Line can all have a stroke (the style of the line), as shown
when we assigned the SolidColorStroke to each of them via data bind-
ing. Also note how the RichEditableText (which is selectable and edit-
able) extends UIComponent directly, whereas RichText and Label extend
TextBase. The TextBase and RichEditableText classes both extend UICom-
ponent, which (eventually) extends InteractiveObject. The InteractiveO-
bject class is an abstract base class for all the display object classes that
the user can interact with using the keyboard and mouse.

In sum, the Spark primitives are organized into GraphicElements like
Ellipse and UIComponents like RichEditableText and Graphic. As we’ll see
in session 14, since Graphic is a UIComponent it’s easy to handle mouse
events like clicks.

➼ Key points

❂ Spark primitives are the building blocks on which Spark compo-
nents are built.

❂ Classes that can have a stroke extend StrokedElement; classes that can
have a fill extend FilledElement.

❂ Classes that are interactive extend InteractiveObject.

SESSION 12 Simple Spark components 55
In this workshop session, we’ll
move up the food chain from
the Spark primitives we dis-
cussed in the previous work-
shop session to the Spark
components. We’ll look at
many of the most commonly
used components in the
spark.components package as
we build a toy app that looks
like this. These components are
the building blocks of your application: without things like Buttons and
TextInputs you wouldn’t be able to build very many Flex apps! While
the primitives are nice, you certainly don’t want to reinvent the wheel.

Again, we’ll start by examining the code, then provide the explanation
and an inheritance hierarchy to show how it all fits together.

session12/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%">
<fx:Script><![CDATA[
 [Bindable]
 private var _theory:String;

 [Bindable]
 private var _bread:Number = Number.NaN;
]]></fx:Script>
<fx:Declarations>
 <s:RadioButtonGroup id="moralityRBG"/>
 <s:RadioButtonGroup id="restaurantRBG"
 selectedValue="{_theory.length % 2 == 0 ? 'smoking' : 'non'}"/>
</fx:Declarations>

SESSION 12 Simple Spark components

q

w

e

56 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
 <s:Panel width="100%" height="100%" title="Simple Components!">
 <s:layout>
 <s:HorizontalLayout paddingLeft="5" paddingTop="5"/>
 </s:layout>
 <s:VGroup>
 <s:TextArea id="textArea" width="200" height="50"
 text="@{_theory}"/>
 <s:TextInput id="textInput" width="200" text="@{_theory}"/>
 <s:HSlider id="hSlider" minimum="0" maximum="11"
 liveDragging="true" width="200" value="@{_bread}"/>
 <s:VSlider id="vSlider" minimum="0" maximum="11"
 liveDragging="true" height="50" value="@{_bread}"/>
 <s:Button label="{_theory}" width="200"
 color="{alarmTB.selected ? 0xFF0000 : 0}"
 click="_bread = Math.min(_theory.length, 11)"/>
 <s:CheckBox id="checkBox" selected="{_bread % 2 == 0}"
 label="even?"/>
 </s:VGroup>
 <s:VGroup>
 <s:RadioButton label="Good" value="good"
 group="{moralityRBG}"/>
 <s:RadioButton label="Evil" value="evil"
 group="{moralityRBG}"/>
 <s:RadioButton label="Beyond" value="beyond"
 group="{moralityRBG}"/>
 <s:RadioButton label="Smoking" value="smoking"
 group="{restaurantRBG}"/>
 <s:RadioButton label="Non-Smoking" value="non"
 group="{restaurantRBG}"/>
 <s:ToggleButton id="alarmTB" label="ALARM!"/>
 <s:NumericStepper id="numericStepper" value="@{_bread}"
 minimum="0" maximum="11" stepSize="1"/>
 <s:Spinner id="spinner" value="@{_bread}"
 minimum="0" maximum="11" stepSize="1"/>
 </s:VGroup>
 </s:Panel>
</s:Application>

q The String “_theory” is a variable that many of the components bind to.

w We create a _bread Number variable, and many of the components
bind to it as well. Why did we call it _bread? Well, we’re initializing
it to NaN (Not a Number)… (Yes, creating code examples at 3 a.m. makes
my puns reach an all-time low!)

r

t

y

u

i

o

a

SESSION 12 Simple Spark components 57
e The moralityRBG and restaurantRBG RadioButtonGroups are used to cre-
ate two sets of mutually exclusive choices, which the various
RadioButtons are part of. Since the RadioButtonGroups aren’t visual
objects, they go in an fx:Declarations block.

r The TextArea and TextInput are multiline and single-line text compo-
nents that have two-way bindings (with the @) to the _theory String.

t The HSlider and VSlider are both bound with two-way bindings to
_bread.

y The Button has its label bound to the _theory String, and when
clicked it assigns the length of the _theory String to the _bread vari-
able (or 11 if the _theory String is longer). The Math class is a “core
class,” so we don’t need to import it. Also note that the color prop-
erty (which sets the text color) is bound to whether the alarmTB Tog-
gleButton is selected (red if it is, black if it isn’t).

u The CheckBox has its selected property bound to whether the _bread
Number is even (selected) or odd (unselected). The % operator is for
modulo, just like it is in virtually every other programming lan-
guage worth knowing.

i The first three RadioButtons have their group set to the moralityRBG,
so only one can be selected at once.

o This is the alarmTB ToggleButton, which has its selected boolean val-
ued state determine the text color of the Button earlier.

a NumericStepper and Spinner are also two-way bound to _bread.

To understand where all this behavior comes, let’s look at the inheri-
tance hierarchy again. (To save space I’m drawing part of this hierar-
chy vertically and part of it horizontally.)

HSlider VSlider

Slider

TrackBase Spinner Button

ButtonBaseRange

SkinnableComponent
RadioButtonGroup

DisplayObjectDisplayObjectContainerSpriteFlexSpriteUIComponent InteractiveObject ObjectEventDispatcher

SkinnableTextBase

ToggleButtonBaseTextInputTextArea

NumericSlider
ToggleButton CheckBox RadioButton

58 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
The first thing to note is that all the components
we’ve created are SkinnableComponents. You’ll see
what this means in more depth in the next chap-

ter; for now, just know that it means we can cus-
tomize their look easily.

Next, note that the ToggleButton, CheckBox, and RadioButton
all extend ToggleButtonBase, so that’s how they get their
notion of whether they’re selected. Also, see how the
NumericStepper is just a subclass of Spinner; it adds the abil-
ity to type in a value yourself via its built-in TextInput. The

TextArea and TextInput classes both extend SkinnableTextBase for some
of their common functionality.

Finally, the RadioButtonGroup doesn’t extend a visual component like
UIComponent, but instead extends EventDispatcher directly, way up the
inheritance hierarchy. This means the RadioButtonGroup isn’t a visual
component, which is why it’s added to the fx:Declarations block (new
to Flex 4)—where nonvisual components in MXML must go. (Note
that UIComponent also happens to descend from EventDispatcher, but it
and its ancestors add the behavior of being a visual component.)

➼ Key points

❂ The commonly used Spark components in the
spark.components package all extend Skinnable-
Component and can have their look customized.

❂ Use a RadioButtonGroup to ensure that only one
RadioButton in the group can be selected.

SESSION 13 Data-driven Spark components (Lists) 59
In this workshop session, we’ll continue our tour of Spark components
by moving from the simple Spark components we saw in the previous
session to a brief look at three data-driven components: List, DropDown-
List, and ButtonBar. After we’ve done this, we’ll build our Only Con-
nect game in the next workshop session.

In this session we’ll build the following application, which is a modern-
day sanitized fairy tale creator.

So, let’s take a look at the code.

session13/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%">
<fx:Script><![CDATA[
 import spark.events.IndexChangeEvent;
 import mx.collections.ArrayCollection;

 [Bindable]
 private var _houseMaterials:ArrayCollection =
 new ArrayCollection(["straw", "sticks", "bricks"]);

SESSION 13 Data-driven Spark components (Lists)

q

60 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
 [Bindable]
 private var _coffees:ArrayCollection = new ArrayCollection([
 "drip coffee", "macchiato", "cappuccino", "latte"]);

 [Bindable]
 private var _lunches:ArrayCollection = new ArrayCollection([
 "fast food", "sushi", "dim sum"]);

 [Bindable]
 private var _pigChoice:String = "sticks";

 [Bindable]
 private var _coffeeChoice:String = "macchiato";

 [Bindable]
 private var _lunchChoice:String = "dim sum";

 private function coffeeChanged(event:IndexChangeEvent):void {
 if (event.newIndex == -1) return;
 _coffeeChoice = _coffees.getItemAt(event.newIndex) as String;
 }
]]></fx:Script>
 <s:layout>
 <s:VerticalLayout paddingLeft="15" paddingTop="15"/>
 </s:layout>
 <s:Label text="A Modern Fairy Tale" fontSize="18"/>
 <s:List id="list" dataProvider="{_houseMaterials}"
 selectedItem="{_pigChoice}"
 change="_pigChoice = list.selectedItem;"/>
 <s:DropDownList id="ddl" width="120"
 dataProvider="{_coffees}"
 selectedItem="{_coffeeChoice}"
 change="coffeeChanged(event)"/>
 <s:ButtonBar id="buttonBar" dataProvider="{_lunches}"
 selectedItem="{_lunchChoice}"
 click="_lunchChoice = buttonBar.selectedItem;"/>
 <s:Label width="300"
 text="The little pig built his house with {_pigChoice},
and then he went to Starbucks for a {_coffeeChoice}
followed by a nice lunch of {_lunchChoice}. The End."/>
</s:Application>

q We create ArrayCollections for the _houseMaterials, _coffees, and
_lunches.

w

e

r

t

y

u

SESSION 13 Data-driven Spark components (Lists) 61
w We create String variables for the choices.

e The coffeeChanged function handles the selectionChanged event (of
type IndexChangeEvent) broadcast when the user clicks the DropDown-
List of coffee choices.

r The List shows the choices of _houseMaterials for the pig to use; its
selectedItem is bound to the _pigChoice.

t The DropDownList shows the _coffees the pig can choose from, and
its selectedItem is bound to the _coffeeChoice.

y The ButtonBar shows the _lunches the pig could choose from, and its
selectedItem is bound to the _lunchChoice.

u The Label shows our sanitized fairy tale. Note how the text attri-
bute in MXML can span multiple lines and contain multiple data
bindings.

The following inheritance hierarchy diagram shows how related the
List, ButtonBar, and DropDownList classes are.

Note that the DropDownList is actually a sub-
class of List, which is a bit surprising. (For
those of you who know Flex 3, the DropDown-
List replaces the Halo ComboBox class. The
only thing the Halo ComboBox can do that
DropDownList can’t do is have its text be edit-
able. However, I’ve always found the edit-
able ComboBox text a bit flaky when trying to
subclass it, so good riddance to ComboBox as
far as I’m concerned.)

Finally, keep in mind that the ButtonBar can
be used for navigation in conjunction with
view states (which we’ll see in the next
chapter), to create the functionality of the

DisplayObjectDisplayObjectContainerSpriteFlexSpriteUIComponent

SkinnableComponent SkinnableContainerBase SkinnableDataContainer ListBase
List

ButtonBar

Object

InteractiveObject ObjectEventDispatcher

62 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
Halo TabNavigator or Halo ViewStack plus LinkBar combination, in which
only one container component is shown based on which button the
user selects.

➼ Key points

❂ List, DropDownList, and ButtonBar all are descendants of ListBase, and
the user can select one element (or in the case of List, multiple ele-
ments if the allowMultipleSelection property is set to true).

❂ DropDownList subclasses List.
❂ ButtonBar and view states can be used for navigation.

In the previous three workshop sessions, you learned how to code sim-
ple graphics manually and build small examples using Spark compo-
nents. In this workshop session, we’ll take a gigantic leap toward
reality and build a real application: an Only Connect game. (We’re
going to call it Only Connect, since typically game names are trade-
marked.) You’ll learn how the full workflow—from design to working
Flex application—functions.

First, I drew the game board
in Adobe Illustrator, since it
can export FXG. After sav-
ing the Adobe Illustrator
document (in an src/assets
folder which I created in the
session14 directory), I then
also saved it as an FXG
(Flash XML Graphics) doc-
ument. We’ll look at the
source of that document
momentarily.

SESSION 14 FXG and MXML graphics—building a game

SESSION 14 FXG and MXML graphics—building a game 63
If you have Adobe Illustrator and want to follow along (which is
entirely optional, and I’m assuming you won’t), be sure to deselect the
Preserve Illustrator Editing Capabilities and Clip Content to Active
Artboard check boxes, and then click OK. Also, don’t create any extra
groups for your circles.

64 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
When I saved the document as an FXG document, this is what it
looked like:

session14/session14a/src/assets/OnlyConnectBoard.fxg

<?xml version="1.0" encoding="utf-8" ?>
<Graphic version="1.0" viewHeight="601" viewWidth="701"
xmlns="http://ns.adobe.com/fxg/2008">
 <Library/>
 <Group d:type="layer" d:userLabel="Layer 1"
xmlns:d="http://ns.adobe.com/fxg/2008/dt">
 <Rect x="0" y="0" width="700" height="600">
 <fill>
 <SolidColor color="#ffffff"/>
 </fill>
 <stroke>
 <SolidColorStroke caps="none" weight="1"
joints="miter" miterLimit="4"/>
 </stroke>
 </Rect>
 <Ellipse x="5" y="4" width="90" height="90">
 <fill>
 <SolidColor color="#ffffff"/>
 </fill>
 <stroke>
 <SolidColorStroke caps="none" weight="1"
joints="miter" miterLimit="4"/>
 </stroke>
 </Ellipse>
…a bunch of Ellipses…
 <Ellipse x="605" y="505" width="90" height="90">
 <fill>
 <SolidColor color="#ffffff"/>
 </fill>
 <stroke>
 <SolidColorStroke caps="none" weight="1"
joints="miter" miterLimit="4"/>
 </stroke>
 </Ellipse>
 </Group>
</Graphic>

q The root tag is a Graphic.

q

w

e

r

SESSION 14 FXG and MXML graphics—building a game 65
w The Graphic contains a Group tag, which contains a Rect for the outer
rectangle.

e Each circle is an Ellipse.

r I’m skipping showing most of the Ellipses in order to save a tree;
please see the code in the zip file on this book’s website if you’re
interested.

If you were paying attention in session 11, these Rect and Ellipse ele-
ments should look familiar. In fact, the whole document looks similar
to MXML. That’s because MXML graphics are just FXG plus support
for data binding!

So, you can save the FXG file from Illustrator and then load it in Flex
Builder. Then just copy it and paste it into an MXML file, and with a
couple minor tweaks you’ll have a running app!

That’s just awesome.

YOU SOUND LIKE A FANBOY.

I say this not as some kind of Adobe sycho-
phant or “fanboy,” but as someone who sees
the value in rapid prototyping of UIs and
putting this prototype in front of customers
as early as possible. The fact that Adobe is
pushing the FXG standard across their
entire product line—Photoshop, Illustrator,
Flash Catalyst, Flex—is very exciting.

So, in this session we’ll go from that
document to the following game in as

few changes as possible. Then we’ll refactor the code (since the FXG is
repetitive), and then build game victory condition logic. In the process,
you’ll learn how to build visually complex Flex user interfaces using
tools to do things that would be painful to do manually. (Yes, in this
specific example, we could—and we will—also draw the game board
using code. However, imagine if the game was Risk instead, and we
wanted to use vector graphics instead of a bitmap image—I’d certainly
rather draw the world in FXG than by writing ActionScript 3 code!)

66 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
The game that we’re going to build looks like the following screens.
Clicking on a column adds the chip of the player whose turn it is, as
shown. The players take turns (no, there’s no multiplayer—this is a
workshop session!) until someone wins.

Note that we’ll be adding victory detection later in this workshop session.

We’ll create a main application called OnlyConnect and a BoardDisplay
component based on the FXG. Let’s start by creating the main application.

session14/session14a/src/OnlyConnect.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 xmlns:comp="components.*"
 width="100%" height="100%"
 initialize="board.newGame()">
 <fx:Script>
 <![CDATA[
 import mx.graphics.SolidColor;

 private function getColor(playerOneTurn:Boolean):SolidColor {
 return new SolidColor(playerOneTurn ?
 board.playerOneColor : board.playerTwoColor);
 }
]]>

SESSION 14 FXG and MXML graphics—building a game 67
 </fx:Script>
 <s:layout>
 <s:BasicLayout/>
 </s:layout>
 <s:Panel title="Only connect!" x="10" y="10">
 <s:layout>
 <s:VerticalLayout paddingLeft="5" paddingTop="5"
 paddingBottom="5" paddingRight="5"/>
 </s:layout>
 <s:HGroup verticalAlign="middle">
 <s:Button label="New Game" click="board.newGame()"/>
 <s:Ellipse width="20" height="20"
 fill="{getColor(board.playerOneTurn)}"/>
 <s:Label
 text="Player {board.playerOneTurn ? 1' : '2'} Turn"/>
 </s:HGroup>
 <comp:BoardDisplay id="board"/>
 </s:Panel>
</s:Application>

q The New Game button calls the newGame function of our BoardDisplay.

w We show a little Ellipse filled with the color of the player (player 1
is red; player 2 is black).

e We indicate whose turn it is with a Label whose text contains a
binding to the playerOneTurn flag. Once again, we see how data
binding makes creating UIs simple—and how it makes XML seem
even terse.

r We create our BoardDisplay component.

Next, we create the BoardDisplay component. We start by doing a copy-
paste-modify of the OnlyConnectBoard.fxg document that was saved
from Illustrator, and then we add the ActionScript code for the game
logic. We also add data bindings into the FXG code. There’s a lot of
code, so we’ll split the explanation into two parts.

session14/session14a/src/components/BoardDisplay.mxml

<?xml version="1.0" encoding="utf-8"?>
<Graphic version="1.0" viewHeight="601" viewWidth="701"
 xmlns="library://ns.adobe.com/flex/spark"
 xmlns:fx="http://ns.adobe.com/mxml/2009"

q

w

e

r

68 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
 xmlns:mx="library://ns.adobe.com/flex/halo"
 click="clickHandler(event)">
<fx:Script><![CDATA[
 import mx.controls.Alert;

 [Bindable]
 public var playerOneColor:uint = 0xFF0000;

 [Bindable]
 public var playerTwoColor:uint = 0x000000;

 private static const EMPTY_COLOR:uint = 0xFFFFFF;

 [Bindable]
 private var _boardData:Array;

 [Bindable]
 public var playerOneTurn:Boolean = true;

 private static const P1:int = 1;
 private static const P2:int = 2;
 private static const NONE:int = 0;

 public function newGame():void {
 playerOneTurn = true;
 var boardData:Array = new Array();
 for (var row:int = 0; row < 6; row++) {
 boardData[row] = [NONE, NONE, NONE, NONE, NONE, NONE, NONE];
 }
 _boardData = boardData;
 }

 private function getColor(row:int, col:int, board:Array):uint {
 switch (_boardData[row][col]) {
 case P1:
 return playerOneColor;
 case P2:
 return playerTwoColor;
 default:
 return EMPTY_COLOR;
 }
 }

 private function clickHandler(event:MouseEvent):void {
 var column:int = (event.localX - 5) / 100;

q

w

e

r

t

y

u

i

SESSION 14 FXG and MXML graphics—building a game 69
 var row:int = getDropRow(column);
 if (row == -1) {
 Alert.show("The column is full.", "Illegal Move");
 } else {
 _boardData[row][column] = playerOneTurn ? P1 : P2;
 playerOneTurn = !playerOneTurn;
 _boardData = _boardData.slice(0);
 }
 }

 private function getDropRow(column:int):int {
 for (var i:int = 5; i >= 0; i--) {
 if (_boardData[i][column] == NONE) {
 return i;
 }
 }
 return -1;
 }
]]></fx:Script>
…

q The playerOneColor (red) and playerTwoColor (black) are variables,
in case you want to make them settable by the user later.

w The EMPTY_COLOR (white) is used to fill spots where there’s no game
piece.

e The _boardData is a simple, two-dimensional Array, which is an Array
of Arrays. (I’m trying to keep this example small, so I’m not build-
ing a full object model.)

r This contains a Boolean flag for whose turn it is: player 1 or player 2.

t These are the constants for whether a board position has a player 1
piece (P1), a player 2 piece (P2), or no piece (NONE).

y We initialize each row to an Array of NONE ints for the columns. Note
that the outer Arrays are the rows and the inner Arrays are the columns.

u This function returns the color of a given board position based on
the _boardData for that row and column.

i We handle clicks on the board. The columns go from 5 to 105, 106
to 205, and so on. Therefore, subtracting 5 and then using an inte-
ger division gets the column. We then call getDropRow() to deter-
mine the row to insert the player’s piece in, and display an alert
message if every row is full.

o

a

s

70 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
o We assign either P1 or P2 to the given location in the
_boardData[row][column] based on whose turn it is.

a To refresh the bindings in the game board, we assign the _boardData
to a copy of itself. This is a very inefficient hack, which will get
refactored away later in this workshop session.

s The getDropRow function finds the lowest row (i.e., with the highest
index, based on how we constructed the 2D Array) with a NONE value
in that column.

Continuing along, let’s see the game board.

session14/session14a/src/components/BoardDisplay.mxml (continued)

…
 <Group>
 <Rect x="0" y="0" width="700" height="600">
 <fill>
 <SolidColor color="#8E6B23"/>
 </fill>
 <stroke>
 <SolidColorStroke caps="none" weight="1"
joints="miter" miterLimit="4"/>
 </stroke>
 </Rect>
 <Ellipse x="5" y="4" width="90" height="90">
 <fill>
 <SolidColor color="{getColor(0, 0, _boardData)}"/>
 </fill>
 <stroke>
 <SolidColorStroke caps="none" weight="1"
joints="miter" miterLimit="4"/>
 </stroke>
 </Ellipse>
 <Ellipse x="5" y="104" width="90" height="90">
 <fill>
 <SolidColor color="{getColor(1, 0, _boardData)}"/>
 </fill>
 <stroke>
 <SolidColorStroke caps="none" weight="1"
joints="miter" miterLimit="4"/>
 </stroke>

q

w

SESSION 14 FXG and MXML graphics—building a game 71
 </Ellipse>

…a bunch of Ellipses with bindings pasted in…

 <Ellipse x="605" y="505" width="90" height="90">
 <fill>
 <SolidColor color="{getColor(5, 6, _boardData)}"/>
 </fill>
 <stroke>
 <SolidColorStroke caps="none" weight="1"
joints="miter" miterLimit="4"/>
 </stroke>
 </Ellipse>
 </Group>
</Graphic>

q The Rect of the game board has a fill we set ourselves, instead of in
Illustrator.

w The Ellipse elements all have their fill set by data bindings.

This is essentially identical to the FXG produced by
Illustrator, except that I’ve set a fill on the Rect to
give it a nice background color and set the fill of the
Ellipses based on data bindings. Note how each of
the data bindings passes in the row and column that
the Ellipse corresponds to in the _boardData, and it
passes the _boardData in as well. Since we include the
_boardData itself in the binding, then the binding will
be triggered when we assign the _boardData variable.

This is a “big hammer” approach, which clobbers the entire Array by
assigning a temporary variable. Yes, this means that every time a move
happens, every square on the whole game board is redrawn! Obvi-
ously, this isn’t very efficient and is coupled with a hackish way of
using data binding.

But the point here isn’t that our code is going to win an efficiency con-
test: it’s that we drew all the MXML in Illustrator. If you’ve ever worked with
designers, you know that staying true to the visual design is cru-
cial—and that what may seem unimportant to a programmer is essen-
tial to a designer. So, FXG helps us bridge that gap, which is awesome.

Running the app, we see the screens we showed earlier.

72 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
Next, we’re going to do two refactorings. First, we’ll refactor the app to
create the board programmatically, instead of using the FXG that we got
from Illustrator. Since an Only Connect board is a simple pattern, this
will be easy to do. We’ll also fix the code so that redrawing every Ellipse
when a move is made won’t be required. Then, we’ll factor out the board
data into its own class and add victory condition checking logic.

So, let’s start with the first refactoring. We begin by making a small
change to the main app.

session14/session14b/src/OnlyConnect.mxml

…
 import mx.graphics.SolidColor;

 private function getColor(playerOneTurn:Boolean):SolidColor {
 return new SolidColor(playerOneTurn ?
 board.playerOneColor : board.playerTwoColor);
 return playerOneTurn ?
 board.playerOneFill : board.playerTwoFill;
 }
…

q Instead of having the board return the colors of player 1 and 2, it’s
returning the fills they now use. This is better since we don’t need
to create a new SolidColor here every time.

Now, let’s move on to the BoardDisplay. It has changed enough that it’s
easiest to show it as a new file rather than showing the differences. So,
here’s the refactored code:

session14/session14b/src/BoardDisplay.mxml

<?xml version="1.0" encoding="utf-8"?>
<Graphic version="1.0" viewHeight="601" viewWidth="701"
 xmlns="library://ns.adobe.com/flex/spark"
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 initialize="createBoard()"
 click="clickHandler(event)">
<fx:Script><![CDATA[
 import mx.controls.Alert;

q

q

SESSION 14 FXG and MXML graphics—building a game 73
 import spark.primitives.Rect;
 import mx.graphics.SolidColorStroke;
 import mx.graphics.SolidColor;
 import spark.primitives.Ellipse;

 [Bindable]
 public var playerOneFill:SolidColor = new SolidColor(0xFF0000);

 [Bindable]
 public var playerTwoFill:SolidColor = new SolidColor(0x000000);

 private static const EMPTY_FILL:SolidColor =
 new SolidColor(0xFFFFFF);

 [Bindable]
 private var _boardData:Array;

 [Bindable]
 private var _board:Array;

 [Bindable]
 public var playerOneTurn:Boolean = true;

 private static const P1:int = 1;
 private static const P2:int = 2;
 private static const NONE:int = 0;

 public function newGame():void {
 playerOneTurn = true;
 _boardData = new Array();
 for (var row:int = 0; row < 6; row++) {
 _boardData[row] = [NONE, NONE, NONE, NONE, NONE, NONE, NONE];
 }
 if (_board != null) updateBoard();
 }

 private function createBoard():void {
 newGame();
 _board = new Array(6);
 for (var row:int = 0; row < 6; row++) {
 _board[row] = new Array(7);
 for (var col:int = 0; col < 7; col++) {
 _board[row][col] = addEllipse(row, col);
 }
 }
 }

w

e

r

t

y

74 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
 private function updateBoard():void {
 for (var row:int = 0; row < 6; row++) {
 for (var col:int = 0; col < 7; col++) {
 Ellipse(_board[row][col]).fill = getFill(row, col);
 }
 }
 }

q We call createBoard() when the initialize event is broadcast

w We switch to specifying a SolidColor for player 1 and 2 and the
empty fill, rather than specifying the color uint for each. These are
the standard 24-bit RGB hexadecimal color values.

e We create a new Array for the board, to store a reference to each
Ellipse we create.

r Because we are no longer relying on “hackishly” triggering bind-
ings to the _boardData, we no longer need to use a temporary vari-
able when building the board data.

t We call updateBoard() once the board is initialized. Yes, we could
have just done this inside the newGame loop, but that would be mak-
ing that function do too much. This way, if we implement loading,
the updateBoard function can be reused to update the board based
on the state of the _boardData.

y The createBoard function calls newGame to create the boardData (which
won’t trigger updateBoard since there’s no _board yet) and then cre-
ates the _board by calling addEllipse() for each row and column. (If
you’re thinking that it’s unseemly having so much model code in
the BoardDisplay, I agree with you—that’s the subject of the next
refactoring.)

u The updateBoard function updates the fills of the Ellipses based on
the calling getFill. This only needs to be called on newGame or
(hypothetically) when loading; there’s a much more efficient way of
handling this at the end of a turn.

Continuing along, here’s the rest of the file:

…continued from earlier…
 private function getFill(row:int, col:int):SolidColor {
 switch (_boardData[row][col]) {

u

SESSION 14 FXG and MXML graphics—building a game 75
 case P1:
 return playerOneFill;
 case P2:
 return playerTwoFill;
 default:
 return EMPTY_FILL;
 }
 }

 private function clickHandler(event:MouseEvent):void {
 var column:int = (event.localX - 5) / 100;
 var row:int = getDropRow(column);
 if (row == -1) {
 Alert.show("The column is full.", "Illegal Move");
 } else {
 _boardData[row][column] = playerOneTurn ? P1 : P2;
 Ellipse(_board[row][column]).fill = getFill(row, column);
 var winner:int = checkWinner();
 if (winner != NONE) {
 Alert.show("Player " + (winner == P1 ? "1" : "2") + " wins",
 "Victory!");
 }
 playerOneTurn = !playerOneTurn;
 }
 }

 private function getDropRow(column:int):int {
 for (var i:int = 5; i >= 0; i--) {
 if (_boardData[i][column] == NONE) {
 return i;
 }
 }
 return -1;
 }

 private function addEllipse(row:int, col:int):Ellipse {
 var ellipse:Ellipse = new Ellipse();
 ellipse.x = 4 + col*100;
 ellipse.y = 5 + row*100;
 ellipse.width = 90;
 ellipse.height = 90;
 ellipse.fill = getFill(row,col);
 ellipse.stroke = new SolidColorStroke(0x000000, 1, 1.0, false,
 "normal", null, "miter", 4);

i

o

a

76 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
 boardGroup.addElement(ellipse);
 return ellipse;
 }

 private function checkWinner():int {
 return NONE;
 }

]]></fx:Script>
 <Group id="boardGroup">
 <Rect x="0" y="0" width="700" height="600">
 <fill>
 <SolidColor color="#8E6B23"/>
 </fill>
 <stroke>
 <SolidColorStroke caps="none" weight="1"/>
 </stroke>
 </Rect>
 </Group>
</Graphic>

i When a move is made, we only set the fill of the Ellipse at the
_board[row][column].

o We call a checkWinner() function, and if the winner isn’t NONE we
show an alert message.

a The addEllipse function creates the board the same way that it was
done in the FXG produced by Illustrator. (If you run this app,
you’ll be hard-pressed to tell the difference.)

s This function is stubbed out. If you want to practice your Action-
Script 3 skills, implement it before reading the next file.

d Note how there is nothing more inside the Group than just the Rect
now. All the Ellipses are created by addEllipse.

That’s it!

Running the app, we see no real change from before, which is always
the goal when refactoring.

Before moving on to the next workshop session, let’s think about what
we’ve done. We’ve created a BoardDisplay that has a bunch of game logic
muddled together with display logic. So, let’s refactor it again and create

s

d

SESSION 14 FXG and MXML graphics—building a game 77
a Board model class to handle the game logic. Also, while we’re at it, let’s
implement the checkWinner function. Note that the way that I’m going to
implement checkWinner will be pretty inefficient; I’m trying to keep the
code somewhat readable. I’m not even going to use the recent move to
limit what the function is checking; instead, I’m just going to search the
entire board for a winner. (Exercise for the reader: refactor my code!)

Let’s start by creating the Board class, and then refactor the BoardDisplay
class to use it.

session14/session14c/src/Board.as

package model {
 public class Board {
 public static const P1:int = 1;
 public static const P2:int = 2;
 public static const NONE:int = 0;

 [Bindable]
 private var _data:Array;

 [Bindable]
 public var playerOneTurn:Boolean = true;

 public function Board() {
 }

 public function newGame():void {
 playerOneTurn = true;
 _data = new Array();
 for (var row:int = 0; row < 6; row++) {
 _data[row] = [NONE, NONE, NONE, NONE, NONE, NONE, NONE];
 }
 }

 public function getData(row:int, col:int):int {
 return _data[row][col];
 }

 public function playerMove(column:int):int {
 var row:int = getDropRow(column);
 if (row != -1) {

q

w

e

r

78 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
 _data[row][column] = playerOneTurn ? P1 : P2;
 playerOneTurn = !playerOneTurn;
 }
 return row;
 }

 private function getDropRow(column:int):int {
 for (var i:int = 5; i >= 0; i--) {
 if (_data[i][column] == NONE) {
 return i;
 }
 }
 return -1;
 }
…

q The board data is encapsulated in the private _data Array.

w The public newGame function just creates the _data. Also, note that
the empty Board() constructor is redundant, since it’s what would
have been generated by the compiler. However, I have a habit of
writing constructors…

e The public getData function returns the data at the row and column
without exposing implementation details.

r The playerMove function takes the column the player is placing in
and returns the row that the player’s piece ended up on (or –1 if
illegal). If there was a proper object model I wouldn’t use –1, but
there isn’t.

Continuing along, here’s the rest of the file. Note that I’m omitting the
implementations of some of the victory checking functions, since
there’s nothing particularly exciting in them. However, if you are new
to ActionScript 3 you may enjoy writing your own victory checking
algorithm and/or downloading the code zip file from the book’s website
and reading through mine to see how you can improve it. The row and
column victory checking is easy, but the diagonal victory checking is a
bit more annoying to get right. Furthermore, if you care about effi-
ciency you could take the last move into account to reduce the number
of tests that the code does.

SESSION 14 FXG and MXML graphics—building a game 79
…continued from earlier…
 public function checkWinner():int {
 var rowWinner:int = getRowWinner();
 if (rowWinner != NONE) return rowWinner;
 var columnWinner:int = getColumnWinner();
 if (columnWinner != NONE) return columnWinner;
 var forwardDiagWinner:int = getForwardDiagWinner();
 if (forwardDiagWinner != NONE) return forwardDiagWinner;
 return getBackwardDiagWinner();
 }

 private function getRowWinner():int {
 var lenP1:int = 0;
 var lenP2:int = 0;
 for (var row:int = 0; row < 6; row++) {
 lenP1 = _data[row][0] == P1 ? 1 : 0;
 lenP2 = _data[row][0] == P2 ? 1 : 0;
 for (var col:int = 1; col < 7; col++) {
 if (_data[row][col] == P1) {
 lenP2 = 0;
 if (_data[row][col-1] == P1) {
 lenP1++;
 if (lenP1 > 3) return P1;
 } else {
 lenP1 = 1;
 }
 } else if (_data[row][col] == P2) {
 lenP1 = 0;
 if (_data[row][col-1] == P2) {
 lenP2++;
 if (lenP2 > 3) return P2;
 } else {
 lenP2 = 1;
 }
 } else {
 lenP2 = 0;
 lenP1 = 0;
 }
 }
 }
 return NONE;
 }

t

y

80 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
 private function getColumnWinner():int {
…a bunch of tedious code (see the code zip file)…
 }

 private function getForwardDiagWinner():int {
…a bunch of tedious code (see the code zip file)…
 }

 private function getBackwardDiagWinner():int {
…a bunch of tedious code (see the code zip file)…
 }
}

t The checkWinner function checks whether there are four of the same
player’s pieces in a row in any row, column, or diagonal by calling
functions that do the messy work.

y The getRowWinner function checks a row for four in a row.

u The getColumnWinner function checks a column for four in a row.

i The getForwardDiagWinner function checks a forward-leaning diago-
nal for four in a row.

o The getBackwardDiagWinner function checks a backward-leaning
diagonal for four in a row.

Now that we have created the Board class, we can refactor the BoardDis-
play to use it. Again, the BoardDisplay will change enough that it’s easi-
est to show it as a new file. Also, as a bonus for reading this far, I’m
going to throw in a gratuitous 3D effect as a preview of some of the fun
we’ll have in the next chapter.

session14/session14c/src/BoardDisplay.mxml

<?xml version="1.0" encoding="utf-8"?>
<Graphic version="1.0" viewHeight="601" viewWidth="701"
 xmlns="library://ns.adobe.com/flex/spark"
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 initialize="createBoard()"
 click="clickHandler(event)">
<fx:Script><![CDATA[

u

i

o

SESSION 14 FXG and MXML graphics—building a game 81
 import model.Board;
 import mx.controls.Alert;
 import spark.primitives.Rect;
 import mx.graphics.SolidColorStroke;
 import mx.graphics.SolidColor;
 import spark.primitives.Ellipse;

 [Bindable]
 public var playerOneFill:SolidColor = new SolidColor(0xFF0000);

 [Bindable]
 public var playerTwoFill:SolidColor = new SolidColor(0x000000);

 private static const EMPTY_FILL:SolidColor =
 new SolidColor(0xFFFFFF);

 [Bindable]
 private var _board:Board;

 [Bindable]
 private var _ellipses:Array;

 public function newGame():void {
 _board.newGame();
 updateBoard();
 }

 public function get playerOneTurn():Boolean {
 return _board.playerOneTurn;
 }

 private function createBoard():void {
 _board = new Board();
 _board.newGame();
 _ellipses = new Array(6);
 for (var row:int = 0; row < 6; row++) {
 _ellipses[row] = new Array(7);
 for (var col:int = 0; col < 7; col++) {
 _ellipses[row][col] = addEllipse(row, col);
 }
 }
 }

q

w

82 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
 private function updateBoard():void {
 for (var row:int = 0; row < 6; row++) {
 for (var col:int = 0; col < 7; col++) {
 Ellipse(_ellipses[row][col]).fill = getFill(row, col);
 }
 }
 newGameEffect.play();
 }
…

q The _board variable is the new Board type.

w We create a new Board in createBoard, and we don’t need any cheesy
null checking anymore.

e When the board is updated (on a new game or the hypothetical
load game), we play our new effect.

Continuing along, here’s the rest of the file.

…continued from earlier…
 private function getFill(row:int, col:int):SolidColor {
 switch (_board.getData(row, col)) {
 case Board.P1:
 return playerOneFill;
 case Board.P2:
 return playerTwoFill;
 default:
 return EMPTY_FILL;
 }
 }

 private function clickHandler(event:MouseEvent):void {
 var column:int = (event.localX - 5) / 100;
 var row:int = _board.playerMove(column);
 if (row != -1) {
 Ellipse(_ellipses[row][column]).fill = getFill(row, column);
 var winner:int = _board.checkWinner();
 if (winner != Board.NONE) {
 Alert.show(
 "Player " + (winner == Board.P1 ? "1" : "2") + " wins",
 "Victory!");
 }
 } else {

e

r

t

SESSION 14 FXG and MXML graphics—building a game 83
 Alert.show("The column is full.", "Illegal Move");
 }
 }

 private function addEllipse(row:int, col:int):Ellipse {
 var ellipse:Ellipse = new Ellipse();
 ellipse.x = 4 + col*100;
 ellipse.y = 5 + row*100;
 ellipse.width = 90;
 ellipse.height = 90;
 ellipse.fill = getFill(row,col);
 ellipse.stroke = new SolidColorStroke(0x000000, 1, 1.0, false,
 "normal", null, "miter", 4);
 boardGroup.addElement(ellipse);
 return ellipse;
 }
]]></fx:Script>
<fx:Declarations>
 <Rotate3D duration="1000" id="newGameEffect"
 angleXFrom="0" angleXTo="360" target="{this}"/>
</fx:Declarations>
 <Group id="boardGroup">
 <Rect x="0" y="0" width="700" height="600">
 <fill>
 <SolidColor color="#8E6B23"/>
 </fill>
 <stroke>
 <SolidColorStroke caps="none" weight="1"/>
 </stroke>
 </Rect>
 </Group>
</Graphic>

r The getData function of the Board is now called, and the P1 and P2
constants now belong to the Board.

t The Board’s checkWinner function is called.

y Inside the declarations, we create a new Rotate3D effect. Effects will
be explained in the next chapter. Note how the fill child element
of the Rect is assigning the SolidColor to the fill property of the
Rect. It’s not magic, it’s property assignment. This is why the same
namespace (in this case, the default namespace) is used.

y

84 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
That’s it! Run the application; you’ll see the same app as before but
with the new Rotate3D effect, shown here. Also, you can play a game
and test the victory condition checking.

Not only has this been your first taste of a larger Flex 4 application, but
you’ve also seen how refactoring Flex code works. We started with gen-
erated FXG code, added some business logic, replaced the repetitive
FXG with programmatically generated graphics, and then factored out
the business logic into its own class. In the real world, you’d build a
proper object model, not just a Board class and ints. Furthermore, in
chapter 7 we’ll see how an even larger Flex application is structured
using the Cairngorm framework.

The impressive thing is that all this started with a drawing in Illustrator
that could have been done by your designer, and he or she would prob-
ably feel that you stayed close enough to the design in the finished out-
put. Note that Flash Catalyst makes this designer-developer workflow
even better, but that topic is beyond the scope of this book.

➼ Key points

❂ FXG produced by tools such as Illustrator or Photoshop can be a
good starting point for Flex code.

❂ As a developer, you probably want to look at places you can refactor
once you have confidence in the design. You can also generate
graphics using the Spark primitives we saw in session 11.

❂ Business logic belongs in model classes, not mixed in with view code.

SESSION 15 Camera and video—a fake Twitter client 85
Well, this chapter started innocently enough, but that last workshop
session sure had a lot of code in it, didn’t it? In this workshop session,
the last in the chapter, we’ll have a little bit of fun building a toy exam-
ple that fits on just over half a page of code. And what’s more fun than
playing with a video camera? In the process, you’ll learn how to use the
Flash Camera and Video classes with Flex applications, since the API
docs for these classes are focused on doing this using just plain Action-
Script 3, not a Flex app. Since I had to scratch my head a bit to figure
this out, I hope I’ll save you from having to do the same.

So, hopefully your computer has a camera built in (thanks, Apple!) or
attached to it. What we’re going to build is an app that looks like this:

This is a totally fake Twitter client, and that’s me, really tired, captured
by my laptop camera. Why a fake Twitter client? Well, this book, like
the rest of the tech community, is obsessed with Twitter—so why not?
More seriously, the idea is that the Twitter client would take a picture
of you when you tweeted, and then post that picture to Flickr. It would
then create a shortened URL of that picture (using bit.ly presumably)
and insert that URL in your tweet (if there was room). So then, your
countless followers could see what you were doing (or how tired you
were looking) at the time you were tweeting. (And then they could
reply to you telling you to stop tweeting and go to bed.)

SESSION 15 Camera and video—a fake Twitter client

86 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
We’ll build a real Twitter client in chapter 7. Taking that code and
adapting it to do the what I just described is an exercise for the reader.

Without further ado, let’s see the code.

Session15/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%"
 applicationComplete="onApplicationComplete(event)">
<fx:Script><![CDATA[
 import mx.controls.Alert;
 import mx.events.FlexEvent;
 import flash.media.Camera;
 import flash.media.Video;

 private function onApplicationComplete(event:FlexEvent):void {
 var camera:Camera = Camera.getCamera();
 if (camera == null) {
 Alert.show("Buy a Mac.", "No Camera!");
 return;
 }
 var video:Video = new Video(160,120);
 video.attachCamera(camera);
 videoHolder.addChild(video);
 focusManager.setFocus(tweetTA);
 }
]]></fx:Script>
 <s:Panel x="{width/2 - 250}" y="{height/2 - 80}"
 width="500" height="155"
 title="Forget everybody else, what are you doing?">
 <s:SpriteVisualElement id="videoHolder" width="100%"
 height="100%"/>
 <s:TextArea id="tweetTA" x="170" y="5" width="320"
 height="85" maxChars="140"/>
 <s:Button label="Tweet" x="170" y="95" width="320"/>
 </s:Panel>
</s:Application>

q

w

e
r

t

y

u

What’s next? 87
q Get the Camera.

w Create a new Video object to show video.

e Attach the Camera to the Video object.

r Add the Video object to the SpriteVisualElement, which can have
Sprites added to it.

t Automatically focus the TextArea, since you are supposed to be
tweeting and not just looking at yourself.

y Create a new SpriteVisualElement.

u Create a new TextArea for your tweet.

Save the application and run it;
you’ll probably see an Adobe
Flash Player Settings security
dialog first (shown here). Click
Allow to allow camera access.

If you still see no video, what
you may need to do is change the
camera type to USB class video.

Switch to the camera icon tab, choose USB
Video Class Video, and click Close.

That’s it!

➼ Key points

❂ Flex lets you do cool things like play with the user’s camera with
very little code.

❂ The SpriteVisualElement class can have children added to it with
addChild.

What’s next?
Well, this has been both a whirlwind tour of the Spark components and
a deep dive into building and refactoring a real Flex app—starting with
an FXG drawing exported from Adobe Illustrator.

88 CHAPTER 3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
In the next chapter you’ll learn about Spark containers and layouts, as
well as view states, effects, styling and skinning. View states are much
improved in Flex 4, so they can be effectively used for navigation and
state changes in your apps. This is also fortunate, since there’s currently
(as of Flex 4 Beta 2; this may change!) no Spark equivalent for the Halo nav-
igator containers you’ll learn about in chapter 5. So if you want to stay
Spark-only in your apps, you need to become a view states master.

Finally, by the end of the next chapter, you’ll have a deeper under-
standing of the Spark component model.

4
Spark containers, view states,
effects, and styling

n this chapter, we’ll dive deeper into Spark and into Flex 4 in general.
You’ll learn how to use Spark containers and layouts—we’ve already seen
them throughout the book, but it will be good to spend a bit of time
discussing them. Then, we’ll talk about view states, which are much
improved in Flex 4—and which are much more necessary, since there’s no
Spark equivalent of the Halo navigator containers, as you’ll see in the next
chapter. Next we’ll explore basic effects and CSS styling, and conclude the
chapter by peeking behind the MXML curtain to view the code Flex

generates for us and some of the events dispatched in the
Spark component lifecycle.

Note that in a longer book, each of these topics would
have its own 20–30-page chapter. We’re going to see what
you can absorb in about 30 pages. Because of this, there

won’t be an example of adding to a Button a custom skin that
looks like a pizza, for example. And I’m even not going to

show you the now seemingly obligatory “custom ScrollBar with
something cheesy (like, say, a pizza) as a thumbIcon” example.

So, let’s get started.

I

89

90 CHAPTER 4 Spark containers, view states, effects, and styling
In this workshop session, you’ll learn about the Spark containers and
layouts. We’ve already seen many of these in the book so far (how
could we avoid them?), but now we’ll cover them properly. Briefly,
containers are where we add our UI controls (both Spark and Halo
controls and Spark primitives) in our Flex application—essentially, a
Flex app is just a bunch of components that live in a variety of contain-
ers and that respond to events. We’ve already discussed events and
components; now it’s time to focus on containers.

Containers such as Group and its subclasses HGroup and VGroup take as
children any components that implement the IUIComponent or
IGraphicElement interfaces, so they can contain both Spark components
and primitives. Containers that extend SkinnableContainerBase can have
children and custom skins.

Let’s start by showing the class hierarchy, since we’ll be building four
examples that use it:

The classes that we’ll use in this session have shadows. Briefly, you’ll
see that Application, Panel, SkinnableDataContainer, and Scroller all

SESSION 16 Spark containers and layouts

BasicLayout

PanelApplication

SkinnableContainer

SkinnableContainerBase

SkinnableComponent

Scroller

FlexSprite Sprite DisplayObjectContainer

Group

GroupBase

UIComponent

InteractiveObject DisplayObject EventDispatcher Object

HGroup VGroup

DataGroup

SkinnableDataContainer

HorizontalLayout VerticalLayout TileLayout

LayoutBase

OnDemandEventDispatcher

SESSION 16 Spark containers and layouts 91
extend SkinnableComponent, so they can be skinned. And the BasicLayout,
HorizontalLayout, VerticalLayout, and TileLayout all extend LayoutBase
for common functionality.

We’ll begin by building an
app that looks like this, in
order to demonstrate the
basic use of Group and Layout
classes:

session16/session16a/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%">
 <s:Group x="10" y="10">
 <s:layout>
 <s:VerticalLayout gap="20"/>
 </s:layout>
 <s:HGroup>
 <s:VGroup>
 <s:Button label="1"/>
 <s:Button label="2"/>
 </s:VGroup>
 <s:Button label="3"/>
 <s:Button label="4"/>
 </s:HGroup>
 <s:Group>
 <s:layout>
 <s:HorizontalLayout paddingLeft="15"/>
 </s:layout>
 <s:Button label="5"/>
 <s:Button label="6"/>
 <s:Button label="7"/>
 <s:Button label="8"/>
 </s:Group>
 </s:Group>
</s:Application>

q

w

92 CHAPTER 4 Spark containers, view states, effects, and styling
q The outer Group has a VerticalLayout and contains an HGroup (with
Buttons 1–4) and a Group with a HorizontalLayout that contains But-
tons 5–8.

w The Layout classes can have more attributes set on them than are
exposed by the HGroup and VGroup classes.

Next, we’ll look at the Panel
container, as well as see how
to swap layouts at runtime.
The app we’re going to build
looks like the following
when launched:

It has a DropDownList that lets
us choose between BasicLay-
out, VerticalLayout, Horizon-
talLayout, and TileLayout. As shown by the following screenshots, the
Spark Panel container doesn’t clip its children, unlike the Halo Panel
container. (This is a performance optimization, since some Panels don’t
need to scroll; as we’ll see later this workshop session, adding scrolling
is easy.)

Note that switching back to BasicLayout leaves the x and y locations
unchanged (because it’s a no-op layout), so they keep whatever the
previous layout did to them. In this case, switching back from a Tile-
Layout produces the following result (the way you tell the difference is
by looking at the content of the DropDownList):

SESSION 16 Spark containers and layouts 93
Without further ado, let’s see the code that does this. Note that this
code is in a new project in the session16 folder.

session16/session16b/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%">
<fx:Script><![CDATA[
 import spark.layouts.BasicLayout;
 import mx.collections.ArrayCollection;
 import spark.layouts.TileLayout;
 import spark.layouts.HorizontalLayout;
 import spark.layouts.VerticalLayout;

 private var _basicLayout:BasicLayout = new BasicLayout();
 private var _verticalLayout:VerticalLayout =
 new VerticalLayout();
 private var _horizontalLayout:HorizontalLayout =
 new HorizontalLayout();
 private var _tileLayout:TileLayout = new TileLayout();

 [Bindable]
 private var _layouts:ArrayCollection = new ArrayCollection([
 _basicLayout, _verticalLayout, _horizontalLayout,
 _tileLayout]);
]]></fx:Script>
 <s:Panel x="15" y="15" width="240" height="140">
 <s:layout>

q

94 CHAPTER 4 Spark containers, view states, effects, and styling
 <s:VerticalLayout paddingLeft="10" paddingTop="10"/>
 </s:layout>
 <s:DropDownList id="layoutsDDL" dataProvider="{_layouts}"
 width="200" selectedIndex="0"/>
 <s:Group height="50" layout="{layoutsDDL.selectedItem}">
 <s:Button label="a"/>
 <s:Button label="b"/>
 <s:Button label="c"/>
 <s:Button label="d"/>
 </s:Group>
 </s:Panel>
</s:Application>

q We create a new ArrayCollection of the various layout objects we
want to explore, and store it in _layouts, which is assigned to the
dataProvider of the layoutsDDL DropDownList. Briefly, layout objects
such as VerticalLayout and HorizontalLayout define how the children
of their container are arranged—by specifying one, you are essen-
tially providing an algorithm, neatly packaged as an object.

w We bind the selectedItem of the layoutsDDL to the layout property
of the Group that contains the four buttons. That way, when the
user picks another layout from the drop-down list, the binding
will trigger, and the chosen layout object will be set as the layout
for the group.

Unlike in Halo, where the layout was fairly tightly coupled to the code
for the container, in Spark the layout is completely decoupled from the
container. (Extremely advanced developers could subvert the layout
done by Halo containers, but this remained beyond the reach of us
mere mortals, for whom a VBox lays out its children vertically, period.)
This means you can write your own layout classes, which you can use
instead of the built-in ones. (If you think that frameworks like Flex are
all about inheritance and huge class hierarchies, this fact shows how
composition plays an important role in more flexible ones.) These lay-
outs can be used statically or they can be dynamically swapped in, as in
the previous example. Andrew Trice wrote a good article at InsideRIA
(www.insideria.com/2009/05/flex-4-custom-layouts.html) that explains
how to build a custom layout class, so take a look if you’re interested.

w

SESSION 16 Spark containers and layouts 95
Next, let’s see what happens when we add a Scroller to the mix. A
Scroller shows a scrollable component and horizontal and vertical
scrollbars. The scrollable component is called a viewport, and it must
implement the IViewport interface. We’ll also change the height to not
be fixed at 50, since we want the content to be able to grow to trigger
the vertical scrolling. Of course, this will change the behavior of our
TileLayout.

These screenshots show the behavior of the app we are about to build.
It’s similar to the app we just built, but I’m showing all the code so you
can follow along without reading “diff”-style code listings. Note how
the TileLayout uses only one column when its height isn’t constrained.

Let’s see the code; note that this is in a new project in the session16
folder.

session16/session16c/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application

96 CHAPTER 4 Spark containers, view states, effects, and styling
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%">
<fx:Script><![CDATA[
 import spark.layouts.BasicLayout;
 import mx.collections.ArrayCollection;
 import spark.layouts.TileLayout;
 import spark.layouts.HorizontalLayout;
 import spark.layouts.VerticalLayout;

 private var _basicLayout:BasicLayout = new BasicLayout();
 private var _verticalLayout:VerticalLayout =
 new VerticalLayout();
 private var _horizontalLayout:HorizontalLayout =
 new HorizontalLayout();
 private var _tileLayout:TileLayout = new TileLayout();

 [Bindable]
 private var _layouts:ArrayCollection = new ArrayCollection([
 _basicLayout, _verticalLayout, _horizontalLayout,
 _tileLayout]);
]]></fx:Script>
 <s:Panel x="15" y="15" width="240" height="140">
 <s:Scroller width="100%" height="100%">
 <s:VGroup>
 <s:DropDownList id="layoutsDDL"
 dataProvider="{_layouts}"
 width="200" selectedIndex="0"/>
 <s:Group layout="{layoutsDDL.selectedItem}">
 <s:Button label="a"/>
 <s:Button label="b"/>
 <s:Button label="c"/>
 <s:Button label="d"/>
 </s:Group>
 </s:VGroup>
 </s:Scroller>
 </s:Panel>
</s:Application>

q The Scroller is a child of the Panel class.

w The VGroup inside the Scroller doesn’t have a height now, so it can
grow to the preferred size of all its children. This lets the VGroup

q

w

SESSION 16 Spark containers and layouts 97
become taller than the area inside the “viewport” of the Scroller,
thus triggering the appearance of the ScrollBar.

Finally, let’s switch gears and look at DataGroup and SkinnableDataCon-
tainer, which are Spark containers with an interesting twist: they can
have dataProvider properties that can take primitives and/or compo-
nents. (Yes, you can even include both at the same time; I’m not sure
that you’ll ever need to do this, but there’s an example in the API docs1

that shows how to define a DataGroup with a mixture of data and graph-
ical items as its dataProvider.) We’ll build an app that shows how to use
this dataProvider. While we’re at it, we’ll also show an example of using
SkinnableContainer directly. You won’t need to do this unless you’re
building your own highly customized container (with custom skins
from, say, Flash Catalyst), but I want to show it so you know it’s there.

The app we’re building
looks like this:

Let’s see the code.

session16/session16d/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%">
<fx:Script><![CDATA[
 import mx.collections.ArrayCollection;

 [Bindable]
 private var _fish:ArrayCollection = new ArrayCollection([
 "Halibut", "Salmon", "Tuna"]);

1 http://livedocs.adobe.com/flex/gumbo/langref/spark/components/DataGroup.html#includeExamples-
Summary

q

98 CHAPTER 4 Spark containers, view states, effects, and styling
]]></fx:Script>
 <s:layout>
 <s:HorizontalLayout paddingTop="15" paddingLeft="15"/>
 </s:layout>
 <s:SkinnableContainer>
 <s:Button label="a"/>
 <s:Button label="b"/>
 </s:SkinnableContainer>
 <s:SkinnableDataContainer dataProvider="{_fish}"
 itemRenderer="spark.skins.spark.DefaultItemRenderer"/>
 <s:DataGroup dataProvider="{_fish}"
 itemRenderer="spark.skins.spark.DefaultItemRenderer">
 <s:layout>
 <s:HorizontalLayout/>
 </s:layout>
 </s:DataGroup>
</s:Application>

q We create an ArrayCollection of fish for testing.

w This SkinnableContainer by default has a vertical layout. Also, by
default it doesn’t look any different than a Group—but you could
change that.

e The SkinnableDataContainer has a VerticalLayout by default.

r The DataGroup has a BasicLayout by default, so we give it a Horizon-
talLayout instead.

So, what’s the difference between SkinnableDataContainer and Data-
Group? After all, in this example both the SkinnableDataContainer and the
DataGroup took a DefaultItemRenderer as their itemRenderer. Sure, we
gave the DataGroup a HorizontalLayout, but we could have done that with
the SkinnableDataContainer as well.

This is actually one of the points: the default behavior of the Skinnable-
DataContainer and DataGroup is very similar. However, the difference is
that the SkinnableDataContainer is a descendant of SkinnableComponent
(via SkinnableContainerBase) and thus is skinnable (hence the name),
whereas DataGroup is not. What this means is that the SkinnableDataCon-
tainer can have a custom skinClass associated with it to customize its
look. (To see how to do this, see the documentation for SkinnableCompo-

w

e

r

SESSION 17 View states 99
nent. Also, note that this is a job best done in Flash Catalyst, so I don’t
want to show it here.) You may recall from the previous chapter that
List is a descendant of SkinnableDataContainer (via ListBase). So, now
you see where it gets some of its behavior.

We’ve seen how layouts and containers are separate from each other,
so the layouts can be swapped in to the different types of containers
with predictable effects. Hooray for composition!

➼ Key points

❂ Layouts and containers are decoupled in Spark, meaning you can
write your own layouts to be used with any Spark container.

❂ DataGroup and SkinnableDataContainer have a dataProvider property
you can set.

Now that you know how to use containers to store the components that
we’re using to build our Flex applications, let’s see how to make our
Flex applications more dynamic by using view states. In Halo, there
are “navigator containers” (which we’ll discuss in the next chapter)
that let you accomplish this, but if you want to use the Spark approach
as much as possible, you’ll use view states to build navigation into your

Flex apps. View states allow you to change
what your application or components look like
in response to what state they’re in.

NOTE FOR THE CS GEEKS

 If you’re a computer science geek like myself, you’ll
appreciate that they’re called states, since the different view

states of a component can be thought of as a finite state machine,
with the component being in only one at a time.

SESSION 17 View states

100 CHAPTER 4 Spark containers, view states, effects, and styling
In this workshop session, we’ll build an app that shows the power of
view states, which have a highly improved syntax in Flex 4. In its
default state, the app looks like this:

We’ll create a custom subclass of Panel called HPanel (H is for Header,
not Horizontal—yes, this is a somewhat awkward name) that adds
easy detection of whether its header has been clicked. When any of the
HPanel headers are clicked, they dispatch an event named headerClick.
The app then changes state to show just that HPanel, as shown in the
following three figures. (Note also that we’re using Japanese Kanji and
resizing the fonts accordingly—primarily to show off how awesome the
font support is in Flash 10!)

SESSION 17 View states 101
Let’s see the code, first for the HPanel.

session17/src/components/HPanel.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Panel xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 creationComplete="onCreationComplete()">
<fx:Metadata>
 [Event(name="headerClick")]
</fx:Metadata>
<fx:Script><![CDATA[
 import flash.events.Event;
 import spark.skins.spark.PanelSkin;

 private function onCreationComplete():void {
 var panelSkin:PanelSkin = skin as PanelSkin;
 if (panelSkin == null) return;
 panelSkin.addEventListener(MouseEvent.CLICK, onHeaderClick);
 }

 private function onHeaderClick(event:MouseEvent):void {
 if (event.currentTarget is PanelSkin) {
 var ps:PanelSkin = PanelSkin(event.currentTarget);
 if (event.localY < 30) {
 dispatchEvent(new Event("headerClick"));
 }
 }
 }

q

w

e

102 CHAPTER 4 Spark containers, view states, effects, and styling
]]></fx:Script>
 <s:layout>
 <s:VerticalLayout paddingLeft="10" paddingTop="10"
 paddingBottom="10" paddingRight="10"/>
 </s:layout>
</s:Panel>

q We create metadata that declares that the HPanel class dispatches an
Event named headerClick. By doing this, we can use this in MXML
saying headerClick="doSomething(event)" in code which uses this
component.

w We add an EventListener to the PanelSkin class that listens for
mouse click events. Note that there’s nothing magical about the
name onCreationComplete—I could’ve called it handleCreationCom-
plete or peterIsVerbose just as easily.

e When a mouse click happens, we check that the event currentTar-
get is a PanelSkin and that the y value of the mouse is within the
header’s height. (Exercise for the reader: this isn’t very robust!
Come up with an example of where this simple check won’t work.)

r We add a VerticalLayout with 10-pixel padding for its border, to
save ourselves effort in the Tester app.

Next, we create the Tester app that listens to the HPanel headerClick
events and reacts accordingly.

session17/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 xmlns:comp="components.*" width="100%" height="100%">
<fx:Script><![CDATA[
 private function toggleState(newState:String):void {
 currentState = (currentState == newState) ? '' : newState;
 }
]]></fx:Script>
 <s:layout><s:BasicLayout/></s:layout>
 <s:states>
 <s:State name="default"/>

r

q

w

SESSION 17 View states 103
 <s:State name="stateOne"
 stateGroups="[noStateTwo, noStateThree]"/>
 <s:State name="stateTwo"
 stateGroups="[noStateOne, noStateThree]"/>
 <s:State name="stateThree"
 stateGroups="[noStateOne, noStateTwo]"/>
 </s:states>
 <comp:HPanel id="stateOnePanel" title="State One Panel"
 left="10" top="10" width="200" right.stateOne="10"
 height="100" bottom.stateOne="10" excludeFrom="noStateOne"
 headerClick="toggleState('stateOne')">
 <s:Label="����� " fontSize="20"
 fontSize.stateOne="140"/>
 </comp:HPanel>
 <comp:HPanel id="stateTwoPanel" title="State Two Panel"
 left="10" bottom="10" top="115" top.stateTwo="10"
 width="200" right.stateTwo="10" excludeFrom="noStateTwo"
 headerClick="toggleState(‘stateTwo’)">
 <s:Label width="100%" height="100%" fontStyle="italic"
 text="(I am trusting that the following pages
http://en.wikipedia.org/wiki/Matsuo_Bash%C5%8D
and http://en.wikisource.org/wiki/Frog_Poem
have the Kanji of Matsuo Basho‘s name and
famous poem correct.)"/>
 </comp:HPanel>
 <comp:HPanel id="stateThreePanel" title="State Three Panel"
 excludeFrom="noStateThree" top="10"
 left="220" left.stateThree="10" right="10" bottom="10"
 headerClick="toggleState(‘stateThree’)">
 <s:Label fontSize="50" fontSize.stateThree="70"
 text="��	 
��
� ��� "/>
 <s:Label text="--Matsuo Basho
The ancient pondA frog leaps inThe sound of the water.
--Donald Keene"/>
 </comp:HPanel>
</s:Application>

q The toggleState function switches states to either the default state
(which happens to be named default) or to the newState based on
the value of the currentState. If the currentState is equal to the
newState, the user has already switched to stateOne, stateTwo, or sta-
teThree, so we want to switch back to the default state. Otherwise,

e

r

t

y

u

i

104 CHAPTER 4 Spark containers, view states, effects, and styling
we want to switch to the newState (which is stateOne, stateTwo, or
stateThree).

w The first state is the default state. Naming it default is a convention
you will sometimes encounter, but it’s not a requirement.

e States can also belong to one or more stateGroups. We’re using them
to define stateOne as a state in which the stateTwoPanel and stateTh-
reePanel aren’t shown. This way, we can use excludeFrom. (This is a
bit contrived, since I could’ve also just used includeIn, but I wanted
to show both excludeFrom and includeIn, as well as stateGroups.)

r The stateOnePanel is at the top left, with the title “State One Panel”
and the Kanji of Matsuo Basho’s name (Matsuo being the family
name). The stateOne view state is the state in which the stateOnePanel
is expanded to take up the full app size, minus a 10-pixel border. We
do this by defining the default height as 100 but the bottom.stateOne
as 10, meaning that in stateOne the component is stretched so that its
bottom is only 10 pixels from the bottom of the app. (I’ve had mixed
success using percentHeight and percentWidth in conjunction with
normal height and width using view states; this is a more effective
way of doing this.) Finally, when learning how to use percentage
sizing like percentWidth and percentHeight; constraint-based-layout
like top, bottom, left, and right; and absolute positioning, there’s no
better way to learn than making a toy app with a few Panels in it and
experimenting with the layouts. Please think of this app as a good
basis for your own experiments.

t Yes, you can actually paste Kanji into Flex 4 source code!

y The stateTwoPanel is the bottom left (when in the default state) or
the full app size (in the stateTwo state).

u The stateThreePanel is on the right (when in the default state) or the
full app size (in the stateThree state).

i The  entity is used to insert newlines.

View states, which are vastly improved in Flex 4, are an easy way of
making your app dynamic. They also show the importance of properly
componentized design—although in this app we define the HPanel
content all in one file, in real applications you want to build encapsu-
lated components so that the application state logic and the component

SESSION 17 View states 105
logic is separate. Also, note that view states aren’t just limited to the
application—components can have their own view states that you can
switch between.

In the next workshop session we’ll explore the basics of effects. Besides
what we’ll see in the next session, effects can be used to transition
between view states in a more exciting way.

➼ Key points

❂ View states are an easy way of making a Flex 4 application dynamic.
❂ Components can be resized, included, and excluded based on which

view state they’re in.
❂ To simplify the logic of including and excluding view states, states

can be grouped into stateGroups.
❂ If you want to see some more examples of view states (both more

basic and more advanced than this), see the view states chapter of
the Using Flex 4 PDF at http://livedocs.adobe.com/flex/gumbo/
flex_4_usingsdk.pdf.

http://livedocs.adobe.com/flex/gumbo/flex_4_usingsdk.pdf

106 CHAPTER 4 Spark containers, view states, effects, and styling
In this workshop session, you’ll learn the basics of effects. While Flex
applications already look very nice out of the box, another benefit they
offer is that they can leverage the capabilities of the Flash Player.
(When writing a marketing sentence like that, I guess it’s appropriate to say “lever-
age”—ick.) One of these is its strong support for animation—when Mac-
romedia coined the term rich Internet application they wanted to
emphasize applications that went beyond the fairly static web apps
people have grown accustomed to. Effects, when used extremely spar-
ingly, are a good way of doing this.

This workshop session is a high-level overview whose goal is simple: I
want to impress you with how easy it is to use effects, and I want to
motivate you to pause at the end of this session to go read the following
two excellent articles by Adobe’s Chet Haase:

❂ Effects in Adobe Flex 4 beta—Part 1: Basic effects
(www.adobe.com/devnet/flex/articles/flex4_effects_pt1_print.html)

❂ Effects in Adobe Flex 4 beta—Part 2: Advanced graphical effects
(www.adobe.com/devnet/flex/articles/flex4_effects_pt2_print.html)

Seriously, as soon as you’re done with this session, go read those arti-
cles. I’ll wait.

Anyway, here’s what we’re going
to build in this session:

Hmm, haven’t we seen most of this
before in the previous session?

Well, yes, we have seen the Panel
contents—but we need to rotate
something, after all. In this ses-
sion we’re including the ability to
rotate and/or move this Panel

together.

SESSION 18 Effects and animation

SESSION 18 Effects and animation 107
When you load the app and click Rotate, it looks like this:

Well, the rotation was nice, but the end
location wasn’t so good. You can also
reload the app and click the Move button
to move the poetry smoothly to the right, as
shown in the following screenshot:

However, combining these effects makes the poetry get rotated
around. We create a Parallel effect to do this for us in one smooth tran-
sition. These screenshots show the end result and also what it looks like
in one of the frames of the transition:

108 CHAPTER 4 Spark containers, view states, effects, and styling
Let’s look at the code. Note that we got rid of the HPanel and we’re
using just a Panel.

session18/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%">
<fx:Declarations>
 <s:Rotate3D id="rotateEffect" target="{poemPanel}"
 angleYFrom="0" angleYTo="180"/>
 <s:Move id="moveEffect" target="{poemPanel}" xBy="400"/>
 <s:Parallel id="parallelEffect" target="{poemPanel}">
 <s:Rotate3D angleYFrom="0" angleYTo="180"/>
 <s:Move xBy="400"/>
 </s:Parallel>
</fx:Declarations>
 <s:layout>
 <s:BasicLayout/>
 </s:layout>
 <s:HGroup left="10" top="10">
 <s:Button label="Rotate" click="rotateEffect.play();"/>
 <s:Button label="Move" click="moveEffect.play();"/>
 <s:Button label="Compound" click="parallelEffect.play();"/>
 </s:HGroup>
 <s:Panel id="poemPanel" title="Animated Poetry!"
 x="50" y="50" width="400" height="400">
 <s:layout>
 <s:VerticalLayout paddingTop="10" paddingLeft="10"/>
 </s:layout>
 <s:Label fontSize="50" fontSize.stateThree="70"
 text="��	 
��
� ��� "/>
 <s:Label text="--Matsuo Basho
The ancient pondA frog leaps inThe sound of the water.
--Donald Keene"/>
 </s:Panel>
</s:Application>

q The effects are nonvisual children, so they go in an fx:Declarations
block.

q
w

e

r

t

SESSION 18 Effects and animation 109
w The Rotate3D effect flips the panel on the y-axis.

e The Move effect moves the panel on the x-axis.

r The Parallel effect runs a Rotate3D and Move effect in parallel.

t The buttons trigger the effects.

That was easy! Note that in addition to running effects in parallel with
the Parallel effect, you can also sequence events using a Sequence effect;
see the API docs2 for details.

Now, remember those articles by Chet Haase that I mentioned? Go
read them. Now. No, don’t check your email or Twitter—just do it.

➼ Key points

❂ Effects are nonvisual elements so they’re
added to an fx:Declarations element.

❂ Effects can be run in parallel using Par-
allel or sequenced using Sequence.

❂ Don’t overdo it! Remember when being
able to use multiple fonts in a word pro-
cessor first came out, and certain people
used, say, 10 of them on one page of a
company newsletter? Don’t be that person.

2 http://livedocs.adobe.com/flex/gumbo/langref/mx/effects/Sequence.html#includeExamplesSummary

110 CHAPTER 4 Spark containers, view states, effects, and styling
In this workshop session, you’ll learn how to use CSS to style a Flex 4
application. We’ll see how to use CSS both inline in an MXML file and
in a separate CSS file. Here’s what we’re going to build:

Let’s see the code, starting with the Tester app.

session19/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 xmlns:comp="components.*"
 width="100%" height="100%">
<fx:Style>
 @namespace s "library://ns.adobe.com/flex/spark";
 @namespace mx "library://ns.adobe.com/flex/halo";

 s|Panel {
 color: #FF0000;
 }

SESSION 19 CSS styling

q

w

SESSION 19 CSS styling 111
 mx|Button {
 padding-left: 20;
 }
</fx:Style>
 <fx:Style source="styles.css"/>
 <s:layout>
 <s:BasicLayout/>
 </s:layout>
 <s:HGroup left="10" top="10">
 <s:Button label="A Spark Button"/>
 <mx:Button label="A Halo Button"/>
 </s:HGroup>
 <s:Panel id="poemPanel" title="Styled Poetry!"
 x="50" y="50" width="400" height="400">
 <s:layout>
 <s:VerticalLayout paddingTop="10" paddingLeft="10"/>
 </s:layout>
 <s:Label fontSize="50"
 text="��	 
��
� ��� "/>
 <s:Label text="--Matsuo Basho
The ancient pondA frog leaps inThe sound of the water.
--Donald Keene"/>
 </s:Panel>
</s:Application>

q We need to refer to the namespaces of the Spark and Halo compo-
nents when styling, so that we can style a Spark button differently
than a Halo button. This makes for somewhat odd CSS, but it’s
much better than having Spark buttons called “FxButton.”

w We set a Spark Panel to have a color of red.

e We set a Halo Button to have a paddingLeft of 20 pixels. Note that
innerCap attributes have hyphenated names in CSS.

r We also include an external CSS file (which we’ll define next).

t We create the two buttons that we want to style.

Next, let’s look at the styles.css file.

session19/src/styles.css

@namespace s "library://ns.adobe.com/flex/spark";
@namespace mx "library://ns.adobe.com/flex/halo";

e

r

t

112 CHAPTER 4 Spark containers, view states, effects, and styling
s|Button {
 font-weight: bold;
}

mx|Button {
 font-style: italic;
 font-size: 18;
}

This code listing specifies that Spark buttons have bold text and Halo
buttons have 18 point italic text. Otherwise, the syntax is identical to
the syntax inside an fx:Style block. This is true in general—the CSS
files have the same content as Style elements.

Note that if we just had the
Tester app and we commented
out the reference to this exter-
nal styles.css file, the app
would look like this:

That’s it! Besides making a
subtle and calm haiku look
flashy and garish, we’ve also
used CSS—both inline in
MXML files and in separate
CSS files—to style Flex 4 apps!

In the last two workshop ses-
sions, we’re going to take a
break from the eye candy (or, given my skills, the eye poison) and look
at some more obscure topics: how to view the generated ActionScript 3
code, and the events dispatched during the component lifecycle.

➼ Key points

❂ Styles can be specified inline inside an fx:Style block or in external
CSS files referenced by an fx:Style block. The effects of these style
blocks are cumulative.

❂ Namespaces are used to differentiate Spark and Halo components.

SESSION 20 Peeking behind the MXML curtain 113
We’ve spent the first part of this chapter having fun and building shiny
effects and styles, using the easy-to-use Spark containers. In these last
two workshop sessions, the “ooh, shiny” train is going to come to a
screeching halt as we take an extremely brief look at some of the internals
of what’s really going on in both MXML and in the component lifecycle.

These are both deep topics, which could justifiably be completely omit-
ted from a Hello! book. Certainly, a full, gory-details explanation of
them doesn’t belong here. However, I don’t feel comfortable just skip-
ping them. So, I’m going to show you a preview if you will, and leave
the more complete explanation to the internet.

In this workshop session, we’ll take a brief peek behind the curtain of
magic that is MXML. We’re going to write a trivially simple app,
shown here.

session20/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%">
 <s:TextInput x="5" y="5" id="sourceTI"/>
 <s:TextInput x="5" y="30" id="destTI" text="{sourceTI.text}"/>
</s:Application>

All this app does is bind
the text of the destTI to
the text of the sourceTI,
as shown in the follow-
ing screenshot.

A lot of code is generated for us to make this happen. How does this all
work? Well, a full explanation is beyond the scope of this book, but I
want to point you in the right direction.

SESSION 20 Peeking behind the MXML curtain

114 CHAPTER 4 Spark containers, view states, effects, and styling
First, you can set a compiler flag to keep the ActionScript 3 code that’s
generated by the MXML compiler—recall that MXML is first con-
verted to ActionScript 3 by the MXML compiler, and then this Action-
Script 3 code is compiled into a SWF. So, let’s set the flag to keep this
code around and take a look at it. (Thanks to Peter DeHaan’s blog3 for
this knowledge, which works the same in Flex 4 as it does in his Flex 3
example.)

Right-click on the session20 project and choose Properties. Then,
choose the Flex Compiler option, and add -keep to the additonal com-
piler arguments, as shown in the following screenshot:

3 http://blog.flexexamples.com/2008/08/02/viewing-a-flex-applications-generated-source-code/

SESSION 20 Peeking behind the MXML curtain 115
The next time the project is compiled, there will be a generated folder
created under your src folder. Take a look at src/generated/Tester-
generated.as, _Tester_FlexInit-generated.as, _Tester-binding-
generated.as, and _TesterWatcherSetupUtil.as if you want to see
what your Tester app turned into.

Another thing to do is to set a breakpoint (by double-clicking in the
margin) on the line with the binding, and then run the app in the
debugger by choosing Run > Debug > Tester (or by clicking the icon of
the bug in the toolbar). You can then spelunk through all the data
binding code in the Flex SDK to your heart’s content. This will give
you some appreciation of how much code is involved in the implemen-
tation of the Binding mechanism, and why it’s worth keeping that over-
head in mind for large, complicated user interfaces as a potential source
of performance problems.

Finally, I’ll remind you of the one-hour “Diving in the Flex Data Bind-
ing Waters”4 presentation by Michael Labriola. Go watch it now if you
haven’t already done so.

➼ Key points

❂ Flex, and especially data binding, isn’t magic—a lot of code is
involved.

❂ One of the best ways to learn how to code Flex after you’ve gradu-
ated beyond the introductory books is to read the SDK source.

❂ An easy way to read the SDK source is to debug into the files, or to
just open them. You can Command-click on any of the framework
classes that you’re using in your source code (or right-click and
choose Goto Definition, or [on Windows] type F3 when the cursor is
on a class name).

4 http://www.slideshare.net/michael.labriola/diving-in-the-flex-data-binding-waters-presentation?src=embed

116 CHAPTER 4 Spark containers, view states, effects, and styling
Having just spent the previous session digging around in generated
code, in this workshop session—the last of this chapter—we’ll take a
brief look at the Flex 4 component lifecycle.

First, one of the reasons that this session can
be brief is that there are some really good
resources online. First, there is the white-
paper5 on the new component lifecycle.
Second, Brad Umbaugh and R.J. Owen of
EffectiveUI posted some great slides6 about
the Flex lifecycle, which is essential reading.
(I first saw a version of this talk delivered by Doug
Schmidt, also of EffectiveUI, at the Vancouver Flash
Platform Meetup Group.) Also, Mrinal Wadhwa posted
slides from a presentation7 about the Flex 4 component
lifecycle. Both presentation references Ted Patrick’s
famous “Elastic Racetrack” post8 about the workings of
the Flash Player from four years ago, which is still conceptually useful
today (even though the internals of the Flash Player have changed
since then).

I recommend you put this book down and go follow those links (and fol-
low your nose from there), either right now or at the end of this session.

In this session we’ll build a tiny app that shows a number of different
events that happen when a component is created and destroyed. This
way, you know that they’re there and that you can handle them. This is
a complex topic that could be the subject of several book chapters if
covered thoroughly; we’ll stick with the basics here. (This isn’t “Rome
in a Day,” it’s “Rome in an Hour, on a Vespa.”)

SESSION 21 The Spark component lifecycle

5 http://opensource.adobe.com/wiki/display/flexsdk/Gumbo+Component+Architecture#GumboCompo-
nentArchitecture-NewComponentLifecycle

6 www.slideshare.net/rjowen/adobe-flex-component-lifecycle-presentation
7 http://weblog.mrinalwadhwa.com/2009/06/21/flex-4-component-lifecycle
8 www.onflex.org/ted/2005/07/flash-player-mental-model-elastic.php

SESSION 21 The Spark component lifecycle 117
In this session we’re going to build the following application:

Clicking the button removes it and triggers the elementRemove event, as
shown in the following screenshot (note the last line in the TextArea).

So, let’s see the code.

session21/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 preinitialize="onPreinitialize(event)"
 initialize="onInitialize(event)"
 creationComplete="onCreationComplete(event)"
 elementAdd="onElementAdd(event)"
 elementRemove="onElementRemove(event)"
 applicationComplete="onApplicationComplete(event)"

q

118 CHAPTER 4 Spark containers, view states, effects, and styling
 width="100%" height="100%">
<fx:Script><![CDATA[
 import spark.events.ElementExistenceEvent;
 import mx.events.FlexEvent;

 [Bindable]
 private var _text:String = "";

 protected function onPreinitialize(event:FlexEvent):void {
 _text += "onPreinitialize: " + event + "\n";
 }

 protected function onInitialize(event:FlexEvent):void {
 _text += "onInitialize: " + event + "\n";
 }

 protected function onCreationComplete(event:FlexEvent):void {
 _text += "onCreationComplete: " + event + "\n";
 }

 protected function onApplicationComplete(
 event:FlexEvent):void {
 _text += "onApplicationComplete: " + event + "\n";
 }

 protected function onElementAdd(event:ElementExistenceEvent):
 void {
 _text += "onElementAdd: " + event + ", target = " +
 event.element + "\n";
 }
 protected function onElementRemove(
 event:ElementExistenceEvent):void {
 _text += "onElementRemove: " + event + "\n";
 }
]]></fx:Script>
 <s:layout>
 <s:VerticalLayout paddingLeft="10" paddingTop="10"
 paddingRight="10" paddingBottom="10"/>
 </s:layout>
 <s:Button id="kenny" label="Mmmph!"
 click="removeElement(kenny)"/>
 <s:TextArea id="debugTA" text="{_text}" width="100%"
 height="100%"/>
</s:Application>

w

e

r

SESSION 21 The Spark component lifecycle 119
q We add handlers for the different events dispatched by the applica-
tion. The applicationComplete event is defined by the Application
class; the rest are inherited from the UIComponent class. Again,
there’s nothing special about the onPreinitialize function name;
onFooBar is just a naming convention for functions that handle foo-
Bar events.

w We create a bindable _text variable to store debugging information
in. We don’t just set the debugTA text directly, since the preinitialize
Event happens before the debugTA even exists! (Try it and see your
app explode. I’m serious: do this. You can learn a lot about Flex by
trying to deliberately break your applications and see what hap-
pens in the traces when you succeed—and in learning what hap-
pens when something you think will break a Flex app doesn’t.)

e Clicking the kenny button calls the removeElement method of the
application (inherited from SkinnableContainer) to remove the kenny
button.

r The debugTA TextArea has its text property bound to the _text variable.

That’s it!

Running the app, we see the events printed in the order in which they
occur. We see that preinitialize happens before the Button and the Tex-
tArea are added to the app, and that the initialize, creationComplete,
and applicationComplete events then take place.

➼ Key points

❂ A number of events are broadcast when Flex components are cre-
ated and removed. These events can bubble up the component con-
tainment hierarchy when their bubbles property is set to true. Events
can also contain custom data, as you’ll see in chapter 7 when we
build a full Flex application using the Cairngorm application frame-
work for Flex.

❂ To understand the component lifecycle in depth, go to www.
slideshare.net/rjowen/adobe-flex-component-lifecycle-presentation.

120 CHAPTER 4 Spark containers, view states, effects, and styling
What’s next?
This chapter has been a whirlwind tour of Spark containers, layouts,
view states, and CSS styling, as well as a brief glance at some complex
topics that need chapters longer than this one all to themselves to be
fully understood.

In the next chapter we’re going to switch gears from Spark and look at
Halo. Recall that in Session 5 we looked briefly at Halo? You probably
got the sense that there was this whole other way of writing Flex 4
apps, but that it was somewhat quaint and that we didn’t want to talk
about it. Well, in Flex 4 it turns out that Halo is still relevant after all.
In the next chapter we’ll take a tour of some of the Halo components
that are still relevant to you as a Flex 4 developer—either they don’t
have Spark equivalents or they’re more functional in some important
way than their current Spark equivalents.

Chances are you’ll be using this subset of Halo components every
day—OK, well, maybe every other day—as a Flex 4 developer, so the next
chapter is essential information.

5
Halo Flex 4: Using DataGrid,
Navigator Containers, and
Popups

ay back in Session 5 we discussed that there was a namepsace (library://
ns.adobe.com/flex/halo) full of the old Halo components that were used in
Flex 1 through Flex 3. I showed an example of an app built using only

Halo components. It was simple, featuring containers like
HBox and Panel and controls like List and Button. Since
they’re in a different namespace, these Panel, List, and
Button classes are different from the Spark ones. This
separate namespace is a bit awkward at

first but is far preferable to the original
idea, which was to use a horrible Fx prefix

on the new Spark components.

We left Halo at that point and we haven’t revisited
it—until now. In this chapter we’ll take a tour of
some of the Halo components that are still relevant
to you as a Flex 4 developer. By still relevant, I mean that

they either don’t have Spark equivalents or that they’re
more functional in some important way than their current Spark
equivalents. Although you can read a lot of articles about this

W

121

122 CHAPTER 5 Halo Flex 4: Using DataGrid, Navigator Containers, and Popups
topic, one masterful article stands out as far superior to the others: Joan
Lafferty’s “Differences between Flex 3 and Flex 4 beta.”1 Joan is the
Flex SDK Quality Lead, and that article is not only authoritative but
also extremely readable.
Anyway, regarding the tour of Halo components we’re taking in this
chapter: we’ll be hitting the highlights only. So it isn’t an exhaustive
tour; it’s more like a “Halo in a Day” kind of tour. We’ll be skipping
Halo components like the AdvancedDataGrid, which are too, ahem,
advanced for a “Hello” book. We’ll also be skipping components like
Tree, Menu, and MenuBar, which are used less often and also are well doc-
umented in the online API docs.2

So, what are we going to cover? First, we’ll explore classes such as
DataGrid that have no Spark equivalents and that are still essential tools
in the Flex 4 developer’s tool belt. Next, we’ll cover the Halo navigator
containers, since they’re still very handy and simple to use in cases
where you don’t mind your Flex app looking like a Flex app. (Also,
there’s a lot of Flex 2 and Flex 3 code in existence, so even if you’re not
going to use these navigator containers in new code you should under-
stand how they work.) Finally, we’ll describe how to create pop-up
windows using the PopUpManager, and we’ll see how to use the Alert class.
By the end of this chapter, you should know what Halo options are
available to you if the Spark solution isn’t working out the way you
want it to. Also, you’ll understand how to use the Halo navigator con-
tainers. This is a short chapter, since I’m not trying to reproduce the
API docs in this book and since the new Spark components are the pre-
ferred way of building most new components. However, at least until
Flex 5, Halo should remain an important tool in your proverbial tool
belt, so it’s worth knowing.

FLEX 4 IS EVOLVING

This book was written using the Beta 1 version of Flex 4. However,
we delayed going to press until the Beta 2 version was released in

1 www.adobe.com/devnet/flex/articles/flex3and4_differences_print.html
2 See http://livedocs.adobe.com/flex/gumbo/langref/mx/controls/Tree.html, http://livedocs.adobe.com/

flex/gumbo/langref/mx/controls/Menu.html, and http://livedocs.adobe.com/flex/gumbo/langref/mx/
controls/MenuBar.html for the LiveDocs for these classes.

http://livedocs.adobe.com/flex/gumbo/langref/mx/controls/Menu.html
http://livedocs.adobe.com/flex/gumbo/langref/mx/controls/MenuBar.html

SESSION 22 List and DataGrid 123
October 2009, so that we could update any code that changed. (It’s a
good thing too, or there would have been s:SimpleText everywhere
instead of s:Label, and the code would not have compiled!) Adobe
has improved Spark for Beta 2, and presumably will continue to
improve Spark before the final release of Flex 4. However, this chap-
ter is still essential reading: most Flex developers will encounter Flex
3 (and earlier) code in their career, so understanding Halo is essential
to being a skilled Flex developer. You can check manning.com/
armstrong3 and helloflex4.com for updates to the book code once the
final version of Flex 4 is released (estimated Q1 2010).

In this workshop session, you’ll learn how to use
the Halo List and DataGrid classes. The Halo
DataGrid class is an extremely useful way of dis-
playing multiple-column data, as shown in the
accompanying figure. Furthermore, the Halo

DataGrid is without a Spark equivalent—so if you
have any tabular data in your application, you need

to know how to use it.

But why are we looking at the Halo List? Yes, there’s a
Spark List, but the Halo List is still useful since (in this
Flex 4 beta version, anyway) the Spark List doesn’t do

word wrapping automatically, so there are cases where it’s a lot easier
to just use a Halo List.

First, we’re going to create a Task model object to display in our Halo
List and DataGrid classes.

sessionX/src/model/Task.as

package model {
 [Bindable]
 public class Task {
 public var name:String;
 public var notes:String;

SESSION 22 List and DataGrid

q

124 CHAPTER 5 Halo Flex 4: Using DataGrid, Navigator Containers, and Popups
 public var due:Date;

 public function Task(
 name:String = "", notes:String = "", due:Date = null) {
 this.name = name;
 this.notes = notes;
 this.due = due == null ? new Date() : due;
 }
 }
}

I’m introducing something new here, and marking the Task class itself
as Bindable q, instead of the individual properties. Using this annota-
tion on the class makes all of the properties in the class Bindable. Why
didn’t I show you this before? Simple: it’s too tempting to abuse, since
it saves typing. Since Bindable properties have considerable runtime
overhead, you need to really use this annotation sparingly. Further-
more, even if it makes sense for the properties you have on a class, the
maintenance programmer who inherits your class may very well add
properties that should not be Bindable. If this happens, will he or she
really remove the annotation and add it to all the individual properties?

So: don’t use [Bindable] on a class as a lazy shortcut in anything but the
smallest of apps!

The Task class has a constructor that sets all the properties with any of
the optional parameters w passed in. By now, this code should be
straightforward.

Next, we create a Tester app that illustrates the use of the Halo List
and DataGrid, as promised. Our app looks like this:

w

SESSION 22 List and DataGrid 125
Note that the List on the left has nice alternating row colors, rows that
have variable height and word wrapping. The DataGrid on the right has
nicely formatted dates and sortable columns (just click on their head-
ers). Be advised that sorting the DataGrid sorts the underlying ArrayCol-
lection, which affects the List as well. If you want sortability without
affecting the ArrayCollection, you can wrap its source Array in a
ListCollectionView object (or in another ArrayCollection), so sorting will
apply to that new ArrayCollection and not to this ArrayCollection.

Anyway, let’s look at the code.

sessionX/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%">
<fx:Script>
<![CDATA[
 import mx.collections.ArrayCollection;
 import model.Task;

 [Bindable]
 private var _tasks:ArrayCollection = new ArrayCollection([
 new Task("Learn Flex 4", "This book is helping!"),
 new Task("Lose weight", "Exercise? Fad diet? Both?"),
 new Task("Buy groceries", "Including vegetables this time!"),
 new Task("Eat"), new Task("Drink"), new Task("Be Merry")]);

 private function formatTask(task:Task):String {
 return task.name +
 (task.notes == "" ? "" : (" (" + task.notes + ")")) +
 ", due on " + dateFormatter.format(task.due) + ".";
 }

 private function formatDate(item:Object,
 column:DataGridColumn):String
 {
 var task:Task = item as Task;
 return task == null ? "" : dateFormatter.format(task.due);

q

w

e

126 CHAPTER 5 Halo Flex 4: Using DataGrid, Navigator Containers, and Popups
 }
]]></fx:Script>
<fx:Declarations>
 <mx:DateFormatter id="dateFormatter" formatString="YYYY-MM-DD"/>
</fx:Declarations>
 <s:layout>
 <s:HorizontalLayout paddingLeft="10" paddingTop="10"
 paddingBottom="10" paddingRight="10"/>
 </s:layout>
 <mx:List dataProvider="{_tasks}" labelFunction="formatTask"
 alternatingItemColors="[#EEEEEE, #FFFFFF]"
 variableRowHeight="true" wordWrap="true"
 width="250" height="150"/>
 <mx:DataGrid width="100%" height="150" dataProvider="{_tasks}">
 <mx:columns>
 <mx:DataGridColumn headerText="Name" dataField="name"
 width="150"/>
 <mx:DataGridColumn headerText="Due" dataField="due"
 width="100" labelFunction="formatDate"/>
 <mx:DataGridColumn headerText="Notes" dataField="notes"/>
 </mx:columns>
 </mx:DataGrid>
</s:Application>

This code creates an ArrayCollection of Tasks q and assigns it to _tasks.
This ArrayCollection is used by both the Halo List t and DataGrid y
classes, so changes to its sort (made when clicking on the DataGrid
header) affect both views. Next, we create formatTask w and formatDate
e functions, which are the labelFunctions of the List t, and the Due
column u of the DataGrid respectively. These functions are responsible
for formatting whatever data from the individual row in the data pro-
vider is desired into a string that will be presented in the DataGrid column
or List. Finally, note the use of a DateFormatter r to format dates—and
that it uses the unambiguous YYYY-MM-DD format, not the MM/DD/
YYYY format, which is mistakable for DD/MM/YYYY. The next chap-
ter covers formatters at great length, so for now just know that format-
ters are useful components that simplify the task of formatting data.

That’s it! We’ve seen how to use the Halo List and DataGrid. Given
what the DataGrid class in particular accomplishes, there’s remarkably
little code to write.

r

t

y

u

SESSION 23 TabNavigator, ViewStack, and Accordion 127
➼ Key points

❂ The Halo List is still useful, since out of the box it’s nicer than the
Spark List for common cases where you just want to display text
nicely. (It’s less customizable, however, and will probably eventually
be obsolete.)

❂ The Halo DataGrid is an extremely useful way of showing multicolumn
data. Actually, since there’s no Spark equivalent, it’s the only way.

❂ Both the List and DataGridColumns can have labelFunctions that can
format their data nicely. Note the different method signatures
required, however.

In this workshop session, we’ll continue our tour of Halo. Having dis-
cussed some of the most useful Halo controls, let’s now switch gears
and take a tour of the Halo navigator containers. As of Flex 4 Beta 1,
there are no direct Spark equivalents for these either, and frankly, I

miss them. Presumably this is because the new
improved view state syntax means that view states
are a lot more usable now than they were, so you
can just roll your own. In many ways, it’s a
shame there’s no Spark equivalent for these con-

tainers (even one implemented using view states),
since many times you don’t care about being funky

and custom and you just want some tabs.

So, in this section you’ll learn what’s arguably the most
straightforward way to rapidly create the layout and navi-
gational flow of a Flex 4 application: using Halo navigator
containers. As you read the code, you’ll probably be

struck by how simple and elegant it is. If only tabs were allowed to
always look like tabs…

Keep in mind that using these Halo containers is less customizable by
your designer than just using Spark throughout, so using these Halo

SESSION 23 TabNavigator, ViewStack, and Accordion

128 CHAPTER 5 Halo Flex 4: Using DataGrid, Navigator Containers, and Popups
containers may not always be appropriate. Furthermore, they’ll pre-
sumably be deprecated in some future version of Flex, so choose wisely.

Anyway, what we’re build-
ing looks like the following
screen:

Clicking the Accordion but-
ton in the LinkBar selects
the Accordion child of the
ViewStack, shown here. An
Accordion is like the Micro-
soft Outlook bar, which
shows one child at a time,
has a vertical orientation, and shows a nice smooth animated transition
when switching between children. The cool factor makes up for the
slight waste of space, but the Accordion shouldn’t have too many chil-
dren or there’s no space for the actual content of each.

And without further ado, let’s see the code.

session23/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"

SESSION 23 TabNavigator, ViewStack, and Accordion 129
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%"
 initialize="init()">
 <s:layout>
 <s:VerticalLayout paddingLeft="10" paddingTop="10"
 paddingRight="10" paddingBottom="10"/>
 </s:layout>
 <mx:Panel width="100%" height="100%" title="I See Your Halo...">
 <mx:LinkBar dataProvider="{vs}" width="100%"/>
 <mx:ViewStack id="vs" width="100%" height="100%">
 <mx:TabNavigator width="100%" height="100%" paddingLeft="5"
 label="Tab Navigator">
 <mx:VBox label="One" width="100%" height="100%">
 <mx:Label text="Here's a button:"/>
 <mx:Button label="A Halo Button"/>
 </mx:VBox>
 <mx:VBox label="Two" width="100%" height="100%">
 <mx:Label text="Shameless self-promotion:"/>
 <mx:Image
source="http://www.manning.com/armstrong/armstrong_cover150.jpg"/>
 </mx:VBox>
 <mx:VBox label="Three" width="100%" height="100%">
 <mx:Label text="Stuff inside Three"/>
 </mx:VBox>
 </mx:TabNavigator>
 <mx:Accordion width="100%" height="100%" label="Accordion">
 <mx:VBox label="Four" width="100%" height="100%">
 <mx:Label text="Stuff inside Four"/>
 </mx:VBox>
 <mx:VBox label="Five" width="100%" height="100%">
 <mx:Label text="Stuff inside Five"/>
 </mx:VBox>
 <mx:VBox label="Six" width="100%" height="100%">
 <mx:Label text="Stuff inside Six"/>
 </mx:VBox>
 </mx:Accordion>
 </mx:ViewStack>
 </mx:Panel>
</s:Application>

The LinkBar q has its dataProvider set to the ViewStack w, meaning
that the LinkButtons are created based on the label attributes of the

q
w

e

r

t

130 CHAPTER 5 Halo Flex 4: Using DataGrid, Navigator Containers, and Popups
TabNavigator e and Accordion t children of the ViewStack w. Finally,
note that the mx:Image r can have its source be a URL, even an exter-
nal site on the internet.

WARNING The Halo TabNavigator and Accordion contained VBox children.
There’s actually an underlying requirement here: Halo navigator
containers (like ViewStack, TabNavigator, and Accordion) can only
contain Halo container children (like VBox, HBox, Box, or Canvas). You
can’t stick a Spark Group directly inside one of them, just like you
can’t stick a Spark or Halo TextInput directly inside one of them.

We’ve seen how the Halo navigator containers are useful and simple to
use. However, they require Halo container children, which is worth
keeping in mind. That, along with the fact that they’re harder to skin,
means that for applications where visual design is important and where
“looks like a Flex app” is a bug instead of a feature, the Spark view
states and Groups are probably a safer bet in the long run despite the
added effort. Still, it’s good to know how to use the Halo navigator
components: sometimes a tab is just a tab.

➼ Key points

❂ The ViewStack, TabNavigator, and Accordion containers each show only
one of their children at a time. The difference is the way you navi-
gate between them, hence “navigator” containers.

❂ The labels shown in the ViewStack, TabNavigator, and Accordion con-
tainers are derived from the label property of the Halo containers
they contain.

❂ Using a LinkBar in conjunction with a ViewStack is typical. A LinkBar
can have a direction of either horizontal (the default) or vertical.

SESSION 24 Alert.show and the PopupManager 131
In this workshop session, you’ll learn how to use
the PopUpManager to show TitleWindows. When a
TitleWindow is used with its modal property set to
true, the combination gives your application the
equivalent of the “lightbox” effect you see Web
2.0 applications using in JavaScript, in which
the underlying UI is dimmed and disabled. (Of
course, the ironic thing is that those applications
are imitating a desktop UI paradigm.)

Continuing the modal goodness, we’ll see how to use Alert.show to dis-
play short modal messages to the user. Alert.show is the refuge of both
UI scoundrels and developers who can’t be bothered to learn how to
use either the debugger or trace statements.

As an added bonus, I’ll show you the Halo RichTextEditor, since it’s an
efficient way of editing rich text and since there’s no Spark equivalent.
(Of course, the HTML code that it outputs leaves a lot to be desired; to
fix this, you can subclass it and override this behavior using an approach
found at http://code.google.com/p/flex-richtexteditor-html-utils/.)

In this workshop session, we’re going to build an Application that has
two Buttons. The first one shows an Alert box; the second one shows a
TitleWindow, as you can see here:

SESSION 24 Alert.show and the PopupManager

132 CHAPTER 5 Halo Flex 4: Using DataGrid, Navigator Containers, and Popups
Closing the TitleWindow by clicking on the X will set the text of a RichEd-
itableText Spark control (I chose it for variety; we could’ve used a
Label) to the HTML produced by the RichTextEditor. You can see this in
the following screenshot:

Finally, when clicked the Show
Alert button shows an Alert dialog:

Enough talking! Let’s see the code.

session24/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%"
 initialize="init()">
<fx:Script><![CDATA[
 import mx.events.CloseEvent;
 import mx.controls.Alert;
 import mx.managers.PopUpManager;

 private function showAlert(event:MouseEvent):void {
 Alert.show('That was easy!', 'Alert!');
 }

q

SESSION 24 Alert.show and the PopupManager 133
 private function showPopUp(event:MouseEvent):void {
 var titleWindow:TestTitleWindow = TestTitleWindow(
 PopUpManager.createPopUp(this, TestTitleWindow, true));
 titleWindow.x = 50;
 titleWindow.y = 50;
 titleWindow.addEventListener(CloseEvent.CLOSE, onCloseTTW);

 }

 private function onCloseTTW(event:CloseEvent):void {
 var ttw:TestTitleWindow = TestTitleWindow(event.target);
 richEditableText.text = ttw.richTextEditor.htmlText;
 }
]]></fx:Script>
 <s:layout>
 <s:VerticalLayout paddingLeft="10" paddingTop="10"
 paddingRight="10" paddingBottom="10"/>
 </s:layout>
 <s:Button label="Show Alert" click="showAlert(event)"/>
 <s:Button label="Show TestTitleWindow" click="showPopUp(event)"/>
 <s:Label text="HTML from TestTitleWindow RichTextEditor:"
 fontWeight="bold"/>
 <s:RichEditableText id="richEditableText" width="100%"
 height="100%"/>
</s:Application>

q Alert.show takes parameters for the text, title, and other values.

w PopUpManager.createPopUp shows a TitleWindow and returns a refer-
ence to the new instance. The third constructor parameter specifies
whether it’s modal. Note that the popup doesn't get displayed right
away—you can add the event listeners and position things, all
without worrying that there will be display artifacts. This is unique
to the Flex/Flash architecture and may surprise you if you have a
background in other UI frameworks.

e We add the onCloseTTW function as an EventListener for the
CloseEvent, which is triggered when the user clicks the close box on
the window frame.

r We set the text property of the richEditableText to the htmlText
property of the RichTextEditor.

w

e

r

134 CHAPTER 5 Halo Flex 4: Using DataGrid, Navigator Containers, and Popups
Note that while Alert.show q is quick and easy,
using PopUpManager.createPopUp w requires having
a subclass of TitleWindow to show. Also, note that
as a habit we cast the instance that’s returned by
createPopUp to the specific class—in our case
TestTitleWindow—because then we can set its
properties easier. (The createPopUp method
returns an IFlexDisplayObject, which may not
have the properties you need to set.) The onClos-

eTTW r function is added as an EventListener e for the CloseEvent that’s
triggered when the window frame close button (the little X in the top-
right corner) is clicked.

Finally, we create the TestTitleWindow subclass of TitleWindow.

sessionX/src/TestTitleWindow.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:TitleWindow xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 layout="vertical" title="TestTitleWindow"
 width="600" height="400" showCloseButton="true"
 close="PopUpManager.removePopUp(this);">
 <fx:Script>
 <![CDATA[
 import mx.managers.PopUpManager;
]]>
 </fx:Script>
 <s:Group width="100%">
 <s:Label text="You can put a lot in a TitleWindow!"/>
 </s:Group>
 <mx:RichTextEditor id="richTextEditor" width="100%" height="100%"/>w
</mx:TitleWindow>

q Set showCloseButton to get the window frame close button, and handle
the close Event to close the TitleWindow. Since all I want to do is call
the PopUpManager.removePopUp method, I just put the method call as the
value of the close attribute, and the appropriate handler is created.
(Yes, that’s cool. My copy editor couldn’t believe I was handling the event either.)

q

What’s next? 135
w The RichTextEditor is nice, but if you work with it for a while you’ll
wish it was nicer (like, say, Buzzword).

The TestTitleWindow uses the PopUpManager.removePopUp method q to close
itself when the window frame close button is clicked. The RichTextEditor
instance sticks around when closed, so we can get its htmlText w.

As you’ve seen, dropping in a RichTextEditor requires very little code.
Also, note that we can use Spark Groups as well as Halo components
inside the TitleWindow container.

➼ Key points

❂ The PopUpManager can show TitleWindow subclasses, which you typi-
cally define in MXML.

❂ Alert.show is a quick and easy way to show modal dialog messages.

What’s next?
This was a quick tour through the most important Halo components
that have no Spark equivalents. If you work in a company that employs
a lot of designers, it could very well be that the only Halo component
you use regularly is the DataGrid. Most of the other Halo components
we’ve seen in this chapter have Spark alternatives, but for displaying
tabular data in Flex the DataGrid is the only viable option. However, if
you’re building apps that are allowed to look like Flex apps (especially
internal apps for, say, company intranets), you’ll find that the Halo
navigator containers are a good choice for the navigation within your
Flex 4 apps.

In the next chapter, we’ll switch gears a bit and cover Flex forms,
including how to use formatters and validators. Like it or not, almost
everyone building Flex applications ends up building a lot of forms, so
understanding how formatters and validators work is essential. Fur-
thermore, the way that Flex forms are laid out is still done using two
specialized Halo layout containers that we didn’t discuss in this chap-
ter: Form and FormItem. So, in chapter 6 we’ll describe how to use those
as well, and Halo’s relevance lives on…

6
Building user-friendly forms
using Flex formatters and
validators

n this chapter, you’ll learn how to use the formatters and validators that
make building data entry forms in Flex such a pleasure—well, at least
compared to everywhere else. Flex formatters are used primarily to
format data that’s being displayed to the user in controls like the DataGrid
you saw in chapter 5. Flex formatters can also be used to take user input
and turn it into correctly formatted input. Flex validators are used to
validate user input and display validation messages when the user input
isn’t correct.

The API documentation for formatters and validators is excellent in many
regards; however, one area it has always been lousy at is showing how to
use formatters and validators together on the same input controls that the
user is using. There’s a good reason for this: it’s a bit tricky to do well!
However, if you care about making your forms as usable as possible, this
is the road you’ll inevitably end up going down. So, if you do, the time
this chapter could save you should alone be worth the book price.

Ever since Flex 1.0, the support for formatting has been good, and the
support for validation has been better. The biggest improvement since the

I

136

137
early days of Flex is that validator classes can now
have id properties and that you can bind to their

properties. So, building apps that integrate for-
matting and validation on the same components is easier
now than it once was.

We’ll start by building a small toy example that uses the
built-in Flex formatters and validators in a straightfor-
ward way. Our goal is to see how formatters and valida-

tors work without extra work on our part. Then, we’ll dive in and build
a full-fledged AddressForm that will show how formatters and validators
can be used together in real-world situations. This task will require
some effort on our part: the AddressForm is about 180 lines of code, so
it’s a bit more complex than the examples we’ve seen so far. This is fine,
however: as we’re concluding the stand-alone workshop sessions in
this chapter, it’s good to end with a bang, not a whimper. Furthermore,
form code may seem boring, but it’s a meal ticket for many Flex pro-
grammers. Also, there are lots of ways to shoot yourself in the foot with
data binding when integrating formatting and valida-
tion, so this is a very relevant chapter.

Besides, in the next chapter we take the sustained
example approach even further, spending some 40
pages building a Twitter + Yahoo! Maps mashup.
So, wading through a few pages of form code will
serve as an appetizer for the code feast ahead, if
you wish. Finally, we’ll be using the Form and FormItem
Halo layout components in the AddressForm. So, we haven’t
seen the last of Halo.

First, however, let’s build the small toy example that uses
the built-in Flex formatters and validators that I promised.

138 CHAPTER 6 Building user-friendly forms using Flex formatters and validators
In this workshop session, we’ll start by seeing
what the built-in formatters and validators in
Flex can do. At this point I could launch into a
huge example featuring all the standard Flex
formatters and validators at once, but they
essentially all function the same way (except
for CreditCardValidator; see the API documen-
tation for details).

All formatters are subclasses of mx.format-

ters.Formatter. The subclasses of Formatter that
come with Flex 4 are CurrencyFormatter, Date-
Formatter, NumberFormatter, PhoneFormatter, and

ZipCodeFormatter. The Formatter class defines a format() method, which
must be overridden by its subclasses.

Similarly, all validators are subclasses of mx.validators.Validator,
which implements the ability to make required the field it’s validating
by setting the required property of the Validator to true. The following
are the different Validator subclasses included in Flex 4: CreditCardVal-
idator, CurrencyValidator, DateValidator, EmailValidator, NumberValidator,
PhoneNumberValidator, RegExpValidator, SocialSecurityValidator,
StringValidator, StyleValidator, and ZipCodeValidator.

So, since they’re essentially all the same, in this workshop session we’ll
pick one formatter and one validator to look at: CurrencyFormatter and
CurrrencyValidator. I selected these since showing how they interact is
straightforward, and since formatting money is something you may
very well want to do. We’ll build a small app that uses both on the same
Spark TextInput class. We’ll see many more formatters and validators in
the next session when we build an address form.

The app we’re going to build
in this session looks like this
when we’re typing text into
the TextInput:

SESSION 25 Formatters and validators

SESSION 25 Formatters and validators 139
Once we focus out (by pressing
the Tab key), the CurrencyFor-
matter formats the text, result-
ing in the following screen:

If we type garbage into the field and focus out, we preserve the garbage
in question so that our validator shows the correct message:

This is a lot of functionality, and it would take a lot of code to accom-
plish this in some frameworks. Let’s see the Flex code for this.

session25/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%">
<fx:Script><![CDATA[
 protected function moneyTIFocusOutHandler(event:FocusEvent):void {q
 var formattedText:String =
 currencyFormatter.format(moneyTI.text);
 if (formattedText != "") {
 moneyTI.text = formattedText;
 }
 }
]]></fx:Script>
<fx:Declarations>
 <mx:CurrencyFormatter id="currencyFormatter"
 precision="2" rounding="nearest"/>
 <mx:CurrencyValidator id="currencyValidator" precision="2"
 source="{moneyTI}" property="text" triggerEvent="focusOut"/>
</fx:Declarations>
 <s:layout>
 <s:VerticalLayout paddingTop="10" paddingLeft="10"/>
 </s:layout>
 <s:TextInput id="moneyTI"
 focusOut="moneyTIFocusOutHandler(event)"/>

w

e

r

t

140 CHAPTER 6 Building user-friendly forms using Flex formatters and validators
 <s:Button label="Really, I'm just here for the focus..."/>
</s:Application>

q This function formats the text on focusOut.

w We only assign the text to the moneyTI.text if formatting succeeded.

e The CurrencyFormatter is set to round to the nearest penny.

r The CurrencyValidator is set to validate the text property of the moneyTI.

t Here we handle the focusOut Event of the moneyTI TextInput.

Note that if we didn’t use the guard statement w inside the moneyTIFo-
cusOutHandler q, the currencyFormatter e would assign the text of the
moneyTI t in all cases. This result would be less than satisfactory, since
even though the CurrencyValidator r would show an error message, it
would be the error for having typed nothing (because the CurrencyFor-
matter would be triggered
before the CurrencyValidator).
The following screenshot
shows this:

That’s it! We’ve seen how to use formatters and validators together,
and you now know that with a bit of care in checking the formatter
output you can produce a very usable UI.

➼ Key points

❂ Formatters are used to format text nicely.
❂ Validators are used to validate whether a value

matches the criteria defined by the validator.
Typically, they’re used with TextInputs, but (as
we’ll see in the next session) they can also be
used with things like DropDownLists.

❂ Formatters return the empty string when they
fail, so be sure to check for that before using
their value somewhere. Otherwise, you’ll be
validating the wrong thing.

❂ You can write your own custom formatters and
validators, as we’ll see in the next section.

SESSION 26 Real-world forms, formatters, and validators 141
In this workshop session, we’ll dive deeper into formatters and valida-
tors, building an AddressForm that’s as close to production code as you’ll
get in a book. Of course, in the real world things aren’t as easy as in toy
examples, so this workshop session won’t be a toy either. We’ll use a
number of validators in this example, specifically a NumberValidator,
RegExpValidator, StringValidator, and ZipCodeValidator. We’ll also use
the ZipCodeFormatter class. This table shows how we’ll use these classes
in this session:

Here’s the app we’re build-
ing in this workshop session:

We’re building a reusable
AddressForm component, an
Address to use in it, and a Tes-
ter app to demonstrate
switching between Addresses
and show how the Address-
Form correctly responds.
(Like all the code in this
book, the AddressForm is MIT-
licensed, so you can use it in
your own commercial apps.)

SESSION 26 Real-world forms, formatters, and validators

Class Purpose in this session

NumberValidator Validating that DropDownLists have selected values

RegExpValidator Performing customized validation of Canadian postal codes

StringValidator Validating that the Street Address and City fields have the mini-

mum amount of text in them

ZipCodeValidator Validating US zip codes

ZipCodeFormatter Formatting US zip codes and Canadian postal codes

142 CHAPTER 6 Building user-friendly forms using Flex formatters and validators
As shown in the following
screen, when you click an
Address in the top List, you
populate the AddressForm

with the Address you
selected.

I’ll show screenshots of how
this app behaves as we go
into code; for now, let’s start
by looking at the Tester app.

session26/src/Tester.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 xmlns:comp="components.*"
 width="100%" height="100%">
<fx:Script><![CDATA[
 import mx.controls.Alert;
 import mx.collections.ArrayCollection;
 import model.Address;

 [Bindable]
 private var _addresses:ArrayCollection = new ArrayCollection([
 new Address("1944 S El Camino Real", "", "San Mateo",
 "CA", "USA", "94403"),
 new Address("788 Denman Street", "", "Vancouver",
 "BC", "Canada", "V6G 2L5"),
 new Address("25 Oxford Street", "", "London",
 "", "UK", "W1D 2DW"),
 new Address("21 Water Street", "#400", "Vancouver",
 "BC", "Canada", "V6B 1A1")]);

 protected function submitClickHandler(event:MouseEvent):void {
 if (addressForm.validateAndSave()) {
 Alert.show("I can haz credit card next?", "Address Valid!");

q

w

SESSION 26 Real-world forms, formatters, and validators 143
 } else {
 Alert.show("I haz errors", "Oh Noes!");
 }
 }

 private function enterNewAddress():void {
 addressList.selectedItem = null;
 }
]]></fx:Script>
 <s:layout>
 <s:VerticalLayout paddingLeft="10" paddingTop="10" gap="5"/>
 </s:layout>
 <s:List id="addressList" dataProvider="{_addresses}"
 width="380" height="60"/>
 <s:Button label="Enter New Address" click="enterNewAddress()"/

>
 <s:Panel title="Address">
 <s:layout>
 <s:VerticalLayout paddingLeft="5" paddingTop="5" gap="10"/>
 </s:layout>
 <comp:AddressForm id="addressForm"
 address="{addressList.selectedItem}"/>
 </s:Panel>
 <s:Button label="Submit" click="submitClickHandler(event)"/>
</s:Application>

q The _addresses ArrayCollection of test Addresses holds the addresses
we’ll use. (The first two are of Santa Ramen and Kintaro Ramen,
both of which I love.)

w The submitClickHandler function validates and saves the Address and
shows an alert based on the result.

e The enterNewAddress function simply sets the selectedItem to null,
which also triggers the binding to the address property.

r The addressList has a dataProvider of _addresses.

t The AddressForm has its address property bound to the selectedItem
of the addressList.

y The Submit button click event triggers the submitClickHandler.

We start by creating an ArrayCollection q of _addresses, which is used
as the dataProvider of the addressList r. The selectedItem of this List is

e

r

t

y

144 CHAPTER 6 Building user-friendly forms using Flex formatters and validators
passed into the AddressForm t that we’re building. We have a Submit
button y whose click event is handled by a function that calls the val-
idateAndSave w method of the AddressForm and shows one of two Alert
messages based on the outcome. We can also click an Enter New
Address button that calls the enterNewAddress() function e to null
out the existing address.

The following figure shows an Alert that happens on a validation error.

Similarly, here’s what happens when
all the validations succeed:

Next, we create the Address
model class.

session26/src/model/Address.as

package model {
 [Bindable]
 public class Address {
 public var lineOne:String;
 public var lineTwo:String;
 public var city:String;
 public var zipCode:String;
 public var state:String;
 public var country:String;

q

SESSION 26 Real-world forms, formatters, and validators 145
 public function Address(
 lineOne:String = "",
 lineTwo:String = "",
 city:String = "",
 state:String = "",
 country:String = "",
 zipCode:String = "") {
 this.lineOne = lineOne;
 this.lineTwo = lineTwo;
 this.city = city;
 this.state = state;
 this.country = country;
 this.zipCode = zipCode;
 }

 private function getAddrStr(str:String):String {
 return (str == null || str == "") ? "" : str + " ";
 }

 public function toString():String {
 return getAddrStr(lineOne) + getAddrStr(lineTwo) +
 getAddrStr(city) + getAddrStr(state) +
 getAddrStr(country) + getAddrStr(zipCode);
 }
 }
}

The Address model is pretty straightforward: we want every variable to
be bindable, so we stick a [Bindable] annotation q on the class. (Mak-
ing things bindable results in more code being generated, so don’t
abuse this notation.) Second, we create a constructor w that has
default values (the empty string) for all its parameters. This lets us just
specify some (or none) of the parameters when creating a new Address.
Finally, we create a toString function e which uses a getAddrStr utility
method to ensure that Addresses with only some fields specified don’t
have a bunch of extra spaces. (Yes, it will have one extra space at the
end; fixing this is an exercise for the reader.)

Just as in Java, the toString method is called whenever an object needs
to be presented as a String form, and it’s often overridden to present
the information in a more usable manner. Note that what I’m doing

w

e

146 CHAPTER 6 Building user-friendly forms using Flex formatters and validators
here is OK in the toString method, but in general the model code
should not define view level information.

Before we create the AddressForm, I’m going to show a number of
screenshots that demonstrate the various features of the AddressForm,
and that show how it performs with validation errors.

First, the following
screenshot shows that
when a US zip code is
entered for a Canadian
postal code, a proper
validation message is
displayed. (This is
something that cur-
rently doesn’t happen
out of the box with the
ZipCodeValidator, and
it’s one of the things
we’re fixing in this
example.)

Also note that the form labels say “Province” and “Postal Code,” not
“State” and “Zip Code,” when the country is Canada.

Next, note that
when a Canadian
postal code is
entered for a US
zip code, the vali-
dation error is
displayed and the
erroneous text
isn’t cleared out
by the formatter.

SESSION 26 Real-world forms, formatters, and validators 147
Once you’re done coding this example, you’ll be able to see the format-
ters in action, updating the zip codes to the 5+4 modern US style, and
uppercasing Canadian postal codes and adding a space in them.

Yes, it’s as thrilling as it sounds.

Finally, the following
screenshot shows that
we’re also using a valida-
tor to require that a state
be chosen for the USA (or
a province for Canada),
and also requiring a zip
code/postal code for the
USA or Canada.

For countries that aren’t the USA or Canada, we don’t require a prov-
ince or postal code, as this screenshot shows:

148 CHAPTER 6 Building user-friendly forms using Flex formatters and validators
Not only are there no validation errors, but there are no red asterisks
on the form indicating that the province or postal code is required.

Without further ado, let’s create the AddressForm. (Finally!) This is a lot
of code, so we’ll take a few breaks along the way and explain what
we’re doing.

session26/src/components/AddressForm.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Form
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="400">
<fx:Script><![CDATA[
 import mx.collections.ArrayCollection;
 import mx.events.ValidationResultEvent;
 import mx.validators.Validator;
 import model.Address;

 private var _address:Address = new Address();

 public function validateAndSave():Boolean {
 if (isFormValid()) {
 address.lineOne = addressOneTI.text;
 address.lineTwo = addressTwoTI.text;
 address.city = cityTI.text;
 address.country = countryDDL.selectedItem;
 if (stateDDL.dataProvider.length == 0) {
 address.state = "";
 } else {
 address.state = stateDDL.selectedItem;
 }
 address.zipCode = zipTI.text;
 return true;
 } else {
 return false;
 }
 }
 private function isFormValid():Boolean {
 var validators:Array = [addressValidator, cityValidator,

q

w

e

r

SESSION 26 Real-world forms, formatters, and validators 149
 countryValidator, stateValidator];
 var zipCodeValid:Boolean = validateAndFormatZipCode();
 var results:Array = Validator.validateAll(validators);
 return results.length == 0 && zipCodeValid;
 }
 private function setFormFromAddress():void {
 addressOneTI.text = address.lineOne;
 addressTwoTI.text = address.lineTwo;
 cityTI.text = address.city;
 countryDDL.selectedItem = address.country;
 var states:ArrayCollection = getStates(address.country);
 stateDDL.dataProvider = states;
 stateDDL.selectedIndex = states.source.indexOf(address.state);
 zipTI.text = address.zipCode;
 }
…

q The _address holds the Address this AddressForm is editing.

w The validateAndSave method is called by the Tester app. It calls
isFormValid to check whether the form components are all valid,
and if so, it updates the address with the state of the form compo-
nents. This approach is used to ensure that we don’t corrupt the
Address with invalid or only partially valid data.

e We assign "" for the state when the selectedItem is null (for when
there is no selected item), such as when the states/provinces list is
empty for a given country.

r The isFormValid method runs the validators by constructing an array
of them and calling Validator.validateAll with this Array. It also runs
the zip code validator separately by calling a function called valida-
teAndFormatZipCode, which we’ll see later. If there are any validation
errors in the Validator.validateAll call, the results.length will be
nonzero. Note that we use a temporary variable for zipCodeValid
since we don’t want the validation to short-circuit and not call the
validateAndFormatZipCode method. (Our intention is to call all the val-
idators to show all the validation errors at once.)

t The setFormFromAddress method updates the state of the form from
the state of the address. Because this is all done inside one method,

t

150 CHAPTER 6 Building user-friendly forms using Flex formatters and validators
we can be sure that we have set the country correctly before updat-
ing the states. When you see the following form code, the impor-
tance of this will become clearer.

session26/src/components/AddressForm.mxml (continued)

 …
 public function set address(value:Address):void {
 if (value == null) {
 _address = new Address();
 setFormFromAddress();
 } else {
 _address = value;
 setFormFromAddress();
 callLater(isFormValid);
 }
 }
 [Bindable]
 public function get address():Address {
 return _address;
 }

 private static const EMPTY:ArrayCollection =
 new ArrayCollection([]);
 private static const COUNTRIES:ArrayCollection =
 new ArrayCollection(["USA", "Canada", "UK", "France"]);
 private static const STATES:ArrayCollection =
 new ArrayCollection(["CA", "OR", "WA"]);
 private static const PROVINCES:ArrayCollection =
 new ArrayCollection(["BC", "AB", "SK"]);

 private function getStates(country:String):ArrayCollection {
 if (isUSA(country)) {
 return STATES;
 } else if (isCanada(country)) {
 return PROVINCES;
 } else {
 return EMPTY;
 }
 }
 private function usaOrCanada(country:String):Boolean {
 return isUSA(country) || isCanada(country);

y

u

i

o

SESSION 26 Real-world forms, formatters, and validators 151
 }
 private function isUSA(country:String):Boolean {
 return country == "USA";
 }
 private function isCanada(country:String):Boolean {
 return country == "Canada";
 }
 private function getStateMsg(country:String):String {
 return isUSA(country) ? "Please choose a state." :
 "Please choose a province.";
 }
…

y The address setter creates a new Address if the passed-in value is
null. In both cases, the setFormFromAddress function is called after
this address is set. However, when there is a non-null value passed
in, we also invoke the isFormValid method (shown earlier) by using
the callLater method. By using callLater, we ensure that the form
controls have had time to reflect the new values that they have
been set to. (I haven’t talked about callLater in this book since it’s
an advanced technique. Basically, it runs a function later—that is,
in the next screen refresh—so that values have had the chance to
get set.) The reason that we only run the validation when setting a
non-null Address is that we don’t want an empty form to show a
bunch of validation errors—that would look ugly. (Also, since the
user hasn’t made any mistakes—yet—on an empty form, it would
be misleading!) Below this method, we also create an address get-
ter which is much simpler.

u These constants are obviously “book code.” Yes, there are more
countries in the world, and more states and provinces than I’ve
shown. I just saved a tree.

i The getStates function returns STATES for the USA, PROVINCES for
Canada, and EMPTY for the rest of the world. This is the North
America–centric behavior we want; “international” readers can feel
free to modify this code as necessary!

o These four convenience functions are used in the form to show/
hide required asterisks beside the children of the FormItems. I cre-
ated them since I use them in bindings, and they read nicely.

152 CHAPTER 6 Building user-friendly forms using Flex formatters and validators
session26/src/components/AddressForm.mxml (continued)

…
 private function validateAndFormatZipCode():Boolean {
 var unformattedText:String =
 zipTI.text.toUpperCase().replace(/\W/g, "");
 var country:String = countryDDL.selectedItem;
 var result:ValidationResultEvent;
 var usa:Boolean = isUSA(country);
 var canada:Boolean = isCanada(country);
 zipCodeValidator.required = usa;
 postalCodeValidator.required = canada;
 if (usa) {
 postalCodeValidator.validate("");
 result = zipCodeValidator.validate(unformattedText);
 } else if (canada) {
 zipCodeValidator.validate("");
 result = postalCodeValidator.validate(unformattedText);
 } else {
 postalCodeValidator.validate("");
 zipCodeValidator.validate("");
 return true;
 }
 if (result.type == ValidationResultEvent.VALID) {
 if (usa) {
 zipTI.text = zipCodeFormatter.format(unformattedText);
 } else {
 zipTI.text = postalCodeFormatter.format(unformattedText);
 }
 return true;
 } else {
 return false;
 }
 }
]]></fx:Script>
 <fx:Declarations>
 <mx:StringValidator id="addressValidator" minLength="5"
 source="{addressOneTI}" property="text" required="true"/>
 <mx:StringValidator id="cityValidator" minLength="2"
 source="{cityTI}" property="text" required="true"/>
 <mx:NumberValidator id="countryValidator"
 lowerThanMinError="Please choose a country."
 source="{countryDDL}" property="selectedIndex" minValue="0"/>
 <mx:NumberValidator id="stateValidator"

a

s

d

f

g

h

SESSION 26 Real-world forms, formatters, and validators 153
 lowerThanMinError="{getStateMsg(countryDDL.selectedItem)}"
 source="{stateDDL}" property="selectedIndex"
 enabled="{usaOrCanada(countryDDL.selectedItem)}"
 minValue="0"/>
 <mx:ZipCodeFormatter id="zipCodeFormatter"
 formatString="#####-####"/>

 <mx:ZipCodeFormatter id="postalCodeFormatter"
 formatString="### ###"/>
 <mx:ZipCodeValidator id="zipCodeValidator"
 listener="{zipTI}"/>
 <mx:RegExpValidator id="postalCodeValidator"
 listener="{zipTI}"
 expression="^[A-Z]\d[A-Z]\d[A-Z]\d$"
 noMatchError="The postal code is invalid."/>
 </fx:Declarations>
…

a The validateAndFormatZipCode function returns whether the zip or
postal code was valid and successfully formatted.

s For the USA, the zipCodeValidator is run.

d For Canada, the postalCodeValidator is run.

f If the result is VALID, the formatters are run. The zipCodeFormatter is
run for the USA; the postalCodeFormatter is run for Canada. (Since
only the USA and Canada get their zip/postal codes validated, the
else case is legitimate.)

g We create StringValidator instances that ensure that the input
meets a certain minimum length. The source object is the compo-
nent that contains the property that is being validated.

h The countryValidator and stateValidator are NumberValidator

instances, which are run on the selectedIndex properties of the
DropDownLists for the country and state. Yes, this is considered the
best practice.

j The stateValidator is only enabled for the USA or Canada.

k The zipCodeFormatter uses US zip code 5+4 format.

l The postalCodeFormatter is, confusingly enough, a ZipCodeFormatter.
1(The zipCodeValidator uses the built-in ZipCodeValidator.
2) The postalCodeValidator uses the built-in RegExpValidator to validate

Canadian postal codes using regular expressions.

j

k

l

1(

2)

154 CHAPTER 6 Building user-friendly forms using Flex formatters and validators
session26/src/components/AddressForm.mxml (continued)

…
 <mx:FormItem label="Street Address" required="true" width="100%">
 <s:TextInput id="addressOneTI" width="250"/>
 <s:TextInput id="addressTwoTI" width="250"/>
 </mx:FormItem>
 <mx:FormItem label="City" required="true" width="100%">
 <s:TextInput id="cityTI" width="100%"/>
 </mx:FormItem>
 <mx:FormItem label="Country" required="true">
 <s:DropDownList id="countryDDL" width="150"
 dataProvider="{COUNTRIES}" prompt="Select..."
 change="validateAndFormatZipCode();"/>
 </mx:FormItem>
 <mx:FormItem
 label="{isUSA(countryDDL.selectedItem) ? 'State' : 'Province'}"
 required="{usaOrCanada(countryDDL.selectedItem)}">
 <s:DropDownList id="stateDDL" width="150"
 dataProvider="{getStates(countryDDL.selectedItem)}"
 prompt="Select..."
 enabled="{stateDDL.dataProvider.length > 0}"/>
 </mx:FormItem>
 <mx:FormItem
 label="{isUSA(countryDDL.selectedItem) ? 'Zip' : 'Postal'} Code"
 width="100%" required="{usaOrCanada(countryDDL.selectedItem)}">
 <s:TextInput id="zipTI" width="150"
 focusOut="validateAndFormatZipCode()"/>
 </mx:FormItem>
</mx:Form>

2! The FormItem components are just layout tools, much like the Form
itself is. There is no special functionality in the Form container:
unlike HTML Forms, a Flex Halo Form is just a layout tool.

2@ The countries are in a countryDDL DropDownList. When the country
changes, we call validateAndFormatZipCode() to ensure the zip/postal
code validation is current.

2# The selectedItem of the countryDDL is used to determine whether the
FormItems are required. All that this property on the FormItem means
is that a little red asterisk is displayed. It has no effect on the con-
trols inside the FormItem unless those controls also use it.

2!

2@

2#

2$

2%

2^

SESSION 26 Real-world forms, formatters, and validators 155
2$ The dataProvider of the stateDDL is determined by the selectedItem
of the countryDDL.

2% The selectedItem of the countryDDL is used to determine the label of
the FormItem for zip/postal code and state/province.

2^ The zipTI focusOut event triggers the validateAndFormatZipCode func-
tion, to ensure that errors in zip and postal codes are caught right
away.

Phew!

That was a very long example, and it even involved a bit of regular
expressions. Sorry about that—if I’d told you up front that was what

you were in for, you may have skipped it!
Thankfully, Flex has a RegExpValidator that lets
us construct a regular expression-using valida-
tor very easily.

Who knew zip codes and postal codes could be
so complicated? (Furthermore, we’ve totally
ignored the rest of the world—so doing this
properly would be much worse!)

➼ Key points

❂ Flex comes with a number of useful formatters and
validators.

❂ Flex makes it (relatively) easy to build custom
components that use both formatters and validators
to be as user-friendly as possible.

❂ Be careful of using data binding in form components that
are interdependent, such as country and state DropDownList
components. You could create a form that works well when
modifying a new model object, but that doesn’t handle the
model object being set from the outside world properly.

❂ In some situations, callLater can be used to work around
tricky UI timing issues. However, it’s something that should be used

156 CHAPTER 6 Building user-friendly forms using Flex formatters and validators
carefully, as it’s prone to being abused and not solving the underlying
problems.

❂ Form and FormItem are just layout tools. There’s no need to use them to
submit forms, unlike what you do in HTML. Think of them as a
VGroup customized to display forms nicely.

What’s next?
As we have seen throughout the book, Flex
makes it easy to create custom components. In
this session we’ve gone deep into formatters
and validators, creating a custom validator and
a complex custom form component.

I don’t know about you, but—despite their use-
fulness—I’m getting sick of forms. In the next
chapter we’ll do something completely differ-
ent and have some fun, as we finally build our
Twitter + Yahoo! Maps mashup. This will

demonstrate how real-world Flex applications are built, how to archi-
tect larger Flex applications using Cairngorm, and how to talk to serv-
ers using HTTPService.

7
Cairngorm in Action:
SocialStalkr
(Twitter + Yahoo! Maps)

n this chapter, you’ll learn how to build larger Flex applications using a
framework called Cairngorm. This is a topic that can only be learned by
experience, and it’s best done iteratively. Doing so properly, though, would

consume over a hundred pages: in early ver-
sions of this book I built this example itera-
tively over five chapters, explaining Flex as I

went. But this
approach didn’t fit

with the format of the
“Hello” series, so I
rewrote the book and added the stand-alone
examples instead. So, since this chapter covers

I

157

158 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
what used to be explained in five chapters, it will be very code heavy.
Instead of building it iteratively, I’m going to show the screenshots of
the app, explain the design choices, and then present the end
result—explaining the code as I go.

This chapter covers the following topics:

❂ Using Cairngorm to structure Flex applications
❂ Separating a Flex application into multiple components
❂ Using HTTPService to talk to RESTful web services,1 specifically the

Twitter API

❂ Using the Yahoo! Maps API

As you can see, it’s an ambitious chapter. By the end of it you’ll have a
much better handle on how to build real-world Flex applications, not
just apps that are the size of the toy examples we’ve been building so
far in this book.

So, let’s get started.

Creating the SocialStalkr project
The application we
are going to build in
this chapter is called
SocialStalkr: a
mashup of Yahoo!
Maps and Twitter
that lets you “stalk”
your friends who
use specially for-
matted Twitter
“tweets” on a

1 REST (Representational State Transfer) is a way of building web services that focuses on simplicity
and an architecture style that is “of the web.” This can be described as a resource-oriented architecture
(ROA); see RESTful Web Services (O’Reilly 2007) for details. As you can probably infer from its $20-
word full title, REST grew out of a PhD thesis—Roy Fielding’s, to be precise. However, unlike most
PhD theses, it has grown into something revolutionary.

Creating the SocialStalkr project 159
Yahoo! map. At the end of this chapter, the app will have the following
screenshots:

First, when the app
starts, a login screen
appears. You’ll log
in with your Twit-
ter credentials, and
then see the main
app. The left side of
the app shows a
Yahoo! map; in the
right side the “You”
view shows your
tweets (and lets you
post new tweets).
Also, in the right side, you can switch from the “You” view to the “Fol-
lowing” view, which shows your friends, who you can select to view
their tweets. As shown in the figure showing the Following view, the
itemRenderer grows larger and shows for the selected friend the web-
standard “followed link” purple color, and for the friend you’re mous-
ing over the web-standard “click this link” blue link color.

So we’re building a Twitter client.
But why is there a map anyway,
and what does this app have to do
with “stalking” your friends? And
why would your friends want you
to do this?

Well, for example, regular users of
Twitter often use @replies to peo-
ple and #hashtags. Sometimes, peo-
ple also say that they’re going to
#somewhere to do something, for
example “off to #ChillWinston for a
pint.” So, if we took this one step
further and got people to adopt

160 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
some conventions (which, if we were being pretentious, we could call a
“microformat”), they could use Twitter and SocialStalkr to become a
location-aware and time-sensitive spontaneous event planner.

For example, the following screen shows me tweeting that I just spent
some time at WorkSpace in Vancouver working on this chapter of the
book. Say Scott Patten, my partner in Ruboss, saw that tweet—if he
was downtown he could come visit me and we could go for a pint. Or,
if you were a friend who didn’t know where WorkSpace was, my tweet
would be showing right there on top of its location on the map, as
shown in the figure.

Finally, a cynical reason: microblogging services such as Twitter are
an exercise in narcissism as much as an attempt at real communica-
tion, so what better Twitter client than one that sticks your own avatar
all over a map?

Yeah, it’s a bit contrived. But it will be fun to build—and there are many
location-based social network startups that are doing a similar thing
(but with automatic location detection based on your smartphone). So,
you can imagine taking this app further and making it useful. Further-
more, since I’m not using any server-side technology in this book (this
isn’t a book about Java, Ruby on Rails, or ColdFusion after all), I’m
basically limited to mashups of existing web services for examples.

Getting started with Twitter 161
So, now that we have the requirements and visual design out of the
way, let’s create the project. In Flash Builder 4, choose File > New >
Flex Project to trigger the New Flex Project dialog. Enter the name
SocialStalkr for the project in the Project Name field and click Finish.

TIP If you name a project in the same case as what you want your main
application to be— that is, SocialStalkr instead of socialstalkr—you
can skip the rest of the New Project dialog and you won’t need to
rename the application. It’s good practice to CamelCase your appli-
cation name: since it’s a class like any other class in your app, it
would be confusing to be called socialstalkr since it would look like a
variable and not a class.

With this accomplished, let’s get started with Twitter and Yahoo! Maps.

Getting started with Twitter
If you don’t already have a Twitter account,
you need to go to www.twitter.com and
create one. This way, you can enter spe-
cially formatted tweets that will show up on
the Yahoo! map we’ll be integrating later in
this chapter. When you sign up with Twit-
ter, you’ll get a unique login ID and a
unique screen name; for example, my
screen name is peterarmstrong so on Twit-
ter I’m http://twitter.com/peterarmstrong.

Web services can be unreliable
Before we continue, a cautionary note: at any

time during the process of following along with

this book, your application may stop working

for no apparent reason. This is always a danger

when working with web services, but with Twit-

ter it has historically been, shall we say, more

of a danger than normal. If this happens, try

running the app in the debugger. If you see

something like the following, chances are it’s

Twitter’s fault:

162 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
TIP Another reason your service can fail is
that you may have exceeded your API
quota, which is something like 100
requests per hour. So, if you do lot of
debugging involving clicking on your
friends to view their tweets, you may
need to take a forced coffee break every
so often.

Anyway, with this out of the way, we’re
almost ready to talk to Twitter. First, let’s
make sure that you have some data to play
with. Post some “tweets” (messages that are
fewer than 140 characters) and “follow” some people. You don’t have
to know them, but it’s more interesting if you do. If you have no friends

[RPC Fault faultString="HTTP request error" faultCode="Server.Er-
ror.Request" faultDetail="Error: [IOErrorEvent type="ioError" bub-
bles=false cancelable=false eventPhase=2 text="Error #2032: Stream
Error. URL: http://twitter.com/statuses/friends/peterarmstrong.xml"].
URL: http://twitter.com/statuses/friends/peterarmstrong.xml"]

If you see this, try checking your

friends’ statuses by going to http://

twitter.com/statuses/friends/YOUR_

SCREEN_NAME.xml (for example, I

go to http://twitter.com/statuses/

friends/peterarmstrong.xml). If you

can see your friends’ statuses via

XML, then Twitter is fine and you

should try your app again. However,

if you see the image of the now infa-

mous Twitter “Fail Whale,”a you

should just go grab a coffee and

come back and try again. (Twitter’s

reliability has gotten a lot better in

2009 than it was in 2008, so this hopefully shouldn’t be a problem. However,

the scaling problems they had in 2008 were the comedy gift that kept on giving:

my favorite mean-spirited TechCrunch headline of all time was “Twitter Suffers

Minor Period of Uptime.”b)

a. http://en.wikipedia.org/wiki/Fail_Whale
b. www.techcrunch.com/2008/06/06/twitter-suffers-minor-period-of-uptime-overnight/

Getting started with Yahoo! Maps 163
on Twitter, you can always follow me (@peterarmstrong) and my
Ruboss partner Scott Patten (scott_patten)—the app we are building
in this chapter is more interesting with at least two friends. (Note that
I’m saying “friends” even though the following relationship is unidirec-
tional, unlike the bidirectional “friend” relationship on services like
Facebook. This is just because the phrase “people the user is following”
is a mouthful.)

Now that we’re ready to talk to Twitter, we need to get ready to talk to
Yahoo! Maps.

Getting started with Yahoo! Maps
Next, we’ll sign up for Yahoo! to use Yahoo! Maps. Why would I
choose Yahoo! instead of Google? There’s a practical reason: at the
time of this writing, the terms of service for Yahoo! Maps were nicer.
(Also, Ryan Stewart has posted an excellent blog post2 on how to use
FXG assets and the ActionScript API with Google Maps, so there’s no
need to duplicate his work.)

Let’s start by signing
up for the Yahoo!
Developer Network at
http://developer.yahoo.
com. You’ll need to get
a Yahoo! ID if you
don’t already have one.
Next, go to http://
developer.yahoo.com/
maps/ and click the Get
an App ID button on
the page to get an
application ID. You’ll
see a screen like the following. Enter information specific to you and
your own organization, but leave the “Generic, No user authentication
required” setting chosen so that the example in this chapter works.

2 http://blog.digitalbackcountry.com/2009/05/using-fxg-assets-as-custom-markers-in-google-maps/

http://developer.yahoo.com
http://developer.yahoo.com/maps/

164 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
(Since URLs change, if that URL doesn’t work, go to http://developer.
yahoo.com/wsregapp or just http://developer.yahoo.com/ and follow
your nose.)

Click Continue. You’ll
see something like this:

Copy this application ID
and save it into a text file
somewhere—you’ll need
to paste it into your Flex
code. (The “application
entrypoint” is unimport-
ant for our purposes, so
we’re ignoring it.)

YAHOO! MAPS DOCUMENTATION

This book is certainly not trying to be a comprehensive Yahoo! Maps
tutorial; it’s just an example that we’re using. The Yahoo! Developer
Network page for the maps component (http://developer.yahoo.com/
flash/maps/examples.html) as well as the API documentation (http://
developer.yahoo.com/flash/maps/classreference/index.html) are the
best places to start learning more about Yahoo! Maps.

Now that we have an application ID, we can download the Yahoo!
Maps AS3 Component from http://developer.yahoo.com/flash/maps/.
This book is using version 0.9.3 of this component; chances are you’ll
use a newer version. (If a newer version doesn’t work for you, just grab
the version I used from the code zip file for the book.) Once you’ve
downloaded it, you’ll have a file like yahoo-maps-as3-api-0.9.3-beta.zip
saved somewhere. Unzip it and copy the YahooMap.swc file from the
Build/Flex directory into your libs directory of SocialStalkr. SWC files
are compiled libraries, and any SWC files you put in your libs directory
in a Flex project are automatically included when compiling.

Now that we’ve signed up for Twitter and gotten set up with Yahoo!,
we can get down to work. First, we need to learn how to architect our
application. While there are many newer application frameworks like
Swiz, Mate, and PureMVC that have very vocal adherents, we’ll use

http://developer.yahoo.com/wsregapp

Cairngorm 165
Cairngorm. Cairngorm is currently the de facto standard application
framework for Flex, and it’s not clear which of the challengers will
emerge as the best alternative. So, I’m going to teach the standard.
Whether or not you’ll use it, every Flex developer needs to know
Cairngorm—if only to understand what the other frameworks are
reacting to.

Cairngorm

We’re building the SocialStalkr application using Cairngorm. How-
ever, we’ll use Cairngorm in a slightly nonstandard way, in order to be
slightly less verbose and to make the use of HTTPService easier. Specifi-
cally, we’ll use a couple of utility classes from my Flexible Rails book
(Manning, 2008) to this effect. (These classes have nothing to do with
Ruby on Rails; they’re just focused on making Cairngorm + HTTPService
less verbose.)

Since Cairngorm has so many moving parts that work together, it’s
very difficult to build this example iteratively—and as discussed at the
beginning of the chapter, it would take too long. So, I’m just going to
explain the finished result. As you see more and more of the code,
you’ll grasp how it all fits together—so don’t worry if why we’re doing
something isn’t 100 percent apparent at the time. By the end of the
chapter, it will be.

Above all, keep in mind that Cairngorm is a Model-View-Controller
(MVC) framework. As we create the various files, think about where
they fit in the MVC pattern.

166 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
Cairngorm history and motivation
One of the biggest problems with Flex is that it makes writing code
almost too easy. How can this be a problem? Well, as we’ve seen, it’s
possible to get a lot done without giving any thought to your applica-
tion’s design. This can be dangerous: if other people (such as your cli-
ent or marketing department) see a prototype running, they may get
confused into thinking you have a fully functional app instead of an
elaborate mock-up. Another problem is that if we develop iteratively
without any refactoring (or thinking), we can end up with Rube Gold-
berg–like contraptions in our MXML:

…this variable gets set, which triggers this binding, which updates this model
element, which in turn updates this model element, which triggers this function,
which dispatches this event, which…

Because Flex is so easy, it’s possible to have somewhat working code
even with a terrible muddle. All the Flex application frameworks try to
solve this problem; as discussed, Cairngorm is what we’re going to pick
for this chapter.

Cairngorm was created by Steven Webster and Alistair McLeod, the
two cofounders of a consulting firm called iteration::two, which was
based in Scotland. They were acquired by Macromedia, which was
then acquired by Adobe. (Steven and Alistair are famous in Flex circles

Flexible Rails, Cairngorm, and this book
The way that Cairngorm is used is based on section 8.1 of my

Flexible Rails book. Even though we aren’t using Ruby on Rails

in this book, the way that Flex uses HTTPService is essentially
the same regardless of what is on the server side. So, since I

already spent a whole book writing about how Flex should talk

to Rails, it would be dishonest of me to pretend Flexible Rails

didn’t exist and to ignore the approaches I used in it. Because

of this, I’m feeling free to borrow a couple of utility classes

from Flexible Rails for this section—and, while I’m at it, to make

this section of this chapter a condensed version of sections 8.1

and 8.2 of Flexible Rails. If you have already read Flexible Rails,

please feel free to skim until you get to the code.

Cairngorm 167
for having written the definitive book on Flex 1.0, Developing Rich Clients
with Macromedia Flex.) Cairngorm embodies many of Steven’s and
McLeod’s opinions about how to write Flex applications. Because their
book helped many developers (myself included) to learn Flex, these
opinions have a lot of clout. And because Steven and Alistair are now at
Adobe (and Cairngorm is at Adobe Labs), Cairngorm has gained even
more mindshare among Flex developers because of its somewhat “offi-
cial” status.

That said, you certainly don’t need to use Cairngorm. Steven Webster
wrote a blog post titled “Why I think you shouldn’t use Cairngorm,”
(http://blogs.adobe.com/swebster/archives/2006/08/why_i_think_you.html),
which lists some prerequisites for using Cairngorm. Essentially, Cairn-
gorm can be overkill for small, single-developer applications (such as
this one), and it can be confusing if you’ve never built a complete Flex
application before. (We’re up for the challenge, though—we’re not
“dummies” after all.) If, at the end of this chapter, you decide that you
don’t like Cairngorm, don’t worry: you can develop complete, innova-
tive Flex applications without using Cairngorm. For example, I cur-
rently spend most of my time developing Flex applications using
RestfulX. (Of course, the RestfulX framework was formerly known as
the Ruboss Framework, so I’m more than a little biased here.)

If you want to learn more about Cairngorm, the site www.cairngorm-
docs.org/ is devoted to collecting links to Cairngorm documentation
and examples. In terms of tutorial documentation, the best starting
place is the six-part article series that Steven Webster wrote for the Flex
Developer Center. Part 1 is at www.adobe.com/devnet/flex/articles/
cairngorm_pt1_print.html, and each part links to the next one. The arti-
cles develop an application called CairngormStore, which is a simple
online store. These articles are rather outdated: at the time of this writ-
ing, Cairngorm is at version 2.2.1; the articles refer to version 0.99.
However, they’re a good way to learn the theory of Cairngorm, even if
many of the details have changed.

I’m going to assume that if you’re interested in using Cairngorm, you’ve
read these articles or will read them; as such, I won’t duplicate their
content. This book won’t include a 5–10 page “theory of Cairngorm”

http://www.cairngormdocs.org/
http://www.cairngormdocs.org/
www.adobe.com/devnet/flex/articles/carngorm_pt1_print.html

168 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
section. Instead, we’ll learn Cairngorm by doing, building the Social-
Stalkr application from scratch using Cairngorm 2.2.1. If at the end of
this chapter you want to look through more Cairngorm-using code,
take a look at the updated version of Chen Bekor’s ModifiedCairn-
gormStore at www.brightworks.com/flex_ability/?p=61.

Downloading and installing Cairngorm 2.2.1
We’ll start by downloading Cairngorm 2.2.1. It’s currently found at
http://opensource.adobe.com/wiki/display/cairngorm/Downloads.
Download the binary, source, and documentation zip files from the
three separate links.

NOTE Download Cairngorm 2.2.1, not Cairngorm Enterprise 2.2.1. (Cairn-
gorm Enterprise is for LiveCycle Data Services.)

Unzip these files into their own folders. Next, we’ll import the Cairn-
gorm project into Flex Builder so that we can easily browse it. (The zip
file includes a Flex Builder .project file.) In Flex Builder, choose File >
Import > Other. Choose Existing Projects into Workspace, and click
Next. In the Import dialog, browse to the Cairngorm2_2_1-src direc-
tory that was created when we unzipped the Cairngorm 2.2.1 sources.
You’ll know you found it when you see the Cairngorm project high-
lighted in the Projects list. Click Finish to import the project. Once the
project is imported, you can browse the source code, starting by
expanding the com folder.

There isn’t much code in Cairngorm, so you should read it all at some
point.

Now that we’ve downloaded Cairngorm, let’s add it to SocialStalkr.
Copy the Cairngorm.swc file from the Cairngorm 2.2.1 binary down-
load into the libs directory of the SocialStalkr project. (This is the same
directory that we put the YahooMap.swc library into in chapter 2.)

That’s it; Cairngorm is now usable in SocialStalkr.

Before continuing, the last setup task we’ll do is to create most of the
standard directories that are used in Cairngorm applications. Create
an src/com/socialstalkr directory, and inside that directory create the

Cairngorm event sequence overview 169
following directories: business, command, control, model and util. (All
but the util directory are standard Cairngorm.)

Cairngorm event sequence overview
Before we begin, I’ll present a brief overview of the typical sequence of
events in which we’ll use Cairngorm. It refers to a bunch of classes we
haven’t created yet but you should be able to understand what follows.
(If it doesn’t make sense now, don’t worry—the goal isn’t for it to completely
make sense, but for it to make future sections make more sense when you
read them):

1 A component (for example, the FollowingGroup component we’ll create
for the Twitter users we’re following) calls CairngormUtils.dispatchEvent
with an event type (for example, EventNames.SHOW_FRIEND_TWEETS) speci-
fied in the EventNames class (which is a bunch of String constants).

2 Because of the SocialStalkrController having called addCommand with
that event type from EventNames, a command (for example, com.social-
stalkr.command.ShowFriendTweets) has its execute method called.

3 This command creates a new business delegate (for example, com.social-
stalkr.business.TwitterDelegate), which contains functions related to a
given web service. It passes itself in as the IResponder so that when the
business delegate is done, the command’s result or fault function will be
invoked.

Q. Didn’t you forgot the event and vo packages?

A. No, I didn’t forget them—I’m omitting them. We aren’t going to create custom

event subclasses of CairngormEvent—instead, we’ll go against the officially rec-

ommended Cairngorm convention and dispatch plain CairngormEvents every
time. We’ll set the data property to an anonymous object containing whatever
we need. To me, the reduction in the amount of code is preferable to more type

safety (especially on a smaller project such as this). On a larger project with lots

of developers, the balance may be different.

Regarding creating a vo package for Value Objects, we’re just using XML for now

so we don’t have any value objects yet. Adding value objects at this point would

be packing too much into the refactoring, so we’re not going to do it yet.

170 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
4 In typical Cairngorm applications, the business delegate retrieves
services from a Services.mxml file and uses them. We don’t do this.
Instead, our business delegates themselves delegate all their work (a
very businesslike thing to do) to the ServiceUtils.send() public static
method. This method invokes a URL that invokes the appropriate
HTTP service. It also attaches the responder to the service call, so
that its result or fault handler will be triggered accordingly.

5 When the service call returns, the result or fault handler of the com-
mand is invoked accordingly. It does what it needs to do, such as mak-
ing a state change in the SocialStalkrModelLocator, dispatching another
CairngormEvent with CairngormUtils.dispatchEvent, and so on.

That’s about as much explanation up front as is useful. Let’s see some
code! (The rest of this chapter is full of code, so grab a coffee.)

Creating the main application
Now that we have a new Flex project, a Twitter account
with some friends and some tweets of our own, and a
Yahoo! developer account, the first bit of actual work we’ll
do is fill in the main SocialStalkr application file that was
created for us. Paste the following code (selecting the text in
Adobe Reader shouldn’t select the cueballs, so you should
be fine) into the src/SocialStalkr.mxml file, or grab the code
from manning.com/armstrong3:

ch07/src/SocialStalkr.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 xmlns:components="com.socialstalkr.components.*"
 xmlns:control="com.socialstalkr.control.*">
 <fx:Declarations>
 <control:SocialStalkrController id="controller"/>
 </fx:Declarations>
 <s:states>
 <s:State name="login"/>

q

w

Creating the ModelLocator 171
 <s:State name="main"/>
 </s:states>
 <components:LoginPanel id="loginPanel"
 includeIn="login"
 horizontalCenter="0" verticalCenter="0"/>
 <components:MainApp id="mainApp"
 includeIn="main"
 left="10" right="10" top="10" bottom="10"/>
</s:Application>

q We use the new Declarations element in Flex 4 for nonvisual chil-
dren, in this case the SocialStalkrController.

w We create two states, a login state and a main state, for the Social-
Stalkr app. The state determines which of the LoginPanel or MainApp
are visible, since both use includeIn to only be in one state.

All Cairngorm apps have a FrontController. Ours is the SocialStalkr-
Controller, which we’ll see soon. You need to remember to actually
instantiate it by putting it in the fx:Declarations, or your app won’t
function properly. (By this, I mean that your events won’t work.) Also,
note how we use view states and includeIn to simulate the way a
ViewStack would operate: to show only one child component at a time.
View states are much more flexible, however.

Creating the ModelLocator
Next, let’s start by creating the SocialStalkrModelLoca-
tor. A standard Cairngorm application has one Model-
Locator, which is a “single place where the application
state is held.”3 The app will then bind to the variables
in this file directly. This will save us from passing
around a bunch of variables.

ch07/src/com/socialstalkr/model/SocialStalkrModelLocator.as

package com.socialstalkr.model {
 import com.adobe.cairngorm.model.IModelLocator;

3 www.adobe.com/devnet/flex/articles/cairngorm_pt2_print.html.

172 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
 import mx.collections.XMLListCollection;
 import mx.formatters.DateFormatter;

 [Bindable]
 public class SocialStalkrModelLocator implements IModelLocator {
 private static var _modelLocator:SocialStalkrModelLocator;
 public var userName:String;
 public var userPassword:String;
 public var twitterUser:XML;
 public var twitterUserTweets:XMLListCollection;
 public var twitterUserFriends:XMLListCollection;
 public var selectedFriend:XML;
 public var selectedFriendTweets:XMLListCollection;
 public var dateFormatter:DateFormatter;
 public var selectedTweet:XML;

 public function formatTweet(item:Object):String {
 var status:XML = XML(item);
 return status.text + " at " + dateFormatter.format(
 dateFromTwitterDate(status.created_at));
 }

 public static function dateFromTwitterDate(twDate:String):Date {
 return new Date(twDate.substr(0,10) +
 " " + twDate.substr(twDate.length - 4, twDate.length) +
 " " + twDate.substr(11, 8));
 }

 public function SocialStalkrModelLocator(
 enforcer:SingletonEnforcer) {
 dateFormatter = new DateFormatter();
 dateFormatter.formatString = "L:NN A on EEEE, MMM. D";
 }

 public static function get instance():
 SocialStalkrModelLocator {
 if (_modelLocator == null) {
 _modelLocator = new SocialStalkrModelLocator(
 new SingletonEnforcer());
 }
 return _modelLocator;
 }
 }

q

w

e

t

y

u

r

Creating the ModelLocator 173
}

class SingletonEnforcer {}

q All variables are Bindable.

w We implement the IModelLocator interface.

e The formatTweet function formats a tweet using the dateFormatter
instance variable.

r The dateFromTwitterDate encapsulates parsing Twitter’s date format.

t We ensure no other class can construct a SocialStalkrModelLocator.
(This is explained further below.)

y DateFormatter lets us easily format dates based on a configurable
formatString.

u This is the getter for a shared instance.

i This is the internal SingletonEnforcer class..

The [Bindable] annotation q on the class means that every public
variable is bindable. The public variables in this class represent the
shared state in our Flex application. Note that the SocialStalkrModel-
Locator class implements com.adobe.cairngorm.model.IModelLocator w.
IModelLocator is a marker interface: it has no methods. (It does, how-
ever, have a comment explaining that classes implementing it should
be Singletons.) The SocialStalkrModelLocator is a Singleton, and we
accomplish this by making the constructor t take as a parameter an
object whose type is SingletonEnforcer i, which is a private class
that’s not visible to any other class. (This is a trick I learned from
Dima Berastau, creator and lead developer of the RestfulX frame-
work for Flex.) The shared instance is lazily constructed and
retrieved with the instance getter u. The constructor also sets up the
dateFormatter y.

The SocialStalkrModelLocator has all the shared state in the app, as well
as some utility functions that use this shared state. The formatTweet
function formats a tweet e, which uses a dateFromTwitterDate r func-
tion that’s heavily based on the makeDate function of the TwitterStatus
class in the Twitterscript API (not covered in this book).

i

174 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
THERE’S AN API? WHY ARE YOU DOING EVERYTHING MANUALLY?

Frankly, I’m doing everything manually since the API is an
extremely thin wrapper, and since I’m not trying to teach how to use
an API—I’m trying to teach the basics of Flex. If you use the API you
never create HTTPServices, for example, and you get a strongly typed
object instead of XML. I feel you’ll learn more if we just use what’s
provided by Flex as much as possible. (This won’t be true with
Yahoo! maps—in that case, we’ll use their API.)

If you want to learn more about Twitterscript, see http://code.
google.com/p/twitterscript/ for the original version of it. Note that I’ve
forked it on GitHub (www.github.com/peterarmstrong/twitterscript)
to make some small fixes to it, and Tony Hillerson has in turn forked
my fork to fix authentication with AIR (www.github.com/thillerson/
twitterscript). Tony’s version will probably be more advanced when
you read this, so I recommend looking at both of them.

Creating the control package
Next, we create the control package. It will con-
tain two classes: EventNames and SocialStalkrCon-
troller.

EventNames.as
First, we create EventNames.as. This isn’t a stan-
dard Cairngorm class; instead, it’s particular to
our “no CairngormEvent subclasses” approach.

ch07/src/com/socialstalkr/control/EventNames.as

package com.socialstalkr.control {
 public final class EventNames {
 public static const SHOW_USER_TWEETS:String =
 "showUserTweets";
 public static const SHOW_USER_FRIENDS:String =
 "showUserFriends";
 public static const SHOW_FRIEND_TWEETS:String =
 "showFriendTweets";
 public static const POST_TWEET:String = "postTweet";

http://code.google.com/p/twitterscript/

Creating the control package 175
 public static const VERIFY_CREDENTIALS:String =
 "verifyCredentials";
 }
}

This class lists all the event names, defining constants for each name.
This ensures that we won’t let a typo give us strange runtime behavior.
I prefer this to using Strings everywhere for another reason, too: it
makes it easier to check that we aren’t using an event name that’s
already being used.

SAFE AND VERBOSE OR FAST AND LOOSE?

We can pass Strings around without using constants—it’s a question
of “how much do you hate verbosity?” versus “how much do you
value safety?” If we’re totally concerned about safety, we create cus-
tom events for each event; if we totally hate verbosity, we skip this
file. This approach is my compromise.

These event names will be associated with commands, as we’ll see next.

SocialStalkrController.as
After creating the EventNames, we create the Social-
StalkrController. This class extends FrontCon-

troller. A standard Cairngorm application has one
FrontController subclass, whose responsibility is to
hook up the event names with the commands
(which we’ll see later). Typically, these event
names come from the custom event subclasses; in
our case, they come from EventNames.

ch07/src/com/socialstalkr/control/SocialStalkrController.as

package com.socialstalkr.control {
 import com.adobe.cairngorm.control.FrontController;
 import com.socialstalkr.control.EventNames
 import com.socialstalkr.command.ShowUserFriends;
 import com.socialstalkr.command.ShowUserTweets;
 import com.socialstalkr.command.ShowFriendTweets;
 import com.socialstalkr.command.PostTweet;
 import com.socialstalkr.command.VerifyCredentials;

176 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
 public class SocialStalkrController extends FrontController {
 public function SocialStalkrController() {
 addCommand(EventNames.SHOW_USER_FRIENDS, ShowUserFriends);
 addCommand(EventNames.SHOW_USER_TWEETS, ShowUserTweets);
 addCommand(EventNames.SHOW_FRIEND_TWEETS, ShowFriendTweets);
 addCommand(EventNames.POST_TWEET, PostTweet);
 addCommand(EventNames.VERIFY_CREDENTIALS,
 VerifyCredentials);
 }
 }
}

We extend FrontController q and call the inherited addCommand method
w for each EventNames.SOME_NAME_CONSTANT and command combination.
We’ll see the commands soon.

Having created the standard Cairngorm FrontController subclass, let’s
now add two nonstandard classes to make our lives easier. After this,
we’ll go back to adding code that follows the standard Cairngorm pat-
terns.

Creating CairngormUtils and ServiceUtils
Next, we’ll add two nonstandard classes from
Flexible Rails that will simplify how we use Cairn-
gorm: CairngormUtils and ServiceUtils.

CairngormUtils.as
First, we’ll create the CairngormUtils class. Its sole
purpose is to save some typing, since we dispatch
so many events.

ch07/src/com/socialstalkr/util/CairngormUtils.as

package com.socialstalkr.util {
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.adobe.cairngorm.control.CairngormEventDispatcher;

 public class CairngormUtils {
 public static function dispatchEvent(
 eventName:String, data:Object = null):void {

q

w

Creating CairngormUtils and ServiceUtils 177
 var event:CairngormEvent = new CairngormEvent(eventName);
 event.data = data;
 event.dispatch();
 }
 }
}

This class defines one public static function, dispatchEvent. It takes a
required eventName parameter and an optional data parameter that
defaults to null if omitted. It creates a new CairngormEvent with the type
set to the eventName. It then sets the untyped data property to the data
provided (or null if omitted). Finally, it calls the event’s dispatch
method, a CairngormEvent method that does the work of getting the
shared instance of the CairngormEventDispatcher for us.

ServiceUtils.as
Next, we create a nonstandard class called ServiceUtils, which con-
tains one public static method called send, which we’ll use to talk to
web services via HTTP. As you’ll see, the way that you do this is via a
class called HTTPService.

ch07/src/com/socialstalkr/util/ServiceUtils.as

package com.socialstalkr.util {
 import mx.rpc.IResponder;
 import mx.rpc.AsyncToken;
 import mx.rpc.http.HTTPService;

 public class ServiceUtils {
 public static function send(
 url:String,
 responder:IResponder = null,
 request:Object = null,
 sendXML:Boolean = false,
 resultFormat:String = "e4x",
 method:String = null,
 useProxy:Boolean = false):void
 {
 var service:HTTPService = new HTTPService();
 service.url = url;
 service.request = request;

q

w

e

178 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
 service.contentType = sendXML ? "application/xml" :
 "application/x-www-form-urlencoded";
 service.resultFormat = resultFormat;
 if (method == null) {
 service.method = (request == null) ? "GET" : "POST";
 } else {
 service.method = method;
 }
 service.useProxy = useProxy;
 var call:AsyncToken = service.send();
 if (responder != null) {
 call.addResponder(responder);
 }
 }
 }
}

We create a send function q, which has a bunch of parameters. All but
the url w parameter have defaults, so only the url parameter (which
specifies the URL of the HTTPService) is required. Inside the send func-
tion we construct a new HTTPService e, set its properties, and call its
send y method. The optional parameters specify service properties like
the contentType r and method t that have sensible defaults if omitted.
The responder is added to the AsyncToken returned by the send() call u
so the responder methods can be invoked.

This is the first time in this book that we’ve seen HTTPService, which is
pretty remarkable (and frankly a bit odd) when you think about
it—Flex applications are all about talking to servers, and this is the first
place we’ve seen how to do this. However, Flex is a very large topic
with lots to cover, as shown by the fact that we could spend most of a
book before we got to the point—talking to one or more servers over HTTP.
The important thing to note about HTTPService is that invoking its send()
method y is an asynchronous call, so nothing happens immediately in the
UI after the send() method is called. (If it was synchronous, the UI would
block until the call returned.)

INTEGRATING FLEX WITH SERVERS

HTTPService is just one way that Flex applications can talk to servers.
Flex can also use WebService and RemoteObject components to talk to

r

t

y

u

Creating the TwitterDelegate 179
servers. In this book, we’re sticking with HTTPService, since it’s the
most flexible: HTTPService lets you integrate with any server-side
technology, whether that’s Java, PHP, .NET, Ruby on Rails, or
whatever. Furthermore, these servers can use “RESTful” APIs to
support multiple clients other than Flex, such as HTML and iPhone.
If you like RESTful services, I recommend looking into the MIT-
licensed RestfulX framework—again, I’m totally biased in favor of
RestfulX, however. Finally, a word about HTTPService being asyn-
chronous: Flex programming, when done correctly, involves making
a ton of asynchronous service calls and handling their results. Don’t
try to fight this; just accept that this is fundamental to how Flex code
is written and embrace it.

Anyway, back to the ServiceUtils#send() method. You may be wonder-
ing why we’re doing all this. The answer is that this approach lets us
avoid using the standard Cairngorm approach of using a Services.mxml
file that defines all the services. That approach is problematic when we
use HTTPService a lot, because hardly any properties of a given HTTPSer-
vice remain constant between service invocations. Worse, if we don’t
explicitly set the properties to the values we want (even those where we
want the default value), we can have unexpected behavior because the
properties that a previous use of the HTTPService set will remain set that
way. For example, we can have the wrong contentType, resultFormat, and
so on if we (or some maintenance programmer) are careless. The dispos-
able HTTPService approach we use here is a lot less bug-prone.

Now that we have the building blocks in place, we can move on to the
higher-level classes that use ServiceUtils. First up, since it’s next lowest
on the food chain, is the TwitterDelegate business delegate. Business del-
egates are a layer between the low-level plumbing
code (in ServiceUtils) and the commands, which
we’ll describe after the TwitterDelegate.

Creating the TwitterDelegate
In this section, we’ll create the TwitterDelegate
business delegate that will use the ServiceUtils
class we’ve just seen. This class will be used in the
commands (which we’ll create next).

180 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
ch07/src/com/socialstalkr/business/TwitterDelegate.as

package com.socialstalkr.business {
 import com.socialstalkr.model.SocialStalkrModelLocator;
 import com.socialstalkr.util.ServiceUtils;
 import flash.net.URLRequest;
 import flash.net.navigateToURL;
 import mx.rpc.IResponder;

 public class TwitterDelegate {
 [Bindable]
 private var _model:SocialStalkrModelLocator =
 SocialStalkrModelLocator.instance;

 private var _responder:IResponder;

 public function TwitterDelegate(responder:IResponder) {
 _responder = responder;
 }

 public function verifyCredentials(twitterName:String,
 twitterPassword:String):void {
 var url:String =
 "http://" + twitterName + ":" + twitterPassword +
 "@twitter.com/account/verify_credentials.xml";
 ServiceUtils.send(url, _responder);
 }

 public function showUserFriends(twitterName:String):void {
 ServiceUtils.send("http://twitter.com/statuses/friends/" +
 twitterName + ".xml", _responder);
 }

 public function showUserTweets(twitterName:String):void {
 ServiceUtils.send(
 "http://twitter.com/statuses/user_timeline/" +
 twitterName + ".xml", _responder);
 }

 public function postTweet(tweet:String):void {
 ServiceUtils.send(
 "http://" + _model.userName + ":" + _model.userPassword +
 "@twitter.com/statuses/update.xml",

q

w

e

r

t

y

Creating the TwitterDelegate 181
 _responder, {status:tweet});
 }

 public static function endSession():void {
 ServiceUtils.send("http://twitter.com/account/end_session");
 try {
 navigateToURL(new URLRequest("http://ruboss.com"),
 "_top");
 } catch (e:Error) {
 }
 }
 }
}

q We create a reference to the shared SocialStalkrModelLocator.

w The _responder variable stores a reference to the IResponder, which
will be passed to the ServiceUtils.send method, and end up
responding to the service call.

e The verifyCredentials method logs into Twitter with a username
and password combination. Note the http://name:password@
twitter.com/ URL syntax, which my Ruboss partner Scott Patten
showed me.

r The showUserFriends method shows the friends of a Twitter user.

t The showUserTweets method shows all the recent tweets of a Twitter
user.

y The postTweet method uses the http://name:password@twitter.com/
URL syntax to POST a new tweet to Twitter.

u The endSession logs out from Twitter and redirects you to a very
self-serving URL.

The TwitterDelegate contains the functions that do the real work for
talking to Twitter. These functions all use the very handy Servi-
ceUtils.send() method, invoked with the appropriate URLs.

Having created the business delegate, we’ll now create the com-
mands—including the commands that use this business delegate.

u

182 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
Creating the commands
The first command that we’ll create will be the
ShowFriendTweets command, which shows the
tweets of one of the Twitter users you’re following.

ch07/src/com/socialstalkr/command/ShowFriendTweets.as

package com.socialstalkr.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.socialstalkr.business.TwitterDelegate;
 import com.socialstalkr.model.SocialStalkrModelLocator;
 import mx.collections.XMLListCollection;
 import mx.rpc.IResponder;

 public class ShowFriendTweets implements ICommand, IResponder {
 public function ShowFriendTweets() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:TwitterDelegate = new TwitterDelegate(this);
 delegate.showUserTweets(event.data.screen_name);
 }

 public function result(event:Object):void {
 SocialStalkrModelLocator.instance.selectedFriendTweets =
 new XMLListCollection(XMLList(event.result.children()));
 }

 public function fault(event:Object):void {
 trace("fault: " + event);
 }
 }
}

Here we’re creating a ShowFriendTweets command that implements ICom-
mand and IResponder q. Its execute method creates a new TwitterDelegate
w, which calls its showUserTweets e method. When this returns, an XML-
ListCollection is constructed and assigned to the selectedFriendTweets
in the shared SocialStalkrModelLocator r.

q

w

e

r

Creating the commands 183
(At this point, you may begin to see how Cairngorm fits together.)

Next, we create a similar command, ShowUserFriends, to list a user’s
friends.

ch07/src/com/socialstalkr/command/ShowUserFriends.as

package com.socialstalkr.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.socialstalkr.business.TwitterDelegate;
 import com.socialstalkr.model.SocialStalkrModelLocator;
 import mx.collections.XMLListCollection;
 import mx.rpc.IResponder;

 public class ShowUserFriends implements ICommand, IResponder {
 public function ShowUserFriends() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:TwitterDelegate = new TwitterDelegate(this);
 delegate.showUserFriends(event.data);
 }

 public function result(event:Object):void {
 SocialStalkrModelLocator.instance.twitterUserFriends =
 new XMLListCollection(XMLList(event.result.children()));
 }

 public function fault(event:Object):void {
 trace("fault: " + event);
 }
 }
}

This is very similar to what we just did in ShowFriendTweets. We create a
ShowUserFriends command, which creates a new TwitterDelegate and
calls its showUserFriends q method. The ShowUserFriends command then
constructs an XMLListCollection out of the result and assigns it w to the
shared SocialStalkrModelLocator twitterUserFriends.

If you think that was easy, it gets even easier to show the tweets of the
selected user.

q

w

184 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
ch07/src/com/socialstalkr/command/ShowUserTweets.as

package com.socialstalkr.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.socialstalkr.business.TwitterDelegate;
 import com.socialstalkr.control.EventNames;
 import com.socialstalkr.model.SocialStalkrModelLocator;
 import com.socialstalkr.util.CairngormUtils;
 import mx.collections.XMLListCollection;
 import mx.rpc.IResponder;

 public class ShowUserTweets implements ICommand, IResponder {
 [Bindable]
 private var _model:SocialStalkrModelLocator =
 SocialStalkrModelLocator.instance;

 public function ShowUserTweets() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:TwitterDelegate = new TwitterDelegate(this);
 delegate.showUserTweets(_model.userName);
 }

 public function result(event:Object):void {
 var tweetsXLC:XMLListCollection =
 new XMLListCollection(XMLList(event.result.children()));
 _model.twitterUserTweets = tweetsXLC;
 if (tweetsXLC.length > 0) {
 var selectedTweet:XML = XML(tweetsXLC.getItemAt(0));
 if (_model.twitterUser == null) {
 _model.twitterUser = XML(selectedTweet.user);
 } else {
 _model.selectedTweet = selectedTweet;
 }
 }
 }

 public function fault(event:Object):void {
 trace("fault: " + event);
 }
 }
}

q

w

e

Creating the commands 185
We call showUserTweets q again and just assign the result to a different
variable in the SocialStalkrModelLocator: the twitterUserTweets w. We
also check if we have any tweets, and if so, we set the XML of the current
twitterUser e based on the first tweet. Yes, this is cheesy, but it’s nec-
essary since there’s currently no Twitter API call to get this directly.
(Worse, if a user has no tweets, this code will break.)

Next, we create a VerifyCredentials command, which logs into Twitter.
Again, this uses the TwitterDelegate.

ch07/src/com/socialstalkr/command/VerifyCredentials.as

package com.socialstalkr.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.socialstalkr.business.TwitterDelegate;
 import com.socialstalkr.control.EventNames;
 import com.socialstalkr.model.SocialStalkrModelLocator;
 import com.socialstalkr.util.CairngormUtils;
 import mx.core.FlexGlobals;
 import mx.rpc.IResponder;

 public class VerifyCredentials implements ICommand, IResponder {
 [Bindable]
 private var _model:SocialStalkrModelLocator =
 SocialStalkrModelLocator.instance;

 public function VerifyCredentials() {
 }

 public function execute(event:CairngormEvent):void {
 _model.userName = event.data.twitterName;
 _model.userPassword = event.data.twitterPassword;
 var delegate:TwitterDelegate = new TwitterDelegate(this);
 delegate.verifyCredentials(_model.userName,
 _model.userPassword);
 }

 public function result(event:Object):void {
 CairngormUtils.dispatchEvent(EventNames.SHOW_USER_TWEETS);
 CairngormUtils.dispatchEvent(EventNames.SHOW_USER_FRIENDS,
 _model.userName);

q

w

e

186 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
 FlexGlobals.topLevelApplication.currentState = "main";
 }

 public function fault(event:Object):void {
 }
 }
}

q We store the twitterName and twitterPassword in the userName and
userPassword variables in the _model, for use when posting tweets.

w We then call the verifyCredentials method.

e When the service call returns, we dispatch events that trigger the
ShowUserTweets and ShowUserFriends commands.

Note how the result handler (which is called on successful return) trig-
gers the execution of two other commands: ShowUserTweets and
ShowUserFriends e. Recall that this association was defined with the
addCommand calls in the SocialStalkrController.

Next up is the PostTweet command, which posts a new tweet to Twitter.

ch07/src/com/socialstalkr/command/PostTweet.as

package com.socialstalkr.command {
 import com.adobe.cairngorm.commands.ICommand;
 import com.adobe.cairngorm.control.CairngormEvent;
 import com.socialstalkr.business.TwitterDelegate;
 import com.socialstalkr.control.EventNames;
 import com.socialstalkr.util.CairngormUtils;
 import mx.rpc.IResponder;

 public class PostTweet implements ICommand, IResponder {
 public function PostTweet() {
 }

 public function execute(event:CairngormEvent):void {
 var delegate:TwitterDelegate = new TwitterDelegate(this);
 delegate.postTweet(event.data);
 }

 public function result(event:Object):void {
 CairngormUtils.dispatchEvent(EventNames.SHOW_USER_TWEETS);

q

w

Creating the visual components 187
 }

 public function fault(event:Object):void {
 }
 }
}

q We create a new TwitterDelegate with this command as the responder.

w Once the new tweet is posted, we list the user tweets again.

When the postTweet q call returns, we just dispatch an event w to trig-
ger the ShowUserTweets command. This is a simple way of ensuring our
list is accurate (and that it includes tweets made from other Twitter cli-
ents). It’s inefficient, though, and it will increase the speed that we use
up our number of tweets per hour API limit. If we were building a real
Twitter client we wouldn’t do this.

Creating the visual components
Now that we’ve created so much of the
plumbing, we turn to creating the visual
components that use it. First, the LoginPanel—
recall that it’s shown in the login state of the main
SocialStalkr application.

ch07/src/com/socialstalkr/components/LoginPanel.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Panel xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="300" title="SocialStalkr - Login">
<fx:Script><![CDATA[
 import com.socialstalkr.util.CairngormUtils;
 import com.socialstalkr.control.EventNames;

 private function loadTwitterUser():void {
 CairngormUtils.dispatchEvent(EventNames.VERIFY_CREDENTIALS,
 { twitterName: twitterNameTextInput.text,
 twitterPassword: twitterPasswordTextInput.text});
 }

q

188 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
]]></fx:Script>
<s:layout>
 <s:VerticalLayout paddingLeft="10" paddingTop="10"
 paddingRight="10" paddingBottom="10"/>
</s:layout>
 <s:Label text="Twitter Name" fontWeight="bold"/>
 <s:TextInput id="twitterNameTextInput" width="100%"
 text="peterarmstrong"/>
 <s:Label id="passwordLabel" text="Password"
 fontWeight="bold"/>
 <s:TextInput id="twitterPasswordTextInput" width="100%"
 displayAsPassword="true" enter="loadTwitterUser();"/>
 <s:Button id="loginButton" label="Login"
 click="loadTwitterUser();"/>
</s:Panel>

q Trigger the VerifyCredentials command, and pass the name and
password along in an anonymous object.

w Use a vertical layout, which includes padding
to make the controls look nicely spaced inside
the Panel.

e Trigger the loadTwitterUser function on the
Enter key being pressed in the twitterPass-
wordTextInput or the loginButton being clicked.

Now, with the past few pages demonstrating the
verbosity of Cairngorm, we can start to see its
benefits. Simply put, the business logic of logging
in is nicely encapsulated from the UI controls
that trigger it.

Next, after the login succeeds,
the SocialStalkr app switches
to the main state and shows the
MainApp. Before we continue,
I’m going to show the MainApp
again, since this is what we’re
creating in the rest of the
chapter.

w

e

Creating the visual components 189
Let’s look at the code for the MainApp now.

ch07/src/com/socialstalkr/components/MainApp.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:VGroup xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 xmlns:components="com.socialstalkr.components.*">
 <s:HGroup width="100%" height="100%" gap="10">
 <components:MapPanel/>
 <components:TwitterGroup/>
 </s:HGroup>
 <s:HGroup id="footerBox" width="100%" verticalAlign="middle">
 <s:BitmapImage source="@Embed('assets/websrv_120_1.gif')"/>
 <s:Label text="This is the MIT-licensed book code
for Hello! Flex 4 (http://manning.com/armstrong3/). Code is
copyright © 2009 Peter Armstrong."/>
 </s:HGroup>
</s:VGroup>

q The MapPanel and TwitterGroup components are in an HGroup, which
lays them out horizontally.

w The BitmapImage only supports embedded images (unlike an
mx:Image, which can load URLs), so we embed Yahoo!’s image.

e We show the copyright notice in a Label. Note how the text attri-
bute can span multiple lines without creating any extra spaces or
newlines in the resulting string.

There’s not much to the MainApp—it’s just layout, really.

Next, we look at the components contained in the MainApp. First we
have the MapPanel.

ch07/src/com/socialstalkr/components/MapPanel.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Panel xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 title="SocialStalkr - Locations" width="100%" height="100%"
 creationComplete="onCreationComplete()">

q

w

e

190 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
<fx:Script><![CDATA[
 import mx.binding.utils.BindingUtils;
 import mx.binding.utils.ChangeWatcher;
 import mx.events.ResizeEvent;
 import com.yahoo.maps.api.MapTypes;
 import com.yahoo.maps.api.YahooMapEvent;
 import com.yahoo.maps.api.YahooMap;
 import com.yahoo.maps.api.markers.Marker;
 import com.yahoo.maps.api.core.location.Address;
 import com.yahoo.maps.api.core.location.LatLon;
 import com.yahoo.maps.webservices.geocoder.GeocoderResult;
 import com.yahoo.maps.webservices.geocoder.events.GeocoderEvent;
 import com.socialstalkr.model.SocialStalkrModelLocator;
 import com.socialstalkr.components.TwitterMarker;

 private static const YAHOO_APP_ID:String =
"TWLRFYTV34GhMOfRCZubCe_LcKgnCKtK06BYJy3WNYSg0d.MaEk1483y4_OpzxjlJEk-";

 [Bindable]
 private var _map:YahooMap;

 [Bindable]
 private var _model:SocialStalkrModelLocator =
 SocialStalkrModelLocator.instance;

 private function onCreationComplete():void {
 BindingUtils.bindSetter(locateTweet, _model, "selectedTweet");
 _map = new YahooMap();
 _map.addEventListener(
 YahooMapEvent.MAP_INITIALIZE, onMapInitialize);
 _map.init(YAHOO_APP_ID, mapContainer.width,
 mapContainer.height);
 _map.addPanControl();
 _map.addScaleBar();
 _map.addTypeWidget();
 _map.addZoomWidget();
 mapContainer.addEventListener(ResizeEvent.RESIZE,
 onMapResize);
 mapContainer.addChild(_map);
 }
…

q Be sure to use your own Yahoo! App ID, not this. (That’s why it’s
in strikethrough.)

q

w

e

r

Creating the visual components 191
w This is the YahooMap we’re displaying.

e BindingUtils.bindSetter listens to the data binding events to trigger
the locateTweet function call. This saves us from having to try to
call locateTweet from a Cairngorm command, which is brittle.

r We initialize the YahooMap. Note how we create the component, ini-
tialize it, attach listeners, and then add it to the containment hierar-
chy—this ensures it (and its parents) are ready for the events that
will get fired.

So far, we have added a const (meaning it doesn’t change) for our
YAHOO_APP_ID q. Do not use this one: use the one you got when you
signed up with Yahoo!. Next, we add a variable called _map for the
YahooMap w, and in the onCreationComplete event handler function we set
a bunch of fairly self-explanatory properties, including initializing the
_map r. Let’s look at the rest of the code in this file now.

ch07/src/com/socialstalkr/components/MapPanel.mxml (continued)

…
 private function locateTweet(tweet:XML):void {
 if (tweet == null) return;
 //_map.markerManager.removeAllMarkers();//broke in Flex 4 Beta 2;
 var text:String = tweet.text;
 var points:Array = text.match(/@{(.*)}/);
 var profileImageUrl:String = tweet.user.profile_image_url;
 var name:String = tweet.user.name;
 var location:String = tweet.user.location;

 if (points != null && points.length > 0) {
 var address:Address = new Address(points[1]);
 var marker:Marker = new TwitterMarker(
 profileImageUrl, text.replace(points[0], points[1]));
 marker.address = address;
 _map.markerManager.addMarker(marker);
 geocodeAddress(address);
 }
 }

 private function onMapResize(event:ResizeEvent):void {
 _map.setSize(mapContainer.width, mapContainer.height);
 }

t

y

192 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
 private function onMapInitialize(event:YahooMapEvent):void {
 _map.zoomLevel = 3;
 var address:Address =
 new Address("21 Water Street, Vancouver, BC");
 geocodeAddress(address);
 }

 private function geocodeAddress(address:Address):void {
 address.addEventListener(
 GeocoderEvent.GEOCODER_SUCCESS, onGeocoderSuccess);
 address.geocode();
 }

 private function onGeocoderSuccess(event:GeocoderEvent):void {
 var result:GeocoderResult =
 event.data.firstResult as GeocoderResult;
 _map.centerLatLon = result.latlon;
 }
]]></fx:Script>
 <mx:UIComponent id="mapContainer" width="100%" height="100%"/>
</s:Panel>

Let’s take a tour of the rest of this code.

We start by creating a function called locateTweet t, which gets called
whenever the _model.selectedTweet changes because of the use of the
BindingUtils.bindSetter function e. (BindingUtils let you set up bind-
ing expressions in ActionScript code.) Note that the removeAllMarkers()
library function call got broken by Flex 4 Beta 2. It may be working by
the time you read this, so I’m leaving this line in but commented out.
(The app will work either way.)

The approach in locateTweet is a bit subtle: it checks to see if the text of
the tweet contains text that matches the regular expression /@{(.*)}/,
which means that text like “I’m at @{21 Water St, Vancouver} writing
the book” will match but text like “I’m at 21 Water Street, Vancouver
writing the book” will not. Specifically, the text “I’m at @{21 Water St,
Vancouver} writing the book” will produce a points Array whose 0th
element is “@{21 Water St, Vancouver}” and whose 1st element is “21
Water St, Vancouver”. So, we then check if we have a non-null points
Array with a length of greater than 0, meaning if we have a match. If we
do have a match, we create a new TwitterMarker with the profileImageUrl

u

i

o

a

Creating the visual components 193
and with the text. Note that we replace the points Array’s 0th element,
such as “@{21 Water St, Vancouver}”, with the points Array’s 1st ele-
ment, such as “21 Water St, Vancouver”, in order to make the marker
text look nicer. We also set the address with the points Array’s 1st ele-
ment and then set the address of the marker to the address. We then
add the marker to the _map’s markerManager, and then call our geocodeAd-
dress function i, which geocodes the address and centers the map on
that latitude and longitude on a successful result o.

Next, we add a function called onMapResize y, which ensures the map is
correctly sized when the map is resized (say, if its parent UIComponent a
grows if the application grows if the user makes the browser window
larger).

We then add an onMapInitialize u function, which sets the map to an
arbitrary, fairly zoomed in zoom level of 3, an appropriate zoom level
for “stalking” our friends who are embedding their special location tags
in their tweets. We also start with an arbitrary Address. I’d have liked to
have used your IP address as a basis for geocoding, but I don’t think
this is possible to be done in pure client-side Flex code.

Having created the map, we turn to the task of creating a marker class
that shows the user’s avatar and tweet. We’ll use this class for tweets
that have location tags and that can be shown on the map. (Thanks to
Dima Berastau for this code and help with the explanation!)

ch07/src/com/socialstalkr/components/TwitterMarker.as

package com.socialstalkr.components {
 import com.yahoo.maps.api.markers.Marker;

 import flash.display.Loader;
 import flash.display.Shape;
 import flash.events.Event;
 import flash.net.URLRequest;
 import flash.system.LoaderContext;
 import flash.text.TextField;
 import flash.text.TextFormat;

 public class TwitterMarker extends Marker {
 private var _shape:Shape;
 private var _loader:Loader;

q

194 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
 private var _url:String;
 private var _textField:TextField;
 private var _text:String;

 public function TwitterMarker(url:String, text:String) {
 super();
 _url = url;
 _text = text;
 _shape = new Shape();
 _shape.graphics.lineStyle(1,0x666666);
 _shape.graphics.beginFill(0xFFFFFF,1);
 _shape.graphics.drawRoundRect(5, 5, 250, 51, 0, 0);
 _shape.graphics.endFill();
 addChild(_shape);
 _loader = new Loader();
 _loader.contentLoaderInfo.addEventListener(Event.COMPLETE,
 onLoadComplete);
 _loader.load(new URLRequest(url), new LoaderContext(true));
 addChild(_loader);
 _textField = new TextField();
 _textField.text = text;
 _textField.cacheAsBitmap = true;
 _textField.defaultTextFormat =
 new TextFormat("Arial", 11, 0x000000, true);
 _textField.wordWrap = true;
 _textField.x = 57;
 _textField.y = 7;
 _textField.width = 200;
 _textField.height = 65;
 addChild(_textField);
 }

 private function onLoadComplete(event:Event):void {
 _loader.x = 7;
 _loader.y = 7;
 _loader.height = 48;
 _loader.width = 48;
 }
 }
}

We are creating a component called TwitterMarker, which extends the
Marker q class provided by Yahoo!. The Marker is not a Flex compo-
nent like TextInput, List, or VBox—instead, it’s a direct subclass of

w

e

r

t

Creating the visual components 195
flash.display.Sprite (more about this in the accompanying sidebar).
In this class’s constructor w, we store the URL of an image to display,
as well as the text to display.

This class shows that if you want to, you can use lower-level compo-
nents from the flash packages.

To achieve our objective and display a friend’s tweet as a marker on
our Yahoo! map, we’ll have to create a few native Flash objects and use
their programmatic graphics API directly. In our case we’ll start by cre-
ating a Shape e, define its lineStyle to be 1 pixel wide, and make it use
a nice gray (0x666666). (The Shape class creates lightweight shapes using
the AS3 drawing API, and includes a graphics property so you can call
Graphics methods. A Shape is lighter weight than a Sprite, since it can’t
contain display objects or handle mouse events.)

Next we’ll specify that our shape should have a white background.
Note that we still haven’t indicated what shape we actually want.
Should it be a circle, a line, or something else? We call the drawRoun-
dRect() method to use a rounded rectangle with a height of 51 pixels
and a width of 250 pixels. Finally, we call the endFill() method to fin-
ish the creation of the shape. Now that our shape is ready, we need to
add it as a child to the TwitterMarker object (using the addChild(_shape)
method, which is equivalent to calling this.addChild(_shape)). All we’re
accomplishing with this is adding our newly created shape to the Flash
object graph. Until we added the shape somewhere, Flash wouldn’t know
what all this drawing should happen relative to. (We add this Shape
instance to draw a background shape for our marker, since Marker by
default has no shape.)

Now that we have a rounded box drawn on the map at the exact loca-
tion we specified when creating the TwitterMarker instance, let’s tackle
our next challenge, which is loading the user image specified as a url
argument in the TwitterMarker constructor. Since this is going to be an
asynchronous operation, we have to use Flash Loader r object, which
will go out and fetch the image bytes from the URL we specified and
load them into the Flash runtime. Again, we add the Loader as a child of
the TwitterMarker instance. Last but not least, we’ll create a Flash Text-
Field t to display the actual tweet. TextField is a low-level object that’s

196 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
used to render text. We set its properties, such as the font type, and
add it as a child to the current TwitterMarker instance.

 Anyway, that said, all this class does is draw the text and image for the
marker with the avatar and tweet; we don’t need to get bogged down in
the advanced details about mixing and matching Flash and Flex com-
ponents.

Next, we create the TwitterGroup class, which displays the content to
the right of the map.

ch07/src/com/socialstalkr/components/TwitterGroup.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:VGroup xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 xmlns:components="com.socialstalkr.components.*"
 width="380" height="100%">

No fair! I’m an experienced developer! I want the advanced details!

OK, fine. Here’s what Dima Berastau has to say about this:

When you first encounter Flex, your primary activities will mostly revolve around
developing MXML components and self-contained AS3 objects. Seasoned Java
developers might think, “Awesome! This is easy. AS3 is almost like Java and
MXML is just a domain-specific language for laying out the UI declaratively. Noth-
ing new here.” The Flash platform will be simply a runtime that your compiled
code runs on. After all, you don’t go around messing with JVM byte code in Java.

Not true. Fortunately or unfortunately, the Flash platform is not just a runtime
detail. In some advanced situations, you’ll be in a position where you’ll need to
write code that uses Flash constructs directly, bypassing all the Flex component
machinery. Integrating with third-party components such as Yahoo! Maps is a
great example of this: we want to display your friends’ tweets as markers on a
Yahoo! map embedded in your Flex application. However, the YahooMap and the
Marker classes aren’t Flex components—they just both directly subclass
flash.display.Sprite.

Although you might be tempted to try to add a new marker to the map by doing
something like calling addChild(new TextInput()), this won’t have the desired
effect of displaying a TextInput element over some location on the map. Flex
components have a much more complex lifecycle compared to basic Flash ob-
jects and, as such, don’t play well together.

Creating the visual components 197
<fx:Script><![CDATA[
 import mx.collections.ArrayCollection;
 import spark.events.IndexChangeEvent;
 import com.socialstalkr.business.TwitterDelegate;

 [Bindable]
 private var _buttonData:ArrayCollection = new ArrayCollection([
 {label: "You", data: "you"},
 {label: "Following", data: "following"}]);

 private function changeSelection(event:IndexChangeEvent): void {
 currentState = _buttonData[event.newIndex].data;
 }
]]></fx:Script>
 <s:states>
 <s:State name="you"/>
 <s:State name="following"/>
 </s:states>
 <s:Group width="100%">
 <s:ButtonBar id="viewMenu" selectedIndex="0"
 change="changeSelection(event)" labelField="label"
 dataProvider="{_buttonData}" left="0"/>
 <s:Button label="Logout" click="TwitterDelegate.endSession();"
 right="0"/>
 </s:Group>
 <components:YouGroup includeIn="you"/>
 <components:FollowingGroup includeIn="following"/>
</s:VGroup>

q The _buttonData ArrayCollection is used as the dataProvider of the
ButtonBar.

w The changeSelection function sets the state of the component to the
data property of the object in the _buttonData Array at the
event.newIndex, which will be either you or following.

e These are the states that the TwitterGroup can be in. This use of view
states, along with the use of the ButtonBar, is essentially what a Tab-
Navigator would’ve been used for in Flex 3.

r The ButtonBar specifies a labelField of label, meaning that the but-
tons will show either You or Following, which are the label proper-
ties of the anonymous objects in the _buttonData ArrayCollection.

t Create a Logout button that just calls the endSession function
directly, as we didn’t bother to create a command for logout.

q

w

e

r

t

y

198 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
y The YouGroup and FollowingGroup components are in only one view
state each.

Note that I did not use a TabNavigator since it can only contain Halo
children, and I'm trying to use Spark components wherever possible in
this app.

Next up, we create the YouGroup and FollowingGroup components con-
tained in the TwitterGroup component.

ch07/src/com/socialstalkr/components/YouGroup.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%">
<fx:Script><![CDATA[
 import com.socialstalkr.business.TwitterDelegate;
 import com.socialstalkr.control.EventNames;
 import com.socialstalkr.model.SocialStalkrModelLocator;
 import com.socialstalkr.util.CairngormUtils;

 [Bindable]
 private var _model:SocialStalkrModelLocator =
 SocialStalkrModelLocator.instance;

 private function locateTweet(tweet:XML):void {
 _model.selectedTweet = tweet;
 }

 private function postTweet(tweet:String):void {
 CairngormUtils.dispatchEvent(EventNames.POST_TWEET, tweet);
 }
]]></fx:Script>
 <s:layout>
 <s:VerticalLayout/>
 </s:layout>
 <s:HGroup width="100%">
 <mx:Image width="48" height="48"
 source="{_model.twitterUser.profile_image_url}"/>
 <s:VGroup width="100%">

q

w

Creating the visual components 199
 <s:Label width="100%"
 text="{_model.twitterUser.name}"/>
 <s:Label width="100%"
 text="({_model.twitterUser.screen_name})"/>
 </s:VGroup>
 </s:HGroup>
 <s:VGroup width="100%">
 <s:Label text="What are you doing?" fontWeight="bold"/>
 <s:TextArea id="postTA" width="100%" height="75"/>
 <s:Label text="{140 - postTA.text.length} characters left"
 color="{(postTA.text.length > 140) ? 0xFF0000 : 0x000000}"/>
 <s:Button enabled="{postTA.text.length <= 140}"
 label="Submit" click="postTweet(postTA.text)"/>
 </s:VGroup>
 <mx:List id="selectedUserTweetList"
 width="100%" height="100%" labelFunction="{_model.formatTweet}"
 paddingTop="0" paddingBottom="0" paddingLeft="0" paddingRight="0"
 change="locateTweet(XML(selectedUserTweetList.selectedItem))"
 dataProvider="{_model.twitterUserTweets}"
 alternatingItemColors="[#EEEEEE, #FFFFFF]"
 wordWrap="true" variableRowHeight="true" borderStyle="none"/>
</s:Group>

q Posting a tweet just triggers the PostTweet command. People like to
pick on it, but hooray for Cairngorm!

w The Halo Image class is used here because the Spark BitmapImage
class can’t handle nonembedded images.

e We bind to the _model for various shared properties, like the name.

r Data binding also works nicely to calculate things like the number
of characters left in a tweet. Note how XML’s restrictions against <
and > inside attribute values forces the use of <= for <=.

t We use the Halo List class since the Spark List class is terrible at
word wrapping.

As this example shows, Flex 4 apps can still use help from the old Halo
components. It also shows how the shared state in the Model Locator
pattern is used by Cairngorm. Depending on your taste and on the size
of apps you typically build, this is either nice and simple or else a dis-
tasteful, thinly disguised use of global state.

e

r

t

200 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
Next up, we create a FollowingGroup class for the Twitter users we’re
following. Recall that this app shows a List of them at the top and the
tweets of the selected friend at the bottom.

ch07/src/com/socialstalkr/components/FollowingGroup.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo"
 width="100%" height="100%">
<fx:Script><![CDATA[
 import spark.events.IndexChangeEvent;
 import com.socialstalkr.business.TwitterDelegate;
 import com.socialstalkr.control.EventNames;
 import com.socialstalkr.model.SocialStalkrModelLocator;
 import com.socialstalkr.util.CairngormUtils;

 [Bindable]
 private var _model:SocialStalkrModelLocator =
 SocialStalkrModelLocator.instance;

 private function onUserSelect(event:IndexChangeEvent):void {
 _model.selectedFriend =
 XML(spark.components.List(event.currentTarget).selectedItem);
 CairngormUtils.dispatchEvent(EventNames.SHOW_FRIEND_TWEETS,
 _model.selectedFriend);
 }

 private function locateTweet(tweet:XML):void {
 _model.selectedTweet = tweet;
 }
]]></fx:Script>
<s:layout>
 <s:VerticalLayout/>
</s:layout>
 <s:Panel width="100%" height="250"
 title="{_model.twitterUser.name} is Following">
 <s:List id="usersList" width="100%" height="100%"
 dataProvider="{_model.twitterUserFriends}"
 change="onUserSelect(event)"
itemRenderer="com.socialstalkr.components.UserListItemRenderer"/>
 </s:Panel>

q

w

e

r

Creating the visual components 201
 <s:Panel visible="{_model.selectedFriend != null}"
 width="100%" height="100%"
 title="{_model.selectedFriend.name}'s Tweets">
 <mx:List id="selectedFriendTweetList"
 width="100%" height="100%" borderStyle="none"
 alternatingItemColors="[#EEEEEE, #FFFFFF]"
 paddingTop="0" paddingBottom="0" paddingLeft="0"
 paddingRight="0" wordWrap="true" variableRowHeight="true"
 change="locateTweet(XML(selectedFriendTweetList.selectedItem))"
 labelFunction="{_model.formatTweet}"
 dataProvider="{_model.selectedFriendTweets}"/>
 </s:Panel>
</s:Group>

q Get a reference to the SocialStalkrModelLocator singleton.

w When a user is selected, we assign the shared selectedFriend vari-
able and show that friend’s tweets. Note how I’m using the fully
qualified class name of the Spark List (spark.components.List) since
both Halo and Spark List classes are used here.

e The locateTweet function just sets the shared selectedTweet variable,
which triggers the binding in the MapPanel.

r We use a Spark List here with a custom itemRenderer.

t We use a Halo List here since we need word wrapping.

Again, here we’re being negligent about caching, and we’re just show-
ing the friend’s tweets every time we select them. This repeated use will
often hit the Twitter rate cap, so don’t do this if you’re building a real
Twitter client!

One more component left! Finally, we need to build the custom Item-
Renderer for the Spark List of the Twitter users we’re following.

ch07/src/com/socialstalkr/components/UserListItemRenderer.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:ItemRenderer xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/halo">
<fx:Script><![CDATA[
 [Bindable]
 private var _value:XML;

t

202 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
 [Bindable]
 public override function set data(value:Object):void {
 _value = XML(value);
 }

 public override function get data():Object {
 return _value;
 }
]]></fx:Script>
 <s:states>
 <s:State name="normal"/>
 <s:State name="hovered" stateGroups="big"/>
 <s:State name="selected" stateGroups="big"/>
 </s:states>
 <s:HGroup width="100%" color.selected="0x990066"
 color.hovered="0x0000FF">
 <mx:Image id="profileImage" width="20" height="20"
 width.big="48" height.big="48"
 source="{_value.profile_image_url}"/>
 <s:VGroup id="summaryArea">
 <s:Label text="{_value.name}"/>
 <s:Label fontStyle="italic" includeIn="big"
 text="({_value.screen_name})"/>
 </s:VGroup>
 </s:HGroup>
</s:ItemRenderer>

q We override the data setter and getter, and store the _value as
XML. The component that’s using this as its itemRenderer sets the
data property, which is what this set function in the ItemRenderer
subclass takes advantage of.

w We create the required states for a Spark ItemRenderer. Note the use
of the stateGroups attribute: we’re creating a “big” StateGroup to
refer to both the hovered and selected states. Note that the normal,
hovered, and selected states are required state names for Spark ItemRen-
derers to have!

e We use a Halo Image here since its source isn’t embedded.
r The includeIn attribute can take StateGroups as well as just States.

CAUTION Flex 3 programmers take note: if you don’t define the required
normal, hovered, and selected states for your Spark ItemRender-
ers, your app will explode!

q

w

e

r

Creating the visual components 203
That’s it! Click Play to compile and run the application. Log in with
your Twitter ID; you’ll see the app shown in the beginning of the chap-
ter. If you then post a tweet with a location coded like @{some address
that Yahoo can parse}, you should be able to click on that tweet and
see a nice marker displayed on the map, centered over your location.
When you click on tweets with no @{location} tags, no marker is
shown on the map.

➼ Key points

❂ For an application of this size, Cairngorm is probably overkill. How-
ever, this is an introductory book, so we don’t have the space to build
an application that’s large enough to demonstrate the benefits.

❂ Cairngorm is a useful way of structuring large Flex applications.
With the switch to Flex 4, it will be interesting to see whether Mate,
Swiz, or PureMVC can dethrone it.

❂ Despite its benefits, Cairngorm is verbose. You can tell that it owes
its origin to a bunch of J2EE patterns—a fact that deserves some dis-
cussion. Flex is only possible because of the evolution of the Flash
platform, and in many ways it’s the future of the Flash platform.
However, there’s some tension here—some of the changes haven’t
been welcomed universally. Colin Moock wrote about this in his arti-
cle “The Charges Against ActionScript 3.0,” at www.insideria.com/
2008/07/the-charges-against-actionscri.html. At a very high level, it’s
as though Flash has grown up from being a punk rock teenager to a
mortgage broker—some of the people who knew it “back in the day”
may wonder if it’s forgetting its past. However, the roots are still
there: Flex does compile to Flash, which means that much more is
possible than traditional desktop or web UI developers are used to.
Besides, Flex and Flash are being a lot more unified with Flex 4—so
much so that Flex Builder has been renamed to Flash Builder 4. So Flash is Flex,
and Flex is Flash, and they were all rebranded happily ever after.

❂ Flex is great at talking to web services, and HTTPService makes it easy
to talk to RESTful services. (You can find out more about this in
Flexible Rails, and also explore the RestfulX framework to see the
ideas that began with Flexible Rails taken to the next level.)

www.insideria.com/2008/07/the-charges-against-actionscri.html

204 CHAPTER 7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
What’s next?
That’s it for this book. I really hope you enjoyed it, and that

the cartoons gave you a couple of laughs as you learned the
basics of Flex. Please email me at peter@ruboss.com with
your feedback—good, bad, or both. If you’d like to share

your comments with other readers, please post them to Man-
ning’s Author Online forum at www.manning.com/HelloFlex4.

Finally, I hope you build something cool using Flex 4. You’re
definitely way past the “Hello World” level as a Flex developer
now...

 Index
Symbols
@replies 159
* type 28
#hashtags 159

Numerics
32-bit 29
37signals 2
3D effect 80
64-bit 29

A
access control namespace attributes 26
Accordion 128, 130
ActionScript 9
addChild 87
addCommand 176
addEventListener 9
addItemAt 39
Address 149
AddressForm 137, 141, 148–149
Adobe 166
Adobe Developer Connection 106
Adobe Illustrator 62
Adobe Labs 167
AdvancedDataGrid 122
Ajax 3
Alert 122, 131
Alert.show 135
anonymous objects 31
API quota 162

Application 7, 90, 119
applicationComplete 119
Array 29

construction 33
ArrayCollection 18, 125
as 35

keyword 40
AsyncToken 178

B
backward domain name syntax 16
BasicLayout 91–92, 98
Bekor, Chen 168
Berastau, Dima 173, 193
Bindable 14, 124, 145
BindingUtils.bindSetter 192
bit.ly 85
BitmapImage 51
Board 77
BoardDisplay 67
Boolean 29
business delegate 169
Button 57
ButtonBar 59, 61
Buzzword 135

C
Cairngorm 157, 165

event sequence 169
standard directories 168

Cairngorm Enterprise 168
205

206 INDEX
CairngormEvent 170, 177
CairngormEventDispatcher 177
CairngormStore 167
CairngormUtils 176
callLater 155
Camera 85
Canadian postal codes 141, 146
Cascading Style Sheets (CSS) 21, 110
casting 35
CDATA 8
CheckBox 57
Cold Fusion 160
ComboBox 61
compiler arguments 114
compiler warnings 28
components 20

data-driven 59
composition 44, 99
constructor 28, 31
contentType 179
contract 40
core classes 29
countryValidator 153
createPopUp 134
creationComplete 119
CreditCardValidator 138
CurrencyFormatter 138
CurrencyValidator 138

D
data binding 7, 10

two-way 10
DataGrid 122–123, 125
DataGroup 97–98
dataProvider 94, 129, 143, 155
Date 29
DateFormatter 126, 138
DateValidator 138
Declarations 58, 108
default value of function parameter 28
DeHaan, Peter 114
Design in Mind 21
designer-developer workflow 21, 84
Developing Rich Clients with Macromedia

Flex 167

“Differences between Flex 3 and Flex 4
beta” 122

“Diving in the Flex Data Binding
Waters” 10, 115

do while loop 33
drawRoundRect 195
DropDownList 59, 61, 94, 141, 154–155

E
E4X. See ECMAScript 4 XML (E4X)
Eclipse 5
ECMAScript 4 XML (E4X) 29, 47
EffectiveUI 116
Elastic Racetrack 116
elementRemove 117
Ellipse 51, 71
EmailValidator 138
Error 29
EventDispatcher 58
EventListener 102
EventNames 174
events 7
explicit type conversion 40
extend 42
external CSS file 111

F
Facebook 163
Fail Whale 162
fairy tale 59
FilledElement 54
finite state machine 99
Flash 1
Flash Builder 4 3
Flash Catalyst 4, 84, 97
Flash Player Settings security dialog 87
Flash XML Graphics (FXG) 62
Flex 4 component lifecycle 116
Flex Builder 3
Flexible Rails 165, 203
focusOut 155
FollowingGroup 200
font support 100
for ... in loop 34
for each loop 34

INDEX 207
for loop 33
Form 156

just a layout tool 154
format 138
Formatter 138
formatters 136, 140
FormItem 155–156
FrontController 171, 175
Function 29
function keyword 28
Fx class name prefix 121
fx namespace prefix 24
FXG. See Flash XML Graphics (FXG)

G
get and set accessors 26
getters 26
GitHub 174
Graphic 51
Group 9, 90, 130

H
Haase, Chet 106
Halo 21

style 23
Halo components 121

navigator containers 122, 127
hasOwnProperty 47
HGroup 9, 90
Hillerson, Tony 174
HorizontalLayout 91–92, 98
HSlider 57
HTML 2
HTTPService 156, 158, 165, 177, 203

I
ICollectionView 45
ICommand 182
id 137
IFlexDisplayObject 134
IGraphicElement 90
IModelLocator 173
implements 35, 42
inheritance 41
initialize 119

InsideRIA 94
instanceof 40
int 29
InteractiveObject 54
interfaces 35
internal 26, 28
IResponder 169, 182
is 35

keyword 40
is a 41
ItemRenderer 201
IUIComponent 90

J
J2EE 203
Java 2, 21, 28
Java Swing 2
JavaScript 1, 131
join 33

K
Kanji 100

L
Label 7, 51
labelFunction 126–127
Labriola, Michael 10, 115
Lafferty, Joan 122
LayoutBase 91
lightbox 131
Line 51
LinkBar 62, 128–129
LinkButton 129
List 59, 143

Halo 123
Spark 99

ListCollectionView 45, 49
Loader 195
LoginPanel 187
looping 31

M
Macromedia 166
magic 115
MainApp 189
map 33

208 INDEX
MapPanel 189
Marker 194
mashups 160
Mate 164
Math 57
Matsuo, Basho 103
McLeod, Alistair 166
Menu 122
MenuBar 122
metadata 102
microformat 160
MIT license 141
modal 131, 135
Model Locator pattern 199
ModelLocator 171
Model-View-Controller (MVC) 165
Moock, Colin 203
MouseEvent 7
Move 109
multicolumn data 127
mx prefix 24
MXML 2

graphics 65

N
namespace 20
narcissism 160
native types 49
navigator containers 99
NET 21
Number 29
NumberFormatter 138
NumberValidator 138, 141, 153
NumericStepper 57

O
Object 29
onCreationComplete 191
Only Connect 62
open source 4
override 44
Owen, R. J. 116

P
package 16
paddingLeft 111

Panel 90
Spark 92, 100

PanelSkin 102
Parallel 107, 109
Path 51
Patrick, Ted 116
Patten, Scott 160
PhoneFormatter 138
PhoneNumberValidator 138
Pivotal Tracker 36
Pomodo 16
PopUpManager 122, 131, 134–135
postalCodeFormatter 153
postalCodeValidator 153
PostTweet 186
prefix 22
preinitialize 119
primitives 51
private 26, 28
“Programming ActionScript 3” 31
PropertyChangeListener 14
protected 26, 28
public 26, 28
PureMVC 164

R
RadioButtonGroup 57
Rect 51, 71
RegExp 29
RegExpValidator 138, 141, 153, 155
RemoteObject 178
removePopUp 134–135
required 138
RESTful web services 158
RestfulX 173, 203
resultFormat 179
RIAs. See rich Internet applications
rich Internet applications (RIAs) 1, 106
RichEditableText 51, 132
RichText 51
RichTextEditor 131–132, 135
Rotate3D 83, 109
Rube Goldberg 166
Ruboss 160
Ruby 29
Ruby on Rails 160

INDEX 209
S
s prefix 24
SAX 49
Schmidt, Doug 116
Script 8
ScrollBar 89
Scroller 90, 95
selectedIndex 153
selectedItem 94, 155
Sequence 109
ServiceUtils 170, 177
set keyword 28
setters 26
Shape 195
ShowFriendTweets 182
ShowUserFriends 183
Silverlight 3
Singleton 173
SingletonEnforcer 173
SkinnableComponent 58, 91
SkinnableContainer 97–98
SkinnableContainerBase 90
SkinnableDataContainer 90, 97–98
SocialSecurityValidator 138
SocialStalkr 158
SocialStalkrController 171, 175
SocialStalkrModelLocator 171, 182
Software Development Kit (SDK) 5
SortField 48
Spark

components 55
containers and layouts 90

Spinner 57
Sprite 195
SpriteVisualElement 87
stateGroups 104–105
stateValidator 153
Stewart, Ryan 163
String 29
StringValidator 138, 141
StyleValidator 138
subclass 41
SWF 2
Swiz 164

T
TabNavigator 62, 130, 198
target 9
TechCrunch 162
tedious code 80
ternary operator 33
TextArea 57
TextField 195
TextInput 57, 138
thumbIcon 89
TileLayout 91–92, 95
TitleWindow 131–132, 134
ToggleButton 57
toString 145
Tree 122
Trice, Andrew 94
tweets 159
Twitter 85, 158
TwitterDelegate 179, 185
TwitterMarker 194
Twitterscript 173
type checking 28

compile-time 28
types 26

U
UIComponent 119
uint 29, 74
Umbaugh, Brad 116
USB class video 87

V
validateAndFormatZipCode 153
Validator 138
Validator.validateAll 149
validators 136, 140
var 31
VerifyCredentials 185
VerticalLayout 91–92, 102
VGroup 7, 9, 90
Video 85
view states 104
ViewStack 62, 128–129
void 31
VSlider 57

210 INDEX
W
Wadhwa, Mrinal 116
WebService 178
Webster, Steven 166
while 33
Windows Forms 2
write once, debug everywhere 2

X
XML 15, 29, 45
XMLList 29, 45, 49

XMLListCollection 45
xmlns 24

Y
Yahoo Maps 158
YahooMap 191
YouGroup 198

Z
ZipCodeFormatter 138, 141, 153
ZipCodeValidator 138, 141, 146, 153

ISBN 13: 978-1-93 - -43988 76
ISBN 10: 1-933988-76-2

9 7 8 1 9 3 3 9 8 8 7 6 4

99435

F
lex should be as easy to learn as it is to use. And with Hello!
Flex 4, it is! Th is illustrated tutorial builds your know-how
from the fi rst Hello-World example up to a practitioner

level using an entertaining style that makes learning a breeze.
You’ll learn to make easy-to-use interfaces, eye-catching
animations, and powerful data-driven features.

Hello Flex 4 progresses through 26 self-contained examples
selected so you can progressively master Flex. Th ey vary from
small one-page apps, to a 3D rotating haiku, to a Connect
Four-like game. And in the last chapter you’ll learn to build a
full Flex application called SocialStalkr—a mashup that lets you
follow your friends by showing their tweets on a Yahoo map.

Learn how to
Create engaging animations and transitions
Handle user input
Access and display data
Communicate with the server
Use open source components

Peter Armstrong is the author of Flexible Rails and the
cofounder of Ruboss, a Vancouver-based Flex and web
development company.

For online access to the author, and a free ebook for owners
of this book, go to manning.com/HelloFlex4

$34.99 / Can $43.99 [INCLUDING eBOOK]

Hello Flex 4

FLEX/WEB DEVELOPMENT

Peter Armstrong

“Friendly and fun.”
 —Justin Tyler Wiley, Web Developer
 Cisco Systems Inc.

“Many well thought-out,
 real-world examples.”
 —Tony Obermeit, Principal
 Applications Engineer, Oracle
 Corporation

“Armstrong again creates a
 must-have guide for
 Flex development.”
 —Robert Dempsey, CEO
 Atlantic Dominion Solutions

“A fast-paced and engaging
 way ... to master RIAs in Flex.”
 —Steve Byrne, Chief Architect
 Dorado Network Systems Corp.

“Th e most fun technical book
 I have ever read!”
 —Andrew Siemer, .NET Architect

M A N N I NG

SEE INSERT

Whether you’re a weekend
web developer or you want big
things from Flex, this book is

a great place to start.

	Home Page
	Hello! Flex 4
	Brief contents
	Contents
	Preface
	Acknowledgments
	About this book
	About Hello! books
	1 Getting started
	Why Flex 4?
	Flex 4 overview
	Flex vs. Ajax? Flex and Ajax?
	Getting Flex 4 and Flash Builder 4
	Beginning the workshop

	Session 1 Hello! Flex
	Key Points

	Session 2 Dispatching and listening for events
	Key points

	Session 3 The Bindable annotation and data binding
	Key points

	Session 4 Flex application structure overview
	Key points

	Session 5 Spark, Halo, and Flex 4 namespaces
	Key points

	What’s next?

	2 ActionScript 3, XML, and E4X
	Session 6 Variables, functions, types, and scope
	Key points

	Session 7 Objects, Arrays, Collections, and Looping
	Key points

	Session 8 Interfaces, casting, is, and as
	Key points

	Session 9 Inheritance
	Key points

	Session 10 E4X, XML, XMLList, and XMLListCollections
	Key points

	What’s next?

	3 Hello Spark: primitives, components, FXG and MXML graphics, and even video
	Session 11 Spark primitives
	Key points

	Session 12 Simple Spark components
	Key points

	Session 13 Data-driven Spark components (Lists)
	Key points

	Session 14 FXG and MXML graphics—building a game
	Key points

	Session 15 Camera and video—a fake Twitter client
	Key points

	What’s next?

	4 Spark containers, view states, effects, and styling
	Session 16 Spark containers and layouts
	Key points

	Session 17 View states
	Key points

	Session 18 Effects and animation
	Key points

	Session 19 CSS styling
	Key points

	Session 20 Peeking behind the MXML curtain
	Key points

	Session 21 The Spark component lifecycle
	Key points

	What’s next?

	5 Halo Flex 4: Using DataGrid, Navigator Containers, and Popups
	Session 22 List and DataGrid
	Key points

	Session 23 TabNavigator, ViewStack, and Accordion
	Key points

	Session 24 Alert.show and the PopupManager
	Key points

	What’s next?

	6 Building user-friendly forms using Flex formatters and validators
	Session 25 Formatters and validators
	Key points

	Session 26 Real-world forms, formatters, and validators
	Key points

	What’s next?

	7 Cairngorm in Action: SocialStalkr (Twitter + Yahoo! Maps)
	Creating the SocialStalkr project
	Getting started with Twitter
	Getting started with Yahoo! Maps
	Cairngorm
	Cairngorm history and motivation

	Downloading and installing Cairngorm 2.2.1
	Cairngorm event sequence overview
	Creating the main application
	Creating the ModelLocator
	Creating the control package
	EventNames.as
	SocialStalkrController.as

	Creating CairngormUtils and ServiceUtils
	CairngormUtils.as
	ServiceUtils.as

	Creating the TwitterDelegate
	Creating the commands
	Creating the visual components
	ü Key points

	What’s next?

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

