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Preface

This is a book about doing model theory without an underlying logical system. It teaches
us how to live without concrete models, sentences, satisfaction and so on. Our approach
is based upon the theory of institutions, which has witnessed a vigorous and systematic
development over the past two decades and which provides an ideal framework for true
abstract model theory. The concept of institution formalizes the intuitive notion of logical
system into a mathematical object. Thus our model theory without underlying logical
systems and based upon institution theory may be called ‘institution-independent model
theory’.

Institution-independent model theory has several advantages. One is its generality,
since it can be easily applied to a multitude of logical systems, conventional or less con-
ventional, many of the latter kind getting a proper model theory for the first time through
this approach. This is important especially in the context of the recent high proliferation
of logics in computing science, especially in the area of formal specification. Then there
is the advantage of illuminating the model theoretic phenomena and its subtle network
of causality relationships, thus leading to a deeper understanding which produces new
fundamental insights and results even in well worked traditional areas of model theory.

In this way we study well established topics in model theory but also some newly
emerged important topics. The former category includes methods (in fact much of model
theory can be regarded as a collection of sometimes overlapping methods) such as (el-
ementary) diagrams, ultraproducts, saturated models and studies about preservation, ax-
iomatizability, interpolation, definability, and possible worlds semantics. The latter cat-
egory includes methods of doing model theory ‘by translation’, and Grothendieck insti-
tutions, which is a recent successful model theoretic framework for multi-logic hetero-
geneous environments. The last two chapters (14 and 15) digress from the main topic of
the book in that they present some applications of institution-independent model theory
to specification and programming and Chap. 13 shows how to integrate proof theoretic
concepts to institution-independent model theory (including a general approach to com-
pleteness).

This book is far from being a complete encyclopedia of institution-independent
model theory. While several important concepts and results have not been treated here, we
believe they can be approached successfully with institutions in the style promoted by our
work. Most of all, this book shows how to do things rather than provides an exhaustive
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account of all model theory that can be done institution-independently. It can be used by
any working user of model theory but also as a resource for learning model theory.

From the philosophical viewpoint, the institution-independent approach to model
theory is based upon a non-essentialist, groundless, perspective on logic and model theory,
directly influenced by the doctrine of śunyata of the Madhyamaka Prasangika school
within Mahayana Buddhism. The interested reader may find more about this connection
in the essay [54]. This has been developed mainly at Nalanda monastic university about
2000 years ago by Arya Nāgārjuna and its successors and has been continued to our days
by all traditions of Tibetan Buddhism. The relationship between Madhyamaka Prasangika
thinking and various branches of modern science is surveyed in [176].

I am grateful to a number of people who supported in various ways the project of
institution-independent model theory in general and the writing of this book in particular.
I was extremely fortunate to be first the student and later a close friend and collaborator
of late Professor Joseph Goguen who together with Rod Burstall introduced institutions.
He strongly influenced this work in many ways and at many levels, from philosophical
to technical aspects, and was one of the greatest promoters of the non-essentialist ap-
proach to science. Andrzej Tarlecki was the true pioneer of doing model theory in an
abstract institutional setting. Till Mossakowski made a lot of useful comments on sev-
eral preliminary drafts of this book and supported this activity in many other ways too.
Grigore Roşu and Marc Aiguier made valuable contributions to this area. Lutz Schröder
made several comments and gave some useful suggestions. Achim Blumensath read very
carefully a preliminary draft of this book and helped to correct a series of errors. I am
indebted to Hans-Jürgen Hoenhke for encouragement and managerial support. Special
thanks go to the former students of the Informatics Department of “Şcoala Normală Supe-
rioară” of Bucharest, namely Marius Petria, Daniel Găină, Andrei Popescu, Mihai Code-
scu, Traian Şerbănuţă and Cristian Cucu. They started as patient students of institution-
independent model theory only to become important contributors to this area. Finally,
Jean-Yves Béziau greatly supported the publication and dissemination of this book. I ac-
knowledge financial support for writing this book from the CNCSIS grants GR202/2006
and GR54/2007.

Ploieşti,
December 2007 Răzvan Diaconescu
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Chapter 1

Introduction

Model theory is in essence the mathematical study of semantics, or meaning, of logic
systems. As it has a multitude of applications to various areas of classical mathematics,
and of logic, but also to many areas of informatics and computing science, there are
various perspectives on model theory which differ slightly. A rather classical viewpoint is
formulated in [32]:

Model theory = logic + universal algebra.

A rather different and more radical perspective which reflects the success of model theo-
retic methods in some areas of classical mathematics is given in [99]:

Model theory = algebraic geometry - fields.

From a formal specification viewpoint, in a similar tone, one may say that

Model theory = logical semantics - specification.

Each such viewpoint implies a specific way in developing the key concepts and the main
model theory methods; it also puts different emphasis on results. For example while forc-
ing is a very important method for the applications of model theory to conventional logic,
it plays a very little role in computing science. On the other hand, formal specification
theory requires a much more abstract view on model theory than the conventional one.
The institution theory of Goguen and Burstall [30, 75] arose out of this necessity.

Institutions. The theory of institutions is a categorical abstract model theory which
formalizes the intuitive notion of a logical system, including syntax, semantics, and the
satisfaction relation between them. Institutions constitute a model-oriented meta-theory
on logics similarly to how the theory of rings and modules constitute a meta-theory for
classical linear algebra. Another analogy can be made with universal algebra versus par-
ticular algebraic structures such as groups, rings, modules, etc., or with mathematical
analysis over Banach spaces versus real analysis.
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The notion of institution was introduced by Goguen and Burstall in the late 1970s
[30] (with the seminal journal paper [75] being printed rather late) in response to the pop-
ulation explosion of specification logics with the original intention of providing a proper
abstract framework for specification of, and reasoning about, software systems. Since
then institutions have become a major tool in development of the theory of specification,
mainly because they provide a language-independent framework applicable to a wide
variety of particular specification logics. It became standard in the field to have a logic
system captured as the institution underlying a particular language or system, such that
all language/system constructs and features can be rigorously explained as mathematical
entities and to separate all aspects that depend on the details of the particular logic sys-
tem from those that are general and independent of this logic system by basing the latter
on an arbitrary institution. All well-designed specification formalisms follow this path,
including for example CASL [10] and CafeOBJ [57].

Recently institutions have also been applied to computing science fields other than
formal specification; these include ontologies and cognitive semantics [73], concurrency
[138], and quantum computing [31].

Institution-independent model theory. This means the development of model theory
in the very abstract setting of arbitrary institutions, free of any commitment to a partic-
ular logic system. In this way we gain another level of abstraction and generality and a
deeper understanding of model theoretic phenomena, not hindered by the largely irrele-
vant details of a particular logic system, but guided by structurally clean causality. The
latter aspect is based upon the fact that concepts come naturally as presumed features that
“a logic” might exhibit or not and are defined at the most appropriate level of abstraction;
hypotheses are kept as general as possible and introduced on a by-need basis, and thus
results and proofs are modular and easy to track down regardless of their depth. Access to
highly non-trivial results is also considerably facilitated, which is contrary to the impres-
sion of some people that such general abstract approaches produce results that are trivial.
As Béziau explains in [20]:

“This impression is generally due to the fact that these people have a
concrete-oriented mind, and that something which is not specified [n.a. con-
cretely] has no meaning for them, and therefore universal logic [n.a. institu-
tion-independent model theory in our case] appears as a logical abstract non-
sense. They are like someone who understands perfectly what is Felix, his cat,
but for whom the concept of cat is a meaningless abstraction. This psycholog-
ical limitation is in fact a strong defect because, ... [n.a. as this book shows],
what is trivial is generally the specific part, not the universal one [n.a. the
institution-independent one] which requires what is the fundamental capacity
of human thought: abstraction.”

The continuous interplay between the specific and the general in institution-independent
model theory brings a large array of new results for particular non-conventional logics,
unifies several known results, produces new results in well-studied conventional areas,
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reveals previously unknown causality relations, and dismantles some which are usually
assumed as natural.

Institution-independent model theory also provides a clear and efficient framework
for doing logic and model theory ‘by translation (or borrowing)’ via a general theory
of mappings (homomorphisms) between institutions. For example, a certain property P
which holds in an institution I ′ can be also established in another institution I provided
that we can define a mapping I → I ′ which ‘respects’ P.

Institution-independent model theory can be regarded as a form of ‘universal model
theory’, part of the so-called ‘universal logic’, a recent trend in logic promoted by Bèziau
and others [21].

Other abstract model theories. Only two major abstract approaches to logic have a
model theoretic nature and are therefore comparable to the institution-independent model
theory.

The so-called “abstract model theory” developed by Barwise and others [12, 13]
however keeps a strong commitment to conventional concrete systems of logic by ex-
plicitly extending them and retaining many of their features, hence one may call this
framework “half-abstract model theory”. In this context even the remarkable Lindström
characterization of first order logic by some of its properties should be rather considered
as a first order logic result rather than as a true abstract model theoretic one.

Another framework is given by the so-called “categorical model theory” best rep-
resented by the works on sketches [63, 88, 181] or on satisfaction as cone injectivity
[5, 6, 7, 120, 118, 116]. The former just develops another language for expressing (pos-
sibly infinitary) first order logic realities. While the latter considers models as objects of
abstract categories, it lacks the multi-signature aspect of institutions given by the signa-
ture morphism and the model reducts, which leads to severe methodological limitations.
Moreover in these categorical model theory frameworks, the satisfaction of sentences by
the models is usually defined rather than being axiomatized.

By contrast to the two abstract model theoretic approaches mentioned above, in-
stitutions capture directly the essence of logic systems by axiomatizing the satisfaction
relationship between models and sentences without any initial commitment to a particular
logic system and by emphasizing propertly the multi-signature aspect of logics.

Book content. The book consists of four parts.
In the first part we introduce the basic institution theory including the concept of

institution and institution morphisms, and several model theoretic fundamental concepts
such as model amalgamation, (elementary) diagrams, inclusion systems, and free models.
We develop an ‘internal logic’ for abstract institutions, which includes a semantic treat-
ment to Boolean connectives, quantifiers, atomic sentences, substitutions, and elementary
homomorphisms, all of them in an institution-independent setting.

The second part is the core of our institution-independent model theoretic study be-
cause it develops the main model theory methods and results in an institution-independent
setting.
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The first method considered in this part is that of ultraproducts. Based upon the
well-established concept of categorical filtered products, we develop an ultraproduct fun-
damental theorem in an institution-independent setting and explore some of its immediate
consequences, such as ultrapower embeddings and compactness.

The chapter on saturated models starts by developing sufficient conditions for di-
rected co-limits of homomorphisms to retain the elementarity. This rather general version
of Tarski’s elementary chain theorem is a prerequisite for a general result about existence
of saturated models, later used for developing other important results. We also develop
the complementary result on uniqueness of saturated models. Here the necessary concept
of cardinality of a model is handled categorically with the help of elementary extensions,
a concept given by the method of diagrams. We develop an important application for the
uniqueness of saturated models, namely a generalized version of the remarkable Keisler-
Shelah result in first order model theory, “two models are elementarily equivalent if and
only if they have isomorphic ultrapowers”.

A good application of the existence result for saturated models is seen in the preser-
vation results, such as “a theory has a set of universal axioms if and only if its class of
models is closed under ‘sub-models”’. We develop a generic preservation-by-saturation
theorem. Such preservation results might lead us straight to their axiomatizability ver-
sions. One way is to assume the Keisler-Shelah property for the institution and to use a
direct consequence of the fundamental ultraproducts theorem which may concisely read
as “a class of models is elementary if and only if it is closed under elementary equivalence
and ultraproducts”.

Another method to reach an important class of axiomatizability results is by ex-
pressing the satisfaction of Horn sentences as categorical injectivity. This leads to general
quasi-variety theorems such as “a class of models is closed under products and ‘sub-
models’ if and only if it is axiomatizable by a set of (universal) Horn sentences” and va-
riety theorems such as “a class of models is closed under products and ‘sub-models’ and
‘homomorphic images’ if and only if it is axiomatizable by a set of (universal) ‘atoms”’.

All axiomatizability results presented here are collected under the abstract concept
of ‘Birkhoff institution’.

The next topic is interpolation. The institution-independent approach brings several
significant upgrades to the conventional formulation. We develop here three main meth-
ods for obtaining the interpolation property, the first two having rather complementary
application domains. The first one is based upon a semantic approach to interpolation
and exploits the Birkhoff-style axiomatizability properties of the institution (captured by
the above mentioned concept of Birkhoff institution), while the second, inspired by the
conventional methods of first order logic, is via Robinson consistency. The third one is a
borrowing method across institutions.

We next treat definability, again with rather two complementary methods, via Birk-
hoff-style axiomatizability and via interpolation. While the latter represents a general-
ization of Beth’s theorem of conventional first order model theory, the former reveals a
causality relationship between axiomatizability and definability.

The final chapter of the second part of the book is devoted to possible worlds
(Kripke) semantics and to extensions of the satisfaction relation of abstract institutions
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to modal satisfaction. By applying the general ultraproducts method to possible worlds
semantics, we develop the preservation of modal satisfaction by ultraproducts together
with its semantic compactness consequence.

The third part of the book is devoted to special modern topics in institution theory,
such as Grothendieck constructions on systems of institutions with applications to het-
erogeneous multi-logic frameworks, and an extension of institutions with proof theoretic
concepts. For the Grothendieck institutions we develop a systematic study of lifting of im-
portant properties such as theory co-limits, model amalgamation, and interpolation, from
the level of the ‘local’ institutions to the ‘global’ Grothendieck institution. We present a
rather striking application of the interpolation result for Grothendieck institutions, which
leads for example to a quite surprising interpolation property in the Horn fragment of
conventional first order logic. The chapter on proof theory for institutions introduces the
concept of proof in a simple way that suits the model theory, explores proof theoretic
versions of compactness and internal logic, and presents general soundness results for
institutions with proofs. The final part of this chapter develops a general sound and com-
plete Birkhoff-style proof system with applications significantly wider than that of the
Horn institutions.

The last part presents a few of the multitude of applications of institution-indepen-
dent model theory to computing science, especially in the areas of formal specification
and logic programming. This includes structured specifications over arbitrary institutions,
the lifting of a complete calculus from the base institution to structured specifications,
Herbrand theorems and modularization for logic programming, and semantics of logic
programming with pre-defined types.

The concepts introduced and the results obtained are systematically illustrated in the
main text by their applications to the model theory of conventional logic (which includes
first order logic but also fragments and extensions of it). There are only two reasons for
doing this. The first is to build a bridge between our approach and the conventional model
theory culture. The second reason has to do with keeping the material within reasonable
size. Otherwise, while conventional (first-order) model theory has been historically the
framework for the development of the main concepts and methods of model theory, one
of the main messages of this book is that these do not depend on that framework. Any
other concrete logic or model theory could be used as a benchmark example in this book,
and in fact we do this systematically in the exercise sections with several less conventional
logics.

How to use this book. The material of this book can be used in various ways by various
audiences both from logic and computing science. Students and researchers of logic can
use material of the first two parts (up to Chap. 11 included) as an institution-independent
introduction to model theory. Working logicians and model theorists will find in this
monograph a novel view and a new methodological approach to model theory. Computer
scientists may use the material of the first part as an introduction to institution theory, and
material from the third and the fourth parts for an advanced approach to topics from the
semantics of formal specification and logic programming. Also, institution-independent
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model theory constitutes a powerful tool for workers in formal specification to perform
a systematic model theoretic analysis of the logic underlying the particular system they
employ.

Each section comes with a number of exercises. While some of them are meant
to help the reader accommodate the concepts introduced, others contain quite important
results and applications. In fact, in order to keep the book within a reasonable size, much
of the knowledge had to be exiled to the exercise sections.



Chapter 2

Categories

Institution-independent model theory as a categorical abstract model theory relies heavily
on category theory. This preliminary chapter gives a brief overview of the categorical con-
cepts and results used by this book. The reader without enough familiarity with category
theory is advised to use one of the textbooks on category theory available in the literature.
[111] and [26] are among standard references for category theory. A reference for indexed
categories discussing many examples from the model theory of algebraic specification is
[174], while [101] contains a rather compact presentation of fibred category theory.

2.1 Basic Concepts

Categories

A category C consists of

• a class |C| of objects,

• a class of arrows (sometimes also called ‘morphisms’ or ‘homomorphisms’), de-
noted just as C,

• two maps dom,cod : C→ |C| giving the domain and codomain of each arrow such
that for each pair of objects A and B, C(A,B) = { f ∈C | dom( f ) = A,cod( f ) = B}
is a set,

• for all objects A,B,C, a composition map ; : C(A,B)×C(B,C)→ C(A,C),

• an identity arrow map 1 : |C| →C such that 1A ∈ C(A,A) for each A ∈ |C|,
such that the (arrow) composition ; is associative and with identity arrows as left and
right identities.

A
f ��

f ;g ���
��

��
� B

g
��

g;h

���
��

��
� A

f
��

1A �� A

f
��

C
h

�� D B
1B

�� B
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Notice that we prefer to use the diagrammatic notation f ;g for composition of ar-
rows in categories, rather than the alternative set theoretic one g◦ f used in many category
theory works.

Categories arise everywhere in mathematics. A most typical example is that of sets
(as objects) and functions (as arrows) with the usual (functional) composition. We denote
this category by Set. Notice that |Set|, the collection of all sets, is not a set, it is a proper
class.

The arrows of a category in general reflect the structure of objects in the sense of
preserving that structure. However, obviously this should not always be the case. One can
go further by saying that, in reality, a particular category is determined only by its arrows,
the objects being a derived rather than a primary concept.

A category C is small when its class of objects |C| is a set. Note that this implies
that C, the class of arrows, is also a set.

C is connected when there exists only one equivalence class for the equivalence
generated by the relation on objects given by “there exists an arrow A→ B”.

Isomorphisms. An arrow f : A → B is an isomorphism when there exists an arrow
g : B→ A such that f ;g = 1A and g; f = 1B. The inverse g is denoted as f−1. Two objects
A and B are isomorphic, and we denote this by A∼= B, when there exists an isomorphism
f : A→B. Isomorphisms in Set are precisely the bijective (injective and surjective) func-
tions. However this is not true in general; structure preserving mappings that are bijective
are not necessarily isomorphisms. A simple counterexample is given by the category of
partial orders (objects) with order-preserving functions as arrows.

Monoids are exactly the categories with only one object. Then groups are exactly
the monoids for which all elements (arrows) are isomorphisms.

Being isomorphic is an equivalence relation on objects; the equivalence classes of
∼= are called isomorphism classes.

Epis and monos. A family of arrows { fi : A → B}i∈I is epimorphic when for each
pair of parallel arrows g1,g2 : B→ C, fi;g1 = fi;g2 for each i ∈ I implies g1 = g2, and
it is monomorphic when for each pair of parallel arrows g1,g2 : C → A, g1; fi = g2; fi

for each i ∈ I implies g1 = g2. An arrow f : A → B is epi/mono when it is epimor-
phic/monomorphic as a (singleton) family, i.e., { f} is epimorphic/monomorphic.

In Set epis are exactly the surjective functions and the monos are exactly the in-
jective ones. Note that while, in general, whenever arrows appear as functions with addi-
tional structure, the injectivity (respectively surjectivity) of the underlying function is a
sufficient condition for a function to be mono (respectively epi), the converse is not true.
For example, the inclusion Z→ Q of integers into the rationals is epi in the category of
rings but it is not surjective. This is also an example of an arrow which is both epi and
mono but is not an isomorphism.

An arrow f : A → B is a retract to g : B → A when g; f = 1B. Notice that each
retract is epi. The converse, which is not true in general, is one of the categorical formu-
lations of the Axiom of Choice. Note that Set has the Axiom of Choice in this sense.
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An object A is injective with respect to an arrow h when for each arrow f :
dom(h)→ A there exists an arrow g such that h;g = f . A is simply injective when it
is injective with respect to all mono arrows.

•
f ���
��

��
h �� •

g��
A

Dually, an object A is projective with respect to an arrow h when for each arrow f : A→
cod(h) there exists an arrow g such that g;h = f . A is simply projective when it is projec-
tive with respect to all epi arrows. Note that in Set all objects (sets) are both injective and
projective.

• h �� •

A

g

��

f

�������

Functors

A functor U : C→C′ between categories C and C′ maps

• objects to objects, |U| : |C| → |C′|, and

• arrows to arrows, UA,B : C(A,B)→ C′(U(A),U(B)) for all objects A,B ∈ |C|
such that

– U(1A) = 1U(A) for each object A ∈ |C|, and

– U( f ;g) = U( f );U(g) for all composable arrows f ,g ∈C.

Most of the time we will denote |U| and UA,B simply by U. The application of functors (to
either objects or arrows) can also be written in a “diagrammatic” way as f U rather than
the more classical U( f ). Sometimes it is even convenient to use subscripts or superscripts
for the application of functors to objects or arrows.

A simple example is the power-set functor P : Set → Set which maps each set S
to the set of its subsets {X | X ⊆ S} and maps each function f : S → S′ to the function
P ( f ) : P (S)→ P (S′) such that P ( f )(X) = f (X) = { f (x) | x ∈ X}.

Another example is given by ‘cartesian product with A’. For any fixed set A, let
A×− : Set→ Set be the functor mapping each set B to A×B = {(a,b) | a∈A,b∈B} and
each function f : B→C to (A× f ) : A×B→ A×C defined by (A× f )(a,b) = (a, f (b)).

A×B
(a,b) �→b ��

A× f
��

B

f
��

A×C
(a,c) �→c

�� C
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A third example is that of ‘hom-functors’. For any category C and any object A ∈ |C|,
the hom-functor C(A,−) : C→ Set maps any object B ∈ |C| to the set of arrows C(A,B)
and each arrow f : B → B′ to the function C(A, f ) : C(A,B) → C(A,B′) defined by
C(A, f )(g) = g; f .

Each preorder-preserving function between two preorders (P,≤)→ (Q,≤) is an-
other example of a functor. In fact, functors between preorders are precisely the mono-
tonic functions.

A functor U : C→C′ is full when for each objects A and B, the mapping on arrows
UA,B : C(A,B)→ C′(U(A),U(B)) is surjective and is faithful when UA,B is injective.
Note that both functors of the first and of the second example are faithful but not full.

Functors can be composed in the obvious way and each category has an identity
functor with respect to functor composition. By discarding the foundational issues (for
the interested reader we recommend [95] or [111]), let Cat be the ‘quasi-category’ of
categories (as objects) and functors (as arrows).

C ⊆ C′ is a subcategory (of C′) when |C| ⊆ |C′|, C(A,B) ⊆ C′(A,B) for all A,B ∈
|C|, and the composition in C is a restriction of the composition in C′. A subcategory
C⊆ C′ is broad when |C|= |C′|.

Natural transformations

Fixing categories A and B, Cat(A,B) can be regarded as a category with functors as ob-
jects and natural transformations as arrows. A natural transformation τ : S ⇒ T between
functors S ,T : A→B is a map |A|→B such that τ(A)∈B(S(A),T (A)) for each A∈ |A|
and the following diagram commutes (in B)

S(A)
τ(A) ��

S ( f )
��

T (A)

T ( f )
��

S(B)
τ(B)

�� T (B)

for each arrow f ∈A(A,B). The classical notation for the component τ(A) is τA, however
the diagrammatic notation Aτ is also frequently used.

A simple example is generated by considering a function A
f ��A′ which deter-

mines a natural transformation nt( f ) : (A×−)⇒ (A′ ×−) given by nt( f )B = f ×1B for
each set B, where ( f ×1B)(a,b) = ( f (a),b) for each (a,b) ∈ A×B.

An additional example is given by the natural transformation C( f ,−) : C(A,−)⇒
C(B,−) for each arrow B

f ��A in a category C. For each D∈ |C|, C( f ,−)D = C( f ,D) :
C(A,D)→ C(B,D) where C( f ,D)(g) = f ;g.

The composition of natural transformations is defined component-wise, i.e.,
A(σ;τ) = Aσ;Aτ where σ : R ⇒ S : A→ B and τ : S ⇒ T : A→ B. This is called
the ‘vertical’ composition of natural transformations.

Given the natural transformations τ : S ⇒ T : A→ B and τ′ : S ′ ⇒ T ′ : B→C
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A

S
		

T




�� ��
�� τ B

S ′
		

T ′




�� ��
�� τ′ C

we may define their ‘horizontal’ composition ττ′ : S ;S ′ ⇒ T ;T ′ by

A(ττ′) = (AS)τ′;(Aτ)T ′ = (Aτ)S ′;(AT )τ′.

When τ, respectively τ′, is an identity natural transformation we may replace it in notation
by S , respectively S ′.

Basic categorical constructions

The opposite Cop of a category C is just reversing the arrows and the arrow composition.
This means |Cop|= |C|, Cop(A,B) = C(B,A). Identities in |Cop| are the same as in C.

Given a functor U : C′ →C, for any object A ∈ |C|, the comma category A/U has
arrows f : A→ U(B) as objects (sometimes denoted as ( f ,B)) and h ∈ C′(B,B′) with
f ;U(h) = f ′ as arrows ( f ,B)→ ( f ′,B′).

A
f ��

f ′ ���
��

��
��

��
U(B)

U(h)
��

U(B′)

When C = C′ and U is the identity functor, the category A/U is denoted by A/C. C/A is
just (A/Cop)op.

Given a class D ⊆ C of arrows of a category C we say that C is D-well-powered
when for each object A ∈ |C| the isomorphism classes of {(B, f ) ∈ |C/A| | f ∈ D} form
a set (rather than a proper class). Dually, C is D-co-well-powered when for each A ∈ |C|
the isomorphism classes of {( f ,B) ∈ |A/C| | f ∈D} form a set.

2.2 Limits and Co-limits

An object 0 is initial in a category C when for each object A ∈ |C| there exists a unique
arrow in C(0,A). Dually, an object 1 is final in C when it is initial in Cop, which means
that for each object A ∈ |C| there exists a unique arrow in C(A,1).

In Set, the empty set /0 is initial and each singleton set {∗} is final. In Grp, the
category of groups, the trivial groups (with only one element) are both initial and final.

Given a functor U : A→X, for each X ∈ |X|, a universal arrow from X to U is just
an initial object in the comma category X/U. Notice that universal arrows are unique up
to isomorphism.

For any categories J and C, the diagonal functor Δ : C → Cat(J,C) maps any
A ∈ |C| to the functor AΔ : J → C such that (AΔ)( j) = A for each object j ∈ |J| and
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(AΔ)(u) = 1A for each arrow u ∈ J, and maps any f ∈ C(A,B) to the natural transforma-
tion f Δ : AΔ⇒ BΔ with ( f Δ) j = f for each j ∈ |J|.

Co-limits. For any functor D : J → C, a co-cone to D is just an object of the comma
category D/Δ, while a co-limit of D is a universal arrow from D to the diagonal functor
Δ. As universal arrows, co-limits of functors are unique up to isomorphism. A co-limit
μ : D ⇒ AΔ of D may be therefore denoted as μ : D ⇒ A (by omitting the diagonal
functor from the notation). More explicitly, a co-limit of D consists of a family of arrows
{μi}i∈|J| such that μi = D(u);μ j for each u ∈ J(i, j) which behaves like a lowest upper
bound for D, i.e., for any family {νi}i∈|J| such that νi = D(u);ν j for each u∈ J(i, j), there
exists a unique arrow f such that μi; f = νi for each i ∈ |J|.

D(i)
D(u) ��

μi

���
��

��

νi

��

D( j)
μ j



		
		
	

ν j

��

A
f
��

B

We may denote the vertex A by Colim(D).

Limits. Limits are dual to co-limits. For any functor D : J→C, a limit μ : A⇒D of D
is the ‘greatest lower bound’ of the cones over D, i.e. μ = {μi}i∈|J| such that μi;D(u) = μ j

for each u ∈ J(i, j) and for any family {νi}i∈|J| with the same property, there exists a
unique arrow f such that f ;μi = νi for each i ∈ |J|.

D(i)
D(u) �� D( j)

A

μi
�������

μ j ��					

B

f
��νi

��

ν j

��

We may denote the vertex A by Lim(D).

Diagrams as functors. The functors D : J → C for which we have considered limits
and co-limits are often called categorical diagrams (in C), or just diagrams for short.

Such a diagram D may be denoted (D(i)
D(u) ��D( j))(i u→ j)∈J

. Note that the meaning of

the functoriality of D, that D(u;u′) = D(u);D(u′), is the commutativity of D regarded as
a diagram in C.
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Products and co-products. When J is discrete (has no arrows except the identities),
J-limits are called products and J-co-limits are called co-products; when J is a finite set
then the corresponding products or co-products are referred to as finite. The product of
two objects A and B is denoted by A×B and their co-product by A+B. Notice that when
J = /0, then the products are the final objects and the co-products are initial objects. The
product of a family {Ai}i∈I of objects is denoted by ∏i∈I Ai.

In Set the categorical products are just cartesian products, while co-products A + B
are disjoint unions A�B which can be defined as {(a,1) | a ∈ A}∪{(b,2) | b ∈ B}.

Pullbacks. When J is the category • ��• •�� with three objects and two non-
identity arrows, J-limits are called pullbacks.

In Set, the pullback square

D
h ��

k
��

C

f
��

B g
�� A

of C
f ��A B

g�� can be defined by D = {(b,c) ∈ B×C | g(b) = f (c)}, k(b,c) = b,
and h(b,c) = c.

For any arrow f , the pullback of a span • f ��• •f�� is called the kernel of f .
The kernel of any function f : A→ B is {(a,a′) ∈ A×A | f (a) = f (a′)}.

Pushouts. When J is the category • •�� ��• with three objects and two non-
identity arrows, J-co-limits are called pushouts.

In Set, the pushout of any span of functions B A
f�� g ��C always exists and

is given by the quotient of the disjoint union B�C which identifies all the elements f (a)
and g(a) for each a ∈ A.

Equalizers and co-equalizers. When J is the category with two objects and a pair of
parallel arrows between these objects, then J-limits are called equalizers and J-co-limits
are called co-equalizers.

• eq �� •
f ��
g

�� • coeq ��

k ��









 •

k′
��•

h′
��

h

�������� •
In Set, the equalizer of any pair of parallel arrows f ,g : A→ B is just the subset inclu-
sion {a | f (a) = g(a)} ⊆ A. The co-equalizer k is the quotient of B by the equivalence
generated by {( f (a),g(a)) | a ∈ A}.
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Directed co-limits. When J is a directed partially ordered set (i.e., for each i, i′ ∈ |J|
there exists j ∈ |J| such that i ≤ j and i′ ≤ j), then J-co-limits are called directed co-
limits. For the special case when J is a total order, the J-co-limits are called inductive
co-limits.

In Set, directed co-limits can be thought of as a generalized kind of union. For any

directed diagram of sets (Ai
fi, j ��A j )(i≤ j)∈(J,≤) its co-limit is given by the quotient of

the disjoint union �{Ai | i ∈ |J|} which identifies the elements ai and fi, j(ai).
A category that has all J-(co-)limits is called J-(co-)complete. Also, by small (co-)-

limits we mean all J-(co-)limits for all J that are small categories.

Theorem 2.1. In any category the following conditions are equivalent:

1. the category has finite (co-)limits,

2. the category has finite (co-)products and (co-)equalizers, and

3. the category has a final (initial) object and pullbacks (pushouts).

Lifting, creation, preservation, reflection of (co-)limits

Limits and co-limits, respectively, in base categories determine ‘pointwise’ limits and
co-limits, respectively, in corresponding functor categories.

Proposition 2.2. If the category B has J-(co-)limits, then for any category A, the category
Cat(A,B) of functors A→ B has small J-(co-)limits (which can be calculated separately
in B for each object A ∈ |A|).

A functor U : C→C′ preserves a (co-)limit of a functor D : J → C when μU is a
(co-)limit of D;U. Note that in Set the ‘product with A’, A×−, preserves all co-limits.

The functor U lifts (uniquely) a (co-)limit μ′ of D;U for any functor D : J → C, if
there exists a (unique) (co-)limit μ of D such that μU = μ′. Notice that if U lifts J-(co-
)limits and C′ has J-(co-)limits, then C has J-(co-)limits which are preserved by U.

Stronger than lifting is the following notion. The functor U creates a (co-)limit μ′
of D;U, when there exists a unique (co-)cone μ of D such that that μU = μ′ and such that
μ is a (co-)limit. For example the forgetful functor Grp→ Set creates all limits.

Proposition 2.3. If the functor U : C′ → C preserves J-(co-)limits, then for each object
A ∈ |C|, the forgetful functor A/U → C′ creates J-(co-)limits.

The functor U reflects (co-)limits of a functor D : J → C if μ is a (co-)limit of D
whenever μU is a (co-)limit of D;U.

Co-limits of final functors

A functor L : J′ → J is called final if for each object j ∈ |J| the comma category j/L
is non-empty and connected. Consequently, a subcategory J′ ⊆ J is final when the corre-
sponding inclusion functor is final.



2.2. Limits and Co-limits 15

For example, for each natural number n, (n→ n + 1→ n + 2→ . . .) is a final sub-
category of ω = (0→ 1→ 2→ . . .). More generally, for each directed poset (P,≤) and
each p ∈ P, {p′ ∈ P | p≤ p′} is final in (P,≤).

Theorem 2.4. For each final functor L : J′ → J and each functor D : J → C when a
co-limit μ′ : L;D ⇒ Colim(L;D) exists, there exists a co-limit μ : D ⇒ Colim(D) and
the canonical arrow h : Colim(L;D)→Colim(D) (given by the universal property of the
co-limit of L;D) is an isomorphism.

Finitely presented objects

An object A in a category C is finitely presented if and only if the hom-functor C(A,−) :
C→ Set preserves directed co-limits. This is equivalent to the following condition:

• for any arrow f : A → C to the vertex of a co-limiting co-cone μ : D ⇒ C of a
directed diagram D : (J,≤)→ C, there exists i ∈ J and an arrow fi : A → D(i)
such that f = fi;μi, and

• for any two arrows fi and f j as above, there exists k > i, j such that fi;Di,k = f j;D j,k.

D( j)

Dj,k����
��
�

μ j

��

D(k)

μk

��

A
fi ��

fk

��

f j

��

f

��

D(i)
Di,k

��






μi

���
��

��
�

C

In Set the finitely presented objects are precisely the finite sets. In the category of groups
Grp, the finitely presented groups are exactly the quotients of finitely generated groups
by finitely generated congruences.

A category is locally presentable when each object is a directed co-limit of finitely
presented objects. Set is locally presentable because each set is the (directed) co-limit of
its finite subsets.

Stability under pushouts/pullbacks

A class of arrows S ⊆C in a category C is stable under pushouts if for any pushout square
in C

• u ��

��

•

��•
u′

�� •

u′ ∈ S whenever u ∈ S . Stability under pullbacks in C is stability under pushouts in Cop.
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In general, epis are stable under pushouts and monos under pullbacks. In Set, monos
(injective functions) are stable under pushouts too. Injective functions f : A→B such that
B\ f (A) is finite are also stable under pushouts.

Weak limits and co-limits

These are weaker variants of the concepts of limits and co-limits, respectively, obtained
by dropping the uniqueness requirement from the universal property of the limits and co-
limits, respectively. For example, in Set for any two sets A and B, any super-set C of their
disjoint union, i.e., A�B⊆C, is a weak co-product for A and B. Obviously, weak limits
and co-limits, respectively, are no longer unique up to isomorphism.

2.3 Adjunctions

Adjoint functors are a core concept of category theory. Mathematical practice abounds
with examples of adjoint functors.

Proposition 2.5. For any functor U : A→ X the following conditions are equivalent:

1. For each object X ∈ X there exists a universal arrow from X to U.

2. There exists a functor F : X → A and a bijection ϕX ,A : A(F (X),A) → X(X ,
U(A)) indexed by |X|× |A| and natural in X and A.

3. There exists a functor F : X → A and natural transformations η : 1X ⇒ F ;U
(called the unit) and ε : U;F ⇒ 1A (called the co-unit) such that the following
triangular equations hold: ηF ;F ε = 1F and Uη;εU = 1U .

If the conditions above hold, then U is called a right adjoint, and the functor F
is called a left adjoint to U. The tuple (U,F ,η,ε) is called an adjunction from (the
category) X to (the category) A.

Very often the notion of adjunction is used in the following “freeness” form. Given
an adjunction (U,F ,η,ε), for any object X ∈ |X| there exists an object F (X), called U-
free over A and an arrow ηX : X →U(F (X)) such that for each object A∈ |A| and arrow
h : X →U(A), there exists a unique arrow h′ : F (X)→ A such that h = ηX ;U(h′).

X
ηX ��

h ���
��

��
��

U(F (X))

U(h′)����
��
��
��

F (X)

h′
����
��
��
�

U(A) A

When a category C has J-(co-)limits, then these are adjoints to the diagonal functor
Δ : C → Cat(J,C). More precisely, Lim is a right adjoint to Δ, while Colim is a left
adjoint to Δ.

The forgetful functor Grp → Set is right adjoint, its left adjoint constructing the
groups freely generated by sets.
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Galois connections. Let (P,≤) and (Q,≤) be preorders. Two preorder preserving func-
tions L : (P,≤)→ (Q,≤)op and R : (Q,≤)op → (P,≤) constitute an adjunction when
L(p)≥ q if and only if p≤ R(q) for all p ∈ P and q ∈Q. Notice that triangular equations
mean L(p)≥ L(R(L(p)))≥ L(p) and R(q)≤ R(L(R(q)))≤ R(q). The pair (L,R) is called
a Galois connection between (P,≤) and (Q,≤).

Persistent adjunctions. Given an adjunction (U,F ,η,ε), the object F (X) is called
persistently U-free when the unit component ηX is an isomorphism, and is called strongly
persistently U-free when ηX is identity. We can easily see that an object of A is persis-
tently free if and only if it is strongly persistently free. An adjunction such that for each
object X of X, F (X) is [strongly] persistently U-free, is called a [strongly] persistent
adjunction .

Composition of adjunctions. Given two adjunctions (U,F ,η,ε) from X to A, and
(U′,F ′,η′,ε′) from A to A′, note that (U′;U,F ;F ′,η;F η′U,U′εF ′;ε′) is an adjunc-
tion from X to A′. This is called the composition of the two adjunctions. Adjunctions thus
form a ‘quasi-category’ Ad j with categories as objects and adjunctions as arrows.

The following is one of the most useful properties of adjoint functors.

Proposition 2.6. Right adjoints preserve all limits and, dually, left adjoints preserve all
co-limits.

Special adjunctions

Categorical equivalences. The following equivalent conditions define a functor
U : X→ X′ as an equivalence of categories:

Proposition 2.7. For any functor U : X→ X′ the following conditions are equivalent:

– U belongs to an adjunction with unit and co-unit being natural isomorphisms, and

– U is full and faithful and each object A′ ∈ |X′| is isomorphic to U(A) for some
object A ∈ |X|.
We say that X is a skeleton of X′ when all isomorphisms in X are identities.

Cartesian closed categories. A category C is cartesian closed when it has all finite
products, denoted −×−, and for each object A the product functor −×A : C→ C has
a right adjoint [A,−]. If we denote the co-unit of this adjunction by evA, it means that for
each pair of objects A and B, and for each arrow f : C×A → B, there exists a unique
arrow f ′ : C→ [A,B] such that f = ( f ′ ×1A);evA

B,

[A,B]×A
evA

B �� B

C×A
f ′×1A

���������� f

���������
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In examples the co-unit components evA
B play the role of ‘evaluation maps’. We have that

Set is cartesian closed where [A,B] is the set of all functions A→ B, and evA
B( f ,a) = f (a).

Cat is also cartesian closed with [A,B] being the category Cat(A,B) of the functors A→B
and with the natural transformations between them as arrows.

2.4 2-categories

A 2-category C is an ordinary category whose objects are called 0-cells, whose arrows
are called 1-cells, and in addition to ordinary objects and arrows, for each pair of 1-cells
S ,T there is a set C(S ,T ) of 2-cells (denoted by S ⇒ T ) together with two compositions
for the 2-cells:

• a ‘vertical’ one σ;τ : S ⇒ T

A

S

  
�� ��
�� σ

!!

T

�� ��
�� τ

�� B

and

• a ‘horizontal’ one (denoted by simple juxtaposition) ττ′ : S ;S ′ ⇒ T ;T ′

A

S
		

T




�� ��
�� τ B

S ′
		

T ′




�� ��
�� τ′ C

such that every identity arrow for the first composite is also an identity for the second
composition, 1S ;T = 1S 1T for all composable 1-cells S and T , and such that the following
Interchange Law holds: given three categories and four natural transformations

A
  

�� ��
�� σ

!!�� ��
�� τ

�� B
  

�� ��
�� σ′

!!�� ��
�� τ′

�� C

the ‘vertical’ compositions and the ‘horizontal’ compositions are related by

(σ;τ)(σ′;τ′) = (σσ′);(ττ′).

Evidently any category is trivially a 2-category without proper 2-cells. The typical
non-trivial example of a 2-category is Cat with categories as 0-cells, functors as 1-cells,
and natural transformations as 2-cells.
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Adjunctions, natural transformations, (co-)limits

The concept of adjunction can be defined abstractly in any 2-category: (U,F ,η,ε) is an
adjunction if U : A→ X and F : X → A are 1-cells, η : 1X ⇒F ;U and ε : U;F ⇒ 1A

are 2-cells such that the triangular equations are satisfied:

ηF ;F ε = 1F and Uη;εU = 1U.

The proper mappings between 2-categories are 2-functors. A 2-functor F : C→C′
between 2-categories C and C′ maps 0-cells to 0-cells, 1-cells to 1-cells, and 2-cells to 2-
cells, such that F(S) : F(A)→F(B) for any 1-cell S : A→B, and F(σ) : F(S)⇒F(T )
for any 2-cell σ : S ⇒ T , and such that it preserves both the ‘vertical’ and the ‘horizontal’
compositions.

A 2-natural transformation τ : F ⇒ G between 2-functors F,G : A→ B maps any
object A of |A| to a 1-cell Aτ : F(A)→ G(A) such that (Aτ)G(σ) = F(σ)(Bτ) for each
2-cell σ : f ⇒ f ′ : A→ B.

F(A) Aτ ��

F( f ′)
""

F( f ) F(σ)⇒
##

G(A)

G( f ′)
""

G( f ) G(σ)⇒
##

F(B)
Bτ

�� G(B)

Lax natural transformations relax the commutativity of the natural transformation
square above to the existence of 2-cells. Therefore a lax natural transformation τ between
2-functors F and G maps any object A∈ |A| to Aτ : F(A)→G(A) and any 1-cell u : A→
B to uτ : Aτ;G(u)⇒F(u);Bτ such that (F(σ)(Bτ)); f ′τ = f τ;((Aτ)G(σ)) for each 2-cell
σ : f ⇒ f ′ : A→ B and

F(A)

		
$$

F(u) ��

Aτ
��

F(B)

		
$$

Bτ
��

F(v) �� F(C)

Cτ
��

G(A)
G(u)

�� G(B)

����
�%uτ

G(v)
�� G(C)

����
�%vτ

(u;v)τ = (uτ)(G(v));F(u)(vτ) for each u : A→ B and v : B→C.

2-categorical limits and co-limits can be defined similarly to the conventional limits
and co-limits as universal arrows from/to a diagonal functor. However, in the 2-categorical
framework, different concepts of natural transformations determine different concepts of
(co-)limits. Therefore, when we employ 2-natural transformations we get the concepts of
2-(co-)limit as a final (initial) 2-(co-)cone, and when we employ lax natural transforma-
tions we get the concepts of lax (co-)limit as a final/initial lax cone/co-cone.
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2.5 Indexed Categories and Fibrations

An indexed category is a functor B : Iop → Cat; sometimes we denote B(i) as Bi (or Bi)
for an index i∈ |I| and B(u) as Bu for an index morphism u∈ I. Given an indexed category
B : Iop→Cat, let B� be the Grothendieck category having 〈i, Σ〉, with i ∈ |I| and Σ ∈ |Bi|,
as objects and 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉, with u ∈ I(i, i′) and ϕ : Σ→ Bu(Σ′), as arrows.
The composition of arrows in B� is defined by 〈u, ϕ〉;〈u′, ϕ′〉= 〈u;u′, ϕ;(Bu(ϕ′))〉.
Proposition 2.8. The Grothendieck category B� of an indexed category B : Iop → Cat is
the vertex of the lax co-limit μ : B � B� of B in Cat, where

• for each index i ∈ |I|, μi : Bi → B� is the canonical inclusion of categories, and

• for each index morphism u ∈ I(i, j), μu : Bu;μi ⇒ μ j is defined by μu
b = 〈u, 1Bu(b)〉

for each object b ∈ |B j|.

Bi

μi
%&

B jBu
��

μ j
&''(

B�

���� ()
μu

Grothendieck constructions in 2-categories. Prop. 2.8 allows us to internalize the
concept of Grothendieck construction to any 2-category. Given a (1-)functor B : Iop→V ,
where V is an arbitrary 2-category, a Grothendieck construction for B is a lax co-limit
μ : B � B�. Then the vertex B� is called the Grothendieck object associated to B. We say
that a 2-categoryV admits Grothendieck constructions when each (1-)functor B : Iop→V
has a lax co-limit.

Notice also that any 2-functor B : I∗ →Cat, where I∗ is the 2-dimensional opposite
changing the direction of 2-cells both horizontally and vertically, induces a canonical
2-category structure on the Grothendieck category B� of the (1)-functor B : Iop → Cat.

Fibrations

Given a functor p : B → I, an object/arrow f ∈ B is said to be above an object/arrow
u ∈ I when p( f ) = u. An arrow above an identity is called vertical. Every object i ∈ |I|
determines a fibre category Bi consisting of objects above i and vertical morphisms above
1i. An arrow f ∈ B(A,C) is called cartesian over an arrow u ∈ I when f is above u
and every f ′ ∈ B(A′,C) with p( f ′) = v;u uniquely determines a g ∈ B(A′,A) above v
such that f ′ = g; f . p is called a fibred category or fibration when for every A ∈ |B| and
u∈ I(i, p(A)) there is a cartesian arrow (called cartesian lifting or critical lifts in [1]) with
codomain A above u.

Each indexed category B : Iop → Cat naturally determines a fibration p : B� → I
as the index projection, i.e., p(〈i, Σ〉) = i, such that for each index i, the fibre B�

i is Bi

and 〈u, ϕ〉 ∈ B� is cartesian over u when ϕ is isomorphism. Notice that for each index
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morphism u : i → i′ and 〈i′, Σ′〉 ∈ B�, 〈u, 1Bu(Σ′)〉 : 〈i, Bu(Σ′)〉 → 〈i′, Σ′〉 is a cartesian
lifting of u with codomain 〈i′, Σ′〉.

Conversely, if p : B→ I is a fibration, for each u ∈ I(i, i′) and A ∈ Bi′ , we chose a
cartesian lifting u : u∗(A)→ A (called the distinguished cartesian morphism correspond-
ing to u and A). Such choice determines a functor u∗ : Bi′ → Bi called a inverse image
functor. Notice that two inverse image functors corresponding to the same u are naturally
isomorphic, (u;v)∗ ∼= v∗;u∗ for each u,v ∈ I, and (1i)∗ ∼= 1Bi for each i ∈ |I|. When these
natural isomorphisms are identities we say that the fibration is split.

Proposition 2.9. The fibred category given by the forgetful functor from a Grothendieck
category to its category of indices is split. Conversely, each split fibration is a Grothen-
dieck category and each fibration is equivalent to a Grothendieck category.

Cartesian functors are “morphisms of fibrations”. Given fibrations p : B→ I and
p′ : B′ → I, a cartesian functor U : B→ B′ commutes with the fibrations, i.e., U ; p′ = p,
and preserves the cartesian arrows, i.e., maps any cartesian arrow for p to a cartesian
arrow for p′.

Limits/co-limits in Grothendieck/fibred categories can be obtained from (co-)limits
in the “local” categories or fibres.

Theorem 2.10. Given an indexed category B : Iop → Cat, then for each category J the
Grothendieck category B� has

• J-limits when I has J-limits, Bi has J-limits for each index i, and Bu preserves J-
limits for each index morphism u, and

• J-co-limits when I has J-co-limits, Bi has J-co-limits for each index i, and Bu has a
left adjoint for each index morphism u.



Chapter 3

Institutions

In this chapter we first give a model theoretic presentation of classical first order logic
with equality and show the invariance of the satisfaction relation between models and
sentences with respect to the change of notation. This is our first example of an insti-
tution. We then introduce the abstract concept of institution and illustrate it by a list of
examples from logic and computing science. The next section introduces morphisms and
comorphisms of institutions, which are mappings preserving the structure of institution
with rather complementary meaning in the actual situations. The final section of this chap-
ter, which is intended for the more category theoretic minded readers, provides a more
categorical definition for the concept of institution, which eases considerably our access
to the structural properties of categories of institutions. As an application we prove the
existence of limits of institutions.

3.1 From concrete logic to Institutions

Perhaps the most representative concrete logic system is first order logic. Here we present
it in its many-sorted variants and in a particularly structured way which will serve our goal
to capture it as an institution.

Many-sorted first order logic with equality (FOL)

Signatures. A (many-sorted) signature in FOL is a tuple (S,F,P) where

• S is the set of sort symbols,

• F = {Fw→s | w ∈ S∗,s ∈ S} is a family of sets of (S-sorted) operation symbols such
that Fw→s denotes the set of operations with arity w and sort s (in particular, when
the arity w is empty, F→s denotes the set of constants of sort s), and

• P = {Pw |w∈ S∗} is a family of sets of (S-sorted) relation symbols where Pw denotes
the set of relations with arity w.
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We may sometimes omit the word ‘symbol’ and simply refer to sort symbols as sorts, to
operation symbols as operations, and to relation symbols as relations.

That a symbol of operation σ belongs to some Fw→s for some arity w and some
sort s may be unprecisely but compactly denoted by ‘σ ∈ F’. The same may be of course
applied for the relation symbols.

When P is empty, then we may write (S,F) rather than (S,F, /0) and we call this an
algebraic signature.

The fact that the sets Fw→s (or Pw) are not required to be disjoint reflect the possibil-
ity of the so-called overloading of symbols. A simple example is given by the following
choice for a signature (S,F,P) for specifying natural and integer numbers:

• S = {N,Z} (with N denoting the natural numbers and Z the integers),

• FNN→N = {+}, FZZ→Z = {+,−}, FZ→Z = FNN→Z = {−}, and Fw→s = /0 otherwise,

• PNN = PZZ = {≤} and Pw = /0 otherwise.

Models. Given a FOL signature (S,F,P), a model M interprets:

• each sort symbol s as a set Ms, called the carrier set of sort s,

• each operation symbol σ ∈ Fw→s as a function Mσ : w→s : Mw → Ms, where Mw

stands for Ms1 ×·· ·×Msn for w = s1 . . . sn with s1, . . . ,sn ∈ S, and

• each relation symbol π ∈ Pw as a subset Mπ : w ⊆Mw.

The models of algebraic signatures are called algebras.
In order to simplify notation we will often write Mσ instead of Mσ : w→s and Mπ

instead of Mπ : w.
The presentation of many results could be nicely simplified if we assumed that Ms

is non-empty for each sort s. Alternatively, this can be achieved by default if one assumes
that there is at least one constant for each sort. In this book we will tacitly assume this in
all many-sorted situations in which non-empty sorts are necessary.

An (S,F,P)-model homomorphism h : M → M′ is an indexed family of functions
{hs : Ms →M′

s}s∈S such that

• h is an F-algebra homomorphism M →M′, i.e., hs(Mσ(m)) = M′
σ(hw(m)) for each

σ ∈ Fw→s and each m ∈Mw,1

Mw
Mσ ��

hw
��

Ms

hs
��

M′
w M′

σ

�� M′
s

and

• hw(m)∈M′
π if m∈Mπ (i.e. hw(Mπ)⊆M′

π) for each relation π∈Pw and each m∈Mw.

1hw : Mw →M′
w is the canonical component-wise extension of h, i.e., hw(m1 . . .mn) = hs1 (m1) . . .hsn (mn)

where w = s1 . . . sn and mi ∈Msi .
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Fact 3.1. For any signature (S,F,P), the (S,F,P)-model homomorphisms form a category
under the obvious composition (component-wise as many-sorted functions). The category
of (S,F,P)-models is denoted by Mod(S,F,P).

Sentences. An F-term t of sort s is a syntactic structure σ(t1 . . . tn) where σ ∈ Fs1...sn→s

is an operation symbol and t1, . . . ,tn are F-terms of sorts s1, . . . ,sn. By TF let us denote
the set of F-terms.

Given a signature (S,F,P), the set of (S,F,P)-sentences is the least set containing
the (quantifier-free) atoms and which is closed under Boolean connectives and quantifi-
cation as follows:

• An equation is an equality t = t ′ between F-terms t and t ′ of the same sort. A
relational atom is an expression π(t1, . . . ,tn) where π ∈ P and (t1, . . . ,tn) ∈ (TF)w is
any list of F-terms for the arity w of π (i.e., w = s1 . . . sn where sk is the sort of tk for
1≤ k ≤ n). An atom is either an equation or a relational atom.

• For ρ1 and ρ2 any (S,F,P)-sentences, let ρ1 ∧ ρ2 be their conjunction which is
also an (S,F,P)-sentence. Other Boolean connectives are the disjunction (ρ1∨ρ2),
implication (ρ1 ⇒ ρ2), negation (¬ρ), and equivalence (ρ1 ⇔ ρ2).

• Any finite set X of variables for the sorts S can be added to the signature as new
constants. The fact that a variable x ∈ X has the sort s ∈ S is denoted by x : s. Then
(∀X)ρ is an (S,F,P)-sentence for each (S,F�X ,P)-sentence ρ. A similar definition
can be applied to the existential quantification, denoted (∃X).

Signature morphisms. A signature morphism ϕ = (ϕst,ϕop,ϕrl) : (S,F,P)→ (S′,F ′,P′)
consists of

• a function between the sets of sorts ϕst : S→ S′,

• a family of functions between the sets of operation symbols ϕop = {ϕop
w→s : Fw→s →

F ′ϕst(w)→ϕst(s)}w∈S∗,s∈S,2 and

• a family of functions between the sets of relation symbols ϕrl = {ϕrl
w : Pw →

P′ϕst(w)}w∈S∗ .

Model reducts. Given a signature morphism ϕ : (S,F,P) → (S′,F ′,P′), the reduct
M′�ϕ of a (S′,F ′,P′)-model M′ is an (S,F,P)-model which is defined as follows:

• (M′�ϕ)s = M′
ϕst(s) for each sort s ∈ S,

• (M′�ϕ)σ = M′
ϕop

w→s(σ)
for each operation symbol σ ∈ Fw→s, and

• (M′�ϕ)π = M′
ϕrl

w(π) for each relation symbol π ∈ Pw.

The reduct h′�ϕ of a model homomorphism is also defined by (h′�ϕ)s = h′ϕ(s) for each sort
s ∈ S.

2Here ( )op should not be confused with the similar notation for the opposite of a category; also for any
string of sorts w = s1 . . . sn, by ϕst(w) we mean the string of sorts ϕst(s1) . . .ϕst(sn).
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Fact 3.2. For each signature morphism ϕ : (S,F,P)→ (S′,F ′,P′), the model reduct �ϕ
is a functor Mod(S′,F ′,P′)→Mod(S,F,P).

Moreover, Mod becomes a functor Sig→ Catop, with Mod(ϕ)(M) = M�ϕ for each
signature morphism ϕ.

Sentence translations. The sentence translation Sen(ϕ) : Sen(S,F,P) → Sen(S′,
F ′,P′) along ϕ is defined inductively on the structure of the sentences by replacing the
symbols from (S,F,P) with symbols from (S′,F ′,P′) as defined by ϕ. At the level of
terms, this defines a function TF → TF ′ which we may denote by ϕtm, or simply by ϕ.
This can be formally defined by

ϕtm(σ(t1, . . . ,tn)) = ϕop(σ)(ϕtm(t1), . . . ,ϕtm(tn)).

Then

• Sen(ϕ)(t = t ′) = (ϕtm(t) = ϕtm(t ′)) for equations,

• Sen(ϕ)(π(t1, . . . ,tn)) = ϕrl(π)(ϕtm(t1), . . . ,ϕtm(tn)) for relational atoms,

• Sen(ϕ)(ρ1 ∧ ρ2) = Sen(ϕ)(ρ1)∧ Sen(ϕ)(ρ2) and similarly for all other Boolean
connectives, and

• Sen(ϕ)((∀X)ρ) = (∀Xϕ)Sen(ϕ′)(ρ) for each finite set of variables X , each (S,
F � X ,P)-sentence ρ, and where Xϕ = {(x : ϕst(s)) | (x : s) ∈ X}, and ϕ′ : (S,
F �X ,P)→ (S′,F ′ �Xϕ,P′) extends ϕ canonically.

Fact 3.3. Sen is a functor Sig→ Set.

Satisfaction. First let us note that each term t of sort s gets interpreted by any (S,F,P)
model M as an element Mt ∈Ms by

Mt = Mσ(Mt1 , . . . ,Mtn)

where t = σ(t1, . . . ,tn).
The satisfaction between models and sentences is the Tarskian satisfaction defined

inductively on the structure of sentences. Given a fixed arbitrary signature (S,F,P),

• for equations: M |= t = t ′ if Mt = Mt′ ,

• for relational atoms M |= π(t) if Mt ∈Mπ,3

• M |= ρ1∧ρ2 if and only if M |= ρ1 and M |= ρ2,

• M |= ¬ρ if and only if M �|= ρ,

• M |= ρ1∨ρ2 if and only if M |= ρ1 or M |= ρ2,

• M |= ρ1 ⇒ ρ2 if and only if M |= ρ2 whenever M |= ρ1,

• M |= (∀X)ρ if M′ |= ρ for each expansion M′ of M along the signature inclusion
(S,F,P) ↪→ (S,F �X ,P) (i.e., M is the reduct of M′), and

• M |= (∃X)ρ if and only if M |= ¬(∀X)¬ρ.

3Mt = (Mt1 , . . . ,Mtn ) for t = t1 . . . tn string of F-terms.
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The result below shows that, in first order logic, satisfaction is an invariant with
respect to changes of signatures.

Proposition 3.4. For any signature morphism ϕ : (S,F,P)→ (S′,F ′,P′), any (S′,F ′,P′)-
model M′, and any (S,F,P)-sentence ρ,

M′�ϕ |= ρ if and only if M′ |= Sen(ϕ)(ρ).

Proof. We prove this by induction on the structure of the sentences. First notice that
for any (S,F,P)-term t, M′

ϕtm(t) = (M′�ϕ)t . The satisfaction condition for atoms follows
immediately, while the preservation of the satisfaction condition by Boolean connectives
can also be checked very easily.

Now we show that the satisfaction condition is preserved by quantification too. We
consider only the case of universal quantification, since existential quantification can be
treated similarly. Consider an (S,F,P)-sentence (∀X)ρ.

(S,F,P)
ϕ ��

��

(S′,F ′,P′)

��
(S,F �X ,P)

ϕ′
�� (S′,F ′ �Xϕ,P′)

The conclusion follows by noticing the canonical bijection between the expansions M′′ of
M′ to (S′,F ′ �Xϕ,P′) and the expansions N of M′�ϕ to (S,F �X ,P) given by M′′�ϕ′ = N,
and by using the satisfaction condition M′′ |= Sen(ϕ′)(ρ) if and only if N |= ρ which is
given by the induction hypothesis. �

Institutions

The above presentation of FOL just shows that it is an institution. Below is the definition
of the abstract concept of institution.

An institution I = (SigI ,SenI ,ModI , |=I ) consists of

SigI

(ModI )op

)*��
��
��
�� SenI

(+�
��

��
��

Catop |= Set

1. a category SigI , whose objects are called signatures,

2. a functor SenI : SigI → Set, giving for each signature a set whose elements are
called sentences over that signature,

3. a functor ModI : (SigI )op →Cat giving for each signature Σ a category whose ob-
jects are called Σ-models, and whose arrows are called Σ-(model) homomorphisms,
and

4. a relation |=Σ⊆ |ModI (Σ)|×SenI (Σ) for each Σ ∈ |SigI |, called Σ-satisfaction,
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such that for each morphism ϕ : Σ→ Σ′ in SigI , the satisfaction condition

M′ |=Σ′ SenI (ϕ)(e) if and only if ModI (ϕ)(M′) |=Σ e

holds for each M′ ∈ |ModI (Σ′)| and e∈ SenI (Σ). The satisfaction condition can be graph-
ically represented by the following commutative diagram:

Σ

ϕ

��

ModI (Σ)
|=I

Σ
SenI (Σ)

SenI (ϕ)
��

Σ′ ModI (Σ′)

ModI (ϕ)

��

|=I
Σ′

SenI (Σ′)

The meaning of the satisfaction condition of institutions is that

Truth is invariant under change of notation (and under extension of the con-
text).

We may denote the reduct functor ModI (ϕ) by �ϕ and the sentence translation SenI (ϕ)
simply by ϕ( ). When M = M′�ϕ we say that M is a ϕ-reduct of M and that M′ is an
ϕ-expansion of M. When ϕ is clear (such as an inclusion), we may even write M�Σ rather
than M�ϕ. Also, when there is no danger of ambiguity, we may skip the superscripts from
the notations of the entities of the institution; for example SigI may be simply denoted
Sig.

Corollary 3.5. FOL is an institution.

Closure under isomorphisms. In this book we assume that all institutions are closed
under isomorphisms, meaning that the satisfaction relation is invariant with respect to
model isomorphisms, i.e., for isomorphic Σ-models M∼= N, M |=Σ ρ if and only if M |=Σ ρ
for any Σ-sentence ρ.

Although this a very natural property from a model theoretic perspective, it evi-
dently should not be expected in general at the level of abstract institutions.

Exercises

3.1. Give an example of an institution that is not closed under isomorphisms.

3.2 Examples of institutions

This section is devoted to examples of institutions. The reader is invited to complete the
missing details, including a proof of the satisfaction condition for each of the examples
presented.
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Sub-institutions. Many examples of institutions are obtained as ‘sub-institutions’ of
given institutions. A sub-institution I ′ = (Sig′,Sen′,Mod′, |=′) of I = (Sig,Sen,Mod, |=)
is obtained by narrowing either the category of the signatures, the sentences, and/or the
class of models of I . We may express this formally as follows:

• Sig′ is a sub-category of Sig,

• for each signature Σ ∈ |Sig′| we have that

– Sen′(Σ)⊆ Sen(Σ), and
– Mod′(Σ) is a sub-category of Mod(Σ),

• for each signature morphism ϕ ∈ Sig′ we have that

– Sen′(ϕ) is the restriction of Sen(ϕ), and
– Mod′(ϕ) is the restriction of Mod(ϕ),

• for each signature Σ ∈ |Sig′|, the satisfaction relation |=′Σ is the restriction of the
satisfaction relation |=Σ.

Below we give several rather well known examples of ‘sub-institutions’ of FOL.

Single-sorted logic (FOL1). This is the ‘sub-institution’ of FOL determined by the
single-sorted signatures for a fixed sort. Evidently, the name of this sort does not matter
since different choices give rise to ‘isomorphic sub-institutions’.

Note that in FOL1 the arities of the operation and of the relation symbols are essen-
tially natural numbers rather than strings of sort symbols. Also the set of sorts S may be
omitted from the notation of signatures, therefore the FOL1-signatures are pairs (F,P) of
families F of sets of operation symbols and of families P of sets of relation symbols.

FOL1 is the version of first order logic used mainly in conventional logic, while the
more general many-sorted version FOL is used mainly in computing science.

Propositional logic (PL). This can be seen as the ‘sub-institution’ of FOL obtained
by restricting the signatures to those with an empty set of sort symbols. This means that
PL signatures consist only of sets (of zero arity relation symbols), therefore SigPL is just
Set, for each set P the set of P-sentences consists of the Boolean expressions formed with
variables from P, and the model functor is the contravariant power set functor P : Set →
Catop (the category of P-models is the partial order (P (P),⊆) regarded as a category).
Note that a P-model M ⊆ P satisfies π ∈ P when π ∈M.

While PL can be seen as a ‘sub-institution’ of FOL, evidently it cannot be seen as
a ‘sub-institution’ of the single-sorted version FOL1.

Positive first order logic (FOL+). Sentences are restricted only to those constructed
by means of ∧,∨,∀,∃, but not negation. Here ∨ and ∃ are no longer reducible to ∧ and ∀
and vice versa.
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Universal sentences in FOL (UNIV). A universal sentence for a FOL signature
(S,F,P) is a sentence of the form (∀X)ρ where ρ is a sentence formed without quan-
tifiers.

Horn clause logic (HCL). A (universal) Horn sentence for a FOL signature (S,F,P)
is a (universal) sentence of the form (∀X)(H ⇒ C), where H is a finite conjunction of
(relational or equational) atoms and C is a (relational or equational) atom, and H ⇒C is
the implication of C by H. In the tradition of logic programming, universal Horn sentences
are known as Horn clauses. We may often write Horn clauses as (∀X)H ⇒C by omitting
the brackets around H ⇒C. Thus HCL has the same signatures and models as FOL but
only universal Horn sentences as sentences.

Equational logic. The institution FOEQL of first order equational logic is obtained
from FOL by discarding both the relation symbols and their interpretation in models.

The institution EQL of equational logic is obtained by restricting the sentences of
FOEQL only to universally quantified equations.

The institution CEQL of conditional equational logic is obtained as the ‘intersec-
tion’ between FOEQL and HCL.

EQLN is the minimal extension of EQL with negation, allowing sentences ob-
tained from atoms and negations of atoms through only one round of quantification, ei-
ther universal or existential. More precisely, all sentences have the form (QX)t1πt2 where
Q ∈ {∀,∃}, π ∈ {=, �=}, and t1 and t2 are terms with variables X .

Relational logic (REL). This is obtained as the sub-institution of FOL determined by
those signatures without non-constant operation symbols. Many older works have devel-
oped conventional classical logic in REL rather than FOL.

(Π∪Σ)0
n. This is the fragment of FOL containing only sentences of the form Qρ where

Q consists of (at most) n alternated quantifiers (universal and existential) and ρ is atomic.

Second order logic (SOL). This is obtained as the extension of FOL which allows
quantification over sorts, operations, and relation symbols. This differs slightly from the
usual presentations of second order logic in the literature which do not consider quantifi-
cations over the sorts.

Infinitary logic (FOL∞,ω, FOLα,ω). These are infinitary extensions of FOL. FOL∞,ω
allows conjunctions of arbitrary sets of sentences, while FOLα,ω admits conjunction of
sets of sentences with cardinal smaller than α.

Infinitary Horn clause logic (HCL∞). This is the infinitary extension of HCL obtained
by allowing the hypotheses parts H of Horn clauses (∀X)H ⇒ C to consist of infinitary
conjunctions of atoms.
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Partial algebra (PA)

A partial algebraic signature is a tuple (S,TF,PF) such that (S,TF ∪PF) is an algebraic
signature. Then T F is the set of total operations and PF is the set of partial operations.
A morphism of PA signatures ϕ : (S,T F,PF) → (S′,T F ′,PF ′) is just a morphism of
algebraic signatures (S,TF ∪PF)→ (S′,T F ′ ∪PF ′) such that ϕ(T F)⊆ T F ′.

A partial algebra A for a PA signature (S,T F,PF) is just like an ordinary alge-
bra but interpreting the operations of PF as partial rather than total functions, which
means that Aσ might be undefined for some arguments. A partial algebra homomorphism
h : A→ B is a family of (total) functions {hs : As → Bs}s∈S indexed by the set of sorts S
of the signature such that hw(Aσ(a)) = Bσ(hs(a)) for each operation σ : w→ s and each
string of arguments a ∈ Aw for which Aσ(a) is defined.

The sentences have three kinds of atoms: definedness def( ), strong equality
s=, and

existence equality
e=. The definedness def(t) of a term t holds in a partial algebra A when

the interpretation At of t is defined. The strong equality t
s= t ′ holds when both terms are

undefined or both of them are defined and are equal. The existence equality t
e= t ′ holds

when both terms are defined and are equal. The sentences are formed from these atoms
by means of Boolean connectives and quantification over total (first order) variables.

QE(PA). A (universal) quasi-existence equation is an infinitary Horn sentence in the
infinitary extension PA∞,ω of PA of the form

(∀X)
∧
i∈I

(ti
e= t ′i )⇒ (t e= t ′).

Let QE(PA) be the sub-institution of the infinitary extension PA∞,ω of PA which restricts
the sentences only to quasi-existence equations, QE1(PA) the institution of the quasi-
existence equations (∀X)

∧
i∈I(ti

e= t ′i )⇒ (t e= t ′) that have either t or t ′ ‘already defined’
(i.e., they occur as subterms of the terms of the equations in the premise or are formed
only from total operation symbols), and QE2(PA) the institution of the quasi-existence
equations that have both t and t ′ ‘already defined’.

Modal (first order) logic (MFOL)

In Chap. 11 we will undertake a deeper institution-independent study of modal institu-
tions, while here we present only the standard extension of FOL with modalities and
Kripke semantics.

The MFOL signatures are tuples (S,S0,F,F0,P,P0) where

• (S,F,P) is a FOL signature, and

• (S0,F0,P0) is a sub-signature of (S,F,P) of rigid symbols.

Signature morphisms ϕ : (S,S0,F,F0,P,P0)→ (S′,S′0,F
′,F ′0,P

′,P′0) are just FOL signa-
ture morphisms ϕ : (S,F,P)→ (S′,F ′,P′) which preserve the rigid symbols, i.e., ϕ(S0)⊆
S′0, ϕ(F0)⊆ F ′0, ϕ(P0)⊆ P′0.
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A MFOL model (W,R) for a signature (S,S0,F,F0,P,P0), called a Kripke model,
consists of

• a family W = {W i}i∈IW of ‘possible worlds’, which are (S,F,P)-models in FOL,
indexed by a set IW , and such that for all rigid symbols x, W i

x = W j
x for all i, j ∈ IW ,

and

• an ‘accessibility’ binary relation R⊆ IW × IW between the possible worlds.

The reduct (W ′,R′)�ϕ of a Kripke model along a signature morphism ϕ is defined as
(W,R′) where IW ′ = IW and W i = (W ′)i�ϕ for each i ∈ IW .

A Kripke model (W,R) is T when R is reflexive, S4 when it is T and R is transitive,
and is S5 when it is S4 and R is symmetric.

Homomorphisms between Kripke models preserve their mathematical structure.
Thus a Kripke model homomorphism h : (W,R)→ (W ′,R′) consists of

• a function h : IW → IW ′ which preserves the accessibility relation, i.e., 〈i, j〉 ∈ R
implies 〈h(i), h( j)〉 ∈ R′, and

• for each i ∈ IW an S-sorted function {hi
s : W i

s →W ′h(i)
s }s∈S, which is an (S,F,P)-

model homomorphism W i →W ′h(i), and such that for each rigid sort s0 we have
that hi

s0
= h j

s0 for any i, j ∈ IW . (Notice the overloading of ‘h’ in this definition!)

The (S,S0,F,F0,P,P0)-sentences are expressions formed from FOL (S,F,P)-atoms
by closing under usual Boolean connectives, universal and existential first order quantifi-
cations by rigid variables (i.e., quantifications by rigid new constants), and unary modal
connectives � (necessity) and � (possibility).

The satisfaction of MFOL sentences by the Kripke models, (W,R) |= ρ is defined
by (W,R) |=i ρ for each i ∈ IW , where |=i is defined by induction on the structure of the
sentences as follows:

• (W,R) |=i ρ iff W i |=FOL ρ for each atom ρ and each i ∈ IW ,

• (W,R) |=i ρ1 ∧ ρ2 iff (W,R) |=i ρ1 and (W,R) |=i ρ2; and similarly for the other
Boolean connectives,

• (W,R) |=i �ρ iff (W,R) |= j ρ for each j such that 〈i, j〉 ∈ R,

• �ρ abbreviates ¬�¬ρ,

• (W,R) |=i (∀X)ρ when (W ′,R) |=i ρ for each expansion (W ′,R) of (W,R) to a
Kripke (S,F�X ,P)-model and (W,R) |=i (∃X)ρ if and only if (W,R) |=i ¬(∀X)¬ρ.

Modal propositional logic (MPL). This is the sub-institution of MFOL determined by
the signatures with an empty set of sort symbols (and therefore empty sets of operation
symbols) and empty sets of rigid relation symbols. Most of the conventional modal logic
studies are concerned with this institution.
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Intuitionistic logic

Heyting algebras. A Heyting algebra A is a bounded lattice which is cartesian closed
as category. In other words A is a partial order (A,≤) with a greatest element � and a
least one ⊥ and such that any two elements a,b ∈ A

• have a greatest lower bound a∧b and a least upper bound a∨b, and

• there exists a greatest element x such that a∧ x≤ b; this element is denoted a⇒ b.

From these axioms a series of important properties can be derived, such as the dis-
tributivity of the lattice. Also each element a has a pseudo-complement ¬a defined as
a⇒⊥. However, while it is possible to show that a ≤ ¬¬a, in general we do not have
that a = ¬¬a. This shows that Heyting algebras are more general than Boolean alge-
bras. A famous class of examples of Heyting algebras that are not Boolean algebras come
from general topology; the set of open sets of any topological space ordered by (sub)set
inclusion forms a Heyting algebra.

Intuitionistic propositional logic (IPL). The institution of intuitionistic propositional
logic generalizes (classical) propositional logic (PL) by considering models to be val-
uations of the propositional variables to arbitrary Heyting algebras rather than the two-
elements Boolean algebra {⊥,�}. More precisely, IPL has the same signatures as PL,
i.e., plain sets P, and for any set P, a P-model M is just a function M : P → A where
A is any Heyting algebra. If f : P→ P′ is a signature morphism, then the reduct of any
P′-model M′ is just f ;M′. IPL and PL share the same sentences.

The function M can be extended from P to Sen(P) by M(ρ1∧ρ2) = M(ρ1)∧M(ρ2),
M(ρ1 ∨ρ2) = M(ρ1)∨M(ρ2), M(¬ρ) = ¬M(ρ), M(ρ1 ⇒ ρ2) = M(ρ1)⇒ M(ρ2), etc.
The satisfaction relation is defined by

M |=P ρ if and only if M(ρ) =�.

Preorder algebra (POA)

The POA signatures are just the ordinary algebraic signatures. The POA models are pre-
ordered algebras which are interpretations of signatures into the category of preorders Pre
rather than the category of sets Set. This means that each sort gets interpreted as a pre-
order, and each operation as a preorder functor, which means a preorder-preserving (i.e.,
monotonic) function. A preordered algebra homomorphism is just a family of preorder
functors (preorder-preserving functions) which is also an algebra homomorphism.

The sentences have two kinds of atoms: equations and preorder atoms. A preorder
atom t ≤ t ′ is satisfied by a preorder algebra M when the interpretations of the terms are
in the preorder relation of the carrier, i.e., Mt ≤Mt′ . Full sentences are constructed from
equational and preorder atoms by using Boolean connectives and first order quantifica-
tion.
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Horn preordered algebra (HPOA). This is the sub-institution of POA whose sen-
tences are the universal Horn sentences (∀X)H ⇒C formed over equational and preorder
atoms.

Multialgebras (MA)

The category of the MA signatures is just that of the algebraic signatures. Multialge-
bras generalize algebras by nondeterministic operations returning a set of all possible
outputs for the operation rather than a single value. Hence multialgebra operations are
interpreted as functions from the carrier to the powerset of the carrier. Therefore each
term t = σ(t1 . . . tn) is interpreted in any multialgebra M by Mt =

⋃{Mσ(m1 . . .mn) |m1 ∈
Mt1 , . . . ,mn ∈Mtn}.

Given a signature (S,F), a multialgebra homomorphism h : M → N consists of an
S-indexed family of functions {hs : Ms → Ns | s ∈ S} such that for each operation symbol
σ ∈ Fs1...sn→s and each mk ∈Msk for 1≤ k ≤ n we have

hs(Mσ(m1, . . . ,mn))⊆ Nσ(hs1(m1), . . . ,hsn(mn)).

The sentences have two kinds of atoms: set inclusion≺ and (deterministic) element
equality

.=. The set inclusion t ≺ t ′ holds in a multialgebra M if and only if Mt ⊆Mt′ , i.e.,
the term t is “more deterministic” than t ′. The element equality t

.= t ′ states that the terms
t and t ′ are deterministic and must return the same element. (This means that Mt and Mt′
are both singleton sets containing the same element.) Full sentences are built from these
atoms by using Boolean connectives and first order quantification in the manner of FOL.

Membership algebra (MBA)

A MBA signature is a tuple (S,K,F,kind) where S is a set of sorts, K is a set of kinds,
(K,F) is an algebraic signature, and kind : S → K is a function. A morphism of MBA
signatures ϕ : (S,K,F,kind)→ (S′,K′,F ′,kind′) consists of functions ϕst : S→ S′, ϕk :
K → K′ such that the following diagram commutes

S
kind ��

ϕst

��

K

ϕk

��
S′

kind′
�� K′

and a family of functions {ϕop
w→s | w ∈ K∗,s ∈ K} such that (ϕk,ϕop) : (K,F)→ (K′,F ′)

is an algebraic signature morphism.
Given a membership algebraic signature (S,K,F,kind), an (S,K,F,kind)-algebra

A is a (K,F)-algebra together with a set As ⊆ Akind(s) for each sort s ∈ S such that As ⊆
Akind(s) for each sort s. A (S,K,F,kind)-algebra homomorphism A→B is a (K,F)-algebra
homomorphism such that hkind(s)(As)⊆ Bs for each sort s.

Sentences for membership algebra have two types of atoms, atomic equations t = t ′
for t,t ′ any F-terms of the same kind, and atomic membership t : s where s is a sort
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and t is an F-term of kind(s). A membership algebra A satisfies an equation t = t ′ when
At = At′ and satisfies a membership atom t : s when At ∈ As. Full sentences are formed
from atoms by iteration of Boolean connectives and first order quantification.

Higher Order Logic (HOL)

For any set S of sorts, let
−→
S be the set of S-types defined as the least set such that

S ⊆ −→S and s1 → s2 ∈ −→S when s1,s2 ∈ −→S . A HOL signature (S,F) consists of a set
S of sorts and a family of sets of constants F = {Fs | s ∈ −→S }. A morphism of HOL sig-
natures ϕ : (S,F)→ (S′,F ′) consists of a function ϕst : S→ S′ and a family of functions

{ϕop
s : Fs → F ′ϕtype(s) | s ∈ −→S } where ϕtype :

−→
S →−→

S′ is the canonical extension of ϕst

such that ϕtype(s1 → s2) = ϕtype(s1)→ ϕtype(s2).
Given a signature (S,F), an (S,F)-model interprets each sort s ∈ S as a set Ms

and each operation symbol σ ∈ Fs as an element Mσ ∈ Ms, where for each type s1,s2,
Ms1→s2 = [Ms1 → Ms2 ] = { f function | f : Ms1 → Ms2}. An (S,F)-model homomor-
phism h : M → N interprets each S-type s as a function hs : Ms → Ns such that h(Mσ) =
Nσ for each σ ∈ F and such that the diagram

Ms
f ��

hs

��

Ms′

hs′
��

Ns
hs→s′ ( f )

�� Ns′

commutes for all types s and s′ and each f ∈Ms→s′ .
For any HOL signature (S,F), each operation symbol σ of type s is a term of type

s, and (tt ′) is a term of type s2 whenever t is a term of type s1 → s2 and t ′ is a term of type
s1. A HOL (S,F)-equation consists of a pair t1 = t2 of terms of the same type. A HOL
(S,F)-sentence is obtained from equations by iteration of the usual Boolean connectives
and of higher order (universal or existential) quantification which is defined similarly
to the quantification in FOL. Note however that because of the ‘higher order’ types, the
constants in HOL denote higher order rather than first order entities.

The interpretation of operation symbols by models can be extended to terms by
defining M(tt′) = Mt(Mt′) for each term t of of type s1 → s2 and each term t ′ of type s1.
A model M satisfies the equation t = t ′ when Mt = Mt′ . This satisfaction relation can be
extended in an obvious manner from equations to any sentences.

Henkin semantics. The institution of higher order logic with Henkin semantics, de-
noted HNK, extends the HOL models by relaxing the condition Ms→s′ = [Ms →Ms′ ] to
Ms→s′ ⊆ [Ms →Ms′ ].
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Automata (AUT)

Given a set V (of ‘input symbols’), a V-automaton A consists of

– a set Astate of ‘states’ with some ‘initial’ state A0 ∈Astate and with some ‘final’ states,
and

– a transition function At : V ×Astate → Astate.

A homomorphism of V-automata h : A→ B consists of a function h : Astate → Bstate such
that h(A0) = B0, h(a) is final whenever a is final, and

V ×Astate
At ��

1V×h

��

Astate

h
��

V ×Bstate Bt

�� Bstate

commutes. The transition function extends canonically by iteration to A∗t : V ∗ ×Astate →
Astate. A word (or string) w ∈V ∗ is recognized by a V -automaton if and only if A∗t (w,A0)
is a final state.

The institution AUT of automata has Set as its category of signatures, automata as
models, and strings of input symbols as sentences. A string w is satisfied by an automaton
A when A recognizes w.

Exercises

3.2. Define a version of weak second order logic as an institution which has second order variables
ranging over finite subsets of the models.

3.3. Extend the definition of IPL to an institution of ‘intuitionistic first order logic’.

3.4. Contraction Algebras
A contraction algebraic signature (S,F,q) consists of an algebraic signature (S,F) and a real

number 0 < q < 1. ϕ : (S,F,q)→ (S′,F ′,q′) is a morphism of contraction algebraic signatures if
ϕ : (S,F)→ (S′,F ′) is an algebraic signature morphism and q′ ≤ q.

(A,d) is a (S,F,q)-contraction algebra when A is an (S,F)-algebra, d gives a complete metric
space (As,ds) for each sort s ∈ S such that ds is bounded by 1, and

d(Aσ(a1 . . .an),Aσ(b1 . . .bn))≤ q ·max{d(ak ,bk) | k ∈ {1, . . . ,n}}.
A homomorphism of contraction algebras h : (A,d)→ (A′,d′) is just an (S,F)-algebra homomor-
phism A→ A′ such that d′(h(a),h(b)) ≤ d(a,b) for all elements a,b ∈ A.

For each algebraic signature (S,F) let T ω
F be the S-sorted set of (possibly) infinite F-terms.

Show that for any contraction algebra (A,d) there exists a unique mapping T ω
F → A mapping each

(possibly) infinite term t to an element At of A such that Aσ(t1...tn) = Aσ(At1 . . .Atn) for each infinite
term σ(t1 . . .tn).

An (S,F,q)-approximation equation t ≈ε t ′ consists of a pair of (possibly) infinite terms t and
t ′ and a real number 0≤ ε < 1. A contraction algebra A satisfies t ≈ε t ′ if and only if d(At ,At ′)≤ ε.
Full ‘approximation’ sentences are formed from atomic approximation equalities by iteration of
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Boolean connectives and quantification. These data define an institution CA of contraction algebras
and approximation sentences.

3.5. Linear Algebra
The institution LA has the category CRng of commutative rings as the category of signatures such
that for each commutative ring R the category of R-models is R-Mod the category of R-modules, an
R-sentence is a linear system of equations with coefficients from R, and the satisfaction relation is
defined by the existence of solutions for the system of equations.

3.6. HOL with λ-abstraction
The institution HOLλ has become quite popular for computer-assisted theorem proving. It adds

λ-abstraction and products to HOL. Signatures and signature morphisms are similar to those of
HOL. The only difference is in the definition of the set of higher types: a type Ω of truth-values
and products are added. Thus

−→
S is defined to be the least set such that

• S�{Ω} ⊆ −→S ,

• s1 → s2 ∈ −→S and s1× s2 ∈−→S when s1,s2 ∈−→S .

For each HOLλ-signature (S,F),
• each operation symbol σ of type s is a term of type s,
• (t t ′) is a term of type s2 whenever t is a term of type s1 → s2 and t ′ is a term of type s1,
• 〈t1,t2〉 is a term of type s1× s2 when t1 is a term of type s1 and t2 is a term of type s2,
• for any finite list X = 〈x1:s1, . . . ,xn:sn〉 of typed variables and any (S,F �X)-term t of

type s, λX .t is an (S,F)-term of type (((s1× s2)× . . .)× sn)→ s,
• t1 = t2 is a term of type Ω for terms t1,t2 of the same type.

A HOLλ-model (also called standard model) interprets Ω as a two-element set {⊥,�}, × as a
cartesian product, and is otherwise like a HOL-model. The interpretation Mt of a term t in a model
M is defined as in HOL for the cases σ and (t t ′). M〈t1,t2〉 is just 〈Mt1 ,Mt2〉. MλX .t is the function
that, for any (S,F �X)-expansion M′ of M, maps the tuple 〈〈〈M′

x1
,M′

x2
〉, . . .〉,M′

xn
〉 to M′

t . Mt1=t2 is
�, if Mt1 = Mt2 , and ⊥ otherwise.

A (S,F)-sentence ρ is just a (S,F)-term of type Ω. It holds in a model M if Mρ =�.

3.7. HNK with λ-abstraction
HNKλ is a generalization of HOLλ, much in the same way as HNK is a generalization of HOL.

However, there is an additional requirement for models. Let a Σ-frame be like a HOLλ-model of
signature Σ, but with the relaxed condition that Ms1→s2 may be any subset of [Ms1 → Ms2 ]. A Σ-
frame is a Σ-general model, if every Σ-term has an interpretation in it (note that the interpretations
of λ-abstractions require the existence of certain functions in the model). The model functor of
HNKλ uses general models instead of standard models.

3.8. Categorical Equational Logic
For any category A, an (unconditional) A-equation (∀B)l = r is a pair of parallel arrows l,r : C→B
in A. An A-model is simply any object of A, and a homomorphism of A-models is an arrow of A.
An A-model A satisfies the equation (∀B)l = r when l;h = r;h for each arrow h : B→ A.

For each right adjoint U : A′ →A with F : A→A′ as left adjoint, the following satisfaction
condition holds:

U(A′) |= (∀B)l = r if and only if A′ |= (∀F(B))F(l) = F(r)

for each A′-model A′ and each A-equation (∀B)l = r.
This defines the institution CatEQL of categorical equational logic with categories as signa-

tures and adjunctions as signature morphisms.
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3.9. Institution of the signature morphisms
For any institution (Sig,Sen,Mod, |=) we define

• Sig→ to be the category of functors (•→ •)→ Sig,
• Sen→(ϕ) = Sen(Σ) for each signature morphism ϕ ∈ Sig(Σ,Σ′),
• Mod→(ϕ) = Mod(Σ′) for each signature morphism ϕ ∈ Sig(Σ,Σ′), and
• for each signature morphism ϕ : Σ→ Σ′, for each Σ′-model M′, and each Σ-sentence ρ,

M′ |=→ϕ ρ if and only if M′ |=Σ′ ϕ(ρ).

Then (Sig→,Sen→,Mod→, |=→) is an institution.

3.10. [162] Extended models
A pre-institution [160] I consists of the same data as an institution, but without the requirement of
the Satisfaction Condition. An extended model of a signature Σ1 is a pair (ϕ,N), where ϕ : Σ1 → Σ2
is a signature morphism and N is a Σ2-model. The extended model (ϕ,N) satisfies a Σ1-sentence ρ
if and only if N |=I

Σ2
ϕ(ρ).

The extended models, together with the I -signatures and I -sentences form an institution.

3.11. [74] Charters
A charter consists of

• an adjunction (U,F ,η,ε) between a category of signatures Sig and a category Syn of
“syntactic systems”, with U : Syn→ Sig the right adjoint and F the left adjoint,

• a “ground object” G ∈ |Syn| (in which other syntactic systems are interpreted), and
• a “base” functor B : Syn → Set (extracting the sentence component from the syntactic

system) such that B(G) = {true, false}.
An institution (Sig,Sen,Mod, |=) is chartable when there exists a charter (Sig,Syn,U,F ,B,G)
such that

• |Mod(Σ)|= Syn(Σ,U(G)) and Mod(ϕ)(M′) = ϕ;M′,
• Sen = F ;B, and
• for each Σ-model M : Σ→U(G)

M |=Σ e if and only if B(M�)(e) = true

where M� is the unique arrow F (Σ)→ G such that M = ηΣ;U(M�).

PL is chartable by taking Syn as the category of (unsorted) (¬,∧,∨,⇒)-algebras (where ¬ is an
unary operation and ∧,∨, and ⇒ are binary operation symbols), U = B is the forgetful functor
Mod(¬,∧,∨,⇒)→ Set, and G is the canonical (¬,∧,∨,⇒)-algebraic structure on {true, false}
interpreting the Boolean connectors as usually.

Show that other institutions are chartable too.

3.3 Morphisms and Comorphisms

Let us look into the way the institution EQL can be obtained by forgetting the relational
part and by discarding all sentences but equations in FOL. This is a three-fold process.
Firstly, there is a forgetful functor between the categories of signatures “forgetting” the
relations, i.e., mapping each FOL signature (S,F,P) to the algebraic signature (S,F).
On the sentences side, each (S,F)-equation can be regarded as an (S,F,P)-sentence; this
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gives a family of translation functions between sets of sentences. On the models side, each
(S,F,P)-model can be regarded as an (S,F)-algebra by forgetting the interpretations of
the relation symbols; this gives a family of functors between categories of models. Notice
that the satisfaction of sentences by models is invariant with respect to this mapping
FOL→ EQL.

Institution morphisms. Such structure preserving mappings from a more complex to
a simpler institution can be formalized by the general concept of institution morphism
(Φ,α,β) : I ′ → I consisting of

Sig′

&'

Sen′

*,

�����-
α Φ

��

(Mod′)op

+.,/

����)0 β

Set Sig
Sen

��
Modop

�� Catop

1. a functor Φ : Sig′ → Sig, called the signature functor,

2. a natural transformation α : Φ;Sen⇒ Sen′, called the sentence transformation, and

3. a natural transformation β : Mod′ ⇒Φop;Mod, called the model transformation

such that the following satisfaction condition holds:

M′ |=′Σ′ αΣ′(e) if and only if βΣ′(M′) |=Φ(Σ′) e

for any signature Σ′ ∈ |Sig′|, for any Σ′-model M′, and any Φ(Σ′)-sentence e.
Although institution morphisms are suitable to formalize ‘forgetful’ mappings be-

tween more complex institutions to simpler ones, there are also other kinds of examples
of institution morphisms. Some of them can be found among the exercises.

The composition of institution morphisms (Φ′,α′,β′) : I ′′ → I ′ and (Φ,α,β) :
I ′ → I is (Φ′;Φ,Φ′α;α′,β′;Φ′opβ) : I ′′ → I . Under this composition, institutions and in-
stitution morphisms form the category Ins of institution morphisms . This can established
by routine calculations which are left as an exercise for the reader.

Institution modifications. The category Ins has a 2-dimension too, given by the institu-
tion modifications. An institution modification between institution morphisms (Φ,α,β)⇒
(Φ′,α′,β′) consists of

1. a natural transformation τ : Φ⇒Φ′, called the signature transformation,

2. a modification ω : β ⇒ β′;τMod, called the model transformation, i.e., for each
Σ′ ∈ |Sig′|, a natural transformation ωΣ′ : βΣ′ ⇒ β′Σ′ ;Mod(τΣ′).

This makes Ins a 2-category with institutions as 0-cells, institution morphisms as 1-cells,
and their modifications as 2-cells. Routine calculations, left as exercise to the reader, show
that the horizontal composition of institution morphisms and the vertical composition of
modifications satisfy the 2-category Interchange Laws (see Sect. 2.4).
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Comorphisms. This relationship between FOL and EQL can be also looked at from
the opposite direction, by emphasizing the “embedding” rather than the “forgetful” as-
pect. Each algebraic signature (S,F) can be regarded as a FOL signature (S,F, /0) without
relation symbols. This determines an “embedding” functor from the category of algebraic
signatures to the category of FOL signatures. On the sentence side, each (S,F)-equation
is an (S,F, /0)-sentence, and each (S,F, /0)-model is just an (S,F)-algebra. The satisfaction
of sentences by models is invariant with respect to this embedding of EQL into FOL.
Such an embedding relationship between institutions is formalized by the concept of in-
stitution comorphism (Φ,α,β) : I → I ′ consisting of

Sig′

Sen′

-1

(Mod′)op

$$
Set Sig

Sen

.2
&' � �� ���α

Φ

��

/3

Modop
04

�� ��
�� β Catop

1. a functor Φ : Sig→ Sig′,

2. a natural transformation α : Sen⇒Φ;Sen′, and

3. a natural transformation β : Φop;Mod′ ⇒Mod

such that the following satisfaction condition holds:

M′ |=′Φ(Σ) αΣ(e) if and only if βΣ(M′) |=Σ e

for any signature Σ ∈ |Sig|, for any Φ(Σ)-model M′, and any Σ-sentence e. The category
of institutions and their comorphisms is denoted by coIns.

Category theoretic thinking promotes the idea that the arrows are the primary con-
cept rather than the objects. It is even possible to define the concept of category only by
means of arrows, the objects being assimilated to the identity arrows. Institutions serve
as a clear example for this since both Ins and coIns have institutions as objects but have
different classes of arrows, both classes having the same level of preservation of institu-
tional structure. Therefore we should never refer to the ‘category of institutions’, which
does not make sense, instead we should refer to the ‘category of institution morphisms’
or to the ‘category of institution comorphisms’.

The adjoint relationship. Often the forgetful nature of many functors can be captured
formally by the concept of right adjoint functor. For example, the embedding of the al-
gebraic signatures into the FOL signatures is in fact a left adjoint to the forgetful func-
tor from the FOL signatures to the algebraic signatures. The following general theorem
shows that the ‘embedding’ comorphism EQL → FOL and the ‘forgetful’ morphism
FOL→ EQL determine each other, their interdependency being caused by the adjunc-
tion between their categories of signatures.
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Theorem 3.6. An adjunction (Φ,Φ,ζ,ζ) between the categories of signatures4 of institu-
tions I and I ′ determines a canonical bijection between institution morphisms (Φ,α,β) :
I ′ → I and institution comorphisms (Φ,α,β) : I → I ′ given by the following equalities:

– α = ζSen;Φα and β = Φopβ;ζopMod, and

– α = Φα;ζSen′ and β = ζ
op

Mod′;Φopβ.

The proof of this theorem follows by routine calculations, which are left as an exer-
cise for the reader.

An institution morphism or comorphism is called adjoint when this is part of a
morphism-comorphism duality determined by an adjunction between the categories of
signatures. Notice that the composition of institution adjoints is still an adjoint. Let eIns
denote the category of pairs of institution adjoint morphism-comorphism.

Equivalence of institutions. As in the case of categories, the equivalence concept for
institutions captures the fact that the institutions are the ‘same’, while being weaker than
isomorphism. This concept is also an example of an adjoint institution morphism. An
institution morphism (Φ,α,β) is an equivalence of institutions when

• Φ is an equivalence of categories,

• αΣ has an inverse up to semantic equivalence, denoted α′Σ, such that α′ is a natural
transformation, and

• βΣ is an equivalence of categories, such that its inverse up to isomorphism and the
corresponding isomorphism natural transformations are natural in Σ.

Institution encodings

There is a class of comorphisms, very useful in applications, which are generally not
adjoints. Rather than giving the flavor of an ‘embedding’, they are in fact ‘encodings’ of
more complex institutions into simpler ones. We give now a couple of examples.

Encoding relations as operations in FOL. This example formalizes the basic intuition
in logic that relations can be simulated by (pseudo-)Boolean-valued operations. We may
map each FOL signature (S,F,P) to an algebraic signature (S� {b},F � P� {true})
where b is a (new) sort, true is a (new) constant of sort b, and for each arity w ∈ S∗,
Pw→s = Pw if s = b and Pw→s = /0 otherwise. This determines an institution comorphism
FOL→ FOEQL which

– maps each relational atom π(t) to the equation π(t) = true, and

– maps each (S�{b},F�P�{true})-algebra A to the (S,F,P)-model β(A) maintain-
ing the interpretations of the sorts and F-operations of A but β(A)π = A−1

π (Atrue) for
each relation symbol π.

4Φ : Sig′ → Sig is the right adjoint, Φ is the left adjoint, ζ is the unit, and ζ is the co-unit of the adjunction.
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We leave to the reader the task of developing the details of the definition of this comor-
phism and of its satisfaction condition.

Encoding modalities in relational logic. Let REL1 be the single-sorted variant of
REL. We may build a comorphism (Φ,α,β) : MPL→ REL1 as follows:

• Each MPL-signature, i.e., set P, gets mapped to the single-sorted relational signa-
ture without constants ( /0,P) where

– P1 = P, P2 = {r}, and Pn = /0 for n �∈ {1,2},
• each ( /0,P)-model M gets mapped to the Kripke P-model β(M) = (W,R) with IW

being the carrier set of M, R = Mr, and W i = {π | i ∈Mπ} for each i ∈ IW , and

• for each P-sentence ρ, α(ρ) = (∀x)αx(ρ) where αx : SenMPL(P)→ SenREL1
({x},

P) is such that

– αx(π) = π(x) for each π ∈ P,
– αx commutes with the Boolean connectives, i.e., αx(ρ1 ∧ ρ2) = αx(ρ1) ∧

αx(ρ2), etc., and
– αx(�ρ) = (∀y)(r(x,y)⇒ αy(ρ)).

This example shows that modal propositional logic is a ‘fragment’ of ordinary (single-
sorted) first order logic.

Exercises

3.12. Morphism FOL→ REL
Each FOL signature (S,F,P) can be mapped to a FOL signature (S,C(F),F ∪P) without non-
constant operation symbols, where C(F) is the set of constants of F , Fs = /0 for each sort s ∈ S, and
Fws = Fw→s when w is non-empty.

This determines a non-adjoint institution morphism FOL→ REL. (Hint: For each (S,F,P)-
model M and each σ ∈ Fws where w is non-empty, β(M)σ = {〈m, Mσ(m)〉 | m ∈ Mw} and
α(σ(x,y)) = (σ(x) = y) for each σ ∈ F .)

3.13. Morphism PA→ FOL
There exists a forgetful institution morphism PA → FOL which forgets the partial operations. Is
this an adjoint morphism?

3.14. Morphism FOL→MFOL
There exists an institution morphism FOL→ MFOL which maps any FOL signature (S,F,P) to
the MFOL signature (S,S,F,F,P,P), such that α erases the modalities � and � from the sentences,
and β(M) = (W,R) such that IW = {∗}, W ∗ = M, R = {〈∗, ∗〉}.
3.15. Morphism POA→ FOL
There exists a forgetful institution morphism POA → FOL which forgets the preorder structure
both syntactically and semantically.

3.16. Morphism PL→ IPL
There exists a canonical adjoint institution morphism PL→ IPL which regards the standard two-
elements Boolean algebra as a Heyting algebra.
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3.17. Morphism MA→ POA
Each multialgebra operation determines an ordinary algebra operation on the powerset of the carrier
of the multialgebra. This determines a preordered algebra.

1. Adjust the concept of homomorphism of multialgebras such that the mapping of multial-
gebras to preorder algebras is functorial.

2. By mapping each preorder atom t ≤ t ′ to its corresponding inclusion sentence t ≺ t ′ and
each equation t = t ′ to the conjunction of the inclusions t ≺ t ′ and t ′ ≺ t we obtain an
adjoint morphism of institutions MA→ POA.

3.18. Morphism FOL→MA
Each FOL-model can be canonically regarded as a ‘deterministic’ multialgebra, i.e., in which all
operations are deterministic. This determines an institution morphism FOL → MA which at the
level of sentences maps both deterministic equations t

.= t ′ and inclusions t ≺ t ′ to equations t = t ′.

3.19. Morphism CA→ FOL
There exists a forgetful institution morphism CA→ FOL mapping each contraction algebra to its
underlying algebra and each equation t = t ′ to the approximation equation t ≈0 t ′.

3.20. Morphism and comorphism MBA→ FOL
Each membership algebraic signature (S,K,F,kind) determines a FOL signature (K,F,P) where
P = { : s | s ∈ S} such that : s ∈ Pkind(s) for each sort s. This determines both an institution

morphism and an institution comorphism MBA→ FOL . (Hint: ModMBA(S,K,F,kind) is canon-
ically isomorphic to ModFOL(K,F,P) by mapping each (S,K,F,kind)-algebra A to the (K,F,P)-
model with A( : s) = As, and SenFOL(K,F,P) is canonically isomorphic to SenMBA(S,K,F,kind)
by mapping each atomic relation t : s to the atomic membership t : s and by mapping equations to
themselves.)

3.21. Comorphism AUT→ FOL1

Any set V determines a FOL1 signature (F = V �{0},P = { f inal}) such that F0 = {0}, F1 = V ,
and P1 = { f inal}. This can be extended to a functor Set → SigFOL1

which constitutes the signature
functor Φ for a comorphism AUT→ FOL1.

3.22. Comorphism HNK→HOL
The inclusion of model categories ModHOL(S,F) ⊆ ModHNK(S,F) determines a canonical co-
morphism HNK → HOL. Note this does not have the flavor either of an ‘embedding’ or of an
‘encoding’.

3.23. Comorphism FOEQL→HNK
Each algebraic signature (S,F) can be regarded as a HOL-signature by defining the type of σ
as s1 → (s2 → . . .(sn → s) . . .) for each operation symbol σ ∈ Fs1...sn→s. Then each (S,F)-term
σ(t1 . . .tn) can be mapped to its ‘Polish prefix translation’, the HOL (S,F)-term α(σ(t1, . . . ,tn)) =
(. . .(σα(t1)) . . .α(tn)).

This determines a canonical institution comorphism FOEQL→HNK. By using the encod-
ing of relations as operations, this can be extended to an institution comorphism FOL→HNK.

3.24. Comorphism HOL→HOLλ
There is a ‘natural embedding’ comorphism from HOL to HOLλ, and also a similar comorphism
from HNK to HNKλ, such that the translation α on the sentences is defined as follows:

• any equation t = t ′ is mapped to the term t = t ′ of Ω,
• (∀X)ρ is mapped to λX .ρ = λX .true,
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• ¬e is mapped to e = false,
• e1∧ e2 is mapped to 〈e1,e2〉= 〈true, true〉,

where true abbreviates λx:Ω.x = λx:Ω.x and false abbreviates (∀x:Ω)x.

3.25. [19] Comorphism PL→WPL
Let weak propositional logic (denoted WPL) designate a variant of PL, where the sentences are the
same as in PL, but the models are valuations M : Sen(P)→{0,1} of all sentences that respect the
usual truth table semantics of all the Boolean connectives except negation, for which they respect
only one half of the usual condition:

• M(ρ1 ∧ ρ2) = 1 if and only if both M(ρ1) = 1 and M(ρ2) = 1, M(ρ1 ∨ ρ2) = 0 if and
only if both M(ρ1) = 0 and M(ρ2) = 0, M(ρ1 ⇒ ρ2) = 1 if and only if M(ρ1) = 0 or
M(ρ2) = 1, and

• M(¬ρ) = 0 if M(ρ) = 1.

There exists a comorphism PL→WPL such that the sentence translations are defined by αP(π) = π
for π ∈ P, αP(ρ1 � ρ2) = αP(ρ1) � αP(ρ1) for �∈ {∧,∨,⇒}, and αP(¬ρ) = αP(ρ)⇒ ¬αP(ρ)
and such that the models are translated by βP(M′) = {π |M′(π) = 1}.
3.26. S-sorted FOL
For any fixed set S, let FOLS = (SigS,SenS,ModS, |=) be the institution of S-sorted first order
logic defined as the sub-institution of FOL determined by the subcategory SigS of the signatures
with S-sorted operation and relation symbols. (A signature in SigS is just a FOL signature (S,F,P),
and a signature morphism ϕ in SigS is identity on the sort symbols, i.e., ϕst = 1S.)

1. Each function u : S → S′ determines a canonical ‘forgetful’ adjoint institution mor-
phism (Φu,αu,βu) : FOLS′ → FOLS such that for each signature (S′,F ′,P′) of S′-sorted
operation and relation symbols, Φu(S′,F ′,P′) = (S,F,P) with Fw→s = F ′u(w)→u(s) and

Pw = P′u(w) for each arity w ∈ S∗ and each sort symbol s ∈ S.

2. Describe the institution comorphism (Φu,αu,βu) : FOLS → FOLS′ adjoint to (Φu,αu,
βu). Show that αu is a bijection when u is injective.

3.27. Exercise 3.9 continued
For each institution (Sig,Sen,Mod, |=) there exists a forgetful adjoint institution morphism (Sig→,
Sen→,Mod→, |=→)→ (Sig,Sen,Mod, |=) which maps each signature morphism ϕ : Σ→ Σ′ to its
domain signature Σ.

3.28. [129] Charter morphisms (Ex. 3.11 continued)
Define the concept of charter morphism and show that there is a functor from the category of
charters to Ins. Does this have a left adjoint?

3.29. For any adjoint pair of institution morphism (Φ,α,β) and institution comorphism (Φ,α,β)
between the institutions I and I′ corresponding to an adjunction (Φ,Φ,ζ,ζ) between their categories
of signatures, the following squares commute:

Sen(Σ)
Sen(ϕ) ��

αΣ

��

Sen(Φ(Σ′))

αΣ′

��

Mod(Σ) Mod(Φ(Σ′))
Mod(ϕ)��

Sen′(Φ(Σ))
Sen′(ϕ)

�� Sen′(Σ′) Mod′(Φ(Σ))

βΣ

��

Mod′(Σ′)
Mod′(ϕ)
��

βΣ′

��

for each signature morphism ϕ : Σ→Φ(Σ′) and ϕ : Φ(Σ)→ Σ′ such that ϕ = ζΣ;Φ(ϕ).
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3.4 Institutions as Functors

The definition of the concept of institution given above supports very well model the-
oretic intuitions. In this section we give an alternative more categorical definition for
institutions.

Rooms. A room is a triple (S,M,R) such that S is a set, M is a category, and R is a
function |M| → [S → 2] where (as usual) |M| is the class of the objects of M and [S →
2] = Set(S,2) = { f : S→ 2 | f function }.

A rooms morphism (s,m) : (S′,M′,R′)→ (S,M,R) consists of a function s : S→ S′
and a functor m : M′ →M such that the diagram below commutes:

|M′| R′ ��

|m|
��

[S′ → 2]

(s;−)
��

|M|
R

�� [S→ 2]

where |m| is the ‘discretization’ of m, i.e., the mapping on the objects given by m, and
(s;−)( f ) = s; f for each function f : S′ → 2.

Let Room be the category of rooms and their morphisms.

Proposition 3.7. Room has all small limits.

Proof. Because Setop has all small limits (since Set has all small co-limits) and the (con-
travariant) homomorphism-functor Set(−,2) : Setop → Set preserves them, by Proposi-
tion 2.3 we obtain that the comma-category A/Sen(−,2) has all small limits. Moreover,
it is easy to see that for each function f : A → B, the induced functor B/Set(−,2)→
A/Set(−,2) preserves these limits.

This means that the indexed category (| − |)/Set(−,2) : Catop → Cat mapping
each category M to |M|/Set(−,2) satisfies the hypotheses of the limit part of Thm. 2.10.
It follows that its Grothendieck category ((|− |)/Set(−,2))�, which is just Room, has all
small limits. �

Institutions as functors. Let Sig be any category and I : Sigop → Room a functor. If
we write

• I (Σ) = (Sen(Σ),Mod(Σ), |=Σ) for each object Σ ∈ |Sig|, and

• I (ϕ) = (Sen(ϕ),Mod(ϕ)) for each arrow ϕ ∈ Sig,

then it is easy to see that (Sig,Sen,Mod, |=) is an institution. The converse is also true,
institutions are exactly the functors Sigop →Room.

Any functor Φ : Sig′ → Sig induces a canonical functor

(Φop;−) : Cat((Sig′)op,Room)→ Cat(Sigop,Room).

This gives an indexed category Cat((−)op,Room) : Catop → Cat.
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Fact 3.8. The category Ins of the institution morphisms is the Grothendieck category
Cat((−)op,Room)�.

Now we have already collected all necessary ingredients for showing easily the
completeness property of Ins.

Corollary 3.9. Ins has all small limits.

Proof. Because Room has small limits (cf. Prop. 3.7), by Prop. 2.2 we have that each
Cat(Sigop,Room) has all small limits. Note that each functor (Φop;−) preserves these
limits. Since Cat has all small limits we can apply now the limit part of Thm. 2.10. �

Exercises

3.30. [172, 81]

1. Room has small co-limits.

2. coIns has small limits.

3.31. [46] Room can be enriched with a 2-categorical structure given by the natural transformations
m1⇒m2 between the ‘model components’ of room homomorphisms (s1,m1),(s2,m2) : (S′,M′,R′)
→ (S,M,R). Then the 2-categorical structure on Ins given by the institution modifications arises as
a Grothendieck 2-categorical construction.

3.32. [134] Each institution comorphism (Φ,α,β) : (Sig,Sen,Mod, |=)→ (Sig′,Sen′,Mod′, |=′)
determines a span of institution morphisms

(Sig,Sen,Mod, |=) (Sig,Φ;Sen′,Φop;Mod′, |=)�� ��(Sig′,Sen′,Mod′, |=′) .

In a category C, two spans A B1
f1�� g1 ��A′ and A B2

f2�� g2 ��A′ are equivalent when
there exists an isomorphism i : B1 → B2 such that f1 = i; f2 and g1 = i;g2. In any category with
pullbacks, equivalence classes of spans can be composed as follows:

[A B
f�� g ��A′ ]; [A′ B′

f ′�� g′ ��A′′ ] = [A B0
h; f�� h′;g′ ��A′′ ]

where B B0
h�� h′ ��B′ is a pullback of B

g ��A′ B′
f ′�� . This yields a category span(C)

having the same objects as C but (equivalence class of) spans as arrows. Show that the construction
of a span of morphisms from an institution comorphism is functorial, i.e. it yields a functor coIns→
span(Ins).

Notes. The origins of institution theory are within the theory of algebraic specification, the seminal
work being [75].

FOL was first presented as an institution in [75]. There are many approaches to partial alge-
bra, two classical references being [29, 152], however it has been organized as the institution PA
presented here in [133]. Preorder algebras (POA) are used for formal specification and verifications
of algorithms [56], for automatic generation of case analysis [56], and in general for reasoning about
transitions between states of systems. POA constitutes an unlabeled form of Meseguer’s rewriting
logic [124], but the latter fails to be an institution. The institution of multialgebras has been studied
in [110]. Our multialgebra homomorphisms are called ‘weak’ homomorphisms in the literature, for
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alternative notions of multialgebra homomorphisms see [180]. Membership algebra has been in-
troduced by [125]. Standard modal logic was first captured as an institution in [166]. Higher order
logic with Henkin semantics has been introduced and studied in [33, 92], a recent book on the topic
being [8]. Here, in the main text we consider a simplified variant close to the work of [126], while
some exercises consider a more sophisticated version containing products and λ-abstraction in a
variant very close to the original one. Contraction algebras have been introduced in [40] in the con-
text of the extension of logic programming to infinite terms. The institution CatEQL of categorical
equational logic is a slightly more abstract version of the institution of the so-called ‘category-based
equational logic’ of [71, 42].

Formal intuitionistic logic was developed by seminal works [70, 96, 105] while Heyting
algebras emerged from the so-called ‘closure algebras’ or ‘Browerian algebras’ investigated by
McKinsey and Tarski. A categorical approach to intuitionistic logic can be found in [109].

Due to its abstract definition, institutions may accommodate examples which might appear as
‘non-logical’, at least in the conventional sense. While some of them are only mildly ‘non-logical’
(automata, linear algebra), much less conventional examples appear in myriad ways including ab-
stract constructions on (already existing) institutions.

A very brief list of logics from formal specification theory that have been captured as insti-
tutions but have not been presented here includes polymorphic [162], temporal [66], process [66],
behavioral [23], coalgebraic [34], object-oriented [76] logics.

Institution morphisms were introduced in [75], while comorphisms were studied later under
the name of “plain map” in [123] or “representation” in [171, 173]. The literature studies many
other types of mappings between institutions, each of them playing a specific role in applications.
The name “comorphism” was introduced by [81]. The duality between institution morphisms and
comorphisms was established in [9]. In [44, 46, 57] institution adjoints are called “embeddings”.
Notice also that institution adjoint morphism or comorphism are not adjunctions in the 2-categorical
sense. Equivalences of institutions have been introduced in [137].

The presentation of institutions as functors was given already in [75] and the 2-categorical
structure of the category of institutions has been studied in [46].

Completeness of Ins was first obtained by Tarlecki in [168] and of coIns in [172]. Both
results have been re-done by Roşu using Kan extensions [154]. Cocompleteness fails for both Ins
and coIns due to foundational issues (see [81] for a counterexample originally due to Tarlecki) but
it can still be recovered under the condition that the categories of the signatures are small.
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Theories and Models

In this chapter we develop some fundamental institution theoretic concepts that play an
important role for our institution-independent approach to model theory.

A simple abstract construction is that of the (theory) presentations of a given base
institution as the signatures for a new set of institutions. This is very useful for institution
encodings supporting the transfer of model theoretic properties between institutions.

Theory co-limits are especially useful in formal specification theory since they pro-
vide support for advanced modularization techniques of software systems. They are also
required within the context of some institution encodings.

Model amalgamation, here introduced as a limit preservation property of the model
functor, is the institutional property which is required by almost all institution-indepen-
dent model theoretic developments. Even the satisfaction condition of institution captur-
ing logics with quantifiers may rely upon a form of model amalgamation. The institution
theoretic concept of model amalgamation is a rather basic property of institutions which
should not be confused with the existence of a common (elementary) extension of models,
a much harder property playing an important role in conventional model theory.

The method of diagrams pervades a large part of conventional model theory and, in
its abstract institution-independent form, also of the results presented in this book. At the
level of abstract institutions this appears as a coherence property between syntactic and
semantic sides of the institution, which gets a simple categorical formulation. As a simple
consequence of the method of diagrams, we develop a general result about existence of
limits and co-limits of models.

The concepts of ‘sub-model’ and ‘quotient model’ are handled by the so-called ‘in-
clusion systems’, which constitutes a categorical abstraction of their basic factorization
property. Another rather different application domain for inclusion systems are the signa-
ture morphisms, which is especially relevant for the studies of modularization properties
of formal specification.

The last topic of this chapter is that of free constructions of models along signa-
ture morphisms, called ‘liberality’ in institution theory. Liberality is intimately related to
good computational properties of the actual institutions and it plays a crucial role for the



50 Chapter 4. Theories and Models

semantics of abstract data types and of logic programming. In its simple form, liberal-
ity means the existence of initial models for theories, a property which holds for Horn
theories.

4.1 Theories and Presentations

A Galois connection between syntax and semantics. Let Σ be a signature in an insti-
tution (Sig,Sen,Mod, |=). Then

– for each set of Σ-sentences E , let E∗ = {M ∈Mod(Σ) | M |=Σ e for each e ∈ E},
and

– for each class M of Σ-models, let M∗ = {e ∈ Sen(Σ) |M |=Σ e for each M ∈M}.
For any individual sentence or model X , by X∗ we mean {X}∗. These two functions,
denoted “(−)∗”, form what is known as a Galois connection (see Sect. 2.3), in that they
satisfy the following easy-to-check properties for any collections E,E ′ of Σ-sentences and
collections M,M′ of Σ-models:

1. E ⊆ E ′ implies E ′∗ ⊆ E∗.

2. M⊆M′ implies M′∗ ⊆M∗.

3. E ⊆ E∗∗.

4. M⊆M∗∗.

Closed classes of models M = M∗∗ are called elementary and closed sets of sentences
E = E∗∗ are called theories.

The above properties 1–4 imply quite immediately the following properties:

5. E∗ = E∗∗∗.

6. M∗ = M∗∗∗.

7. There is a dual (i.e., inclusion reversing) isomorphism between the closed collec-
tions of sentences and the closed collections of models.

When E and E ′ are sets of sentences, E∗ ⊆ E ′∗ is denoted by E |= E ′. Two sentences e
and e′ of the same signature are semantically equivalent (denoted as e |=| e′) if they are
satisfied by the same class of models, i.e., {e} |= {e′} and {e′} |= {e}.

Two models M and M′ of the same signature are elementarily equivalent (denoted
as M ≡M′) if they satisfy the same set of sentences, i.e., M |= ρ if and only if M′ |= ρ for
each sentence ρ of the signature.

Presentations. A theory E is presented by a set of sentences E0 if E0 ⊆ E and E0 |= E ,
and is finitely presented if there exists a finite E0 which presents E . A presentation is thus
a pair (Σ,E) consisting of a signature Σ and a set E of Σ-sentences.

A presentation morphism ϕ : (Σ,E)→ (Σ′,E ′) is a signature morphism such that
ϕ(E)⊆ E ′∗∗. A presentation morphism between theories is called theory morphism. Note



4.1. Theories and Presentations 51

therefore that a theory morphism ϕ : (Σ,E)→ (Σ′,E ′) is a signature morphism such that
ϕ(E)⊆ E ′.

Proposition 4.1. In any institution I , the presentation morphisms, respectively the theory
morphisms, form a category (denoted PresI , respectively ThI ) with the composition in-
herited from the category of the signatures SigI . Moreover, PresI and ThI are equivalent
categories.

Proof. That composition of presentation morphisms is a presentation morphism follows
by simple calculations using the observation that ϕ(E∗∗) ⊆ ϕ(E)∗∗ for each signature
morphism ϕ : Σ→ Σ′ and each set E of Σ-sentences.

The equivalence between Th and Pres is defined by the forgetful inclusion functor
Th ↪→ Pres and the functor Pres→ Th mapping each presentation (Σ,E) to its semantic
closure (Σ,E∗∗). �

In other logic or model theory works our presentations are called ‘theories’ and our
theories are called ‘closed theories’. Here we prefer to stick to the original institutional
terminology. One thing Prop. 4.1 tells us is that in general there is no difference between
working with presentations or with theories. However the formulation of some few results
require theories rather than presentations.

The institution of the presentations. The model functor Mod of an institution can
be extended from the category of its signatures Sig to a model functor from the cat-
egory of its presentations Pres, by mapping a presentation (Σ,E) to the full subcat-
egory Modpres(Σ,E) of Mod(Σ) consisting of all Σ-models satisfying E . The correct-
ness of the definition of Modpres is guaranteed by the satisfaction condition of the base
institution; this is easy to check. This leads to the institution of presentations I pres =
(Sigpres,Senpres,Modpres, |=pres) over the base institution I = (Sig,Sen,Mod, |=) where

– Sigpres is the category Pres of presentations of I ,

– Senpres(Σ,E) = Sen(Σ), and

– for each (Σ,E)-model M and Σ-sentence e, M |=pres
(Σ,E) e if and only if M |=Σ e .

This construction is very useful for institution encodings. Often, comorphisms encoding
‘complex’ institutions into ‘simpler’ ones map a signature of the ‘complex’ institution to
a presentation of the ‘simpler’ institution. As comorphisms usually correspond to embed-
dings, from the point of view of the structural complexity of institutions this is a quite
expected cost, since such difference of complexity has to show up somewhere. The rest
of this section is devoted to examples of such encodings. The reader is invited to complete
the definitions given and to check all the details of each of these examples, including their
satisfaction condition.
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Encoding many-sorted logic into single-sorted logic

This is a comorphism (Φ,α,β) : FOL→ (FOL1)pres defined as follows:

• A many-sorted signature (S,F,P) gets mapped to the single-sorted presentation
((F ,P∪{(− : s) | s ∈ S}),Γ(S,F,P)) where

– for each natural number n, Fn = {σ ∈ Fw→s | |ws| = n} and Pn = {σ ∈ Pw |
|w|= n} (here by |w| we denote the length of the string w),

– Γ(S,F,P) = {(∀x1 . . .xn)
∧

i≤n(xi : si)⇒ (σ(x1 . . .xn) : s) | σ ∈ Fs1...sn→s}.
• On the sentence side:

– any equation t = t ′ gets mapped to itself,
– α commutes with the Boolean connectives, i.e., α(ρ1∧ρ2) = α(ρ1)∧α(ρ2),

etc.,
– any sentence of the form (∀x)ρ gets mapped to (∀x)(x : s)∧α(ρ) with s being

the sort of the variable x.

• On the models side, for each (S,F,P)-model M

– β(M)s = M(− : s) for each sort s,
– for each operation symbol σ ∈ F , β(M)σ is the restriction of Mσ to β(M)w,

and
– β(M)π = β(M)w∩Mπ for each relation symbol π ∈ P.

This comorphism may give an insight into why and how the single-sorted approach of
conventional mathematical practice works in spite of the fact that mathematical realities
constitute a many-sorted heterogeneous rather than a single-sorted homogeneous frame-
work.

Encoding operations as relations in FOL

This is a comorphism (Φ,α,β) : FOL→ RELpres defined as follows:

• Each FOL signature (S,F,P) gets mapped to a REL-presentation ((S,C(F),F �
P),rel(S,F,P)) where

– C(F) is the set of the constants of F ,
– Fs = /0 for each sort s ∈ S and Fws = Fw→s when w is non-empty, and
– rel(S,F,P) =
{((∀X)(∃y)σ(X ,y))∧ ((∀X)(∀y)(∀y′)σ(X ,y)∧σ(X ,y′)⇒ (y = y′)) | σ ∈ F}.

• On the sentence side:

– x = y gets mapped to itself when both x and y are constants,
– α(σ(t1, . . . ,tn) = y) = (∃{x1, . . . ,xn})(σ(x1, . . . ,xn) ∧∧

1≤i≤n α(ti = xi)) for
each operation symbol σ, appropriate list of terms t1, . . . ,tn and x1, . . . ,xn

(new) constants,
– α(t1 = t2) = (∃y)(α(t1 = y)∧α(t2 = y)) for any terms t1 and t2 of the same

sort and y (new) constant,
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– α(π(t1, . . . ,tn)) = (∃{x1, . . . ,xn})(π(x1, . . . ,xn)∧∧
i≤n α(ti = xi)) for each re-

lational atom π(t1, . . . ,tn), and
– α commutes with the Boolean connectives and with the quantifiers.

• On the models side, for each ((S,C(F),F �P),rel(S,F,P))-model M,

– for each relation symbol σ ∈ F , β(M)σ(m) = y if and only if 〈m, y〉 ∈Mσ.

This encoding goes in a sense opposite to the encoding of the relations as operations
presented in Sect. 3.3, that one being quite exceptional since it does map the signatures
to signatures rather than to proper presentations. In that case the difference in structural
complexity, which is rather slight, still shows up at the level of the signatures.

Encoding partial operations as total operations

The so-called ‘operational encoding’ of PA into FOL is a comorphism PA→ FOLpres

defined as follows:

• Each PA-signature (S,T F,PF) gets mapped to the FOL-presentation ((S,T F ∪
PF,{Ds}s∈S),Γ(S,T F,PF)) where

– for each sort s ∈ S, Ds is a relation symbol of arity s,

and Γ(S,T F,PF) consists of the Horn sentences

– (∀X)Ds(σ(X))⇒ Dw(X) for each σ ∈ (T F ∪PF)w→s, and
– (∀X)Dw(X)⇒ Ds(σ(X)) for each σ ∈ T Fw→s

(where Dw(X) denotes
∧

(x : s)∈X Ds(x)).

• On the sentence side:

– α(t e= t ′) = (Ds(t)∧ (t = t ′)),
– α commutes with the Boolean connectives, and
– α((∀X)ρ) = (∀X)α(ρ) for each sentence ρ.

• Each (total) ((S,TF∪PF,D),Γ(S,T F,PF))-model M gets mapped to the partial (S,TF,
PF)-algebra β(M) such that

– β(M)s = MDs for each sort s, and
– for each operation σ : s1 . . . sn → s, β(M)σ is the ‘restriction’ of Mσ to MDs1

×
·· · ×MDsn

and ‘co-restriction’ to MDs . (Note that if σ ∈ PF this restriction
may be partial in order to give results in MDs .)

Encoding partial operations as relations

Another comorphism PA→ FOLpres, which may be called the ‘relational encoding’ of
PA into FOL, encodes the partial operations as relations as follows:
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• Each PA-signature (S,TF,PF) gets mapped to the FOL presentation ((S,TF,PF),
Γ(S,T F,PF)) such that PFws = PFw→s for each w ∈ S∗ and s ∈ S, and

Γ(S,T F,PF) = {(∀X �{y,z})σ(X ,y)∧σ(X ,z)⇒ (y = z) | σ ∈ PF}.

• Each (S,TF,PF)-model M gets mapped to the partial (S,T F,PF)-algebra β(M)
such that

– β(M)x = Mx for each x ∈ S or x ∈ T F ,
– for each σ ∈ PF , if (m,m0) ∈Mσ then β(M)σ(m) = m0.

• α commutes with the quantifiers and the Boolean connectives, and

α(t e= t ′) = (∃X �{x0})bind(t,x0)∧bind(t ′,x0)

where for each (S,TF,PF)-term t and variable x, bind(t,x) is a (finite) conjunction
of atoms defined by

bind(σ(t1 . . .tn),x) =
∧

1≤i≤n

bind(ti,xi)∧
{

σ(x1, . . . ,xn) = x when σ ∈ TF
σ(x1, . . . ,xn,x) when σ ∈ PF

and X is the set of the new constants introduced by bind(t,x0) and bind(t ′,x0).

The proof of the Satisfaction Condition relies upon the fact that

M |= (∃X �{x0})bind(t,x0) if and only if β(M)t = M′
x0

where M′ is the unique expansion of M that satisfies bind(t,x0).

Exercises

4.1. In any institution, for any signature Σ

• (
⋃

i∈I Ei)∗ =
⋂

i∈I E∗i for each family of sets of Σ-sentences {Ei}i∈I , and
• (

⋃
i∈I Mi)∗ =

⋂
i∈I M∗

i for each family of classes of Σ-models {Mi}i∈I .

4.2. For a fixed signature, any (possibly infinite) intersection of theories is a theory.

4.3. Strong theory morphisms
A theory morphism ϕ : (Σ,E)→ (Σ′,E ′) is strong when E ′ = ϕ(E)∗∗. Strong theory morphisms
are closed under composition.

4.4. Given a signature morphism ϕ : Σ→ Σ′ in any institution

• for each E1 and E2 sets of Σ-sentences, E1 |=Σ E2 implies ϕ(E1) |=Σ′ ϕ(E2),
• for each set E of Σ-sentences, ϕ(E)∗ = Mod(ϕ)−1(E∗), and
• (Σ,ϕ−1(E ′)) is theory when (Σ′,E ′) is theory.
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4.5. [113] Semantic topology
Recall that a topology (X ,τ) consists of a set X and a set τ of subsets of X such that /0,X ∈ τ and τ
is closed under finite intersections and (possibly infinite) unions. Then for each signature Σ of any
institution, the class of |Mod(Σ)| of all Σ-models admits a natural semantic topology

τΣ = {
⋃
i∈I

E∗i | {Ei}i∈I family of finite sets of Σ-sentences}.

Recall also that given two topologies (X ,τ) and (X ′,τ′) a function f : X → X ′ is continuous when
f−1(U ′) ∈ τ for all U ′ ∈ τ′. Then Mod(ϕ) : (|Mod(Σ′)|,τΣ′)→ (|Mod(Σ)|,τΣ) is continuous for
each signature morphism ϕ : Σ→ Σ′.

4.6. For any institution morphism (Φ,α,β) : I ′ → I , (Φ(Σ′),α−1
Σ′ (E ′)) is a theory in I for each

theory (Σ′,E ′) of I ′.

4.7. In AUT any set of sentences is a theory. (Hint: each language can be represented as a (possibly
infinite) intersection of regular languages.)

4.8. In any institution I the forgetful functor Pres→ Sig determines a canonical institution adjoint
morphism I pres → I . Moreover

• (I pres)pres → I pres is an equivalence of institutions, and
• (−)pres : Ins → Ins is a functor mapping each institution morphism (Φ,α,β) to the in-

stitution morphism (Φpres,αpres,βpres) such that Φpres(Σ′,E ′) = (Φ(Σ′),α−1
Σ′ (E ′∗∗)) and

αpres and βpres being the restrictions of α and β.

4.9. Comorphism POA→ FOLpres

There exists a comorphism POA→ FOLpres mapping each algebraic signature (S,F) to the FOL-
presentation ((S,F,{≤s}s∈S), pre(S,F)) such that

• for each sort symbol s ∈ S the arity of ≤s is ss, and
• pre(S,F) contains the preorder axioms for each ≤s and all axioms stating that the preorder

functoriality of the operations of F .

4.10. Comorphism IPL→ (FOEQL1)pres

There exists a comorphism (Φ,α,β) : IPL→ (FOEQL1)pres such that:

• Let (H,E) be the single-sorted equational clause presentation of the Heyting algebras
with H0 = {�,⊥}, H1 = {¬}, and H2 = {∧,∨,⇒} (otherwise Hn = /0). Each set (=
IPL-signature) P gets mapped to the presentation (H �P,E) where P are added to H
as constants.

• αP(ρ) = (ρ =�) for each IPL-signature P and each P-sentence ρ.
• For each IPL-signature P and each (H�P,E)-algebra A, βP(A) = M where M : P→ A�H

is defined by M(π) = Aπ for each π ∈ P.

4.11. Comorphism HNK→ FOEQLpres

There exists a comorphism (Φ,α,β) : HNK→ FOEQLpres such that

• Each HNK-signature (S,F) gets mapped to the presentation ((
−→
S ,
−→
F ),Γ(S,F)) where

–
−→
S is the set of all S-types,

–
−→
F s = Fs for each s ∈−→S ,

−→
F [(s→s′)s]→s′ = {apps,s′ } for all s,s′ ∈ −→S and

−→
F w→s = /0

otherwise,
– Γ(S,F) = {(∀ f )(∀g)((∀x)apps,s′( f ,x) = apps,s′(g,x))⇒ ( f = g) | s,s′ ∈ −→S }.
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• β(S,F)(M) = M where M is the inductively (on the structure of the types) defined HNK-

model such that there exists an isomorphism funM : M →M (here M is canonically re-
garded as a FOL ((

−→
S ,
−→
F ),Γ(S,F))-model with app interpreted as ordinary functional

application) with funM
s being identities for s ∈ S.

Then β(S,F) is an equivalence of categories with an ‘inverse’ β(S,F) such that

β(S,F);β(S,F) = 1 and fun : 1
∼=→ β(S,F);β(S,F).

• α is defined as the canonical extension of the mapping on the terms αtm defined by
αtm(tt ′) = app(αtm(t),αtm(t ′)).

4.12. Comorphism HOLλ →HOLpres

There is an ‘encoding’ comorphism from HOLλ to HOLpres. (Hints: A HOLλ-signature (S,F) is
mapped to a HOL-presentation that extends (S,F) with an axiomatization of Ω, product types and
pairing functions. λ-abstraction is coded in an innermost way by appropriate existential quantifi-
cation over functions. λx:s.t is just coded as f , where ∃ f :s→ s′.∀x:s. f (x) = t ∧ ·· · is added at an
appropriate place.)

This ‘encoding’ comorphism can also be modified into a comorphism from HNKλ to
HNKpres. (Hint: It must additionally be ensured that all λ-terms have a denotation. This can be
expressed by appropriate existential statements.)

4.13. Comorphism LA→ (FOEQL1)pres

Let FOEQL1 be the single-sorted variant of FOEQL. There exists an institution comorphism
LA → (FOEQL1)pres mapping each commutative ring R = (|R|,+,−,×,0) to the presentation
(FR,ER) where

– (FR)0 = {0}, (FR)1 = |R|�{−}, (FR)2 = {+}, and (FR)n = /0 otherwise, and
– ER consists of the axioms for the commutative group for {+,−,0} and

(∀x) r(r′(x)) = (r× r′)(x), (∀x) (r + r′)(x) = r(x)+ r′(x), (∀x) (−r)(x) = −r(x), and
(∀x)0(x) = 0 for each r,r′ ∈ |R| elements of the ring R.

4.14. [136] Comorphism WPL→ PLpres (see Ex. 3.25)
For each set P (of propositional variables) let us consider Sen(P) as a PL signature and let ΓP

be the specification of the WPL semantics, i.e., ΓP = {[ρ1 � ρ2]⇔ ([ρ1] � [ρ2]) |�∈ {∧,∨,⇒}
and ρ1,ρ2 ∈ Sen(P)}∪{[ρ]⇒¬[¬ρ] | ρ ∈ Sen(P)}, where, in order to avoid confusion, by [ρ] we
denote the WPL-sentence ρ regarded as a propositional variable of the PL signature Sen(P). The
mapping of P to (Sen(P),ΓP) determines a comorphism WPL→ PLpres.

4.15. [110] Comorphism PA→MApres

This comorphism is defined by mapping each PA signature (S,T F,PF) to a MA presentation
((S,TF ∪PF),Γ(S,TF,PF)) such that

• Γ(S,T F,PF) = {(∀y)(∀X)(y .= y)∧ (y ≺ σ(X)⇒ σ(X) .= σ(X)) | σ ∈ T F ∪PF},
• α(t e= t ′) = (t .= r′), α commutes with the Boolean connectives and α((∀X)ρ) =

(∀X)((X .= X)∧α(ρ)),
• β(A)s = As for each sort s ∈ S and β(A)σ(a1, . . . ,an) = a when Aσ(a1, . . . ,an) = {a},

otherwise it is undefined.

4.16. [110] Comorphism MBA→MApres

Each MBA signature (S,K,F,kind) can be mapped to the MA presentation ((K,F ∪ {ps | s ∈
S}),Γ(S,K,F,kind)), where ps are constants of sort kind(s) and

Γ(S,K,F,kind) = {(∀X)(X .= X)⇒ (σ(X) .= σ(X)) | σ ∈ F}.
This determines a comorphism MBA→MApres.
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4.2 Theory (co-)limits

The following simple but very useful important result shows that limits and co-limits of
presentations exist in dependence on limits and co-limits of signatures.

Proposition 4.2. In any institution, the forgetful functor U : Pres→ Sig lifts limits and
co-limits. Moreover, the forgetful functor Th→ Sig lifts them uniquely.

Proof. Consider a functor D : J→Pres. When μ : D;U ⇒ Σ is a co-limit co-cone in Sig,
then by a simple checking we obtain that μ : D⇒ (Σ,(

⋃
i∈|J| μi(Ei))) is a co-limit co-cone

in Pres, where D(i) = (Σi,Ei) is the presentation corresponding to i for each i ∈ |J|.

Σi
D(u) ��

μi

+.�
��
��
��

Σ j

μ j

10��
��
��
�

(Σi,Ei)
D(u) ��

μi %&��
��

��
��

�
(Σ j,E j)

μ j25���
��
��
��

Σ (Σ,
⋃

i∈|J| μi(Ei))

Similarly, when μ : Σ⇒D;U is a limit cone in Sig, then μ : (Σ,
⋂

i∈|J| μ
−1
i (Ei))⇒D

is a limit co-cone in Pres. �

Corollary 4.3. In any institution, the category Pres of its presentations, respectively Th
of its theories, has whatever limits or co-limits its category Sig of the signatures has.

Limits and co-limits of FOL signatures

We can apply Prop. 4.2 through Cor. 4.3 to show that FOL has small limits and co-limits
of presentations or theories by proving that the category SigFOL of FOL-signatures has
small limits and co-limits. The arguments of the proof of the result below can be repeated
with some adjustments in form to many other many-sorted institutions.

Proposition 4.4. The category of FOL signatures has small limits and co-limits.

Proof. Given a any set S, because Set has all small limits and co-limits, cf. Prop. 2.2, the
functor categories Cat(S∗ ×S,Set) and Cat(S∗,Set) have small limits and co-limits too.
So do their products Cat(S∗ × S,Set)×Cat(S∗,Set) (by calculating (co-)limits compo-
nentwise).

Each function f : S→ S′ determines a functor Cat(S′∗ ×S′,Set)×Cat(S′∗,Set)→
Cat(S∗×S,Set)×Cat(S∗,Set) by composition to the left with ( f ∗ × f , f ∗). This functor
has

• a left adjoint mapping each (F,P) to (F ′,P′) such that F ′w′→s′ = �{Fw→s | f (ws) =
w′s′} and P′w′ = �{Pw | f (w) = w′}, and

• a right adjoint mapping each (F,P) to (F ′′,P′′) such that F ′′w′→s′ = ∏{Fw→s | f (ws) =
w′s′} and P′′w′ = ∏{Pw | f (w) = w′}.
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From Prop. 2.6 we know that a right adjoint preserves all limits, thus the hypotheses
of Thm. 2.10 are fulfilled for the indexed category Setop → Cat mapping each set S to
Cat(S′∗ ×S′,Set)×Cat(S′∗,Set). It follows that its Grothendieck category, which is ex-
actly SigFOL, has small limits and co-limits. �

The above proof is highly conceptual. It is also useful to understand in more con-
crete terms how the limits and the co-limits of FOL signatures are constructed.

Limits. For any small category J, the limit cone μ : (S,F,P)⇒ (D : J → Sig) (where
D(u) : (Si,Fi,Pi)→ (S j,Fj,Pj) for each u ∈ J(i, j)) is defined by

1. μst is the limit of D;(−)st : J → Set

Si
D(u)st

�� S j

S

μst
i

��������� μst
j

36������

2. Each arity w ∈ S∗ and each sort s ∈ S determine a functor J → Set mapping each
arrow u ∈ J(i, j) to D(u)op

μst
i (w)→μst

i (s) : (Fi)μst
i (w)→μst

i (s) → (Fj)μst
j (w)→μst

j (s). Let

{(μop
i )w→s}i∈|J| be the limit cone of this functor.

(Fi)μst
i (w)→μst

i (s)

D(u)op
μst

i (w)→μst
i (s)

�� (Fj)μst
j (w)→μst

j (s)

Fw→s

(μop
i )w→s

47���������� (μop
j )w→s

58����������

3. For each arity w ∈ S∗, {(μrl
i )w : Pw → (Pi)μst

i (w)}i∈|J| is the limit cone for the functor

J → Set mapping each arrow u ∈ J(i, j) to D(u)rl
μst

i (w) : (Pi)μst
i (w) → (Pj)μst

j (w).

Co-limits. For any small category J, the co-limit co-cone μ : (D : J→ Sig)⇒ (S,F,P)
(where D(u) : (Si,Fi,Pi)→ (S j,Fj,Pj) for each u ∈ J(i, j)) is defined by

1. μst is the co-limit of D;(−)st : J → Set

Si
D(u)st

��

μst
i ���

��
��
��

S j

μst
j69��

��
��

S
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2. For each arity w ∈ S∗ and each sort s ∈ S, let (F ′i )w→s =
⊎

μst
i (wisi)=ws(Fi)wi→si . For

each arrow u ∈ J(i, j) let D(u)op
w→s : (F ′i )w→s → (F ′j )w→s be the ‘disjoint union’ of

all functions

(Fi)wi→si

D(u)op
wi→si�� (Fj)D(u)st(wi)→D(u)st(si)

��
⊎

μst
j (w js j)=ws(Fj)w j→s j .

Then we define {(μi)
op
w→s}i∈|J| to be the co-limit co-cone for the functor J → Set

mapping each u to D(u)op
w→s.

(F ′i )w→s
(D(u)op)w→s ��

(μop
i )w→s 7:�

��
��

��
�

(F ′j )w→s

(μop
j )w→s����

��
��
��

Fw→s

For each wi and si we define (μop
i )wi→si as the restriction of (μop

i )w→s to (Fi)wi→si .

3. For each i ∈ |J| and arity wi ∈ S∗i we define (μrl
i )wi in the same way we have defined

(μop
i )wi→si in the item above.

Exercises

4.17. The category of CA signatures has small co-limits but only finite limits.

4.18. The category of HOL/HNK signatures does not have all pushouts, but it has pushouts of
sort-preserving signature morphisms. It also has small co-products.

4.19. Weak co-amalgamation for sentences
In FOL the sentence functor weakly preserves pullbacks, i.e., any pullback of signature morphisms
gets mapped by SenFOL to a weak pullback in Set.

4.20. [55] Finitely presented signatures
A FOL signature (S,F,P) is finitely presented (as an object of SigFOL) if and only if S, F , and P
are finite. (F ‘finite’ means that {(w,s) | Fw→s �= /0} is finite and each non-empty Fw→s is also finite
and the same for P.)

4.21. [59] Finitary sentences
A sentence ρ for a signature Σ of an institution is finitary when there exists a signature morphism
ϕ : Σ0 → Σ such that Σ0 is finitely presented and there exists a Σ0-sentence ρ0 such that ρ = ϕ(ρ0).
Then any FOL-sentence is finitary. Give an example of a FOL∞,ω-sentence which is not finitary.

4.22. [55] Finitely presented theories
Assume an institution with finitary sentences. Then for each finitely presented theory (Σ,E) (i.e., it
is a finitely presented object in the category Th of theories),

• Σ is a finitely presented signature, and
• E can be presented by a finite set of sentences.
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4.3 Model Amalgamation

Model amalgamation in institutions. In any institution, a commuting square of signa-
ture morphisms

Σ
ϕ1 ��

ϕ2
��

Σ1

θ1
��

Σ2 θ2

�� Σ′

is an amalgamation square if and only if for each Σ1-model M1 and a Σ2-model M2 such
that M1�ϕ1 = M2�ϕ2 , there exists a unique Σ′-model M′, called the amalgamation of M1

and M2, such that M′�θ1 = M1 and M′�θ2 = M2. The amalgamation M′ may be denoted
by M1⊗ϕ1,ϕ2 M2 or simply by M1⊗M2.

In the absence of uniqueness of the amalgamation M′, we say that this is a weak
amalgamation square.

Note that from a categorical viewpoint, the model amalgamation property means
that

|Mod(Σ)| |Mod(Σ1)|
Mod(ϕ1)��

|Mod(Σ2)|
Mod(ϕ2)

��

|Mod(Σ′)|
Mod(θ2)
��

Mod(θ1)

��

is a pullback in Class, the (quasi-)category of classes.1

In order to have model amalgamation, it is necessary that the corresponding square
of signature morphisms does not collapse entities of Σ1 and Σ2 which do not come from
Σ (via ϕ1 and ϕ2). On the other hand, for ensuring the uniqueness of the amalgamation
it is necessary that Σ′ does not contain entities which do not come from either Σ1 or Σ2.
Therefore the primary candidates for model amalgamation are the pushout squares of
signature morphisms. An institution has model amalgamation if and only if each pushout
of signatures is an amalgamation square.

Model amalgamation in FOL

Modulo some adjustments the result below can be replicated to a multitude of actual
institutions.

Proposition 4.5. FOL has model amalgamation.

Proof. The key to this proof is to define a ‘very big’ global FOL (hyper-)signature Ω
such that for each FOL signature Σ, the class of Σ-models coincides with the class of
signature morphisms Σ→ Ω. Moreover, given a FOL signature morphism ϕ : Σ→ Σ′,
the reduct M′�ϕ of any Σ′-model M′ appears as ϕ;M′.

1This is the ‘extension’ of Set having classes as objects.
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Suppose such a hyper-signature Ω exists. Then for any pushout (θ1,θ2) of a span of
signature morphisms (ϕ1,ϕ2),

Σ
ϕ1 ��

ϕ2
��

Σ1

θ1
�� M1

8�

Σ2
θ2 ��

M2 9;

Σ′
M′

:<











Ω
M1�ϕ1 = M2�ϕ2 just means that ϕ1;M1 = ϕ2;M2. Let M′ : Σ′ →Ω be the unique signature
morphism such that θk;M′ = Mk for k ∈ {1,2}. Then M′ is the unique amalgamation of
M1 and M2.

Now let us turn our attention to Ω = (SΩ,FΩ,PΩ) which is defined as follows:

• SΩ = |Set|, i.e., the class of all sets,

• for any sets s1, . . . ,sn,s, FΩ
s1...sn→s = Set(s1×·· ·× sn,s), i.e., the set of all functions

s1×·· ·× sn → s, and

• for any sets s1, . . . ,sn, PΩ
s1...sn

= P (s1×·· ·× sn), i.e., all subsets of s1×·· ·× sn.

We can notice immediately that (S,F,P)-models are just signature morphisms (S,F,P)→
Ω. �

Extended model amalgamation. The concept of model amalgamation is most often
used in the form presented above, for squares of signature morphisms. However, some-
times other forms of model amalgamation are necessary, e.g., for co-cones over other
types of diagrams of signature morphisms.

Given a diagram D : J → Sig, let us call a family (Mi)i∈|J| consistent with D when

• Mi is a D(i)-model for each i ∈ |J|, and

• Mj�D(u) = Mi for each arrow u ∈ J(i, j).

We say that a co-cone μ over a diagram D : J → Sig of signature morphisms has model
amalgamation when for each family of models (Mi)i∈|J| consistent with D, there exists
a unique model M such that M�μi = Mi for each i ∈ |J|. When we drop the uniqueness
requirement, we say that μ has weak model amalgamation.

Ordinary model amalgamation, as originally introduced in this section, is thus J-
model amalgamation for J being a span of arrows • •�� ��• .

An institution has J-model amalgamation for a category J when all co-limits of all
diagrams J → Sig have model amalgamation. This terminology can be also extended to
classes J of categories J. For example, when J consists of all directed, respectively total
posets, we talk about directed, respectively inductive, model amalgamation.

The proof of Prop. 4.5 can be extended without any problem to all small co-limits
of signatures (which exist by virtue of Prop. 4.4).

Proposition 4.6. FOL has J-model amalgamation for all small categories J.
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Exact institutions

In most situations the kind of amalgamation which is needed is at the level of the mod-
els only, however there are results which rely upon a form of amalgamation for model
homomorphisms.

Amalgamation for model homomorphisms means that Mod maps any pushout of
signatures to a pullback of categories (of models) rather than to a pullback of classes (of
models). We called this property the semi-exactness of the institution. The terminology
introduced for model amalgamation can be extended to exactness. Thus an institution
(Sig,Sen,Mod, |=) is

• semi-exact when the model functor Mod : Sigop → Cat preserves pullbacks,

• directed/inductive-exact when Mod preserves directed/inductive limits,

• (J)-exact when Mod preserves all (J) small limits, and

• weakly J-exact when Mod preserves weak J-limits.2

FOL exactness. Prop. 4.5 can be refined to model homomorphisms.

Proposition 4.7. FOL is exact.

Proof. We have to show that ModFOL : (SigFOL)op →Cat preserves all small limits. Let
us consider the case of the pullbacks, other limits being handled similarly.

We re-use the idea underlying the proof of Proposition 4.5 by changing the hyper-
signature Ω in order to capture model homomorphisms as follows.

• SΩ = Set, i.e., the class of all functions,

• for all functions s1, . . . ,sn,s, FΩ
s1...sn→s is the sub-set of Set(dom(s1)×·· ·×dom(sn),

dom(s))×Set(cod(s1)×·· ·× cod(sn),cod(s)) of all pairs which satisfy the homo-
morphism property for operations, i.e., 〈Mσ, Nσ〉 ∈ FΩ

s1...sn→s if and only if Mσ;s =
(s1×·· ·× sn);Nσ and

• for any functions s1, . . . ,sn, PΩ
s1...sn

is the subset of P (dom(s1)× ·· · × dom(sn))×
P (cod(s1)×·· ·× cod(sn)) of all pairs that satisfy the homomorphism property for
relations, i.e., 〈Mπ, Nπ〉 ∈ PΩ

s1...sn
if and only if (s1×·· ·× sn)(Mπ)⊆ Nπ.

�

Model amalgamation for theories

Given a weak amalgamation square in an institution

Σ
ϕ1 ��

ϕ2 ��

Σ1

θ1��
Σ2 θ2

�� Σ′

2A weak universal property, such as adjunction, limits, etc., is the same as the ordinary universal property
except that only the existence part is required while uniqueness is not required.
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if M1 |=Σ1 E1 and M2 |=Σ2 E2 and M1�ϕ1 = M2�ϕ2 , then by the satisfaction condition
M1⊗ϕ1,ϕ2 M2 |=Σ′ θ1(E1)∪θ2(E2).

This argument works also for all co-cones of diagrams of presentation morphisms.
By recalling how co-limits of presentations are constructed on top of co-limits of signa-
tures (Prop. 4.2), the above argument shows that any model amalgamation property of an
institution can be lifted from the level of the signatures to the level of the presentations
or theories. Moreover, this can be extended easily to model homomorphisms too. These
considerations are collected by the following result.

Theorem 4.8. If the institution I is J-exact, then the institution of its presentations I pres

is J-exact too.

By Prop. 4.7 and Thm. 4.8 it follows that

Corollary 4.9. The institution FOLpres (of FOL presentations) is exact.

Model amalgamation for institution mappings

The transfer of institutional properties along institution mappings, usually comorphisms,
relies sometimes upon a form of model amalgamation of the respective institution map-
ping.

Exact comorphisms. An institution comorphism (Φ,α,β) : I → I ′ is exact if for each
I -signature morphism ϕ : Σ1 → Σ2 the naturality square below

Mod(Σ1) Mod′(Φ(Σ1))
βΣ1��

Mod(Σ2)

Mod(ϕ)

��

Mod′(Φ(Σ2))βΣ2

��

Mod′(Φ(ϕ))

��

is a pullback. When discarding the model homomorphisms from the above (i.e., the dia-
gram above is a pullback of classes of models rather than categories of models), we say
that (Φ,α,β) has model amalgamation. This means that for any Φ(Σ1)-model M′

1 and any
Σ2-model M2, if βΣ1(M

′
1) = M2�ϕ, then there exists a unique Φ(Σ2)-model M′

2 such that
βΣ2(M

′
2) = M2 and M′

2�Φ(ϕ) = M′
1. If we drop the uniqueness requirement on M′

2, then we
say that (Φ,α,β) has weak model amalgamation.

Notice that the exactness of the institution comorphism EQL→FOL holds trivially
because the model translation functors β(S,F) are isomorphisms for all algebraic signatures
(S,F).

Exact morphisms. A similar definition can be formulated for exact institution mor-
phisms. However, in the actual institutions, comorphisms rather than morphisms interact
better with model amalgamation. For example, while the comorphism EQL → FOL is
trivially exact, its adjoint (forgetful) institution morphism FOL → EQL does not have
model amalgamation.
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Exercises

4.23. Conservative signature morphisms
A signature morphism ϕ : Σ→ Σ′ is conservative when each Σ-model has at least a ϕ-expansion.
Given a weak amalgamation square in an institution

Σ
ϕ ��

θ
��

Σ′

θ′��
Σ1 ϕ1

�� Σ′1

show that ϕ1 is conservative when ϕ is conservative.

4.24. In the commuting diagram below

Σ ��

��

Σ1

��

;=

Σ2 ��

9;

Σ′′
ϕ

:<









Σ′

if [Σ,Σ1,Σ2,Σ′′] is an amalgamation square, then [Σ,Σ1,Σ2,Σ′] is a weak amalgamation square if
and only if ϕ is conservative.

4.25. Categorical equational logic CatEQL (see Ex. 3.8) trivially is exact.

4.26. For any semi-exact institution I , the institution I→ of its signature morphisms (see Ex. 3.9)
is semi-exact.

4.27. A method to prove model amalgamation properties of institutions I is to ‘borrow’ them from
another institution I ′ via a comorphism I → I ′ with the following properties:

1. the signature translation functor preserves the respective co-limits of signatures, and
2. the model translation functor has a left inverse.

Apply this method to obtain model amalgamation properties for various institutions presented in
this book.

4.28. The institution IPL is exact.

4.29. The institutions FOL1, LA and AUT are semi-exact but they are not exact.

4.30. The institution CA of contraction algebras does not have model amalgamation. Explain why.
However model amalgamation holds for the pushout squares for which the contraction parameter q
is fixed for all signatures.

4.31. While HOL has model amalgamation, HNK has only weak model amalgamation.

4.32. Any chartable institution has model amalgamation. (see Ex. 3.11)

4.33. The sub-institutions of FOL obtained by restricting the model homomorphisms to those
which are injective, respectively surjective, are exact.
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4.34. The comorphism FOL→ FOEQL encoding relations as operations (see Sect. 3.3) does not
have model amalgamation but it has weak model amalgamation.

4.35. Let us assume that for an institution morphism (Φ,α,β) : I ′ → I , the signature translation
functor Φ : Sig′ → Sig has a left adjoint Φ, is full and surjective on objects, and that I ′ is semi-
exact. If (Φ,α,β) is exact, then its adjoint institution comorphism (Φ,α,β) is exact too.

4.36. Study the model amalgamation properties of the following comorphisms which have been
introduced above in the book (either in the main text or in exercises): MPL → REL1, PA →
FOLpres, FOL→ RELpres, POA→ FOLpres, FOL→ PApres, FOL→ (FOL1)pres, and HNK→
FOEQLpres.

4.4 The method of Diagrams

This is one of the most useful methods of model theory. As we will see below, ‘diagrams’
here are used with a different meaning than the categorical diagrams. For this reason we
prefer to use ‘elementary diagrams’ for the model theoretic concept.

Elementary diagrams in FOL

Each model M of a signature (S,F,P) determines an extension of signatures ι : (S,F,P)
↪→ (S,FM,P) where

• (FM)w→s = Fw→s for any non-empty arity w and any sort s ∈ S, and

• (FM)→s = F→s∪Ms for any sort s ∈ S.

The second step is to note that M can be canonically expanded to an (S,FM,P)-model MM

by interpreting the new constants of (FM)→s by the corresponding elements of Ms, i.e.,
(MM)a = a for each a∈M. Let EM be the set of all atoms (either equational or relational)
satisfied by MM .

The presentation ((S,FM,P),EM), called the elementary diagram of M has the cru-
cial categorical property that it axiomatizes the class of homomorphisms from M.

Proposition 4.10. There exists a natural isomorphism

i : Mod((S,FM,P),EM)→M/Mod(S,F,P).

Proof. The isomorphism i maps each (S,FM,P)-model N satisfying EM to the (S,F,P)-
model homomorphism hN : M → N�ι such that hN(a) = Na for each element a ∈M. Let
us check that hN is indeed a model homomorphism.

– For each operation σ ∈ Fw→s and for each m ∈Mw, (σ(m) = Mσ(m)) ∈ EM , which
implies N |= σ(m) = Mσ(m), which means NMσ(m) = Nσ(m). But NMσ(m) =
(hN)s(Mσ(m)) and Nσ(m) = Nσ(Nm) = (N�ι)σ((hN)w(m)), which implies
(hN)s(Mσ(m)) = (N�ι)σ((hN)w(m)).

– For each relation π ∈ Pw and for each m ∈Mw, if m ∈Mπ, then π(m) ∈ EM , which
implies N |= π(m). But this means (hN)w(m) = Nm ∈ Nπ.
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The inverse isomorphism i−1 maps any (S,F,P)-model homomorphism h : M→ N
to the (S,FM,P)-model i−1(h) = Nh where (Nh)�ι = N and (Nh)a = h(a) for each a ∈M.
We have to check that Nh |= EM. First let us notice that h is also an (S,FM,P)-model
homomorphism MM → Nh.

– Consider an equation t = t ′ in EM . By induction on the structure of the terms, we
can prove that (Nh)t = h((MM)t) and (Nh)t′ = h((MM)t′). Since (MM)t = (MM)t′ we
deduce that (Nh)t = (Nh)t′ , which means Nh |= t = t ′.

– Now consider a relational atom π(t) ∈ EM for a relation symbol π ∈ Pw. Because
(Nh)t = h((MM)t), (MM)t ∈ (MM)π and h is an (S,FM,P)-model homomorphism,
we deduce that (Nh)t ∈ (Nh)π which means Nh |= π(t).

We have analyzed i and i−1 on models only. They also work as expected on model homo-
morphisms. �

Changing model homomorphisms. In order to maintain the isomorphic relationship
between the category of homomorphisms M/Mod(S,F,P) and the category of the mod-
els of the elementary diagram Mod((S,FM,P),EM), any change of the concept of model
homomorphism induces a change of the concept of elementary diagram. Note that con-
sidering other model homomorphisms between FOL models means in fact working with
another institution. For example, if we impose some condition which shrinks the class of
model homomorphisms, then consequently the elementary diagram should get bigger in
order that the class of its models shrinks too.

Below we give a list of several possibilities for model homomorphisms between
FOL models obtained by imposing some additional conditions on the standard FOL
model homomorphisms. In all cases elementary diagrams do exist as shown in the right-
hand side column of the table. All entries of the table can be checked similarly to the
proof of Prop. 4.10.

model homomorphisms EM

all all atoms in M∗
M

injective all atoms and negations of atomic equations in by M∗
M

closed all atoms and negations of atomic relations in M∗
M

closed and injective all atoms and negations of atoms in MM∗
elementary embeddings M∗

M

A FOL-model homomorphism h : M → N

– is closed when Mπ = h−1(Nπ) for each relation symbol π of the signature, and

– is an elementary embedding when MM ≡Nh where Nh = iΣ,M(h). (Note that because
MM |= m �= m′ for all m,m′ ∈M which are different, h is also injective.)

In some other model theoretic works, in the context of FOL models, the terminology
‘elementary diagram’ is reserved only for the last institution in the table above. Here we
use this terminology in a much wider sense, which is partly justified by the different level
of abstraction, as will be seen in the following paragraph. However, when there is no
danger of ambiguity we may also refer to the elementary diagrams just as ‘diagrams’.
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Institution-independent elementary diagrams

The isomorphism between the category of model homomorphisms from M (for whatever
concept of model homomorphism we employ) and the class of models of the ‘elementary
diagram’ of M is a purely categorical property which can be formulated at an institution-
independent level.

An institution (Sig,Sen,Mod, |=) has elementary diagrams if and only if for each
signature Σ and each Σ-model M, there exists a signature ΣM and a signature morphism
ιΣ(M) : Σ → ΣM , functorial in Σ and M, and a set EM of ΣM-sentences such that
Mod(ΣM,EM) and the comma category M/Mod(Σ) are naturally isomorphic, i.e., the
following diagram commutes by the isomorphism iΣ,M natural in Σ and M.

Mod(ΣM,EM)
iΣ,M ��

Mod(ιΣ(M)) ,/��
���

���
���

�
(M/Mod(Σ))

forgetful
��

Mod(Σ)

The signature morphism ιΣ(M) : Σ→ ΣM is called the elementary extension of Σ via M
and the set EM of ΣM-sentences is called the elementary diagram of the model M. For
each model homomorphism h : M → N let Nh denote i−1

Σ,M(N).
The “functoriality” of ι means that for each signature morphism ϕ : Σ → Σ′ and

each Σ-model homomorphism h : M→M′�ϕ, there exists a presentation morphism ιϕ(h) :
(ΣM,EM)→ (Σ′M′ ,EM′) such that

Σ
ιΣ(M) ��

ϕ
��

ΣM

ιϕ(h)
��

Σ′
ιΣ′ (M′)

�� Σ′M′

commutes and ιϕ(h); ιϕ′(h′) = ιϕ;ϕ′(h;h′�ϕ) and ι1Σ(1M) = 1ΣM .
The “naturality” of i means that for each signature morphism ϕ : Σ→ Σ′ and each

Σ-model homomorphism h : M →M′�ϕ the following diagram commutes:

Mod(ΣM ,EM)
iΣ,M �� M/Mod(Σ)

Mod(Σ′M′ ,E ′M′)
iΣ′ ,M′

��

Mod(ιϕ(h))

��

M′/Mod(Σ′)

h/Mod(ϕ)=h;(−)�ϕ

��

The reader is invited to check the above functoriality and naturality properties of the
elementary diagrams for FOL and its sub-institutions presented above.

An institution with elementary diagrams ι may be denoted by (Sig,Sen,Mod, |=, ι).
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A more categorical formulation

The elementary diagrams of an institution (Sig,Sen,Mod, |=, ι) can be expressed more
compactly as a functor ι : Mod� → Pres→ from the Grothendieck category Mod� deter-
mined by the model functor Mod to the category Pres of the presentations of the institu-
tion such that

Mod� ι ��

(fibration) projection
��

Pres→

dom

��
Sig

left adjoint
�� Pres

commutes, where Pres→ is the category of presentation morphisms (i.e., the functors
(• ��•)→ Pres), and dom is the functor projecting on the domain of the presentation
morphisms, and such that the following functors Mod� → Cat→ are isomorphic:

Mod�

ι ��
Mod�

−/Mod(−)

��

Pres→
Mod→ ��

∼=

Cat→ Cat→

where

• Mod→((Σ,E)
ϕ ��(Σ′,E ′)) = Mod(Σ′,E ′)

Mod(ϕ) ��Mod(Σ,E) and

• (−/Mod(−))(〈Σ, M〉) = M/Mod(Σ)→Mod(Σ).

Elementary homomorphisms

Recall that a FOL-model homomorphism h : M → N is by definition an elementary
embedding if and only if MM and Nh are elementarily equivalent (they satisfy exactly the
same sentences). Note that by involving MM and Nh we have used the diagrams of FOL.

In the same way a concept of ‘elementary embedding’ can be defined in any abstract
institution provided it has diagrams.

Fact 4.11. In any institution with diagrams, the diagram of any model M has an initial
model, denoted MM.

A model homomorphism h : M → N is elementary when Nh = i−1
Σ,M(N) |= M∗

M .

Fact 4.12. For each elementary homomorphism h : M → N, M∗ ⊆ N∗.

We say that an institution with diagrams is elementary when each model homomor-
phism is elementary. For example E(FOL), the sub-institution of FOL with ‘elementary
embeddings’ as model homomorphism is elementary.

Fact 4.13. An institution is elementary if and only if M∗
M = E∗∗M for each model M.
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It is now the moment to ask: do the elementary homomorphisms of an institution
(with elementary diagrams) form a (sub-)institution, and if yes, does it have elementary
diagrams too? At this stage it is not possible to answer properly this question, however
this will get a positive answer in the next chapter.

Morphisms of institutions with elementary diagrams

Given a model M for a FOL signature (S,F,P), notice that the forgetful institution mor-
phism FOL→ EQL

– maps the elementary extension (S,F,P) ↪→ (S,FM,P) to the elementary extension
(S,F) ↪→ (S,FM) of algebraic signatures which corresponds to the (S,F)-algebra
underlying M, and

– the diagram of the (S,F)-algebra underlying M is the restriction of the diagram of
M to all equations.

This situation suggests that the forgetful institution morphism FOL → EQL is a ‘mor-
phism of elementary diagrams’ between the system of diagrams of FOL and that of EQL.

In general, a morphism of institutions with diagrams (Φ,α,β) : (I ′, ι′)→ (I , ι) is
an institution morphism such that

(Mod′)� ι′ ��

β�

��

(Pres′)→

Φ→
��

(Mod)� ι
�� (Pres)→

commutes, where

– for each signature Σ′ ∈ |Sig′| and each Σ′-model M′, the functor β� maps 〈Σ′, M′〉 to
〈Φ(Σ′), β′Σ(M′)〉, and

– the functor Φ→ maps each presentation morphism ϕ : (Σ′1,E
′
1)→ (Σ′2,E

′
2) to

Φ(ϕ) : (Φ(Σ′1),α
−1
Σ′1

(E ′∗∗1 ))→ (Φ(Σ′2),α
−1
Σ′2

(E ′∗∗2 )).

More concretely, this means that Φ(ι′Σ′(M
′)) = ιΦ(Σ′)(βΣ′(M′)) (which implies Φ(Σ′M′) =

(Φ(Σ′))βΣ′ (M′)) and EβΣ′ (M′) |=|α−1
Σ′

M′
(E∗∗M′) for each signature Σ′ ∈ |Sig′| and each Σ′-model

M′.
The category of institutions with elementary diagrams is denoted as EDIns.
A dual concept of ‘comorphism of institutions with elementary diagrams’ can be

defined similarly.

Limits and co-limits of models

In the presence of diagrams, limits and co-limits of models can be obtained from cor-
responding limits and co-limits of signatures. This is an important consequence of the
existence of diagrams because in the actual institutions, limits, and especially co-limits of
models are much more difficult to establish than (co-)limits of signatures.
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Theorem 4.14. Consider an institution with diagrams and initial models of presenta-
tions. Then, for each signature Σ, the category of Σ-models has J-(co-)limits whenever
the category of signatures Sig has J-(co-)limits.

Proof. Limits: Let J be a category such that Sig has J-limits, and consider a J-diagram
M : J →Mod(Σ) of Σ-models. Let us denote M(i) by Mi for each index i ∈ |J|, M(u) by

Mu for each index morphism u ∈ J, and let Σ
ιΣ(Mi)��(ΣMi ,EMi) be the diagram of Mi.

(ΣMi ,EMi)

ιΣ(Mu)

��

Mi

Mu

��

i

u

��

Σ
ϕ��

ιΣ(Mi) ��

ιΣ(M j) 9;

(Σ′,E ′)
φi



�������

φ j

		��
���

��
N

μi ��						

μ j ���
��

��
�

(ΣM j ,EM j ) M j j

Let φ : Σ′ ⇒ ΣM be the limit cone where ΣM : J → SigI is defined by

• (ΣM)(i) = ΣMi for each index i ∈ |J|, and

• (ΣM)(u) = ιΣ(Mu) for each index morphism u ∈ J.

Let N = (0Σ′,E ′)�ϕ where

– 0Σ′,E ′ is the initial model of (Σ′,E ′),

– ((Σ′,E ′)
φi

��(ΣMi ,EMi))i∈|J| is the limit of the diagram of elementary diagrams

((ΣMi ,EMi)
ιΣ(Mu) ��(ΣM j ,EM j ))u∈J , and

– ϕ : Σ→ Σ′ is the unique signature morphism such that ϕ;φi = ιΣ(Mi) for each index

i ∈ |J| (cf. Prop. 4.2 and Cor. 4.3), (Σ′
φi

��ΣMi )i∈|J| is the co-limit of

(ΣMi
ιΣ(Mu) ��ΣM j )u∈J .

Because EMi |= φi(E ′) we have that (Mi)Mi�φi |= E ′. Let νi : 0Σ′,E ′ → (Mi)Mi�φi be the
unique (Σ′,E ′)-model homomorphism. We define μi = νi�ϕ for each i∈ |J|. That μ : N⇒
M is a cone follows from the fact that νi; i−1

Σ,Mi (Mu) = ν j for each i
u �� j ∈ J, which

follows from the uniqueness part of the initiality property of 0Σ′,E ′ .
For any other cone μ′ : N′ ⇒M, let ιΣ(N′) : Σ→ ΣN′ be the elementary extension

of Σ via N′. Notice that {ιΣ(μ′i)}i∈|J| is a cone ΣN′ ⇒ ΣM . Therefore let ϕ′ : ΣN′ → Σ′ be
the unique signature morphism such that ϕ′;φi = ιΣ(μ′i) for each i ∈ |J|.

For each i ∈ |J|, ιΣ(μ′i) is a presentation morphism (ΣN′ ,EN′)→ (ΣMi ,EMi), which
implies EMi |= φi(ϕ′(EN′)). By the satisfaction condition this means 0Σ′,E ′�ϕ′ |= EN′ . Let
h = h′�ιΣ(N′) where h′ is the unique model homomorphism (N′)N′ → 0Σ′,E ′�ϕ′ . Then h
is the unique model homomorphism such that μ′ = h;μ. That μ′i = h;μi for each i ∈ |J|
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follows from the uniqueness part of the initiality property of (N′)N′ . The uniqueness of h
follows by the isomorphism iΣ,N′ and from the initiality property of (N′)N′ .

Co-limits: The proof of the co-limit part follows ideas similar to the proof of the
limit part. We therefore give here only the sketch of the proof for the co-limit part.

i

u

��

Mi

Mu

��

μi

���
��

��
� (ΣMi ,EMi)

ιΣ(Mu)

��

φi 		��
���

��
ιΣ(μ′i)

<>
N Σ

ιΣ(Mi) =?��������

ιΣ(M j) %&  
   

   
(Σ′,E ′)

ϕ′ �� (ΣN′ ,EN′)

j M j
μ j

��						
(ΣM j ,EM j )

φ j 

�������
ιΣ(μ′ j)

��

We take the co-limit ((ΣMi ,EMi)
φi

��(Σ′,E ′))i∈|J| of ((ΣMi ,EMi)
ιΣ(Mu) ��(ΣM j ,EM j ))u∈J

and define N = 0Σ′,E ′�ϕ where ϕ = ιΣ(Mi);φi. Then the co-limit μ : M⇒ N is defined by
μi = iΣ,Mi(0Σ′,E ′�φi) for each i ∈ |J|. �

Limits and co-limits of FOL models. Let us apply Thm. 4.14 above to obtain the
existence of limits and co-limits of FOL models. The method illustrated by the proof of
Cor. 4.15 may be also applied to other actual institutions.

Corollary 4.15. The category of models of any FOL signature has small limits and co-
limits.

Proof. Let us consider the sub-institution AFOL of the atoms of FOL, which restricts the
sentences to (equational or relational) atoms only. Obviously, AFOL inherits the FOL
diagrams, but unlike FOL, it has initial models for all its presentations (a result which
we anticipate and is given by Cor. 4.28 below). The category of signatures has small
limits and co-limits (cf. Prop. 4.4), therefore by Thm. 4.14 the category of models of any
signature has small limits and co-limits. �

Exercises

4.37. The standard elementary diagrams of FOL can be defined slightly differently than the ordi-
nary way, such that the elementary extension adds to the given signature only the elements which
are not interpretations of constants.

4.38. A FOL model homomorphism h : M → N is strong when Nπ = h(Mπ) for each relation
symbol π of the signature.

The sub-institution of infinitary first order logic FOL∞,ω where the model homomorphisms
are restricted to the strong ones has elementary diagrams with the same elementary extensions as
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in FOL but such that for each (S,F,P)-model M the elementary diagram EM consists of the FOL
elementary diagram plus

• {¬π(m) ∈M∗
M | π ∈ P}, and

• all sentences of the form

(∀X)(π(X)⇒
∨

m∈Mw

(X = m))

for each relation symbol π of arity w, and where X = m means
∧

1≤k≤n(xk = mk) for
X = x1 . . .xn and m = m1 . . .mn.

4.39. Borrowing elementary diagrams
Let I ′ be an institution with elementary diagrams ι′ and let (Φ,α,β) : I → I ′ be an institution
comorphism such that

1. Φ is full and faithful,
2. βΣ are isomorphisms (for each model M let M′ denote β−1

Σ (M)),
3. for each Σ-model M in I :

(a) there exists a signature ΣM in I such that Φ(Σ)M′ = Φ(ΣM), and
(b) for each sentence ρ′ ∈ EM′ there exists a ΣM-sentence ρ such that ρ′ |=| αΣM (ρ).

Then the institution I has elementary diagrams ι defined by

• ιΣ(M) is the unique signature morphism such that Φ(ιΣ(M)) = Φ(ΣM), and
• EM = {ρ | there exists ρ′ ∈ EM′ such that αΣM′ (ρ) |=| ρ′}.

Then the diagrams of EQL are ‘borrowed’ from FOL as above.

4.40. The table below gives the elementary diagrams of several institutions:

I Σ ΣM MM EM

PA (S,T F,PF) (S,T FM,PF) with (MM)m = m {t e= t ′ |MM |= t
e= t ′}

(T FM)→s = T F→s∪Ms for m ∈M
for s ∈ S

POA (S,F) (S,FM) with (MM)m = m {t = t ′ |MM |= t = t ′}∪
(FM)→s = F→s∪Ms for m ∈M {t ≤ t ′ |MM |= t ≤ t ′}
for s ∈ S

MBA (S,K,F,kind) (S,K,FM,kind) with (MM)m = m {t = t ′ |MM |= t = t ′}∪
(FM)→k = F→k∪Mk for m ∈M {(t : s) |MM |= (t : s)}
for k ∈ K

MA (S,F) (S,FM) with (MM)m = {m} {m .= m | m ∈M}∪
(FM)→s = F→s∪Ms for m ∈M {x≺ σ(m) | σ ∈ Fw→s and
for s ∈ S m ∈Mw and x ∈Mσ(m)}

CA (S,F,q) (S,FM,q) with (MM)m = m {t ≈ε t ′ |MM |= t ≈ε t ′}
(FM)→s = F→s∪Ms for m ∈M
for s ∈ S

HNK (S,F) (S,FM) with (MM)m = m {t = t ′ |MM |= t = t ′}
(FM)s = Fs∪Ms for m ∈M
for s ∈ S
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4.41. Elementary diagrams in intuitionistic logic
IPL has diagrams for the model homomorphisms of the form h : (M : P → A)→ (N : P → B)
where h : A→ B are monotone (i.e., order preserving) functions which preserve the upper bound
� and such that M;h = N.

P
M ��

N ���
��

��
��

A

h

��
B

(Hint: For any P-model M : P → A its elementary extension P → P�A is given by adding the
elements of the Heyting algebra A to P. The diagram of M consists of all sentences of the form ρ
and ρ1 ⇒ ρ2 with ρ,ρ1,ρ2 ∈ P�A which are satisfied by the canonical expansion MM : P�A→ A
of M.)

A model homomorphism is elementary if and only if it is also a homomorphism of Heyting
algebras, i.e., it preserves the interpretations of ∧, ∨, ⇒, �, and ⊥. Moreover, the sub-institution
of the IPL elementary homomorphisms has diagrams.

4.42. Let Cat+EQL be the subinstitution of CatEQL determined by categories with binary co-
products. Then Cat+EQL has empty elementary diagrams. (Hint: For any object A in a category C

having binary co-products, the elementary extension of C via A is the left adjoint to the forgetful
functor A/C→ C.)

4.43. Elementary diagrams for presentations
(a) For each institution I with elementary diagrams the institution I pres of its presentations has el-
ementary diagrams such that the (original) diagrams of I are ‘borrowed’ from those of I pres along
the canonical embedding comorphism I → I pres.
(b) As an application to (a), for any institution with elementary diagrams and initial models for
presentations, the categories of models of presentations have all (co-)limits of the category of sig-
natures.

4.44. Preserving carriers
A signature morphism ϕ : Σ→ Σ′ preserves carriers when

Σ
ιΣ(M) ��

ϕ
��

ΣM

ιϕ(1M)
��

Σ′
ιΣ′ (M′)

�� Σ′M′

is a pushout of signature morphisms for all Σ′-models M′ and Σ-models M for which M′�ϕ = M.
Then signature morphisms preserving carriers are closed under composition.
In FOL all signature morphisms which are bijective on sorts preserve the carriers.

4.45. Study the model amalgamation properties of E(FOL), i.e., the sub-institution of FOL
with elementary embeddings as model homomorphisms.
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4.5 Inclusion Systems

The standard inclusion system of Set. Each function f : A→ B can be factored as a
composite between a surjection and an inclusion, i.e., f = e f ; i f

A
f ��

e f $$!
!!

!!
B

if69��
��
�

f (A)

as follows:

• f (A) = { f (a) | a ∈ A},
• e f (a) = f (a) for each a ∈ A, and

• i f (b) = b for each b ∈ f (A).

It is easy to see that this factorization is unique, that is for any other factorization f =
e′f ; i′f with e′f surjection and i′f inclusion we necessarily have e′f = e f and i′f = i f . The
existence and the uniqueness of such a factorization is a consequence of the nature of the
surjective functions and of the inclusions. For the uniqueness it is especially important
that inclusions are unique in the sense that there exists at most one inclusion between any
two given sets.

This factorization phenomenon may be found in various forms in many other cat-
egories, including categories of models. It constitutes an important conceptual device in
model theory.

Categorical inclusion systems. The factorization property of functions presented above
can be expressed at the level of abstract categories. In this book this will be used in the fol-
lowing ways, for categories of models in institutions, and for the categories of signatures
of institutions.

〈I , E〉 is an inclusion system for a category C if I and E are two sub-categories
with |I |= |E |= |C| such that

1. I is a partial order, and

2. every arrow f in C can be factored uniquely as f = e f ; i f with e f ∈ E and i f ∈ I .

The arrows of I are called abstract inclusions, and the arrows of E are called abstract
surjections. The domain of the inclusion i f in the factorization of f is called the image of
f and is denoted as Im( f ) or f (A) when dom( f ) = A.

The following property is a useful technical device in many proofs.
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Lemma 4.16 (Diagonal-fill). Given an inclusion system 〈I , E〉 in a category C, if f ,g ∈
C, e ∈ E , i ∈ I , and f ; i = e;g then there exists an unique h ∈ C such that e;h = f and
h; i = g.

• e ��

f

��

•
g

��

h

����
��
��
�

•
i

�� •

Proof. Let us factor f = e f ; i f and g = eg; ig. Then e;eg; ig = e;g = f ; i = e f ; i f ; i. By the
uniqueness of the factorization of e;g = f ; i it follows that e f = e;eg and ig = i f ; i and
also that dom(i f ) = cod(eg). Then h = eg; i f .

• e ��

f

��

e f

��








•

g

��

eg����
��
�

•
ig ��







i f

����
��
�

•
i

�� •

The uniqueness of h follows by noticing that each inclusion is mono and because h; i =
g. �

Epic inclusion systems. The abstract surjections of some inclusion systems need not
necessarily be surjective in the ordinary set-theoretic sense. Consider for example the triv-
ial inclusion system for Set where each function is an abstract surjection and the abstract
inclusions are just the identities.An inclusion system 〈I , E〉 is epic when all abstract sur-
jections are epis. Therefore the standard inclusion system of Set presented above is epic,
while the trivial one is not.

Unions. An inclusion system 〈I , E〉 and has unions when I has finite least upper
bounds (denoted ∪). Note that the standard inclusion system of Set has unions which
are exactly the usual unions of sets, while the trivial inclusion system of Set evidently
does not have unions.

Inclusive functors. A functor U : 〈I , E〉 → 〈I ′, E ′〉 (between the underlying cate-
gories of the inclusion systems) is inclusive when it preserves the inclusions, i.e., U(I )⊆
I ′. Inclusion systems and inclusive functors form a category denoted IS.

Model inclusions and quotients

Closed and strong model homomorphisms. The category of models for a FOL signa-
ture (S,F,P) admits two meaningful epic inclusion systems which inherit the conventional
inclusion system of the category of sets and functions. Before discussing them, we have
to define some special classes of model homomorphisms.
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A model homomorphism h : M → N

• is closed when Mπ = h−1(Nπ) for each relation symbol π ∈ P, and

• is strong when h(Mπ) = Nπ for each relation symbol π ∈ P.

For each model homomorphism M → N that is a set inclusion for each sort s ∈ S, let us
say that M is a submodel of N.

Inclusion systems for FOL models.

Fact 4.17. For any FOL signature (S,F,P), the category of (S,F,P)-models admits the
following two inclusion systems:

inclusion system abstract surjections abstract inclusions
closed surjective homomorphisms closed sub-models
strong strong surjective homomorphisms sub-models

Moreover, for each signature morphism ϕ : (S,F,P)→ (S′,F ′,P′), the model reduct
functor Mod(ϕ) is inclusive between both the closed and the strong inclusion systems of
Mod(S′,F ′,P′) and Mod(S,F,P)

The difference between these two inclusion systems can easily be understood when
we try to factor a model homomorphism h : M →M′:

M

e ���
��

��
�

h �� M′

h(M)
i

>@������

Then in both inclusion systems e; i is the unique factorization of h as (many-sorted) func-
tion and h(M)s = hs(Ms) for each sort s. Also, in both inclusion systems the interpretation
of the operation symbols is canonically defined by h(M)σ(m) = M′

σ(m) for each opera-
tion symbol σ ∈ Fw→s and each m ∈ h(M)w. It is easy to see that for the carriers and the
operations there is no other possibility. However, the difference between the two inclusion
systems occurs at the level of the interpretations of the relation symbols for h(M). Given
π ∈ P, we should have e(Mπ)⊆ h(M)π and i(h(M)π)⊆M′

π. This means

e(Mπ)⊆ h(M)π ⊆ i−1(M′
π).

For the closed inclusion system the interpretation of the relations is defined ‘maximally’
with respect to i, while in the second situation they are defined ‘minimally’ with respect
to e.

Congruences. Several types of abstract surjections for model homomorphisms corre-
spond to several types of congruences. Given a model M for a FOL signature (S,F,P),
an S-sorted equivalence relation∼ on M consists of an equivalence relation∼s on Ms for
each sort s. It is
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• an F-congruence when for each operation symbol σ ∈ Fw→s, Mσ(m)∼s Mσ(m′) for
all m,m′ ∈Mw with m∼w m′,3

• a P-congruence when for each relation symbol π∈ Pw, m∼w m′ and m∈Mπ implies
m′ ∈Mπ for each m,m′ ∈Mw, and

• an (F,P)-congruence when it is both an F-congruence and a P-congruence.

Quotient models. Given an F-congruence∼ on M, the quotient M/∼ (of the model M
by the congruence∼) is defined by

– (M/∼)s = {m/∼ | m ∈ Ms} is the set of equivalence classes for ∼s for each sort
s ∈ S,

– (M/∼)σ(m/∼) = Mσ(m)/∼ for each operation σ ∈ Fw→s and each m ∈Mw, and

– (M/∼)π = {m/∼ | m ∈Mπ} for each relation symbol π ∈ P.

The homomorphism M →M/∼ mapping each m to its congruence class m/∼ is called a
quotient homomorphism.

Fact 4.18. Any quotient homomorphism M →M/∼ is strong surjective. Moreover when
∼ is an (F,P)-congruence it is also closed.

It is also easy to see that each closed abstract surjection is strong too.

Kernels. Given a model homomorphism f : M → N, its kernel is defined by

= f = {(a,a′) | f (a) = f (a′)}
Fact 4.19. The kernel of any homomorphism f is an F-congruence. Moreover, it is an
(F,P)-congruence when f is closed.

The universal property of quotients. Model quotients admit the following universal
property:

Proposition 4.20. Let q : M → M′ be a surjective (S,F,P)-model homomorphism for
a signature (S,F,P). Then for each model homomorphism f : M → N, if =q⊆= f , then
there exists an unique model homomorphism f ′ : M′ → N such that q; f ′ = f .

M
q ��

f $$!
!!
!!
! M′

f ′����
��
�

N

Moreover, f ′ is strong when f is strong and it is closed when f is closed.

3For each w = s1 . . . sn any list of sorts, m1 . . .mn ∼w m′1 . . .m′n when m1 ∼s1 m′1, . . . , mn ∼sn m′n .
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Proof. f ′ is defined by f ′(m/=q) = f (m) for each m ∈M. This definition is correct since
=q⊆= f . The fact that f is an F-algebra homomorphism implies that f ′ is an F-algebra
homomorphism. Also, the fact that f is a P-model homomorphism implies that f ′ is a
P-model homomorphism. The uniqueness of f ′ follows from the fact that q is surjective.

Simple calculations show that f being strong, respectively, closed implies f ′ is
strong, respectively, closed. �

Corollary 4.21. For each strong surjective model homomorphism f : M→N, M/= f and
N are isomorphic, i.e., M/= f

∼= N.

Proof. Assume that f is surjective and q is the quotient M →M/= f in Proposition 4.20
above. ∼== f implies that f ′ is injective, while f surjective implies that f ′ is surjec-
tive. Therefore f ′ is a bijection, which makes it immediately an F-algebra isomorphism.
When f is strong, f ′ is also strong, which means that for each relation symbol π ∈ P,
f ′((M/= f )π) = Nπ. This implies that the inverse f ′−1 is also a P-model homomorphism,
hence f ′ is an (S,F,P)-model isomorphism. �

Signature inclusions in FOL

Fact 4.22. The category of FOL signatures admits the inclusion systems given by the
table below:

inclusion system abstract surjections abstract inclusions
ϕ : (S,F,P)→ (S′,F ′,P′) (S,F,P) ↪→ (S′,F ′,P′)

closed ϕst : S→ S′ surjective S ⊆ S′
Fw→s = F ′w→s for w ∈ S∗
Pw = P′w for s ∈ S

strong ϕst : S→ S′ surjective S ⊆ S′
F ′w′→s′ =

⋃
ϕst(ws)=w′s′ ϕop(Fw→s) Fw→s ⊆ F ′w→s for w ∈ S∗

P′w′ =
⋃

ϕst(w)=w′ ϕrl(Pw) Pw ⊆ P′w for s ∈ S

We can also note that the closed inclusion system does not have unions but the
strong one has them:

Fact 4.23. In the strong inclusion system the union of signatures (S,F,P) = (S1,F1,P1)∪
(S2,F2,P2) is given by

• S = S1∪S2,

• for each w ∈ S∗ and s ∈ S, Fw→s = (F ′1)w→s ∪ (F ′2)w→s where (F ′k)w→s = (Fk)w→s

when w ∈ S∗k , s ∈ Sk and (F ′k)w→s = /0 otherwise, and

• for each w∈ S∗, Pw = (P′1)w∪(P′2)w where (P′k)w = (Pk)w when w∈ S∗k and (P′k)w = /0
otherwise.
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Inclusive institutions. Both the strong and the closed inclusion systems make FOL an
‘inclusive’ institution. An institution (Sig,Sen,Mod, |=) is called inclusive when Sen is
an inclusive functor, i.e., the category of signatures comes equipped with an inclusion
system such that Sen(Σ)⊆ Sen(Σ′) whenever Σ ↪→ Σ′ is inclusion of signatures.

Theory inclusions

In general, theories of institutions inherit inclusion systems from the category of signa-
tures in two different ways similar to the ways model homomorphisms in FOL inherit the
conventional inclusion system of Set, the category of sets and functions.

A theory morphism ϕ : (Σ,E)→ (Σ′,E ′)

• is closed when E = ϕ−1(E ′), and

• is strong when E ′ = ϕ(E)∗∗.

Given an inclusion system for the category of the signatures, we may factor each theory
morphism ϕ : (Σ,E)→ (Σ′,E ′) through the inclusion system of the signatures as ϕ =
eϕ; iϕ

(Σ,E)

eϕ ��











ϕ �� (Σ′,E ′)

(ϕ(Σ),E ′′)
iϕ

?A""""""

In order to get a factorization of ϕ in the category of theories, we have only to fix the
theory E ′′, which can be defined either

• ‘maximally’ with respect to the signature (abstract) inclusion iϕ by letting E ′′ =
i−1
ϕ (E ′), or

• ‘minimally’ with respect to eϕ by letting E ′′ = eϕ(E)∗∗.

Hence

Proposition 4.24. In any inclusive institution, the inclusion system of signatures lifts to
theories in two different ways:

inclusion system abstract surjections abstract inclusions
ϕ : (Σ,E)→ (Σ′,E ′) (Σ,E) ↪→ (Σ′,E ′)

closed ϕ : S→ S′ abstract surjection Σ⊆ Σ′ abstract inclusion
E = E ′ ∩Sen(Σ)

strong ϕ : S→ S′ abstract surjection Σ⊆ Σ′ abstract inclusion
E ′ = ϕ(E)∗∗

Fact 4.25. When the signatures admit an inclusion system with unions, the strong inclu-
sion system of theories has unions by letting

(Σ,E)∪ (Σ′,E ′) = (Σ∪Σ′,(E ∪E ′)∗∗).
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Exercises

4.46. In any inclusion system the class of the abstract inclusions determines the class of abstract
surjections, in the sense that if 〈I , E〉 and 〈I ′, E ′〉 are two inclusion systems for the same category
and if I ⊆ I ′, then E ′ ⊆ E .

4.47. In any inclusion system
(a) each abstract inclusion is a mono,
(b) each co-equalizer is an abstract surjection,
(c) an arrow is both an abstract inclusion and an abstract surjection if and only if it is an identity,
(d) if f ;g is an abstract surjection, then g is an abstract surjection.

4.48. In any category with an inclusion system

• the abstract surjections are stable under pushouts,
• if the category has pullbacks

– for each 〈i, g〉 where i is an abstract inclusion, there exists a unique pullback 〈g′, i′〉
such that i′ is an abstract inclusion

• i �� •

•
g′
��

i′
�� •

g

��

Consequently, each span of abstract inclusions • ��• •�� has a unique
pullback of abstract inclusions.

– By virtue of the previous item, we may define the ‘intersection’ A∩B of any two
objects in an inclusion system with unions. Then the following distributivity laws
hold:

A∩ (B∪C) = (A∩B)∪ (A∩C) and A∪ (B∩C) = (A∪B)∩ (A∪C).

4.49. In any inclusion system for a category with small limits, each small co-cone {ik : Nk →
M}k∈I of inclusions has a limiting co-cone {i′k : N → Nk}k∈I of inclusions.

4.50. (a) The forgetful functor IS→ Cat mapping inclusion systems to their underlying categories
has a left adjoint and creates small products.
(b) The category IS of inclusion systems is cartesian closed.

4.51. Generated closed sub-models
Given an (S,F,P)-model M for a FOL signature (S,F,P), an arbitrary intersection of [closed] sub-
models of M is a submodel of M.
For any S-sorted set {Xs}s∈S ⊆ {Ms}s∈S we say that N is the [closed] submodel of M generated by
X when N is the least [closed] submodel containing X .

4.52. Intersection of congruences
For any model of any FOL signature (S,F,P), an arbitrary intersection of F-congruences is a
congruence but only the intersection of a non-empty family of (F,P)-congruences is an (F,P)-
congruence.

4.53. In the FOL model, products preserve closed and strong models homomorphisms. For any
family { fi : Mi → Ni | i ∈ I} of model homomorphisms for a fixed FOL signature, the product
∏i∈I fi : ∏i∈I Mi → ∏i∈I Ni is closed, respectively strong, when fi is closed, respectively strong,
for each i ∈ I.
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4.54. Amalgamation of homomorphisms
The sub-institutions of FOL determined by the closed, respectively strong, model homomorphisms
are exact.

4.55. Inclusion system for preordered algebras
For any algebraic signature (S,F), the category of preordered (S,F)-algebras admits an inclusion
system in which the abstract inclusions are closed preordered subalgebras, i.e., preodered subal-
gebras M ↪→ N such that m ≤M m′ if and only if m ≤N m′, and the abstract surjections are just
preordered algebra homomorphisms which are (component-wise) surjective functions.

4.56. Preorder algebra congruences
A POA-congruence (preordered algebra congruence) on a preordered algebra for a signature (S,F)
is a pair (∼,�) such that

• ∼ is an F-congruence on M,
• � is a(n S-sorted) preorder on M compatible with the operations and which contains M≤,

i.e., M≤ ⊆�, and
• a′ ∼ a,a� b,b∼ b′ implies a′ ∼ b′ for all elements a,a′,b,b′ of M.

The POA-kernel ker(h) of a preordered algebra homomorphism h : M → N is (=h,≤h) where
a =h b is defined by h(a) = h(b) and a≤h b by h(a)≤ h(b).

Define the quotient of preordered algebras by POA-congruences. Extend Proposition 4.20 to
a universal property for preordered algebra quotients.

4.57. Inclusion systems for partial algebra
Let (S,T F,PF) be a PA signature. A homomorphism h : A→ B of partial algebras is

• full if whenever Bσ(h(a)) ∈ h(A), then there exists a′ ∈ Aw such that Aσ(a′) is defined
and h(a′) = h(a),

• closed when Aσ(a) is defined if Bσ(h(a)) is defined

for each σ ∈ PFw→s.
The category of (S,T F,PF)-partial algebras admits the following inclusion systems:

abstract surjections abstract inclusions
epi model homomorphisms closed inclusions (Sc)
surjective homomorphisms full inclusions (S f )

full surjective homomorphisms (plain) inclusions (Sw)

4.58. Full FOL model homomorphisms
Let (S,F,P) be a FOL signature. An (S,F,P)-model homomorphism h : M → N is full when
h(Mπ) = Nπ ∩h(Mw) for each relation symbol π ∈ P. Then

• any full surjective model homomorphism is strong, and
• any closed model homomorphism is full.

4.59. Which of the institutions MBA, MA, CA, IPL, HOL, and HNK, admit non-trivial inclusion
systems for their categories of models?

4.60. Let (Σ,E), (Σ′,E ′), and (Σ′′,E ′′) be theories in an arbitrary institution and ϕ : Σ→ Σ′ and
φ : Σ′ → Σ′′ be signature morphisms such that ϕ;φ is a theory morphism (Σ,E)→ (Σ′′,E ′′). Then

• if ϕ is a strong theory morphism (Σ,E)→ (Σ′,E ′), then φ is a theory morphism (Σ′,E ′)→
(Σ′′,E ′′), and
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• if φ is a closed theory morphism (Σ′,E ′)→ (Σ′′,E ′′), then ϕ is a theory morphism (Σ,E)→
(Σ′,E ′).

4.61. The strong inclusion system of FOL signatures is epic.

4.62. When the inclusion system of signatures is epic, both the closed and the strong inclusion
systems of theories are epic too.

4.6 Free Models

In this section we first study the existence of initial models for Horn theories. Here we
develop this result for the special case of first order logic, later in the book (Sect. 8.3), in
the context of quasi-varieties, we will present a much more general version of this result.

Next, this time in an institution-independent framework, we show that the existence
of initial models of theories can be extended to the existence of free models along theory
morphisms.

Initial models of Horn theories in FOL

Recall that a universal Horn sentence for a signature (S,F,P) is a sentence of the form
(∀X)H ⇒ C, where H is a finite conjunction of (relational or equational) atoms, C is a
(relational or equational) atom, and H ⇒C is the implication of C by H.

For each (S,F,P)-model M and for each set Γ of universal Horn (S,F,P)-sentences,
we define the model MΓ by

– Let

=Γ=
⋂
{=h| h : M → N model homomorphism and N |= Γ}.

Since any intersection of F-congruences is an F-congruence, =Γ is an F-congruence
too.

– As (S,F)-algebra, let MΓ be the quotient M/=Γ .

– For each relation symbol π ∈ P let

(MΓ)π = {m/=Γ | h(m) ∈ Nπ for each h : M → N such that N |= Γ}.

We notice easily that the quotient mapping qΓ : M →MΓ defined by qΓ(m) = m/=Γ is a
model homomorphism.

However note also that MΓ is not the quotient M/=Γ (as defined in Sect. 4.5) of
the (S,F,P)-model M by =Γ. The reason is that they differ on the interpretations of the
relation symbols; we have that (M/=Γ)π ⊆ (MΓ)π but this is a strict inclusion in general.
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Proposition 4.26. Let Γ be any set of universal Horn (S,F,P)-sentences.

1. For each (S,F,P)-model homomorphism h : M→ N such that N |= Γ there exists a
unique model homomorphism hΓ : MΓ → N such that qΓ;hΓ = h.

M
qΓ ��

h ���
��

��
��

MΓ

hΓ
��

N

2. MΓ |= Γ.

Proof. 1. This follows from the universality Prop. 4.20 because (=qΓ) = (=Γ) ⊆ (=h).
Note that hΓ(m/=Γ) = h(m) for each m ∈M.

2. Let (∀X)H⇒C be any universal Horn sentence in Γ. Consider any expansion M′
Γ

of MΓ to (S,F ∪X ,P) such that M′
Γ |= H. Let M′ be any expansion of M to (S,F ∪X ,P)

such that qΓ : M′ →M′
Γ is an (S,F ∪X ,P)-model homomorphism (which means that for

each x ∈ X we choose an element M′
x of (M′

Γ)x).
For any model homomorphism h : M → N such that N |= Γ let N′ be the expan-

sion of N to (S,F∪X ,P) such that h : M′ →N′ is an (S,F∪X ,P)-model homomorphism
(defined by N′x = h(M′

x)). Then hΓ : M′
Γ→N′ becomes an (S,F∪X ,P)-model homomor-

phism too. Because M′ |= H and model homomorphisms preserve the satisfaction of the
atoms (the reader is requested to check this) we have that N′ |= H, which implies N′ |= C
(because N |= (∀X)H ⇒C).

When C is an equational atom t = t ′, N′ |= t = t ′ means that h(M′
t) = h(M′

t′) which,
written differently, means (M′

t ,M
′
t′)∈=h. Since h is arbitrarily chosen, this implies M′

t =Γ
M′

t′ . Thus M′
Γ |= t = t ′.

When C is a relational atom π(t) (for t an appropriate list of terms), N′ |= π(t) means
that h(M′

t) = N′t ∈ Nπ which, since h is arbitrarily chosen, implies M′
t/=Γ ∈ (MΓ)π. But

this means that (M′
Γ)t ∈ (MΓ)π which is the same with M′

Γ |= π(t). �

Initial models of FOL signatures. In order to obtain that each Horn theory in FOL has
initial models, we should apply Prop. 4.26 for M being the initial (S,F,P)-model.

Proposition 4.27. For any FOL-signature (S,F,P) there exists an initial (S,F,P)-model
0(S,F,P) defined by

– for each sort s ∈ S, let (0(S,F,P))s = (TF)s be the set of all F-terms of sort s,

– for each operation symbol σ∈Fw→s, (0(S,F,P))σ is defined by (0(S,F,P))σ(t1, . . . ,tn) =
σ(t1, . . . ,tn) for each list of terms (t1, . . . ,tn) ∈ (TF)w.

– for each relation symbol π ∈ Pw, (0(S,F,P))π = /0.

Proof. For each (S,F,P)-model M, there exists a unique model homomorphism h :
0(S,F,P)→M defined by

hs(σ(t)) = Mσ(hw(t))

for each operation symbol σ ∈ Fw→s and each list of terms t ∈ (TF)w. �
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Corollary 4.28. For any set Γ of universal Horn (S,F,P)-sentences, the model 0Γ =
(0(S,F,P))Γ is the initial Γ-model, i.e., the initial model in Mod((S,F,P),Γ).

Liberal theory morphisms

In any institution (Sig,Sen,Mod, |=), a theory morphism ϕ : (Σ,E)→ (Σ′,E ′) is liberal
if and only if the reduct functor Modpres(ϕ) : Modpres(Σ′,E ′)→Modpres(Σ,E) has a left-
adjoint ( )ϕ.

In other words, for each (Σ,E)-model M there exists a (Σ′,E ′)-model Mϕ and a
Σ-model homomorphism ηM : M → (Mϕ)�ϕ

M |=Σ E M
ηM ��

h
��

(Mϕ)�ϕ

h′�ϕ�����
��
��
��

Mϕ

there exists a unique h′��














M′ |=Σ′ E ′ M′�ϕ M′

such that for each (Σ′,E ′)-model M′ and for each Σ-model homomorphism h : M →
M′�ϕ, there exists a unique Σ′-model homomorphism h′ : Mϕ →M′ such that ηM;h′�ϕ =
h.

Note that by composition of adjunctions (see Sect. 2.3), the composition of liberal
theory morphisms is liberal. An institution is liberal if and only if each theory morphism
is liberal.

In any institution with initial signatures which are mapped by the model functor
to the terminal category, it is immediate to notice that the existence of initial models
for a theory (Σ,E) is the same as the liberality of the unique presentation morphism
(Σ, /0) → (Σ,E) from the initial Σ-presentation to (Σ,E). The results below show that
liberality can be established in general from initiality of theory models.

Proposition 4.29. Let (Sig,Sen,Mod, |=, ι) be an institution with elementary diagrams
such that each theory has an initial model. Then

1. for each theory (Σ,E), the forgetful functor Modpres(Σ,E) → Mod(Σ) has a left
adjoint, and

2. if in addition the institution has pushouts of signatures and is semi-exact, then for
each signature morphism ϕ the reduct functor Mod(ϕ) has a left adjoint.

Proof. For each presentation (Σ,E), we denote its initial model by 0Σ,E .
1. Consider a presentation (Σ,E) and let M be a Σ-model. Let ιΣ(M) : Σ → ΣM

be the elementary extension of Σ via M and let E ′ = ιΣ(M)(E). We show that M′ =
(0ΣM ,EM∪E ′)�ιΣ(M) is the free (Σ,E)-model over M with the universal arrow ηM = (MM →
0ΣM ,EM∪E ′)�ιΣ(M) : M →M′.

We have to prove that for each model homomorphism h : M → N with N |=Σ E ,
there exists a unique h′ : M′ → N such that ηM;h′ = h. Let Nh = i−1

Σ,M(h). Then Nh |=ΣM

E ′ because Nh�ιΣ(M) = N and N |=Σ E . Let h′′ be the unique model homomorphism
h′′ : 0ΣM ,EM∪E ′ → Nh. Let h′ be h′′�ιΣ(M). Then ηM;h′ = (MM → Nh)�ιΣ(M) = h.
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The uniqueness of h′ follows by the bijection between (M/Mod(Σ))(ηM ,h) and
Modpres(ΣM ,EM)(0ΣM ,EM∪E ′ ,Nh).

2. Let ϕ : Σ→ Σ′ be a signature morphism and let M be a Σ-model. Consider the
pushout of signatures

ΣM
ϕ′ �� Σ′′

Σ

ιΣ(M)

��

ϕ
�� Σ′

ι′
��

We define Mϕ to be (0Σ′′,ϕ′(EM))�ι′ and the universal arrow ηM : M → (Mϕ)�ϕ to be
(MM → (0Σ′′,ϕ′(EM))�ϕ′)�ιΣ(M).

For proving the universal property of ηM , consider h : M → N�ϕ with N any Σ′-
model. Let Mh = i−1

Σ,M(h). Notice that Mh�ιΣ(M) = N�ϕ. Because the institution has model
amalgamation, let N⊗ϕ,ιΣ(M) Mh be the amalgamation of N and Mh. Notice that N⊗ϕ,ιΣ(M)
Mh |= ϕ′(EM) because (N⊗ϕ,ιΣ(M) Mh)�ϕ′ = Mh |= EM . Therefore there exists a unique
model homomorphism h′′ : 0Σ′′,ϕ′(EM) → N ⊗ϕ,ιΣ(M) Mh. Let h′ = h′′�ι′ . We have that
h′ : Mϕ → N and ηM;h′�ϕ = ηM;h′′�ι′�ϕ = ηM;h′′�ϕ′�ιΣ(M) = (MM →Mh)�ιΣ(M) = h.

The uniqueness of h′ follows from the uniqueness of h′′ and of the amalgamation
property for model homomorphisms given by the assumption that the institution is semi-
exact. �

Corollary 4.30. A semi-exact institution with elementary diagrams and pushouts of sig-
natures is liberal when each theory has an initial model.

Conversely, if the institution has initial signatures and is finitely exact, each theory
has an initial model whenever the institution is liberal.

Proof. The second part of this corollary has been already proved above. For the first part
let us consider a theory morphism ϕ : (Σ,E)→ (Σ′,E ′).

Mod(Σ) Mod(Σ′)
Mod(ϕ)��

Modpres(Σ,E)

forgetful subcategory

��

Modpres(Σ′,E ′)

forgetful subcategory

��

Modpres(ϕ)
��

By Proposition 4.29, both Mod(ϕ) : Mod(Σ′) → Mod(Σ) and the forgetful functor
Modpres(Σ′,E ′)→Mod(Σ′) have left-adjoints. By composition of adjunctions, the com-
posite functor Modpres(Σ′,E ′)→Mod(Σ) has a left-adjoint.

The proof of the first part is resumed by substituting the category D by
Modpres(Σ′,E ′), the category C by Mod(Σ), and the category C′ by Modpres(Σ,E) in the
following simple categorical lemma (whose proof is left as exercise for the reader).
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Lemma 4.31. Let C′ ↪→ C be a full subcategory and consider a functor D→ C′. If the
composite functor D → C has a left-adjoint F, then the restriction of F to C′ is a left-
adjoint to D→C′.

C

C′

��

D��

@B







�
A concrete application of Cor. 4.30 is the following:

Corollary 4.32. The institution HCL is liberal.

Liberal institution mappings

It is also useful to consider free models also across institution morphisms or comorphisms.
An institution morphism (Φ,α,β) : I ′ → I is liberal when the model translations

βΣ′ : Mod′(Σ′)→ Mod(Φ(Σ′)) have left adjoints for all I ′-signatures Σ′. Similarly, an
institution comorphism (Φ,α,β) is liberal when βΣ has a left adjoint for each I -signature
Σ.

Persistently liberal institution (co-)morphisms. Especially useful for the transfer of
institutional properties across institution mappings, is the case when these adjunctions
corresponding to the model translations βΣ are persistent, which means that the left-
adjoint to βΣ is also a left-inverse (up to isomorphism) to βΣ. In many actual situations,
persistently liberal institution comorphisms determine useful ‘representations’ of a more
complex institution into a simpler one.

Encoding relations as operations. A first example is given by the comorphism FOL→
FOEQL discussed in Sect. 3.3. For each FOL-signature (S,F,P), the adjunction between
ModFOL(S,F,P) and Alg(S� {b},F �P� {true}) is persistently liberal, with the free
(S�{b},F �P�{true})-algebra M′ over a model M interpreting ‘freely’ the non-true
values by M′

b = {M′
true}�{π(m) | π ∈ P,m �∈Mπ}. Hence

Fact 4.33. The encoding of relations as operations FOL→ FOEQL is persistently lib-
eral.

Exercises

4.63. Give a counterexample showing that FOL is not liberal.

4.64. Γ-congruences
Let Γ be a set of universal Horn sentences for an algebraic signature (S,F). A congruence ≡ on an
algebra A is a Γ-congruence if and only if for any sentence (∀X)H ⇒ (t = t ′) in Γ and for each
expansion A′ of A to (S,F ∪X), A′t ≡ A′t ′ if A′t1 ≡ A′t2 for all t1 = t2 in H.

Then =Γ is the least Γ-congruence.
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4.65. Liberality in PA
In PA each morphism between presentations of universally quantified (possibly conditional) exis-
tence equations is liberal.

4.66. Liberality in POA
The institution HPOA (of Horn POA-sentences) is liberal. (Hint: Extend the concept of Γ-congru-
ence of Ex. 4.64 to POA-congruences of Ex. 4.56 and show that for each POA-algebra M, the
quotient qΓ : M → M/(=Γ ,≤Γ) is the free preordered algebra satisfying Γ, where (=Γ,≤Γ) is the
least Γ-POA-congruence.)

4.67. Give a counterexample showing that in the institution MA of multialgebras not all sets of
atoms have initial models.

4.68. (a) Give a counterexample showing in general, in HOL, signatures do not admit initial mod-
els.
(b) On the other hand, all HNK-signatures which have at least one constant for each type have
initial models. (Hint: Consider the comorphism (Φ,α,β) : HNK→ FOEQLpres of Ex. 4.11. Then
for each HNK-signature Σ, the FOEQL-presentation Φ(Σ) has initial models, one of them being
just the term model.)

4.69. Each LA-signature morphism is liberal.

4.70. Each CA-signature has initial algebras. (S,F,q) in CA has an initial algebra. (Hint: For
any CA-signature (S,F,q) the S-sorted set T ω

F of (possibly) infinite terms can be organized as
a contraction (S,F,q)-algebra with the distance between two terms t and t ′ being qα(t,t ′), where
α(t,t ′) is the minimum depth at which t and t ′ differ.)

4.71. Liberality of comorphism FOL→ (FOL1)pres

The encoding of many-sorted logic into single-sorted logic described in Sect. 4.1 is a liberal co-
morphism. (Hint: For each FOL-signature (S,F,P) and any (S,F,P)-model M, we first take the
disjoint union �s∈SMs. Then we take the free F-algebra over �s∈SMs where F is the single-sorted
variant of F . Then we take take its quotient under the congruence generated by the pairs 〈σ(m), m′〉
for which Mσ(m) = m′ for all σ ∈ F . The final step is to organize this quotient F-algebra as an
(F,P∪{(− : s) | s ∈ S})-model; this is done in a canonical way.)

4.72. Institution representations
An institution representation I → I ′ is just a persistently liberal institution comorphism I → I ′p

from I to the presentations of I ′. Institution representations compose and form a category. (Hint:
For any institution representation I → I ′, the induced institution comorphism I pres → I ′pres is
persistently liberal.)
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4.73. [133] Creating liberality along institution comorphisms
Persistently liberal institution comorphisms (Φ,α,β) : I → I ′ create liberality in the sense that any
theory morphism ϕ : (Σ1,E1)→ (Σ2,E2) is liberal if Φ(ϕ) : (Φ(Σ1),α(E1))→ (Φ(Σ2),α(E2)) is
liberal.

Apply this for the following comorphisms:

• PA→ FOLpres (the operational encoding introduced in Sect. 4.1),
• POA→ FOLpres of Ex. 4.9,
• MBA→ FOL of Ex. 3.20,
• AUT→ FOL1 of Ex. 3.21,
• IPL→ (FOEQL1)pres of Ex. 4.10, and
• LA→ (FOEQL1)pres of Ex. 4.13,

and deduce corresponding liberality results for PA, POA, MBA, AUT, IPL, and LA.

4.74. Comorphism EQL→CatEQL
Construct a canonical institution comorphism EQL→CatEQL (see Ex. 3.8) by mapping

• each algebraic signature (S,F) to the category Alg(S,F) of (S,F)-algebras, and

• each (S,F)-equation (∀X)t = t ′ to the Alg(S,F)-equation (∀T(S,F)(X))t� = t ′� where t�,

t ′� are the unique extensions of t, t ′ to (S,F)-algebra homomorphisms T(S,F)({∗}) →
T(S,F)({X}) from the (S,F)-algebra free over the singleton set {∗} to the (S,F)-algebra
free over the set X .

4.75. Model pushouts [48]
In any liberal institution with elementary diagrams the category of models of any theory has push-
outs. Moreover if the institution is also exact and has initial signatures, then the category of models
of any theory has finite co-limits. (Hint: the pushout of model homomorphisms is the same with the
universal arrow to a canonical functor between comma categories of models.)

Notes. Both the ‘operational’ and the ‘relational’ encoding comorphisms PA→ FOLpres appear in
[133]. Encoding modalities in relational logic is known in modal logic literature under the name of
‘standard translation’. The ideas behind the comorphism HNK→ FOEQLpres appear in [126].

Co-limits of theories have been playing a very important role in algebraic specification [75,
58]; one could say that the search for an institution-independent approach to compositionality of
specification theories was one of the origins of institutions. By contrast, theory limits seem to be
much less important in applications.

Institution theory is the only model theory that first properly identified [161] and then gradu-
ally realized the importance [58] of the model amalgamation (exactness) properties of logics. Since
then semi-exactness has been intensively used as a basic institutional property by various works
in algebraic specification. In practice very often the weak version of exactness suffices. This has
been already considered in several works [44, 173] and is especially important for the case of the
multi-paradigm or heterogeneous institutions obtained by a Grothendieck construction on institu-
tions [46]. Model amalgamation has been extended to arbitrary co-cones in works such as [163].

The model amalgamation proof for FOL is similar in flavor to the functorial semantics of
[112], and appears in the form we have presented here in [163].

The method of diagrams pervades much of conventional model theory [32]. The institution-
independent method of diagrams used here was developed in [48] and has been used in [48, 87, 86]
etc. A quite different institution-independent version of the method of diagrams has been used for
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developing quasi-variety theorems and existence of free models within the context of the so-called
‘abstract algebraic institutions’ [169, 170]. Elementary homomorphisms have been introduced in
[86]. The existence of limits and co-limits of models via elementary diagrams has been obtained in
[48].

Inclusion systems and inclusive institutions were introduced in [58] for the institution-inde-
pendent study of structuring specifications, however they were defined in a stronger version cor-
responding to our epic inclusion systems with unions. In [58, 81] they provide the underlying
mathematical concept for module imports, which are the most fundamental structuring constructs.
Inclusions of models is used in [155, 48] for an institution-independent approach to quasi-varieties
of models. Mathematically, inclusion systems capture categorically the concept of set-theoretic ‘in-
clusion’ in a way reminiscent of the well-known factorization systems [26]; however in many ap-
plications the former are more convenient than the latter. In [38] the original definition of [58] has
been weakened to what they called ‘weak inclusion systems’, which are just our inclusion systems.

Our (F,P)-congruences are elsewhere called ‘closed’ congruences.
Liberality has played a central role in institution theory from its beginning [75]. This was

due to the traditional important role played in algebraic specification by initial algebra semantics.
Free models along presentation morphisms provide semantics for initial denotation modules in
structured algebraic specifications [75]. Our institution comorphisms I → (I ′)pres have been studied
in [130, 81] under the name of ‘simple theoroidal comorphisms’.



Chapter 5

Internal Logic

In many institutions the satisfaction relation between models and sentences is defined by
induction on the structure of the sentences. Usually sentences are formed from ‘atomic’
sentences, which constitute the starting building blocks, by applying iteratively constructs
such as quantifiers and connectives. The connectives may be Boolean or potentially of an-
other kind, such as modal for example. The definition of a satisfaction relation in these
institutions can be seen as a two-layered process. At the base level, one defines satisfaction
of the ‘atomic’ sentences. Then the induction step consists of a definition of satisfaction
for the quantified sentences and of sentences formed by Boolean (or another kind of)
connectives on the basis of satisfaction of the components. This Tarskian process of de-
termining the actual satisfaction between models and sentences is a common pattern for
a multitude of institutions and has an institution-independent nature. The uniform treat-
ment at a general institution-independent level of the semantics of Boolean connectives,
quantifiers, and to some extent even of the atomic sentences, is the gate to institution-
independent model theory and constitutes the main topic of this chapter.

The general approach to atomic sentences based on a simple form of categorical in-
jectivity leads to a general uniform semantic approach to Horn sentences at an institution-
independent level, their satisfaction being equivalent to categorical injectivity. Later the
equivalence between the semantics of Horn sentences and injectivity will prove very use-
ful within the context of axiomatizability results.

Many important results in model theory rely upon quantification being first order.
First order quantifiers are handled at the institution-independent level by the concept of
‘(quasi-)representable’ signature morphisms. Although (quasi-)representability is a prop-
erty of the signature morphisms, we will see that in reality it is a semantic concept because
its definition involves the models of the institution.

Auxiliary related topics of this chapter include substitutions and a deepening of the
study of elementary homomorphisms.
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5.1 Logical Connectives

Boolean connectives

Given a signature Σ in an institution, a Σ-sentence ρ′ is a semantic

– negation of ρ when ρ′∗ = ρ∗,

– conjunction of the Σ-sentences ρ1 and ρ2 when ρ′∗ = ρ∗1∩ρ∗2,

– disjunction of the Σ-sentences ρ1 and ρ2 when ρ′∗ = ρ∗1∪ρ∗2,

– implication of the Σ-sentences ρ1 and ρ2 when ρ′∗ = ρ∗1∪ρ∗2, and

– equivalence1 of the Σ-sentences ρ1 and ρ2 when ρ′∗ = (ρ∗1∩ρ∗2)∪ (ρ∗1∩ρ∗2)

where e∗ denotes Mod(Σ)| \ e∗.
A more informal way to express these connectives is by using them at a meta-level.

For example ρ′ is the negation of ρ when for each Σ-model M, M |= ρ′ if and only if
M �|= ρ. Or ρ′ is the conjunction of ρ1 and ρ2 when for each Σ-model M, M |= ρ′ if and
only if M |= ρ1 and M |= ρ2.

Fact 5.1. Negations, conjunctions, disjunctions, implications, and equivalences of sen-
tences are unique up to semantical equivalence.

An institution has (semantic) negation when each sentence of the institution has a
negation. It has (semantic) conjunctions when each two sentences (of the same signature)
have a conjunction. Similar definitions can be formulated for disjunctions, implications,
and equivalences. Distinguished negations are usually denoted by ¬ , distinguished con-
junctions by ∧ , distinguished disjunctions by ∨ , distinguished implications by ⇒ ,
and distinguished equivalences by ⇔ .

When they exist, the semantic Boolean connectives are inter-definable as shown by
the following easy result.

Fact 5.2. In any institution having the corresponding Boolean connectives we have that

• disjunction: ρ1∨ρ2 |=| ¬(¬ρ1∧¬ρ2),

• implication: ρ1 ⇒ ρ2 |=| ¬ρ1∨ρ2, and

• equivalence: ρ1 ⇔ ρ2 |=| (ρ1 ⇒ ρ2)∧ (ρ2 ⇒ ρ1).

An institution which has all semantic Boolean connectives is called a Boolean com-
plete institution.

The following gives the situation of the semantic Boolean connectives in some in-
stitutions (the reader is invited to check this table by herself/himself):

1Not to be confused with the semantical equivalence relation |=| between sentences.
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institution ∧ ¬ ∨ ⇒ ⇔
FOL, PL, HOL, HNK

√ √ √ √ √
FOL+ √ √

EQL, HCL
EQLN

√
MFOL, MPL

√
IPL

√

Abstract logical connectives

The abstract logical connectives may be regarded as a generalization of the Boolean con-
nectives.

Given an institution I , for any ordinal n, a (semantic logical) connective c of arity
n consists of a family {cΣ}Σ∈|Sig| of functions cΣ : P (|Mod(Σ)|)n → P (|Mod(Σ)|).2 A
connective c is Boolean if it is a (possibly) derived Boolean operation of the Boolean
algebra (P (|Mod(Σ)|),∩,∪,¬, /0, |Mod(Σ)|).

A sentence ρ is a c-connection of sentences ρi, i≤ n, when ρ∗ = cΣ(ρ∗1, . . . ,ρ∗n); in
this case we may denote ρ by c(ρ1, . . . ,ρn).

The institution has the connective c when for all sentences ρ1, . . . ,ρn there exists a
sentence ρ such that ρ |=| c(ρ1, . . . ,ρn).

A signature morphism ϕ : Σ→ Σ′ preserves c when

ϕ(c(ρ1, . . . ,ρn)) |=| c(ϕ(ρ1), . . . ,ϕ(ρn)).

Although in general the preservation of the semantic connectives is not guaranteed, from
the satisfaction condition and from the definition of the semantic Boolean connectives we
have the following:

Fact 5.3. In any institution all the Boolean connectives which exist in that institution, are
preserved by all signature morphisms.

Exercises

5.1. Weak propositional logic (WPL, see Ex. 3.25) does have all semantic Boolean connectives
apart from negation.

5.2. [55] Finitary sentences (Ex. 4.21 continued)
(a) In any institution the negation of a finitary sentence is finitary.
(b) If the category of signatures has binary co-products, then any finite logical connection of finitary
sentences is finitary too, provided that the signature morphisms preserve the respective connective.
For example, in any institution with conjunctions and with binary co-products of signatures, the
conjunctions of finitary sentences are still finitary.

2cΣ is a function on classes rather than sets.
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5.2 Quantifiers

Let us first recall the semantics of quantifiers in a concrete institution such as FOL. Given
a FOL-signature (S,F,P) and a set X of new constants for S, let ρ′ be an (S,F �X ,P)-
sentence and M be an (S,F,P)-model. Then

M |= (∃X)ρ′ if and only if M′ |= ρ′ for some (S,F �X ,P)-expansion M′ of M.

General institution-independent quantifiers are defined similarly to the above by abstract-
ing from FOL signature inclusions (S,F,P) ↪→ (S,F �X ,P) to any signature morphisms
χ : Σ→ Σ′ in any arbitrary institution.

– A Σ-sentence ρ is a (semantic) existential χ-quantification of a Σ′-sentence ρ′ when
ρ∗ = (ρ′∗)�χ; “distinguished existential quantification” is usually written as (∃χ)ρ′,

– A Σ-sentence ρ is a (semantic) universal χ-quantification of a Σ′-sentence ρ′ when

ρ∗ = ρ′∗�χ (where by M we denote the complement of the class of models M);
“distinguished universal quantification” is usually written as (∀χ)ρ′.

A more informal way to express semantic existential/universal quantifiers, which uses
meta-level ‘all’ and ‘some’, is as follows:

• M |=Σ (∃χ)ρ′ when there exists a χ-expansion M′ of M such that M′ |=Σ′ ρ′, and

• M |=Σ (∀χ)ρ′ when M′ |=Σ′ ρ′ for all χ-expansions M′ of M.

Very often quantification is considered only for a restricted class of signature mor-
phisms. For example, quantification in FOL considers only the finitary signature exten-
sions with constants. For a class D ⊆ Sig of signature morphisms, we say that the in-
stitution has universal/existential D-quantification when for each χ : Σ→ Σ′ in D, each
Σ′-sentence has a universal/existential χ-quantification. The table below shows the situa-
tion of internal quantification in some institutions.

institution D ∀ ∃
FOL finitary sign. extensions with constants

√ √
SOL finitary sign. extensions

√ √
PA finitary sign. extensions with total constants

√ √
EQL, HCL finitary sign. extensions with constants

√
MFOL finitary sign. extensions with rigid constants

√
HOL, HNK finitary sign. extensions

√ √

Generally, one may consider quantification only up to what the respective concept
of signature supports. For example FOL signatures support quantifications only up to
second order. Quantifications higher than second order require thus another concept of
signature involving higher-order types, such an example being given by HOL or HNK.
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Conservative quantifications

Let us say that an institution has false when for each signature Σ there exists a Σ-sentence
falseΣ such that false∗Σ = /0. For example, if the institution has negation and conjunctions,
then falseΣ |=| ¬ρ∧ρ for each Σ-sentences ρ.

In any institution with false, M |= (∀χ)false for all models M which do not admit
a χ-expansion. This indicates that quantification behaves ‘well’ only for the signature
morphisms χ for which each model admits at least one χ-expansion. These signature
morphisms are called conservative.

Conservative signature morphisms in FOL. The following gives a characterization
of conservative FOL signature morphisms and it is based on our fundamental assumption
that each FOL signature has non-empty sorts, i.e., it has at least one constant for each
sort.

Fact 5.4. A FOL signature morphism ϕ is conservative if and only if it is injective, i.e.,
ϕst, ϕop, and ϕrl are injective.

Finitary quantifications

Many important model theory results rely upon the finiteness of the quantifications. In
many of the examples presented the quantifications are finitary in the sense that the sig-
nature extensions considered add only a finite number of syntactic entities, which are
usually constants.

Finitary signature morphisms. A signature morphism χ : Σ→ Σ′ is finitary when for
each co-limit (μi)i∈I of a directed diagram ( fi, j)(i< j)∈(I,≤) of Σ-models

Ai

μi ���
��

��
fi, j �� A j

μ j69��
��
�

A

and for each χ-expansion A′ of A

– there exists an index i ∈ I and a χ-expansion μ′i : A′i → A′ of μi, and

– any two different expansions as above can be ‘unified’ in the sense that for any χ-
expansions μ′i and μ′k as above there exists an index j ∈ I with i,k < j, a χ-expansion
μ′j as above and f ′i, j, f ′k, j χ-expansions of fi, j, fk, j such that the following commutes

A′i
f ′i, j ��

μ′i ���
��

��
��

�
A′j

μ′j
��

A′k
f ′k, j��

μ′k��##
##
##
##

A′

The following is a standard example.
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Proposition 5.5. In FOL each signature extension with a finite number of constants is
finitary.

Proof. This is based on the remark that directed co-limits of FOL models are created on
top of the corresponding directed co-limits of the underlying carrier sets (see Prop. 6.5
below for a proof of this fact). Then we have just to note that expansions of models M
along signature extensions Σ ↪→ Σ�X are just functions X →M and use the fact that X
being finite is a finitely presented object in the category of Set. �

Accessibility

For each set of sentences E and each set O of logical operators (such as logical connec-
tives or quantification), let O(E) be the least set of ‘internal’ sentences closed under O
and containing E . In general, the actual institution does not necessarily have all sentences
of O(E).

A sentence ρ of the institution is (semantically) accessible from E by O when ρ is
semantically equivalent to a sentence from O(E). For example:

• in FOL each sentence is accessible from (equational and relational) atoms by ¬,
∧, and universal quantification by signature extensions with a finite number of con-
stants,

• in EQL each sentence is accessible from equations by FOL universal quantification,

• in HCL each sentence is accessible from atoms by ∧, implication, and universal
quantification by signature extensions with a finite number of constants, and

• in PA each sentence is accessible from existence equations by ¬, ∧, and universal
quantification by signature extensions with a finite number of total constants.

In the list above only HCL does not have all sentences from O(E).

Exercises

5.3. In each institution
(a) (∃χ)ρ |=| ¬(∀χ)¬ρ, and
(b) (∀χ)ρ⇒ (ρ1∧ρ2) |=| ((∀χ)ρ⇒ ρ1)∧ ((∀χ)ρ⇒ ρ2).

5.4. Translation of internal quantifiers
Given a pushout of signature morphisms in an institution with model amalgamation, a Σ′-model M′
and a Σ1-sentence ρ

Σ
X ��

θ
��

Σ1

θ1��
Σ′

X ′
�� Σ′1

the following satisfaction condition holds:

M′ |=Σ′ (∀X ′)θ1(ρ) iff M′�θ |=Σ (∀X)ρ.
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This provides foundations for extending the sentence functor Sen of the original institution with
‘internally quantified’ sentences. If X ∈D with D stable under pushouts, then Sen(θ)((∀X)ρ) may
be defined as (∀X ′)θ1(ρ). Note that translation of quantifiers is one of the situations which requires
the stability of D under pushouts.

5.5. In any institution with weak model amalgamation let D be a class of conservative signature
morphism which is stable under pushouts. Then

(Qχ1)ρ1(c)(Qχ2)ρ2 |=| (Qχ1;χ2)θ1(ρ1)(c)θ2(ρ2)

where Q ∈ {∀,∃}, (c)∈ {∧,∨} and the following is a pushout square of signature morphisms of D:

Σ
χ1 ��

χ2
��

Σ1

θ1��
Σ2 θ2

�� Σ′

5.6. (a) Let χ2 = χ1;χ be signature morphisms such that χ is conservative. Then (∀χ2)χ(ρ) |=|
(∀χ1)ρ.
(b) In the extension of FOL with infinitary quantifications, each sentence is semantically equivalent
to a FOL sentence.

5.7. Generalization Rule
For each signature morphism χ : Σ→ Σ′ and each set E of Σ-sentences

E |=Σ (∀χ)e if and only if χ(E) |=Σ′ e.

5.8. Stability under pushouts of finitary signature morphisms
In any semi-exact institution the finitary signature morphisms are stable under pushouts along those
signature morphisms for which their model reducts preserve directed co-limits of models.

5.9. Finite models
(a) In any institution with elementary diagrams a model is finite when its elementary diagram EM
is finite. If the institution has finite conjunctions and existential quantification over elementary ex-
tensions along finite models, any two elementary equivalent finite models are homomorphically
related. (Hint: For a model M consider the sentence (∃ιΣ(M))∧EM .)
(b) In any finite FOL-signature, any two elementary equivalent models with finite carriers are iso-
morphic. (Hint: The sub-institution of FOL determined by the closed and injective model homo-
morphisms admits a system of elementary diagrams such that a model is finite whenever its signa-
ture is finite and it has finite carrier sets.)

5.3 Substitutions

First order substitutions in FOL. Given a FOL signature (S,F,P) and two sets of new
constants X and Y , called first order variables, a first order (S,F,P)-substitution from X
to Y consists of a mapping ψ : X → TF(Y ) of the variables X with F-terms over Y .

On the semantics side, each first order (S,F,P)-substitution ψ : X → TF(Y ) deter-
mines a functor

Mod(ψ) : ModFOL(S,F ∪Y,P)→ModFOL(S,F ∪X ,P)

defined by
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– Mod(ψ)(M)x = Mx for each sort x ∈ S, or operation symbol x ∈ F , or relation sym-
bol x ∈ P, and

– Mod(ψ)(M)x = Mψ(x), i.e., the evaluation of the term ψ(x) in M, for each x ∈ X .

On the syntax side, ψ determines a sentence translation function

Sen(ψ) : SenFOL(S,F ∪X ,P)→ SenFOL(S,F ∪Y,P)

which in essence replaces all symbols from X with the corresponding (F ∪Y )-terms ac-
cording to ψ. This can be formally defined as follows:

– Sen(ψ)(t = t ′) is defined as ψtm(t) = ψtm(t ′) for each (S,F ∪X ,P)-equation t = t ′,
where ψtm : TF(X)→ TF(Y ) is the unique extension of ψ to an F-homomorphism
(ψtm replaces the variables x ∈ X with ψ(x) in each (F ∪X)-term t).

– Sen(ψ)(π(t1, . . . ,tn)) is defined as π(ψtm(t1), . . . ,ψtm(tn)) for each (S,F ∪ X ,P)-
relational atom π(t1, . . . ,tn).

– Sen(ψ)(ρ1 ∧ρ2) is defined as Sen(ψ)(ρ1)∧Sen(ψ)(ρ2) for each conjunction ρ1∧
ρ2 of (S,F ∪X ,P)-sentences, and similarly for the case of any other Boolean con-
nectives.

– Sen(ψ)((∀Z)ρ) = (∀Z)Sen(ψZ)(ρ) for each (S,F∪X ∪Z,P)-sentence ρ, where ψZ

is the trivial extension of ψ to an (S,F ∪Z,P)-substitution.

Note that we have extended the notation used for the models functor Mod and for the
sentence functor Sen from the signatures to the first order substitutions. This notational
extension is justified by the satisfaction condition given by Prop. 5.6 below.

Proposition 5.6. For each FOL-signature (S,F,P) and each (S,F,P)-substitution ψ :
X → TF(Y ),

Mod(ψ)(M) |= ρ if and only if M |= Sen(ψ)(ρ)

for each (S,F ∪Y,P)-model M and each (S,F ∪X ,P)-sentence ρ.

Proof. By noticing that Mod(ψ)(M)t = Mψtm(t) for each (F∪X)-term t, and by a straight-
forward induction on the structure of the sentences. �

General substitutions. The satisfaction condition property expressed in Prop. 5.6 per-
mits the definition of a general concept of substitution by abstracting

• FOL signatures (S,F,P) to signatures Σ in arbitrary institutions, and

• sets of first order variables X for (S,F,P) to signature morphisms Σ→ Σ1.

For any signature Σ of an institution, and any signature morphisms χ1 : Σ → Σ1 and
χ2 : Σ→ Σ2, a Σ-substitution ψ : χ1 → χ2 consists of a pair (Sen(ψ),Mod(ψ)), where

– Sen(ψ) : Sen(Σ1)→ Sen(Σ2) is a function, and

– Mod(ψ) : Mod(Σ2)→Mod(Σ1) is a functor
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such that both of them preserve Σ, i.e., the following diagrams commute:

Sen(Σ1)
Sen(ψ) �� Sen(Σ2) Mod(Σ1)

Mod(χ1) ��$
$$$

$$
Mod(Σ2)

Mod(ψ)��

Mod(χ2)��%%%
%%%

Sen(Σ)
Sen(χ1)

A-�����
Sen(χ2)

��&&&&&
Mod(Σ)

and such that the following satisfaction condition holds:

Mod(ψ)(M2) |= ρ1 if and only if M2 |= Sen(ψ)(ρ1)

for each Σ2-model M2 and each Σ1-sentence ρ1.
Note that we have again extended the notations Mod and Sen from the model and

the sentence functors of the institution to the model and the sentence components of
substitutions.

Fact 5.7. The Σ-substitutions come equipped with a natural composition satisfying the
category axioms by inheriting the composition of the function and functor components.
Let Subst(Σ) denote this category of Σ-substitutions.

D-substitutions. In actual situations one usually considers only substitutions between
signature morphisms which are used in quantifications. The main motivation for this prac-
tice is proof theoretic. We have already seen that often the class of the signature mor-
phisms used for quantifications is a special subclass of all signature morphisms of the
institution. Therefore, for any class D of signature morphisms in an institution, let us say
that a D-substitution is just a substitution between signature morphisms in D.

Equivalent substitutions. Since general substitutions are a semantic concept, seman-
tical equivalence on substitutions is more meaningful than the strict equality. In other
words, what really matters about substitution is their semantic effect.

The substitutions ψ,ψ′ : χ1 → χ2 are equivalent when Mod(ψ)(M2) =
Mod(ψ′)(M2) for each Σ2-model M2. The translation on models determines the trans-
lation on sentences up to semantical equivalence.

Fact 5.8. If ψ and ψ′ are equivalent substitutions, then Sen(ψ)(ρ1) |=| Sen(ψ′)(ρ1) for
each Σ1-sentence ρ1.

Derived FOL signatures

The so-called concept of ‘derived signature’, from algebraic specification languages,
yields a less conventional example of general substitution in FOL. In order to explain
this, we have to introduce some auxiliary notions.
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Arity of terms. For any string k of elements let [k] be the substring retaining from left
to right one copy of each element. This can be formally defined by [kx] = [k] when x
does occur in k, and [k]x otherwise. For any FOL signature (S,F,P) and X a set of new
constants (i.e., first order variables), let var : TF(X)→ X∗ (where X∗ denotes here the set
of strings with elements from X) be the function collecting the variables occurring in a
term, which is defined by var(x) = x if x ∈ X , and var(σ(t1, . . . ,tn)) = var(t1) . . .var(tn).
Then the arity of a term t ∈ TF(X), denoted ar(t), is defined to be the string of sorts
corresponding to the string of variables [var(t)].

For example, if x is a variable of sort N and−1 is a constant of sort Z, then the arity
of the term (x +(−1))∗ x is N.

Terms as operations. Each term t with arity w and sort s gets interpreted in any model
M as a function Mt : Mw →Ms as follows. For each m ∈Mw let Mm be the expansion of
M to (S,F ∪ [var(t)],P) such that M[var(t)] = m. Then Mt(m) is defined as (Mm)t .

Derived signatures. For any FOL signature (S,F,P), let (S,T (F),Π(F,P)) be its de-
rived signature defined by

• for each arity w ∈ S∗ and sort s ∈ S, T (F)w→s = {t ∈ (TF(Xw))s | ar(t) is a permu-
tation of w}, where w = s1 . . .sn, Xw = {xi | 1≤ i≤ n}, and (Xw)s′ = {xi | 1≤ i≤ n
and si = s′} for each sort s′ ∈ S, and

• for each arity w ∈ S∗, Π(F,P)w = {π(t) | π ∈ Pw and t appropriate string of terms
such that the concatenated arities of t form a permutation of w}.

The elements of T (F) are called derived F-operations, while the elements of Π(F,P) are
called derived (F,P)-relations.

There is a canonical signature morphism ϕ(S,F,P) : (S,F,P)→ (S,T (F),Π(F,P))
mapping each operation symbol σ ∈ Fs1...sn→s to σ(x1, . . . ,xn) and each relation symbol
π ∈ Ps1...sn to π(x1, . . . ,xn).

Note that Mod(ϕ(S,F,P)) : Mod(S,T (F),Π(F,P))→Mod(S,F,P) is a retract to the
functor Mod(ϕ(S,F,P))−1 : Mod(S,F,P)→ Mod(S,T (F),Π(F,P)) which is defined on
any model M by

• Mod(ϕ(S,F,P))−1(M)t = Mt for any t ∈ T (F), and

• Mod(ϕ(S,F,P))−1(M)π(t) = M−1
t (Mπ) for any π(t) ∈Π(F,P).

On the sentence side, Sen(ϕ(S,F,P)) : Sen(S,F,P)→ Sen(S,T (F),Π(F,P)) has a
retract, denoted Sen(ϕ(S,F,P))−1, which extends the canonical interpretation of any T (F)-
term t by the the F-term (TF)t , to a functor Sen(S,T (F),Π(F,P))→ Sen(S,F,P) preserv-
ing the relation symbols, the Boolean connectives, and the quantifications.

By induction on the structure of the sentences we can easily show the satisfaction
condition for Mod(ϕ(S,F,P))−1 and Sen(ϕ(S,F,P))−1, which shows that

Fact 5.9. The construction above yields an (S,F,P)-substitution ϕ(S,F,P) → 1(S,F,P),

denoted ϕ−1
(S,F,P), with Mod(ϕ−1

(S,F,P)) = Mod(ϕ(S,F,P))−1, and Sen(ϕ−1
(S,F,P)) =

Sen(ϕ(S,F,P))−1.
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Second order substitutions in FOL

Given a FOL signature (S,F,P) and two signature extensions (S,F,P) ↪→ (S∪ S1,F ∪
F1,P∪P1) and (S,F,P) ↪→ (S∪ S2,F ∪F2,P∪P2), a second order (S,F,P)-substitution
ψ : (S1,F1,P1) → (S2,F2,P2) is a signature morphism (S ∪ S1,F ∪ F1,P ∪ P1) →
(S∪S2,T (F ∪F2),Π(F ∪F2,P∪P2)) which in addition ‘preserves (S,F,P)’, i.e., the fol-
lowing diagram commutes:

(S∪S1,F ∪F1,P∪P1)
ψ �� (S∪S2,T (F ∪F2),Π(F ∪F2,P∪P2))

(S,F,P)

��

�� (S∪S2,F ∪F2,P∪P2)

ϕ(S∪S2 ,F∪F2,P∪P2)

��

This means that ψ maps each operation of F1 to a derived (F ∪F2)-operation and each
relation of P1 to a derived (F ∪F2,P∪P2)-relation.

Fact 5.10. Each second order substitution ψ : (S1,F1,P1)→ (S2,F2,P2) determines a
general (S,F,P)-substitution in FOL between the signature extensions (S,F,P)→ (S∪
S1,F ∪F1,P∪P1) and (S,F,P)→ (S∪S2,F ∪F2,P∪P2) defined by the (S,F,P)-substitu-
tion composition ψ;ϕ−1

(S∪S2,F∪F2,P∪P2)
between the signature morphism ψ regarded as an

(S,F,P)-substitution and the (S∪S2,F ∪F2,P∪P2)-substitution regarded as an (S,F,P)-
substitution.

Note that first order substitution in FOL are special cases of second order substitu-
tions when S1 = S2 = P1 = P2 = /0 and F1 and F2 contain only constants.

Exercises

5.10. Substituting relations by sentences
Let (S,F,P) be a FOL signature and P1 a set of new relation symbols for S. Each mapping ψ of
relation symbols π ∈ (P1)w to sentences ψ(π) ∈ Sen(S,F ∪X ,P) where X = {x1, . . . ,xn} such xi
is a new constant of sort si where w = s1 . . .sn, can be extended to a mapping Sen(S,F,P∪P1)→
Sen(S,F,P) by replacing each relational atom π(t1, . . . ,tn) with ψ(π)(t1, . . . ,tn). This determines a
general substitution in FOL between (S,F,P) ↪→ (S,F,P∪P1) and 1(S,F,P).

5.11. Substitution rule
In any institution, for any substitution ψ : χ→ χ′ and any sentence ρ,

(∀χ)ρ |= (∀χ′)Sen(ψ)(ρ).

5.12. Institution of substitutions
For each signature Σ of an institution (Sig,Sen,Mod, |=), let (Subst(Σ),Sen,Mod, |=) denote the
institution of Σ-substitutions. Its signatures are the signature morphisms Σ→• of the original insti-
tution and its signature morphisms are the Σ-substitutions.

Then each signature morphism ϕ : Σ → Σ′ determines canonically a functor Subst(ϕ) :
Subst(Σ)→ Subst(Σ′). This construction further determines a functor Sigop → Ins.

5.13. The composition of second order substitutions in FOL yields a second order substitution.
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5.14. For any signatures (S∪ S1,F ∪F1) and (S∪ S2,F ∪F2) in HOL/HNK each pair consisting

of a mapping ψst : S1 →
−−−−→
(S∪S2) and of a family of mappings {ψop

s : (F1)s → (TF∪F2)ψtype(s) | s ∈−−−−→
(S∪S1)} determines a general (S,F)-substitution in HOL/HNK between (S,F) ↪→ (S∪S1,F ∪F1)
and (S,F) ↪→ (S∪S2,F ∪F2).

5.4 Representable Signature Morphisms

Quasi-representable signature morphisms

Many important results in model theory rely upon quantifications by signature extensions
with constants, usually called first order quantifications. The signature extensions with
constants are be characterized by the following general property.

In any institution, a signature morphism χ : Σ→ Σ′ is quasi-representable when for
each Σ′-model M′, the canonical functor determined by the reduct functor Mod(χ) is an
isomorphism (of comma categories)

M′/Mod(Σ′)∼= (M′�χ)/Mod(Σ).

This means that each Σ-model homomorphism h : M′�χ → N admits a unique χ-expan-
sion h′ : M′ → N′.

Fact 5.11. In FOL each signature extension with constants (S,F,P) ↪→ (S,F �X ,P) is
quasi-representable. Given any (S,F,P)-model homomorphism h : M → N, any (S,F �
X ,P)-expansion M′ of M determines uniquely a (S,F �X ,P)-expansion h′ : M′ → N′ of
h by defining N′x = h(M′

x) for each x ∈ X.

Note that in FOL quasi-representability fails when we extend signature morphisms
with relation or non-constant operation symbols.

Quasi-representability of signature extensions with constants holds in various insti-
tutions in ways similar to Fact 5.11. For example, it also works in the institution E(FOL)
of the FOL elementary embeddings. However, in some cases quasi-representability goes
beyond extensions with constants. An example is given by the restriction of FOL to strong
model homomorphisms (recall that h : M → N is strong when h(Mπ) = Nπ for each re-
lation symbol π). In this institution any signature extension with constants or relation
symbols is quasi-representable.

Structural properties of quasi-representability. The following gives a list of basic
structural properties of quasi-representable signature morphisms which are useful for
many results relying upon the quasi-representability property.

Proposition 5.12. In any institution

1. The quasi-representable signature morphisms are closed under composition.

2. If the institution is semi-exact, then quasi-representable signature morphisms are
stable under pushouts.
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3. If the institution is directed-exact, then any directed co-limit of quasi-representable
signature morphisms consists of quasi-representable signature morphisms.

4. If ϕ and ϕ;χ are quasi-representable, then χ is quasi-representable.

Proof. 1. That composition of quasi-representable morphisms is quasi-representable fol-
lows immediately from the definition.

2. Consider a pushout of signature morphisms

Σ
χ ��

θ
��

Σ′

θ′��
Σ1 χ1

�� Σ′1

such that χ is quasi-representable. We have to show that χ1 is quasi-representable.
Consider a Σ1-model homomorphism h1 : M′

1�χ1 → N1. Let h : M → N be its θ-
reduct. M = M′

1�χ1�θ = M′
1�θ′�χ. Because χ is quasi-representable, let h′ : M′

1�θ′ → N′ be
the unique χ-expansion of h. By the semi-exactness of the institution, the unique amalga-
mation h′1 of h1 and h′ is the unique χ1-expansion M′

1 → N′1 of h1.
3. Let (ϕi, j)(i< j)∈(I,≤) be a directed diagram of quasi-representable signature mor-

phisms and let (θi)i∈I be its co-limit.

Σi
ϕi, j ��

θi ���
��

��
Σ j

θ j69��
��
�

Σ

For each i ∈ I we show that θi is quasi-representable. Let M�θi

hi ��Ni be a Σi-
homomorphism for some Σ-model M. For each j ∈ I, let Mj = M�θ j . Notice that Mj�ϕi, j =
Mi when j > i. For each j > i, because ϕi, j is quasi-representable, let h j : Mj → Nj be
the unique ϕi, j-expansion of hi. By the uniqueness of expansion for quasi-representable
signature morphisms, we can show that h j′�ϕ j, j′ = h j for each i≤ j < j′.

Now let (J,≤) be the sub-poset of (I,≤) determined by the elements { j | i ≤ j}.
Because (J,≤) is a final sub-poset of (I,≤), by Thm. 2.4 we deduce that (θi)i∈J is a
co-limit of (ϕ j, j′)( j< j′)∈(J,≤). Because the institution is directed-exact, let h : M → N be
the unique Σ-homomorphism such that h�θ j = h j for each j ∈ J. Then h is the unique
θi-expansion M → N of hi.

4. Let ϕ : Σ→ Σ′ and χ : Σ′ → Σ′′ be signature morphisms. Consider any Σ′-model
homomorphism h′ : M′′�χ → N′. We show that the unique (ϕ;χ)-expansion of h′�ϕ to a
Σ′′-model homomorphism h′′ : M′′ → N′′ constitutes the unique χ-expansion of h′ to a
Σ′′-model homomorphism M′′ → N′′.

That h′ = h′′�χ follows by the quasi-representability of ϕ because h′�ϕ = (h′′�χ)�ϕ
and h′ and h′′�χ both have M′′�χ as their domain.

The uniqueness of h′′ as χ-expansion of h′ follows by the uniqueness of h′′ as (ϕ;χ)-
expansion of h′�ϕ. �
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Quasi-representable signature morphisms in FOL. We know that the FOL signature
extensions with constants are quasi-representable. Below we give a complete description
of the quasi-representability in FOL.

Proposition 5.13. A FOL signature morphism is quasi-representable if and only if it is
bijective on sort symbols, relation symbols, and non-constant operation symbols.

Consequently, a FOL signature morphism is conservative and quasi-representable
if and only if it is an injective extension with constants.

Proof. Consider such a FOL-signature morphism χ : Σ→ Σ′. Then there exists a signa-
ture Σ0 and injective extensions with constants ϕ : Σ0 → Σ and ϕ′ : Σ0 → Σ′ such that
the following triangle commutes:

Σ0
ϕ

69��
��
� ϕ′

$$�
��

��

Σ χ
�� Σ′

Because both ϕ and ϕ′ are (injective) extensions with constants, they are quasi-represent-
able, hence by Prop. 5.12 (4.) χ is quasi-representable too.

Conversely, let us assume that χ is quasi-representable. If one of χst, χop restricted
to non-constant operation symbols, or χrl, is not surjective, respectively not injective, then
we can find a Σ-homomorphism h : M → N and a χ-expansion M′ of M such that h has
more than one, respectively does not have any, χ-expansion h′ : M′ → N′. We leave the
details of this argument to the reader.

The second conclusion now follows because a FOL signature morphism is conser-
vative if and only if it is injective. �

Representable signature morphisms

Consider a quasi-representable signature morphism χ : Σ→ Σ′ and assume that Mod(Σ′)
has an initial model 0Σ′ . We have the following canonical isomorphisms:

Mod(Σ′)∼= 0Σ′/Mod(Σ′)∼= (0Σ′�χ)/Mod(Σ).

This situation shows that the Σ′-models M′ can be ‘represented’ isomorphically by
Σ-model homomorphisms 0Σ′�χ →M′�χ.

A signature morphism χ : Σ → Σ′ is representable if and only if there exists a
Σ-model Mχ (called the representation of χ) and an isomorphism iχ of categories such
that the following diagram commutes:

Mod(Σ′)
iχ ��

Mod(χ) 		''
'''

'''
'''

(Mχ/Mod(Σ))

forgetful

��
Mod(Σ)
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Fact 5.14. A signature morphism χ : Σ→ Σ′ is representable if and only if it is quasi-
representable and Mod(Σ′) has an initial model.

For example, since FOL has initial models of signatures, in FOL representable
and quasi-representable signature morphisms are the same concept. Given a set X of first
order variables (i.e., new constants) for a FOL signature (S,F,P), the representation of the
signature inclusion (S,F,P) ↪→ (S,F �X ,P) is given by the model of the (F ∪X)-terms
TF(X), which is the free (S,F,P)-model over X . This is due to the fact that (S,F �X ,P)-
models M are in canonical bijection with valuations of variables from X to the carrier sets
of M. By the freeness property of TF(X), these valuations are in canonical bijection with
(S,F,P)-model homomorphisms TF(X)→M.

By Fact 5.14, examples that fall between representability and quasi-representability
can be found only in institutions which do not have initial models of signatures. Ex-
amples include MFOL and HOL. A special class of institutions without initial models
for signatures arises by narrowing the class of model homomorphisms in institutions;
examples include the sub-institution E(FOL) of FOL elementary embeddings, and the
sub-institution of strong FOL-model homomorphisms. In all examples mentioned above
the signature extensions with constants are quasi-representable but in general they are not
representable.

Finitary representable signature morphisms. The following gives a characterization
for the combination of two classes of signature morphisms.

Fact 5.15. A representable signature morphism χ : Σ → Σ′ is finitary if and only if its
representation Mχ is finitely presented.

For example, by the fact above we can see that any FOL-signature extension of
(S,F,P) with finite set of constants X is finitary representable by noticing that TF(X) is
finitely presented as a (S,F,P)-model.

Representable substitutions

The FOL phenomenon that each first order (S,F,P)-substitution ψ : X → TF(Y ) (of
variables X with F-terms over Y ) can be extended uniquely to a model homomorphism
hψ : TF(X)→ TF(Y ) is a reflection of the more general fact that substitutions between
representable signature morphisms can be ‘represented’ as model homomorphisms.

Proposition 5.16. Any substitution ψ : χ1 → χ2 between representable signature mor-
phisms χ1 : Σ→ Σ1 and χ2 : Σ→ Σ2 determines canonically a Σ-model homomorphism
Mψ : Mχ1 → Mχ2 between the representations of the signature morphisms χ1 and χ2.
Moreover, the mapping of the substitutions ψ to the model homomorphisms Mψ is functo-
rial and faithful modulo substitution equivalence.

Proof. We define Mψ = (i−1
χ2

;Mod(ψ); iχ1)(1Mχ2
). Then by the functoriality of Mod(ψ)

for each f : Mχ2 →M, regarded as f : 1Mχ2
→ f in Mχ2/Mod(Σ), we have that f : Mψ→

(i−1
χ2

;Mod(ψ); iχ1)( f ), which implies that (i−1
χ2

;Mod(ψ); iχ1)( f ) = Mψ; f .
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Mod(Σ2)
iχ2

∼ ��

Mod(ψ)
��

Mχ2/Mod(Σ)

Mψ/Mod(Σ)
��

Mod(Σ1)
∼
iχ1

�� Mχ1/Mod(Σ)

The functoriality of the mapping of Σ-substitutions to Σ-model homomorphisms fol-
lows by simple calculations by using that Mod(1χ1) = 1Mod(Σ1) and Mod(ψ′);Mod(ψ) =
Mod(ψ;ψ′) for any composable substitutions ψ and ψ′.

If ψ and ψ′ are equivalent substitutions then Mψ = Mψ′ since by its definition Mψ
are uniquely determined by the model translations Mod(ψ). �

The opposite property is that each model homomorphism h : Mχ1 → Mχ2 deter-
mines a unique equivalence class of substitutions ψh : χ1 → χ2 such that h = Mψh .
Thus we say that an institution has representable D-substitutions for a class D of sig-
nature morphisms when for each signature Σ the functor from the category of the Σ-D-
substitutions between representable signature morphisms to the category of Σ-models is
full.

Although a general criterion for an institution to have representable substitutions
is not to be expected, this property can be established rather easily for some particular
institutions. The following is a rather typical example.

Proposition 5.17. FOL has all representable substitutions.

Proof. Let χ1 : Σ→ Σ1 and χ2 : Σ→ Σ2 be representable signature morphisms in FOL
and let h : Mχ1 →Mχ2 be a Σ-model homomorphism.

By Prop. 5.13 we may assume that Σ = (S,F ∪X ,P), Σ1 = (S,F ∪X1,P) and Σ2 =
(S,F ∪X2,P) where X ,X1,X2 are sets of constants and χ1 and χ2 keep (S,F,P) invariant
but on X manifest as functions f1 : X → X1 and f2 : X → X2. Then Mχ1 = TF(X1)�χ1

and Mχ2 = TF(X2)�χ2 . Note that because h is a (S,F∪X ,P)-homomorphism we have that
h( f1(x)) = f2(x) for each x ∈ X .

The desired substitution ψ is defined as the first order substitution given by the
restriction h : X1 → TF(X2). Although ψ appears as a substitution between (S,F,P) ↪→
(S,F ∪X1,P) and (S,F,P) ↪→ (S,F ∪X2,P), the condition h( f1(x)) = f2(x) ensures that
ψ is a substitution χ1 → χ2. Finally, it is easy to notice that Mψ = h. �

Exercises

5.15. Representable signature morphisms in HNK
In HNK the signature extensions with constants χ : Σ → Σ′, although in general are not repre-
sentable, they are however quasi-representable. Moreover, χ is representable whenever Σ′ has at
least a constant operation symbol for each type.

5.16. In any institution the quasi-representable signature morphisms preserve the epi model ho-
momorphisms, i.e., the model homomorphism reduct h�χ is epi when h is epi and χ is quasi-
representable.
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5.17. Quasi-representable presentation morphisms
In any institution I for each presentation (Σ,E) and each quasi-representable signature morphism
χ : Σ→ Σ′, the presentation morphism χ : (Σ,E)→ (Σ′,χ(E)) is quasi-representable (as signature
morphism in I pres). For the non-liberal institutions this constitutes another source of examples
which fall between representability and quasi-representability.

5.18. Quasi-representability along institution comorphisms
Any exact institution comorphism (Φ,α,β) preserves quasi-representable signature morphisms in
the sense that Φ(χ) is quasi-representable when χ is quasi-representable.

5.19. In IPL each morphism of signatures is representable. (Hint: Consider the comorphism IPL→
(FOEQL1)pres of Ex. 4.10 and use the combined conclusions of Exercises 5.17 and 5.18.)

5.20. Liberal representable signature morphisms
In any institution with binary co-products of models for each signature each representable signature
morphism is liberal.

5.21. Finitary quasi-representable signature morphisms
Any quasi-representable signature morphism χ : Σ→Σ′ determines a canonical functor Mod(χ)−1 :
Mod(Σ)→ Set mapping each Σ-model M to {M′ ∈ |Mod(Σ′)| | M′�χ = M}. Then χ is finitary if
and only if Mod(χ)−1 preserves the directed co-limits.

5.22. In any institution the finitary quasi-representable signature morphisms are closed under com-
position.

5.23. Co-products of substitutions
In an institution with representable substitutions which has pushouts of signatures, is semi-exact
and its categories of models have finite co-products, for each signature Σ, the category of the Σ-
substitutions modulo substitution equivalence between representable signature morphisms has finite
co-products.

5.24. Representable substitutions for presentations
Consider a liberal institution I and a class D of representable signature morphisms such that

– for all presentations (Σ,E) the units of the adjunctions determined by the forgetful func-
tors Modpres(Σ,E)→Mod(Σ) are epi, and

– the representations Mχ of the signature morphisms χ ∈D are projective.

Let Dpres be the class of strong presentation morphisms χ : (Σ,E)→ (Σ′,E ′) for which (χ : Σ→
Σ′) ∈D . Then the institution I pres of I presentations has representable Dpres-substitutions.

AFOLpres (where AFOL is the atomic sub-institution of FOL) has representable
Dpres-substitutions for D the class of FOL signature extensions with a finite number of constants.

5.5 Satisfaction by Injectivity

Basic sentences

In this chapter we have already introduced the semantics of Boolean connectives and
quantifiers at a general institution-independent level. The case of the atoms is a bit dif-
ferent because their nature depends to some extent on the actual institution, hence the
concept of an atom can only be approximated at an institution-independent level.
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Basic sentences. In any FOL-signature (S,F,P) let E be a set of atoms. Recall from
Sect. 4.6 that E has an initial model 0E constructed as follows: on the quotient (TF)=E of
the term model TF by the congruence generated by the equational atoms of E , we interpret
each relation symbol π ∈ P by (0E)π = {(t1/=E , . . . ,tn/=E ) | π(t1, . . . ,tn) ∈ E}.
Fact 5.18. For each set E of FOL-atoms and for each model M, M |= E if and only if
there exists a model homomorphism 0E →M.

The categorical characterization of atomic satisfaction above can serve as a first
institution-independent approximation for the concept of atom.

In any institution, a set E of Σ-sentences is basic if there exists a Σ-model ME such
that for each Σ-model M,

M |=Σ E if and only if there exists a model homomorphism ME →M.

Often the model ME is the initial model of E; we have already seen this in Fact 5.18.
One may think that the existence of an initial model implies that the respective set of
sentences is basic. This is not true, and a simple counterexample in FOL is given by the
negation of an (S,F)-equation t1 �= t2 which has the term model TF as its initial model but
is not basic.

The fact that being basic covers significantly more than atomic sentences is shown
by the fact that existentially quantified atoms are also basic. More generally we have the
following:

Fact 5.19. Basic sentences are closed under quasi-representable existential quantifica-
tion. Moreover M(∃χ)ρ′ = Mρ′�χ.

Epi basic sentences. The concept of epi basic sentence constitutes a better institution-
independent capture of the actual atoms.

For a basic set E of sentences, when for each model M |= E the model homomor-
phism ME →M is unique, we say that E is epi basic.

Fact 5.20. All sets E of FOL atoms are epi basic, with ME being 0E, the initial model of
E.

Directly from the definition we have that epi basic sets of sentences always admit
initial models. This is one of the important consequences of being epi basic.

Corollary 5.21. For any epi basic set of sentences E, the model ME is the initial model
which satisfies E.

Note that existential quantifications of FOL atoms are not epic basic.

Finitary basic sentences. A basic set of sentences E is finitary if the model ME is
finitely presented in the category Mod(Σ) of Σ-models.

Proposition 5.22. All finite sets of FOL atoms are finitary basic.
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Proof. We have to prove that for each set E of Σ-atoms in FOL, their initial model 0E is
finitely presented.

Let us first suppose that E = {t = t ′} and consider a model homomorphism h :
(TF)/=E → A where the (μi)∈I is a co-limit of a directed diagram ( fi, j)(i< j)∈(I,≤) of
Σ-model homomorphisms.

Ai

μi
��(

((
((
(

fi, j �� A j

μ j
����
��
��

(TF)/=E h
�� A

Because of h we have that At = At′ . If for each i ∈ I we have that (Ai)t �= (Ai)t′ , then
we may consider the family (νi)i∈I of functions νi : Ai → {t,t ′} defined by νi(a) = t
if and only if there exists i < j such that fi, j(a) = (A j)t . Then (νi)i∈I is a co-cone for
( fi, j)(i< j)∈(I,≤) considered as functions and νi((Ai)t) = t and νi((Ai)t′) = t ′ for each i ∈ I.
Since (μi)∈I is a co-limit of ( fi, j)(i< j)∈(I,≤) considered as functions (forgetful functors
from FOL models to their carrier sets preserve directed co-limits cf. Prop. 6.5 below)
we should get a function f : A→ {t,t ′} such that μi; f = νi for each i ∈ I, which is not
possible because we would have f (At) = νi((Ai)t) = t and f (At′ ) = νi((Ai)t′) = t ′. Thus
there exists i ∈ I such that (Ai)t = (Ai)t′ , a fact that gives the desired unique Σ-model
homomorphism (TF)/=E → Ai.

Now let us suppose that E = {π(t)} where π(t) is a relational atom. Then 0E is just
the term model TF as (S,F)-algebra and with (0E)π = {t} and with the interpretations
of all other relation symbols being /0. Because of h we have that A |= π(t) and thus for at
least one i∈ I we have that Ai |= π(t). This gives the desired unique model homomorphism
0E → Ai.

For the general case we just have to notice that for any sets E1 and E2 of basic
sentences, E1 ∪E2 is still basic with ME1∪E2 being the co-product of models ME1 + ME2

and that in any category co-products of finitely presented objects is still finitely presented
(see Ex. 5.25). �

Basic elementary diagrams. The intuition that semantically the elementary diagrams
have the nature of atomic sentences is confirmed by the following result.

Proposition 5.23. In any institution with elementary diagrams with quasi-representable
elementary extensions, the elementary diagrams are epi basic.

Proof. Let A be a Σ-model. Then MEA = AA, the initial model of the elementary diagram
(ΣA,EA) of A.

Let N′ be any ΣA-model. If N′ |= EA, then because AA is the initial (ΣA,EA)-model
we have that there exists a unique model homomorphism AA → N′.

Conversely, if there exists a model homomorphism h′ : AA → N′ let h = h′�ιΣ(A) :

A→N = N′�ιΣ(A). Let N′′ = i−1
Σ,A(h). Then N′′ |= EA. Because ιΣ(A) is quasi-representable
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and AA�ιΣ(A) = A, there exists a unique ιΣ(A)-expansion of h to a ΣA-model homomor-
phism from AA, therefore N′′ = N′, hence N′ |= EA. �

That elementary diagrams are epi basic shows that even the epi basic sets of sen-
tences, although having the semantic appearance of atoms, do not necessarily consist
of atoms only. Consider for example the sub-institution of injective homomorphisms in
FOL. Recall (Sect. 4.4) that in this institution the elementary diagram of a model M
consists of all atoms and negations of equations satisfied by MM . Perhaps this tells us
that from a semantic perspective the concept of atom as the most primitive constituent of
sentences should be considered according to the actual concept of model homomorphism.

Satisfaction by injectivity. Recall that a model M is injective with respect to a model
homomorphism h : A → B when for each homomorphism f : A → M there exists a
homomorphism g : B→M such that h;g = f .

A
h ��

f $$!
!!

!!
B

g69))
))
)

M

Let us denote this by M |=inj h. For each homomorphism h let In j(h) be the class of
models injective with respect to h, and for each class of homomorphisms H let In j(H) =⋂

h∈H In j(h).
The semantics of the basic sentences constitutes a simple example of satisfaction by

injectivity.

Fact 5.24. Let Σ be a signature with initial model 0Σ. For any basic set E of Σ-sentences
and any Σ-model M,

M |= e if and only if M |=inj (0Σ →ME),

where 0Σ →ME is the unique model homomorphism given by the initiality of 0Σ.

General Horn sentences. In any institution, for a designated class D of signature mor-
phisms, a D-universal Horn sentence is a sentence semantically equivalent to (∀χ)(E ⇒
E ′) where

– χ : Σ→ Σ′ is a representable signature morphism in D,

– E is a set of epic basic Σ′-sentences, and

– E ′ is a basic set of Σ′-sentences.

A universal Horn sentence (∀χ)(E ⇒ E ′) is finitary when E , and χ are finitary.
Note that the general concept of finitary Horn sentence defined above covers more

sentences than some of the actual concepts of Horn sentence in institutions. This is due to
the fact that the basic, and even the epi basic, sentences are usually more than the actual
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atoms in institutions. For example (∀X)(∃Y )t = t ′ is a general finitary Horn sentence in
FOL but it is not a HCL-sentence.

As for the HCL-sentences, we will rather omit the second pair of brackets from the
notation of the general Horn sentences, which means that we write (∀χ)E ⇒ E ′ rather
than (∀χ)(E ⇒ E ′).

Satisfaction of Horn sentences is injectivity

For the rest of this section let us assume that in our institutions the basic sets of sen-
tences are closed under finite unions. For example this happens whenever there exists
co-products of models by letting ME∪E ′ = ME + ME ′ . The following extends the encod-
ing of satisfaction of sentences as injectivity from basic sentences to Horn sentences.

Proposition 5.25. In any institution, for any universal Horn sentence (∀χ)E ⇒ E ′ there
exists a model homomorphism h such that for each Σ-model M,

M |=inj h if and only if M |= (∀χ)E ⇒ E ′.

Proof. Because E ∪E ′ |= E , ME∪E ′ |= E . Therefore there exists h′ : ME → ME∪E ′ . We
let h = h′�χ.

First let us assume that the model M is injective with respect to h = h′�χ. Consider
an arbitrary Σ′-model M′ such that M′�χ = M and M′ |= E . This implies that there exists
a model homomorphism f ′ : ME → M′. Because M is injective with respect to h, there
exists a Σ-model homomorphism g such that h;g = f ′�χ. Because χ is quasi-representable,
we get g′ : ME∪E ′ →M′ such that g′�χ = g. This means that M′ |=Σ′ E∪E ′, which implies
M′ |=Σ′ E ′.

ME�χ
h ��

f B)**
***

***
**

ME∪E ′�χ

g

��

ME
h′ ��

f ′ CC+
++

++
++

++
+ ME∪E ′

g′

��
M = M′�χ M′

Conversely, assume that M |= (∀χ)E ⇒ E ′. Because χ is quasi-representable, each
Σ-model homomorphism f : ME�χ →M admits an expansion to an Σ′-model homomor-
phism f ′ : ME → M′. This implies that M′ |= E , therefore M′ |= E ∪E ′, which guaran-
tees the existence of a model homomorphism g′ : ME∪E ′ → M′. Because E is epi basic
h′;g′ = f ′, which implies h;g′�χ = f . �
Corollary 5.26. For each Σ-model M and each basic set of Σ′-sentences E ′,

M |=inj (0Σ′ →ME ′)�χ if and only if M |=Σ (∀χ)E ′.

Injectivity is satisfaction of Horn sentences

We have seen that the satisfaction of Horn sentences can be expressed as categorical in-
jectivity with respect to a model homomorphism which has the flavor of a model quotient
and actually is a model quotient in many actual situations.
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We show now that the opposite is also true, the injectivity with respect to a ‘quotient’
model homomorphism can be expressed as the satisfaction of a Horn sentence. This result
is based on the following diagram-based abstract concept of model ‘quotient’.

ι-conservative model homomorphisms. Given an institution with elementary dia-
grams ι, a Σ-model homomorphism h : A → B is ι-conservative when the presentation
morphism ιΣ(h) : (ΣA, ιΣ(h)−1(E∗∗B ))→ (ΣB,EB) is conservative, which means that each
(ΣA, ιΣ(h)−1(E∗∗B ))-model has a ιΣ(h)-expansion to a (ΣB,EB)-model.

Σ
ιΣ(A)

DD,,
,,
,,
, ιΣ(B)

(+-
--

--
--

(ΣA,EA)
ιΣ(h)

�� (ΣB,EB)

The reader is invited to check the following.

Fact 5.27. Consider FOL with its standard system of elementary diagrams. Then each
surjective model homomorphism is ι-conservative.

Proposition 5.28. In any institution with elementary diagrams ι, let h be a Σ-model ho-
momorphism h : A→ B. Then

1. For any model M, M |=inj h implies M |=Σ (∀ιΣ(A))EA ⇒ ιΣ(h)−1(E∗∗B ).

2. If h is ι-conservative, then for each model M, M |=Σ (∀ιΣ(A))EA ⇒ ιΣ(h)−1(E∗∗B )
implies M |=inj h.

Consequently, if the elementary extensions are representable then the satisfaction by in-
jectivity with respect to any ι-conservative h is the same as satisfaction of a general Horn
sentence.

Proof. 1. Consider a model M such that M |=inj h. Let M′ be any ΣA-model such that
M′�ιΣ(A) = M and M′ |= EA. Let f = iΣ,A(M′). By the injectivity of M, let g be such that

h;g = f and let M′′ = i−1
Σ,B(g). Notice that by the naturality of i, M′′�ιΣ(h) = M′. Since

M′′ |= E∗∗B , by the satisfaction condition we deduce that M′ |= ιΣ(h)−1(E∗∗B ).

Σ
ιΣ(A) ��

ιΣ(B) 7:�
��

��
��

�� ΣA

ιΣ(h)
��

A

f 7:�
��

��
��

��
h �� B

g

��
ΣB M

2. Consider a model M such that M |=Σ (∀ιΣ(A))EA ⇒ ιΣ(h)−1(E∗∗B ) and a model
homomorphism f : A→M. Let Mf = i−1

Σ,A( f ). Then Mf |= ιΣ(h)−1(E∗∗B ) since Mf |= EA.
The existence of a (ΣB,EB)-model M′ with M′�ιΣ(h) = Mf is granted by the fact that h is
ι-conservative. Now let g = iΣ,B(M′). By the naturality of i, we have h;g = f .

Finally, the last conclusion follows because EA is epi basic (cf. Prop. 5.23) and by
the following lemma:
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Lemma 5.29. If all elementary extensions are quasi-representable, then ιΣ(h)−1(E∗∗B ) is
basic for any ι-conservative h. Moreover, MιΣ(h)−1(E∗∗B ) = (BB)�ιΣ(h).

Proof. Consider any Σ-model M.
On the one hand, if M |= ιΣ(h)−1(E∗∗B ), then because h is ι-conservative, there exists

a ιΣ(h)-expansion M′ of M to a (ΣB,EB)-model. Let f be the unique (ΣB,EB)-model
homomorphism BB →M′. Then f �ιΣ(h) : (BB)�ιΣ(h) →M.

Conversely, if we have a ΣA-model homomorphism (BB)�ιΣ(h) → M, then because
ιΣ(h) is quasi-representable (by Prop. 5.12 since both ιΣ(A) and ιΣ(B) are quasi-represent-
able) we can expand it (uniquely) to a ΣB-model homomorphism BB → M′. Therefore
M′ |= EB because EB is basic and MEB = BB (cf. Prop. 5.23) which by the Satisfaction
Condition implies that M = M′�ιΣ(h) |= ιΣ(h)−1(E∗∗B ). �

�

From Cor. 5.26 and Lemma 5.29 we get easily the following specialized variant of
Prop. 5.28.

Corollary 5.30. In any institution with quasi-representable elementary diagrams, for any
representable signature morphism χ : Σ→ Σ′ and any Σ-model B,

M |=inj (Mχ
h ��B) if and only if M |=Σ (∀ιΣ(Mχ))ιΣ(h)−1(E∗∗B )

for each ι-conservative Σ-model homomorphism h : Mχ → B.

Exercises

5.25. Unions of finitary basic sentences
Finite co-products of finitely presented objects are still finitely presented. If finite co-products of
models exist then the union of finitary basic sets of sentences is still finitary basic.

5.26. Finitary basic sentences are closed under finitary quasi-representable existential quantifica-
tions. (Hint: The model reducts corresponding to the finitary quasi-representable signature mor-
phisms preserve the finitely presented models.)

5.27. Representable presentation morphisms
Let ϕ : Σ→ Σ′ be a quasi-representable signature morphism in an institution I . If E ′ is epi basic
then each presentation morphism ϕ : (Σ,E)→ (Σ′,E ′) is representable (as a signature morphism
of I pres).

5.28. Preservation of Horn sentences

A sentence ρ is preserved by a limit (Mi
μi ��M )i∈|J| of a diagram of models (Mi

fu ��M j )u∈J
of models when Mi |= ρ for each i ∈ |J| implies M |= ρ.
In any institution:

1. Small products of models preserve Horn sentences.
2. Small limits of models preserve all Horn sentences (∀χ)E ⇒ E ′ for which E ′ is epi basic.
3. Directed co-limits of models preserve the finitary Horn sentences.
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5.29. Basic sentences modulo presentations
Let I be a liberal institution.

1. Each set of sentences which is (epi) basic in I is (epi) basic in the institution of its pre-
sentations I pres too.

2. If each sentence of I is preserved by directed co-limits, then any finitary basic sets of
sentences in I is finitary basic in I pres too.

5.30. Borrowing basic sentences along comorphisms
Any persistently liberal institution comorphism (Φ,α,β) ‘borrows’ the (finitary) epi basic sen-
tences, i.e., E is (finitary) epi basic when α(E) is so. This can be applied in conjunction with the
results of Ex. 5.29 for the comorphisms of Ex. 4.73 for showing that finite sets of existence equa-
tions in PA or of any atoms of several other institutions (such as POA, AUT, MBA) are finitary epi
basic.

5.31. [35] HNK has atoms that are not basic. In the signature (S,F) defined by S = {s,s′} and
Fs→s = { f }, F(s→s)→s′ = {σ1,σ2}, for other types x, Fx being empty, the atom σ1( f ) = σ2( f ) is not
basic. (Hint: Consider the model M defined by Ms empty, and Ms′ , Ms→s and M(s→s)→s′ containing
only one element. Then M |= σ1( f ) = σ2( f ). For any other model N satisfying σ1( f ) = σ2( f )
but such that Nσ1 �= Nσ2 there exists no model homomorphism M → N. Deduce from here that
σ1( f ) = σ2( f ) cannot be basic.)

5.32. In the institution IPL considered with elementary homomorphisms of models (see Ex. 4.41)
all sentences are epi basic. (Hint: For any P-sentence ρ the model Mρ is given by the free Heyting
algebra over P satisfying ρ =�.) Moreover, if P is finite, then each P-sentence is finitary epi basic.

5.33. Institution of injectivity
The following defines a ‘hyper-institution’ INJ:

1. SigINJ is the ‘hyper-category’ of the adjunctions, i.e., the signatures are categories and
the signature morphisms are adjunctions (U,F ,η,ε) : A→ B where U : B→ A is the
right adjoint and F is the left adjoint.

2. SenINJ(A) = arr(A) (for each category A the class of all arrows of A), and
SenINJ(U,F ,η,ε) = F for adjunctions,

3. ModINJ(A) = A for each category A and ModINJ(U,F ,η,ε) = U for adjunctions, and
4. A |=INJ f if and only if A |=inj f .

There exists an institution comorphism from the sub-institution of CatEQL for which the categories
have co-equalizers to INJ mapping each categorical equation (∀B)l = r to a designated co-equalizer.

5.6 Elementary Homomorphisms

Let us now recall the concept of elementary homomorphism introduced in Sect. 4.4. In
any institution with elementary diagrams ι, a Σ-model homomorphism h : M → N is
elementary when Nh |= M∗

M where Nh is the canonical expansion determined by h of N to
a ΣM-model, i.e., Nh = iΣ,M(N).

This diagram-based definition of elementary homomorphism does not support some
desirable structural properties of elementary homomorphisms, such as closure under com-
position. In this section we provide an alternative concept of elementary homomorphism
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which we show to coincide with the diagram-based one under some general ‘normality’
condition on the system of diagrams. This involves representable signature morphisms.
The most important gain of the identification between these two different perspectives on
elementary homomorphisms is good structural properties which can be summed up by
the fact that elementary homomorphisms of the institution form themselves an institution
with elementary diagrams.

D-elementary homomorphisms. Given a class D ⊆ Sig of signature morphisms, a
Σ-model homomorphism h : A→ B is D-elementary when A′∗ ⊆ B′∗ for each D-expan-
sion h′ : A′ → B′ of h.

In the actual institutions, D is typically the class of all signature extensions with
constants. Notice that in the case of FOL, and in fact in all institutions with finitary
sentences, elementarity with respect to signature extensions with an arbitrary number of
constants is equivalent to elementarity with respect to extensions adding finite numbers
of constants.

The following applies to the cases when D contains all signature extensions with
constants.

Fact 5.31. In any institution with elementary diagrams such that D contains all elemen-
tary extensions, any D-elementary homomorphism is elementary.

Structural properties of elementary homomorphisms. We now give some general
conditions on D which ensure that the D-elementary homomorphisms form a sub-institu-
tion of the original institution.

Proposition 5.32. Let D be a class of signature morphisms.

1. If each morphism in D is quasi-representable, then D-elementary homomorphisms
are closed under composition.

2. If the institution is weakly semi-exact and D is stable under pushouts, then
D-elementary homomorphisms are preserved by any model reduct functor.

3. D-elementary homomorphisms are closed under D-expansions.

Proof. 1. Let f : A → B and g : B → C be D-elementary homomorphism and let
h′ : A′ → C′ be a χ-expansion of f ;g for χ ∈ D. Then f and A′ determine a unique χ-
expansion f ′ : A′ → B′ of f , and g and B′ determine a unique χ-expansion g′ : B′ →C′′
of g. Therefore f ′;g′ is the unique χ-expansion of f ;g, hence C′′ = C′ and f ′;g′ = h′.
A′∗ ⊆ B′∗ because f is D-elementary and B′∗ ⊆ C′∗ because g is D-elementary, hence
A′∗ ⊆C′∗.

2. Let h1 : A1 → B1 be a D-elementary Σ1-model homomorphism and ϕ : Σ→ Σ1

be any signature morphism. In order to prove that h1�ϕ is D-elementary, we consider
(χ : Σ→ Σ′) ∈ D. Because D is stable under pushouts, in the pushout square below we
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have that χ1 ∈D.

Σ
χ ��

ϕ
��

Σ′

ϕ′��
Σ1 χ1

�� Σ′1

Let h′ : A′ → B′ be a χ-expansion of h1�ϕ. By the weak semi-exactness, there exists
h′1 : A′1 → B′1 such that h′1�ϕ′ = h′ and h′1�χ1 = h1. Because h1 is D-elementary and χ1 ∈
D, A′∗1 ⊆ B′∗1. By the Satisfaction Condition this implies that A′∗ ⊆ B′∗.

3. Immediate from the definition. �

Corollary 5.33. Under the conditions of 1 and 2 of Prop. 5.32, the D-elementary homo-
morphisms form a sub-institution of the original institution.

Normal elementary diagrams

We have already seen that D-elementary homomorphisms are elementary under the nat-
ural assumption that the elementary extensions belong to D. This was rather easy. Now
we focus on the opposite inclusion, which is not so immediate.

For any class D of representable signature morphisms, the elementary diagrams of
an institution are D-normal if for each (χ : Σ→ Σ′)∈D (represented by Mχ), there exists
a signature morphism ϕ : Σ′ → ΣMχ such that the diagrams below commute:

Σ
ιΣ(Mχ)

����
��
��
��

χ

��

Mχ/Mod(Σ) Mod(ΣMχ ,EMχ)
iΣ,Mχ��

forgetful
��

ΣMχ Σ′ϕ
�� Mod(Σ′)

iχ

��

Mod(ΣMχ)
Mod(ϕ)

��

In actual institutions, for the choice of D above supporting that D-elementary homo-
morphisms are elementary (i.e., D consisting of signature extensions with constants), the
elementary diagrams are also D-normal. The following FOL case is rather typical.

Proposition 5.34. FOL has D-normal diagrams for D consisting of all signature exten-
sions with constants.

Proof. Given a FOL signature extension with constants χ : (S,F,P) ↪→ (S,F �X ,P),
represented by the free (term) model TF(X), the desired ϕ such that χ;ϕ = ι(S,F,P)(TF(X))
is the signature inclusion (S,F � X ,P) ↪→ (S,F � TF(X),P) given by the set inclusion
X ↪→ TF(X).

In order to see that the corresponding condition on the model categories holds, let
N be a (S,F �TF(X),P)-model that satisfying ETF (X). Then

i(S,F,P),TF (X)(N) = TF(X) h �� N�ι(S,F,P) (TF (X))



5.6. Elementary Homomorphisms 117

where h(t) = Nt for all t ∈ TF(X). On the other hand,

iχ(N�ϕ) = TF(X)
g �� N�χ;ϕ = N�ι(S,F,P)(TF (X))

where g is the unique homomorphism such that g(x) = Nx for each x ∈ X . Thus, by
the freeness of TF(X), g = h. Hence the functors Mod(ϕ); iχ and i(S,F,P),TF (X) coincide
on models. That they coincide on model homomorphisms follows at once from χ;ϕ =
ι(S,F,P)(TF(X)). �

The following is the main motivation for the normality condition for elementary
diagrams.

Proposition 5.35. In any institution with D-normal elementary diagrams, any elemen-
tary homomorphism is D-elementary.

Proof. Consider h : A→ B an elementary Σ-homomorphism and let (χ : Σ→ Σ′) ∈ D
and h′ : A′ → B′ be a χ-expansion of h. We have to show that A∗ ⊆ B∗.

We have that

i−1
Σ,Mχ

(iχ(A′ h′ ��B′ )) = i−1
Σ,Mχ

(Mχ
iχ(A′)

��A)
i−1
Σ,Mχ (h)

�� i−1
Σ,Mχ

(Mχ
iχ(B′)

��B).

By the naturality of i, the diagram below commutes.

Mχ/Mod(Σ) Mod(ΣMχ ,EMχ)
iΣ,Mχ��

A/Mod(Σ)

iχ(A′);

��

Mod(ΣA,EA)
iΣ,A

��

Mod(ιΣ(iχ(A′)))

��

When we apply this to (A
1A ��A) h �� (A

h ��B), regarded as arrows in A/Mod(Σ),
we get that

(AA

i−1
Σ,A(h)

��Bh )�ιΣ(iχ(A′)) = i−1
Σ,Mχ

(iχ(A′ h′ ��B′ )).

Because the diagrams are normal

(AA

i−1
Σ,A(h)

��Bh )�ιΣ(iχ(A′))�ϕ = A′ h′ ��B′

Because h is elementary, A∗A ⊆ B∗h. From this by the satisfaction condition applied twice
we obtain that A′∗ ⊆ B′∗. �
Corollary 5.36. In any institution with D-normal elementary diagrams such that D
contains all elementary extensions, the notions of elementary homomorphism and D-
elementary homomorphisms coincide.

The following sums up the developments of this section.
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Corollary 5.37. In any weakly semi-exact institution I with D-normal elementary dia-
grams for D a class of quasi-representable signature morphisms which is stable under
pushouts, and such that it contains all elementary extensions, the elementary homomor-
phisms form a (sub-)institution E(I ) which has elementary diagrams. E(I ) is called the
elementary sub-institution of I .

Proof. By Corollary 5.36 elementary homomorphism and D-elementary homomor-
phisms coincide in I . Thus by Corollary 5.33, elementary homomorphisms form a sub-
institution. The elementary extensions in E(I ) are inherited from I , and for each Σ-model
M, its elementary diagram in E(I ) is given by M∗

M . �

In particular we have the following.

Corollary 5.38. In FOL the elementary embeddings form an institution.

Exercises

5.34. Taking the elementary sub-institution is an idempotent operation on institutions, i.e.,
E(E(I )) = E(I ).

Notes. The institution-independent semantics of Boolean connectives is rather folklore of insti-
tution theory, perhaps this was introduced first time in [169]. . Abstract logical connectives have
been introduced here. The institution-independent semantics of quantifiers has been introduced first
time by [170] and is used extensively in [47]. A rather different institution-independent approach
to connectives, which treats Boolean, modal connectives but also quantifiers in an uniform manner
is give by the so-called ‘connector algebras’ of [3].

Although quantification by signature extensions is well known in conventional mathematical
logic [165, 98] it is quite rare in the usual presentations of conventional logic or model theory.

The institution-independent concept of substitution has been introduced in [49]. A rather
different approach has been developed within the framework of the ‘context institutions’ of [145].
Derived signatures have been used in algebraic specification for defining the instantiations of param-
eters in parameterized modules. The so-called ‘views’ of OBJ [82, 56] are just an implementation
of second order substitutions.

The institution-independent approach on first order quantifiers via representable signature
morphisms has been developed in [47] which also introduced the concept of finitary representable
signature morphisms as an abstract categorical treatment for finitary first order quantification. Gen-
eral finitary signature morphisms are introduced here. Prop. 5.13 has been proved in [37].

Satisfaction by injectivity is a well-known concept in categorical universal algebra and it has
been intensively used in the general study of Birkhoff axiomatizability in arbitrary categories [6].
According to [142] injectivity was first used to represent satisfaction in [11]. In [6] the injectivity
is extended to arbitrary cones which covers the satisfaction of all first order formulæ, however this
leads to enormous conceptual and proof complexity without actually going beyond the boundaries
of first order satisfaction. The same satisfaction power, and even much more, can be achieved only
by basic sentences, internal quantification and logical connectives, but in a much simpler frame-
work. This is due to the advantage of using the multi-signature framework based on institutions as
opposed to the other more rigid single-signature categorical abstract model theoretic frameworks.
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The institution-independent concept of elementary homomorphism, due to [86], unifies var-
ious concepts of model embeddings from the literature, such as elementary embeddings from con-
ventional model theory [32] for FOL, elementary embeddings of partial algebras [29], L∞,ω- and
Lα,ω-elementary embeddings from infinitary model theory [104, 118, 97], the existentially closed
embeddings of [97] for (Π∪Σ)0

1, the Σ0
n-extensions [32] for (Π∪Σ)0

n. D-elementary homomor-
phisms have been introduced by [86], which also proved their equivalence to (ordinary) elementary
homomorphisms under the normality condition on the elementary diagrams.



Chapter 6

Model Ultraproducts

The ultraproduct construction on models is one of the most important devices used by
‘first order model theory’, which is that part of model theory relying upon ‘first order’
quantifiers (handled by representable signature morphisms) and finiteness at various syn-
tactic levels such as arities of symbols, atoms, quantification, and logical connectives.

The main result presented in this chapter is a fundamental ultraproducts theorem
which pervades all application of the method of ultraproducts. We develop it here in a
modular manner, different combinations of its various parts being applicable to a great
variety of institutions.

Some immediate applications of the method of ultraproducts presented in this chap-
ter include a general ultrapower embedding theorem, compactness results, and a general
isomorphism criterion for finitely sized models.

6.1 Filtered Products

Ultraproducts of models is a special case of filtered products of models. In this section
we first illustrate the filtered products construction for the particular example of the FOL
models and only after this do we introduce the general concept of filtered products in
arbitrary categories.

Filters. For each non-empty set I we denote the set of all subsets of I by P (I). A filter
F over I is defined to be a set F ⊆ P (I) such that

• I ∈ F ,

• X ∩Y ∈ F if X ∈ F and Y ∈ F , and

• Y ∈ F if X ⊆ Y and X ∈ F .

A filter F is proper when F is not P (I) and it is an ultrafilter when X ∈ F if and only if
(I \X) �∈ F for each X ∈ P (I). Notice that ultrafilters are proper filters. We will always
assume that all our filters are proper.
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Filtered products in FOL

Given a FOL signature Σ, let {Mi}i∈I be a family of models and let F be a filter over I.
Let M denote the product of models ∏i∈I Mi. For sort s of Σ, for each element m ∈Ms let
m = (mi)i∈I with mi ∈ (Mi)s for each i ∈ I. By defining the equivalence∼F on M by

m∼F m′ if and only if {i |mi = m′i} ∈ F

(which is correctly defined because F is a filter), we construct the filtered product ∏F Mi

of {Mi}i∈I modulo F by

– (∏F Mi)s = Ms/∼F for each sort s of Σ,

– (∏F Mi)σ(m/∼F ) = Mσ(m)/∼F for each operation σ of Σ and each list m of argu-
ments for Mσ, and

– (∏F Mi)π = {m/∼F | {i ∈ I |mi ∈ (Mi)π} ∈ F} for each relation π of Σ and each list
m of arguments for Mπ.

Routine calculations based on the filter property of F give the correctness of the definition
of the filtered product ∏F Mi.

For each J ∈ F , let μJ : ∏i∈J Mi →∏F Mi be the model homomorphism such that
μJ(m) = m′/∼F for each m′ such that m = {m′i}i∈J . Because F is a filter, μJ is well defined
and is a model homomorphism. The reader is invited to check this.

Then the family (μ)J∈F form a co-cone MF ⇒∏F Mi, where MF : F →Mod(Σ) is
the functor mapping each (J ⊂ J′) to the canonical projection pJ′ ,J : ∏i∈J′ Mi →∏i∈J Mi.

Proposition 6.1. μ : MF ⇒∏F Mi is a co-limit of MF : F →Mod(Σ).

Proof. Let ν : MF ⇒ N be another co-cone over MF .

∏i∈J′ Mi
pJ′,J ��

μJ′

:<











νJ′

  

∏i∈J Mi
μJ

��##
##
##

νJ

EE

M/∼F

h
��

N

There exists a unique many-sorted function h : ∏F Mi → N such that hs(m/∼F ) = νI(m)
for each m ∈Ms for each sort s. Notice that the definition of h is correct because for each
m∼F m′,

νI(m) = (pI,J ;νJ)(m) = (pI,J;νJ)(m′) = νI(m′)

where J = {i | mi = m′i}.
We prove that h is a model homomorphism ∏F Mi → N. For each operation σ and

each list of arguments m for Mσ, we successively have h((∏F Mi)σ(m/∼F )) =
h((∏F Mi)σ(μI(m))) = h(μI(Mσ(m))) = νI(Mσ(m)) = Nσ(νI(m)) = Nσ(h(μI(m))) =
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Nσ(h(m/∼F ), therefore h commutes with the interpretations of the operations. For each
relation symbol π, let w be its arity, and assume that m/∼F ∈ (∏F Mi)π for some m ∈
Mw. Then the set J = {i ∈ I | mi ∈ (Mi)π} ∈ F . We have that h(m/∼F ) = (μI;h)(m) =
(μJ;h)(pI,J(m)) = νJ(pI,J(m)) ∈ Nπ since pI,J(m) = (mi)i∈J ∈ (∏i∈J Mi)π. Therefore h
preserves the interpretations of the relation symbols too. �

Prop. 6.1 has the merit that it gives a purely categorical description of filtered prod-
ucts of FOL models. This indicates that filtered products can be defined at the level of
abstract categories.

Categorical filtered products

Consider a filter F over the set of indices I and a family of objects {Ai}i∈I in any category
C with small products. These determine a functor AF : Fop → C mapping each subset
inclusion J ⊂ J′ of F to the canonical projection pJ′,J : ∏i∈J′ Ai →∏i∈J Ai.

A filtered product of {Ai}i∈I modulo F is a co-limit μ : AF ⇒∏F Ai of the functor
AF .

∏i∈J′ Ai
pJ′,J ��

μJ′ ���
��

��
� ∏i∈J Ai

μJ��..
..
..

∏F Ai

Obviously, as co-limits of diagrams of products, filtered products are unique up to iso-
morphisms.

Note that the co-limits defining filtered products are directed. Therefore a sufficient
condition for the existence of filtered products, which applies to many institutions, is
the existence of small products and of directed co-limits of models. Note however that
this is not a necessary condition because only co-limits over diagrams of projections are
involved. We will see examples when directed co-limits of models do not exist in general
but some filtered products exist.

If F is an ultrafilter then filtered products modulo F are called ultraproducts. When
Ai = A for all i ∈ I, then a filtered product is called filtered power. Filtered powers corre-
sponding to ultrafilters are called ultrapowers. Note that a (direct) product ∏i∈I Ai is the
same as the filtered product ∏{I}Ai.

Filter reductions. Let F be a filter over I and I′ ⊆ I. The reduction of F to I′ is denoted
by F |I′ and defined as {I′ ∩X | X ∈ F}.
Fact 6.2. The reduction of any filter is still a filter.

A class F of filters is closed under reductions if and only if F|J ∈F for each F ∈F
and J ∈ F . Examples of classes of filters closed under reductions include the class of all
filters, the class of all ultrafilters, the class of {{I} | I set}, etc.

The following is a useful property of filter reductions which will be used in several
situations.
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Proposition 6.3. Let F be a filter over I and {Ai}i∈I a family of objects in a category C.
For each J ∈ F, the filtered products ∏F|J Ai and ∏F Ai are isomorphic.

Proof. Note that (F |J,⊇) ⊆ (F,⊇) is a final functor since for each J′ ∈ F we have that
J′ ∩ J ∈ F|J . The conclusion follows directly from Thm. 2.4. �

Exercises

6.1. Filtered products in PL
In PL, for any filter F over a set I, and for each family {Mi}i∈I of models, its filtered product
modulo F is

⋃
J∈F

⋂
i∈J Mi.

6.2. Let Σ be the FOL signature having only one sort and only one binary relation symbol R. Let
{Mi}i∈I be a family of models and F be a filter over I. Prove that (∏F Mi)R is reflexive, symmetric,
or transitive when (Mi)R is reflexive, symmetric, respectively transitive for each i ∈ I.

6.3. The class of all ultrafilters is closed under reductions.

6.4. Borrowing filtered products along institution comorphisms
For any persistently liberal institution comorphism I → I ′ the institution I has the limits and the
co-limits of models that I ′ has. This leads to the existence of filtered products of models in several
institutions (such as POA, PA, AUT, MBA, LA, etc) via the examples of Ex. 4.73 and to the
existence of direct products of models in HNK via the comorphism of Ex. 4.11.

6.5. [35] In general HNK does not have directed co-limits of models. However, it has co-limits of
directed ‘injective’ diagrams, i.e., diagrams consisting of injective model homomorphisms.

6.6. IPL has direct products and directed co-limits of models.

6.7. MFOL has filtered products of Kripke models.

6.8. The categories of multialgebras (MA) do have direct products and directed co-limits.

6.9. [85] The categories of contraction algebras (CA) do have direct products and directed co-
limits.

6.2 Fundamental Theorem

In the first part of this section we present some properties of signature morphisms which
express rather abstractly various actual finiteness properties which underly the method of
ultraproducts.

Preservation of filtered products (of models)

Consider a functor G : C′ → C and F a filter over a set I. Then G preserves the fil-
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tered product μ′ : BF ⇒∏F Bi (for {Bi}i∈I a family of objects in C′), if μ′G : BF ;G⇒
∏F G(Bi) is also a filtered product in C of {G(Bi)}i∈I .

∏i∈J′ Bi
pJ′,J ��

μJ′ ���
��

��
∏i∈J Bi

μJDD,,
,,
,

∏i∈J′ G(Bi)
pJ′,J ��

G(μJ′ ) CC++
+++

+ ∏i∈J G(Bi)

G(μJ)FF///
///

∏F Bi ∏F G(Bi)

For any class F of filters, we say a functor preserves F -filtered products if it preserves
all filtered products modulo F for each filter F ∈ F .

In many institutions, when the role of G is played by model reduct functors, the
preservation of filtered products is an immediate consequence of preservation of (direct)
product and of directed co-limits. In the following we analyze these two conditions.

Preservation of direct products. Since right adjoint functors preserve all limits (see
Prop. 2.6), one way to see that model reducts preserve direct products is to invoke liber-
ality of the signature morphisms. According to Prop. 4.29 a sufficient set of conditions
for this is the existence of signature pushouts, semi-exactness, existence of elementary
diagrams, and existence of initial models of presentations. At a first glance the latter con-
dition might seem quite strong, however it is not since we need only the sub-institution
of those sentences which are involved by the elementary diagrams. As we know, in the
case of the standard concepts of model homomorphisms, these are the atomic sentences
of the institution. FOL is a typical case, since for the standard concept of model homo-
morphism we thus need that only (sets of) atoms have initial models, a property which is
easy to establish (see Cor. 4.28).

Note that restricted concepts of model homomorphisms may break the argument
above. Consider for example the injective FOL-model homomorphisms. Recall that the
corresponding elementary diagrams consist of (equational and relational) atoms plus
negations of equational atoms. Arbitrary sets of atoms and negations of equational atoms
do not necessarily have an initial model, even when homomorphisms are all injective.
Moreover, in this case even the existence of (direct) products of models is lost. This shows
that categorical filtered products require appropriate model homomorphisms which guar-
antee good structural properties for the categories of models.

An important special case is when the signature morphism is representable. In this
case we can have a general preservation result for direct products of models based on the
following slightly more general result.

Proposition 6.4. All model reduct functors corresponding to representable signature
morphisms create limits of models.

Proof. Let χ : Σ→ Σ′ be a representable signature morphism. The proposition holds by
the general categorical argument that the forgetful functor from a comma category to
the base category creates all limits (Prop. 2.3) applied to the forgetful Mχ/Mod(Σ) →
Mod(Σ). �
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Preservation of directed co-limits. In many institutions this property usually holds in
a stronger form: the model reduct functors lift, and sometimes even create, directed co-
limits.

This property relies upon the finiteness of the arities of the symbols of the signa-
tures, as shown by the following typical example.

Proposition 6.5. In FOL all model reduct functors lift directed co-limits. Moreover, for
the signature morphisms that are surjective on the sorts, the corresponding model func-
tors create directed co-limits.

Proof. Let us first consider a simpler case, when the model reduct functor is the forgetful
functor from models to their underlying set carriers. Let (hi, j)(i≤ j)∈(J,≤) be a directed
diagram of (S,F,P)-models, and let ((μi)s)s∈S)i∈J be the co-limit of the corresponding
diagram of underlying sets.

Mi
hi, j ��

μi $$�
��
��

Mj

μ j69))
))
)

(Mi)s
(hi, j)s ��

(μi)s (+-
--

--
(Mj)s

(μ j)s��..
..
.

M Ms

Then there exists a unique way one can interpret the operations F and relations P on the
sets {Ms}s∈S such that μi become (S,F,P)-model homomorphisms:

• For each σ ∈ Fw→s and each tuple of elements (m1, . . . ,mk) ∈Mw, define

Mσ(m1, . . . ,mk) = μ j((Mj)σ(m j
1, . . . ,m

j
k))

where j and m j
1 . . .m j

k are such that m1 = μ j(m
j
1), . . . ,mk = μ j(m

j
k). This is possible

because (μi)i∈J is already the co-limit of the underlying set carriers (hence each mi

can be written as μ ji(m
ji
i ) for some ji ∈ J) and because the length k of the arity

w is finite (hence by the directedness of (J,≤) we can find a common j for all mi,
1≤ i≤ k). Also, the correctness of the definition is guaranteed by the directedness of
(J,≤) and because hi, j are F-homomorphisms. It is easy to check that this definition
of Mσ makes all μi’s F-homomorphisms.

• For each π ∈ P,

Mπ =
⋃
{μi((Mi)π) | i ∈ J}

This makes all μi P-homomorphisms. Also Mπ is the smallest with this property,
which guarantees the co-limit property of the co-cone (μi)i∈J in the category of
P-homomorphisms.

Now it is easy to check that (μi)i∈J is also a co-limit in the category F-homomorphisms,
hence μ is a co-limit in ModFOL(S,F,P).

In the second part of the proof, we consider any FOL-signature morphism ϕ :
(S,F,P)→ (S′,F ′,P′). Let (h′i, j)(i≤ j)∈(J,≤) be a directed diagram of (S′,F ′,P′)-models,
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and let (hi, j)(i≤ j)∈(J,≤) be its ϕ-reduct. Let μ be a co-limit of (hi, j)(i≤ j)∈(J,≤). By the first
part of the proof, we know that the underlying (many-sorted) function of μ forms a co-
limit for the diagram consisting of the underlying functions of (hi, j)(i≤ j)∈(J,≤).

M′
i

h′i, j ��

μ′i $$!
!!

!
M′

j

μ′j69��
��

Mi
hi, j ��

μi ���
��
��

Mj

μ j69��
��
�

M′ M

There exists a co-cone μ′ for the diagram consisting of the underlying functions of
(h′i, j)(i≤ j)∈(J≤) such that (μ′i)ϕ(s) = (μi)s for each i ∈ J and s ∈ S. If ϕst : S→ S′ is surjec-
tive then μ′ is unique and it is also a co-limit. If ϕst is not surjective, then μ′ may not be
unique but can be fixed to be a co-limit. For the final step we may just apply the first part
of the proof to μ′ and obtain it as a co-limit of (h′i, j)(i≤ j)∈(J≤). The fact that M′

ϕ(x) = Mx, for
x operation or relation symbol in (S,F,P), can be established easily from the definitions
of M′

ϕ(x) as follows from the first part of the proof.
�

In most situations the preservation of directed co-limits of models is required only
for the model reducts corresponding to a special class of signature morphisms, which are
often quasi-representable. A general preservation result applicable to these situations can
be obtained from the following:

Proposition 6.6. All model reduct functors corresponding to quasi-representable signa-
ture morphisms create directed co-limits of models.

Proof. Let χ : Σ → Σ′ be a quasi-representable signature morphism, let ( f ′i, j)(i< j)∈(I,≤)
be a directed diagram of Σ′-models, and let ( fi, j)(i< j)∈(I,≤) be its χ-reduct. Consider a
co-limit μ of ( fi, j)(i< j)∈(I,≤).

A′i
f ′i, j ��

μ′i ���
��

��
A′j

μ′j����
��
�

Ai
fi, j ��

μi GG0
00
00

A j

μ j-111
11
1

Bi = B j A

Because χ is quasi-representable, for each i ∈ I, there exists a unique χ-expansion
μ′i : A′i → Bi of μi. By the uniqueness property of quasi-representability and because the
diagram is directed we can show that Bi = B j for all i, j ∈ I, and that μ′i = f ′i, j;μ′j for all
(i ≤ j) ∈ (I,≤). By a similar argument we can further show that μ′ is a co-limit of
( f ′i, j)(i< j)∈(I,≤) �

The following is a consequence of Prop. 6.6 and we will use it later.

Corollary 6.7. The model reducts corresponding to finitary quasi-representable signa-
ture morphisms preserve the finitely presented models, i.e., if χ is finitary quasi-represent-
able, then M′�χ is finitely presented whenever M′ is finitely presented.
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Proof. Let us consider a quasi-representable signature morphism χ : Σ → Σ′, a finitely
presented Σ′-model M′, and a Σ-model homomorphism h : M′�χ → A to the vertex of a

co-limit (Ai
μi ��A)i∈J of a directed diagram (Ai

fi, j ��A j )(i< j)∈(J,≤).
We prove that there exists j ∈ J and g j : M′�χ → A j such that g j;μ j = h. By the

quasi-representability of χ let h′ : M′ → A′ be the unique χ-expansion of h. Because
χ is finitary there exists i ∈ J and μ′i : A′i → A′ a χ-expansion of μi. A′i and the quasi-
representability of χ determines a directed diagram of Σ′-models

(A′j
f ′j,k ��A′k )(i≤ j<k)∈(J,≤) and a co-cone (μ′j)i≤ j∈J such that f ′j,k�χ = f j,k and μ′j�χ = μ j.

The χ-reduct of this diagram is a final sub-diagram of ( f j,k)( j<k)∈(J,≤), and because the
model reduct corresponding to χ creates directed co-limits (cf. Prop. 6.6) we obtain that
(μ′j)i≤ j∈J is the co-limit of ( f ′j,k)(i≤ j<k)∈(J,≤). Because M′ is finitely presented there exists
i ≤ j and g′j : M′ → A′j such that g′j;μ′j = h′. Let g j = g′j�χ. Then g j;μ j = (g′j;μ′j)�χ =
h′�χ = h.

Now we prove that for any gi : M′�χ → Ai and gk : M′�χ → Ak such that gi;μi =
h = g j;μ j there exists i,k < j such gi; fi, j = gk; fk, j . By the quasi-representability property
for χ let

• g′i : M′ → A′i and g′k : M′ → A′k be the χ-expansions of gi and gk, respectively, and

• μ′i : A′i → A′ and μ′k : A′k → A′ be the χ-expansions of μi and μk, respectively.

Note that by the uniqueness of the χ-expansions of gi;μi = h = g j;μ j as a Σ′-homomor-
phism from M′ we have that μ′i and μ′k have the same codomain A′. By the uniqueness part
of the fact that χ is finitary there exists i,k < l ∈ J and χ-expansions f ′i,l , f ′k,l and μ′l of fi,l ,
fk,l and μl , respectively, such that μ′i = f ′i,l ;μ′l and μ′k = f ′k,l ;μ′l . Thus

g′i; f ′i,l ;μ′l = g′k; f ′k,l ;μ′l = h′.

By the quasi-representability of χ we have that f ′i,l and f ′k,l have the same codomain; let us
denote it by A′l . Then again by the quasi-representability of χ and by the directedness of
(J,≤), A′l determines a unique χ-expansion ( f ′j1, j2)(l≤ j1< j2)∈(J,≤) of the final sub-diagram
( f j1, j2)(l≤ j1< j2)∈(J,≤) together with a unique χ-expansion (μ′j)(l≤ j)∈(J,≤) of the co-limiting
co-cone (μ j)(l≤ j)∈(J,≤). By the uniqueness part of the fact that M′ is finitely presented
there exists l ≤ j such that g′i; f ′i,l ; f ′l, j = g′k; f ′k,l ; f ′l, j . From this by reduction by χ we
obtain gi; fi, j = gk; fk, j . �

Lifting of filtered products (of models)

Let F be a class of filters closed under reductions. A functor G : C′ → C lifts F -filtered
products when for each F ∈F , each filtered product μ : AF ⇒∏F Ai (for {Ai}i∈I a family
of objects in C), and for each object B in C′ such that G(B) = ∏F Ai,

– there exists J ∈ F and {Bi}i∈J a family of objects in C′ such that G(Bi) = Ai for
each i ∈ J and such that
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– there exists a filtered product μ′ : BF|J ⇒ B such that G(μ′J′) = μJ′ for each J′ ∈ F |J .

When J = I we say that G lifts completely the respective filtered product. Note that in this
case the closure of F under reductions is redundant.

In essence, this lifting property means that each F -filtered product construction of
G(B) can be established as the image by G of an F -filtered product construction of B by
means of a filter reduction.

Unlike preservation of filtered products, in the actual institutions the lifting of fil-
tered products is more delicate, holding for a narrower class of signature morphisms.
However, in general we can establish the following classes of signature morphisms for
which their model reduct functors lift filtered products.

Proposition 6.8. In any institution the model reduct functor corresponding to a signature
morphism χ

1. lifts F -filtered products if it is finitary representable and F is closed under reduc-
tions, or

2. lifts completely F -filtered products if it is projectively representable, i.e., it is repre-
sentable such that its representation Mχ is projective, and all projections of model
products are epis.1

Proof. Consider a filter F ∈ F over a set I and a χ-expansion A′ of a filtered product
∏F Ai of Σ-models. Let μ be the co-limiting co-cone of the filtered product.

1. Because χ is finitary, there exists J ∈ F and μ′J : A′J → A′ such that μ′J�χ = μJ.
By the quasi-representability of χ, for each i ∈ J let p′i : A′J → A′i be the unique

χ-expansion of pi : ∏ j∈J A j → Ai. Then, because χ is representable, the {p′i}i∈J form a
product cone.

By using the fact that χ is representable, A′J and {A′i}i∈J determine unique χ-expan-
sions (p′J′ ,J′′)(J′′⊆J′)∈F|J of (pJ′ ,J′′)(J′′⊆J′)∈F|J and (μ′J′)J′∈F|J of (μJ′)J′∈F|J . Because rep-
resentable signature morphisms create directed co-limits (cf. Prop. 6.6), and because
(pJ′,J′′)(J′′⊆J′)∈F|J is a final sub-diagram of (pJ′ ,J′′)(J′′⊆J′)∈F , by Thm. 2.4 we have thus
obtained a lifting of the original filtered product.

2. First we show that μI : ∏i∈I Ai → ∏F Ai is epi. Let f ,g : ∏F Ai → • such that
μI; f = μI;g. Because the projections pI,J′ : ∏i∈I Ai → ∏i∈J′ Ai are epis, it follows that
for each J′ ∈ F , we have that μJ′ ; f = μJ′ ;g. Because (μJ′)J′∈F is a co-limiting co-cone, it
is an epimorphic family, therefore f = g.

Now, by using the fact that μI is epi, because Mχ is projective, there exists b : Mχ →
∏i∈I Ai such that b;μI = iχ(A′). For each i ∈ I, let A′i = i−1

χ (b; pI,i), where pI,i is the
projection ∏i∈I Ai→ Ai. A routine check shows that {A′i}i∈I determines a complete lifting
of the original filtered product. �

Although in most situations we will use Prop. 6.8 for lifting of filtered products, the
representability of the signature morphism is not always a necessary condition for this. A
remarkable counterexample which will be seen below (Cor. 11.15) is given by the lifting
of filtered products of Kripke models in modal institutions.

1For any model product ∏i∈I Mi, the canonical projections ∏i∈I Mi →Mi are epis.



130 Chapter 6. Model Ultraproducts

The Fundamental Theorem

Sentences preserved by filtered factors/products. The following notions of preserva-
tion by filtered factors and by filtered products are dual to each other.

For a signature Σ in an institution, a Σ-sentence e is

• preserved by F -filtered factors if ∏F Ai |=Σ e implies {i ∈ I | Ai |=Σ e} ∈ F , and

• preserved by F -filtered products if {i ∈ I | Ai |=Σ e} ∈ F implies ∏F Ai |=Σ e

for each filter F ∈ F over a set I and for each family {Ai}i∈I of Σ-models.
When F is the class of all ultrafilters, preservation by F -filtered factors, respec-

tively products, is called preservation by ultrafactors, respectively ultraproducts.

Theorem 6.9 (Fundamental ultraproducts theorem). In any institution:

1. The basic sentences are preserved by all filtered products.

2. The finitary basic sentences are preserved by all filtered products and all filtered
factors.

For any class F of filters closed under reductions:

3. The sentences preserved by F -filtered products are closed under existential χ-quan-
tification, when χ preserves F -filtered products.

4. The sentences preserved by F -filtered factors are closed under existential χ-quan-
tification, when χ lifts F -filtered products.

5. The sentences preserved by F -filtered factors and the sentences preserved by
F -filtered products are both closed under conjunction.

6. The sentences preserved by F -filtered products are closed under infinite conjunc-
tions.

7. If a sentence is preserved by F -filtered factors then its negation is preserved by
F -filtered products.

And finally, if we further assume that F contains only ultrafilters:

8. If a sentence is preserved by F -filtered products then its negation is preserved by
F -filtered factors.

9. The sentences preserved by both F -filtered products and factors are closed under
negation.

Proof. 1. Let F be any filter over I and let {Ai}i∈I be a family of Σ-models for a signature
Σ.

Let e be a basic sentence and consider J = {i∈ I |Ai |=Σ e}. There exists a model ho-
momorphism Me → Ai for each i ∈ J, therefore by the universal property of the products,
there exists a model homomorphism Me →∏i∈J Ai. By composing it with μJ : ∏i∈J Ai→
∏F Ai, we get a model homomorphism Me →∏F Ai, which implies that ∏F Ai |= e.
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2. Consider a finitary basic Σ-sentence e. By 1 we have to prove only that e is
preserved by filtered factors. If ∏F Ai |= e, then there exists a model homomorphism
Me → ∏F Ai. Since Me is finitely presented, there exists a model homomorphism Me →
∏i∈J Ai for some non-empty J ∈ F , which, by the product projections, means that Ai |= e
for all i ∈ J. Therefore {i ∈ I | Ai |=Σ e} ∈ F because J ⊆ {i ∈ I | Ai |=Σ e}.

3. Let χ : Σ → Σ′ be a signature morphism which preserves F -filtered products.
Let e′ be a Σ′-sentence preserved by F -filtered products, and let e be an existential χ-
quantification of e′. Consider a filter F ∈ F over a set I, and let {Ai}i∈I be a family of
Σ-models such that J = {i ∈ I | Ai |=Σ e} ∈ F . We have to prove that ∏F Ai |=Σ e.

For each i ∈ J let Bi be a Σ′-model such that Bi�χ = Ai and Bi |=Σ′ e′. Because F |J ∈
F and because e′ is preserved by F -filtered products we have that ∏F |J Bi |=Σ′ e′. Because
χ preserves F -filtered products, we have that (∏F |J Bi)�χ = ∏F |J Ai, which implies that
∏F |J Ai |=Σ e. By Prop. 6.3, we have that ∏F |J Ai

∼= ∏F Ai, which shows that ∏F Ai |= e.
4. Let χ : Σ→ Σ′ be a signature morphism which lifts F -filtered products. Let e′ be

a Σ′-sentence preserved by F -filtered factors, and let e be an existential χ-quantification
of e′. Consider a filter F ∈ F over a set I, and let {Ai}i∈I be a family of Σ-models such
that ∏F Ai |=Σ e. We have to prove that {i ∈ I | Ai |=Σ e} ∈ F .

Let B be a χ-expansion of ∏F Ai such that B |=Σ′ e′. Because χ lifts F -filtered
products, there exists J ∈ F such that for each i ∈ J there exists a Σ′-model Bi such that
Bi�χ = Ai and such that ∏F|J Bi = B. Because e′ is preserved by F -filtered factors and F
is closed under reductions, J′ = {i ∈ J | Bi |=Σ′ e′} ∈ F|J ⊆ F . But J′ ⊆ {i ∈ I | Ai |=Σ e},
therefore {i ∈ I | Ai |=Σ e} ∈ F because F is a filter.

5. This follows from:

• {i ∈ I | Ai |= e′ ∧ e′′}= {i ∈ I | Ai |= e′}∩{i∈ I | Ai |= e′′},
• J′ ∩ J′′ ∈ F if and only if J′,J′′ ∈ F , and

• ∏F Ai |= e′ ∧ e′′ if and only if ∏F Ai |= e′ and ∏F Ai |= e′′

for any F ∈ F filter over a set I, and {Ai}i∈I any family of Σ-models.
6. Given a signature Σ, for each family {el}l∈L of Σ-sentences preserved by F -

filtered products, assume that {i ∈ I | Ai |= el for each l ∈ L} ∈ F , where F ∈ F is any
filter over a set I and {Ai}i∈I is any family of Σ-models. Then for each l ∈ L, {i ∈ I | Ai |=
el}⊇ {i∈ I |Ai |= el for each l ∈ L} ∈ F , thus {i∈ I |Ai |= el} ∈ F , therefore ∏F Ai |= el

for each l ∈ L.
7. Let e be the negation of a Σ-sentence e′ for a signature Σ such that e′ is preserved

by F -filtered factors. Let F be any filter in F over a set I and let {Ai}i∈I be a family of
models such that J = { j ∈ I | A j |= e} ∈ F .

We have to prove that ∏F Ai |= e. If we assume the contrary, it means that ∏F Ai |=
e′. Since e′ is preserved by F -filtered factors, J′ = { j ∈ I | A j |= e′} ∈ F . Because F is a
proper filter J∩ J′ ∈ F is not empty, hence we can find j such that A j |= e and A j |= e′,
which is impossible.

8. Let e be the negation of e′ such that e′ is preserved by F -filtered products. Let
F be any ultrafilter in F over a set I and let {Ai}i∈I be a family of models such that
∏F Ai |= e. If { j ∈ I | A j |= e} �∈ F then its complement { j ∈ I | A j |= e′} belongs to F
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(because F is a ultrafilter). Because e′ is preserved by F -filtered products, this would
imply ∏F Ai |= e′ which contradicts ∏F Ai |= e. This means { j ∈ I | A j |= e} ∈ F .

9. From 7 and 8. �

6.3 Łoś Institutions

Łoś sentences. A sentence is a Łoś-sentence when it is preserved by all ultrafactors and
all ultraproducts.

Corollary 6.10. In any institution I , the sentences accessible from the finitary basic
sentences by Boolean connectives and χ-quantification for which χ preserves and lifts
ultraproducts, are Łoś-sentences.

Proof. For any class D of signature morphisms which preserve and lift ultraproducts and
is stable under pushouts, let I (D) be the extension of I by closing the finitary basic
sentences of I to Boolean connectives and universal and existential D-quantification. By
taking F to be the class of all ultrafilters in Thm. 6.9, we have that any sentence in I (D)
is a Łoś-sentence. By taking D to be the class of signature morphisms involved in the
semantic quantifications supported by I and which preserve and lift ultraproducts, we
may note that each sentence of I is semantically equivalent to a sentence of I (D). �

Cor. 6.10 can be further specialized by using Prop. 6.6, 6.4 and 6.8:

Corollary 6.11. In any institution, any sentence which is accessible from the finitary
basic sentences by

– Boolean connectives,

– finitary representable quantification, and

– projectively representable quantification (assuming that the institution has epi mod-
el projections)

is a Łoś-sentence.

Łoś-institutions. An institution is a Łoś-institution if and only if it has all ultraprod-
ucts of models and all its sentences are Łoś-sentences. Note that the condition on the
existence of ultraproducts requires the existence of direct products but not necessarily of
other filtered products.

Since each FOL-sentence is accessible by finitary representable quantification and
Boolean connectives from equations and relational atoms, which are finitary basic, we
have the following instance of Cor. 6.11.

Corollary 6.12. FOL is a Łoś-institution.

Note that for the above corollary, instead of finitary representable quantification, we
could have alternatively used the argument of projectively representable quantifications.
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Filtered power embedding

Let F be filter over a set I. In any institution with F-filtered products of models, for each
model M there is a canonical model homomorphism dF

M from M to its filtered power
∏F M defined by

dF
M = (M

δI
M �� ∏i∈I M

μI �� ∏F M )

where δI
M : M→∏i∈I M is the diagonal (δI

M; pI,i = 1M for each i∈ I) and μI : ∏i∈I M→
∏F M is the ‘top’ component of the filtered product co-cone μ : MF ⇒∏F M.

Proposition 6.13. In any institution with elementary diagrams ι, for any filter F over an
arbitrary set I such that

1. the institution has F-filtered products of models which are preserved by the elemen-
tary extensions, and

2. all sentences are preserved by F-filtered products,

the canonical homomorphism dF
M : M →∏F M is elementary for any model M.

Proof. Let MM be the initial model of the elementary diagram of a Σ-model M. We have
to prove that i−1

Σ,M(dF
M) |= M∗

M .
Because the sentences of the elementary diagram EM are preserved by all F-filtered

products, ∏F MM |= EM . Because Mod(ιΣ(M)) preserves F-filtered products, we have
that dF

MM
�ιΣ(M) = dF

M. Thus

dF
M = iΣ,M(dF

MM
) : iΣ,M(MM)→ iΣ,M(∏

F
MM).

Because iΣ,M(MM) = 1M , we have that iΣ,M(∏F MM) = dF
M. Now because all sentences

are preserved by F-filtered products, ∏F MM |= M∗
M , therefore dF

M is elementary. �

The condition of preservation of filtered products by the elementary extensions
in the above proposition is fulfilled trivially in all institutions for which all signature
morphisms preserve (direct) products and directed co-limits of models. We have seen in
Sect. 6.2 that this is a quite common situation. Alternatively we may use the general argu-
ment that representable signature morphisms preserve all filtered products (cf. Prop. 6.4
and 6.6) and note that elementary extensions are usually representable.

By Cor. 6.12 we obtain the following instance of Prop. 6.13.

Corollary 6.14. Any FOL-model can be elementarily embedded in any of its ultrapowers.

Exercises

6.10. Several concrete institutions (such as HCL, POA, PA, AUT, MBA, LA, IPL, etc.) can be
established as Łoś institutions by virtue of Cor. 6.11.
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6.11. Ultraproducts in HNK
HNK has ultraproducts of models. (Hint: Consider comorphism HNK→ FOEQLpres of Ex. 4.11
and use the fact that (cf. Ex. 6.4) HNK has direct products of models and that (cf. Cor. 6.12) FOL
is a Łoś institution.) Note that HNK is an example of an institution that has direct products and
ultraproducts but does not necessarily have all filtered products.

6.12. Borrowing the Łoś property
For any persistently liberal institution comorphism (Φ,α,β) : I → I ′, for any I -sentence ρ, if α(ρ)
is a Łoś sentence then ρ is a Łoś sentence too.

This can be applied to the examples of comorphisms of Ex. 4.73 for obtaining the Łoś prop-
erty for several concrete institutions (such as POA, PA, AUT, MBA, IPL, LA, etc.). By this bor-
rowing method HNK can also be established as a Łoś institution. (Hint: Use the comorphism of
Ex. 4.11 and refer also to the result of Ex. 6.11.)

6.13. Horn sentences are preserved by filtered products
Let (∀χ)E ⇒ E ′ be a finitary universal Horn sentence for a signature Σ in an arbitrary institution
that has filtered products of models. For each family of Σ-models {Mi}i∈I and filter F over I, show
that the filtered product ∏F Mi satisfies (∀χ)E ⇒ E ′ when Mi satisfies (∀χ)E ⇒ E ′ for each i ∈ I.

Apply the above for showing that in HCL any model can be elementarily embedded in any
of its filtered powers.

6.14. Σ1
1-sentences

In any institution, e is a Σ11-sentence if it is an existential χ-quantification of a Łoś sentence, where
χ is any filtered product preserving signature morphism. For example any second order existential
quantification of a FOL sentence is a Σ11-sentence. In any institution each Σ11-sentence is preserved
by ultraproducts.

6.4 Compactness

If for each set of sentences E and each sentence e, E |= e implies the existence of a finite
subset E f ⊆ E such that E f |= e, then we say that the institution is compact.

A set of sentences E for a signature Σ is consistent if E∗ is not empty. An institution
is model compact or m-compact for short, if each set of sentences is consistent when all
its finite subsets are consistent.

Compactness versus model compactness. The significance of consistency and of the
distinction between compactness and m-compactness depends on the actual institution.
For example, consistency has real significance in FOL, while in EQL or HCL it is a
trivial property since each set of sentences is consistent. Therefore in some institutions
compactness and m-compactness are not necessarily the same concept. For example, any
institution in which each set of sentences is consistent is trivially m-compact, but it is not
necessarily compact. Below is a simple (counter)example.

Proposition 6.15. HCL∞ (infinitary Horn clause logic) is model compact but it is not
compact.
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Proof. That HCL∞ is m-compact follows from the fact that each presentation in HCL∞
is consistent since it has an initial model. This can be established in the same way as for
HCL since in Prop. 4.26 we have not used the fact that the Horn sentences are finitary.

Now let us show that HCL∞ is not compact. For this we consider a signature without
sorts, consisting only of an infinite set P of relation symbols of empty arity. Note that
models of this signature consist of subsets of P. Obviously each element of P is an atom.
Let us pick a π ∈ P and consider E = P \ {π}. Then E ∪{∧E ⇒ π} |= π. However for
any finite part Γ ⊆ E ∪ {∧E ⇒ π} we can find a model M for Γ which is not a model
for π. This model M is the subset of P defined by M = Γ \ {∧E ⇒ π}. Then M |= Γ but
obviously M �|= π. �

The following establishes a general relationship between compactness and m-com-
pactness.

Proposition 6.16.

– Each compact institution having false2 is m-compact.

– Each m-compact institution having negations is compact.

Proof. Let E be any set of Σ-sentences. If the institution is compact and has false, then E
is consistent when all its finite subsets are consistent, otherwise E |= false which implies
the existence of a finite subset E ⊇ E f |= false which gives an inconsistent finite subset of
E .

Conversely, in any institution that is m-compact and has negations, if E |= e and
each finite subset E ⊇ E f �|= e, then there exists a model Mf |= E f such that Mf |= ¬e,
which implies that E∪{¬e} is consistent, which is a contradiction. This means that there
exists a finite subset E f |= e, therefore the institution is compact. �

Compactness by ultraproducts

Theorem 6.17. In any institution, let E be a set of sentences preserved by ultraproducts.
Let I be the set of all finite subsets of E. Consider a model Ai for each finite subset i ∈ I.
Then there exists an ultraproduct ∏U Ai such that ∏U Ai |= E.

Proof. A set S ⊆ P (I) has the finite intersection property if J1 ∩ J2∩ ·· · ∩ Jn �= /0 for all
J1,J2, . . . ,Jn ∈ S. We will use the following classical Ultrafilter Lemma (its proof can be
found for example in [32]).

Lemma 6.18. If S ⊆ P (I) has the finite intersection property, then there exists an ultra-
filter U over I such that S ⊆U.

Let S = {{i ∈ I | ρ ∈ i} | ρ ∈ E}. S has the finite intersection property because

{ρ1,ρ2, . . . ,ρn} ∈ {i ∈ I | ρ1 ∈ i}∩{i ∈ I | ρ2 ∈ i}∩ · · ·∩{i ∈ I | ρn ∈ i}.
By the Ultrafilter Lemma 6.18, let U be an ultrafilter such that S ⊆U .

2For each signature Σ there exists a Σ-sentence falseΣ which is not satisfied by any Σ-model.
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For each ρ ∈ E , we have that {i ∈ I | ρ ∈ i} ⊆ {i ∈ I | Ai |= ρ}. This means that
{i ∈ I | Ai |= ρ} ∈U . Because ρ is preserved by ultraproducts, it implies that ∏U Ai |= ρ.
Because ρ ∈ E is arbitrary, it follows that ∏U Ai |= E . �

Corollary 6.19. Any institution in which each sentence is preserved by ultraproducts is
m-compact.

Corollary 6.20. Let E be a set of sentences preserved by ultraproducts, and let e be a
sentence preserved by ultrafactors such that E |= e. Then there exists a finite subset E ′ ⊆E
such that E ′ |= e.

Proof. Let us assume the contrary, i.e., that for each finite i ⊆ E , i �|= e. This means that
there exist models Ai such that Ai |= i but Ai �|= e.

Let I be the set of all finite subsets of E . By Thm. 6.17, there exists an ultraproduct
such that ∏U Ai |= E . Therefore ∏U Ai |= e. Because e is preserved by ultrafactors, {i ∈
I | Ai |= e} ∈U . But {i ∈ I | Ai |= e}= /0 which is a contradiction since as an ultrafilter U
is a proper filter. �

Corollary 6.21. Any Łoś-institution is (m-)compact.

Cor. 6.21 constitutes a great source of examples of compact and m-compact institu-
tions. The following well-known example is obtained via Cor. 6.12.

Corollary 6.22. FOL is (m-)compact.

Exercises

6.15. [113] Logical compactness versus topological compactness
Recall that a topology (X ,τ) is compact when for each family {Ui}i∈I such that Ui ∈ τ for each i ∈ I
and such that

⋃
i∈I Ui = X , there exists a finite subset J ∈ I such that

⋃
i∈J Ui = X .

An institution with negation is (m-)compact if all its semantic topologies (see Ex. 4.5) are
compact. Moreover, if the institution has finite conjunctions too, then it is (m-)compact if and only
if all its semantic topologies are compact.

6.16. Maximally consistent sets
(a) We say that a set of sentences E for a signature Σ in an arbitrary institution is maximally con-
sistent if and only if for any other consistent set E ′, E ⊆ E ′ implies E = E ′. In any institution with
negation, a set E of sentences (for a given signature) is maximally consistent only if for each sen-
tence e exactly one of e and ¬e belong to E.
(b) By (a), in any institution with negation, for any signature morphism ϕ : Σ→ Σ′ and each max-
imally consistent set of Σ′-sentences E ′, ϕ−1(E ′) is maximally consistent.

6.17. Lindenbaum Theorem
We say that an institution has the Lindenbaum Property if and only if each consistent set of sen-
tences can be extended to a maximal consistent set of sentences. Each m-compact institution has
the Lindenbaum Property. (Hint: Let β be the cardinal of Sen(Σ) and arrange Sen(Σ) = {eα}α<β.
Define E0 = E, and for each successor ordinal α + 1 define Eα+1 = Eα ∪ {eα} if Eα ∪ {eα}
is consistent, otherwise Eα+1 = Eα, and for each limit ordinal α′ define Eα′ =

⋃
α<α′ Eα. Then

Eβ =
⋃

α<β Eα is the desired maximally consistent set.)
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6.18. In any institution show that if E |= e where E is a set of Σ11-sentences and e is preserved by
ultrafactors, then there exists a finite subset E ′ ⊆ E such that E ′ |= e.

6.19. Finitely presented theories (Ex. 4.22 continued)
In any compact institution with conservative signature morphisms, a theory (Σ,E) is finitely pre-
sented if Σ is a finitely presented signature and (Σ,E) can be presented by a finite set of sentences.

6.5 Finitely Sized Models

The method of ultraproducts can be used to prove that elementary equivalence and the
finiteness of the size of the models is a sufficient condition for two models to be isomor-
phic. This is the main topic of this section.

Although saturated models (introduced in Chap. 7 below) provides a more general
framework for such types of results in which the finiteness condition on the size of the
models can be relaxed to a much softer condition, for finitely sized models this isomor-
phism result can be achieved by using ultrapower embeddings within the much simpler
minded framework of this section.

Dense signature morphisms. A signature morphism χ : Σ→ Σ′ is dense if and only if
for any couple of parallel Σ-model homomorphisms f ,g : M→N if for each χ-expansion
M′ of M there exists χ-expansions f ′, respectively g′, of f , respectively g, such that
f ′,g′ : M′ → N′ then f = g. In concrete terms the density of a signature morphism means
that it affects all sorts of the source signature. The following is a typical example.

Proposition 6.23. In FOL any signature extension χ : Σ→ Σ′ with constants such that
χ adds at least one new element for each sort of Σ, is dense.

Proof. Let us use the following important remark.

Fact 6.24. If χ is representable (represented by Mχ) then it is dense if and only if
ModFOL(Σ)(Mχ,N) is epimorphic for each Σ-model N.

Let us write Σ′ = Σ�X where X is a (new) set of constants for Σ. Then Mχ = TΣ(X)
where TΣ(X) is the term Σ-model over X . Because X contains at least one element for
each sort, the set of the Σ-homomorphisms TΣ(X)→ N is epimorphic for each Σ-model
N since for each element n ∈ N there exists at least one function f : X → N such that n
belongs to the image of f . �

Finitely sized models. Finitely sized models capture the situation when the carrier sets
of a models have only a finite set of elements. This is stronger than being finitely presented
and weaker than being finite in the sense that the signature is also finite. It is rather easy
to show that elementary equivalence implies isomorphism for the latter case (see Ex. 5.9).

In any institution with elementary diagrams ι, a Σ-model M is finitely sized if and
only if

– the elementary extension ιΣ(M) is finitary, and

– it has a finite number of ιΣ(M)-expansions.
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Fact 6.25. For any FOL signature, a model is finitely sized if and only if it has a finite
number of elements.

Note that under our basic assumption of non-emptiness of the sorts (i.e., that each
sort has at least one constant), having a finite number of elements implies also that the
number of the sorts of the signature is also finite. However no other finiteness restriction
is implied, such as on the number of operation or relation symbols.

Proposition 6.26. Let us consider an institution with elementary diagrams ι such that all
elementary extensions are dense and quasi-representable. For any finitely sized model N
and any ultrafilter U over a set I, the canonical diagonal homomorphism

dU
N : N

δI
N �� ∏i∈I N

μI �� ∏U N

is epi.

Proof. Consider two model homomorphisms f ,g : ∏U N → A such that dU
N ; f = dU

N ;g.
We have to prove f = g. Because ιΣ(N) is dense and quasi-representable, it is enough to
prove that for each ιΣ(N)-expansion N′U of ∏U N, both f and g expand to homomorphisms
N′U → A′.

Because the ιΣ(N) is finitary, there exists J ∈U and μ′J : N′J → N′U a χ-expansion
of μJ .

N′J

μ′J GG2
22

22
∏i∈J N

μJ :<












pJ,J′ �� ∏i∈J′ N
′

μJ′)*""
""
""
"

N′U ∏U N

Because χ is quasi-representable, for each K ⊆ J in U let us denote

• by p′J,K the unique ιΣ(N)-expansion of the projection pJ,K to a ΣN-homomorphism
N′J → N′K , and

• by μ′K the unique ιΣ(N)-expansion of μk from N′K . By the uniqueness property of the
quasi-representability we have that μ′K : N′K → N′U .

Let us assume that there exists a ιΣ(N)-expansion N′ of N, J ⊇ K ∈U , and (δK
N)′ a

ιΣ(N)-expansion of the diagonal δK
N : N →∏i∈K N.

N′

(δJ
N)′ ���

��
��

��
�

(δK
N)′

�� N′K
μ′K �� N′U

f ′ ��
g′

�� A′

N′J

p′J,K

��

μ′J

?A��������

Then because δK
N ;μK = δI

N ;μI = dU
N , by the uniqueness property of the quasi-representabil-

ity we have that (δJ
N)′;μ′K is the unique ιΣ(N)-expansion of dU

N to a ΣN-homomorphism
from N′. Let f ′ : N′U →A′f , respectively g′ : N′U →A′g, be the unique ιΣ(N)-expansions of
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f , respectively g, to ΣN-homomorphisms from N′U . Then both (δJ
N)′;μ′K ; f ′ and

(δJ
N)′;μ′K ;g′ are ιΣ(N)-expansions from N′ of dU

N ; f = dU
N ;g. By the uniqueness property

of the quasi-representability we have that A′f = A′g, which proves the proposition.

Now let us show that there exists a ιΣ(N)-expansion N′ of N, J ⊇ K ∈U , and (δK
N)′

a ιΣ(N)-expansion of δK
N : N →∏i∈K N. For each i ∈ J let p′J,i : N′J → N′i be the unique

ιΣ(N)-expansion of the projection pJ,i : ∏i∈J N → N to a ΣN-homomorphism from N′J .
For each ιΣ(N)-expansion N′ of N let J(N′) = {i ∈ J | N′i = N′}. Assume we showed that
there exists N′ such that J(N′) ∈U and let us define K = J(N′) and (δK

N)′ : N′ → N′′K be
the unique ιΣ(N)-expansion of (δK

N) to a ΣN-homomorphism from N′. Then both p′J,K and
p′J,i;(δK

N)′ are ιΣ(N)-expansions of the same Σ-homomorphism pJ,K = pJ,i;δK
N , therefore

they are equal. This means N′′K = N′K and (δK
N)′ : N′ → N′K .

If there exists no expansion N′ such that J(N′) ∈U , then because U is an ultrafil-
ter let I \ J(N′) ∈ U for each ιΣ(N)-expansion N′ of N. Because the ιΣ(N)-expansions
of N form a finite set, we have that

⋂
N′(I \ J(N′)) ∈ U . Hence I \⋃

N′ J(N′) ∈ U . But⋃
N′ J(N′) = J because for each i ∈ J we have that i ∈ J(N′i ), therefore I \ J ∈U which

because U as an ultrafilter is a proper filter, contradicts the fact that J ∈U . �

Note that the conditions of the elementary extensions of Prop. 6.26 above are ful-
filled immediately in all institutions where the elementary extensions add the elements of
the model as new constants to the signature. We know that this is a rather typical situa-
tion. The assumption of non-empty sorts plays again a role here ensuring the density of
the elementary extensions.

Corollary 6.27. Consider an institution with elementary diagrams ι such that

1. the elementary extensions are dense and quasi-representable,

2. it has ultraproducts of models which are preserved by the elementary extensions,

3. each sentence is preserved by ultraproducts of models, and

4. each elementary homomorphism which is an epi is an isomorphism.

Then any finitely sized model is isomorphic to any of its ultrapowers.
Moreover, if in addition the institution

5. has finite conjunctions, and

6. has existential D-quantification such that

7. each finitary elementary extension belongs to D,

then two elementary equivalent finitely sized models are related by an elementary homo-
morphism.

Proof. The first part follows immediately from Prop. 6.13 and 6.26.
For the second part, let M ≡ N be finitely sized models. For each finite E ⊆ M∗

M ,
because MM |= E , we have that M |= (∃ιΣ(M))∧E . Because M ≡ N, we have that N |=
(∃ιΣ(M))∧E . Therefore there exists NE a ιΣ(M)-expansion of N such that NE |= E .
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By Thm. 6.17, there exists an ultrafilter U on the set of all finite subsets E of M∗
M

such that ∏U NE |= M∗
M . This shows there exists an elementary homomorphism M →

(∏U NE)�ιΣ(M). But (∏U NE)�ιΣ(M) = ∏U N by the preservation of ultraproducts by the
model reducts corresponding to elementary extensions. By the first part of the proposition
we also have that N ∼= ∏U N, therefore there exists an elementary homomorphism M →
N. �

A typical concrete application of Cor. 6.27 is the following.

Corollary 6.28. Any FOL finitely sized model is isomorphic to any of its ultrapowers.
Any two elementary equivalent finitely sized FOL-models are isomorphic.

Proof. Only two points may need a bit of additional explanation. The first one concerns
the fact that in FOL, the elementary embedding homomorphisms which are also epis, are
in fact isomorphisms. In FOL the elementary embeddings are injective and closed, and
the injective closed epis are isomorphisms.

The second point concerns how to derive the isomorphism between two elementary
equivalent finitely sized models from the final conclusion of Cor. 6.27. This follows easily
by cardinality reasons because FOL elementary embeddings are injective. �

Exercises

6.20. The compositions between dense and conservative signature morphisms are dense.

6.21. Derive results similar to Cor. 6.28 of examples of institutions presented in this book other
than FOL.

Notes. The filtered product construction from conventional model theory (see Chap. 4 of [32]) has
been introduced in [115] and probably defined categorically for the first time in [120]. Categorical
filtered products have been intensively used in categorical logic and model theory works such as
[6] or [116, 117]. The equivalence between the category theoretic and the set theoretic definitions
of the filtered products appears in [84]. Filtered products are sometimes known under the name of
reduced products, such as in [32].

The fundamental ultraproducts theorem is the foundation for the method of ultraproducts in
conventional model theory [32] and has been stated for the first time in [115]. [14] is an exposition of
that part of conventional model theory that can reached using only ultraproducts. A rather different
abstract model theoretic approach to the fundamental ultraproducts theorem based on satisfaction by
injectivity is given in [5]. Our approach originates from [47] and contrasts [5] by making essential
use of concepts central to institution theory, such as signature morphisms and model reducts. This
multi-signature framework, very characteristic to institution theory, leads to higher generality and
simpler proofs. Although in the literature there are quite established concepts of lifting of co-limits
[1], there seems to be no standard notion corresponding to our concept of lifting of filtered products.

The institution-independent results on compactness by ultraproducts essentially constitute a
generalization of similar ultraproduct-based compactness results from conventional model theory
[32]. Finitely sized models have been introduced in an institution-independent setting and their
isomorphism criterion has been developed in [146].



Chapter 7

Saturated Models

A lot of deep results in model theory can be reached by the method of saturated models.
Two of the most useful properties of saturated models are their existence and their unique-
ness. The existence means that each model can be elementarily extended to a saturated
model, while uniqueness holds when the model is ‘sufficiently’ small. The main topic of
this chapter is the investigation of frameworks supporting these two properties, and of
some important applications.

The existence property of saturated models requires that directed co-limits of di-
agrams of elementary homomorphisms are still elementary. This is treated in the first
section of this chapter. This important preservation property of elementary homomor-
phisms, which is due to Tarski in the conventional concrete setting of FOL, will be used
for several results in other chapters too.

An important class of applications can be developed in conjunction with the method
of ultraproducts. In the last section we show that for certain ultrafilters, the corresponding
ultraproducts of models are always saturated. Assuming the Generalized Continuum Hy-
pothesis, this leads to one of the most beautiful applications of saturated models to first
order model theory, the Keisler-Shelah isomorphism theorem saying that “two models
are elementary equivalent if and only if they have isomorphic ultrapowers”. Apart from
its theoretical significance it has several applications, such as to axiomatizability and to
interpolation.

7.1 Elementary Co-limits

For this section, we assume an arbitrary institution with a designated (sub-)category D of
quasi-representable signature morphisms such that D is stable under pushouts.
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Sentences preserved/reflected by directed co-limits of models

The preservation and the reflection of sentences by directed co-limits of models have the
flavor of dual properties.

We say that a Σ-sentence ρ is D-preserved, respectively reflected, by directed co-
limits of models if for each directed diagram of D-elementary Σ-model homomorphisms
( fi, j)(i< j)∈(I,≤) with co-limit (μi)i∈I ,

Ai

μi ���
��

��
fi, j �� A j

μ j69��
��
�

A

for each i ∈ |I|, Ai |= ρ implies A |= ρ, respectively A |= ρ implies Ai |= ρ.

Theorem 7.1. The set of sentences D-preserved by directed co-limits:

1. contains all basic sentences,

2. is closed under (possibly infinite) conjunctions and disjunctions,

3. is closed under existential D-quantifications, and

4. is closed under finitary universal D-quantifications.

Proof. 1. Consider ρ a basic Σ-sentence. If Ai |= ρ then there exists a homomorphism

Mρ → Ai, which implies there exists a homomorphism Mρ → Ai
μi ��A . Hence A |= ρ.

2. Consider ρ1 and ρ2 sentences D-preserved by directed co-limits. If Ai |= ρ1∧ρ2

then Ai |= ρ1 and Ai |= ρ2. Hence A |= ρ1 and A |= ρ2, which just means A |= ρ1∧ρ2. The
proof for disjunctions is similar.

3. Consider (χ : Σ→Σ′)∈D and a Σ′-sentence ρ′ which is D-preserved by directed
co-limits, and assume that Ai |= (∃χ)ρ′ for some fixed i. Then there exists a χ-expansion
A′i of Ai such that A′i |= ρ′.

Because χ is quasi-representable and (I,≤) is directed, we can χ-expand the sub-
diagram ( f j,k)(i≤ j<k)∈(I,≤) of the original diagram ( f j,k)( j<k)∈(I,≤) to

(A′j
f ′j,k ��A′k )(i≤ j<k)∈(I,≤). Because quasi-representable signature morphisms create di-

rected co-limits (Prop. 6.6) and ( f j,k)(i≤ j<k)∈(I,≤) is a final sub-diagram of

( f j,k)( j<k)∈(I,≤), we have that the unique χ-expansion (A′j
μ′j ��A′ )(i≤ j)∈(I,≤) of

(μ j)(i≤ j)∈(I,≤) is a co-limiting co-cone for ( f ′j,k)(i≤ j<k)∈(I,≤). Because each f j,k is elemen-
tary we have that A′j |= ρ′ for each j ≥ i. By the induction hypothesis, A′ |= ρ′. Therefore
A |= (∃χ)ρ′.

4. Consider (χ : Σ → Σ′) ∈ D finitary and a Σ′-sentence ρ′ such that ρ′ is
D-preserved by directed co-limits and assume that Ai |= (∀χ)ρ′.

Consider A′ any χ-expansion of A. Because χ is finitary, we can find i < j and

a χ-expansion A′j
μ′j ��A′ of μ j. Because fi, j is D-elementary, it follows that A j |=
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(∀χ)ρ′, hence A′j |= ρ′. By an argument similar to 3, by χ-expanding ( f j,k)(i≤ j<k)∈(I,≤)
and (μ j)(i≤ j)∈(I,≤), by the induction hypothesis we obtain that A′ |= ρ′. �

The following extends Thm. 7.1 to institutions with negations:

Theorem 7.2. If the institution has negations, the set of sentences D-[preserved and
reflected] by directed co-limits

1. contains all finitary basic sentences,

2. is closed under (possibly infinite) conjunctions and negations, and

3. is closed under finitary D-quantifications.

Proof. 1. Consider ρ a finitary basic Σ-sentence. That Ai |= ρ implies A |= ρ follows from
1 of Thm. 7.1. Therefore let us suppose A |= ρ and let us show that Ai |= ρ.

Because Mρ is finitely presented and A |= ρ (which means there exists homomor-
phism Mρ → A), there exists i < j ∈ I and h : Mρ → A j. This means A j |= ρ. Because
fi, j : Ai → A j is D-elementary and because the institution has negations, it follows that
Ai |= ρ.

2. Similarly to 2 of Thm. 7.1.
3. Because of negations, existential and universal quantifications are inter-definable.

Therefore let us focus on the existential quantification. Let (χ : Σ→ Σ′) ∈D be a finitary
signature morphism and ρ′ be a Σ′-sentence which is D-[preserved and reflected] by
directed co-limits.

That Ai |= (∃χ)ρ′ implies A |= (∃χ)ρ′ follows from 3 of Thm. 7.1. Therefore let
us suppose A |= (∃χ)ρ′ and let us show that Ai |= (∃χ)ρ′. We have that A |= ¬(∀χ)¬ρ′,
which means A �|= (∀χ)¬ρ′. By 2 we have that ¬ρ′ is D-[preserved and reflected] by
directed co-limits. By 4 of Thm. 7.1, we have that (∀χ)¬ρ′ is D-preserved by directed
co-limits, hence Ai |= (∀χ)¬ρ′ would imply A |= (∀χ)¬ρ′ which contradicts A �|= (∀χ)¬ρ′.
Therefore Ai �|= (∀χ)¬ρ′, which means Ai |= ¬(∀χ)¬ρ′ |=| (∃χ)ρ′. �

Elementary co-limit theorem

Proposition 7.3. Assume that all sentences of the institution are D-preserved by directed
co-limits of D-elementary homomorphisms. Then, for each signature Σ, any co-limit of a
directed diagram of D-elementary Σ-homomorphisms is D-elementary.

Proof. Let ( fi, j)(i≤ j)∈(I,≤) be a directed diagram of Σ-homomorphisms such that each fi, j

is D-elementary and let (μi)i∈I be its co-limit.

Ai

μi ���
��

��
fi, j �� A j

μ j69��
��
�

A

For each k∈ I, in order to prove that μk is D-elementary, let μ′k : A′k→A′ be a χ-expansion
of μk (for some χ ∈ D) and let ρ′ be a Σ′-sentence such that A′k |= ρ′. We have to show
that A′ |= ρ′.
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As in Theorem 7.1 we can χ-expand the final sub-diagram ( fi, j)(k≤i< j)∈(I,≤) and
its co-limit (μi)(k≤i)∈(I,≤) to ( f ′i, j)(k≤i< j)∈(I,≤) with co-limit (μ′i)(k≤i)∈(I,≤). Because ρ′ is
D-preserved by directed co-limits we obtain that A′ |= ρ′. �

Prop. 7.3 helps to express Theorems 7.1 and 7.2 in the following form.

Corollary 7.4. Assume the institution satisfies one of the following:

1. each sentence is accessible from the finitary basic ones by (possibly infinite) con-
junctions, disjunctions, universal D-quantifications, and finitary existential
D-quantifications, or

2. the institution has negations and each sentence is accessible from the basic ones by
(possibly infinite) conjunctions, negations, and finitary D-quantifications.

Then any co-limit of a directed diagram of D-elementary homomorphisms is D-elemen-
tary.

When in addition the institution has D-normal elementary diagrams such that all
elementary extensions are in D, by virtue of Cor. 5.36, in the above Cor. 7.4 we may
replace ‘D-elementary’ just by ‘elementary’.

A typical concrete instance of Cor. 7.4 is obtained by taking D to the class of all
FOL-signature extensions with constants.

Corollary 7.5. In FOL, EQLN, FOL+, and EQL, the class of elementary homomor-
phisms is closed under directed co-limits.

Cor. 7.5 shows that the closure of elementary homomorphisms under directed co-
limits holds when the institution either has all negations (such as FOL, EQLN), or no
negation at all (such as FOL+, EQL), and it may fail on intermediate cases (such as
HCL).

7.2 Existence of Saturated Models
In this section we introduce the concept of a saturated model and develop the fundamental
existence theorem for saturated models. We start by a brief survey of some basic set
theoretic notions required by the concept of saturated models.

Some set theory

For a gentle introduction to (axiomatic) set theory we recommend [178].

Ordinals. We skip the formal lists of axioms for set theories such as Zermelo, Zermelo-
Fraenkel, Bernays, or Bernays-Morse which can be found in the rather rich set theory
literature, and just recall that from the point of view of formal set theory:

• 0 = /0,

• n + 1 = n∪{n} for each natural number n,

• ω = {0,1,2, . . .} the set of all natural numbers,

• ω+ 1 = ω∪{ω}= {0,1,2, . . . ,ω}, etc.
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All these are examples of ordinals. Formally, an ordinal is a set X such that X and each
member of X is ∈-transitive, i.e., every member of x is a subset of x. Although this def-
inition might seem quite artificial, it has become fairly standard in the literature. The
underlying intuition is that an ordinal is a special kind of ordering (by the membership
relation ∈), its definition as a certain kind of set being just a trick.

One of the important properties of ordinals is that they are well ordered, i.e., totally
ordered and any non-empty class of ordinals has a least element. Ordinals support the
following Principle of Transfinite (or Ordinal) Induction:

[(∀α)((∀β < α)⇒ P(β))⇒ P(α)]⇒ (∀α)P(α)

for each property P on ordinals.
For each ordinal α, let α + 1 = α∪{α} be its successor ordinal. If α is neither a

successor ordinal nor 0, we say that α is a limit ordinal.

Cardinals. Cardinal numbers are essentially equivalence classes, or representatives of
equivalence classes, of sets under the bijection relation. For each set X , let card(X) denote
its cardinality. An ordering between cardinals can be defined by card(X) ≤ card(Y ) if
and only if there exists an injective function X → Y .

When we take the point of view of cardinals as representatives of equivalence
classes, we can formally define cardinals the smallest ordinals α which are in bijective
correspondence to card(α). For example, ω is a cardinal while ω+1 is not. In fact infinite
cardinals are always limit ordinals.

Basic arithmetic operations can be defined by

• α+ β = card(α�β),

• α×β = card(α×β), and

• αβ = card{ f function | f : α→ β}.
For each ordinal α the least cardinal greater than α is denoted by α+. The Generalized
Continuum Hypothesis (abbreviated GCH) states that for every infinite cardinal α, 2α =
α+.

The following is a list of well-known cardinal arithmetic properties which will be
used in this chapter. More on cardinal arithmetic can be found in [100].

Proposition 7.6 (Cardinal arithmetic).

• if ω≤ α then α×α = α,

• if 2≤ α≤ β and ω≤ β then αβ = 2β,

• if α≤ β then αβ ≤ β+ (requires GCH).

Saturated models

Chains. In any category C, for any ordinal λ, a λ-chain is a (commutative) diagram

λ → C, written (Ai
fi, j ��A j )i< j≤λ, such that for each limit ordinal ζ ≤ λ, ( fi,ζ)i<ζ is
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the co-limit of ( fi, j)i< j<ζ. Note that the commutativity of the chain, which is implicit by
functoriality, just means that fi, j; f j,k = fi,k for all i < j < k ≤ λ.

For any class of arrows D ⊆ C, a (λ,D)-chain is any λ-chain ( fi, j)i< j≤λ such that
fi,i+1 ∈D for each i < λ. We say that an arrow h is a (λ,D)-chain if there exists a (λ,D)-
chain ( fi, j)i< j≤λ such that h = f0,λ.

λ-small signature morphisms. A signature morphism ϕ : Σ→ Σ′ is λ-small for a car-

dinal λ when for each λ-chain (Mi
fi, j ��Mj )i< j≤λ of Σ-homomorphisms and each ϕ-

expansion M′ of Mλ, there exists i < λ and a ϕ-expansion M′
i

f ′i,λ ��M′ of fi,λ.

Fact 7.7. Finitary signature morphisms are λ-small for each infinite cardinal λ.

(λ,D)-saturated models. For each signature morphism χ : Σ → Σ′, a Σ-model M
χ-realizes a set E ′ of Σ′-sentences, if there exists a χ-expansion M′ of M which satis-
fies E ′. It χ-realizes E ′ finitely if it realizes every finite part of E ′.

A Σ-model M is (λ,D)-saturated for λ a cardinal and D a class of signature mor-

phisms when for each ordinal α < λ and each (α,D)-chain (Σi
ϕi, j ��Σ j )i< j≤α with

Σ0 = Σ, for each (χ : Σα → Σ′) ∈ D, each ϕ0,α-expansion of M χ-realizes any set of
sentences if and only if it χ-realizes it finitely.

An immediate example of saturated models is given by finitely sized models in
FOL.

Proposition 7.8. Let D be the class of FOL signature extensions with a finite number of
constants, and let λ be an infinite cardinal.

A. Any FOL model which has a finite number of elements is (λ,D)-saturated.

B. For each (λ,D)-saturated FOL-model M and for each sort s, if Ms is infinite then
card(Ms)≥ λ.

Proof. A. Let ϕ : Σ0 → Σα be a (α,D)-chain for α < λ, and let Mα be a ϕ-expansion
of a Σ0-model M. Let (χ : Σα → Σ′) ∈ D. Assume that Mα realizes finitely a set E ′ of
Σ′-sentences and for each finite i⊆ E ′ let Mi be the χ-expansion of Mα such that Mi |=Σ′ i.
By Thm. 6.17, there exists an ultrafilter U on the set Pω(E ′) of the finite subsets of E ′
such that ∏U Mi |= E ′.

But (∏U Mi)�χ = ∏U (Mi�χ) = ∏U Mα. Because Mα is finitely sized, by Cor. 6.28,
∏U Mα is isomorphic to Mα, hence Mα χ-realizes E ′.

B. Let Σ be the signature of M. Let us assume that card(Ms) < λ for some sort s
for which Ms is infinite. Then we take the (card(Ms),D)-chain given by the signature
extension with constants Σ ↪→ Σ�Ms, and let χ be the extension of Σ�Ms with one
new constant x. Consider E = {x �= m | m ∈Ms}. Then the (Σ�Ms)-expansion M′ of M
such that M′

m = m for each m ∈ Ms, finitely realizes E but does not χ-realize E , which
contradicts the fact that M is (λ,D)-saturated. �
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Existence theorem

Let us say that an institution has D-saturated models if for any cardinal λ and for each
Σ-model M there exists a Σ-homomorphism M → N such that M ≡ N and N is (λ,D)-
saturated.

Theorem 7.9 (Existence of saturated models). Consider an institution and a class D
of signature morphisms such that

1. M ≡ N if there exists a model homomorphism M → N,

2. it has finite conjunctions and existential D-quantifications,

3. it has inductive co-limits of signatures and is inductive-exact,

4. for each signature Σ, the category of Σ-models has inductive co-limits,

5. for each signature morphism (χ : Σ → Σ′) ∈ D and set E ′ of Σ′-sentences, if M
χ-realizes E ′ finitely then there exists a model homomorphism M → N such that N
χ-realizes E ′,

6. for each signature morphism (χ : Σ→ Σ′) ∈ D and each Σ-model M, the class of
χ-expansions of M form a set, and

7. each signature morphism from D is quasi-representable, the category Sig of signa-
tures is D-co-well-powered, and for each ordinal λ there exists a cardinal α such
that each morphism that is a (λ,D)-chain is α-small.

Then the institution has D-saturated models.

Proof. First we prove that there exists a Σ-homomorphism h : M→ N such that for each
(λ,D)-chain ϕ : Σ→ Σ′, each (χ : Σ′ → Σ′′) ∈ D, each ϕ-expansion M′ of M, and each
set E ′′ of Σ′′-sentences finitely realized by M′, N′ χ-realizes E ′′, where h′ : M′ → N′ is
the unique ϕ-expansion of h. (The existence of h′ is guaranteed by the fact that ϕ is quasi-
representable, which follows by ordinal induction from the condition that all signature
morphisms in D are quasi-representable and that the institution is inductive-exact, by
applying Prop. 5.12 [for inductive co-limits rather than the more general directed co-
limits].)

Σ
ϕ
��

M
h �� N

Σ′
χ
��

M′ h′ �� N′

Σ′′ M′′ h′′ �� N′′

For fixed Σ and M, by (ϕ,M′,χ,E ′′) let us denote tuples where ϕ : Σ → Σ′ is a
(λ,D)-chain, M′ is a ϕ-expansion of M, (χ : Σ′ → Σ′′) ∈ D, and E ′′ is a set of
Σ′′-sentences which is χ-realized finitely by M′. Two such tuples (ϕ1,M′1,χ1,E1) and
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(ϕ2,M′2,χ2,E2) are isomorphic when there exists a natural isomorphism θ : ϕ1;χ1 ⇒
ϕ2;χ2

Σ = Σ1
0 . . . ��

1Σ=θ0
��

. . .Σ1
i

ϕ1
i, j ��

θi
��

Σ1
j

θ j
��

�� . . . �� Σ1
λ = Σ′1

χ1 ��

θλ=θ′
��

Σ′′1

θ′′
��

Σ = Σ2
0 . . . �� . . .Σ2

i ϕ2
i, j

�� Σ2
j

�� . . . �� Σ2
λ = Σ′2 χ2

�� Σ′′2

such that M′2�θ′ = M′1 and θ′′(E1) = E2. By the conditions of the theorem (Sig being
D-co-well-powered and all χ-expansions of a model forming a set), the isomorphism
classes of tuples (ϕ,M′,χ,E ′′) form a set; let us denote it by L(M). If k is the cardinal
of L(M), we may consider {(ϕi,M′i,χi,Ei) | i < k} a complete system of independent
representatives for L(M).

Now, by ordinal induction we construct a chain of Σ-homomorphisms

(Mi
hi, j ��Mj )i< j≤k as follows:

– M0 = M,

– for each successor ordinal j + 1 let M′ j
h′0, j ��M′

j be the unique ϕ j-expansion of

M
h0, j ��Mj . Because M′ j χ j-realizes E j finitely, we have that M′

j χ j-realizes E j

finitely too. By condition 5 there exists M′
j

f ′ ��P′ such that P′ χ j-realizes E j.
Then we define Mj+1 = P′�ϕ j and h j, j+1 = f ′�ϕ j , and

– for each limit ordinal we take the co-limit of the chain before j.

Let N = Mk and h = h0,k. Keeping the above notation, consider (ϕ,M′,χ,E ′′). If j < k
is the isomorphism class of (ϕ,M′,χ,E ′′), we may assume without any loss of generality
that (ϕ,M′,χ,E ′′) = (ϕ j,M′ j,χ j,E j). We have to show that N′ χ j-realizes E j.

This holds because we have that M′
j+1 χ j-realizes E j (where M′

j+1 is the unique

ϕ j-expansion of Mj+1 determined by M′ j�ϕ j = M
h0, j+1 ��Mj+1 .). Let M′′

j+1 be a χ j-expan-
sion of M′

j+1 such that M′′
j+1 |= E j. Because h′′j+1,k : M′′

j+1 → N′′, the unique (ϕ j;χ j)-ex-

pansion of h j+1,k, preserves satisfaction N′′ |= E j, hence N′ χ j-realizes E j.
In the second part of the proof we assume the conclusion of the first part and con-

sider a cardinal α such that each (λ,D)-chain is α-small. By ordinal induction we con-

struct an α-chain (Ni
fi, j ��Nj )i< j≤α such that N0 = M and each f j, j+1 has the property

of h above. We want to show that Nα is (λ,D)-saturated, therefore the desired model
homomorphism is f0,α : M → Nα.

Assume N′α χ-realizes E ′′ finitely, where (ϕ,N′α,χ,E ′′) ∈ L(Nα). We have to prove
that N′α χ-realizes E ′′. Because ϕ is α-small, there exists j < α and a ϕ-expansion
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f ′j,α : N′j → N′α of f j,α. By quasi-representability this determines expansions f ′j, j+1 :
N′j → N′j+1 and f ′j+1,α : N′j+1 → N′α. Notice that by conditions 1 and 2, N′j χ-realizes
E ′′ finitely because N′α does. Recall that f j, j+1 has the property of h from the first part of
the proof, therefore we have that N′j+1 χ-realizes E ′′. Let N′′j+1 be χ-expansion of N′j+1
such that N′′j+1 |= E ′′. By quasi-representability we lift f ′j+1,α to f ′′j+1,α : N′′j+1 → N′′α and
because model homomorphisms preserve satisfaction we get that N′′α |= E ′′. Hence N′α
χ-realizes E ′′. �

In the following we discuss the applicability of the existence Thm. 7.9 by making an
analysis of its underlying conditions, often illustrating using FOL as a typical example.

Model homomorphisms preserve elementary equivalence. Typically, one considers
elementary homomorphisms as model homomorphisms of the considered institution. In
the case of FOL these are the elementary embeddings. In general, in any institution with
negation we have that M ≡ N for each elementary homomorphism h : M → N.

Inductive-exactness. The existence of inductive co-limits of signatures actually implies
that we have to allow infinitely large signatures.

The inductive-exactness property of models is also a straightforward property in
many institutions, a special case of exactness. It is however a bit more delicate in model
homomorphisms when the considered model homomorphisms are elementary. Thus, in
an institution that is inductive-exact on model homomorphisms, let us consider a chain
ϕ = (ϕi, j)i< j≤λ of signature morphisms and a family of model homomorphisms (hi)i≤λ
such that h j�ϕi, j = hi for i < j. We have to establish that hλ is elementary whenever hi is
elementary for each i < λ.

In actual situations this is in general very easy. Let us consider the case of FOL.
In order to make this argument as simple as possible, we may consider only signature
morphisms which are (arbitrarily large) extensions with constants. Then the elementarity
of hλ follows trivially because it is an expansion of any hi along a representable signature
morphism (cf. Prop. 5.32).

Therefore, in applications, in addition to the restriction on model homomorphisms
to be elementary we have also to restrict the signature morphisms to the signature exten-
sions with constants.

The category of models has inductive co-limits. Because we have already established
that the model homomorphisms are the elementary ones, this condition is handled by one
of Theorems 7.1 or 7.2 via Cor. 7.4. For the FOL example this means Cor. 7.5.

Compactness. The 5th condition can be regarded as a form of compactness. Let us see
how it works for the special case of FOL. For each finite i⊆ E , let Ai be the χ-expansion
of A such that Ai |= i. By compactness Thm. 6.17, there exists an ultrafilter on Pω(E) (the
set of all finite subsets of E) such that ∏U Ai |= E . Then ∏U Ai�χ = ∏U A. By Cor. 6.14,
A can be elementarily embedded into ∏U A.



150 Chapter 7. Saturated Models

The same argument can be invoked when the role of FOL is played by any other
Łoś institution such that signature morphisms preserve products and directed co-limits.

Expansions of a model form a set. This is evidently fulfilled in any institution where
models consist of interpretations of the symbols of the signatures in set theoretic uni-
verses, for those signature morphisms which do not add new sorts. Note that signature
extensions with constants meet the latter condition.

Conditions on D. Since at the concrete level we have established that we work only
with signature extensions with constants as signature morphisms, all signature morphisms
are quasi-representable.

Let D be the class of signature extensions with a finite number of constants. For
each signature Σ, there exists only a set of isomorphism classes of finitary extensions of
Σ with constants, hence D is co-well-powered.

Finally, for each ordinal λ, each (λ,D)-chain is λ+-small. This is a special case of
the following general result:

Proposition 7.10. In any inductive-exact institution, if each signature morphism of D
is finitary and quasi-representable, then for each infinite ordinal λ, each (λ,D)-chain of
signature morphisms is λ+-small.

Proof. Consider a (λ,D)-chain of signature morphisms ϕ : Σ → Σ′ and consider a

λ+-chain of Σ-model homomorphisms (Mi
hi, j ��Mj )i< j≤λ+ . Let Mλ

λ+ be a ϕ-expansion
of Mλ+ .

For each 0≤ i < j ≤ λ, let ϕi, j : Σi → Σ j be the segment in the chain ϕ determined
by i and j.

By transfinite induction on α ≤ λ we define an increasing sequence of ordinals

strictly bounded by λ+, {iα}α≤λ and an inductive diagram (Mα
j

hα
j,k ��Mα

k )iα≤ j<k≤λ+ in

Mod(Σα) such that hα
j,k�ϕβ,α = hβ

j,k for all 0≤ β < α≤ λ and iβ ≤ j < k as follows:

• i0 = 0 and h0
j,k = h j,k for all j < k ≤ λ+.

• Assume α = β + 1 is a successor ordinal. We first notice that (hβ
i,λ+)iβ≤i<λ+ is a

co-limit of (hβ
j,k)iβ≤ j<k<λ+ . This is so because hβ

j,k�ϕ0,β = h j,k, (hi,λ+)iβ≤i<λ+ is a co-
limit of (h j,k)iβ≤ j<k<λ+ (since (h j,k)iβ≤ j<k<λ+ is a final sub-diagram of
(h j,k)0≤ j<k<λ+ ; see Thm. 2.4), ϕ0,β is quasi-representable (by an argument simi-
lar to the argument that ϕ is quasi-representable used by the proof of Thm. 7.9,
and because quasi-representable signature morphisms create directed co-limits (cf.
Prop. 6.6)). But Mα

λ+ = Mλ
λ+�ϕα,λ is a ϕβ,α-expansion of Mβ

λ+ . Because α = β + 1,
ϕβ,α ∈ D, hence it is finitary. Therefore there exists iβ ≤ iα < λ+ and a

ϕβ,α-expansion hα
iα,λ+ : Mα

iα →Mα
λ+ of hβ

iα,λ+ . By the quasi-representability of ϕβ,α,
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by transfinite induction, this further determines a unique ϕβ,α-expansion

(hα
j,k)iα≤ j<k≤λ+ of (hβ

j,k)iα≤ j<k≤λ+ .

• Assume α is a limit ordinal. Then we define iα = sup{iβ | β < α}. We have that
iα < λ+ because α ≤ λ and iβ < λ+ for each β < α. (This holds because one can
prove that

⋃
β<α iβ is ordinal and hence iα =

⋃
β<α iβ, therefore we have card(iα) =

card(
⋃

β<α iβ) ≤ card(α)× card(α) ≤ λ× λ = λ < λ+.) For all iα ≤ j < k ≤ λ+

by inductive-exactness let hα
j,k be the amalgamation of (hβ

j,k)β<α, i.e., the unique

Σα-model homomorphism such that hα
j,k�ϕβ,α = hβ

j,k.

�
Based on the above analysis of the conditions underlying Thm. 7.9 we obtain the

following typical concrete existence of saturated models.

Corollary 7.11. FOL has D-saturated models for D the class of signature extensions
with a finite number of constants.

Borrowing saturated models along institution comorphisms

Although the hypotheses of the existence Thm. 7.9 require existential quantifiers and con-
junctions, existence of saturated models can, by the following rather general borrowing
result, be easily extended to sub-institutions with less expressive power of sentences.

Proposition 7.12. Let (Φ,α,β) : I → I ′ be an institution comorphism and D ⊆ Sig,
D ′ ⊆ Sig′ be classes of signature morphisms such that

1. (Φ,α,β) is conservative and has weak model amalgamation, and

2. Φ preserves inductive co-limits and Φ(D) ⊆D ′.

Then I has D-saturated models whenever I ′ has D ′-saturated models.

Proof. We first show that β maps (λ,D ′)-saturated models to (λ,D)-saturated models.
Consider M′ a (λ,D ′)-saturated Φ(Σ)-model. Let M = βΣ(M′) and consider a
(k,D)-chain ϕ : Σ → Σk for k < λ, (χ : Σk → Σ) ∈ D, Mk a ϕ-expansion of M, and
E a set of Σ-sentences such that Mk χ-realizes E finitely.

By condition 2 we have that Φ(ϕ) is a (k,D ′)-chain Φ(Σ)→ Φ(Σk). By the weak
model amalgamation property of (Φ,α,β) let M′

k be a Φ(ϕ)-expansion of M′ such that
βΣk(M

′
k) = Mk. By the weak model amalgamation again we can note that M′

k
Φ(χ)-realizes αΣ(E) finitely. Because M′ is (λ,D ′)-saturated we have that M′

k Φ(χ)-
realizes αΣ(E). Let M′ be the Φ(χ)-expansion of M′

k such that M′ |= αΣ(E). Then
βΣ(M′) |= E . By the naturality of β we have that βΣ(M′)�χ = Mk, hence Mk χ-realizes
E .

Now that we have established that β maps (λ,D ′)-saturated models to (λ,D)-satu-
rated models, we may proceed to the final part of the proof. For any Σ-model M, by
the conservativeness of (Φ,α,β) there exists a Φ(Σ)-model M′ such that βΣ(M′) = M.
Because I ′ has D ′-saturated models, let h′ : M′ → N′ be such that M′ ≡ N′ and N′ is
(λ,D ′)-saturated. Then β(N′) is (λ,D)-saturated and M ≡ β(N′). �
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An example of use of the above borrowing result is the following.

Corollary 7.13. EQL and HCL have D-saturated models for the usual D consisting of
the signature extensions with a finite number of constants.

Exercises

7.1. Let D be the class of FOL1 signature extensions with a finite number of constants. Consider
the FOL1 signature having only one binary relation symbol <. The model Q of the rational numbers
interpreting < as the ‘strictly less than’ relation is (ω,D)-saturated but it is not (λ,D)-saturated for
cardinals λ > ω.
(Hint: For each finite n the elementary equivalence relation between the expansions of Q with
n constants determines a finite partition, i.e., has a finite number of equivalence classes, whose
cardinal is less than n!. Each such equivalence class is determined by the mutual position of the
constants with respect to <.)

7.2. In any semi-exact institution, the model reduct functors preserve the (λ,D)-saturated models
if D is stable under pushouts. (Hint: (λ,D)-chains are stable under pushouts.)

7.3. Establish the existence of saturated models in several concrete institutions presented as ex-
amples in this book (such as PA, POA, etc.) as instances of the general institution-independent
Thm. 7.9.

7.4. Saturated models for presentations
For any class D of signature morphisms in an institution I , let Dpres denote the class of the presen-
tation morphisms χ : (Σ,E)→ (Σ′,E ′) for which χ ∈D .

1. Any model of the institution I pres of the presentations of I is (λ,Dpres)-saturated if it is
(λ,D)-saturated in I .

2. I pres has Dpres-saturated models if I has D-saturated models.

3. The following two institutions have D-saturated models which are ‘borrowed’ by
Prop. 7.12:

(a) HNK has D-saturated models for D the class of signature extensions with a finite
number of constants (Hint: use the comorphism HNK→ FOEQLpres of Ex. 4.11.)

(b) IPL has D-saturated models for D the class of signature extensions with a finite
number of symbols (Hint: use the comorphism IPL→ FOEQLpres of Ex. 4.10.)

7.3 Uniqueness of Saturated Models

The uniqueness property of saturated models is subject to a set of conditions which are
introduced and discussed in the first part of this section. The most important one, in the
sense that it is the only one with a special significance, is a limit to the ‘size’ of the models.
A general concept of size may be defined when the institution has elementary diagrams.
Another condition is that the elementary diagrams satisfy a certain rather natural property.
Another property required is that sentences are finitary; in concrete terms this means that
they can contain only a finite number of symbols.
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Simple elementary diagrams. The elementary diagrams ι of an institution are simple
when for each signature Σ and all Σ-models A,B, for each ιΣ(B)-expansion A′ of A, the
following is a pushout square of signature morphisms.

Σ
ιΣ(B) ��

ιΣ(A)
��

ΣB

ιΣB (A′)
��

ΣA ιιΣ(B)(1A)
�� (ΣB)A′

Fact 7.14. In the rather common situation when the elementary extensions just add the
elements of the model as new constants to its signature, the elementary diagrams are
simple because the above diagram is in fact a diagram of the form

Σ ��

��

Σ�|B|

��
Σ�|A| �� Σ�|B| � |A|

where |A|, respectively |B|, denote the underlying carrier sets of A and B, respectively.

Sizes of models. Let M be a model in an institution with elementary diagrams ι. For any
cardinal number λ, we say that M has D-size λ when ιΣ(M) = ϕ0,λ for some (λ,D)-chain
(ϕi, j)i< j≤λ. Note that this concept of ‘size’ is a relation between models and cardinals
rather than a function from models to cardinals.

Fact 7.15. Let D be the class of the FOL signature extensions with a finite number of
constants. An infinite FOL-model M has D-size λ if and only if card(|M|) ≤ λ, where
card(|M|) denotes the cardinality of its set |M| of elements (|M|= �s∈SMs where S is the
set of the sorts of Σ). Consequently, any finitely sized model (see Sect. 6.5) has D-size λ
for any finite cardinal λ.

By Prop. 7.8 we can further establish the following:

Corollary 7.16. For any infinite cardinal λ, for each λ-saturated FOL model M of D-size
λ such that Ms is infinite for at least one sort, card(|M|) = λ.

Finitary sentences. In any institution a Σ-sentence ρ is finitary if and only if it can be
written as ϕ(ρ0) where ϕ : Σ0 → Σ is a signature morphism such that Σ0 is a finitely
presented signature and ρ0 is a Σ0-sentence. An institution has finitary sentences when
all its sentences are finitary. This concept is a categorical expression of the fact that a
sentence contain only a finite number of symbols. This is illustrated by the following
typical example.
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Fact 7.17. A FOL signature (S,F,P) is finitely presented if and only if S, F, and P are
finite. (Here F ‘finite’ means that {(w,s) | Fw→s �= /0} is finite and each non-empty Fw→s

is also finite.) Consequently, FOL has finitary sentences.

Here we have to warn the reader about some possible terminology confusion which
may arise in relation to the term ‘finitary’ when used in conjunction with basic sentences.
Therefore by ‘finitary basic’ sentences we will always mean that the respective model ME

is finitely presented and not that the set of sentences is ‘finitary’ and ‘basic’.

Uniqueness theorem

Theorem 7.18. Assume that the institution

1. has pushouts and inductive co-limits of signatures,

2. is semi-exact and inductive-exact on models,

3. has simple elementary diagrams ι,

4. has existential D-quantification for a (sub)category D of signature morphisms
which is stable under pushouts,

5. has negations and finite conjunctions, and

6. has finitary sentences.

Then any two elementary equivalent (λ,D)-saturated Σ-models of D-size λ are isomor-
phic.

Proof. Let M,N be Σ-models satisfying the hypotheses of the theorem. We consider the
following pushout of signature morphisms:

Σ
ιΣ(M) ��

ιΣ(N)
��

ΣM

φM

��
ΣN φN

�� Σ′′

and construct elementarily equivalent Σ′′-expansions, M′′ of MM and N′′ of NN .
Suppose we have already constructed M′′ and N′′. Let M′ = M′′�φN and N′ = N′′�φM .

Because the elementary diagrams are simple and pushouts are unique up to isomorphism,
we may assume without any loss of generality that Σ′′ = (ΣN)M′ ,φM = ιιΣ(N)(1M) and
φN = ιΣN (M′).

Because M′
M′�φN = M′ and M′

M′�φM = MM (which follows from the naturality of i
and because M′

M′ = i−1
ΣN ,M′(1M′) and MM = i−1

Σ,M(1M)), by the uniqueness part of the semi-
exactness we get that M′′ = M′

M′ .
But N′′ |= EM′ (because M′′ ≡N′′), hence we get a model homomorphism h : M′′ →

N′′. Similarly we get another Σ′′-homomorphism h′ : N′′ → M′′. By the initiality of M′′
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and N′′ we have that h;h′ = 1M′′ and h′;h = 1N′′ . Thus we have that M′′ ∼= N′′, hence by
reduction to Σ we obtain also that M ∼= N, which proves the theorem.

Now let us come back to the construction of M′′ and N′′. Since both M and N

have the same D-size λ, ιΣ(M) = ϕ0,λ
M and ιΣ(N) = ϕ0,λ

N where (Σi
M

ϕi, j
M ��Σ j

M )i< j≤λ and

(Σi
N

ϕi, j
N ��Σ j

N )i< j≤λ are (λ,D)-chains of signature morphisms.

By ordinal induction we define another (λ,D)-chain (Σi φi, j
��Σ j )i< j≤λ such that

Σ0 = Σ and for each j < λ

– Σ j
γ j

M ��Σ′ jM Σ j+1
M

θ′ jM�� is the pushout of Σ j Σ j
M

θ j
M��

ϕ j, j+1
M ��Σ j+1

M ,

– Σ j
γ j

N ��Σ′ jN Σ j+1
N

θ′ jN�� is the pushout of Σ j Σ j
N

θ j
N��

ϕ j, j+1
N ��Σ j+1

N ,

– Σ′ jM
ψ j

M ��Σ j+1 Σ′ jM
ψ j

N�� is the pushout of Σ′ jM Σ j
γ j

M��
γ j

N ��Σ′ jN ,

– θ j+1
M = θ′ jM;ψ j

M and θ j+1
N = θ′ jN ;ψ j

N , and

– φ j, j+1 = γ j
M;ψ j

M = γ j
N ;ψ j

N .

Σ j+1
M

θ′ jM
���

��
��

Σ j
M

ϕ j, j+1
M

?A"""""

θ j
M

���
��

��
� Σ′ jM ψ j

M

7:�
��

��

Σ

ϕ0, j
M

HH.....

ϕ0, j
N

(+�
��

�� Σ j
φ j, j+1

��

γ j
M

��&&&&&&

γ j
N

7:�
��

��
� Σ j+1

Σ j
N

ϕ j, j+1
N

:<�
��

��

θ j
N

��������
Σ′ jN

ψ j
N

��������

Σ j+1
N

θ′ jN

��					

Because D is stable under pushouts, γ j
M,γ j

N ,ψ j
M,ψ j

N ∈D, and because D is closed under

compositions, φ j, j+1 = γ j
M;ψ j

M ∈D.

For each limit ordinal k ≤ λ, we define Σk
M

θk
M ��Σk as the unique signature mor-

phism such that ϕi,k
M ;θk

M = θi
M;φi,k

M for each i < k. θk
N is defined similarly. Therefore θM and

θN appear as natural transformations between λ-chains, θM : ϕM ⇒ φ and θN : ϕN ⇒ φ.
Let φM = θλ

M , φN = θλ
N , and Σ′′ = Σλ.

It is clear from the construction that for each j ≤ λ we have that

Σ j
M

θ j
M �� Σ j Σ j

N

θ j
N�� is a pushout for Σ j

M

ϕ0, j
M�� Σ

ϕ0, j
N ��Σ j

N .
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In the second part of the proof, by ordinal induction we define for each j ≤ λ,
Σ j-models M j ≡ N j such that M j�φi, j = Mi, N j�φi, j = Ni for each i ≤ j, and M j�θ j

M
=

MM�ϕi, j
M

and N j�θ j
N

= NN�ϕi, j
N

, as follows.

– M0 = M and N0 = N.

– For each successor ordinal j +1 let M′ j be the (unique) amalgamation MM�ϕ j+1,λ
M

⊗
M j . For each finite E ′ ⊆ (M′ j)∗, we have that M j |= (∃γ j

M)∧E ′ (which is a sen-
tence of the institution because the institution has finite conjunctions and existential
D-quantification and γ j

M ∈D). Because M j ≡ N j we deduce that N j |= (∃γ j
M)∧E ′.

Because N is λ-saturated, (φi,k)0≤i<k≤ j is a ( j,D)-chain with j < λ, γ j
M ∈ D, and

N j�φ0, j = N, there exists a γ j
M-expansion N′ j of N j such that N′ j |= (M′ j)∗. Because

the institution has negations, this means N′ j ≡M′ j. Now we define N j+1 to be the
(unique) amalgamation NN�ϕ j+1,λ

N
⊗N′ j. As for N′ j, but now using the saturation of

M, we obtain the existence of M j+1 ≡ N j+1 such that M j+1�ψ j
M

= M′ j.

– For each limit ordinal j, by the inductive-exactness property M j and N j are the
unique Σ j-models such that M j�φi, j = Mi and N j�φi, j = Ni for each i < j. In order
to prove M j ≡ N j , we use the fact that the institution has finitary sentences. For
any Σ j-sentence ρ j there exists i < j such that ρ j = φi, j(ρi) for some Σi-sentence
ρi. Then by the Satisfaction Condition and because Mi ≡ Ni, M j |= ρ j iff Mi |= ρi

iff Ni |= ρi iff N j |= ρ j. That M j�θ j
M

= MM�ϕ j,λ
M

and N j�θ j
N

= NN�ϕ j,λ
N

follow by the

uniqueness part of the inductive-exactness property by noticing that for each i < j,
(M j�θ j

M
)�ϕi, j

M
= (MM�ϕ j,λ

M
)�ϕi, j

M
and (N j�θ j

N
)�ϕi, j

N
= (NN�ϕ j,λ

N
)�ϕi, j

N
.

We finalize this proof by taking M′′ as Mλ and N′′ as Nλ. �

The following is a typical concrete instance of the uniqueness Thm. 7.18.

Corollary 7.19. In FOL, saturated models are unique up to isomorphisms.

Because finitely sized FOL models are saturated (cf. Prop. 7.8) this can be further
applied to give an alternative proof of Cor. 6.28 which we state again below.

Corollary 7.20. In FOL any two finitely sized elementary equivalent models are isomor-
phic.

Exercises

7.5. Establish the uniqueness of saturated models in several concrete institutions presented as ex-
amples in this book (such as PA, POA, etc.) as instances of the general institution-independent
Thm. 7.18.

7.6. In FOL any two elementary equivalent models admit a common elementary extension.
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7.4 Saturated Ultraproducts

For this section we assume the Generalized Continuum Hypothesis.

Good ultrafilters. Let (P,≤) and (P′,≤), respectively, be partial orders with binary
least upper bounds ∨ and greatest lower bounds ∧, respectively. A function f : P→ P′ is

– anti-monotonic if x < y implies f (x) > f (y), and

– anti-additive if f (x∨ y) = f (x)∧ f (y).

For any functions f ,g : P→ P′, f ≤ g if f (x) ≤ g(x) for all x ∈ P.
An ultrafilter U is λ-good for a cardinal λ if for each α < λ and each anti-monotonic

function f : Pω(α)→U there exists an anti-additive function g : Pω(α)→U such that
g≤ f .

Countably incomplete ultrafilters. An ultrafilter U over I is countably incomplete if
there exists an ω-chain I = I0 ⊃ I1 ⊃ ·· · ⊃ In ⊃ . . . such that In ∈U and Iω =

⋂
n∈ω In = /0.

The proof of the following theorem consists of combinatorial set-theoretic argu-
ments, and can be found in [32].

Theorem 7.21. For any set I of cardinality λ, there exists a λ+-good countably incom-
plete ultrafilter over I.

Stable sentence functors. A sentence functor Sen is D-stable for a class D of signature
morphisms when for each χ : Σ→ Σ′ in D we have card(Sen(Σ′))≤ card(Sen(Σ)).

Stability of sentence functors is a rather common property of institution, as shown
by the following typical example.

Proposition 7.22. The FOL sentence functor is D-stable for D the class of all signature
extensions with a finite number of constants.

Proof. We show that for each (χ : Σ → Σ′) ∈ D we have that card(Sen(Σ)) =
card(Sen(Σ′)). From this follows that SenFOL is D-stable.

On the one hand because Σ⊆Σ′ we have that Sen(Σ)⊆ Sen(Σ′) hence card(Sen(Σ))
≤ card(Sen(Σ′)). On the other hand the function Sen(Σ′)→ Sen(Σ) which maps each
Σ′-sentence ρ′ to (∃χ)ρ′ is an injection, hence card(Sen(Σ′))≤ card(Sen(Σ)). �

The following shows that stability of the sentence functor guarantees a limit to the
growth of the cardinality of the sets of sentences.

Proposition 7.23. Consider an institution with finitary sentences and with a class D of
signature morphisms such that the sentence functor is D-stable. Then for each
(α,D)-chain ϕ : Σ→ Σ′ we have that card(Sen(Σ′))≤ card(α)× card(Sen(Σ)).

Proof. Let us denote the segment of the chain ϕ between i and j by ϕi, j : Σi → Σ j. Then
Σ = Σ0 and Σ′ = Σα. We prove the proposition by transfinite induction on α.
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If α is a successor ordinal β+1 we have that card(Sen(Σα)) = card(Sen(Σβ+1))≤
card(Sen(Σβ))≤ card(β)× card(Sen(Σ0)) = card(β + 1)× card(Sen(Σ0)).

If α is a limit ordinal then α=∪β<αβ. Because the institution has finitary sentences,
by Lemma 7.24 below we obtain that card(Sen(Σα)) ≤ card(

⊎
β<α Sen(Σβ)). By the

induction hypothesis card(Sen(Σβ)) ≤ card(β)× card(Sen(Σ0)) ≤ card(α×Sen(Σ0)).
Therefore, we have card(Sen(Σα))≤ card(α×α×Sen(Σ0)) and finally card(Sen(Σα))≤
card(α)× card(Sen(Σ0)).

Lemma 7.24. Consider an institution with finitary sentences. Then for each limit ordinal

α and (α,D)-chain (Σi
ϕi, j ��Σ j )i< j≤α we have that card(Sen(Σα)) ≤

card(
⊎

η<α Sen(Σβ)).

Proof. We define an injection ι from Sen(Σα) to
⊎

β<α Sen(Σβ). For each ρ ∈ Sen(Σα)
there exists a finitely presented signature Σρ, a sentence ρ f in ∈ Sen(Σρ) and a signa-
ture morphism ψρ : Σρ → Σα such that ψρ(ρ f in) = ρ. Because Σρ is finitely presented
and Σα is an inductive co-limit, there exists an ordinal β such that ψρ factors through
Σβ. Let φρ : Σρ → Σβ such that φρ;ϕβ,α = ψρ. We define ι(ρ) to be φρ(ρ f in). Because
ϕβ,α(ι(ρ)) = ρ we get immediately that ι is an injection. �

�

Ultraproducts that are saturated

The following gives sufficient conditions for ultraproducts to be saturated.

Theorem 7.25. Consider a Łoś institution with finitary sentences and with a class D of
signature morphisms such that

1. it has finite conjunctions and existential D-quantifications,

2. the sentence functor Sen is D-stable,

3. the model reduct functors corresponding to signature morphisms in D preserve ul-
traproducts of models,

4. each signature morphism lifts completely ultraproducts.

For any infinite cardinal λ and each countably incomplete λ-good ultrafilter U over I,
for any signature Σ, if card(Sen(Σ)) < λ, then for any family {Ai}i∈I of Σ-models, the
ultraproduct ∏U Ai is (λ,D)-saturated.

Proof. Consider an (α,D)-chain (Σi
ϕi, j ��Σ j )i< j≤α with α < λ such that Σ0 = Σ, a

ϕ0,α-expansion Aα of ∏U Ai, (χ : Σα → Σ′) ∈D, and a set E of Σ′-sentences such that Aα

χ-realizes E finitely.
Because each signature morphism lifts completely ultraproducts, for each i∈ I, there

exists a ϕ0,α-expansion Aα
i of Ai such that ∏U Aα

i = Aα.
Because U is countably incomplete, there exists an ω-chain I = I0 ⊃ I1 ⊃ ·· · ⊃ In ⊃

. . . such that In ∈U and Iω =
⋂

n∈ω In = /0. We define f : Pω(E)→U (recall that Pω(E)
is the set of all finite subsets E ′ of E)
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– f ( /0) = I, and

– f (E ′) = In∩{i | Aα
i |= (∃χ)∧E ′} where n is the cardinality of E ′.

f is well defined because ∏U Aα
i = Aα |= (∃χ)∧E ′ and sentences are preserved by ultra-

factors (hence {i ∈ I | Aα
i |= (∃χ)∧E ′} ∈U).

f is also anti-monotonic because for each E1 ⊂ E2 ⊆ E , In1 > In2 (where n1 respec-
tively n2 are the cardinalities of E1 respectively E2), and {i | Aα

i |= (∃χ)∧E1} ⊇ {i | Aα
i |=

(∃χ)∧E2}. Because U is λ-good and the cardinality of E is less than λ× λ = λ (see
Propositions 7.23 and 7.6) there exists an anti-additive function g : Pω(E)→U such that
g≤ f . For each i ∈ I let Ei = {ρ ∈ E | i ∈ g(ρ)}.

If the cardinality of Ei is greater than n, then i ∈ In. In order to see this, consider
{ρ1, . . . ,ρn} ⊆ Ei. This means i ∈ g(ρk) for all k ≤ n. As g is anti-additive, we have that
i ∈⋂

k≤n g(ρk) = g({ρ1, . . . ,ρn})⊆ f ({ρ1, . . . ,ρn})⊆ In.
Because

⋂
n∈ω In = /0, for each i ∈ I, Ei is finite. Otherwise if Ei were infinite we

would have that i ∈ In for all n ∈ ω, which contradicts
⋂

n∈ω In = /0.
Because each Ei is finite, we have that i ∈ ⋂

ρ∈Ei
g(ρ) = g(

⋃
ρ∈Ei

{ρ}) = g(Ei) ⊆
f (Ei). This means that Aα

i |= (∃χ)∧Ei. Let A′i be the χ-expansion of Aα
i such that A′i |= Ei.

Finally, we show that ∏U A′i |= E . Because χ preserves ultraproducts, from ∏U A′i |=
E we obtain that Aα = ∏U Aα

i χ-realizes E . For each ρ∈ E , we have that g(ρ)⊆ {i | A′i |=
ρ}. Because g(ρ) ∈U , we deduce that {i | A′i |= ρ} ∈U , hence ∏U A′i |= ρ because ρ is
preserved by ultraproducts. �

The conditions of Thm. 7.25 that need some additional explanation are perhaps the
last two ones.

The condition about lifting completely the ultraproducts is fulfilled by all projec-
tively representable signature morphisms in institutions for which the model projections
are epis (cf. Prop. 6.8). This means we may have to narrow the class of signature mor-
phisms of the original institution. For example, in the case of FOL, a solution is pro-
vided by considering only the signature extensions with constants. In this case, the typical
choice for D is the class of all signature extensions with a finite number of constants.

The condition about preservation of ultraproducts of models by the model reduct
functors can be resolved more generally for any filtered products by Propositions 6.6 and
6.4.

It is important to note that such narrowing of the class of signature morphisms
does not hinder applicability of Thm. 7.25, since the only signature morphisms of the
institution that are involved in this result are the (α,D)-chains (for α < λ), other signature
morphisms being irrelevant for this result. This situation bears some similarity to how the
existence Thm. 7.9 is applied to actual situations.

Another remark is that in some institutions Thm. 7.25 together with Prop. 6.13 (and
its FOL Cor. 6.14, each model can be elementarily embedded in any of its ultrapowers)
may provide an alternative way to reach essentially the existence of saturated models
(Thm. 7.9). The costs are however quite high: the Łoś property for the institution, and
especially the rather difficult result on the existence of good countably incomplete ultra-
filters (Thm. 7.21).
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Keisler-Shelah isomorphism theorem

The following is one of the most important applications of the uniqueness property of
saturated models and of saturated ultraproducts.

Corollary 7.26. Consider an institution which satisfies the hypotheses of Theorems 7.18
and 7.25 and such that each model M has a D-size such that if M has a D-size λ, then
each ultrapower ∏U M for an ultrafilter U over I has D-size λcard(I).

Then any two elementarily equivalent models have isomorphic ultrapowers (for the
same ultrafilter).

Proof. Let M ≡ N be elementarily equivalent Σ-models. Consider a cardinal λ such that
both M and N have D-size λ+ and such that card(Sen(Σ)) ≤ λ. Let U be a count-
ably incomplete λ+-good ultrafilter over λ. Then both ∏U M and ∏U N have D-size
(λ+)λ = λ+ (cf. Prop. 7.6 on cardinal arithmetic). By Thm. 7.25 both ultrapowers are
(λ+,D)-saturated. By the uniqueness Thm. 7.18 they are therefore isomorphic. �

Corollary 7.27. In FOL, any two elementarily equivalent models have isomorphic ultra-
powers.

Proof. While hypotheses of Theorems 7.25 and 7.18 in the framework of FOL have been
discussed above, if we define the sizes of models by their cardinality, then the specific
condition about sizes of Cor. 7.26 holds obviously since each ultrapower ∏U M is the
quotient of the power ∏i∈I M. �

Keisler-Shelah institutions. An institution with ultraproducts of models satisfying the
conclusion of Cor. 7.26 is called a Keisler-Shelah institution.

A counterexample. In the sub-institution of FOL that restricts sentences to those that
do not use the equality symbol, consider the signature Σ = ({s},{σ : s→ s}, /0) and two
models of this signature A and B defined as follows:

– As = {0,1} ; Aσ(0) = 0 and Aσ(1) = 1,

– Bs = {0,1} ; Bσ(0) = 1 and Bσ(1) = 0.

It is clear that A≡ B but A and B are not isomorphic. Because A and B are finite, each of
them is isomorphic to any of their ultrapowers, hence for each ultrafilter U , ultrapowers
∏U A and ∏U B cannot be isomorphic.

This counterexample for the Keisler-Shelah property exploits an institution where
the syntactic power (given by the sentences) is not enough to enforce a semantic property
(isomorphism of models). The concordance between these aspects is ensured in our re-
sults by the existence of elementary diagrams. In the absence of elementary diagrams the
uniqueness of saturated models (Thm. 7.18), which is one of the main conditions for the
Keisler-Shelah property, is no longer guaranteed.
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Exercises

7.7. Establish the Keisler-Shelah property in concrete institutions presented as examples in this
book (such as PA, POA, etc.) by one of the methods below:

1. directly the general result of Cor. 7.26, or
2. by ‘borrowing’ it from FOL via various institution comorphisms presented in this book.

Which of the two methods suggested above does apply to HNK?

Notes. The FOL1 special case of Cor. 7.5 for chains instead of any directed co-limit was proved
by Tarski and Vaught in [175] and received high notoriety in conventional model theory under the
name ‘Elementary Chain Theorem’, while Theorems 7.1 and 7.2 are due to [86].

The concept of a saturated model can be traced back to the ηα-sets of [91]. A good reference
for cardinal arithmetic is [100]. The theory of saturated models at the institution-independent level
was developed in [59] where both the existence and the uniqueness Theorems 7.9 and 7.18 appear.
The FOL1 instances of these results were proved in [128].

Our definition of countably incomplete ultrafilters is formulated slightly differently but equiv-
alently to the standard one in [32]. The existence of saturated ultraproducts (Thm. 7.25) is due to
[59] and generalizes the corresponding FOL1 result which can be traced back to [103]. The Keisler-
Shelah isomorphism theorem in FOL1 (Cor. 7.27) was proved in [164] without assuming GCH.



Chapter 8

Preservation and
Axiomatizability

Axiomatizability results express a rather subtle relationship between semantics and syn-
tax. They give complete characterizations of certain classes of theories in purely semantic
terms, formulated as closure properties of classes of models under some categorical op-
erators. Perhaps the most famous example is the Birkhoff Variety theorem of equational
logic: a class of algebras for a signature is closed under products, sub-algebras, and ho-
momorphic images if and only if it is the class of algebras of an equational theory.

Axiomatizability results have been traditionally considered to have mostly theoret-
ical significance. However they do have important applications such as interpolation and
definability. Some of these have been discovered and understood properly only relatively
recently. After developing several general Birkhoff-style axiomatizability results we con-
tinue this chapter by giving an abstract formulation for Birkhoff-style axiomatizability
which captures uniformly all results of this chapter and much more.

Preservation results are half way to axiomatizability results in the sense that, assum-
ing a theory we can establish, it can be presented by a certain kind of sentences whenever
it is ‘preserved’ by some semantic operations. A typical example is the following: a FOL
theory can be presented by a set of universal sentences if and only if it is ‘preserved’ by
sub-models. Some axiomatizability results can be obtained via their preservation corre-
spondents.

8.1 Preservation by Saturation

In this section we develop a general preservation result as an application of saturated
models.
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The framework. For this section we consider

• an institution with elementary diagrams I = (Sig,Sen,Mod, |=, ι) together

• with a sub-functor Sen0 ⊆ Sen (i.e., Sen0 : Sig→ Set such that Sen0(Σ)⊆ Sen(Σ)
and ϕ(Sen0(Σ))⊆ Sen0(Σ′) for each signature morphism ϕ : Σ→ Σ′), and

• a sub-category D ⊆ Sig of signature morphisms,

such that

• for each Σ-model M, its elementary diagram EM ⊆ Sen0(ΣM),

• I 0 = (Sig,Sen0,Mod, |=) has finite conjunctions and finite disjunctions, and

• Sen0 is closed under existential D-quantification.

Universal and existential sentences in FOL. As a typical example for this framework
we may take I to be FOL and Sen0(Σ) to be the set of all existential Σ-sentences which
are existential quantifications of sentences accessible from the atoms only by Boolean
connectives. Note that existential sentences in FOL are indeed closed under conjunctions
and disjunctions (Ex. 5.5 above gives a general institution-independent version of this
argument). Recall from Sect. 3.2 that universal sentences are the negations of the existen-
tial sentences, which means that they are universal quantifications of sentences accessible
from the atoms only by Boolean connectives.

Sen0-extensions. For any Σ-models M and N, let us establish the notation

M[Sen0]N if and only if M∗ ∩Sen0(Σ)⊆ N∗ ∩Sen0(Σ).

We say that M is a Sen0-submodel of N when there exists a Σ-model homomorphism
h : M → N such that MM[Sen0]Nh. Recall that by Nh we mean i−1

Σ,M(h), the mapping of
h by the canonical isomorphism M/Mod(Σ)→Mod(ΣM,EM). Alternatively we may say

that N is a Sen0-extension of M. Let us denote this relation by M
Sen0−→ N.

In particular situations it is often possible to express the Sen0-extension relationship
in purely semantic terms. The following is a typical example.

Proposition 8.1. In FOL, let Exist ⊆ SenFOL be the sub-functor of the existential sen-

tences. Then M
Exist−→ N if and only if there exists a closed injective model homomorphism

M→ N.

Proof. Consider M
Exist−→ N for a FOL-signature (S,F,P). By definition there exists a

model homomorphism h : M → N such that MM[Exist]Nh. Then

– h is injective because for all m1 �= m2 ∈M, MM |=¬(m1 = m2) implies Nh |=¬(m1 =
m2) which means h(m1) �= h(m2),

– h is closed because for each relation symbol π ∈ Pw and each string of elements
m ∈ Mw, if h(m) ∈ Nπ then Nh |= π(m), which implies MM |= π(m) (otherwise if
MM |= ¬π(m) then Nh |= ¬π(m)) which means m ∈Mπ.
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Now we show that any closed injective model homomorphism h : M → N implies

that M
Exist−→ N.

The first step is to note that for each quantifier-free ΣM-sentence ρ (i.e., ρ is acces-
sible from the ΣM-atoms only by Boolean connectives) MM |= ρ if and only if Nh |= ρ.
(This is achieved easily by induction on the structure of the sentences by making use of
the fact that h is injective and closed.)

Let (∃X)ρ′ be an existential (S,F,P)M-sentence such that MM |= (∃X)ρ′. Let M′ be
the expansion of MM such that M′ |= ρ′ and let ρ′M be the result of replacing each x ∈ X
with M′

x in ρ′. Then MM |= ρ′M and hence Nh |= ρ′M. But Nh |= ρ′M means that N′ |= ρ′ for
the expansion N′ of Nh such that N′x = h(M′

x), therefore Nh |= (∃X)ρ′. �

Preservation by saturation

We say that a set of sentences is preserved by Sen0-extensions when for any two models

M and N, M
Sen0−→N and M |= E implies N |= E . Dually, E is preserved by Sen0-submodels

when N |= E implies M |= E .
For any set of sentences Γ let ¬Γ denote {¬ρ | ρ ∈ Γ}.

Theorem 8.2 (Preservation by saturation). In addition to the framework of this section
let us also assume the following conditions:

1. I has inductive weak model amalgamation,

2. I is compact and Boolean complete,

3. Sen0 consists of finitary sentences,

4. each model has a D-size,

5. I has D-saturated models.

Then for any consistent Σ-theory E

– E is preserved by Sen0-extensions if and only if E |=| E ∩Sen0(Σ), and

– E is preserved by Sen0-submodels if and only if E |=| E ∩¬Sen0(Σ).

Proof. Let us first prove that for any Σ-models M and N

(1) if M has D-size λ, N is (λ+,D)-saturated, and M[Sen0]N, then M
Sen0−→ N.

Let (Σi
ϕi, j ��Σ j )0≤i< j≤λ be a (λ,D)-chain such that ιΣ(M) = ϕ0,λ. By transfinite induc-

tion we define (Ni)0≤i≤λ such that Mi[Sen0]Ni and Ni�ϕ0,i = N, where Mi = (MM)�ϕi,λ .

If this were achieved, then MM[Sen0]Nλ, and from this by noticing successively that
Nλ |= EM (as EM ⊆ Sen0(ΣM)) and that Nλ = Nh for h = iΣ,M(Nλ) : M → N, we obtain

that M
Sen0−→ N.

For any successor ordinal α+ 1 < λ, let Γ be an arbitrarily finite subset of M∗
α+1∩

Sen0(Σα+1). Because I 0 has finite conjunctions we get that ∧Γ ∈ M∗
α+1 ∩Sen0(Σα+1).
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Because Sen0 is closed under existential D-quantification we get that (∃ϕα,α+1)∧Γ ∈
Sen0(Σα). Because Mα |= (∃ϕα,α+1)∧Γ we get that (∃ϕα,α+1)∧Γ ∈M∗

α∩Sen0(Σα). Be-
cause Mα[Sen0]Nα (cf. induction hypothesis), we obtain that Nα |= (∃ϕα,α+1)∧Γ, there-
fore since Γ was chosen arbitrary, Nα ϕα,α+1-realizes finitely M∗

α+1 ∩Sen0(Σα+1). Be-
cause α + 1 ≤ λ and N is (λ+,D)-saturated, it follows that Nα ϕα,α+1-realizes M∗

α+1 ∩
Sen0(Σα+1), so let Nα+1 be such that Nα+1�ϕα,α+1 = Nα and Nα+1 |= M∗

α+1∩Sen0(Σα+1).
For β a limit ordinal, let Nβ be an amalgamation of (Nα)0≤α<β. Let ρβ ∈ M∗

β ∩
Sen0(Σβ). Because Sen0 has finitary sentences, there exist α < β and ρα ∈ Sen0(Σα) such
that ϕα,β(ρα) = ρβ. Then by the Satisfaction Condition Mα |= ρα and by the induction
hypothesis Nα |= ρα too. By the Satisfaction Condition, this time in the other direction,
we finally get that Nβ |= ρβ.

Now let us prove that

(2) if M[Sen0]N then there exists N′ such that M
Sen0−→ N′ ≡ N.

Let λ be a D-size for M. Because I has D-saturated models there exists a homomorphism

N→ N′ such that N′ is (λ+,D)-saturated and N′ ≡N. By (1) we also have that M
Sen0−→ N′.

Now we proceed to the proof of the conclusions of the theorem. We focus only on
the hard part.

First let us consider a consistent Σ-theory E preserved by Sen0-extensions. By the
following (whose proof will be given later)

Lemma 8.3. In any m-compact Boolean complete institution, for any consistent theory
E and set Δ of sentences closed under finite disjunctions, the following are equivalent:

– E ∩Δ |=| E, and

– for all models M,N, M |= E and N |= M∗ ∩Δ implies N |= E.

Because Sen0(Σ) is closed under finite disjunctions it is enough to show that for
arbitrary Σ-models, if M |= E and N |= M∗ ∩Sen0(Σ) then N |= E .

From N |= M∗ ∩Sen0(Σ) we have M[Sen0]N, hence by (2) there exists N′ such that

M
Sen0−→ N′ ≡ N, therefore because E is preserved by Sen0-extensions N′ |= E , and thus

N |= E .
The submodel part of the conclusion can be shown in a similar manner by setting

the Δ of Lemma 8.3 to ¬Sen0(Σ). Let M,N be models such that M |= E and N |= M∗ ∩
¬Sen0(Σ). From the latter we get M[¬Sen0]N which means N[Sen0]M. By (2) there exists

a model M′ such that N
Sen0−→ M′ ≡ M. Thus M′ |= E and by the hypothesis that E is

preserved by submodels we get that N |= E . This concludes the proof of this theorem.
Now we present a proof of Lemma 8.3.

Proof of Lemma 8.3. We prove only the hard part, that the second item implies
the first one. Let N be a model such that N |= E ∩Δ. We want to prove that N |= E .

Let us first show that E ∪Γ is consistent, where Γ = N∗ ∩¬Δ. If E ∪Γ were incon-
sistent, then by compactness there would exist E0 ⊆ E and Γ0 ⊆ Γ both finite such that
E0∪Γ0 is inconsistent. Then E |= ¬(∧Γ0) (otherwise the consistency assumption for E is
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contradicted). If Γ0 = {¬δk | 1≤ k ≤ n} then E |= δ1∨·· ·∨δn. But δ1∨·· · ∨δn = δ ∈ Δ
since Δ is closed under finite disjunctions. Hence δ ∈ E∩Δ, which implies N |= δ. There-
fore there exists 1≤ k ≤ n for which N |= δk. Because ¬δk ∈ Γ0 ⊆ N∗ we have reached a
contradiction.

As E ∪Γ is consistent let M be one of its models. If we showed that N |= M∗ ∩Δ,
then by the assumption of the second item we would get that N |= E . Therefore if there
were δ ∈ M∗ ∩Δ such that N �|= δ, then N |= ¬δ, hence ¬δ ∈ Γ. Then M |= ¬δ which
contradicts δ ∈M∗. �

From the conditions of the preservation Thm. 8.2, except the condition on existence
of saturated models all others are rather common conditions. In applications the existence
of saturated models is handled by Thm. 7.9. The following is a typical concrete instance.

Corollary 8.4. A FOL theory is preserved by closed sub-models, respectively extensions,
if and only if it is presented by a set of universal, respectively existential, sentences.

Proof. FOL has model amalgamation (Prop. 4.6), is compact (Cor. 6.22), has only fini-
tary sentences (Fact 7.17), each model has a D-size given by the cardinality of its carrier
sets (Fact 7.15) for D the class of the signature extensions with a finite number of con-
stants, and has D-saturated models (Cor. 7.11). The conclusion follows by Thm. 8.2 and
by Prop. 8.1 when taking Sen0 to be Exist, the existential sentences. �

Exercises

8.1. Elementary diagrams for Sen0-submodels
For each signature Σ, the Sen0-submodels form a subcategory Mod0(Σ) of Mod(Σ). Moreover,
the resulting sub-institution (Sig,Sen0,Mod0, |=) has elementary diagrams. (Hint: The elementary
diagram of M is (ΣM ,M∗

M ∩Sen0(ΣM)).)

8.2. The result of Prop. 8.1 can be changed in various ways by weakening the requirements on the
model homomorphisms as follows. Let Sen0 consist of the existential quantifications of sentences
accessible by disjunction and conjunction from a class of sentences B (which is a parameter of the

problem). For any FOL models M and N (of the same signature) M
Sen0

−→ N if and only if there exists
a homomorphism h : M→ N which is

• just plain, when B consists of all the atoms,
• injective, when B consists of all the atoms and the negations of equational atoms, and
• closed, when B consists of all the atoms and the negations of relational atoms.

By instantiating the general preservation Thm. 8.2, formulate variants of the preservation results of
Cor. 8.4 corresponding to the three situations above.

8.3. Preservation in PA
A PA sentence is existential, respectively universal, when it is an existential, respectively universal,
quantification of a sentence which is accessible by Boolean connectives from existence equations.
A PA theory is preserved by closed sub-algebras (see Ex. 4.57), respectively extensions, if and only
if it is presented by a set of universal, respectively existential, sentences.

Provide variants of this result which correspond to the three situations from Ex. 8.2.
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8.2 Axiomatizability by Ultraproducts

Recall that a class of models M for a signature is called elementary when it is closed,
i.e., M∗∗ = M. In other words elementary classes of models are the classes of models of
theories.

Theorem 8.5. In any institution that has negation and conjunction and whose sentences
are preserved by ultraproducts, a class of models of a given signature is elementary if and
only if it is closed under ultraproducts and elementary equivalence.

Proof. The implication that any elementary class of models is closed under elementary
equivalence and ultraproducts follows immediately from the hypothesis.

For the opposite implication, consider a class of models M closed under ultraprod-
ucts and elementary equivalence. Let E = M∗. We prove that M = E∗.

For any B ∈ E∗ let Pω(B∗) be the set of the finite subsets of {B}∗. For each i ∈
Pω(B∗), there exists Ai ∈M such that Ai |= i. (Otherwise for all A ∈M, A |= ¬∧ i which
implies that ¬∧ i ∈ E , which further implies that B |= ¬∧ i which contradicts the fact
that B |= i.) By the compactness Thm. 6.17, there exists an ultrafilter U over Pω(B∗) such
that ∏U Ai |= {B}∗. This implies that ∏U Ai ≡ B (otherwise if there exists a sentence e
such that ∏U Ai |= e but B �|= e, then B |= ¬e which implies ∏U Ai |= ¬e contradicting
∏U Ai |= e). Because M is closed under ultraproducts and elementary equivalence, we
have that B ∈M. �

Finitely elementary classes. A class of models of a signature is finitely elementary
when it is the class of models of a finite presentation.

Corollary 8.6. Under the hypotheses of Thm. 8.5 above, the following are equivalent for
a class M of Σ-models:

– M is finitely elementary, and

– both M and its complementary |Mod(Σ)| \M are elementary.

Proof. If E is a finite set of Σ-sentences, then the complement of E∗ is (¬∧E)∗.
For the opposite implication, consider E∗ an elementary class of models such that its

complement is also elementary. We show that there exists E0⊆E finite such that E∗ = E∗0 .
If we assume the contrary, then for each E0 ⊆ E finite there exists a model A in the
complement of E∗ such that A |= E0. Because each sentence is preserved by ultraproducts,
by the compactness Thm. 6.17, there exists an ultraproduct ∏U Ai over Pω(E) such that
∏U Ai |= E and for each i ∈ Pω(E), Ai |= i but Ai �∈ E∗. Because the complement of E∗ is
closed under ultraproducts, we also get that ∏U Ai �∈E∗ which contradicts ∏U Ai |= E . �

Axiomatizability in Keisler-Shelah institutions

Institutions admitting the Keisler-Shelah property permit a purely algebraic characteriza-
tion of elementary equivalence as a corollary of Thm. 8.5.
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Ultraradicals. Let us say that a model A is an ultraradical of a model B if B is an
ultrapower of A.

Corollary 8.7. In any Keisler-Shelah institution satisfying the conditions of Thm.8.5, the
following are equivalent: for any class of models of a signature, the class

– is elementary,

– is closed under ultraproducts and ultraradicals,

– is closed under ultraproducts and its complement is closed under ultrapowers.

A concrete example is given by FOL which we already know is a Łoś-institution
(Cor. 6.12) and has the Keisler-Shelah property (Cor. 7.27).

Corollary 8.8. In FOL, a class of models of a given signature

– is elementary if and only if it is closed under ultraproducts and under ultraradicals,
and

– is finitely elementary if and only if both it and its complement are closed under
ultraproducts.

Universal axiomatizability

The Keisler-Shelah property makes it possible to convert the general preservation result
of Thm. 8.2 into an axiomatizability result.

Corollary 8.9 (Universal axiomatizability). Further to the framework of Sect. 8.1 and
the conditions of the preservation Thm. 8.2 let us also assume that

1. the institution has ultraproducts of models which are preserved by (the model re-
ducts corresponding to) the elementary extensions,

2. all sentences of the institution are preserved by ultraproducts, and

3. the institution has the Keisler-Shelah property.

Then the following are equivalent for a non-empty class of models of a signature:

– it is closed under ultraproducts and Sen0-submodels, and

– it is the class of models of a ¬Sen0-theory.

Proof. We focus only on the hard implication. Let us consider a class M of models that
is closed under ultraproducts and Sen0-submodels.

First we show that M is just elementary. By Thm. 8.5 it is enough to show that M

is closed under elementary equivalence. Let M ≡ N ∈ M. By the Keisler-Shelah prop-
erty there exists an ultrafilter such that ∏U M ∼= ∏U N. As M is closed under ultraprod-
ucts, ∏U N ∈M, hence ∏U M ∈M too. By Prop. 6.13, there exists an elementary homo-
morphism M → ∏U M. Because obviously each elementary homomorphism is a Sen0-
submodel too, and M is closed under Sen0-submodels, we get that M ∈M.
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Now we consider the theory M∗. Because M is elementary we have that M∗∗ = M.
Note that M∗ is preserved by Sen0-submodels because M∗∗ = M and M is closed under
Sen0-submodels. By Thm. 8.2 we therefore have that M∗ ∩¬Sen0(Σ) |=|M∗. Because
M∗∗ = M, we have that M = (M∗ ∩¬Sen0(Σ))∗. �

By taking Sen0 to be the functor Exist of the existential sentences in FOL, we get
the following concrete universal axiomatizability result.

Corollary 8.10. A class of FOL models is the class of models of a universal theory (i.e.,
a theory presented by universal sentences) if and only if it is closed under ultraproducts
and closed submodels.

Exercises

8.4. Develop instances of the universal axiomatizability Cor. 8.9 in FOL, different from Cor. 8.10,
based upon the preservation results of Ex. 8.2. Develop similar universal axiomatizability results in
PA and other concrete institutions presented in the book.

8.3 Quasi-varieties and Initial Models

In this section we establish an important connection between existence of initial models
for theories and the closure of the class of models of the theory to products and ‘submod-
els’.

Subobjects in categories with inclusion systems. We have already introduced and
used several notions of ‘submodel’, such as plain FOL submodels or closed FOL sub-
models (see Sect. 4.5). Both the simple and the closed concepts of FOL submodels are
examples of the following general concept of ‘subobject’.

In any category C with an inclusion system 〈I , E〉, we say that an object A is an
I -subobject of another object B if there exists an abstract inclusion (A ↪→ B) ∈ I . When
the inclusion system is fixed then we may simply say ‘subobject’ instead of ‘I -subobject’.

An object A of C is I -reachable if and only if it has no I -subobjects which are
different from A. The same as above, when 〈I , E〉 is fixed we may simply say ‘reachable’
rather than ‘I -reachable’. By varying the inclusion system of a category, one obtains
different notions of reachability. For example, in the category of the Σ-models for a FOL
signature, a reachable model in the strong inclusion system is reachable in the closed
inclusion system too, but the other way around is not true.

Fact 8.11. In any category C with a given inclusion system and which has an initial
object 0C

– each object A is reachable if and only if the unique arrow 0C → A is an abstract
surjection, and

– each object has exactly one reachable subobject.
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Quotient objects in categories with inclusion systems. The concept of quotient ob-
ject can be seen as dual to that of subobject. In any category C with an inclusion system
〈I , E〉, an object B is an E-quotient representation of A if there exists an abstract surjec-
tion A→ B. An E-quotient of A is an isomorphism class of E-quotient representations.
As for subobject, when the inclusion system is fixed we may simply say ‘quotient’ instead
of ‘E-quotient’.

We say that the inclusion system is 〈I , E〉 co-well-powered if the category C is
E-co-well-powered. We may recall from Sect. 2.1 that this means the class of E-quotients
of each object is a set.

Quasi-varieties and varieties. In any category C with a given inclusion system and
with small products, a class of objects of C closed under isomorphisms

• is a quasi-variety if it is closed under small products and subobjects, and

• is a variety if it is a quasi-variety closed under quotient representations.

Initial models of quasi-varieties

The existence of initial models of quasi-varieties can be obtained at the very general level
of abstract categories with inclusion systems.

Proposition 8.12. Consider a category C with an initial object 0C, small products, and
with a co-well-powered epic inclusion system. Each quasi-variety Q of C has a reachable
initial object.

Proof. Let {Ai | i∈ I} be the class of all reachable subobjects of all objects of Q . Then we
consider a subclass of indices I′ ⊆ I such that there are no isomorphic objects in {Ai | i ∈
I′} and for each i ∈ I there exists j ∈ I′ such that Ai # A j. I′ is a set because the inclusion
system of C is co-well-powered and because we know that for each reachable object B the
unique arrow 0C→ B is abstract surjection (Fact 8.11). Let 0Q be the reachable subobject
of the product ∏ j∈I′ A j (see Fact 8.11). We prove that 0Q is initial in Q .

0Q �� ∏ j∈I′ A j
p j �� A j ∼= Ai �� A.

For each object A of Q , there exists i ∈ I such that Ai is a reachable subobject of A.
Then there exists j ∈ I′ such that Ai is isomorphic to A j, therefore there exists an arrow
∏ j∈I′ A j → A. Because 0Q is a subobject of the product ∏ j∈I′ A j, there exists an arrow
0Q →A. Because 0Q is reachable, the unique arrow 0C→ 0Q is abstract surjection, which
is also epi because the inclusion system is epic. This implies the uniqueness of the arrow
0Q → A. �

Prop. 8.12 provides a rather simple way for showing the existence of initial models
of Horn theories. The example below extends the corresponding FOL result of Cor. 4.28
to infinitary Horn sentences. Recall that an infinitary universal Horn (S,F,P)-sentence is
a sentence of the form (∀X)H ⇒ C where X is a set of first order variables (i.e., new
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constants), H is the conjunction of any set of (S,F �X ,P)-atoms and C is an (S,F,P)-
atom.

Corollary 8.13. For any FOL signature (S,F,P), any set of infinitary universal Horn
(S,F,P)-sentences has an initial model.

Proof. Let Γ be a set of infinitary universal Horn (S,F,P)-sentences. Because there exists
the initial (S,F,P)-model (cf. Prop. 4.27), by Prop. 8.12 it is enough to show that Γ∗ is a
quasi-variety. For this we consider the closed inclusion system for the categories of FOL
models. Recall from Sect. 4.5 that in the closed inclusion system the abstract surjections
are the surjective homomorphisms and the abstract inclusions are the closed submodels.

Let (Ai)i∈I be a family of (S,F,P)-models satisfying Γ. We have to prove that the
product ∏i∈I Ai satisfies each sentence (∀X)H ⇒ C of Γ. Let A′ be any (S,F �X ,P)-
expansion of A which satisfies H. Each projection pi : ∏i∈I Ai → Ai lifts uniquely to
p′i : A′ → A′i and (p′i)i∈I is a product cone. Then each A′i |= H and since each Ai |=
(∀X)H ⇒C we have that each A′i |= C. Then A′ = ∏i∈I A′i |= C.

Let B ↪→A be a closed submodel of a model A which satisfies Γ. For any (∀X)H⇒C
in Γ, let B′ be a (S,F�X ,P)-expansion of B such that B′ |= H. Let A′ be the (S,F�X ,P)-
expansion of A such that A′x = B′x for each x ∈ X . This gives a closed submodel B′ ↪→ A′
for (S,F �X ,P). Then A′ |= H and consequently A′ |= C. Since B′ is a closed submodel
of A′ we get that B′ |= C. �

Note that the proof of the existence of initial models of Horn theories given by
Cor. 8.13 is simpler than the proof provided by Cor. 4.28 in the sense that it avoids con-
struction of the congruence =Γ and of the quotient of the initial (S,F,P)-model by =Γ.

Liberality via quasi-varieties. Cor. 4.30 showed that the existence of initial models of
theories is the essential factor for the liberality of institutions. By using Prop. 8.12 it can
be reformulated as follows:

Corollary 8.14. Consider a semi-exact institution with pushouts of signatures and with
elementary diagrams such that for each signature the category of models has an initial
model, small products, and a co-well-powered epic inclusion system. If the class of models
of each theory is a quasi-variety, then the institution is liberal.

The following typical concrete instance of Cor. 8.14 has already been obtained as
Cor. 4.32, now being obtained via the existence of initial models of quasi-varieties.

Corollary 8.15. The institution HCL is liberal.

Equivalence between quasi-varieties and existence of initial models. We have seen
(Prop. 8.12) that quasi-varieties have initial models and that this holds in the very general
setting of abstract categories. The following establishes the equivalence between the class
of models of a theory being quasi-variety and the theory having initial models. This rather
remarkable result needs some model theoretic infrastructure.
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Theorem 8.16. Consider an institution with elementary diagrams ι such that

1. for each signature Σ the category of Σ-models

(a) has an initial object 0Σ,
(b) has small products, and
(c) has a co-well-powered epic inclusion system,

and

2. the model reduct functors corresponding to the elementary extensions

(a) preserve the abstract inclusions and the abstract surjections and
(b) reflect identities, i.e., if Mod(ιΣ(M))(h) is identity then h is identity.

Each theory has a reachable initial model if and only if the class of models of each theory
is a quasi-variety.

Proof. Because of Prop. 8.12 we have to prove only one implication, that if a theory
(Σ,E) has reachable initial models, then its class of models form a quasi-variety.

We first show the preservation by submodels. Let (Σ,E) be a theory and consider
N ↪→M a submodel of a (Σ,E)-model M. We prove that N |=Σ E . Let h : NN →MN be the
(ΣN ,EN)-homomorphism i−1

Σ,N(N ↪→M). Let us factor h = eh; ih in the inclusion system of
Mod(ΣN) with eh abstract surjection and ih abstract inclusion. Because the reduct functor
Mod(ιΣ(N)) preserves both the abstract inclusions and the abstract surjections, N ↪→ M
gets factored as eh�ιΣ(N); ih�ιΣ(N) in the inclusion system of Mod(Σ). Because B ↪→ A is
abstract inclusion, we deduce that eh�ιΣ(N) = 1N , which, by the condition that Mod(ιΣ(B))
reflects identities, means that eh is identity. Therefore h = ih which means h is abstract
inclusion.

By the Satisfaction Condition M |=Σ E implies that MN |=ΣN E ′, where E ′ =
ιΣ(N)(E). Let f : 0ΣN ,EN∪E ′ →MN be the unique model homomorphism from the initial
(ΣN ,EN ∪E ′)-model. Because h : NN → MN is abstract inclusion and NN → 0ΣN ,EN∪E ′
is abstract surjection (by the reachability of 0ΣN ,EN∪E ′ ), by factoring f in the inclusion
system of Mod(ΣN) it follows that NN and 0ΣN ,EN∪E ′ are isomorphic. This means that
NN |=ΣN E ′, which by the Satisfaction Condition implies N |=Σ E .

For the preservation by products, consider (N
pi ��Mi )i∈I a product of Σ-models

for a signature Σ such that Mi |= E for each i ∈ I. We have to prove that N |= E . By
the canonical isomorphism iΣ,N : Mod(ΣN ,EN)→ N/Mod(Σ) and because the forgetful

functor N/Mod(Σ)→Mod(Σ) reflects the products, we have that (NN
(pi)N ��(Mi)N )i∈I is

a product in Mod(ΣN ,EN), where (pi)N = i−1
Σ,N(pi : 1N → pi) for each i ∈ I.

NN
(pi)N �� (Mi)N

0ΣN ,EN∪E ′

∼=
�� =?��������
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By the Satisfaction Condition (Mi)N |= E ′ for each i∈ I, where E ′ = ιΣ(N)(E). Therefore
we get a unique ΣN-model homomorphism 0ΣN ,EN∪E ′ → (Mi)N for each i ∈ I. By the
universal property of products, this gives a ΣN-model homomorphism 0ΣN ,EN∪E ′ → NN .
Because we already have a homomorphism NN → 0ΣN ,EN∪E ′ , by the universal property of
the initial objects NN and 0ΣN ,EN∪E ′ , we have that NN and 0ΣN ,EN∪E ′ are isomorphic. This
implies that NN |=ΣN E ′, which by the Satisfaction Condition gives that N |=Σ E . �

Because concrete elementary extensions are usually signature extensions with con-
stants, which are quasi-representable, the condition that model reducts corresponding to
elementary extensions reflects the identities can be handled easily in the applications of
Thm. 8.16 by the following rather general fact.

Fact 8.17. The model reducts corresponding to quasi-representable signature morphisms
reflect identities.

The other conditions of Thm. 8.16 are also rather easy to check in the applications
as suggested by the following typical example.

Corollary 8.18. In FOL, both in the case of the strong and of the closed inclusion systems
for categories of models, a theory has a reachable initial model if and only if the class of
its models forms a quasi-variety.

Exercises

8.5. Any intersection of quasi-varieties is a quasi-variety. Any intersection of varieties is a variety.

8.4 Quasi-Variety Theorem

In Cor. 8.13 we have seen that the FOL-models of infinitary Horn sentences form quasi-
varieties. In this section we will see that this holds more generally in institutions. We will
also establish the more difficult opposite implication, which constitutes the axiomatiz-
ability result for quasi-varieties, that each quasi-variety is the class of models of a set of
Horn sentences.

The framework. The general concept of a Horn sentence as a sentence of the form
(∀χ)E ⇒ E ′ with χ being a representable signature morphism from a designated class D
of signature morphisms, E being a set of epi basic sentences, and E ′ being a set of basic
sentences, is too lax for the purpose of this section mainly because basic sentences capture
significantly more than the atoms of the institutions (recall that existentially quantified
atoms are also basic in FOL and other institutions). Although epi basic sentences might
constitute a better abstract capture for the atoms of concrete institutions, we do not have
any guarantee that in each situation each epi basic sentence is ‘atomic’. The solution to
this problem is to consider a designated sub-class of the class of general Horn sentences
as a parameter for our framework. Therefore for this section we introduce a framework
consisting of the following additional data for the institution:
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• a class D of representable signature morphisms,

• a system of elementary diagrams ι for the institution such that each elementary
extension ιΣ(M) ∈D,

• a sub-functor Horn of Sen, i.e., Horn : Sig→ Set such that Horn(Σ)⊆ Sen(Σ) and
ϕ(Horn(Σ)) ⊆ Horn(Σ′) for each signature morphism ϕ : Σ → Σ′, such that each
sentence of Horn is (semantically equivalent to) a D-universal Horn sentence, and

• for each signature Σ the category of the Σ-models has products and a designated
co-well-powered inclusion system.

A typical example is to consider D the class of all FOL-signature extensions with con-
stants and for each FOL-signature Σ the set Horn(Σ) to be the set of all infinitary Horn
sentences (∀X)H ⇒ C (with X being a set of variables, H [the conjunction of] a set of
FOL-atoms, and C a FOL-atom). The finitary variant of this, i.e., when H is a finite
conjunction of atoms, is also an example.

Models of Horn sentences form quasi-varieties

Theorem 8.19. In any institution such that

(QP1) the abstract surjections are preserved by D-reducts (i.e., the model reducts cor-
responding to signature morphisms of D), and

(QP2) for each Horn-sentence (∀χ)E ⇒ E ′ the canonical model homomorphism ME →
ME∪E ′ is an abstract surjection,

the models of any Horn-sentence form a quasi-variety.

Proof. From Prop. 5.25 we know that for each Horn sentence (∀χ)E ⇒ E ′ there exists a
model homomorphism h such that for each model M,

M |= (∀χ)E ⇒ E ′ if and only if M |=inj h (i.e., M is injective with respect to h) .

Moreover, the above model homomorphism h is a χ-reduct of the canonical model homo-
morphism ME →ME∪E ′ , hence by (QP1−2) it is an abstract surjection.

The conclusion follows by the general categorical result below:

Lemma 8.20. For each abstract surjection e of an inclusion system in a category with
products, the class In j(e) of the objects injective with respect to e form a quasi-variety.

Proof. Consider a family of objects {A j} j∈J ⊆ In j(e) and let {A
p j ��A j } j∈J be their

product. We prove that A ∈ In j(e). Let f : dom( f )→ A. For each index j ∈ J, let g j be
such that e;g j = f ; p j. Let g be the unique arrow such that g; p j = g j for each index j ∈ J.
For each j ∈ J, e;g; p j = e;g j = f ; p j. By the uniqueness aspect of the universal property
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of products, we obtain that e;g = f .
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Now consider a subobject i : A ↪→ B for B ∈ In j(e). We prove that A ∈ In j(e) too. Let
f : dom( f )→ A. Because B∈ In j(e), there exists g such that e;g = f ; i. By Diagonal-fill
Lemma 4.16 there exists h such that e;h = f . �

Thus we have completed the proof of the theorem. �

The FOL example. For the FOL models the above Thm. 8.19 gives two different in-
stances corresponding to the two inclusion systems for model categories. One of them has
already been proved in Cor. 8.13. The difference between these two is determined by the
condition (QP2), and each of them corresponds to a different choice for the subfunctor
Horn.

Corollary 8.21. For any FOL signature

1. the models of any set of infinitary Horn sentences form a quasi-variety for the closed
inclusion system, and

2. the models of any set of infinitary Horn sentences (∀X)H ⇒C for which the conclu-
sion C is an equational atom form a quasi-variety for the strong inclusion system.

Note that condition (QP2) rules out the possibility of extending Horn to sentences
of the form (∀X)H ⇒C with C being an existentially quantified atom.

Each quasi-variety is axiomatizable by Horn sentences

The following constitutes the more difficult implication of the equivalence between quasi-
varieties and classes of models of Horn sentences.

Theorem 8.22 (Quasi-variety). In any institution such that

(QA1) the inclusion systems of the model categories are epic,

(QA2) each abstract surjection (of models) is ι-conservative, and

(QA3) for any abstract surjection (of models) h : A → B, the ‘internal’ sentence
(∀ιΣ(A))EA ⇒ ιΣ(h)−1(E∗∗B ) is semantically equivalent to a set of Horn-sentences,

any quasi-variety is the class of models of a set of Horn-sentences.

Proof. From Prop. 5.28 we know that for each ι-conservative model homomorphism h,

M |=inj h if and only if M |= (∀ιΣ(A))EA ⇒ ιΣ(h)−1(E∗∗B ).

By (QA1−3) the problem is reduced to the following categorical lemma:
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Lemma 8.23. In any category with products and with a co-well-powered epic inclusion
system, for each quasi-variety Q there exists a class E of surjections such that Q = In j(E).

Proof. Let us define E = {e abstract surjection | Q ⊆ In j(e)}. We notice immediately
that Q⊆ In j(E), therefore we have to prove only that In j(E)⊆ Q. Consider A ∈ In j(E).
We prove that A ∈Q.

Because the inclusion system is co-well-powered we can chose a ‘complete’ set

{A
ej

��Mj ∈ Q} j∈J of quotient representatives of A in Q in the sense that for each
quotient representative e : A→ cod(e)∈Q there exists an isomorphism γ and some j ∈ J
such that e;γ = e j.

Let {M
p j ��Mj } j∈J be the product of {Mj} j∈J. Notice that M ∈ Q since Q as

a quasi-variety is closed under products. By the universal property of the products let
f : A → M be the unique arrow such that f ; p j = e j for each j ∈ J, and let us factor
f = e f ; i f such that e f is abstract surjection and i f is abstract inclusion. We prove that
Q⊆ In j(e f ).
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Consider any B ∈ Q and g : A → B. Let g = eg; ig with eg abstract surjection and ig
abstract inclusion. Then g(A) ∈ Q since Q is closed under subobjects. Because {e j} j∈J

is ‘complete’, there exists l ∈ J and an isomorphism γ such that eg = el;γ. Notice that
e f ;(i f ; pl;γ; ig) = g, hence B |=inj e f , which means B ∈ In j(e f ).

Therefore Q ⊆ In j(e f ), which by the definition of E implies e f ∈ E . Because A ∈
In j(E) this means that A |=inj e f . If we consider 1A : A → A, then we get m such that
e f ;m = 1A which, because e f is epi (the inclusion system being epic), implies that e f is
an isomorphism. Because f (A) ∈ Q (since M ∈ Q and Q is closed under subobjects), we
deduce A ∈Q. �

Thus we have completed the proof of the theorem. �

Now we can put together both implications given by the Theorems 8.19 and 8.22.

Corollary 8.24. In any institution satisfying (QP1−2) and (QA1−3) a class of models
of a signature is a quasi-variety if and only if it is the class of models of a set of Horn-
sentences.

While the conditions (QA1− 2) do not really narrow the applicability of Quasi-
variety Thm. 8.22 and its Corollary 8.24, the conjunction between (QA3) and (QP2) may
eliminate some apparent possible applications as illustrated by the following example.
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Quasi-varieties in FOL. In the example of FOL models, the conjunction between
(QA3) and (QP2) eliminates an apparent instance of Cor. 8.24 corresponding to the
choice of the inclusion systems for the categories of models. Hence the only possible
choice remains that of the closed inclusion systems. Note that the condition (QA3) holds
by the semantical equivalence given by the result below (its proof is left to the reader).

Lemma 8.25. Let Σ be a signature in FOL, which is considered with its standard system
of elementary diagrams (see Sect. 4.4), and h : A→ B be a surjective Σ-model homomor-
phism. Then

(∀ιΣ(A))EA ⇒ ιΣ(h)−1(E∗∗B ) |=| {(∀ιΣ(A))EA ⇒ ρ | BB |= ιΣ(h)(ρ), ρ atom}.
Therefore the FOL instance of Cor. 8.24 is as follows.

Corollary 8.26. For any FOL signature a class of models is a quasi-variety for the closed
inclusion system if and only if it is the class of models of a set of infinitary Horn sentences.

Exercises

8.6. Axiomatizability for quasi-varieties of partial algebras

(a) As an instance of Cor. 8.24, a class of partial algebras is
axiomatizable by iff it is closed under
QE2-sentences products and (plain) subalgebras
QE-sentences products and closed subalgebras

(Hint: Use Ex. 4.57.)
(b) A result similar to (a) for QE1 fails on the condition (QP2).
(c) In PA each morphism between presentations of universal quasi-existence equations is liberal.

8.5 Birkhoff Variety Theorem

In the framework of the previous Sect. 8.4, instead of the sentence subfunctor Horn let us
consider

• a sentence subfunctor UA : Sig→ Set such that each UA-sentence is semantically
equivalent to a sentence of the form (∀χ)E ′ with χ ∈D and E ′ being a set of basic
sentences.

A typical example for UA is given by the universally quantified FOL-atoms.

Models of ‘universal atoms’ form varieties

Proposition 8.27. In any institution satisfying (QP1−2) (of Thm. 8.19) and such that

(VP) any abstract surjection f : A → B in Mod(Σ) can be χ-expanded to a Σ′-model
homomorphism A′ → B′ for each signature morphism χ ∈D and each χ-expansion
B′ of B,

the models of any UA-sentence form a variety.
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Proof. The models of any UA-sentence form a quasi-variety because the subfunctor UA
fulfills the conditions required by the subfunctor Horn in Thm. 8.19. (Note that here in the
condition (QP2) we should read UA instead of Horn.) We therefore need only to prove
that UA-sentences are ‘preserved’ by the abstract surjections.

Let h : M → N be an abstract surjection and M |= (∀χ)E ′ where χ ∈ D and E ′ is
basic. For any χ-expansion N′ of N by (V P) we get a χ-expansion h′ : M′ →N′ of h. Then
M′ |= E ′ and because E ′ is basic we have that N′ |= E ′ too. This shows N′ |= (∀χ)E ′. �

The condition (VP) is easy to check in the applications as shown by the following
example.

The FOL example. Let us consider any of the closed or the strong inclusion systems
in FOL, and D the class of signature extensions with constants. For both inclusion sys-
tems considered the abstract surjections are also surjective as functions. We have that for
each (χ : Σ → Σ�X) ∈ D and each surjective Σ-model homomorphism h : M → N,
for any χ-expansion N′ of N for each x ∈ X let us pick any M′

x ∈ N′x. This lifts h to a
Σ′-homomorphism M′ → N′.

This gives the following continuation of Cor. 8.21 to varieties.

Corollary 8.28. For any FOL signature

1. the models of any set of universally quantified atoms form a variety for the closed
inclusion system, and

2. the models of any set of universally quantified equations form a variety for the strong
inclusion system.

Each variety is axiomatizable by ‘universal atoms’

The following constitutes the more difficult implication of the equivalence between vari-
eties and classes of models of ‘universal atoms’.

Theorem 8.29 (Birkhoff variety). In any institution satisfying (QA2) (of Thm. 8.22) and
such that

(VA1) for each model A, iιΣ(A) : Mod(ΣA)→MιΣ(A)/Mod(Σ) maps the initial (ΣA,EA)-
model AA to an abstract surjection MιΣ(A) → A, and

(VA2) for any abstract surjection (of models) h : A → B, the ‘internal’ sentence
(∀ιΣ(A))ιΣ(h)−1(E∗∗B ) is semantically equivalent to a set of UA-sentences,

any variety is the class of models of a set of UA-sentences.

Proof. For a given signature Σ let us consider the class of all representations of the sig-
nature morphisms Σ→ Σ′ which belong to D, i.e.,

K = {Mχ | (χ : Σ→ Σ′) ∈D}.
Because of (VA1) we can apply Lemma 8.30 below, and obtain that for each variety V
there exists a class E of abstract surjections with domains in K such that V = In j(E).
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By (QA2) each abstract surjection is ι-conservative, therefore by Cor. 5.30, for each
(h : Mχ → B) ∈ E ,

M |=inj h if and only if M |=Σ (∀ιΣ(Mχ))ιΣ(h)−1(E∗∗B ).

Now by (VA2) we obtain the conclusion of the Variety Theorem.
Given a class K ⊆ |C| of objects in a category C with an inclusion system, f is a

K -surjection when it is an abstract surjection and dom( f ) ∈ K .

Lemma 8.30. In a category with products and a co-well-powered inclusion system, let
K be a class of objects such that for each object A of the category there exists an ab-
stract surjection A′ → A with A′ ∈ K . Then for each variety V there exists a class E of
K -surjections such that V = In j(E).

Proof. Let us define E = {e K -surjection | V ⊆ In j(e)}. We notice immediately that
V ⊆ In j(E), therefore we have to prove only that In j(E)⊆ V . Consider A ∈ In j(E). We
will prove that A ∈V .

There exists an object A′ ∈ K and an abstract surjection fA such that fA : A′ → A.
Similarly to the argument in the proof of Lemma 8.23, because the inclusion system
is co-well-powered we can chose a ‘complete’ set (e j : A′ → Mj ∈ V ) j∈J of quotient
representatives of A′ in V in the sense that for each quotient representative e : A′ → B∈V
there exists an isomorphism γ and some j ∈ J such that e;γ = e j.

Let (p j : M →Mj) j∈J be the product of (Mj) j∈J . Notice that M ∈ V since V as a
variety is closed under products. By the universal property of the products let f : A′ →M
be the unique arrow such that f ; p j = e j for each j ∈ J, and let us factor f = e f ; i f such
that e f is abstract surjection and i f is abstract inclusion. Similarly to the proof of Lemma
8.23, we can prove that e f ∈ E .
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e f ∈ E and A ∈ In j(E) imply that there exists m such that fA = e f ;m. Because both e f

and fA are abstract surjections, we deduce that m is an abstract surjection too. Because V
is a variety we have successively that M ∈V , f (A′) ∈V , and A ∈V . �

Thus we have completed the proof of the theorem. �

Now we can put together both implications given by Prop. 8.27 and Thm. 8.29.

Corollary 8.31. In any institution satisfying (QP1− 2), (QA2), (V P), and (VA1− 2) a
class of models of a signature is a variety if and only if it is the class of models of a set
UA-sentences.
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Conditions (VA1−2) can be checked rather easily in concrete applications as sug-
gested by the following example.

Varieties in FOL. For each (S,F,P)-model A, if we denote by |A| the (many-sorted)
carrier set of A, then iι(S,F,P) (A)(AA) is the unique extension of the identity function A→ A

to an (S,F,P)-model homomorphism TF(|A|)→ A from the free (term) (S,F,P)-model
TF(|A|). This is surjective but not strong, hence it is an abstract surjection only for the
closed inclusion system for models. This eliminates the FOL variant corresponding to
the strong inclusion systems from the possible instances of Cor. 8.31.

Condition (VA2) is fulfilled by the FOL example with UA being the universally
quantified atoms because of the semantic equivalence below (its rather simple proof is
left to the reader).

Lemma 8.32. Let Σ be a signature in FOL, which is considered with its standard system
of elementary diagrams (see Sect. 4.4), and h : A→ B be a surjective Σ-model homomor-
phism. Then

(∀ιΣ(A))ιΣ(h)−1(E∗∗B ) |=| {(∀ιΣ(A))ρ | BB |= ιΣ(h)(ρ), ρ atom}.
Therefore we can now formulate the following:

Corollary 8.33. For any FOL signature a class of models is a variety for the closed
inclusion system if and only if it is the class of models of a set of universally quantified
atoms.

Exercises

8.7. Axiomatizability for varieties of partial algebras
As an instance of the general Birkhoff variety Thm. 8.29, we establish that for any PA signature
each class of models that is closed under products, closed submodels, and epi homomorphic images
(see also Ex. 4.57) is the class of models of a set of universally quantified existence equations. How-
ever the corresponding preservation result fails because not every universally quantified existence
equation is preserved by any epi homomorphism. At the general level this failure is reflected as a
failure of the condition (VP) for the epi homomorphisms of partial algebras.

8.6 General Birkhoff Axiomatizability

We have already proved a series of axiomatizability results. In this section we show how
they can be captured uniformly by introducing the new concept of ‘Birkhoff institution’.

First let us recall some facts about relations and establish a couple of useful nota-
tions.

Application of relations. Given a binary relation R⊆ A×B, for each A′ ⊆ A let

R(A′) = {b | 〈a, b〉 ∈ R,a ∈ A′}.
Let us also recall
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• that the composition of binary relations R⊆ A×B and R′ ⊆ B×C is defined by

R;R′ = {〈a, c〉 | there exists b such that 〈a, b〉 ∈ R and 〈b, c〉 ∈ R′}

and

• that the inverse R−1 of a binary relation R⊆ A×B is defined by

R−1 = {〈b, a〉 | 〈a, b〉 ∈ R}.

Relations induced by classes of arrows. Any class of arrows H in a category C deter-

mines a (class) relation
H→⊆ |C|× |C| by

a
H→ b if there exists an arrow h : a→ b ∈ H.

The inverse ( H→)−1 is denoted by
H←.

Relations induced by classes of arrows. Any class of arrows H in a category C deter-

mines a (class) relation
H→⊆ |C|× |C| by

a
H→ b if there exists an arrow h : a→ b ∈ H.

The inverse ( H→)−1 is denoted by
H←.

Quasi-variety theorem revisited. We reformulate the conclusion of Thm. 8.22:

Theorem 8.34 (Quasi-variety). Under the conditions (QP1− 2) (of Thm. 8.19) and
(QA1−3) (of Thm. 8.22), for any class of Σ-models M,

(M∗ ∩Horn(Σ))∗ = I← (PM)

where I is the class of abstract inclusions for the Σ-models, and PM is the class of all
(small) products of models of M.

Proof. By the following general categorical lemma (whose proof is left as an exercise for
the reader)

Lemma 8.35. For any inclusion system 〈I , E〉 in a category C with small products, the
products preserve the abstract inclusions, i.e., if { fi : Mi → Ni}i∈I are abstract inclusions
then there exists a product ∏i∈I fi : ∏i∈I Mi →∏i∈I Ni which is abstract inclusion.

We have that P( I←M)⊆ I← (PM) which means that P( I← (PM))⊆ I← (PP(M)) = I←
(PM). Also

I← ( I← (PM)) = I← (PM). Therefore
I← (PM) is the least quasi-variety con-

taining M. By Thm. 8.19 we know that (M∗ ∩Horn(Σ))∗ is a quasi-variety, which ob-

viously contains M, hence
I← (PM) ⊆ (M∗ ∩Horn(Σ))∗. By Thm. 8.22 we know that

there exists a set E ⊆ Horn(Σ) such that
I← (PM) = E∗. Since E ⊆ M∗ we obtain that

(M∗ ∩Horn(Σ))∗ ⊆ E∗ = I← (PM). Thus (M∗ ∩Horn(Σ))∗ = I← (PM). �
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Birkhoff variety theorem revisited. We reformulate the conclusion of Thm. 8.29:

Theorem 8.36 (Birkhoff variety). Under the conditions (QP1−2) (of Thm. 8.19), (QA2)
(of Thm. 8.22), (VP) (of Prop. 8.27), (VA1− 2) (of Thm. 8.29) and under the following
additional conditions:

(VA3) the products preserve the abstract surjections, i.e., if { fi : Mi→Ni}i∈I are abstract
surjections of models, then there exists a product ∏i∈I fi : ∏i∈I Mi →∏i∈I Ni which
is an abstract surjection,

for any class of Σ-models M

(M∗ ∩UA(Σ))∗ = E→ ( I← (PM))

where 〈I , E〉 is the inclusion system for the Σ-models and PM is the class of all (small)
products of models of M.

Proof. Lemma 8.35 means that P( I←N)⊆ I← (PN), the condition (VA3) means that P( E→
N) ⊆ E→ (PN) for any class N of Σ-models, and Lemma 8.37 below gives us that

I← ( E→
N)⊆ E→ ( I← (N)). We can use these for the following calculations:

• E→ ( E→ ( I← (PM))) = E→ ( I← (PM)),

• I← ( E→ ( I← (PM))) ⊆ E→ ( I← ( I← (PM))) = E→ ( I← (PM)), and

• P( E→ ( I← (PM))) ⊆ E→ (P( I← (PM))) ⊆ E→ ( I← (PPM)) = E→ ( I← (PM)).

These show that
E→ ( I← PM) is a variety and by an argument similar to that from the proof

of Thm. 8.34 above we obtain the conclusion by using Prop. 8.27 and Thm. 8.29.

Lemma 8.37. For any Σ-model N,

I← ( E→ N)⊆ E→ ( I← N).

Proof. Consider N ∈ N and (e : N → A) ∈ E , (i : B → A) ∈ I . By condition (VA1),
iιΣ(B)(BB) : MιΣ(B) → B is an abstract surjection.

B
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g
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i f
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Recall from basic assumptions introduced at the beginning of Sect. 8.4 that ιΣ(B) ∈ D
and that all signature morphisms from D are representable. Since MιΣ(B) is the reduct
of the initial ΣB-model 0ΣB , this means we can find a ιΣ(B)-expansion h′ : 0ΣB → A′ of
iιΣ(B)(BB); i. Because e ∈ E , by the condition (VP) we can also expand e to e′ : N′ → A′.
Let f ′ : 0ΣB →N′ be the unique ΣB-model homomorphism given by the initiality property
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of 0ΣB and f be its ιΣ(B)-reduct. By the uniqueness aspect of the initiality property of 0ΣB

we have that h′ = f ′;e′. This leads to iιΣ(B)(BB); i = f ;e.
Now let us factor f = e f ; i f in the inclusion system for the Σ-models. By the Diag-

onal-fill Lemma 4.16 there exists g such that g; i = i f ;e. Because both iιΣ(B)(BB) and e f

are abstract surjection, g ∈ E too. This shows that B ∈ E→ ( I← N). �

�

This revised version of the Birkhoff Variety Theorem introduces the new condition
(VA3). This cannot be proved at the general level of abstract inclusion systems, but it
can be established very easily in concrete applications. For example in the case of the
FOL models (VA3) holds for the closed inclusion system (recall that this is the inclusion
system for which the Birkhoff Variety Theorem can be established; see Cor. 8.33) by the
simple fact that products of surjective functions are still surjective.

Axiomatizability by ultraproducts revisited. Thm. 8.5 and its Cor. 8.7 can be refor-
mulated as follows:

Theorem 8.38. Consider an institution with negation and conjunctions and such that
sentences are preserved by ultraproducts. Then for each class M of Σ-models:

– M∗∗ = ≡ (Up(M)) where ≡ is the elementary equivalence relation, and Up(M) is
the class of all ultraproducts of models of M, and

– if in addition the institution has the Keisler-Shelah property and Up is idempotent
(i.e., Up;Up = Up) then

M∗∗ = Ur−1(Up(M))

where Ur is the ‘ultraradical’ relation on models defined by 〈A, B〉 ∈ Ur if and only
if A∼= B or A is an ultraradical of B.

Proof. The first part follows immediately by an inspection of the proof of Thm. 8.5. For
the second part, it is therefore enough to show that Up;Ur−1 = Up;≡.

Ur−1(UpM)⊆≡ (UpM) follows immediately from Ur−1(M)⊆≡ (M) which holds
by virtue of the hypothesis that the sentences are preserved by ultraproducts. For the
other inclusion,≡ (N)⊆Ur−1(Up(N)) because the institution is Keisler-Shelah, therefore
≡ (UpM)⊆ Ur−1(UpUpM) = Ur−1(UpM). �

The condition that Up is idempotent is rather hard to establish at the general level.
However with some effort it can be established in concrete institutions such as FOL. Here
we skip this argument.
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Universal axiomatizability revisited. We reformulate the conclusion of Cor. 8.9.

Theorem 8.39. Under the framework and the hypotheses of Cor. 8.9 if we also assume
that

1. the institution is a Łoś-institution,

2. each elementary extension lifts completely ultraproducts, and

3. as in Thm. 8.38, the ultraproduct construction is idempotent (i.e., Up;Up = Up),

4. the Sen0-submodels are preserved by expansions along elementary extensions,

for any class of Σ-models M

(M∗ ∩¬Sen0(Σ))∗ =Sen0←− (UpM).

Proof. As for the proofs of Theorems 8.34 and 8.36 we have only to prove that
Sen0←−

(UpM) is closed under Sen0-submodels and ultraproducts.

The closure of
Sen0←− (UpM) under

Sen0←− follows from the transitivity of
Sen0−→. Let

f : M → N such that MM[Sen0]Nf and g : N → P such that NN [Sen0]Pg. We show that
MM[Sen0]Pf ;g. For this let us note that Pf ;g = Pg�ιΣ( f ) and that NN�ιΣ( f ) = Nf . For any

ρ∈M∗
M ∩Sen0(Σ), by the Satisfaction Condition we have that Pf ;g |= ρ iff Pg |= ιΣ( f )(ρ)

and Nf |= ρ iff NN |= ιΣ( f )(ρ). Since Nf |= M∗
M ∩Sen0(ΣM) we deduce that ιΣ( f )(ρ) ∈

N∗N ∩Sen0(ΣN) which means that Pg |= ιΣ( f )(ρ) and thus Pf ;g |= ρ.

The closure of
Sen0←− (UpM) under ultraproducts follows from Up(Sen0←− N) ⊆ Sen0←−

(UpN) for any class N of Σ-models and from the idempotency of Up. In order to prove
the former property, consider {hi : Mi→Ni ∈N}i∈I such that (Mi)Mi [Sen0](Ni)hi for each
i ∈ I. Consider the ultraproducts M = ∏U Mi, respectively N = ∏U Ni, with

( ∏i∈J Mi
μJ ��M )J∈U , respectively ( ∏i∈J Ni

νJ ��N )J∈U , their corresponding co-limits
and let h : M→ N be the canonical model homomorphism such that (∏i∈J hi);νJ = μ j;h.

We show that MM[Sen0]Nh meaning that M.
Sen0←− N.

Because the elementary extensions lift completely ultraproducts, let M′
i be ιΣ(M)-

expansions of Mi and μ′J be ιΣ(M)-expansions of μJ such that MM = ∏U M′
i . Each M′

i
also determines a unique expansion of hi to hi : M′

i → N′i . The expansions N′i induce

a complete lifting of the ultraproduct co-cone for N denoted by ( ∏i∈J N′i
ν′J ��N′ )J∈U .

Let h′ : MM → N′ be the unique ιΣ(M)-expansion of h to a ΣM-model homomorphism.
Because h : M → N lifts uniquely to a ΣM-model homomorphism from MM we deduce
that N′ = Nh. Now let ρ ∈M∗

M ∩Sen0(ΣM). Because ρ is preserved by ultrafactors there
exists J ∈U such that M′

i |= ρ for each i ∈ J. Because h′i : M′
i → N′i is a Sen0-submodel

(since Sen0 submodels are closed under expansions along elementary extensions) we have
that N′i |= ρ for each ∈ J. Because ρ is preserved by ultraproducts we have that Nh |=
ρ. �

The following concrete instance of Thm. 8.39 shows that its conditions are rather
easy to establish.
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Corollary 8.40. For any FOL signature Σ and any class of Σ-models M,

(M∗ ∩Univ(Σ))∗ = Sc← (UpM))

where Sc is the class of the closed injective model homomorphisms and Univ is the functor
of the universal sentences.

Proof. Sen0 is the subfunctor Exist of the existential sentences such as in Prop. 8.1 and
Corollaries 8.4 and 8.10. Elementary extensions lift completely ultraproducts because as
signature extensions with constants they meet the conditions of Prop. 6.8. Finally, by
Prop. 8.1 the Sen0-submodels are precisely the closed injective homomorphisms which
are obviously preserved by expansions along signature extensions with constants. �

Birkhoff institutions

The way we have developed and presented the axiomatizability results in this section fol-
lows a certain pattern. One starts with an arbitrary class of models M. One the one hand
one considers the models of the sentences of a certain kind which are satisfied by all mod-
els in M, and on the other hand one takes the closure of M first under a class of filtered
products, and afterwards under some relations defined in terms of certain classes of model
homomorphisms. These two operations give the same result; this is the respective axiom-
atizability result. (In the literature the latter closure operations are called axiomatizable
hulls.)

The definition. The pattern for axiomatizability results discussed above is captured for-
mally by the concept of Birkhoff institution.

(Sig,Sen,Mod, |=,F ,B) is a Birkhoff institution when

• (Sig,Sen,Mod, |=) is an institution such that for each signature Σ ∈ |Sig| the cate-
gory Mod(Σ) of Σ-models has F -filtered products,

• F is a class of filters with {{∗}} ∈ F , and

• BΣ ⊆ |Mod(Σ)|× |Mod(Σ)| is a binary relation for each signature Σ ∈ |Sig|, which
is closed under isomorphisms, i.e., (BΣ;∼=Σ) = BΣ = (∼=Σ;BΣ),

such that

M∗∗ = B−1
Σ (F M)

for each signature Σ and each class of Σ-models M ⊆ |Mod(Σ)|, and where F M is the
class of all F-filtered products of models from M for all filters F ∈ F . Note that each BΣ
is reflexive by the closure under isomorphisms.

Examples. Based on the results we have already developed we can now present a list
of Birkhoff institutions obtained around FOL by varying the style of the sentences. The
second part of the list contains some example of Birkhoff institutions not developed in
this book, but which are known in the literature.
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institution B F source
FOL ≡ all ultrafilters Thm. 8.38
FOL ultraradicals all ultrafilters Thm. 8.38
PL = all ultrafilters Thm. 8.38

UNIV
Sc→ all ultrafilters Cor. 8.40

HCL∞
Sc→ {{I} | I set} Thm. 8.34

universal FOL-atoms
Hr←;

Sc→ {{I} | I set} Thm. 8.29

EQL
Hr←;

Sw→ {{I} | I set} Thm. 8.34

universal FOL∞,ω sentences
Sc→ {{{∗}}} [6]

HCL
Sc→ all filters [6]

∀∨ (universal disjunctions of atoms)
Hs←;

Sc→ all ultrafilters [6]

∀∨∞ (univ. infinitary disj. of atoms)
Hs←;

Sc→ {{{∗}}} [6]
∀∃ (universal-existential sentences) sandwiches ([32]) all ultrafilters [6]

where Hr denotes the class of surjective, Hs the class of strong surjective, Sw the class of
injective, and Sc the class of closed injective model homomorphisms.

Exercises

8.8. In the categories of FOL models the ultraproduct construction is idempotent, i.e., Up;Up =
Up.

8.9. Birkhoff institutions of partial algebras
The following institutions of partial algebras arise as Birkhoff institutions according to the follow-
ing table:

institution B F

UNIV(PA) Sc→ all ultrafilters

QE2(PA) Sw→ {{I} | I set}
QE(PA) Sc→ {{I} | I set}

where Sw and Sc are the classes of plain, respectively closed, injective homomorphisms and where
UNIV(PA) is the institution of the ‘universal’ sentences in PA (see Ex. 8.3).

Notes. Thm. 8.5 and Cor. 8.6 are institution-independent generalizations of basic axiomatizability
results in first order logic of [68] (see also [32]). Our general preservation-by-saturation Thm. 8.2
generalizes and extends its first-order logic Cor. 8.4 which can be found in [32]. Its axiomatiz-
ability consequence Cor. 8.10 can also be found in [32] while Cor. 8.9 constitutes its institution-
independent generalization. The ultraradicals have been introduced and used in [150] which also
used the ultraradical formulation given by Cor. 8.8.

Similar quasi-variety concepts to ours have been formulated and results obtained within the
framework of factorization systems (see [169, 170] or [6] for a very general approach), however the
inclusion systems framework leads to greater simplicity. Thm. 8.16 generalizes a well-known result
from universal algebra [84] and conventional model theory of first-order logic [119]. A similar
institution-independent result has been obtained by Tarlecki [169] within the framework of the
so-called ‘abstract algebraic institutions’. However, the concept of abstract algebraic institution
provides a set of conditions much more complex than our framework, the greater simplicity of
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our approach leading also to simpler and somehow different proofs. Within the same setting [170]
develops an institution-independent approach to the quasi-variety theorem related to ours, however
Birkhoff Variety Thm. 8.29 seems to have no previous institution-independent variant.

Both quasi-variety and Birkhoff variety theorems have rather old roots in universal alge-
bra; the former had been discovered by Mal’cev [119] while the latter by Birkhoff back in 1935
(see [24]). Lemmas 8.23 and 8.30 are inclusion system versions of well-known Birkhoff-like ax-
iomatizability results for satisfaction by injectivity originally developed within the framework of
factorization systems [142, 7]. They appeared in the current form as axiomatizability results for the
so-called ‘inclusive equational logic’ of [155].

Birkhoff institutions were introduced in [50]. A more complete list of Birkhoff sub-institu-
tions of first-order logic can be obtained by using results from [6]. Examples of Birkhoff institutions
in the context of less conventional logics arise in the context of Birkhoff-style axiomatizability
results for these logics. For example, a large list of Birkhoff institutions based on partial algebra
can also be obtained from [6]. Moreover, the very general axiomatizability results of [6] can be
applied for obtaining Birkhoff institutions out of recent algebraic specification logics.
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Interpolation

Interpolation is one of the most important topics of logic and model theory. Below is a
very simple example. Consider the following semantic deduction in PL (propositional
logic):

p1∧q |= p2∨q

where p1, p2,q are propositional symbols (i.e., relation symbols of zero arity). The sim-
plest justification for this deduction is by factoring it as

p1∧q |= q |= p2∨q

which meets the intuition that p1 is not involved in establishing the truth of p2 ∨ q. In
general, the so-called ‘Craig interpolation’ (abbreviated CI) property can be formulated
as follows:

if ρ1 |= ρ2 for two sentences, then there exists a sentence ρ, called the inter-
polant of ρ1 and ρ2, that uses logical symbols that appear both in ρ1 and ρ2

and such that ρ1 |= ρ |= ρ2.

An equivalent expression of the above property assumes ρ1 |= ρ2 in the union signature
Σ1∪Σ2, and asks for ρ to be in the intersection signature Σ1∩Σ2, where Σi is the signature
of ρi.

Interpolation squares. If we naturally generalize the inclusion square

Σ1∩Σ2 ��

��

Σ1

��
Σ2 �� Σ1∪Σ2
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to any commuting square of signature morphisms

Σ
ϕ1 ��

ϕ2
��

Σ1

θ1
��

Σ2 θ2

�� Σ′

and replace sentences ρ1, ρ2, and ρ with sets of sentences E1, E2, and E , we get the
following form of CI:

If θ1(E1) |=Σ′ θ2(E2), then there exists an interpolant E ⊆ Sen(Σ) such that
E1 |=Σ1 ϕ1(E) and ϕ2(E) |=Σ2 E2.

A commuting square satisfying the above property is called a Craig Interpolation square.

Quasi-compactness and single sentence formulation of CI. In some situations the
existence of infinite conjunctions may replace compactness as a working hypothesis. Fact
9.1 below is such an example. We say that an institution is quasi-compact if and only if it
is compact or it has infinite conjunctions.

Fact 9.1. In a compact institution, if E2 is finite, then the interpolant E can be chosen to
be finite too. Consequently, in quasi-compact institutions having finite conjunctions, the
CI formulation given above is equivalent to the formulation considering single sentences
rather than sets of sentences.

In fact, it is the potential absence of conjunctions which motivates us to consider
sets of sentences rather than single sentences in the formulation of interpolation.

(L,R )-interpolation. CI squares can be found mostly among pushout squares since
these are the squares of signature morphisms which constitute the accurate generaliza-
tion of intersection-union squares of signatures. However, in many institutions only some
pushout squares of signature morphisms have the CI property. For example, while in
FOL1 (the unsorted version of FOL) all pushout squares have the CI property, this is not
the case in FOL. Also, in EQL and HCL, not all pushout squares have the CI property.

It is often convenient to capture such classes of CI squares by restricting indepen-
dently ϕ1 and ϕ2 to belong to certain classes of signature morphisms. Therefore, for any
classes of signature morphisms L,R , we say that the institution has the Craig (L,R )-
Interpolation property if each pushout square of signature morphism of the form

• L ��

R
��

•

��• �� •
is a CI square.
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The list below anticipates some of the concrete (L,R )-interpolation properties ob-
tained in this chapter. But before presenting this list let us establish the following notation
for FOL signature morphisms.

(xyz)-morphisms of signatures. Let us define the following syntactic properties for
signature morphisms. A FOL signature morphism ϕ is an (xyz)-morphism, with x,z ∈
{i,s,b,∗} and y ∈ {i,s,b,e,∗} (where i stands for ‘injective’, s for ‘surjective’, b for ‘bi-
jective’, e for ‘encapsulated’, and ∗ for ‘all’) when the sort component ϕst has the property
x, the operation component ϕop has the property y, and the relation component ϕrl has the
property z. Note that by ‘injectivity’, respectively, ‘surjectivity’ of ϕop we mean that for
all arities w and sorts s, ϕop

w→s is injective, respectively, surjective. The same applies of
course to ϕrl, the relation symbols component. That ϕop

w→s is encapsulated means that no
‘new’ operation symbol, i.e., outside the image of ϕ, is allowed to have the sort in the
image of ϕ. In other words, if ϕ : (S,F,P)→ (S′,F ′,P′) and σ′ ∈ F ′w′→s′ with s′ ∈ ϕ(s)
then there exists σ ∈ Fw→s such that ϕ(σ) = σ′.

For example, an (ss∗)-morphism of signatures is surjective on the sorts and on the
operations, while a (bis)-morphism of signatures is bijective on the sorts, is injective on
the operations, and is surjective on the relations.

This notational convention can be extended to other institutions too, such as for ex-
ample PA, EQL or FOL1. In the case of EQL, because we do not have relation symbols,
the last component is missing. The same applies to FOL1, in this case the first component
(i.e., the sort component) is missing.

The list. Below is the above mentioned list of (L,R )-interpolation properties:

institution L R reference
FOL1 ∗∗ ∗∗ Cor. 9.9 or 9.18
FOL i∗ ∗ ∗ ∗ ∗ Cor. 9.15 or 9.18

∗ ∗ ∗ i∗ ∗ Cor. 9.9 or 9.18
EQL ∗∗ ii Cor. 9.8

ie ∗∗ Cor. 9.13
HCL ∗ ∗ ∗ iii Cor. 9.8

ie∗ ∗ ∗ ∗ Cor. 9.13
SOL ∗ ∗ ∗ iii Cor. 9.5

Summary of the chapter. In this chapter we develop two direct methods for obtaining
interpolation results, one of them based on the Birkhoff-style axiomatizability properties
of institutions, and the other one based on Robinson consistency. Although these two
methods have quite complementary application domains, interpolation in FOL appears
as an application of both of them, the first method calling for the Keisler-Shelah property
(Cor. 7.27).

A third method to establish interpolation which is presented here is an indirect one,
which ‘borrows’ interpolation along institution comorphisms.
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Another topic of this chapter refers to an extension of the Craig interpolation con-
cept to the so-called ‘Craig-Robinson interpolation’ which is the interpolation concept
appropriate for several applications of interpolation such as definability and semantics of
structured specifications.

Exercises

9.1. Composition of interpolation squares
CI squares can be composed both ‘horizontally’ and ‘vertically’: in any institution, consider the
commuting squares of signature morphisms

Σ
ϕ2

��

ϕ1 �� Σ1

ϕ′1��

φ1 �� Σ′1
φ′1��

Σ2

φ2 ��

ϕ′2
�� Σ′

φ
��

φ
�� Σ′′

Σ′2 φ′2
�� Σ′′

Then
(1a) [Σ,Σ′1,Σ2,Σ′′] is a CI square if [Σ,Σ1,Σ2,Σ′] and [Σ1,Σ′1,Σ

′,Σ′′] are CI squares.
(1b) [Σ,Σ1,Σ2,Σ′] is a CI square if [Σ,Σ′1,Σ2,Σ′′] is a CI square and φ1 is conservative.
(2a) [Σ,Σ1,Σ′2,Σ

′′] is a CI square if [Σ,Σ1,Σ2,Σ′] and [Σ2,Σ′,Σ′2,Σ
′′] are CI squares.

(2b) [Σ,Σ1,Σ2,Σ′] is a CI square if [Σ,Σ1,Σ′2,Σ′′] is a CI square and φ2 is conservative.

9.1 Semantic interpolation

By using the Galois connection between sets of sentences and classes of models given
by the satisfaction relation, we may shift the interpolation concept from sets of sentences
to classes of models. This translation is based upon the following observations for any
commuting square of signature morphisms in an arbitrary institution:

Σ
ϕ1 ��

ϕ2
��

Σ1

θ1
��

Σ2 θ2

�� Σ′

E1 a set of Σ1-sentences, E2 a set of Σ2-sentence, and a E set of Σ-sentences:

θ1(E1) |=Σ′ θ2(E2) iff θ1(E1)∗ ⊆ θ2(E2)∗ iff Mod(θ1)−1(E∗1 )⊆Mod(θ2)−1(E∗2 ),
E1 |=Σ1 ϕ1(E) iff E∗1 ⊆ ϕ1(E)∗ iff E∗1 ⊆Mod(ϕ1)−1(E∗),
ϕ2(E) |=Σ2 E2 iff ϕ2(E)∗ ⊆ E∗2 iff Mod(ϕ2)−1(E∗)⊆ E∗2 .

If we abstract

– E∗1 to any class M1 of Σ1-models,
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– E∗2 to any class M2 of Σ2-models, and

– E∗ to any class M of Σ-models,

then we may say that M is the semantic interpolant for M1 and M2 satisfying
Mod(θ1)−1(M1)⊆Mod(θ2)−1(M2) when

– M1 ⊆Mod(ϕ1)−1(M) and

– Mod(ϕ2)−1(M)⊆M2.

We may therefore state the following ‘principle of semantic interpolation’:

The existence of a syntactic interpolant for E1 and E2 is equivalent to the
existence of a semantic interpolant M for E∗1 and E∗2 which is elementary, in
this case the syntactic interpolant being M∗.

Fact 9.2. M is a semantic interpolant for M1 and M2 satisfying Mod(θ1)−1(M1) ⊆
Mod(θ2)−1(M2) if and only if

M1�ϕ1 ⊆M⊆ |Mod(Σ)| \ (|Mod(Σ2)| \M2)�ϕ2 .

Moreover if the square of signature morphisms is a weak amalgamation square, then
semantic interpolants always exist.

Therefore when we shift the interpolation problem from sets of sentences to classes of
models, weak amalgamation is sufficient. However, when shifting back to sets of sen-
tences, we need to express the semantic interpolants M as elementary classes of models
E∗. Semantic operators and their fixed points constitute a useful device to achieve this.

Semantic operators. Given a signature Σ, a semantic Σ-operator is just a mapping of
Σ-classes of Σ-models UΣ : P (|Mod(Σ)|)→ P (|Mod(Σ)|). It is a closure operator when
it has the following additional properties:

• reflexivity: M⊆UΣ(M),

• monotonicity: M⊆M′ implies UΣ(M)⊆UΣ(M′),

• idempotency: UΣ(UΣ(M)) = UΣ(M), and

• closure under isomorphisms: if M is closed under isomorphisms, then UΣ(M) is
also closed under isomorphisms.

Two simple examples of semantic closure operators are

• the isomorphic closure operator Iso defined by Iso(M) = {M |M∼= N for some N ∈
M}, and

• the elementary closure operator (−)∗∗ mapping each class of models M to M∗∗.
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Fixed points of semantic operators. A class M of Σ-models is a fixed point for a
semantic operator UΣ when UΣ(M) = Iso(M). Let Fixed(UΣ) be the class of all fixed
points of UΣ.

The following is a rather abstract generic result which gives a set of sufficient con-
ditions for the existence of a ‘good’ semantic interpolant. This result will be used later
on several different occasions for producing more concrete interpolation results by giving
various meanings to the parameters U and V .

Theorem 9.3. For any weak amalgamation square of signature morphisms

Σ
ϕ1 ��

ϕ2
��

Σ1

θ1
��

Σ2 θ2

�� Σ′

and pairs of semantic operators U = 〈UΣ, UΣ1〉 and V = 〈VΣ, VΣ2〉 such that

1. UΣ;VΣ;UΣ = UΣ;VΣ,

2. V are closure operators,

3. ϕ1 preserves fixed points of U (i.e., Fixed(UΣ1)�ϕ1 ⊆ Fixed(UΣ)),

4. Mod(ϕ1); Iso;VΣ = Iso;Mod(ϕ1);VΣ, and

5. Mod(ϕ2)−1(VΣ(N))⊆ VΣ2(Mod(ϕ2)−1(N)) for each N⊆ |Mod(Σ)|,
all classes of models M1 ∈ Fixed(UΣ1) and M2 ∈ Fixed(VΣ2) which are closed under
isomorphisms and such that Mod(θ1)−1(M1) ⊆Mod(θ2)−1(M2) have a semantic inter-
polant M in Fixed(UΣ)∩Fixed(VΣ) which is closed under isomorphisms.

Proof. The semantic interpolant M is defined as VΣ(M1�ϕ1).

• M is closed under isomorphisms because

VΣ(M1�ϕ1) = VΣ((IsoM1)�ϕ1) = VΣ(Iso(M1�ϕ1))

and because of the property of closure under isomorphisms of VΣ as closure opera-
tor.

Let us now show that M ∈ Fixed(UΣ)∩Fixed(VΣ).

• Because VΣ is idempotent (as a closure operator)

VΣ(M) = V 2
Σ (M1�ϕ1) = VΣ(M1�ϕ1) = M

hence M ∈ Fixed(VΣ). From VΣ(M) = M it follows that M is closed under isomor-
phisms.
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• Because M1 ∈ Fixed(UΣ1), we have that M1�ϕ1 ∈ Fixed(UΣ1)�ϕ1 ⊆ Fixed(UΣ)
(the inclusion holds because ϕ1 preserves fixed points of U). Therefore

UΣ(M) = UΣ(VΣ(M1�ϕ1)) = UΣ(VΣ((IsoM1)�ϕ1)) = UΣ(VΣ(Iso(M1�ϕ1)))
= UΣ(VΣ(UΣ(M1�ϕ1))) = VΣ(UΣ(M1�ϕ1)) = VΣ(Iso(M1�ϕ1))
= VΣ((IsoM1)�ϕ1) = VΣ(M1�ϕ1) = M

hence M ∈ Fixed(UΣ).

We now show that M is a semantic interpolant.

• M1 ⊆Mod(ϕ1)−1(M) is the same thing as M1�ϕ1 ⊆M = VΣ(M1�ϕ1). This inclu-
sion holds by the reflexivity of VΣ as a closure operator.

• By taking M1�ϕ1 in the role of N in condition 5, we obtain that Mod(ϕ2)−1(M) ⊆
VΣ2(Mod(ϕ2)−1(M1�ϕ1)). Because of weak amalgamation, by applying Fact 9.2,
we obtain that M1�ϕ1 ⊆ M ⊆ |Mod(Σ)| \ (|Mod(Σ2)| \M2)�ϕ2 which means
Mod(ϕ2)−1(M1�ϕ1)⊆M2. By using the monotonicity of the closure operator VΣ2 ,
that M2 ∈ Fixed(VΣ2), and that M2 is closed under isomorphisms, we obtain that

Mod(ϕ2)−1(M) ⊆ VΣ2(Mod(ϕ2)−1(M1�ϕ1))⊆ VΣ2(M2) = Iso(M2) = M2.

�

Higher-order interpolation. An immediate application of the general semantic inter-
polation Thm. 9.3 is the following general result which gives significant interpolation
results in institutions having enough higher-order expressive power.

Corollary 9.4. In any institution with universal R -quantification for a class R of signa-
ture morphisms, any weak amalgamation square

Σ
ϕ1 ��

ϕ2
��

Σ1

θ1
��

Σ2 θ2

�� Σ′

for which ϕ2 ∈ R is a Craig interpolation square.

Proof. In Thm. 9.3 let us take

• U to be identities, and

• V to be elementary closures, i.e., V (M) = M∗∗.
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Since for this setting of U and V the first four conditions of Thm. 9.3 are rather easy or
even trivial, let us focus on the last condition, that Mod(ϕ2)−1(N∗∗)⊆Mod(ϕ2)−1(N)∗∗
for each N ⊆ |Mod(Σ)|. Consider a Σ2-model N2 such that N2�ϕ2 ∈ N∗∗ and let ρ2 ∈
Mod(ϕ2)−1(N)∗. We need to show that N2 |=Σ2 ρ2.

But ρ2 ∈Mod(ϕ2)−1(N)∗ means Mod(ϕ2)−1(N) |= ρ2 which implies N |= (∀ϕ2)ρ2.
By the hypothesis we have that (∀ϕ2)ρ2 is a Σ-sentence of the institution. Because N2�ϕ2 ∈
N∗∗, we get that N2�ϕ2 |= (∀ϕ2)ρ2, hence N2 |= ρ2.

By the conclusion of Thm. 9.3 we get a semantic interpolant M, closed under iso-
morphisms, and such that M∗∗ = Iso(M) (as a fixed point for V ), which means M∗∗ = M.
Hence we get an elementary semantic interpolant M, which by the principle of semantic
interpolation implies the existence of a syntactic interpolant. �

The following are instances of Cor. 9.4. (Recall that SOL is the ‘second-order’
extension of FOL admitting quantifiers over any signature extensions with a finite number
of symbols.)

Corollary 9.5. The institutions FOL, HCL, EQL, SOL have Craig (Sig,R )-interpola-
tion where R is

• the class of all signature extensions with constants in the case of FOL, HCL and
EQL, and

• is the class of (iii)-morphisms of signatures in the case of SOL.

Proof. In order to apply Cor. 9.4 we have to establish that the considered institutions
admit universal R -quantification.

In any of the considered institutions let ϕ : Σ→ Σ′ be a signature morphism in R
and let ρ′ be a Σ′-sentence. We have to prove that (∀ϕ)ρ′ is semantically equivalent to
a Σ-sentence, the problem being when ϕ is an extension of Σ with an infinite number of
symbols.

Because ρ′ is finitary, there exists a sub-signature Σ0 ⊆ Σ′ such that Σ0 has a finite
number of sorts, operation, and relation symbols and ρ′ is a Σ0-sentence. Then the square
of signature extensions

Σ∩Σ0
ϕ0 ��

��

Σ0

��
Σ ϕ

�� Σ′

is a weak amalgamation square. This is justified by the fact that Σ∪Σ0 is the pushout
of the span of signature extensions Σ ← Σ∩ Σ0 → Σ0, the institutions are semi-exact,
and the signature inclusion Σ∪Σ0 ⊆ Σ′ is conservative (cf. Fact 5.4). By using this weak
amalgamation property it is easy to see that (∀ϕ)ρ′ |=| (∀ϕ0)ρ′. �

The interpolation properties for FOL, EQL, HCL given by Cor. 9.5 are rather weak
due to the fact that in all these cases R is quite narrow. Later in the section we will
prove much stronger interpolation results for these institutions. On the other hand, the
interpolation property for SOL given by Cor. 9.5 is rather substantial. This difference
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is caused by the possibility of higher-order quantifications in SOL which is missing in
FOL, EQL or HCL.

Exercises

9.2. Interpolation in HNK
The institution of higher order logic with Henkin semantics (HNK) has Craig (SigHNK,(bi))-
interpolation. (Hint: From Cor. 9.4.)

9.2 Interpolation by Axiomatizability

In this section we derive a couple of general interpolation results for Birkhoff institutions
from the abstract semantic interpolation Thm. 9.3. For this we need the following concept
of lifting relations.

Lifting relations. Let ϕ : Σ1 → Σ2 be a signature morphism and R = 〈R1, R2〉 with
R1 ⊆ |Mod(Σ1)|× |Mod(Σ1)| and R2 ⊆ |Mod(Σ2)|× |Mod(Σ2)| be a pair of binary rela-
tions. We say that ϕ lifts R if and only if for each M2 ∈ |Mod(Σ2)| and N1 ∈ |Mod(Σ1)| if
〈M2�ϕ, N1〉 ∈ R1, then there exists N2 ∈ |Mod(Σ2)| such that N2�ϕ = N1 and 〈M2, N2〉 ∈
R2.

M2�ϕ
R1 N1 = N2�ϕ

M2 R2
(∃)N2

The ‘right’ interpolation theorem

The first interpolation by the Birkhoff axiomatizability theorem, presented below, relies
upon the properties of the morphisms on the right-hand side of the interpolation squares.

Theorem 9.6. In a Birkhoff institution (Sig,Sen,Mod, |=,F ,B), any weak amalgamation
square

Σ
ϕ1 ��

ϕ2
��

Σ1

θ1
��

Σ2 θ2

�� Σ′

such that

1. Mod(ϕ1) preserves F -filtered products (of models), and

2. ϕ2 lifts B

is a Craig Interpolation square.
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Proof. We apply Thm. 9.3 by setting the semantic operators U and V as follows (we
omit the signature subscripts from the notation of the operators):

• U(M) = F M, and

• V (M) = (B−1)+(M), where (B−1)+ is the transitive closure of B−1.

The hypotheses of Thm. 9.3 can be checked as follows:

1. On the one hand, V (U(M)) ⊆U(V (U(M))) follows by the fact that X ⊆ F X for
all X because {{∗}} ∈ F , which is one of the hypotheses of Birkhoff institutions.
On the other hand,

U(V (U(M)))⊆ V (U(V (U(M)))) = V (U(M)).

The inclusion holds because B is reflexive. The equality holds because V (U(N)) =
N∗∗ for each class N of models, which follows from the fact that B−n(F N) = N∗∗
for each natural number n ≥ 1. This can be shown by induction on n. For n = 1
we have that B−1(F N) = N∗∗ by the definition of Birkhoff institutions. For the
induction step, we successively have

B−(n+1)(F N) = B−1(B−n(F N)) = B−1(N∗∗)⊆ B−1(F N∗∗) = N∗∗∗∗ = N∗∗.

Since N∗∗ = B−n(F N)⊆ B−(n+1)(F N) we obtain the conclusion for the induction
step, that B−(n+1)(F N) = N∗∗.

2. V are closure operators by the transitivity of (B−1)+, the reflexivity of B , and
because B is closed under isomorphism.

3. Consider any M1 ∈ Fixed(UΣ1). This means Iso(M1) = F M1. Then

F (M1�ϕ1) = Iso((F M1)�ϕ1) = Iso(Iso(M1)�ϕ1) = Iso(M1�ϕ1).

The first equality holds because ϕ1 preserves all filtered products, the second by the
hypothesis that M1 is a fixed point for F = U, and the third by a simple calculation
with isomorphisms. Hence M1�ϕ1 ∈ Fixed(UΣ).

4. This condition holds because for each M1 ⊆Mod(Σ1),

B−1(Iso(M1�ϕ1)) = B−1(M1�ϕ1)⊆ B−1((IsoM1)�ϕ1)⊆ B−1(Iso(M1�ϕ1))

by using the fact that B is closed under isomorphisms and that the reduct Mod(ϕ1)
as a functor preserves isomorphisms.

5. This condition just means that ϕ2 lifts B+ (the transitive closure of B) which is a
consequence of the fact that ϕ2 lifts B .
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Now consider a set E1 of Σ1-sentences and E2 a set of Σ2-sentences such that θ1(E1) |=
θ2(E2). By setting M1 = E∗1 and M2 = E∗2 in the statement of Thm. 9.3, according to its
conclusion we obtain a semantic interpolant closed under isomorphisms M ⊆ |Mod(Σ)|
such that M ∈ Fixed(UΣ)∩Fixed(VΣ). This means M = B−1(F M) hence M∗∗ = M.
Thus the desired interpolant is E = M∗. �

Apart from the fundamental axiomatizability framework of a Birkhoff institution,
from the hypotheses of Thm. 9.6 only the lifting condition sets substantial limits to its
applicability. The other conditions can usually be handled as follows:

• Any pushout square of signature morphisms in an institution with weak model amal-
gamation is a weak amalgamation square. Therefore we need the basic assumption
that the institution has weak model amalgamation.

• It is common that in institutions in which the signatures contain only symbols with
finite arities, filtered products of models are preserved by the model reducts corre-
sponding to any signature morphism. For the case of FOL and related institutions
this has been shown in Sect. 6.2.

The lifting condition. Let us now focus on the ‘interesting’ condition underlying
Thm. 9.6, that ϕ2 lifts B . This condition has to be handled at the level of concrete ap-
plications. Below we give an important example.

Proposition 9.7. In FOL, each (iii)-morphism of signatures lifts B for each B ∈ {Sw→,
Sc→,

Hr←,
Hs←}. Consequently, each (iii)-morphism of signatures lifts

H←;
S→ for each H ∈

{Hr,Hs} and each S ∈ {Sw,Sc}.
Proof. Let ϕ : (S,F,P)→ (S′,F ′,P′) be a (iii)-morphism of FOL-signatures.

Let h : M′�ϕ → N be an injective (S,F,P)-model homomorphism, respectively, let
h : N →M′�ϕ be a surjective (S,F,P)-model homomorphism.

We define the (S′,F ′,P′)-model N′ and a model homomorphism h′ : M′ → N′, re-
spectively, h′ : N′ →M′ as follows:

– N′ϕst(s) = Ns for each s ∈ S (this is correctly defined because ϕst is injective),

– N′s′ = M′
s′ for each s′ �∈ ϕst(S).

This determines an injective S′-sorted function h′ : M′ → N′, respectively, a surjective S′-
sorted function h′ : N′ →M′ which is an expansion of the S-sorted function h : M′�ϕ →
N, respectively, of h : N → M′�ϕ, and such that h′s′ is an identity function for each s′ ∈
S′ \ϕst(S).

• N′ϕop
w→s(σ)

= Nσ for each σ ∈ Fw→s (this is correctly defined because ϕop
w→s is injec-

tive),

• for each σ′ ∈ F ′w→s such that σ′ �∈ ϕop(F),

– for the case of h : M′�ϕ → N injective, let
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∗ N′σ′(hw(x)) = hs(M′
σ′(x)) if x ∈M′

w (this is correctly defined because h
is injective),

∗ otherwise let N′σ′(x) be any element of N′s
and

– for the case of h : N →M′�ϕ surjective, let N′σ′(x) be any element of N′s such
that hs(N′σ′(x)) = M′

σ′(hw(x)).

• N′ϕrl(π) = Nπ for each π ∈ P (this is correctly defined because ϕrl is injective),

• for each π′ ∈ P′w such that π′ �∈ ϕrl(P):

– N′π′ = h′w(M′
π′) for the injective homomorphism case, and

– N′π′ = (h′w)−1(M′
π′) for the surjective homomorphism case.

Note that N′�ϕ = N and that h′ is injective, respectively, surjective (S′,F ′,P′)-model ho-
momorphism such that h′�ϕ = h. Also h′ is closed when h is closed. Moreover, in the case
of h : N →M′�ϕ surjective, h′ is strong when h is strong. �

Instances of Thm. 9.6. Based upon some of the axiomatizability results listed at the end
of Sect. 8.6, by the interpolation Thm. 9.6 and the lifting Prop. 9.7 we have the following
interpolation results:

Corollary 9.8. The institutions UNIV, of the universal FOL∞,ω-sentences, HCL, HCL∞,
of universal FOL-atoms, EQL, ∀∨, ∀∨∞ have Craig (Sig,(iii))-interpolation.

The counterexample below shows that the injectivity condition on the signature
morphisms from R is necessary.

A counterexample. In EQL consider the pushout square of signature morphisms

Σ = { f ,g} ϕ1 ��

ϕ2
��

Σ1 = { f ,g,h}
θ1
��

Σ2 = {k}
θ2

�� Σ′ = {k,h}

such that all the signatures involved contain only one sort and one constant (not shown in
the diagram) and only unary operations as shown in the diagram. Let

• E1 = {(∀x)g(x) = h( f (x)),(∀x) f (g(x)) = h(g(x))} and

• E2 = {(∀x)k(k(x)) = k(x)}.
It is easy to see that θ1(E1) |=Σ′ θ2(E2). Any interpolant E would contain only equations
containing the unary operations f and g which are consequences of E1. Since there is no
way to get rid off h, E may contain only reflexive equations (∀X)t = t but in this case
ϕ2(E) �|= E2. This shows that an interpolant for E1 and E2 does not exist.
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Interpolation by the Keisler-Shelah property. In situations when B is rather weakly
defined, the lifting condition can be rather difficult to establish. The cost is thus shifted
from the axiomatizability property to the lifting condition on ϕ2. A typical example is
given by FOL, regarded as a Birkhoff institution with B the elementary equivalence re-
lation ≡, and F the class of all ultrafilters (cf. Thm. 8.38). A solution to this problem is
given by the Keisler-Shelah property (cf. Cor. 7.27) via Cor. 8.8 which says that a class
of FOL-models is elementary if and only if it is closed under ultraproducts and under ul-
traradicals. This provides a characterization of elementary equivalence ≡ strong enough
for supporting an easy applicability of the interpolation Thm. 9.6.

Corollary 9.9. FOL has Craig (SigFOL,(i∗ ∗))-interpolation.

Proof. We use the Birkhoff axiomatizability characterization of elementary classes in
FOL,

M∗∗ = Ur−1(Up(M))

given by Thm. 8.38.
Let us show that each FOL signature morphism ϕ which lifts isomorphisms, also

lifts the ultraradical relation Ur. If M′�ϕ(Ur)N then either M′�ϕ ∼= N or N is an ultrapower
of M′�ϕ. The first case is immediate by the hypothesis on ϕ. So assume ∏U(M′�ϕ) = N for
some ultrafilter U . Then (∏U M′)�ϕ = ∏U(M′�ϕ) because all FOL-signature morphisms
preserve all filtered products, and by the∼=-lifting there exists N′ a ϕ-expansion of N such
that ∏U M′ ∼= N′, hence M′(Ur)N′.

The conclusion of this corollary follows by:

Fact 9.10. A FOL signature morphism lifts isomorphisms if and only if it is (i∗ ∗).
�

The ‘left’ interpolation theorem

The second interpolation by axiomatizability theorem presented below shifts the reliance
upon the lifting property of the signature morphisms from those on the ‘right-hand side’
to those on the ‘left-hand side’ of the interpolation squares of signature morphisms. One
consequence of this is that the lifting condition on B rather becomes a lifting condition
on its inverse B−1.

Theorem 9.11. In a Birkhoff institution (Sig,Sen,Mod, |=,F ,B), any weak amalgama-
tion square

Σ
ϕ1 ��

ϕ2
��

Σ1

θ1
��

Σ2 θ2

�� Σ′

such that

1. Mod(ϕ1) preserves F -filtered products (of models), and
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2. ϕ1 lifts B−1 and isomorphisms,

is a Craig Interpolation square.

Proof. We apply the abstract semantic interpolation Thm. 9.3 by setting the semantic
operators U and V as follows:

• U to be the elementary closure operators, i.e., U(M) = M∗∗, and

• V to be the identities.

Because the hypotheses 1,2 and 5 of Thm. 9.3 are rather easy or trivial to check, we focus
on the remaining ones.

3. Let M1 ∈ Fixed(UΣ1) which means that M∗∗
1 = Iso(M1). We have to show that

(M1�ϕ1)
∗∗ = Iso(M1�ϕ1). We have the following chain of equalities

(M1�ϕ1)
∗∗ = B−1

Σ (F (M1�ϕ1)) (by the Birkhoff institution condition)
= B−1

Σ (F Iso(M1�ϕ1)) (filtered products are defined up to iso-
morphisms)

= B−1
Σ (F ((IsoM1)�ϕ1)) (ϕ1 lifts isomorphisms)

= B−1
Σ (F (M∗∗

1 �ϕ1)) (M1 ∈ Fixed(UΣ1))
= B−1

Σ (Iso((F M∗∗
1 )�ϕ1)) (Mod(ϕ1) preserves F -filtered prod-

ucts)
= B−1

Σ ((F M∗∗
1 )�ϕ1) (B is closed under isomorphisms)

⊆ B−1
Σ (B−1

Σ1
(F M∗∗

1 ))�ϕ1) (B’s are reflexive)
= B−1

Σ (M∗∗∗∗
1 �ϕ1) (by the Birkhoff institution condition)

= B−1
Σ (M∗∗

1 �ϕ1)
⊆ (B−1

Σ1
(M∗∗

1 ))�ϕ1 (ϕ1 lifts B−1)
⊆ (B−1

Σ1
(F M∗∗

1 ))�ϕ1 ({{∗}} ∈ F )
= M∗∗∗∗

1 �ϕ1 (by the Birkhoff institution condition)
= M∗∗

1 �ϕ1

= (Iso(M1))�ϕ1 (M1 ∈ Fixed(UΣ1))
⊆ Iso(M1�ϕ1) (Mod(ϕ1) as functor preserves iso-

morphisms)

Since we work only with institutions closed under isomorphisms, we also have that
(M1�ϕ1)

∗∗ ⊆ Iso(M1�ϕ1), hence (M1�ϕ1)
∗∗ = Iso(M1�ϕ1).

4. This condition holds because Mod(ϕ1); Iso = Iso;Mod(ϕ1) which just means that
ϕ1 lifts isomorphisms.

The conclusion of Thm. 9.3 tells us that for any sets E1 of Σ1-sentences and E2 of Σ2-
sentences such that θ1(E1) |= θ2(E2) there exists a semantic interpolant M closed under
isomorphisms and such that M∗∗ = Iso(M). By the closure of M under isomorphisms this
means that M∗∗ = M, hence M is elementary. By the principle of semantic interpolation,
the desired (syntactic) interpolant for E1 and E2 is just E = M∗. �
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For obtaining concrete instances of Thm. 9.11 above we follow the same path as
in the case of the first interpolation by axiomatizability Thm. 9.6. Therefore we have to
establish classes of signature morphisms that lift various concrete relations.

The lifting condition. The following result establishes lifting of the inverses of the
relations considered by Prop. 9.7.

Proposition 9.12. In FOL, each (ie∗)-morphism of signatures lifts B−1 for each B ∈
{Sw→,

Sc→,
Hs←} and each (iei)-morphism lifts

Hr→. Consequently, each (ie∗)-morphism of sig-

natures lifts
S←;

Hs→ and each (iei)-morphism lifts
S←;

Hr→ for each S ∈ {Sw,Sc}.
Proof. Let ϕ : (S,F,P)→ (S′,F ′,P′) be an (ie∗)-morphism of FOL-signatures.

Let h : N →M′�ϕ be an injective (S,F,P)-model homomorphism, respectively, let
h : M′�ϕ → N be a surjective (S,F,P)-model homomorphism.

We define the (S′,F ′,P′)-model N′ and an injective model homomorphism h′ : N′ →
M′, respectively, a surjective model homomorphism h′ : M′ → N′ as follows:

– N′ϕ(s) = Ns for each s ∈ S (this is correctly defined because ϕst is injective),

– for each s′ �∈ ϕst(S) let N′s′ = M′
s′ for the injective case, respectively, let N′s′ = {∗} be

a singleton set for the surjective case.

This determines an injective S′-sorted function h′ : N′ → M′, respectively, a surjective
S′-sorted function h′ : M′ → N′, which is an expansion of the S-sorted function h : N →
M′�ϕ, respectively of, h : M′�ϕ → N.

For each operation symbol σ′ ∈ F ′w′→s′ and for each list of arguments x ∈ N′w′ we
define N′σ′(x) to be

– N′σ′(x) = h−1(M′
σ′(h(x))) in the injective case. This is correctly defined because of

the encapsulation condition e on the operations, because of the injectivity of h, and
furthermore it makes h′ an F ′-homomorphism.

– N′σ′(x) =
{

Nσ(x) when σ′ = ϕ(σ),
∗ when σ′ �∈ ϕ(F)

in the surjective case. This definition is correct because of the encapsulation condi-
tion e on the operations, because of the surjectivity of h, and it furthermore makes
h′ an F ′-homomorphism.

For each relation symbol π′ ∈ P′ we define N′π′ to be

– N′π′ = h−1(M′
π′) in the injective case, and

– N′π′ =
{

Nπ when π′ = ϕ(π) and h ∈ Hr,
h(M′

π′) when π′ �∈ ϕ(P) or h ∈Hs
in the surjective case.

Note that N′�ϕ = N, h′�ϕ = h, h′ is closed when h is closed in the injective case, and h′ is
strong if h is strong in the surjective case. �
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Instances of Thm. 9.11. Based upon some of the axiomatizability results listed at the
end of Sect. 8.6, by the interpolation Thm. 9.11 and the lifting Prop. 9.12, and also because
each (i∗∗)-morphism of signatures lifts isomorphisms of FOL-models (cf. Fact 9.10) we
have the following interpolation results:

Corollary 9.13. The institutions below have Craig (L,Sig)-interpolation

institution L
UNIV ie∗

universal FOL∞,ω-sentences
HCL, HCL∞, ∀∨, and ∀∨∞

universal FOL-atoms iei
EQL ie

Exercises

9.3. Interpolation in PL
In propositional logic (PL) each pushout square of signatures is a CI square. (Hint: PL is a Birkhoff
institution with F the class of all ultrafilters and B the identity relation.)

9.4. Interpolation for partial algebra
By the general axiomatizability results of this section, through the axiomatizability results for partial
algebras of the Exercises 8.4, 8.6 and 8.7, formulate and prove interpolation results for partial
algebras.

9.5. Given a weakly semi-exact institution I , let C be the class of the conservative signature mor-
phisms ϕ for which SenI (ϕ) is surjective. Then I has both the Craig (C ,SigI ) and (SigI ,C )-
interpolation properties.

9.3 Interpolation by Consistency

In this section we develop another method for obtaining interpolation properties of insti-
tutions, via Robinson consistency.

Robinson consistency. Recall that a set of sentences E for a signature Σ in an arbitrary
institution is consistent if it has models, i.e., E∗ is not empty.

A commuting square of signature morphisms

Σ
ϕ1 ��

ϕ2
��

Σ1

θ1
��

Σ2 θ2

�� Σ′

is a Robinson Consistency square (abbreviated RC square) if and only if all theories Ei ⊆
Sen(Σi), i ∈ {1,2}, with ‘inter-consistent reducts’, i.e., ϕ−1

1 (E1)∪ϕ−1
2 (E2) is consistent,

have ‘inter-consistent Σ′-translations’, i.e., θ1(E1)∪θ2(E2) is consistent.
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Note that Robinson consistency has substance in institutions where consistency is
not a property of each set of sentences (unlike in HCLor EQL, where it is, see Cor. 4.28).

Robinson consistency versus Craig interpolation

The method to obtain Craig interpolation by Robinson consistency relies upon the fol-
lowing equivalence between these two properties.

Theorem 9.14. In any quasi-compact institution with negation and conjunctions, each
commuting square of signature morphisms is a Robinson Consistency square if and only
if it is a Craig Interpolation square.

Proof. CI implies RC: Let us assume the existence of theories E1 and E2 such that
θ1(E1)∪θ2(E2) is inconsistent while ϕ−1

1 (E1)∪ϕ−1
2 (E2) is consistent and reach a con-

tradiction.
By quasi-compactness there are finite subsets E ′1 ⊆ E1 and E ′2 ⊆ E2 such that

θ1(E ′1)∪ θ2(E ′2) is inconsistent. This implies that θ1(∧E ′1) |=Σ′ θ2(¬∧E ′2). By CI and
compactness there exists a finite set of Σ-sentences E0 such that ∧E ′1 |= ϕ1(E0) and
ϕ2(E0) |= ¬∧E ′2.

On the one hand ∧E ′1 |= ϕ1(E0) implies that E1 |= ϕ1(E0) which means that ∧E0 ∈
ϕ−1

1 (E1). On the other hand, ϕ2(E0) |= ¬∧E ′2 implies ∧E ′2 |= ϕ2(¬∧E0), which further
implies E2 |= ϕ2(¬∧E0), which means ¬∧E0 ∈ ϕ−1

2 (E2).
But from ∧E0 ∈ ϕ−1

1 (E1) and ¬∧ E0 ∈ ϕ−1
2 (E2) we derive the inconsistency of

ϕ−1
1 (E1)∪ϕ−1

2 (E2) contradicting thus the assumption that ϕ−1
1 (E1)∪ϕ−1

2 (E2) is consis-
tent.

RC implies CI: Consider Ei ⊆ Sen(Σi), i ∈ {1,2}, such that θ1(E1) |= θ2(E2). For
each e2 ∈ E2 we have that θ1(E1)∪ θ2(¬e2) is inconsistent because θ1(E1) |= θ2(e2).
By RC we deduce that ϕ−1

1 (E∗∗1 )∪ϕ−1
2 ({¬e2}∗∗) is inconsistent too. Thus there exists

Γ1(e2) ⊆ ϕ−1
1 (E∗∗1 ) and Γ2(e2) ⊆ ϕ−1

2 ({¬e2}∗∗), by quasi-compactness both finite, such
that Γ1(e2)∪Γ2(e2) is inconsistent. We have that Γ1(e2) |=Σ ¬∧Γ2(e2). Because Γ1(e2)⊆
ϕ−1

1 (E∗∗1 ) we have that E1 |= ϕ1(Γ1(e2)). Because Γ2(e2) ⊆ ϕ−1
2 ({¬e2}∗∗) we have that

ϕ2(¬∧Γ2(e2)) |= e2 which means that ϕ2(Γ1(e2)) |= e2. Therefore the desired interpolant
for E1 and E2 can be taken as

⋃{Γ1(e2) | e2 ∈ E2}. �
CI is generally an asymmetric property with respect to the reflection in the mirror

of the considered squares of signature morphisms, while RC is a symmetric property. The
equivalence between CI and RC given by Thm. 9.14 brings the symmetry of RC to CI.
This allows the extension of CI properties of institutions as illustrated by the following
extension of the interpolation property of FOL formulated by Cor. 9.9.

Corollary 9.15. FOL has Craig (SigFOL,(i∗ ∗)) and ((i∗ ∗),SigFOL)-interpolation.

Robinson consistency theorem

Below we give a set of sufficient conditions for Robinson consistency which contain the
conditions underlying the equivalence between Robinson consistency and Craig interpo-
lation. We need the following concept of lifting of isomorphisms.
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Lifting isomorphisms. A span of signature morphisms Σ1 Σ
ϕ1�� ϕ2 ��Σ2 is said to

lift isomorphisms if for each Σi-models Mi, i ∈ {1,2}, such that M1�ϕ1
∼= M2�ϕ2 are iso-

morphic, there exists Σi-models Ni such that Mi
∼= Ni are isomorphic and N1�ϕ1 = N2�ϕ2 .

A commutative square of signature morphisms

Σ
ϕ1 ��

ϕ2
��

Σ1

θ1
��

Σ2 θ2

�� Σ′

lifts isomorphisms if the span Σ1 Σ
ϕ1�� ϕ2 ��Σ2 lifts isomorphisms.

Theorem 9.16 (Robinson consistency). In any institution with elementary diagrams ι
such that

1. M∗ ⊆ N∗ if there exists a model homomorphism M → N,

2. it has pushouts of signatures and has weak model amalgamation,

3. it has universal χ-quantification for χ signature morphisms of the forms ιΣ(h) and
ιΣ(M) for all Σ-model homomorphisms h : M → N,

4. it has negations and finite conjunctions,

5. it has ω-co-limits1 of models which are preserved by the model reduct functors, and

6. it is quasi-compact,

any weak amalgamation square (and in particular any pushout square) which lifts iso-
morphisms

Σ
ϕ1 ��

ϕ2
��

Σ1

θ1
��

Σ2 θ2

�� Σ′

is a Robinson Consistency square (and by Thm. 9.14 a Craig interpolation square too).

Proof. Let Ei ⊆ Sen(Σi) be theories. Denote Γi = ϕ−1
i (Ei), which are also theories. As-

sume Γ1 ∪Γ2 is consistent. We have to prove that θ1(E1)∪ θ2(E2) is consistent too. It
suffices to find Σi-models Mi |= Ei such that M1�ϕ1 = M2�ϕ2 , and then we apply weak
amalgamation to find the desired Σ′-model M′ of θ1(E1)∪θ2(E2).

We construct inductively two chains of Σi-homomorphisms {An
i

f n
i ��An+1

i }n∈ω as
follows:

(0.1) we find a Σ1-model A0
1 such that A0

1 |= E1 and A0
1�ϕ1 |= Γ2,

1Here ω is the totally ordered set of the natural numbers.
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(0.2) we find a Σ2-model A0
2 such that A0

2 |= E2 and a Σ-homomorphism g0 : A0
1�ϕ1 →

A0
2�ϕ2 ,

(n.1) for each natural number n, we find a Σ1-homomorphism f n
1 : An

1 → An+1
1 and a

Σ-homomorphism hn : An
2�ϕ2 → An+1

1 �ϕ1 such that f n
1 �ϕ1 = gn;hn, and

(n.2) for each natural number n, we find a Σ2-homomorphism f n
2 : An

2 → An+1
2 and a

Σ-homomorphism gn+1 : An+1
1 �ϕ1 → An+1

2 �ϕ2 such that f n
2 �ϕ2 = hn;gn+1.

We therefore get the following commutative diagram Dg in Mod(Σ):

A0
1�ϕ1

f 0
1 �ϕ1 ��

g0 ����
���

�
A1

1�ϕ1

f 1
1 �ϕ1 ��

g1 ����
���

�
A2

1�ϕ1

g2 ����
���

�
· · ·

A0
2�ϕ2

f 0
2 �ϕ2

��
h0

JJ������
A1

2�ϕ2
f 1
2 �ϕ2

��
h1

JJ������
A2

2 · · ·

Because the reduct functors preserve directed co-limits, the co-limits of { f n
i }n∈ω in

Mod(Σi) (with vertexes denoted as Ni) are mapped by Mod(ϕi) to co-limits. Since both
{ f n

i �ϕi}n∈ω are final sub-diagrams of Dg, it follows (by Thm. 2.4) that N1�ϕ1
∼= N2�ϕ2

∼=
colim(Dg). Because model homomorphisms preserve satisfaction and A0

i |= Ei we have
that Ni |= Ei. Because the commutative square of signature morphisms lifts isomorphisms
we find Ni

∼= Mi (so Mi |= Ei too) such that M1�ϕ1 = M2�ϕ2 .
Proof of (0.1): If A0

1 did not exist, then E1∪ϕ1(Γ2) would be inconsistent. By quasi-
compactness and finite conjunctions, E1∪ϕ1(γ2) would be inconsistent for some γ2 ∈ Γ2.
This implies E1 |= ϕ1(¬γ2), so ¬γ2 ∈ Γ1, making Γ1∪Γ2 inconsistent.

Proof of (0.2): By using elementary diagrams it suffices to find B |= E(A0
1�ϕ1 ) and

A0
2 |= E2 such that B�ιΣ(A0

1�ϕ1 ) = A0
2�ϕ2 (define g0 = iΣ,A0

1�ϕ1
(B)).

For this it suffices to consider a pushout of ιΣ(A0
1�ϕ1) and ϕ2

Σ
ιΣ(A0

1�ϕ1 )
��

ϕ2

��

Σ(A0
1�ϕ1 )

u

��
Σ2 v

�� •
and find a model of u(E(A0

1�ϕ1 ))∪v(E2). But if this set of sentences is inconsistent, then by

quasi-compactness and finite conjunctions, we would find a Σ(A0
1�ϕ1)-sentence e such that

E(A0
1�ϕ1 ) |= e and v(E2) |= u(¬e). The latter relation implies E2 |= ϕ2((∀ιΣ(A0

1�ϕ1))¬e),

which by the definition of Γ2 means (∀ιΣ(A0
1�ϕ1))¬e ∈ Γ2. Because A0

1�ϕ1 |= Γ2, we have
that A0

1�ϕ1 |= (∀ιΣ(A0
1�ϕ1))¬e, which implies (A0

1�ϕ1)A0
1�ϕ1

|= ¬e, contradicting the fact

that E(A0
1�ϕ1 ) |= e.

Proof of (n.1): We first show that it suffices to find a (Σ1)An
1
-model Fn

1 |= E(An
1)

and
a Σ(An

2�ϕ2 )-model Hn |= E(An
2�ϕ2 ) such that Fn

1 �ιϕ1 (An
1�ϕ1 ) = Hn�ιΣ(gn).
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Assuming Fn
1 and Hn exist, we define f n

1 = iΣ1,An
1
(Fn

1 ) and hn = iΣ,An
2�ϕ2

(Hn) and
let us prove that f n

1 �ϕ1 = gn;hn. Note that by the functoriality of ι the diagram below
commutes:

(Σ1)An
1

Σ(An
1�ϕ1 )

ιϕ1 (An
1�ϕ1 )

�� ιΣ(gn) �� Σ(An
2�ϕ2 )

Σ1

ιΣ1
(An

1)

��

Σϕ1
��

ιΣ(An
1�ϕ1 )

��

ιΣ(An
2�ϕ2 )

KK

and by the naturality of i the diagram below commutes:

Mod((Σ1)An
1
,EAn

1
)

Mod(ιϕ1 (An
1�ϕ1 )
��

iΣ1 ,An
1
��

Mod(Σ(An
1�ϕ1 ),E(An

1�ϕ1 ))

iΣ,(An
1�ϕ1 )

��

Mod(Σ(An
2�ϕ2 ),E(An

2�ϕ2 ))
Mod(ιΣ(gn))��

iΣ,(An
2�ϕ2 )

��
An

1/Mod(Σ1)
Mod(ϕ1)

�� (An
1�ϕ1)/Mod(Σ) (An

2�ϕ2)/Mod(Σ)
gn/Mod(Σ)

��

Therefore f n
1 �ϕ1 = iΣ1,An

1
(Fn

1 )�ϕ1 = iΣ,(An
1�ϕ1 )(Fn

1 �ιϕ1 (An
1�ϕ1 )) = iΣ,(An

1�ϕ1 )(Hn�ιΣ(gn)) =
gn; iΣ,(An

2�ϕ2 )(Hn) = gn;hn.
Now in order to find Fn

1 and Hn, it is enough to consider a pushout

Σ(An
1�ϕ1 )

ιϕ1 (An
1�ϕ1)

��

ιΣ(gn)
��

(Σ1)An
1

u

��Σ(An
2�ϕ2 ) v

�� •

and find a model for u(EAn
1
)∪ v(E(An

2�ϕ2)).
Suppose u(EAn

1
)∪ v(E(An

2�ϕ2 )) is inconsistent. By an argument similar to the corre-
sponding part of the proof of (0.2), we find a Σ(An

2�ϕ2 )-sentence e such that E(An
2�ϕ2 ) |= e

and u(EAn
1
) |= v(¬e). The latter implies that EAn

1
|= ιϕ1(A

n
1�ϕ1)((∀ιΣ(gn))¬e). This shows

that the initial ((Σ1)An
1
,EAn

1
)-model (An

1)An
1
|= (∀ιΣ(gn))¬e.

By the naturality of i we have that ((An
1)An

1
)�ιϕ1 (An

1�ϕ1 ) = (An
1�ϕ1)An

1�ϕ1
, therefore

(An
1�ϕ1)An

1�ϕ1
|= (∀ιΣ(gn))¬e. Because gn : An

1�ϕ1 → An
2�ϕ2 , we have that ιΣ(gn) :

(Σ(An
1�ϕ1 ),E(An

1�ϕ1))→ (Σ(An
2�ϕ2 ),E(An

2�ϕ2 )) is a presentation morphism, thus (An
2�ϕ2)An

2�ϕ2
|=

ιΣ(gn)(E(An
1�ϕ1)).

Because (∀ιΣ(gn))¬e is a sentence of the institution, it is preserved by the unique
model homomorphism (An

1�ϕ1)An
1�ϕ1

→ (An
2�ϕ2)An

2�ϕ2
�ιΣ(gn) thus (An

2�ϕ2)An
2�ϕ2

�ιΣ(gn) |=
(∀ιΣ(gn))¬e. This shows that (An

2�ϕ2)An
2�ϕ2

|=¬e which is a contradiction with E(An
2�ϕ2) |=

e.
Proof of (n.2): Similarly to the proof of (n.1). �
The setup of Robinson consistency in Thm. 9.16 bears similarity to that of Thm. 7.9

on the existence of saturated models especially because the first condition requires that
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in the applications one has to consider the elementary homomorphisms as the model ho-
momorphisms of the considered institution. Thus an important role in the applications of
Robinson consistency Thm. 9.16 is played by instances of Cor. 5.37 establishing institu-
tions with elementary diagrams for the elementary homomorphisms. In this context the
5th condition is handled as follows:

– The existence of ω-co-limits for models is handled by instances of the general result
on directed co-limits of elementary homomorphisms given by Cor. 7.4.

– Since directed co-limits of elementary homomorphisms are obtained as co-limits
using ordinary model homomorphisms (and afterwards the co-limiting co-cone is
shown to consist of elementary homomorphisms), the preservation of ω-co-limits of
elementary homomorphisms follows as a consequence of the arities of the symbols
of the signatures being finite as in the typical example given by Prop. 6.5.

Note that the weak amalgamation condition is rather mild since it refers only to models
and not to model homomorphisms.

In the applications the 3rd condition, on quantifiers, essentially requires that the in-
stitution has universal quantification for the class of signature extensions with constants.
This is justified by the fact that usually both elementary extensions ιΣ(M) and the sig-
nature morphisms of the form ιΣ(h) for h : M → N elementary Σ-homomorphism are
signature extensions with constants. In the case of ιΣ(h) this is so because in the applica-
tions h is injective as an elementary homomorphism in an institution with negations. For
establishing the universal quantification for signature extensions with an arbitrary number
of constants, in institutions where quantification is defined only for signature extensions
with a finite number of constants, one uses the same argument as in the proof of Cor. 9.5
which relies upon sentences being finitary.

Lifting of isomorphisms. The condition which narrows the class of RC squares is the
lifting of isomorphisms. Let us see what it means in an actual situation.

Proposition 9.17. A span of FOL signature morphisms Σ1 Σ
ϕ1�� ϕ2 ��Σ2 lifts isomor-

phisms if either ϕ1 or ϕ2 is an (i∗ ∗)-morphism.

Proof. Because of the symmetrical nature of the problem, let us assume without loss of
generality that ϕ1 is injective on sorts. Let Mi be Σi-models such that M1�ϕ1

∼= M2�ϕ2 . We
have to find models N1 and N2 such that Mi

∼= Ni and N1�ϕ1 = N2�ϕ2 .
We define N2 = M2 and N1 as follows:

• for each sort s1 of Σ1 which is not in the image of ϕ1, let (N1)s1 = (M1)s1 ,

• for each sort of Σ1 of the form ϕ1(s), where s is a sort of Σ, let (N1)ϕ1(s) = (M2)ϕ2(s),
(This definition is correct because ϕ1 is injective on the sorts.)

• for each sort s of Σ let hϕ1(s) : (M1)ϕ1(s)
∼=−→ (N1)ϕ1(s) be the canonical bijection

given by the isomorphism (M1)�ϕ1
∼= (M2)�ϕ2 ),



210 Chapter 9. Interpolation

• hs1 : (M1)s1

=−→ (N1)s1 is identity for each sort s1 which is not in the image of ϕ1,
and

• N1 is the unique Σ1-model such that h defined as above is an isomorphism of Σ1-
models M1 → N1.

�

We can now obtain again the FOL interpolation result of Cor. 9.15 but this time as
an instance of Robinson consistency Thm. 9.16.

Corollary 9.18. FOL has Craig (SigFOL,(i∗ ∗)) and ((i∗ ∗),SigFOL)-interpolation.

A counterexample. The FOL interpolation result given by Cor. 9.15 or 9.18 is highly

accurate in the sense that if none of the signature morphisms of a span Σ1 Σ
ϕ1�� ϕ2 ��Σ2

is (i∗∗) then the pushout of the span might fail to be a CI square. The following gives an
example for this situation.

Consider the following pushout of FOL signatures containing only sorts and con-
stants as shown in the diagram below:

Σ = {a : s1,b : s2} ϕ1 ��

ϕ2

��

Σ1 = {a : s}
θ1

��
Σ2 = {a,b : s}

θ2

�� Σ′ = {a : s}

Suppose that the semantic deduction θ1(a = a) |= θ2(a = b) has an interpolant E in Σ.
This means

a = a |= ϕ1(E) and ϕ2(E) |= a = b.

Consider the models

model X signature of X Xs Xs1 Xs2 Xa Xb

M Σ – {A,B} {A,B} A B
N Σ – {A,B} {A,B} B B
N1 Σ1 {A,B} – – B –
M2 Σ2 {A,B} – – A B

Note that N = N1�ϕ1 , M = M2�ϕ2 and that M ∼= N by the isomorphism which is identity
on s2 and swaps the elements of s1.

Then N1 |= (a = a) |= ϕ1(E) which by the satisfaction condition implies N |= E .
Because M∼= N we get that M |= E . By the satisfaction condition this implies M2 |= ϕ2(E)
which implies M2 |= (a = b) which is false. This shows that an interpolant E does not
exist.
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Exercises

9.6. [2] Elementary amalgamation squares
A commuting square of signature morphisms

Σ
ϕ1 ��

ϕ2

��

Σ1

θ1

��
Σ2 θ2

�� Σ′

is an elementary amalgamation square if for each Σ1-model M1 and each Σ2-model M2 such that
M1�ϕ1 ≡M2�ϕ2 there exists a unique Σ′-model M′ such that M′�θ1 ≡M1 and M′�θ2 ≡M2.

In any institution with negation, a commuting square of signature morphisms is an elementary
amalgamation square if and only if it is a Robinson consistency square.

9.7. In any institution with elementary diagrams such that each pushout of elementary exten-
sions is a Robinson consistency square, any two elementary equivalent models can be “embed-
ded” into a common model in the sense that for each M1 ≡ M2 there exists homomorphisms

M1
h1 ��M M2

h2�� . (Hint: Consider the pushout of the span of elementary extensions along
the models M1 and M2, and consider the theories (M1)∗M1

and (M2)∗M2
.)

9.8. Interpolation in FOL∞,ω
FOL∞,ω has Craig (Sig,(i ∗ ∗)) and ((i ∗ ∗),Sig)-interpolation. (Hint: Use Robinson consistency
Thm. 9.16.)

9.9. Robinson consistency in PA
Develop the Robinson consistency result for PA as an instance of Thm. 9.16. Derive a corresponding
interpolation result for PA.

9.4 Craig-Robinson Interpolation

The Craig interpolation property can be strengthened by adding to the ‘primary’ premises
E1 a set Γ2 (of Σ2-sentences) as ‘secondary’ premises. In any institution we say that a
commuting square of signature morphisms

Σ
ϕ1 ��

ϕ2
��

Σ1

θ1
��

Σ2 θ2

�� Σ′

is a Craig-Robinson Interpolation square (abbreviated CRI square) when for each set E1

of Σ1-sentences and each sets E2 and Γ2 of Σ2-sentences, if θ1(E1)∪θ2(Γ2) |=Σ′ θ2(E2),
then there exists a set E of Σ-sentences such that E1 |=Σ1 ϕ1(E) and Γ2∪ϕ2(E) |=Σ2 E2.

Also the 〈L, R 〉-interpolation concept can be extended in a straightforward way
from Craig interpolation to Craig-Robinson interpolation.
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Craig-Robinson versus Craig interpolation. By taking Γ2 to be the empty set /0 we
can see that

Fact 9.19. Any CRI square is also a CI square.

The opposite implication does not hold in general. The following gives a sufficient
condition when CI and CRI are equivalent interpolation concepts.

Proposition 9.20. In any institution that has implications and is quasi-compact, a com-
muting square of signature morphisms is a Craig-Robinson Interpolation square if and
only if it is a Craig Interpolation square.

Proof. We focus only on the non-trivial part, that CI implies CRI. Consider E1⊆ Sen(Σ1)
and E2,Γ2 ⊆ Sen(Σ2) such that θ1(E1)∪θ2(Γ2) |= θ2(E2).

First we notice that without loss of generality we may assume that E2 consists of
only one sentence e, i.e., E2 = {e}. Indeed, if we assumed that CRI property holds for
each e ∈ E2, let Ee be the interpolant corresponding to each e ∈ E2. Then

⋃
e∈E2

Ee is an
interpolant corresponding to E2.

Because we may assume that E2 = {e}, then by the quasi-compactness assumption,
we may assume without loss of generality that E1 and Γ2 are finite.

Let Γ2 ⇒ e denote γ1 ⇒ (· · · ⇒ (γn ⇒ e)) where Γ2 = {γ1, . . . ,γn}. Then we have
that θ1(E1) |= θ2(Γ2 ⇒ e). By CI there exists E ⊆ Sen(Σ) such that E1 |= ϕ1(E) and
ϕ2(E) |= Γ2 ⇒ e. But the latter is equivalent to ϕ2(E)∪Γ2 |= e. �

Prop. 9.20 gives the possibility to extend CI properties to CRI properties in institu-
tions as illustrated by the following example.

Corollary 9.21. FOL has Craig-Robinson (Sig,(i∗ ∗)) and ((i∗ ∗),Sig)-interpolation.

Proof. By Cor. 9.15, 9.18, and 9.9 FOL has the corresponding Craig interpolation prop-
erties, has implications and is compact (cf. Cor. 6.22). �

Although one may get the feeling that CRI codes a form of implication and therefore
it is expected only in institutions having semantic implications, it is not so. Later (in
Sect. 12.3) we will see that institutions without semantic implications such as EQL and
HCL may have CRI for a wide class of pushout squares of signature morphisms.

Extending interpolation

Sometimes interpolation properties can be established in two stages. At the first stage
we establish it for a particular class of commuting squares of signature morphisms. At
the second stage we extend them to a larger class of squares of signature morphisms by
the general method formulated by Thm. 9.24 below. This technique uses Craig-Robinson
interpolation and also requires the introduction of the following concept.
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Logical kernels. A signature morphism ϕ : Σ→ Σ′ has a logical kernel, denoted lkϕ,
when there exists a set of Σ-sentences lkϕ ⊆ Sen(Σ) such that

any Σ-model M has a ϕ-expansion if and only if M |= lkϕ.

Fact 9.22. Any logical kernel is a tautology in the target signature, i.e., |=Σ′ ϕ(lkϕ).

The following is a typical example for logical kernels.

Fact 9.23. Any (i∗∗)-morphism of signatures ϕ : (S,F,P)→ (S′,F ′,P′) in FOL has the
logical kernel

lkϕ = {(∀X)π(X)⇔ π′(X) | ϕrl(π) = ϕrl(π′)}∪
{(∀X)σ(X) = σ′(X) | ϕop(σ) = ϕop(σ′)}.

Theorem 9.24 (Extending interpolation). In a semi-exact institution consider classes
of signature morphisms L0,L,R0,R ,E ⊆ Sig such that

1. each signature morphism φ∈L , respectively, φ∈R can be factored as φ = i;ϕ such
that ϕ ∈ E and i ∈ L0, respectively, i ∈ R0, and

2. each ϕ ∈ E is a retract and has a logical kernel.

If the institution has the Craig-Robinson (L0,R0)-interpolation property then it also has
the Craig-Robinson (L,R )-interpolation property.

Proof. Consider a pushout Σ1
θ1 ��Σ′ Σ2

θ2�� of an arbitrary span of signature mor-

phisms Σ1 Σ
φ1∈L�� φ2∈R ��Σ2 and let E1 ⊆ Sen(Σ1) and Γ2,E2 ⊆ Sen(Σ2) such that

θ1(E1)∪θ2(Γ2) |= θ2(E2).

Let φ1 = i1;ϕ1 and φ2 = i2;ϕ2 such that i1 ∈ L0 and i2 ∈ R0 and ϕ1,ϕ2 ∈ E . Let

Σ′1
i′1 ��Σ′′ Σ′2

i′2�� be a pushout of 〈i1, i2〉. By the universal property of pushouts, let
ϕ be the unique signature morphism Σ′′ → Σ′ such that i′1;ϕ = ϕ1;θ1 and i′2;ϕ = ϕ2;θ2.

Σ
i1

��

i2
��

φ1

		

φ2

LL

Σ′1 ϕ1
��

i′1
��

Σ1

θ1

��

Σ′2 i′2
��

ϕ2

��

Σ′′
ϕ

��















Σ2 θ2

�� Σ′

Consider ϕ1 a (mono) left inverse to ϕ1 and ϕ2 a (mono) left inverse to ϕ2 and define
E ′1 = ϕ1(E1)∪ lkϕ1 , Γ′2 = ϕ2(Γ2)∪ lkϕ2 , and E ′2 = ϕ2(E2).



214 Chapter 9. Interpolation

We will show that i′1(E
′
1)∪ i′2(Γ′2) |= i′2(E

′
2). Consider a Σ′′-model M′′ such that

M′′ |= i′1(E
′
1)∪ i′2(E

′
2).

Define M′
1 = M′′�i′1 and M′

2 = M′′�i′2 . By the satisfaction condition M′
1 |= ϕ1(E1)∪

lkϕ1 and M′
2 |= ϕ1(Γ2)∪ lkϕ2 .

Because of the logical kernel property, there exists a ϕ1-expansion M1 of M′
1 and

a ϕ2-expansion M2 of M′
2. By the satisfaction condition M1 |= E1 and M2 |= Γ2. Notice

also that M1�φ1 = M2�φ2(= M′′�ik;i′k). Therefore let the Σ′-model M′ be the amalgamation
M1⊗M2 of M1 and M2.

By the uniqueness part of the semi-exactness property of the institution we have
that M′�ϕ = M′′ because M′�ϕ�i′1 = M′′�i′1 and M′�ϕ�i′2 = M′′�i′2 . Hence M′ |= ϕ(i′1(E

′
1)∪

i′2(Γ′2)) |=| θ1(E1)∪θ2(Γ2) |= θ2(E2) = ϕ(i′2(E
′
2)). By the satisfaction condition this im-

plies M′′ |= i′2(E
′
2). This shows that i′1(E

′
1)∪ i′2(Γ′2) |= i′2(E

′
2).

By the hypothesis we can find an interpolant E ⊆ Sen(Σ) such that E ′1 |= i1(E)
and Γ′2 ∪ i2(E) |= E ′2. We will show that E is an interpolant for the original interpolation
problem too.

We have that E ′1 |= i1(E) implies that ϕ1(E ′1) |= ϕ1(i1(E)) which means
E1∪ϕ1(lkϕ1) |= φ1(E). Because |= ϕ1(lkϕ1) we deduce E1 |= φ1(E).

We also have that Γ′2 ∪ i2(E) |= E ′2 implies ϕ2(Γ′2)∪ ϕ2(i2(E)) |= ϕ2(E ′2) which
means Γ2∪ϕ2(lk(ϕ2))∪φ2(E) |= E2. Because |= ϕ2(lkϕ2) we deduce that Γ2∪φ2(E) |=
E2. �

In the following we illustrate the applicability of the extension Thm. 9.24 by a con-
crete case.

Interpolation in infinitary second order logic. Let SOL∞,ω be the extension of second
order logic SOL which allows infinite conjunctions of sentences.

Proposition 9.25. SOL∞,ω has Craig (SigSOL,R ) and (R ,SigSOL)-interpolation for R
the class of (i∗ ∗)-morphisms of signatures ϕ : Σ→ Σ′ for which Σ′ is finitely presented
(i.e. the sets of sort, operation, and relation symbols are all finite).

Proof. By the equivalence between Craig interpolation and Robinson consistency
(Thm. 9.14) and because of the symmetry of Robinson consistency we need only to
show that SOL∞,ω has Craig (SigSOL,R )-interpolation. By Cor. 9.4 we have that SOL∞,ω
has Craig (SigSOL,R0)-interpolation for R0 the class of the (iii)-morphism of signatures
ϕ : Σ → Σ′ for which Σ′ is finitely presented. We use the extension Thm. 9.24 to lift
interpolation from R0 to R .

By Prop. 9.20 we get that SOL∞,ω has Craig-Robinson (SigSOL,R0)-interpolation.
Note that the quasi-compactness condition (also needed by Thm. 9.14) is fulfilled because
SOL∞,ω has infinite conjunctions (SOL cannot be established compact because of its
second order quantifications). In order to apply the extension Thm. 9.24 we have to set
the class E of signature morphisms to the class of the (bss)-morphisms. By Fact 9.23 the
morphisms of E have logical kernels and since they are (bss) they are also retracts. It
remains to show that each signature morphism (φ : (S,F,P)→ (S′,F ′,P′)) ∈ R can be
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factored as φ = i;ϕ with i ∈ R0 and ϕ ∈ E . This is illustrated by the diagram

(S,F,P)
φ∈R ��

i∈R0 :<5
55

55
55

5
(S′,F ′,P′)

(S′,φ(F)+ F ′,φ(P)+ P′)
ϕ∈E

����������

where for each arity w and sort s

(φ(F)+ F ′)φ(w)→φ(s) = Fw→s�F ′φ(w)→φ(s) and (φ(P)+ P′)φ(w) = Pw�P′φ(w).

�

Exercises

9.10. Symmetric Birkhoff institutions
A Birkhoff institution (Sig,Sen,Mod, |=,F ,B) is symmetric when B is symmetric. Extend
Thm. 9.6 to Craig-Robinson interpolation for symmetric Birkhoff institutions.

9.11. [53] Lifting interpolation to presentations
For any institution I and a class S ⊆ Sig of signature morphisms let S pres be the class of pre-
sentation morphisms ϕ such that ϕ ∈ S (as a signature morphism). The institution I pres of the
presentations of I has the Craig-Robinson (Lpres,R pres)-interpolation if I has the Craig-Robinson
(L ,R )-interpolation.

9.5 Borrowing Interpolation

The method of borrowing interpolation properties along institution comorphisms requires
some special interpolation properties of the comorphism.

Left interpolation property for comorphisms. For a fixed class S ⊆ Sig of signature
morphisms, we say that an institution comorphism (Φ,α,β) : I → I ′ has the Craig S -left
Interpolation property when for each (ϕ1 : Σ→ Σ1) ∈ S , for each set E1 of Σ1-sentences
and each set E2 of Φ(Σ)-sentences such that αΣ1(E1) |=′ Φ(ϕ1)(E2), there exists a set of
Σ-sentences E such that E1 |= ϕ1(E) and αΣ(E) |=′ E2.

Sen(Σ)
Sen(ϕ1) ��

αΣ
��

Sen(Σ1)

αΣ1
��

Sen′(Φ(Σ))
Sen′(Φ(ϕ1))

�� Sen′(Φ(Σ1))

Prop. 9.26 below gives a class of examples of left interpolation properties for comor-
phisms. Before presenting this result let us introduce the following model amalgamation
concept.
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(Φ,β)-amalgamation. For any (Φ,α,β) : I → I ′ we say that a signature morphism
ϕ1 : Σ→ Σ1 in I has model (Φ,β)-amalgamation when for each Σ1-model M1 and each
Φ(Σ)-model M′ with M1�ϕ1 = βΣ(M′) there exists a unique Φ(Σ1)-model M′

1 such that
βΣ1(M

′
1) = M1 and M′

1�Φ(ϕ1) = M′. As usual, if we drop the uniqueness requirement on
M′

1 we have the weak version of the concept, called weak (Φ,β)-amalgamation.
For example if β’s are isomorphisms the (Φ,β)-amalgamation is immediately ful-

filled. This is the case of many concrete situations, for example those listed in Cor. 9.27.

Proposition 9.26. Any institution comorphism (Φ,α,β) : I → I ′ such that I = (Sig,Sen,
Mod, |=,F ,B) is a Birkhoff institution has the Craig S -left interpolation property for S
the class of signature morphisms which

1. have weak model (Φ,β)-amalgamation,

2. their corresponding model reducts preserve F -filtered products, and

3. lift B−1.

Proof. Consider (ϕ1 : Σ → Σ1) ∈ S and let E1 be a set of Σ1-sentences and E2 be a
set of Φ(Σ)-sentences such that αΣ1(E1) |=′ Φ(ϕ1)(E2). We define the interpolant E =
ϕ−1

1 (E∗∗1 ). Since E1 |= ϕ1(E) is immediate we have only to prove that αΣ(E) |= E2.
Let M2 be a model such that M2 |= αΣ(E). By the satisfaction condition for the

institution comorphism we have that βΣ(M2) |= E = ϕ−1
1 (E∗∗1 ). Thus

βΣ(M2) ∈ (ϕ−1
1 (E∗∗1 ))∗ = (E∗1�ϕ1)

∗∗ = B−1
Σ (F (E∗1�ϕ1)).

The first equality holds by the satisfaction condition for ϕ1 while the second by the
Birkhoff institution condition for I . We have that

B−1
Σ (F (E∗1�ϕ1)) = B−1

Σ (Iso((F E∗1 )�ϕ1)) (Mod(ϕ1) preserves F -filtered
products)

= B−1
Σ ((F E∗1 )�ϕ1) (B is closed under isomorphisms)

= (B−1
Σ (F E∗1 ))�ϕ1 (ϕ1 lifts B−1)

= E∗∗∗1 �ϕ1 (by the Birkhoff institution condi-
tion)

= E∗1�ϕ1 (by the Birkhoff institution condi-
tion)

Thus there exists a Σ1-model M1 such that M1 |= E1 and βΣ(M2) = M1�ϕ1 . By the weak
amalgamation hypothesis there exists a Φ(Σ1)-model M′

1 such that βΣ1(M
′
1) = M1 and

M′
1�Φ(ϕ1) = M2. By the satisfaction condition of the comorphism we get that M′

1 |=
αΣ1(E1) which by the interpolation hypothesis implies M′

1 |= Φ(ϕ1)(E2). By the satis-
faction condition for Φ(ϕ1) we obtain that M2 |= E2. �

By using the lifting properties given by Prop. 9.12 we obtain the following instances
of the general Prop. 9.26.
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Corollary 9.27. The following institution embeddings I → FOL have Craig S -left inter-
polation according to the table

institution I S
UNIV, HCL, ∀∨ ie∗

universal FOL-atoms iei
EQL ie

Right interpolation property for comorphisms. This is the reflection in the mirror
of the left property. For a fixed class S ⊆ Sig of signature morphisms, we say that an
institution comorphism (Φ,α,β) : I → I ′ has the Craig S -right interpolation property
when for each (ϕ2 : Σ→ Σ2) ∈ S , for each set E1 of Φ(Σ)-sentences and each set E2 of
Σ2-sentences such that Φ(ϕ2)(E1) |=′ αΣ2(E2), there exists a set of Σ-sentences E such
that E1 |=′ αΣ(E) and ϕ(E) |= E2.

Sen(Σ)

Sen(ϕ2)
��

αΣ �� Sen′(Φ(Σ))

Sen′(Φ(ϕ2))
��

Sen(Σ2) αΣ2

�� Sen′(Φ(Σ2))

The result below gives a class of examples of right interpolation properties for co-
morphisms.

Proposition 9.28. Any institution comorphism (Φ,α,β) : I → I ′ such that

• I = (Sig,Sen,Mod, |=,F ,B) is a Birkhoff institution such that

• β’s preserve F -filtered products, and

• each sentence of I ′ is preserved by F -filtered products,

has the Craig S -right interpolation property for S the class of signature morphisms which

1. have weak model (Φ,β)-amalgamation, and

2. lift B .

Proof. Let (ϕ2 : Σ → Σ2) ∈ S and let E1 ⊆ Sen′(Φ(Σ)) and E2 ⊆ Sen(Σ2) such that
Φ(ϕ2)(E1) |= αΣ2(E2). The interpolant is defined as E = α−1

Σ (E∗∗1 ). Obviously E1 |=
αΣ(E). We have to prove that ϕ2(E) |= E2.

Consider a model M2 such that M2 |= ϕ2(E). By the satisfaction condition this
means that M2�ϕ2 |= E = α−1

Σ (E∗∗1 ). This means M2�ϕ2 ∈ (α−1
Σ (E∗∗1 ))∗ = (βΣ(E∗1 ))∗∗.

(The last equality holds by the satisfaction condition for the institution comorphism.) We
have that

(βΣ(E∗1 ))∗∗ = B−1
Σ (F βΣ(E∗1 )) (by the Birkhoff institution condition)

= B−1
Σ (Iso(βΣ(F E∗1 ))) (β’s preserve filtered products)

= B−1
Σ (βΣ(F E∗1 )) (B is closed under isomorphisms)

= B−1
Σ (βΣ(E∗1 )) (E1 are preserved by F -filtered products)
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Then there exists a Σ-model N such that N ∈ βΣ(E∗1 ) and 〈M2�ϕ2 , N〉 ∈ BΣ. We have the
following:

• Because ϕ2 lifts B there exists a Σ2-model N2 such that N2�ϕ2 = N and 〈M2, N2〉 ∈
BΣ2 .

• There exists a Φ(Σ)-model N′ such that N = βΣ(N′) and such that N′ |= E1.

By the weak (Φ,β)-amalgamation for ϕ2 there exists a Φ(Σ2)-model N′2 such that βΣ2(N
′
2)

= N2 and N′2�Φ(ϕ2) = N′. Because N′ |= E1, by the satisfaction condition the latter equality
implies that N′2 |= Φ(ϕ2)(E1) which by the interpolation hypothesis implies that N′2 |=
αΣ2(E2). By the satisfaction condition for the comorphism this implies N2 |= E2. Because
〈M2, N2〉 ∈ BΣ2 we have that M2 ∈ B−1

Σ2
(N2) which by the Birkhoff institution condition

implies M2 |= E2. This shows that ϕ2(E) |= E2. �
By using the lifting properties given by Prop. 9.7 and the corresponding results

about the preservation of sentences by classes of filtered products, we obtain the following
instances of the general Prop. 9.28.

Corollary 9.29. The following institution embeddings I → I ′ have Craig S -interpolation
according to the table

I I ′ S
UNIV, ∀∨ FOL iii

universal FOL-atoms HCL iii
EQL HCL ii

Borrowing interpolation along institution comorphisms

The following is the main result which can be used for borrowing interpolation properties
along institution comorphisms.

Proposition 9.30. Let (Φ,α,β) : I → I ′ be a conservative institution comorphism such
that Φ preserves pushouts, and let L,R ⊆ Sig be classes of signature morphisms such
that I ′ has the Craig (Φ(L),Φ(R ))-interpolation.

If (Φ,α,β) has the Craig L-left or R -right interpolation, then I has Craig (L,R )-
interpolation.

Proof. Consider a pushout of signature morphisms

Σ
ϕ1 ��

ϕ2
��

Σ1

θ1
��

Σ2 θ2

�� Σ′

such that ϕ1 ∈ L and ϕ2 ∈ R and E1 ⊆ Sen(Σ1) and E2 ⊆ Sen(Σ2) such that θ1(E1) |=
θ2(E2).
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The latter relation leads to αΣ′(θ1(E1)) |=′ αΣ′(θ2(E2)) which by the naturality of α
further leads us to the interpolation problem Φ(θ1)(αΣ1(E1)) |=′ Φ(θ2)(αΣ2(E2)) for the
pushout square of signature morphisms in I ′

Φ(Σ)
Φ(ϕ1) ��

Φ(ϕ2)
��

Φ(Σ1)

Φ(θ1)
��

Φ(Σ2) Φ(θ2)
�� Φ(Σ′)

By the Craig (Φ(L),Φ(R ))-interpolation property of I ′, we find E0 ⊆ Sen′(Φ(Σ)) such
that

αΣ1(E1) |=′ Φ(ϕ1)(E0) and Φ(ϕ2)(E0) |=′ αΣ2(E2).

Let us assume the Craig L-left interpolation for the institution comorphism. Then we can
find E ⊆ Sen(Σ) such that

E1 |= ϕ1(E) and αΣ(E) |=′ E0.

By applying Φ(ϕ2) to this we get that Φ(ϕ2)(αΣ(E)) |=′ Φ(ϕ2)(E0). By the naturality of
α we get αΣ2(ϕ2(E)) |=′ Φ(ϕ2)(E0) |=′ αΣ2(E2). Finally, by the conservativeness of the
institution comorphism this can be simplified to ϕ2(E) |= E2.

The case when the institution comorphism has R -right interpolation is handled sim-
ilarly to the L-left interpolation case by getting E ⊆ Sen(Σ) such that

E0 |=′ αΣ(E) and ϕ2(E) |= E2.

�

Applications of Prop. 9.30. By the borrowing interpolation Prop. 9.30, by Prop. 9.26
and 9.28, and by the interpolation properties of FOL (given by Cor. 9.15,9.18, 9.9,9.18),
we can obtain the following list of interpolation results for Birkhoff sub-institutions of
FOL, results which have been previously obtained directly in Cor. 9.8 and 9.13.

institution L R directly obtained
EQL ie ∗∗ Cor. 9.13

universal FOL-atoms iei ∗ ∗ ∗ Cor. 9.13
HCL ie∗ ∗ ∗ ∗ Cor. 9.13

UNIV ∗ ∗ ∗ iii Cor. 9.8
ie∗ ∗ ∗ ∗ Cor. 9.13

∀∨ ∗∗∗ iii Cor. 9.8
ie∗ ∗ ∗ ∗ Cor. 9.13
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Borrowing interpolation between institutions having the same expressive power. This
property essentially means that the sentence translations αΣ are surjective modulo seman-
tical equivalence. In this case the interpolation properties for the comorphism can be
established rather easily, leading to a rather easy transfer of interpolation from the target
institution to the source institution.

Fact 9.31. Any conservative institution morphism comorphism (Φ,α,β) : I → I ′ for
which each αΣ is surjective modulo semantical equivalence has both the Craig SigI -left
and right interpolation properties.

Exercises

9.12. [53] Interpolation in PA by borrowing
PA has Craig-Robinson (SigPA,(i∗∗)) and ((i∗∗),SigPA)-interpolation borrowed from FOL along
the comorphism PA→ FOLpres encoding partial operations as relations (see Sect. 4.1). (Hint: Use
Ex. 9.11 and Fact 9.31.)

Apply this method for obtaining concrete interpolation results in other institutions such as
POA, MBA, etc.

9.13. The institution comorphism FOL→ FOEQL encoding relations as operations (see Sect. 3.3)
has both Craig (i∗∗)-left and right interpolation.

9.14. For each injective function u : S → S′, the institution comorphism (Φu,αu,βu) : FOLS →
FOLS′ (see Ex. 3.26) has both the SigS-left and right interpolation properties.

9.15. Interpolation in HNK
In any institution with pushouts of signatures, a commuting square of signatures

Σ
ϕ1 ��

ϕ2
��

Σ1

θ1��
Σ2 θ2

�� Σ′

is a quasi-pushout when the signature morphism ψ : Σ′′ → Σ′ from the vertex Σ′′ of the pushout of
ϕ1 and ϕ2 to Σ′ is conservative.

1. Prove a relaxed variant of Prop. 9.30 which replaces the condition that the signature trans-
lation functor Φ preserve pushouts by the slightly more general condition that Φ maps
pushouts to quasi-pushouts.

2. Apply this upgraded variant of Prop. 9.30 for ‘borrowing’ interpolation from FOL to
HNK through the comorphism HNK → FOEQLpres of Ex. 4.11. (Hint: The sentence
translations α(S,F) of the comorphism HNK→ FOEQLpres are bijective.)

9.16. (from [51], corrected) The embedding comorphism FOEQL → POA has both Craig (ie)-
left and right interpolation (Hint: Use the encoding comorphism POA→ FOLpres for translating
the left and the right interpolation problems of the given comorphism to interpolation problems in
FOL).

Give a counterexample for the (ii)-right interpolation by considering the signatures Σ =
({s1,s2},{a,b : → s1}) and Σ2 which extends Σ with the operation σ : s1 → s2. (Hint: Consider
E1 = {a≤ b,(∀x,y : s2)(x≤ y)⇒ (x = y)} and E2 = {σ(a) = σ(b)}.)
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Notes. The importance of interpolation in logic and model theory can be seen from [165, 32]. A
recent monograph dedicated to interpolation in modal and intuitionistic logics is [69]. Interpolation
also has numerous applications in computing science especially in formal specification theory [16,
58, 61, 22, 179, 28] but also in data bases (ontologies) [108], automated reasoning [141, 144], type
checking [102], model checking [122], and structured theorem proving [4, 121].

The first pushout-based institution-independent formulation of Craig Interpolation appears
in [168] but uses single sentences. This satisfied the need in formal specification theory to gener-
alize interpolation from the conventional framework based on extensions of signatures to a frame-
work involving arbitrary signature morphisms. The formulation of CI with sets of sentences comes
from [58] under the influence of Rodenburg’s work on equational interpolation [157]; in particu-
lar note that (cf. [157]) equational logic satisfies the formulation of CI with sets of sentences but
not the single sentence version. The weak amalgamation square condition of Theorems 9.3 and
9.6 is weaker than the corresponding assumptions in the literature that the interpolation square is
a pushout [169, 58, 28, 27, 62, 156]. The concept of semantic interpolation and the semantic in-
terpolation Thm. 9.3 have been introduced, respectively, proved in [150]. The interpolation result
for Birkhoff institutions (Thm. 9.6) has been developed in [50]. Its equational instance has been
developed in an abstract setting in [156]. This work is also the source for our counterexample
showing that the injectivity condition of ϕ2 is necessary. The application of Theorem 9.6 to FOL
interpolation by the Keisler-Shelah property (Cor. 9.9) has been noticed in [150].

That the equivalence between Robinson consistency and Craig interpolation relies upon
(quasi-)compactness and the existence of negation and of conjunctions, other details of the actual
institution being irrelevant, has been noticed within the framework of the so-called ‘model-theoretic
logics’ by [139, 140]. A variant of Robinson consistency was defined for institutions in [168] fol-
lowing a variant of the corresponding property in FOL1. Our definition of Robinson consistency
comes from [87] which follows another well-known definition. The first institution-independent
proof of the equivalence between Robinson consistency and Craig interpolation appears in [160].
Robinson consistency (Thm. 9.16) is due to [87] where it has also been used to derive the FOL
interpolation result of Cor. 9.18. This result extended to the limit the previously known interpo-
lation properties of FOL which appeared in [27]. The counterexample showing the necessity to
have injectivity on sorts at least for one signature morphism comes from [27]. The case of many-
sorted interpolation shows that the classification of many-sorted logics as “inessential variations”
of one-sorted logic [127] is certainly wrong.

Craig-Robinson interpolation plays an important role in specification language theory, see
[16, 58, 62]. The name “Craig-Robinson” interpolation has been used for instances of this property
in [165, 179, 62] and “strong Craig interpolation” has been used in [58]. Some of the ideas behind
Thm. 9.24 come from [62].

The interpolation property for comorphisms was formulated in [51], and the borrowing meth-
od for interpolation was developed in [53].



Chapter 10

Definability

Definability theory provides answers to the question of to what extent implicit definitions
can be made explicit. The inverse function of groups is a simple example.

The uniqueness of the inverse function in group theory. Let us extend the algebraic
signature for monoids Σ consisting of

• one sort named g,

• one constant 0 : → g, and

• one binary operation symbol + : gg→ g

with

• an operation symbol− : g→ g (standing for inverses of elements)

and let E ′ be the set of Σ∪{−}-sentences consisting of the usual associativity and identity
monoid axioms plus

(∀x)(x +(−x) = 0)∧ ((−x)+ x = 0).

Then E ′ is a presentation of group theory.
The uniqueness of the inverse operation − in groups means that given any monoid

M there exists at most one possibility to expand it to a group, i.e., a (Σ∪{−},E ′)-algebra.
In model theoretic terminology we say that the operation − is implicitly defined by E ′.
This is the semantic side of definability. Its syntactic side, a little less obvious, is that
we can eliminate the inverse operation− systematically from the group theory first-order
sentences. The following example may provide insight into this process.

Let a be a new constant. Then the Σ∪{a,−}-sentence (∃x)− x = −a + x is equiv-
alent to the Σ∪{a}-sentence (∀a1,x1)(∃x)(a1 +a = 0)∧ (x1 + x = 0)⇒ (x1 = a1 + x) in
group theory, i.e.,

E ′ |= (∀a)( (∃x)(−x =−a + x)⇔
(∀a1,x1)(∃x)(a1 + a = 0)∧ (x1 + x = 0)⇒ (x1 = a1 + x)).
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The terminology used for this phenomenon of systematic elimination of the inverse oper-
ation − from the group theory sentences is that − is explicitly defined by E ′.

Definability for signature morphisms. The syntactic framework for the definability
example given by the uniqueness of the inverse operation in group theory discussed above
is that of the signature extension ϕ : ({0,+}) ↪→ ({0,+,−}). Implicit and explicit defin-
ability can be formulated generally for any signature morphism ϕ of any institution as
follows:

Let ϕ : Σ→ Σ′ be a signature morphism and E ′ be a Σ′-theory. Then ϕ

• is defined implicitly by E ′ if the reduct functor

Mod(Σ′,E ′) �� Mod(Σ′)
Mod(ϕ) ��Mod(Σ)

is injective, and

• is defined (finitely) explicitly by E ′ if for each pushout square

Σ
ϕ ��

θ
��

Σ′

θ′
��

Σ1 ϕ1
�� Σ′1

and each sentence ρ ∈ Sen(Σ′1), there exists a (finite) set of sentences Eρ ⊆ Sen(Σ1)
such that

E ′ |=Σ′ (∀θ′)(ρ⇔ ϕ1(Eρ)).

A signature morphism ϕ has the (finite) definability property if and only if a theory defines
ϕ (finitely) explicitly whenever it defines ϕ implicitly.

In many model theory textbooks Eρ is required to be a single sentence rather than
a (finite) set of sentences. Note that when the institution has conjunctions the ‘set of sen-
tences’ and the ‘single sentence’ formulations coincide. This situation is very similar to
that of interpolation, where the concept of interpolant, which is meaningful for institu-
tions not necessarily having conjunctions, is given by a set of sentences rather than by a
single sentence.

The formulation of explicit definability does not really require that the institution
have universal θ′-quantification and semantic equivalence (⇔) since the formula of ex-
plicit definability should be read in the sense of internal logic:

for any model M′ of E ′ any θ′-expansion M′
1 of M′ satisfies ρ if and only if it

satisfies ϕ1(Eρ).

The example about the explicit definability of the inverse operation in group theory
presented above is an instance of the general concept of explicit definability by letting
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• θ be the signature inclusion {0,+} ↪→{a,0,+},
• ρ be (∃x)− x =−a + x, and

• Eρ be (∀a1,x1)(∃x)(a1 + a = 0)∧ (x1 + x = 0)⇒ (x1 = a1 + x)).

In institutions, it is common to have atomic sentences corresponding to some symbols
in signatures. For example, in FOL for each relation symbol π we have the atom π(X).
Similarly, in PA for each partial operation symbol π we have the atom def(π(X)). This
means that explicit definability ensures a uniform elimination of the respective symbol
π from the sentences. Although this uniformity cannot be expected at the abstract level,
it can be established easily in concrete situations on the basis of such correspondences
between symbols of signatures and atomic sentences.

Summary of the chapter. One of the most important aspects of definability theory is
the relationship between implicit and explicit definability. While in many institutions, that
explicit implies implicit definability is immediate, at the level of abstract institutions this
is non-trivial. For this to hold, we show that it is sufficient to impose only a rather mild
restriction on signature morphisms, which in actual (many-sorted) situations requires only
surjectivity of the sorts mapping.

The core of this chapter however consists of the study of the other much more diffi-
cult and meaningful implication, that implicit implies explicit definability. In one section
we develop a generic definability theorem based upon the Craig-Robinson interpolation
property. In another section we develop another definability result which has a comple-
mentary range of applications with respect to the previous one and which is based upon
general Birkhoff axiomatizability properties. The fact that this requires rather different
conditions than the Birkhoff axiomatizability based result of Thm. 9.6 can be seen as a
further indication of this complementarity.

Exercises

10.1. [148] Composability of definability
(a) In any institution the classes of signature morphisms which are defined implicitly/explicitly form
a category. Moreover, if the institution is semi-exact, these classes of signature morphisms are also
stable under pushouts.
(b) In any semi-exact institution with universal D-quantification for a class D of signature mor-
phisms that are stable under pushouts, for any pushout square of signature morphisms

Σ
ϕ ��

θ
��

Σ′

θ′��
Σ1 ϕ1

�� Σ′1

such that θ ∈D and is conservative, ϕ has the definability property with respect to E ′ whenever ϕ1
has the definability property with respect to θ′(E ′).
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10.2. [148] Borrowing definability
Let (Φ,α,β) : I → I ′ be an institution comorphism.
(a) Borrowing implicit definability. We say that an I -signature morphism ϕ : Σ1 → Σ2 is (Φ,α,β)-
precise whenever the function Mod′(Φ(Σ2)) → Mod′(Φ(Σ1))×Mod(Σ2) mapping each M′

2 to
〈M′

2�Φ(ϕ), βΣ2(M
′
2)〉 is injective. We say that the comorphism (Φ,α,β) is precise when each I -

signature morphism is (Φ,α,β)-precise.
For any (Φ,α,β)-precise signature morphism ϕ and theory E ′, Φ(ϕ) is defined implicitly by

α(E ′) if ϕ is defined implicitly by an E ′.
(b) Borrowing explicit definability. If

1. (Φ,α,β) : I → I ′ is conservative,
2. Φ preserves pushouts, and
3. α is surjective modulo the semantic equivalence |=|,

then any I -signature morphism ϕ is defined (finitely) explicitly by a theory E ′ if Φ(ϕ) is defined
(finitely) explicitly by α(E ′).
(c) Under the assumptions (b), any (Φ,α,β)-precise signature morphism ϕ has the definability
property if Φ(ϕ) has the definability property.

10.1 Explicit implies implicit definability

In this section we give a rather mild sufficient condition for easy implication of the rela-
tionship between implicit and explicit definability. This condition can be formulated as a
property of the signature morphism expressed by the following concept.

Tight signature morphisms

In any institution with model amalgamation and with elementary diagrams ι, a signature
morphism ϕ : Σ→Σ′ is ι-tight when for all Σ′-models M′ and N′ with a common ϕ-reduct
denoted M or N, and for any pushout of signature morphisms as in the diagram,

Σ
ϕ ��

ιΣ(M)=ιΣ(N)
��

Σ′

θ′
��

ΣM = ΣN ϕ1
�� Σ′1

M′ ⊗MM ≡ N′ ⊗NN implies M′ = N′, where M′ ⊗MM and N′ ⊗NN , respectively, are the
unique (Σ′1-model) amalgamations of M′ with MM (the initial model of the elementary
diagram of M) and of N′ with NN , respectively.

As a typical example consider the situation when ϕ is a signature morphism in FOL
adding one relation symbol π of arity w. Then the only possible difference between M′ and
N′ could be found in the difference between M′

π and N′π. But M′
π = {m∈Mw |M′ ⊗MM |=

π(m)}= {n ∈ Nw | N′ ⊗NN |= π(n)}= N′π.
The situation of this example is quite symptomatic for most of the actual institu-

tions. M′ ⊗MM is just the expansion of M′ interpreting the elements of M by themselves.
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Therefore M′ ⊗MM ≡ N′ ⊗NN implies that each atom in the extended signature is satis-
fied either by none or by both models, which means that each symbol newly added by ϕ
gets the same interpretation in M′ and N′. This argument holds in all institutions in which
models interpret the symbols of the signatures as sets and functions.

The following helps to characterize concretely the tight signature morphisms in
institutions.

Proposition 10.1. Let ϕ : Σ → Σ′ be a ι-tight signature morphism in a semi-exact in-
stitution with elementary diagrams ι. Then any two Σ′-models that are isomorphic by a
ϕ-expansion of an identity, are equal.

Proof. Let h : M′ → N′ be a Σ′-isomorphism such that h�ϕ is identity. Let M = M′�ϕ and
N = N′�ϕ. For the diagram from the definition of tight signature morphisms consider the
amalgamation h⊗1MM ; this is also an isomorphism. Therefore M′ ⊗MM and N′ ⊗NN are
isomorphic, hence they are elementarily equivalent. By the definition of ϕ being tight, we
get that M′ = N′. �

Tight signature morphisms in FOL. The following characterization of tight signature
morphisms in FOL can be replicated to other institutions too.

Corollary 10.2. A FOL signature morphism ϕ is ι-tight (for the standard system of ele-
mentary diagrams ι) if and only if ϕ is an (s∗ ∗)-morphism.

Proof. The surjectivity on the sorts is necessary because otherwise, given a Σ′-model M′
we may consider another Σ′-model N′ which is like M′ but interprets the sorts outside the
image of the tight signature morphism ϕ : Σ→ Σ′ differently but isomorphically to M′.
This gives a Σ′-isomorphism between different Σ′-models expanding a Σ-identity, thus
contradicting Prop. 10.1.

The surjectivity on the sorts is also sufficient. Consider the diagram from the def-
inition of tight signature morphisms above. If M′ ⊗MM ≡ N′ ⊗NN for Σ′-models M′,N′
with (M =)M′�ϕ = N′�ϕ(= N), then for all operation symbols (σ : w → s) in Σ′ and
all a ∈ M′

w = N′w and b ∈ M′
s = N′s, we have that M′ ⊗MM |= σ(a) = b if and only if

N′ ⊗NN |= σ(a) = b. This means that M′
σ = N′σ. By replicating this argument to the rela-

tion symbols we have that Mπ = Nπ for each relation symbol π of Σ′ too. �

Explicit implies implicit definability

Proposition 10.3. In any institution having model amalgamation and elementary dia-
grams ι, each ι-tight signature morphism is defined implicitly whenever it is defined ex-
plicitly.

Proof. Let ϕ : Σ → Σ′ be a tight signature morphism which is explicitly defined by
E ′ ⊆ Sen(Σ′). We show that ϕ is defined implicitly by E ′. Let M′,N′ be Σ′-models both
satisfying E ′ and such that M′�ϕ = N′�ϕ denoted as M = N.

It suffices to show that the model amalgamations M′ ⊗MM and N′ ⊗NN are elemen-
tarily equivalent for a pushout of signature morphisms
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Σ
ϕ ��

ιΣ(M)=ιΣ(N)
��

Σ′

θ′
��

ΣM = ΣN ϕ1
�� Σ′1

Let M′ ⊗MM |= ρ. Because ϕ is explicitly defined by E ′, there exists Eρ ⊆ Sen(ΣM)
such that E ′ |= (∀θ′)(ϕ1(Eρ)⇔ ρ). Since M′ |= E ′ we have M′ |= (∀θ′)(ϕ1(Eρ)⇔ ρ).
Because M′ ⊗MM is a θ′-expansion of M′, we get that M′ ⊗MM |= ϕ1(Eρ)⇔ ρ, which
means that M′ ⊗MM |= ϕ1(Eρ). By the Satisfaction Condition applied successively in
both directions we get that NN = MM |= Eρ and that N′ ⊗NN |= ϕ1(Eρ). Since N′ |= E ′
we have N′ |= (∀θ′)(ϕ1(Eρ)⇔ ρ), which further implies that N′ ⊗NN |= ϕ1(Eρ)⇔ ρ. We
have already shown that N′ ⊗NN |= ϕ1(Eρ), thus N′ ⊗NN |= ρ.

Because the choice between M′ and N′ is immaterial, we may conclude that M′ ⊗
MM ≡ N′ ⊗NN . �

The following sample concrete instance of Prop. 10.3 is based on the characteriza-
tion of the tight signature morphisms in FOL given by Cor. 10.2.

Corollary 10.4. In FOL any (s ∗ ∗)-morphism of signatures is defined implicitly when-
ever it is defined explicitly.

Our usage of elementary diagrams here does involve only the elementary extensions
ιΣ(M) : Σ→ ΣM and the existence of MM as a ‘canonical’ ιΣ(M)-expansion of M. This
framework is weaker than the full requirement of existence of elementary diagrams and
can be fulfilled by institutions with a rather poor sentence functor, such as QE2(PA)
for example. However, the sentence functor should be rich enough to give substance to
the actual concept of elementary equivalence and thus allowing the existence of enough
interesting tight signature morphisms. For example, in the sub-institution of FOL given
by the empty sentence functor, a signature morphism ϕ is tight when the corresponding
reduct Mod(ϕ) is injective (on models) meaning that it is an (sss)-morphism. In this
example signature extensions (like any other signature morphisms in fact) are explicitly
defined by the empty set of sentences but in general are not implicitly defined.

The rest of this chapter is dedicated to the hard implication of the relationship be-
tween implicit and explicit definability, i.e., implicit implies explicit definability, intro-
duced above and called the definability property.

Exercises

10.3. A PA signature morphism is tight if and only if it is surjective on sorts.

10.2 Definability by Interpolation

The following result obtains the definability property as an application of interpolation,
the causality relationship between interpolation and definability being well-known in con-
ventional model theory.
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Theorem 10.5. In any (quasi-compact) institution with model amalgamation and having
Craig-Robinson (L,R )-interpolation for classes L and R of signature morphisms which
are stable under pushouts, any signature morphism in L ∩R has the (finite) definability
property.

Proof. Let (ϕ : Σ → Σ′) ∈ L ∩R be defined implicitly by E ′ ⊆ Sen(Σ′). We consider
the pushout of ϕ with an arbitrary signature morphism θ : Σ→ Σ1 and let ρ be any Σ′1-
sentence.

Σ
ϕ ��

θ
��

Σ′

θ′
��

Σ1 ϕ1
�� Σ′1

Now we consider the pushout of ϕ1 with itself:

Σ1
ϕ1 ��

ϕ1
��

Σ′1
θ1
��

Σ′1 θ2

�� Σ′′

Let us show that

θ1(θ′(E ′))∪θ1(ρ)∪θ2(θ′(E ′)) |=Σ′′ θ2(ρ).

Consider a Σ′′-model M′′ |= θ1(θ′(E ′))∪θ1(ρ)∪θ2(θ′(E ′)). We have that

(M′′�θ1�θ′)�ϕ = (M′′�θ1�ϕ1)�θ = (M′′�θ2�ϕ1)�θ = (M′′�θ2�θ′)�ϕ.

By the Satisfaction Condition we have that (M′′�θ1)�θ′ |= E ′ and (M′′�θ2)�θ′ |= E ′. By
the implicit definability of ϕ, we get that (M′′�θ1)�θ′ = (M′′�θ2)�θ′ . Since we also have
(M′′�θ1)�ϕ1 = (M′′�θ2)�ϕ1 , by the uniqueness aspect of the model amalgamation prop-
erty we get M′′�θ1 = M′′�θ2 . By the Satisfaction Condition M′′ |= θ1(ρ) implies M′′�θ2 =
M′′�θ1 |= ρ which further implies M′′ |= θ2(ρ).

Now because ϕ ∈ L ∩R and L and R are stable under pushouts, we have that
ϕ1 ∈ L ∩R , and by Craig-Robinson interpolation (and quasi-compactness) there exists
(finite) Eρ ⊆ Sen(Σ1) such that θ′(E ′)∪{ρ} |= ϕ1(Eρ) and θ′(E ′)∪ϕ1(Eρ) |= ρ, which
just means that θ′(E ′) |= ρ⇔ ϕ1(Eρ). By the Satisfaction Condition it follows that E ′ |=
(∀θ′)(ρ⇔ ϕ1(Eρ)). �

Definability in FOL. The following FOL instance of the definability by interpolation
Thm. 10.5 uses the interpolation result in FOL given by Cor. 9.15 or 9.18. Its second
conclusion uses Cor. 10.4.

Corollary 10.6. In FOL, any (i ∗ ∗)-morphism of signatures has the finite definability
property. Consequently, the equivalence between implicit and explicit definability holds
in FOL for the (b ∗ ∗)-morphisms of signatures.
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Other instances of definability by interpolation Thm. 10.5 will be developed later in
the book in Sect. 12.3.

Exercises

10.4. [148] Definability by interpolation in PA
Any (i ∗ ∗)-morphism of signatures has the finite definability property in PA. Prove this in two
different ways:

1. directly, by Thm. 10.5, and
2. by borrowing along the relational encoding comorphism PA → FOLpres by using the

result of Ex. 10.2 (Hint: A presentation morphism ϕ : (Σ,E)→ (Σ′,E ′) is defined im-
plicitly, respectively (finitely) explicitly, by E ′′ in the institution of presentations I pres if
and only if ϕ : Σ→ Σ′ is defined implicitly, respectively (finitely) explicitly, by E ′ ∪E ′′
in the base institution I . Consequently, ϕ has the (finite) definability property in the in-
stitution of presentations if and only if it has the (finite) definability property in the base
institution.)

10.3 Definability by Axiomatizability

In this section we develop another method to obtain definability properties which relies
upon the axiomatizability properties of the institution.

Weakly lifting relations. In Sect. 9.2 we have introduced a concept of lifting relations
which have been used to derive concrete instances of the general interpolation by axiom-
atizability Thm. 9.6. For the purpose of this section we introduce a weaker variant of this
concept.

Let ϕ : Σ1 → Σ2 be a signature morphism and let R = 〈R1, R2〉 such that R1 ⊆
|Mod(Σ1)|× |Mod(Σ1)| and R2 ⊆ |Mod(Σ2)|× |Mod(Σ2)| be a pair of binary relations.

We say that ϕ lifts weakly R if and only if for each M2,N2 ∈ |Mod(Σ2)|, if
(M2�ϕ)R1(N2�ϕ) then there exists N′2 ∈ |Mod(Σ2)| such that N′2�ϕ = N2�ϕ and
(M2)R2(N′2).

M2�ϕ
R1 N2�ϕ = N′2�ϕ.

M2 R2
(∃)N′2.

Fact 10.7. A signature morphism lifts weakly (a pair of relations) R whenever it lifts R .

Definability in Birkhoff institutions

Theorem 10.8. Consider a (quasi-compact) Birkhoff institution with model amalgama-
tion (Sig,Sen,Mod, |=,F ,B) and a class S ⊆ Sig of signature morphisms which is stable
under pushouts and such that for each ϕ ∈ S
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1. Mod(ϕ) preserves F -filtered products (of models), and

2. ϕ lifts weakly B−1.

Then any signature morphism in S has the (finite) definability property.

Proof. Let ϕ∈ S . If ϕ : Σ→ Σ′ is implicitly defined by E ′, then we show it is (finitely) ex-
plicitly defined by E ′ too. Therefore consider any pushout square of signature morphisms

for the span Σ1 Σθ�� ϕ ��Σ′

Σ
ϕ ��

θ
��

Σ′

θ′
��

Σ1 ϕ1
�� Σ′1

and any Σ′1-sentence ρ.
By the stability of S under pushouts we have that ϕ1 ∈ S , thus it lifts weakly

B−1 and preserves filtered products. Let M′
1 = (θ′(E ′)∪ {ρ})∗ and let us define Eρ =

(M′
1�ϕ1)

∗.
We first show θ′(E ′)∪ {ρ} |= ϕ1(Eρ). Consider M′

1 a model of θ′(E ′)∪ ρ. This
implies that M′

1�ϕ1 ∈M′
1�ϕ1 and because Eρ is satisfied by all models in M′

1�ϕ1 we have
that M′

1�ϕ1 |= Eρ. By the Satisfaction Condition we obtain that M′
1 |= ϕ1(Eρ).

Now we show that θ′(E ′)∪ϕ1(Eρ) |= ρ. Consider M′
1 a Σ′1-model satisfying θ′(E ′)∪

ϕ1(Eρ). By the Satisfaction Condition we have that M′
1�ϕ1 |= Eρ = (M′

1�ϕ1)
∗ hence

M′
1�ϕ1 ∈ (M′

1�ϕ1)
∗∗. By the Birkhoff institution condition this means M′

1�ϕ1 ∈
B−1

Σ1
(F (M′

1�ϕ1)). By considering successively the following:

• F (M′
1�ϕ1) =∼=Σ1 ((F M′

1)�ϕ1) (i.e., the isomorphic closure Iso((F M′
1)�ϕ1) of

(F M′
1)�ϕ1 ) because ϕ1 preserves filtered products,

• ∼=Σ1 ;B−1
Σ1

= B−1
Σ1

because B is closed under isomorphisms,

• F M′
1 ⊆ B−1

Σ′1
(F M′

1) because B is reflexive, and

• B−1
Σ′1

(F M′
1) = M′

1 because M′
1 = (M′

1)
∗∗ and by the Birkhoff condition,

from M′
1�ϕ1 ∈ B−1

Σ1
(F (M′

1�ϕ1)) we deduce that

M′
1�ϕ1 ∈ B−1

Σ1
(∼=Σ1 ((F M′

1)�ϕ1)) = B−1
Σ1

((F M′
1)�ϕ1)⊆ B−1

Σ1
(M′

1�ϕ1).

This means that there exists a Σ′1-model N′1 ∈ M′
1 thus θ′(E ′) ∪ {ρ} and such that

〈M′
1�ϕ1 , N′1�ϕ1〉 ∈ BΣ1 . Because ϕ1 lifts B−1 there exists a Σ′1-model P′1 such that P′1�ϕ1 =

M′
1�ϕ1 and 〈P′1, N′1〉 ∈ BΣ′1 .

Because {{{∗}}} ∈ F we have that B−1
Σ′1

(M′
1) ⊆ B−1

Σ′1
(F M′

1) = M′
1. From P′1 ∈

B−1
Σ′1

(N′1)⊆ B−1
Σ′1

(M′
1) we get that P′1 ∈M′

1 which means that P′1 |= θ′(E ′)∪{ρ}.
From M′

1,P
′
1 |= θ′(E ′) we have that M′

1�θ′ ,P
′
1�θ′ |= E ′ and because ϕ is implicitly

defined by E ′ and (M′
1�θ′)�ϕ = M′

1�ϕ1�θ = P′1�ϕ1�θ = (P′1�θ′)�ϕ we obtain M′
1�θ′ = P′1�θ′ .
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By the uniqueness aspect of the model amalgamation property, from M′
1�ϕ1 = P′1�ϕ1 and

M′
1�θ′ = P′1�θ′ we get that M′

1 = P′1. Thus M′
1 |= ρ.

We have therefore shown that θ′(E ′)∪ {ρ} |= ϕ1(Eρ) and θ′(E ′)∪ ϕ1(Eρ) |= ρ.
Moreover, when the institution is quasi-compact, Eρ can be chosen finite. Thus θ′(E ′) |=
ρ⇔ ϕ1(Eρ), which implies that E ′ |= (∀θ′)(ρ⇔ ϕ1(Eρ)). �

Note that Thm. 10.8 above involves the lifting of the Birkhoff relation in an opposite
direction from that of the interpolation by axiomatizability Thm. 9.6. This hints at the
fact that the instances of the general definability result given by Thm. 10.8 may not be
caused by interpolation properties. Otherwise the conditions underlying Thm. 10.8 bear
strong similarity with those underlying Thm. 9.6. This means that for deriving instances
in actual institutions, the core technical condition to be addressed is the lifting of the
Birkhoff relation.

The lifting condition. The following result establishes weak lifting conditions required
by Thm. 10.8 for some classes of FOL signature morphisms.

Proposition 10.9. In FOL, any (∗e∗)-morphism of signatures lifts weakly
Sw← and

Sc←.

Proof. Let us assume that ϕ : (S,F,P)→ (S′,F ′,P′) is a (∗s∗)-morphism.
Let h : N′�ϕ →M′�ϕ be an injective (S,F,P)-model homomorphism. We define Q′

to be the ϕ-expansion of N′�ϕ such that

• Q′x = N′x for each sort, operation, or relation symbol outside ϕ(S,F,P), the image of
ϕ,

• Q′s′ = M′
s′ for s′ ∈ S′ \ϕ(S); this determines a ϕ-expansion h′ of h such that h′s′ = 1M′

s′
for each s′ ∈ S′ \ϕ(S),

• Q′σ′(x1, . . . ,xn) = h′−1(Mσ′(h′(x1), . . . ,h′(xn))) for σ′ ∈ F ′ \ϕ(F), and

• Q′π′ = h′−1(M′
π′) for π′ ∈ P′ \ϕ(P).

Then h′ : Q′ →M′ is well defined and is an injective (S′,F ′,P′)-model homomorphism.
Moreover, if h : N′�ϕ →M′�ϕ is closed, then h′ : Q′ ↪→M′ is closed too. �

Instances of Thm. 10.8. From the general definability Thm. 10.8 and from the lifting
Prop. 10.9 and 9.12 (by noting that the composition of a signature morphism lifts weakly
a relation R and lifts another relation R′, then it lifts weakly their composition R;R′), by
taking into consideration the quasi-compactness property of each institution and because
in FOL the model reduct functors corresponding to any signature morphism preserves di-
rect products and directed co-limits, we can now formulate a series of definability results
for some of the Birkhoff institutions listed in Sect. 8.6.

Corollary 10.10. We have the following table of definability results:
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institution signature morphism definability property
HCL ∗e∗ finite definability
HCL∞ ∗e∗ definability
UNIV ∗e∗ finite definability
universal FOL∞,ω-sentences ∗e∗ finite definability
universal FOL-atoms iei finite definability
EQL ie finite definability
∀∨ ie∗ finite definability
∀∨∞ ie∗ definability

Exercises

10.5. [148] Definability in PA by axiomatizability (Ex. 8.9 and 8.6 continued)
Any (s∗∗)-morphism of PA signatures has the definability property in QE1(PA) and QE2(PA). In
the case of QE1(PA), prove this in two different ways:

1. Directly by Thm. 10.8, and
2. By borrowing it from HCL∞ along the relational encoding comorphism PA→ FOLpres

by using the result of Ex. 10.2 in the style of Ex. 10.4.

Notes. The material of this chapter is based on [148]. This includes the concept of definability for
signature morphisms as well as the definability Theorems 10.5 and 10.8.

The definability by interpolation Thm. 10.5 is a generalization of the conventional concrete
Beth definability theorem in FOL1 of [18]. While traditional proofs of Beth’s theorem use Craig
interpolation and implication, the proof given in [148] uses only Craig-Robinson interpolation,
being thus applicable to institutions without semantic implication.

The reformulation of definability for sets of sentences rather than single sentences of [148]
settled the definability concept in a proper form applicable to institutions without conjunctions. The
general definability by axiomatizability Thm. 10.8 and its instances in logics such as HCL owe
much to this reformulation of definability.



Chapter 11

Possible Worlds

Recall that the first order modal logic institution MFOL, introduced as an example in
Sect. 3.2, refines FOL by adding the modalities of ‘necessity’ and ‘possibility’. While
at the sentence level this means a couple of additional unary connectives (� for ‘ne-
cessity” and � for ‘possibility’), their semantics is much less straightforward because
it requires the concept of ‘possible worlds’ semantics, which means that the models are
Kripke models, i.e., collections of possible interpretations rather than single interpretation
of the signatures. Possible worlds semantics even subtly ‘alters’ the standard semantics
of the Boolean connectives and of the quantifiers.

The summary of this chapter. We first introduce possible worlds semantics and modal
satisfaction at an institution-independent level by developing an internal modal logic. A
typical example is MFOL which is obtained as an internal modal logic over the
(sub-)institution of the atoms of FOL. Internal modal logic provides the basis for a
general extension of the method of ultraproducts to possible worlds semantics. Possible
worlds semantics allows only half of the ultraproducts fundamental theorem, fortunately
the ‘better’ half, namely that each modal sentence is preserved by ultraproducts of Kripke
models. This is a good example of a situation in which the sentences, although not Łoś
sentences, are still preserved by ultraproducts. An important consequence of the preser-
vation of modal sentences by ultraproducts of Kripke models is the (model) compactness
of possible worlds semantics.

Before proceeding with the developments of this chapter it would be useful to get
some insight in possible worlds semantics by means of a simple example in MFOL.

An example of possible worlds semantics. Recall from Sect. 3.2 that a Kripke model
(W,R) for an MFOL signature (S,S0,F,F0,P,P0) (with (S,F,P) being a FOL signature
and (S0,F0,P0) a sub-signature of ‘rigid’ symbols) consists of

• a non-empty family W = {W i}i∈IW of ‘possible worlds’, which are FOL (S,F,P)-
models, together with
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• an ‘accessibility’ relation R ⊆ IW × IW between the possible worlds such that the
following sharing constraint holds:

• for each i, i′ ∈ IW we have that W i
x = W i′

x for each rigid [sort, operation, or relation]
symbol x.

Let us consider a ‘rigid’ signature Σ for the natural numbers to which we add a ‘flexible’
unary operation symbol σ. The sentence

(∀x)�(∀y)x≤ σ(y)

which reads as “for all x it is possible that for all y, x≤ σ(y)” holds in the Kripke Σ∪{σ}-
model (W,R) for which

• the index set IW of the Kripke model (W,R) is ω the set of the natural numbers,

• the accessibility relation R is the ‘less than or equal’ relation ≤ on the natural num-
bers, and

• for each natural number i, the possible world W i is the expansion of the standard
model of the natural numbers with the interpretation of σ given by W i

σ(n) = i + n
for each natural number n.

Then for each i, we have that (W,R) |=i (∀x)�(∀y)x≤ σ(y) because for any natural num-
ber x we have that (W,R) |=max(i,x) (∀y)x≤σ(y) (note that this means W max(i,x) |= (∀y)x≤
σ(y)) and 〈i, max(i,x)〉 ∈ R. Although W i may not satisfy (∀y)x ≤ σ(y), this sentence is
always ‘possibly’ satisfied at i, i.e., W i |= �(∀y)x ≤ σ(y), because there always exists j
such that 〈i, j〉 ∈ R (i.e., i≤ j) and W j |= (∀y)x≤ σ(y).

11.1 Internal Modal Logic

Internal Kripke models

The following definition abstracts the concept of the MFOL Kripke model to arbitrary
institutions.

Internal Kripke models. The concept of a Kripke model can be defined internally to
any ‘base’ institution I = (Sig,Sen,Mod, |=) providing the base models of the Kripke
models, the sharing parameter being handled by a ‘forgetful’ institution morphism
(ΦΔ,αΔ,βΔ) to a ‘domain’ institution Δ providing the shared domains. More precisely,
given a signature Σ in Sig, a Σ-Kripke model (W,R) consists of

• a family of Σ-models W : IW → |Mod(Σ)| such that the sharing condition

βΔ
Σ(W i) = βΔ

Σ(W i′)

holds for each i, i′ ∈ IW , and

• a binary ‘accessibility’ relation R on the index set IW .
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A Kripke model (W,R) is T, S4, or S5, respectively, when R is reflexive, T and transitive,
or S4 and symmetric, respectively.

MFOL Kripke models are a special case of the above general definition of internal
Kripke models by considering the base institution to be FOL′ which is like FOL but with
signatures with marked rigid symbols, i.e., signatures of the form (S,S0,F,F0,P,P0). Then
ModFOL′(S,S0,F,F0,P,P0) = ModFOL(S,F,P) and SenFOL′(S,S0,F,F0,P,P0) =
SenFOL(S,F,P) (although at this stage we do not need to care about sentences and satis-
faction), and the domain institution Δ to be just FOL.

MPL Kripke models can be obtained by considering propositional logic PL as the
base institution, and the institution with only one signature and one model, and without
sentences, as the domain institution.

Homomorphisms of Kripke models. They preserve the mathematical structure of the
Kripke models. Thus a homomorphism of Σ-Kripke models (hW ,hI) : (W,R)→ (W ′,R′)
consists of

• a function hI : IW → IW ′ between the index sets which is a relation homomorphism,
i.e., 〈i, j〉 ∈ R implies 〈hI(i), hI( j)〉 ∈ R′; note this means that hI is a REL1-model
homomorphism (IW ,R)→ (IW ′ ,R′) (in the single sorted relational signature with
one binary relation symbol), and

• an IW -indexed family of Σ-model homomorphisms hW ={(hW )i : W i→W ′hI(i)}i∈IW

such that βΔ
Σ((hW )i) = βΔ

Σ((hW )i′) for i, i′ ∈ IW .

Note that the family hW can be regarded as a natural transformation hW : W ⇒ hI;W ′
between functions (regarded as functors) IW → |Mod(Σ)|.

When the context is clear we may omit the superscripts W and I from the notation
of hW and hI , and simply use h instead.

Fact 11.1. The Σ-Kripke models and their homomorphisms form a category denoted
K-Mod(Σ).

For the more category theory oriented readers the following characterization gives
easier access to the structural properties of K-Mod(Σ).

Fact 11.2. K-Mod(Σ) is the Grothendieck category of the indexed category

ModREL1
( /0,{r : 2})→ Catop which maps each REL1 model (I,R) to the sub-category

of Mod(Σ)I of all families of Σ-model homomorphisms {hi}i∈I such that βΔ
Σ(hi) = βΔ

Σ(hi′)
for all i, i′ ∈ I. (Recall that REL1 is the single-sorted variant of the relational logic REL.)

Reducing Kripke models. Given a signature morphism ϕ : Σ → Σ′, each Σ′-Kripke
model (W ′,R′) can be reduced to the Σ-Kripke model (W = W ′;Mod(ϕ),R′). This means
that for each index i ∈ IW we have that W i = (W ′)i�ϕ.

By the naturality of βΔ and by the sharing condition for (W ′,R), we obtain the
sharing condition for the reduced Kripke model W ′;Mod(ϕ),R′), hence:
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Fact 11.3. The reduct of a Σ′-Kripke model corresponding to a signature morphism
ϕ : Σ→ Σ′ is a Σ-Kripke model.

Similarly, each Kripke model homomorphism (hW ,hI) can be reduced to
(hW Mod(ϕ),
hI).

Fact 11.4. K-Mod : Sigop →Cat is a functor.

Model amalgamation for Kripke models. The model amalgamation properties of the
base institution carries to the Kripke model functor.

Proposition 11.5. Given an institution morphism (ΦΔ,αΔ,βΔ) : (Sig,Sen,Mod, |=)→ Δ
(from a ‘base’ institution to a ‘domain’ institution) any commuting square of signature
morphisms in Sig

Σ
ϕ1 ��

ϕ2 ��

Σ1

θ1��
Σ2 θ2

�� Σ′

such that

1. it is a model amalgamation square in the base institution, and

2. ΦΔ maps it to a model amalgamation square in the domain institution,

is a model amalgamation square with respect to the Kripke model functor K-Mod.

Proof. Let (W1,R1) be a Kripke Σ1-model and (W2,R2) be a Kripke Σ2-model such that
(W1,R1)�ϕ1 = (W2,R2)�ϕ2 . This means that R1 = R2 and IW1 = IW2 , and for each i ∈ IW1 =
IW2 , (W1)i�ϕ1 = (W2)i�ϕ2 .

We define the Kripke Σ′-model (W ′,R′) such that R′ = R1 = R2, IW ′ = IW1 = IW2 ,
and for each index i ∈ IW ′ , W ′i is the amalgamation of (W1)i and (W2)i. We can easily
notice that (W ′,R′)�θ1 = (W ′,R′)�θ2 and that (W ′,R′) is the unique common expansion
of (W1,R1) and (W2,R2). We still need to show the sharing condition for (W ′,R′), that for
each i, j ∈ IW ′ we have that βΔ

Σ′(W
′i) = βΔ

Σ′(W
′ j).

Because

ΦΔ(Σ)
ΦΔ(ϕ1)��

ΦΔ(ϕ2)
��

ΦΔ(Σ1)

ΦΔ(θ1)
��

ΦΔ(Σ2)
ΦΔ(θ2)

�� ΦΔ(Σ′)

is an amalgamation square in the domain institution Δ it is enough to show that
βΔ

Σ′(W
′i)�ΦΔ(θk) = βΔ

Σ′(W
′ j)�ΦΔ(θk) for k ∈ {1,2}. By the naturality of βΔ this is equiv-

alent to βΔ
Σk

(W ′i�θk) = βΔ
Σk

(W ′ j�θk) which means βΔ
Σk

(W i
k) = βΔ

Σk
(W j

k ). This holds by the
sharing condition for (Wk,R′ = Rk). �
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An instance of Prop. 11.5 using the model amalgamation property for FOL (cf.
Prop. 4.5) gives the following model amalgamation property for MFOL.

Corollary 11.6. Any commuting square of MFOL signature morphisms

(S,S0,F,F0,P,P0)
ϕ1 ��

ϕ2
��

(S1,S1
0,F

1,F1
0 ,P1,P1

0 )

θ1
��

(S2,S2
0,F

2,F2
0 ,P2,P2

0 )
θ2

�� (S′,S′0,F
′,F ′0,P

′,P′0)

is an amalgamation square whenever both

(S,F,P) ��

��

(S1,F1,P1)

��

(S0,F0,P0) ��

��

(S1
0,F

1
0 ,P1

0 )

��
(S2,F2,P2) �� (S′,F ′,P′) (S2

0,F
2
0 ,P2

0 ) �� (S′0,F
′
0,P

′
0)

are pushout squares of FOL signature morphisms.

Modal satisfaction

Possible worlds semantics implies a more refined treatment for the semantics of the
Boolean connectives and of the quantifiers because it ‘stratifies’ the satisfaction relation
by the ‘possible worlds’ of a Kripke model. Therefore, given a signature Σ, for each Σ-
Kripke model (W,R) and each Σ- sentence ρ we define the satisfaction of ρ in (W,R) at
the possible world i ∈ IW , denoted (W,R) |=i ρ. Then the ‘global’ satisfaction (W,R) |= ρ
is defined by (W,R) |=i ρ at each possible world i ∈ IW .

The modal satisfaction of the Boolean connectives and of the quantifiers is defined
by their standard internal logic semantics (see Sections 5.1 and 5.2) but applied to |=i

rather than to |=. This makes all the difference, since for example the modal negation is
not semantic in the sense that (W,R) |= ¬ρ is not the same with (W,R) �|= ρ (in spite of
the fact that (W,R) |=i ¬ρ is defined as (W,R) �|=i ρ). The same situation holds for most
of the Boolean connectives or quantifiers, however there are some notable exceptions:

Fact 11.7. Conjunctions and universal quantifiers are semantic with respect to the modal
satisfaction, i.e.,

• for each Σ-Kripke model (W,R) and any Σ-sentences ρ1 and ρ2, (W,R) |= ρ1∧ρ2 if
and only if (W,R) |= ρ1 and (W,R) |= ρ2, and

• for each signature morphism χ : Σ→ Σ′, each Σ-Kripke model (W,R) and each Σ-
sentence ρ, (W,R) |= (∀χ)ρ if and only if (W ′,R) |= ρ for each χ-expansion (W ′,R)
of (W,R).

The satisfaction of modalities ‘necessity’ and ‘possibility’ is defined by

(W,R) |=i �ρ if and only if (W,R) |= j ρ for each 〈i, j〉 ∈ R,

(W,R) |=i �ρ if and only if there exists 〈i, j〉 ∈ R such that (W,R) |= j ρ.
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Note that the satisfaction of modalities, unlike the satisfaction of the Boolean connectives,
really needs possible worlds semantics given by the concept of a Kripke model and the
stratification of the satisfaction relation by the possible worlds. One can even say that
possible worlds semantics was invented in order to meet the needs of the satisfaction of
modalities.

Modal institutions. In order to complete the definition of a ‘modal institution’ on top of
a ‘base institution’ we need to define a ‘modal sentence’ functor. Let (ΦΔ,αΔ,βΔ) : (Sig,
Sen,Mod, |=)→ Δ be an institution morphism (from a ‘base’ institution to a ‘domain’
institution). We extend Sen to a modal sentence functor M-Sen : Sig → Set such that
each M-Sen sentence is syntactically accessible from the sentences of the base institution
by

• Boolean connectives,

• modalities (� and �), and

• D-quantifiers, for a class D of signature morphisms stable under pushouts and such
that any pushout between any morphism from D and any other signature morphism

(EB) is an amalgamation square in the base institution, and
(ED) gets mapped by ΦΔ to an amalgamation square in the domain institution.

Then we define a satisfaction relation between Kripke models and M-Sen sentences in-
ductively on the structure of the sentences according to the internal modal satisfaction
described above and by defining

(W,R) |=i ρ if and only if W i |= ρ when ρ ∈ Sen(Σ).

The following result shows that this process builds indeed an institution.

Theorem 11.8. For any institution morphism (ΦΔ,αΔ,βΔ) : (Sig,Sen,Mod, |=) → Δ
(from a ‘base’ institution to a ‘domain’ institution), for any modal sentence functor con-
structed by a process described as above, (Sig,M-Sen,K-Mod, |=) is an institution.

Proof. The satisfaction condition for (Sig,M-Sen,K-Mod, |=) follows from the fact that

(W ′,R′) |=i ϕ(ρ) if and only if (W ′,R′)�ϕ |=i ρ

for each signature morphism ϕ : Σ→ Σ′, each ρ ∈M-Sen(Σ), for each Σ′-Kripke model
(W ′,R′), and for each i ∈ IW ′ . This can be shown easily by induction on the structure of
the sentence ρ in the manner we have established the satisfaction condition for FOL in
Sect. 3.1. Note that when ρ ∈ Sen(Σ), this relation follows from the satisfaction condi-
tion of the base institution. Also, the induction step for quantifiers involves the model
amalgamation property for the Kripke models given by Prop. 11.5. �
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MFOL as modal institution. The MFOL sentences and their satisfaction by the
MFOL Kripke models is an instance of the general process defined above as follows:

• We replace the base institution FOL′ used for defining the Kripke models with its
‘atomic’ sub-institution AFOL′ which has only the atoms as sentences. This is nec-
essary because some of the Boolean connectives and of the quantifications obtained
by internal modal logic will not be semantic, and thus semantically different from
the Boolean connectives and the quantifiers of FOL′. Then the domain institution
is AFOL, the atomic sub-institution of FOL, rather than FOL.

• We consider all sentences constructed from the atoms by iteratively applying Bool-
ean and modal connectives and D-quantifications for the signature extensions
(S,S0,F,F0,P,P0) ↪→ (S,S0,F �X ,F0 �X ,P,P0) with a finite set of rigid constants
X .

The conditions (EB) and (ED) hold easily because both squares involved in these condi-
tions can be read as pushout squares of FOL signature morphisms and cf. Prop. 4.5 they
are amalgamation squares. This leads to the following expected instance of Thm. 11.8.

Corollary 11.9. MFOL is an institution.

Exercises

11.1. For any signature Σ in any institution (Sig,Sen,Mod, |=), the category of Σ-Kripke mod-
els without sharing can be obtained as the pullback of the index projections for the Grothendieck
categories

K-Mod(Σ) ��

��

Cat(−,Mod(Σ))�

��
((−)2;Cat(−,2))� �� Set

where

• Cat(−,Mod(Σ)) : Setop → Cat maps each set I to the functor category Cat(I,Mod(Σ)),
• (−)2 : Setop → Setop maps each set I to its square product I× I,

• Cat(−,2) : Setop → Cat maps each set J to the partial order of its subsets.

Extend this result to Kripke models with sharing by replacing Cat(I,Mod(Σ)) with its subcategory
consisting of the families of models satisfying the sharing.

11.2. Limits and co-limits of Kripke models
Consider an institution morphism (ΦΔ,αΔ,βΔ) : (Sig,Sen,Mod, |=)→ Δ from a base institution
to a domain institution. Assume that for each signature Σ of the base institution, βΔ

Σ preserves
J-(co-)limits for a category J. Then K-Mod(Σ) has J-(co-)limits when Mod(Σ) has J-(co-)limits.

11.3. A quasi-representable signature morphism in the base institution is quasi-representable in the
modal institution too. However this does not hold for representable signature morphisms.
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11.4. For any commutative square of institution morphisms

(Sig′,Sen′,Mod′, |=′)
(ΦΔ′ ,αΔ′ ,βΔ′ )

��

(Φ,α,β) �� (Sig,Sen,Mod, |=)

(ΦΔ,αΔ,βΔ)

��
Δ′ �� Δ

where the vertical arrows represent institution morphisms from base institutions to domain insti-
tutions, and for any natural transformation αM : Φ;M-Sen ⇒ M-Sen′ between modal sentence
functors over Sen and respectively Sen′ which preserves the Boolean connectives, the quantifiers,
and the modal operators, there exists a canonical institution morphism

(Φ,αM ,βK) : (Sig′,M-Sen′,K-Mod′, |=′)→ (Sig,M-Sen,K-Mod, |=).

11.5. Prove the modal satisfaction relations given in the table below, for the following properties
of the Kripke models:

property of Kripke models
¬�ρ |=|�¬ρ –
|= �ρ⇒ ρ T
|= �(ρ⇒ ρ′)⇒ (�ρ⇒ �ρ′) –
ρ |= �ρ –
|= �ρ⇒��ρ S4
|= �ρ⇒ ��ρ S5
|= (∀χ)�ρ⇔�(∀χ)ρ –
|= (∃χ)�ρ⇒�(∃χ)ρ –

11.2 Ultraproducts of Kripke models

The aim of this section is to develop an extension of the method of ultraproducts (intro-
duced in Chap. 6) to possible worlds semantics and to modal satisfaction.

The framework. For this section we assume

• a class F of filters, and

• an institution morphism from a base institution to a domain institution
(ΦΔ,αΔ,βΔ) : (Sig,Sen,Mod, |=)→ Δ

such that the following two properties hold:

(FP) for each signature Σ the category of Σ-models Mod(Σ) has products and has
F -filtered products which are preserved by βΔ

Σ, and

(LI) for any signature Σ, βΔ
Σ lifts isomorphisms, i.e., if βΔ

Σ(M) ∼= N′ there exists N ∼= M
such that N′ = βΔ

Σ(N).

βΔ
Σ(M)

∼=
N′ = βΔ

Σ(N).

M ∼= (∃)N.
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While the assumption (FP) is expected since it constitutes the basis for the existence of
filtered products of Kripke models, (LI) is rather technical but very easily satisfied in the
applications. For example, it is obviously satisfied by the forgetful institution morphism
AFOL′ →AFOL which gives rise to MFOL as a modal institution.

Filtered products of Kripke models

Filtered products of Kripke models are obtained from the filtered products of models of
the base institution as follows.

Proposition 11.10. For each signature Σ, the category of Kripke models K-Mod(Σ) has
F -filtered products.

Proof. Let F ∈F be any filter over a set I and let {(Wj,R j) | j ∈ I} be an I-indexed family
of Kripke models for a fixed signature Σ. The filtered product modulo F of {(Wi,Ri) | i ∈
I} is just the categorical filtered product in the category K-Mod of Σ-Kripke models. This
can be obtained by using the characterization of the category of the Kripke models as a
Grothendieck category given by Fact 11.2 and by the general result of existence of limits
and co-limits in Grothendieck categories given by Thm. 2.10. However it will also help
to make the construction of the filtered products of Kripke models explicit.

For each J ∈ F we denote the Kripke model product ∏ j∈J(Wj,R j) by (WJ,RJ). This
product can be obtained in the following two steps:

• (IWJ ,RJ) is the product ∏ j∈J(IWj ,R j) in the category of REL1 models for a signature
with one binary relation symbol; then if we write k ∈ IWJ as (k j) j∈J with k j ∈ IWj

for each j ∈ J, we have that

〈k, k′〉 ∈ RJ if and only if 〈k j, k′j〉 ∈ R j for each j ∈ J

• for each k = (k j) j∈J ∈ IWJ we have W k
J = ∏ j∈J W

kj
j .

Then for each i ∈ J the canonical projection pJ,i : (WJ,RJ)→ (Wi,Ri) is defined by

– pJ,i(k) = ki for each k ∈ IWJ = ∏i∈J IWi , and

– for each k ∈ IWJ , pk
J,i : W k

J →W ki
i is the projection ∏i∈J W ki

i →W ki
i .

For each J⊆ J′ where J,J′ ∈F , let pJ′ ,J denote the canonical projection (WJ′ ,RJ′)→
(WJ,RJ). The filtered product (WF ,RF) of {(Wi,Ri) | i ∈ I} modulo F is the co-limit of
the directed diagram made of all these projections pJ′ ,J .

(WJ′ ,RJ′)
pJ′,J ��

μJ′ ���
��

��
��

(WJ,RJ)

μJDD,,
,,
,,
,

(WF ,RF)
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This co-limit is constructed in two steps. We first do the filtered product (IWF ,RF) of the
family of REL1 models {(IWi ,Ri) | i ∈ I}

(IWJ′ ,RJ′)
pJ′,J ��

μJ′ ���
��

��
��

(IWJ ,RJ)

μJDD,,
,,
,,
,

(IWF ,RF)

Recall that μI(k) = μI(k′) if and only if { j | k j = k′j} ∈ F . At the second step, for each
i ∈ IWF we define W i

F as the co-limit of the directed diagram constituted by the canonical
projections pk′,k : W k′

J′ →W k
J for each J ⊆ J′ in F , and each k ∈ μJ

−1(i) and k′ ∈ μJ′
−1(i)

with pJ′ ,J(k′) = k

W k′
J′

pk′,k ��

μk′
$$�

��
��

�
W k

J

μk
����
��
��
�

W i
F

By conditions (FP) and (LI) we can see that W i
F can be chosen such that βΔ

Σ(W i
F) =

βΔ
Σ(W i′

F ) for each i and i′ in IWF . �

In this chapter the filtered product (WF ,RF) will also be denoted as ∏F(Wi,Ri),
notation corresponding to the standard notation for categorical filtered products.

Because Horn sentences are preserved by filtered products of FOL models we have
that, if the accessibility relations {R j} j∈I satisfy some properties expressed as Horn sen-
tences (such as T , S4 or S5), then the accessibility relation RF of the filtered product
does satisfy the same properties. This extends the existence of filtered products in sub-
categories of Kripke models determined by some Horn conditions on the accessibility
relations. By a similar argument, in the case of ultraproducts this can be extended to
sub-categories of Kripke models determined by any first-order conditions.

The following shows that for each i∈ IWF , the (base) model W i
F can be also presented

as a filtered product of (base) models. This fact will be used in the proof of the modal
fundamental Thm. 11.12 below.

Lemma 11.11. For each i ∈ IWF , and each (k j) j∈I ∈ μ−1
I (i), W i

F is the filtered product

modulo F of the family {Wkj
j | j ∈ I}.

Proof. For each k ∈ μ−1
I (i) and each J ∈ F , let kJ = pI,J(k). Then the diagram formed by

the projections pkJ′ ,kJ for all J⊆ J′ in F is a final sub-diagram of the diagram defining W i
F .

The conclusion of the lemma now follows by the general categorical result of Thm. 2.4
showing that final sub-diagrams of directed diagrams give isomorphic co-limits. �
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Modal fundamental theorem

Sentences modally preserved by filtered factors/products. The method ultraproducts
for possible worlds semantics requires the following refinement of the concept of preser-
vation of sentences by filtered factors/products introduced in Sect. 6.2 for the ‘single
world’ semantics.

Let F be a class of filters. For a signature Σ, a sentence ρ is

• modally preserved by F -filtered factors when for each i ∈ IWF , (WF ,RF) |=i ρ im-
plies “there exists J ∈ F and k ∈ μ−1

J (i) such that (Wj,R j) |=k j ρ for each j ∈ J”,
and

• modally preserved by F -filtered products when for each i ∈ IWF , “there exists J ∈ F
and k ∈ μ−1

J (i) such that (Wj,R j) |=k j ρ for each j ∈ J” implies (WF ,RF) |=i ρ,

for each filter F ∈ F over a set I and for each family {(Wj,R j)} j∈I of Σ-Kripke models,
and where (WF ,RF) as usual denotes the filtered product ∏F(Wj,R j) and μ is the co-
limiting co-cone of the filtered product (as in Prop. 11.10).

The following extends the ultraproducts fundamental Thm. 6.9 to possible worlds
semantics.

Theorem 11.12 (Modal fundamental theorem). 1. Each sentence of the base insti-
tution which is preserved by F -filtered products (in the base institution) is also
modally preserved by F -filtered products (of Kripke models).

2. Each sentence of the base institution which is preserved by F -filtered factors (in the
base institution) is also modally preserved by F -filtered factors (of Kripke models).

3. The sentences modally preserved by F -filtered products (of Kripke models) are
closed under possibility �.

4. The sentences modally preserved by F -filtered factors (of Kripke models) are closed
under possibility �.
Moreover if F is closed under reductions,

5. The sentences modally preserved by F -filtered products (of Kripke models) are
closed under existential χ-quantification, when χ preserves F -filtered products of
models in the base institution (i.e., Mod(χ) preserves F -filtered products).

6. The sentences modally preserved by F -filtered factors (of Kripke models) are closed
under existential χ-quantification, when χ lifts F -filtered products of Kripke models
(i.e., K-Mod(χ) lifts F -filtered products).

7. The sentences modally preserved by F -filtered factors (of Kripke models) and the
sentences modally preserved by F -filtered products (of Kripke models) are both
closed under finite conjunctions.

8. The sentences modally preserved by F -filtered products (of Kripke models) are
closed under infinite conjunctions.

9. If a sentence is modally preserved by F -filtered factors (of Kripke models) then its
negation is modally preserved by F -filtered products (of Kripke models).
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And finally, if we further assume that F contains only ultrafilters,

10. If a sentence is modally preserved by F -filtered products (of Kripke models) then
its negation is modally preserved by F -filtered factors (of Kripke models).

11. The sentences modally preserved by both F -filtered products and factors (of Kripke
models) are closed under negation.

Proof. Let F be any filter in F over set I, let {(Wj,R j) | j ∈ I} be a family of Kripke
models, and let (WF ,RF) be its filtered product modulo F . As usual, for any k = (k j) j∈J′ ∈
IWJ′ = ∏ j∈J′ IWj and J ⊆ J′, by kJ we denote the tuple (k j) j∈J . Also, recall for any J ∈ F
its reduction to J is denoted by F |J and is defined as {J∩X | X ∈ F}.

1. Assume that ρ is preserved by F -filtered products in the base institution and let

us fix i ∈ IWF . Let us assume that there exists J ∈ F and k ∈ μ−1
J (i) such that W

kj
j |= ρ.

Then we can find k′ ∈ μ−1
I (i) such that k = k′J . By Lemma 11.11, W i

F is the filtered product

of {W k′j
j } j∈I modulo F , hence because ρ is preserved by F -filtered products, W i

F |= ρ.
2. Assume that ρ is preserved by F -filtered factors in the base institution and let

us fix i ∈ IWF . Let us assume that W i
F |= ρ and take arbitrary k′ ∈ μ−1

I (i). By Lemma

11.11, W i
F is the filtered product of {W k′j

j } j∈I modulo F , hence there exists J ∈ F such

that W
k′j
j |= ρ for each j ∈ J. We can then take k = k′J .

3. Assume ρ is modally preserved by F -filtered products (of Kripke models) and
fix i ∈ IWF . Let us assume that (Wj,R j) |=k j �ρ for each j ∈ J, for some J ∈ F and some

k ∈ μ−1
J (i). Then, for each j ∈ J there exists k′j with 〈k j, k′j〉 ∈ R j such that (Wj,R j) |=k′j ρ.

We define i′ = μJ((k′j) j∈J) and we notice that 〈i, i′〉 ∈ RF . Because ρ is modally pre-

served by filtered products we deduce that (WF ,RF) |=i′ ρ. Because 〈i, i′〉 ∈ RF this means
(WF ,RF) |=i �ρ.

4. Assume ρ is modally preserved by F -filtered factors (of Kripke models) and fix
i∈ IWF . Let us assume that (WF ,RF) |=i �ρ. Then there exists i′ with 〈i, i′〉 ∈ RF such that
(WF ,RF) |=i′ ρ. This means that there exists J′ ∈ F and l ∈ μ−1

J′ (i) and l′ ∈ μ−1
J′ (i′) such

that 〈l, l′〉 ∈ RJ′ . Because ρ is modally preserved by F -filtered factors, there exists J ∈ F

and k′ ∈ μ−1
J (i′) such that (Wj,R j) |=k′j ρ for each j ∈ J. Because μJ′(l′) = μJ(k′) = i′

there exists J′′ ⊆ J ∩ J′ in F such that l′J′′ = k′J′′ denoted by k′′. Let k = lJ′′ . Note that

k ∈ μ−1
J′′ (i). We have that (Wj,R j) |=k′′j =k′j ρ for each j ∈ J′′ and since 〈k, k′′〉 ∈ RJ′′ we

have that (Wj,R j) |=k j �ρ for each j ∈ J′′.
5. Consider (∃χ)ρ for signature morphism χ : Σ→ Σ′ and a Σ′-sentence ρ modally

preserved by F -filtered products (of Kripke models). For an arbitrary fixed i ∈ IWF , we
assume there exists J ∈ F and k ∈ μ−1

J (i) such that (Wj,R j) |=k j (∃χ)ρ for each j ∈ J. We
have to prove that (WF ,RF) |=i (∃χ)ρ.

For each j ∈ J there exists a χ-expansion (W ′
j ,R j) of (Wj,R j) such that (W ′

j ,R j) |=k j

ρ. Because F|J ∈ F and because ρ is preserved by F -filtered products (of Kripke mod-
els), we have that (W ′

F |J ,RF |J ) |=i ρ where (W ′
F|J ,RF |J ) is the filtered product of {(W ′

j ,R j) |
j ∈ J} modulo F|J . Because χ preserves F -filtered products of models in the base in-
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stitution, it also preserves F -filtered products of Kripke models, hence (W ′
F|J ,RF |J ) is

a χ-expansion of (WF |J ,RF|J ). Therefore (WF |J ,RF|J ) |=i (∃χ)ρ and since by Prop. 6.3
(WF|J ,RF |J )∼= (WF ,RF) we have that (WF ,RF) |=i (∃χ)ρ.

6. Consider (∃χ)ρ for signature morphism χ : Σ→ Σ′ and a Σ′-sentence ρ modally
preserved by F -filtered factors. Assume (WF ,RF) |=i (∃χ)ρ for some i ∈ IWF . Then there
exists a χ-expansion (W ′,RF) of (WF ,RF) such that (W ′,RF) |=i ρ. Because χ lifts filtered
products of Kripke models, there exists J ∈ F such that for each j ∈ J there exists a χ-
expansion (W ′

j ,R j) of (Wj,R j) such that (W ′,RF) is the filtered product ∏F |J (W
′
j ,R j).

By hypothesis ρ is modally preserved by F -filtered factors, hence there exists
J′ ∈ F |J and k ∈ μ−1

J′ (i) such that (W ′
j ,R j) |=k j ρ for each j ∈ J′. But this implies that

(Wj,R j) |=k j (∃χ)ρ for each j ∈ J′.
7. The preservation by filtered products is immediate. Therefore we focus on the

preservation by filtered factors.
Assume that (WF ,RF) |=i ρ1∧ρ2. Then for each l ∈ {1,2}, there exists Jl ∈ F and

kl ∈ μ−1
Jl (i) such that (Wj,R j) |=kl

j ρl for each j ∈ Jl . Because μJ1(k1) = μJ2(k2) there

exists J ⊆ J1∩J2 in F such that k1
J = k2

J ; let us denote this by k. Note that μJ(k) = i. Then
for each j ∈ J we have that (Wj,R j) |=k j ρ1∧ρ2.

8. Immediate.
9. Let ρ be a sentence which is modally preserved by F -filtered factors. For some

i ∈ IWF assume there exists J ∈ F and k ∈ μ−1
J (i) such that for each j ∈ J we have that

(Wj,R j) |=k j ¬ρ. We have to prove that (WF ,RF) |=i ¬ρ.
If we assume the contrary, it means that (WF ,RF) |=i ρ. Since ρ is modally preserved

by F -filtered factors, there exists J′ ∈ F and k′ ∈ μ−1
J′ (i) such that for each j ∈ J′ we have

that (Wj,R j) |=k′j ρ. Because μJ(k) = μJ′(k′) we can find a non-empty J′′ ⊆ J∩J′ in F such

that kJ′′ = k′J′′ . Let us denote this by k′′. For each j ∈ J′′ we then have that (Wj,R j) |=k′′j ¬ρ
and (Wj,R j) |=k′′j ρ which is a contradiction. This shows that (WF ,RF) |=i ¬ρ.

10. Let ρ be any sentence which is modally preserved by F -filtered products and
assume (WF ,RF) |=i ¬ρ. For any fixed i ∈ IWF take an arbitrary k ∈ μ−1

I (i). If { j ∈ I |
(Wj,R j) |=k j ¬ρ} �∈ F then its complement { j ∈ I | (Wj,R j) |=k j ρ} belongs to F (because
F is an ultrafilter). Because ρ is preserved by ultraproducts, this would imply (WF ,RF) |=i

ρ which contradicts (WF ,RF) |=i ¬ρ, therefore { j ∈ I | (Wj,R j) |=k j ¬ρ} ∈ F .
11. From 9 and 10. �

Corollary 11.13. Each modal sentence which is accessible from the Łoś-sentences of the
base institution by (modal) Boolean connectives, possibility � and (modal) χ-quantifi-
cations for which χ preserves filtered products of models (in the base institution), and
lifts filtered products of Kripke models

• is modally preserved by ultraproducts and ultrafactors, and

• is preserved by ultraproducts.

Proof. In Thm. 11.12 we consider F to be the class of all ultrafilters. The first item
follows immediately from the conclusions of Thm. 11.12.
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The second item follows from the first one. To see this let us consider an ultra-
filter U over a set I and let (WU ,RU) be an ultraproduct of Kripke models ∏U (Wj,R j)
for a family {(Wj,R j)} j∈I of Kripke models. Assume that { j | (Wj,R j) |= ρ} ∈ U and
that (WU ,RU) �|= ρ. Then there exists i ∈ IWF such that (WU ,RU) �|=i ρ which means
(WU ,RU) |=i ¬ρ. Because ρ is preserved by ultrafactors, there exists J ∈U and k ∈ μ−1

J (i)
such that (Wj,R j) |=k j ¬ρ for each j ∈ J. Note that J∩{ j | (Wj,R j) |= ρ} ∈U . Then for
any of its elements j we have both that (Wj,R j) |=k j ¬ρ and that (Wj,R j) |=k j ρ which is
a contradiction. Hence (WU ,RU) |= ρ. �

The (ordinary) preservation by ultrafactors cannot be established for the possible
worlds semantics mainly because modal negation is not a semantic negation (in the sense
of Sect. 5.1). This can be easily seen if one tries to replicate the argument for the preserva-
tion of sentences by ultraproducts of Cor. 11.13 above to the preservation by ultrafactors.
However, preservation by ultraproducts is still sufficient to derive a series of important
results, most notably model compactness.

Similarly to the correspondent result for ‘single world semantics’ (Cor. 6.10), the
only conditions of Cor. 11.13 that in reality narrow the set of sentences which are pre-
served by ultraproducts refer to the quantifiers. Except lifting of filtered products of
Kripke models, the other conditions refer to the level of the base institution to which
the analysis provided in Sect. 6.2 applies. The key condition to be established remains the
lifting of filtered products of Kripke models. For this we need the following concept.

(ΦΔ,βΔ)-exact signature morphisms. A signature morphism χ : Σ→ Σ′ is (ΦΔ,βΔ)-
exact when the square of the naturality of βΔ for χ (square shown below) is a pullback.

Σ

χ

��

ModΔ(ΦΔ(Σ)) Mod(Σ)
βΔ

Σ��

Σ′ ModΔ(ΦΔ(Σ′))

Mod(ΦΔ(χ))

��

Mod(Σ′)
βΔ

Σ′
��

Mod(χ)

��

Lifting of filtered products of Kripke models. The result below reduces the lifting of
filtered products of Kripke models to lifting of filtered products of models in the base
institution.

Proposition 11.14. A signature morphism χ lifts filtered products of Kripke models if it is
(ΦΔ,βΔ)-exact and lifts completely and preserves filtered products of models (in the base
institution).

Proof. Let (WF ,RF) be the filtered product of a family of Σ-Kripke models {(Wj,R j)} j∈I

modulo a filter F over the set I and let (W ′,RF) be a χ-expansion of (WF ,RF).
Let i ∈ IWF and k ∈ μ−1

I (i). By Lemma 11.11, W i
F is the filtered product modulo F

of the family {W kj
j | j ∈ I}.
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Because χ lifts completely filtered products of models (in the base institution),

for each j ∈ I let W ′k j
j be a χ-expansion of W

kj
j such that W ′i is the filtered product of

{W ′k j
j | j ∈ I}.

Because χ is (ΦΔ,βΔ)-exact, for each j ∈ I and each l ∈ IWj let W ′l
j be the unique

Σ′-model such that βΔ
Σ′(W

′l
j) = βΔ

Σ′(W
′k j
j ) and W ′l

j�χ = W l
j .

Now we prove that (W ′,RF) is the filtered product of {(W ′
j ,R j)} j∈J modulo F .

Consider an arbitrary k′ ∈ IWI = ∏ j∈I IWJ and let i′ = μI(k′). By Lemma 11.11, it is enough

to show that W ′i′ is the filtered product of {W ′k′j
j | j ∈ I} modulo F . This follows by the

(ΦΔ,βΔ)-exactness property of χ because

βΔ
Σ′(∏F W ′k′j

j ) = ∏F βΔ
Σ′(W

′k′j
j ) (by (FP))

= ∏F βΔ
Σ′(W

′k j
j ) (by the sharing condition)

= βΔ
Σ′(∏F W ′k j

j ) (by (FP) and (LI))
= βΔ

Σ′(W
′i)

= βΔ
Σ′(W

′i′) (by the sharing condition)

and because

(∏F W ′k′j
j )�χ = ∏F(W ′k′j

j �χ) (because χ preserves filtered products)

= ∏F W
k′j
j (by the definition of W

k′j
j )

= ∏F W
k′j
j (by Lemma 11.11)

= W ′i′�χ (by the hypothesis that (WF ,RF)�χ = (W ′,RF)).
�

Propositions 6.4, 6.6 and 6.8 allow a refinement of Prop. 11.14 to the following
sufficient condition for the lifting of filtered products of Kripke models which is rather
easily applicable to actual situations.

Corollary 11.15. Assume that in the base institution all projections of model products are
epis. Then a signature morphism lifts filtered products of Kripke models if it is (ΦΔ,βΔ)-
exact and projectively representable (in the base institution).

As a side remark, note that possible worlds semantics via Cor. 11.15 provides a
remarkable example of signature morphisms which are not representable but lift filtered
products of models (Kripke models in this case). Cor. 11.15 permits the following refor-
mulation of Cor. 11.13.

Corollary 11.16. Assume that in the base institution all projections of model products
are epis. Then the modal sentences preserved by ultraproducts

– contain all Łoś sentences of the base institution,

– are closed under (modal) Boolean connectives,

– are closed under modalities � and �, and
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– are closed under any quantification which is (ΦΔ,βΔ)-exact and projectively repre-
sentable (in the base institution).

An instance of Cor. 11.16 is given by modal first order logic MFOL considered as
a modal institution (determined by the forgetful institution morphism AFOL′ →AFOL).
For establishing this instance we have mainly to note that the quantifications, as injec-
tive signature morphism adding only (rigid) constants as new symbols, are projectively
representable and (ΦΔ,βΔ)-exact.

Corollary 11.17. Each sentence of MFOL is preserved by ultraproducts.

Compactness

An immediate application of the preservation of sentences by ultraproducts is model com-
pactness (cf. Cor. 6.19).

Corollary 11.18. If each sentence of a ‘modal’ institution is accessible by the operations
listed in Cor. 11.16, then the institution is m-compact.

And below we can formulate an expected instance of this result.

Corollary 11.19. MFOL is m-compact.

Note that compactness of MFOL cannot be established from the model compact-
ness by the general result given by Prop. 6.16 because MFOL has only modal negation,
which is not a semantic negation as required by Prop. 6.16.

Exercises

11.6. Let us consider the following table of institution morphisms:

base ΦΔ ModΔ(Σ) sharing constraint
inst.

1. POA forgets non-constant operation ModFOL(S,C, /0) underlying carrier sets and
symbols interpretations of constants

2. POA identity ModFOL(S,F, /0) underlying algebras
3. PA forgets non-constant total ModFOL(S,C, /0) underlying carrier sets and

operation and all partial interpretations of
operation symbols total constants

The following classes of signature morphisms are (ΦΔ,βΔ)-exact for the corresponding entries in
the above table.

Entry in signature morphism χ
table

1. extensions with constants
2. extensions with constants
3. extensions with sorts and total constants
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Notes. The material of this chapter is based upon [60]. Possible worlds semantics of modal logic
[107] is one of the major developments in the area of non-classical logics. Most of the work in
modal logic is focused on modal propositional logic MPL. For a historical overview we suggest
[83], while [25] gives a rather complete state-of-the-art presentation of modal propositional logic .

Apart from its great influence in philosophy, logic, and linguistics, possible worlds semantics
have been repeatedly applied to computing, in particular to the dynamic logic of programs [151,
89, 106], process algebra [93, 17] and the temporal logic’s approach to concurrency [149, 65, 167].

Our current treatment of quantifiers for possible worlds semantics does support quantifica-
tions with rigid constants only over rigid sorts (called ‘constant domains’ by modal logicians).
However quantifications with rigid constants over flexible sorts constitutes an important object of
study in conventional modal logic. Since it is not difficult to extend our approach to capture this
situation, we propose this as a research project for the interested reader.



Chapter 12

Grothendieck Institutions

Grothendieck institutions generalize the flattening Grothendieck construction from (in-
dexed) categories, (see Sect. 2.5), to (indexed) institutions. Regarded from a fibration
theoretic angle, Grothendieck institutions are just institutions for which their category
of signatures is fibred. For example, the actual institutions with many-sorted signatures
appear naturally as fibred institutions determined by the fibrations given by the functor
mapping each signature to its set of sort symbols. In this sense, fibred institutions can be
regarded as the reflection of many-sortedness at the level of abstract institutions.

For modeling heterogeneous multi-logic environments the flattening Grothendieck
construction on a system of institutions related by institution morphisms (here called in-
dexed institution) seems to be more adequate than the fibred institutions approach. A
Grothendieck institution puts together a system of institutions into a single institution
such that the individual identities of the component institutions and the relationships be-
tween them are fully retained.

Summary of the chapter. In this chapter we introduce the concepts of fibred and
Grothendieck institutions and we show that they are equivalent.

The Grothendieck construction on institutions can be done in two variants, by in-
stitution morphisms or by institution comorphisms. We show that in the case when the
institution morphisms or comorphisms correspond to adjunction situations between the
categories of signatures of the institutions, the morphism-based and comorphism-based
Grothendieck institutions are isomorphic.

An important class of problems posed by the Grothendieck, or fibred, institutions is
that of lifting of model-theoretic properties from the ‘local’ level of index institutions, or
fibres, to the ‘global’ level of the Grothendieck, or fibred, institution. We investigate the
lifting of several important properties, such as theory co-limits, model amalgamation, and
interpolation. An interesting application of the interpolation theorem for Grothendieck
institutions is given by Craig-Robinson properties of institutions without implications,
such as EQL and HCL.
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The material of this chapter requires some familiarity with indexed categories and
with fibrations. A concise introduction to these topics, presenting all concepts used by
this chapter, can be found in Sect. 2.5.

12.1 Fibred and Grothendieck Institutions

Fibred institutions

FOL as fibred institution. For any set S, let the institution of S-sorted first order logic
FOLS = (SigS,SenS,ModS, |=) be the sub-institution of FOL determined by fixing the
set of sort symbols to S. The category of signatures SigS consists of all pairs (F,P) where
F is an S-sorted set of operation symbols and P is an S-sorted set of relation symbols,
morphisms of signatures in SigS being just morphism of signatures ϕ in first order logic
which are identities on the sets S of sort symbols, i.e., ϕst = 1S. Then the (F,P)-sentences,
respectively models, in FOLS are the (S,F,P)-sentences, respectively models, in FOL.
The satisfaction relation between models and sentences is of course inherited from FOL.

Fact 12.1. Any function u : S → S′ determines an institution morphism (Φu,αu,βu) :
FOLS′ → FOLS such that for each S′-sorted signature (F ′,P′)

• Φu(F ′,P′) = (F,P) with Fw→s = F ′u(w)→u(s) and Pw = P′u(w) for each string of sort
symbols w∈ S∗ and each sort symbol s∈ S. The canonical FOL signature morphism
(S,F,P)→ (S′,F ′,P′) thus determined is denoted by ϕu

(F ′,P′).

• αu
(F ′,P′) : SenS(F,P)→ SenS′(F ′,P′) is defined as SenFOL(ϕu

(F ′,P′)) and, informally,

maps each (F,P)-sentence to itself but regarded as an (F ′,P′)-sentence, and

• βu
(F ′,P′) : ModS′(F ′,P′)→ModS(F,P) is defined as ModFOL(ϕu

(F ′,P′)).

This situation, common to all ‘many-sorted’ logics formalized as institutions, fol-
lows from the fact that SigFOL is fibred over Set by the projection Π of each signature
to its set of sorts (defined by Π(S,F,P) = S on signatures and Π(φ) = φst on signature
morphisms).

Fact 12.2. The fibration Π : SigFOL→ Set is split. Moreover, a FOL signature morphism
φ is cartesian when φop and φrl are bijections, and ϕu

(F ′,P′) is the distinguished cartesian

lifting of u for each function u : S→ S′ and each FOL-signature (S′,F ′,P′).

Fibred institutions. By abstracting the forgetful functor Π : SigFOL → Set above to
any fibration, we can formulate the general concept of ‘fibred institution’ as follows.

Given a category I, a fibred institution over the base I is a tuple (Π : Sig → I,
Mod,Sen, |=) such that

• Π : Sig→ I is a fibred category, and

• (Sig,Mod,Sen, |=) is an institution.
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Standard concepts from fibred category theory lift immediately to institutions. The fibred
institution is split when the fibration Π is split. A cartesian institution morphism is an
institution morphism between fibred institutions for which the signature mapping functor
is a cartesian functor between the corresponding fibred categories of signatures.

Given a fibred institution I = (Π : Sig → I,Mod,Sen, |=), for each object i ∈ |I|,
the fibre of I at i is the institution I i = (Sigi,Modi,Seni, |=i) where

• Sigi is the fibre of Π at i, and

• Modi, Seni, and |=i are the restrictions of Mod, Sen, and respectively |= to Sigi.

By applying this terminology to the FOL case, we can therefore say that FOL is fibred
over Set with its fibre at a set S being the institution FOLS of S-sorted first order logic.

The following generalizes Fact 12.1 to any fibred institution.

Proposition 12.3. Given a fibred institution I = (Π : Sig→ I,Mod,Sen, |=), for each ar-
row u ∈ I(i, j), any inverse image functor Φu : Sig j → Sigi (with distinguished cartesian
morphisms ϕu

Σ′ : Φu(Σ′)→ Σ′) determines a canonical institution morphism (Φu,αu,βu) :
I j → I i between the fibres of I , where for each signature Σ′ in the fibre Sig j at j,
αu

Σ′ = Sen(ϕu
Σ′) and βu

Σ′ = Mod(ϕu
Σ′).

Proof. The naturality of αu and βu follow directly from the way the family of distin-
guished cartesian morphisms {ϕu

Σ′ }Σ′∈Sig j determine the functor Φu, and by applying the
sentence functor and the model functor, respectively, to the corresponding commutative
diagrams.

Φu(Σ′)
Φu(θ)

��

ϕu
Σ′ �� Σ′

θ
��

Seni(Φu(Σ′))
αu

Σ′ ��

Seni(Φu(θ)) ��

Sen j(Σ′)
Sen j(θ) ��

Modi(Φu(Σ′)) Mod j(Σ′)
βu

Σ′��

Φu(Σ′1)ϕu
Σ′1

�� Σ′1 Seni(Φu(Σ′1))αu
Σ′1

�� Sen j(Σ′1) Modi(Φu(Σ′1))

Modi(Φu(θ))
��

Mod j(Σ′1)βu
Σ′1

��

Mod j(θ)
��

The satisfaction condition for the institution morphism (Φu,αu,βu) follows from the sat-
isfaction condition of the fibred institution I applied for the distinguished cartesian mor-
phisms. Consider a Σ′-model M′ and a Φu(Σ′)-sentence ρ. Then M′ |= j

Σ′ αu
Σ′(ρ) means

M′ |=Σ′ Sen(ϕu
Σ′)(ρ) which by the satisfaction condition of the fibred institution means

Mod(ϕu
Σ′)(M

′) |=Φu(Σ′) ρ which finally means that βu
Σ′(M

′) |=i
Φu(Σ′) ρ. �

Indexed and Grothendieck institutions

‘Indexed institutions’ lift the concept of indexed category to institutions.

The indexed institution determined by FOL. The institution morphisms (Φu,αu,βu)
provide an example of an indexed institution.
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Fact 12.4. The mapping of each function u : S → S′ to the institution morphism
(Φu,αu,βu) : FOLS′ → FOLS is functorial.

Let the functor between the opposite of Set to the (quasi-)category Ins of institution
morphisms determined by the mapping above be denoted by fol : Setop → Ins.

Indexed institutions. Given a category I of indices, an indexed institution J is a functor
J : Iop → Ins. For each index i ∈ |I|we denote the institution J i by (Sigi,Modi,Seni, |=i)
and for each index morphism u∈ I we denote the institution morphism J u by (Φu,αu,βu).

Grothendieck institutions. The Grothendieck institution J � = (Sig�,Sen�,Mod�, |=�)
of an indexed institution J : Iop → Ins is defined as follows:

1. Let Sig : Iop → Cat be the indexed institution mapping each index i to Sigi and
each index morphism u to Φu; then the category of the signatures of J � is the
Grothendieck category Sig�. Thus the signatures of J � consist of pairs 〈i, Σ〉 with i
index and Σ ∈ |Sigi| and signature morphisms 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉 consists of
index morphisms u : i→ i′ and signature morphisms ϕ : Σ→Φu(Σ′).

2. The model functor Mod� : (Sig�)op → Cat is given by

• Mod�(〈i, Σ〉) = Modi(Σ) for each index i ∈ |I| and signature Σ ∈ |Sigi|, and
• Mod�(〈u, ϕ〉) = βu

Σ′ ;Modi(ϕ) for each 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉.
3. The sentence functor Sen� : Sig� → Set is given by

• Sen�(〈i, Σ〉) = Seni(Σ) for each index i ∈ |I| and signature Σ ∈ |Sigi|, and
• Sen�(〈u, ϕ〉) = Seni(ϕ);αu

Σ′ for each 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉.
4. The satisfaction relation is given by

M |=�
〈i,Σ〉 e if and only if M |=i

Σ e

for each index i ∈ |I|, signature Σ ∈ |Sigi|, model M ∈ |Mod�(〈i, Σ〉)|, and sentence
e ∈ Sen�(〈i, Σ〉).

The following shows that the above construction gives an institution indeed.

Proposition 12.5. J � is an institution. Moreover, for each index i ∈ |I| there exists a
canonical institution morphism (Φi,αi,βi) : J i → J � mapping any signature Σ ∈ |Sigi|
to 〈i, Σ〉 ∈ |Sig�| and such that the components of αi and βi are identities.

Proof. Consider a signature morphism 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉, a 〈i′, Σ′〉-model M′ and
a 〈i, Σ〉-sentence e. Then
M′ |=�

〈i′,Σ′〉 Sen�(〈u, ϕ〉)(e)
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if and only if M′ |=i′
Σ′ αu

Σ′(Seni(ϕ)(e)) (by the definitions of |=� and of Sen�)
if and only if βu

Σ′(M
′) |=i

Σ Seni(ϕ)(e) (by the satisfaction condition for
(Φu,αu,βu))

if and only if Modi(ϕ)(βu
Σ′(M

′)) |=i
Φu(Σ′) e (by the satisfaction condition for ϕ)

if and only if Mod�(〈u, ϕ〉)(M′) |=�
〈i′,Σ′〉 e (by the definitions of |=� and of Mod�).

�
Fact 12.6. The Grothendieck institution J � of an indexed institution J : Iop → Ins is a
split fibred institution (Π : Sig�→ I,Mod�,Sen�, |=�), where Π : Sig�→ I is the fibration
projection from the Grothendieck category Sig� to its index category.

On the other hand, cf. Prop. 12.3, each split fibred institution determines an indexed
institution and consequently a Grothendieck institution. It is easy to see that the mappings
from Grothendieck institutions to split fibred institutions and opposite are inverse to each
other. For example FOL can be recovered as the Grothendieck institution fol�.

Fact 12.7. For any category I, there exists a natural isomorphism between the category
of split fibred institutions over I (with cartesian institution morphisms as arrows) and
the category of I-indexed institutions (with natural transformation between the indexing
functors as arrows).

Recall from Sect. 3.3 that an institution morphism (Φ,α,β) is an equivalence of
institutions when

• Φ is an equivalences of categories,

• αΣ has an inverse up to semantic equivalence α′Σ, which is natural in Σ, and

• βΣ is an equivalence of categories, such that its inverse up to isomorphism and the
corresponding isomorphism natural transformations are natural in Σ.

Because each fibred institution is equivalent to a split fibred institution, we have the
following corollary.

Corollary 12.8. Each fibred institution is equivalent to a Grothendieck institution.

Comorphism-based Grothendieck institutions

Grothendieck institutions can be constructed using comorphisms instead of morphisms.
As we will see below, comorphism-based Grothendieck institutions may be more friendly
towards some model theoretic properties than the morphism-based ones.

Given a category I of indices, an indexed comorphism-based institution , in short
called indexed co-institution, J is a functor J : Iop → coIns. (Recall that coIns is the
quasi-category having institutions as objects and institution comorphisms as arrows.) Its
Grothendieck institution J � is defined as follows:

1. its category of signatures is ((Sig;( )op)�)op where Sig : Iop → Cat is the indexed
category of signatures of the indexed co-institution J , ( )op : Cat → Cat is the
‘opposite’ functor, and (Sig;( )op)� is its Grothendieck category; this means that
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• signatures are pairs 〈i, Σ〉 for i ∈ |I| index and Σ ∈ |Sigi|, and
• signature morphisms are pairs 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉 where u ∈ I(i′, i) and

ϕ ∈ Sigi′(Φu(Σ),Σ′),
2. its model functor Mod� : (Sig;( )op)� → Cat is given by

• Mod�(〈i, Σ〉) = Modi(Σ) for each index i ∈ |I| and signature Σ ∈ |Sigi|, and
• Mod�(〈u, ϕ〉) = Modi′(ϕ);βu

Σ for each 〈u, ϕ〉 : 〈i′, Σ′〉 → 〈i, Σ〉,
3. its sentence functor Sen� : ((Sig;( )op)�)op → Set is given by

• Sen�(〈i, Σ〉) = Seni(Σ) for each index i ∈ |I| and signature Σ ∈ |Sigi|, and
• Sen�(〈u, ϕ〉) = αu

Σ;Seni′(ϕ) for each 〈u, ϕ〉 : 〈i′, Σ′〉 → 〈i, Σ〉,
4. M |=�

〈i,Σ〉 e if and only if M |=i
Σ e for each index i ∈ |I|, signature Σ ∈ |Sigi|, model

M ∈ |Mod�(〈i, Σ〉)|, and sentence e ∈ Sen�(〈i, Σ〉).
where J i = (Sigi,Modi,Seni, |=i) for each index i ∈ |I| and J u = (Φu,αu,βu) for u ∈ I
index morphism.

Routine calculations similar to those of Prop. 12.5 show that:

Proposition 12.9. The comorphism-based Grothendieck institution J � is indeed an insti-
tution, i.e., the satisfaction condition holds.

Adjoint-indexed institutions. These are indexed institutions J : Iop → Ins for which
all institution morphisms J u are adjoint morphisms for all index morphisms u ∈ I. An
adjoint-indexed institution J : Iop → Ins is coherent when for each composable pair of
index morphisms u : i→ i′ and u′ : i′ → i′′ the adjunction from Sigi to Sigi′′ correspond-
ing to u;u′ is the composition of the adjunctions corresponding to u, respectively u′.

For example the Set-indexed institution fol determined by the fibred institution FOL
is coherent adjoint-indexed. For each function u : S → S′, let Φu : SigS → SigS′ map
each S-sorted signature (F,P) to the S′-sorted signature (Fu,Pu) defined by Fu

w′→s′ =
�u(ws)=w′s′Fw→s and Pu

w′ = �u(w)=w′Pw for each string of sort symbols w ∈ S∗ and sort
symbol s ∈ S.

Fact 12.10. Φu is a left adjoint to the ‘forgetful’ functor Φu : SigS′ → SigS.

Adjoint-indexed co-institutions are defined similarly to adjoint-indexed institutions.
Notice that each adjoint-indexed institution J : Iop → Ins determines an adjoint-indexed
coinstitution J : (Iop)op → coIns such that

• for each index i ∈ I, J i = J i, and

• for each index morphism u, J u
is the comorphism adjoint to the morphism J u (as

given by Thm. 3.6).

Therefore the duality relation between institution morphisms and comorphisms deter-
mines a similar duality relation between adjoint-indexed institutions and adjoint-indexed
coinstitutions. For example, in the case of FOL, the Set-indexed institution fol determines
a Setop-indexed coinstitution fol.
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The concept of a Grothendieck institution is invariant with respect to the duality
between the concepts of institution morphism and institution comorphism:

Proposition 12.11. For each dual pair of an adjoint-indexed institution J and an adjoint-

indexed coinstitution J their Grothendieck institutions J � and J �
are isomorphic.

Proof. The isomorphism SigJ � ∼= SigJ �

maps each SigJ �
-signature morphism 〈u, ϕ〉 :

〈i, Σ〉 → 〈i′, Σ′〉 to the SigJ �

-signature morphism 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉 where ϕ : Σ→
Φu(Σ′), ϕ : Φu(Σ)→ Σ′ are such that ϕ = ζΣ;Φu(ϕ)

Σ
ζ ��

ϕ
LL6
66
66
6 Φu(Φu(Σ))

Φu(ϕ)DD..
..
..
.

Φu(Σ′)

with ζ being the unit of the adjunction between Sigi and Sigi′ .
The conclusion of the proposition follows by the commutativity of the diagram

Set SigJ �SenJ �

�� ModJ �

��

∼=
��

Catop

SigJ �
SenJ �

����������
ModJ �

��&&&&&&&&&

which is obtained by routine calculations. �
Therefore FOL can be also obtained as a Grothendieck institution in two different

ways: as the comorphism-based Grothendieck institution fol�, and as the morphism-based

Grothendieck institution fol
�
. In this case, the morphism-based Grothendieck construction

seems rather simpler and more natural than the comorphism-based one.

Exercises

12.1. (a) The satisfaction condition of institution morphisms is a special case of the satisfaction
condition of institutions. (Hint: For any institution morphism (Φ,α,β) consider the Grothendieck
institution determined by the indexed institution (• u→ •)→ Ins which maps u to (Φ,α,β).)
(b) The opposite also holds, the satisfaction condition of institutions is a special case of the satisfac-
tion condition of institution morphisms. (Hint: Each institution is a trivially split fibred institution
over its own category of signatures.)

12.2. (a) Let K be any 2-category and IK be the Grothendieck 2-category for the 2-functor
Cat((−)op,K) : Cat∗ → Cat mapping each category S to Cat(Sop,K), and each functor Φ to
(Φop;−) (which maps each I : Sop → K to Φop; I). Then the fibration ΠK : IK → Cat creates
Grothendieck constructions for each functor J : Iop → IK .
(b) Conclude that the 2-category of institutions Ins admits Grothendieck constructions with the
Grothendieck institutions as the Grothendieck objects of Ins. (Hint: Ins = IRoom.)
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12.3. The comorphism-based Grothendieck institutions are Grothendieck objects in the 2-category
of coIns of institution comorphisms.

12.2 Theory Co-limits and Model Amalgamation

In this section we study the lifting of a couple of important model theoretic properties
from the ‘local’ level of the indexed institutions to the ‘global’ level of the corresponding
Grothendieck institution.

Theory co-limits

Supporting co-limits. For any category J we say that an indexed co-institution
J : Iop → coIns supports J-co-limits when

• the index category I is J-complete, i.e., has J-limits,

• the indexed category of signatures Sig : Iop → Cat of J is locally J-co-complete,
i.e., Sigi has all J-co-limits for each index i ∈ |J|, and

• for each index morphism u, the comorphism J u preserves J-co-limits of signa-
tures (meaning that the corresponding sentence translation functors Φu preserve
pushouts).

Theorem 12.12. The category of theories ThJ �
of a comorphism-based Grothendieck

institution J � has J-co-limits if the indexed co-institution J supports J-co-limits.

Proof. By the fundamental result that in any institution the forgetful functor from the-
ories to signatures lifts co-limits (Prop. 4.2), we have only to show that the category of
signatures of the Grothendieck institution J � has J-co-limits. But the category of signa-
tures of J � is the opposite of the Grothendieck category (Sig;(−)op)�. The conclusion
of the theorem now follows immediately from the general result on existence of limits
in Grothendieck categories (Thm. 2.10). In the following we review the construction of
co-limits in SigJ �

, the category of signatures of the comorphism-based Grothendieck in-
stitution J �.

Let J be a small category and F : J → SigJ �
any functor. Let K = F ;Π where

Π : SigJ �
= ((Sig;(−)op)�)op → Iop is the projection mapping each 〈i, Σ〉 to i. Let us

write F( j) = 〈Kj, Σ j〉 for each index j ∈ |J| and F(u) = 〈Ku, ϕu〉 for each index morphism
u ∈ J.

Any co-cone ν : K ⇒ i determines a functor Fν : J → Sigi defined by Fν( j) =
Φν j (Σ j) for each index j ∈ |J| and by Fν(u) = Φν j′ (ϕu) for each index morphism u ∈
J( j, j′).
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For each u ∈ J( j, j′) and u′ ∈ J( j′, j′′), from F(u;u′) = F(u);F(u′) we have that

Φν j (Σ j)
Φ

ν j′′ (ϕu;u′ ) ��

Φ
ν j′ (ϕu) ���

��
��

��
�

Φν j′′ (Σ j′′)

Φν j′ (Σ j′)
Φ

ν j′′ (ϕu′ )

����������

which shows that Fν is indeed a functor.
The co-limit μ of F , μ : F ⇒〈i, Σ〉, is defined by μ j = 〈ν j, θ j〉 : F( j) = 〈Kj, Σ j〉→

〈i, Σ〉 where ν : F;Π = K ⇒ i is the co-limiting co-cone of F ;Π and θ : Fν ⇒ Σ is the
co-limiting co-cone of Fν.

Kj

Ku

��

ν j

(+�
��

��
��

�
Φν j (Σ j)

Φ
ν j′ (ϕu)

��

θ j

7:�
��

��
��

��
�

Kj′ ν j′
�� i Φν j′ (Σ j′) θ j′

�� Σ

For any other co-cone μ′ : F ⇒ 〈i′, Σ′〉, let μ′j = 〈ν′j, θ′j〉 for each index j ∈ |J|. Then
ν′ : K ⇒ i′ is a co-cone. Let v : i′ → i (in Iop) be the unique arrow such that ν′ = ν;v.

Because Φv preserves J-co-limits, θΦv is a co-limit for Fν;Φv. Note that Fν′ =
Fν;Φv. Since θ′ is a co-cone Fν′ ⇒ Σ′, let ϕ : Φv(Σ)→ Σ′ be the unique arrow such
that θΦv;ϕ = θ′. Then 〈v, ϕ〉 is the unique morphism of Grothendieck signatures 〈i, Σ〉→
〈i′, Σ′〉 such that μ;〈v, ϕ〉= μ′. �

Co-limits of FOL signatures. As an application let us check Thm. 12.12 on FOL
regarded as the Grothendieck institution fol� where fol : Setop → Ins is the coherent
adjoint-indexed institution determined by the sorting fibration for the FOL signatures.
Let fol : Set → coIns be its adjoint-indexed co-institution. fol supports small co-limits
because

• Set has all small co-limits (which means that the index category Setop has all small
limits),

• for any set S, the category SigS of the S-sorted signatures has small co-limits which
can be calculated ‘pointwise’ (i.e., separately for each arity) as small co-limits of
sets of operation or relation symbols, and

• for each function u : S→ S′, the functor Φu : SigS → SigS′ preserves all co-limits
since it is a left adjoint to Φu.

The reader may compare the argument above for the existence of co-limits of FOL signa-
tures to the proof of Prop. 4.3. The difference between them is that the proof of Prop. 4.3
is based upon co-limits in Grothendieck categories while the proof of Thm. 12.12 is based
upon limits in Grothendieck categories. One may wonder how it is possible that in this
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case co-limits in Grothendieck categories can be obtained by limits in Grothendieck cat-
egories, since in principle the former requires stronger hypotheses than the latter (i.e.,
existence of adjoints compared to preservation of limits; see Thm. 2.10). The answer
to this apparent paradox lies in the particularity of the example, since FOL appears as
a comorphism-based Grothendieck institution with the signature translation functors in
the indexed co-institution being left-adjoint functors. Hence the left-adjoint property still
exists in the background of this FOL framework.

Model amalgamation

Model amalgamation in a Grothendieck institution can be treated in a manner similar to
theory co-limits by reducing the problem to model amalgamation properties at the ‘local’
level of the component institutions and at the level of the indexed co-institution. We treat
here only the semi-exactness property. Its weak version can be handled in the same way.

Local semi-exactness. An indexed coinstitution J : Iop→ coIns is locally (semi-)exact
if and only if the institution J i is (semi-)exact for each index i ∈ I. The following shows
that this is a necessary condition for the semi-exactness of the Grothendieck institution.

Proposition 12.13. Let J : Iop → coIns be a co-institution which supports pushouts.
Then the semi-exactness of the Grothendieck institution J � implies the local semi-exact-
ness of the indexed co-institution J .

Proof. For each index i, the model functor Modi is the restriction Mod�(〈i,−〉) of the
model functor of the Grothendieck institution to Sigi regarded as a sub-category of
((Sig;(−)op)�)op (the category of signatures of the Grothendieck institution).

(Sigi)op ��

Modi
B)''

'''
'''

'''
(Sig;(−)op)�

Mod�

��
Cat

Because the comorphisms J u preserve the pushouts of signatures, by a simple calculation
we can establish that the canonical injection Sigi → ((Sig;(−)op)�)op preserves pushouts
too. Therefore we have that Modi preserves pullbacks as a composition of two preserving
pullback functors. �

Exactness of the institution comorphisms. Recall from Sect. 4.3 that an institution
comorphism (Φ,α,β) : I → I ′ is exact if for each I -signature morphism ϕ : Σ1 → Σ2

the naturality square

Mod(Σ1) Mod′(Φ(Σ1))
βΣ1��

Mod(Σ2)

Mod(ϕ)

��

Mod′(Φ(Σ2))βΣ2

��

Mod′(Φ(ϕ))

��

is a pullback.
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Proposition 12.14. If the Grothendieck institution of an indexed co-institution J which
supports pushouts is semi-exact, then each institution comorphism J u = (Φu,αu,βu) is
exact.

Proof. Consider an index morphism u : i′ → i and an arbitrary signature morphism ϕ : Σ1→
Σ2 in J i.

Then the square

〈i, Σ1〉
〈u,1Φ(Σ1)〉

��

〈1i,ϕ〉 �� 〈i, Σ2〉
〈u,1Φu(Σ2)〉
��

〈i′, Φu(Σ1)〉〈1i′ ,Φu(ϕ)〉
�� 〈i′, Φu(Σ2)〉

is a pushout in the category of signatures of the Grothendieck institution. Because the
Grothendieck institution is semi-exact, this pushout is mapped by the (Grothendieck)
model functor to a pullback square giving the exactness of the institution comorphism
J u. �

Semi-exactness of indexed co-institutions. An indexed co-institution J : Iop → coIns
is semi-exact if and only if for each pullback

i j1u1��

j2

u2

��

k

v1
��

v2
��

in I and each signature Σ in I i, the square

Modi(Σ) Mod j1(Φu1(Σ))
βu1

Σ��

Mod j2(Φu2(Σ))

βu2
Σ

��

Modk(Φvi(Φui(Σ)))

βv1
Φu1(Σ)

��

βv2
Φu2(Σ)

��

is a pullback.

Proposition 12.15. If the Grothendieck institution J � of an indexed co-institution
J : Iop → coIns which supports pushouts is semi-exact, then J is also semi-exact.

Proof. Consider 〈v1, v2〉 a pullback of 〈u1, u2〉 in the index category I. Note (by the
co-limit construction in Grothendieck categories) that the square
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〈i, Σ〉
〈u1,1Φu1(Σ)〉��

〈u2,1Φu2(Σ)〉
��

〈 j1, Φu1(Σ)〉
〈v1,1Φv1(Φu1(Σ))〉
��

〈 j2, Φu2(Σ)〉〈v2,1Φv2(Φu2(Σ))〉
�� 〈k, Φvi(Φui(Σ))〉

is a pushout in the category of signatures ((Sig;(−)op)�)op of the Grothendieck institution.
Because the Grothendieck institution is semi-exact, the Grothendieck model functor Mod�

maps this pushout square to a pullback square, which is precisely the square giving the
semi-exactness of the indexed coinstitution J . �

The sufficient theorem. We have seen that the semi-exactness, the local semi-exactness
of the indexed coinstitution, and the exactness of all its comorphisms are necessary condi-
tions for the semi-exactness of the corresponding Grothendieck institution. The following
establishes that these conditions are also sufficient.

Theorem 12.16. Let J : Iop → coIns be an indexed coinstitution which supports push-
outs. Then the Grothendieck institution J � is semi-exact if and only if

1. the indexed coinstitution J is locally semi-exact,

2. the indexed coinstitution J is semi-exact, and

3. all institution comorphisms are exact.

Proof. The ‘necessary’ part of this theorem holds by Propositions 12.13, 12.15, and
12.14.

For the ‘sufficient’ part, we consider an arbitrary pushout of signatures in the Groth-
endieck institution

〈i0, Σ0〉
〈u1,ϕ1〉 ��

〈u2,ϕ2〉
��

〈i1, Σ1〉
〈v1,θ1〉
��

〈i2, Σ2〉 〈v2,θ2〉
�� 〈i, Σ〉

By the construction of co-limits of signatures in comorphism-based Grothendieck insti-
tutions, given by Thm. 12.12, we have that

i0 i1
u1��

i2

u2

��

i
v2

��

v1

��

is a pullback in the index category I.
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The main idea behind this proof is that the given pushout square of signatures in the
Grothendieck institution can be expressed as the following composition of four pushout
squares:

〈i0, Σ0〉
〈u1,1Φu1(Σ0)〉 ��

〈u2,1Φu2(Σ0)〉
��

〈i1, Φu1(Σ0)〉
〈1i1 ,ϕ1〉 ��

〈v1,1Φv1(Φu1(Σ0))〉
��

〈i1, Σ1〉
〈v1,1Φv1(Σ1)〉
��

〈i2, Φu2(Σ0)〉〈v2,1Φv2(Φu2(Σ0))〉
��

〈1i2 ,ϕ2〉
��

〈i, Φvi(Φui(Σ0))〉〈1i,Φv1(ϕ1)〉
��

〈1i,Φv2(ϕ2)〉
��

〈i, Φv1(Σ1)〉
〈1i,θ1〉
��

〈i2, Σ2〉 〈v2,1Φv2(Σ2)〉
�� 〈i, Φv2(Σ2)〉 〈1i,θ2〉

�� 〈i, Σ〉

Then the Grothendieck model functor

• maps the up-left pushout square to a pullback square because the indexed co-insti-
tution is semi-exact,

• maps the down-right pushout square to a pullback square because the indexed insti-
tution is locally semi-exact, and

• maps the up-right and down-left pushout squares to pullback squares because the
institution comorphisms (Φv1,αv1,βv1) and (Φv2,αv2,βv2) are exact.

Therefore, the Grothendieck model functor maps the original pushout square of signatures
in the Grothendieck institution to a pullback square obtained as the composition of the
four pullback squares resulting from mapping the four component pushout squares. �

Exercises

12.4. Apply the model amalgamation Thm. 12.16 on the example of FOL as the comorphism-based

Grothendieck institution fol
�
.

12.5. The institution comorphism FOL→ FOEQL encoding relations as operations (see Sect. 3.3)
preserves pushouts of signatures although it is not an adjoint institution comorphism.

12.6. The Grothendieck institution determined by the forgeful institution morphism POA→ FOL
has small co-limits.

12.7. Give a counterexample showing that even if the index category I is J-co-complete, the
comorphism-based Grothendieck institution has J-co-limits of theories, and the institution comor-
phisms J u preserve J-co-limits, the indexed coinstitution J is not necessarily locally J-co-complete.

12.8. Let J : Iop → Ins be an adjoint-indexed (morphism-based) institution such that I is J-co-
complete for a small category J, and the indexed category of signatures Sig of J is locally J-co-
complete. Then the category of theories ThJ �

of the (morphism-based) Grothendieck institution J �

has J-co-limits.
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12.9. The Grothendieck institution determined by the forgetful institution morphism from POA
to FOL is not semi-exact due only to the failure of the exactness of the embedding institution
comorphism FOL→ POA.

12.10. [46, 44] Liberality in Grothendieck institutions
An indexed institution J : Iop → Ins is locally liberal if and only if the institution J i is liberal for
each index i ∈ I. The Grothendieck institution J � of an indexed institution J : Iop → Ins is liberal
if and only if J is liberal and each institution morphism J u is liberal for each index morphism u ∈ I.

12.11. [39] Grothendieck inclusion systems
The category IS of inclusion systems can be endowed with a 2-categorical structure in which the
2-cells are inclusion natural transformation (i.e., such that all their components are inclusions) be-
tween inclusive functors. An adjunction in IS is thus just an ordinary adjunction (in Cat) such that
all the components of the unit and of the counit of the adjunction are inclusions. An enriched in-
dexed inclusion system is a functor B : 〈I , E〉 → ISop from the opposite of the underlying category
of an inclusion system ‘of indices’ to the category of inclusions systems and inclusive functors.

An enriched indexed inclusion system is invertible when each inclusion system morphism Bu

has a IS-left-adjoint [−]u. It is E-invertible when the IS-left-adjoint to Bu exists for u ∈E (and not
necessarily for all index morphisms u).

For any E-invertible enriched indexed inclusion system B : 〈I , E〉→ ISop the Grothendieck
category B� of Bop;(IS→Cat) : 〈I , E〉op→Cat can be endowed with an inclusion system 〈I �, E �〉
such that 〈u, ϕ〉 : 〈 j, Σ〉 → 〈 j′, Σ′〉 is

• abstract inclusion iff both u and ϕ are abstract inclusions, and
• abstract surjection iff u is abstract surjection and Σ′ = [ϕ(Σ)]u.

Show that the strong inclusion systems of FOL-models and of theories (see Sect. 4.5) are instances
of this Grothendieck inclusion system construction. What about the strong inclusion system of the
FOL-signatures?

12.12. [39] For any invertible enriched indexed inclusion system B : 〈I , E〉 → ISop, the Grothen-
dieck inclusion system 〈I �, E �〉 (of Ex. 12.11) has unions if

• the inclusion system of indices 〈I , E〉 has unions, and
• for each index j the ‘local’ inclusion system B j = 〈I j, E j〉 has unions.

12.13. [39] In addition to the conditions of Ex. 12.11 if the inclusion system of the indices 〈I , E〉
is epic, B j = 〈I j, E j〉 is epic for each index j, and Bu are faithful for u ∈ E , then the inclusion
system 〈I �, E �〉 defined in Ex. 12.11 is epic too.

12.14. [39] For any pair of functors F,G : 〈I , E〉 → ISop (from the underlying category of an
inclusion system 〈I , E〉), a IS-lax natural transformation μ : F ⇒G is a lax natural transformation
such that

• for any object j of 〈I , E〉, the functor μ j : F( j)→ G( j) is inclusive, and
• for any u ∈ I , the natural transformation μu is abstract inclusion (for the inclusion system

of the corresponding functor category; see Ex. 4.50).

IS-lax co-cone and IS-lax colimits, respectively, are just lax co-cone and lax colimits, respectively,
which are IS-lax as natural transformations.

For any E-invertible IS-enriched indexed inclusion system B : 〈I , E〉 → ISop, the Grothen-
dieck inclusion system 〈I �, E �〉 defined by Ex. 12.11 is the IS-lax co-limit of B.
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12.15. [39] Closed inclusion systems on Grothendieck categories
For any indexed category B : 〈I , E〉→Catop (functor from the underlying category of an inclusion
system 〈I , E〉 to the opposite of Cat), its Grothendieck category B� admits an inclusion system such
that 〈u, ϕ〉 : 〈 j, Σ〉 → 〈 j′, Σ′〉

• is abstract inclusion if and only if u ∈ I and ϕ is identity, and

• is abstract surjection if and only if u ∈ E .

Show that the closed inclusion systems of FOL-signatures, of FOL-models, and of theories (see
Sect. 4.5) are instances of this general construction.

12.3 Interpolation

The interpolation problem for Grothendieck institutions is treated similarly to the model
amalgamation problem by isolating a set of three sufficient and necessary conditions.
These conditions are similar in flavor to those underlying the model amalgamation. We
need the following interpolation concept for indexed co-institutions.

Interpolation squares of institution comorphisms. A commuting square of institution
comorphisms

I
(Φ1,α1,β1)��

(Φ2,α2,β2)
��

I1

(Φ′1,α′1,β′1)
��

I2
(Φ′2,α′2,β′2)

�� I ′

is a Craig Interpolation square if for each I -signature Σ, for each set E1 of Φ1(Σ)-
sentences and for each set E2 of Φ2(Σ)-sentences, if (α′1)Φ1(Σ)(E1) |=′ (α′2)Φ2(Σ)(E2),
then there exists a set E of Σ-sentences such that E1 |=I1 (α1)Σ(E) and (α2)Σ(E) |=I2 E2.

Sen(Σ)
(α1)Σ ��

(α2)Σ
��

Sen1(Φ1(Σ))

(α′1)Φ1(Σ)

��
Sen2(Φ2(Σ))

(α′2)Φ2(Σ)

�� Sen′(Φ′k(Φk(Σ)))

Interpolation in Grothendieck institutions

The theorem below, giving a set of necessary and sufficient conditions for interpolation
in Grothendieck institutions, involves the concept of left/right interpolation for institution
comorphisms introduced in Sect. 9.5.



268 Chapter 12. Grothendieck Institutions

Theorem 12.17. Let J : Iop→ coIns be an indexed coinstitution which supports pushouts
such that

– there are fixed classes of index morphisms L,R ⊆ I containing all identities, and

– for each index i ∈ |I| there are fixed classes of signature morphisms L i,R i ⊆ Sigi

containing all identities,

such that

– L and R are stable under pullbacks,

– Φu(R i)⊆ R j for each index morphism u : j→ i in L , and

– Φu(L i)⊆ L j for each index morphism u : j→ i in R .

Let L�, and R �, be the classes of signature morphisms 〈u : j→ i, ϕ〉 of the Grothendieck
institution such that u ∈ L , respectively u ∈ R , and ϕ ∈ L j , respectively ϕ ∈ R j .

Then the Grothendieck institution J � has the Craig (L�,R �)-interpolation property
if and only if

1. for each index i the institution J i has the (L i,R i)-interpolation property,

2. each pullback square of index morphisms

L��

R

�� ��

��

determines a Craig interpolation square of institution comorphisms,

3. for each u : j→ i in L the institution comorphism J u = (Φu,αu,βu) has the Craig
R i-right interpolation property, and

4. for each u : j → i in R the institution comorphism J u has the Craig L i-left inter-
polation property.

Proof. For the ‘sufficient’ part, we consider an arbitrary pushout of signatures in the
Grothendieck institution

〈i0, Σ0〉
〈u1,ϕ1〉��

〈u2,ϕ2〉
��

〈i1, Σ1〉
〈v1,θ1〉
��

〈i2, Σ2〉 〈v2,θ2〉
�� 〈i, Σ〉

such that u1 ∈ L , ϕ1 ∈ L i1 , and u2 ∈ R , ϕ2 ∈ R i2 .
As in the proof of Thm. 12.16, by the construction of signature co-limits in co-

morphism-based Grothendieck institutions given by Thm. 12.12 we have that

i0 i1
u1��

i2

u2
��

i
v2
��

v1
��
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is a pullback in the index category I and that the original pushout square of signatures can
be expressed as the following composition of four pushout squares:

〈i0, Σ0〉
〈u1,1Φu1(Σ0)〉 ��

〈u2,1Φu2(Σ0)〉
��

〈i1, Φu1(Σ0)〉
〈1i1 ,ϕ1〉 ��

〈v1,1Φv1(Φu1(Σ0))〉
��

〈i1, Σ1〉
〈v1,1Φv1(Σ1)〉
��

〈i2, Φu2(Σ0)〉〈v2,1Φv2(Φu2(Σ0))〉
��

〈1i2 ,ϕ2〉
��

〈i, Φvi(Φui(Σ0))〉〈1i,Φv1(ϕ1)〉
��

〈1i,Φv2(ϕ2)〉
��

〈i, Φv1(Σ1)〉
〈1i,θ1〉
��

〈i2, Σ2〉 〈v2,1Φv2(Σ2)〉
�� 〈i, Φv2(Σ2)〉 〈1i,θ2〉

�� 〈i, Σ〉

Note that by the stability hypothesis we have that v1 ∈ R and v2 ∈ L . We have the fol-
lowing:

• The up-left pushout square is a CI square by applying the fact that the corresponding
square of institution comorphisms is a CI square and by considering the signature
Σ0.

• The down-right pushout square is a CI square because it is a CI square in the institu-
tion J i as a pushout square of a signature morphism in L i with a signature morphism
in R i. Here we have to notice that Φv1(ϕ1) ∈ L i because ϕ1 ∈ L i1 and v1 ∈ R , and
that Φv2(ϕ2) ∈ R i because ϕ2 ∈ R i2 and v2 ∈ L .

• The up-right pushout square is a CI square because ϕ1 ∈L i1 and v1∈R which allow
us to apply the assumption that (Φv1,αv1,βv1) has the Craig L i1 -left interpolation
property.

• The down-left pushout square is a CI square by an argument symmetrical to the
argument of the item above.

Therefore all four components of the big pushout square in the Grothendieck institution
are CI squares. By a simple calculation (see Ex. 9.1) we have that both the ‘horizontal’
and the ‘vertical’ compositions of CI squares get CI squares:

��

��

��

�� ��

��

�� ���� �� ��

�� ����

This completes the proof of the ‘sufficient’ part of the theorem.
For the ‘necessary’ part, we have only to notice the following:

• For each index i, by considering 1i as an index morphism, any Craig (L i,R i)-
interpolation square in J i is a Craig (L�,R �)-interpolation square in the Grothen-
dieck institution.
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• For 〈v1, v2〉 a pullback of 〈u1, u2〉 in the index category I, by the co-limit construc-
tion on signatures in Grothendieck institutions, for each signature Σ in |Sigi0 | the
square

〈i0, Σ〉
〈u1,1Φu1(Σ)〉��

〈u2,1Φu2(Σ)〉
��

〈i1, Φu1(Σ)〉
〈v1,1Φv1(Φu1(Σ))〉
��

〈i2, Φu2(Σ)〉〈v2,1Φv2(Φu2(Σ))〉
�� 〈i, Φvi(Φui(Σ))〉

is pushout in the category of signatures ((Sig;(−)op)�)op of the Grothendieck insti-
tution. Therefore, these are CI squares in the Grothendieck institution if and only if
the square of index morphisms determines a CI square of institution comorphisms.

• For each u : j→ i in L and each signature morphism ϕ : Σ1 → Σ2 in R i, the square
below

〈i, Σ1〉
〈1i,ϕ〉

��

〈u,1Φu(Σ1)〉�� 〈 j, Φu(Σ1)〉
〈1 j ,Φu(ϕ)〉
��

〈i, Σ2〉 〈u,1Φu(Σ2)〉
�� 〈 j, Φu(Σ2)〉

is a pushout in the category of signatures of the Grothendieck institution. More-
over, these squares are CI squares if and only if (Φu,αu,βu) has the Craig R i-right
interpolation property.

• By replacing L by R , R i by L i, and ‘right’ by ‘left’ in the argument above, we can
deduce its symmetrical conclusion.

�

Craig-Robinson interpolation by Grothendieck interpolation

We have seen (Prop. 9.20) that Craig-Robinson interpolation can be obtained from Craig
interpolation when the institution has implications and it is quasi-compact (i.e., it is com-
pact or has infinite conjunctions). The requirement on implications does not allow lifting
Craig interpolation to Craig-Robinson interpolation by Prop. 9.20 in institutions such as
EQL or HCL. However the Grothendieck interpolation Thm. 12.17 can be used to avoid
the existence of implications, as shown by the following Craig-Robinson interpolation
theorem.

Theorem 12.18. Consider a conservative institution comorphism (Φ,α,β) : I → I ′ and
classes L i,R i of signature morphisms in I such that

1. I and I ′ have pushouts of signatures and Φ preserves pushouts,

2. the institution comorphism (Φ,α,β) has Craig L i-left interpolation,
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3. I ′ has implications and it is quasi-compact, and

4. I ′ has Craig (Φ(L i),Φ(R i))-interpolation.

Then the institution I has Craig-Robinson (L i,R i)-interpolation.

Proof. The key to the proof of this theorem is that the Grothendieck institution deter-
mined by the comorphism (Φ,α,β) has Craig interpolation for pushout squares of the
form

〈I , Σ〉 〈1I ,ϕ1〉 ��

〈u,Φ(ϕ2)〉
��

〈I , Σ1〉
〈u,Φ(θ1)〉
��

〈I ′, Φ(Σ2)〉〈1I ′ ,Φ(θ2)〉
�� 〈I ′, Φ(Σ′)〉

where

Σ
ϕ1 ��

ϕ2

��

Σ1

θ1

��
Σ2 θ2

�� Σ′

is a pushout of signature morphisms in I with ϕ1 ∈ L i and ϕ2 ∈Ri.
For this we first note that according to the construction from the proof of Thm. 12.12

the considered square of Grothendieck signature morphisms is indeed a pushout square.
Then we apply the Grothendieck interpolation Thm. 12.17 as follows:

• We take the category of indices to consist of two objects i and i′ and one non-identity
arrow u, the class of ‘left’ index arrows (denoted by L in Thm. 12.17) as {1i,1i′ }
and the class of ‘right’ index arrows (denoted by R in Thm. 12.17) as {1i,1i′ ,u}.

• We take L i′ = Φ(L i) and R i′ = Φ(R i).

• I ′ has Craig (L i′ ,R i′)-interpolation by hypothesis and I has Craig (L i,R i)-interpo-
lation by the borrowing Prop. 9.30 by using the hypothesis that (Φ,α,β) has Craig
L i-left interpolation.

• The conditions on interpolation squares of institution comorphisms and on the right
interpolation property for the comorphism are trivially fulfilled, while the condition
on the left interpolation property for the comorphism is directly fulfilled by the
hypothesis that (Φ,α,β) has Craig L i-left interpolation.

By the conclusion of the Grothendieck interpolation Thm. 12.17 we obtain that the desired
square of signature morphisms in the Grothendieck institution is indeed a CI square.

Now we proceed with the proof of the Craig-Robinson interpolation property for I .
Consider a pushout square of signature morphisms in I as in the second diagram above
and E1 ⊆ Sen(Σ1) and E2,Γ2 ∈ Sen(Σ2) such that θ1(E1)∪ θ2(Γ2) |= θ2(E2). We have
to find an interpolant E ⊆ Sen(Σ) such that E1 |= ϕ1(E) and ϕ2(E)∪Γ2 |= E2. As in the
proof of Prop. 9.20 we may assume without loss of generality that E2 is a singleton, i.e.,
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consists of only one sentence (otherwise we take E to be the union of all interpolants
obtained for the individual sentences).

The original problem θ1(E1)∪θ2(Γ2) |= θ2(E2) translates to

αΣ′(θ1(E1))∪αΣ′(θ2(Γ2)) |=′ αΣ′(θ2(E2)).

By the naturality of α this is the same with

Φ(θ1)(αΣ1(E1))∪Φ(θ2)(αΣ2 (Γ2)) |=′ Φ(θ2)(αΣ2(E2)).

Because of the assumption that E2 = {e} is singleton and by compactness or by the ex-
istence of infinite conjunctions we may also assume that E1 and Γ2 are finite. Because I ′
has implications, let αΣ2(Γ2)⇒ αΣ2(E2) denote the Φ(Σ2)-sentence γ1 ⇒ (. . .⇒ (γn ⇒
αΣ2(e))) where αΣ2(Γ2) = {γ1, . . . ,γn}. Then we have that

Φ(θ1)(αΣ1(E1)) |=′ Φ(θ2)(αΣ2(Γ2)⇒ αΣ2(E2))

which is a Grothendieck interpolation problem for the above mentioned pushout square
of signature morphisms in the Grothendieck institution

〈u, Φ(θ1)〉(E1) |=� 〈1i′ , Φ(θ2)〉(αΣ2(Γ2)⇒ αΣ2(E2)).

Since this pushout square is a CI square, let E be the interpolant. This means we have that

E1 |=� 〈1i, ϕ1〉(E) and 〈u, Φ(ϕ2)〉(E) |=� αΣ2(Γ2)⇒ αΣ2(E2).

We show that E is also an interpolant for the original Craig-Robinson interpolation prob-
lem. Note that E1 |= ϕ1(E) is just E1 |=� 〈1i, ϕ1〉(E). We still have to show that ϕ2(E)∪
Γ2 |= E2.

Let M2 be a model for ϕ2(E)∪ Γ2. Because the institution comorphism is con-
servative, let M′

2 be a Φ(Σ2)-model such that βΣ2(M
′
2) = M2. By the satisfaction con-

dition for the institution comorphism we have that M′
2 |=′ αΣ2(ϕ2(E)) ∪αΣ2(Γ2). But

〈u, Φ(ϕ2)〉(E) |=� αΣ2(Γ2) ⇒ αΣ2(E2) means Φ(ϕ2)(αΣ2(E)) = αΣ2(ϕ2(E)) |=′
αΣ2(Γ2)⇒ αΣ2(E2). From this we deduce that M′

2 |=′ αΣ2(E2) and by the satisfaction
condition for the institution comorphism we obtain that M2 |= E2. �

Applications of Thm. 12.18 are related to the applications of the left interpolation
Prop. 9.26. For example by considering comorphisms I → FOL, the table of Cor. 9.27
can be also read as a table of Craig-Robinson interpolation properties as in the following.

Corollary 12.19. The following institutions have Craig-Robinson (L,R )-interpolation.

institution L R
EQL ie ∗∗

universal FOL-atoms iei ∗ ∗ ∗
HCL ie∗ ∗ ∗ ∗

UNIV ie∗ ∗ ∗ ∗
∀∨ ie∗ ∗ ∗ ∗
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One immediate consequence of the new Craig-Robinson interpolation properties
given by Cor. 12.19 is that some of the definability results obtained as instances of the
definability by axiomatizability Thm. 10.8 and given in Cor. 10.10 can also be obtained
as instances of the definability by interpolation Thm. 10.5.

Exercises

12.16. For each pushout of sets (as in the left diagram below) its corresponding square of institution
comorphisms (the right diagram below)

S
u1 ��

u2
��

S1

v1
��

FOLS fol
u1

��

fol
u2

��

FOLS1

fol
v1

��
S2

v2
�� S′ FOLS2

fol
v2
�� FOLS′

is a CI square when either u1 or u2 is injective.

Notes. The theory of (morphism-based) Grothendieck institutions developed by [46] was preceded
by ‘extra’ theory morphisms across institution morphisms of [44] with the motivation to provide se-
mantics for heterogeneous multi-logic specification with CafeOBJ [57]. Grothendieck institutions
provide a homogeneous semantics for heterogeneous multi-logic environments. Comorphism-based
Grothendieck institutions were defined in [132] by dualization of the morphism-based Grothendieck
institutions and have been extensively used as foundations for heterogeneous specification with
CASL extensions [135]. Heterogeneity of the institution mappings involved was also considered in
[134] by a “Bi-Grothendieck” construction for an indexed structure of both institution morphisms
and comorphisms. The paper [46] shows that Grothendieck institutions are just a special case of the
more general concept of Grothendieck construction in an arbitrary 2-category. Cor. 12.8 extends
Bénabou’s result [15] to fibred institutions.

‘Globalisation’ results for Grothendieck institutions have been obtained in [46] for theory
co-limits, liberality, model amalgamation, and signature inclusions by following the same pattern
of lifting each of these properties from the ‘local’ level of the indexed institution to the ‘global’
level of the Grothendieck institution. Although the ‘globalisation’ results can be immediately trans-
lated into the language of fibred institutions, the framework of indexed institutions seems to be the
most appropriate for applications and for the presentations and development of these results. In
the case of theory co-limits and liberality, the sufficient part of the globalisation results was first
obtained in [44]. This paper had conjectured an ‘if and only if’ characterization of model amalga-
mation for extra theory morphisms, and [46] solved it. Later on [132] showed that comorphism-
based Grothendieck institutions interact in a simpler way with exactness. The general interpolation
problem in Grothendieck institutions was solved in [51].



Chapter 13

Institutions with Proofs

The already familiar semantic consequence relation E |= E ′ between sets of sentences
constitutes the semantic way to establish truth because it involves the models and the sat-
isfaction relation between models and sentences. The syntactic approach to truth consists
of establishing consequence relations, called proofs, between sets of sentences involving
only syntactic entities. Therefore this approach is beyond models and satisfaction relation
between models and sentences. The syntactic approach to truth, called ‘proof theory’, is
in many ways complementary to model theory. However the relationship between model
theory and proof theory is crucial for any logical system. For example the correctness of
a proof theory can be established only in the presence of a model theory.

Proof systems. So what is a proof? It is a one-way move from a set E to a set E ′ of
sentences, called E proves from E ′, and meaning that E ′ is established ‘true’ on the basis
of E being established ‘true’. And there can be several different ways to prove E ′ from E .

Therefore proofs can be conveniently represented as labeled arrows E
p ��E ′ . Proofs

between sets of sentences have two natural compositionality properties:

• an associative horizontal one, meaning that proofs E
p ��E ′ and E ′

p′ ��E ′′ de-

termine a proof E
p;p′ ��E ′′ , and

• a vertical one meaning that assuming that E1∩E2 = /0, any proofs E
p1 ��E1 and

E
p2 ��E2 determine a proof E

〈p1, p2〉��E1∪E2

E1 E1∪E2�� �� E2

E

p1

MM��������� p2

JJ���������
〈p1, p2〉

��
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such that each pi can be ‘extracted’ from 〈p1, p2〉 by horizontal composition with a
canonical monotonicity proof E1∪E2 ��Ei .

Thus horizontal composition gives proofs the structure of a category, whose objects are
the sets of sentences of a fixed signature Σ. Let us denote this category by Pf(Σ). The
vertical composition just says that Pf(Σ) has finite products of disjoint sets of sentences.

It is also natural to assume that any signature morphism ϕ : Σ→ Σ′ gives a transla-
tion from Pf(Σ) to Pf(Σ′) which extends the translation of the sentences to proofs in such
a way that the horizontal composition is preserved. The latter property means we have
a functor Pf(ϕ) : Pf(Σ)→ Pf(Σ′). Moreover, for any signature morphisms ϕ : Σ→ Σ′
and ϕ′ : Σ′ → Σ′′, Pf should preserve their composition. All these are collected by the
following proof theoretic counterpart for the concept of institution.

A proof system (Sig,Sen,Pf) consists of

• a category of ‘signatures’ Sig,

• a ‘sentence functor’ Sen : Sig→ Set, and

• a ‘proof functor’ Pf : Sig → Cat (giving for each signature Σ the category of the
Σ-proofs)

such that

1. Sen;P ;(−)op is a sub-functor of Pf, and

2. the inclusion P (Sen(Σ))op ↪→ Pf(Σ) is broad and preserves finite products of dis-
joint sets (of sentences) for each signature Σ, where P : Set → Cat is the (Cat-
valued) power-set functor.

Pf(Σ)
Pf(ϕ) �� Pf(Σ′)

P (Sen(Σ))op
P (Sen(ϕ))op

��
��

��

P (Sen(Σ′))op
��

��

Note that the inclusion P (Sen(Σ))op ↪→ Pf(Σ) is broad means that Pf(Σ) has subsets
of Sen(Σ) as objects, that preservation of products implies that there are distinguished
monotonicity proofs ⊇Γ,E : Γ → E whenever E ⊆ Γ which are preserved by signature
morphisms, i.e., ϕ(⊇Γ,E) =⊇ϕ(Γ),ϕ(E), and that proofs Γ→ E1�E2 are in one-one natural
correspondence with pairs of proofs 〈Γ→ E1, Γ→ E2〉.

Within the context of proof systems, in order to simplify notation, singleton sets
{ρ} may be sometimes denoted just by their element ρ.

Infinitary proof systems. When we allow infinite products of disjoint sets, i.e., infinite
vertical compositions of proofs, we call the proof system infinitary. Unless specified as
infinitary, our proof systems are considered by default finitary.
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Entailment systems. Thin proof systems, i.e., such that Pf(Σ) are preorders, are called
entailment systems. The preorder Pf(Σ) is then called an entailment relation while its
proofs are called entailments. Thus entailment systems can only tell that a certain set
of sentences E is provable from another set of sentences Γ, without the possibility to
distinguish between different sets of sentences.

Each proof system can be ‘flattened’ canonically to an entailment system given by
the preorder Γ % E on the sets of sentences defined by “there exists at least one proof”
from Γ to E , which can also be read as ‘Γ entails E’.

An important technical simplification which arises as a consequence of the fact that
there exists at most one entailment between any sets of sentences is the fact that the
vertical composition of entailments becomes total rather than partial.

Fact 13.1. In any entailment system, for any signature Σ and sets E, E1, E2 of Σ-
sentences,

E % E1 and E % E2 implies E % E1∪E2.

The semantic entailment system. In any institution, the semantic consequence relation
between sets of sentences gives an example of an infinitary entailment system, which is
called the semantic proof system or the semantic entailment system of the institution. This
shows that proof systems are more abstract than institutions.

Summary of the chapter. In practice, proof systems are usually presented by ‘systems
of rules’, which means that in fact they are ‘freely generated’ by these systems of rules.
We introduce the concept of system of (proof) rules and develop an adjunction between
these and proof systems, which gives the free proof systems mentioned above. We show
that if all rules are finitary, then the resulting free proof system is compact.

In another section we approach internal logic concepts such as Boolean connectives
and quantifiers from a proof theoretic perspective. We show that quantifiers can be added
‘freely’ to any proof system, which corresponds to the (meta-)rule of ‘Generalization’ of
conventional concrete logic. This process preserves the compactness.

The next section discusses entailment and presents a general construction of a model
theory on top of any proof system. The resulting institution comes equipped with a canon-
ical system of elementary diagrams, yielding a good argument for the naturalness of the
concept of elementary diagram.

Institutions and proof systems can be combined into the concept of ‘institution with
proofs’ which constitutes a meta-theory for logical systems capturing both the model
and the proof theoretic sides of logics. In this framework we develop a general soundness
result for institutions with free proof systems, and a general Birkhoff proof theory together
with a corresponding completeness result, which is applicable to general Horn institutions
but quite surprisingly also to other types of ‘universal’ calculi. The general methodology
used for Birkhoff completeness involves a ‘layered’ approach in which the proof calculus
and the completeness results are developed according to the layered syntactical structure
of the institution. This layered approach will be used in Sect. 14.2 to develop a general
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completeness result for structured specifications. It can also be used to develop other
completeness results at a general institution-independent level.

13.1 Free Proof Systems

Systems of proof rules

The PL example. Readers familiar with conventional logic will recognize the following
set of proof rules as the proof system of propositional logic PL.

(P1) /0 % ρ1 ⇒ (ρ2 ⇒ ρ1)
(P2) /0 % (ρ1 ⇒ (ρ2 ⇒ ρ3))⇒ ((ρ1 ⇒ ρ2)⇒ (ρ1 ⇒ ρ3))
(P3) /0 % (¬ρ1 ⇒¬ρ2)⇒ (ρ2 ⇒ ρ1)
(P4) /0 % (ρ1 ⇒ ρ2)⇒ (¬ρ2 ⇒¬ρ1)
(MP) {ρ1,ρ1 ⇒ ρ2} % ρ2

This is a rather typical case of presentations of proof systems as a set of rules of the
form E % E ′. These rules are the primitive proofs from which all proofs are generated by
closure under the horizontal and vertical compositions of proofs. In general, this process
can be explained as an adjunction between proof systems and ‘systems of rules’.

Systems of rules. The following defines the general concept of system of rules. A sys-
tem of (proof) rules (Sig,Sen,Rl,h,c) consists of

• a category of ‘signatures’ Sig,

• a ‘sentence functor’ Sen : Sig→ Set,

• a ‘(proof) rule functor’ Rl : Sig→ Set, and

• two natural transformations h,c : Rl⇒ Sen;P , where P : Set → Set is the Set-
valued power-set functor.

Therefore, for each signature Σ, Rl(Σ) gives the set of the Σ-proof rules, hΣ : Rl(Σ)→
P (Sen(Σ)) gives the hypotheses of the rules, and cΣ : Rl(Σ) → P (Sen(Σ)) gives the

conclusions. A Σ-rule r can be therefore written as hΣ(r) r ��cΣ(r) . The functoriality of
Rl and the naturality of the hypotheses h and of the conclusions c, say that the translation
of rules along signature morphisms is coherent with the translation of the sentences.

Sometimes, systems of rules may be defined as signature indexed families
{rl(Σ)}Σ∈|Sig| with rl(Σ) ⊆ P (Sen(Σ))× P (Sen(Σ)). Notice that this can be extended
canonically to a proper system of rules by adding freely the translations of the rules by
the signature morphisms.

Proof-theoretic morphisms and comorphisms

We can easily notice that each proof system can be seen as a system of rules by regard-
ing each proof as a rule (the hypotheses being given by the domain of the proof, and the
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conclusions by the codomain). Forgetting from proof systems to systems of rules can be
understood as a forgetful functor from the category of proof systems to the category of
rule systems provided we organize proof systems and systems of rules as categories. For
this we need to define mappings between proof systems, and systems of rules, respec-
tively. This can be done naturally in the style we have previously defined morphisms and
comorphisms for institutions.

Morphisms and comorphisms of proof systems. Let us consider first the case of
comorphisms. A proof system comorphism between proof systems (Sig,Sen,Pf) and
(Sig′,Sen′,Pf ′) consists of

• a ‘signature’ functor Φ : Sig→ Sig′,

• a ‘sentence translation’ natural transformation α : Sen⇒Φ;Sen′, and

• a ‘proof translation’ natural transformation γ : Pf ⇒Φ;Pf ′ such that translation of
sets of sentences is compatible with translation of single sentences:

Pf(Σ)
γΣ �� Pf ′(Φ(Σ))

Sen(Σ) αΣ
��

��

��

Sen′(Φ(Σ))
��

��

Proof systems morphisms are defined by analogy with institution morphisms by
reversing the direction of the signature mapping (in the definition of the proof system
comorphisms). Let P f Sys denote the category of proof system morphisms, and coP f Sys
denote the category of proof system comorphisms.

Morphisms and comorphisms of systems of rules. A comorphism of systems of
(proof) rules between systems of rules (Sig,Sen,Rl,h,c) and (Sig′,Sen′,Rl′,h′,c′) con-
sists of

• a ‘signature’ functor Φ : Sig→ Sig′,

• a ‘sentence translation’ natural transformation α : Sen⇒Φ;Sen′,

• a ‘rule translation’ natural transformation γ : Rl⇒Φ;Rl′ which is compatible with
the hypotheses and the conclusions, i.e., the diagram below commutes:

Rl
γ NN

h c
��

Φ;Rl′

h′ c′
��

Sen;P α
NN Φ;Sen′;P
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Morphisms of systems of rules are defined similarly by reversing the direction of the
signature mapping. Let RlSys denote the category of proof rule system morphisms, and
coRlSys denote the category of proof rule system comorphisms.

Fact 13.2. There exist forgetful functors P f Sys→ RlSys and coP f Sys→ coRlSys map-
ping each proof system (Sig,Sen,Pf) to the system of rules (Sig,Sen,Pf,dom,cod) (i.e.,
the hypothesis of a Σ-proof is its domain and the conclusion is its codomain).

Free proof systems

The free proof system construction is left adjoint to the forgetful functor coP f Sys →
coRlSys when working with comorphisms, and right adjoint to P f Sys → RlSys when
working with morphisms.

Theorem 13.3. Each system of proof rules such that its sentence translations are injective
generates freely a proof system.

Proof. Let (Sig,Sen,Rl,h,c) be a system of proof rules such that Sen(ϕ) is injective for
each signature morphism ϕ∈ Sig. We fix a signature Σ∈ |Sig| and define the single-sorted
PA signature consisting of the following:

– total constants, all sets of sentences E ⊆ Sen(Σ), all sets of sentences inclusions
E ⊇ E ′, and all elements of Rl(Σ),

– unary total operation symbols, h and c, and

– binary partial operation symbols, ; and 〈 , 〉.

Let E
p−→ Γ abbreviate (h(p) e= E)∧ (c(p) e= Γ).

We consider the initial partial algebra PT Σ of the following set of quasi-existence
equations:

(RΣ) hΣ(r) r−→ cΣ(r)
for all r ∈ Rl(Σ)

(SΣ) E
E−→ E

for all E ⊆ Sen(Σ)
(M1Σ) (E ⊇ E) e= E

for all E ⊆ Sen(Σ)

(M2Σ) E
E⊇E ′−→ E ′

for all E ′ ⊆ E ⊆ Sen(Σ)
(M3Σ) (E ⊇ E ′);(E ′ ⊇ E ′′) e= (E ⊇ E ′′)

for all E ′′ ⊆ E ′ ⊆ E ⊆ Sen(Σ)

(C1Σ) (∀p, p′)(E p−→ E ′)∧ (E ′ p′−→ E ′′)⇒ (E
p;p′−→ E ′′)

for all E,E ′,E ′′ ⊆ Sen(Σ)
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(C2Σ) (∀p, p′, p′′)(E p−→ E ′)∧ (E ′ p′−→ E ′′)∧ (E ′′ p′′−→ E ′′′)⇒ p;(p′; p′′) e= (p; p′); p′′
for all E,E ′,E ′′,E ′′′ ⊆ Sen(Σ)

(C3Σ) (∀p)E
p−→ E ′ ⇒ (E; p

e= p)∧ (p;E ′ e= p)
for all E,E ′ ⊆ Sen(Σ)

(P1Σ) (∀p, p′)(E p−→ Γ)∧ (E
p′−→ Γ′)⇒

⇒ (E
〈p, p′〉−→ Γ∪Γ′)∧ (〈p, p′〉;(Γ∪Γ′ ⊇ Γ) e= p)∧ (〈p, p′〉;(Γ∪Γ′ ⊇ Γ′) e= p′)

for all E,Γ,Γ′ ⊆ Sen(Σ) with Γ∩Γ′ = /0

(P2Σ) (∀p, p′)(E p−→ Γ∪Γ′)∧ (E
p′−→ Γ∪Γ′)∧

∧(p;(Γ∪Γ′ ⊇ Γ) e= p′;(Γ∪Γ′ ⊇ Γ))∧ (p;(Γ∪Γ′ ⊇ Γ′) e= p′;(Γ∪Γ′ ⊇ Γ′))⇒
p

e= p′for all E,Γ,Γ′ ⊆ Sen(Σ) with Γ∩Γ′ = /0

The category Pf(Σ) of the Σ-proofs is defined by |Pf(Σ)| = P (Sen(Σ)) and
Pf(Σ)(Γ,E) = {p∈PT Σ |PT Σ

h (p) = Γ,PT Σ
c (p) = E}. The composition of proofs is given

by p; p′ = p(PT Σ
; )p′ and the monotonicity proofs ⊇Γ,E : Γ→ E are defined as PT Σ

Γ⊇E .
Notice also that (PT Σ)E = E . By the last equations above, P (Sen(Σ))op ↪→ Pf(Σ) pre-
serves products as each Γ⊇ E gets mapped to ⊇Γ,E .

Any signature morphism ϕ : Σ → Σ′ induces a morphism ϕ between the theories
corresponding to Σ and Σ′. Notice that ϕ maps P1Σ to P1Σ′ and P2Σ to P2Σ′ because
Sen(ϕ) is injective. Then we define the functor Pf(ϕ) as the unique partial algebra ho-
momorphism PT Σ → PT Σ′�ϕ. We have therefore defined a proof system (Sig,Sen,Pf),
which we will show that it is the free proof system over (Sig,Sen,Rl,h,c).

For each signature Σ, let ηΣ : Rl(Σ) → Pf(Σ) map any Σ-rule to its congruence
class. We show that the comorphism

(1Sig,1Sen,η) : (Sig,Sen,Rl,h,c)→ (Sig,Sen,Pf,dom,cod)

is universal.

(Sig,Sen,Rl,h,c)
(1Sig,1Sen,η)

��

(Φ,α,γ) %&��
��

��
��

�
(Sig,Sen,Pf,dom,cod)

(Φ,α,γ′)OO777
777

777
77

(Sig′,Sen′,Pf ′,dom,cod)

For each comorphism (Φ,α,γ) : (Sig,Sen,Rl,h,c) → (Sig′,Sen′,Pf ′,dom,cod), each
signature Σ ∈ |Sig| determines a partial algebra A of the theory of quasi-existence equa-
tions defining PT Σ by letting its carrier be Pf ′(Φ(Σ)), AE = αΣ(E) for each set E of
Σ-sentences, Ar = γΣ(r) for each Σ-rule r, Ah, Ac, and A ; respectively, are the canon-
ical extensions of domΦ(Σ), codΦ(Σ), and of the composition in Pf ′(Φ(Σ)) respectively.
Finally, by the universal property of products, we define A〈 , 〉(p1, p2) to be the unique
proof q such that q;(cod(p1)∪ cod(p2)⊇ cod(pi)) = pi.

Then γ′Σ : Pf(Σ) → Pf ′(Φ(Σ)) is given by the unique algebra homomorphism
PT Σ → A. �
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For the actual systems of rules, the injectivity of the sentence translations comes
as a consequence of the injectivity of the signature morphisms. For example this can be
noticed easily in the case of FOL. Therefore, we cannot have a proof system for FOL
freely generated from the rules unless we consider its sub-institution determined by all
injective signature morphisms.

Free infinitary proof systems can be obtained by an infinitary version of Thm. 13.3.
This requires an extension of partial algebras with infinitary operations for dealing with
the infinitary vertical compositions of proofs.

Free entailment systems. Thm. 13.3 and its proof can be downgraded to a theorem on
existence of free entailment systems. Of course this requires downgrading also the system
of proof rules to a concept of system of entailment rules consisting for each signature
Σ of a binary relation %Σ⊆ P (Sen(Σ))× P (Sen(Σ)) between sets of Σ-sentences such
that for any signature morphism ϕ : Σ → Σ′, if E %Σ E ′ then ϕ(E) %Σ′ ϕ(E ′). In that
situation the condition of the injectivity of the sentence translation is not needed because
this is used only for translations of families of equations (P1Σ) and (P2Σ) which in the
simplified setting of entailment systems may be replaced by just one family of equations
(E % Γ)∧ (E % Γ′)⇒ (E % Γ∪Γ′) for all E,Γ,Γ′ ⊆ Sen(Σ) (thus without the condition
Γ∩Γ′ = /0). Hence we can formulate the following:

Corollary 13.4. Each system of entailment rules generates freely an entailment system.

Soundness of institutions with free proof systems

Institutions with proofs. Institutions can be enhanced with proof systems as follows.
An institution with proofs is a tuple (Sig,Sen,Mod, |=,Pf) such that

• (Sig,Sen,Mod, |=) is an institution, and

• (Sig,Sen,Pf) is a proof system.

The fundamental coherence relationship between the model theory and the proof theory
of any institution with proofs is that of soundness. An institution with proofs is sound
when for each proof E → E ′ we have that E |= E ′.

Institutions with (proof) rules. An institution with proof rules (Sig,Sen,Mod, |=,Rl,
h,c) combines an institution (Sig,Sen,Mod, |=) with a system of rules (Sig,Sen,Rl,h,c).
Likewise for institutions with proofs, an institution with rules is sound when for each rule
r ∈ Rl(Σ), hΣ(r) |= cΣ(r).

The result below shows that the free construction of proof systems from systems of
rules preserves soundness and explains the actual practice of establishing soundness of
institutions with proofs that consist only of checking the soundness of the rules.

Proposition 13.5. The institution with proofs (Sig,Sen,Mod, |=,Pf) such that the proof
system (Sig,Sen,Pf) is freely generated by a system of rules (Sig,Sen,Rl,h,c) is sound
whenever the institution with rules (Sig,Sen,Mod, |=,Rl,h,c) is sound.
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Proof. Because (Sig,Sen,Mod,Rl,h,c) is sound we consider the canonical comorphism
of systems of proof rules (1Sig,1Sen,γ) : (Sig,Sen,Rl,h,c)→ (Sig,Sen, |=,dom,cod) to

the institution with semantic proofs that maps any rule E
r ��E ′ to the semantic proof

E |= E ′.

(Sig,Sen,Rl,h,c)
(1Sig,1Sen,η)

��

(1Sig,1Sen,γ) ��$
$$

$$
$$

$$
(Sig,Sen,Pf)

(1Sig,1Sen,γ′)

��
��
��
��

(Sig,Sen, |=)

By the universal property of the free proof system (Sig,Sen,Pf), (1Sig,1Sen,γ) can be ex-
tended to a comorphism of proof systems (1Sig,1Sen,γ′) : (Sig,Sen,Pf) → (Sig,
Sen, |=). But the existence of a comorphism (1Sig,1Sen,γ′) : (Sig,Sen,Pf)→ (Sig,Sen,
|=) is equivalent to the soundness of (Sig,Sen,Mod, |=,Pf). �

Completeness. This is the opposite property to soundness. Informally, it says that for
each semantic deduction there exists at least one (syntactic) proof. Usually it is much
more difficult to establish completeness properties than soundness properties.

An institution with proofs (Sig,Sen,Mod, |=,Pf) is complete when

E |=Σ Γ implies E %Σ Γ

for all sets E,Γ⊆ Sen(Σ) with Γ finite. An institution with proof rules is complete if and
only if the corresponding institution with proofs freely generated by the system of proof
rules is complete.

Exercises

13.1. Define P f Sys, RlSys, coP f Sys and coRlSys as Grothendieck categories in the style of Fact
3.8. Consequently, establish the completeness properties for coP f Sys and coRlSys.

13.2. The category P f Ins of institutions with proofs is the pullback of the category Ins of institu-
tions and the category P f Sys of proof systems over the Grothendieck category Cat((−)op,Setop)�

of the functor Cat((−)op,Setop) : Catop → Cat.

Ins �� Cat((−)op,Setop)�

P f Ins

��

�� P f Sys

��

13.3. The category P f Ins of institutions with proofs admits Grothendieck objects. This gives the
construction for Grothendieck institutions with proofs; describe them directly.

13.4. The rules (P1−4) and (MP) which generate the proof system of PL are sound in any insti-
tution with semantic implications and negations.
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13.2 Compactness

The proof theoretic concept of compactness is significantly more refined than its model
theoretic counterpart.

Finitary proofs. A proof E
p ��E ′ is finitary when both E and E ′ are finite. Similarly,

a (proof) rule r is finitary when both the hypothesis hΣ(r) and the conclusion cΣ(r) are
finite for each signature Σ.

Compact proofs. A proof E
p ��E ′ is compact when it can be represented as p =

〈⊇E,E1 ,⊇E,E ′2 ;q〉 with q finitary.

E1 E1�E ′2�� �� E ′2

E

A-8888888888
p=〈⊇E,E1 ,⊇E,E2 ;q〉
��

�� E2

q

��

This means that the conclusion of p can be split as E1 �E ′2 such that E1 ⊆ E and there
exists a finitary proof q of E ′2 from a subset E2 ⊆ E such that q constitutes the non-trivial
part of the proof p.

Proposition 13.6. Any compact proof E → E ′ with E ′ finite can be written as a composi-
tion between a monotonicity proof and a finitary proof.

Proof. Consider a compact proof p : E → E ′ such that E ′ is finite. If we represent it as
p = 〈⊇E,E1 ,⊇E,E ′2;q〉 with q finitary, then by using the uniqueness aspect of the product
property of E1�E ′2 we have that p =⊇E,E1∪E ′2 ; p0 where p0 is the unique proof such that
p;⊇E ′,E1

=⊇E1∪E2,E1 and p0;⊇E ′,E ′2=⊇E1∪E2,E2 ;q.

E1 E1�E ′2�� �� E ′2

E1∪E2

A-888888888
p0

��

�� E2

q

��

E

PP2222222222222222

�� JJ���������

Because E ′ is finite we have that E1 is finite, hence p0 is finitary. �
A proof system is compact when each of its proofs is compact. Because of the

trivial nature of monotonicity proofs, one can see that in any compact proof system any
proof of a finite set of sentences is finitary in essence, which is stronger than saying that
any provable sentence admits a finitary proof. In other words, the compactness of the
proof system is a stronger property than the compactness of its corresponding entailment
system.
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The sub-system of compact proofs. Compact proofs have good compositional proper-
ties as shown by the result below.

Proposition 13.7. For any proof system (Sig,Sen,Pf), the collection of its compact proofs
form a (proof) sub-system, denoted by (Sig,Sen,C(Pf)).

Proof. Note that all monotonicity proofs are trivially compact. We therefore have to show
that compact proofs form a sub-category of all proofs, that this sub-category creates (bi-
nary) products of disjoint sets of sentences, and that translations along signature mor-
phisms preserve compactness.

1. Subcategory. Notice that each identity proof is trivially compact. Consider proofs

– 〈⊇Γ,E1 ,⊇Γ,E ′2;q〉 : Γ→ E1�E2 with E ′2
q−→ E2 finitary and

– 〈⊇E,Γ1 ,⊇E,Γ′2 ;r〉 : E → Γ = Γ1�Γ2 with Γ′2
r−→ Γ2 finitary.

We have to show that their composition is compact.

Γ1 E1

E

QQ99999999999
〈⊇E,Γ1

,⊇E,Γ′2
;r〉
��

��

Γ1�Γ2

��

��

Γ

QQ99999999999
〈⊇Γ,E1

,⊇Γ,E′2
;q〉
��

��

E1�E2

��

��
Γ′2 r

�� Γ2 �� E ′2 q
�� E2

We know that E ′2 ⊆ Γ = Γ1�Γ2. Without any loss of generality we may assume that
E ′2 ⊆ Γ2 since if E ′2 �⊆ Γ2 then because

〈⊇E,Γ1 ,⊇E,Γ′2 ;r〉= 〈⊇E,Γ1\E ′2 ,⊇E,Γ′2∪(Γ1∩E ′2);〈⊇Γ′2∪(Γ1∩E ′2),Γ′2 ;r,⊇Γ′2∪(Γ1∩E ′2),Γ1∩E ′2〉〉

we may replace in the original problem

– Γ2 by E ′2∪Γ2,

– Γ1 by Γ1 \E ′2,

– Γ′2 by Γ′2∪ (Γ1∩E ′2), and

– r by 〈⊇Γ′2∪(Γ1∩E ′2),Γ′2 ;r,⊇Γ′2∪(Γ1∩E ′2),Γ1∩E ′2〉.

The above mentioned equality can be established by projecting both its left-hand side and
its right-hand side to Γ1 \E ′2, Γ1∩E ′2 and to Γ2 and by using the uniqueness aspect of the
product Γ1 \E ′2�Γ1∩E ′2�Γ2 in the category of proofs. The diagram below may help to
visualize this.
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Γ1∩E ′2

Γ1

��

��::::::::::::::::: Γ1�Γ2 = Γ = (Γ1 \E ′2)� (E ′2∪Γ2)��

��

��

RR:::
:::

:::
:::

:
(E ′2∪Γ2) = (Γ1∩E ′2)�Γ2 ��

II;;;;;;;;;;;;;;;;;;;
Γ2

(Γ1 \E ′2) E��

SS<<<<<<<<<<<<<<<<<<<

x

��

�� (Γ1∩E ′2)∪Γ′2 ��

47��������������������������

��

Γ′2

r

��

Then, by assuming that E ′2 ⊆ Γ2 we have that

〈⊇E,Γ1 ,⊇E,Γ′2;r〉;〈⊇Γ,E1 ,⊇Γ,E ′2 ;q〉= 〈⊇E,E1∩Γ1 ,⊇E,Γ′2 ;r;〈⊇Γ2,E ′2 ;q,⊇Γ2,E1∩Γ2〉〉.
This equality can be established noting that E1 = (E1∩Γ1)∩E1 ∩Γ2) and then by pro-
jecting both its sides to E2, E1∩Γ1 and to E1∩Γ2 and by using the uniqueness aspect of
the universal property of the product E2�(E1∩Γ1)�(E1∩Γ2). The diagram below helps
to visualize this process.

E1

��
(E1∩Γ1)�E2� (E1∩Γ2)�� ��

NT;;;;
;;;

TU=====
==

E2

E1∩Γ1 E1∩Γ2 E ′2
q
��

Γ1

��

E��

y

��

�� Γ′2 r
�� Γ2

��UV++++

Now all we have to do is to note that the right-hand side of the above equality is a compact
proof.

2. Direct products of disjoint sets. Assume compact proofs 〈⊇E,E1 ,⊇E,E ′2 ;q〉 and
〈⊇E,Γ1 ,⊇E,Γ′2 ;r〉 such that q and r are finitary and such that (E1 �E2)∩ (Γ1 �Γ2) = /0.
The fact that

〈〈⊇E,E1 ,⊇E,E ′2 ;q〉, 〈⊇E,Γ1 ,⊇E,Γ′2 ;r〉〉 : E → E1�E2�Γ1�Γ2

is compact too follows immediately from the equality

〈〈⊇E,E1 ,⊇E,E ′2 ;q〉, 〈⊇E,Γ1 ,⊇E,Γ′2 ;r〉〉=

〈⊇E,E1�Γ1 ,⊇E,E ′2∪Γ′2 ;〈⊇E ′2∪Γ′2,E ′2 ;q,⊇E ′2∪Γ′2,Γ′2 ;r〉〉
which can be established by projecting both sides to the components of the product E1�
E2�Γ1�Γ2 in the category of proofs.

3. Translations of proofs along signature morphisms preserve compactness. In other
words we have to prove that for any signature morphism ϕ : Σ → Σ′ we have that
ϕ(C(Pf(Σ))) ⊆ C(Pf(Σ′)). Let p = 〈⊇E,E1 ,⊇E,E ′2 ;q〉 be a compact proof such that q is
finitary. That ϕ(p) is compact too follows by the equality

ϕ(p) = 〈⊇ϕ(E),ϕ(E1)\ϕ(E2),⊇ϕ(E),ϕ(E ′2);ϕ(q)〉
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which is established by noting that ϕ(E1 � E2) = ϕ(E2)� (ϕ(E1) \ ϕ(E2)) and by the
uniqueness aspect of the universal property of the product ϕ(E1�E2) = ϕ(E2)�(ϕ(E1)\
ϕ(E2)) in Pf(Σ′). This is based on the commutativity of the diagram

ϕ(E1)\ϕ(E2) ϕ(E1�E2) = ϕ(E2)� (ϕ(E1)\ϕ(E2))�� �� ϕ(E2)

ϕ(E)

II33333333333333333333
��

ϕ(p)

��

ϕ(E ′2)

ϕ(q)

��

While the square in the right-hand side of the diagram commutes by applying the functor
Pf(ϕ) to the corresponding commutative square of Σ-proofs, the commutativity of the
triangle in the left-hand side of the diagram can be established by the following calcula-
tions:

ϕ(p);⊇ϕ(E1�E2),ϕ(E1)\ϕ(E2) = ϕ(p);⊇ϕ(E1�E2),ϕ(E1);⊇ϕ(E1),ϕ(E1)\ϕ(E2)
= ϕ(p);ϕ(⊇E1�E2,E1);⊇ϕ(E1),ϕ(E1)\ϕ(E2)
= ϕ(p;⊇E1�E2,E1);⊇ϕ(E1),ϕ(E1)\ϕ(E2)
= ϕ(⊇E,E1);⊇ϕ(E1),ϕ(E1)\ϕ(E2)
=⊇ϕ(E),ϕ(E1)\ϕ(E2).

�

Compactness of free proof systems. The result below is a corollary of Prop. 13.7 and
of the universal property of free proof systems.

Corollary 13.8. The proof system freely generated by a system of finitary rules is com-
pact.

Proof. Consider a proof system (Sig,Sen,Pf) generated freely by a system of finitary
proof rules (Sig,Sen,Rl,h,c), with (1Sig,1Sen,η) universal arrow.

By Prop. 13.7 let (Sig,Sen,C(Pf)) be the compact proof (sub-)system of (Sig,
Sen,Pf). Because each proof rule of (Sig,Sen,Rl,h,c) is finitary, it means that
ηΣ(Rl(Σ))⊆C(Pf)(Σ) for each signature Σ, hence (1Sig,1Sen,η) is a comorphism of sys-
tems of proof rules (Sig,Sen,Rl,h,c)→ (Sig,Sen,C(Pf),dom,cod).

By the universal property of (1Sig,1Sen,η) : (Sig,Sen,Rl,h,c) → (Sig,Sen,Pf,
dom,cod) there exists a unique comorphism of proof systems (1Sig,1Sen,γ) : (Sig,
Sen,Pf)→ (Sig,Sen,C(Pf)) such that the triangle below commutes:

(Sig,Sen,Rl,h,c)
(1Sig,1Sen,η)

��

(1Sig,1Sen,η) /3333
3333

3333
3333

33
(Sig,Sen,Pf,dom,cod)

(1Sig,1Sen,γ)
��

(Sig,Sen,C(Pf),dom,cod)

(1Sig,1Sen,γ′)

��

Let (1Sig,1Sen,γ′) be the sub-system comorphism (Sig,Sen,C(Pf)) → (Sig,Sen,Pf),
which makes the above triangle commute. By the uniqueness part of the universal prop-
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erty for the free proof system, we get that γ;γ′ = 1, and because γ′ are inclusions, we
obtain that C(Pf) = Pf, which means that each proof of (Sig,Sen,Pf) is compact. �

13.3 Proof-theoretic Internal Logic

In Chap. 5 we introduced an institution-independent semantics for Boolean connectives
and quantifiers. Here we extend this to proof-theoretic Boolean connectives and quanti-
fiers. These proof-theoretic concepts can be seen as extensions of their semantic coun-
terparts when considering the semantic proof system of the institution which regards the
semantic consequence relations between sets of sentences as proofs.

Boolean connectives

Conjunctions. A proof-system has (proof-theoretic) conjunction, if each proof category
Pf(Σ) has distinguished products of singletons, which are singletons again and which are
preserved by the proof translations Pf(ϕ).

This means that for any Σ-sentences ρ1,ρ2, there exists a product sentence ρ1∧ρ2,

and two ‘projection’ proofs ρ1∧ρ2
pi ��ρi , such that for any proofs E

qi ��ρi , there

exists a unique proof E
q ��ρ1∧ρ2 such that q; pi = qi.

{ρ1} {ρ1∧ρ2}p1�� p2 �� {ρ2}

E
q1

47��������
q
��

q2

58��������

Fact 13.9. An institution has semantic conjunctions if and only if its semantic proof sys-
tem has proof-theoretic conjunctions.

Disjunctions, true, false. As expected, proof-theoretic disjunctions are dual to the con-
junctions, disjunctions being co-products in the category of proofs. This holds for the
situation when the proof system is finitary. When it is finitary the co-products are consid-
ered in the full subcategory of the finite sets of sentences.

The Boolean constants true and false, respectively, are modeled proof-theoretically
as distinguished terminal and initial objects, respectively. These are required to be pre-
served by the sentence translations along signature morphisms. More precisely, for each
signature Σ we have that trueΣ and falseΣ, respectively, are terminal and initial, respec-
tively, in Pf(Σ), an for each signature morphism ϕ : Σ → Σ′ we have that ϕ(trueΣ) =
trueΣ′ and ϕ(falseΣ) = falseΣ′ .

Negations. Any proof system with false has proof-theoretic negation, if each sentence ρ
has a distinguished ‘negation’ ¬ρ which is preserved by the proof translations Pf(ϕ) and
such that Pf(Σ)(Γ∪{ρ}, false) is in natural bijective correspondence to Pf(Σ)(Γ,{¬ρ}).
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Fact 13.10. An institution with false has semantic negation if and only if its semantic
proof system has proof-theoretic negation.

Corollary 13.11. In any proof system with negations, for each sentence ρ there exists a
canonical proof ρ→¬¬ρ.

Proof. For each sentence ρ the canonical proof ρ → ¬¬ρ is the correspondent of the
identity proof 1¬ρ by the natural bijections

Pf(Σ)(¬ρ,¬ρ,) ∼= Pf(Σ)({ρ,¬ρ}, false)∼= Pf(Σ)(ρ,¬¬ρ).

�

When each of the canonical proofs ρ → ¬¬ρ is an isomorphism, we say that the
proof system has ¬¬-elimination.

Fact 13.12. For any institution with semantic negations, its semantic entailment system
has ¬¬-elimination.

Implications. The concept of proof-theoretic implication requires some preparation.
For each set Γ of Σ-sentences, there is a canonical homomorphism of graphs ∪

Γ : Pf(Σ)→ Pf(Σ) as defined by the following commutative diagram of proofs:

Γ\E ′

E ∪Γ

��>>>>>>>>>>>>

��

p∪Γ
�� E ′ ∪Γ = E ′ � (Γ\E ′)

��

��

E
p �� E ′

(where the monotonicity proofs are not labeled). The main point here is that in general
−∪Γ does not preserve compositions, hence it is a graph homomorphism rather than a
functor. However we have the following.

Proposition 13.13. The union graph homomorphism−∪Γ is preserved by all signature
morphisms, i.e., for each signature morphism ϕ : Σ → Σ′ the following diagram com-
mutes:

Pf(Σ)
−∪Γ ��

Pf(ϕ)
��

Pf(Σ)

Pf(ϕ)
��

Pf(Σ′)−∪ϕ(Γ)
�� Pf(Σ′)
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Proof. This property can be deduced immediately from the commutativity of the diagram:

ϕ(Γ)\ϕ(E ′)

ϕ(Γ\E ′)

��

ϕ(E)∪ϕ(Γ)

��

��

ϕ(p∪Γ)=

ϕ(p)∪ϕ(ρ)
�� ϕ(E ′)∪ϕ(Γ) = ϕ(E ′)� (ϕ(Γ)\ϕ(E ′))

��

��

ϕ(E)
ϕ(p)

�� ϕ(E ′)

by noting that ϕ(Γ)\ϕ(E ′)⊆ ϕ(Γ\E ′) and by using the uniqueness part of the universal
property of the product ϕ(E ′)� (ϕ(Γ)\ϕ(E ′)) in the category of proofs. �

A proof system has (proof-theoretic) implication, if for each Σ-sentence ρ the graph
homomorphism−∪{ρ} : Pf(Σ)→ Pf(Σ) has a distinguished ‘right adjoint’ denoted by
ρ⇒ (−),

– which maps singletons to singletons,

– (ρ⇒ E) = {ρ⇒ e | e ∈ E}, and

– such that it commutes with the proof translations.

The ‘right adjoint’ property means that there exists a bijective correspondence

Pf(Σ)(Γ∪{ρ},E)∼= Pf(Σ)(Γ,ρ⇒ E)

natural in Γ, E and Σ, known in conventional logic as the Deduction Theorem. The natu-
rality in Σ means the commutativity of the diagrams below for each signature morphism
ϕ : Σ→ Σ′:

Pf(Σ)
ρ⇒ ��

Pf(ϕ)
��

Pf(Σ)

Pf(ϕ)
��

Pf(Σ)(Γ∪{ρ},E)
∼= ��

Pf(ϕ)
��

Pf(Σ)(Γ,ρ⇒ E)

Pf(ϕ)
��

Pf(Σ′)
ϕ(ρ)⇒

�� Pf(Σ′) Pf(Σ′)(ϕ(Γ)∪{ϕ(ρ)},ϕ(E))
∼= �� Pf(Σ′)(ϕ(Γ),ϕ(ρ)⇒ ϕ(E))

Fact 13.14. An institution has semantic implications if and only if its semantic proof
system has (proof-theoretic) implications.

It is easy to see that proof theoretic negation can be defined from proof theoretic
implication and false.

Fact 13.15. Any proof system with implications and false has negations defined by ¬ρ =
(ρ⇒ false) for each sentence ρ.
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Quantifiers

For any class D ⊆ Sig of signature morphisms that is stable under pushouts, the proof sys-
tem has proof-theoretic universal (existential) D-quantification, if for all signature mor-
phisms ϕ∈D, Pf(ϕ) have distinguished right (left) adjoints, denoted by (∀ϕ)− ((∃ϕ)−),
and which are preserved by proof translations along signature morphisms. This means
that there exists a bijective correspondence

Pf(Σ)(E,(∀ϕ)E ′)∼= Pf(Σ′)(ϕ(E),E ′)

natural in E and E ′, and such that for each signature pushout with ϕ ∈D,

Σ
ϕ
��

θ �� Σ1

ϕ1��
Σ′

θ′
�� Σ′1

both squares below commute:

Pf(Σ)
Pf(θ)�� Pf(Σ1) Pf(Σ)(E,(∀ϕ)E ′)

∼= ��

Pf(θ)
��

Pf(Σ′)(ϕ(E),E ′)

Pf(θ′)
��

Pf(Σ′)
Pf(θ′)

��

(∀ϕ)

��

Pf(Σ′1)

(∀ϕ1)

��

Pf(Σ1)(θ(E),(∀ϕ1)θ′(E ′))
∼= �� Pf(Σ′1)(ϕ1(θ(E)),θ′(E ′))

In categorical terms, the commutativity of these squares just says that the pair
〈Pf(θ), Pf(θ′)〉 is a morphism of adjunctions.

Fact 13.16. An institution has semantic D-quantifiers if and only if its semantic proof
system has D-quantifiers.

The property of existence of proof-theoretic universal quantifiers is known in con-
ventional logic as the Generalization Rule. However this is rather a property of the proof
system than a generating rule, hence calling it ‘meta-rule’ instead of ‘rule’ would be more
appropriate.

A proof system with universal, respectively existential, quantification may be de-
noted by (Sig,Sen,Pf,D,∀), respectively (Sig,Sen,Pf,D,∃).

Free proof systems with quantification

Here we show that quantification can be added freely to proof systems provided there
exists already a syntax for quantifiers. This condition is captured by the concept of ‘pre-
quantifier’.

Pre-quantifiers. A sentence system with pre-quantifiers (Sig,Sen,D,Q) consists of

• a category of ‘signature’ Sig,
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• a ‘sentence’ functor Sen : Sig→ Set,

• a subcategory D of signature morphisms which is stable under pushouts, and

• a functor Q : D → Setop such that for each pushout of signature morphisms

Σ
ϕ
��

θ �� Σ1

ϕ1��
Σ′

θ′
�� Σ′1

with ϕ ∈D, the square below commutes:

Sen(Σ)
Sen(θ)�� Sen(Σ1)

Sen(Σ′)
Sen(θ′)

��

Q(ϕ)

��

Sen(Σ′1)

Q(ϕ1)

��

For example, in the case of the universal D-quantifiers the functor Q is defined as
Q(χ)(ρ′) = (∀χ)ρ′ for each signature morphism χ : Σ→ Σ′ and each Σ′-sentence ρ′.

A comorphism of sentence systems with pre-quantifiers (Φ,α) : (Sig,Sen,D,Q)→
(Sig′,Sen′,D ′,Q′) consists of

• a functor Φ : Sig→ Sig′, and

• a natural transformation α : Sen⇒ Φ;Sen′ which is also a natural transformation
Q⇒Φ;Q′.

An institution/proof system has pre-quantifiers when its underlying sentence sys-
tem has pre-quantifiers. A comorphism of institutions/proof systems with pre-quantifiers
is a comorphism of institutions/proof systems which is also a comorphism between the

underlying sentence systems with pre-quantifiers.

Adding quantifiers freely. The following result shows the possibility of systematically
adding quantification to any proof systems. We treat only the case of the universal quan-
tifiers, the existential quantifiers may be treated similarly.

Theorem 13.17. The forgetful functor from proof systems with universal quantification
to proof systems with pre-quantification has an adjoint.

Proof. This proof follows the same method as the proof of Thm. 13.3. Let (Sig,Sen,Pf,
D,Q) be a proof system with pre-quantifiers. This defines the following single-sorted
quasi-existence equational theory of partial algebras by considering:

• theories (Σ,E) and pairs of presentations (Σ,E) ⊇ (Σ,E ′) for all E ′ ⊇ E as total
constants,
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• h and c as total unary operation symbols,

• all signature morphisms ϕ ∈ Sig as partial unary operation symbols, and

• ; and 〈 , 〉 as binary partial operation symbols,

and in addition to

– (S), (M1− 3), (C1− 3), (P1− 2) as in the proof of Thm. 13.3 but in a version
replacing E’s by (Σ,E)’s

also the following set of quasi-existence equations:

(FS) (∀p)(Σ,E)
p−→ (Σ,E ′)⇒ (Σ′,ϕ(E))

ϕ(p)−→ (Σ′,ϕ(E ′))
(FM) ϕ((Σ,E ′)⊇ (Σ,E)) e= (Σ′,ϕ(E ′))⊇ (Σ′,ϕ(E))

(FC) (∀p, p′)((Σ,E)
p−→ (Σ,E ′)∧ ((Σ,E ′) p′−→ (Σ,E ′′)⇒ ϕ(p; p′) e= ϕ(p);ϕ(p′)

(FF) (∀p)ϕ′(ϕ(p)) e= (ϕ;ϕ′)(p)
(FI) (∀p)1Σ(p) e= p

for all signature morphisms ϕ : Σ→ Σ′ and ϕ′ : Σ′ → Σ′′, all sets of sentences E,E ′,E ′′ ⊆
Sen(Σ), and where (Σ,E)

p−→ (Σ,Γ) abbreviate (h(p) e= (Σ,E))∧ (c(p) e= (Σ,Γ)).
The given proof system determines canonically a partial algebra P of this quasi-

existence equational theory with its underlying set being the disjoint union of proof cate-
gories

⊎
Σ∈|Sig|Pf(Σ), and interpreting the operation symbols in the obvious way.

Now, we extend the above quasi-existence equational theory with

• partial unary operations [∀ϕ] for all signature morphisms ϕ ∈D,

• total constants ηϕ
(Σ,E) and εϕ

(Σ,E) for each theory (Σ,E) and each signature morphism
ϕ ∈D,

and with the following sentences:

(QS0) [∀ϕ](E ′) e= Q(E ′)

(QS) (∀p)(Σ′,Γ′) p−→ (Σ′,E ′)⇒ (Σ, [∀ϕ]Γ′)
[∀ϕ]p−→ (Σ, [∀ϕ]E ′)

(QC) (∀p, p′)((Σ′,Γ′) p−→ (Σ′,E ′))∧ ((Σ′,E ′) p′−→ (Σ′,E ′′))⇒
[∀ϕ](p; p′) e= [∀ϕ]p; [∀ϕ]p′

(QF) (∀p)((Σ′,Γ′) p−→ (Σ′,E ′))⇒ θ([∀ϕ]p) e= [∀ϕ1](θ′(p))

(ET0) (Σ,E)
ηϕ

(Σ,E)−→ (Σ, [∀ϕ]ϕ(E))
(ET1) (∀p)(Σ,Γ)

p−→ (Σ,E)⇒ ηϕ
(Σ,Γ); [∀ϕ]ϕ(p) e= p;ηϕ

(Σ,E)

(EP0) (∀p)(Σ′,ϕ([∀ϕ]E ′))
εϕ
(Σ′ ,E′)−→ (Σ′,E ′)

(EP1) (∀p′)(Σ′,Γ′) p′−→ (Σ′,E ′)⇒ εϕ
(Σ′ ,Γ′); p′ e= ϕ([∀ϕ]p′);εϕ

(Σ′ ,E ′)
(TF) ϕ(ηϕ

(Σ,E));εϕ
(Σ′ ,ϕ(E))

e= (Σ′,ϕ(E))

(TQ) ηϕ
(Σ,[∀ϕ]E ′); [∀ϕ]εϕ

(Σ′ ,E ′)
e= (Σ, [∀ϕ]E ′)

(I) (θ(ηϕ
(Σ,E))

e= ηϕ1
(Σ1,θ(E)))∧ (θ′(εϕ

(Σ′ ,E ′))
e= εϕ1

(Σ′1,θ′(E ′)))
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for all signature morphisms (ϕ : Σ→ Σ′) ∈D, Γ′,E ′,E ′′ ⊆ Sen(Σ′), E ⊆ Sen(Σ), and all
signature pushouts

Σ
ϕ
��

θ �� Σ1

ϕ1
��

Σ′
θ′

�� Σ′1

Let P be the free extension of P along the extension δ of quasi-existence equational
theories defined above. Let ζ : P → P�δ denote the universal partial algebra homo-
morphism. For each signature Σ ∈ |Sig|, by letting Pf(Σ)(E,E ′) = {p ∈ P | (Σ,E)

p−→
(Σ,E ′)} we get a proof system with universal quantification (Sig,Sen,Pf,D,∀) and a co-
morphism of proof systems with pre-quantifiers (1Sig,1Sen,ω) : (Sig,Sen,Pf,D,Q) →
(Sig,Sen,Pf,D,∀) where ωΣ(p) = ζ(p).

Any comorphism of proof systems with pre-quantifiers

(Φ,α,γ) : (Sig,Sen,Pf,D,Q)→ (Sig′,Sen′,Pf ′,D ′,∀)

to a proof system with universal quantifiers determines canonically a partial algebra
homomorphism γ′ : P → P′�δ mapping each Σ-proof p : Γ → E to the Φ(Σ)-proof
γΣ(p) : αΣ(Γ) → αΣ(E), and where P′ is the partial algebra of the extended quasi-
equational theory with carrier

⊎
Σ′∈|Sig′|Pf ′(Σ′).

Then the unique partial algebra homomorphism γ′ : P → P′ such that ζ;γ′�δ = γ′
determines back a comorphism of proof systems with universal quantifiers (Φ,α,γ) such
that

(Sig,Sen,Pf,D,Q)

(Φ,α,γ) B)''
'''

'''
'''

(1Sig,1Sen,ω)
�� (Sig,Sen,Pf,D,∀)

(Φ,α,γ)OO777
777

777
7

(Sig′,Sen′,Pf ′,D ′,∀)
�

A variant of Theorem 13.17 may generate the universally quantified sentences
freely, thus eliminating the need for a pre-quantifier structure. The reader is invited to ex-
plore the details of this idea. Here we have preferred the approach based on pre-quantifiers
mainly because our intention is to add proof system structures to institutions without hav-
ing to extend their sentences.

Free quantifiers preserve compactness of proofs. This is a direct consequence of the
universal property of free proof systems with quantifiers.

Corollary 13.18. The proof system with universal quantification freely generated by a
compact proof system with pre-quantifiers is also compact.
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Proof. This follows an argument very similar to that used for the proof of Cor. 13.8 by
taking the compact proof (sub-)system (Sig,Sen,C(Pf)) (which exists cf. Prop. 13.7)
of the free proof system with universal quantification (Sig,Sen,Pf), and by noting that
proof system comorphisms preserve compact proofs (this fact being similar to the fact
that signature morphisms preserve compact proofs; see item 3 of the proof of Prop. 13.7).
This means that if we assume (Sig,Sen,Pf) is compact, then the universal comorphism
(Sig,Sen,Pf)→ (Sig,Sen,Pf) goes in fact to (Sig,Sen,C(Pf)). �

Free quantifiers preserve soundness. The result below shows that by adding the meta
rule of ‘Generalization’ to a proof system of an institution with proofs, the soundness
property is preserved.

Proposition 13.19. Let (Sig,Sen,Mod, |=,Pf) be any sound institution with proofs and
with semantic universal D-quantifiers. Then the institution with proofs (Sig,Sen,Mod, |=
,Pf), where (Sig,Sen,Pf) is the proof system with universal D-quantifiers freely gener-
ated by (Sig,Sen,Pf) (with the pre-quantifiers given by the semantic universal quanti-
fiers) is also sound.

Proof. Note that the semantic proof system (Sig,Sen, |=,D,∀) is a proof system with
universal quantification. By the soundness of (Sig,Sen,Mod, |=,Pf) we get a comor-
phism (1Sig,1Sen,γ) : (Sig,Sen,Pf,D,∀) → (Sig,Sen, |=,D,∀) of proof systems with
pre-quantifiers.

(Sig,Sen,Pf,D,∀) (1Sig,1Sen,ω)
��

(1Sig,1Sen,γ) %&  
   

   
  

(Sig,Sen,Pf,D,∀)

(1Sig,1Sen,γ)25���
���

���
�

(Sig,Sen, |=,D,∀)
By the universal property of (Sig,Sen,Pf,D,∀) we get a comorphism (1Sig,1Sen,γ) of
proof systems with universal quantification. This comorphism gives the soundness of
(Sig,Sen,Mod, |=,Pf). �

Exercises

13.5. In any proof system, for any Σ-proofs p : E → E ′ and p′ : E ′ → E ′′, for each set of sentences
Γ, if (Γ\E ′′)⊆ (Γ\E ′) then (p∪Γ);(p′ ∪Γ) = (p; p′)∪Γ.

13.6. In any entailment system the equivalence relation on sentences %& defined by ρ1 %& ρ2 iff
ρ1 % ρ2 and ρ2 % ρ1 determines for each signature Σ a quotient of the preorder (Sen(Σ),%) to a
partial order (Sen(Σ)/%&,≤).

If the entailment system has conjunctions, disjunctions, true, false, and implications, then
(Sen(Σ)/%&,≤) is a Heyting algebra.

13.7. Any entailment system with conjunctions, negations, and ¬¬-elimination has disjunctions
and implications. (Hint: Define ρ1 ∨ρ2 as ¬(¬ρ1 ∧¬ρ2)) and ρ1 ⇒ ρ2 as ¬ρ1 ∨ρ2. Use the fact
that in any entailment system with negations and ¬¬-elimination we have that ρ % ρ′ is equivalent
to ¬ρ′ % ¬ρ.) Does this result generalize to proof systems?
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13.8. Collapsing theorem
In any proof system with implication, false, and ¬¬-elimination, there exists at most one proof
between any two finite sets of sentences. (Hint: By using implications and the initiality of f alse, we
have that for each finite set of sentences E there exists at most one proof E∪{false}→ E∪{false}.
Use this for showing that the existence of a proof E → false implies E ∼= false. The conclusion
follows by ¬¬-elimination which gives that proofs E → ρ′ are in natural bijective corrrespondence
to proofs E ∪{¬ρ′} → false.)

13.9. Maximally consistent sets, proof theoretically
Consider an entailment system (Sig,Sen,%) with negations. A set of Σ-sentences Γ is consistent
when Γ �% false. It is maximally consistent when it is consistent and it is maximal with respect to
this property, i.e., for any other consistent set Γ′ such that Γ⊆ Γ′ we have that Γ = Γ′.

For each signature Σ we let Mod(Σ) = {M ⊆ Sen(Σ) |M maximally consistent} and for each
signature morphism ϕ : Σ→Σ′ we let Mod(ϕ) : Mod(Σ′)→Mod(Σ) be defined by Mod(ϕ)(M′)=
ϕ−1(M′). We may define a satisfaction relation |=Σ⊆Mod(Σ)×Sen(Σ) by M |= ρ if and only if
ρ ∈M.

1. (Sig,Sen,Mod, |=,%) is an institution with proofs that is sound and has semantic nega-
tions.

2. If in addition we assume that (Sig,Sen,%) is compact, then (Sig,Sen,Mod, |=,%) is com-
plete if and only if (Sig,Sen,%) has ¬¬-elimination. (Hint: Prove and use the generaliza-
tion of Lindenbaum’s Theorem of Ex. 6.17 to entailment systems.)

13.10. Craig interpolation, proof theoretically
The proof-theoretic concept of interpolation refines the semantic concept of interpolation by con-
sidering the interpolant to be a set of sentences together with two corresponding proofs. In any
proof system, a square of signature morphisms

Σ
ϕ1 ��

ϕ2
��

Σ1

θ1��
Σ2 θ2

�� Σ′

is a Craig Interpolation square if and only if for each set E1 of Σ1-sentences and finite set E2 of
Σ2-sentences and each proof p : θ1(E1)→ θ2(E2) there exists a set E of Σ-sentences and proofs
p1 : E1 → ϕ1(E) and p2 : ϕ2(E)→ E2 such that p = θ1(p1);θ2(p2).

1. Proof-theoretic Craig interpolation squares are closed under both the ‘vertical’ and the
‘horizontal’ compositions (in the sense of Ex. 9.1).

2. Formulate a ‘single sentence’ version for proof-theoretic interpolation and prove that this
is a consequence of the ‘multiple sentence’ version when the proof system is compact and
has conjunctions.

13.11. Craig-Robinson interpolation, proof theoretically
Craig interpolation (abbreviated CI) for proof systems (see Ex. 13.10 above) can be refined to
Craig-Robinson interpolation (abbreviated CRI) by generalizing the concept of (model-theoretic)
CRI of Sect. 9.4.

1. Generalize the result of Prop. 9.20 (which shows the equivalence between CRI and CI)
from semantic entailment systems to arbitrary entailment systems.
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2. For the situation when the set of sentences E2 is a singleton (i.e., contains only one sen-
tence) extend further the result of Prop. 9.20 to proof systems that are quasi-compact (i.e.,
have infinite conjunctions or are compact), have implications, and such that for each sig-
nature the sub-sentence relation is well founded. The sub-sentence relation ≺Σ is defined
as the transitive closure of the binary relation {(ρ,ρ⇒ ρ′),(ρ′,ρ⇒ ρ′) | ρ,ρ′ ∈ Sen(Σ)}.
That ≺Σ is well founded means that there are no infinite ‘downwards’ chains . . .ρi ≺
ρi−1 ≺ ·· · ≺ ρ0. (Hint: The proof needs the result of Ex. 13.5 which can be applied be-
cause ≺Σ is well founded.)

13.12. [85] Proof-theoretic implicit definability
We say that a signature morphism ϕ : Σ→ Σ′ in a proof system is defined implicitly (proof theoret-
ically) by E ′ ⊆ Sen(Σ′) if for each signature morphism θ : Σ→ Σ1 and each Σ′1-sentence ρ,

(θ′;u)(E ′)∪ (θ′;v)(E ′)∪{u(ρ)} % v(ρ) and (θ′;u)(E ′)∪ (θ′;v)(E ′)∪{v(ρ)} % u(ρ)

for all pushouts of the form

Σ′
θ′ �� Σ′1

u

��








Σ
θ ��

ϕ (+-
--

-

ϕ HH,,,,
Σ1

ϕ1

��








ϕ1

������
Σ′′

Σ′
θ′
�� Σ′1

v

������

In any institution with model amalgamation a signature morphism ϕ

1. is defined implicitly proof theoretically by E ′ for the semantic entailment system if it is
defined implicitly model theoretically by E ′ (in the sense of Chap. 10), and

2. is defined implicitly model theoretically by E ′ if it is defined implicitly proof theoretically
by E ′ when it is ι-tight for a system ι of elementary diagrams of the institutions.

13.13. [85] Definability by interpolation, proof theoretically
We say that ϕ is defined explicitly by E ′ when for each ρ ∈ Sen(Σ′1), there exists a set of sentences
Eρ ⊆ Sen(Σ1) such that

θ′(E ′)∪{ρ} % ϕ1(Eρ) and θ′(E ′)∪ϕ1(Eρ) % ρ.

The following constitute proof theoretic variants of Prop. 10.3 and Thm. 10.5, respectively.

1. Any signature is defined implicitly by a theory if it is defined explicitly by that theory.

2. If the entailment system has Craig-Robinson (L ,R )-interpolation (see Ex. 13.11) for
classes L and R of signature morphisms that are stable under pushouts, any signature
morphism in L ∩R is defined explicitly if it is defined implicitly.

13.4 The Entailment Institution

The semantic proof systems determined by institutions show that proof systems are more
general than institutions. Proof systems are more abstract than institutions because they
lack the model theory component. In this section we give a general way to enhance proof
systems with models and a satisfaction relation between models and sentences.
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Proof-theoretic presentations. For any set E of Σ-sentences for a signature Σ, we say
that (Σ,E) is a presentation. A presentation morphism (ϕ, p) : (Σ,E)→ (Σ′,E ′) consists
of a signature morphism ϕ : Σ→ Σ′ and a proof p : E ′ → ϕ(E).

Fact 13.20. Under the obvious composition the proof-theoretic presentation morphisms
form a category. Moreover, the category of the presentations of a proof system (Sig,
Sen,Pf) is the opposite of the Grothendieck category determined by the (Sigop)-indexed
functor Pf, i.e., Pres = (Pf�)op.

The proof-theoretic concept of presentation is significantly more refined than its se-
mantic counterpart in institutions because it takes into account how ϕ(E) is a consequence
of E ′ not only that it is a consequence.

As in the case of institutions, the category of presentations of a proof system is
denoted by Pres.

Theories in proof systems. For any signature Σ of a proof system, a set of sentences
(Σ,Γ) is a theory when Γ % E implies E ⊆ Γ. The least theory containing a set E of
Σ-sentences is denoted by E•. It is easy to see that E• = {ρ | E % ρ}.

Given theories (Σ,E) and (Σ′,E ′), a (proof theoretic) theory morphism ϕ : (Σ,E)→
(Σ′,E ′) is just a signature morphism ϕ : Σ → Σ′ such that ϕ(E) ⊆ E ′. Note that this
concept is weaker than that of (proof theoretic) presentation morphism between theories.

The entailment institution of a proof system

Proposition 13.21 (Entailment institution). Each proof system (Sig,Sen,Pf) deter-
mines an institution (Sig,Sen,Mod, |=) called the entailment institution of the proof sys-
tem, where for each signature Σ ∈ |Sig|,
• the ‘entailment’ Σ-models are pairs (ψ,E ′), where ψ : Σ→ Σ′ is a signature mor-

phism and E ′ is a Σ′-theory,

• a Σ-model homomorphism ϕ : (ψ : Σ→ (Σ′,E ′))→ (ψ′ : Σ→ (Σ′′,E ′′)) is just a
theory morphism ϕ : (Σ′,E ′)→ (Σ′′,E ′′) such that ψ;ϕ = ψ′,

• a Σ-model (ψ,E ′) satisfies a Σ-sentence ρ if and only if ψ(ρ) ∈ E ′,

• model reducts are obtained just by composition to the left.

Proof. The satisfaction condition for the entailment institution can be checked as follows.
For any signature morphism ϕ : Σ→ Σ′, any entailment Σ′-model (ψ : Σ′ → Σ′′,E ′′), and
any Σ-sentence ρ,

(ψ,E ′′)�ϕ |= ρ iff (ϕ;ψ,E ′′) |= ρ iff ψ(ϕ(ρ)) ∈ E ′′ iff (ψ,E ′′) |= ϕ(ρ).

�
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Entailment institutions have the following important property.

Proposition 13.22. Any entailment institution is sound and complete.

Proof. For the completeness property let us assume E |= ρ. We consider the Σ-model
1Σ : Σ→ (Σ,E•). Then 1Σ |= E which implies 1Σ |= ρ. This means ρ ∈ E• which means
E % ρ.

For the soundness property let us assume that E % ρ and consider any Σ-model
ψ : Σ→ (Σ′,E ′) such that ψ |= E . Therefore we have that ψ(E) ⊆ E ′ which means E ⊆
ψ−1(E ′). Since ψ−1(E ′) is a theory (it is easy to prove that the inverse image of any
theory through a signature morphism is still a theory) we have that E• ⊆ ψ−1(E ′). This
implies ρ ∈ ψ−1(E ′), which means ψ(ρ) ∈ E . This shows ψ |= ρ. �

The following corollary may be used as a source of examples that fall between
compactness and m-compactness.

Corollary 13.23 (Compactness). The entailment institution is compact if and only if the
entailment system determined by the proof system is compact. However, in the entailment
institution each set of sentences is consistent; consequently the entailment institution is
trivially model compact.

An adjunction between proof systems and elementary institutions. Recall that an el-
ementary institution is any institution with elementary diagrams such that for each model
M the theory of its elementary diagram is just the theory of the initial model of the ele-
mentary diagram, i.e., M∗

M = E∗∗M . Otherwise said, an institution with elementary diagrams
is elementary if and only if each model homomorphism is elementary.

Theorem 13.24. The entailment institution construction is an adjoint to the forgetful
functor from the elementary institutions to proof systems.

Proof. Let (Sig,Sen,Pf) be any proof system. The entailment institution (Sig,Sen,
Mod, |=) is elementary with diagrams ι as follows:

For each Σ-model (ψ,E ′), let the elementary extension ιΣ(ψ,E ′) be just ψ and
the elementary diagram E(ψ,E ′) be just E ′.

We can notice easily that the isomorphisms iΣ,(ψ,E ′) are identities, and that E∗∗M = M∗
M for

each model M.
For each signature Σ and each Σ-proof p : E → Γ, let ηΣ(p) be the semantic deduc-

tion E |= Γ. This gives a comorphism of proof systems (1Sig,1Sen,η) : (Sig,Sen,Pf)→
(Sig,Sen, |=). Let (Φ,α,γ) : (Sig,Sen,Pf) → (Sig′,Sen′, |=′) be any comorphism of
proof systems, where (Sig′,Sen′, |=′) is the semantic entailment system determined by
an elementary institution (Sig′,Sen′,Mod′, |=′, ι′).

(Sig,Sen,Pf)

(Φ,α,γ) ��$
$$

$$
$$$

$

(1Sig,1Sen,η)
�� (Sig,Sen,Mod, |=, ι)

(Φ,α,β)OO???
???

???
?

(Sig′,Sen′,Mod′, |=′, ι′)
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(Φ,α,γ) can be extended uniquely to a comorphism of institutions with elementary dia-
grams (Φ,α,β), with β uniquely determined by the comorphism condition on elementary
diagrams:

βΣ′(M
′) = (Φ(ι′Σ′ (M

′)),α−1
Σ′

M′
(E∗∗M′))

for each signature Σ′ ∈ |Sig′| and each Σ′-model M′. The fact that α−1
Σ′

M′
(E∗∗M′) is a theory

follows from the fact that (Φ,α,γ) is a comorphism of proof systems.
If h : M′ → N′ is a Σ′-model homomorphism, then βΣ′(h) = Φ(ιΣ′(h)). Notice that

because ιΣ′(h) is a presentation morphism (Σ′M′ ,EM′)→ (Σ′N′ ,EN′), then Φ(ιΣ′(h)) is a
theory morphism (Φ(ι′Σ′(M

′)),α−1
Σ′

M′
(E∗∗M′))→ (Φ(ι′Σ′(N

′)),α−1
Σ′

N′
(E∗∗N′ )).

The Satisfaction Condition for the institution comorphism (Φ,α,β) can be obtained
as follows:

βΣ′(M′) |= ρ
iff Φ(ι′Σ′(M

′))(ρ) ∈ α−1
Σ′

M′
(E∗∗M′)

iff αΣ′
M′

(Φ(ι′Σ′ (M
′))(ρ)) ∈ E∗∗M′

iff ι′Σ′(M
′)(αΣ′ (ρ)) (by the naturality of α)

iff M′
M′ |= ι′Σ′(M

′)(αΣ′(ρ)) (since the institution is elementary)
iff M′ |= αΣ′(ρ) (by the satisfaction condition for ι′Σ′(M

′)).

�

Exercises

13.14. A presentation morphism (ϕ, p) : (Σ,E)→ (Σ′,E ′) is

• closed when for each proof p′1 : E ′ → ϕ(E1) there exists a proof p1 : E → E1 such that
p′1 = p;ϕ(p1), (In more category theoretic terms this means that p is a ‘weak universal
arrow’ from E ′ to Pf(ϕ).)

• strong when for each proof p′1 : E ′ → E ′1 there exists a proof p1 : E → E1 such that
p′1 = p;ϕ(p1).

The closed, respectively strong, presentation morphisms are closed under composition.

13.15. Modularization squares
A commutative square of signature morphisms

Σ
ϕ1 ��

ϕ2
��

Σ1

θ1��
Σ2 θ2

�� Σ′

is said to be a modularization square when for any closed presentation morphism
(ϕ1, p1) : (Σ,E) → (Σ1,E1) and any presentation morphism (ϕ2, p2) : (Σ,E) → (Σ2,E2) such
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that the diagram of presentation morphisms

(Σ,E)
(ϕ1,p1) ��

(ϕ2,p2)
��

(Σ1,E1)

(θ1,⊇θ1(E1)∪θ2(E2),θ1(E1 ))

��
(Σ2,E2)

(θ2,⊇θ1(E1)∪θ2(E2 ),θ2(E2))
�� (Σ′,θ1(E1)∪θ2(E2))

commutes, (θ2,⊇θ1(E1)∪θ2(E2),θ2(E2)) is a closed presentation morphism.

1. In any proof system any Craig-Robinson interpolation square is a modularization square.

2. In any entailment system, any commuting square of signature morphisms is a Craig-
Robinson interpolation square if and only if it is a modularization square.

13.16. Consider an entailment system E and let I (E) be its entailment institution.

1. If E has (proof theoretic) conjunctions, then I (E) has (semantic) conjunctions.

2. Even when E has (proof theoretic) disjunctions, implications, negations, or false, I (E)
does not necessarily have the corresponding connectives.

13.17. Any entailment system (Sig,Sen,%) determines an entailment system of presentations (Pres,
Senpres,%pres) where Pres is the category of presentations, Senpres(Σ,E) = Sen(Σ), and

Γ %pres
(Σ,E) Γ′ if and only if Γ∪E %Σ Γ′.

Then

1. (Pres,Senpres,%pres) has conjunctions, false, negations, and implications, respectively,
when (Sig,Sen,%) has conjunctions, false, negations, and implications, respectively.

2. (Pres,Senpres,%pres) has disjunctions if (Sig,Sen,%) has disjunctions and implications.

3. If (Sig,Sen,%) has universal D-quantification, then (Pres,Senpres,%pres) has universal
Dpres-quantification where Dpres = {χ : (Σ,E)→ (Σ′,E ′) presentation morphism | χ ∈
D and ϕ(E) % E ′}.

13.18. Co-limits of proof theoretic presentations
If the category Sig of the signatures has J-co-limits and if each category Pf(Σ) of Σ-proofs has
J-limits that are preserved by the proof translation functors Pf(ϕ), then the category Pres of the
proof system presentations has J-co-limits.

13.19. For each proof system

1. if it has pushouts for signatures, then the corresponding entailment institution is semi-
exact and liberal,

2. each sentence is basic in the corresponding entailment institution,

3. each signature morphism is representable in the corresponding entailment institution,

4. if for a category J its category of signatures has J-limits, respectively co-limits, then for
each signature Σ the category of Σ-entailment models has J-limits, respectively co-limits,
and

5. any inclusion system for the category of signatures determines ‘closed’ and ‘strong’ in-
clusion systems for the categories of entailment models of signatures (see also Sect. 4.5).
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13.5 Birkhoff Completeness

In this section we develop a generic sound and complete proof system for ‘universal
institutions’ which we instantiate to ‘Horn institutions’.

Universal institutions. Let I = (Sig,Sen,Mod, |=) be an institution and

• let Sen1 be a sub-functor of Sen (i.e., Sen1 : Sig→ Set such that Sen1(Σ)⊆ Sen(Σ)
and ϕ(Sen1(Σ))⊆ Sen1(Σ′) for each signature morphism ϕ : Σ→ Σ′), and

• let D ⊆ Sig be a sub-category of signature morphisms such that D is stable under
pushouts.

We say that I is a D-universal institution over I1, where I1 = (Sig,Sen1,Mod, |=), when

• I admits all sentences of the form (∀χ)ρ where χ : Σ→ Σ′ is any signature mor-
phism in D, and ρ is any Sen1(Σ′) sentence, and

• any sentence of I is semantically equivalent to a sentence of the form (∀χ)ρ as in
the item above.

For example, UNIV is a D-universal institution over the restriction of FOL to the quan-
tifier-free sentences (i.e., sentences without quantifiers), where D is the class of all sig-
nature extensions with a finite number of constants. Another example is HCL which is a
D-universal institution over the sentences of the form H ⇒C where H is a finite conjunc-
tion of atoms and C is an atom. Similarly, the infinitary versions UNIV∞ and HCL∞ are
also examples of D-universal institutions, but in this case D is the class of all signature
extensions with constants (i.e., D might contain infinitary extensions).

Horn institutions. An institution I = (Sig,Sen,Mod, |=) is (finitary) D-Horn institu-
tion over I0 = (Sig,Sen0,Mod, |=) when I is a D-universal institution over I1 = (Sig,
Sen1,Mod, |=) and Sen0 is a sub-functor of Sen1 such that

• for each signature Σ, the institution I1 admits all sentences of the form H⇒C where
H is any (finite) set of Sen0(Σ) sentences, and C is any Sen0(Σ) sentence, and

• any sentence of I1 is semantically equivalent to a sentence of the form H ⇒C as in
the item above.

For example, HCL is a finitary D-Horn institution over AFOL, the atomic sub-institution
of FOL (i.e., the sentences of AFOL are the atoms of FOL), where D is the class of all
signature extensions with a finite number of constants. Similarly, HCL∞ is an (infinitary)
D-Horn institution over AFOL, but in this case D is the class of all signature extensions
with constants (i.e., D might contain infinitary extensions).

The generic proof system for Horn institutions developed in this section consists of
three layers:

1. The ‘atomic’ layer is that of the proof system of I0, which in the abstract setting is
assumed but which is to be developed in the concrete examples.
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2. The layer of the proof system for I1 which is obtained by assuming the so-called
‘Modus Ponens’ meta-rule in a restricted form involving the sentences of I0.

3. The upmost layer is that of the proof system for I , which is obtained by adding the
so-called ‘Substitutivity’ rule and the ‘Generalization’ meta-rule to the proof system
of I1.

The soundness and the completeness at each layer is obtained relatively to the soundness
and the completeness of the layer immediately below.

Such layered decomposition of the proof system of I leads also to sound and com-
plete proof systems for ‘universal institutions’ which are not necessarily Horn institutions.
For this it is enough to start with a sound and complete proof system for I1. For example,
a sound and complete proof system for quantifier free sentences in FOL (i.e., sentences
formed from atoms by iterative applications of the Boolean connectives) determines au-
tomatically a sound and complete proof system for UNIV.

The generic universal proof system

Let us assume a D-universal institution I = (Sig,Sen,Mod, |=) over I1 = (Sig,Sen1,
Mod, |=) with Sen1 a sub-functor of Sen. We also assume a sub-functor Sen0 of Sen1,
and denote the corresponding institution by I0, such that

For each (finite) set of sentences B ⊆ Sen0(Σ) and any sentence e ∈ Sen1(Σ)
there exists a sentence in Sen1(Σ) which is semantically equivalent to ∧B⇒ e.

Note that this condition is significantly more general than if we assumed that I is a
Horn institution over I0. Indeed, if I were a Horn institution over I0, for any I1-sentence
e = (H ⇒C) and any (finite) set of I0-sentences B we would have that ∧B⇒ e is seman-
tically equivalent to the I1-sentence (H ∧B)⇒ C. However the above condition holds
also for non-Horn settings such as when I = UNIV, the institution of the FOL univer-
sal sentences, Sen1 is the (sub-)functor of the quantifier-free sentences, and Sen0 is the
(sub-)functor of the atomic sentences (see Ex. 13.22).

Note also that the above condition comes in two variants: when B is required to be
finite, and when B is allowed to be infinite. The infinitary variant is applicable only to the
infinitary variants of institutions, such as HCL∞ or UNIV∞.

We also assume another rather mild technical condition, namely that

For each D-substitution θ : (ϕ : Σ→ (Σ1,E1))→ (χ : Σ→ (Σ2,E2)) in I pres
0

(the institution of I0 presentations), there exists a D-substitution ϕ → χ in
I pres

1 which ‘extends’ θ. Since there is no danger of confusion we denote
this latter substitution by θ too. This means that Sen0(θ) extends to a func-
tion Sen1(θ) : Sen1(Σ1)→ Sen1(Σ2) such that the pair (Sen1(θ),Modpres(θ))
constitute a substitution in I pres

1 .

In all examples mentioned above this condition is fulfilled rather easily since the I1-
sentences are Boolean expressions formed from I0-sentences. For example, if I is a
D-Horn institution over I0, then Sen0(θ) extends canonically to Sen1(θ) by defining
Sen1(θ)(H ⇒C) by Sen0(H)⇒ Sen0(C).
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The rules of Substitutivity. For all D-universal sentences (∀ϕ)ρ and all D-substitu-

tions θ : (Σ
ϕ ��(Σ1, /0))→ (Σ

χ ��(Σ2,B)) in I pres
0

(Σ1, /0) (Σ2,B)

Σ
ϕ
MM����� χ

JJ�����

we consider the following rule of D-Substitutivity

(∀ϕ)ρ % (∀χ)(∧B⇒ θ(ρ))

where θ(ρ) denotes Sen1(θ)(ρ).
Note that the rule of Substitutivity may also be considered in either a finitary or in

an infinitary variant. The above formulation corresponds to the infinitary variant since B
may be infinite. If we consider only those I0-presentations (Σ2,B) for which B is finite
we get the rule of finitary D-Substitutivity.

Below we will see that under some technical conditions, which are often met in the
applications, the rule of Substitutivity may be rephrased as

(∀ϕ)ρ % (∀χ)θ(ρ)

for D-substitutions θ in I0 rather than I pres
0 .

Proposition 13.25. The rule of D-Substitutivity is sound.

Proof. Let M be a Σ-model such that M |= (∀ϕ)ρ and let M2 be any χ-expansion of M such
that M2 |= B. Because Mod(θ)(M2) is a ϕ-expansion of M (since Mod(θ)(M2)�ϕ = M2�χ)
which by the hypothesis satisfies (∀ϕ)ρ, we have that Mod(θ)(M2) |= ρ. By the satisfac-
tion condition for substitutions, we obtain that M2 |= θ(ρ). Since M2 was an arbitrary
expansion of M, we have thus proved that M |= (∀χ)(∧B⇒ θ(ρ)). �

Another aspect to be considered is whether the translations of the Substitutivity rule
along signature morphisms is again a Substitutivity rule in the target signature. Although
this property is not strictly necessary at the general level, because in the case of a negative
answer to this question we may add such translations to the system of rules, in fact under
some mild conditions this property holds (see Ex. 13.20 below).

Universal proof systems. Given a proof system (Sig,Sen1,Pf1) for I1 such that its
corresponding entailment system is compact, the D-universal proof system for I consists
of the free proof system

• with universal D-quantification (i.e., the meta-rule of ’Generalization’)

• over (Sig,Sen1,Pf1) plus the rules of finitary D-Substitutivity,

This is the finitary version of the universal proof system. Its infinitary variant is obtained
by considering the rules of (infinitary) D-Substitutivity, by dropping off the compactness
condition I0, and by considering the infinitary proof system for I .
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Note that the first step of the process of obtaining the D-universal proof system for
I consists of the free generation of a proof system over (Sig,Sen1,Pf1) which contains
the rules of D-Substitutivity. Although this cannot be obtained by applying directly the
free proof systems Thm. 13.3, a slightly more general version of Thm. 13.3 does apply.
We leave this detail to the reader.

We have the following important consequence of the soundness of the D-Substituti-
vity rules given by Prop. 13.25.

Corollary 13.26. If the proof system of I1 is sound, then the corresponding universal
proof system for I is also sound.

Proof. By a process similar to that of Prop. 13.5 we lift the soundness from the proof
system of I1 to the proof system that adds freely the rules of D-Substitutivity. Then by
Prop. 13.19 we lift soundness further to the free proof system with universal D-quant-
ification. �

Universal completeness

Completeness of the universal proof systems is significantly more difficult than the sound-
ness property and therefore requires more conceptual infrastructure. The universal com-
pleteness result below comes both in a finite and in an infinite variant, the finite one being
obtained by assuming the finitary version for the proof system of I1 and by adding (to the
hypotheses of the infinite one) all the finiteness hypotheses marked in brackets.

Theorem 13.27 (Universal completeness). The (finitary) D-universal proof system for
I determined by the proof system of I1 as defined above is complete if

1. the proof system of I1 is complete,

2. every signature morphism in D is (finitely) representable,

3. every set of sentences in I0 is epic basic,

4. I pres
0 has representable D-substitutions, and

5. for each set E of sentences E ⊆ Sen1(Σ) and each sentence e ∈ Sen1(Σ) we have
that

E |= e if and only if MB |= (∧E ⇒ e) for each set of sentences B⊆ Sen0(Σ)

(where MB are the models defining B as basic sets of sentences).

Proof. Assume that Γ |=Σ (∀χ)e′ for a set Γ⊆ Sen(Σ) and e′ ∈ Sen1(Σ′) where (χ : Σ→
Σ′) ∈ D. We want to show that Γ %Σ (∀χ)e′. Suppose towards a contradiction that Γ �%Σ
(∀χ)e′.

We define the set of Σ′-sentences

Γχ
1 = {ρ′ ∈ Sen1(Σ′) | Γ % (∀χ)ρ′}.
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Suppose Γχ
1 % e′. For the infinitary case we take Γ′ = Γχ

1. For the finitary case, since
the entailment system corresponding to the proof system of I1 is compact there exists a
finite Γ′ ⊆ Γχ

1 such that Γ′ % e′. Because the universal proof system of I has D-universal
quantification we have that χ(Γ) % ρ′ for all ρ′ ∈ Γχ

1, thus χ(Γ) % Γ′. Therefore χ(Γ) % e′
and again by the universal D-quantification property for the proof system of I we obtain
Γ % (∀χ)e′. This contradicts our assumption that Γ �%Σ (∀χ)e′. Thus Γχ

1 �% e′.
By the completeness of I1, Γχ

1 �% e′ implies Γχ
1 �|= e′. By the hypothesis there exists

an epic basic set of sentences B⊆ Sen0(Σ′) such that MB |= Γχ
1 but MB �|= e′. This implies

MB�χ �|= (∀χ)e′. If we proved that MB�χ |= Γ, then we reached a contradiction with Γ |=
(∀χ)e′. We will therefore focus on proving that MB�χ |= Γ.

Let (∀ϕ)e1 ∈ Γ, where (ϕ : Σ→ Σ1) ∈ D, and let N be any ϕ-expansion of MB�χ.
We have to show that N |= e1. For this we use the following lemma (which we prove
later):

Lemma 13.28. There exists a (finite) subset of sentences B′ ⊆ B and a homomorphism
h : Mϕ →MB′�χ such that the diagram below commutes:

MB′�χ
μB′�χ �� MB�χ = N�ϕ

Mϕ
h

@B�����
iϕ(N)

KK//////

where μB′ is the unique homomorphism MB′ →MB (because B′ is epic basic).

Because χ : Σ→ Σ′ of Lemma 13.28 is representable it is also quasi-representable.
By using the fact that B′ are basic it is easy to prove that χ is quasi-representable as
a presentation morphism χ : Σ → (Σ′,B′) too. Because B′ is epic basic the category of
models Mod(Σ′,B′) has the initial model 0(Σ′,B′) = MB′ , hence χ is representable as a
presentation morphism.

Because I pres
0 has representable D-substitutions, the homomorphism h : Mϕ →

MB′�χ given by Lemma 13.28 determines a substitution θ : (ϕ : Σ→ Σ1)→ (χ : Σ→
(Σ′,B′)) such that the following diagram commutes:

Mod(Σ′,B′)
iB
′

χ

∼=
��

Mod(θ)
��

MB′�χ/Mod(Σ)

h/Mod(Σ)
��

Mod(Σ1) iϕ

∼= �� Mϕ/Mod(Σ)

We have that

Mod(θ)(MB) = i−1
ϕ (h; iB

′
χ (MB)) = i−1

ϕ (h;μB′�χ) = i−1
ϕ (iϕ(N)) = N.

By (finitary) D-substitutivity we obtain Γ % (∀χ)(∧B′ ⇒ θ(e1)). This implies ∧B′ ⇒
θ(e1) ∈ Γχ

1. Since MB |= Γχ
1 we obtain MB |= ∧B′ ⇒ θ(e1). Because MB |= B′ we get

MB |= θ(e1). By the satisfaction condition for substitutions we obtain that N |= e1.
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We still owe the following proof:

Proof of Lemma 13.28. The infinitary case is rather simple: we take B′ = B
and consequently h = iϕ(N). For the finitary case, first note by using the fact that each
subset of that B is epic basic, we have that (μB f )B f⊆B finite is the directed co-limit of

(hB f ,B
′
f
)B f⊆B′f⊆B finite

MB f

hB f ,B′f ��

μB f ���
��

��
MB′f

μB′f��##
##
#

MB

where μB f and hB f ,B
′
f

are the unique model homomorphisms given by the fact that each

subset of B is epic basic. Because the reduct functors corresponding to representable sig-
nature morphisms preserve directed co-limits (cf. Prop. 6.6) we have that
(μB f �χ)B f⊆B finite is also a directed co-limit. Because ϕ is finitary representable, Mϕ is

finitely presented. Hence there exists a finite set of sentences B′ ⊆ B and a model homo-
morphism h : Mϕ →MB′�χ such that h;μB′�χ = iϕ(N). �

Representable substitutions for presentations. The only condition of the complete-
ness Thm. 13.27 which has a rather technical nature is the existence of representable sub-
stitutions for presentations. However in many situations this can be reduced to a simpler
form by the following general result.

Proposition 13.29. In any institution I0 with a sub-category D of representable signature
morphisms such that

1. every set of sentences is epic basic, and

2. the representation Mϕ of any signature morphism ϕ ∈ D is projective with respect
to D-reducts of model homomorphisms of the form 0Σ →ME for all sets E of sen-
tences,

then the institution of presentations I pres
0 has representable D-substitutions whenever I0

has representable D-substitutions.

Proof. Note that because the institution has only epic basic sets of sentences, each pre-
sentation (Σ,E) has an initial model 0(Σ,E) which is precisely ME , the model defining E
as a basic set of sentences.

Let χ1 : Σ → Σ1 and χ2 : Σ → Σ2 and let h′ : ME1�χ1 → ME2�χ2 be a Σ-model
homomorphism where Ei are sets of Σi-sentences. We have to show that h′ determines a
I pres

0 -substitution θ : (χ1 : Σ→ (Σ1,E1))→ (χ2 : Σ→ (Σ2,E2)) such that the diagram
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below commutes:

Mod(Σ2,E2) ∼=
i
E2
χ2 ��

Mod(θ)
��

(ME2�χ2)/Mod(Σ)

h′/Mod(Σ)
��

Mod(Σ1,E1)
∼=

i
E1
χ1

�� (ME1�χ1)/Mod(Σ)

Because Mχ1 is projective with respect to Mχ2 = 0Σ2�χ2 → ME2�χ2 there exists a homo-
morphism h such that the diagram below commutes:

Mχ2 = 0Σ2�χ2
�� ME2�χ2

Mχ1 = 0Σ1�χ1

h
��

�� ME1�χ1

h′
��

Because I0 has representable D-substitutions there exists a D-substitution θ : χ1 → χ2

in I0 such that the diagram below commutes:

Mod(Σ2) ∼=
iχ2 ��

Mod(θ)
��

Mχ2/Mod(Σ)

h/Mod(Σ)
��

Mod(Σ1)
∼=
iχ1

�� Mχ1/Mod(Σ)

We show that θ is the desired substitution in I pres
0 . For this we first show that for each

(Σ2,E2)-model M2, the reduct Mod(θ)(M2) is a (Σ1,E1)-model, and second we prove
that iE2

χ2 ;(h′/Mod(Σ)) = Mod(θ); iE1
χ1 (i.e., the commutativity of the first diagram in this

proof).
For showing that Mod(θ)(M2) |= E1 we use that Mod(θ)(M2) = i−1

χ1
(h; iχ2(M2)).

From the commutativity of the diagram

Mχ1 = 0Σ1�χ1
h ��

��

Mχ2 = 0Σ2�χ2

iχ2 (M2)
��

��

M2�χ2

ME1�χ1
h′

�� ME2�χ2

58??????????

we obtain that

i−1
χ1

(h′;(ME2 →M2)�χ2) : ME1 → i−1
χ1

(h; iχ2(M2)) = Mod(θ)(M2)

which implies that Mod(θ)(M2) |= E1.
For showing that iE2

χ2 ;(h′/Mod(Σ)) = Mod(θ); iE1
χ1 we take any M2 ∈Mod(Σ2,E2)

and by using again the commutativity of the last diagram above we obtain that
(iE1

χ1 )
−1(h′; iE2

χ2 (M2)) = i−1
χ1

(h; iχ2(M2)). �
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The first condition of Prop. 13.29 is one of the conditions on I0 required by Birkhoff
completeness Thm. 13.37. The second condition of Prop. 13.29 (closely related to the
concept of ‘projectively representable’ of Prop. 6.8) is very easy to establish in institutions
in which the model homomorphisms 0Σ →ME are surjective. One rather typical example
is AFOL, the atomic sub-institution of FOL, with D being the class of all signature
extensions with constants.

Corollary 13.30. AFOLpres has representable D-substitutions.

Proof. Each set E of atoms is epic basic and the model homomorphism 0Σ → ME is
surjective. The reducts of surjective model homomorphisms are surjective too. For each
signature extension with constants χ the model Mχ (which represents χ) is a free model
(i.e., term model) hence it is projective with respect to any surjective homomorphism.
AFOL has representable D-substitutions because each model homomorphism between
free models h : TΣ(X)→ TΣ(Y ) determines the Σ-substitution θ defined by θ(x) = h(x)
for each x ∈ X . Thus all conditions of Prop. 13.29 are fulfilled, hence AFOLpres has
representable D-substitutions. �

This type of argument can be replicated in many institutions, one notable exception
being the institution of the existence equations in partial algebra (PA). In this example the
model homomorphisms 0Σ →ME are not necessarily surjective.

The Substitutivity rule revisited. The conditions underlying Prop. 13.29 have also
another important consequence: they permit a significantly simpler formulation of the
Substitutivity rule which uses substitutions in the base institution rather than in the insti-
tution of the presentations. As usually, the finitary variant of the result below requires the
conditions in the brackets.

Proposition 13.31. Under the conditions of Prop. 13.29 and if the entailment system
corresponding to the proof system of I1 has (finitary) Modus Ponens for Sen0, meaning
that

Γ∪B %Σ e if and only if Γ %Σ B⇒ e

for any sets of sentences Γ ⊆ Sen1(Σ) and (finite) B ⊆ Sen0(Σ) and each sentence e ∈
Sen1(Σ), then we may use only Substitutivity rules of the form

(∀ϕ)ρ % (∀χ)θ(ρ)

where θ is any D-substitution in I0.

Proof. Let us note that the Substitutivity rules of the form

(∀ϕ)ρ % (∀χ)θ(ρ)

for θ any D-substitution in I0 are just special cases of the full Substitutivity rules by con-
sidering B = /0. Therefore we have only to show that for any D-substitution θ : (ϕ : Σ→
(Σ1, /0))→ (χ : Σ→ (Σ2,B)) in I pres

0 we can have a proof

(∀ϕ)ρ % (∀χ)(∧B⇒ θ(ρ))
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by using the Substitutivity rule in the simpler form proposed above.
The key to obtaining such proof lies in the proof of Prop. 13.29 which shows that

each I pres
0 -substitution θ : (ϕ : Σ → (Σ1, /0)) → (χ : Σ → (Σ2,B)) determines an I0-

substitution θ′ : (ϕ : Σ → Σ1)→ (χ : Σ → Σ2) such that Sen0(θ′) = Sen0(θ). By hy-
pothesis we have that (∀ϕ)ρ % (∀χ)θ(ρ). Because θ(ρ)∪B % θ(ρ) and because I1 has
Modus Ponens for Sen0 we have that θ(ρ) % B⇒ θ(ρ). Because (∀χ)θ(ρ) % (∀χ)θ(ρ) and
because the proof system of I has universal D-quantification we have that χ((∀χ)θ(ρ)) %
θ(ρ). This implies χ((∀χ)θ(ρ)) % B⇒ θ(ρ) and again by the universal D-quantification
property we obtain (∀χ)θ(ρ) % (∀χ)B⇒ θ(ρ) which leads to (∀ϕ)ρ % (∀χ)B⇒ θ(ρ). �

General Birkhoff proof systems

Birkhoff proof systems for Horn institutions refine the universal proof systems defined
above by assuming a proof system for I0 and by defining a proof system for I1 rather than
assuming a proof system for I1. Thus

• we assume a proof system (Sig,Sen0,Pf0) for I0 and

• for I1 we consider the free proof system (Sig,Sen1,Pf1) over (Sig,Sen0,Pf0) with
(finitary) Modus Ponens for Sen0, i.e., there exists a natural isomorphism

Pf1(Σ)(Γ∪B,e)∼= Pf1(Σ)(Γ,B⇒ e)

for any Γ⊆ Sen1(Σ), any (finite) B⊆ Sen0(Σ) and each e ∈ Sen1(Σ).

The Birkhoff proof system is finitary if and only if it is finitary as a universal proof system
and is generated by using the finitary version of Modus Ponens for Sen0, otherwise it is
infinitary.

Fact 13.32. The proof system of I1 is sound if the proof system of I0 is sound.

In order to instantiate the general universal completeness Thm. 13.27 to the Birkhoff
proof system we need to address the first and the last conditions of Thm. 13.27.

The following result addresses the first condition plus the compactness condition
from the definition of the finitary D-universal proof systems. As usual, the result comes
in a finitary version (with the information contained within brackets included) and in an
infinitary version.

Proposition 13.33. Let us assume that

1. each set of I0-sentences is basic, and

2. the proof system of I0 is complete (and its entailment system is compact).

Then the proof system of I1 is complete (and its entailment system is compact).

Proof. Because the proof system of I1 has (finitary) Modus Ponens for Sen0 it is enough
to prove that

Γ |= ρ implies Γ % ρ
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for each Γ ⊆ Sen1(Σ) and each ρ ∈ Sen0(Σ). Let MΓ0 be the model defining the set of
sentences Γ0 = {e ∈ Sen0(Γ) | Γ % e} as basic. We use the following couple of lemmas.

Lemma 13.34. MΓ0 |= e if and only if Γ % e for each sentence e ∈ Sen0(Σ).

Lemma 13.35. MΓ0 |= Γ.

If Γ |= ρ then by Lemma 13.35 we have that MΓ0 |= ρ. Now by Lemma 13.34 we
obtain Γ % ρ.

For the compactness of the entailment system of I1 first let us recall that the sen-
tences of I1 are of the form H ⇒C where C is an I0 sentence and H is a finite set of I0

sentences. The compactness conclusion is obtained by applying an argument similar to
those of Cor. 13.8 or of Cor.13.18 as follows. We consider the sub-system of the compact
entailments of I1; this is an entailment (sub-)system by Prop. 13.7. It contains the entail-
ment system of I0 since the latter is compact by the hypotheses. It also has the finitary
Modus Ponens for Sen0 because for any finite B ⊆ Sen0(Σ) the entailment Γ∪B % e is
compact if and only if the entailment Γ % B⇒ e is compact. Indeed, Γ∪B % e compact
means that there exists finite Γ0 ⊆ Γ such that Γ0 ∪B % e which by the Modus Ponens
for Sen0 property is equivalent to Γ0 % B⇒ e which means Γ % B⇒ e is compact. Now
because the entailment system of I1 is the least one containing the entailment system of
I0 and satisfying the finitary Modus Ponens for Sen0 property we may conclude that this
is exactly the compact sub-system of the entailment system of I1, which just means that
the entailment system of I1 is compact.

We still owe the proof of the Lemmas 13.34 and 13.35.
Proof of Lemma 13.34. The implication from right to left holds by the definition

of Γ0. For the other implication let us consider a sentence e such that MΓ0 |= e. For
any model M such that M |= Γ0, because Γ0 is basic there exists a model homomorphism
MΓ0 →M. Since MΓ0 |= e and e is basic there exists another model homomorphism Me →
MΓ0 . These give a model homomorphism Me → M which means M |= e. We have thus
shown that Γ0 |= e.

By the completeness of I0 we obtain that Γ0 % e. For the infinitary case let us take
Γ′0 = Γ0. For the finitary case, since an entailment system corresponding to the proof
system of I0 is compact, there exists Γ′0 ⊆ Γ0 finite such that Γ′0 % e. By the definition of
Γ0 we obtain that Γ % Γ′0 hence Γ % e.

Proof of Lemma 13.35. Let us consider an I1 sentence H ⇒ C ∈ Γ and let us
assume that MΓ0 |= H. By Lemma 13.34 we have that Γ |= H and because H ⇒ C ∈ Γ
and the proof system for I1 has (finitary) Modus Ponens for Sen0 we obtain that Γ % C.
By Lemma 13.34 again we deduce MΓ0 |= C. �

The following shows that the last condition of Thm. 13.27 is also fulfilled.

Proposition 13.36. Under the conditions of Prop. 13.33, for each set E of sentences
E ⊆ Sen1(Σ) and each sentence e ∈ Sen1(Σ) we have that

E |= e if and only if MB |= (∧E ⇒ e) for each set of sentences B⊆ Sen0(Σ)

(where MB are the models defining B as basic sets of sentences).
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Proof. Let e =(H⇒C) with H ⊆Sen0(Σ) and C∈Sen0(Σ). Consider the model M(E∪H)0

defining (E ∪ H)0 = {ρ ∈ Sen0(Σ) | E ∪ H |= ρ}. By Lemma 13.35 we have that
M(E∪H)0

|= E∪H. By the hypothesis this implies M(E∪H)0
|= H⇒C. Because M(E∪H)0

|=
H too, it follows that M(E∪H)0

|= C. Since C is basic there exists a homomorphism
MC →M(E∪H)0

.
Now let M be any models such that M |= E ∪H. By Lemma 13.34 we obtain that

M |= (E ∪H)0. Because (E ∪H)0 is basic, there exists a homomorphism M(E∪H)0
→M.

Together with the homomorphism MC →M(E∪H)0
this gives a homomorphism MC →M

which means M |= C. �
Propositions 13.33 and 13.36 lead to the following completeness result for Horn

institutions obtained as an instance of the general universal completeness Thm. 13.27 (as
usual the finitary version is obtained by adding the conditions in the brackets).

Theorem 13.37. The (finitary) Birkhoff proof system for a (finitary) D-Horn institution
is complete if

1. the proof system of I0 is complete (and its entailment system is compact),

2. every signature morphism in D is (finitely) representable,

3. every set of sentences in I0 is epic basic, and

4. I pres
0 has representable D-substitutions.

The Birkhoff proof system of HCL. In order to develop a concrete sound and complete
Birkhoff proof system for HCL we set the parameters of Thm. 13.37 for this example as
follows:

• the institution I is HCL,

• the institution I0 is AFOL (the atomic sub-institution of FOL),

• D is the class of all signature extensions with a finite number of constants,

• the system of proof rules for AFOL is given by the following set of rules for any
FOL signature (S,F,P):

(R) /0 % t = t for each term t
(S) t = t ′ % t ′ = t for any terms t and t ′
(T ) {t = t ′,t ′ = t ′′} % t = t ′′ for any terms t, t ′ and t ′′
(F) {ti = t ′i | 1≤ i≤ n} % σ(t1, . . . ,tn) = σ(t ′1, . . . ,t

′
n) for any σ ∈ F

(P) {ti = t ′i | 1≤ i≤ n}∪{π(t1, . . . ,tn)} % π(t ′1, . . . ,t
′
n) for any π ∈ P.

Because of the condition of Thm. 13.3 which requires the sentence translations to be
injective, we need to consider the variants of HCL and AFOL which have only injective
signature morphisms. However, by Cor. 13.4, if we work with entailment systems rather
than proof systems, this injectivity condition is no longer needed. For the rest of this
section we will ignore this issue.
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Proposition 13.38. AFOL with the above system of proof rules is sound and complete.

Proof. Soundness follows by a simple routine check. For proving the completeness, for
any set E of atoms for a signature (S,F,P) we define

≡E= {(t, t ′) | E % t = t ′}.

By (R), (S), (T ) and (P) this is an F-congruence. Then we define a model ME as follows:

– the (S,F)-algebra part of ME is defined as the quotient of the initial algebra (term)
(S,F)-algebra TF by ≡E , and

– for each relation symbol π ∈ P, we define (ME)π = {x/≡E | E % π(x)}.
The definition of (ME)π is correct because of the rule (P). Now we note that for each
(S,F,P)-atom ρ,

E % ρ if and only if ME |= ρ.

Now if E |= ρ then ME |= ρ which means E % ρ. �

We are now able to formulate the following finitary and infinitary instances of the
general Birkhoff completeness Thm. 13.37.

Corollary 13.39. The finitary Birkhoff proof system for HCL is sound and complete.
Moreover, this proof system is obtained as the free proof system

• with universal quantification, and

• such that for each quantifier-free Horn sentence H ⇒C and all sets Γ of quantifier-
free Horn sentences there exists a natural isomorphism

Pf(S,F,P)(Γ∪H,C)∼= Pf(S,F,P)(Γ,H ⇒C)

which is generated by the following system of finitary rules for a signature (S,F,P):

(R) /0 % t = t for each term t
(S) t = t ′ % t ′ = t for any terms t and t ′
(T ) {t = t ′,t ′ = t ′′} % t = t ′′ for any terms t,t ′ and t ′′
(F) {ti = t ′i | 1≤ i≤ n} % σ(t1, . . . ,tn) = σ(t ′1, . . . ,t

′
n) for any σ ∈ F

(P) {ti = t ′i | 1≤ i≤ n}∪{π(t1, . . . ,tn)} % π(t ′1, . . . ,t
′
n) for any π ∈ P

(Subst) (∀X)ρ % (∀Y )θ(ρ) for any (S,F,P)-sentence ρ and
for any substitution θ : X → TF(Y )

Corollary 13.40. The infinitary Birkhoff proof system for HCL∞ is sound and complete
for the same rules as those for Cor. 13.39.
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Exercises

13.20. [85] Consider an institution I0 with a sub-category D of representable signature morphisms
such that

1. I has weak model amalgamation,
2. I has representable D-substitutions,
3. D is stable under pushouts,
4. for each pushout of signature morphisms such that χ ∈D

Σ
ϕ ��

χ
��

Σ′

ϕ′
��

Σ1 χ1

�� Σ′1

for any Σ′-sentence ρ′ and Σ1-sentence ρ1 if ϕ′(ρ′) = χ1(ρ1), then there exists a Σ-
sentence ρ such that ρ′ = ϕ(ρ) and ρ1 = χ(ρ). (Compare this condition with the co-
amalgamation property of Ex. 4.19.)

Then the translation of any D-Substitutivity rule along a signature morphism is a D-Substitutivity
rule.

13.21. Under the conditions of Thm. 13.27, the entailment system of the finitary D-universal proof
system of I is compact.

13.22. Complete proof system for UNIV
Any complete and compact proof system for the sub-institution of FOL determined by the quantifi-
er-free sentences (i.e., sentences formed from atoms by Boolean connectives, without any quantifi-
cations), by the universal completeness Thm. 13.27 determines a complete universal proof system
for UNIV(the institution of the universal FOL sentences).

13.23. Birkhoff calculus for preordered algebras
HPOA, the institution of Horn preordered algebras, gets a sound and complete proof system ob-
tained as the free proof system

• with universal quantification, and
• such that for each quantifier-free Horn sentence H ⇒ C and all sets Γ of quantifier-free

Horn sentences there exists a natural isomorphism

Pf(S,F)(Γ∪H,C)∼= Pf(S,F)(Γ,H ⇒C)

which is generated by the following system of finitary rules for a signature (S,F):

(R) /0 % t = t for each term t
(RP) /0 % t ≤ t for each term t

(S) t = t ′ % t ′ = t for any terms t and t ′
(T ) {t = t ′,t ′ = t ′′} % t = t ′′ for any terms t,t ′ and t ′′

(TP) {t ≤ t ′,t ′ ≤ t ′′} % t ≤ t ′′ for any terms t,t ′ and t ′′
(F) {ti = t ′i | 1≤ i≤ n} % σ(t1, . . . ,tn) = σ(t ′1, . . . ,t

′
n) for any σ ∈ F

(FP) {ti ≤ t ′i | 1≤ i≤ n} % σ(t1, . . . ,tn)≤ σ(t ′1, . . . ,t
′
n) for any σ ∈ F

(Comp) {t ′1 = t1,t1 ≤ t2,t2 = t ′2} % t ′1 = t ′2 for all terms t1,t ′1,t2,t
′
2

(Subst) (∀X)ρ % (∀Y)θ(ρ) for any (S,F)-sentence ρ and for any substitution θ : X → TF(Y ).
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13.24. [36] Let I0 be an institution with a sub-category D of representable signature morphisms
such that

1. every set of sentences is epic basic, and

2. for any signature morphism χ1 : Σ → Σ1 and χ2 : Σ → Σ2 in D and any set E2 of
Σ2-sentences, every homomorphism h : Mχ1 →ME2�χ2 determines an I pres

0 -substitution
θh : (χ1 : Σ→ Σ1)→ (χ2 : Σ→ (Σ2,E2)) such that the diagram below commutes:

Mod(Σ2,E2)
iχ2 ��

Mod(θh)
��

(ME2�χ2)/Mod(Σ)

h/Mod(Σ)
��

Mod(Σ)
iχ1

�� Mod(Σ1)

Then the institution of presentations I pres
0 has D-substitutions.

13.25. [36] Birkhoff calculus for partial algebras
QEω(PA), the institution of partial algebras with finitary quasi-existence equations as sentences,
gets a sound and complete proof system obtained as the free proof system

• with universal D-quantification for D the class of signature extensions with a finite num-
ber of total constants, and

• such that for each quantifier-free Horn sentence H ⇒ C and all sets Γ of quantifier-free
Horn sentences there exists a natural isomorphism

Pf(S,T F,PF)(Γ∪H,C)∼= Pf(S,T F,PF)(Γ,H ⇒C)

which is generated by the following system of finitary rules for a signature (S,T F,PF):

(S) t
e= t ′ % t ′ e= t for any terms t and t ′

(T ) {t e= t ′,t ′ e= t ′′} % t
e= t ′′ for any terms t,t ′ and t ′′

(F) {ti e= t ′i | 1≤ i≤ n}∪{def(σ(t1, . . . ,tn)),def(σ(t ′1, . . . ,t
′
n))}

% σ(t1, . . . ,tn)
e= σ(t ′1, . . . ,t

′
n) for any σ ∈ T F ∪PF

(Totality) {def(ti) | 1≤ i≤ n} % def(σ(t1, . . . ,tn)) for any σ ∈ T F
(Subterm) {def(σ(t1, . . . ,tn))} % {def(ti) | 1≤ i≤ n} for any σ ∈ T F ∪PF

(Subst) (∀X)ρ % (∀Y )(
∧

x∈X def(θ(x))⇒ θ(ρ)) for any (S,T F,PF)-sentence ρ
and for any substitution θ : X → TT F∪PF(Y ).

(Hint: Since the second condition of Prop. 13.29 does not hold, apply the result of Ex. 13.24.)
Extend the Birkhoff calculus for QEω(PA) to the institution QE(PA) of the infinitary quasi-

existence equations.

Notes. Usually, categorical logic works with categories of sentences, where morphisms are (equiv-
alence classes) of proof terms [109]. However, this captures provability between single sentences
only, while logic traditionally studies provability from a set of sentences. Proof systems have been
defined in [137] that reconcile both approaches by considering categories of sets of sentences. This
also avoids one of the big faults of categorical logic, that the definition of implication depends on
(the existence of) conjunctions. Systems of proof rules were introduced in [52] which also devel-
oped the free proof system Thm. 13.3 and its compactness Cor. 13.8. Note that our concept of proof
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rules admits multiple conclusions, which constitute a slight generalization of the usual practice in
actual logics which use only single conclusion rules. Lawvere [112] defined quantification as adjoint
to substitutions, while [137] defines quantification as adjoint to sentence translation along signature
morphisms. The free proof system with (universal) quantification construction (Thm. 13.17) and its
compactness property (Cor. 13.18) have been developed in [52].

Entailment systems were probably defined for the first time under the name of π-institutions
in [67], and later modified by [123] in order to formalize the notion of syntactic consequence. [90]
gives a similar definition but restricted to finite sets of sentences. Meseguer [123] showed how
to construct an institution from an entailment system by producing a model theory directly from
a comma category construction on theories, and [58] extends this construction by embedding the
category of entailment systems into the category of [ordinary] institutions.

The general soundness results given by Prop. 13.5 and 13.19 are due to [52].
Birkhoff calculus and its completeness result have been developed for a single-sorted con-

ditional version of EQL in [24]; this has been extended to many sorts in [78], and to arbitrary
institutions in [36]. The layered approach to institution-independent completeness was invented by
[28] within the framework of specification theory. Later this was extended to Gödel completeness
[147] and Birkhoff completeness [36]. The latter work revealed the surprisingly close relationship
between the completeness of the institution of universal sentences (UNIV) and the general concept
of Birkhoff completeness.



Chapter 14

Specification

This chapter is devoted to some applications of institution-independent model theory to
specification theory, thus it digresses slightly from the main topic of the book.

Apart from their practical significance, applications to specification theory also
have a strong historical significance. The concept of institution and that of institution-
independent model theory arose from specification theory due to a high proliferation of
logics in the practice of formal software specification. It is now standard practice to base
each specification language rigorously on some institution. A ‘basic’ specification would
then appear as a finite set of sentences in some signature of the institution. ‘Structured’
specifications can be constructed from the basic ones by several specification building op-
erators, which are defined at the institution-independent level. Based on the satisfaction
relation of the institution and on the semantics of the specification building operators, we
can assign to each structured specification a signature and a class of models. This is the
‘denotation’ of the specification. In this manner, the structured specifications of an insti-
tution can be organized as an institution too, which inherits many of the properties of the
base institution.

We show that under some conditions structured specifications can be reduced to
normal forms. This result is further used for showing that by assuming model amalgama-
tion and interpolation, any sound and complete proof system for the base institution can
be lifted to the structured specifications.

Specification with ‘predefined types’ extends ordinary specification with predefined
entities, such as real numbers, both at the semantic and syntactic level. This extension is
required by the reality of actual specification languages. In the final section of this chapter
we discuss predefined types from an institution-independent perspective, by constructing
an institution of predefined types on top of any base institution that has a system of ele-
mentary diagrams.
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14.1 Structured Specifications

In this section we define the concept of structured specifications over arbitrary institutions
and investigate some fundamental semantic properties of structured specifications. For
this we need the following concept.

Intersection of signatures. Recall (from Sect. 4.5) that an institution I is inclusive
when its category of signatures Sig comes equipped with an inclusion system such that
Sen(Σ)⊆ Sen(Σ′) whenever Σ ↪→ Σ′ is an inclusion of signatures.

Given two signatures Σ1 and Σ2 in an inclusive institution, let Σ1∪Σ2 be their union,
i.e., their least upper bound in the category of inclusions of signatures. Then their inter-
section Σ1 ∩ Σ2 is defined as the unique pullback square such that Σ1 ∩ Σ2 ↪→ Σ1 and
Σ1∩Σ2 ↪→ Σ2 are inclusions.

Σ1∩Σ2 ��

��

Σ1

��
Σ2 �� Σ1∪Σ2

The existence and the uniqueness of this pullback square can be shown quite easily
(Ex. 4.48). However from this assumption it does not follow that such intersection-union
squares are pushouts too. Since this property is rather desirable for applications and it
also holds in many concrete situations of interest, let us assume it for this chapter. Hence

The intersection-union squares of signatures are pushouts.

Structured specifications. Given an inclusive institution I , its structured specifications
(or just specifications for short) are defined from the finite presentations by iteration of
several specification building operators. The semantics of each specification SP is given
by its signature Sig[SP] and its category of models Mod[SP]. Below we sometimes define
only the class of objects for each Mod[SP], the category Mod[SP] being the corresponding
full subcategory of Mod(Sig(SP)).

PRES. Each finite presentation (Σ,E) is a specification such that

• Sig[(Σ,E)] = Σ, and
• Mod[(Σ,E)] = ModI (Σ,E).

UNION. For any specifications SP1 and SP2 we can take their union SP1∪SP2 with

• Sig[SP1∪SP2] = Sig[SP1]∪Sig[SP2], and
• |Mod[SP1∪SP2]| = {M ∈ModI (Sig[SP1 ∪SP2]) | M�Sig[SPi] ∈Mod[SPi] for

each i ∈ {1,2}.
TRANS. For any specification SP and signature morphism ϕ : Sig(SP) → Σ′ we can

take its translation along ϕ denoted by SP� ϕ and such that

• Sig[SP� ϕ] = Σ′, and
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• |Mod[SP� ϕ]|= {M′ ∈ModI (Σ′) | M′�ϕ ∈Mod[SP]}.
DERIV. For any specification SP′ and and signature morphism ϕ : Σ→ Sig(SP′) we can

take its derivation along ϕ denoted by ϕ | SP′ and such that

• Sig[ϕ | SP′] = Σ, and
• |Mod[ϕ | SP′]|= {M′�ϕ | M′ ∈Mod[SP′]}.

FREE. For any specification SP′ and signature morphism ϕ : Σ→ Sig[SP′] we can take
the persistently free specification of SP′ along ϕ denoted SP′ϕ and such that

• Sig[SP′ϕ] = Sig[SP′], and
• |Mod[SP′ϕ]|={M′ ∈Mod[SP′] |M′ strongly persistently βSP;ModI (ϕ)-free},

where βSP is the subcategory inclusion Mod[SP]→ModI (Sig[SP]).

Equivalent specifications. Two specifications SP1 and SP2 are equivalent, denoted
SP1 |=| SP2, when Sig[SP1] = Sig[SP2] and Mod[SP1] = Mod[SP2]. In general it is pos-
sible to have different specifications that are equivalent. When we are interested only in
the semantics of specifications rather than in the way they are constructed, it does make
sense to consider specifications modulo this equivalence relation.

Specification morphisms. A specification morphism ϕ : SP1 → SP2 between specifi-
cations SP1 and SP2 is a signature morphism ϕ : Sig[SP1]→ Sig[SP2] such that M�ϕ ∈
Mod[SP1] for each M ∈Mod[SP2].

Fact 14.1. For any institution I , the specifications and their morphisms under the obvious
composition form a category, denoted SpecI .

Models and sentences of specifications. Note that Mod can be therefore regarded as a
functor Mod : SpecI → Catop.

An SP-sentence for a specification SP is any Sig[SP]-sentence; this determines a
functor Sen : SpecI → Set.

A model M ∈Mod[SP] satisfies a SP-sentence ρ if and only if M |=Sig[SP] ρ in the
original institution.

Fact 14.2. Specifications together with their models and sentences form an institution of
(structured) specifications on top of the original institution I . We denote the institutions
of the specifications over I by I spec.

The institution I will be referred to as the ‘base institution’ while I spec as the ‘in-
stitution of specifications’.

Proposition 14.3. For any institution I , I spec is an institution. Moreover, there exists a
structural institution adjoint morphism (Sig,1,β) : I spec → I , where for each specifica-
tion SP, βSP is the subcategory inclusion ModI [SP] ↪→Mod(Sig[SP]).
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Special signature morphisms. A specification morphism ϕ : SP1 → SP2 is

• Refinement when Sig[SP1] = Sig[SP2] and ϕ is an identity (as signature morphism).

• Inclusion when ϕ is an abstract inclusion (as signature morphism). Specification
inclusions correspond to the software engineering concept of specification import.

• Strong when SP2 |=| SP1 � ϕ.

• Closed when SP1 |=| ϕ | SP2.

Inclusions of specifications. Let SpecI /|=| be the ‘quotient’ of the category of specifi-
cations under specification equivalence |=|. The class of objects of SpecI /|=| is {SP/|=| |
SP ∈ |SpecI |} while the set of the arrows SP1/|=| → SP2/|=| is just the set of the spec-
ification morphisms ϕ : SP1 → SP2. The correctness of this definition follows by the
following simple remark.

Fact 14.4. If SP1 |=| SP′1 and SP2 |=| SP′2 and h : SP1 |=| SP2 is a specification morphism,
then h : SP′1 |=| SP′2 is also a specification morphism.

The following result resembles the lifting of inclusion systems from signatures to
theories given by Prop. 4.24.

Proposition 14.5. SpecI /|=| has two inclusion systems inheriting the inclusion system of
the signatures:

• a closed one, where abstract inclusions of specifications are closed abstract inclu-
sions of signatures and abstract surjections of specifications are abstract surjections
of signatures, and

• a strong one, where abstract inclusions of specifications are abstract inclusions of
signatures and abstract surjections of specifications are strong abstract surjections
of signatures.

Moreover, the strong inclusion system for specifications has unions where (SP1/|=|)∪
(SP2/|=|) = (SP1∪SP2)/|=| for any specifications SP1 and SP2.

Proof. Any specification morphism ϕ : SP → SP′ factors as a composition between a
specification surjection and a specification inclusion

SP

eϕ   @
@@

@@
ϕ �� SP′

ϕ(SP)
iϕ

!!AAAAA

where

• ϕ(SP) = iϕ | SP′ in the case of the closed inclusion system, and

• ϕ(SP) = SP� eϕ in the case of the strong inclusion system
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and ϕ = eϕ; iϕ is the factorization of ϕ as a composition between a surjection of signatures
and an inclusion of signatures.

Notice that ϕ(SP) can be replaced by any other equivalent specification, hence the
above factorization is unique only modulo equivalence of specifications. �

Co-limits of specifications. Many structuring constructs in actual specification lan-
guages rely on co-limits, especially pushouts, of specifications. One of them is the instan-
tiation of parameterized specifications. A parameterized specification can be regarded as
a specification morphism ϕ : SP → SP′ where SP is the parameter and SP′ is the body
of the specification. The abstract parameter SP can be interpreted into another concrete
specification SP1 by a specification morphism φ : SP → SP1. The result SP′1 of the in-
stantiation of the parameter is given by a pushout of ϕ and φ.

Co-limits of signatures can be lifted to specifications in a manner similar to that of
Prop. 4.2 lifting co-limits from signatures to presentations.

Proposition 14.6. In any institution I , the signature functor Sig : SpecI → SigI from
the specifications to signatures lifts finite co-limits.

Proof. We prove this result for the particular case of pushouts, the same argument work-
ing as well for any finite co-limit.

Consider any specification morphisms φ : SP→ SP′ and ϕ : SP→ SP1 and take a
pushout of signatures

Sig[SP]
φ ��

ϕ
��

Sig[SP′]
ϕ′��

Sig[SP1] φ1

�� Σ′1

We define SP′1 = (SP′ �ϕ′)∪ (SP1 �φ1). Notice that ϕ′ : SP′ → SP′1 and φ1 : SP1 → SP′1
are specification morphisms. We prove that SP′1 defines a pushout for φ and ϕ.

SP
φ ��

ϕ
��

SP′

ϕ′
�� θ′

VW

SP1
φ1 ��

θ1 9;

SP′1
γ

���
��

��
��

SP′′

Consider θ′ : SP′ → SP′′ and θ1 : SP1 → SP′′ specification morphisms. By the pushout
property for signatures there exists a unique signature morphism γ : Sig[SP′1]→ Sig[SP′′]
such that ϕ′;γ = θ′ and φ1;γ = θ1.

We still have to show that γ is a specification morphism. Let M′′ ∈Mod[SP′′]. Then
M′′�γ�ϕ′ = M′′�θ′ ∈Mod[SP′] and M′′�γ�φ1 = M′′�θ1 ∈Mod[SP1] which shows that M′′�γ ∈
Mod[SP′1]. �
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Model amalgamation for specifications. An immediate but important corollary of the
construction of co-limits of specifications given by Prop. 14.6 is that model amalgamation
properties also lift from signatures to specifications. Below we formulate this for ordinary
model amalgamation, but it can be replicated easily to other forms of model amalgamation
such as weak model amalgamation or semi-exactness.

Proposition 14.7. The institution of specification has model amalgamation whenever the
base institution has model amalgamation.

Proof. For any pushout of specifications

SP
φ ��

ϕ
��

SP′

ϕ′��
SP1 φ1

�� SP′1

and any SP′-model M′ and any SP1-model M1 such that M′�φ = M1�ϕ we consider the
unique amalgamation M′

1 = M′ ⊗M1 in Sig[SP′1] given by the amalgamation property of
the base institution.

By Prop. 14.6 we know that SP′1 = (SP′ � ϕ′)∪ (SP1 � φ1). This implies that M′
1 ∈

Mod[SP′1]. �

Fundamental parameterization theorem

The following result provides foundations for the semantics of parameterized specifica-
tions. Although formulated for any institution, in applications this result is in fact inter-
preted in institutions of specifications for pushout squares of specifications.

Theorem 14.8. Consider a commuting square of signatures in an arbitrary institution.

Σ
φ ��

ϕ
��

Σ′

ϕ′��
Σ1 φ1

�� Σ′1

1. If this is a weak model amalgamation square, then φ1 is conservative whenever φ is
conservative.

2. If this is an amalgamation square both for models and model homomorphisms and
Mod(φ) has a retract (−)φ, then Mod(φ1) has a retract (−)φ1 such that the follow-
ing diagram commutes:

Mod(Σ)
(−)φ

�� Mod(Σ′)

Mod(Σ1)

Mod(ϕ)
��

(−)φ1

�� Mod(Σ′1)
Mod(ϕ′)
��
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3. If this is an amalgamation square both for models and model homomorphisms,
then for each Σ′1-model M′

1, M′
1 is strongly persistently φ1-free whenever M′

1�ϕ′ is
strongly persistently φ-free.

4. If in addition φ is strongly persistently liberal (i.e., the adjunction determined by
the reduct model functor is strongly persistent), then φ1 is also strongly persistently
liberal.

Moreover, for each Σ′1-model M′
1, M′

1 is strongly persistently φ1-free if and
only if M′

1�ϕ′ is strongly persistently φ-free.

Proof. 1. Any Σ1-model M1 admits an φ1-expansion which is the amalgamation between
M1 and any φ-expansion M′ of M1�ϕ.

2. When Mod(φ) has a retract, the argument of 1 can be used to define the retract
functor (−)φ1 . The functoriality of (−)φ1 follows from the amalgamation property in the
strong form.

The commutativity of retracts with model reduct functors follows from the fact that
for each Σ1-model M1, Mφ1

1 is the amalgamation between M1 and (M1�ϕ)φ.
3. Consider any Σ′1-model M′

1 such that M′
1�ϕ′ is strongly persistently φ-free. Let

h1 : M′
1�φ1 → N′1�φ1 be a Σ1-model homomorphism for some Σ′1-model N′1. Let h =

h1�ϕ : M′
1�φ1�ϕ → N′1�φ1�ϕ. Because M′

1�ϕ′ is strongly persistently φ-free, there exists
a unique h′ : M′

1�ϕ′ → N′1�ϕ′ such that h′�φ = h. Let h′1 : M′
1 → N′1 be the amalgamation

of h′ and h1. Then h′1 is the unique φ1-expansion of h1.
4. Follows from 2 and 3 �

The following corollary shows the stability of the persistently free specifications
under pushouts, which gives foundations for parameterized specification.

Corollary 14.9. For any pushout of specifications in a semi-exact institution

SP
φ ��

ϕ
��

SP′

ϕ′��
SP1 φ1

�� SP′1

such that φ is a strongly persistent specification morphism, we have that SP′φ1
1 |=| SP′1∪

(SP′φ � ϕ′) and that

SP
φ ��

ϕ
��

SP′φ

ϕ′��
SP1 φ1

�� SP′φ1
1

is a pushout of specifications.
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Normal forms of structured specifications

Flattening structured specifications. Any specification SP can be ‘flattened’ to a finite
presentation Flat(SP) as follows:

• Flat(Σ,E) = (Σ,E) for any presentation (Σ,E),

• Flat(SP∪SP′) = (Σ∪Σ′,E ∪E ′) when Flat(SP) = (Σ,E) and Flat(SP′) = (Σ′,E ′),

• Flat(SP�ϕ) = (Σ′,ϕ(E)) for each signature morphism ϕ : Σ→ Σ′ when Flat(SP)=
(Σ,E),

• Flat(ϕ | SP′) = (Σ,ϕ−1(E ′)) for each signature morphism ϕ : Σ → Σ′ when
Flat(SP′) = (Σ′,E ′), and

• Flat(SPϕ) = Flat(SP) for each signature morphism ϕ : Σ→ Sig[SP].

Note that Flat can extended to a functor SpecI → PresI .
By simple applications of the satisfaction condition we obtain that:

Fact 14.10. Any specification SP refines its flattening Flat(SP). When SP is formed only
from PRES, UNION, and TRANS, we have that SP |=| Flat(SP).

Normal forms. Although the specifications formed also with DERIV cannot be flat-
tened to semantically equivalent finite presentations, they admit equivalent normal forms
of the form φ | (Σ,E) where φ is a signature morphism and (Σ,E) is a presentation. Normal
forms of specifications are not unique, however they are unique modulo isomorphisms.

Let us assume the institution has pushouts for signatures. Below we define the rela-
tion has normal form between specifications as the least relation defined by

• (Σ,E) has normal form 1Σ | (Σ,E) for each presentation (Σ,E),

• (SP1 ∪ SP2) has normal form φ | (Σ,φ′1(E
′
1)∪ φ′2(E

′
2)) for each specifications SP1

and SP2, where

– SPk has normal form φk | (Σ′k,E ′k) for each k ∈ {1,2}, with φk : Σk → Σ′k,
– φ′1 and φ′2 constitute a pushout co-cone for i1;φ1 and i2;φ2, where ik : Σ1 ∩

Σ2 ↪→ Σk are the inclusions of the intersection of the signatures, and

Σ1∩Σ2
i1 ��

i2 ��

Σ1

��

φ1 �� Σ′1

φ′1

��

Σ2 ��

φ2 ��

Σ1∪Σ2 φ

CC$$
$$$

$

Σ′2 φ′2
�� Σ

– φ : Σ1∪Σ2 → Σ is the unique signature morphism making the diagram above
commute (by using the basic assumption of this chapter that the intersection-
union of a square of signatures is a pushout).
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• SP � ϕ has normal form φ′ | (Σ′1,ϕ1(E1)) when SP has normal form φ | (Σ1,E1) and
the square below is a pushout

Σ
φ ��

ϕ
��

Σ1

ϕ1��
Σ′

φ′
�� Σ′1

• ϕ | SP′ has normal form (ϕ;φ) | (Σ′,E ′) when SP′ has normal form φ | (Σ′,E ′).

The uniqueness of the normal forms.

Theorem 14.11. Assume the base institution has model amalgamation. For each specifi-
cation SP, if ϕ | (Σ,E) is one of its normal forms then SP |=| ϕ | (Σ,E).

Moreover, if both ϕ1 | (Σ1,E1) and ϕ2 | (Σ2,E2) are normal forms of SP, then there
exists an isomorphism of presentations i : (Σ1,E1)→ (Σ2,E2) such that ϕ1; i = ϕ2.

Proof. We prove this result by induction on the structure of the specification SP. The base
case is when SP is a presentation; in this case the conclusion of the theorem is obvious.

For the induction step for UNION, consider specifications SP1 and SP2 satisfying
the conclusion of the theorem and let us prove the conclusion for SP1 ∪ SP2. We use
the notation from the definition of normal forms. We have that Sig[SP1 ∪SP2] = Sig[φ |
(Σ,φ′1(E ′1)∪φ′2(E ′2))].

Let M′ ∈Mod[φ | (Σ,φ′1(E ′1)∪φ′2(E ′2))]. There exists M ∈Mod(Σ,φ′1(E ′1)∪φ′2(E ′2))
such that M�φ = M′. Let M′

1 = M�φ′1 and M′
2 = M�φ′2 . We have that M′

1 |= E ′1 and M′
2 |=

E ′2. Also M′�Σ1 = M′
1�φ1 and M′�Σ2 = M′

2�φ2 , which shows that M′�Σk ∈Mod[SPk] since
SPk |=| φk | (Σ′k,E ′k), hence M′ ∈Mod[SP1∪SP2].

On the other hand, for each M′ ∈ Mod[SP1 ∪ SP2], M′�Σk = M′
k�φk with M′

k ∈
Mod(Σ′k,E

′
k) (because SPk |=| φk | (Σ′k,E ′k)) for each k ∈ {1,2}. Notice that M′

1�(i1;φ1) =
M′�Σ1∩Σ2 = M′

2�(i2;φ2), hence, because the institution has model amalgamation, there ex-
ists a Σ-model M such that M�φ′1 = M′

1 and M�φ′2 = M′
2. By the satisfaction condition

we have that M |= φ′1(E ′1)∪ φ′2(E ′2). Because M�φ�Σ1 = M′�Σ1 and M�φ�Σ2 = M′�Σ2 , by
the model amalgamation property of the institution we have that M�φ = M′. Therefore
M′ ∈Mod(Σ,φ′1(E ′1)∪φ′2(E ′2)).

For the induction step for TRANS, assume that SP |=| φ | (Σ1,E1) and consider a Σ′-
model M′. Then M′ ∈Mod[SP�ϕ] is equivalent to M′�ϕ ∈Mod[SP] which is equivalent to
the existence of M1 ∈Mod(Σ1,E1) with M1�φ = M′�ϕ which by the model amalgamation
property of the institution is further equivalent to the existence of M′

1 ∈Mod(Σ′1,ϕ1(E1))
with M′

1�φ′1 = M′.
For DERIV, the first part of the conclusion of the theorem follows by a simple

application of the satisfaction condition of the institution.
The second part of the conclusion of the theorem follows by the uniqueness of the

pushouts modulo isomorphisms. �
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Exercises

14.1. The specification building operator UNION can be replaced by its particular version where
SP1 and SP2 have the same signature. The general union of any specifications can be obtained from
translations and the union over the same signature.

14.2. Algebraic properties of the structuring of specifications

• For any specifications SP, SP′ and SP′′

– SP∪SP′ |=| SP′ ∪SP,
– SP∪SP |=| SP,
– (SP∪SP′)∪SP′′ |=| SP∪ (SP′ ∪SP′′).

• For any specification SP and any signature morphisms ϕ : Sig[SP]→ Σ′ and ϕ′ : Σ′ → Σ′′

SP� (ϕ;ϕ′) |=| (SP�ϕ)�ϕ′.

• For any specifications SP1 and SP2 and any signature morphism ϕ : Sig[SP1∪SP2]→ Σ

(SP1∪SP2)�ϕ |=| (SP1 � (i1;ϕ))∪SP2 � (i2;ϕ))

where ik is the inclusion Sig[SPk] ↪→ Sig[SP1∪SP2] for k ∈ {1,2}.
• For any specification SP and any signature morphisms ϕ′ : Σ′′ →Σ′ and ϕ : Σ′ → Sig[SP],

(ϕ′;ϕ) | SP |=| ϕ′ | ϕ | SP.

14.3. Assume the institution is semi-exact and consider any specifications SP1 and SP2. Let i be
the signature inclusion Sig[SP1]∩ Sig[SP2] ↪→ Sig[SP1]∪ Sig[SP2], and for k ∈ {1,2} let ik be the
signature inclusion Sig[SP1]∩Sig[SP2] ↪→ Sig[SPk]. Then

i | (SP1∪SP2) |=| (i1 | SP1)∪ (i2 | SP2).

14.4. (a) Given a specification SP and a signature morphism ϕ : Sig[SP] → Σ′, then SP |=| ϕ |
(SP�ϕ).
(b) On the other hand, given a specification SP′ and a signature morphism ϕ : Σ→ Sig[SP′], then
SP′ is a refinement of (ϕ | SP)�ϕ.

14.5. Interpolation for structured specifications
The following Craig interpolation property holds for specifications. For any weak amalgamation
square of signatures

Σ
φ ��

ϕ
��

Σ′

ϕ′��
Σ1 φ1

�� Σ′1

any Σ′-specification SP′ and any Σ1-specification SP1 such that SP′ �ϕ′ refines SP1 �ϕ1, there exists
a Σ-specification SP such that SP′ refines SP�φ and SP�ϕ refines SP1. (Hint: define SP = φ | SP′.)

14.6. For any specification SP and any signature morphisms φ : Σ′ → Σ and ϕ : Σ→ Sig[SP] such
that the model reduct functor Mod(φ) is faithful, SPφ;ϕ refines SPϕ.

14.7. For any exact institution that has an initial signature, denoted 0, for each presentation (Σ,E),

Mod[(Σ,E)ϕΣ ] = {M |M initial (Σ,E)−model}
where ϕΣ : 0→ Σ is the unique signature morphism from 0 to Σ.
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14.8. Intersection of structured specifications
Define the intersection SP1 ∩SP2 of any specifications SP1 and SP2 as a new specification build-
ing operation and use it for showing that the signature functor from specifications to signatures
Sig : SpecI → SigI lifts pullbacks.

14.9. Elementary diagrams for structured specifications
Consider an inclusive (base) institution I with elementary diagrams ι such that for each Σ-model
M, the elementary extension ιΣ(M) : Σ→ ΣM is an inclusion. Then I spec has elementary diagrams.
(Hint: The elementary diagram of a model M of a specification SP is SP→ SP∪ (ΣM ,EM) where
Σ = Sig[SP] and Σ→ (ΣM ,EM) is the elementary diagram of M in I .)

14.10. Each persistently liberal institution comorphism (Φ,α,β) : I → I ′ determines a canonical
institution comorphism (Φ1,α1,β1) : I spec → (I ′)spec such that the diagram of institution comor-
phisms below commutes:

I
(Φ,α,β) ��

��

I ′

��
I spec

(Φ1,α1,β1)
�� (I′)spec

14.2 Specifications with Proofs

〈T , D〉-specifications. Often it is necessary and meaningful to restrict the signature
morphisms of an institution I used by the TRANS and DERIV specification structuring
operators to special classes T and D, respectively, of signature morphisms. The specifi-
cations thus built by PRES, UNION, TRANS by morphisms in T , and DERIV by mor-
phisms in D, are called 〈T , D〉-specifications. Note that FREE is not considered here.
Let us denote the category of 〈T , D〉-specifications by SpecT ,D . The resulting institution
of the 〈T , D〉-specifications is denoted I spec

T ,D .

Extending proof systems to specifications. Given an institution with proofs I = (Sig,
Sen,Mod, |=,Pf) and classes of signature morphisms T ,D ⊆ Sig, the institution I spec

T ,D of
〈T , D〉-specifications can be enhanced with a proof system by taking the initial proof
system such that

(base) for each specification SP

Γ %SP E if Γ %Sig[SP] E

(pres) for each finite presentation (Σ,E)

/0 %(Σ,E) E

(deriv) and it satisfies the (meta-)rule

d(Γ) %SP′ d(E) implies Γ %d|SP′ E

for each d ∈D with d : Σ→ Sig[SP′].
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Proposition 14.12. There exists the initial proof system PfT ,D for 〈T , D〉-specifications
satisfying (base), (pres) and (deriv) defined above.

Proof. Let us describe rather informally the construction of PfT ,D . This can be done by
the following two steps:

1. for each presentation (Σ,E) we add rules PΣ,E : /0 → E to the Σ-proofs (from I )
such that ϕ(PΣ,E) = PΣ′,ϕ(E) for each signature morphism ϕ : Σ→ Σ′, and we take
the free proof system which preserves the horizontal and vertical composition of the
original proofs of I , and

2. while Γ �%d|SP′ E for some specification SP′ and (d : Σ→ Sig[SP′]) ∈ D such that
d(Γ) %SP′ d(E), we add a d|SP′-proof Γ→ E and take again the free proof system
which preserves the horizontal and vertical composition of the existing proofs.

The formal construction can be done in the manner of constructions of the free proof
systems over systems of rules (Thm. 13.3) and of construction of the free proof systems
with quantification (Thm. 13.17). �

Soundness

The soundness of the proof system can be lifted easily from the base institution to the
institution of structured specifications.

Proposition 14.13. For any sound institution with proofs I , the corresponding institution
with proofs I spec

T ,D of structured 〈T , D〉-specifications is also sound.

Proof. Soundness of I spec
T ,D means that there exists a comorphism of proof systems

(1,1,γ) : (SpecT ,D ,Sen,PfT ,D)→ (SpecT ,D ,Sen, |=)

where (SpecT ,D ,Sen, |=) is the semantic proof system determined by the institution I spec
T ,D

of 〈T , D〉-specifications.
By Prop. 14.12 it is enough to show that the semantic proof system (SpecT ,D ,Sen,

|=) satisfies properties (base), (pres), and (deriv). Indeed these hold as follows:

• Property (base) holds because for each specification SP if Γ %Sig[SP] E , then by the
soundness of the base institution I we have that Γ |=Sig[SP] E . This implies Γ |=SP E .

• Property (pres) means that for each presentation (Σ,E) we have that /0 |=(Σ,E) E ,
which is immediate.

• Property (deriv) means that d(Γ) |=SP′ d(E) implies Γ |=d|SP′ E . Consider a model
M ∈Mod[d | SP] such that M |= Γ. There exists a model M′ ∈Mod[SP′] such that
M = M′�d . By the satisfaction condition it follows that M′ |= d(Γ) which by the
hypothesis implies M′ |= d(E). By the satisfaction condition (in the reverse direction
from its previous use) we have M |= E .

�
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Completeness

The lifting of completeness from the base institution to the institution of (T ,D)-specifi-
cations requires more conditions than the lifting of soundness.

Theorem 14.14. Consider a base inclusive institution with proofs I = (Sig,Sen,Mod,
|=,Pf) and classes of signature morphisms T and D such that

1. the classes T and D of signature morphisms satisfy the following properties:

(a) D ⊆ T and each signature inclusion belongs to T ,
(b) for each d1 : Σ→ Σ1 and d2 : Σ→ Σ2 with d1,d2 ∈D, there exists a pushout

square

Σ
d1 ��

d2 �� d :<5
55

55
Σ1

��
Σ2 �� Σ′

such that d ∈D,
(c) for each t : Σ→ Σ′ in T and d : Σ→ Σ1 in D there exists a pushout square

Σ t ��

d
��

Σ′

d′��
Σ1 �� Σ′1

such that d′ ∈D,

2. I is complete,

3. I has model amalgamation, and

4. I has (D,T )-Craig-Robinson interpolation.

Then the proof system PfT ,D for the institution I spec
T ,D of (T ,D)-specifications is complete.

Proof. We prove by induction on the structure of the specification SP that Γ %SP E if
Γ |=SP E . For this proof we will systematically use the existence and uniqueness of nor-
mal forms for specifications formed with PRES, UNION, TRANS and DERIV given by
Thm.14.11.

PRES. Consider a presentation (Σ,E) and assume Γ |=(Σ,E) E1. This implies Γ∪
E |=Σ E1. By the completeness of the base institution I we have that Γ∪E %Σ E1 which
implies Γ∪E %(Σ,E) E1.

By (pres) we have that %(Σ,E) E which gives Γ %(Σ,E) Γ∪ E . From this and Γ∪
E %(Σ,E) E1 we obtain Γ %(Σ,E) E1.

UNION. Consider a union of specifications SP1∪SP2. Because arbitrary union of
specifications can be reduced to translations and union of specifications having the same
signature, and because all signature inclusions are in T , we may assume that Sig[SP1] =
Sig[SP2] = Σ. Let us assume Γ |=SP1∪SP2 E . Consider a normal form d1 | (Σ1,Γ1) for
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SP1, a normal form d2 | (Σ2,Γ2) for SP2, and a normal form d | (Σ′,d′1(Γ1)∪d′2(Γ2)) for
SP1∪SP2 such that the square below is a pushout:

Σ
d1 ��

d2 �� d :<5
55

55
Σ1

d′1��
Σ2

d′2
�� Σ′

Let M′ be a Σ′-model such that M′ |= d(Γ)∪d′1(Γ1)∪d′2(Γ2). This implies that M′�d |= Γ
and M′�d ∈ Mod[SPk] (for each k ∈ {1,2}, M′�d ∈ Mod[SPk] because M′�d′k |= Γk and
SPk |=| dk | (Σk,Γk)), which implies M′�d |= E , hence M′ |= d(E). This shows that d(Γ)∪
d′1(Γ1)∪d′2(Γ2) |= d(E).

But d2 ∈ T because D ⊆ T , hence the pushout above is a CRI square. Therefore,
there exists an interpolant I ⊆ Sen(Σ) such that Γ1 |= d1(I) and d2(Γ)∪ Γ2 ∪ d2(I) |=
d2(E).

Because SP1 |=| d1 | (Σ1,Γ1), we have that |=SP1 I. By the induction hypothesis this
implies %SP1 I. Translating along the inclusion SP1 → SP1∪SP2 we obtain %SP1∪SP2 I.

Because SP2 |=| d2 | (Σ2,Γ2) we have that Γ∪ I |=SP2 E . By the induction hypothesis
this implies Γ∪ I %SP2 E . Translating along the inclusion SP2 → SP1 ∪ SP2 we obtain
Γ∪ I |=SP1∪SP2 E . From %SP1∪SP2 I and Γ∪ I %SP1∪SP2 E we obtain Γ %SP1∪SP2 E .

TRANS. Consider a translation of specifications SP � t with t ∈ T such that
t : Sig[SP]→ Σ′. Let us assume Γ′ |=SP�t E ′. Consider a normal form d′ | (Σ′1, t1(Γ1))
for SP� t such that d | (Σ1,Γ1) is a normal form for SP and the square below is a pushout.

Σ t ��

d
��

Σ′

d′��
Σ1 t1

�� Σ′1

For any Σ′1-model M′
1, when M′

1 |= d′(Γ′)∪ t1(Γ1) we have that M′
1�d′ ∈ Mod[SP � t]

(because SP � t |=| d′ | (Σ′1,t1(Γ1))) and that M′
1�d′ |= Γ′, which by the hypothesis implies

M′
1�d′ |= E ′ which by the satisfaction condition is equivalent to M′

1 |= d′(E ′). We therefore
have therefore shown that d′(Γ′)∪ t1(Γ1) |= d′(E ′).

By the CRI property, there exists an interpolant I ∈ Sen(Σ) such that Γ1 |= d(I) and
Γ′ ∪ t(I) |= E ′.

From Γ1 |= d(I) we deduce |=SP I which by the induction hypothesis implies %SP I.
By translating along the specification morphism t : SP→ SP � t, we obtain that %SP�t I
which implies Γ′ %SP�t Γ′ ∪ t(I).

On the other hand, from Γ′ ∪ t(I) |= E ′, by the completeness of the base institution
we have Γ′ ∪ t(I) %Σ′ E ′, which by (base) gives Γ′ ∪ t(I) %SP�t E ′. From Γ′ %SP�t Γ′ ∪ t(I)
and Γ′ ∪ t(I) %SP�t E ′ we get Γ′ %SP�t E ′.

DERIVE. Consider a derived specification d | SP′ and assume Γ |=d|SP′ E . We
have d(Γ) |=SP′ d(E) (for each model M′ ∈Mod[SP′] such that M′ |= d(Γ), then M′�d ∈
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Mod[d | SP′] and M′�d |= Γ, which implies M′�d |= E which means M′ |= d(E)). Then by
the induction hypothesis d(Γ) %SP′ d(E), and by (deriv) we have Γ %d|SP′ E . �

Note that the proof of the completeness Thm. 14.14 uses only that the proof system
for the structured specifications fulfills properties (base), (pres), and (deriv). The initiality
property of PfT ,D is necessary only for lifting the soundness of the proof system of the
base institution I to the soundness of PfT ,D in I spec

T ,D .

Fact 14.15. The condition 1(b) of Thm. 14.14 follows from 1(a) and 1(c) if D were closed
under composition. Consequently conditions 1(b) and 1(c) can be replaced by the condi-
tion that D is a sub-category stable under pushouts.

The following is a concrete instance of the soundness Prop. 14.13 and of the com-
pleteness Thm. 14.14.

A sound and complete proof system for structured specifications in HCL

Corollary 14.16. The ((∗∗∗),(ie∗))-specifications in HCL admit a sound and complete
proof system which is the proof system freely generated by the finitary Birkhoff proof
system for HCL and satisfying (basic), (pres), and (deriv).

Proof. Cor. 13.39 gives the soundness and the completeness of the finitary Birkhoff calcu-
lus for HCL. Cor. 12.19 gives the Craig-Robinson ((ie∗),(∗∗∗))-interpolation for HCL.
Condition 1 of Thm. 14.14 can be established easily by using Fact 14.15. �

Other kinds of instances of Thm. 14.14 can be obtained in sound and complete
institutions with proofs which have implications and Craig (D,T )-interpolation since
according to Prop. 9.20 these have Craig-Robinson (D,T )-interpolation. A standard and
practically important example for this is FOL (cf. Cor. 9.15 having Craig ((i∗∗),(∗∗∗))-
interpolation).

14.3 Predefined Types

Specification with ‘predefined types’ extends ordinary specification with predefined enti-
ties both at the semantic and syntactic level. The semantics of actual specifications lan-
guages, which in general use at least predefined types for the numbers, is based on insti-
tutions with predefined types.

In some cases predefined types cannot be avoided at all. For example, specifications
using real numbers constitute a non-trivial extension of ordinary FOL specifications be-
cause the model of the real numbers cannot be specified as an initial model of a finite
presentation. This negative fact follows easily from cardinality issues. The following is
an example of a specification with predefined types.



332 Chapter 14. Specification

The Euclidean plane. When we consider the problem of the specification of the Eu-
clidean plane R2 as a vector space, its signature ((S,F,P),R′) consists of

• an ordinary FOL signature (S,F,P), and

• an (S,F,P)-model R′

such that

• S = {Real,Vect},
• F consists of the usual ring operations for the real numbers plus F→Vect = {0},

FRealReal→Vect = {〈 , 〉}, FVectVect→Vect = { + }, FVect→Vect = {− }, and
FRealVect→Vect = { ∗ },

• the set of relation symbols P is empty, and

• R′ is the free (S,F,P)-model over the ring R of real numbers.

The Euclidean plane is obtained as the quotient of R′ modulo the following set E of
equations defining a two-dimensional real vector space:

0 = 〈0, 0〉,
(∀{a,b,a′,b′})〈a, b〉+ 〈a′, b′〉= 〈a + a′, b + b′〉,
(∀{k,a,b})k ∗ 〈a, b〉= 〈k ∗ a, k ∗ b〉,
(∀{a,b})−〈a, b〉= 〈−a,−b〉.

Note that there are many models of the ‘predefined presentation’ (((S,F,P),R′),E), for
example the model R+ interpreting Vect as the set of real numbers and 〈 , 〉 as addition
of real numbers. The ‘intended’ model of this presentation, the Euclidean plane R2, is in
fact the initial model of the presentation.

The institution of predefined types

Signatures, sentences, models, and satisfaction with predefined types can be defined on
top of any base institution I = (Sig,Sen,Mod, |=).

Signatures with predefined types. A signature (Σ,A) with predefined type A consists
of a signature Σ in the base institution and a predefined Σ-model A.

Models with predefined types. A (Σ,A)-model is just a Σ-model M plus an interpreta-
tion of A into M in the form of a model homomorphism h : A→M.

Note that in the case of the example above a model with predefined types is the
same with a model homomorphism from R to the reduct of an (S,F,P)-model M to the
signature of the real numbers.

Model homomorphisms. Homomorphisms of (Σ,A)-models have to ‘preserve’ A,
hence the category of the (Σ,A)-models is the comma category A/Mod(Σ).
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Sentences with predefined types. Since sentences with predefined types, such as

(∃{X ,Y}) X ∗ 〈3.14, 5.79〉+Y ∗ 〈π, e〉= 〈2,−1.65〉
might involve entities from the predefined model A, we can define them based on the
concept of an elementary diagram. Hence, let us further assume that the base institution
has elementary diagrams ι.

Then a (Σ,A)-sentence (with predefined type A) is just a ΣA-sentence, where
ιΣ(A) : Σ→ ΣA is the elementary extension of Σ via A.

The satisfaction relation. A (Σ,A)-model h : A → M satisfies a (Σ,A)-sentence ρ if
and only if the (ΣA,EA)-model Ah = i−1

Σ,A(h) satisfies it.

This construction of an institution of predefined types (Sig',Sen',Mod', |=') over
a base institution with elementary diagrams (Sig,Sen,Mod, |=, ι) can be summed up as
follows:

• the category of signatures with predefined type Sig' is the Grothendieck category
Mod�,

• Sen'(Σ,A) = Sen(ΣA) for each signature (Σ,A), and Sen'(ϕ,h) = Sen(ιϕ(h)) for
each signature morphism (ϕ,h),

• Mod'(Σ,A) = A/Mod(Σ) for each signature (Σ,A), and

• for each signature (Σ,A), (h : A→M) |='(Σ,A) ρ if and only if i−1
Σ,A(h) |=ΣA ρ.

Exercises

14.11. For any base institution (Sig,Sen,Mod, |=, ι) with elementary diagrams, there exists a
canonical institution morphism (Sig',Sen',Mod', |=') → (Sig,Sen,Mod, |=) from the institution
of predefined types to the base institution. Moreover this an adjoint institution morphism whenever
the categories of models have initial models.

14.12. For any base institution (Sig,Sen,Mod, |=, ι) with elementary diagrams, there exists an in-
stitution comorphism (Sig',Sen',Mod', |=')→ (Pres,Senpres,Modpres, |=pres) from the institution
of predefined types to the institution of presentations over the base institution. (Hint: Each signature
of predefined types (Σ,A) gets mapped to the presentation (ΣA,EA).)

14.13. Sound/complete proof system for predefined types
Let (Sig,Sen,Mod, |=,%, ι) be an institution with entailments and with elementary diagrams ι.

1. The institution with predefined types (Sig',Sen',Mod', |=',%') admits an entailment sys-
tem defined by

Γ %'(Σ,A) E if and only if Γ∪EA %ΣA E

where ιΣ(A) : Σ→ (ΣA,EA) is the elementary diagram of A.

2. I ' is sound or complete, respectively, whenever the base institution I is sound or com-
plete, respectively.
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3. The entailment system of I ' is precisely the free entailment system generated by the
entailments of I plus the rules /0 %ΣA EA for each Σ-model A.

14.14. For any base institution with elementary diagrams (Sig,Sen,Mod, |=, ι) such that

• it is semi-exact,
• it is liberal on the signature morphisms,
• its category of signatures Sig has pushouts, and
• for each signature Σ ∈ |Sig|, the category Mod(Σ) of Σ-models has pushouts,

the corresponding institution of predefined types (Sig',Sen',Mod', |=') has pushouts of signatures
and is semi-exact.

14.15. Each institution of predefined types has ‘empty’ elementary diagrams. (Hint: For any sig-
nature with predefined type (Σ,A) and any (Σ,A)-model with predefined types h : A → M, the
elementary extension (Σ,A)→ (Σ,A)h is defined as (1Σ,h) : (Σ,A)→ (Σ,M).)

14.16. An institution of predefined types is liberal whenever its base institution is liberal.

14.17. I ' as a Grothendieck institution
For any institution I = (Sig,Sen,Mod, |=, ι) with elementary diagrams:

• Each signature Σ ∈ |Sig| determines an institution I Σ = (SigΣ,SenΣ,ModΣ, |=Σ) defined
by SigΣ = Mod(Σ), SenΣ(A) = Sen(ΣA), ModΣ(A) = A/Mod(Σ), and (h : A→ B) |=Σ

A ρ
if and only if i−1

Σ,A(h) |=ΣA ρ.

• Each signature morphism ϕ : Σ → Σ′ determines an institution morphism
(Φϕ,αϕ,βϕ) : I Σ′ → I Σ defined by Φϕ = Mod(ϕ), αϕ

A′ = Sen(ιϕ(1A′�ϕ)), and βϕ
A′(h

′) =
h′�ϕ.

The constructions above determine an indexed institution Sigop → Ins such that its corresponding
(morphism-based) Grothendieck institution is precisely I '.

14.18. Interpolation in I '
Consider an institution I = (Sig,Sen,Mod, |=) with elementary diagrams and which is liberal on
the signature morphisms. Develop an interpolation result for the institution I ' of pre-defined types
over I as an application of the Grothendieck interpolation Thm. 12.17. (Hint: We obtain I ' as a
comorphism-based Grothendieck institution by a comorphism-based replica of Ex. 14.17.)

14.19. Basic sentences in I '
In any institution I ' of predefined types a (Σ,A)-sentence ρ is (epic) basic when it is (epic) basic as
a sentence of the base institution I . (Hint: Use the combined results of Exercises 14.11, 5.29 and
5.30.)

Notes. In software system engineering, the class Mod[SP] of models of a specification SP of a
system is interpreted as the class of all possible implementations of that system.

Inclusive institutions were invented in [58] which presents a software module algebra for
theories. The kernel language for structuring specifications presented here has been introduced in
[161] but with the union restricted to the situation when the specifications have the same signature.
This is a special case of our union when we consider the trivial inclusion system for the signatures
with inclusions being the identities. Modern algebraic specification languages provide more sophis-
ticated structuring constructs, however it is possible to translate them to this kernel language (see
[131] for CASL). The normal forms for specifications formed only with unions, translations and
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derivations are well known from [64, 16, 28]. The importance of normal forms is that it allows us to
replace any specification by its appropriate normal form, for which some basic properties are more
easily available.

The extension of the entailment from a base institution to the institution of its specifications
was originally defined in [161]. The idea of (T ,D)-specifications was introduced in [28] which un-
der assumptions similar to the conditions of Thm. 14.14 proved the lifting of entailment complete-
ness from the base institution to specifications. However the completeness result of [28] is obtained
in a framework assuming implications, conjunctions, and Craig interpolation for the base institu-
tion which is significantly narrower in terms of applications than our framework which assumes
just Craig-Robinson interpolation. For example important computing logics such as EQL or HCL
are not applications of the completeness results of [28] but they are applications of Thm. 14.14.

The institutions of predefined types were first introduced in [45] under the name of ‘constraint
institutions’ in a slightly different form in the context of the so-called ‘category-based equational
logic’.



Chapter 15

Logic Programming

The logic programming paradigm in its purely logical form can be defined in arbitrary
institutions. This liberation of the logic programming ideal from its conventional frame-
work (based upon the Horn sub-institution of REL1, the single sorted variant of relational
logic) gives the opportunity of developing the logic programming paradigm over various
structures. From a computational angle this corresponds to combinations between logic
programming and other computing paradigms, such as functional programming, object
orientation, concurrency, etc.

A summary of the chapter. We develop the fundamental concepts of logic program-
ming in an institution-independent framework. They include queries, substitutions, solu-
tions, and solution forms. Herbrand theorems play a primary role for the foundations of
logic programming. We prove two institution-independent versions of a Herbrand the-
orem. The first one has a more logical flavor, while the second one has a more opera-
tional flavor since it reduces existential satisfaction to universal satisfaction, thus provid-
ing foundations for execution in logic programming.

A special section is devoted to unification, which lies at the core of the operational
semantics of logic programming. Unification can be regarded as a co-limit construction
problem. This categorical viewpoint on unification permits the development of a generic
unification algorithm applicable to various institutions.

By abstracting logic programming modules to theories and module imports to the-
ory morphisms, we also discuss the conditions under which the module system of logic
programs interacts well with the solutions of queries.

In the final section we extend the logic programming paradigm to ‘constraint’ logic
programming which we regard just as (pure) logic programming over predefined types.
Consequent to this view, we obtain general versions of Herbrand theorems for constraint
logic programming just as instances of the general institution-independent Herbrand the-
orems for (pure) logic programming.
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15.1 Herbrand Theorems

The logic programming paradigm. The logic programming paradigm in its purely
logical form can be described as follows:

Given a universal Horn finite presentation (Σ,E) (called ‘program’) and an
existentially quantified conjunction of atoms q (called ‘query’) in Σ∪Y (for
Y a new set of ‘logical variables’), find a ‘solution’ ψ for q, i.e., values for
the variables Y , such that the corresponding instance ψ(q) of q is satisfied by
(Σ,E). This simply means to prove that

(Σ,E) |= (∃Y )q.

In the most conventional form, logic programming is considered over single-sorted first
order logic without equality. Less conventional forms of logic programming extends this
to multiple sorts, or even considers first order logic with equality as underlying logic, this
being considered as a new related paradigm, and known as ‘equational logic program-
ming’.

First Herbrand theorem

A careful look at the logic programming paradigm shows it is largely an institution-
independent paradigm.

Queries. Given a signature Σ in an arbitrary institution (Sig,Sen,Mod, |=) with a desig-
nated class D of signature morphisms, a D-query is any existentially quantified sentence
(∃χ)ρ such that χ ∈D is quasi-representable and ρ is a basic sentence.

Herbrand theorems. The Herbrand Theorem reduces the problem of checking the sat-
isfaction of a query by a presentation from all possible models to the initial model only.

Theorem 15.1 (Herbrand theorem I). In an institution consider a presentation (Σ,E)
which has an initial model 0Σ,E. Then for each query (∃χ)ρ,

E |= (∃χ)ρ if and only if 0Σ,E |= (∃χ)ρ.

Proof. The implication from left to right is trivial, hence we focus on the other impli-
cation. Let χ : Σ→ Σ′. Assume that 0Σ,E |= (∃χ)ρ and consider a Σ-model M such that
M |= E . There exists an expansion N′ of 0Σ,E such that N′ |= ρ. Because χ is quasi-
representable let g′ : N′ →M′ be the χ-expansion of the unique (Σ,E)-model homomor-
phism g : 0Σ,E →M.

Then M′ is a χ-expansion of M. Because ρ is basic, there exists a model homomor-
phism Mρ→N′, and by composing with g′ there exists a model homomorphism Mρ→M′,
which means that M′ |= ρ. This shows that M |= (∃χ)ρ. �

In the logic programming culture the initial model 0Σ,E is known as the Herbrand
model of (Σ,E).



15.1. Herbrand Theorems 339

Solutions for queries. Each χ-expansion N′ of 0Σ,E such that N′ |= ρ is called a solution
for the query (∃χ)ρ. The importance of Thm. 15.1 is that it reduces the search space for
solution of queries from all models to only one model. Since this is still not enough
computationally, we will develop Thm. 15.1 into a more computation oriented version.

Second Herbrand theorem

The following version of the Herbrand Theorem gives foundations for the execution of
logic programming by algorithms such as resolution and paramodulation.

Theorem 15.2. Consider an institution with representable D-substitutions for a class D
of representable signature morphisms such that

1. for each presentation (Σ,E) with initial model, its signature Σ also has an initial
model 0Σ,

2. for any presentation (Σ,E) having an initial model 0Σ,E, for each signature mor-
phism (χ : Σ→ Σ′) ∈D its representation Mχ is projective with respect to all ‘quo-
tient’ homomorphisms pΣ,E : 0Σ → 0Σ,E .

Then for each presentation (Σ,E) having an initial model, and for any D-query (∃χ1)ρ
we have that

E |= (∃χ1)ρ if and only if there exists a D-substitution ψ : χ1 → χ2 such that
E |= (∀χ2)ψ(ρ) and χ2 is conservative.

Proof. Assume E |= (∃χ1)ρ and let χ1 : Σ → Σ1. We have that 0Σ,E |= (∃χ1)ρ. Let M1

be the χ1-expansion of 0Σ,E such that M1 |= ρ and let h = iχ1(M1) : Mχ1 → 0Σ,E . By the
projectivity property of Mχ, there exists h0 : Mχ1 → 0Σ such that h0; pΣ,E = h.

Because the institution has representable D-substitutions and because 0Σ represents
the identity signature morphism 1Σ, let ψh0 : χ1 → 1Σ be a substitution determined by h0.
We have the following commutative diagram:

Mod(Σ)
i1Σ
∼=

��

Mod(ψh0
)
��

0Σ/Mod(Σ)
h0;−
��

Mod(Σ1) iχ1

∼=�� Mχ1/Mod(Σ1)

We show that E |= ψh0(ρ) |=| (∀1Σ)ψh0(ρ) (notice also that 1Σ is trivially conservative).
Let M be a model such that M |= E and let f : 0Σ,E → M be the unique (Σ,E)-

model homomorphism. Because i−1
χ1

(h) = M1 |= ρ there exists g : Mρ → i−1
χ1

(h) = M1 and
we have that iχ1(Mρ);g�χ1 = h. Let u = g�χ1; f . We have h; f = iχ1(Mρ);u hence there
exists a model homomorphism Mρ → i−1

χ1
(h; f ). It therefore follows that i−1

χ1
(h; f ) |= ρ,

which means that i−1
χ1

(h0; pΣ,E ; f ) |= ρ which means that i−1
χ1

(h0; i1Σ(M)) |= ρ. By the
commutativity of the diagram above, Mod(ψh0)(M) |= ρ. By the satisfaction condition
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for substitutions we have that M |= ψh0(ρ).

0Σ
pΣ,E �� 0Σ,E

f �� M

Mχ1

h0

����������
h

��

iχ1 (Mρ)
�� Mρ�χ1

g�χ1

MM88888888
u

��

For the converse, we assume there exists a D-substitution ψ : χ1 → χ2 such that E |=
(∀χ2)ψ(ρ). Because χ2 is conservative we can find a χ2-expansion of 0Σ which means
there exists a model homomorphism u : Mχ2 → 0Σ. We show that M1 = i−1

χ1
(Mψ;u; pΣ,E)

is a χ1-expansion of 0Σ,E such that M1 |= ρ, where Mψ : Mχ1 →Mχ2 is the model homo-
morphism determined by ψ.

Let M2 = i−1
χ2

(u; pΣ,E). Because E |= (∀χ2)ψ(ρ) and M2�χ2 = 0Σ,E , we have that
M2 |= ψ(ρ). Note that M1 = i−1

χ1
(Mψ; i−1

χ2
(M2)). By the satisfaction condition for the sub-

stitution ψ this implies that M1 |= ρ. Therefore 0Σ,E |= (∃χ1)ρ. By the first Herbrand
Thm. 15.1 we now have that E |= (∃χ1)ρ. �

Solution forms. The substitutions ψ of the second Herbrand Thm. 15.2 are called solu-
tion forms. The proof of the ‘only if’ part of this theorem shows that each each solution
for a query is an instance of a solution form for the query, while the proof of the ‘if’
part shows that each instance of any solution form for a query to the initial model gives a
solution for the query.

The conditions of the second Herbrand Thm. 15.2 are rather mild in actual exam-
ples. Below we discuss one of its important instances.

Equational logic programming in HCL. The following instance of Herbrand
Thm. 15.2 provides foundations for the operational semantics of conventional equational
logic programming.

Corollary 15.3. Let E be a set of Horn (S,F,P)-sentences for a FOL signature (S,F,P).
Then for any set of new constants X and any (S,F ∪X ,P)-atom ρ,

E |= (∃X)ρ if and only if there exists a first order substitution ψ : X →Y (i.e.,
a function X → TF(Y )) such that E |= (∀Y )ψ(ρ).

15.2 Unification

Unification algorithms constitute an essential part in the execution of logic programming.

Unification of FOL terms. Let (S,F,P) be a FOL signature, X a set of new constants,
and t, t ′ be two (F ∪X)-terms of the same sort. A unifier for t and t ′ is any substitution
θ : X → Y (i.e., a function X → TF(Y )) such that θ(t) = θ(t ′).
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Let t and t ′ be the substitutions {∗} → X corresponding to t and t ′, respectively,
defined by t(∗) = t and t ′(∗) = t ′, respectively.

Fact 15.4. A unifier θ for t and t ′ is precisely a co-cone for the parallel pair of substitu-
tions 〈t, t ′〉,

{∗}
t ��

t′
�� X

θ �� Y.

Unification in institutions. The categorical formulation of unification given by Fact
15.4 allows the following definition of unifiers in abstract institutions.

For any signature Σ in an arbitrary institution with a designated class D of sig-
nature morphisms, a D-unifier for any Σ-D-substitutions ψ1,ψ2 : χ → χ′ is any Σ-D-
substitution θ : χ′ → χ′′ such that ψ1;θ and ψ2;θ are equivalent (i.e., Mod(ψ1;θ) =
Mod(ψ2;θ)).

•
ψ1 ��

ψ2
�� • θ �� •

A most general unifier is a co-equalizer in the category of Σ-D-substitutions modulo
substitution equivalence. Note that in the case of first order substitutions in FOL, two
substitutions are equivalent if and only if they are equal.

A categorical unification algorithm

An algorithm finding most general unifiers, i.e., co-equalizers in the category of substi-
tutions, consists essentially of reducing the original problem to ‘simpler’ problems. By
‘simpler’ we mean ‘less symbols’.

In any category, for each parallel pair of arrows u,v let coeq(u,v) denote the class
of co-equalizers of u and v.

Reducing the ‘operation symbols’. The following general categorical proposition has
a rather straightforward proof which we omit here.

Proposition 15.5. In any category, if e : X ′ → X is epi and t,t ′ : X → Y , then

coeq(t,t ′) = coeq(e;t,e; t ′).

The actual meaning of Prop. 15.5 is that it reduces the number of operation symbols
of the unification problem for 〈e; t, e; t ′〉 to that of the operation symbols of the unification
problem 〈t, t ′〉. The following FOL instance helps to understand this.

Corollary 15.6. For any operation symbol σ, the pair of terms 〈σ(t1 . . . tn), σ(t ′1 . . .t ′n)〉
has the same set of most general unifiers as the set of pairs of terms {〈t1, t ′1〉, . . . ,〈tn, t ′n〉}.
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Proof. By interpreting the entities of Prop. 15.5 in the following way:

• X ′ = {∗},
• X = {x1, . . . ,xn},
• e(∗) = σ(x1, . . . ,xn), and

• t(xi) = ti and t ′(xi) = t ′i .

�

Splitting the problem. Note that the above Cor. 15.6 reduces the total number of sym-
bols by eliminating the symbol σ and by replacing the original problem (which was writ-
ten for a single pair of terms) with a problem for a set of pairs of terms. The following
proposes a method for splitting a unification problem into smaller pieces which can be
solved sequentially. As we will see the choice of the splitting is immaterial.

Proposition 15.7. Let (θ : Y → Z) ∈ coeq(t1,t ′1) for t1,t ′1 : X1 → Y and (γ : Z → V ) ∈
coeq(t2;θ, t ′2;θ) for t2,t ′2 : X2 → Y . Then

θ;γ ∈ coeq(〈t1, t2〉,〈t ′1, t ′2〉)
where X1 + X2 is the co-product of X1 and X2, and 〈t1, t2〉 and 〈t ′1, t ′2〉 : X1 + X2 → Y are
the tuplings of t1 with t2 and of t ′1 with t ′2, respectively.

X1

69
t′1
��

t1
��

X1 + X2

〈t1,t2〉 ��
〈t′1,t′2〉

�� Y
θ �� Z

γ �� V

X2

WX
t2

��

t′2

�� X% X%

The rather straightforward proof of the above Prop. 15.7 is left to the reader. The
following is its FOL instance.

Corollary 15.8. The most general unifier for {〈t1, t ′1〉, . . . ,〈tn, t ′n〉}, a set of pairs of F-
terms with variables Y , when it exists, can be obtained as the substitution θn where

• θ0 = 1Y ,

• θk = θk−1;γk for 1≤ k ≤ n, and

• γk is the most general unifier of 〈θk−1(tk), θk−1(t ′k)〉 for 1≤ k ≤ n.

Proof. Follows immediately from Prop. 15.7 by noting that in any FOL signature the
disjoint union of sets (of variables) is a co-product in the category of first order substitu-
tions. �
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The irreducible cases. The unification algorithms consist of alternations of the reduc-
tion step given by Prop. 15.5 and of the splitting step given by Prop. 15.7. This process
leads eventually to a finite number of irreducible ‘atomic’ unification problems. In the
case of FOL unification these can be of the following three kinds:

1. σ(t1, . . . ,tn) = σ′(t ′1, . . . ,t ′n′) where σ and σ′ are different operation symbols,

2. x = t where x is a variable occurring in t, and

3. x = t where x is a variable not occurring in t.

While in the first two cases there are no unifiers, the last case has the substitution θ(x) = t
as most general unifier.

Substitutions that are variables. In order to approach the situation of the last case
at a general categorical level, we need to capture categorically the situation of a term
consisting only of a variable.

In any institution with a designated class D of signature morphisms, a D-substitu-
tion v : χ → ϕ is a D-variable when ϕ is a co-product χ + χ′ and v is the component
of the co-product co-cone corresponding to χ. For example, in the category of FOL D-
substitutions (for D being the standard class of signature extensions with a finite number
of constants), we may note immediately that the D-variables are just injections between
sets (of FOL constants).

Occurrence of variables in terms. Next we need to express at the level of abstract
substitutions that a variable does not occur in a term. Given a D-variable v : χ→ ϕ and
a D-substitution t : χ→ ϕ we say that v does not occur in t when t = t ′; i′ where

χ v �� ϕ = χ + χ′ χ′i′��

is a co-product co-cone in the category of D-substitutions and t ′ : χ→ χ′.
Of course the above categorical concepts of a variable, and that a variable does

not occur in a term, can be defined in any category rather than in the category of D-
substitutions. The simple categorical proposition below generalizes the fact that the most
general unifier of x and t, where x is a variable that does not occur in t, is given by the
substitution mapping x to t.

Proposition 15.9. For any ‘variable’ v : X → X +X ′ in a category and for any t ′ : X →
X ′ we have that 〈t ′, 1X ′ 〉 ∈ coeq(v, t ′; i′).

X
t′

��

v
9;

X ′
i′
�� X + X ′

〈t′,1X ′ 〉 �� X ′.
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Termination of unification algorithms. This issue has to be dealt with at the level of
particular cases.

For the first order substitution in FOL, the algorithm determined by Propositions
15.5, 15.7, and 15.9 terminates by observing that the preorder on sets of pairs of terms
defined by the following three criteria (in the order of their priority)

1. the number of variables in the set of pairs of terms,

2. the number of occurrences of operation symbols, and

3. the number of pairs of terms,

is well founded (i.e., does not have infinite strictly decreasing sequences) and that each
application of each step given by Propositions 15.5, 15.7, and 15.9 represents a move
downwards in this preorder.

The summing up the unification algorithm in FOL is given below.

Corollary 15.10. In FOL any parallel pair of finitary first order substitutions has a
most general unifier if and only if it has a unifier. Moreover the most general unifier can
be computed by alternating the reduction steps given by Cor. 15.6 and the splitting step
given by Cor. 15.8 and by applying the unification of a variable with a term.

Exercises

15.1. Prove Propositions 15.5, 15.7, and 15.9.

15.2. [40] Unification of infinite terms
In the institution CA of contraction algebras, any parallel pair of first order finitary substitutions
has a most general unifier if and only if it has a unifier. (Hint: By contrast to the case of FOL in the
case of the infinite terms, the unification of a variable x with a term t in which x occurs has a most
general unifier.)

15.3 Modularization

In this section we study modularization in logic programming by abstracting logic pro-
gramming modules to presentations, and module imports to presentation morphisms.

Translation of queries along signature morphisms. Consider an institution with a
class D of signature morphisms which is stable under pushouts.

Proposition 15.11. If the institution is semi-exact and all signature morphisms are lib-
eral, then any signature morphism ϕ : Σ → Σ′ translates any Σ-D-query (∃χ)ρ to the
Σ′-D-query (∃χ′)ϕ1(ρ) where

Σ
χ ��

ϕ
��

Σ1

ϕ1��
Σ′

χ′
�� Σ′1

is a pushout square of signature morphisms.
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Proof. By Prop. 5.12 we know that in semi-exact institutions the quasi-representable sig-
nature morphisms are stable under pushouts. This means that χ′ ∈ D is quasi-represent-
able.

We still have to show that ϕ1(ρ) is basic. Let Mϕ1(ρ) = Mϕ1
ρ where Mϕ1

ρ is the free
Σ1-model along ϕ1. Then for any Σ′1-model N′1 we have that N′1 |= ϕ1(ρ) if and only if
N′1�ϕ1 |= ρ if and only if there exists a homomorphism Mρ → N′1�ϕ1 if and only if there
exists a homomorphism Mϕ1

ρ → N′1. �

Translations of solutions along signature morphisms. Consider a pushout of signa-
ture morphisms such as in Prop. 15.11 and assume that ϕ is a presentation morphism
(Σ,E)→ (Σ′,E ′).

Let us recall that a solution for the query (∃χ)ρ is any χ-expansion M1 of the initial
model 0(Σ,E) such that M1 |= ρ. The translation of the solution M1 along ϕ is a Σ′1-model
N′1 defined as follows:

1. Since χ is quasi-representable and M1�χ = 0Σ,E , let h1 : M1 → N1 be the unique
χ-expansion of the unique model homomorphism h : 0Σ,E → 0Σ′,E ′�ϕ.

2. Let N′1 be the amalgamation N1⊗0Σ′,E ′ .

The following shows that this translation of solutions gives indeed a solution for the
translated query (given by Prop. 15.11).

Proposition 15.12. If M1 is a solution for the query (∃χ)ρ, then its translation N′1 is a
solution for the translated query (∃χ′)ϕ1(ρ).

Proof. That M1 is a solution for (∃χ)ρ means that M1 |= ρ. We have to prove that N′1 |=
ϕ1(ρ). By the satisfaction condition this is equivalent to N′1�ϕ1ρ. But N′1�ϕ1 = N1. Since
h1 : M1 → N1 and M1 |= ρ we obtain a model homomorphism Mρ → N1 which shows
that N1 |= ρ. �

The logic programming meaning of Prop. 15.12 is that each module import ‘pre-
serve’ the solution of queries.

Solutions that are protected. When the module import is a ‘protecting’ one the trans-
lated query does not have any new solutions (i.e., solutions which are not translations of
some solution of the original query).

A presentation morphism ϕ : (Σ,E)→ (Σ′,E ′) is protecting when 0Σ′,E ′�ϕ = 0Σ,E .
From the logic programming perspective, a protecting module import just ‘protects’ the
Herbrand model of the imported module.

Proposition 15.13. If the presentation morphism ϕ is protecting, then for each solution
N for (∃χ′)ϕ1(ρ) there exists a solution M1 for (∃χ)ρ such that N is the translation of
M1.

Proof. We assume that N is a solution for (∃χ′)ϕ1(ρ). Let us first show that N�varphi1 is
a solution for (∃χ)ρ. We have that (N�ϕ1)�χ = N�χ′�ϕ = 0Σ′,E ′�ϕ = 0Σ,E . That N�ϕ1 |= ρ
follows by the satisfaction condition from N |= ϕ1(ρ).
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Now we show that the solution N is the translation of N�ϕ1 . This follows from the
definition of the translation of N�ϕ1 as the amalgamation of N�ϕ1 with 0Σ′,E ′ . �

Exercises

15.3. Consider an institution with representable D-substitutions. For any liberal signature mor-
phism ϕ : Σ→ Σ′ let (−)ϕ : Mod(Σ)→Mod(Σ′) be the left adjoint to the model reduct functor
Mod(ϕ) : Mod(Σ′)→Mod(Σ).

For any presentation morphism ϕ : (Σ,E)→ (Σ′,E ′) if θ is a solution form for a D-query q
in (Σ,E) then any D-substitution ψ determined by Mϕ

θ is a solution form for the translation ϕ(q) in
(Σ′,E ′).

15.4 Constraints

Constraint logic programming extends ordinary logic programming to computation with
built-in predefined values. In this section we take the viewpoint that constraint logic pro-
gramming can be regarded as ordinary logic programming over an institution with prede-
fined types. As in Sect. 14.3, for any base institution I = (Sig,Sen,Mod, |=) the institution
I ' of predefined types over I is written (Sig',Sen',Mod', |=').

Linear equations with real numbers. A typical example is given by systems of linear
equations with real numbers. The reader might recall the Euclidean plane example given
in Sect. 14.3. The system{

3.14 ∗ x + π∗ y = 2,
5.79 ∗ x + e∗ y =−1.65

is equivalent to the ‘constraint query’ in the Euclidean plane R2,

(∃{x,y}) x∗ 〈3.14, 5.79〉+ y∗ 〈π, e〉= 〈2,−1.65〉.
Note that this problem cannot be reduced to an ordinary logic programming problem in
FOL because the Euclidean plane cannot be specified in FOL as an initial model of a
finite presentation.

General polynomials. Consider a base institution I with elementary diagrams ι that
has binary co-products of models. For any signature (Σ,A) with predefined type A, and
any representable signature morphism χ : Σ→ Σ′, a (Σ,A)-polynomial with variables χ
is any basic Sen(ΣA+Mχ)-sentence of the base institution. The set of all (Σ,A)-polynomial
with variables χ is denoted by A[χ].

For the Euclidean plane example, recall from Sect. 14.3 that the signature Σ is just
the FOL signature of the specification of a two-dimensional real vector space, while A is
R′, the free Σ-model over the ring R of real numbers. Then, for any set X of (first order)
variables, we take the co-product R′+ TΣ(X) between the free Σ-model over the reals R
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with the free Σ-model over X . The elements of R′+ TΣ(X) consist of Σ-terms containing
both reals and variables from X . Therefore

x∗ 〈3.14, 5.79〉+ y∗ 〈π, e〉= 〈2,−1.65〉
is a (Σ,R′)-polynomial with variables {x,y}.

Constraint queries. Given a signature (Σ,A) in the institution I ' of predefined types, a
constraint (Σ,A)-query (∃χ)ρ consists of a representable signature morphism χ : Σ→ Σ′
in the base institution (giving the ‘logical variables’) and ρ a (Σ,A)-polynomial with
variables χ.

A query (∃χ)ρ is satisfied by a (Σ,A)-model h : A→ B if and only if there exists a
χ-expansion B′ of B such that

i−1
Σ,A+Mχ

(〈h, iχ(B′)〉) |= ρ,

A
jA ��

h
7:�

��
��

��
��

� A + Mχ

〈h, iχ(B′)〉
��

Mχ
jχ��

iχ(B′)RRB

By noting that (1Σ, jA) : (Σ,A)→ (Σ,A + Mχ) is representable by jA in the institution I '
of predefined types we have

Fact 15.14. A (Σ,A)-constraint query (∃χ)ρ is just an ordinary query (∃(1Σ, jA))ρ in the
institution of predefined types.

From now on we will denote (Q(1Σ, jA))ρ by (Qχ)ρ, for any Q ∈ {∀,∃}.

First Herbrand theorem for constraint logic programming. By instantiating Her-
brand Thm. 15.1 to institutions of predefined types we obtain the following Herbrand
theorem for constraint logic programming over arbitrary institutions.

Theorem 15.15 (First Herbrand theorem for constraint logic programming). In any
liberal institution with elementary diagrams and with binary co-products of models, let
((Σ,A),E) be a presentation with predefined types and let 0(Σ,A),E = iΣ,A(0ΣA,EA∪E) be its
initial model. Then for each constraint (Σ,A)-query (∃χ)ρ,

E |=' (∃χ)ρ if and only if 0(Σ,A),E |=' (∃χ)ρ.

Often the sentences E of a logic program do not involve the elements of the built-in
model A, which means they are Σ-sentences rather than ΣA-sentences. In this case the
Herbrand model 0(Σ,A),E is just the ‘quotient’ of A by E as shown by the following fact.

Fact 15.16. For any set E of Σ-sentences, the initial model with predefined types of
((Σ,A), ιΣ(A)(E)) is qE : A→ AE, the universal ‘quotient’ model homomorphism from A
to the free (Σ,E)-model over A.
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Constraint substitutions. Given representable signature morphisms (in the base insti-
tution) χ1 : Σ→ Σ1 and χ2 : Σ→ Σ2, for any Σ-model A, a (Σ,A)-constraint substitution
χ1 → χ2 is any substitution ψhA : (1Σ, j1

A)→ (1Σ, j2
A) determined by Σ-model homomor-

phism h : Mχ1 → A + Mχ2 by taking the tupling hA = 〈 j2
A, h〉,

A
j1A ��

j2A 7:�
��

��
��

��
A + Mχ1

hA

��

Mχ1

jχ1��

h��%%
%%
%%
%%%

A + Mχ2

regarded as (Σ,A)-model homomorphism j1
A → j2

A between the representations of (1Σ, j1
A)

and (1Σ, j2
A) in the institution I ' of predefined types.

Second Herbrand theorem for constraint logic programming. By instantiating Her-
brand Thm. 15.2 to the institution of predefined types, we obtain the following constraint
Herbrand theorem giving foundations for execution of constraint logic programming.
Theorem 15.17 (Second Herbrand theorem for constraint logic programming). Con-
sider a liberal institution such that for each representable signature morphism χ : Σ→ Σ′
the representation Mχ is projective with respect 0((Σ,A),E) : A→ AE (the initial model of
any presentation ((Σ,A),E) with predefined types).

Then for each presentation ((Σ,A),E) in the institution of predefined types, and for
any constraint (Σ,A)-query (∃χ1)ρ we have that

E |=' (∃χ1)ρ if and only if there exists a constraint substitution ψ : χ1 → χ2

such that E |=' (∀χ2)Sen'(ψ)(ρ) and χ2 is conservative.

Similarly to the applications of Thm. 15.2, the projectivity condition of Thm. 15.17
can be established easily in the actual examples, since the initial models 0((Σ,A),E) : A→
AE of presentations in the institution of predefined types are ‘quotients’ of the predefined
model A (see Fact 15.16), and hence they are surjective.

Exercises

15.4. Representable signature morphisms in I '

1. Any signature morphism (χ, f ) : (Σ,A)→ (Σ′,A′) is representable in the institution I ' of
predefined types if χ : Σ→ Σ′ is quasi-representable in the base institution I .

2. If the base institution I has binary co-products of models and a signature morphism
χ : Σ → Σ′ is represented by Mχ (in I ), then (χ, jA) : (Σ,A) → (Σ′, i−1

χ ( jχ)) is also

represented by jA : A→ A+Mχ (in I ').

15.5. In an institution with elementary diagrams the co-product Mχ + A can be obtained as
0Σ′(A),χ′(EA)�Σ where Σ′(A) is the pushout of χ : Σ→ Σ′ with the elementary extension ιΣ(A) : Σ→
ΣA.

Σ
ιΣ(A) ��

χ
��

ΣA

χ′
��

Σ′
ι′
�� Σ′(A)
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15.6. (a) Let (Σ,E) be a presentation for R-modules, where R is the ring of the real numbers.
Let R′ be the free extension of R to Σ. Show that systems of linear equations are just parallel
pairs of constraint ((Σ,R′),E)-substitutions, and solutions of systems of linear equations are just
((Σ,R′),E)-unifiers.
(b) By applying Propositions 15.7 and 15.9 show that any system having solutions has a ‘most
general’ solution.

15.7. Birkhoff proof system for HCL'
HCL' admits a sound and complete finitary Birkhoff proof system obtained as the free proof system

• with universal D-quantification, where D is the class of the signature morphisms of the
form (χ, jA) with χ is any signature extension with a finite number of constants (S,F,P)→
(S,F �X ,P) and jA is the canonical injective homomorphism A → A + T(S,F,P)(X) (for
our convenience we will denote (∀(χ, jA))ρ by (∀X)ρ), and

• such that for each quantifier-free Horn sentence H ⇒ C and all sets Γ of quantifier-free
Horn sentences there exists a natural isomorphism

Pf((S,F,P),A)(Γ∪H,C)∼= Pf((S,F,P),A)(Γ,H ⇒C)

and which is generated by the following system of finitary rules for a signature ((S,F,P),A):

(A) /0 % EA where EA is the elementary diagram of A
(R) /0 % t = t for each term t
(S) t = t ′ % t ′ = t for any terms t and t ′
(T ) {t = t ′,t ′ = t ′′} % t = t ′′ for any terms t,t ′ and t ′′
(F) {ti = t ′i | 1≤ i≤ n} % σ(t1, . . . ,tn) = σ(t ′1, . . . ,t

′
n) for any σ ∈ F

(P) {ti = t ′i | 1≤ i≤ n}∪{π(t1, . . . ,tn)} % π(t ′1, . . . ,t ′n) for any π ∈ P
(Subst) (∀X)ρ % (∀Y )θ(ρ) for any ((S,F,P),A)-sentence ρ

and for any constraint substitution θ : X → A+T(S,F,P)(Y ).

Notes. Logic programming began in the early 1970s as a direct outgrowth of earlier work in au-
tomatic theorem proving and artificial intelligence. The theory of clausal-form [first order] logic,
and an important theorem by the logician Jacques Herbrand constituted the foundation for most
activity in theorem proving in the early 1960s. The discovery of resolution — a major step in the
mechanization of clausal-form theorem proving — was due to J. Alan Robinson [153]. In 1972,
Robert Kowalski and Alain Colmerauer were led to the crucial idea that logic could be used as a
programming language [177]. A year later the first Prolog system was implemented. A good ref-
erence for foundations of conventional logic programming is [114]. The equational logic program-
ming paradigm unifies logic programming based on Horn clause logic and functional programming
based on equational logic. One of the earliest contributions to this field was [143]. Later Goguen
and Meseguer provided a definition of equational logic programming as logic programming over
classical conventional specification based on (order sorted) equational logic [79, 80], [41] general-
ized it to logic programming over ‘category-based equational logic’, and [77] extended it to logic
programming over behavioral logic.

The conventional Herbrand Theorem [114] has been extended to many sorted first order
logic with equality in [80] and generalized to category-based equational logic in [41, 42]. The
latter included as its instance a Herbrand theorem for ‘category-based’ constraint logic [45]. The
Herbrand Theorem relies on the existence of an initial model for the presentation (program), known
as the ‘Herbrand universe’ by the conventional logic programming community. As we have seen
in Chap. 8, this initiality requirement determines the restriction of logic programming to universal
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Horn theories. This corresponds to the fact that in actual institutions, universal Horn sentences are
the most complex sentences supporting algorithms for automatic execution of logic programming.

Our approach to the institution-independent foundations of logic programming based on
(quasi-)representable signature morphisms was developed in [49] which also introduced the concept
of institution-independent substitution.

The earliest algorithm for computing most general unifiers in first order logic was given by
Herbrand [94], and later [153] applied to automated inference. Following the observation of Goguen
that most general unifiers are just co-equalizers in categories of substitutions [72], Rydeheard and
Burstall developed a generic categorical approach to unification algorithms in [158]. A 2-categorical
approach on unification modulo equational theories has been investigated by [159].

Our basic result on modularization for logic programming was first developed in [43] within
the context of category-based equational logic programming.
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Table of Notation

Sets and Categories

P (A) the set of the subsets of A
Pω(A) the set of the finite subsets of A
A\B the difference between sets A and B, {x ∈ A | x �∈ B}
card(A) the cardinality of the set A
λ+ the last cardinal strictly greater than the ordinal λ
F |J the reduction of the filter F over I to a subset J ∈ F
Set the category of sets as objects and functions as arrows
Class the hyper-category of classes as objects and functions (be-

tween classes) as arrows
Cat the hyper-category of categories as objects and functors as

arrows
Grp the category of groups
|C| the class of objects of the category C

C(A,B) the set of arrows between objects A and B
dom( f ) the domain (source) of the arrow f
cod( f ) the codomain (target) of the arrow f
f ;g the composition of arrows f and g
Cop the opposite of the category C

C∗ the 2-opposite of a 2-category C

A∼= B the objects A and B are isomorphic
A×B the (direct) product of objects A and B
∏i∈I Ai the (direct) product of the family of objects {Ai}i∈I

A + B the co-product (direct sum) of the objects A and B
0C the initial object of the category C
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Lim(D) vertex of the limiting cone for the diagram D
Colim(D) vertex of the co-limiting co-cone for the diagram D
A�B the disjoint union of sets A and B
A/U comma category
( f ,B) object of comma category A/U where f : A→U(B)
B� the Grothendieck category determined by the indexed cate-

gory B
AF the directed diagram of products F → C for a filter F over I

and
a family {Ai}i∈I of objects in C

∏F Ai the filtered product of objects {Ai | i ∈ I} by the filter F over
an index set I

Institutions

SigI the category of the signatures of institution I
SenI the sentence functor of institution I
ModI the model functor of institution I
M |=I

Σ ρ the Σ-model M satisfies the Σ-sentence ρ in the institution I
Γ % E entailment (i.e., there exists a proof) from Γ to E
PfI the proof functor of proof system I
RlI the proof rule functor of system-of-proof rules I
hI ,cI the hypotheses and the conclusions for natural transforma-

tions of
system-of-proof rules I

(co)Ins/P f Ins the category of institution/institution with proofs
(co)morphisms

(co)RlSys/P f Sys the category of system-of-proof rules/proof system
(co)morphisms

ϕst/ϕop/ϕrl the mapping on sort/OPERATION/relation symbols of the
morphism ϕ
of FOL-signatures

E∗ the class of models satisfying the set of sentences E
M∗ the set of sentences satisfied by the class of models M

E• the theory generated by the set of sentences E in a proof sys-
tem

E |=| E ′ E and E ′ are semantically equivalent sets of sentences, i.e.,
E |= E ′ and E ′ |= E

E %& E ′ E and E ′ are proof theoretic equivalent sets of sentences, i.e.,
E % E ′ and E ′ % E

M≡M′ M and M′ are elementarily equivalent classes of models
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|M| the set of the elements of the carriers of the model M
(x : s) the constant/variable x has sort s−→
S the set of all (higher-order) types constructed from the sorts

S
τΣ the semantic topology on Σ-models
ThI the category of theories of institution I
PresI the category of presentations of institution I
I pres the institution of the presentations of the institution I
0Σ/0Σ,E the initial [Σ/(Σ,E)]-model
Modpres the model functor ModI pres

of I pres

M1⊗M2 the amalgamation of models M1 and M2

ιΣ(M) : Σ→ ΣM the elementary extension of the signature Σ via the model M
(ΣM,EM) the elementary diagram of the Σ-model M
iΣ,M the natural isomorphism determined by the elementary dia-

gram of the Σ-model M
MM the initial model 0ΣM ,EM of the elementary diagram of a

model M
Nh i−1

Σ,M(h) for h : M → N model homomorphism
E(I ) the elementary sub-institution of I
= f the kernel of homomorphism f
Sw/Sc class of (plain)/closed injective model homomorphisms in

FOL and PA
S f class of full subalgebras in PA
Hr class of surjective model homomorphisms in FOL and PA
Hs/Hc class of strong/closed surjective homomorphisms in FOL
ρ1∧ρ2 the conjunction of ρ1 and ρ2

ρ1∨ρ2 the disjunction of ρ1 and ρ2

ρ1 ⇒ ρ2 the implication of ρ2 by ρ1

ρ1 ⇔ ρ2 the equivalence between ρ1 and ρ2

t
e= t ′ existence equation∧
E the conjunction of the set of sentences E

¬ρ the negation of ρ
¬E {¬ρ | ρ ∈ E}
(∀χ)ρ universal quantification of Σ′-sentence ρ for χ : Σ→ Σ′ sig-

nature morphism
(∃χ)ρ existential quantification of Σ′-sentence ρ for χ : Σ→ Σ′ sig-

nature morphism
TF the algebra of F-terms
TF(X) the F-algebra of F-terms over the set of variables X
Mχ the model representing the signature morphism χ
iχ the natural isomorphism defining a representable signature

morphism χ
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Mod(ψ)/Sen(ψ) the model reduct/sentence translation part of the substitution
ψ

ME the model defining a basic set of sentences E
M |=inj h M is with respect to h
In j(H) the class of objects/models injective with respect to all h∈H
c(ρ1, . . . ,ρn) the c-connection of sentences ρ1, . . . ,ρn

Fixed(U) the fixed points of the semantic operator U
Up(M) the class of all ultraproducts of models of M

Ur the ultraradical relation on models
Univ(Σ) the set of universal Σ-sentences in FOL
Exist(Σ) the set of existential Σ-sentences in FOL
M[Sen0]N M∗ ∩Sen0(Σ)⊆ N∗ ∩Sen0(Σ)

M
Sen0−→ N there exists a Σ-model homomorphism h : M → N such that

MM[Sen0]Nh

K-Mod(Σ) the category of K-Σ-Kripke models with models from
Mod(Σ),
where K ∈ {T,S4,S5}

M-Sen(Σ) the set of ‘modal’ Σ-sentences over Sen(Σ)
J � the Grothendieck institution of the indexed (co)institution J
SP |=| SP′ equivalence of specifications
SP� ϕ renaming of specification SP
ϕ|SP hiding of specification SP
SpecI the category of structured specifications of institution I
Spec〈T ,D〉 the category of 〈T , D〉-specifications
I spec the institution of structured specifications over I
I spec
〈T ,D〉 the institution of 〈T , D〉-specifications over I
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Samson Abramsky, Axel Poigné, and David Rydeheard, editors, Proceedings, Con-
ference on Category Theory and Computer Programming, volume 240 of Lecture
Notes in Computer Science, pages 313–333. Springer, 1986.

[75] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Machinery,
39(1):95–146, 1992.
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[124] José Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.
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[163] Lutz Schröder, Till Mossakowski, Andrzej Tarlecki, Piotr Hoffman, and Bartek
Klin. Amalgamation in the semantics of CASL. Theoretical Computer Science,
331(1):215–247, 2005.

[164] Saharon Shelah. Every two elementary equivalent models have isomorphic ultra-
powers. Israel Journal of Mathematics, 10:224–233, 1971.

[165] Joseph Shoenfield. Mathematical Logic. Addison-Wesley, 1967.

[166] Petros Stefaneas. Chartering some institutions, 1993. Unpublished draft.

[167] Colin Stirling. Modal and temporal logics. In S. Abramsky, D.M. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2,
pages 477–563. Oxford University Press, 1992.

[168] Andrzej Tarlecki. Bits and pieces of the theory of institution. In David Pitt, Sam-
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Cat, ‘quasi-category’ of categories, 10
Ins, category of institution morphisms,

39
Set, category of sets, 8
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fol, 256
Σ11 sentence, 134
〈T , D〉-specification, 327
¬¬-elimination, 289
fol, 258, 261
coIns, category of institution comorphisms,

40
Łoś institution, 132
Łoś sentence, 132
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2-category, 18
2-cell, 18
2-co-cone, 19
2-co-limit, 19
2-cone, 19
2-dimensional opposite category, 20
2-functor, 19
2-limit, 19
2-natural transformation, 19

abstract inclusion, 74
abstract surjection, 74
accessible sentence, 96
adjoint comorphism of institutions, 41
adjoint morphism of institutions, 41
adjunction, 16

2-categorical, 19
algebra, 24
algebraic signature, 24

amalgamation
for signature morphism, (Φ,β),

216
of models, 60

amalgamation square, 60
weak, 60

anti-additive function, 157
anti-monotonic function, 157
approximation equation, 36
arity

of operation symbol, 23
of relation symbol, 23
of term, 100

arrow above an arrow, 20
arrow is (λ,D)-chain, 146
automaton, 36

basic sentence, 108
basic set of sentences, 108
Birkhoff institution, 186

symmetric, 215
Birkhoff proof system, 310
Boolean complete institution, 92
Boolean connective, 93
broad subcategory, 10

cardinal, 145
cardinality of sets, 145
carrier set, 24
cartesian arrow, 20
cartesian closed category, 17
cartesian functor, 21
cartesian lifting, 20
cartesian morphism of institutions, 255
categorical diagrams, 12
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of signatures, 27
of substitutions, 99

chain in category ((λ,D)-chain), 146
chain in category (λ-chain), 145
charter, 38
closed homomorphism of FOL models,

66, 76
closed inclusion system, 76, 78, 79

for specifications, 320
closed morphism

of proof theoretic presentations, 300
of specifications, 320
of theories, 79

closure under isomorphisms, 28
closure operator, 193
co-complete category, 14
co-cone, 12
co-equalizer, 13
co-limit, 12
co-product, 13
co-unit, of adjunction, 16
co-well powered inclusion system, 171
co-well-powered category, 11
coherent adjoint-indexed institution, 258
comma category, 11
comorphism of systems of rules, 279
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FOEQL→HNK, 43
FOL→ (FOL1)pres, 52
FOL→ FOEQL, 41
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MBA→ FOL, 43
MPL→ REL1, 42
PA→ FOLpres, operational, 53
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PA→MApres, 56
POA→ FOLpres, 55
WPL→ PLpres, 56

comorphism of institutions with pre-quan-
tifiers, 292

comorphism of proof systems, 279
with pre-quantifiers, 292

comorphism of sentence systems with
pre-quantifiers, 292

compact institution, 134
compact proof, 284
compact proof system, 284
complete category, 14
complete institution with proofs, 283
complete lifting of filtered products by

functor, 129
cone, 12
congruence, 77
congruence (Γ-congruence), 86
congruence in POA, 81
conjunction

in institutions, 92
proof-theoretic, 288
semantic, 92

connected category, 8
connection of sentences, 93
connective in institution, 93
conservative homomorphism of models,

112
conservative morphism of signatures,

64, 95
consistent set of sentences, 134

proof theoretically, 296
constant (operation symbol), 23
constraint query, 347
constraint substitution, 348
contraction algebra, 36
countably incomplete ultrafilter, 157
Craig interpolation square,

proof-theoretic, 296
Craig (L,R )-interpolation, 190
Craig S -left interpolation for

comorphism, 215
Craig S -right interpolation for

comorphism, 217
Craig interpolation square, 190

of comorphisms, 267
Craig-Robinson interpolation square,

211



370 Index

creation of (co-)limits, 14
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derivation, of specification, 319
derived operation, 100
derived relation, 100
derived signature, 100
diagonal functor, 11
diagrams, 12
directed co-limit, 14
directed model amalgamation, 61
directed-exact institution, 62
disjunction in institution, 92
disjunction, semantic, 92
distinguished cartesian morphism, 21

elementarily equivalent models, 50
elementary amalgamation square, 211
elementary class of models, 50
elementary diagram

in FOL, 65
in institution, 67

elementary embedding in FOL, 66
elementary extension, 67
elementary homomorphism of models,

68
D-elementary, 115

elementary institution, 68
elementary sub-institution, 118
enriched indexed inclusion system, 266
entailment, 277

institution, 298
relation, 277
system, 277
system of presentations, 301

epi, 8
epi basic sentence, 108
epi basic set of sentences, 108
epic inclusion system, 75
epimorphic family of arrows, 8
equalizer, 13
equation, 25
equivalence

in institution, 92

of categories, 17
of institutions, 41, 257
of specifications, 319
of substitutions, 99

equivalence relation, S-sorted, 76
equivalence, semantic, 92
equivalent sentences, semantically, 50
exact comorphism of institutions, 63,

262
exact institution, 62

weakly, 62
exact morphism

of institutions, 63
of signatures, (ΦΔ,βΔ), 248

existential quantification in institution,
94

existential sentence in FOL, 164
expansion of models in institution, 28
explicitly defined morphism of

signatures, 224
proof theoretically, 297

extension, Sen0, 164

faithful functor, 10
fibration, 20
fibre category, 20
fibre of institution, 255
fibred category, 20
fibred institution, 254
filter, 121
filtered power of models, in institution,

123
filtered product of models

in FOL, 122
in institution, 123

final functor, 14
final object, 11
finitary basic set of sentences, 108
finitary Horn sentence, 110
finitary morphism of signatures, 95
finitary proof, 284
finitary rule, 284
finitary sentence, 59, 153
finite model, 97
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finitely elementary class of models, 168
finitely presented object, 15
finitely presented theory, 50
finitely sized model, 137
first order quantification, 102
first order variable, 97
fixed point for semantic operator, 194
free object, 16
full functor, 10
functor, 9

Galois connection, 17
Generalized Continuum Hypothesis, 145
Grothendieck category, 20
Grothendieck construction, 20
Grothendieck institution, 256
Grothendieck object, 20
group, 8

Herbrand model, 338
Heyting algebra, 33
higher order model, 35
homomorphism

of preordered algebras, 33
of FOL models, 24
of HOL models, 35
of contraction algebras, 36
of Heyting algebras, 73
of Kripke models, 32, 237
of models in institution, 27
of partial algebras, 31

homomorphisms of multialgebras, 34
Horn institution, 302
Horn sentence

in FOL, 30, 82
in institution, 110

image of arrow, 74
implication

in institution, 92
proof-theoretic, 290
semantic, 92

implicitly defined morphism of
signatures, 224

proof theoretically, 297
import of specifications, 320
inclusion of specifications, 320
inclusion system, 74
inclusive functor, 75
inclusive institution, 79
indexed category, 20
indexed comorphism-based institution,

257
indexed institution, 256
inductive co-limit, 14
inductive model amalgamation, 61
inductive-exact institution, 62
infinitary proof system, 276
initial object, 11
injective object, 9
institution, 27

(Π∪Σ)0
n, 30

CatEQL (categorical equational
logic), 37

Cat+EQL (categorical equational
logic with binary
co-products), 73

QE(PA), 31
QE1(PA), 31
QE2(PA), 31
AFOL (first order logic atoms), 71
FOL+ (positive first order logic),

29
FOLS (S-sorted first order logic),

44
FOL∞,ω, FOLα,ω (infinitary

logics), 30
HCL∞, 30
HNKλ (HNK with λ-abstraction),

37
HOLλ (HOL with λ-abstraction),

37
SOL (second order logic), 30
SOL∞,ω, 214
AUT (automata), 36
CA (contraction algebras), 36
EQL (equational logic), 30
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FOEQL (first order equational
logic), 30

FOL (first order logic), 23
HCL (Horn clause logic), 30
HOL (higher order logic), 35
HPOA (Horn preorder algebra), 34
IPL (intuitionistic propositional

logic), 33
LA (linear algebra), 37
MA (multialgebras), 34
MBA (membership algebra), 34
MFOL (modal first order logic), 31
PA (partial algebra), 30
PL (propositional logic), 29
POA (preordered algebra), 33
REL (relational logic), 30
∀∨ (universal disjunction of atoms),

187
FOL1 (single-sorted first order logic),

29
UNIV (universal sentences), 29
REL1 (single-sorted REL), 42

institution
having finitary sentences, 153
having saturated models, 147
of presentations, 51
of substitutions, 101
with pre-quantifiers, 292
with proof rules, 282
with proofs, 282
with representable substitutions, 106

interpolant, 190
semantic, 193

interpretation of term in FOL model, 26
intersection of signatures, 318
inverse image functor, 21
invertible enriched indexed inclusion

system, 266
isomorphism, 8
isomorphism classes, 8

Keisler-Shelah institution, 160
kernel

of POA homomorphism, 81

of arrow, 13
of model homomorphism, 77

Kripke model
in MFOL, 32
in institution, 236

lax co-cone, 19
lax co-limit, 19
lax cone, 19
lax limit, 19
lax natural transformation, 19
left adjoint functor, 16
liberal institution, 84

comorphism, 86
morphism, 86

liberal theory morphism, 84
lifting

of filtered products by functor, 128
of (co-)limits, 14
of isomorphisms

by β, 242
by spans, 206
by squares, 206

of relation
by signature morphism, weakly,

230
by signature morphisms, 197

limit, 12
limit ordinal, 145
locally (semi-)exact indexed

coinstitution, 262
locally co-complete indexed category,

260
locally liberal indexed institution, 266
locally presentable category, 15
logical connective, 93
logical kernel of signature morphism,

213

m-compact institution, 134
maximally consistent set of sentences,

136
modal preservation of sentence by fil-

tered product, 245
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modal preservation of sentences by fil-
tered factor, 245

modal sentence functor, 240
model amalgamation

for comorphisms, 63
weak, 63

for institution, 60
directed, 61

model compact institution, 134
model functor, 27
model

in FOL, 24
in institution, 27

model of specification, 318
model realizes finitely set of sentences,

146
model realizes set of sentences, 146
model transformation, 39
model with predefined type, 332
modification between institution

morphisms, 39
modularization square, 300
Modus Ponens for Sen0

for entailment systems, 309
for proof systems, 310

mono, 8
monoid, 8
monomorphic family of arrows, 8
morphism

of CA signatures, 36
of FOL signatures, 25
of HOL signatures, 35
of charters, 44
of institutions, 39

FOL→ EQL, 39
FOL→MA, 43
FOL→REL, 42
MBA→ FOL, 43
PA→ FOL, 42
with elementary diagrams, 69

of presentations, 50, 298
of proof systems, 279
of rooms, 45

of signatures,
(∗e∗), 191
(b ∗ ∗), 191
(i∗ ∗), 191
(ie∗), 191
(iei), 191
(iii), 191
(s∗ ∗), 191

of specifications, 319
of systems of rules, 279
of theories, 50

proof theoretic, 298

natural transformation, 10
negation

in institutions, 92
proof-theoretic, 288
semantic, 92

normal elementary diagram, 116
normal form of specification, 324

object above an object, 20
object in category, 7
opposite category, 11
ordinal, 145
overloading of symbols, 24

partial algebra, 31
persistent adjunction, 17
persistently free object, 17
persistently free specification, 319
persistently liberal institution

comorphism, 86
persistently liberal institution

morphism, 86
polynomial, (Σ,A), 346
pre-institution, 38
pre-quantifiers, 291
precise comorphism, 226
precise morphism of signatures, 226
predefined model, 332
preorder atoms, 33
preordered algebra, 33
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presentation
in institution, 50
in proof systems, 298

preservation
of filtered products by functor, 125
of F -filtered products by functor,

125
of (co-)limits, 14
of logical connectives, 93
of sentence

by ultrafactor, 130
by directed co-limits of models,

142
by filtered factor, 130
by filtered product, 130
by limit of models, 113
by model extensions, 165
by submodels, 165
by ultraproduct, 130

product, 13
projective object, 9
projectively representable morphism of

signatures, 129
proof rules, 278
proof system, 276

with pre-quantifiers, 292
protecting presentation morphism, 345
pullback, 13
pushout, 13

quantification in institution
(D-quantification), 94

quasi-compact institution, 190
quasi-existence equation in PA, 31
quasi-representable morphism of signa-

tures, 102
quasi-variety, 171
query, 338
quotient homomorphism, 77
quotient

of model, 77
of object, 171

reachable object, 170

reduct
of FOL model homomorphisms,

25
of FOL models, 25
of models in institution, 28

reduction of filter, 123
refinement of specifications, 320
reflection

of (co-)limits, 14
of sentence by directed co-limits of

models, 142
relational atom, 25
representable morphism of signatures,

104
representation

of institutions, 87
of signature morphism, 104

retract, 8
right adjoint functor, 16
Robinson consistency square, 204
room, 45

satisfaction condition
for institution comorphisms, 40
for institution morphisms, 39
for institutions, 28

satisfaction of sentence at possible
world, 239

satisfaction relation
in FOL, 26
in institution, 27

satisfaction with predefined type, 333
saturated model, 146
second order substitution, 101
semantic entailment system, 277
semantic operator, 193
semantic proof system, 277
semantic topology, 55
semi-exact indexed coinstitution, 263
semi-exact institution, 62
sentence functor, 27
sentence in FOL, 25
sentence system with pre-quantifiers,

291
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sentence transformation, 39
signature functor, 39
signature

in CA, 36
in FOL, 23
in HOL, 35
in MBA, 34
in PA, 30
of specification, 318

signature transformation, 39
signature with predefined type, 332
simple elementary diagrams, 153
size of model, 153
skeleton of category, 17
small co-limit, 14
small limit, 14
small morphism of signatures, 146
solution for query, 339
solution form for query, 340
sort of operation symbol, 23
sound institution

with proof rules, 282
with proofs, 282

span, 13
specification, 318
split fibration, 21
split fibred institution, 255
stability

under pushouts, 15
under pullbacks, 15

stable sentence functor, 157
strong FOL homomorphism, 71
strong homomorphism of FOL models,

76
strong inclusion system, 76, 78, 79

for specifications, 320
strong morphism

of proof theoretic presentations, 300
of specifications, 320
of theories, 54, 79

strongly persistent adjunction, 17
strongly persistently free object, 17
sub-institution, 29
subcategory, 10

submodel, 76
generated by set, 80
Sen0, 164

subobject, 170
substitution in institution

D-substitution, 99
Σ-substitution, 98

substitution, first order, 97
substitutivity rule, 304
successor ordinal, 145
supporting co-limits by indexed

co-institutions, 260

theory in institution, 50
theory in proof system, 298
theory morphism, proof theoretic, 298
tight morphism of signatures, 226
translation

of FOL sentences, 26
of specification, 318

translations of solutions of queries, 345
triangular equations, 16

2-categorical, 19
type in HOL, 35

ultrafilter, 121
ultrapower of models, in institution, 123
ultraproduct of models, in institution,

123
ultraradical, 169
unifier, 341

most general, 341
union of signatures, 318
union of specifications, 318
unions in inclusion system, 75
unit of adjunction, 16
universal arrow, 11
universal institution, 302
universal proof system, 304
universal quantification in institution, 94
universal sentence in FOL, 29

variable, 25
variety, 171
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vertical arrow, 20
vertical composition, 10

weak amalgamation square, 60
weak model amalgamation for comor-

phisms, 63
weakly exact institution, 62
weakly lifting of relation by signature

morphism, 230
well-powered category, 11
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