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Preface to the second edition

Since the publication of the first edition we have used it as the basis for several courses.
These include courses for a whole semester on Mathematical Finance in Berlin and
also short courses on special topics such as risk measures given at the Institut Henri
Poincaré in Paris, at the Department of Operations Research at Cornell University, at
the Academia Sinica in Taipei, and at the 8th Symposium on Probability and Stochastic
Processes in Puebla. In the process we have made a large number of minor corrections,
we have discovered many opportunities for simplification and clarification, and we
have also learned more about several topics. As a result, major parts of this book
have been improved or even entirely rewritten. Among them are those on robust
representations of risk measures, arbitrage-free pricing of contingent claims, exotic
derivatives in the CRR model, convergence to Black—Scholes prices, and stability
under pasting with its connections to dynamically consistent coherent risk measures.
In addition, this second edition contains several new sections, including a systematic
discussion of law-invariant risk measures, of concave distortions, and of the relations
between risk measures and Choquet integration.

Itis a pleasure to express our thanks to all students and colleagues whose comments
have helped us to prepare this second edition, in particular to Dirk Becherer, Hans
Biihler, Rose-Anne Dana, Ulrich Horst, Mesrop Janunts, Christoph Kiihn, Maren
Liese, Harald Luschgy, Holger Pint, Philip Protter, Lothar Rogge, Stephan Sturm,
Stefan Weber, Wiebke Wittmii3, and Ching-Tang Wu. Special thanks are due to Peter
Bank and to Yuliya Mishura and Georgiy Shevchenko, our translators for the Russian
edition. Finally, we thank Irene Zimmermann and Manfred Karbe of de Gruyter Verlag
for urging us to write a second edition and for their efficient support.

Berlin, September 2004 Hans Féllmer
Alexander Schied






Preface to the first edition

This book is an introduction to probabilistic methods in Finance. It is intended for
graduate students in mathematics, and it may also be useful for mathematicians in
academia and in the financial industry. Our focus is on stochastic models in discrete
time. This limitation has two immediate benefits. First, the probabilistic machinery
is simpler, and we can discuss right away some of the key problems in the theory
of pricing and hedging of financial derivatives. Second, the paradigm of a complete
financial market, where all derivatives admit a perfect hedge, becomes the exception
rather than the rule. Thus, the discrete-time setting provides a shortcut to some of the
more recent literature on incomplete financial market models.

As a textbook for mathematicians, it is an introduction at an intermediate level,
with special emphasis on martingale methods. Since it does not use the continuous-
time methods of Itd calculus, it needs less preparation than more advanced texts such
as [73], [74], [82], [129], [188]. On the other hand, it is technically more demanding
than textbooks such as [160]: We work on general probability spaces, and so the text
captures the interplay between probability theory and functional analysis which has
been crucial for some of the recent advances in mathematical finance.

The book is based on our notes for first courses in Mathematical Finance which
both of us are teaching in Berlin at Humboldt University and at Technical University.
These courses are designed for students in mathematics with some background in
probability. Sometimes, they are given in parallel to a systematic course on stochastic
processes. At other times, martingale methods in discrete time are developed in the
course, as they are in this book. Usually the course is followed by a second course on
Mathematical Finance in continuous time. There it turns out to be useful that students
are already familiar with some of the key ideas of Mathematical Finance.

The core of this book is the dynamic arbitrage theory in the first chapters of Part II.
When teaching a course, we found it useful to explain some of the main arguments
in the more transparent one-period model before using them in the dynamical setting.
So one approach would be to start immediately in the multi-period framework of
Chapter 5, and to go back to selected sections of Part I as the need arises. As an
alternative, one could first focus on the one-period model, and then move on to Part I1.

We include in Chapter 2 a brief introduction to the mathematical theory of expected
utility, even though this is a classical topic, and there is no shortage of excellent
expositions; see, for instance, [138] which happens to be our favorite. We have three
reasons for including this chapter. Our focus in this book is on incompleteness, and
incompleteness involves, in one form or another, preferences in the face of risk and
uncertainty. We feel that mathematicians working in this area should be aware, at
least to some extent, of the long line of thought which leads from Daniel Bernoulli via
von Neumann—Morgenstern and Savage to some more recent developments which are
motivated by shortcomings of the classical paradigm. This is our first reason. Second,
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the analysis of risk measures has emerged as a major topic in mathematical finance,
and this is closely related to a robust version of the Savage theory. Third, but not least,
our experience is that this part of the course was found particularly enjoyable, both by
the students and by ourselves.

We acknowledge our debt and express our thanks to all colleagues who have
contributed, directly or indirectly, through their publications and through informal
discussions, to our understanding of the topics discussed in this book. Ideas and
methods developed by Freddy Delbaen, Darrell Duffie, Nicole El Karoui, David Heath,
Yuri Kabanov, Ioannis Karatzas, Dimitri Kramkov, David Kreps, Stanley Pliska, Chris
Rogers, Steve Ross, Walter Schachermayer, Martin Schweizer, Dieter Sondermann
and Christophe Stricker play a key role in our exposition. We are obliged to many
others; for instance the textbooks [54], [73], [74], [116], and [143] were a great help
when we started to teach courses on the subject.

We are grateful to all those who read parts of the manuscript and made useful
suggestions, in particular to Dirk Becherer, Ulrich Horst, Steffen Kriiger, Irina Penner,
and to Alexander Giese who designed some of the figures. Special thanks are due to
Peter Bank for a large number of constructive comments. We also express our thanks to
Erhan Cinlar, Adam Monahan, and Philip Protter for improving some of the language,
and to the Department of Operations Research and Financial Engineering at Princeton
University for its hospitality during the weeks when we finished the manuscript.

Berlin, June 2002 Hans Follmer
Alexander Schied
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Part I

Mathematical finance in one period






Chapter 1
Arbitrage theory

In this chapter, we study the mathematical structure of a simple one-period model of a
financial market. We consider a finite number of assets. Their initial prices at time t =
0 are known, their future prices attime t = 1 are described as random variables on some
probability space. Trading takes place at time ¢+ = 0. Already in this simple model,
some basic principles of mathematical finance appear very clearly. In Section 1.2, we
single out those models which satisfy a condition of market efficiency: There are no
trading opportunities which yield a profit without any downside risk. The absence
of such arbitrage opportunities is characterized by the existence of an equivalent
martingale measure. Under such a measure, discounted prices have the martingale
property, that is, trading in the assets is the same as playing a fair game. As explained
in Section 1.3, any equivalent martingale measure can be identified with a pricing rule:
It extends the given prices of the primary assets to a larger space of contingent claims,
or financial derivatives, without creating new arbitrage opportunities. In general, there
will be several such extensions. A given contingent claim has a unique price if and only
if it admits a perfect hedge. In our one-period model, this will be the exception rather
than the rule. Thus, we are facing market incompleteness, unless our model satisfies
the very restrictive conditions discussed in Section 1.4. The geometric structure of an
arbitrage-free model is described in Section 1.5.

The one-period market model will be used throughout the first part of this book.
On the one hand, its structure is rich enough to illustrate some of the key ideas of the
field. On the other hand, it will provide an introduction to some of the mathematical
methods which will be used in the dynamic hedging theory of the second part. In fact,
the multi-period situation considered in Chapter 5 can be regarded as a sequence of
one-period models whose initial conditions are contingent on the outcomes of previous
periods. The techniques for dealing with such contingent initial data are introduced
in Section 1.6.

1.1 Assets, portfolios, and arbitrage opportunities

Consider a financial market with d + 1 assets. The assets can consist, for instance,
of equities, bonds, commodities, or currencies. In a simple one-period model, these
assets are priced at the initial time # = O and at the final time ¢+ = 1. We assume that
the i asset is available at time O for a price ¢ > 0. The collection

T = (no,nl,...,nd) ERi—H
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is called a price system. Prices at time 1 are usually not known beforehand at time 0.
In order to model this uncertainty, we fix a probability space (2, ¥, P) and describe
the asset prices at time 1 as non-negative measurable functions

O st ..., 8¢

on (2, ¥) with values in [0, c0). Every w € Q2 corresponds to a particular scenario
of market evolution, and S (w) is the price of the i asset at time 1 if the scenario w
occurs.

However, not all asset prices in a market are necessarily uncertain. Usually there
is a riskless bond which will pay a sure amount at time 1. In our simple model for one
period, such a riskless investment opportunity will be included by assuming that

7%=1 and S%°=1+r

for a constant r, the return of a unit investment into the riskless bond. In most situations
it would be natural to assume r > 0, but for our purposes it is enough to require that
$Y > 0, or equivalently that

r> —1.

In order to distinguish SO from the risky assets Sl, R s , 1t will be convenient to
use the notation _
S=(s%s....8) =9,

and in the same way we will write 7 = (1, 7).
At time ¢t = 0, an investor will choose a portfolio

E=E%8 =% g eRIT

where &' represents the number of shares of the i th asset. The price for buying the
portfolio & equals

d
7T-E= Z el
i=0
At time ¢t = 1, the portfolio will have the value

d
E-S) =) &5 =0+r+&-Sw),
i=0

depending on the scenario @ € 2. Here we assume implicitly that buying and selling
assets does not create extra costs, an assumption which may not be valid for a small
investor but which becomes more realistic for a large financial institution. Note our
convention of writing x - y for the inner product of two vectors x and y in Euclidean
space.

Our definition of a portfolio allows the components £’ to be negative. If €0 < 0,
this corresponds to taking out a loan such that we receive the amount |& Olatr =0
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and pay back the amount (1 + r)|E attimer = 1. If & <Ofori > 1,a quantity of
|€7| shares of the i asset is sold without actually owning them. This corresponds to
a short sale of the asset. In particular, an investor is allowed to take a short position
£' < 0, and to use up the received amount 7’ |£’ | for buying quantities £/ > 0, j # i,
of the other assets. In this case, the price of the portfolio £ = (&0, &) is given by
E-w=0.

Definition 1.1. A portfolio £ € RY*! is called an arbitrage opportunity if T - & < 0
but§ - S >0 P-as.and P[£-5S > 0] > 0.

Intuitively, an arbitrage opportunity is an investment strategy that yields with
positive probability a positive profit and is not exposed to any downside risk. The
existence of such an arbitrage opportunity may be regarded as a market inefficiency
in the sense that certain assets are not priced in a reasonable way. In real-world
markets, arbitrage opportunities are rather hard to find. If such an opportunity would
show up, it would generate a large demand, prices would adjust, and the opportunity
would disappear. Later on, the absence of such arbitrage opportunities will be our
key assumption. Absence of arbitrage implies that S’ vanishes P-a.s. once 7! = 0.
Hence, there is no loss in generality if we assume from now on that

7l >0 fori=1,...,d.

Remark 1.2. Note that the probability measure P enters the definition of an arbitrage
opportunity only through the null sets of P. In particular, the definition can be for-
mulated without any explicit use of probabilities if €2 is countable. In this case there
is no loss of generality in assuming that the underlying probability measure satisfies
P[{w}] > O for every w € . Then an arbitrage opportunity is simply a portfolio &
with 7 - &€ < 0, with £ - S(w) > 0 for all w € 2, and such that £ - S(wg) > O for at
least one wq € 2. <&

The following lemma shows that absence of arbitrage is equivalent to the following
property of the market: Any investment in risky assets which yields with positive
probability a better result than investing the same amount in the risk-free asset must
be open to some downside risk.

Lemma 1.3. The following statements are equivalent.
(a) The market model admits an arbitrage opportunity.

(b) There is a vector & € R? such that

E-S>+r) -7 P-as. and P[E-S> (A +r)é-7]>0.

Proof. To see that (a) implies (b), let £ be an arbitrage opportunity. Then0 > £ -7 =
£9 4+ £ . . Hence,

E-S—(1+rntE-m>&-S+(1+nrng’=¢.5.
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Since £ - § is P-a.s. non-negative and strictly positive with non-vanishing probability,
the same must be true of £ - § — (1 +r)é - .

Next let & be as in (b). We claim that the portfolio (£°, &) with €0 := —£ - 7 is
an arbitrage opportunity. Indeed, £ - 7 = £ 4 £ - w = 0 by definition. Moreover,
&.S=—(1+r)&-m+E&-S,whichis P-a.s. non-negative and strictly positive with
non-vanishing probability. O

1.2 Absence of arbitrage and martingale measures

In this section, we are going to characterize those market models which do not admit
any arbitrage opportunities. Such models will be called arbitrage-free.

Definition 1.4. A probability measure P* is called a risk-neutral measure, or a mar-

tingale measure, if

. Si

71’=E*|: j| i=0,1,...,d. (1.1)
1+7r

Remark 1.5. In (1.1), the price of the i th asset is identified as the expectation of
the discounted payoff under the measure P*. Thus, the pricing formula (1.1) can
be seen as a classical valuation formula which does not take into account any risk
aversion, in contrast to valuations in terms of expected utility which will be discussed
in Section 2.3. This is why a measure P* satisfying (1.1) is called risk-neutral. The
connection to martingales will be made explicit in Section 1.6. <&

The following basic result is sometimes called the “fundamental theorem of asset
pricing” or, in short, FTAP. It characterizes arbitrage-free market models in terms of
the set

& :={ P*| P*is arisk-neutral measure with P* ~ P }

of risk-neutral measures which are equivalent to P. Recall that two probability mea-
sures P* and P are said to be equivalent (P* ~ P)if, for A € &, P*[A] = 0 if
and only if P[A] = 0. This holds if and only if P* has a strictly positive density
d P*/d P with respect to P; see Appendix A.2. An equivalent risk-neutral measure is
also called a pricing measure or an equivalent martingale measure.

Theorem 1.6. A market model is arbitrage-free if and only if  # (. In this case,
there exists a P* € P which has a bounded density dP*/d P.

We show first that the existence of a risk-neutral measure implies the absence of
arbitrage.

Proof of the implication <= of Theorem 1.6. Suppose that there exists a risk-neutral
measure P* € P. Take a portfolio & € R4*! guch that E-S > 0 P-as. and
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E[£-S] > 0. Both properties remain valid if we replace P by the equivalent measure
P*. Hence,

d d i = <
_ o i gi .S
ﬁ-é:Zn’é’:ZE*[ir} =E*[f+r] > 0.
i=0

i=0
Thus, £ cannot be an arbitrage opportunity. O

For the proof of the implication = of Theorem 1.6, it will be convenient to

introduce the random vector Y = (Y1, ..., Y?) of discounted net gains:
. St .
Y' = -, i=1,...,d. (1.2)
1+4+r

With this notation, Lemma 1.3 implies that the absence of arbitrage is equivalent to
the following condition:

For§ e R &£.Y>0P-as. = £-Y =0 P-as. (1.3)

Since Y’ is bounded from below by —m!, the expectation E*[ Y’ ] of Y’ under any
measure P* is well-defined, and so P* is a risk-neutral measure if and only if

E*[Y]=0. (1.4)

Here, E*[ Y ] is a shorthand notation for the d-dimensional vector with components
E*[Y'],i = 1,...,d. The assertion of Theorem 1.6 can now be read as follows:
Condition (1.3) holds if and only if there exists some P* ~ P such that E*[Y ] =0,
and in this case, P* can be chosen such that the density d P*/d P is bounded.

Proof of the implication = of Theorem 1.6. We have to show that (1.3) implies the
existence of some P* &~ P such that (1.4) holds and such that the density d P*/d P is
bounded. We will do this first in the case in which

E[|Y]] < oc.

Let @ denote the convex set of all probability measures Q ~ P with bounded
densities d Q/d P, and denote by Eg[ Y ] the d-dimensional vector with components
Egl Y'],i =1,...,d. Due to our assumption that |Y| € L1(P), all these expecta-
tions are finite. Let

e:={EolY]| Qc@},

and note that C is a convex set in R?: If 01, Qo € @Qand 0 < a < 1, then
Oy =a01+ (1 —a)Qp € @ and

OtEQl[Y]-i-(l —Ot)EQO[Y] = EQO([Y],

which lies in C.
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Our aim is to show that € contains the origin. To this end, we suppose by way of
contradiction that0 ¢ C. Using the “separating hyperplane theorem” in the elementary
form of Proposition A.1, we obtain a vector & € R4 such that E.x>0forallx € C,
and such that & - xo > O for some xg € C. Thus, & satisfies Eg[£ - Y ] > 0 for all
Q € @and Egy[& -Y] > 0 for some Qp € @. Clearly, the latter condition yields
that P[£ - Y > 0] > 0. We claim that the first condition implies that £ - Y is P-a.s.
non-negative. This fact will be a contradiction to our assumption (1.3) and thus will
prove that 0 € C.

To prove the claimthat§ - Y > 0 P-a.s.,let A := {£-Y < 0}, and define functions

1 1
Op = (1_;>IA+;IA‘

We take ¢, as densities for new probability measures Q:

40, 1
dP " Elg.]

“¢@n, n=2,3....
Since 0 < ¢, < 1, it follows that Q, € @, and thus that

0<&-EglY]=

E[E-Yo,].
Elon] [§-Youl

Hence, Lebesgue’s dominated convergence theorem yields that

E[E ’ YI{.;:-Y<0}]

= lim E[£-Y ¢,] > 0.
ntoo
This proves the claim that £ - Y > 0 P-a.s. and completes the proof of Theorem 1.6
incase E[|Y|] < oo.
If Y is not P-integrable, then we simply replace the probability measure P by
a suitable equivalent measure P whose density d P/d P is bounded and for which
E[]Y]|] < oo. For instance, one can define P by

dP c 1 -1
— = forc:=(E .
dP 1+1Y| 1+ Y]

Recall from Remark 1.2 that replacing P with an equivalent probability measure does
not affect the absence of arbitrage opportunities in our market model. Thus, the first
part of this proof yields a risk-neutral measure P* which is equivalent to P and whose
density d P*/d P is bounded. Then P* € &, and

dP* _dpP* dP
dP ~ 4P dP

is bounded. Hence, P* is as desired, and the theorem is proved. O
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Remark 1.7. Our assumption that asset prices are non-negative implies that the com-
ponents of Y are bounded from below. Note however that this assumption was not
needed in our proof. Thus, Theorem 1.6 also holds if we only assume that S is finite-
valued and 7 € R?. In this case, the definition of a risk-neutral measure P* via
(1.1) is meant to include the assumption that S is integrable with respect to P* for
i=1,...,d. <

Example 1.8. Let P be any probability measure on the finite set Q := {wy, ..., oy }
that assigns strictly positive probability p; to each singleton { w; }. Suppose that there
is a single risky asset defined by its price 7 = 7! at time 0 and by the random variable
S = S'. We may assume without loss of generality that the values s; := S(w;) are
distinct and arranged in increasing order: s1 < --- < sy. According to Theorem 1.6,
this model does not admit arbitrage opportunities if and only if

N N
w1+ e (EISUP~Py={ Y sipi|pi >0 Y pi=1} =1,

i=1 i=1

and P* is a risk-neutral measure if and only if the probabilities p} := P*[ {w;} ] solve
the linear equations

s1pl 4+ sypy =n(l+7),
pie P =1

If a solution exists, it will be unique if and only if N = 2, and there will be infinitely
many solutions for N > 2. <&

Remark 1.9. The economic reason for working with the discounted asset prices

X = il ,
1+7r
is that one should distinguish between one unit of a currency (e.g. €) at timet = 0
and one unit at time ¢t = 1. Usually people tend to prefer a certain amount today over
the same amount which is promised to be paid at a later time. Such a preference is
reflected in an interest » > 0 paid by the riskless bond: Only the amount 1/(1 4-r) €
must be invested at time O to obtain 1 € at time 1. This effect is sometimes referred to
as the time value of money. Similarly, the price S? of the i asset is quoted in terms
of € at time 1, while 7 corresponds to time-zero euros. Thus, in order to compare
the two prices 7' and S’, one should first convert them to a common standard. This is
achieved by taking the riskless bond as a numéraire and by considering the discounted
prices in (1.5). <&

i=0,...,d, (1.5)

Remark 1.10. One can choose as numéraire any asset which is strictly positive. For
instance, suppose that 7! > 0 and P[S' > 0] = 1. Then all asset prices can be
expressed in units of the first asset by considering

i

g’

~i

nl
Ti=— and
T
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Clearly, the definition of an arbitrage opportunity is independent of the choice of a
particular numéraire. Thus, an arbitrage-free market model should admit a risk-neutral
measure with respect to the new numeéraire, i.e., a probability measure P* ~ P such
that

.o~ TS
7 =E*[_], i=0,....d
S1
Let us denote by P the set of all such measures P*. Then
dp* st }

= ———— for some P* € P
dpP E*[S1]

F={P
Indeed, if P* lies in the set on the right, then
E*[ St ] E*[S']

~i

i
st al =
and so P* € P. Reversing the roles of » and P then yields the identity of the two
sets. Note that _
PNP =0

as soon as S! is not P-a.s. constant, because Jensen’s inequality then implies that

L:%OZ»EV*[I—f—r] - Nl—i—r
! St E*[S!]
and hence E*[ S'] > E*[S!]forall P* €  and P* € . <

Let o
V:={E-S|&eR]
denote the linear space of all payoffs which can be generated by some portfolio. An

element of 'V will be called an attainable payoff. The portfolio that generates V € V
is in general not unique, but we have the following law of one price.

Lemma 1.11. Suppose that the market model is arbitrage-free and that V € 'V can
be written as V.= § - S = ¢ - § P-a.s. for two different portfolios § and {. Then
T E=T-C.
Proof. We have (£ — ¢) - S = 0 P*-a.s. for any P* € #. Hence,

- T =7 €-0-S

. —_ . = E* == O,

T-E—T-¢ |: 57

due to (1.1). ]
By the preceding lemma, it makes sense to define the price of V € 'V as
a(V)y:=w-&§ ifV=E¢-8§, (1.6)

whenever the market model is arbitrage-free.
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Remark 1.12. Via (1.6), the price system 7 can be regarded as a linear form on the
finite-dimensional vector space V. For any P* € & we have

n(V):E*[ ] Vev.

1+r

Thus, an equivalent risk-neutral measure P* defines a linear extension of 7 onto the
larger space «£!(P*) of P*-integrable random variables. Since this space is usually
infinite-dimensional, one cannot expect that such a pricing measure is in general
unique; see however Section 1.4. <&

We have seen above that, in an arbitrage-free market model, the condition £. $=0
P-a.s. implies that 7 - § = 0. In fact, one may assume without loss of generality that

£.5=0Pas. = E=0, (1.7)

for otherwise we can find i € {0, ..., d} such that & # 0 and represent the i th asset
as a linear combination of the remaining ones:

. 1 o . 1 o

n’:;ZE]nJ and S’:EZSJSJ.
J#i J#

In this sense, the i™ asset is redundant and can be omitted.

Definition 1.13. The market model is called non-redundant if (1.7) holds.

Remark 1.14. In any non-redundant market model, the components of the vector Y
of discounted net gains are linearly independent in the sense that

£.Y=0Pas. —> £=0. (1.8)

Conversely, via (1.3), condition (1.8) implies non-redundance if the market model is
arbitrage-free. <

Definition 1.15. Suppose that the market model is arbitrage-free and that V € 'V is
an attainable payoff such that 7 (V) # 0. Then the return of V is defined by

V—na(V)
(V)

Note that we have already seen the special case of the risk-free return

R(V) :=

SO — 70 0
g
If an attainable payoff V is a linear combination V = Y}, a Vi of non-zero attain-
able payoffs Vi, then

. o (Vi)
R(V) = R(Vy) f =8
(V) ];ﬂk Vo for by = s s
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The coefficient B can be interpreted as the proportion of the investment allocated to
V. As a particular case of the formula above, we have that

d i
T .
R(V) = —— - R(S")

for all non-zero attainable payoffs V = £ - S (recall that we have assumed that all 77/
are strictly positive).

Proposition 1.16. Suppose that the market model is arbitrage-free, and let V € 'V be
an attainable payoff such that = (V) # 0.

(a) Under any risk-neutral measure P*, the expected return of V is equal to the
risk-free return r:
E*[R(V)]=r.

(b) Under any measure Q ~ P such that Eg| IS|1 < oo, the expected return of V
is given by

*

dP
EQ[R(V)]:r—COVQ< ,R(V)),

a0
where P* is an arbitrary risk-neutral measure in & and covg denotes the
covariance with respect to Q.
Proof. (a): Since E*[V | = n(V)(1 + r), we have
E*[V]-n(V)
(V) a
(b): Let P* € & and ¢* := dP*/d Q. Then

E*[R(V)]=

covg (¢*, R(V)) = Egl¢*R(V) ] — Egl¢*]- Eg[ R(V)]
= E*[R(V)]— Eg[R(V)].

Using part (a) yields the assertion. O

Remark 1.17. Let us comment on the extension of the fundamental equivalence in
Theorem 1.6 to market models with an infinity of tradable assets S 0 81, 82, ... We
assume that S° = 1 + r for some r > —1 and that the random vector

S) = (S" (), $S*(®), ...)

takes values in the space £°° of bounded real sequences. This space is a Banach space
with respect to the norm

Ixlloo = sup |x’| forx = (x', x2,...) € £®.
i>1
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A portfolio & = (€9, &) is chosen in such a way that £ = (€1,€2,..)isa sequence
in the space ¢!, i.e., Y2 E {| < co. We assume that the corresponding price system
7 = (n°, 7) satisfies 7 € £ and 70 = 1. Clearly, this model class includes our
model with d + 1 traded assets as a special case.

Our first observation is that the implication <= of Theorem 1.6 remains valid, i.e.,
the existence of a measure P* ~ P with the properties

St .
E*[IISleo] <00 and E|: 1 +r] o

implies the absence of arbitrage opportunities. To this end, suppose that & is a portfolio
strategy such that

£.5>0 P-as. and E[£-S]>0. (1.9)

Then we can replace P in (1.9) by the equivalent measure P*. Hence, & cannot be an
arbitrage opportunity since

_—_OO i s’ _ % gs
E’”_ZSE[1+r}_E[1+r]>O

i=0

Note that interchanging summation and integration is justified by dominated conver-
gence, because

(0]
&% + I1Slloo Y _ 171 € L (P¥).
i=0
The following example shows that the implication = of Theorem 1.6, namely that
absence of arbitrage opportunities implies the existence of a risk-neutral measure, may
no longer be true in an infinite market model. <

Example 1.18. Let Q@ = {1,2,...}, and choose any probability measure P which
assigns strictly positive probability to all singletons {w}. We take r = 0 and define a
price system 7/ = 1, fori =0, 1, .... Prices at time 1 are given by S = 1 and, for
i=1,2,...,by
0 ifw=i,
Sw) =12 fo=i+1,
1 otherwise.

Let us show that this market model is arbitrage-free. To this end, suppose that £ =
(€Y, &) isa portfolio such that § € ¢! and such that £ - S(w) > 0 for each w € Q, but
such that 7 - £ < 0. Considering the case w = 1 yields

0<E-S)=£"+) & =7 F-¢' <&

k=2
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Similarly, forw =i > 1,

It follows that 0 > &' > £2 > ... But this can only be true if all £/ vanish, since we
have assumed that £ € £!. Hence, there are no arbitrage opportunities.

However, there exists no probability measure P* & P such that E*[ ' | = 7/ for
all i. Such a measure P* would have to satisfy

L= E*[S'1=2P*[{i+ 1}]+ > P*[{k}]

k=1
ki i+1

=1+ P*[{i +1}] — P*[{i}]

fori > 1. Thisrelation implies that P*[ {i} ] = P*[{i+1}]foralli > 1, contradicting
the assumption that P* is a probability measure and equivalent to P. <

1.3 Derivative securities

In real financial markets, not only the primary assets are traded. There is also a large
variety of securities whose payoff depends in a non-linear way on the primary assets
§9, 81, ..., 5% and sometimes also on other factors. Such financial instruments are
usually called derivative securities, options, or contingent claims.

Example 1.19. Under a forward contract, one agent agrees to sell to another agent an
asset at time 1 for a price K which is specified at time 0. Thus, the owner of a forward
contract on the i asset gains the difference between the actual market price S’ and
the delivery price K if S is larger than K at time 1. If ' < K, the owner loses
the amount K — S’ to the issuer of the forward contract. Hence, a forward contract
corresponds to the random payoff

cv =5 —K. >

Example 1.20. The owner of a call option on the i asset has the right, but not the
obligation, to buy the i asset at time 1 for a fixed price K, called the strike price.
This corresponds to a payoff of the form

Si— K ifS > K,

Ccall — (Sl _ K)+ — )
0 otherwise.
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Conversely, a put option gives the right, but not the obligation, to sell the asset at time
1 for a strike price K. The corresponding random payoff is given by

K-S ifS <K,

CM = (K - SH" = _
0 otherwise.

Call and put options with the same strike K are related through the formula

Ccall _ Cput — Sl _ K

Hence, if the price 7 (C) of a call option has already been fixed, then the price
7 (CP) of the corresponding put option is determined by linearity through the puz-
call parity

n(ccall) — n(cput) + n,i _

(1.10)
<&

1+r

Example 1.21. An option on the value V = £ - S of a portfolio of several risky assets
is sometimes called a basket or index option. For instance, a basket call would be of
the form (V — K)™. <&

Put and call options can be used as building blocks for a large class of derivatives.

Example 1.22. A straddle is a combination of “at-the-money" put and call options
on a portfolio V =& - §, i.e., on put and call options with strike K = w(V):

C=@(V)=WV)T+V —a(V)" =|V-n(V)|

Thus, the payoff of the straddle increases proportionally to the change of the price of
& between time 0 and time 1. In this sense, a straddle is a bet that the portfolio price
will move, no matter in which direction. <&

Example 1.23. The payoff of a butterfly spread is of the form
C=(K—IVv-rW)",

where K > 0 and where V = & - § is the price of a given portfolio or the value of
a stock index. Clearly, the payoff of the butterfly spread is maximal if V = m (V)
and decreases if the price at time 1 of the portfolio & deviates from its price at time 0.
Thus, the butterfly spread is a bet that the portfolio price will stay close to its present
value. By letting K1 := (V) & K, we can represent C as combinations of call or
put options on V:

C=V-K) =2(V—a(V)"+(V -Kp"
=—(K_-—WT4+2(x(V) =WVt — (K, — V). <&
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Example 1.24. The idea of portfolio insurance is to increase exposure to rising asset
prices, and to reduce exposure to falling prices. This suggests to replace the payoff
V = & . S of a given portfolio by a modified profile #(V), where & is convex and
increasing. Let us first consider the case where V > 0. Then the corresponding
payoff A(V) can be expressed as a combination of investments in bonds, in V it-
self, and in basket call options on V. To see this, recall that convexity implies that
h(x) = h(0) + f(f h'(y) dy for the increasing right-hand derivative i’ := h/, of h;
see Appendix A.1. Note that 4’ can be represented as the distribution function of a
positive Radon measure y on [0, 00): h'(x) = y ([0, x]) for x > 0. Hence, Fubini’s
theorem implies that

X
h(x) = h(0) +/ / y(dz)dy
0 J[0,y]
=h0)+y({0hx + / dyy(dz).
(0,00) H{y|z=<y=x}
Since the inner integral equals (x — z)™, we obtain

h(V) =h(0)+h/(0)V+/ V=2 ydz). (1.11)
(0,00)

The payoff V = £ - § may take negative values if the portfolio & contains also
short positions. In this case, the increasing convex function 2 must be defined on all
of R. Its right-hand derivative 4’ can be represented as

R(y)—h'(x)=y((x,y]), x<y,

for a positive Radon measure ¥ on R. Looking separately at the cases x < 0 and
x > 0, we see that

h(x) = h(0) + h'(0) x + f

x -2V ydz) +/ (z —x)" y(dz).
(0,00)

(—00,0]

Thus, the payoff #(V) can be realized by holding bonds, shares in V, and a mixture
of call and put options on V:

h(V)=h0)+h )V + /

V-2t yd2) +/ (z— V)" yd2).
(0,00)

(—00,0] S
Example 1.25. A reverse convertible bond pays interest which is higher than that
earned by an investment into the riskless bond. But at maturity r = 1, the issuer may
convert the bond into a predetermined number of shares of a given asset S’ instead
of paying the nominal value in cash. The purchase of this contract is equivalent to
the purchase of a standard bond and the sale of a certain put option. More precisely,
suppose that 1 is the price of the reverse convertible bond at t = 0, that its nominal
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value at maturity is 1 + 7, and that it can be copverted into x shares of the i" asset.
This conversion will happen if the asset price S' is below K := (1 +7)/x. Thus, the
payoff of the reverse convertible bond is equal to

14+7—x(K —SHT,

Le., the purchase of this contract is equivalent to a risk-free investment of 1 with
interest 7 and the sale of the put option x(K — S')™ for the price * —r)/(1 +7r). <

Example 1.26. A discount certificate on V = € - S pays off the amount
C=VAK,
where the number K > 0 is often called the cap. Since
C=V—-(V-KT,

buying the discount certificate is the same as purchasing & and selling the basket call
option C4!' := (V — K)™. If the price 7 (C4!") has already been fixed, then the price
of C is given by 7(C) = (V) — m(C™). Hence, the discount certificate is less
expensive than the portfolio & itself, and this explains the name. On the other hand, it
participates in gains of £ only up to the cap K. <

Example 1.27. For an insurance company, it may be desirable to shift some of its
insurance risk to the financial market. As an example of such an alternative risk
transfer, consider a catastrophe bond issued by an insurance company. The interest
paid by this security depends on the occurrence of certain special events. For instance,
the contract may specify that no interest will be paid if more than a given number of
insured cars are damaged by hail on a single day during the lifetime of the contract; as
a compensation for taking this risk, the buyer will be paid an interest above the usual
market rate if this event does not occur. <

Mathematically, it will be convenient to focus on contingent claims whose payoff
is non-negative. Such a contingent claim will be interpreted as a contract which is
sold at time O and which pays a random amount C(w) > 0 at time 1. A derivative
security whose terminal value may also become negative can usually be reduced to a
combination of a non-negative contingent claim and a short position in some of the
primary assets SO s! ..., 89 Forinstance, the terminal value of a reverse convertible
bond is bounded from below so that it can be decomposed into a short position in cash
and into a contract with positive value. From now on, we will work with the following
formal definition of the term “contingent claim”.

Definition 1.28. A contingent claim is a random variable C on the underlying prob-
ability space (€2, ¥, P) such that

0<C <oo P-as.
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A contingent claim C is called a derivative of the primary assets S, ..., S if it is
measurable with respect to the o-field U(SO, R X ) generated by the assets, i.e., if

C=7f(s ..., 8
for a measurable function f on R4+,

So far, we have only fixed the prices 7/ of our primary assets S'. Thus, it is not
clear what the correct price should be for a general contingent claim C. Our main
goal in this section is to identify those possible prices which are compatible with the
given prices in the sense that they do not generate arbitrage. Our approach is based
on the observation that trading C at time 0 for a price 7€ corresponds to introducing
a new asset with the prices

7t i=7¢ and §9=C. (1.12)
Definition 1.29. A real number 7€ > 0 is called an arbitrage-free price of a contin-
gent claim C if the market model extended according to (1.12) is arbitrage-free. The
set of all arbitrage-free prices for C is denoted I[1(C).

In the previous definition, we made the implicit assumption that the introduction
of a contingent claim C as a new asset does not affect the prices of primary assets.
This assumption is reasonable as long as the trading volume of C is small compared
to that of the primary assets. In Section 3.4 we will discuss the equilibrium approach
to asset pricing, where an extension of the market will typically change the prices of
all traded assets.

The following result shows in particular that we can always find an arbitrage-free
price for a given contingent claim C if the initial model is arbitrage-free.

Theorem 1.30. Suppose that the set P of equivalent risk-neutral measures for the
original market model is non-empty. Then the set of arbitrage-free prices of a contin-
gent claim C is non-empty and given by

C
14+r

T(C) = {E*[ MP* € P such that E*[C ] <oo}. (1.13)

Proof. By Theorem 1.6, 7€ is an arbitrage-free price for C if and only if there exists
an equivalent risk-neutral measure P for the market model extended via (1.12), i.e.,

Si
[ j| fori=1,...,d+ 1.
1+r

I

o

In particular, Pis necessarily contained in 4, and we obtain the inclusion C in (1.13).
Conversely, if 7€ = E*[C/(1 + r)] for some P* € &, then this P* is also an
equivalent risk-neutral measure for the extended market model, and so the two sets in
(1.13) are equal.
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_ To show that TT(C) is non-empty, we first fix some measure P ~ P such that
E[C] < oo. For instance, we can take d P = c(1 + C)~'dP, where c is the nor-
malizing constant. Under P, the market model is arbitrage-free. Hence, Theorem 1.6
yields P* € & such that d P*/dP is bounded. In particular, E*[C] < oo and
7€ = E*[C/(1+r)] € TI(C). O

The following theorem provides a dual characterization of the lower and upper
bounds

T(C) :=Inf [1(C) and m,,(C) :=supIl(C),
which are often called arbitrage bounds for C.

Theorem 1.31. In an arbitrage-free market model, the arbitrage bounds of a contin-
gent claim C are given by

. C
m.(C) = inf E*[ ]
P*ep 14r

C
=max{me[0,oo)|5l§eRdwithm+§-Y§1 P-a.s.}
r
and
7., (C) = su E*[ ]
AP( ) P*El?rp 1+V
. d . c
:mm{me[O,oo]‘ElSeR withm+&-Y > T P-a.s.}.
r

Proof. We only prove the identities for the upper arbitrage bound. The ones for the
lower bound are obtained in a similar manner. We take m € [0, co] and & € R? such
thatm +&-Y > C/(1 +r) P-as., and we denote by M the set of all such m. Taking
the expectation with P* € P yieldsm > E*[C/(1 4+ r) ], and we get

C
inf M > sup E*[ ]

Ptep 1;” (1.14)
> sup{ E*[—] ‘ P*e P, E*[C] < OO}= T (C),
1+r

where we have used Theorem 1.30 in the last identity.

Next we show that all inequalities in (1.14) are in fact identities. This is trivial if
7,,(C) = oo. For ,,,(C) < oo, we will show that m > =, ,(C) implies m > inf M.
By definition, 7,,(C) < m < oo requires the existence of an arbitrage opportunity
in the market model extended by w4+ := m and $?t! := C. That is, there is
(€,89) € R such that £ - Y + SdH(C/(l + r) — m) is almost-surely non-
negative and strictly positive with positive probability. Since the original market
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model is arbitrage-free, Sd“ must be non-zero. In fact, we have “;‘d+1 < 0 as taking
expectations with respect to P* € & for which E*[ C ] < oo yields

§d+l<E*|:L] _m> S0,
1+r
and the term in parenthesis is negative since m > m,,,(C). Thus, we may define
¢ = —S/{,—‘d‘H e R? and obtainm + ¢ - Y > C/(1+r) P-a.s.,hence m > inf M.
We now prove that the infimum of M is in fact attained. To this end, we may
assume without loss of generality that inf M < oo and that the market model is non-
redundant in the sense of Definition 1.13. For a sequence m, € M that decreases
towards inf M = m,,,(C), we fix§, € R? such that m,, +&,-Y > C/(1+r) P-almost
surely. If liminf,, |§,| < oo, there exists a subsequence of (§,) that converges to some
£ € R?. Passing to the limit yields T(C)+§&-Y > C/(14r) P-as., which gives
7,.,,(C) € M. But this is already the desired result, since the following argument will

show that the case liminf, |§,| = oo cannot occur. Indeed, after passing to some
subsequence if necessary, n, := &,/|&,| converges to some n € R? with || = 1.
Under the assumption that |§,| — oo, passing to the limit in
Ty (C) C
+n,-Y > ———— P-as.
|€n 1&n|(1 +7)

yields - Y > 0. The absence of arbitrage opportunities thus implies n- Y = 0 P-a.s.,
whence n = 0 by non-redundance of the model. But this contradicts the fact that
Inl = 1. [

Remark 1.32. Theorem 1.31 shows that 7, (C) is the lowest possible price of a
portfolio & with o
E-§S>C P-as.

Such a portfolio is often called a “superhedging strategy” or “superreplication” of C,
and the identities for m,(C) and m,,,(C) obtained in Theorem 1.31 are often called
superhedging duality relations. When using &, the seller of C would be protected
against any possible future claims of the buyer of C. Thus, a natural goal for the seller
would be to finance such a superhedging strategy from the proceeds of C. Conversely,
the objective of the buyer would be to cover the price of C from the sale of a portfolio
7 with
n- §S<C P-as.,

which is possible if and only if 7 - 7 < 7,,(C). Unless C is an attainable payoff,
however, neither objective can be fulfilled by trading C at an arbitrage-free price, as
shown in Corollary 1.34 below. Thus, any arbitrage-free price involves a trade-off
between these two objectives. <&

For a portfolio £ the resulting payoff V = & - S, if positive, may be viewed as
a contingent claim, and in particular as a derivative. Those claims which can be
replicated by a suitable portfolio will play a special role in the sequel.
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Definition 1.33. A contingent claim C is called attainable (replicable, redundant) if
C = £-S P-as. for some &€ € R4, Such a portfolio strategy  is then called a
replicating portfolio for C.

If one can show that a given contingent claim C can be replicated by some portfolio
&, then the problem of determining a price for C has a straightforward solution: The
price of C is unique and equal to the cost £ - 7 of its replication, due to the law of one
price. The following corollary also shows that the attainable contingent claims are in
fact the only ones for which admit a unique arbitrage-free price.

Corollary 1.34. Suppose the market model is arbitrage-free and C is a contingent
claim.

(a) C is attainable if and only if it admits a unique arbitrage-free price.

(b) If C is not attainable, then m,(C) < m,,(C) and
H(C) = (ninf(c)v nsup(c))'

Proof. Clearly |IT1(C)| = 1 if C is attainable, and so assertion (a) is implied by (b).

In order to prove part (b), note first that IT(C) is non-empty and convex due to
the convexity of &. Hence I1(C) is an interval. To show that this interval is open, it
suffices to exclude the possibility that it contains one of its boundary points 7,(C)
and ,,(C). To this end, we use Theorem 1.31 to get £ € R4 such that

7. (C)+&-Y < % P-as.
Since C is not attainable, this inequality cannot be an almost-sure identity. Hence, with
£0:= —(1 +r)m,,(C), the strategy (&9, —£,1) e R 2 s an arbitrage opportunity in
the market model extended by 7¢*! := 7,.(C) and §¢*! := C, so that 7,,,(C) is not
an arbitrage-free price for C. The possibility 7,,,(C) € IT(C) is excluded by a similar
argument. O

Remark 1.35. InTheorem 1.31, the set  of equivalent risk-neutral measures can be
replaced by the set & of risk-neutral measures that are merely absolutely continuous
with respect to P. That is,

1+r], (1.15)

Pep

-t C -
7,,(C) = ianE[—] and 1,,(C) = sup E[
T+r Pep

~

for any contingent claim C. To prove this, note first that > C #, so that we get the
two inequalities “>" and “<" in (1.15). On the other hang, for any P € #, arbitrary
P* e P ande € (0, 1], the measure P} := eP*4(1—¢)P belongs to & and satisfies
EY[C]=¢E*[C]+(1—¢)E[C]. Sending ¢ | 0 yields the converse inequalities. <>
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Remark 1.36. Consider any arbitrage-free market model, and let Cc‘j‘“ = (' - K)*
be a call option on the i asset with strike K > 0. Clearly, C*' < §’ so that

call
E[IC+ }Sni
r

for any P* € . From Jensen’s inequality, we obtain the following lower bound:

y Ccal] . Si K + ; K +
E > | E — =7 — .
14+r 14+r 14+r 1+r

Thus, the following universal bounds hold for any arbitrage-free market model:

N A al al :
1) = T (CM) < 7 (C) < 7. (1.16)
r

For a put option CP"* = (K — S')*, one obtains the universal bounds

(1.17)

1+r 147

K N+

( - ”Z) = (€M) = (C™) <
If - > 0, then the lower bound in (1.16) can be further reduced to 7, (C") >
(" — K)T. Informally, this inequality states that the value of the right to buy the
i asset at = 0 for a price K is strictly less than any arbitrage-free price for C!,
This fact is sometimes expressed by saying that the time value of a call option is
non-negative. The quantity (w! — K)7 is called the intrinsic value of the call option.
Observe that an analogue of this relation usually fails for put options: The left-hand
side of (1.17) can only be bounded by its intrinsic value (K — )T ifr < 0. If the
intrinsic value of a put or call option is positive, then one says that the option is “in the
money". For 7' = K one speaks of an “at-the-money" option. Otherwise, the option
is “out of the money". <

In many situations, the universal arbitrage bounds (1.16) and (1.17) are in fact
attained, as illustrated by the following example.

Example 1.37. Take any market model with a single risky asset S = S! such that
the distribution of S under P is concentrated on {0, 1, ..., } with positive weights.
Without loss of generality, we may assume that S has under P a Poisson distribution
with parameter 1, i.e., S is P-a.s. integer-valued and

6_1
P[Szk]zﬁ fork=0,1,....
If we take r = 0 and m = 1, then P is a risk-neutral measure and the market model
is arbitrage-free. We are going to show that the upper and lower bounds in (1.16)
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are attained for this model by using Remark 1.35. To this end, consider the measure

~

P € &P which is defined by its density

~

dp I
ap = ¢ s=n

We get -
E[S—-K)"]=0-K"=@m@-K)",

so that the lower bound in (1.16) is attained, i.e., we have
ninf((S - K)+) = (7 — K)+-

To see that also the upper bound is sharp, we define

2n(k) = <e— f) T ) + (= Dl-e-T (), k=0.1,...
n

It is straightforward to check that
dP, := g,(S)dP

defines a measure P, € # such that

~ K\™"
EJJ(S—K)T]= (1 - —> :
n
By sending n 1 oo, we see that also the upper bound in (1.16) is attained:
Tw((S— K)T) =

Furthermore, the put-call parity (1.10) shows that the universal bounds (1.17) for put
options are attained as well. <

1.4 Complete market models

Our goal in this section is to characterize the particularly transparent situation in which
all contingent claims are attainable.

Definition 1.38. An arbitrage-free market model is called complete if every contingent
claim is attainable.

In every market model, the following inclusion holds for each P* € #:

V={5.5 | EeRM ) cL(Q,0(5,...,59), P¥)
c Lo, F, P =L%Q, F, P);
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see Appendix A.7 for the definition of L?-spaces. If the market is complete then all of
these inclusions are in fact equalities. In particular, ¥ coincides with o (S 1, s4 )
modulo P-null sets, and every contingent claim coincides P-a.s. with a derivative of
the traded assets. Since the linear space V is finite-dimensional, it follows that the
same must be true of LO(Q, F, P). But this means that the model can be reduced to
a finite number of relevant scenarios. This observation can be made precise by using
the notion of an atom of the probability space (2, ¥, P). Recall that a set A € ¥ is
called an atom of (2, &, P),if P[A] > O and if each B € ¥ with B C A satisfies
either P[B]=0or P[B] = P[A].

Proposition 1.39. Forany p € [0, 0o], the dimension of the linear space L (2, ¥, P)

is given by
dim L (2, ¥, P) (1.18)
= sup {n € N | Apartition A', ..., A" of Qwith A" € ¥ and P[A"] > 0}.

Moreover, n := dim L?(Q2, ¥, P) < oo if and only if there exists a partition of Q
into n atoms of (2, F, P).

Proof. Suppose that there is a partition A!,..., A" of Q such that A’ € F and
Pl Al ] > 0. The corresponding indicator functions IA1 R | 4n can be regarded as
linearly independent vectors in L? := LP(Q2, ¥, P). Thus dim L? > n. Conse-
quently, it suffices to consider only the case in which the right-hand side of (1.18) is a
finite number, ng. If A!, ..., A" isa corresponding partition, then each A is an atom
because otherwise nog would not be maximal. Thus, any Z € L? is P-a.s. constant on

each A’. If we denote the value of Z on A’ by 7/, then

1o
Z = Zzi IA,. P-as.
i=1

Hence, the indicator functions IA1 R | ) form a basis of L?, and this implies
dim L? = ny. O

Theorem 1.40. An arbitrage-free market model is complete if and only if there ex-
ists exactly one risk-neutral probability measure, i.e., if |P| = 1. In this case,
dim LY%Q, F, P) <d + 1.

Proof. 1If the model is complete, then the indicator I, of each set A € F is an
attainable contingent claim. Hence, Corollary 1.34 implies that P*[ A] = E*[I n
is independent of P* € £. Consequently, there is just one risk-neutral probability
measure.

Conversely, suppose that > = {P*}, and let C be a bounded contingent claim, so
that E*[ C ] < oo. Then C has the unique arbitrage-free price E*[ C/(1 4+ r) ], and
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Corollary 1.34 implies that C is attainable. It follows that L°°(€2, ¥, P) is contained
in the linear space 'V of all possible portfolio values. This implies that

dimL>®(Q, F,P) <dimV <d+1.
Hence, we conclude from Proposition 1.39 that (2, ', P) has at most d + 1 atoms.

But then every contingent claim must be bounded and, in turn, attainable. O

Example 1.41. Consider the simple situation where the sample space €2 consists of
two elements wt and w™, and where the measure P is such that

pi=Pl{o"}1€ D).

We assume that there is one single risky asset, which takes at time t = 1 the two values
b and a with the respective probabilities p and 1 — p, where a and b are such that
0<a<b:

S(wh) =b

I=p S(w ) =a

This model does not admit arbitrage if and only if
7(1+7r) e {E[S1|P~P)={pb+(1-Pa|pe©D}=(@b); (119

see also Example 1.8. In this case, the model is also complete: Any risk-neutral
measure P* must satisfy

n(1+r)=E*[S]=p*b+ (1 - pHa,
and this condition uniquely determines the parameter p* = P*[ {1} ] as

y nwl+r)—a
B b—a
Hence |#| = 1, and completeness follows from Theorem 1.40. Alternatively, we can

directly verify completeness by showing that a given contingent claim C is attainable
if (1.19) holds. Observe that the condition

Clw)=&"S%w) +£S(@) =& +7r) +&S(w) forallw e Q

e (0, 1).

is a system of two linear equations for the two real variables £° and £. The solution is
given by

_ Cw") — C(w) and 50 _ C(w )b —C(wha

§ b—a b—-—a)y(l+r)
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Therefore, the unique arbitrage-free price of C is

C(a)"‘).n(l—i—r)—a C(w_).b—n(l—l—r)

O)=7T-£=
) =7-¢ 1+r b—a 1+r b—a

For a call option C = (S — K )T with strike K € [a, b], we have

b—K b—Kya 1
.71’_

(5=~ K)") =3 b—a 1+r

(1.20)

Note that this price is independent of p and increasing in r, while the classical dis-
counted expectation with respect to the “objective” measure P,

E[ Cc ]zp(b—K)
1+r 1+r

’

is decreasing in r and increasing in p.

In this example, one can illustrate how options can be used to modify the risk of a
position. Consider the particular case in which the risky asset can be bought at time
t = 0 for the price ¥ = 100. At time ¢ = 1, the price is either S(w') = b = 120 or
S(w™) = a = 90, both with positive probability. If we invest in the risky asset, the
corresponding returns are given by

R(S)(w") =420% or R(S)(w )= —10%.

Now consider a call option C := (S — K)™ with strike K = 100. Choosing r = 0,
the price of the call option is

20
m(C) = 3 ~ 6.67

from formula (1.20). Hence the return

(S-K)"-=(0)

R(C) =
©) 2O)
on the initial investment 7 (C) equals
20 — n(C
RO ") = 2O _ 4200%
7 (C)
or
RO ) = 2D 1009
w = - = — ,
7(C) ’

according to the outcome of the market at time # = 1. Here we see a dramatic increase
of both profit opportunity and risk; this is sometimes referred to as the leverage effect
of options.
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On the other hand, we could reduce the risk of holding the asset by holding a
combination ~
Ci=K-5T+S

of a put option and the asset itself. This “portfolio insurance” will of course involve an
additional cost. If we choose our parameters as above, then the put-call parity (1.10)
yields that the price of the put option (K — S)* is equal to 20/3. Thus, in order to
hold both § and a put, we must invest the capital 100 4+ 20/3 at time = 0. At time
t = 1, we have an outcome of either 120 or of 100 so that the return of C is given by

R(C)(w") = +12.5% and R(C)(0™) = —6.25%. &

1.5 Geometric characterization of arbitrage-free models

The “fundamental theorem of asset pricing” in the form of Theorem 1.6 states that a
market model is arbitrage-free if and only if the origin is contained in the set

d
My(Y, P) :={EQ[Y] | o~ P, %isbounded, EQ[|Y|]<oo}C]Rd,

where Y = (Y, ..., Y¥)is the random vector of discounted net gains defined in (1.2).
The aim of this section is to give a geometric description of the set M (Y, P) as well
as of the larger set

MY, P):={EglY]| Q~ P, Eg[|Y|] <o0}.
To this end, it will be convenient to work with the distribution
w:=Poy!
of Y with respect to P. That is, 4 is a Borel probability measure on R such that
u(A) = PlY € A] foreach Borel set A C RY,

If v is a Borel probability measure on R such that [ Iylv(dy) < oo, we will call
[ yv(dy) its barycenter.

Lemma 1.42. We have
d
My (Y, P) = My(p) := {/yv(dy) ‘ VA, d—” is bounded,/lylv(dy) < oo},
I

and

mr. )= i={ [ yvan | v [ i <oo).
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Proof. If v ~ pu is a Borel probability measure on R?, then the Radon-Nikodym
derivative of v with respect to . evaluated at the random variable Y defines a probability
measure Q ~ P on (2, ¥):

do . d_v
d—P(a)) = i (Y(a))).

Clearly, Eg[Y ] = fy v(dy). This shows that M(u) € M(Y, P) and Mp(u) C
My (Y, P). ~

Conversely, if Q is a given probability measure on (€2, ) which is equivalent
to P, then the Radon-Nikodym theorem in Appendix A.2 shows that the distribution
¥ := Qo Y~! mustbe equivalent to u, whence M(Y, P) S M(u). Moreover,
it follows from Proposition A.11 that the density dv/du is bounded if dQ/dP is
bounded, and so M (Y, P) C M} (1) also follows. I

By the above lemma, the characterization of the two sets My (Y, P) and M (Y, P)
is reduced to a problem for Borel probability measures on R¢. Here and in the sequel,
we do not need the fact that u is the distribution of the lower bounded random vector Y
of discounted net gains; our results are true for arbitrary u such that f ly| m(dy) < oo;
see also Remark 1.7.

Definition 1.43. The support of a Borel probability measure v on R? is the smallest
closed set A C R? such that v(A) = 0, and it will be denoted by supp v.

The support of a measure v can be obtained as the intersection of all closed sets A
with v(A€) =0, i.e,
suppv = ﬂ A.

A closed
V(A€)=0

We denote by

T'() := conv (supp )
n n

= { Zak)’k ‘ ap >0, Zakzl, Yk € Supp u, nEN}
k=1 k=1

the convex hull of the support of . Thus, I'() is the smallest convex set which
contains supp u; see also Appendix A.1.

Example 1.44. Take d = 1, and consider the measure

1
m=3 (61 +6841).

Clearly, the support of p is equal to {—1, +1} and so I'(x) = [—1, +1]. A measure
v is equivalent to u if and only if

v=oad_1+ (1 —a)dig
for some o € (—1, +1). Hence, My () = M () = (—1, +1). <&
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The previous example gives the correct intuition, namely that one always has the
inclusions

Mp(u) C M) C I'(w).

But while the first inclusion will turn out to be an identity, the second inclusion
is usually strict. Characterizing M () in terms of I'(i) will involve the following
concept:

Definition 1.45. The relative interior of a convex set C C R is the set of all points
x € C such that for all y € C there exists some & > 0 with

x—&(y—x)eC.
The relative interior of C is denoted ri C.

If the convex set C has non-empty topological interior int C, thenri C = int C, and
the elementary properties of the relative interior collected in the following remarks
become obvious. This applies in particular to the set I'() if the non-redundance
condition (1.8) is satisfied. For the general case, proofs of these statements can be
found, for instance, in §6 of [166].

Remark 1.46. Let C be a non-empty convex subset of R?, and consider the affine
hull aff C spanned by C, i.e., the smallest affine set which contains C. If we identify
aff C with some R”, then the relative interior of C is equal to the topological interior
of C, considered as a subset of aff C = R”". In particular, each non-empty convex set
has non-empty relative interior. &

Remark 1.47. Let C be a non-empty convex subset of R? and denote by C its closure.
Then, if x eriC,

ax+ (1—a)yeriC forally e Candallx € (0, 1]. (1.21)

In particular, ri C is convex. Moreover, the operations of taking the closure or the
relative interior of a convex set C are consistent with each other:

nC=rC and 1riC=C. (1.22)
&

After these preparations, we can now state the announced geometric character-
ization of the set Mj (). Note that the proof of this characterization relies on the
“fundamental theorem of asset pricing” in the form of Theorem 1.6.

Theorem 1.48. The set of all barycenters of probability measures v ~  coincides
with the relative interior of the convex hull of the support of . More precisely,

Mp(n) = M(p) =ril'(p).
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Proof. In a first step, we show the inclusion 1i ' () € Mp (). Suppose we are given
m € ri'(u). Let it denote the translated measure

[L(A) := (A +m) for Borel sets A C R?

where A+m = {x +m | x € A}. Then My(x) = Mp(t) — m, and analogous
identities hold for M (&t) and " (). It follows that there is no loss of generality in
assuming that m = 0, i.e., we must show that 0 € My () if 0 € ri ' ().

We claim that O € ri I'(w) implies the following “no-arbitrage” condition:

If& e RY is such that & - y > O for pn-a.e. y,then& - y =0 for pu-a.e. y. (1.23)

If (1.23) is false, then we can find some & € R? such that & - y > 0 for u-a.e. y but
u({y | €-y>38}) > 0forsome § > 0. In this case, the support of u is contained in
the closed set { y | £ - y > 0} but not in the hyperplane { y | £ - y = 0}. We conclude
that &£ - y > 0 for all y € supp u and that there exists at least one y* € supp u such
that & - y* > 0. In particular, y* € T'(u) so that our assumption m = 0 € riI"(n)
implies the existence of some ¢ > 0 such that —ey* € I'(x). Consequently, —ey*
can be represented as a convex combination

_8y*=a1y1++anyn
of certain yy, ..., y, € supp . It follows that
0>—e&-y" =1 -y1+ -+ -y,

in contradiction to our assumption that £ - y > 0 for all y € supp u. Hence, (1.23)
must be true.

Applying the “fundamental theorem of asset pricing” in the form of Theorem 1.6 to
Q :=R4, P := p, and to the random variable Y (y) := y, yields a probability measure
pw* ~ p whose density dpu*/du is bounded and which satisfies [ |y| u*(dy) < oo
and f y u*(dy) = 0. This proves the inclusion ri ['(n) € Mp(u).

Clearly, Mp(n) C M(w). So the theorem will be proved if we can show the
inclusion M () C ril'(u). To this end, suppose by way of contradiction that v ~ u
is such that

/|y|v(dy) <oo and m :=/yv(dy) ¢ril ().

Again, we may assume without loss of generality that m = 0. Applying the separating
hyperplane theorem in the form of Proposition A.1 with C := riI'(u) yields some
£ € RYsuchthat £ -y > Oforall y € ril’(n) and & - y* > 0 for at least one
y* € ril'(in). We deduce from (1.21) that £ - y > 0 holds also for all y € I'(u).
Moreover, & - yo must be strictly positive for at least one yy € supp n. Hence,

£-y>0forp-ae yeR! and u({yl&-y>0})>0. (1.24)
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By the equivalence of w and v, (1.24) is also true for v instead of u, and so

em=t [yvan=[syvan=o
in contradiction to our assumption that m = 0. We conclude that M (u) C ri["'(u). O

Remark 1.49. Note that Theorem 1.48 does not extend to the set
Mww={/www]v«umd/wwww<w}

Already the simple case pu := %(8_1 + 841) serves as a counterexample, because
here M(u) = [—1, +1] whileri["'() = (—1, +1). In this case, we have an identity
between M (n) and I' (). However, also this identity fails in general as can be seen
by considering the normalized Lebesgue measure A on [—1, +1]. For this choice one
finds M(A) = (—1, +1) but T() = [—1, +1]. &

From Theorem 1.48 we obtain the following geometric characterization of the
absence of arbitrage.

Corollary 1.50. Let w be the distribution of the discounted price vector S/(1 +r) of
the risky assets. Then the market model is arbitrage-free if and only if the price system
7 belongs to the relative interior ri I" (1) of the convex hull of the support of .

1.6 Contingent initial data

The idea of hedging contingent claims develops its full power only in a dynamic setting
in which trading may occur at several times. The corresponding discrete-time theory
constitutes the core of these notes and is presented in Chapter 5. The introduction of
additional trading periods requires more sophisticated techniques than those we have
used so far. In this section we will introduce some of these techniques in an extended
version of our previous market model in which initial prices, and hence strategies,
are contingent on scenarios. In this context, we are going to characterize the absence
of arbitrage strategies. The results will be used as building blocks in the multiperiod
setting of Part II; their study can be postponed until Chapter 5.

Suppose that we are given a o-algebra ¥y C F which specifies the information
that is available to an investor at time t = 0. The prices for our d + 1 assets at time
0 will be modelled as non-negative F)-measurable random variables SO, Sé, ey Sg .
Thus, the price system 7 = (7%, 7!, ..., 7¢) of our previous discussion is replaced
by the vector

So=(8,...,59.
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The portfolio £ chosen by an investor at time ¢ = 0 will also depend on the information
available at time 0. Thus, we assume that

E=% .89

is an Fp-measurable random vector. The asset prices observed at time t = 1 will be
denoted by
S =(8,s1,...,80).

They are modelled as non-negative random variables which are measurable with re-
spect to a o-algebra ¥ such that ¥ C 1 C . The o-algebra 7 describes the
information available at time 1, and in this section we can assume that & = £7.

A riskless bond could be included by taking Sg = 1| and by assuming S? to be
Fo-measurable and P-a.s. strictly positive. However, in the sequel it will be sufficient
to assume that 58 is Fp-measurable, S? is F1-measurable, and that

P[S)>0and S} >0]=1 (1.25)
Thus, we can take the 0" asset as numéraire, and we denote by

oS

=—, i=1,...,d,t=0,1,
t St()

the discounted asset prices and by
Y=X;—Xo
the vector of the discounted net gains.

Definition 1.51. An arbitrage opportunity is a portfolio £ such that & - Sy < 0,
£.5,>0P-as.,and P[E-S; >0]>0.

By our assumption (1.25), any arbitrage opportunity £ = (£°, £) satisfies
E-Y>0P-as. and P[£-Y >0]>0. (1.26)

In fact, the existence of a d-dimensional Fy-measurable random vector & with (1.26)
is equivalent to the existence of an arbitrage opportunity. This can be seen as in
Lemma 1.3.
The space of discounted net gains which can be generated by some portfolio is
given by
K:=]e-Y &L, Fo, P;R ).

Here, LO(Q, Fo, P: R4 ) denotes the space of R9-valued random variables which are
P-a.s. finite and £p-measurable modulo the equivalence relation (A.21) of coincidence
up to P-null sets. The spaces L? (L2, %o, P; ]Rd) for p > 0 are defined in the same
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manner. We denote by Lﬁ = Lﬁ(Q, F1, P) the cone of all non-negative elements
in the space L? := LP (2, ¥1, P). With this notation, writing

K N LY = {0}
is shorthand for the absence of arbitrage opportunities. We will denote by
0
K — L

the convex cone of all Z € L which can be written as the difference of some -V € X
and some U € Lg.
The following definition involves the notion of the conditional expectation

EolZ| %01

of a random variable Z with respect to a probability measure Q, given the o -algebra
Fo C F; see Appendix A.2 and the references therein. If Z = (Z 1 ..., Z") is a
random vector, then Eg[ Z | F¢ ] is shorthand for the random vector with components
EolZ! | Fol,i=1,...,n.

Definition 1.52. A probability measure Q satisfying
EQ[Xﬁ] <oo fori=1,...,dandt =0,1

and
Xo=Eol[X1|Fo] Q-as.

is called a risk-neutral measure or martingale measure. We denote by J the set of all
risk-neutral measures P* which are equivalent to P.

Remark 1.53. The definition of a martingale measure Q means that for each asset
i =0,...,d, the discounted price process (X;'),:o,l is a martingale under Q with
respect to the o-fields (#7):—0,1. The systematic discussion of martingales in a multi-
period setting will begin in Section 5.2. The martingale aspect will be crucial for the
theory of dynamic hedging in Part II. &

As the main result of this section, we can now state an extension of the “fundamental
theorem of asset pricing” in Theorem 1.6 to our present setting.

Theorem 1.54. The following conditions are equivalent:
(@) X NLY = {0}
(b) (X —LYNLY ={0}.
(¢) There exists a measure P* € P with a bounded density d P*/d P.

d) P # 0.
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Proof. (d)=(a): Suppose by way of contradiction that there exist both a P* € £ and
some & € LO(Q Fo, P; R?) with non-zero payoff £ - ¥ € K N L0 For large enough
c>0,80 | £l<c }S will be bounded, and the payoff £ . Y W111 still be non-zero

and in KX N L0 . However,
E*[E9.Y=E[£9 EY | %] =

which is the desired contradiction.

(a)<(b): It is obvious that (a) is necessary for (b). In order to prove sufficiency,
suppose that we are given some Z € (K — L9 n LO Then there exists a random
variable U > 0 and a random vector & € LO(Q, Fo, P; R4 ) such that

0<Z=£-Y-U.

This implies that £ - ¥ > U > 0, which, according to condition (a), can only happen
if £ - Y = 0. Hence, also U = 0 and in turn Z = 0.

(b) =(c): This is the difficult part of the proof. The assertion will follow by
combining Lemmas 1.56, 1.57, 1.59, and 1.67. O

Remark 1.55. If Q is discrete, or if there exists a decomposition of 2 in countable
many atoms of (2, o, P), then the martingale measure P* can be constructed by
applying the result of Theorem 1.6 separately on each atom. In the general case, the
idea of patching together conditional martingale measures would involve subtle argu-
ments of measurable selection; see [51]. Here we present a different approach which
is based on separation arguments in L' (P). It is essentially due to W. Schachermayer
[175]; our version uses in addition arguments by Y. Kabanov and C. Stricker [122]. <

We start with the following simple lemma, which takes care of the integrability
condition in Definition 1.52.

Lemma 1.56. For the proof of the implication (b) = (c) in Theorem 1.54, we may
assume without loss of generality that

E[1X;|] <00 fort=0,1. (1.27)

Proof. Define a probability measure P by

dP
dP
where ¢ is chosen such that the right-hand side integrates to 1. Clearly, (1.27) holds
for P. Moreover, condition (b) of Theorem 1. 54 is satisfied by P if and only if 1t is

satisfied by the equivalent measure P. If P* € & is such that the density d P*/d Pis
bounded, then so is the density

= c(1+1Xol + 1X11) "

dP* _dpP* dP
dP ~ 4P dP’
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Therefore, the implication (b) =(c) holds for P if and only if it holds for P. O

From now on, we will always assume (1.27). Our goal is to construct a suitable

Z € L such that
dP*  Z

dP "~ E[Z]

defines an equivalent risk-neutral measure P*. The following simple lemma gives a
criterion for this purpose, involving the convex cone

e:=xK-LYHnLh
Lemma 1.57. Suppose ¢ > 0 and Z € L are such that
E[ZW]<c forallW € C.
Then:
(@) E[ZW]<0forall W € C, i.e., we can take ¢ = 0.
(b) Z >0 P-a.s.
(c) If Z does not vanish P-a.s., then

Qo  z

dP "~ E[Z]

defines a risk-neutral measure Q < P.

Proof. (a): Note that C is a cone, i.e., W € C implies that W € C for all « > 0.
This property excludes the possibility that E[ ZW ] > 0 for some W € C.

(b): C contains the function W := —I{ Z<0)" Hence, by part (a),

E[Z 1=E[ZW]<0O.

(c): Forall & € L®(Q, Fy, P;RY) and « € R we have a& - ¥ € € by our
integrability assumption (1.27). Thus, a similar argument as in the proof of (a) yields
E[Z&-Y]=0. Since £ is bounded, we may conclude that

O0=E[Z&-Y|=E[£-E[ZY | Fo]].
As & is arbitrary, this yields E[ ZY | Fo] = 0 P-almost surely. Proposition A.12 now
implies

1
EolY | Fol=———E[ZY | Fo] =0 -a.s.,
olY | Fol ELZ 70 [ | Fol Q-as

which concludes the proof. O
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In view of the preceding lemma, the construction of risk-neutral measures is re-
duced to the construction of elements of the set

Z:={ZelL®|0<Z<1, P[Z>0]>0, and E[ZW]<O0forall WeC}.

In the following lemma, we will construct such elements by applying a separation
argument suggested by the condition

enLl =10},

which follows from condition (b) of Theorem 1.54. This separation argument needs the
additional assumption that € is closed in L!. Showing that this assumption is indeed
satisfied in our situation will be one of the key steps in our proof; see Lemma 1.67
below.

Lemma 1.58. Assume that C is closed in L' and satisfies @ N L = {0}. Then for
each non-zero F € Lfr there exists some Z € Z such that E{ FZ] > 0.

Proof. Let B := {F'} so that B N C = @, and note that the set C is non-empty, convex
and closed. Thus we may apply the Hahn—Banach separation theorem in the form of
Theorem A.56 to obtain a continuous linear functional £ on L' such that

sup £(W) < £(F).

Wee
Since the dual space of L! can be identified with L*°, there exists some Z € L™
such that £(F) = E[ FZ ] forall F € L'. We may assume without loss of generality
that || Z||coc < 1. By construction, Z satisfies the assumptions of Lemma 1.57, and
so Z € Z. Moreover, E[ FZ] = £(F) > 0 since the constant function W = 0 is
contained in C. O

We will now use an exhaustion argument to conclude that Z contains a strictly
positive element Z* under the assumptions of Lemma 1.58. After normalization, Z*
will serve as the density of our desired risk-neutral measure P* € £.

Lemma 1.59. Under the assumptions of Lemma 1.58, there exists Z* € Z with
Z* >0 P-a.s.

Proof. As a first step, we claim that Z is countably convex: If (ax)ren is a sequence
of non-negative real numbers summing up to 1, and if Z*) € Z for all k, then

o
Z = ZakZ(k) e Z.
k=1

Indeed, for W € C

0.¢]
Y laz®wl < wielL'
k=1
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and so Lebesgue’s dominated convergence theorem implies that

o0
E[ZW ] :ZakE[Z(k)W] <0.
k=1

For the second step, let
c:=sup{P[Z>0]|ZeZ}.
We choose Z™ e Z such that P[ Z"™ > 0] — ¢. Then

o0
Z* = Zz—"z<”> A
n=1

by step one, and

(e8]
(z*>0}={J{z" >o0}.
n=1
Hence P[Z* > 0] = c.
In the final step, we show that ¢ = 1. Then Z* will be as desired. Suppose by way

of contradiction that P[Z* = 0] > 0, so that W := I{ 7=0) i1s a non-zero element of

L}r. Lemma 1.58 yields Z € Z with E{ WZ ] > 0. Hence,
P[{Z >0}Nn{Z*=0}]>0,

and so |
P|:§(Z—|—Z*) >0:| >P[Z*>0]=c,

in contradiction to the maximality of P[Z* > 0]. O

Thus, we have completed the proof of the implication (b) =(c) of Theorem 1.54
up to the requirement that € is closed in L'. Let us pause here in order to state
general versions of two of the arguments we have used so far. The first is known as
the Halmos—Savage theorem. It can be proved by a straightforward modification of
the exhaustion argument used in the proof of Lemma 1.59.

Theorem 1.60. Let @ be a set of probability measures which are all absolutely con-
tinuous with respect to a given measure P. Suppose that @ = P in the sense that
Q[A] = 0forall Q € Q implies that P[A] = 0. Then there exists a countable
subfamily @ C Q which satisfies @ ~ P.

An inspection of Lemmas 1.57, 1.58, and 1.59 shows that the particular structure
of C = (K — LS)F) NL! was only used for part (c) of Lemma 1.57. All other arguments
relied only on the fact that € is a closed convex cone in L' that contains all bounded
negative functions and no non-trivial positive function. Thus, we have in fact proved
the following Kreps—Yan theorem, which was obtained independently in [199] and
[137].
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Theorem 1.61. Suppose C is a closed convex cone in L' satisfying
CD>—-LY and enL)={0}.
Then there exists Z € L*° such that Z > 0 P-a.s. and E{fW Z] <0 forall W € C.

Let us now turn to the closedness of our set C = (K — L(J)r) NL'. The following
example illustrates that we cannot expect C to be closed without assuming the absence
of arbitrage opportunities.

Example 1.62. Let P be the Lebesgue measure on the Borel field #7 of Q2 = [0, 1],
and take o = {¢, 2} and Y (w) = w. This choice clearly violates the no-arbitrage
condition, i.e., we have KX N LS)r =% {0}. The convex set C = (K — LQL) NL'isa
proper subset of L!. More precisely, € does not contain any function F € L' with
F > 1: If we could represent F as £ - Y — U for a non-negative function U, then it
would follow that

E-Y=F4+UZ=1,

which is impossible for any £&. However, as we show next, the closure of C in L!
coincides with the full space L'. In particular, € cannot be closed. Let F € L' be
arbitrary, and observe that

F,:=(F* A n)l[l 0o F~

converges to F in L' as n 4 co. Moreover, each F), belongs to C as

(F* An)I[l - nt.v.

Consequently, F is contained in the L'-closure of C. <&

In the special case Fo = {¢J, Q}, we can directly go on to the proof that C is
closed, using a simplified version of Lemma 1.67 below. In this way, we obtain an
alternative proof of Theorem 1.6. In the general case we need some preparation. Let
us first prove a “randomized” version of the Bolzano—Weierstra3 theorem. It yields a
simple construction of a measurable selection of a convergent subsequence of a given
sequence in LY, Fo, P; RY).

Lemma 1.63. Let (£,) be a sequence in L°%(2, Fo, P; R?) with liminf, |£,| < oco.
Then there exists € € LO(Q, %y, P; R?) and a strictly increasing sequence (oy,) of
Fo-measurable integer-valued random variables such that

&6, () (@) = E(w)  for P-a.e. w € Q.

Proof. Let A(w) := lim inf,, |§, ()|, and define 0,,, := m on the P-null set {A = oo}.
On {A < oo} we let cr{) := 1, and we define Fy-measurable random indices 0,2 by

m

0 . 0 1
o0 = inf{n > o0, ’ el —A]=— 1 m=23....
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We use recursiononi = 1, ..., d to define the i component & I of the limit £ and to

extract a new subsequence o,, of random indices. Let

i:l. . f i, ,
3 lnIPTgal 50;[1

which is already defined if i = 1. This § i can be used in the construction of o/ : Let
o :=1land, form=2,3,...,

o (@) = inf{a,i-l(w \ oy (@) >0, (@) and |, (@) — & ()] < % }

Then o, := o yields the desired sequence of random indices. O]

It may happen that
E-Y=£&(£.Y P-as,

although £ and E are two different portfolios in LO(Q, Fo, P: RY).

Remark 1.64. We could exclude this possibility by the following assumption of non-
redundance:

E.Y=E.Y Pas. = £=E¢ P-as. (1.28)
Under this assumption, we could immediately move on to the final step in Lemma 1.67.

<&

Without assumption (1.28), it will be convenient to have a suitable linear space
N~ of “reference portfolios” which are uniquely determined by their payoff. The
construction of N is the purpose of the following lemma. We will assume that the
spaces L% and L%(Q, Fo, P; R?) are endowed with the topology of convergence in
P-measure, which is generated by the metric d of (A.22).

Lemma 1.65. Define two linear subspaces N and N+ of L°(Q2, %o, P; R?) by
N:={neL%Q, Fo, ;R | 0¥ =0 P-as},

Nt = {g e LY, Fo, P; RY |€-n=0 P-as. foralln € N}.

(a) Both N and N+t are closed in LO(Q2, Fo, P: RY) and, in the following sense,
invariant under the multiplication with scalar functions g € L°(Q, o, P): If
neNandté € N*, then gn € N and gé € N*.

(b) IfE e Nt and&-Y =0 P-a.s., then€ =0,ie., NN N+ = {0}.

(c) Every &€ € L2, o, P; RY) has a unique decomposition € = n + &+, where
neNand&t e Nt
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Remark 1.66. For the proof of this lemma, we will use a projection argument in
Hilbert space. Let us sketch a more probabilistic construction of the decomposition
& = n + &L, Take a regular conditional distribution of ¥ given %y, i.e., a stochastic
kernel K from (2, Fo) to R? such that K (w, A) = P[Y € A | Fo](w) for all Borel
sets A C R? and P-ae. o (see, e.g., §44 of [19]). If one defines §L(a)) as the
orthogonal projection of &£ (w) onto the linear hull L (w) of the support of the measure
K(w, "), then n := & — £+ satisfies - Y = 0 P-as., and any 7 with the same
property must be P-a.s. perpendicular to L(w). However, carrying out the details
of this construction involves certain measurability problems; this is why we use the
projection argument below. <&

Proof. (a): The closedness of N and N follows immediately from the metrizability
of L%, Fo, P; RY) (see Appendix A.7) and the fact that every sequence which
converges in measure has an almost-surely converging subsequence. The invariance
under the multiplication with Fp-measurable scalar functions is obvious.

(b): Suppose that & € N N N1 Then taking n := £ in the definition of N yields
£-&=16]> =0 P-as.

(c): Any given & € LO(Q, %o, P; R?) can be written as

Ew) =t (e +-- + & (w) ey,

where e; denotes the i™ Euclidean unit vector, and where & () is the i™ component
of £(w). Consider ¢; as a constant element of LO(Q, Fo, P; R4 ), and suppose that we
can decompose ¢; as

ei =n; + eil where n; € N and eiL e Nt (1.29)

Since by part (a) both N and N are invariant under the multiplication with Fo-
measurable functions, we can then obtain the desired decomposition of £ by letting

d d
n) =) E@ni@ and & () =) E©We ().

i=1 i=1

Uniqueness of the decomposition follows from N N N L ={0}.

Itremains to construct the decomposition (1.29) of ¢;. The constant ¢; is an element
of the space H := L2(2, Fo, P; RY), which becomes a Hilbert space if endowed with
the natural inner product

(n, &) :=E[n-£1, n, &eL*Q, Fo, P;RY).

Observe that both N N H and N N H are closed subspaces of H, because con-
vergence in H implies convergence in L%, Fy, P; RY). Therefore, we can define
the corresponding orthogonal projections

7 H—> NNH and 7nt:H—> NtNH.
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Thus, letting n; := 7%e;) and el.l := 7+ (e;) will be the desired decomposition (1.29),
once we know that ¢; = 7%(¢;) + 1 (e;). To prove this, we need only show that
¢ = e¢; — m%(¢;) is contained in N+. We assume by way of contradiction that ¢ is
not contained in N N H. Then there exists some n € N such that P[{ - > 0] > 0.
Clearly,

M=k 0 ni<e)

is contained in N N H for each ¢ > 0. But if ¢ is large enough, then 0 < E[7-¢ ] =
(77, £) g, which contradicts the fact that ¢ is by construction orthogonal to N N H. [

After these preparations, we can now complete the proof of Theorem 1.54 by
showing the closedness of € = (K — L(J)r) N L', which is an immediate consequence
of the following lemma. Recall that we have already proved the equivalence of the
conditions (a) and (b) in Theorem 1.54.

Lemma 1.67. If X N LY = {0}, then X — LY is closed in L.

Proof. Suppose W, € (K — Lg) converges in L? to some W as n 1 co. By passing
to a suitable subsequence, we may assume without loss of generality that W,, — W
P-almost surely. We can write W,, =&, -Y — U, for &, € N+tand U, € L(j_.

In a first step, we will prove the assertion given the fact that

liminf |§,] < o0 P-as., (1.30)
ntoo

which will be established afterwards. Assuming (1.30), Lemma 1.63 yields
Fo-measurable integer-valued random variables 07y < o2 < --- and some & €
Lo(a), Fo, P; Rd) such that P-a.s. &, — &. It follows that

Uy, =&, Y — Wy, — &Y —-W=U P-as, (1.31)

sothat W=¢&-Y —U e X — LY.

Let us now show that A := {liminf, |§,| = +o0} satisfies P[ A] = 0 as claimed
in (1.30). Using Lemma 1.63 on ¢, := &,/|&,| yields Fo-measurable integer-valued
random variables 71 < 70 < --- and some ¢ € L%w, %o, P: Rd) such that P-a.s.
¢, — ¢. The convergence of (W,) implies that

UTn W'L’n
01, 22 =1, (60 ¥ - I&,,I> —>1,¢-Y Pas.

Hence, our assumption X N LY = {0} yields (I,¢)-Y = 0. Below we will show that
IAg“ IS Nl, so that
=0 P-as.onA. (1.32)

On the other hand, the fact that |£,| = 1 P-a.s. implies that || = 1 P-a.s., which can
only be consistent with (1.32) if P[A] = 0.
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It remains to show that [,{ € N L. To this end, we first observe that each ¢,
belongs to N since, for each € N,

o0

Z (1= k}|§|€k n=0 P-as.

=1

The closedness of N+ implies ¢ € N+, and A € % yields I,¢e€ N+, O

If in the proof of Lemma 1.67 W,, = &, - Y for all n, then U = 0 in (1.31), and
W = lim, W, is itself contained in J. We thus get the following lemma, which will
be useful in Chapter 5.

Lemma 1.68. Suppose that X N LY. = {0}. Then X is closed in L°.

In fact, it is possible to show that K is always closed in L9 see [193], [175]. But
this stronger result will not be needed here.

As an alternative to the randomized Bolzano—Weierstral3 theorem in Lemma 1.63,
we can use the following variant of Komlos’ principle of subsequences. 1t yields a
convergent sequence of convex combinations of a sequence in LY, Fo, P; RY), and
this will be needed later on. Recall from Appendix A.1 the notion of the convex hull

n n
convA:{Zaix,- )xieA,aizo,Zaizl,neN}
i=1

i=1
of a subset A of a linear space, which in our case will be Lo, Fo, P; RY).

Lemma 1.69. Ler (£,) be a sequence in LY(Q2, Fo, P; R?) such that sup,, &, < o0
P-almost surely. Then there exists a sequence of convex combinations

N, € conv{&,, &41,...}

which converges P-almost surely to some n € LO(Q, Fo, P; ]Rd).

Proof. We can assume without loss of generality that sup, |§,| < 1 P-a.s.; otherwise
we consider the sequence Sn = &,/ sup, |§n| Then (&,) is a bounded sequence
in the Hilbert space H := = LX(Q, Fo, P; R?). Since the closed unit ball in H is
weakly compact, the sequence (£,) has an accumulation point n € H; note that weak
sequential compactness follows from the Banach—Alaoglu theorem in the form of
Theorem A.62 and the fact that the dual H' of the Hilbert space H is isomorphic
to H itself. For each n, the accumulation point 7 belongs to the L?-closure G, of
conv{&,, £,41, ...}, due to the fact that a closed convex set in H is also weakly
closed; see Theorem A.59. Thus, we can find n, € conv{§,, &,+1, ...} such that

2 1
El|n. —nl"] = —.
n

This sequence (1),,) converges P-a.s. to 7. O
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Remark 1.70. The original result by Komlos [133] is more precise: It states that for
any bounded sequence (§,) in LY(Q, F, P; RY) there is a subsequence (&,,) which
satisfies a strong law of large numbers, i.e.,

exists P-almost surely; see also [195]. <&



Chapter 2
Preferences

In a complete financial market model, the price of a contingent claim is determined
by arbitrage arguments, without involving the preferences of economic agents. In an
incomplete model, such claims may carry an intrinsic risk which cannot be hedged
away. In order to determine desirable strategies in view of such risks, the preferences
of an investor should be made explicit, and this is usually done in terms of an expected
utility criterion.

The paradigm of expected utility is the theme of this chapter. We begin with a
general discussion of preference relations on a set X of alternative choices and their
numerical representation by some functional U on X. In the financial context, such
choices can usually be described as payoff profiles. These are defined as functions
X on an underlying set of scenarios with values in some set of payoffs. Thus we are
facing risk or even uncertainty. In the case of risk, a probability measure is given on
the set of scenarios. In this case, we can focus on the resulting payoff distributions.
We are then dealing with preferences on “lotteries”, i.e., on probability measures on
the set of payoffs.

In Sections 2.2 and 2.3 we discuss the conditions — or axioms — under which such
a preference relation on lotteries u can be represented by a functional of the form

/M(X) n(dx),

where u is a utility function on the set of payoffs. This formulation of preferences
on lotteries in terms of expected utility goes back to D. Bernoulli [22]; the axiomatic
theory was initiated by J. von Neumann and O. Morgenstern [155]. Section 2.4 char-
acterizes uniform preference relations which are shared by a given class of functions u.
This involves the general theory of probability measures on product spaces with given
marginals which will be discussed in Section 2.6.

In Section 2.5 we return to the more fundamental level where preferences are
defined on payoff profiles, and where we are facing uncertainty in the sense that no
probability measure is given a priori. L. Savage [174] clarified the conditions under
which such preferences on a space of functions X admit a representation of the form

U(X) = Eglu(X)]

where Q is a “subjective” probability measure on the set of scenarios. We are going to
concentrate on a robust extension of the Savage representation which was introduced
by L. Gilboa and D. Schmeidler [104]. Here the utility functional is of the form

UX) = QHgQ Eglu(X)],
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and it involves a whole class @ of probability measures on the set of scenarios. The
axiomatic approach to the robust Savage representation is closely related to the con-
struction of risk measures, which will be the topic of Chapter 4.

2.1 Preference relations and their numerical representation

Let X be some non-empty set. An element x € X will be interpreted as a possible
choice of an economic agent. If presented with two choices x, y € X, the agent might
prefer one over the other. This will be formalized as follows.

Definition 2.1. A preference order (or preference relation) on X is a binary relation
> with the following two properties.

o Asymmetry: If x > y,then y # x.

* Negative transitivity: If x > y and z € X, then either x > z or z > y or both
must hold.

Negative transitivity states that if a clear preference exists between two choices
x and y, and if a third choice z is added, then there is still a choice which is least
preferable (y if z > y) or most preferable (x if x > 7).

Definition 2.2. A preference order > on X induces a corresponding weak preference
order > defined by
XZYy &= yFa,

and an indifference relation ~ given by
x~y &= x>yandy > x.

Thus, x > y means that either x is preferred to y or there is no clear preference
between the two.

Remark 2.3. Itis easy to check that the asymmetry and the negative transitivity of >
are equivalent to the following two respective properties of >:

(a) Completeness: For all x, y € X, either y > x or x > y or both are true.
(b) Transitivity: If x > y and y > z, then also x > z.

Conversely, any complete and transitive relation > induces a preference order > via
the negation of >, i.e.,
y>=Xx &< Xty

The indifference relation ~ is an equivalence relation, i.e., it is reflexive, symmetric
and transitive. <&



46 2 Preferences

Definition 2.4. A numerical representation of a preference order > is a function
U : X — R such that
y>=x < U@ > Ux). 2.1

Clearly, (2.1) is equivalent to
yzx &= U@y =UW®).

Note that such a numerical representation U is not unique: If f is any strictly increasing
function, then U (x) := f (U (x)) is again a numerical representation.

Definition 2.5. Let > be a preference relation on X. A subset Z of X is called order
dense if for any pair x, y € X suchthatx > y thereexists some z € Z withx > z > y.

The following theorem characterizes those preference relations for which there
exists a numerical representation.

Theorem 2.6. For the existence of a numerical representation of a preference relation
> it is necessary and sufficient that X contains a countable, order dense subset Z. In
particular, any preference order admits a numerical representation if X is countable.

Proof. Suppose first that we are given a countable order dense subset Z of X. For
x e X,let

Z(x)={z€eZ|z>x} and Zx):={ze€Z|x >z}

The relation x > y implies that Z(x) C Z(y) and Z(x) D Z(y). If the strict relation
x > ¥y holds, then at least one of these inclusions is also strict. To see this, pick
z € Z withx > z > y,sothateither x > z > y or x > z > y. In the first case,
z € Z(x)\Z(y), while z € Z(y)\Z(x) in the second case.

Next, take any strictly positive probability distribution p on Z, and let

U= ) n@— ) n@.

z€Z(x) 7€Z(x)

By the above, U(x) > U(y) if and only if x > y so that U is the desired numerical
representation.

For the proof of the converse assertion take a numerical representation U and let
g denote the countable set

g:=|{la.blla,beQ, a<b, U '(a,b]) #0).

For every interval I € § we can choose some z; € X with U(z;) € I and thus define
the countable set

A={z;|1€g}

At first glance it may seem that A is a good candidate for an order dense set. However,
it may happen that there are x, y € X such that U(x) < U(y) and for which there
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isnoz € X with U(x) < U(z) < U(y). In this case, an order dense set must
contain at least one z with U(z) = U(x) or U(z) = U(y), a condition which cannot
be guaranteed by A.

Let us define the set C of all pairs (x, y) which do not admit any z € A with
Y >z > X:

C={x,»|x,yeX\A, y>xand Az€ Awithy >z > x}.

Then (x, y) € C implies the apparently stronger fact that we cannot find any z € X
such that y > z > x: Otherwise we could find a, b € Q such that

Ux)<a<U(z) <b<U(y),

so I := [a, b] would belong to ¢, and the corresponding z; would be an element of
A with y > z; > x, contradicting the assumption that (x, y) € C.

It follows that all intervals (U x),U (y)) with (x, y) € C are disjoint and non-
empty. Hence, there can be only countably many of them. For each such interval J we
pick now exactly one pair (x”, y/) € C such that U(x”) and U (y”) are the endpoints
of J, and we denote by B the countable set containing all x’ and all y”’.

Finally, we claim that Z := A U B is an order dense subset of X. Indeed, if x,
y € X\Z with y > x, then either there is some z € A such that y > z > x, or
(x,y) € C. In the latter case, there will be some z € B with U(y) = U(z) > U (x)
and, consequently, y > z > x. O

The following example shows that even in a seemingly straightforward situation,
a given preference order may not admit a numerical representation.

Example 2.7. Let > be the usual lexicographical order on X := [0, 1] x [0, 1], i.e.,
(x1,x2) > (y1, »2) if and only if either x; > yj, or if x; = y; and simultaneously
X3 > y2. In order to show that there cannot be a numerical representation for this
preference order, suppose on the contrary that U is such a numerical representation.
Then

da)=U(x, 1) —U(a,0)

is strictly positive for all @ € [0, 1]. Hence,

o 1
[0,1]=U{ae[0,1] ( d(a)>;}.

n=1

Denote A, := {« | d(x) > 1/n}. There must be at least one set A,, having infinitely
many elements, and we can pick an arbitrary number N of elements oy, ..., any € Ay,
such that o] < --- < apy. Since (@41, 0) > (a4, 1), it follows that

1
U(ej11,0) = U(;, 0) > U(ej, 1) = U(e;, 0) = d(e;) > e
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Hence

Uu,1)—-U(,0)
N—-1
=Ul,1)—-U(an,0) + Z[U(aiH,O)—U(oc,-,O)]-i—U(ozl,O)—U(O,O)
i=1
N -1

> .
no

But N can be chosen arbitrarily large while ng remains fixed. Thus U(1, 1) — U (0, 0)
must be infinite, which is impossible. <&

Definition 2.8. Let X be a topological space. A preference relation > is called con-
tinuous if for all x € X

Bx)={yeX|y>x} and Bx):={yeX|x >y} 2.2)
are open subsets of X.

Remark 2.9. Every preference order that admits a continuous numerical representa-
tion is itself continuous. Under some mild conditions on the underlying space X, the
converse statement is also true; see Theorem 2.15 below. &

Example 2.10. The lexicographical order of Example 2.7 is not continuous: If
(x1, x2) € [0, 1] x [0, 1] is given, then

{1 y2) | 1, y2) = (o1, x2) = (1, 11 x [0, 1TU {1} x (x2, 1],
which is typically not an open subset of [0, 1] x [0, 1]. <&

Recall that a topological space X is called a topological Hausdorff space if any
two distinct points in X have disjoint open neighborhoods. In this case, all singletons
{x} are closed. Clearly, every metric space is a topological Hausdorff space.

Proposition 2.11. Let > be a preference order on a topological Hausdorff space X.
Then the following properties are equivalent.

(a) > is continuous.
(b) The set{(x,y) |y >x}isopenin X x X.
(c) Theset {(x,y) |y > x}isclosedin X x X.

Proof. (a) =(b): We have to show that for any pair

(x0,y0) e M :={(x,y) |y >x}

there exist open sets U, V C X such that xg € i] ,yo€ V,andU xV C M. Coisider
first the case in which there exists some z € B(xg) N B(yp) for the notation B (xg)
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and B (yo) introduced in (2.2). Then yg > z > xo, so that U := B(z) and V := B(z)
are open neighborhoods of xo and yop, respectively. Moreover, if x € U and y € V,
theny > z > x,and thus U x V C M.

If B(x0) N B(yo) =¥, welet U := B(yg) and V := B(xg). If (x,y) e U x V,
then yo > x and y > xp by definition. We want to show that y > x in order to
conclude that U x V C M. To this end, suppose that x > y. Then yp > y by negative
transitivity, hence yp > y > xo. But then y € B(xo) N B(yp) # ¥, and we have a
contradiction.

(b) =(c): First note that the mapping ¢ (x, y) := (¥, x) is a homeomorphism of
X x X. Then observe that the set { (x, y) | y > x } is just the complement of the open
setp({ (x, y) [y >x}).

(c) =(a): Since X is a topological Hausdorff space, {x} x X is closed in X x X,
and so is the set

pxXn{x.yly=zxt={x}x{yly=zx}

Hence {y | y > x}is closed in X, and its complement { y | x > y} is open. The
same argument appliesto {y | y > x }. O

Example 2.12. For xy < yg consider the set X, := (—o0, xg] U [yg, 00) endowed
with the usual grder > on R. Then, with the notation introduced in (2.2), B(yg) =
(—00, x0] and B(xg) = [yo, 00). Hence,

B(x0) N B(yo) =
despite yp > xp, a situation we had to consider in the preceding proof. <

Recall that the topological space X is called connected if X cannot be written as
the union of two disjoint and non-empty open sets. Assuming that X is connected
will rule out the situation occurring in Example 2.12.

Proposition 2.13. Let X be a connected topological space with a continuous prefer-
ence order >. Then every dense subset Z of X is also order dense in X. In particular,
there exists a numerical representation of > if X is separable.

Proof. Take x, y € X with y > x, and consider B(x) and B(y) as defined in (2.2).
Since y € B(x)and x € B(y), neither B(x) nor B(y) are empty sets. Moreover,
negative transitivity implies that X = B(x) U B8(y). Hence, the open sets B(x)
and B(y) cannot be disjoint, as X is connected. Thus, the open set Bx)N B(y)
must contain some element z of the dense subset Z, which then satisfies y > z > x.
Therefore Z is an order dense subset of X.

Separability of X means that there exists a countable dense subset Z of X;, which
then is order dense. Hence, the existence of a numerical representation follows from
Theorem 2.6. O
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Remark 2.14. Consider the situation of Example 2.12, where X := (—o00, xo] U
[vo, 00), and suppose that xg and yg are both irrational. Then Z := Q N X is dense
in X, but there exists no z € Z such that yy > z > xo. This example shows that the
assumption of topological connectedness is essential for Proposition 2.13. <

Theorem 2.15. Let X be a topological space which satisfies at least one of the fol-
lowing two properties:

e X has a countable base of open sets.
» X is separable and connected.

Then every continuous preference order on X, admits a continuous numerical repre-
sentation.

For a proof we refer to [57], Propositions 3 and 4. For our purposes, namely for
the proof of the von Neumann—Morgenstern representation in the next section and for
the proof of the robust Savage representation in Section 2.5, the following lemma will
be sufficient.

Lemma 2.16. Let X be a connected metric space with a continuous preference order
>. IfU : X — Risacontinuous function, and if its restriction to some dense subset Z,
is a numerical representation for the restriction of > to Z, then U is also a nhumerical
representation for > on X.

Proof. We have to show that y > x if and only if U(y) > U(x). In order to verify
the “only if” part, take x, y € X with y > x. As in the proof of Proposition 2.13,
we obtain the existence of some zp € Z with y > zo > x. Repeating this argument
yields z(, € Z such that zo > z;, > x. Now we take two sequences (z,) and (z},) in Z
with z, — y and z, — x. By continuity of >, eventually

Zn > 20 > 20 = Zns

and thus
Ul(zn) > U(20) > U(zg) > U(z),).

The continuity of U implies that U (z,) — U(y) and U (z},) — U (x), whence
U(y) = U(zo) > Ul(zg) = U(x).

For the proof of the converse implication, suppose that x, y € X are such that
U(y) > U(x). Since U is continuous,

Ux):={zeX|UR >UKX)}

and
Uy)={zeX|U@ <Uy)}



2.2 Von Neumann—-Morgenstern representation 51

are both non-empty open subsets of X. Moreover, U(y) UU(x) = X. Connectedness
of X implies that U(y) NU(x) # #. As above, arepeated application of the preceding
argument yields zo, z;, € Z such that

U(y) > U(zo) > Ulzp) > U(x).

Since Z is a dense subset of X, we can find sequences (z,,) and (z,,) in Z with z, — y
and z, — x as well as with U(z,) > U(zo) and U(z},) < U(z(). Since U is a
numerical representation of > on Z, we have

Zn > 20 > 20 > 2y

Hence, by the continuity of >, neither zg > y nor x > z; can be true, and negative
transitivity yields y > x. O

2.2 Von Neumann-Morgenstern representation

Suppose that each possible choice for our economic agent corresponds to a probability
distribution on a given set of scenarios. Thus, the set X can be identified with a subset
M of the set M (S, 4) of all probability distributions on a measurable space (S, 4). In
the context of the theory of choice, the elements of M are sometimes called /lotteries.
We will assume in the sequel that M is convex. The aim of this section is to characterize
those preference orders > on M which allow for a numerical representation U of the
form

Up) = /u(x)u(dx) forall u € M, (2.3)
where u is a real function on S.

Definition 2.17. A numerical representation U of a preference order > on M is called
a von Neumann—Morgenstern representation if it is of the form (2.3).

Any von Neumann—Morgenstern representation U is affine on M in the sense that
Ulap + (1 —a)v) = al(w) + (1 —a)U(v)

for all u, v € M and a € [0, 1]. It is easy to check that affinity of U implies the
following two properties, or axioms, for a preference order > on M. The first property
says that a preference p > v is preserved in any convex combination, independent of
the context described by another lottery A.

Definition 2.18. A preference relation > on M satisfies the independence axiom if,
for all u, v € M, the relation u > v implies

o+ (1 —a)A>av+ (1 —a)r
forallL € M and all @ € (0, 1].
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The independence axiom is also called the substitution axiom. It can be illustrated
by introducing a compound lottery, which represents the distribution o + (1 — o)A
as a two-step procedure. First, we sample either lottery w or A with probability « and
1 — «, respectively. Then the lottery drawn in this first step is realized. Clearly, this
is equivalent to playing directly the lottery oot + (1 — ar)A. With probability 1 — «,
the distribution X is drawn and in this case there is no difference to the compound
lottery where v is replaced by p. The only difference occurs when p is drawn, and
this happens with probability . Thus, if & > v then it seems reasonable to prefer the
compound lottery with p over the one with v.

Definition 2.19. A preference relation > on M satisfies the Archimedean axiom if for
any triple > A > v there are «, 8 € (0, 1) such that

o+ 1 —a)yy>=A>=Bu+1-,3)v.

The Archimedean axiom derives its name from its similarity to the Archimedean
principle in real analysis: For every small ¢ > 0 and each large x, there is some
n € N such that n ¢ > x. Sometimes it is also called the continuity axiom, because
it can act as a substitute for the continuity of > in a suitable topology on M. More
precisely, suppose that M is endowed with a topology for which convex combinations
are continuous curves, i.e., ¢t + (1 — o)v convergestovorpasa | Oora 1 1,
respectively. Then continuity of our preference order > in this topology automatically
implies the Archimedean axiom.

Remark 2.20. Asanaxiom for consistent behavior in the face of risk, the Archimedean
axiom is less intuitive than the independence axiom. Consider the following three de-
terministic distributions: v yields 1000 €, A yields 10 €, and w is the lottery where one
dies for sure. Even for small o € (0, 1) it is not clear that someone would prefer the
gamble ou 4 (1 — a)v, which involves the probability o of dying, over the conserva-
tive 10 € yielded by A. Note, however, that most people would not hesitate to drive a
car for a distance of 50 km in order to receive a premium of 1000 €, even though this
might involve the risk of a deadly accident. <

Our first goal is to show that the Archimedean axiom and the independence axiom
imply the existence of an affine numerical representation.

Theorem 2.21. Suppose that > is a preference relation on M satisfying both the
Archimedean and the independence axiom. Then there exists an affine numerical
representation U of >=. Moreover, U is unique up to positive affine transformations,
i.e., any other affine numerical representation U with these properties is of the form
U=aU+bforsomea > 0andb € R.

In two important cases, such an affine numerical representation will already be of
von Neumann—Morgenstern form. This is the content of the following two corollaries,
which we state before proving Theorem 2.21. For the first corollary, we need the notion
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of a simple probability distribution. This is a probability measure © on S which can be
written as a finite convex combination of Dirac masses, i.e., there exist xi, ..., xy € S
and o1, ...,ay € (0, 1] such that

N
w= Zai(Sxi.

i=1

Corollary 2.22. Suppose that M is the set of all simple probability distributions on S
and that > is a preference order on M that satisfies both the Archimedean and the in-
dependence axiom. Then there exists a von Neumann—Morgenstern representation U .
Moreover, both U and u are unique up to positive affine transformations.

Proof. Let U be an affine numerical representation, which exists by Theorem 2.21. We
define u(x) := U(8,), forx € S. If u € M is of the form pu = a1y, + - + andxy,
then affinity of U implies

N
U =) aiU@Gy) = /M(X)M(dX)-
i=1

This is the desired von Neumann—Morgenstern representation. O

Onafinite set S, every probability measure is simple. Thus, we obtain the following
result as a special case.

Corollary 2.23. Suppose that M is the set of all probability distributions on a finite
set S and that > is a preference order on M that satisfies both the Archimedean and the
independence axiom. Then there exists a von Neumann—Morgenstern representation,
and it is unique up to positive affine transformations.

For the proof of Theorem 2.21, we need the following auxiliary lemma. Its first as-
sertion states that taking convex combination is monotone with respect to a preference
order > satisfying our two axioms. Its second part can be regarded as an “intermediate
value theorem” for straight lines in M, and (c) is the analogue of the independence
axiom for the indifference relation ~.

Lemma 2.24. Under the assumptions of Theorem 2.21, the following assertions are
true.

@ If u > v, then a — ap + (1 — a)v is strictly increasing with respect to >.
More precisely, Bu+ (1 — v =au+ (1 —a)vfor0 <a < p <1.

®) If w > vand u = X > v, then there exists a unique a € [0, 1] with . ~
opn+ (1 —a)v.

© Ifu~v,thenap+(1—a)r ~av+{1—a)rforalla € [0, 1]andall A € M.
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Proof. (a): Let A := Bu + (1 — B)v. The independence axiom implies that 1 >
Bv + (1 — B)v = v. Hence, for y := a/B,
Bu+ A —-Bv=>0—-p)rA+yr>U0—plv+yr=au+ 1 —a).

(b): Part (a) guarantees that « is unique if it exists. To show existence, we need
only to consider the case it > A > v, for otherwise we can take eithero = Ooro = 1.
The natural candidate is
a:=sup{y € [0, 1]|A>yu+1—-y)}

If A ~ ap + (1 — @)v is not true, then one of the following two possibilities must
occur:
A=apu+{1—a)y, or A<au+(1—o). 2.4)

In the first case, we apply the Archimedean axiom to obtain some 8 € (0, 1) such that
o Blap+ 0 —aw ]+ = fu=yu+ 1 -y 2.5)

fory = 1 - 81 — a). Since y > «, it follows from the definition of « that
yu + (I — y)v > A, which contradicts (2.5). If the second case in (2.4) occurs, the
Archimedean axiom yields some 8 € (0, 1) such that

,B(a,u—i-(l —a)v)+(1 — By =Bau+ (1 —Ba)v > A. (2.6)
Clearly Ba < «, so that the definition of « yields some y € (Bo, ] with A >
y i+ (1 — y)v. Part (a) and the fact that o < y imply that
Azypn+ A=y > pap+ A= pav,
which contradicts (2.6).
(c): We must exclude both of the following two possibilities

op+ 1 —a)h>av+ (1 —a)h and av+ (1 —a)A >au+ (1 —ao)r. (2.7)

To this end, we may assume that there exists some p € M with p % p ~ v; otherwise
the result is trivial. Let us assume that p > u ~ v; the case in which u ~ v > p
is similar. Suppose that the first possibility in (2.7) would occur. The independence
axiom yields

po+ A —=pv>=prv+d—-Bv=v~pu
for all 8 € (0, 1). Therefore,

a[Bo+ (1 =Bw]+ A —a)r>au+ (1 —a)r forallpe(0,1). (2.8)

Using our assumption that the first possibilities in (2.7) is occurring, we obtain from
part (b) aunique y € (0, 1) such that, for any fixed S,

ap+ (L —a)r~y(e[po+A =]+ A —a)r)+ A —y)av+ 1 —a)]

=a[Byp+ (1= Byw]+ A —a)r
=oau+ (1 —a)A,
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where we have used (2.8) for B replaced by By in the last step. This is a contradiction.
The second possibility in (2.7) is excluded by an analogous argument. 0

Proof of Theorem 2.21. For the construction of U, we first fix two lotteries A and p
with A > p and define

MO, p) ={peM|r=pn>=pl

the assertion is trivial if no such pair A > p exists. If u € M(X, p), part (b) of
Lemma 2.24 yields a unique @ € [0, 1] such that © ~ oA + (1 — ) p, and we put
U () := «. To prove that U is a numerical representation of > on M (A, p), we must
show that for v, u € M(X, p) we have U(u) > U (v) if and only if u > v. To prove
sufficiency, we apply part (a) of Lemma 2.24 to conclude that

p~Uwr+(1=U@w)p = Ui+ (1=UW®)p ~v,

Hence 1 > v. Conversely, if i > v then the preceding arguments already imply that
we cannot have U(v) > U (u). Thus, it suffices to rule out the case U(u) = U(v).
Butif U(u) = U (v), then the definition of U yields u ~ v, which contradicts p > v.
We conclude that U is indeed a numerical representation of > restricted to M (A, p).

Letus now show that M (X, p) isaconvex set. Take i, v € M(A, p) anda € [0, 1].
Then

A=ar+ (1 —a)y=au+ 1 —a)y,

using the independence axiom to handle the cases A > v and A > u, and part (c)
of Lemma 2.24 for A ~ v and for A ~ pu. By the same argument it follows that
apn + (1 —a)v > p, which implies the convexity of the set M (A, p).

Therefore, U(ap + (1 — a)v) is well defined; we proceed to show that it equals
aU(u) 4+ (1 —a)U (v). To this end, we apply part (c) of Lemma 2.24 twice:

ap+ 1=y ~a(Ui+(1-Uw)p)+ 1A —a)(UmAr+(1—-UW)p)
=[aU(W+ A - U+ [1—aUw) — (1 —a)UW)]p.

The definition of U and the uniqueness in part (b) of Lemma 2.24 imply that
Ulp+ (1 —a)y) =aUp)+ 1 —a)U((v).

So U is indeed an affine numerical representation of > on M (A, p).

In a further step, we now show that the affine numerical representation U on
M (A, p) is unique up to positive affine transformations. So let U be another affine
numerical representation of > on M (A, p), and define

_Uw-U(p

U = = 7
W= T~ T

n € M, p).
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"l:hen Uisa positive affine transformatAion of U ,and U (p) = 0 = U(p) as well as
U() =1 =U(}). Hence, affinity of U and the definition of U imply

U(w) =U(Uwr+(1=U@w)p) =UT0) + (1 - Uw)T(p) =Uw)

forall x € M(x, p). Thus U = U.

Finally, we have to show that U can be extended as a numerical representation
to the full space M. To this end, we first take A, 5 € M such that M(A, ) D
M (A, p). By the arguments in the first part of this proof, there exists an affine numerical
representation U of = on M(A 0), and we may assume that U (A) =1 and U (p) =
0; otherwise we apply a positive affine transformation to_ U. By the previous step
of the proof, U coincides with U on M(X, p), and so U~ is the unique consistent
extension of U. Since each lottery belongs to some set M (A, ), the affine numerical
representation U can be uniquely extended to all of M. O

Remark 2.25. In the proof of the preceding theorem, we did not use the fact that the
elements of M are probability measures. All that was needed was convexity of the set
M, the Archimedean, and the independence axiom. Yet, even the concept of convexity
can be generalized by introducing the notion of a mixture space; see, e.g., [138], [84],
or [112]. <&

Let us now return to the problem of constructing a von Neumann—Morgenstern
representation for preference relations on distributions. If M is the set of all probability
measures on a finite set S, any affine numerical representation is already of this form, as
we saw in the proof of Corollary 2.23. However, the situation becomes more involved
if we take an infinite set S. In fact, the following examples show that in this case a
von Neumann—Morgenstern representation may not exist.

Example 2.26. Let M be the set of probability measures i on S := {1,2,...} for
which U(u) := lim SUPf 400 k (k) is finite. Clearly, U is affine and induces a prefer-
ence order on M which satisfies both the Archimedean and the independence axiom.
However, U obviously does not admit a von Neumann—Morgenstern representation.

<

Example 2.27. Let M be set the of all Borel probability measures on S = [0, 1], and
denote by A the Lebesgue measure on S. According to the Lebesgue decomposition
theorem, which is recalled in Theorem A.13, every i € M can be decomposed as

M= s + Ha,

where i is singular with respect to A, and u, is absolutely continuous. We define a
function U : M — [0, 1] by

Up) = /xua(dX).
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It is easily seen that U is an affine function on M. Hence, U induces a preference
order > on M which satisfies both the Archimedean and the independence axioms.
But > cannot have a von Neumann—Morgenstern representation: Since U (§,) = 0
for all x, the only possible choice for u in (2.3) would be u = 0. So the preference
relation would be trivial in the sense that u ~ A for all © € M, in contradiction for
instance to U (L) = % and U(cS%) =0. <&

One way to obtain a von Neumann—Morgenstern representation is to assume ad-
ditional continuity properties of >, where continuity is understood in the sense of
Definition 2.8. As we have already remarked, the Archimedean axiom holds automat-
ically if taking convex combinations is continuous for the topology on M. This is
indeed the case for the weak topology on the set M (S, 4) of all probability measures
on a separable metric space S, endowed with the o-field 8 of Borel sets. The space S
will be fixed for the rest of this section, and we will simply write M1 (S) = M (S, ).

Theorem 2.28. Let M = M(S) be the space of all probability measures on S
endowed with the weak topology, and let > be a continuous preference order on M
satisfying the independence axiom. Then there exists a von Neumann—Morgenstern
representation

U(p) =/M(X)M(dX)

for which the functionu : S — R is bounded and continuous. Moreover, U and u are
unique up to positive affine transformations.

Proof. Let M, denote the set of all simple probability distributions on S. Since
continuity of > implies the Archimedean axiom, we deduce from Corollary 2.22 that
> restricted to M has a von Neumann—Morgenstern representation.

Let us show that the function u in this representation is bounded. For instance, if
u is not bounded from above, then there are xg, x1, ... € S such that u(xg) < u(xy)
and u(x,) > n. Now let

1 1
o ( \/ﬁ)"ﬁﬁ"”

Clearly, ;t, — 6y, weakly asn 1 oo. The continuity of > together with the assumption
that 8, > 8y, imply that 8y, > u, for all large n. However, U (u,) > J/n for all n,
in contradiction to 8y, > (y.

Suppose that the function u is not continuous. Then there exists some x € S and a
sequence (x,),eN C S suchthat x,, — x butu(x,) / u(x). By taking a subsequence
if necessary, we can assume that u(x,) converges to some number a # u(x). Suppose
that u(x) —a =: ¢ > 0. Then there exists some m such that |u(x,) —a| < &/3 for all
n>m. Let u := %(SX +6y,). Foralln > m

2¢e 1 e
UGSy =a+e>a+ 3> 5(u(x) +u(xm) =UW) >a+ 3> U8y,



58 2 Preferences

Therefore §, > u > 8y, , although 6, converges weakly to d,, in contradiction to the
continuity of >. The case u(x) < a is excluded in the same manner.
Let us finally show that

U(p) = /u(x) u(dx) foru e M

defines a numerical representation of > on all of M. Since u is bounded and con-
tinuous, U is continuous with respect to the weak topology on M. Moreover, Theo-
rem A.37 states that M is a dense subset of the connected metrizable space M. So
the proof is completed by an application of Lemma 2.16. O

The scope of the preceding theorem is limited insofar as it involves only bounded
functions u. This will not be flexible enough for our purposes. In the next section,
for instance, we will consider risk-averse preferences which are defined in terms of
concave functions u on the space S = R. Such a function cannot be bounded unless
it is constant. Thus, we must relax the conditions of the previous theorem. We will
present two approaches. In our first approach, we fix some point xo € S and denote by
B, (x¢) the closed metric ball of radius r around xo. The space of boundedly supported
measures on S is given by

Mp(S) == ] M1 (B, (x0))

r>0

= {,u e M(S) | ;L(F,(xo)) = 1 for some r > O}.
Clearly, this definition does not depend on the particular choice of xg.

Corollary 2.29. Let > be a preference order on Mp(S) whose restriction to each
space M (Br(xo)) is continuous with respect to the weak topology. If > satisfies the
independence axiom, then there exists a von Neumann—Morgenstern representation

U(p) :/u(x),u(dx)

with a continuous function u : S — R. Moreover, U and u are unique up to positive
affine transformations.

Proof. Theorem 2.28 yields a von Neumann—Morgenstern representation of the re-
striction of > to M (B (x0)) in terms of some continuous function u, : B, (xo) — R.
The uniqueness part of the theorem implies that the restriction of u, to some smaller
ball B, (xp) must be a equal to u,/ up to a positive affine transformation. Thus, it is
possible to find a unique continuous extension u : § — R of u,» which defines a von
Neumann—Morgenstern representation of > on each set M (Er (xo)). Ll

Our second variant of Theorem 2.28 includes measures with unbounded support,
but we need stronger continuity assumptions. Let iy be a continuous function with
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values in [1, co) on the separable metric space S. We use i as a gauge function and
define

HOES PREFION fw(xwdx) <ool.
A suitable space of continuous test functions for measures in cMi// (S) is provided by
Cy(S) = {f €eCS) |dc: |fx)| <c-y¥(x)forallx e S}.

These test functions can now be used to define a topology on ,Mip(S) in precisely
the same way one uses the set of bounded continuous function to define the weak
topology: A sequence (u,) in M 1//(S ) converges to some i € M 1//(S ) if and only if

/fd,u,,,—>/fdu forall f € Cy(S).

To be rigorous, one should first define a neighborhood base for the topology and
then check that this topology is metrizable, so that it suffices indeed to consider the
convergence of sequences; the reader will find all necessary details in Appendix A.6.
We will call this topology the ¥-weak topology on M;//(S). If we take the trivial
case ¥ = 1, Cy (S) consists of all bounded continuous functions, and we recover the
standard weak topology on M 11 (S) = M1(S). However, by taking ¥ as some non-
bounded function, we can also include von Neumann—Morgenstern representations in
terms of unbounded functions u. The following theorem is a version of Theorem 2.28
for the yr-weak topology. Its proof is analogous to that of Theorem 2.28, and we leave
it to the reader to fill in the details.

Theorem 2.30. Let > be a preference order on M YI(S ) that is continuous in the -
weak topology and satisfies the independence axiom. Then there exists a numerical
representation U of von Neumann—Morgenstern form

U(p) =/M(X)M(dX)

with a function u € Cy(S). Moreover, U and u are unique up to positive affine
transformations.

Remark 2.31. Instead of making topological assumptions on >, one can introduce,
in addition to the Archimedean and the independence axiom, the so-called sure-thing
principle: For u,v € M and A € & such that u(A) = 1:

by >vforalx e A — pu>v,

and
v>dforallx e A — v>pu.

This axiom, together with a couple of technical assumptions, guarantees the existence
of a von Neumann—Morgenstern representation; see [84]. Conversely, it is easy to
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see that the sure-thing principle is automatically implied by the existence of a von
Neumann—Morgenstern representation. Note that the sure-thing principle is violated
in both Examples 2.26 and 2.27. <

So far, we have presented the classical theory of expected utility, starting with the
independence axiom and the Archimedean axiom. However, it is well known that in
reality people may not behave according to this paradigm.

Example 2.32 (Allais Paradox). The so-called Allais paradox questions the descrip-
tive aspect of expected utility by considering the following lotteries. Lottery

v1 = 0.33 82500 + 0.66 52400 + 0.01 §g

yields 2500 € with a probability of 0.33, 2400 € with probability 0.66, and draws a
blank with the remaining probability of 0.01. Lottery

M1 = 62400

yields 2400 € for sure. When asked, most people prefer the sure amount —even though
lottery vy has the larger expected value, namely 2409 €.
Next, consider the following two lotteries o and v;:

w2 = 0.34 83400 +0.6686¢9 and vy := 0.33 82500 + 0.67 &p.

Here people tend to prefer the slightly riskier lottery v, over u,, in accordance with
the expectations of v, and o, which are 825 € and 816 €, respectively.

This observation is due to M. Allais [4]. It was confirmed by D. Kahnemann and
A. Tversky [123] in empirical tests where 82 % of interviewees preferred (| over
v1 while 83 % chose v, rather than w,. This means that at least 65 % chose both
w1 > vy and v2 > po. As pointed out by M. Allais, this simultaneous choice leads
to a “paradox” in the sense that it is inconsistent with the von Neumann—Morgen-
stern paradigm. More precisely, any preference relation > for which @, > v and
vy > W are both valid violates the independence axiom, as we will show now. If the
independence axiom were satisfied, then necessarily

o+ —a)yyy=avi+ {1 —a)vy = avy + (1 —a)ur
forall ¢ € (0, 1). By taking « = 1/2 we would arrive at

1 1
5(#«1 +v2) > 5(”1 + 2)

which is a contradiction to the fact that

1 1
E(Ml + 1) = E(Vl + 12).

Therefore, the independence axiom was violated by at least 65 % of the people who
were interviewed. This effectis empirical evidence against the von Neumann—Morgen-
stern theory as a descriptive theory. Even from a normative point of view, there are
good reasons to go beyond our present setting, and this will be done in Section 2.5.
In particular, we will take a second look at the Allais paradox in Remark 2.74. <&
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2.3 Expected utility

In this section, we focus on individual financial assets under the assumption that their
payoff distributions at a fixed time are known, and without any regard to hedging
opportunities in the context of a financial market model. Such asset distributions may
be viewed as lotteries with monetary outcomes in some interval S C R. Thus, we
take M as a fixed set of Borel probability measures on S. In this setting, we discuss
the paradigm of expected utility in its standard form, where the function u appearing
in the von Neumann—Morgenstern representation has additional properties suggested
by the monetary interpretation. We introduce risk aversion and certainty equivalents,
and illustrate these notions with a number of examples.

Throughout this section, we assume that M is convex and contains all point masses
8y for x € S. We assume also that each u € M has a well-defined expectation

m(u) = /xu(dx) e R.

Remark 2.33. For an asset whose (discounted) random payoff has a known distri-
bution w, the expected value m(u) is often called the fair price of the asset. For
an insurance contract where p is the distribution of payments to be received by the
insured party in dependence of some random damage within a given period, the ex-
pected value m(w) is also called the fair premium. Typically, actual asset prices and
actual insurance premiums will be different from these values. In many situations,
such differences can be explained within the conceptual framework of expected utility,
and in particular in terms of risk aversion. <

Definition 2.34. A preference relation > on M is called monotone if
x >y implies 8y > §y.
The preference relation is called risk averse if for p € M

Sm(uy > 1 unless ;L = Sp(p)-

It is easy to characterize these properties within the class of preference relations
which admit a von Neumann—Morgenstern representation.

Proposition 2.35. Suppose the preference relation > has a von Neumann—Morgen-
stern representation

U(w) = / udp.
Then:
(a) > is monotone if and only if u is strictly increasing.

(b) > is risk averse if and only if u is strictly concave.
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Proof. (a): Monotonicity is equivalent to
u(x) =U() > U(Sy) =u(y) forx > y.
(b): If > is risk-averse, then
Saxt+(1—a)y > @dx + (I —a)dy
holds for all distinct x, y € S and @ € (0, 1). Hence,
u(ax + - a)y) >oulx)+ (1 —a)u(y),

i.e., u is strictly concave. Conversely, if u is strictly concave, then Jensen’s inequality
implies risk aversion:

UGnn) = u( f xu(dX)) > / u(x) p(dx) = U (u)
with equality if and only if ©t = 8, (,). O

Remark 2.36. In view of the monetary interpretation of the state space S, it is natural
to assume that the preference relation > is monotone. The assumption of risk aversion
is more debatable, at least from a descriptive point of view. In fact, there is considerable
empirical evidence that agents tend to switch between risk aversion and risk seeking
behavior, depending on the context. In particular, they may be risk averse after prior
gains, and they may become risk seeking if they see an opportunity to compensate
prior losses. Tversky and Kahneman [194] propose to describe such a behavioral
pattern by a function u of the form

(x — o) for x > c,
u(x) =
—X(c—x)Y forx <c,

where c is a given benchmark level, and their experiments suggest parameter values
A around 2 and y slightly less than 1. Nevertheless, one can insist on risk aversion
from a normative point of view, and this is the approach we will take for the purposes
in this book. <&

Definition 2.37. A function u : § — R is called a utility function if it is strictly
concave, strictly increasing, and continuous on S.

Any increasing concave function # : S — R is necessarily continuous on every
interval (a, b] C S; see Proposition A.4. Hence, the condition of continuity in the
preceding definition is only relevant if S contains its lower boundary point. Note that
any utility function u(x) decreases at least linearly as x | inf S. Therefore, # cannot
be bounded from below unless inf S > —oo.
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From now on, we will consider a fixed preference relation > on M which admits
an expected utility representation, that is, a von Neumann—Morgenstern representation

U(u)=fudu

in terms of a utility function # : § — R. The intermediate value theorem applied
to the strictly increasing continuous function u yields for any u € M a unique real
number ¢(u) for which

u(e(w) = Up) = f udp. 2.9)

It follows that
30(#) ~ M,

i.e., there is indifference between the lottery n and the sure amount of money c(u).

Definition 2.38. The certainty equivalent of the lottery u € M is defined as the
number c(u) of (2.9), and

p(p) :=m(u) —c(pn)

is called the risk premium of .

Risk aversion implies via Jensen’s inequality that c¢(u) < m(u), and

c(p) < m(p) — n# 5m(u)-

In particular, the risk premium p(u) is strictly positive as soon as the distribution ©
carries any risk.

Remark 2.39. The certainty equivalent c(i) can be viewed as an upper bound for
any price of u which would be acceptable to an economic agent with utility function
u. Thus, the fair price m () must be reduced at least by the risk premium p(u) if
one wants the agent to buy the asset distribution p. Alternatively, suppose that the
agent holds an asset with distribution w. Then the risk premium may be viewed as the
amount that the agent would be ready to pay for replacing the asset by its expected
value m(u). <&

Example 2.40 (“St. Petersburg Paradox”). Consider the lottery

o0
=y 278
n=1

which may be viewed as the payoff distribution of the following game. A fair coin
is tossed until a head appears. If the head appears on the n™ toss, the payoff will
be 2"~1 €. Up to the early 18" century, it was commonly accepted that the price
of a lottery should be computed as the fair price, i.e., as the expected value m(u).
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In the present example, the fair price is given by m(u) = oo, but it is hard to find
someone who is ready to pay even 20 €. In view of this “paradox”, posed by Nicholas
Bernoulliin 1713, Gabriel Cramer and Daniel Bernoulli [22] independently introduced
the idea of determining the actual price as a certainty equivalent with respect to a utility
function. For the two utility functions

u(x) =+/x and wus(x) =logx

proposed, respectively, by G. Cramer and by D. Bernoulli, these certainty equivalents
are given by

cl(w)=(2-+v2)7~291 and c(u) =2,

and this is within the range of prices people are usually ready to pay. Note, however,
that for any utility function which is unbounded from above we could modify the
payoff in such a way that the paradox reappears. For example, we could replace
the payoff 2" by u~!(2") for n > 1000, so that Judp = +oo. The choice of a
bounded utility function would remove this difficulty, but would create others; see the
discussion on pp. 69-72. <

Given the preference order > on M, we can now try to determine those distribu-
tions in M which are maximal with respect to >. As a first illustration, consider the
following simple optimization problem. Let X be an integrable random variable on
some probability space (2, ¥, P) with non-degenerate distribution . We assume
that X is bounded from below by some number ¢ in the interior of S. Which is the
best mix

X =10-MX+ X

of the risky payoff X and the certain amount c, that also belongs to the interior of S?
If we evaluate X, by its expected utility E[ u(X},) ] and denote by u, the distribution
of X, under P, then we are looking for a maximum of the function f on [0, 1] defined
by

fQ) =U) = fudm.
Since f is strictly concave, it attains its maximum in a unique point A* € [0, 1].
Proposition 2.41. (a) We have A* = 1 if E[ X ] < c,and A* > 0ifc = c(u).
(b) Ifu is differentiable, then
V=1 <= E[X]=c

and
- E[Xu' (X)]

A=0 .
= CCTE ]
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Proof. (a): Jensen’s inequality yields that
fO) =u(E[X]) =u((l —ME[X]+Ac),

with equality if and only if A = 1. It follows that A* = 1 if the right-hand side is
increasing in A, i.e., if E[ X ] < c.
Strict concavity of u implies

fG) =z E[(1 = Mu(X) + du(e) ]
= (1 = Mu(e(w) + ruo),
with equality if and only if A € {0, 1}. The right-hand side is increasing in A if
¢ > c(u), and this implies A* > 0.

(b): Clearly, we have A* = 0 if and only if the right-hand derivative f| of f
satisfies f (0) < 0; see Appendix A.1 for the definition of f} and f’. Note that the
difference quotients

w(X;) —u(X)  u(X,) — u(X)
A X —X

(e —X)
are P-a.s. bounded by
u(anc)e—X| e L1(P)
and that they converge to
w (X)(c—X)" —u (X)(c—X)~
as A | 0. By Lebesgue’s theorem, this implies
F10) = E[u/ (X)(c — X)T 1 — E[u’_(X)(c — X)7I.

If u is differentiable, or if the countable set { x | u/_ (x) # u’_(x) } has u-measure 0,
then we can conclude

f10) = E[«'(X)(c — X) ],
ie., f1(0) <0 if and only if

E[ Xu'(X)]
c < —————.
Elu'(X)]

In the same way, we obtain
L) =u (E[(X =) 1=\ (E[(X —)" ].
If u is differentiable at ¢, then we can conclude
L) =u'(c)(c— E[X]).
This implies f/ (1) < 0, and hence A* < 1, if and only if E[ X ] > c. O
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Remark 2.42. Note that for a differentiable utility function u we have

() > e = ELLOX ] 2.10)
E[u(X)]
Indeed, concavity of u € C!(R) implies
E[u(X)1+ E[u«'(X)(c = X)] = u(c),
hence E[u/(X)(c — X)] > 0 forc = c(n). &

Example 2.43 (Demand for a risky asset). Let S = S! be a risky asset with price
7 = m!. Given an initial wealth w, an agent with utility function # € C! can invest a
fraction (1 — A)w into the asset and the remaining part Aw into a risk-free bond with
interest rate r. The resulting payoff is

(1—-MNw
Xy=—S—nm)+rw-r
T

The preceding proposition implies that there will be no investment into the risky asset

if and only if
]
E <.
1+r

In other words, the price of the risky asset must be below its expected discounted
payoff in order to attract any risk averse investor, and in that case it will indeed be
optimal for the investor to invest at least some amount. Instead of the simple linear
profiles X, the investor may wish to consider alternative forms of investment. For
example, this may involve derivatives such as max(S, K) = K + (S — K)™ for some
threshold K. In order to discuss such non-linear payoff profiles, we need an extended
formulation of the optimization problem; see Section 3.3 below. <&

Example 2.44 (Demand for insurance). Suppose an agent with utility function u €
C! considers taking at least some partial insurance against a random loss Y, with
0<Y <wand P[Y # E[Y]] > 0, where w is a given initial wealth. If insurance
of AY is available at the insurance premium Az, the resulting final payoff is given by

Xy =w—Y4+A2(Y—-m)=0-Nw-=Y)+ AMw — ).

By Proposition 2.41, full insurance is optimal if and only if 7 < E[Y ]. In reality,
however, the insurance premium 7 will exceed the “fair premium” E[Y ]. In this
case, it will be optimal to insure only a fraction A*Y of the loss, with A* € [0, 1). This
fraction will be strictly positive as long as

ElYW'w-¥)]  Elw-Y'(w-¥)]
S Eww-v) ¥ Elu'(w—7Y)]
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Since the right-hand side is strictly larger than E[Y ] due to (2.10), risk aversion
may create a demand for insurance even if the insurance premium r lies above the
“fair” price E[Y]. As in the previous example, the agent may wish to consider
alternative forms of insurance such as a stop-loss contract whose payoff has the non-
linear structure (Y — K)™ of a call option. <&

Letus take another look at the risk premium p (1) of alottery . For an approximate
calculation, we consider the Taylor expansion of a sufficiently smooth utility function
u(x)atx = c(u) around m := m(u), and we assume that u has finite variance var ().
On the one hand,

u(c(w) ~ um) +u'(m)(c(u) —m) = u(m) —u'(m)p ().

On the other hand,
u(e() = / u(x) u(dx)
= / [m) + ' (m) (x — m) + %u”(m)(x —m)? +r(0)] u(dx)
~ u(m) + %u”(m) var(),

where r(x) denotes the remainder term in the Taylor expansion of u. It follows that

4

> YO = %a(m) var(u). @.11)

p(p) ~ —
Thus, o(m (1)) is the factor by which an economic agent with utility function u weighs
the risk, measured by %Var(u), in order to determine the risk premium he or she is
ready to pay.

Definition 2.45. Suppose that u is a twice continuously differentiable utility function

on S. Then
u//(x)

u'(x)

is called the Arrow—Pratt coefficient of absolute risk aversion of u at level x.

a(x) = —

Example 2.46. The following classes of utility functions u and their corresponding
coefficients of risk aversion are standard examples.

(a) Constant absolute risk aversion (CARA): «(x) equals some constant & > 0.
Since a(x) = —(logu’)’(x), it follows that u(x) = a —b-e~**. Using an affine
transformation, # can be normalized to

ux) =1—e %,
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(b) Hyperbolic absolute risk aversion (HARA): «(x) = (1—y)/xon S = (0, c0)
for some y < 1. Up to affine transformations, we have

u(x) =logx fory =0,
1

u(x) = —x¥ fory #0.
Y

Sometimes, these functions are also called CRRA utility functions, because their
“relative risk aversion" x« (x) is constant. Of course, these utility functions can
be shifted to any interval S = (a, o0o). The “risk-neutral” case y = 1 would
correspond to an affine utility function u. <&

Proposition 2.47. Suppose that u and i are two utility functions on S which are twice
continuously differentiable, and that a and A are the corresponding Arrow—Pratt
coefficients of absolute risk aversion. Then the following conditions are equivalent.

(a) a(x) > ax) forallx € S.
(b) u = F o U for a strictly increasing concave function F.

(c) The respective risk premiums p and p associated with u and U satisfy p(u) >
o) forall p € M.

Proof. (a)=>(b): Since u is strictly increasing, we may define its inverse function,
w. Then F () := u(w(t)) is clearly increasing, twice differentiable, and satisfies
u = F oi. For showing that F is concave and strictly increasing we calculate the first
two derivatives of w:

/ 1 14 ~ 1
==, W =aw): =
u'(w) "(w)?
Now we can calculate the first two derivatives of F':
u'(w)

>0

F =u(w) v ==
u'(w)
and
F = u//(w)(w/)2 + u/(w)w//
_ W) g 2.12
= oyt EW — @] (2.12)
<0.
This proves that F' is concave and strictly increasing.
(b) =(c): Jensen’s inequality implies that the respective certainty equivalents ¢ (i)
and ¢(u) satisfy

u(c(u)):/udu:/Foﬁdu (2.13)

< F(/ﬁdu> = F(u(¢(w)) = u(c(p)).
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Hence, p(u) = m(u) — c(u) > m(u) —c(u) = p(w).

(c) =(a): If condition (a) is false, there exists an open interval O C S such that
a(x) > a(x) forall x € O. Let 0 := #(0), and denote again by w the inverse
of ii. Then the function F(t) = u(w(t)) will be strictly convex in the open interval
9] by (2.12). Thus, if p is a measure with support in O, the inequality in (2.13) is
reversed and is even strict — unless u is concentrated at a single point. It follows that
o(uw) < p(w), which contradicts condition (c). O

In view of the underlying axioms, the paradigm of expected utility has a certain
plausibility on a normative level, i.e., as a guideline of rational behavior in the face
of risk. But this guideline should be applied with care: If pushed too far, it may lead
to unplausible conclusions. In the remaining part of this section we discuss some
of these issues. From now on, we assume that S is unbounded from above, so that
w+x € Sforany x € S and w > 0. So far, we have implicitly assumed that the
preference relation > on lotteries reflects the views of an economic agent in a given set
of conditions, including a fixed level w > 0 of the agent’s initial wealth. In particular,
the utility function may vary as the level of wealth changes, and so it should really
be indexed by w. Usually one assumes that u,, is obtained by simply shifting a fixed
utility function u to the level w, i.e., uy, (x) := u(w + x). Thus, a lottery u is declined
at a given level of wealth w if and only if

/u(w + x) u(dx) < u(w).

Let us now return to the situation of Proposition 2.41 when p is the distribution of an
integrable random variable X on (2, ¥, P), which is bounded from below by some
number « in the interior of S. We view X as the net payoff of some financial bet, and
we assume that the bet is favorable in the sense that

m(u)=E[X]>0.

Remark 2.48. Even though the favorable bet X might be declined at a given level
w due to risk aversion, it follows from Proposition 2.41 that it would be optimal to
accept the bet at some smaller scale, i.e., there is some y* > 0 such that

Elu(w+y*X)] > u(w).

On the other hand, it follows from Lemma 2.50 below that the given bet X becomes
acceptable at a sufficiently high level of wealth whenever the utility function is un-
bounded from above. <

Sometimes it is assumed that some favorable bet is declined at every level of
wealth. The assumption that such a bet exists is not as innocent as it may look. In fact
it has rather drastic consequences. In particular, we are going to see that it rules out
all utility functions in Example 2.46 except for the class of exponential utilities.
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Example 2.49. For any exponential utility function u(x) = 1 — e~“* with constant
risk aversion o > 0, the induced preference order on lotteries does not at all depend
on the initial wealth w. To see this, note that

/u(w—i—x) uldx) < /u(w + x)v(dx)

is equivalent to

/e‘” u(dx) > /e“x v(dx). <&

Let us now show that the rejection of some favorable bet p at every wealth level
w leads to a not quite plausible conclusion: At high levels of wealth, the agent would
reject a bet v with huge potential gain even though the potential loss is just a negligible
fraction of the initial wealth.

Lemma 2.50. [fthe favorable bet 1 is rejected at any level of wealth, then the utility
function u is bounded from above, and there exists A > 0 such that the bet

1
Vvi= 5(87/1 + 8c0)
is rejected at any level of wealth.

Proof. We have assumed that X is bounded from below, i.e., ; is concentrated on
[a, c0) for some a < 0, where a is in the interior of S. Moreover, we can choose
b > 0 such that

7(B) := (B Nla. bl) + 85(B) - u((b. o))

is still favorable. Since u is increasing, we have

/u(w +x) p(dx) < /u(w +x) u(dx) < u(w)

for any w > 0, i.e., also the lottery /I is rejected at any level of wealth. It follows that
/ [u(w +x) —u(w) | fi(dx) </ [w(w) —u(w +x) | Z(dx).
[0,b] [a,0)

Let us assume for simplicity that u is differentiable; the general case requires only
minor modifications. Then the previous inequality implies

W (w+bymT (@) <u'(w+aym™ (),
where

m* (%) 1=/ x p(dx) >/ (=x) a(dx) =:m™ (),
[0.b]

[a,0]
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due to the fact that t is favorable. Thus,

Ww+b) me(@) _
Ww=la) ~ mTG)

y <1

for any w, hence
' (x +n(lal + b)) < y"u'(x)
for any x in the interior of S. This exponential decay of the derivative implies
u(o0) = limyyou(x) < 00. More precisely, if A := n(la| + b) for some n,
then
S x+(k+1)A

(o) ~ut) =y | W' () dy

k=0 v x+kA

= Z/ u'(z+ (k+1)A)dz
k=0 x—A

< ZV(HD" /x u'(z)dz
k=0 x—A

__r Cur —

=1 i (u(x) u(x A)).

Take n such that y" < 1/2. Then we obtain

u(oo) —u(x) <ulx) —ulx —A),
i.e.,
1
E(u(oo) +ulx — A)) < u(x)
for all x suchthat x — A € S. O

Example 2.51. For an exponential utility function u(x) = 1 —e %", the bet v defined
in the preceding lemma is rejected at any level of wealth as soon as A > é log2. <

Suppose now that the lottery u € M is played not only once but n times in a row.
For instance, one can think of an insurance company selling identical policies to a large
number of individual customers. More precisely, let (€2, ¥, P) be a probability space
supporting a sequence X1, X», ... of independent random variables with common
distribution 1. The value of X; will be interpreted as the outcome of the i drawing
of the lottery p. The accumulated payoff of n successive independent repetitions of
the financial bet X is given by

n
Zy = in,
i=l1

and we assume that this accumulated payoff takes values in S; this is the case if, e.g.,
S = [0, 00).
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Remark 2.52. It may happen that an agent refuses the single favorable bet X at
any level of wealth but feels tempted by a sufficiently large series Xy, ..., X, of
independent repetitions of the same bet. It is true that, by the weak law of large
numbers, the probability

P[Z, <0] =P[%zn:x,~ <m(,u)—8:|
i=1

(for ¢ := m(u)) of incurring a cumulative loss at the end of the series converges to 0
as n 1 oo. Nevertheless, the decision of accepting n repetitions is not consistent with
the decision to reject the single bet at any wealth level w. In fact, for Wy := w + Z;
we obtain

E[u(Wp)]= E[ Elu(W,—1+ X») | X1, ..., Xp11]
- E[ [ ww +x>u<dx)}
< E[u(Wy-D] < <u(w),
i.e., the bet described by Z;, should be rejected as well. <&

Let us denote by w,, the distribution of the accumulated payoff Z,. The lottery .,
has the mean m (u, ) = n-m(w), the certainty equivalent c(u,,), and the associated risk
premium p(u,) = n-m(u) — c(u,). We are interested in the asymptotic behavior of
these quantities for large n. Kolmogorov’s law of large numbers states that the average
outcome %Zn converges P-a.s. to the constant m(u). Therefore, one might guess that
a similar averaging effect occurs on the level of the relative certainty equivalents

. c(in)
Cp =
n
and of the relative risk premiums
P (tn)
Pn = =m(u) — cp.

Does ¢, converge to m(u), and is there a successive reduction of the relative risk
premiums p, as n grows to infinity? Applying our heuristic (2.11) to the present
situation yields

1 1
pu N o a(m(pn)) var(i,) = 5 a(n - m(w)) var(u).
Thus, one should expect that p,, tends to zero only if the Arrow—Pratt coefficient o (x)
becomes arbitrarily small as x becomes large, i.e., if the utility function is decreasingly
risk averse. This guess is confirmed by the following two examples.
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Example 2.53. Suppose that u(x) = 1 — e~ ** is a CARA utility function with con-
stant risk aversion o > 0 and assume that w is such that f e * nu(dx) < oo. Then,
with the notation introduced above,

n

/e_“x tn(dx) = E[ l_[e_o’x" ] = </ e ,u(a’x))n.

i=1

Hence, the certainty equivalent of w,, is given by

c(fun) = —g IOg/ e ™ pudx) =n-c().

It follows that ¢, and pj, are independent of n. In particular, the relative risk premiums
are not reduced if the lottery is drawn more than once. <&

The second example displays a different behavior. It shows that for HARA utility
functions the relative risk premiums will indeed decrease to 0. In particular, the lottery
U, will become attractive for large enough n as soon as the price of the single lottery
W is less than m ().

Example 2.54. Suppose that x is a non-degenerate lottery concentrated on (0, 00),
and that u is a HARA utility function of index y € [0, 1). If y > Othenu(x) = %xV

and c¢(u,) = E[(Z,)”1'7, hence

vy
Ccp = ¢(htn) = E|: <lZn> } <m(u).

n n

If y = 0 then u(x) = log x, and the relative certainty equivalent satisfies

1
logc, = logc(u,) —logn = E[log (—Zn> :|
n

e =£]u(12,)]

for any y € [0, 1). By symmetry,

Thus, we have

1
——Zpy1 = E[ Xy | Zy41] fork=1,...,n+1;
n+1

see part IT of §20 in [19]. It follows that

1 1
—Z =F| -Z
n+ 1 n+1 |:l’l n

Znit ] (2.14)
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Since u is strictly concave and since p is non-degenerate, we get

u(ens1) = E[M(E[ 22| 2 m
el e[u(12)] 2]

= u(cn)7

i.e., the relative certainty equivalents are strictly increasing and the relative risk pre-
miums p, are strictly decreasing. By Kolmogorov’s law of large numbers,

1
—Z, — m(u) P-as. (2.15)
n

Thus, by Fatou’s lemma (we assume for simplicity that p is concentrated on [g, c0)
for some ¢ > 0if y = 0),

liminf u(c,) > E[liminfu(lzn>} = u(m(u)),

ntoo ntoo n
hence

lim ¢, =m(u) and lim p, =0.
ntoo ntoo

Suppose that the price of u is given by € (c(p,), m (M))- Atinitial wealth w = 0,
the agent would decline a single bet. But, in contrast to the situation in Remark 2.52, a
series of n repetitions of the same bet would now become attractive for large enough n,
since ¢(u,) = nc, > nw for

n>nog:=min{k eN|c, >m} < o0. &

Remark 2.55. The identity (2.14) can also be written as

1 1
—Z =FE|-Z
n+1 n+1 |:I’l n

An+1] = E[ X1 | Any1]

where A, +1 = 0(Zu+1, Zu+2, . ..). This means that the stochastic process rllZn,
n=1,2...,1s areverse martingale. In particular, Kolmogorov’s law of large num-
bers (2.15) can be regarded as a special case of the convergence theorem for reverse
martingales; see part II of §20 in [19]. <&

2.4 Uniform preferences

So far, we have considered preference relations on distributions defined in terms of
a fixed utility function u. In this section, we focus on the question whether one
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distribution is preferred over another, regardless of the choice of a particular utility
function.

For simplicity, we take S = R as the set of possible payoffs. Let M be the set of
all u € Mj(R) with well-defined and finite expectation

m(u) = /xu(dX).

Recall from Definition 2.37 that a utility function on R is a strictly concave and strictly
increasing function u : R — R. Since each concave function u is dominated by an
affine function, the existence of m () implies the existence of the integral f udu as
an extended real number in [—00, 00).

Definition 2.56. Let v and u be lotteries in M. We say that the lottery w is uniformly
preferred over v and we write
M %m' v

if
/ udu > / udv for all utility functions u.

Thus, i = v holds if and only if every risk-averse agent will prefer u over v,
regardless of which utility function the agent is actually using. In this sense, u = v
expresses a uniform preference for p over v. Sometimes, = is also called second
order stochastic dominance; the notion of first order stochastic dominance will be
introduced in Definition 2.69.

Remark 2.57. The binary relation = is a partial order on M, i.e., =  satisfies the
following three properties:

* Reflexivity: = forall u € M.

s Transitivity: w = vand v = Aimply u = A

uni uni

o Antisymmetry: u = vand v = @ imply p = v.

ni

The first two properties are obvious, the third is derived in Remark 2.59. Moreover,
= . 1s monotone and risk-averse in the sense that

ini

8y =, 6xfory>x, and &y =, uforall u € M.

Note, however, that = | is nor a weak preference relation in the sense of Definition 2.2,
since it is not complete, see Remark 2.3. <&

In the following theorem, we will give a number of equivalent formulations of the
statement p >=  v. One of them needs the notion of a stochastic kernel on R. This is
a mapping

0:R— M;(R)

such that x — Q(x, A) is measurable for each fixed Borel set A C R. See Ap-
pendix A.3 for the notion of a quantile function, which will be used in condition (e).
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Theorem 2.58. For any pair (1, v € M the following conditions are equivalent.

(@ pu=, v

(b) f fdu > / f dv for all increasing concave functions f.
(c) Forallc € R
[0 uan = [ =07 v,

(d) If Fy, and F, denote the distribution functions of u and v, then

C C
f Fu(x)dx < / F,(x)dx forallc e R.

—00 —o0

(e) If g, and q, are quantile functions for p and v, then

t t
/ qu(s)dSZ/ gv(s)ds for0 <t <1.
0 0

(f) There exists a probability space (2, ¥, P) with random variables X, and X,
having respective distributions p and v such that

E[X,|X,]1<X, P-as.

(g) There exists a stochastic kernel Q(x,dy) on R such that Q(x,-) € M and
m(Q(x,-)) < x for all x and such that v = uQ, where uQ denotes the
measure

nQ(A) = / O(x, A) u(dx) for Borel sets A C R.
Below we will show the following implications between the conditions of the
theorem:
() &= () <= (c) = (b) <= () &= (g) = @). (2.16)

The difficult part is the proof that (b) implies (f). It will be deferred to Section 2.6,
where we will prove a multidimensional variant of this result; cf. Theorem 2.93.

Proof of (2.16). (e)<(d): This follows from Lemma A.22.
(d)<(c): By Fubini’s theorem,

/ F,(y)dy = / ‘/(‘ ]M(dz) iy
oo e,
N /,/I{ZSYSC} dy n(dz)

= /(C — 2" udz).
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(c)<>(b): Condition (b) implies (c) because f(x) := —(c — x)T is concave and
increasing. In order to prove the converse assertion, we take an increasing concave
function f andleth := — f. Then h is convex and decreasing, and its increasing right-
hand derivative 2" := h/, canbe regarded as a “distribution function” of a non-negative
Radon measure y on R,

K (b) = h'(a) + y((a,b]) fora < b;

see Appendix A.1. Asin (1.11):
b =) =) 6 -x)+ [ =0Ty forx <b
(—00,0]

Using #’(b) < 0, Fubini’s theorem, and condition (c), we obtain that

/ hdu=h(b)—h’(b)/(b—x)+u(dx)+ / /(z—x>+u(dx>y(dz)

(—o00,b] (—o00,b]

< h(b) — ' (b) /(b -0 vdx) + / /(Z — )" v(dx) y(d2)

(—00,b]
= / hdv.
(—00,b]

Taking b 1 oo yields [ fdu > [ fdv.

(a)<>(b): That (b) implies (a) is obvious. For the proof of the converse implication,
choose any utility function ug for which both f updu and f ugdv are finite. For
instance, one can take

) x—e241 ifx <0,
uplx) .=
0 Jitli—1 ifx>0.

Then, for f concave and increasing and for @ € [0, 1),

g (x) = af(x) + (I — a)uo(x)

is a utility function. Hence,

/fdu:lim/uaduZlim/uadv=/fdv.
atl atl

(f) =(g): By considering the joint distribution of X, and X,,, we may reduce our
setting to the situation in which @ = R? and where X » and X, are the respective
projections on the first and second coordinates, i.e., for w = (x,y) € Q = R? we
have X, (w) = x and X, (w) = y. Let Q(x, dy) be a regular conditional distribution
of X, given X, i.e., a stochastic kernel on R such that

PX, e Al X, )(0) = QX (@), A)
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for all Borel sets A € R and for P-a.e. w € Q2 (see, e.g., Theorem 44.3 of [19] for an
existence proof). Clearly, v = p Q. Condition (f) implies that

X, (@) > E[X, | X, () = /y 0(X,(w),dy) for P-ae. w € Q.

Hence, Q satisfies
/y O(x,dy) <x forpu-ae. x.

By modifying Q on a w-null set (e.g., by putting Q(x, -) := §, there), this inequality
can be achieved for all x € R.

(g) =(a): Let u be a utility function. Jensen’s inequality applied to the measure
0O (x, dy) implies

/u(y) Q(x,dy) <u(m(Q(x,"))) < u(x).

/udv=//u(y)Q(x,dy)u(dX)S/udu,

completing the proof of the set of implications (2.16). O

Hence,

Remark 2.59. Letus note some consequences of the preceding theorem. First, taking
in condition (b) the increasing concave function f(x) = x yields

m(p) = m) if p s, v,

i.e., the expectation m(-) is increasing with respect to 3= ..
Next, suppose that © and v are such that

/(c — )" puldx) = /(c —x)Tv(dx) forallc.

Then we have both o *= v and v 3= = u, and condition (d) of the theorem implies that

uni

the respective distribution functions satisfy

c c
/ F,(x)dx = / F,(x)dx forallc.
—o0 —00

Differentiating with respect to ¢ gives the identity 4 = v, i.e., a measure ;. € M is
uniquely determined by the integrals [(c — x)™ u(dx) for all ¢ € R. In particular,
%=, 1s antisymmetric. <&

The following proposition characterizes the partial order = = considered on the
set of all normal distributions N (m, 0'2). Recall that the standard normal distribution
N (0, 1) is defined by its density function

42
e 2 xeR.

1
p(x) = N
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The corresponding distribution function is usually denoted
X
P(x) = / p(»dy, xeR.
—00

More generally, the normal distribution N (m, 02) with mean m € R and variance
o2 > 01is given by the density function

1 (x —m)?

V2mo? 202

Proposition 2.60. For two normal distributions, we have N (m, ) = N(@m, 52) if
and only if both m > m and o> < &2 hold.

), x € R.

Proof. In order to prove necessity, note that N (m, 02) =. N (m, 52) implies that
e—am-‘raznz/Z _ /e—ozx N(m,az)(dx) < /e—ax N(%’al)(dx) _ e—aﬁ-‘raz?fz/Z'

Hence, for o > 0,
N )
m——o0”->m-— —oo",
2 2
which gives m > m by letting o |, 0 and 0% < &2 for a 1 o0.
We show sufficiency first in the case m = m = 0. Note that the distribution
function of N (0, 02) is given by ®(x /o). Since ¢’ (x) = —x¢@(x),

X\ —x c
(p(—) . —zdx = go(—) > 0.

o/ o o
Note that interchanging differentiation and integration is justified by dominated con-
vergence. Thus, we have shown that o +— ff oo P(x/0) dx is strictly increasing for
all ¢, and N (0, o2) = N, 52) follows from part (d) of Theorem 2.58.

Now we turn to the case of arbitrary expectations m and m. Let u be a utility
function. Then

c

wl oGa=

oo oo

/udN(m,az) = fu(m +x) N0, 0%)(dx) > /u(n“i+x)1v(o,az)(dx),

because m > m. Since x — u(m + x) is again a utility function, we obtain from the
preceding step of the proof that

/u(ﬁi—l—x)N(O, o) (dx) > /u(n~1+x)N(0, 52)(dx) = /udN(n“i,82),

~N(m, 52) follows. 0O

ni

and N (m, o?) =
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Remark 2.61. Let us indicate an alternative proof for the sufficiency part of Proposi-
tion 2.60 that uses condition (g) instead of (d) in Theorem 2.58. To this end, we define
a stochastic kernel by Q(x, ) := N(x + m — m, &%), where 6% := 2 — 02 > 0.
Then m(Q(x, ) =x +m —m < x and

N@m,o0%)Q =N@m,oc)« N —m,6%) = Nim+m —m,c>+62) = N(m, 52,
where * denotes convolution. Hence, N (m, 0'2) =. N (m, 52) follows. <&

The following corollary investigates the relation 3= . v for lotteries with the same
expectation. A multidimensional version of this result will be given in Corollary 2.94
below.

Corollary 2.62. For all 1, v € M the following conditions are equivalent.

(@ =, vandm(u) = m(v).

(b) / fdu > / f dv for all (not necessarily increasing) concave functions f.

(©) m(u) = m(v) and/(x — o) udx) < /(x —o)" v(dx) for all c € R.

(d) There exists a probability space (2, ¥, P) with random variables X, and X,
having respective distributions u and v such that

E[X,|X,]1=X, P-as.

(e) There exists a “mean-preserving spread” Q, i.e., a stochastic kernel on R such
that m(Q(x, -)) = x forall x € S, such thatv = uQ.

Proof. (a)=(e): Condition (g) of Theorem 2.58 yields a stochastic kernel Q such
that v = uQ and m(Q(x, -)) < x. Due to the assumption m(u) = m(v), Q must
satisfy m(Q(x, -)) = x at least for u-a.e. x. By modifying Q on the p-null set where
m(Q(x, -)) < x (e.g. by putting Q(x, -) := §, there), we obtain a kernel as needed
for condition (e).

(e) =(b): Since

/f(y) Q(x,dy) < f(m(Q(x,)) = f(x)

by Jensen’s inequality, we obtain

/de=//f(y)Q(x,dy)M(dX)S/fdu-

(b) =(c): Just take the concave functions f(x) = —(x —¢)™, and f(x) = x.



2.4 Uniform preferences 81
(c) =(a): Note that
/(x — o)t u(dx) = / x u(dx) —c—l—c,u((—oo,c]).
(c,00)

The existence of m(u) implies that cu((—oo, c]) — 0 as ¢ | —oo. Hence, we
deduce from the second condition in (c) that m(©) < m(v), i.e., the two expectations
are in fact identical. Now we can apply the following “put-call parity” (compare also
(1.10))

/(C — )" pu(dx) = ¢ —m(p) + /(x — o) p(dx)

to see that our condition (c) implies the third condition of Theorem 2.58 and, thus,
HoR V-

(d)<(a): Condition (d) implies both m () = m(v) and condition (f) of Theo-
rem 2.58, and this implies our condition (a). Conversely, assume that (a) holds. Then
Theorem 2.58 provides random variables X, and X, having the respective distribu-
tions p and v such that E[ X, | X, ] < X,,. Since X, and X, have the same mean,
this inequality must in fact be an almost-sure equality, and we obtain condition (d). [J

Let us denote by

var(p) = / (x = m(w) p(dx) = f X% p(dx) — m(u)* € [0, 0]

the variance of a lottery u € M.

Remark 2.63. If u and v are two lotteries in M such that m () = m(v) and u = v,

then var(u) < var(v). This follows immediately by taking the concave function
fx):= —x2 in condition (b) of Corollary 2.62. <&

In the financial context, comparisons of portfolios with known payoff distributions
often use a mean-variance approach based on the relation

w=v <= m(u)>m()and var(u) < var(v).

For normal distributions ¢ and v, we have seen that the relation © = v is equivalent
to u = v. Beyond this special case, the equivalence typically fails as illustrated by
the following example and by Proposition 2.67 below.

Example 2.64. Let x be the uniform distribution on the interval [—1, 1], so that
m(pu) = 0and var(u) = 1/3. For v we take v = p§_1,2 + (1 — p)d>. With the choice
of p =4/5 we obtain m(v) = 0 and 1 = var(v) > var(u). However,

11_6=/(_%—x)+u(dx>>/(—%—x)+v(dx>=o,

so i = v does not hold. <
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Remark 2.65. Let u and v be two lotteries in M. We will write 1 3= v if
/ fdu > / fdv forall concave functions f on R. (2.17)

Note that u >=_ v implies that m () = m(v), because both f(x) = x and f(x) = —x
are concave. Corollary 2.62 shows that = coincides with our uniform partial order
=, if we compare two measures which have the same mean. The partial order =
is sometimes called concave stochastic order. It was proposed in [170] and [171] to
express the view that p is less risky than v. The inverse relation p >~ v defined by

/fdu > / fdv forall convex functions f on R (2.18)

is sometimes called balayage order or convex stochastic order. <
The following class of asset distributions is widely used in Finance.

Definition 2.66. A real-valued random variable Y on some probability space (2, ¥, P)
is called log-normally distributed with parameters « € Rand o > 0 if it can be written
as

Y =exp(a + 0 X), (2.19)

where X has a standard normal law N (0, 1).

Clearly, any log-normally distributed random variable Y on (2, ¥, P) takes
P-a.s. strictly positive values. Recall from above the standard notations ¢ and &
for the density and the distribution function of the standard normal law N (0, 1). We
obtain from (2.19) the distribution function

1 —
P[Y§y]=®<M>, 0<y<oo,
o
and the density
. 1 logy —« I 220

of the log-normally distributed random variable Y. Its p™ moment is given by the
formula

1
E[YP]=exp (pa + 3 p202>.
In particular, the law p of Y has the expectation
1,
m(u) = E[Y] =exp(oz—|—§o )

and the variance
var(u) = exp (2o + 02)(€XP(02) —1).
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Proposition 2.67. Let v and [i be two log-normal distributions with parameters
(o, 0) and (a,0), respectively. Then w = [t holds if and only ifcr2 < 52 and
a+30? >a + 152

Proof. First suppose that 02 < &2 and m(u) > m(iX). We define a kernel Q(x, -)
as the law of x - exp(A + BZ) where Z is a standard normal random variable. Now
suppose that p is represented by (2.19) with X independent of Z, and let f denote a
bounded measurable function. It follows that

/ fd(RQ) = E[f (e . HHP7)] = E[ (XU,

where
oX+BZ

Vo?+ p?
is also N (0, 1)-distributed. Thus, nQ is a log-normal distribution with parameters

(@ + A, /o2 + B2). Bytaking B := +/ 32 — o2 and A := & — o, we can represent [l
as 1 = uQ. With this parameter choice,

~ ~ 1 2 B
k:a—a:logm(,u)—logm(u)—E(a -0 )5—7.
We have thus m(Q(x, -)) < x forall x, and so u = i follows from condition (g) of

Theorem 2.58.

As to the converse implication, the inequality m (i) > m(2) is already clear. To
prove 0> < 52, letv := pwolog™! and ¥ := T o log™! so that v = N(a, c?)
and V = N(@,52). For ¢ > 0 we define the concave increasing function f,(x) :=
log(e +x). If u is a concave increasing function on R, the function u o f; is a concave
and increasing function on [0, co), which can be extended to a concave increasing

function v, on the full real line. Therefore,

=1i >1i = v. 2.21
/udv glilgfvedﬂ_glil(’)l/l)gdﬂ /udv ( )

Consequently, v %= 7 and Proposition 2.60 yields 0% < 52. O

Remark 2.68. The inequality (2.21) shows that if v = N(a, 62), 7 = N (&, &%) and
w and zt denote the images of v and ¥ under the map x — e*, then u = i implies
v = V. However, the converse implication “v = vV = pu = " fails, as can be
seen by increasing ¢ until m (X)) > m(uw). 2

Because of its relation to the analysis of the Black—Scholes formula for option
prices, we will now sketch a second proof of Proposition 2.67.
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Second proof of Proposition 2.67. Let

o2
Yino :=m-exp (O‘X — 7)

for a standard normally distributed random variable X. Then

log £ + 10-2
E[ (Vo —0)t | =md(dy) —c @) withds = ——< 27
o

see Example 5.57 in Chapter 5. Calculating the derivative of this expectation with
respect to o > 0, one finds that

d d
gE[(Ym,g —ot]= E(m D(dy) — cP(d-)) = xp(dy) > 0,

see (5.35) in Chapter 5. The law p,, - of Yy, » satisfies m(iy, o) = m forall o > 0.
Condition (c) of Corollary 2.62 implies that (i,  is decreasing in o > 0 with respect
to ’= . and hence also with respect to ’=_, i.e., o =, Mm,5 if and only if o < o.

For two different expectations m and 71, simply use the monotonicity of the function
u(y) := (y — ¢)™ to conclude

/ud,um,o = E[u(m -exp(o X —02/2))]
> E[u(i - exp(a X — 0?/2)) ]

Z

—

udpps,
provided thatm > m and0 < 0 < 3. O

The partial order >=  was defined in terms of integrals against increasing concave
functions. By taking the larger class of all concave functions as integrands, we arrived
at the partial order =  defined by (2.17) and characterized in Corollary 2.62. In
the remainder of this section, we will briefly discuss the partial order of stochastic
dominance, which is induced by increasing instead of concave functions:

Definition 2.69. Let i and v be two arbitrary probability measures on R. We say that
w stochastically dominates v and we write p >= v if

/ fdu > / fdv for all bounded increasing functions f € C(R).

Stochastic dominance is sometimes also called first order stochastic dominance.
It is indeed a partial order on M (R): Reflexivity and transitivity are obvious, and
antisymmetry follows, e.g., from the equivalence (a)<-(b) below. As will be shown by
the following theorem, the relation p = v means that the distribution  is “higher”
than the distribution v. In our one-dimensional situation, we can provide a complete
proof of this fact by using elementary properties of distribution functions. The general
version of this result, given in Theorem 2.95, will require different techniques.
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Theorem 2.70. For i, v € M (R) the following conditions are equivalent.

(a) M >/_mon v.

(b) The distribution functions of u and v satisfy F, (x) < F,(x) for all x.

(¢) Any pair of quantile functions for u and v satisfies q,(t) > q,(t) for a.e.
te0,1).

(d) There exists a probability space (2, ¥, P) with random variables X, and X,
with distributions p and v such that X,, > X, P-a.s.

(e) There exists a stochastic kernel Q(x,dy) on R such that Q(x, (—oo, x]) =1
and such that v = u Q.

In particular, v = v implies |1 = v.

ini

Proof. (a) =(b): Note that F,(x) = u((—oo, x]) can be written as

Fux)=1- /I(x,oo) () u(dy).

It is easy to construct a sequence of increasing continuous functions with values in
[0, 1] which increase to I (x.00) for each x. Hence,

/ Lt 00 () 1(dy) = / Ly ooy M) =1 = F,(x).

(b)<(c): This follows from the definition of a quantile function and from Lemma
A.17.

(c)=(d): Let (2, ¥, P) be a probability space supporting a random variable U
with a uniform distribution on (0, 1). Then X, := ¢, (U) and X, := ¢, (U) satisfy
X, = X, P-almost surely. Moreover, it follows from Lemma A.19 that they have the
distributions p and v.

(d) =(e): This is proved as in Theorem 2.58 by using regular conditional distri-
butions.

(e) =(a): Condition (e) implies that x > y for Q(x, -)-a.e. y. Hence, if f is
bounded and increasing, then

/f(y) Q(x,dy) S/f(X) Q(x,dy) = f(x).

/de=//f(y)Q(x,dy)u(dx) §/fdu-

Finally, due to the equivalence (a) < (b) above and the equivalence (a) < (d) in
Theorem 2.58, u »= v implies u = v. [

Therefore,

non
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Remark 2.71. It is clear from conditions (d) or (e) of Theorem 2.70 that the set of
bounded, increasing, and continuous functions in Definition 2.69 can be replaced by
the set of all increasing functions for which the two integrals make sense. Thus,
w =, v forpu,v e Mimplies u = v, and in particular m(u) > m(v). Moreover,
condition (d) shows that u = v together with m(u) = m(v) implies u = v. <&

2.5 Robust preferences on asset profiles

In this section, we discuss the structure of preferences for assets on a more funda-
mental level. Instead of assuming that the distributions of assets are known and that
preferences are defined on a set of probability measures, we will take as our basic
objects the assets themselves. An asset will be viewed as a function which associates
real-valued payoffs to possible scenarios. More precisely, X, will denote a set of
bounded measurable functions X on some measurable set (2, ). We emphasize that
no a priori probability measure is given on (2, ). In other words, we are facing
uncertainty instead of risk.

We assume that X is endowed with a preference relation >. In view of the financial
interpretation, it is natural to assume that > is monotone in the sense that

Y>X ifY(w) > X(w)forallw € Q.

Under a suitable condition of continuity, we could apply the results of Section 2.1 to
obtain a numerical representation of >. L. J. Savage introduced a set of additional
axioms which guarantee there is a numerical representation of the special form

UX) = Eglu(X)] = /u(X(a))) O(dw) forall X € X (2.22)

where Q is a probability measure on (€2, #) and u is a function on R. The measure
Q specifies the subjective view of the probabilities of events which is implicit in the
preference relation >. Note that the function # : R — R is determined by restricting
U to the class of constant functions on (€2, ¥). Clearly, the monotonicity of > is
equivalent to the condition that # is an increasing function.

Definition 2.72. A numerical representation of the form (2.22) will be called a Savage
representation of the preference relation >.

Remark 2.73. Let j1p x denote the distribution of X under the subjective measure
Q. Clearly, the preference order > on X given by (2.22) induces a preference order
on

Mo = {ngx | X €X)

with von Neumann—Morgenstern representation

Uoluo.x) 1= UX) = Eolut)1 = [ udio.x.
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i.e.,
Up(u) = /u(x) u(dx) forp e Mop.

On this level, Section 2.3 specifies the conditions on Uy which guarantee that u is a
(strictly concave and strictly increasing) utility function. <

Remark 2.74. Even if an economic agent with preferences > would accept the view
that scenarios w € 2 are generated in accordance to a given objective probability
measure P on (€2, ), the preference order > on X may be such that the subjective
measure Q appearing in the Savage representation (2.22) is different from the objective
measure P. Suppose, forexample, that P is Lebesgue measure restrictedto 2 = [0, 1],
and that X is the space of bounded right-continuous increasing functions on [0, 1].
Let wp, x denote the distribution of X under P. By Lemma A.19, every probability
measure on R with bounded support is of the form pp x for some X € X, i.e.,

Mp(R) ={upx | X e X}

Suppose the agent agrees that, objectively, X € X can be identified with the lottery
1p.x, so that the preference relation on X could be viewed as a preference relation
on Mj(R) with numerical representation

U*(up,x) = U(X).

This does not imply that U* satisfies the assumptions of Section 2.2; in particular, the
preference relation on Mj(IR) may violate the independence axiom. In fact, the agent
might take a pessimistic view and distort P by putting more emphasis on unfavorable
scenarios. For example, the agent could replace P by the subjective measure

0 :=ady+(1—a)P

for some o € (0, 1) and specify preferences by a Savage representation in terms of u
and Q. In this case,

U*(up,x) = Eglu(X)] = /udMQ,X
= au(X(0) + (1 —a)Ep[u(X)]
= au(X(0)) + (1 —a)/udup,x.
Note that X (0) = €(up,x) for

£(p) := inf(supp p) = sup { aelR| M((—oo, a)) =0 },

where supp w is the support of . Hence, replacing P by Q corresponds to a non-linear
distortion on the level of lotteries: u = up x is distorted to the lottery u* = o x
given by

w=adpp + (1 —a)u,
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and the preference relation on lotteries has the numerical representation

U*(w) = /M(X) n*(dx) for p € Mp(R).

Let us now show that such a subjective distortion of objective lotteries provides a
possible explanation of the Allais paradox. Consider the lotteries p; and v;,i = 1, 2,
described in Example 2.32. Clearly,

pi=wp1 and vi =ady+ (I — )i,
while
wy=ady+ (1 —a)pur and v =ad + (I — o).

For the particular choice u(x) = x we have U*(v2) > U*(u2), and for ¢ > 9/2409
we obtain U*(w1) > U*(vy), in accordance with the observed preferences v, > up
and w1 > vy described in Example 2.32.

For a systematic discussion of preferences described in terms of a subjective distor-
tion of lotteries we refer to [131]. In Section 4.6, we will discuss the role of distortions
in the context of risk measures, and in particular the connection to Yaari’s “dual theory
of choice under risk” [198]. <&

Even in its general form (2.22), however, the paradigm of expected utility has a
limited scope as illustrated by the following example.

Example 2.75 (Ellsberg paradox). You are faced with a choice between two urns,
each containing 100 balls which are either red or black. In the first urn, the proportion
p of red balls is know; assume, e.g., p = 0.49. In the second urn, the proportion p is
unknown. Suppose that you get 1000 € if you draw a red ball and 0 € otherwise. In this
case, most people would choose the first urn. Naturally, they make the same choice if
you get 1000 € for drawing a black ball and 0 € for a red one. But this behavior is not
compatible with the paradigm of expected utility: For any subjective probability p of
drawing a red ball in the second urn, the first choice would imply p > p, the second
would yield 1 — p > 1 — p, and this is a contradiction. <&

For this reason, we are going to make one further conceptual step beyond the
Savage representation before we start to prove a representation theorem for preferences
on X. Instead of a single measure Q, let us consider a whole class @ of measures
on (€2, ). Our aim is to characterize those preference relations on X, which admit a
representation of the form

U(X) = Qir;lzg Eolu(X)]. (2.23)

This may be viewed as a robust version of the paradigm of expected utility: The
agent has in mind a whole collection of possible probabilistic views of the given set
of scenarios and takes a worst-case approach in evaluating the expected utility of a
given payoff.
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It will be convenient to extend the discussion to the following framework where
payoffs can be lotteries. Let X denote the space of all bounded measurable functions
on (2, ¥). We are going to embed X into a certain space X of functions X on (€2, )
with values in the convex set

Mp(R) ={pn e MiR) | u(—c,c]) =1 forsomec >0}

of boundedly supported Borel probability measures on R. More precisely, X is defined
as the convex set of all those stochastic kernels X (w, dy) from (2, ) to R for which
there exists a constant ¢ > 0 such that

)~((w, [—c, c]) =1 forallw e Q.
The space X can be embedded into X by virtue of the mapping
X35 X+— 8y € X. (2.24)

In this way, X can be identified with the set of all X € X for which the measure
X(w, -) is a Dirac measure. A preference order on X defined by (2.23) clearly extends
to X by

U(X) = inf / / u(y) X (@, dy) Q(dw) = inf Eg[#(X)] (2.25)
Qeq Qc@
where U is the affine function on M (R) defined by
u(p) = /udu, e Mp(R).

Remark 2.76. Restricting the preference order > on X obtained from (2.25) to the
constant maps X (w) = u for u € Mj(R), we obtain a preference order on My (R),
and on this level we know how to characterize risk aversion by the property that u is
strictly concave. <

Example 2.77. Let us show how the Ellsberg paradox fits into our extended setting,
and how it can be resolved by a suitable choice of the set @. For Q = {0, 1} define

Xo(®) := pSiooo + (1 — p)o,  Xi1(w) := (1 — p)8ioo0 + P 8o,

and _
Zi(w) = 81000 - I{l}(w) +do - I{l—i}(w)’ i=0,1.

Take
Q:={gsi+(1—g)ola<qg=<b}

with [a, b] C [0, 1]. For any increasing function u, the functional

U(X) = Q“;fg Eol#(X)]
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satisfies o o
UX;))>U(Z), i=0,1,

assoonasa < p < b, in accordance with the preferences described in Example 2.75.

<&

Let us now formulate those properties of a preference order > on the convex set
%X which are crucial for a representation of the form (2.25). For X Y € X and
a € (0, 1), (2.25) implies

U@X +(1-a)Y) = inf (a Eolu(X)1+ (1 —a) Eglu(Y) )
>aUX)+ 1 —-a)U(®Y).

In contrast to the Savage case @ = {Q} Wwe can no longer expect equality, except for
the case of certainty Y (w) = p. If X ~ Y then U (X ) = U (Y ), and the lower bound
reduces to U (X) = U (Y). Thus, > satisfies the following two properties:

Uncertainty aversion: If X , Y € X are such that X ~ ¥ , then
aX+ (1 —a)Y =X foralla € [0,1].
Certainty independence: For ?, Y e DNC, 7= w € Mp(R), and o € (0, 1] we have
X>Y = oaX+(U-a)Z=a¥V+1—-a)Z.

Remark 2.78. In order to motivate the term “uncertainty aversion”, consider the sit-
uation of the preceding example. Suppose that an agent is indifferent between the
choices ZO and Z;, which both involve the same kind of uncertainty. For « € (0, 1),
the convex combination Y = aZo + (1 - a)Z 1, which is weakly preferred to both
Zo and Z 1 in the case of uncertainty aversion, takes the form

~ o 81000 + (1 —a)dp forw =1,

Y(w) =

ady+ (1 —a)dipoo forw =0,

i.e., uncertainty is reduced in favor of risk. For « = 1/2, the resulting lottery Y (w) =
%(81000 + 8p) is independent of the scenario w, i.e., uncertainty is completely replaced
by risk. <

Remark 2.79. The axiom of “certainty independence” extends the independence ax-
iom for preferences on lotteries to our present setting, but only under the restriction
that one of the two contingent lotteries X and Y is certain, i.e., does not depend on
the scenario w € 2. Without this restriction, the extended independence axiom would
lead to the Savage representation in its original form (2.22). There are good reasons
for not requiring full independence forall Z € X. Asanexample, take 2 = {0, 1} and
define X(w) = §,, Y (w) = §1—w, and Z =X. An agent may prefer X over Y, thus
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expressing the implicit view that scenario 1 is somewhat more likely than scenario 0.
At the same time, the agent may like the idea of hedging against the occurrence of
scenario 0, and this could mean that the certain lottery

1~ ~
E(Y Z)()z—(50+81)

is preferred over the contingent lottery

1, ~ ~
S(X+Z)0=X0),

thus violating the independence assumption in its unrestricted form. In general, the
role of Z as a hedge against scenarios unfavorable for Y requires that Y and Z are not
comonotone, i.e.,

Tw,neQ: Y =YW, Z) < Z®). (2.26)

Thus, the wish to hedge would still be compatible with the following enforcement of
certainty independence, called

e comonotonic independence: For )N(, 17, 7 IS X and o € (0, 1]
X>Y = aX+(U-a)Z>a¥+(—-a)Z.
whenever Y and Z are comonotone in the sense that (2.26) does not occur. <>

From now on, we assume that > is a given preference order on X. The set M;(R)
will be regarded as a subset of X by identifying a constant function Z = p with its
value € Mp(R). We assume that > possesses the following properties:

e Uncertainty aversion.
 Certainty independence.

e Monotonicity: If Y (w) = X (w) for all w € 2, then Y > X. Moreover, > is
compatible with the usual order on R, i.e., 8, > &, if and only if y > x.

. Contznmly The following analogue of the Archimedean axiom holds on X: If
X Z € X are such that Z > ¥ > X then there are «, 8 € (0, 1) with

aZ+(1-a)X =Y = BZ+(1-B)X.

Moreover, for all ¢ > 0 the restriction of > to M([—c, c]) is continuous with
respect to the weak topology.

Let us denote by
My =My p(R2,F)
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the class of all set functions Q : & — [0, 1] which are normalized to Q[ Q2] = 1
and which are finitely additive, i.e., Q[A U B] = Q[ A]+ Q[ B] for all disjoint
A, B € ¥. By Eg[ X ] we denote the integral of X with respect to Q € My s; see
Appendix A.6. With M (£2, ) we denote the o-additive members of M ¢, that is,
the class of all probability measures on (€2, ).

Theorem 2.80. Consider a preference order > on X satisfying the four properties
listed above.

(a) There exists a strictly increasing function u € C(R) and a convex set @ C
My, (82, F) such that

ﬁ()?) = énelg EQ|: /u(x) i(., dx)}

is a nhumerical representation of >. Moreover, u is unique up to positive affine trans-
formations. _

(b) If the induced preference order > on X;, viewed as a subset of X as in (2.24),
satisfies the following additional continuity property

X>Yand X, /' X — X,>Y foralllargen, (2.27)

then the set functions in @ are in fact probability measures, i.e., each Q € @ is
o-additive. In this case, the induced preference order on X has the robust Savage
representation

UX) = IQIIElIélz Eolu(X)] forX e X

with @ C M (2, F).

Remark 2.81. Even without its axiomatic foundation, the robust Savage representa-
tion is highly plausible as it stands, since it may be viewed as a worst-case approach
to the problem of model uncertainty. This aspect will be of particular relevance in our
discussion of risk measures in Chapter 4. <

The proof of Theorem 2.80 needs some preparation.

When restricted to My (R), viewed as a subset of X , the axiom of certainty inde-
pendence is just the independence axiom of the von Neumann—Morgenstern theory.
Thus, the preference relation > on M (R) satisfies the assumptions of Corollary 2.29,
and we obtain the existence of a continuous function u : R — R such that

u(p) = /M(X)M(dX) (2.28)

is a numerical representation of > on the set Mp(R). Moreover, u is unique up
to positive affine transformations. The second part of our monotonicity assumption
implies that u is strictly increasing. Without loss of generality, we assume u(0) = 0
and u(1) = 1.
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Remark 2.82. In view of the representation (2.28), it follows as in (2.9) that any
uw € Mp(R) admits a unique certainty equivalent c() € R for which

M~ Be(u).-

Thus, if X € X is defined for X € X as X (») := c()N((a))), then the first part of our
monotonicity assumption yields _
X ~ by, (2.29)

and so the preference relation > on X is uniquely determined by its restriction to XG.

<&

Lemma 2.83. There exists a unique extension U of the functional u in (2.28) as a
numerical representation of > on X.

Proof. For X € X let ¢ > 0 be such that )N((a), [—c, c]) = 1forall w € Q. Then
HG_e) <u(X(@) <@, forallow e Q,
and our monotonicity assumption implies that
Se =X =6,
We will show below that there exists a unique « € [0, 1] such that
X~ —a)_c+as. (2.30)
Once this has been achieved, the only possible choice for U ()? ) is
UX) :=((1 —)d_c +ade) = (1 — a)i(5-c) + aBl(Sc).

This definition of U provides a numerical representation of > on X.
The proof of the existence of a unique & € [0, 1] with (2.30) is similar to the proof
of Lemma 2.24. Uniqueness follows from the monotonicity

B>a = (1—PB)_c+ B8 = (1 —a)d_c+ade, (2.31)

which is an immediate consequence of the von Neumann—Morgenstern representation.
Now we let _
a:=sup{y €[0,1]1] X = (1 —y)d_+ 7y}

We have to exclude the two following cases:

X = (1 —a)d_¢ + s, (2.32)
(1 —a)s_o +ad, = X. (2.33)

In the case (2.32), our continuity axiom yields some 8 € (0, 1) for which

X>Bl(l—a)d e+ adc 1+ (1= B)s = (1 — y)s_c + yd.
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where y = Ba + (1 — B) > «, in contradiction to the definition of «.
If (2.33) holds, then the same argument as above yields 8 € (0, 1) with

Bade + (1 — Ba)d_e = X.
By our definition of « there must be some y € (Ba, o) with
X = (1= y)8-c+ 8 = Bade + (1 — Ba)s_,

where the second relation follows from (2.31). This, however, is a contradiction. []

Via the embedding (2.24), Lemma 2.83 induces a numerical representation U of
> on X given by _
UX) :=U(éx). (2.34)

The following proposition clarifies the properties of the functional U and provides the
key to a robust Savage representation of the preference order > on X.

Proposition 2.84. Given u of (2.28) and the numerical representation U on X con-
structed via Lemma 2.83 and (2.34), there exists a unique functional J : X — R such
that

UX) = J(u(X)) forall X € X, (2.35)

and such that the following four properties are satisfied:
* Monotonicity: If Y (w) > X(w) for all , then J(Y) > J(X).
 Concavity: If » € [0, 1] then J(AX +A=10Y)=AJ(X)+ (1 =1JX).
* Positive homogeneity: J(AX) = AJ(X) for A > 0.
» Cash invariance: J(X +z) = J(X) + z for all z € R.

Moreover, any functional J with these four properties is Lipschitz continuous on X
with respect to the supremum norm || - ||, i.e.,

[JX)—J@)| < IX=Y| forallX,Y € X.

Proof. Denote by X, the space of all X € X which take values in the range u(R) of
u. Clearly, X, coincides with the range of the non-linear transformation X > X >
u(X). Note that this transformation is bijective since u is strictly increasing due to
our assumption of monotonicity. Thus, J is well-defined on X, via (2.35). We show
next that this J has the four properties of the assertion.

Monotonicity is obvious. For positive homogeneity on X;,,, it suffices to show that
J(X) = AJ(X) for X € X, and 1 € (0, 1]. Let Xo € X be such that u(Xo) = X.
We define Z € X by

~

Z = A8x, + (1 — ).
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By (2.29), Z ~ 87 where Z is given by

Z(w) = c(AMxo(w) + (1 — 1)&)
= u~ (Au(Xo(@)) + (1 — Mu(0))
=u"" (Au(Xo())).

where we have used our convention u(0) = 0. It follows that u(Z) = Au(Xp) = 1 X,
and so o
JAX) =UZ)=U(2Z). (2.36)

As in (2.30), one can find v € Mp(R) such that v ~ §x,. Certainty independence
implies that ~
Z = Mx,+ (1 =218 ~ Av + (1 — A)dp.
Hence, o
UZ) =u(iv+ (1 =218y = ru(v) = AU (X)) = LJ(X).

This shows that J is positively homogeneous on X,,.

Since the range of u is an interval, we can extend J from X, to all of X by positive
homogeneity, and this extension, again denoted J, is also monotone and positively
homogeneous.

Let us now show that J is cash invariant. First note that

Ju@) _ w6 _,

ulx)  ulx)
for any x such that u(x) # 0. Now take X € X and z € R. By positive homogeneity,
we may assume without loss of generality that 2X € X, and 2z € u(R). Then there

are Xg € X such that 2X = u(Xp) as well as zg9, xo € R with 2z = u(z9) and
2J(X) = u(xp). Note that §x, ~ 8x,. Thus, certainty independence yields

J(1) =

~ 1 1
Z = E(SXO + 8z,) ™~ E(Sxo + 8z) =1 1.
On the one hand, it follows that
~ o~ 1 1
UZ)=Uw) = EM(XO) + iu(Zo) =J(X) +z.
On the other hand, the same reasoning which lead to (2.36) shows that
U(Z)=J(X +2).

As to concavity, we need only show that J(%X + %Y) > %J(X) + %J(Y) for
X, Y € X,, by positive homogeneity. Let Xg, Yo € X be such that X = u(X) and
Y =u(Yp). If J(X) = J(Y), then éx, ~ Jy,, and uncertainty aversion gives

~ 1

Z .= 5(8)(0 + 5YO) b 8)(0’
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which by the same arguments as above yields
~ ~ 1 1 1
U@Z)=J\3X+3Y zja)=50@3+an
The case in which J(X) > J(Y) can be reduced to the previous one by letting

z:= J(X)— J(Y), and by replacing Y by Y, := Y + z. Cash invariance then implies
that

Hix+ Yo loos(ix i Ly
2573 2° T\ Ty

> S (J(X) + I (YD)

| — N —

1
S0 +IW) + 5z

Now we show the Lipschitz continuity of J. If X, Y € Xthen X <Y+ | X —Y|,
and so J(X) < J(Y) + || X — Y|, by monotonicity and cash invariance. Reversing
the roles of X and Y yields

(X)) —JM)| =X =Y. [

Letus now show that a function with the four properties established in the preceding
proposition can be represented in terms of a family of set functions in the class M1 f.

Proposition 2.85. A functional J : X — R is monotone, concave, positively homo-
geneous, and cash invariant if and only if there exists a set @ C My, such that

J(X)=inf Eg[X], X eX.
Qeq
Moreover, the set @ can always be chosen to be convex and such that the infimum
above is attained, i.e.,
J(X)=min Eg[X], X e X.
Qeq
Proof. The necessity of the four properties is obvious. Conversely, we will construct

for any X € X a finitely additive set function Qx such that J(X) = Eg,[ X ] and
J(Y) < EgylY]forall Y € X. Then

J(Y) = min Eg[Y] forallY € X 2.37)
0€Qo
where Q¢ := { Qx | X € X }. Clearly, (2.37) remains true if we replace @¢ by its

convex hull @ := conv @y.
To construct Q x for a given X € X, we define three convex sets in X by

B ={YeX|JY)>1)},
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X
Cr={YeX|Y<1}, and Cr:=3YeX | Y <—— .
J(X)

The convexity of C; and G, implies that the convex hull of their union is given by
C:=conv(CiUC) ={aYi+(1—a)Y2|Y; €Canda € [0, 1]}.
Since Y € Cisofthe foom Y = aY; + (1 — )Y forsome ¥; € G; and « € [0, 1],
JY)<Je+(Q—-—a))=a+ (1 —-a)J(Yr) <1,

and so B and C are disjoint. Let X be endowed with the supremum norm ||Y| :=
sup,cq |Y (w)|. Then €1, and hence C, contains the unit ball in X. In particular, C
has non-empty interior. Thus, we may apply the separation argument in the form of
Theorem A.54, which yields a non-zero continuous linear functional £ on X such that

c:=supl(Y) < inf £(Z).
YeC ZeB

Since C contains the unit ball, ¢ must be strictly positive, and there is no loss of
generality in assuming ¢ = 1. In particular, £(1) < 1 as 1 € €. On the other hand,
any constant b > 1 is contained in 8, and so

(1) =lim &) > ¢ = 1.
(D blfrll()—c

Hence, ¢(1) = 1.
If A e F thenl ac € C1 C @, which implies that

L) =6 =€, ) >1—-1=0.

By Theorem A.50 there exists a finitely additive set function Qx € My, r(£2, F) such
that £(Y) = Ep,[Y ] forany ¥ € X.

It remains to show that Eg,[Y ] > J(Y) forall Y € X, with equality for ¥ = X.
By the cash invariance of J, we need only consider the case in which J(Y) > 0. Then

Y, = Y + ! €SB
TTTIw) a7
and Y, — Y/J(Y) uniformly, whence

EgxlY]

J(Y)
On the other hand, X/J (X) € G, C C yields the inequality
Eox[X]

J(X)

=1lim Eg,[Y,]> 1.
ntoo

<c=1. O

We are now ready to complete the proof of the main result in this section.



98 2 Preferences

Proof of Theorem 2.80. (a): By Remark 2.82, it suffices to consider the induced
preference relation > on X once the function # has been determined. According
to Lemma 2.83 and the two Propositions 2.84 and 2.85, there exists a convex set
@ C My, r such that
U(X) =min Eg[u(X)]
Qeq

is a numerical representation of > on X.. This proves the first part of the assertion.

(b): The assumption (2.27) appliedto X = 1 and Y = b < 1 gives that any
sequence with X,, 1 is such that X, > b for large enough n. We claim that
this implies that U(X,) / u(l) = 1. Otherwise, U(X,) would increase to some
number @ < 1. Since u is continuous and strictly increasing, we may take b such that
a <u(b) < 1. Butthen U(X,) > U(b) = u(b) > a for large enough n, which is a
contradiction.

In particular, we obtain that for any increasing sequence A, € ¥ such that
Un An =Q

Jim pig 041 = lm U, ) =1

But this means that each Q € @ satisfies lim, Q[ A, ] = 1, which is equivalent to the
o-additivity of Q. 0

The continuity assumption (2.27), required for all X,, € X, is actually quite strong.
In a topological setting, our discussion of risk measures in Chapter 4 will imply the
following version of the representation theorem.

Proposition 2.86. Consider a preference order > as in Theorem 2.80. Suppose that Q
is a Polish space with Borel field ¥ and that (2.27) holds if X,, and X are continuous.
Then there exists a class of probability measures @ C M1(S2, F) such that the induced
preference order on X has the robust Savage representation

UX) = gig Eglu(X)]1 for continuous X € X.
€

Proof. As in the proof of Theorem 2.80, the continuity property of > implies the
corresponding continuity property of U, and hence of the functional J in (2.35). The
result follows by combining Proposition 2.84, which reduces the representation of U
to a representation of J, with Proposition 4.25 applied to the coherent risk measure
p=—J. ]

Finally, we consider an alternative setting where we fix in advance a reference mea-
sure P on (2, ). In this context, X will be identified with the space L>°(2, ¥, P),
and the representation of preferences will involve measures which are absolutely con-
tinuous with respect to P. Note, however, that this passage from measurable functions
to equivalence classes of random variables in L*° (2, , P), and from arbitrary proba-
bility measures to absolutely continuous measures, involves a certain loss of robustness
in the face of model uncertainty.
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Theorem 2.87. Let > be a preference relation as in Theorem 2.80, and assume that
X ~Y whenever X =Y P-a.s.
(a) There exists a robust Savage representation of the form

UX) = fnf Eg[u(X)], X e X,

where @ consists of probability measures on (2, ) which are absolutely continuous
with respect to P, if and only if > satisfies the following condition of continuity from
above:

Y>Xand X, \{ X P-as. — Y > X, P-as. foralllargen.
(b) There exists a representation of the form

U(X) = min Eg[u(X)], X eX,

where @ consists of probability measures on (2, ) which are absolutely continuous
with respect to P, if and only if > satisfies the following condition of continuity from
below:

X>YandX, /X P-as. — X, >Y P-as. foralllargen.

Proof. As in the proof of Theorem 2.80, the continuity property of > implies the
corresponding continuity property of U, and hence of the functional J in (2.35). The
results follow by combining Proposition 2.84, which reduces the representation of U
to arepresentation of J, with Corollary 4.34 and Corollary 4.35 applied to the coherent
risk measure p := —J. O

2.6 Probability measures with given marginals

In this section, we study the construction of probability measures with given marginals.
In particular, this will yield the missing implication in the characterization of uniform
preference in Theorem 2.58, but the results in this section are of independent interest.
We focus on the following basic question: Suppose w1 and p, are two probability
measures on S, and A is a convex set of probability measures on S x S; when does A
contain some it which has @ and @y as marginals?

The answer to this question will be given in a general topological setting. Let S be
a Polish space, and let us fix a continuous function v on S with values in [1, 00). As
in Section 2.2 and in Appendix A.6, we use V as a gauge function in order to define
the space of measures

M (S)i={ e M) | fw<x)u(dx><oo}
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and the space of continuous test functions

Cy(S):={feC® |3c: |f&)| <c-¥(x)forallx € S}.

The -weak topology on M }0 (S) is the coarsest topology such that

M (S) 5 ffd,u

is a continuous mapping for all f € Cy (S); see Appendix A.6 for details. On the
product space S x S, we take the gauge function

vx,y) =9+ v,

and define the corresponding set M?(S x S), which will be endowed with the y-weak
topology.

Theorem 2.88. Suppose that A C M?(S x 8§) is convex and closed in the y-weak

topology, and that |11, o are probability measures in QM;// (S). Then there exists some
€ A with marginal distributions (1 and .y if and only if

/fl du1+/f2d,u2 = ASUE/ (/i) + f2(0)) Mdx,dy)  forall fi, f» € Cy(S).

Theorem 2.88 is due to V. Strassen [191]. Its proof boils down to an application of
the Hahn—Banach theorem; the difficult part consists in specifying the right topological

setting. First, let us investigate the relations between Mi/f (S x 8§)and M}lj (S). To this
end, we define mappings

mie MU x8) > M), i=1.2
that yield the i marginal distribution of a measure A € =M?(S x §):
[ facn = [ reraxdy wa [ raon = [ roraaxan.
forall f € Cy(9S).

Lemma 2.89. 7w and my are continuous and affine mappings from M?(S x S) to
MV (S).

Proof. Suppose that A, converges to A in M?(S x S). For f € Cy(S) let ?(x, y) =
f(x). Clearly, fe Cﬁ(S x S), and thus

[ racin = [Far — [Far= [ racn.

Therefore, 771 is continuous, and the same is true of 5. Affinity is obvious. O
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Now, let us consider the linear space
E:={au—pv|uveM/s), apecR)

spanned by M;/'(S). For p = o — Bv € E the integral f f dp against a function
f € Cy(S) is well-defined and given by

[rap=a[ran-p[rav

In particular, p — f fdp is linear functional on E, so we can regard Cy (S) as a
subset of the algebraic dual E* of E. Note that [ fdp = [ fdp forall f € Cy(S)
implies p = p, i.e., Cy (S) separates the points of E. We endow E with the coarsest
topology o (E, Cy,(S5)) for which all maps

Espe [ fdp fecyo)

are continuous; see Definition A.57. With this topology, E becomes a locally convex
topological vector space.

Lemma 2.90. Under the above assumptions, QMT (S) is a closed convex subset of E,
and the relative topology of the embedding coincides with the r-weak topology.

Proof. The sets of the form

n
Uetpi oo = (e B | | [ ido = [ siap] <)

i=1
withp € E,n €N, f; € Cy(S),and & > 0 form a base of the topology o (E, Cy(S5)).
Thus, if U C E is open, then every point © € U N MI{/(S) possesses some neigh-
borhood U, (u; f1, ..., fn) CU. ButUg(u; f1, ..., fu) N M;l'(S) is an open neigh-
borhood of u in the y-weak topology. Hence, U N eM}”(S) is open in the yr-weak
topology. Similarly, one shows that every open set V C MY/(S) is of the form
V=UNnM '1// (S) for some open subset U of E. This shows that the relative topology
e/\/{;/I(S) N U(E, CI/,(S)) coincides with the yr-weak topology.

Moreover, ,Mip (S) is an intersection of closed subsets of E:

M}”(S):{pem/ldp:l}m N {peE|/fdpzo}.

F€Cy (5)
f=0

Therefore, ,Mip(S) is closed in E. O
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Next, let E? denote the product space E x E. We endow E? with the product
topology for which the sets U x V with U, V € o (E, Cy(S)) form a neighborhood
base. Clearly, E? is a locally convex topological vector space.

Lemma 2.91. Every continuous linear functional £ on E? is of the form

f(pl,p2)=/f1d/)1+/f2dpz
for some f1, f» € Cy(S).

Proof. By linearity, £ is of the form £(p1, p2) = £1(p1) + €2(p2), where £1(p1) =
£(p1, 0) and £2(p2) := £(0, p2). By continuity of ¢, the set

Vi=0((-1D)

is open in E? and contains the point (0, 0). Hence, there are two open neighborhoods
Ui, Uy C E such that (0,0) € Uy x Uy C V. Therefore,

0eU ¢ '((-1,1) fori=12,

i.e., 0 is an interior point of Ei_l ((—=1,1)). It follows that the ¢; are continuous at 0,
which in view of their linearity implies continuity everywhere on E. Finally, we may
conclude from Proposition A.58 that each ¢; is of the form £; (p) = f fi dp; for some
fi € Cy(9S). O

The proof of the following lemma uses the characterization of compact sets for
the yr-weak topology that is stated in Corollary A.46. It is here that we need our
assumption that S is Polish.

Lemma 2.92. If A is a closed convex subset of M 1/_/ (S x 8), then
Hp = {(mA, mA) | A e A}

is a closed convex subset of E*.

Proof. Tt is enough to show that Hy is closed in MY ($)2 := MY (S) x MV (),
because Lemma 2.90 implies that the relative topology induced by E? on QM;//(S)2
coincides with the product topology for the y-weak topology. This is a metric topology
by Corollary A.44. So let (u,, v,) € Hp, n € N, be a sequence converging to
some (u,v) € M}”(S)2 in the product topology. Since both sequences (i4;)neN
and (v,),en are relatively compact for the yr-weak topology, Corollary A.46 yields
functions ¢; : S — [1,00], i = 1, 2, such that sets of the form K,i = {¢p; < ky},
k € N, are relatively compact in S and such that

sup/¢1dun+sup/¢2dvn < 0.

neN neN
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For_each n, there exists A, € A such that 71\, = u, and mA, = v,. Hence, if we
let ¢ (x, y) := ¢1(x) + ¢2(y), then

sup/@d)\n :sup(/qﬁ]dun—l-/qﬁzdvn) < 00.
neN neN

Moreover, we claim that each set { ¢ < ky} is relatively compact in S x S. To prove
this claim, let /; € N be such that

Then, since ¥ > 1,
—_ J— 1 2 1 2
{¢ =k} C K X K40y Y Kir4ay) % K s

and the right-hand side is a relatively compact set in § x S. It follows from Corollary
A.46 that the sequence (A,),en is relatively compact for the 1/-weak topology. Any
accumulation point A of this sequence belongs to the closed set A. Moreover, A has
marginal distributions p and v, since the projections 7r; are continuous according to
Lemma 2.89. Hence (i, v) € Hj. O

Proof of Theorem 2.88. Let w1, uy € eM;p(S) be given. Since Hp is closed and
convex in E2 by Lemma 2.92, we may apply Theorem A.56 with B := { (11, i2) }
and C := Hx: We conclude that (1, n2) ¢ Hy if and only if there exists a linear
functional £ on E2 such that

L(my, m2) > sup  £(vy, v2) = sup £(mw1A, o).
(v1,v2)€HA rEA

Applying Lemma 2.91 to £ completes the assertion. O

We will now use Theorem 2.88 to deduce the remaining implication of The-
orem 2.58. We consider here a more general, d-dimensional setting. Let x =
(xl, R xd) and y = (yl, R yd) be two d-dimensional vectors. We will say that
x < yifx’ <yl foralli. A function on R is called increasing, if it is increasing
with respect to the partial order <.

Theorem 2.93. Suppose v and w> are Borel probability measures on RY with
f |x|ui(dx) < oo fori = 1,2. Then the following assertions are equivalent.

(a) / fdur > f f duos for all increasing concave functions f on RY.

(b) There exists a probability space (2, ¥, P) with random variables X| and X»
having distributions [v1 and |12, respectively, such that

E[X> | X1]1<X; P-as.
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(c) There exists a kernel Q(x, dy) on R such that

/Rd)’Q(X,dy) <x forallx e RY

and such that py = 1 Q.

Proof. (a)=(b): We will apply Theorem 2.88 with § := R? and with the gauge
functions ¥ (x) := 1+ |x| and ¥ (x, ¥) := ¥ (x) + ¥ (y). We denote by Cp(RY) the
set of bounded and continuous functions on R?. Let

A= {A e MY (RY x RY) | /yf(x)k(dx,dy) < /xf(x)k(dx,dy)}.

feCpRY)

Each single set of the intersection is convex and closed in (M;//(Rd x R?), because
the functions g(x, y) := yf(x) and g(x, y) := xf(x) belong to CJ(Rd x R4) for
f € Cp(S). Therefore, A itself is convex and closed.

Suppose we can show that A contains an element P that has @1 and p; as marginal
distributions. Then we can take  := R? x R? with its Borel o-algebra ¥, and let
X1 and X, denote the canonical projections on the first and the second components,
respectively. By definition, X; will have the distribution p;, and

E[E[X2 | X1 1f(XD) ] = E[X2f (X)) ] < E[ X1 f(X1)] forall f € Cp(RY).
By monotone class arguments, we may thus conclude that
E[X | X1]1< Xy P-as.

so that the assertion will follow.
It remains to prove the existence of P. To this end, we will apply Theorem 2.88
with the set A defined above. Take a pair fi, f> € Cy (R?), and let

fi(x) := inf { g(x) | g is concave, increasing, and dominates fz}.

Then ]72 is concave, increasing, and dominates f>. In fact, fz is the smallest function
with these properties. We have

/fldul+/f2d,u2§/f1du1+fﬁduz

< [+ By
< sup (fi(x) + fz(x)) =:19.
xeRd

We will establish the condition in Theorem 2.88 for our set A by showing that for
r < ro we have

r< SUP/ (f1x) + f2(») A(dx, dy).

reEA
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To this end, let for 7 € R?
N ¥ md
ci={veM®RY) | [ xvdx) <z

and

82(2) :=sup{/f2dv ‘ veAZ}.

Then g» is increasing and g2(z) > f2(z), because §; € A;. Moreover, if v] € A,
and v, € A4, then

avi + (1 —o)vy € Agz +(1—-a)zs

for o € [0, 1]. Therefore, g, is concave, and we conclude that go > fz (recall
that f5 is the smallest increasing and concave function dominating f>). Hence, r <
f1(2) + g2(z) for some z € R, i.e., there exists some v € A, such that the product
measure A := §, ® v satisfies

r< fitz)+ / fadv = / (/1) + f2(3)) Mdx, dy).
ButA =4, ®v € A.
(b) =(c): This follows as in the proof of the implication (f) =(g) of Theorem 2.58
by using regular conditional distributions.

(c)=(a): As in the proof of (g) =(a) of Theorem 2.58, this follows by an appli-
cation of Jensen’s inequality. O

By the same arguments as for Corollary 2.62, we obtain the following result from
Theorem 2.93.

Corollary 2.94. Suppose ju1 and > are Borel probability measures on R such that
f |x|ui(dx) < oo, fori = 1,2. Then the following conditions are equivalent.

(a) /fd,ul > / f dua for all concave functions f on RY.

(b) There exists a probability space (2, &, P) with random variables X1 and X»
having distributions [ and [y, respectively, such that

E[X, | X1]1=X1 P-as.
(c) There exists a kernel Q(x, dy) on R? such that

/y O(x,dy)=x forallx e R?

(i.e., Q is a mean-preserving spread) and such that py = 1 Q.
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We conclude this section with a generalization of Theorem 2.70. Let S be a
Polish space which is endowed with a preference order >. We will assume that > is
continuous in the sense of Definition 2.8. A function on S will be called increasing if
it is increasing with respect to >.

Theorem 2.95. For two Borel probability measures (11 and iy on S, the following
conditions are equivalent.

(a) / fdu > / f dua for all bounded, increasing, and measurable functions f
onS.

(b) There exists a probability space (2, ¥, P) with random variables X| and X»
having distributions |1 and o, respectively, such that X1 > X, P-a.s.

(c) There exists a kernel Q on S such that uy = 1 Q and
O(x, {ylx=y})=1 forallx €S.

Proof. (a) =(b): We will apply Theorem 2.88 with the gauge function ¥y = 1, so that
M ;// (S) is just the space M1 (S) of all Borel probability measures on S with the usual
weak topology. Then 1 = 2 which is equivalent to taking v/ := 1. Let

M ={(x,y)eSxS|x>y}

This set M is closed in S x S by Proposition 2.11. Hence, the portmanteau theorem
in the form of Theorem A.38 implies that the convex set

A={rLeMSxS)|A(M) =1}
is closed in M (S x S). For f2 € Cp(S), let
Fx) = sup{ () | x = y).

Then ]?i is bounded, increasing, and dominates f>. Therefore, if f1 € Cp(S),

/fldlu+/fzd/L2§/f1d,u1+/fsz2

s/m+EmM
5wyﬁm+ﬁu»

= sup (f1(x) + f2(1)).
Xzy
If x > y, then the product measure A := §, ® Jy is contained in A, and so

sup (f1(x) + f2(y)) = Sup/ (f1i(x) + f2() M(dx, dy).

xzy reEA
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Hence, all assumptions of Theorem 2.88 are satisfied, and we conclude that there
exists a probability measure P € A with marginals p1 and pp. Taking 2 := S x S
and X; as the projection on the i coordinate finishes the proof of (a) =(b).

(b) =(c) follows as in the proof of Theorem 2.58 by using regular conditional
distributions.

(c) =(a) is proved as the corresponding implication of Theorem 2.70. O



Chapter 3
Optimality and equilibrium

Consider an investor whose preferences can be expressed in terms of expected utility.
In Section 3.1, we discuss the problem of constructing a portfolio which maximizes
the expected utility of the resulting payoff. The existence of an optimal solution is
equivalent to the absence of arbitrage opportunities. This leads to an alternative proof
of the “fundamental theorem of asset pricing”, and to a specific choice of an equivalent
martingale measure defined in terms of marginal utility. Section 3.2 contains a detailed
case study describing the interplay between exponential utility and relative entropy.
In Section 3.3, the optimization problem is formulated for general contingent claims.
Typically, optimal profiles will be non-linear functions of a given market portfolio, and
this is one source of the demand for financial derivatives. Section 3.4 introduces the
idea of market equilibrium. Prices of risky assets will no longer be given in advance;
they will be derived as equilibrium prices in a microeconomic setting, where different
agents demand contingent claims in accordance with their preferences and with their
budget constraints.

3.1 Portfolio optimization and the absence of arbitrage

Let us consider the one-period market model of Section 1.1 in which d + 1 assets are
priced at time O and at time 1. Prices at time O are given by the price system

T = (710, ) = (710, 711, R nd) € Rffrl,
prices at time 1 are modeled by the price vector
S=(5%98=(s%s, ..., 8%

consisting of non-negative random variables S’ defined on some probability space
(2, F, P). The 0™ asset models a riskless bond, and so we assume that

7°=1 and =1+~
for some constant » > —1. At time ¢t = 0, an investor chooses a portfolio
E=¢"o=0¢"¢" .. §)er™

where £/ represents the amount of shares of the i™ asset. Such a portfolio £ requires
an initial investment 7 - £ and yields at time 1 the random payoff £ - S.
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Consider a risk-averse economic agent whose preferences are described in terms
of a utility function #, and who wishes to invest a given amount w into the financial
market. Recall from Definition 2.37 that a real-valued function # is called a utility
function if it is continuous, strictly increasing, and strictly concave. A rational choice
of the investor’s portfolio € = (£, &) will be based on the expected utility

E[uE-9)] (3.1)
of the payoff - S at time 1, where the portfolio & satisfies the budget constraint
7T-E<w. 3.2)

Thus, the problem is to maximize the expected utility (3.1) among all portfolios
& e RI*! which satisfy the budget constraint (3.2). Here we make the implicit
assumption that the payoff £ - S is P-a.s. contained in the domain of definition of the
utility function .

In a first step, we remove the constraint (3.2) by considering instead of (3.1) the
expected utility of the discounted net gain

|
Y]

—T-E=E-Y

—

+

~

earned by a portfolio £ = (£ 0 £). Here Y is the d-dimensional random vector with
components
) Si .
Y' = -7, i=1,...,d.
14+r

For any portfolio & with 77 - £ < w, adding the > risk-free investment w — 77 - & would
lead to the strictly better portfolio (§ O4w—7-€, &). Thus, we can focus on portfolios
& which satisfy 7 - £ = w, and then the payoff is an affine function of the discounted
net gain:

E-S=04+r)E-Y+w).

Moreover, for any £ € R? there exists a unique numéraire component £° € R such
that the portfolio & := (€9, &) satisfies 7 - € = w.
Let u denote the following transformation of our original utility function u:

u(y) = u((1+r)(y+w)).

Note that u is again a utility function, and that CARA and (shifted) HARA utility
functions are transformed into utility functions in the same class.

Clearly, the original constrained utility maximization problem is equivalent to the
unconstrained problem of maximizing the expected utility E[u(§ - Y) ] among all
£ € R? such that £ - Y is contained in the domain D of u.
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Assumption 3.1. We assume one of the following two cases:

(a) D =R. In this case, we will admit all portfolios € € R, but we assume that u
is bounded from above.

(b) D = [a, o0) for some a < 0. In this case, we only consider portfolios which
satisfy the constraint
E-Y>a P-as,

and we assume that the expected utility generated by such portfolios is finite,
ie.,
E[u-Y)] <oo forall€ e RY withé -Y > a P-a.s.

Remark 3.2. Part (a) of this assumption is clearly satisfied in the case of an exponen-
tial utility function u(x) = 1 — e~ **. Domains of the form D = [a, c0) appear, for
example, in the case of (shifted) HARA utility functions u(x) = log(x — b) forb < a
and u(x) = l()c —c¢)Y forc <aand 0 < y < 1. The integrability assumption in (b)
holds if E[|Y|] < oo, because any concave function is bounded above by an affine
function. <&

In order to simplify notations, let us denote by
$(D):={6e€R?|&-Y € D P-as.}

the set of admissible portfolios for D. Clearly, (D) = R? if D = R. Our aim is
to find some £* € §(D) which is optimal in the sense that it maximizes the expected
utility E[u(& -Y) ] among all § € 8(D). In this case, £* will be an optimal investment
strategy into the risky assets. Complementing & * with a suitable numéraire component
£9 yields a portfolio & = (£°, £*) which maximizes the expected utility E[%(E - 5) ]
under the budget constraint 77 - & = w. Our first result in this section will relate the
existence of such an optimal portfolio to the absence of arbitrage opportunities.

Theorem 3.3. Suppose that the utility function u : D — R satisfies Assumption 3.1.
Then there exists a maximizer of the expected utility

Elu-Y)], &ed(D),

if and only if the market model is arbitrage-free. Moreover, there exists at most one
maximizer if the market model is non-redundant in the sense of Definition 1.13.

Proof. The uniqueness part of the assertion follows immediately from the strict con-
cavity of the function & — E[u(& - Y)] for non-redundant market models. As to
existence, we may assume without loss of generality that our model is non-redundant.
If the non-redundance condition (1.8) does not hold, then we define a linear space
N C R? by

N:={n€Rd |n-Y =0 P-as.}.
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Clearly, Y takes P-a.s. values in the orthogonal complement N of N. Moreover,
the no-arbitrage condition (1.3) holds for all & € R if and only if it is satisfied for
all £ € N+. By identifying N with some R”, we arrive at a situation in which the
non-redundance condition (1.8) is satisfied and where we may apply our result for
non-redundant market models.

If the model admits arbitrage opportunities, then a maximizer £ * of the expected
utility E[u(§ - Y)] cannot exist: Adding to £* some non-zero n € R? for which
n-Y > 0 P-as., which exists by Lemma 1.3, would yield a contradiction to the
optimality of £*, because then

E[u*-Y)] < E[u("+n) - V)]

From now on, we assume that the market model is arbitrage-free. Let us first
consider the case in which D = [a, oo) for some a € (—o0,0). Then (D) is
compact. In order to prove this claim, suppose by way of contradiction that (£,) is a
diverging sequence in 4 (D). By choosing a subsequence if necessary, we may assume
that i, := &,/|&,| converges to some unit vector 1 € R4, Clearly,

n~Y=lim§" > 1

> lim =0 P-as.,
ntoo [§p| T ntoo [&]

and so non-redundance implies that 77 := (—m - 1, 1) is an arbitrage-opportunity.
In the next step, we show that our assumptions guarantee the continuity of the
function
8(D)> & — E[u(€-Y)],

which, in view of the compactness of §(D), will imply the existence of a maximizer of
the expected utility. To this end, it suffices to construct an integrable random variable
which dominates u(§ - Y) for all £ € 8(D). Define n € R4 by

.= 0V max & < oo.
7 565(D)E

Then,n-S > & - S for & € 8(D), and hence

- S - S
=é —7r~§§n —0A min 7-£&.
1+r 1+r £'e$(D)

§-Y

Note that 17 - Y is bounded below by —m - n and that there exists some o € (0, 1] such
that o - n < |a|. Hence an € 4(D), and our assumptions imply E[u(an -Y)] <
oo. Applying Lemma 3.4 below first with b := «m - n and then with b := —0 A
min‘;&/eg(D) - f/ shows that

-S
E[u<)7 —0A min 71-“;")]<oo.
147 &'ec8(D)

This concludes the proof of the theorem in case D = [a, 00).
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Let us now turn to the case of a utility function on D = R which is bounded from
above. We will reduce the assertion to a general existence criterion for minimizers of
lower semicontinuous convex functions on R, given in Lemma 3.5 below. It will be
applied to the convex function 2(§) := —E[u(€ - Y) ]. We must show that 4 is lower
semicontinuous. Take a sequence ()N In R4 converging to some &. By part (a) of
Assumption 3.1, the random variables —u (&, - Y) are uniformly bounded below, and
so we may apply Fatou’s lemma:

lirr%infh(én) = lirr%inf E[—u(y-Y)] = E[—u(§ -Y)] = h(§).

Thus, /4 is lower semicontinuous.

By our non-redundance assumption, # is strictly convex and admits at most one
minimizer. We claim that the absence of arbitrage opportunities is equivalent to the
following condition:

lim A(a &) = 400 for all non-zero & € RY, (3.3)
atoo

This is just the condition (3.4) required in Lemma 3.5. It follows from (1.3) and
(1.8) that a non-redundant market model is arbitrage-free if and only if each non-zero
£ € R? satisfies P[£ - Y < 0] > 0. Since the utility function u is strictly increasing
and concave, the set {£ - Y < 0} can be described as

(6¥ <0} ={Jimu(g V) = —00) for & € RY.

The probability of the right-hand set is strictly positive if and only if

liTm E[u(at -Y)] = —oo,

because u is bounded from above. This observation proves that the absence of arbitrage
opportunities is equivalent to the condition (3.3) and completes the proof. O

Lemma34. If D = [a,00), b < |a], 0 < « < 1, and X is a non-negative random
variable, then
Elu(@X —b)] <oo = E[u(X)] < oo.

Proof. As in (A.1) in the proof of Proposition A.4, we obtain that

u(X) —u(0) - u(a@X) —u(0) - u(@X —b) — u(—b)
X-0 - aX —0 -~ aX-—-b—(-D)

Multiplying by X shows that u(X) can be dominated by a multiple of u(aeX — b)
plus some constant. O
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Lemma 3.5. Suppose h : R — R U {400} is a convex and lower semicontinuous
function with h(0) < oo. Then h attains its infimum provided that

liTm h(a §) = +oo  for all non-zero & € R?. (3.4)
aToo

Moreover, if h is strictly convex on {h < oo}, then also the converse implication holds:
the existence of a minimizer implies (3.4).

Proof. First suppose that (3.4) holds. We will show below that the “level sets”
{x | h(x) < ¢} of h are bounded — hence compact — for ¢ > infh. Once the
compactness of the level sets is established, it follows that the set

{(x eRY | h(x) =infh} = ﬂ {(x eRY | h(x) <c}
c>inf h

of minimizers of A is non-empty as an intersection of decreasing and non-empty
compact sets.

Suppose ¢ > inf & is such that the level set { < ¢} is not compact, and take
a sequence (x,) in {h < c} such that |x,] — oo. By passing to a subsequence if
necessary, we may assume that x;, /| x, | converges to some non-zero &. For any o > 0,

h(af) < liminfh<oz An ) — nminfh(ixn + (1 — )0)
ntoo |2 | ntoo |xn | % |

51iminf( ¢ c—|—(1— ¢ )h(O))
ntoo |xn| |xn|

= h(0).

Thus, we arrive at a contradiction to condition (3.4). This completes the proof of the
existence of a minimizer under assumption (3.4).
In order to prove the converse implication, suppose that the strictly convex function
h has a minimizer x™* but that there exists a non-zero & € R4 violating (3.4), i.e., there
exists a sequence (o),cN and some ¢ < oo such that o, 1 oo but h(a,€) < c for
all n. Let
Xp = Apx™ 4 (1 — An)ayé

where 1, is such that |x* — x,| = 1, which is possible for all large enough n. By
the compactness of the Euclidean unit sphere centered in x*, we may assume that x,,
converges to some x. Then necessarily |[x — x*| = 1. As «,& diverges, we must have
that A, — 1. By using our assumption that (o, &) is bounded, we obtain

h(x) < lin%inf h(x,) < liTm (Anh(x*) + 1 - kn)h(ané)) = h(x™).

Hence, x is another minimizer of /& besides x*, contradicting the strict convexity of 4.
Thus, (3.4) must hold if the strictly convex function 4 takes on its infimum. I
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Remark 3.6. Note that the proof of Theorem 3.3 under Assumption 3.1 (a) did not
use the fact that the components of Y are bounded from below. The result remains
true for arbitrary Y. <

We turn now to a characterization of the solution £* of our utility maximization
problem for continuously differentiable utility functions.

Proposition 3.7. Let u be a continuously differentiable utility function on D such that
E[u(& - Y)] is finite for all £ € 8(D). Suppose that £* is a solution of the utility
maximization problem, and that one of the following two sets of conditions is satisfied:

* u is defined on D = R and is bounded from above.
» u is defined on D = [a, 00), and £* is an interior point of (D).

Then
W(E* Y)Y e LY(P),

and the following “first-order condition” holds:

E[u(E*-Y)Y]=0. (3.5)

Proof. For & € 8(D) and ¢ € (0, 1]let & := e& + (1 — ¢)&*, and define
u(és-Y)—u(é”*-Y)_

&

Ag =

The concavity of u implies that A, > As for ¢ < §, and so
Ae Ju'(EF-Y)E—-E")-Y ase 0.

Note that our assumptions imply that u(£-Y) € £ (P) forall £ € 8(D). In particular,
we have A; € £!(P), so that monotone convergence and the optimality of £* yield
that

0>E[A:] /E[WE"-Y)(E—E")-Y] ase 0. (3.6)

In particular, the expectation on the right-hand side of (3.6) is finite.
Both sets of assumptions imply that £* is an interior point of (D). Hence, we
deduce from (3.6) by letting n := & — £* that

E(u'G"-Y)n-Y]=0

for all 5 in a small ball centered in the origin of R?. Replacing by —n shows that
the expectation must vanish. O

Remark 3.8. Let us comment on the assumption that the optimal £* is an interior
point of 8(D):
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(a) Ifthe non-redundance condition (1.8) is not satisfied, then either each or none of
the solutions to the utility maximization problem is contained in the interior of
4 (D). This can be seen by using the reduction argument given at the beginning
of the proof of Theorem 3.3.

(b) Note that £ - Y is bounded below by —x - £ in case £ has only non-negative
components. Thus, the interior of 4(D) is always non-empty.

(c) As shown by the following example, the optimal £* need not be contained in the
interior of 4(D) and, in this case, the first-order condition (3.5) will generally
fail. <

Example 3.9. Take » = 0, and let S! be integrable but unbounded. We choose
D = [a, 00) witha := —71, and we assume that P[S! < ¢] > O forall ¢ > 0.
Then 8(D) = [0,1]. If 0 < E[S'] < 7! then Example 2.43 shows that the optimal
investment is given by £* = 0, and so £* lies in the boundary of (D). Thus, if u is
sufficiently smooth,

E[W/'E* - Y)Y =4 () (E[S'1-7=") <O.

The intuitive reason for this failure of the first-order condition is that taking a short
position in the asset would be optimal as soon as E[ S 11 < 7!, This choice, however,
is ruled out by the constraint £ € $(D). <&

Proposition 3.7 yields a formula for the density of a particular equivalent risk-
neutral measure. Recall that P* is risk-neutral if and only if E*[Y ] = 0.

Corollary 3.10. Suppose that the market model is arbitrage-free and that the as-
sumptions of Proposition 3.7 are satisfied for a utility function u : D — R and an
associated maximizer £* of the expected utility E{u(& - Y)]. Then

dP*  W(E*-Y)
dP  E[uW(£*-Y)]

defines an equivalent risk neutral measure.

(3.7)

Proof. Proposition 3.7 states that u’(§* - Y)Y is integrable with respect to P and that its
expectation vanishes. Hence, we may conclude that P* is an equivalent risk-neutral
measure if we can show that P* is well-defined by (3.7), i.e., if u/(§* - Y) € L1 (P).
Let

u'(a) for D = [a, 00),

c:=sup{u(x) | x € Dand x| < |§7]} < {u’(—lé*l) for D =R,

which is finite by our assumption that u is continuously differentiable on all of D.
Thus,
/ /

and the right-hand side has a finite expectation. O
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Remark 3.11. Corollary 3.10 yields an independent and constructive proof of the
“fundamental theorem of asset pricing” in the form of Theorem 1.6: Suppose that the
model is arbitrage-free. If Y is P-a.s. bounded, then so is u(¢* - Y), and the measure
P* of (3.7) is an equivalent risk-neutral measure with a bounded density d P*/d P. If
Y is unbounded, then we may consider the bounded random vector

~ Y
Y i=—,
1+ 1|Y]
which also satisfies the no-arbitrage condition (1.3). Let E* be a maximizer of the

expected utility E[ u(& - Y ) ]. Then an equivalent risk-neutral measure P* is defined
through the bounded density

dP* W (E5-Y)
=c- ,
dpP 1+ Y|
where c is an appropriate normalizing constant. <

Example 3.12. Consider the exponential utility function

ux)=1—e**

with constant absolute risk aversion @ > 0. The requirement that E[ u (& - Y) ] is finite
is equivalent to the condition

E[es‘y] < oo forallé e RY,

If £* is a maximizer of the expected utility, then the density of the equivalent risk
neutral measure P* in (3.7) takes the particular form

dP* e—as *y

dP  E[e V]

In fact, P* is independent of & since &* maximizes the expected utility 1 — E[ e ~%5Y ]
if and only if A* := —a&™ is a minimizer of the moment generating function

Z() = E[&Y], A eRY,

of Y. In Corollary 3.25 below, the measure P* will be characterized by the fact that
it minimizes the relative entropy with respect to P among the risk-neutral measures
in &; see Definition 3.20 below. <&

3.2 Exponential utility and relative entropy

In this section we give a more detailed study of the problem of portfolio optimization
with respect to a CARA utility function

ux)=1—e
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for « > 0. As in the previous Section 3.1, the problem is to maximize the expected
utility
Elu¢-Y)]

of the discounted net gain £ - Y earned by an investment into risky assets. The key
assumption for this problem is that

E[u(t-Y)]> —oco forall &€ € RY. (3.8)

Recall from Example 3.12 that the maximization of E[u(§ - Y)] is reduced to the
minimization of the moment generating function

Z(\) :=E[*Y], 1 eRY,

which does not depend on the risk aversion «. The key assumption (3.8) is equivalent
to the condition that
Z(x) <oo forall» e RY. (3.9)

Throughout this section, we will always assume that (3.9) holds. But we will not need
the assumption that Y is bounded from below (which in our financial market model
follows from assuming that asset prices are non-negative); all results remain true for
general random vectors Y; see also Remarks 1.7 and 3.6.

Lemma 3.13. The condition (3.9) is equivalent to

E[e*"] < 00 forall @ > 0.

Proof. Clearly, the condition in the statement of the lemma implies (3.9). To prove
the converse assertion, take a constant ¢ > 0 such that |x| < ¢ Zle |x| for x € R4.
By Holder’s inequality,

d d
E[e] < E[ exp (ozcz |Y"|)] <[] Ereeea 1y,
i=1 i=1
In orde;r to show that the ;" factor on the right is finite, take A € R4 such that A! = acd
and A/ = 0 for j # i. With this choice,

E[e*dY'1] < E[*Y 14+ E[e 7 ],

which is finite by (3.9). O

Definition 3.14. The exponential family of P with respect to Y is the set of measures
(Pil2eR’)

defined via
dP; and

dP ~— Z()’
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Example 3.15. Suppose that the risky asset S has under P a Poisson distribution
with parameter o > 0, i.e., S! takes values in {0, 1, ...} and satisfies

k

p[Slzk]:e—“%, k=0,1,....

Then (3.9) is satisfied for ¥ := S! — 71 and S! has under P, a Poisson distribution
with parameter e*«. Hence, the exponential family of P generates the family of all
Poisson distributions. <&

Example 3.16. Let Y have a standard normal distribution N (0, 1). Then (3.9) is
satisfied, and the distribution of Y under P;, is equal to the normal distribution N (A, 1)
with mean A and variance 1. <

Remark 3.17. Two parameters A and A’ in RY determine the same element in the
exponential family of P if and only if (A — 1”) - ¥ = 0 P-almost surely. It follows
that the mapping

A Py

is injective provided that the non-redundance condition holds in the form

E-Y=0P-as. — £&=0. (3.10)
<

In the sequel, we will be interested in the barycenters of the members of the
exponential family of P with respect to Y. We denote

m) = E;,[Y]= %E[Ye“/], A e R

The next lemma shows that m()A) can be obtained as the gradient of the logarithmic
moment generating function.

Lemma 3.18. Z is a smooth function on R¢, and the gradient of log Z at A is the
expectation of Y under Pj:

(Vlog Z)(A) = Ex[Y ] =m().

Moreover, the Hessian of log Z at A equals the covariance matrix (cov p, (Y iyl )i, j
of Y under the measure P;:

2

Sy 108200 = covp, (V. Y)) = B[YYT ] = B[V IE Y],

In particular, log Z is convex.
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Proof. Observe that

derx
O

= x| M <exp[(1+ D) - |x]].

Hence, Lemma 3.13 and Lebesgue’s dominated convergence theorem justify the in-
terchanging of differentiation and integration (see the “differentiation lemma” in [20],
§16, for details). O

The following corollary summarizes the results we have obtained so far. Recall
from Section 1.5 the notion of the convex hull I'(v) of the support of a measure v on
R? and the definition of the relative interior ri C of a convex set C.

Corollary 3.19. Denote by u := P o Y™\ the distribution of Y under P. Then the
function

Atr— A-mg—logZ(})
takes on its maximum if and only if mq is contained in the relative interior of the convex
hull of the support of , i.e., if and only if

mo € ril"(w).
In this case, any maximizer \* satisfies
mo =m(*) = E;«[Y].

In particular, the set {m(X) | A € R4} coincides with tiT' (). Moreover, if the
non-redundance condition (3.10) holds, then there exists at most one maximizer \*.

Proof. Taking Y=Y - mo reduces the problem to the situation where mg = 0.
Applying Theorem 3.3 with the utility function #(z) = 1—e~* shows that the existence
of a maximizer A* of —logZ is equivalent to the absence of arbitrage opportunities.
Corollary 3.10 states that m(1*) = 0 and that O belongs to My, (1), where My (1) was
defined in Lemma 1.42. An application of Theorem 1.48 completes the proof. O

It will turn out that the maximization problem of the previous corollary is closely
related to the following concept.

Definition 3.20. The relative entropy of a probability measure Q with respect to P is
defined as J 4
E —Qlog—Q if 0 < P,
H(Q|P) := dp dP
400 otherwise.
Remark 3.21. Jensen’s inequality applied to the strictly convex function h(x) =

x log x yields

_ dg _
H(Q|P)_E[h<d—P)] > h(l) =0, (3.11)

with equality if and only if Q = P. <
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Example 3.22. Let 2 be a finite set and F be its power set. Every probability Q on
(2, ) is absolutely continuous with respect to the uniform distribution P. Let us
denote Q(w) := Q[ {w}]. Clearly,

H@H=ZQMM%Q=ZQ@MQ@HMM

weR (a)) weR

The quantity
H(Q):=— ) Q(w)log Q(w)

we

is usually called the entropy of Q. Observe that H(P) = log |€2], so that
H(Q|P)=H(P) — H(Q).

Since the left-hand side is non-negative by (3.11), the uniform distribution P has
maximal entropy among all probability distributions on (2, ¥). <

Example 3.23. Let © = N(m, 0?) denote the normal distribution with mean m and
variance o2 on R. Then, for i = N (1, 52)

dﬁ( ) o (x—ﬁ)z_'_(x—m)2
—(x) = <exp| — ,
du 7 P 252 2672
and hence
HE ) 1 | o2 1+02 +1 m—im\> o
=z 108 = — =5 = .
sk 2 g02 52 2 o

The following result shows that P is the unique minimizer of the relative entropy
H(Q|P) among all probability measures Q with Eg[Y | = E,[Y ].

Theorem 3.24. Let mqg := m(Py,) for some given Ao € R?. Then, for any probability
measure Q on (2, F) such that Eg[Y | = my,

H(Q|P) = H(Py,|P) = Ao - mo — log Z(Ao),
and equality holds if and only if Q = Py,. Moreover, Ao maximizes the function
A-mo —log Z(A)
over all A € R,

Proof. Let Q be a probability measure on (€2, ¥) such that Eg[ Y | = mg. We show
first that for all A € R?

H(Q|P) = H(Q|P,) + A -mo —log Z(A). (3.12)
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To this end, note that both sides of (3.12) are infinite if Q &« P. Otherwise

dQ dQ dp, _dQ 7
dP ~ dP, dP ~ dP, Z())’

and taking logarithms and integrating with respect to Q yields (3.12).
Since H(Q|P,) > 0 according to (3.11), we get from (3.12) that

H(Q|P) > A -mo—logZ(A) (3.13)

for all A € R9 and all measures O such that Eg[Y | = mg. Moreover, equality holds
in (3.13) if and only if H(Q|P,) = 0, which is equivalent to Q = P,. In this case, A
must be such that m (L) = mg. In particular, for any such A

H(P,|P) = A-mg — log Z(L).

Thus, Ao maximizes the right-hand side of (3.13), and P, minimizes the relative
entropy on the set

Mo:={Q [ Eg[Y]=mo}.

But the relative entropy H(Q|P) is a strictly convex functional of Q, and so it can
have at most one minimizer in the convex set My. Thus, any A with m(X) = mg
induces the same measure Pj,. O

Taking mo = 0 in the preceding theorem yields a special equivalent risk-neutral
measure in our financial market model, namely the entropy-minimizing risk neutral
measure. Sometimes it is also called the Esscher transform of P. Recall our assump-
tion (3.9).

Corollary 3.25. Suppose the market model is arbitrage-free. Then there exists a
unique equivalent risk-neutral measure P* € P which minimizes the relative entropy
H(P|P) overall P € . The density of P* is of the form

dpP* Y

dP _ E[e" Y]

where \* denotes a minimizer of the moment generating function E[ ¢*Y ] of Y.
Proof. This follows immediately from Corollary 3.19 and Theorem 3.24. O

By combining Theorem 3.24 with Remark 3.17, we obtain the following corollary.
It clarifies the question of uniqueness in the representation of points in the relative
interior of I'(P o Y ~!) as barycenters of the exponential family.

Corollary 3.26. [f the non-redundance condition (3.10) holds, then
A+ m(A)

is a bijective mapping from R toriT'(P o Y™1).
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Remark 3.27. It follows from Corollary 3.19 and Theorem 3.24 that for all m €
rif(PoY™!)
min  H(Q|P) = max[A -m — log Z(})]. (3.14)
EplY ]=m reRd

Here, the right-hand side is the Fenchel-Legendre transform of the convex function
log Z evaluated at m € RY. <&

The following theorem shows that the variational principle (3.14) remains true for
all m € R?, if we replace “min” and “max” by “inf” and “sup”.

Theorem 3.28. For m € R4

inf  H(Q|P)= sup[\-m —logZ(\)].
EqlY1=m JeRd

The proof of this theorem relies on the following two general lemmas.

Lemma 3.29. For any probability measure Q,
H(QIP)=  sup  (EqlZ]-logE[e”])
ZeLX(Q,F,P) (3.15)
— V4 V4 1
=sup{Eg[Z]—logE[e” ]| e € £'(P)}.
The second supremum is attained by Z := log 3—% if O < P.

Proof. We first show > in (3.15). To this end, we may assume that H(Q|P) < oo.
For Z with ¢Z € L£!(P) let PZ be defined by

dPZ_ ez
dP  E[eZ]
Then P is equivalent to P and
I a0 1 a0 +1 dp?
0g — = log — + log ——.
&ap = °%apz T % p

Integrating with respect to Q gives
H(Q|P) = H(Q|P?) + Eol Z] —log E[¢” ].

Since H(Q|P%) > 0 by (3.11), we have proved that H(Q|P) is larger than or equal
to both suprema on the right of (3.15).

To prove the reverse inequality, consider first the case Q « P. Take Z, := nl,
where A is such that Q[ A] > Oand P[A] = 0. Then, as n 1 oo,

EglZy]1—logE[e?1=n-Q[A] —> oo = H(Q|P).
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Now suppose that Q < P with density ¢ = dQ/dP. Then Z := log ¢ satisfies
e? € L1(P) and
H(Q|P) = EglZ]—log E[¢”].

For the first identity we need an approximation argument. Let Z, = (—n)V (log ¢) An.
We split the expectation E[ e% ] according to the two sets {¢ > 1} and {¢ < 1}. Using
monotone convergence for the first integral and dominated convergence for the second
yields

E[e’"] — E[%] = 1.

Since x logx > —1/e, we have ¢Z, > —1/e uniformly in n, and Fatou’s lemma
yields

liminf Eg[ Z, ] = liminf E[9Z, ] > E[¢logg]= H(Q|P).
ntoo ntoo

Putting both facts together shows

lin%inf (Egl Zy1—logE[e?"]) > H(Q|P),
nToo
and the inequality < in (3.15) follows. O

Remark 3.30. The preceding lemma shows that the relative entropy is monotone with
respect to an increase of the underlying o-algebra: Let P and Q be two probability
measures on a measurable space (2, ), and denote by H (Q| P) their relative entropy.
Suppose that Fq is a o-field such that £y C ¥ and denote by Hy(Q|P) the relative
entropy of Q with respect to P considered as probability measures on the smaller
space (2, Fy). Then the relation L>*(2, Fo, P) C LX(R2, F, P) implies

Ho(Q|P) < H(Q|P);
in general this inequality is strict. <

Lemma 3.31. Forall o > 0, the set
Dy =]l (Q F.P)|l9=0, El[p]l=1, E[plogp] <a}
is weakly sequentially compact in L' (Q, ¥, P).
Proof. Let LP := LP(2, &, P). The set of all P-densities,
Di={pel'l9=0, Elp]=1},

is clearly convex and closed in L!. Hence, this set is also weakly closed in L' by
Theorem A.59. Moreover, Lemma 3.29 states that for ¢ € O

Elplogg] = ZsuLpOo (E[ng] —logE[eZ]).
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In particular,
¢ = Elglogy]

is a weakly lower semicontinuous functional on £, and so &, is weakly closed. In
addition, ®,, is bounded in L' and uniformly integrable, due to the criterion of de
la Vallée Poussin; see, e.g., Lemma 3 in §6 of Chapter II of [187]. Applying the
Dunford—Pettis theorem and the Eberlein—Smulian theorem as stated in Appendix A.7
concludes the proof. O

Proof of Theorem 3.28. In view of Theorem 3.24 and inequality (3.13) (whose proof
extends to all m € R?), it remains to prove that

inf  H(Q|P) < sup[A-m —logZ(X)] (3.16)
EglY]=m AreR

for those m which do not belong to ri (), where u := P o Y~!. The right-hand side
of (3.16) is just the Fenchel-Legendre transform at m of the convex function log Z
and, thus, denoted (log Z)*(m).

First, we consider the case in which m is not contained in the closure T" (1) of the
convex hull of the support of 1. Proposition A.1, the separating hyperplane theorem,
yields some £ € R? such that

§-m>sup(€-x|xeT(u)=sup{§-x|xesuppu}.
By taking A, := né, it follows that

Ap-m—logZ(hy) =n(&-m— sup &-y) — +oo asn 1 oo.
yesupp i

Hence, the right-hand side of (3.16) is infinite if m & T ().
It remains to prove (3.16) for m € F(M)\ ri ' (w) with (log Z)*(m) < oo. Recall
from (1.22) that ri ' () = ri T'(u). Pick some m; € ri (i) and let

e (1-3)
my:=-m+1——|m.
n n

Then m,, € riI"(u) by (1.21). By the convexity of (log Z)*, we have

n —

1
(log Z)*(m))
n

1
lim sup(log Z)*(m,) < lim sup <—(log Z)*(my) +
n

ntoo ntoo

3.17)
= (log Z)* (m).

We also know that to each m,, there corresponds a 1, € R4 such that

my=E,[Y] and H(P,,|P) = (log Z)*(my). (3.18)
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From (3.17) and (3.18) we conclude that

lim sup H (P, | P) = lim sup(log Z)*(m,) < (log Z)*(m) < oo.

ntoo ntoo

In particular, H (Py,|P) is uniformly bounded in n, and Lemma 3.31 implies that —
after passing to a suitable subsequence if necessary — the densities d Py, /d P converge
weakly in L'(Q, F, P) to a density ¢. Let dP, = ¢dP. By the weak lower
semicontinuity of

e > H(QI|P),
dP
which follows from Lemma 3.29, we may conclude that H (P |P) < (log Z)*(m).
The theorem will be proved once we can show that Eo[ Y ] = m. To this end, let
y := sup, (log Z)*(m,), which is a finite non-negative number by (3.17). Taking

2=l gVl

on the right-hand side of (3.15) yields
y > aEkn[ Y] 'I{\lec} ] — log E[exp (a|Y|I{|y|ZC})] for all n < oo.

Note that the rightmost expectation is finite due to condition (3.9) and Lemma 3.13.
By taking « large so that y /o < ¢/2 for some given ¢ > 0, and by choosing ¢ such
that

log E[ exp (a|Y|I{|Y‘ZC}) ] < %,
we obtain that
sup B[] Ty ] < 2
But
E;,[1Y] 'I{\y|<c}] — Eco 7] ’I{|y|<c}]

by the weak convergence of d Py, /d P — d P, /d P, and so taking ¢ | 0 yields

m=1lim E; [Y]= Ex[Y],
ntoo

as desired. O

3.3 Optimal contingent claims
In this section we study the problem of maximizing the expected utility
Elu(X)]

under a given budget constraint in a broader context. The random variables X will
vary in a general convex class X C L%(Q, F, P) of admissible payoff profiles. In
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the setting of our financial market model, this will allow us to explain the demand for
non-linear payoff profiles provided by financial derivatives.

In order to formulate the budget constraint in this general context, we introduce a
linear pricing rule of the form

O(X)=E*[X]=E[¢X]

where P* is a probability measure on (2, ), which is equivalent to P with density
. For a given initial wealth w € R, the corresponding budget set is defined as

B:={XeXNL'(P)|E[X]<w). (3.19)
Our optimization problem can now be stated as follows:
Maximize E[ u(X) ] among all X € 8. (3.20)

Note, however, that we will need some extra conditions which guarantee that the
expectations E[ u#(X) ] make sense and are bounded from above.

Remark 3.32. In general, our optimization problem would not be well posed without
the assumption P* ~ P. Note first that it should be rephrased in terms of a class
X of measurable functions on (2, ¥) since we can no longer pass to equivalence
classes with respect to P. If P is not absolutely continuous with respect to P* then
there exists A € F such that P[A] > 0 and P*[A] = 0. For X e L] (P*) and
¢ > 0, the random variable X=X+ cl, would satisfy E*[X] = E*[X] and

E[u(X)] > E[u(X)]. Similarly, if P* [A] > 0and P[A] = O then

would have the same price as X but higher expected utility. In particular, the expec-
tations in (3.20) would be unbounded in both cases if X is the class of all measurable
functions on (€2, ) and if the function u is not bounded from above. <&

Remark 3.33. If a solution X™* with E[ u(X™)] < oo exists then it is unique, since
B is convex and u is strictly concave. Moreover, if X = LYQ, F,P)or X =
L9r(§2 , P) then X* satisfies

E*Y[X*]=w
since E*[ X*] < w would imply that X := X* 4+ w — E*[ X*] is a strictly better
choice, due to the strict monotonicity of u. &>

Let us first consider the unrestricted case X = L%(Q2, F, P) where any finite ran-
dom variable on (2, F, P) is admissible. The following heuristic argument identifies
a candidate X™ for the maximization of the expected utility. Suppose that a solution
X* exists. For any X € L°°(P) and any A € R,

X =X"+MX - E*[X])
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satisfies the budget constraint E*[ X; ] = w. A formal computation yields

d
0= d—kikzoE[u(XA)]
= E[«/(X")(X — E*[X])]
= E[u'(X")X ]~ E[ XE[u'(X")]¢]
=E[XW (X" —co)]
where ¢ := E[u/(X*)]. The identity
E[Xu'(X*)]=cE[Xg]

for all bounded measurable X implies u’(X*) = c ¢ P-almost surely. Thus, if we
denote by

[:=@u)™!
the inverse function of the strictly decreasing function u’, then X* should be of the

form
X*=1(cy).

We will now formulate a set of assumptions on our utility function # which guar-
antee that X* := I (c ¢) is indeed a maximizer of the expected utility, as suggested by
the preceding argument.

Theorem 3.34. Suppose u : R — R is a continuously differentiable utility function
which is bounded from above, and whose derivative satisfies

lim u'(x) = +o0. (3.21)

J—00
Assume moreover that ¢ > 0 is a constant such that
X*:=1I(cp) e L'(P").

Then X* is the unique maximizer of the expected utility E[ u(X)] among all those
X € LY(P*) for which E*[ X | < E*[ X* 1. In particular, X* solves our optimization
problem (3.20) for X = L%, ¥, P) if ¢ can be chosen such that E*[ X*] = w.

Proof. Uniqueness follows from Remark 3.33. Since u is bounded from above, its
derivative satisfies

lim u/(x) =0,

x7too

in addition to (3.21). Hence, (0, o¢) is contained in the range of u’, and it follows that
I(c ) is P-a.s. well-defined for all ¢ > 0.

To show the optimality of X* = I(c ¢), note that the concavity of u implies that
forany X € L'(P*)

u(X) < u(X") +u' (X)X = X*) =u(X") +cp(X — X*).
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Taking expectations with respect to P yields
Elu(X)] < E[u(X*)]+cE*[X - X"].

Hence, X* is indeed a maximizer in the class { X € L'(P*) | E*[ X ] < E*[ X*]}.
O

Example 3.35. Let u(x) = 1 — ¢~“" be an exponential utility function with constant
absolute risk aversion « > 0. In this case,

1 y
I(y) = ——log —.
o

It follows that

" _ 1 c 1
E*[I(cyp)]=—=log— — —-E[glogy]
o o o
1 1
— ——log & — — - H(P*|P),
o o o

where H(P*|P) denotes the relative entropy of P* with respect to P; see Defini-
tion 3.20. Hence, the utility maximization problem can be solved for any w € R if
and only if the relative entropy H (P*|P) is finite. In this case, the optimal profile is
given by
X = - logy +w + lH(P*IP),
o o
and the maximal value of expected utility is

E[u(X*)]=1—exp (—aw — H(P*|P)),

corresponding to the certainty equivalent
1 *
w+ —H(P"|P).
o

Let us now return to the financial market model considered in Section 3.1, and let P*
be the entropy-minimizing risk-neutral measure constructed in Corollary 3.25. The
density of P* is of the form

e—aé’ Y
where £* € R? denotes a maximizer of the expected utility E[u(§ - Y) ]; see Exam-
ple 3.12. In this case, the optimal profile takes the form

'

*

e
Al

X*=&Y+w= ,
d 147

i.e., X* is the discounted payoff of the portfolio £ = (69, &%), where 0 = w —£* .
is determined by the budget constraint § - @ = w. Thus, the optimal profile is given
by a linear profile in the given primary assets S, ..., S¢: No derivatives are needed
at this point. <
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In most situations it will be natural to restrict the discussion to payoff profiles which
are non-negative. For the rest of this section we will make this restriction, and so the
utility function # may be defined only on [0, 0o0). In several applications we will also
use an upper bound given by an F -measurable random variable W : Q@ — [0, o0].
We include the case W = +oo and define the convex class of admissible payoff
profiles as

X:={XeL’P)|0<X <W P-as.}

Thus, our goal is to maximize the expected utility E[ #(X) ] among all X € 8 where
the budget set B is defined in terms of X and P* as in (3.19), i.e.,

B={XeL'(P)|0<X<W P-as. and EX[X]<w]}.
We first formulate a general existence result:

Proposition 3.36. Let u be any utility function on [0, 00), and suppose that W is
P-a.s. finite and satisfies E{u(W)] < oco. Then there exists a unique X* € B which
maximizes the expected utility E[ u(X) ] among all X € 8.

Proof. Take a sequence (X,) in 8 with E*[ X,,] < w and such that E[u(X,)]
converges to the supremum of the expected utility. Since sup, |X,| < W < oo
P-almost surely, we obtain from Lemma 1.69 a sequence

%n e conv{ X,,, Xp+1, ...}

of convex combinations which converge almost-surely to some X. Clearly, every X,
is contained in B. Fatou’s lemma implies

E[X] gliﬂng*[%“n] <w,

and so X € B. Each X, can be written as Z;"Zl a;’an. for indices n; > n and
coefficients al." > 0 summing up to 1. Hence,

m
u(Xn) = Y alu(Xy,),
i=1

and it follows that _
E[u(X,)] = inf E[u(Xp)].

By dominated convergence,

E[u(X)] = lim E[u(Xn)],

and the right-hand side is equal to the supremum of the expected utility. O
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Remark 3.37. The argument used to prove the preceding proposition works just as
well in the following general setting. Let U : 8 — R be a concave functional on a
set B of random variables defined on a probability space (2, ', P) and with values
in R". Assume that

* B is convex and closed under P-a.s. convergence,

» There exists a random variable W € L(J)r(Q, F, P) with |Xi| <W < oo P-as.

foreach X = (X',..., X") € B,
e sup U(X) < oo,
XeB

U is upper semicontinuous with respect to P-a.s. convergence.

Then there exists an X* € B which maximizes U on 8B, and X* is unique if U is
strictly concave. As a special case, this includes the utility functionals

U(X) = inf Eglu(X)],
Qeq

appearing in a robust Savage representation of preferences on n-dimensional asset
profiles, where u is a utility function on R"” and @ is a set of probability measures
equivalent to P; see Section 2.5. <

We turn now to a characterization of the optimal profile X* in terms of the inverse
of the derivative u’ of u in case where u is continuously differentiable on (0, 00). Let

a:=1limu'(x)>0 and b:=u'(0+4)=limu'(x) < +o0.
paee) x}0

We define
I : (a,b) — (0, c0).

as the continuous, bijective, and strictly decreasing inverse function of u’ on (a, b),
and we extend I to the full half axis [0, oo] by setting

0 fory > b,

(3.22)
400 fory <a.

I"(y) = {

With this convention, I : [0, co] — [0, oo] is continuous.

Remark 3.38. If u is a utility function defined on all of R, the function I is the
inverse of the restriction of u’ to [0, 00). Thus, I is simply the positive part of
the function I = (u’)~!. For instance, in the case of an exponential utility function
u(x) =1—e*,wehavea =0,b = «, and

| )

Ity = (—log 1) = (1), y=o. (3.23)
07 o

<&
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Theorem 3.39. Assume that X* € B is of the form
X*=It(cp) AW

for some constant ¢ > 0 such that E*[ X* ] = w. If E{u(X*)] < oo then X* is the
unique maximizer of the expected utility E[u(X) ] among all X € 8B.

Proof. In a first step, we consider the function

v(y,w) := sup (u(x) — xy) (3.24)
0<x<W(w)

defined for y € R and w € Q. Clearly, for each w with W(w) < oo the supremum
above is attained in a unique point x*(y) € [0, W(w)], which satisfies

() =0 << u'(x)<y foralxe (O, W(a))),
=W << &) >y forallx € (0, W(w)).

Moreover, y = u/(x*(y)) if x*(y) is an interior point of the interval [0, W(w)]. It
follows that
) =17() A W(w),

or
X*=x"(cp) on{W < oo} (3.25)

If W(w) = +o0, then the supremum in (3.24) is not attained if and only if
u'(x) > y for all x € (0,00). By our convention (3.22), this holds if and only if
y < a and hence I (y) = +oo. But our assumptions on X* imply that I *(c ¢) < 0o
P-a.s. on {W = oo}, and hence that

X*=x*(cep) P-as.on{W = co}. (3.26)
Putting (3.24), (3.25), and (3.26) together yields
u(X*) — X*cp =v(cp,-) P-as.
Applied to an arbitrary X € 8B, this shows that
u(X*) —cpX* >u(X) —cepX P-as.
Taking expectations gives
Elu(X*)]1> E[u(X)]1+c- E*[ X" = X1> E[u(X)].

Hence, X* maximizes the expected utility on 8. Uniqueness follows from Re-
mark 3.33. O

In the following examples, we study the application of the preceding theorem to
CARA and HARA utility functions. For simplicity we consider only the case W = oc.
The extension to a non-trivial bound W is straightforward.
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Example 3.40. For an exponential utility function u(x) = 1 —e~%* we have by (3.23)

oo =~ o(10g(22)) = Sn(22),

o y \a

where h(x) = (x logx)™. Since & is bounded by e~ !, itfollows that o It (y @) belongs
to L1 (P) for all y > 0. Thus,

1 ye
g0) =BT o)) =~ E[h(2F) ]
y o
decreases continuously from 400 to 0 as y increases from 0 to oo, and there exists a
unique ¢ with g(c) = w. The corresponding profile

X*:=1I"(co)

maximizes the expected utility E[u(X) ] among all X > 0. Let us now return to
the special situation of the financial market model of Section 3.1, and take P* as the
entropy-minimizing risk-neutral measure of Corollary 3.25. Then the optimal profile
X* takes the form

X* =Y - KT,

where £* is the maximizer of the expected utility E[u (& - Y) ], and where K is given
by
1 1 . 1 1
K=—log — —logE[e™"Y 1= —log & + —H(P*|P).
o o o o o o

Note that X* is a linear combination of the primary assets only in the case where
&* .Y > K P-almost surely. In general, X* is a basket call option on the attainable
asset w + (1 +r)é* - Y € V with strike price w + (1 + r)K. Thus, a demand for
derivatives appears. <&

Example 3.41. If u isa HARA utility function of index y € [0, 1) thenu’(x) = xvV 1
hence

S
-y

I =y

and
1 1

IT(yp)=y 77 .¢ 7.

<

In the logarithmic case y = 0, we assume that the relative entropy H(P|P*) of P
with respect to P* is finite. Then

L. W dP
X'=—=w
) dP*

is the unique maximizer, and the maximal value of expected utility is

El[log X*] =logw + H(P|P¥).
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Ify € (0,1) and
1
Ely" ™ =B ] <o
then the unique optimal profile is given by

Y 1

Y =1 -

X =w (B[ T ) e T
and the maximal value of expected utility is equal to

Y 1—y

1 _r
Elu(x")] = —w"(E[¢"™ ]) o

The following corollary gives a simple condition on W which guarantees the
existence of the maximizer X* in Theorem 3.39.

Corollary 3.42. If E[u(W)] < ococandif 0 < w < E*¥[ W] < 00, then there exists
a unique constant ¢ > 0 such that

X*=IT(cp) AW

satisfies E*[ X*] = w. In particular, X* is the unique maximizer of the expected
utility E[u(X) ] among all X € 8.

Proof. For any 8 € (0, 00),
y= It AB

is a continuous decreasing function with limy4, ITO)AB=0and IT(y)) AB=p
for all y < u’(B). Hence, dominated convergence implies that the function

g = E I (yo) AW,
is continuous and decreasing with

lim g(y) =0 <w < E*¥[ W] =limg(y).
ytoo y40

Moreover, g is even strictly decreasing on {y | 0 < g(y) < E*[W]}. Hence,
there exists a unique ¢ with g(c¢) = w, and Theorem 3.39 yields the optimality of the
corresponding X*. O

Let us now extend the discussion to the case where preferences themselves are
uncertain. This additional uncertainty can be modelled by incorporating the choice of
a utility function into the description of possible scenarios; for an axiomatic discussion
see [130]. More precisely, we assume that preferences are described by a measurable
function u on [0, co) x €2 such that u(-, w) is a utility function on [0, co) which is
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continuously differentiable on (0, 00). For each w € €, the inverse of u'(-, w) is
extended as above to a function

IT(, w): [0, 00] —> [0, c0].

Using exactly the same arguments as above, we obtain the following extension of
Corollary 3.42 to the case of random preferences:

Corollary 3.43. IfE[u(W, )] < occandif 0 < w < E*[ W] < 00, then there exists
a unique constant ¢ > 0 such that

X*(w): = I+(c<p(a)), w) A W(w)

is the unique maximizer of the expected utility

Efu(X,)]= /M(X(w),w) P(dw)

among all X € B.

So far, we have discussed the structure of asset profiles which are optimal with
respect to a fixed utility function u. Let us now introduce an optimization problem
with respect to the uniform order = = as discussed in Section 2.4. The partial order = .
can be viewed as a reflexive and transitive relation on the space of financial positions

X :=LL(Q F,P)
by letting

&= E[u(X)]> E[u(Y)] for all utility functions u, '

where ux and py denote the distributions of X and Y under P. Note that X =
Y = X if and only if X and Y have the same distribution; see Remark 2.59. Thus,
the relation = . is antisymmetric on the level of distributions but not on the level of
financial positions.

Let us now fix a position Xg € X such that E*[ Xo] < oo, and let us try to
minimize the cost among all positions X € X which are uniformly at least as attractive
as Xo:

Minimize E*[ X ] among all X = = Xo.

ni

In order to describe the minimal cost and the minimizing profile, let us denote by Fj,
and F, the distribution functions and by g, and gx, quantile functions of ¢ and Xq;
see Appendix A.3.

Theorem 3.44. For any X € X such that X = Xo,

1
E*[X]=> /0 G (1 = ) qx,(s) ds. (3.28)
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The lower bound is attained by X* = f(¢), where f is the decreasing function on
[0, co) defined by
F) = qx,(1 — Fyp(x))

if x is a continuity point of F,, and by
1 F(p (x)

F(p(x) - Fga(x_) Fyp(x—)

fx) = qxo(1 —1)dt

otherwise.

The proof will use the following lemma, which yields another characterization of
the relation 3= .

Lemma 3.45. For two probability measures p and v on R, the following conditions
are equivalent:

@ n=,
(b) For all decreasing functions h : (0, 1) — [0, 00),

1 1
/ h()qu(t) dt = / h(t)gy (1) dt, (3.29)
0 0

where q,, and q, are quantile functions of u and v.
(c) The relation (3.29) holds for all bounded decreasing functions h : (0,1) —
[0, 00).

Proof. The relation p >= v is equivalent to

ni

y y
/ qu@)dt > / qy(t)dt forally €0, 1];
0 0
see Theorem 2.58. The implication (c) =-(a) thus follows by taking 7 = I 011" For the
proof of (a) =(b), we may assume without loss of generality that 4 is left continuous.

Then there exists a positive Radon measure n on (0, 1] such that i(r) = n([t, 1]).
Fubini’s theorem yields

1 1 y
/ h(t) g (1) dit = f / 4 (1) di n(dy)
0 0 0
1 y
2/ / qv(t)dt n(dy)
0 0

1
=/ h(t) gy (t) dt. O
0
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Proof of Theorem 3.44. Using the first Hardy—Littlewood inequality in Theorem A.24,
we see that

1
E*[X]=E[X¢p] 2/0 qy(1 — 1) gx (1) dt,

where gx is a quantile function for X. Taking h(¢) := ¢, (1 —1) and using Lemma 3.45
thus yields (3.28).

Let us now turn to the identification of the optimal profile. Note that the function
f defined in the assertion satisfies

fay) = Exlglqy] (3.30)

where g is defined by g(¢) = gx,(1 —1), and where E, [ - | g, ] denotes the conditional
expectation with respect to g, under the Lebesgue measure A on (0, 1). Let us show
that X* = f(¢) satisfies X* = = X(. Indeed, for any utility function u

1
ELux) ) = E[u(f@)] = [ u(rigp)as
1 1
= [ Culan = 0)ar= [ ulax o) ar

= E[u(Xo) ],

where we have applied Lemma A.19 and Jensen’s inequality for conditional expecta-
tions. Moreover, X* attains the lower bound in (3.28):

1
E'[X*1=E[f(pol= /0 fgp®) qp(1) dr

1 1
=/O qxo(1 — 1) qu(1) dt =/O gx0(t) qo(1 — 1) dt,
due to (3.30). I

Remark 3.46. The solution X* has the same expectation under P as Xo. Indeed,
(3.30) shows that

1 1
E[X*]:E[f((p)]:/o f(q(p(t))dtz/o qx,(1 —0)dt = E[Xo]. <

Remark 3.47. The lower bound in (3.28) may be viewed as a “reservation price” for
Xp in the following sense. Let X be a financial position, and let X be any class of
financial positions such that X € X is available at price 7 (X). For a given relation >
on X U {Xo},

mr(Xo) =inf{xn(X) | X e X, X = Xo}

is called the reservation price of X¢ with respect to X, 7, and >.
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If X is the space of constants with w(c) = c, and if the relation > is of von
Neumann—Morgenstern type with some utility function u, then g (Xo) reduces to the
certainty equivalent of X with respect to u; see (2.9).

In the context of the optimization problem (3.20), where

X > Xo 1= E[u(X)]= E[u(Xo)],

the reservation price is given by E*[ X* ], where X™* is the utility maximizer in the
budget set defined by w := E*[ X ].

In the context of the financial market model of Chapter 1, we can take X as the
space V of attainable claims with

V>Xy:<< V=>XgP-as.

and 7(V) = & -7 for V. = £ - S. In this case, the reservation price wr(Xo) coincides
with the upper bound 7,,,(X() of the arbitrage-free prices for Xg; see Theorem 1.31. <

3.4 Microeconomic equilibrium

The aim of this section is to provide a brief introduction to the theory of market
equilibrium. Prices of assets will no longer be given in advance. Instead, they will
be derived from “first principles” in a microeconomic setting where different agents
demand asset profiles in accordance with their preferences and with their budget
constraints. These budget constraints are determined by a given price system. The
role of equilibrium prices consists in adjusting the constraints in such a way that the
resulting overall demand is matched by the overall supply of assets.

Consider a finite set 4 of economic agents and a convex set X; C L@, ¥, P)of
admissible claims. At time t = 0, each agent a € »4 has an initial endowment whose
discounted payoff at time ¢ = 1 is described by an admissible claim

W, e X, ac€on.

W::ZWa

ach

The aggregated claim

is also called the market portfolio. Agents may want to exchange their initial endow-
ment W, against some other admissible claim X, € X. This could lead to a new
allocation (X,)4e.4 if the resulting total demand matches the overall supply:

Definition 3.48. A collection (X;)qe4 C X iscalled afeasible allocation if it satisfies
the market clearing condition

Z X, =W P-as. (3.31)
ach
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The budget constraints will be determined by a linear pricing rule of the form
(X)) =E[pX], XeX,

where @ is a price density, i.e., an integrable function on (€2, #) suchthatp > 0 P-a.s.
and E[|W,|¢] < oo for all a € A. To any such ¢ we can associate a normalized
price measure P¥ ~ P with density g E[ ¢ 17!

Remark 3.49. In the context of our one-period model of a financial market with
d risky assets St ..., 5% and a risk-free asset S® = 1 + r, P? is a risk-neutral
measure if the pricing rule ® is consistent with the given price vector 7 = (7°, 1),
where 70 = 1. In this section, the pricing rule will be derived as an equilibrium
price measure, given the agents’ preferences and endowments. In particular, this will
amount to an endogenous derivation of the price vector 7. In a situation where the
structure of the equilibrium is already partially known in the sense that it is consistent
with the given price vector 7, the construction of a microeconomic equilibrium yields
a specific choice of a martingale measure P*, i.e., of a specific extension of 7 from
the space V of attainable payoffs to a larger space of admissible claims. <

The preferences of agent a € 4 are described by a utility function u,. Given the
price density ¢, an agent a € + may want to exchange the endowment W, for an
admissible claim X}, which maximizes the expected utility

Eluq(X) 1
among all X in the agent’s budget set

Bi(p):={X e X|E[¢X]=<E[pW.]}
={X e X|E’[X]<E’[W4l}.

In this case, we will say that X{ solves the utility maximization problem of agenta € A
with respect to the price density ¢. The key problem is whether ¢ can be chosen in
such a way that the requested profiles X{;, a € », form a feasible allocation.

Definition 3.50. A price density ¢* together with a feasible allocation (X})sc.4 is
called an Arrow—Debreu equilibrium if each X solves the utility maximization prob-
lem of agent a € 4 with respect to ¢*.

Thus, the price density ¢* appearing in an Arrow—Debreu equilibrium decentralizes
the crucial problem of implementing the global feasibility constraint (3.31). This
is achieved by adjusting the budget sets in such a way that the resulting demands
respect the market clearing condition, even though the individual demand is determined
without any regard to this global constraint.

Example 3.51. Assume that each agent a € + has an exponential utility function
with parameter o, > 0, and let us consider the unconstrained case

x=L%Q, F, P).
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In this case, there is a unique equilibrium, and it is easy to describe it explicitly. For
a given pricing measure P* ~ P such that W, € L'(P*) for all a € +, the utility
maximization problem for agent a € #4 can be solved if and only if H(P*|P) < oo,
and in this case the optimal demand is given by

1 1
Xy =——logp* +w,; + —H(P*|P)
oy oy

where
w, = E* [ W, 1;

see Example 3.35. The market clearing condition (3.31) takes the form
1 % * 1 *
W =—=logg*+ Y wi+—H(P*|P)
« achA o

where « is defined via

1 1
—= Z —. (3.32)

o
ach ¢

Thus, a normalized equilibrium price density must have the form

e—aW

¢ = W, (3.33)

and this shows uniqueness. As to existence, let us assume that
E[[Wale ®Y ] <00, ac€;

this condition is satisfied if, e.g., the random variables W, are bounded from below.
Define P* ~ P via (3.33). Then

H(P*|P) = —a EX[W]—logE[e ®" ] < 0,

and the optimal profile for agent a € +A with respect to the pricing measure P* takes
the form

X: = w!+ —(W— E*[W]). (3.34)
a
Since
> wi=Ef W],
acA

the allocation (X})sc.4 is feasible, and so we have constructed an Arrow—Debreu
equilibrium. Thus, the agents share the market portfolio in a linear way, and in
inverse proportion to their risk aversion.
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Let us now return to our financial market model of Section 3.1. We assume that
the initial endowment of agent a € 4 is given by a portfolio 1, € R4+ 50 that the
discounted payoff at time t = 1 is

ﬁa'g

= , ac€ah.
1+r

Wa

In this case, the market portfolio is given by W =7 - §/(1 + r) with 77 := Yalla =
(no, n). The optimal claim for agent a € 4 in (3.34) takes the form

P S
Xa: o T+ —n- _r_ﬂ' s

where m = (1, ) and

. Si
! =E"‘|:1+ :| fori =1,...,d.
r

Thus, we could have formulated the equilibrium problem within the smaller space
X = 'V of attainable payoffs, and the resulting equilibrium allocation would have been
the same. In particular, the extension of X from ‘V to the general space L°(Q, ¥, P)
of admissible claims does not create a demand for derivatives in our present example.

<&
From now on we assume that the set of admissible claims is given by
X =L9(Q,F, P),

and that the preferences of agent a € A are described by a utility function u, :
[0, co) — R which is continuously differentiable on (0, co). In particular, the initial
endowments W, are assumed to be non-negative. Moreover, we assume

P[W,>0]#0 foralla € .

and
E[W] < o0. (3.35)

A function ¢ € L! (2, ¥, P) such that ¢ > 0 P-a.s. is a price density if
E[pW] < o0;

note that this condition is satisfied as soon as ¢ is bounded, due to our assumption
(3.35). Given a price density ¢, each agent faces exactly the optimization problem
discussed in Section 3.3 in terms of the price measure P¥ ~ P. Thus, if (X})ac4
is an equilibrium allocation with respect to the price density ¢*, feasibility implies
0 < X} < W, and so it follows as in the proof of Corollary 3.42 that

XE =1 (cag®), ac A, (3.36)
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with positive constants ¢, > 0. Note that the market clearing condition

W= X = Y 1w

acAh ach

will determine ¢* as a decreasing function of W, and thus the optimal profiles X will
be increasing functions of W.

Before we discuss the existence of an Arrow—Debreu equilibrium, let us first illus-
trate the structure of such equilibria by the following simple examples. In particular,
they show that an equilibrium allocation will typically involve non-linear derivatives
of the market portfolio W.

Example 3.52. Let us consider the constrained version of the preceding example
where agents a € + have exponential utility functions with parameters o, > 0.
Define

w:=sup{c| W >c P-as.} >0,

and let P* be the measure defined via (3.33). For any agent a € #4 such that

wi = B[ W, = ai(E*[W]—w), (3.37)

a

the unrestricted optimal profile

X: = w} + —(W - E*[W])
(o7
satisfies X > 0 P-a.s. Thus, if all agents satisfy the requirement (3.37) then the
unrestricted equilibrium computed in Example 3.51 is a forteriori an Arrow—Debreu
equilibrium in our present context. In this case, there is no need for non-linear deriva-
tives of the market portfolio.

If some agents do not satisfy the requirement (3.37) then the situation becomes
more involved, and the equilibrium allocation will need derivatives such as call options.
Let us illustrate this effect in the simple setting where there are only two agents
a € A = {1, 2}. Suppose that agent 1 satisfies condition (3.37), while agent 2 does
not. For ¢ > 0, we define the measure P¢ & P in terms of the density

— e W on{W <},
VA

1
— e on (W > c},
Z>
where « is given by (3.32), and where the constants Z and Z; are determined by the
continuity condition
log Z, —logZ) = c(a; — @)
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and by the normalization E[¢°] = 1. Note that P = P* with P* as in (3.33).
Consider the equation

o c + c c

— E (W —=0)T]=w;:=E [W>]. (3.38)
o
Both sides are continuous in c¢. As c¢ increases from 0 to 400, the left-hand
side decreases from O% E*[W] to 0, while w; goes from w(z) < g—z E*[W] to
E®°[ W5 ] > 0. Thus, there exists a solution ¢ of (3.38). Let us now check that

Xi= 2 (W—0)F, XSi=W - X
2%)

defines an equilibrium allocation with respect to the pricing measure P¢. Clearly, X{
and X are non-negative and satisfy X{ + X5 = W. The budget condition for agent 2
is satisfied due to (3.38), and this implies the budget condition

E[X{]1=E[W]—w;5=w{
for agent 1. Both are optimal since
Xg =1 (ha ¢°)
with
AMi=0a1Z; and Ay = arZre*c.

Thus, agent 2 demands o% shares of a call option on the market portfolio W with strike
¢, agent 1 demands the remaining part of W, and so the market is cleared.

In the general case of a finite set + of agents, the equilibrium price measure P has
the following structure. There are levels 0 :=cp < --- <cy = ocowithl < N < |A|
such that the price density ¢ is given by

1

¢=—e PV on{Welc1,cl)
Zi
fori =1,..., N, where
1\—-1
Bi == ( Z a_) )
aEA; a
and where 4A; (i = 1,..., N) are the increasing sets of agents which are active at

the i layer in the sense that X, > 0 on {W € (¢j—1, c,-]}. At each layer (c;—1, ¢;],
the active agents are sharing the market portfolio in inverse proportions to their risk
aversion. Thus, the optimal profile X of any agent a € 4 is given by an increasing
piecewise linear function in W, and thus it can be implemented by a linear combination
of call options with strikes c¢;. More precisely, an agent a € 4; takes f; /«, shares of
the spread

W—ci)t =W —-c)F,

i.e., the agent goes long on a call option with strike ¢; 1 and short on a call option with
strike c;. &
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Example 3.53. Assume that all agents a € 4 have preferences described by HARA
utility functions so that

1
LFy)=y Tn, ach

with 0 < y, < 1. For a given price density ¢, the optimal claims take the form

_ 1
Xa =1 (cap) =bap T (3.39)

with constants b, > 0. If y, = y for all @ € 4, then the market clearing condition

(3.31) implies
W = Z Xq = (Zba>§0_ﬁ»

acA ach

i.e., the equilibrium price density ¢* takes the form

* __ l y—1
¢ == W,
where Z is the normalizing constant, and so the agents demand linear shares of the
market portfolio W. If risk aversion varies among the agents then the structure of the
equilibrium becomes more complex, and it will involve non-linear derivatives of the
market portfolio. Let us number the agents sothat A = {1, ..., n}andy; > --- > y,.
Condition (3.39) implies

X; =d; XPi
with some constants d;, and where
. 1 - Vn
Bi =
L=y
satisfies 81 > --- > B, = 1 with at least one strict inequality. Thus, each X; is a

convex increasing function of X,. In equilibrium, X, is a concave function of W
determined by the condition

n
de xXb=w, (3.40)
i=1

and the price density ¢* takes the form

L m—t
p* = Z ) (LI
As an illustration, we consider the special case “Bernoulli vs. Cramer”, where
A = {1,2} with u;(x) = /x and uz(x) = logx, ie., y1 = % and y» = 0; see
Example 2.40. The solutions of (3.40) can be parameterized with ¢ > 0 such that

X5 =2c(VW +c— ) €10, W]
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and
X{=W-X5.

The corresponding price density takes the form

L1 1
YT Z0 UWre— e

where Z(c) is the normalizing constant. Now assume that w1 e LY(P), and let
P denote the measure with density W~ (E[ W~! ])_1. As ¢ increases from 0
to oo, E[ X5 ] increases continuously from 0 to E°°[ W |, while E“[ W> ] goes con-
tinuously from E[W2] > 0to EX[W,] < E®[ W ]; here we use our assumption
that P[ W, > 0] #£ O for all a € 4. Thus, there is a ¢ € (0, c0) such that

E[X5]1=E[W:],

and this implies that the budget constraint is satisfied for both agents. With this choice
of the parameter ¢, (X{, X5) is an equilibrium allocation with respect to the pricing
measure P¢: Agent 2 demands the concave profile X5, agent 1 demands the convex
profile X¢, both in accordance with their budget constraints, and the market is cleared.

<&

Let us now return to our general setting, and let us prove the existence of an
Arrow—Debreu equilibrium. Consider the following condition:

w
limsupx u/,(x) < 0o and E[u; (—) :| <00, a€ . (3.41)
x40 | A

Remark 3.54. Condition (3.41) is clearly satisfied if

u, (0) := h?é u,(x) <oo, ach. (3.42)
X

Butitalso includes HARA utility functions u, with parameter y, € [0, 1) if we assume
E[W" '] <00, acah,
in addition to our assumption E[ W ] < oo. &

Theorem 3.55. Under assumptions (3.35) and (3.41), there exists an Arrow—-Debreu
equilibrium.

In a first step, we are going to show that an equilibrium allocation maximizes a
suitable weighted average

UMNX) =) ha El1a(Xa)]

acA
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of the individual utility functionals over all feasible allocations X = (X;)ses. The
weights are non-negative, and without loss of generality we can assume that they are
normalized so that the vector A := (A4)4e4 belongs to the convex compact set

A={)\e[0,1]”" | Z,\azl}.

ach

In a second step, we will use a fixed-point argument to obtain a weight vector and a
corresponding price density such that the maximizing allocation satisfies the individual
budget constraints.

Definition 3.56. A feasible allocation (X;),c4 is called A-efficient for A € A if it
maximizes U* over all feasible allocations.

In view of (3.36), part (b) of the following lemma shows that the equilibrium

allocation (X)) 4e . in an Arrow—Debreu equilibrium is A-efficient for the vector A =

(c- c;l)ae,A,, where ¢! := a c;l. Thus, the existence proof for an Arrow—Debreu

equilibrium is reduced to the construction of a suitable vector A* € A.
Lemma 3.57. (a) For any A € A there exists a unique A-efficient allocation (Xf;)aeﬂ.

(b) A feasible allocation (Xg)qen is A-efficient if and only if it satisfies the first
order conditions

dau,(Xa) <@, withequality on {X, > 0} (3.43)

with respect to some price density ¢. In this case, (Xg)aen coincides with
(X 2)%,,‘,, and the price density can be chosen as

@t = max Aa tl (X1 (3.44)

(c) Foreacha € A, X:} maximizes E[uy,(X) ] over all X € X such that

E[¢* X] < E[¢" X}].

Proof. (a): Existence and uniqueness follow from the general argument in Remark 3.37
applied to the set 8B of all feasible allocations and to the functional U*. Note that

UM(X) < max E[ug,(W)]
acA

for any feasible allocation, and that the right-hand side is finite due to our assumption
(3.35). Moreover, by dominated convergence, U” is indeed continuous on B with
respect to P-a.s. convergence.
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(b): Letus first show sufficiency. If X = (X,),e.4 1s afeasible allocation satisfying
the first order conditions, and ¥ = (Y;)4c.4 is another feasible allocation then

UMX) = U*(Y) = Y 2aElua(Xa) = ta(Ya) ]

ach
> Y raElu,(Xa)(Xa = Ya) ]
aceAh
=Elo( L x-2n)|=0

aeh

using concavity of u, in the second step and the first order conditions in the third.

This shows that X is A-efficient.

Turning to necessity, consider the A-efficient allocation (Xé)aeA for A € A and
another feasible allocation (X;)4es. Fore € (0,1], let Y7 1= eX, + (1 — s)Xﬁ.

Since (Y?)qex is feasible, A-efficiency of (X g)aeA yields

1 ey _ A
02 =% ha Elua(Y)) —ua(Xg) ]

aceh
> LS A B0 — X))
€ aeAh
= > haELu, (YD) (X — X2)1.
acA

(3.45)

Let us first assume (3.42); in part (d) of the proof we show how to modify the
argument under condition (3.41). Using dominated convergence and (3.42), we may

let & | O in the above inequality to conclude
Y El¢iX.1< ) Elg)X}1< El¢"W],
ach aeh

where
Qr = haul, (XD,

Note that ¢* is a price density since by (3.42)
0 < ¢* <max{Au,(0) | a €A} < oo.

Take a feasible allocation (X,),c.4 such that

X i, =

ach

for example, we can enumerate 4 := {1, ..., ||} and take X, := WI{

T (w) :=min{a | ¢*(w) = ¢*(w) }.

(3.46)

(3.47)

T=a) where
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In view of (3.46), we see that

Y Elg) X;1=El¢" W]. (3.48)
ach

This implies (pfl“ = ¢* on {X 2 > 0}, which is equivalent to the first order condition
(3.43) with respect to ¢*.

(c): In order to show optimality of X Z} we may assume without loss of generality
that P[ X 2 > 0] > 0, and hence %, > 0. Thus, the first order condition with respect
to ¢* takes the form

Xo =170 '¢h),

due to our convention (3.22). By Corollary 3.42, X* solves the optimization problem
for agent a € 4 under the constraint

E[¢* X]1< E[¢" X}].

(d): If (3.42) is replaced by (3.41), then we first need an additional argument in
order to pass from (3.45) to (3.46). Note first that by Fatou’s lemma,

lim inf D MELul,(Y)) Xa12= ) ha lim inf £[ u (YE) X4
ach acA

> Y haELug (X)) X .
ach

On the other hand, since

K :=max sup xu,(x) < oo
acA O<x<l

by (3.41), we have xu, (x) < k + xu, (1) <« (1 4 x) for all x > 0. This implies
W (X)Xe <V :=x(1+W)eL(P), (3.49)

and also
w,(YH X: <ul, (1—e) X))Xh <1 —o)7 'V,

since Y > (1 — &) X2. Thus, dominated convergence implies
E[u,(Y$) X)1— E[u,(X;)X,1, €10,

and this concludes the proof of (3.46).
By (3.49), we have

o XM= ul (XM XM e LY(P).

Hence E[ ¢* W ] < oo follows by taking in (3.46) a feasible allocation (X )4e.4 Which
is as in (3.47). We furthermore get (3.48), which yields as in part (b) the first order
conditions (3.43).
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It remains to show that ¢* is integrable in order to conclude that ¢* is a price
density. Our assumption (3.41) implies

w
F = " — ) e LY(P), 3.50
Eneai?”“(mJ SEm (320

and so it is enough to show that F > ¢*. Since X é =1If ((pA /Aa), feasibility and
Aq < 1 imply
W < I-‘r A < + A
< D15 @ < AImax 1 ("),
acA
hence

+/ A
FEpmealp @)
o (I (") = ¢* on {max 17 (") = 154"} O

After these preliminaries, we are now in a position to prove the existence of an
Arrow—Debreu equilibrium. Note that for each A € A the A-efficient allocation
(X 2)116 4 and the price density ¢* would form an Arrow—Debreu equilibrium if

E[¢*W,1=E[¢"X}] foralla € A. (3.51)

If this is not the case, then we can replace A by the vector g(1) = (ga (k))a A defined
by
. 1 A A
8a(A) == 2g + m -Elo" (W, — Xa)]’

where V is given by (3.49). Note that g(A) € A: Since the first order conditions
(3.43) together with (3.49) imply

E[¢" X2 =2 E[u,(X}) X211 <2, E[ V],

we have g,(A) > 0, and ) _, g,(2) = 1 follows by feasibility. Thus, we increase
the weights of agents which were allocated less than they could afford. Clearly, any
fixed point of the map g : A — A will satisfy condition (3.51) and thus yield an
Arrow—Debreu equilibrium.

Proof of Theorem 3.55. (a): The set A is convex and compact. Thus, the existence of
a fixed point of the map g : A — A follows from Brouwer’s fixed point theorem as
soon as we can verify that g is continuous; see, for instance, Corollary 16.52 in [2]
for a proof of Brouwer’s fixed point theorem. Suppose that the sequence (1,,) C A
converges to A € A. In part (c) we show that X,, := X* and ¢, := ¢* converge
P-a.s. to X* and ¢*, respectively. We will show next that we may apply the dominated
convergence theorem, so that

lim E[g, W, 1= E[¢" W, ]
ntoo
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and
lim E[g, X, 1 = E[¢" X*]
ntoo

and this will prove the continuity of g. To verify the assumptions of the dominated
convergence theorem, note that

Waon <Wo, <WF,
where F is as in (3.50). Moreover,

WF < |AIF I, + maxul (1) - W e LY(P).
ach

W<lAl}

Thus, ¢, W, and ¢, X,, are bounded by WF € L! (P).
(b): By our convention (3.22), the map f : A x [0, co] — [0, oo] defined by

fOu =) 170"y
ach

is continuous. If we fix A € A, then the function f (X, -) is continuous on [0, co] and
strictly decreasing on (a(X), b(A)) where

a(x) :=max lim Ay u,(x) >0 and b(A) = maxi,u,(0+) < 4o0.
aeA x10oo aeA

Moreover, f(A,y) = oo for y < a(}) and f(A,y) = 0 for y > b(A). Hence, for
each w € (0, co) there exists exactly one solution y* € (a(1), b(1)) of the equation

fOuyh =w.

Recall that [0, co] can be regarded as a compact topological space. To see that y*
depends continuously on A € A, take a sequence A, — A and a subsequence (A;,)

such that the solutions y;, = y’x”k of f(An,,y) = w converge to some limit yo, €
[a(}), b(A)]. By continuity of f,

f()"7 yOO) = 11m f()"nkv yk) =w,
k1 oo

and S0 Yoo must coincide with y*.
(c): Recall that
X =10, "eh (3.52)

for any a € 4. By feasibility,
W=) Xi=[0.¢Y.
acA

Thus, ¢’ converges P-a.s. to ¢* as A, — A due to part (b), and so X* converges P-
a.s. to X* due to (3.52). This completes the proof in (a) that the map g is continuous.
O
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Remark 3.58. In order to simplify the exposition, we have restricted the discussion
of equilibrium prices to contingent claims with payoff at time t = 1. We have argued
in terms of discounted payoffs, and so we have implicitly assumed that the interest
rate r has already been fixed. From an economic point of view, also the interest rate
should be determined by an equilibrium argument. This requires an intertemporal
extension of our setting, which distinguishes between deterministic payoffs y at time
t = 0 and nominal contingent payoffs Y at time # = 1. Thus, we replace X = L(J)r by
the space
Y={Y=0.Y)|yel0,00),YeLf}

A pricing rule is given by a linear functional on Y of the form
DY) :=¢o-y+ElpY]

where g € (0, co) and ¢ is a price density as before. Any such price system specifies
an interest rate for transferring income from time + = 0 to time ¢t = 1. Indeed,
comparing the forward price c - E[ ¢ ] for the fixed amount c to be delivered at time 1
with the spot price ¢ - ¢y for the amount ¢ made available at time 0, we see that the
implicit interest rate is given by

Elo]
o

I1+7r=

If we describe the preferences of agent a € #4 by a utility functional of the form
Ua(Y) = tta,0(y) + Elua1(Y)]

with smooth utility functions u, o and u,, 1, then we can show along the lines of the
preceding discussion that an Arrow—Debreu equilibrium exists in this extended setting.
Thus, we obtain an equilibrium allocation (72)5;5 4 and an equilibrium price system
P* = ((p(’)k, ¢*) such that each 7: maximizes the functional U, in the agent’s budget
set determined by an initial endowment in Y and by the pricing rule 3 . In particular,
we have then specified an equilibrium interest rate »*. Normalizing the price system
to g5 = 1 and defining P* as a probability measure with density ¢*/E[ ¢* ], we see
that the price at time ¢t = 0 of a contingent claim with nominal payoff ¥ > 0 at time
t = 1 is given as the expectation
g
1+r*

of the discounted claim with respect to the measure P*. <

Let us now extend the discussion to situations where agents are heterogeneous not
only in their utility functions but also in their expectations. Thus, we assume that the
preferences of agent a € 4 are described by a Savage functional of the form

Us(X) = EQa[ua(X) 1,
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where Q, is a probability measure on (€2, ¥) which is equivalent to P. In addition
to our assumption

limsupx u),(x) <00, a€ A, (3.53)
xJ0
we assume that
W
Eg,[W]<oo and Eg,| u, Al <00, act€dwh, (3.54)

As before, a feasible allocation (X}),e.4 together with a price density ¢* is called
an Arrow—Debreu equilibrium if each X maximizes the functional U, on the budget
set of agent a € 4, which is determined by ¢*.

Theorem 3.59. Under assumptions (3.35), (3.53), and (3.54), there exists an Arrow—
Debreu equilibrium.

Proof. For any A € A, the general argument of Remark 3.37 yields the existence of
a A-efficient allocation (X é)ae 4, 1.e., of a feasible allocation which maximizes the
functional

UMX) ==Y haUa(Xa)
acAh

over all feasible allocations X = (X;)aes. Since
Ua(X3) = Elgaua(X}) 1,

(X L’})ae,,‘,can be viewed as a A-efficient allocation in the model where agents have
random utility functions of the form

’Iza(x’ ) = ug(x) pq(w),

while their expectations are homogeneous and given by P. In view of Corollary 3.43,
it follows as before that X* satisfies the first order conditions

Xt =170 07 et ae A,

a

with
" = max Aq uy (X7) @a,
ach

and that X* satisfies
Ua(Xg) = Eltta(Ya) @a1Z Ua(Ya)

for all Y, in the budget set of agent a € 4. The remaining arguments are essentially
the same as in the proof of Theorem 3.55. O



Chapter 4
Monetary measures of risk

In this chapter, we discuss the problem of quantifying the risk of a financial position.
As in Chapter 2, such a position will be described by the corresponding payoff profile,
that is, by a real-valued function X on some set of possible scenarios. In a probabilistic
model, specified by a probability measure on scenarios, we could focus on the resulting
distribution of X and try to measure the risk in terms of moments or quantiles. Note
that a classical measure of risk such as the variance does not capture a basic asymmetry
in the financial interpretation of X: Here it is the downside risk that matters. This
asymmetry is taken into account by measures such as Value at Risk which are based
on quantiles for the lower tail of the distribution, see Section 4.4 below. Value at Risk,
however, fails to satisfy some natural consistency requirements. Such observations
have motivated the systematic investigation of measures of risk that satisfy certain
basic axioms.

From the point of view of an investor, we could simply turn around the discussion
of Chapter 2 and measure the risk of a position X in terms of the loss functional

LX) = -U(X).

Here U is a utility functional representing a given preference relation > on financial
positions. Assuming robust preferences, we are led to the notion of robust shortfall
risk defined by
L(X) = sup Ep[£(—=X)],
Qe@

where £(x) := —u(—x) is a convex increasing loss function and @ is a class of
probability measures. The results of Section 2.5 show how such loss functionals can
be characterized in terms of convexity and monotonicity properties of the preference
relation. In particular, a financial position could be viewed as being acceptable if the
robust shortfall risk of X does not exceed a given bound.

From the point of view of a supervising agency, however, a specific monetary
purpose comes into play. In this perspective a risk measure is viewed as a capital
requirement: We are looking for the minimal amount of capital which, if added to the
position and invested in a risk-free manner, makes the position acceptable. This mon-
etary interpretation is captured by an additional axiom of cash invariance. Together
with convexity and monotonicity, it singles out the class of convex measures of risk.
These measures can be represented in the form

p(X) = sup (Eol—X1-a(Q)),

where « is a penalty function defined on probability measures on 2. Under the
additional condition of positive homogeneity, we obtain the class of coherent risk
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measures. Here we are back to the situation in Proposition 2.85, and the representation
takes the form
p(X) = sup Eg[ —X1],
Qe@

where @ is some class of probability measures on €2.

The axiomatic approach to such monetary risk measures was initiated by P. Artzner,
F. Delbaen, J. Eber, and D. Heath [11], and it will be developed in the first three
sections. In Section 4.4 we discuss some coherent risk measures related to Value
at Risk. These risk measures only involve the distribution of a position under a
given probability measure. In Section 4.5 we characterize the class of convex risk
measures which share this property of law-invariance. Section 4.6 discusses the role
of concave distortions, and in Section 4.7 the resulting risk measures are characterized
by a property of comonotonicity. In Section 4.8 we discuss measures of risk which
arise naturally in the context of a financial market model. In Section 4.9 we analyze
the structure of monetary measures of risk which are induced by our notion of robust
shortfall risk.

4.1 Risk measures and their acceptance sets

Let ©2 be a fixed set of scenarios. A financial position is described by a mapping
X : Q@ — R where X (w) is the discounted net worth of the position at the end of
the trading period if the scenario w € 2 is realized. Our aim is to quantify the risk of
X by some number p(X), where X belongs to a given class X of financial positions.
Throughout this section, X will be a linear space of bounded functions containing the
constants. We do not assume that a probability measure is given on €.

Definition 4.1. A mapping p : X — R is called a monetary measure of risk if it
satisfies the following conditions for all X, Y € X.

e Monotonicity: If X <Y, then p(X) > p(Y).
e Cash invariance: If m € R, then p(X +m) = p(X) — m.

The financial meaning of monotonicity is clear: The downside risk of a position
is reduced if the payoff profile is increased. Cash invariance is also called translation
invariance. It is motivated by the interpretation of p(X) as a capital requirement,
i.e., p(X) is the amount which should be added to the position X in order to make
it acceptable from the point of view of a supervising agency. Thus, if the amount m
is added to the position and invested in a risk-free manner, the capital requirement is
reduced by the same amount. In particular, cash invariance implies

p(X + p(X)) =0, “4.1)



154 4 Monetary measures of risk

and
p(m)=p0)—m forallm e R.

For most purposes it would be no loss of generality to assume that a given monetary
risk measure satisfies the condition of

» Normalization: p(0) = 0.
In some situations, however, it will be convenient not to insist on normalization.

Remark 4.2. We are using the convention that X describes the worth of a financial
position after discounting. For instance, the discounting factor can be chosen as
1/(14r) where r is the return of a risk-free investment. Instead of measuring the risk
of the discounted position X, one could consider directly the nominal worth

X=(14nX.
The corresponding risk measure p (55 ) := p(X) is again monotone. Cash invariance
is replaced by the following property:
P(X + (1 +rm) = p(X) —m, 4.2)

i.e., therisk is reduced by m if an additional amount m is invested in a risk-free manner.
Conversely, any p : X — R which is monotone and satisfies (4.2) defines a monetary
measure of risk via p(X) := p((1 + r)X). &
Lemma 4.3. Any monetary measure of risk p is Lipschitz continuous with respect to
the supremum norm || - ||:

lp(X) —p(M)] = IX =Y.

Proof. Clearly, X <Y+ || X —Y|,andso p(Y) — || X — Y| < p(X) by monotonicity
and cash invariance. Reversing the roles of X and Y yields the assertion. g

From now on we concentrate on monetary measures of risk which have an addi-
tional convexity property.

Definition 4.4. A monetary risk measure p : X, — R is called a convex measure of
risk if it satisfies

e Convexity: p(AX + (1 —A)Y) <Ap(X)+ (1 —A)p(Y),for0 <A < 1.

Consider the collection of possible future outcomes that can be generated with the
resources available to an investor: One investment strategy leads to X, while a second
strategy leads to Y. If one diversifies, spending only the fraction A of the resources on
the first possibility and using the remaining part for the second alternative, one obtains
AX 4+ (1 —A)Y. Thus, the axiom of convexity gives a precise meaning to the idea that
diversification should not increase the risk. If p is convex and normalized, then

p(AX) < Aip(X) forO<A =<1,
p(AX) > Ap(X) fori > 1.
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Definition 4.5. A convex measure of risk p is called a coherent risk measure if it
satisfies
 Positive Homogeneity: If A > 0, then p(AX) = Ap(X).

If a monetary measure of risk p is positively homogeneous, then it is normalized,
i.e., p(0) = 0. Under the assumption of positive homogeneity, convexity is equivalent
to

o Subadditivity: p(X +7Y) < p(X) + p(Y).

This property allows to decentralize the task of managing the risk arising from a
collection of different positions: If separate risk limits are given to different “desks”,
then the risk of the aggregate position is bounded by the sum of the individual risk
limits.

In many situations, however, risk may grow in a non-linear way as the size of the
position increases. For this reason we will not insist on positive homogeneity. Instead,
our focus will be on convex measures of risk.

A monetary measure of risk p induces the class

Ap =X € X | p(X) <0)

of positions which are acceptable in the sense that they do not require additional capital.
The class #, will be called the acceptance set of p. The following two propositions
summarize the relations between monetary measures of risk and their acceptance sets.

Proposition 4.6. Suppose that p is a monetary measure of risk with acceptance set
A = Ay,

(a) oA is non-empty, and satisfies the following two conditions:
inf{meR|meA}>—oc0. 4.3)
Xeh YeX,Y>X = Ycoah 4.4)
Moreover, A has the following closure property: For X € AandY € X,
{A e[0, 1] AX+(A—-MNY e A } is closed in [0, 1]. 4.5)
(b) p can be recovered from A:
pX)=inflmeR|m+X e A} (4.6)
(c) p is a convex risk measure if and only if A is convex.

(d) p is positively homogeneous if and only if A is a cone. In particular, p is
coherent if and only if A is a convex cone.



156 4 Monetary measures of risk

Proof. The first two properties in (a) are straightforward. As to (4.5), the function
A+ p(AX + (1 — A)Y) is continuous by Lemma 4.3. Hence, the set of A € [0, 1]
such that p(AX 4+ (1 — A)Y) < O is closed.

(b): Cash invariance implies that for X € X,

inf{meR|m+XeA,}=inflmeR|pm+X) <0}
=inf{meR|p(X)<m}
= p(X).
(c): A is clearly convex if p is a convex measure of risk. The converse will follow
from Proposition 4.7 together with (4.8).

(d): Clearly, positive homogeneity of p implies that 4 is a cone. The converse
follows as in (c). O

Conversely, one can take a given class 4 C X of acceptable positions as the
primary object. For a position X € X, we can then define the capital requirement as
the minimal amount m for which m + X becomes acceptable:

pAX) =inf{meR | m+Xe A} “4.7)
Note that, with this notation, (4.6) takes the form

PA, = P- (4.8)

Proposition 4.7. Assume that A is a non-empty subset of X; which satisfies (4.3) and
(4.4). Then the functional p 4 has the following properties:

(a) pux is a monetary measure of risk.
(b) If A is a convex set, then p 4 is a convex measure of risk.

(c) If Aisacone,then py is positively homogeneous. In particular, p 4 is a coherent
measure of risk if A is a convex cone.

(d) A is a subset of A, . If A satisfies the closure property (4.5) then A = A, .

Proof. (a): It is straightforward to verify that p4 satisfies cash invariance and mono-
tonicity. We show next that p 4 takes only finite values. To this end, fix some Y in the
non-empty set 4. For X € X given, there exists a finite number m withm + X > Y,
because X and Y are both bounded. Then

PAX) —m = pyupm+ X) < ps(Y) <0,

and hence p4(X) < m < oo. Note that (4.3) is equivalent to p4(0) > —oo. To
show that p4(X) > —oo for arbitrary X € X, we take m’ such that X + m’ < 0 and
conclude by monotonicity and cash invariance that p4(X) > p4(0) +m’ > —oo0.
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(b): Suppose that X1, X, € X andthatm, my, € Raresuchthatm; +X; € A. If
A € [0, 1], then the convexity of »A implies that A(m1 + X1) + (1 — A)(my + X3) € A.
Thus, by the cash invariance of p 4,

0> pa(Aimi 4+ X1) + (1 — 1) (m2 + X2))
= pA(AX1 + (1 =V X2) — (Am1 + (1 = Mm),

and the convexity of p4 follows.

(c): As in the proof of convexity, we obtain that p4(AX) < Ap4(X) for A > 0 if
s is a cone. To prove the converse inequality, let m < p4(X). Thenm + X ¢ +A and
hence Am + A X ¢ A for L > 0. Thus Am < p4(AX), and (c) follows.

(d): The inclusion 4 C A, , is obvious. Now assume that -+ satisfies (4.5). We
have to show that X ¢ «A implies that p4(X) > 0. To this end, take m > || X| =
sup,, | X (w)|. By assumption, there exists an ¢ € (0, 1) suchthat em 4 (1 —e)X ¢ A.
Thus,

0<palem+(1—eX)=pas((l —e)X)—em.

Since p4 is a monetary measure of risk, Lemma 4.3 shows that
lpa((1 =) X) — pa(X)] < e |1 XII.

Hence,
pAX) = pa(d—e)X) —e|X]| = & (m—||X]]) > 0. O

In the following examples, we take X as the linear space of all bounded measurable
functions on some measurable space (2, ¥), and we denote by M| = M (2, F) the
class of all probability measures on (€2, ¥).

Example 4.8. Consider the worst-case risk measure pmax defined by

Pmax(X) = — inf X(w) forall X € X.
weR

The value pmax (X) is the least upper bound for the potential loss which can occur in
any scenario. The corresponding acceptance set +4 is given by the convex cone of all
non-negative functions in X. Thus, pmax is a coherent measure of risk. It is the most
conservative measure of risk in the sense that any normalized monetary risk measure
p on X satisfies

p(X) < p(inf X(@)) = pumax(X).
we2
Note that ppax can be represented in the form

Pmax(X) = sup Eg[—X ], 4.9)
Qeq

where @ is the class M of all probability measures on (€2, ). <
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Example 4.9. Let @ be a set of probability measures on (€2, ), and consider a
mapping y : @ — R with sup, y(Q) < oo, which specifies for each 0 € @ some
“floor” y (Q). Suppose that a position X is acceptable if

EolX]1>y(Q) forall Q € Q.

The set 4 of such positions satisfies (4.3) and (4.4), and it is convex. Thus, the
associated monetary risk measure p = p 4 is convex, and it takes the form

p(X) = sup(y(Q) — Eg[ X ]).
Qeq

Alternatively, we can write

p(X) = sup (Eol—X1—a(Q)), (4.10)
QeM

where the penalty function a : M; — (—00, 00] is defined by a(Q) = —y(Q)
for Q € @ and a(Q) = o0 otherwise. Note that p is a coherent risk measure if
y(Q)=0forall Q € Q. &

Example 4.10. Consider a utility function « on R, a probability measure Q € M,
and fix some threshold ¢ € R. Let us call a position X acceptable if its certainty
equivalent is at least ¢, i.e., if its expected utility Eg[u(X) | is bounded from below
by u(c). Clearly, the set

A={X e X | Eglu(X)]=u()}.

is non-empty, convex, and satisfies (4.3) and (4.4). Thus, p4 is a convex measure of
risk. As an obvious robust extension, we can define acceptability in terms of a whole
class @ of probability measures on (2, ), i.e.,

A= [V1X € X | Eolu(X)]= ulco)),
0eq

with constants ¢ such that sup,q co < 00. The corresponding risk measures will
be studied in more detail in Section 4.9. <

Example 4.11. Suppose now that we have specified a probabilistic model, i.e., a
probability measure P on (€2, ). In this context, a position X is often considered to
be acceptable if the probability of a loss is bounded by a given level A € (0, 1), i.e., if

P[X <0] <A
The corresponding monetary risk measure V@R, , defined by

V@R, (X) =inf{m e R| P[m+ X <0] <A},
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is called Value at Risk at level A. Note that it is well defined on the space £°(Q, ¥, P)
of all random variables which are P-a.s. finite, and that

V@R, (X) = E[—-X ]+ ® (1 — Mo (X), 4.11)

if X is a Gaussian random variable with variance o2(X) and ®~! denotes the inverse
of the distribution function ® of N (0, 1). Clearly, V@R, is positively homogeneous,
but in general it is not convex, as shown by Example 4.41 below. In Section 4.4, Value
at Risk will be discussed in detail. In particular, we will study some closely related
coherent and convex measures of risk. &>

Example 4.12. As in the preceding example, we fix a probability measure P on
(€2, ). For an asset with payoffX e L2 =L2Q, F,P), price 7 (X), and variance
2(X ) # 0, the Sharpe ratio is defined as

E[X]-7(X)(1+r) E[X]
o (X) Co(X)’

where X := X (A4+r~1— 71(? ) is the corresponding discounted net worth. Suppose
that we find the position X acceptable if the Sharpe ratio is bounded from below by
some constant ¢ > 0. The resulting functional p, on £2 defined by (4.7) for the class

Ao ={X e L2E[X]>c-0(X)}

is given by
pe(X) = E[=X]+c-0(X).

Itis cash invariant and positively homogeneous, and it is convex since o ( - ) is a convex
functional on £2. But Pc 18 not a monetary risk measure, because it is not monotone.
Indeed, if X = eZ and Z is a random variable with normal distribution N (0, o2), then
X > 0 but

pe(X) = —eo 2 + ce® ?\eo? — 1

becomes positive for large enough o. Note, however, that (4.11) shows that p.(X)
coincides with V@R, (X) if X is Gaussian and if c = ®~!1(1 —1) with0 < A < 1/2.
Thus, both p. and V@R, have all the properties of a coherent risk measure if restricted
to a Gaussian subspace X of L2, i.e, alinear space consisting of normally distributed
random variables. But neither p. nor V@R, can be coherent on the full space L2,
since the existence of normal random variables on (€2, &, P) implies that X will also
contain random variables as considered in Example 4.41. <

Example 4.13. Let ¢ : ¥ — [0, 1] be any set function which is normalized and
monotone in the sense that ¢(J)) = 0, c(2) = 1, and ¢(A) < ¢(B) if A C B. For
instance, ¢ can be given by c(A) := ¥ (P[ A]) for some probability measure P and
an increasing function v : [0, 1] — [0, 1] such that ¥(0) = 0 and ¥ (1) = 1. The
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Choquet integral of a bounded measurable function X > 0 with respect to c is defined

as
[e.¢]
/Xdc ::/ c(X > x)dx.
0

If ¢ is a probability measure, Fubini’s theorem implies that [ X dc coincides with the
usual integral. In the general case, the Choquet integral is a nonlinear functional of X,
but we still have [AX dc =1 [ Xdc and [(X +m)dc = [ X dc + m for constants
A,m > 0. If X € X is arbitrary, we take m € R such that X +m > 0 and get

0 o)
/(X—}—m)dc—m:f (c(X>x)—1)dx—|—/ c(X > x)dx.
—m 0

The right-hand side is independent of m > — inf X, and so it makes sense to extend
the definition of the Choquet integral by putting

0 [e'e)
/Xdc::/ (c(X>x)—1)dx+f c(X > x)dx
0

—00

for all X € X. It follows that
/AXdc:A/Xdc and /(X+m)dc=/Xdc+m

for all A > 0 and m € R. Moreover, we have
/chZ/Xdc forY > X.

Thus, the Choquet integral of the loss,

p(X) = /(—X)dc,

is a positively homogeneous monetary risk measure on X. In Section 4.7, we will
characterize these risk measures in terms of a property called “comonotonicity”. We
will also show that p is convex, and hence coherent, if and only if ¢ is submodular or
2-alternating, i.e.,

c(ANB)+c(AUB) <c(A)+c(B) forA,Be F.
In this case, p admits the representation

p(X) = max Eg[=X1], (4.12)

where @ is the core of ¢, defined as the class of all finitely additive and normalized set
functions Q : ¥ — [0, 1] such that Q[ A] < c(A) for all A € F; see Theorem 4.88.
<

In the next two sections, we are going to show how representations of the form
(4.9), (4.12), or (4.10) for coherent or convex risk measures arise in a systematic
manner.
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4.2 Robust representation of convex risk measures

In this section, we consider the situation where X consists of all bounded measurable
functions on the measurable space (€2, #). Recall that X is a Banach space if endowed
with the supremum norm || - ||. As in Section 2.5, we denote by M| := M (2, F) the
set of all probability measures on (€2, ) and by M 5 := M, (2, F) the set of all
finitely additive set functions Q : & — [0, 1] which are normalized to Q[ 2] = 1.
By Ep[ X ] we denote the integral of X with respectto Q € M1, r; see Appendix A.6.
We do not assume that a probability measure on (€2, ¥) is given a priori.

If p is a coherent measure of risk on X, then we are in the context of Proposi-
tion 2.85, i.e., the functional J defined by J (X) := —p(X) satisfies the four properties
listed in Proposition 2.84. Hence, we have the following result:

Proposition 4.14. A functional p : XX — R is a coherent measure of risk if and only
if there exists a subset @ of M such that

p(X)=sup Eg[-X], X e€X. (4.13)
Qe@

Moreover, @ can be chosen as a convex set for which the supremum in (4.13) is
attained.

Our first goal in this section is to obtain an analogue of this result for convex
measures of risk. Applied to a coherent measure of risk, it will yield an alternative
proof of Proposition 4.14, which does not depend on the discussion in Chapter 2, and
it will provide a description of the maximal set @ in (4.13). Our second goal will be
to obtain criteria which guarantee that a measure of risk can be represented in terms
of o-additive probability measures.

Leta : My, s — R 