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Preface

The main objective of this book is to give a broad unified introduction to the
study of dimension and recurrence in hyperbolic dynamics. It includes a discus-
sion of the foundations, main results, and main techniques in the rich interplay of
four main areas of research: hyperbolic dynamics, dimension theory, multifractal
analysis, and quantitative recurrence. It also gives a panorama of several selected
topics of current research interest. This includes topics on irregular sets, varia-
tional principles, applications to number theory, measures of maximal dimension,
multifractal rigidity, and quantitative recurrence.

The book is directed to researchers as well as graduate students who wish to
have a global view of the theory together with a working knowledge of its main
techniques. It can also be used as a basis for graduate courses in dimension theory
of dynamical systems, multifractal analysis (together with a discussion of several
special topics), and pointwise dimension and recurrence in hyperbolic dynamics.
I hope that the book may serve as a fast entry point to this exciting and active
field of research, and also that it may lead to further developments.

The material is organized in four parts: dimension theory; multifractal anal-
ysis: core theory; multifractal analysis: further developments; and hyperbolicity
and recurrence. With the exception of some basic well-known statements, all the
results are included with detailed proofs, many of them simplified or rewritten
specifically for the book. Furthermore, the text is self-contained. In particular, all
the necessary notions and results from hyperbolic dynamics, symbolic dynamics,
ergodic theory, dimension theory, and the thermodynamic formalism are recalled
along the way, mostly without proofs but with appropriate references. I emphasize
that each chapter can essentially be read independently.

Since the theory is so vast, in order to present a global view of the topics
under discussion, but still keep the size of the book under control, I had to make a
careful selection of material. Certainly, this selection also reflects a personal taste,
undoubtedly biased towards my own interests. This causes some interesting topics
to be barely mentioned, particularly when their study mostly requires techniques
of a different nature from the ones consistently used in the book. Other topics are
unfortunately not yet at a stage of development that makes it reasonable to include
them in a monograph of this nature. I chose rather to present a sufficiently global
view of the theory and to avoid introducing additional techniques that may well
play an important role in the theory but as of now are still under development. The
most notable example of this nature is the study of the dimension of invariant sets
of nonconformal maps (both invertible and noninvertible) which, in spite of several
important developments, still lacks today a completely satisfactory approach in its
most general version. To include these topics would increase unreasonably the size
of the book, even more when roughly two thirds of the material already appears
here for the first time in book form. As a compromise, I added detailed notes about
these and other topics at appropriate places in the book, together with references
for further reading.
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Chapter 1

Introduction

We describe briefly in this chapter the research areas considered in the book. At
this point, rather than giving a technical introduction we prefer to give a brief
overview of the historical origins and main characteristics of each area. We also
describe the contents of the book.

1.1 Dimension and recurrence in hyperbolic dynamics

Recurrence. The notion of nontrivial recurrence goes back to Poincaré in his´
study of the three-body problem. He proved in his celebrated memoir [122] of
1890 that, whenever a dynamical system preserves volume, almost all trajectories
return infinitely often to any arbitrarily small neighborhood of their initial posi-
tion. This is Poincare’s recurrence theorem. The memoir is the famous one that´
in its first version (printed in 1889, even having circulated shortly, and of which
some copies still exist today) had the error that can be seen as the main cause
for the study of chaotic behavior in the theory of dynamical systems. Incidentally,
Poincaré’s recurrence theorem was already pr´ esent in the first printed version of
the memoir and then again in [122]. Already after publication of [122], the fol-
lowing was observed by Poincaré about the complexity caused by the existence of´
homoclinic points in the restricted three-body problem (as quoted for example in
[25, p. 162]):

“One is struck by the complexity of this figure that I am not even at-
tempting to draw. Nothing can give us a better idea of the complexity
of the three-body problem and of all the problems of dynamics in gen-
eral . . . ”

We recommend [25] for a detailed historical account.
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Hyperbolicity. The study of hyperbolicity goes back to the seminal work of Ha-
damard [67] of 1898 concerning the geodesic flow in the unit tangent bundle of a
surface with negative curvature, in particular revealing the instability of the flow
with respect to the initial conditions. Hadamard observed (as quoted for example
in [25, p. 209]) that:

“. . . each stable trajectory can be transformed, by an infinitely small
variation in the initial conditions, into a completely unstable trajectory
extending to infinity, or, more generally, into a trajectory of any of the
types given in the general discussion: for example, into a trajectory
asymptotic to a closed geodesic.”

It should be noted that the geodesic flow preserves volume and thus it exhibits a
nontrivial recurrence that was also exploited by Hadamard. Considerable activity
took place during the 1920s and 1930s, in particular with the important con-
tributions of Hedlund and Hopf who established several topological and ergodic
properties of geodesic flows, also in the case of manifolds with arbitrary negative
sectional curvature. We refer to the survey [72] for details and further references.ff
Also in [67], Hadamard laid the foundations of symbolic dynamics, subsequently
developed by Morse and Hedlund and raised to a subject in its own right (see in
particular their work [102] of 1938; incidentally, this is where the expression “sym-
bolic dynamics” appeared for the first time).

Quantitative recurrence. It should be noted that even though Poincaré’s recur-´
rence theorem is a fundamental result in the theory of dynamical systems, it only
provides information of a qualitative nature. In particular, it gives no information
about the frequency of visits of each trajectory to a given set. This drawback was
surmounted by Birkhoff [29, 30] and von Neumann [160] who in 1931 established
independently the first versions of the ergodic theorem. Together with its variants
and generalizations, the ergodic theorem is a fundamental result in the theory of
dynamical systems and in particular in ergodic theory (incidentally, one of the
first occurrences of the expression “ergodic theory” was in 1932 in joint work of
Birkhoff and Koopman [31]). Nevertheless, the ergodic theorem considers only one
aspect of the quantitative behavior of recurrence. In particular, it gives no infor-
mation about the rate with which a given trajectory returns arbitrarily close to
itself. More recently, there has been a growing interest in the area, starting with
the work of Boshernitzan [34] and Ornstein and Weiss [107].

Dimension theory. In another direction, the dimension theory of dynamical sys-
tems progressively developed, during the last two decades, into an independent
field of research. We emphasize that we are mostly concerned here with the study
of dynamical systems from the point of view of dimension. The first monograph
that clearly took this point of view was Pesin’s book [115]. Roughly speaking,
the main objective of the dimension theory of dynamical systems is to measure
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the complexity from the dimensional point of view of the objects that remain
invariant under the dynamics, such as the invariant sets and measures. We note
that the thermodynamic formalism developed by Ruelle in his seminal work [131]
(see also [132]) has a privileged relation with the dimension theory of dynamical
systems.

Multifractal analysis. The multifractal analysis of dynamical systems is a sub-
field of the dimension theory of dynamical systems. Roughly speaking, multifractal
analysis studies the complexity of the level sets of invariant local quantities ob-
tained from a dynamical system. For example, we can consider Birkhoff averages,
Lyapunov exponents, pointwise dimensions, and local entropies. These functions
are typically only measurable and thus their level sets are rarely manifolds. Hence,
in order to measure their complexity it is appropriate to use quantities such as
the topological entropy and the Hausdorff dimension. The concept of multifrac-
tal analysis was suggested by Halsey, Jensen, Kadanoff, Procaccia and Shraiman
in [68]. The first rigorous approach is due to Collet, Lebowitz and Porzio in [44],
for a class of measures invariant under one-dimensional Markov maps. In [94],
Lopes considered the measure of maximal entropy for hyperbolic Julia sets, and
in [128], Rand studied Gibbs measures for a class of repellers. We refer to the
books by Pesin [115] and Falconer [55] for related discussions and further refer-
ences. Multifractal analysis has also a privileged relation with the experimental
study of dynamical systems. More precisely, the so-called multifractal spectra ob-
tained from the topological entropy or the Hausdorff dimension of the level sets
of a local quantity can be determined experimentally with considerable precision.
Thus, we may expect to be able to recover some information about a dynamical
system from the information contained in its multifractal spectra.

1.2 Contents of the book: a brief tour

Chapter 2 is of an introductory nature. It recalls in a pragmatic manner all the
basic notions and results from dimension theory, ergodic theory, and the thermo-
dynamic formalism that are needed in the book (symbolic dynamics is also used
but at a very elementary level, and thus it is recalled only when needed). The
chapter serves as a reference for the remaining chapters.

The text continues with four parts: I) dimension theory; II) multifractal anal-
ysis: core theory; III) multifractal analysis: further developments; IV) hyperbolicity
and recurrence. Each part can essentially be read independently.

Part I is dedicated to the study of the dimension of invariant sets of dy-
namical systems. Chapter 3 initiates this study, including its relation with the
thermodynamic formalism. We note that the dimension theory of invariant sets
presents complications of a different nature from those in the dimension theory of
invariant measures. In particular, the dimension of an invariant set may be affected
by number-theoretical properties. The emphasis in Chapter 3 is on the study of
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the so-called geometric constructions which can be seen as models of invariant sets
of dynamical systems. We first consider geometric constructions modeled by the
full shift, in which case we can avoid the thermodynamic formalism. Chapter 4 is
dedicated to the study of the dimension of invariant sets of a hyperbolic dynamics,
both invertible and noninvertible. In particular, we present the dimension formu-
las for repellers and hyperbolic sets of a conformal map. We note that symbolic
dynamics plays an important role. In particular, using Markov partitions we can
model the invariant sets by geometric constructions. Chapter 5 establishes the
existence of ergodic measures of maximal dimension for hyperbolic sets of con-
formal diffeomorphisms. This is a dimensional version of the existence of ergodic
measures of maximal entropy. A crucial difference in this setting is that while the
entropy map is upper semicontinuous, the Hausdorff dimension is neither upper
semicontinuous nor lower semicontinuous.

The core of the theory of multifractal analysis is the main theme of Part II.
Chapter 6 describes the multifractal analysis of repellers and hyperbolic sets of
conformal maps. Chapter 7 introduces the general concept of multifractal analysis,
considering in particular other invariant local quantities. This provides new multi-
fractal spectra that can be seen as potential multifractal moduli, in the sense that
they may contain nontrivial information about the dynamical system. In Chapter 8
we discuss the properties of the set of points for which the averages in Birkhoff’s
ergodic theorem do not converge. This set has zero measure with respect to any
invariant measure, and thus it is very small from the point of view of measure
theory. On the other hand, it is very large from the point of view of entropy and
dimension. We then obtain a conditional variational principle in Chapter 9. In par-
ticular, this allows us to show that many spectra, including the so-called mixed
spectra, are analytic in several contexts. On the other hand, we show that there
are many nonconvex mixed spectra.

Part III is dedicated to several additional topics of the theory of multifractal
analysis. Chapter 10 presents multidimensional versions of the conditional varia-
tional principle and gives applications to certain problems of number theory. It
turns out that the multidimensional multifractal spectra exhibit several nontrivial
phenomena that are absent in the one-dimensional case. In Chapter 11 we dis-
cuss how we can make rigorous a certain multifractal classification of dynamical
systems. Namely, we consider the phenomenon of multifractal rigidity. Roughly
speaking, it states that if two dynamical systems are topologically equivalent and
some of their multifractal spectra coincide, then the systems must be equivalent
(in some sense to be made precise). We also show that sometimes it is impossible
to effect a multifractal classification. Chapter 12 is dedicated to the study of mul-
tifractal spectra obtained from considering simultaneously Birkhoff averages into
the past and into the future in hyperbolic sets. We emphasize that the description
of these spectra is not a direct consequence of the results in Chapter 6. The main
difficulty is that even though the local product structure of the hyperbolic set is
a Lipschitz homeomorphism with Lipschitz inverse, the level sets of the Birkhoff
averages are never compact. This forces us to construct explicitly noninvariant
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measures concentrated on each product of level sets having the right pointwise
dimension.

Finally, Part IV is dedicated to the interplay of hyperbolicity and recurrence.
In Chapter 13, for repellers and hyperbolic sets of conformal maps, we establish
explicit formulas for the pointwise dimension of an arbitrary invariant measure.
These are expressed in terms of the local entropy and the Lyapunov exponents.
This allows us to show that the Hausdorff dimension of a nonergodic invariant
measure is equal to the essential supremum of the Hausdorff dimensions of the
measures in an ergodic decomposition. In Chapter 14 we consider hyperbolic mea-
sures, that is, measures with all Lyapunov exponents nonzero, and we describe
their almost product structure. It imitates the local product structure of a hy-
perbolic set, although its study is much more delicate. In Chapter 15 we study
the problem of quantitative recurrence in a hyperbolic set, establishing a relation
between the recurrence rate and the pointwise dimension. We also describe the
almost product structure of the return time.



Chapter 2

Basic Notions

This chapter collects in a pragmatic manner all the notions and results from di-
mension theory, ergodic theory, and the thermodynamic formalism that are needed
in the book. We emphasize that it is not intended to be an introduction to any
of the three areas but instead to serve as a reference for the remaining chapters.
Furthermore, it may be skipped without consequences, since whenever needed we
shall refer in the main text of the book to the appropriate place in this chapter.

2.1 Dimension theory

We start by introducing the notions of Hausdorff dimension and of lower and
upper box dimensions, both for sets and measures. We also introduce the notions
of lower and upper pointwise dimensions, and we show how they can be used to
compute or at least to estimate the dimension of measures. We refer to the books
[56, 96, 115] for details.

We consider a set X ⊂ Rm for some m ∈ N. Let d be the distance in X . We
define the diameter of a set U ⊂ X by

diamU = sup{d(x, y) : x, y ∈ U},

and the diameter of a collection U of subsets of X by

diamU = sup{diamU : U ∈ U}.

Given Z ⊂ X and α ∈ R, we define the α-dimensional Hausdorff measure of Z by

m(Z, α) = lim
ε→0

inf
U

∑

U∈U

(diamU)α, (2.1)

where the infimum is taken over all finite or countable covers U of the set Z with
diamU ≤ ε.
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Definition 2.1.1. The Hausdorff dimension of Z ⊂ X is defined by

dimHZ = inf{α ∈ R : m(Z, α) = 0}. (2.2)

The lower and upper box dimensions of Z ⊂ X are defined respectively by

dimBZ = lim inf
ε→0

log N(Z, ε)

− log ε
and dimBZ = lim sup

ε→0

log N(Z, ε)

− log ε
,

where N(Z, ε) denotes the least number of balls of radius ε that are needed to
cover the set Z.

It is easy to show that

dimHZ ≤ dimBZ ≤ dimBZ. (2.3)

In general these inequalities may be strict and the coincidence of the Hausdorff
dimension and of the lower and upper box dimensions is a relatively rare phe-
nomenon. Indeed, it occurs only in some particular situations such as those dis-
cussed in Chapters 3 and 4, even if they correspond to large classes of dynamics.

Now we introduce the corresponding notions for measures. Let μ be a finite
measure in X .

Definition 2.1.2. The Hausdorff dimension and the lower and upper box dimen-
sions of μ are defined respectively by

dimHμ = inf{dimHZ : μ(X \ Z) = 0},

dimBμ = lim
δ→0

inf{dimBZ : μ(Z) ≥ μ(X) − δ},

dimBμ = lim
δ→0

inf{dimBZ : μ(Z) ≥ μ(X) − δ}.

One can easily show that

dimHμ = lim
δ→0

inf{dimHZ : μ(Z) ≥ μ(X) − δ}. (2.4)

Indeed, let c be the right-hand side of (2.4). Clearly,

dimHμ ≥ inf{dimHZ : μ(Z) ≥ μ(X) − δ}

for every δ, and hence dimHμ ≥ c. On the other hand, there exists a sequence of
sets ZnZZ with μ(ZnZZ ) → μ(X) and dimHZnZZ → c as n → ∞. Therefore,

dimHμ ≤ dimH

⋃

n∈N

ZnZZ = sup
n∈N

dimHZnZZ = c.

We note that in general the quantities dimHμ, dimBμ, and dimBμ do not
coincide, respectively, with the Hausdorff dimension and the lower and upper box
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dimensions of the support of μ, and thus they contain additional information about
the way in which the measure μ is distributed in its support. It follows from (2.3)
and (2.4) that

dimHμ ≤ dimBμ ≤ dimBμ. (2.5)

As it happens with the inequalities in (2.3), in general the inequalities in (2.5)
may also be strict. Nevertheless, in strong contrast with the dimension of sets,
the coincidence of the three quantities in (2.5) for a given measure μ is a more
common phenomenon (see Theorem 14.3.5).

The following quantities allow us to formulate a criterion for the coincidence
of the three numbers in (2.5).

Definition 2.1.3. The lower and upper pointwise dimensions of the measure μ at
the point x ∈ X are defined by

dμ(x) = lim inf
r→0

log μ(B(x, r))

log r
and dμ(x) = lim sup

r→0

log μ(B(x, r))

log r
.

We have the following identities.

Proposition 2.1.4. For each a > 0 and x ∈ X we have

dμ(x) = lim inf
n→∞

log μ(B(x, ae−n))

−n

and

dμ(x) = lim sup
n→∞

log μ(B(x, ae−n))

−n
.

Proof. For each r > 0 sufficiently small there exists a unique n = n(r) ∈ N such
that

ae−(n+1) ≤ r < ae−n < 1.

We have
μ(B(x, ae−(n+1))) ≤ μ(B(x, r)) ≤ μ(B(x, ae−n)),

and thus

log μ(B(x, ae−(n+1)))

log(ae−n)
≤ log μ(B(x, r))

log r
≤ log μ(B(x, ae−n))

log(ae−(n+1))
.

As r → 0 we have n(r) → ∞, and all sufficiently large integers are attained
by n(r). Therefore,

lim sup
n→∞

log μ(B(x, ae−n))

−n
= lim sup

n→∞

log μ(B(x, ae−(n+1)))

log(ae−n)

≤ lim sup
r→0

log μ(B(x, r))

log r

≤ lim sup
n→∞

log μ(B(x, ae−n))

log(ae−(n+1))

= lim sup
n→∞

log μ(B(x, ae−n))

−n
,
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with similar inequalities for the lower pointwise dimension. �

The following statement relates the Hausdorff dimension with the lower
pointwise dimension.

Theorem 2.1.5. The following properties hold:

1. if dμ(x) ≥ α for μ-almost every x ∈ X, then dimHμ ≥ α;

2. if dμ(x) ≤ α for every x ∈ Z ⊂ X, then dimHZ ≤ α;

3. we have
dimHμ = ess sup{dμ(x) : x ∈ X}. (2.6)

Proof. Set
Y = {x ∈ X : dμ(x) ≥ α}.

Given ε > 0, for each x ∈ Y there exists r(x) > 0 such that if r ∈ (0, r(x)), then

μ(B(x, r)) ≤ (2r)α−ε. (2.7)

Given ρ > 0, set
YρYY = {x ∈ Y : r(x) ≥ ρ}.

Clearly,

YρYY 1 ⊂ YρYY 2 for ρ1 ≥ ρ2, and Y =
⋃

ρ>0

YρYY .

Since μ(X \ Y ) = 0, there exists ρ > 0 such that μ(YρYY ) ≥ μ(X)/2. Now let Z ⊂ Y
be an arbitrary set of full μ-measure, and let U be a cover of Z ∩YρYY by open balls.
Without loss of generality we assume that U ∩ YρYY 	=		 ∅ for every U ∈ U. Then for
each U ∈ U, there exists xU ∈ U ∩ YρYY , and we consider the new cover

V = {B(xU , diamU) : U ∈ U}

of the set Z ∩ YρYY . It follows from (2.7) that

∑

U∈U

(diamU)α−ε = 2ε−α
∑

V ∈V

(diamV )α−ε

≥ 2ε−α
∑

V ∈U

μ(V )

≥ 2ε−αμ(YρYY ) ≥ 2ε−αμ(X)/2.

Since U is arbitrary, we obtain

m(Z ∩ YρYY , α − ε) ≥ 2ε−αμ(X)/2.

This implies that dimH(Z ∩ YρYY ) ≥ α − ε, and by the arbitrariness of ε we have

dimHZ ≥ dimH(Z ∩ YρYY ) ≥ α.
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Now we establish the second property. For each x ∈ Z and ε > 0 there exists
a sequence rn = rn(x, ε) ց 0 as n → ∞ such that

μ(B(x, rn)) ≥ (2rn)α+ε (2.8)

for every n ∈ N. Consider a cover

U ⊂ {B(x, rn(x, ε)) : x ∈ Z and n ∈ N}

of the set Z. Notice that its diameter can be made arbitrarily small. By Besicov-
itch’s covering lemma (see, for example, [96, Theorem 2.7]) there exists a subcover
V ⊂ U of Z of finite multiplicity, that is, there exists K > 0 such that

card{V ∈ V : x ∈ V } ≤ K

for every x ∈ Z. Therefore, by (2.8),

∑

V ∈V

(diamV )α+ε ≤
∑

V ∈V

μ(B(x, r)) ≤ Kμ(X),

and since the diameter of the cover V can be made arbitrarily small we obtain
m(Z, α + ε) ≤ Kμ(X). This implies that dimHZ ≤ α + ε, and since ε is arbitrary
we obtain dimHZ ≤ α.

For the third property, let

α = ess sup{dμ(x) : x ∈ X} and Z = {x ∈ X : dμ(x) ≤ α}.

We have μ(Z) = μ(X) and by property 2, we have

dimHμ ≤ dimHZ ≤ α.

Given ε > 0, let
ZεZ = {x ∈ X : dμ(x) ≥ α − ε}.

We have μ(ZεZ ) > 0, and it follows from property 1 that

dimHμ ≥ dimH(μ|ZεZ ) ≥ α − ε.

By the arbitrariness of ε we obtain dimHμ ≥ α. �

We also recall a criterion established by Young in [165] for the coincidence
of the Hausdorff and box dimensions of a measure.

Theorem 2.1.6. If μ is a finite measure in X and there exists d ≥ 0 such that

lim
r→0

log μ(B(x, r))

log r
= d (2.9)

for μ-almost every x ∈ X, then

dimHμ = dimBμ = dimBμ = d.
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Proof. By Theorem 2.1.5 we have dimHμ ≥ d. Now we prove that dimBμ ≤ d and
the result follows from (2.5). Set

Z = {x ∈ X : dμ(x) ≤ d}.

Given ε > 0, for each x ∈ Z there exists r(x) > 0 such that if r ∈ (0, r(x)), then

μ(B(x, r)) ≥ (2r)d+ε.

Given ρ > 0, we consider the set YρYY = {x ∈ Z : r(x) ≥ ρ}. Clearly,

YρYY 1 ⊂ YρYY 2 for ρ1 ≥ ρ2, and Z =
⋃

ρ>0

YρYY .

Therefore, since μ(X \ Z) = 0, we have μ(YρYY ) ր μ(X) as ρ → 0. For each r < ρ
the balls B(x, r) form a cover U of the set YρYY . By Besicovitch’s covering lemma
(see, for example, [96, Theorem 2.7]) there exists a subcover V ⊂ U of YρYY of finite
multiplicity K. Therefore,

∑

V ∈V

(diamV )d+ε ≤
∑

V ∈V

μ(B(x, r)) ≤ Kμ(X).

Since ∑

V ∈V

(diamV )d+ε = (2r)d+ε cardV ≥ (2r)d+εN(YρYY , r),

we obtain

N(YρYY , r) ≤ Kμ(X)

(2r)d+ε

and hence,

dimBYρYY = lim sup
r→0

log N(YρYY , r)

− log r
≤ d + ε.

Since μ(YρYY ) ր μ(X) as ρ → 0, we conclude that

dimBμ ≤ lim sup
ρ→0

dimBYρYY ≤ d + ε.

By the arbitrariness of ε we obtain dimBμ ≤ d. This completes the proof of the
theorem. �

Definition 2.1.7. The limit in (2.9), when it exists, is called the pointwise dimension
of μ at x, and we denote it by dμ(x).

By Whitney’s embedding theorem, the statements in this section also hold
when X is a subset of a smooth manifold.



2.2. Ergodic theory 13

2.2 Ergodic theory

We recall in this section a few basic notions and results of ergodic theory, includ-
ing Poincaré’s recurrence theorem, Birkhoff’s er´ godic theorem, and the notion of
Kolmogorov–Sinai entropy. We refer to the books [84, 95, 163] for details.

We first introduce the notion of invariant measure. Let X be a space with a
σ-algebra.

Definition 2.2.1. Given a measurable transformation T : X → X , we say that a
measure μ in X is T -invariant if

μ(T−1A) = μ(A)

for every measurable set A ⊂ X .

The study of transformations with an invariant measure is the main theme
of ergodic theory. We denote by M the set of all T -invariant probability measures
in X . We say that a measure μ ∈ M is ergodic if every T -invariant measurable set
A ⊂ X (i.e., such that T−1A = A) has measure μ(A) = 0 or μ(A) = 1. We denote
by ME ⊂ M the subset of all ergodic measures.

Now we recall one of the basic but fundamental results of ergodic theory—
Poincare’s recurrence theorem. It states that any measurable transformation pre-´
serving a finite measure exhibits a nontrivial recurrence in any set A with positive
measure, in the sense that the orbit of almost every point in A returns infinitely
often to A.

Theorem 2.2.2 (Poincaré’s recurrence theorem).´ Let T : X → X be a measurable
transformation. Given μ ∈ M, if A ⊂ X is a measurable set with positive measure,
then

card{n ∈ N : T nx ∈ A} = ∞
for μ-almost every point x ∈ A.

A slightly modified version of Theorem 2.2.2 was first established by Poincaré
in his seminal memoir on the three-body problem [122] (we refer to [25] for a
detailed historical account).

The following is another basic result of ergodic theory. We denote by L1(X, μ)
the space of all measurable functions ϕ : X → R with

∫
X

∫∫
|ϕ| dμ < ∞.

Theorem 2.2.3 (Birkhoff’s ergodic theorem). Let T : X → X be a measurable
transformation and let μ ∈ M. For each ϕ ∈ L1(X, μ) there exists the limit

lim
n→∞

1

n

n−1∑

k=0

ϕ(T kx)

for μ-almost every x ∈ X. If in addition μ ∈ ME, then

lim
n→∞

1

n

n−1∑

k=0

ϕ(T kx) =

∫

X

∫∫
ϕdμ
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for μ-almost every x ∈ X.

For example, if ϕ = χA is the characteristic function of a measurable subset
A ⊂ X , then by Theorem 2.2.3, if μ ∈ ME, then

lim
n→∞

1

n
card{0 ≤ k ≤ n − 1 : T kx ∈ A} = μ(A)

for μ-almost every x ∈ X . This means that almost all orbits stay a proportion of
time in a given set A equal to the measure of the set.

Now we introduce the notion of Kolmogorov–Sinai entropy. Let μ ∈ M and
let ξ be a finite or countable partition of X into measurable subsets. This means
that:

1. ξ is a finite or countable family of subsets of X , with μ(
⋃

C∈ξ C) = 1;

2. μ(C ∩ D) = 0 for every C, D ∈ ξ with C 	=		 D.

We define the entropy of ξ with respect to μ by

HμH (ξ) = −
∑

C∈ξ

μ(C) log μ(C),

with the convention that 0 log 0 = 0.

Definition 2.2.4. We define the Kolmogorov–Sinai entropy of T with respect to
the measure μ by

hμ(T ) = sup
ξ

lim
n→∞

1

n
HμH (ξn), (2.10)

where ξn is the partition of the space X composed of the sets
⋂n−1

k=0 T−kCiCC
k+1

with
CiCC 1 , . . . , CiCC

n
∈ ξ.

It can be shown that indeed there exists the limit in (2.10) when n → ∞.

2.3 Thermodynamic formalism

We introduce in this section a few basic notions of the thermodynamic formal-
ism, starting with topological pressure. It was introduced by Ruelle in [131] for
expansive transformations and by Walters in [161] in the general case. For more
details and further references about the thermodynamic formalism we refer to
[38, 84, 86, 132, 163].

Let (X, d) be a compact metric space and let T : X → X be a continuous
transformation. For each n ∈ N we define a new distance in X by

dn(x, y) = max
{
d(T kx, T ky) : 0 ≤ k ≤ n − 1

}
. (2.11)

Given ε > 0, we say that a finite set E ⊂ X is (n, ε)-separated if dn(x, y) > ε for
every x, y ∈ E with x 	=		 y.
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Definition 2.3.1. The topological pressure of a continuous function ϕ : X → R

(with respect to T ) is defined by

P (ϕ) = PXP (ϕ) = lim
ε→0

lim sup
n→∞

1

n
log sup

E

∑

x∈E

exp

n−1∑

k=0

ϕ(T kx),

where the supremum is taken over all (n, ε)-separated sets E ⊂ X .

The notion of topological entropy is a particular case of topological pressure.

Definition 2.3.2. We define the topological entropy of the transformation T by
h(T ) = P (0), that is,

h(T ) = lim
ε→0

lim sup
n→∞

1

n
log N(n, ε),

where N(n, ε) is the largest cardinality of all (n, ε)-separated sets.

Now we present an equivalent description of topological pressure.

Theorem 2.3.3 (Variational principle of topological pressure). If T : X → X is a
continuous transformation in a compact metric space, and ϕ : X → R is continu-
ous, then

P (ϕ) = sup
μ∈M

{
hμ(T ) +

∫

X

∫∫
ϕdμ

}

= sup
μ∈ME

{
hμ(T ) +

∫

X

∫∫
ϕdμ

}
.

(2.12)

For example, setting ϕ = 0 in Theorem 2.3.3 we obtain the variational prin-
ciple of topological entropy, namely

h(T ) = sup
μ∈M

hμ(T ) = sup
μ∈ME

hμ(T ).

Definition 2.3.4. A measure μ ∈ M is called an equilibrium measure for ϕ (with
respect to T ) if the first supremum in (2.12) is attained by this measure, that is, if

P (ϕ) = hμ(T ) +

∫

X

∫∫
ϕdμ.
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Dimension Theory



Chapter 3

Dimension Theory and
Thermodynamic Formalism

We start in this chapter our study of the dimension theory of dynamical systems
and its relation with the thermodynamic formalism (see Section 2.3). We first
consider geometric constructions modeled by the full shift in which case we can
avoid the thermodynamic formalism without too much pain. On the other hand,
this should make the reader appreciate the simplification and unification that are
allowed by the thermodynamic formalism in the following chapters.

3.1 Dimension theory of geometric constructions

There are important differences between the dimension theory of invariant sets
and the dimension theory of invariant measures. In particular, while virtually all
dimensional characteristics of invariant hyperbolic measures coincide, the study of
the dimension of invariant hyperbolic sets reveals that the dimensional characteris-
tics frequently depend on other properties, and in particular on number-theoretical
properties. This is another reason for our interest in simpler models. The theory
of geometric constructions precisely provides such a class of models.

Δ1 Δ2

Δ11 Δ12 Δ21 Δ22

Figure 3.1: Geometric construction in the real line

We start with the description of a particular geometric construction in the
real line. We consider constants λ1, . . ., λp ∈ (0, 1) and disjoint closed intervals
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Δ1, . . ., Δp ⊂ R with length λ1, . . ., λp (see Figure 3.1). For each k = 1, . . ., p,
we choose again p disjoint closed intervals Δk1, . . ., Δkp ⊂ Δk with length λkλ1,
. . ., λkλp. Iterating this procedure, for each n ∈ N we obtain pn disjoint closed
intervals Δi1···in

with length
∏n

k=1 λik
. We then define the limit set

F =

∞⋂

n=1

⋃

i1···in

Δi1···in
. (3.1)

The following result was essentially proved by Moran in [101] (more precisely, he
simply did not consider the box dimensions).

Theorem 3.1.1. We have

dimHF = dimBF = dimBF = s

and 0 < m(F, s) < ∞, where s is the unique real number such that

p∑

k=1

λk
s = 1. (3.2)

Proof. To verify that there is a unique real number s satisfying (3.2) it is sufficient
to observe that the function L(s) =

∑p
k=1 λk

s is strictly decreasing, with

lim
s→−∞

L(s) = +∞ and lim
s→+∞

L(s) = 0.

For the remaining properties, we first observe that for each n ∈ N the sets
Δi1···in

form a cover of F . Furthermore,

∑

i1···in

(diamΔi1···in
)s =

∑

i1···in

(λi1 · · ·λin
)s =

(
p∑

k=1

λs
k

)n

= 1, (3.3)

and since

diamΔi1···in
≤
(

max
k=1,...,p

λk

)n

→ 0 as n → ∞,

it follows from (3.3) that m(F, s) ≤ 1. In particular, dimHF ≥ s.
To obtain a lower bound for the Hausdorff measure we define a probability

measure μ in the limit set F by requiring that

μ(Δi1···in
) = (λi1 · · ·λin

)s

for every i1, . . . , in ∈ {1, . . . , p}. It follows from (3.3) that μ(F ) = 1. Now we
construct a special cover of F , that we call a Moran cover. For each sequence ω =
(i1i2 · · · ) ∈ {1, . . . , p}N and r ∈ (0, 1), we consider the unique integer n = n(ω, r)
such that

λi1 · · ·λin
< r ≤ λi1 · · ·λin−1 . (3.4)
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We can easily verify that for each fixed r the sets

Δ(ω, r) = Δi1···in(ω,r)
(3.5)

are pairwise disjoint, that is,

if Δ(ω, r) ∩ Δ(ω′, r) 	=		 ∅ then Δ(ω, r) = Δ(ω′, r). (3.6)

Furthermore, they form a cover of F . Notice that for each ω ∈ {1, . . . , p}N we have

r/c ≤ diamΔ(ω, r) < r, (3.7)

where c = 1/ mink=1,...,p λk. This implies that for any interval I of length r there
is at most a number c of sets Δ(ω, r) that intersect I. Therefore,

μ(I) ≤
∑

Δ(ω,r)∩B �=�� ∅

μ(Δ(ω, r)) <
∑

Δ(ω,r)∩B �=�� ∅

rs ≤ crs.

Since each set U ⊂ F is contained in an interval of length diamU , we have

μ(U) ≤ c(diamU)s.

Therefore, for any countable cover U of F we have

1 = μ(F ) =
∑

U∈U

μ(U) ≤ c
∑

U∈U

(diamU)s,

and it follows from (2.1) that m(F, s) ≥ 1/c.
It remains to establish an upper bound for the upper box dimension. Given

r ∈ (0, 1), we consider again the Moran cover of F formed by the sets Δ(ω, r). Let
Δ̃1, . . . , Δ̃N(r) be these sets (it follows from (3.6), (3.7), and the compactness of F

that N(r) < ∞). By (3.7) we have diamΔ̃i < r for i = 1, . . . , N(r). Furthermore,
since

(diamΔi1···im
)s =

∑

im+1···in

(diamΔi1···in
)s,

it follows from (3.3) that
N(r)∑

i=1

(diam Δ̃i)
s = 1. (3.8)

On the other hand, again by (3.7), we have diamΔ̃i ≥ r/c for i = 1, . . . , N(r).
Since the sets Δ̃i are pairwise disjoint, it follows from (3.8) that N(r) ≤ (c/r)s.
Therefore,

N(F, r) ≤ N(r) ≤ (c/r)s,

and

dimBF ≤ lim sup
r→0

s log(c/r)

− log r
= s.

This completes the proof of the theorem. �
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It is remarkable that the Hausdorff and box dimensions of the limit set F do
not depend on the location of the intervals Δi1···in

but only on their length.

Now we introduce the general notion of geometric construction modeled by
an arbitrary symbolic dynamics. Given an integer p ∈ N, we consider the space of
sequences Σ+

p = {1, . . . , p}N and we equip it with the distance

d(ω, ω′) =

∞∑

k=1

e−k|ik − i′k|, (3.9)

where ω = (i1i2 · · · ) and ω′ = (i′1i
′
2 · · · ). With this distance Σ+

p becomes a compact
metric space. We also consider the shift map σ : Σ+

p → Σ+
p defined by σ(i1i2 · · · ) =

(i2i3 · · · ).

Definition 3.1.2. A geometric construction in Rm consists of:

1. a compact subset Σ ⊂ Σ+
p such that σ−1Σ ⊃ Σ, for some p ∈ N;

2. a decreasing sequence of compact sets Δi1···in
⊂ Rm for each ω ∈ Σ, with

diameter diamΔi1···in
ց 0 as n → ∞, and such that whenever (i1 · · · in) 	=		

(j1 · · · jn) we have

intΔi1···in
∩ intΔj1···jn

	=		 ∅. (3.10)

We say that the geometric construction is modeled by Σ.

For example, to model repellers and hyperbolic sets, we can consider geo-
metric constructions modeled by topological Markov chains (see Chapter 4 for
details).

Definition 3.1.3. The limit set of a geometric construction modeled by Σ is the
compact set F defined by (3.1), with the union taken over all i1, . . . , in ∈ {1, . . . , p}
such that (i1 · · · in) = (j1 · · · jn) for some sequence (j1j2 · · · ) ∈ Σ.

We point out that to determine or even to estimate the dimension of the
limit set F , sometimes it is not sufficient to know the geometric shape of the sets
Δi1···in

, in strong contrast with what happens in Theorem 3.1.1. For example,
the dimension can be affected by certain number-theoretical properties. We shall
not make any detailed discussion but we give an example. Namely, consider a
geometric construction in R2 modeled by Σ+

2 such that the sets

Δi1···in
= (fiff 1 ◦ · · · ◦ fiff

n
)([0, 1] × [0, 1])

are rectangles with sides of length an and bn, obtained from the composition of
the functions

f1(x, y) = (ax, by) and f2ff (x, y) = (ax − a + 1, by − b + 1),
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for some fixed constants a ∈ (0, 1) and b ∈ (0, 1/2) (see Figure 3.2). In particular,
the projection of Δi1···in

on the horizontal axis is an interval with right endpoint
given by

an +
n−1∑

k=0

jkak, (3.11)

where

jk =

{
0 if ik = 1,

1 − a if ik = 2.

Now we assume that a = (
√√

5−1)/2. In this case we have a2 +a = 1, and thus for
each n > 2 there is more than one vector (i1 · · · in) for which we obtain the same
value in (3.11). This causes a larger concentration of the sets Δi1···in

in certain
regions of the limit set F . Therefore, to compute the Hausdorff dimension, when
we take an open cover of F it may happen that it is possible to replace, in the
regions of larger concentration of the sets Δi1···in

, several elements of the cover
by a single element. This may cause F to have a smaller Hausdorff dimension
than expected, with respect to a certain “generic” value obtained by Falconer
in [51]. It was established by Neunhäuserer in [104] that indeed this happens¨
when a = (

√
5 − 1)/2. See also [124] for former related results of Przytycki and

Urbanski. We note that the constant (´
√

5− 1)/2 is only an example among many
other possible values that lead to a similar phenomenon. Additional complications
can occur when f1 and f2ff are replaced by functions that are not affine.

Δ1

Δ2

Δ11

Δ12

Δ21

Δ22

Figure 3.2: Number-theoretical properties and dimension theory
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3.2 Thermodynamic formalism and dimension theory

In [118] Pesin and Weiss extended the result of Moran in Theorem 3.1.1 to an ar-
bitrary symbolic dynamics, with the help of the thermodynamic formalism. Before
presenting their result we consider the thermodynamic formalism in the particular
case of symbolic dynamics. We also introduce the notion of Gibbs measure and
we illustrate the relation of dimension theory with the thermodynamic formalism,
taking advantage of the simplification given by symbolic dynamics.

3.2.1 Thermodynamic formalism for symbolic dynamics

One can easily show that in the case of symbolic dynamics the limit in Defini-
tion 2.3.1 when ε → 0 is not needed.

Proposition 3.2.1. Given a compact set Σ ⊂ Σ+
p such that σ−1Σ ⊃ Σ and a

continuous function ϕ : Σ → R, the topological pressure of ϕ (with respect to σ) is
given by

P (ϕ) = PΣPP (ϕ) = lim
n→∞

1

n
log

∑

i1···in

exp sup
Ci1···in

(
n−1∑

k=0

ϕ ◦ σk

)
, (3.12)

where

CiCC 1···in
= {(j1j2 · · · ) ∈ Σ : (j1 · · · jn) = (i1 · · · in)}. (3.13)

The existence of the limit in (3.12) follows from the fact that the sequence

an = log
∑

i1···in

exp sup

(
n−1∑

k=0

ϕ ◦ σk

)

is subadditive. This means that an+m ≤ an + am for every m, n ∈ N. One can
easily show that it is possible to replace the supremum in (3.12) by the infimum
of the same expression without changing the value of the limit. In particular, one
can take any value for the second sum in (3.12) between the infimum and the

supremum of
∑n−1

k=0 ϕ ◦ σk in CiCC 1···in
.

Definition 3.2.2. Each set CiCC 1···in
in (3.13) is called a cylinder set of length n, and

we denote its length by |CiCC 1···in
| = n.

By Definition 2.3.2, the topological entropy of σ|Σ is given by h(σ|Σ) = P (0),
that is,

h(σ|Σ) = lim
n→∞

1

n
log N(Σ, n),

where N(Σ, n) is the number of vectors (i1 · · · in) such that (i1 · · · in) = (j1 · · · jn)
for some sequence (j1j2 · · · ) ∈ Σ.

We also need the notion of Gibbs measure.
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Definition 3.2.3. We say that a σ-invariant probability measure μ in Σ is a Gibbs
measure for the function ϕ : Σ → R if there exist constants D1, D2 > 0 such that

D1 ≤ μ(CiCC 1···in
)

exp
(
− nP (ϕ) +

∑n−1
k=0 ϕ(σkω)

) ≤ D2 (3.14)

for every n ∈ N and ω ∈ CiCC 1···in
.

It is easy to show that any Gibbs measure is an equilibrium measure (see
Definition 2.3.4). The converse does not hold but, for example, for a topologically
mixing topological Markov chain (see Section 4.1 for the definitions), if ϕ is Holder¨
continuous, then its unique equilibrium measure is a Gibbs measure.

To illustrate the relation between dimension theory and the thermodynamic
formalism we consider numbers λ1, . . . , λp ∈ (0, 1) and we define the function
ϕ : Σ → R by

ϕ(i1i2 · · · ) = log λi1 . (3.15)

We have

P (sϕ) = lim
n→∞

1

n
log

∑

i1···in

exp

(
s

n∑

k=1

log λik

)

= lim
n→∞

1

n
log

∑

i1···in

n∏

k=1

λik

s

= lim
n→∞

1

n
log

(
p∑

i=1

λi
s

)n

= log

p∑

i=1

λi
s.

(3.16)

Therefore, equation (3.2) is equivalent to the new equation

P (sϕ) = 0 (3.17)

involving the topological pressure. Equation (3.17) was introduced by Bowen in [40]
(in his study of quasi-circles) and is usually called Bowen’s equation. It is also ap-
propriate to call it Bowen–Ruelle’s equation, taking into account the fundamental
role of the thermodynamic formalism developed by Ruelle, and of his article [134].
Equation (3.17) establishes the connection between the thermodynamic formalism
and dimension theory. Taking into consideration that the topological pressure and
the Hausdorff dimension may be defined in a similar manner (see (2.1)–(2.2) and
Section 7.2), namely, both can be obtained as Carathéodory dimension character-´
istics (see [115] for details)—the relation between the two is in fact very natural.
It happens that equation (3.17) has a rather universal character: indeed, virtually
all known equations used to compute or to estimate the dimension of invariant
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sets of dynamical systems are particular cases of this equation or of appropriate
generalizations.

Before proceeding with the extension of the result of Moran to arbitrary sym-
bolic dynamics, we present an equivalent description of the topological pressure.
Given α ∈ R and N ∈ N, we set

M(α, N) = inf
C

∑

C∈C

exp

⎛
⎝
⎛⎛

−α |C| + sup
C

|C|−1∑

k=0

ϕ ◦ σk

⎞
⎠
⎞⎞

(3.18)

where the infimum is taken over all finite covers C of Σ by cylinder sets in the
collection

HN = {CiCC 1···in
: n ≥ N and (i1i2 · · · ) ∈ Σ}. (3.19)

Theorem 3.2.4. Given a compact set Σ ⊂ Σ+
p such that σ−1Σ ⊃ Σ and a continu-

ous function ϕ : Σ → R we have

P (ϕ) = inf
{
α : lim

N→∞
M(α, N) = 0

}
.

Proof. Clearly

M(α, N) ≤
∑

i1···iN

exp

(
−αN + sup

Ci1···iN

N−1∑

k=0

ϕ ◦ σk

)
. (3.20)

On the other hand, given ε > 0 there exists C > 0 such that for every N ∈ N,

∑

i1···iN

exp

(
sup

Ci1···iN

N−1∑

k=0

ϕ ◦ σk

)
≤ Ce(P (ϕ)+ε)N .

Therefore, provided that α > P (ϕ) and ε is sufficiently small, it follows from (3.20)
that

M(α, N) ≤ e−αNCe(P (ϕ)+ε)N → 0

as N → ∞. Hence,

p := inf
{

α : lim
N→∞

M(α,N) = 0
}
≤ P (ϕ).

Now let α > p. There exist N ∈ N and a finite cover C ⊂ HN of Σ by cylinder
sets C̃1, . . . , C̃qCC such that

N(α,C) :=
∑

C∈C

exp

⎛
⎝
⎛⎛

−α |C| + sup
C

|C|−1∑

k=0

ϕ ◦ σk

⎞
⎠
⎞⎞

< 1. (3.21)

Let I1, . . . , IqII be the finite sequences such that

C̃iCC = CIC
i

for i = 1, . . . , q. (3.22)



3.2. Thermodynamic formalism and dimension theory 27

For each n ∈ N we consider the cover Cn of Σ formed by the cylinder sets CIC
i1 ···Iin

with i1, . . . , in ∈ {1, . . . , q}, and we write Γi1···in
= CIC

i1 ···Iin
. Since

sup
Γi1···in

|Γi1···in |−1∑

k=0

ϕ ◦ σk ≤
n∑

j=1

sup
Γij ···in

|Γij
|−1∑

k=0

ϕ ◦ σk

≤
n∑

j=1

sup
Γij

|Γij
|−1∑

k=0

ϕ ◦ σk,

it follows from (3.22) that

N(α,Cn) ≤
n∏

k=1

∑

C∈C

exp

⎛
⎝
⎛⎛

−α |C| + sup
C

|C|−1∑

j=0

ϕ ◦ σj

⎞
⎠
⎞⎞

≤ N(α, C)n.

Therefore, by (3.21),

N(α, C∞) ≤
∑

n∈N

N(α,C)n < ∞,

where C∞ =
⋃

n∈N
Cn. Now let M be the maximal length of the elements of C

(recall that C is a finite cover). For each n ∈ N and ω ∈ Σ, there exists a cylinder
set CIC ∈ C∞ such that

ω ∈ CIC and n ≤ |CIC | < n + M.

Let C∗ be the collection of all cylinder sets CJ such that J is a finite sequence
consisting of the first n elements of some finite sequence I such that CIC ∈ C∞. We
have

N(α, C∗) ≤ N(α,C∞)eM sup |ϕ| max{1, eαM} < ∞.

Since

N(α,C∗) =
∑

i1···in

e−αn exp

(
sup

Ci1···in

n−1∑

k=0

ϕ ◦ σk

)
,

we obtain P (ϕ) − α ≤ 0, and thus p ≥ P (ϕ). �

3.2.2 Dimension of limit sets of geometric constructions

We present in this section the result of Pesin and Weiss in [118] that extends
Theorem 3.1.1 to arbitrary symbolic dynamics. We consider the general case of
geometric constructions whose sets Δi1···in

are balls (see Figure 3.3). The value of
the dimension is again given by Bowen’s equation in (3.17).
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Δ1

Δ2

Δ11

Δ12

Δ21 Δ22

Figure 3.3: Geometric construction with balls

Theorem 3.2.5 (Dimension of the limit set). For a geometric construction modeled
by Σ ⊂ Σ+

p such that the sets Δi1···in
⊂ Rm are balls of diameter

∏n
k=1 λik

, for
some numbers λ1, . . . , λp ∈ (0, 1), we have

dimHF = dimBF = dimBF = s, (3.23)

where s is the unique real number satisfying P (sϕ) = 0 with the function ϕ : Σ → R

as in (3.15).

Proof. Given t ≥ s we have

s

n−1∑

k=0

ϕ ◦ σk ≤ t

n−1∑

k=0

ϕ ◦ σk + (s − t)n inf ϕ,

and thus,
P (sϕ) ≤ P (tϕ) + (s − t) inf ϕ. (3.24)

On the other hand,

t

n−1∑

k=0

ϕ ◦ σk ≤ s

n−1∑

k=0

ϕ ◦ σk + (t − s)n supϕ,

and thus,
P (tϕ) ≤ P (sϕ) + (s − t) sup ϕ. (3.25)

Putting together the inequalities in (3.24) and (3.25) we obtain

(s − t) sup ϕ ≤ P (sϕ) − P (tϕ) ≤ (s − t) inf ϕ. (3.26)

Since ϕ < 0 this implies that the function s �→ P (sϕ) is strictly decreasing. It also
follows from (3.26) that

lim
s→−∞

P (sϕ) = +∞ and lim
t→+∞

P (tϕ) = −∞.
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Therefore, there exists a unique real number s satisfying P (sϕ) = 0.
Now we establish (3.23). The argument can be considered an elaboration of

the proof of Theorem 3.1.1, although now using the thermodynamic formalism and
for an arbitrary symbolic dynamics. We start with the construction of a Moran
cover. Given ω = (i1i2 · · · ) ∈ Σ and r ∈ (0, 1), let n = n(ω, r) be the unique
integer such that (3.4) holds. We also consider the sets Δ(ω, r) in (3.5). By (3.7)
we have

diamΔ(ω, r) ≥ r/c, (3.27)

where c = 1/ mink=1,...,p λk. On the other hand, by (3.10) the sets intΔ(ω, r) are
pairwise disjoint. Therefore, by (3.27) and elementary geometry, there exists a
constant C > 0 (independent of r) such that for each x ∈ R

m the ball B(x, r)
intersects at most a number C of sets Δ(ω, r). This is a crucial property of the
Moran cover.

Given ε, r, θ > 0 there exists a countable cover U of the limit set F with
diamU < r such that ∑

U∈U

(diamU)dimHF+ε < θ. (3.28)

For each U ∈ U we consider the family

UU =
{
Δ(ω, diamU) : Δ(ω, diamU) ∩ U 	=		 ∅ and ω ∈ Σ

}
,

which is a cover of U . Then

V = {V : V ∈ UU and U ∈ U} (3.29)

is a cover of F of diameter at most r, and by (3.7) and (3.28) we obtain

∑

V ∈V

(diamV )dimHF+ε ≤
∑

U∈U

∑

V ∈UU

(diamV )dimHF+ε

≤
∑

U∈U

∑

V ∈UU

(diamU)dimHF+ε

≤
∑

U∈U

C(diam U)dimHF+ε < Cθ.

(3.30)

Since r and θ can be made arbitrarily small, using the notation in (3.18) we obtain

lim
N→∞

M(0, N) = 0,

and by Theorem 3.2.4,

P ((dimHF + ε)ϕ) ≥ 0.

Since t �→ P (tϕ) is strictly decreasing we obtain dimHF + ε ≥ s, and it follows
from the arbitrariness of ε that dimHF ≥ s.
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To estimate the upper box dimension we consider again the Moran cover
constructed above. Let Δ̃j = Δ(ωj , r) be the elements of the Moran cover for
some sequences ωj ∈ Σ. Since

diamΔi1···in
=

n∏

k=1

λik
, (3.31)

we have

n(ω, r) ≤ − log r

log c
+ 1, (3.32)

where c = maxk=1,...,p λk. Since diam Δ̃j < r for each j, we have

∑

m∈N

card{j : n(ωj, r) = m} ≥ N(F, r). (3.33)

Hence, there exists m = m(r) such that

card{j : n(ωj , r) = m} ≥ N(F, r)

− log r/ log c + 1
. (3.34)

On the other hand, for each θ > 0 there exists a sequence rn ց 0 such that

N(F, rn) > rn
θ−dimBF (3.35)

for all sufficiently large n ∈ N. Set mn = m(rn)− 1. For each α < dimBF − 2θ we
obtain

p
∑

i1···imn

(diamΔi1···imn
)α ≥

∑

i1···im(rn)

(diamΔi1···imn
)α

≥ rn
α N(F, rn)

− log rn/ log c + 1

≥ rn
α+θ−dimBF

− log rn/ log c + 1
≥ 1

(3.36)

for all sufficiently large n ∈ N (we note that 1/ − log r ≥ rθ for all sufficiently
small r > 0). Furthermore, again by (3.31) we have

n(ω, r) ≥ − log r

log c′
,

where c′ = mink=1,...,p λk, and hence infω∈Σ n(ω, r) → ∞ as r → 0. This implies
that

min
j

n(ωj , r) → ∞ as r → 0,
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and hence mn → ∞. Therefore, by (3.36) we obtain

P (αϕ) = lim
n→∞

1

n
log

∑

i1···in

(diamΔi1···in
)α ≥ 0.

We conclude that α ≤ s, and hence

dimBF − 2θ ≤ s.

It follows from the arbitrariness of θ that dimBF ≤ s. �

3.3 Nonstationary geometric constructions

It turns out that the classical topological pressure is not adapted well to all geo-
metric constructions. For example, consider again a geometric construction such
that all sets Δi1···in

are balls, although now without any type of multiplicativity
assumption for the diameters. On the contrary, in Theorems 3.1.1 and 3.2.5 we
have

diamΔi1···in
=

n∏

k=1

λik
(3.37)

for every set Δi1···in
. We call the geometric constructions for which (3.37) fails

nonstationary geometric constructions. It happens that the thermodynamic for-
malism is of no help in this situation. However, the nontrivial generalization given
by the so-called nonadditive thermodynamic formalism can still be used with suc-
cess. The main idea is to replace the sequence of functions

ϕn =

n−1∑

k=0

ϕ ◦ σk (3.38)

in (3.12) by an arbitrary sequence ψn. We note that while the functions ϕn satisfy
the identity

ϕn+m = ϕn + ϕm ◦ σn,

the functions ψn may have no similar property, and thus the expression nonad-
ditive. Due to technical problems related with the existence of the limit in (3.12)
when the sequence ϕn in (3.38) is replaced by an arbitrary sequence ψn, Barreira
used a different approach in [3] to introduce the notion of nonadditive topologi-
cal pressure. It is based on the theory of Carathéodory dimension characteristics´
developed by Pesin (see [115] for references and full details).

3.3.1 Nonadditive thermodynamic formalism

We first introduce the notion of nonadditive topological pressure. Let (X, d) be a
compact metric space and let f : X → X be a continuous transformation. Given
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a finite open cover U of X , we denote by Wn(U) the collection of vectors U =
(U0UU , . . . , UnUU ) with U0UU , . . ., UnUU ∈ U, and we write m(U) = n. For each U ∈ Wn(U)
we define the open set

X(U) =
n⋂

k=0

f−kUkU .

Now we consider a sequence of continuous functions Φ = {ϕn : X → R}n∈N. For
each n ∈ N we define

γn(Φ, U) = sup
{
|ϕn(x) − ϕn(y)| : x, y ∈ X(U) for some U ∈ Wn(U)

}
.

We always assume that

lim sup
diam U→0

lim sup
n→∞

γn(Φ, U)

n
= 0 (3.39)

(we note that since X is compact it has finite covers with diameter as small as
desired).

Example 3.3.1. In the additive case, that is, when the sequence Φ is composed of
continuous functions obtained from a given function ϕ as in (3.38), condition (3.39)
is automatically satisfied. More precisely, given a continuous function ϕ : X → R

we consider the sequence of functions ϕn =
∑n−1

k=0 ϕ ◦ fk. We have

|ϕn(x) − ϕn(y)| ≤
n−1∑

k=0

|ϕ(fkx) − ϕ(fky)|

and hence,

γn(Φ, U)

n
≤ 1

n

n−1∑

k=0

sup
{
|ϕ(x) − ϕ(y)| : x, y ∈ fk(X(U)) for U ∈ Wn(U)

}

≤ sup{|ϕ(x) − ϕ(y)| : x, y ∈ U for some U ∈ U},
(3.40)

since fk(X(U)) ⊂ UkU +1 for k = 0, . . . , n − 1. By the uniform continuity of ϕ
in X , the last supremum goes to 0 as diam U → 0. Hence, in the additive case
condition (3.39) is automatically satisfied.

Given U ∈ Wn(U), we set

ϕ(U) =

{
supX(U) ϕn if X(U) 	=		 ∅,

−∞ otherwise.

Given Z ⊂ X and α ∈ R, we define the function

M(Z, α, Φ, U) = lim
n→∞

inf
Γ

∑

U∈Γ

exp (−αm(U) + ϕ(U)) , (3.41)
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where the infimum is taken over all finite or countable collections Γ ⊂
⋃

k≥n Wk(U)
such that

⋃
U∈Γ X(U) ⊃ Z. We also set

PZP (Φ, U) = inf{α ∈ R : M(Z,α, Φ, U) = 0}.

The following result was established by Barreira in [3].

Theorem 3.3.2 (Nonadditive topological pressure). The following properties hold:

1. there exists the limit

PZP (Φ) := lim
diam U→0

PZP (Φ, U); (3.42)

2. if there exist constants c1, c2 < 0 such that c1n ≤ ϕn ≤ c2n for every n ∈ N,
and the topological entropy h(f |X) is finite, then there exists a unique number
s ∈ R such that

PZP (sΦ) = 0.

Proof. This is a simple modification of the proof of Proposition 2.8 in [38]. Let V

be a finite open cover of X with diameter smaller than the Lebesgue number of U.
Then each element V ∈ V is contained in some element U(V ) ∈ U. We write

U(V) = (U(V1VV ), . . . , U(VnVV ))

for each V ∈ Wn(V), and we observe that if Γ ⊂ ⋃
k∈N

Wk(V) is a cover of Z, then

{U(V) : V ∈ Γ} ⊂
⋃

k∈N

Wk(U)

is also a cover of Z. Set

γ(U) = lim sup
n→∞

γn(Φ, U)

n
.

Given ε > 0, we have γn(Φ, U)/n ≤ γ(U) + ε for all sufficiently large n. Hence,

ϕ(U(V)) ≤ ϕ(V) + n(γ(U) + ε)

for each V ∈ Wn(V), and

M(Z, α,Φ, U) ≤ M(Z, α − γ(U) − ε, Φ, V).

Therefore,
PZP (Φ, U) ≤ PZP (Φ, V) + γ(U) + ε,

and
PZP (Φ, U) − γ(U) − ε ≤ lim inf

diam V→0
PZP (Φ, V).



34 Chapter 3. Dimension Theory and Thermodynamic Formalism

By condition (3.39) we have that γ(U) → 0 as diamU → 0. Since ε is arbitrary,
we conclude that

lim sup
diam U→0

PZP (Φ, U) ≤ lim inf
diam V→0

PZP (Φ, V)

and thus the number PZP (Φ) in (3.42) is well-defined.

For the second property we observe that by (3.41), for each s ≥ 0 we have

M(Z, α − sc1, 0, U) ≤ M(Z, α, sΦ, U) ≤ M(Z, α − sc2, 0, U),

and hence

PZP (0) + sc1 ≤ PZP (sΦ) ≤ PZP (0) + sc2. (3.43)

Similarly, we can show that for each s ≤ 0,

PZP (0) + sc2 ≤ PZP (sΦ) ≤ PZP (0) + sc1. (3.44)

Since

PZP (0) ≤ PXP (0) = h(f |X) < ∞,

it follows from (3.43) and (3.44) that the number PZP (sΦ) is finite for every s. On
the other hand, given t ≥ s we have

c1(t − s)n ≤ (t − s)ϕn ≤ c2(t − s)n,

and hence,

M(Z, α − (t − s)c1, sΦ, U) ≤ M(Z, α, tΦ, U) ≤ M(Z, α − (t − s)c2, sΦ, U).

Therefore,

PZP (sΦ, U) + (t − s)c1 ≤ PZP (tΦ, U) ≤ PZP (sΦ, U) + (t − s)c2,

and

(t − s)c1 ≤ PZP (tΦ) − PZP (sΦ) ≤ (t − s)c2.

This shows that the function s �→ PZP (sΦ) is Lipschitz and strictly decreasing, with

lim
t→+∞

PZP (tΦ) = −∞ and lim
s→−∞

PZP (sΦ) = +∞.

In particular, there exists a unique s ∈ R such that PZP (sΦ) = 0. �

Definition 3.3.3. The number PZP (Φ) is called the nonadditive topological pressure
of Φ in the set Z (with respect to f).
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We note that Z need not be compact nor f -invariant. The nonadditive topo-
logical pressure is a generalization of the notion of topological pressure (see Defini-
tion 2.3.1), and contains as a particular case the subadditive version introduced by
Falconer in [52]. In the additive case we recover the notion of topological pressure
introduced by Pesin and Pitskel’ in [116]. Moreover, the quantity PZP (0) coincides
with the notion of topological entropy for noncompact sets introduced in [116],
and can be shown to be equivalent to the notion of topological entropy introduced
earlier by Bowen in [37] (see [115] for details).

The following statement follows easily from the definitions (see [3] for details).

Theorem 3.3.4. The following properties hold:

1. if Z1 ⊂ Z2, then PZP 1(Φ) ≤ PZP 2(Φ);

2. if Z =
⋃

i∈I ZiZZ is a countable union of sets, then PZP (Φ) = supi∈I PZP
i
(Φ);

3. if ϕn ≤ ψn for all sufficiently large n, then PZP (Φ) ≤ PZP (Ψ).

A variational principle for the nonadditive topological pressure is also estab-
lished in [3], among other properties. We formulate it without proof.

Theorem 3.3.5 (Nonadditive variational principle). If there exists a continuous
function ψ : X → R such that

ϕn+1 − ϕn ◦ f → ψ uniformly,

then

PXP (Φ) = sup
μ∈M

{
hμ(f) +

∫

X

∫∫
ψ dμ

}
.

3.3.2 Dimension of limit sets of nonstationary constructions

The following result gives a formula for the dimension of the limit sets of a class
of nonstationary geometric constructions, in terms of the nonadditive topological
pressure for the symbolic dynamics. It was obtained by Barreira in [3].

Theorem 3.3.6 (Dimension of the limit set). Consider a geometric construction
modeled by Σ ⊂ Σ+

p such that the sets Δi1···in
are balls of diameter ri1···in

< 1.
If there is a constant δ ∈ (0, 1) such that

ri1···in
≥ δri1···in−1 and ri1···in+m

≤ ri1···in
rin+1···im

(3.45)

for every (i1i2 · · · ) ∈ Σ and n, m ∈ N, then

dimHF = dimBF = dimBF = s, (3.46)

where s is the unique real number satisfying the identity PΣPP (sΦ) = 0, where Φ is
the sequence of functions ϕn : Σ → R defined by

ϕn(i1i2 · · · ) = log diamΔi1···in
.
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Proof. The argument is an elaboration of the proof of Theorem 3.2.5. We first
show that there exists the limit

Q(s) = lim
n→∞

1

n
log

∑

i1···in

ri1···in

s (3.47)

for every s ∈ R. It follows from the second inequality in (3.45) that

∑

i1···in+m

ri1···in+m

s ≤
∑

i1···in

ri1···in

s
∑

in+1···in+m

rin+1···in+m

s.

Therefore, the sequence

an = log
∑

i1···in

ri1···in

s

is subadditive, that is,

an+m ≤ an + am for each n, m ∈ N,

and hence there exists the limit of an/n when n → ∞. Furthermore, given t ≥ s
we have

lim
n→∞

1

n
log

∑

i1···in

ri1···in

t ≤ lim
n→∞

1

n
log

∑

i1···in

ri1···in

scn(t−s),

where c = maxk=1,...,p rk < 1. Hence,

Q(t) ≤ Q(s) + (t − s) log c,

and Q is strictly decreasing. On the other hand, it follows from the first inequality
in (3.45) that ri1···in

≥ θn, where θ = min{δ, r1, . . . , rp} < 1. Therefore

Q(s) ≥ lim
n→∞

1

n

∑

i1···in

θsn = log p + s log θ,

and we obtain

lim
s→−∞

Q(s) = +∞ and lim
s→+∞

Q(s) = −∞.

This ensures that there exists a unique real number s satisfying Q(s) = 0.
Given t ≥ 0, α ∈ R, and a finite cover C of Σ by cylinder sets, we define

NtNN (α,C) =
∑

CI∈C

rI
te−α|I|,

where |I| is the length of the finite sequence I. We also set

pt(α) = lim
n→∞

inf
C

NtNN (α,C), (3.48)
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where the infimum is taken over all finite covers C ⊂ Hm of Σ (see (3.19)). We
can easily verify that

P (t) := PΣPP (tΦ) = inf{α ∈ R : pt(α) = 0}. (3.49)

The following is a nonadditive version of Theorem 3.2.4.

Lemma 3.3.7. We have P (t) = Q(t) for every t ∈ R.

Proof of the lemma. If α > P (t), then for each sufficiently large m ∈ N, there
exists a finite cover C ⊂ Hm of Σ such that NtNN (α, C) < 1. For each n ∈ N we
consider the (finite) cover Cn of Σ formed by the cylinder sets CIC

i1 ···Iin
such that

CIC
jI ∈ C for j = 1, . . . , n. By the second inequality in (3.45) and (3.22) we obtain

NtNN (α,Cn) ≤
n∏

k=1

∑

CIik
∈C

rIik

te−α|Iik
| = NtNN (α,C)n. (3.50)

It follows from (3.50) that

NtNN (α,C∞) ≤
∑

n∈N

NtNN (α,Cn) < ∞

where
C∞ =

⋃

n∈N

Cn.

Now let M be the maximal length of the finite sequences I such that CIC ∈ C. As
in the proof of Theorem 3.2.4, given n ∈ N let C∗ be the collection of all cylinder
sets CJ such that J is a finite sequence consisting of the first n elements of some
finite sequence I such that CIC ∈ C∞. We obtain rJ ≤ rIδ

−M and

NtNN (α, C∗) ≤ NtNN (α, C∞)δ−tM max{1, eαM}.

Therefore,

NtNN (α,C∗) =
∑

i1···in

ri1···in

te−αn < ∞,

and

lim
n→∞

1

n
log

∑

i1···in

ri1···in

t ≤ α.

This shows that P (t) ≥ Q(t).
On the other hand, if Dn is the cover of Σ by the cylinder sets CiCC 1···in

, it
follows from (3.48) that

pt(α) ≤ lim inf
n→∞

NtNN (α,Dn) = lim inf
n→∞

∑

i1···in

ri1···in

te−αn.
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By (3.47), for each ε > 0 there exists C > 0 such that

∑

i1···in

ri1···in

t ≤ Cen(Q(t)+ε).

Therefore, taking ε sufficiently small so that α > Q(t)+ε we obtain that pt(α) = 0
whenever α > Q(t). It follows from (3.49) that P (t) ≤ Q(t). This completes the
proof of the lemma. �

By Lemma 3.3.7, if s is the unique real number satisfying Q(s) = 0 then
P (s) = 0.

Now we establish the identities in (3.46). We start by constructing a Moran
cover. The construction is analogous to the one in the proof of Theorem 3.1.1.
Namely, for each ω = (i1i2 · · · ) ∈ Σ and r ∈ (0, 1), we consider the unique integer
n = n(ω, r) such that

ri1···in
< r ≤ ri1···in−1 (3.51)

(we note that ri1···in
is strictly decreasing in n). Then the sets Δ(ω, r) given

by (3.5) are pairwise disjoint for each given r. We denote them by Δ̃j = Δ(ωj , r)
for some sequences ωj ∈ Σ. Proceeding as in the proof of Theorem 3.2.5 (see
(3.29)–(3.30)) we show that pdimHF+ε(0) = 0 and hence,

P (dimHF + ε) ≤ 0 = P (s).

Since the function t �→ P (t) is decreasing, we have dimHF + ε ≥ s for every ε > 0,
and thus dimHF ≥ s.

Now we consider the box dimension. It follows from (3.51) that for n = n(ω, r)
we have

r ≤ ri1···in−1 ≤ cn−1 where c = max
k=1,...,p

rk,

and hence (3.32) holds. Proceeding as in the proof of Theorem 3.2.5 we show that
there exist m = m(r) and for each θ > 0 a sequence rn ց 0 satisfying (3.34)
and (3.35) for all sufficiently large n ∈ N. Set mn = m(rn) − 1. For each α <
dimBF − 2θ we obtain

p
∑

i1···imn

ri1···imn

α ≥
∑

i1···im(rn)

ri1···imn

α

≥ rn
α N(F, rn)

− log rn/ log c + 1

≥ rn
α+θ−dimBF

− log rn/ log c + 1
≥ 1

for all sufficiently large n. This shows that

Q(α) ≥ 0 for every α < dimBF − 2θ,
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and hence,
Q(dimBF − 2θ) ≥ 0 = Q(s).

Since the function t �→ Q(t) is decreasing this implies that dimBF − 2θ ≤ s for
every θ > 0, and hence dimBF ≤ s. This completes the proof of the theorem. �

The equation PΣPP (sΦ) = 0 is a nonadditive version of Bowen’s equation
in (3.17). We observe that Theorem 3.3.6 contains the results of Moran in [101]
and of Pesin and Weiss in [118]. In these two cases we have

ri1···in
=

n∏

k=1

λik
. (3.52)

For example, when Σ = Σ+
p it follows from (3.52) that

∑

i1···in

ri1···in

s =
∑

i1···in

(
n∏

k=1

λik

)s

=

(
p∑

i=1

λi
s

)n

,

and thus the equation PΣPP (sΦ) = 0 is equivalent to equation (3.2). The value of the
dimensions in Theorem 3.3.6 is also independent of the location of the sets Δi1···in

.



Chapter 4

Repellers and Hyperbolic Sets

We start in this chapter the study of the dimension of hyperbolic invariant sets of
conformal dynamical systems (both invertible and noninvertible). As we observed
in Section 3.1, one of the motivations for the study of geometric constructions is
precisely the study of the dimension of invariant sets of hyperbolic dynamics. We
show in this chapter that indeed a similar approach can be effected for repellers
and hyperbolic sets of conformal maps, using Markov partitions and essentially
following the arguments for geometric constructions in Chapter 3.

4.1 Dimension of repellers of conformal maps

We first consider the case of repellers, that is, invariant sets of a noninvertible
expanding dynamics.

Let f : M → M be a differentiable map of a smooth manifold. We consider a
compact f -invariant set J ⊂ M , that is, a compact set J ⊂ M such that f−1J = J .

Definition 4.1.1. We say that J is a repeller of f and that f is expanding on J if
there exist constants c > 0 and β > 1 such that

‖dxfnv‖ ≥ cβn‖v‖ (4.1)

for every n ∈ N, x ∈ J , and v ∈ TxTT M .

Let J be a repeller of the differentiable map f .

Definition 4.1.2. A finite cover of J by nonempty closed sets R1, . . ., Rp is called
a Markov partition of J (with respect to f) if:

1. intRi = Ri for each i;

2. intRi ∩ intRj = ∅ whenever i 	=		 j;

3. f(Ri) ⊃ Rj whenever f(intRi) ∩ intRj 	=		 ∅.
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We note that in Definition 4.1.2 the interior of each set Ri is computed with
respect to the induced topology on J . Any repeller has Markov partitions with
diameter

diamR := max{diamRi : i = 1, . . . , p}
as small as desired (see [134]).

Now we explain how Markov partitions can be used to model repellers by
geometric constructions. Let R1, . . ., Rp be the elements of a Markov partition of
a repeller J . We define a p × p matrix A = (aij) with entries

aij =

{
1 if f(intRi) ∩ intRj 	=		 ∅,

0 if f(intRi) ∩ intRj = ∅.
(4.2)

We also consider the space of sequences Σ+
p = {1, . . . , p}N and the shift map

σ : Σ+
p → Σ+

p (see Section 3.1 for the definition).

Definition 4.1.3. The restriction of σ to the set

Σ+
A = {(i1i2 · · · ) ∈ Σ+

p : ainin+1 = 1 for every n ∈ N}

is called a (one-sided) topological Markov chain with transition matrix A.

We recall that a transformation f is topologically mixing on a set J if given
open sets U and V with nonempty intersection with J there exists n ∈ N such
that

fm(U) ∩ V ∩ J 	=		 ∅ for every m > n.

One can easily show that if f is topologically mixing on J , then there exists k ∈ N

such that Ak has only positive entries (this means that after k steps one can make
a transition between any two symbols in {1, . . . , p}).

Σ+
A

σ−−−−−− →−− Σ+
A

χ

⏐⏐�
⏐⏐�χ

J
f−−−−−− →−− J

Figure 4.1: Symbolic coding of a repeller

Using (4.1), it is easy to show that one can define a coding map χ : Σ+
A → J

of the repeller J by

χ(i1i2 · · · ) =

∞⋂

k=0

f−kRik+1
. (4.3)

The map χ is surjective and satisfies

χ ◦ σ = f ◦ χ (4.4)
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(i.e., the diagram in Figure 4.1 is commutative). In addition, χ is Holder continu-¨
ous, with the distance in Σ+

p given by (3.9). In general the map χ is not invertible
(although one can show that cardχ−1x ≤ p2 for every x ∈ J). Nevertheless, the
identity in (4.4) still allows one to see χ as a dictionary that transfers the symbolic
dynamics σ|Σ+

A and often the results at this level to the dynamics of f on J and
its corresponding results. In particular, the coding map χ allows one to see each
repeller as a geometric construction (see Section 3.1) defined by the sets

Δi1···in
=

n−1⋂

k=0

f−kRik+1
. (4.5)

Definition 4.1.4. We say that f is conformal on J if dxf is a multiple of an isometry
for every x ∈ J .

We give two examples of repellers of conformal maps.

Example 4.1.5. In [152], Takens introduced the class of geometric constructions
defined by:

1. p disjoint closed intervals Δ1, . . . ,Δp ⊂ R;

2. a C1 map f : U → R, where U is an open neighborhood of Δ =
⋃p

i=1 Δi.

We require that f be topologically mixing and expanding on U , and that f(∂Δ) ⊂
∂Δ and Δi ⊂ f(Δj) whenever ∂Δi ∩ ∂f(Δj) 	=		 ∅. The map f is conformal, since
it is defined in a subset of R. We define a p × p matrix A = (aij) by

aij =

{
1 if Δi ∩ f−1Δj 	=		 ∅,

0 if Δi ∩ f−1Δj = ∅.

We consider a geometric construction modeled by Σ+
A, defined by the sets

Δi1···in
=

n⋂

j=1

f−j+1Δij

for (i1i2 · · · ) ∈ Σ+
A. The corresponding limit set is a repeller of f .

Example 4.1.6 (Hyperbolic Julia sets). Let S be the Riemann sphere, and let
R : S → S be a rational map of degree greater than 1. Since R is holomorphic,
it is conformal. We say that a periodic point z of R with Rnz = z is repelling if
|(Rn)′(z)| > 1. The Julia set J of R is the closure of the set of repelling periodic
points of R. It is well known that for any nonempty domain U intersecting J , we
have Rn(U) ⊃ J for all sufficiently large n ∈ N. This implies that R is topologically
mixing on J . We say that J is hyperbolic if R is expanding on J . Hence, each
hyperbolic Julia set is a repeller of a conformal map.
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Roughly speaking, the conformality of f on J allows one to show that even
if the sets Δi1···in

are not balls they essentially behave as if they were. This allows
one to reproduce with some changes the proof of Theorem 3.2.5 to obtain a formula
for the dimension of repellers of conformal maps. Consider the function ϕ : J → R

defined by

ϕ(x) = − log ‖dxf‖.

Theorem 4.1.7 (Dimension of repellers of conformal maps). If J is a repeller of a
C1+ε transformation f , for some ε > 0, such that f is conformal on J , then

dimHJ = dimBJ = dimBJ = s, (4.6)

where s is the unique real number such that P (sϕ) = 0.

Proof. The uniqueness of the number s in the theorem follows immediately from
the strict monotonicity of the function s �→ P (sϕ). When f is topologically mixing
on J , this function is analytic, and using (4.1) and the conformality of f on J we
obtain

d

ds
P (sϕ) =

∫

J

∫∫
ϕdμ

= −
∫

J

∫∫
lim

n→+∞

1

n
log ‖dxfn‖ dμ(x) ≤ − logβ < 0,

(4.7)

where μ is the unique equilibrium measure of sϕ (see [132] for details), and thus the
function s �→ P (sϕ) is strictly decreasing. In the general case (that is, when f is not
necessarily topologically mixing) we can proceed as in the proof of Theorem 3.2.5
to establish the strict monotonicity of the function s �→ P (sϕ).

The remaining arguments follow the proof of Theorem 3.2.5, with some ap-
propriate modifications. The main difference is that now the function ϕ is not
constant in each set Ri although it still satisfies a bounded distortion property.
We first construct a Moran cover of the repeller. Let R1, . . . , Rp be the elements
of a Markov partition of J . Given ω = (i1i2 · · · ) ∈ Σ+

A and r ∈ (0, 1), we consider
the unique integer n = n(ω, r) such that

‖dχ(ω)f
n‖−1 < r ≤ ‖dχ(ω)f

n−1‖−1, (4.8)

and we set

Δ(ω, r) =

n−1⋂

k=0

f−kRik+1
. (4.9)

We note that these sets are pairwise disjoint for each given r. Since f is of class
C1+ε the function x �→ log ‖dxf‖ is Holder continuous with H¨¨ older exponent¨ ε.
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Therefore, for each n ∈ N and x, y ∈ Δi1···in
, using (4.1) we obtain

‖dxfn‖
‖dyfn‖ =

n−1∏

k=0

‖dfkxf‖
‖dfkyf‖

≤
n−1∏

k=0

(
1 +

‖dfkxf − dfkyf‖
‖dfkyf‖

)

≤
n−1∏

k=0

(
1 + C1‖fkx − fky‖ε

)

≤
n−1∏

k=0

(
1 + C2CC ‖fnx − fny‖εβε(k−n)

)
,

(4.10)

for some constants C1, C2CC > 0. Since

‖fnx − fny‖ ≤ max
k=1,...,p

diamRk =: d,

we conclude that

‖dxfn‖
‖dyfn‖ ≤

n−1∏

k=0

(
1 + C2CC dεβε(k−n)

)

≤
∞∏

j=1

(
1 + C2CC dεβ−εj

)
=: D < ∞.

(4.11)

Now let h be the local inverse of fn restricted to the set Δ(ω, r), where n = n(ω, r).
We obtain

diamΔ(ω, r) = sup
x,y∈Δ(ω,r)

‖x − y‖

≤ sup
x,y∈Δ(ω,r)

‖fnx − fny‖ · sup
z∈Rin

‖dzh‖.

Since (dxfn)−1 = dfnxh and f is conformal on J , we have

‖(dxfn)−1‖ = ‖dxfn‖−1.

Hence, by (4.11),

diamΔ(ω, r) ≤ dD‖dxfn‖−1 < r (4.12)

for every x ∈ Δ(ω, r), provided that d is sufficiently small, that is, provided that
the diameter of the Markov partition is sufficiently small. Furthermore, since each
set Ri is the closure of its interior, there exists ρ > 0 such that Ri contains a ball
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Bi of radius ρ for i = 1, . . . , p. Therefore, for each x, y ∈ Bin
and the same inverse

map h,

‖hx − hy‖ ≥ ‖x − y‖ · inf
z∈Rin

‖dzh‖

≥ 2ρD−1‖dwfn‖−1

for every w ∈ Δi1···in
. This shows that

each set Δi1···in
contains a ball of radius ρD−1‖dwfn‖−1 (4.13)

for some point w ∈ Δi1···in
. By (4.8) we conclude that there exists a constant

κ ∈ (0, 1) (independent of ω and r) such that each set Δ(ω, r) contains a ball of
radius κr. Since the sets Δ(ω, r) are pairwise disjoint it follows from elementary
geometry that there exists a constant C > 0 (independent of r) such that each
ball B(x, r) ⊂ Rm intersects at most a number C of the sets Δ(ω, r).

Now we establish (4.6). Given δ, r, θ > 0 there exists a countable cover U of J
with diamU < r such that

∑

U∈U

(diamU)dimHJ+δ < θ.

In a similar manner to that in the proof of Theorem 3.2.5, for each U ∈ U we
consider the family

UU =
{
Δ(ω, diamU) : Δ(ω, diamU) ∩ U 	=		 ∅ and ω ∈ Σ+

A

}
.

Then the family V in (3.29) is a cover of J , and proceeding as in (3.30) we show
that ∑

V ∈V

(diamV )dimHJ+δ < C θ. (4.14)

Now, given α ∈ R and N ∈ N we consider the function M(α, N) in (3.18). It follows
from (4.14) that

lim
N→∞

M(0, N) = 0,

and we can apply Theorem 3.2.4 (with Σ = Σ+
A) to conclude that

P ((dimHJ + δ)ϕ) ≥ 0.

Since the function t �→ P (tϕ) is strictly decreasing we obtain dimHJ + δ ≥ s, and
it follows from the arbitrariness of δ that dimHJ ≥ s.

Now we consider the upper box dimension. For each δ > 0 there exists r >

0 as small as desired such that N(J, r) > rδ−dimBJ . Furthermore, it follows
from (4.8) that

n(ω, r) ≤ log r

− log β
+ 1
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(with β as in (4.1)). Proceeding as in (3.33) we conclude that there exists m = m(r)
such that

card{j : n(ωj , r) = m} ≥ rδ−dimBJ

− log r/ log β + 1
.

Setting m = m(r) and using (4.8) we obtain

p
∑

i1···im−1

sup
x∈Δi1···im−1

‖dxfm−1‖−α ≥
∑

i1···im

sup
x∈Δi1···im−1

‖dxfm−1‖−α

≥ r−α rδ−dimBJ

− log r/ log β + 1
≥ r2δ+α−dimBJ

for all sufficiently small r. Therefore, when α < dimBJ − 2δ we obtain

∑

i1···im−1

exp sup
x∈Δi1···im−1

(
α

m−2∑

k=0

ϕ ◦ fk

)
≥ 1 (4.15)

for all sufficiently small r. Furthermore, it follows from (4.8) that

n(ω, r) ≥ log r

− logβ′
, (4.16)

where
β′ = sup{‖dxf‖ : x ∈ J}.

We notice that β′ > 1. Otherwise we would have ‖dxfnv‖ ≤ ‖v‖ for every n ∈ N,
x ∈ J , and v ∈ TxTT M , which contradicts (4.1). It follows from (4.16) that

min
j

n(ωj , r) → ∞ as r → 0,

and thus m(r) → ∞ as r → 0. Since r can be chosen as small as desired, it follows
from (4.15) that P (αϕ) ≥ 0 and α ≤ s whenever α < dimBJ − 2δ. This implies
that dimBJ −2δ ≤ s, and by the arbitrariness of δ we obtain that dimBJ ≤ s. �

Ruelle showed in [134] that dimHJ = s (under the additional assumption that
f is topologically mixing on J). The equality between the Hausdorff dimension and
the lower and upper box dimensions is due to Falconer [53]. Theorem 4.1.7 was
extended independently to expanding maps of class C1 by Gatzouras and Peres
in [65] and by Barreira in [3], using different approaches.

It was also shown by Ruelle in [134] that if μ is the unique equilibrium
measure of sϕ (again assuming that f is topologically mixing on J), then

dimHJ = dimHμ. (4.17)

His proof consists of showing that μ is equivalent to the s-dimensional Hausdorff
measure on J (in fact with Radon–Nikodym derivative bounded and bounded
away from zero). More precisely, we have the following statement.
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Theorem 4.1.8 (Measure of maximal dimension). If J is a repeller of a C1+ε

transformation f , for some ε > 0, such that f is conformal and topologically
mixing on J , then setting dimHJ = s:

1. the equilibrium measure μ of sϕ is equivalent to the s-dimensional Hausdorff
measure m, with Radon–Nikodym derivative bounded and bounded away from
zero;

2. 0 < m(J, s) < ∞;

3. dimHμ = dimBμ = dimBμ = s.

Proof. Since f is of class C1+ε, the function sϕ is Holder continuous and thus¨ μ is
a Gibbs measure (see, for example, [38] for details). Hence, by (3.14), there exist
constants D1, D2 > 0 such that

D1 ≤ μ(Δi1···in
)

‖dxfn‖−1
≤ D2

for every n ∈ N and x ∈ Δi1···in
, where the sets Δi1···in

are obtained as in (4.5)
from a given Markov partition R1, . . . , Rp of J .

Now let Δ(ω, r) be the sets constructed in the proof of Theorem 4.1.7 for
each ω ∈ Σ+

A and r ∈ (0, 1), where A is the transition matrix obtained from the
Markov partition. It follows from (4.8) that for every ω ∈ Σ+

A and r ∈ (0, 1) we
have

C1 ≤ μ(Δ(ω, r))

rs
≤ C2CC ,

for some constants C1, C2CC > 0 (independent of ω and r). As in the proof of
Theorem 4.1.7 each ball B(x, r) ⊂ Rm intersects at most a number C of the sets
Δ(ω, r), for some constant C independent of x and r. Therefore,

μ(B(x, r)) ≤ CC2CC rs. (4.18)

On the other hand, by (4.12) we have diamΔ(ω, r) < r. Hence, there exists ω ∈ Σ+
A

such that B(x, r) ⊃ Δ(ω, r/2) (we note that the sets of the form Δ(ω′, r/2) that
touch the boundary of B(x, r) are not sufficient to cover the ball), and thus

μ(B(x, r)) ≥ μ(Δ(ω, r/2)) ≥ C

2s
rs. (4.19)

This shows that μ is equivalent to the s-dimensional Hausdorff measure in J , with
Radon–Nikodym derivative bounded and bounded away from zero. Since μ(J) = 1
the second statement follows immediately from the first.

For the last statement we note that by (4.18) and (4.19),

lim
r→0

log μ(B(x, r))

log r
= s

for every x ∈ J . Now we can apply Theorem 2.1.6 to obtain the desired statement.
�
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Theorem 4.1.8 motivates the following definition.

Definition 4.1.9. The equilibrium measure μ of the function sϕ is called the mea-
sure of maximal dimension in J .

4.2 Hyperbolic sets and Markov partitions

We recall some basic notions in this section. These include stable and unstable
invariant manifolds, product structure of hyperbolic sets, Markov partitions and
some properties of their boundaries, as well as the associated symbolic dynamics.
We also describe the product structure of Gibbs measures. These notions are used
in the study of the dimension of hyperbolic sets of conformal maps, and in several
other places in the book, and thus it is very convenient to have them collected in
a unified manner in a single place.

4.2.1 Basic notions and product structure

Let f : M → M be a diffeomorphism of a smooth manifold, and let Λ ⊂ M be a
compact f -invariant set, that is, a compact set Λ ⊂ M such that f−1Λ = Λ.

Definition 4.2.1. We say that Λ is a hyperbolic set of f if for every point x ∈ Λ
there exists a decomposition of the tangent space

TxTT M = Es(x) ⊕ Eu(x) (4.20)

satisfying
dxfEs(x) = Es(fx) and dxfEu(x) = Eu(fx),

and there exist constants λ ∈ (0, 1) and c > 0 such that

‖dxfn|Es(x)‖ ≤ cλn and ‖dxf−n|Eu(x)‖ ≤ cλn

for every x ∈ Λ and n ∈ N.

Given ρ > 0, for each x ∈ M we consider the sets

V s
ρVV (x) = {y ∈ B(x, ρ) : d(fny, fnx) < ρ for every n > 0} (4.21)

and
V u

ρVV (x) = {y ∈ B(x, ρ) : d(fny, fnx) < ρ for every n < 0}, (4.22)

where d is the distance in M and B(x, ρ) ⊂ M is the open ball centered at x of
radius ρ. We recall the following classical result.

Theorem 4.2.2 (Hadamard–Perron theorem). If Λ is a hyperbolic set of a C1

diffeomorphism, then there exists ρ > 0 such that for each x ∈ Λ the sets V s
ρVV (x)

and V u
ρVV (x) are C1 manifolds containing x that satisfy

TxTT V s
ρVV (x) = Es(x) and TxTT V u

ρVV (x) = Eu(x). (4.23)
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V s
ρVV (x)

V u
ρVV (x)

Es(x)

Eu(x)

x

Figure 4.2: Local stable and unstable manifolds

We refer the reader to the book by Anosov [2, §4] for references and for a
detailed account of the origins of the Hadamard–Perron theorem.

Definition 4.2.3. The manifolds V s
ρVV (x) and V u

ρVV (x) are called respectively a local
stable manifold and a local unstable manifold at x (of size ρ).

It follows from (4.20) and (4.23) that these manifolds are transverse (see
Figure 4.2). Furthermore, under the assumptions of Theorem 4.2.2 one can show
that the sizes of V s

ρVV (x) and V u
ρVV (x) are uniformly bounded away from zero, i.e.,

there exists γ = γ(ρ) > 0 such that

V s
ρVV (x) ⊃ Bs(x, γ) and V u

ρVV (x) ⊃ Bu(x, γ)

for every x ∈ Λ, where Bs(x, γ) and Bu(x, γ) are the open balls centered at x
of radius γ with respect to the distances induced by d respectively on V s

ρVV (x) and
V u

ρVV (x). The continuous dependence of the spaces Es(x) and Eu(x) in x ∈ Λ and
the smoothness of the local stable and unstable manifolds guarantee that there
exists δ = δ(ρ) > 0 such that if d(x, y) < δ for two points x, y ∈ Λ, then the
intersection V s

ρVV (x) ∩ V u
ρVV (y) contains exactly one point, although it may not be

in Λ.

Definition 4.2.4. A hyperbolic set Λ of a diffeomorphism f is said to be locally
maximal if there exists an open neighborhood U of Λ such that

Λ =
⋂

n∈Z

fnU.
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One can show that for a locally maximal hyperbolic set, provided that δ is
sufficiently small, the intersection V s

ρVV (x) ∩ V u
ρVV (y) consists of a single point in Λ.

Thus, we can introduce the following definition.

Definition 4.2.5. Let Λ be a locally maximal hyperbolic set. For each δ > 0 suffi-
ciently small, the function

[·, ·] : {(x, y) ∈ Λ × Λ : d(x, y) < δ} → Λ

defined by

[x, y] = V s
ρVV (x) ∩ V u

ρVV (y)

(see Figure 4.3) is called a local product structure of Λ.

V s
ρVV (x)

x
y

V u
ρVV (y)

[x, y]

Figure 4.3: Local product structure

We also recall the notion of Markov partition of a locally maximal hyperbolic
set Λ.

Definition 4.2.6. A nonempty closed set R ⊂ Λ is called a rectangle if diamR < δ
(with δ as in Definition 4.2.5), intR = R, and [x, y] ∈ R whenever x, y ∈ R.
A finite cover of Λ by rectangles R1, . . ., Rp is called a Markov partition of Λ
(with respect to f) if:

1. intRi ∩ intRj = ∅ whenever i 	=		 j;

2. if x ∈ f(intRi) ∩ intRj , then

f−1(V u
ρVV (fx) ∩ Rj) ⊂ V u

ρVV (x) ∩ Ri and f(V s
ρVV (x) ∩ Ri) ⊂ V s

ρVV (fx) ∩ Rj .

We note that in Definition 4.2.6 the interior of each set Ri is computed with
respect to the induced topology on Λ. Any hyperbolic set has Markov partitions
with diameter as small as desired (we refer to [38] for details and references).ff

In a similar manner to that for repellers in Section 4.1, given the rectangles
R1, . . . , Rp of a Markov partition of the locally maximal hyperbolic set Λ, we define
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a p × p matrix A = (aij) with entries given by (4.2). We consider the space of
sequences Σp = {1, . . . , p}Z and we equip it with the distance

d(ω, ω′) =
∑

k∈Z

e−|k||ik − i′k|, (4.24)

where ω = (· · · i−1i0i1 · · · ) and ω′ = (· · · i′−1i
′
0i

′
1 · · · ). With this distance Σp be-

comes a compact metric space. We also consider the shift map σ : Σp → Σp defined
by (σω)n = in+1 for each ω = (· · · i−1i0i1 · · · ) ∈ Σp and n ∈ Z.

Definition 4.2.7. The restriction of σ to the set

ΣA = {(· · · i−1i0i1 · · · ) ∈ Σp : ain+1in
= 1 for every n ∈ Z}

is called a (two-sided) topological Markov chain with transition matrix A.

It is easy to show that one can define a coding map χ : ΣA → Λ of the
hyperbolic set Λ by

χ(· · · i−1i0i1 · · · ) =
⋂

n∈Z

f−nRin
. (4.25)

The map χ is surjective and satisfies

χ ◦ σ = f ◦ χ

(i.e., the diagram in Figure 4.4 is commutative). In addition, χ is Holder continu-¨
ous, with the distance in ΣA given by (4.24). In general the map χ is not invertible
(although one can show that cardχ−1x ≤ p2 for every x ∈ Λ).

ΣA
σ−−−−−− →−− ΣA

χ

⏐⏐�⏐⏐
⏐⏐�⏐⏐χ

Λ
f−−−−−− →−− Λ

Figure 4.4: Symbolic coding of a hyperbolic set

4.2.2 Boundaries of Markov partitions

Let Λ be a locally maximal hyperbolic set of a diffeomorphism f , and let R =
{R1, . . . , Rp} be a Markov partition of Λ. The boundary of R is the union of the
stable boundary

∂s
R =

p⋃

i=1

{x ∈ ∂Ri : V u
ρVV (x) ∩ intRi 	=		 ∅},
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and of the unstable boundary

∂u
R =

p⋃

i=1

{x ∈ ∂Ri : V s
ρVV (x) ∩ intRi 	=		 ∅}.

That is, ∂R = ∂sR ∪ ∂uR. Moreover,

f(∂s
R) ⊂ ∂s

R and f−1(∂u
R) ⊂ ∂u

R.

We note that the sets ∂sR, ∂uR, and ∂R are nowhere dense, and hence they have
zero measure with respect to any ergodic f -invariant measure with full support.

The following statement shows that for a large class of measures the ρ-
neighborhood of the set ∂R is at most polynomial in ρ. This was established
by Barreira and Saussol in [17].

Theorem 4.2.8 (Boundaries of Markov partitions). Let Λ be a locally maximal
hyperbolic set of a C1+ε diffeomorphism f , for some ε > 0, such that f is topolog-
ically mixing on Λ, and let μ be the equilibrium measure of a H¨lder continuous¨
function in Λ. For any Markov partition R of Λ there exist constants c > 0 and
ν > 0 such that if ρ > 0, then

μ({x ∈ Λ: d(x, ∂R) < ρ}) ≤ cρν .

Proof. For each n ∈ N we consider the distance dn in (2.11) and we denote by
Bn(x, δ) the open ball centered at x of radius δ with respect to the distance dn.

Lemma 4.2.9. For each sufficiently small r > 0, and each compact f -invariant
set K ⊂ Λ with K 	= Λ		 there exist constants c > 0 and ν > 0 such that for
every n ∈ N,

μ({x ∈ Λ : dn(x, K) < r}) ≤ ce−νn.

Proof of the lemma. Under the assumptions in the theorem, there exists a unique
equilibrium measure μK of the function ϕ|K with respect to f |K. Clearly, we
have supp μK ⊂ K. On the other hand, by the Gibbs property of μ we also have
suppμ = Λ, and hence μK 	=		 μ. Furthermore, by the uniqueness of the equilibrium
measure μ,

PKP (ϕ) = hμK
(f) +

∫

Λ

∫∫
ϕdμK < PΛP (ϕ).

Now let En ⊂ K be any set such that

K ⊂
⋃

y∈En

Bn(y, r). (4.26)

Clearly, setting

KnKK = {x ∈ Λ : dn(x, K) < r}
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we have
KnKK ⊂

⋃

y∈En

Bn(y, 2r).

On the other hand, it is well known (see, for example, [84, Lemma 20.3.4]) that
there exists ζ > 0 such that

μ(Bn(y, 2r)) ≤ ζ exp

(
−nPΛP (ϕ) +

n−1∑

k=0

ϕ(fky)

)

for every n ∈ N and y ∈ Λ. Hence,

μ(KnKK ) ≤
∑

y∈En

μ(Bn(y, 2r)) ≤ ζ
∑

y∈En

exp

(
−nPΛP (ϕ) +

n−1∑

k=0

ϕ(fky)

)
.

Moreover (see Definition 2.3.1), we have

PKP (ϕ) = lim
n→∞

1

n
log inf

En

∑

y∈En

exp

n−1∑

k=0

ϕ(fky),

where the infimum is taken over all sets En for which (4.26) holds. Therefore,

lim sup
n→∞

1

n
log μ(KnKK ) ≤ PKP (ϕ) − PΛP (ϕ) < 0.

This completes the proof of the lemma. �

Now we observe that

dn(x, y) ≤ max{‖dxf‖ : x ∈ Λ}nd(x, y) (4.27)

for every n ∈ N and x, y ∈ Λ. For any compact set K ⊂ Λ such that f(K) ⊂ K 	=		
Λ, it follows from Lemma 4.2.9 and (4.27) that there exist constants c = c(f, K) >
0 and ν = ν(f, K) > 0 such that

μ({x ∈ Λ: d(x, K) < ρ}) ≤ c(f, K)ρν(f,K). (4.28)

Using (4.28) with K = ∂sR we obtain

μ({x ∈ Λ: d(x, ∂s
R) < ρ}) ≤ c(f, ∂s

R)ρν(f,∂s
R). (4.29)

Similarly, using (4.28) with K = ∂uR now with respect to f−1 we obtain

μ({x ∈ Λ: d(x, ∂u
R) < ρ}) ≤ c(f−1, ∂u

R)ρν(f−1,∂u
R), (4.30)

since the equilibrium measures of a function ϕ with respect to f are the same as
the equilibrium measures of ϕ with respect to f−1. Furthermore,

{x ∈ Λ: d(x, ∂R) < ρ} ⊂ {x ∈ Λ: d(x, ∂s
R) < ρ} ∪ {x ∈ Λ: d(x, ∂u

R) < ρ},

and the desired statement follows immediately from (4.29) and (4.30). �
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It is well known that ∂R has zero measure with respect to any equilibrium
measure. This is a simple consequence of the fact that ∂R is a closed set with
dense complement. On the other hand, to estimate the measure of a neighborhood
of ∂R may be simpler when the boundary is piecewise regular (as in the case of
hyperbolic automorphisms of the torus T2), but Markov partitions may have a
very irregular boundary. In particular, it was proved by Bowen in [39] that ∂R is
never piecewise regular in the case of hyperbolic automorphisms of the torus T3.

4.2.3 Product structure of Gibbs measures

Before describing the product structure of Gibbs measures, we explain how the
symbolic dynamics can be decomposed into stable and unstable components. We
also explain how this decomposition is related to the local product structure of a
hyperbolic set (see Definition 4.2.5). We follow closely the appendix of [10].

Given a two-sided topological Markov chain σ|ΣA with ΣA ⊂ {1, . . . , p}Z, we
denote respectively by Σ+

A and Σ−
A the sets of right-sided and left-sided infinite

sequences on p symbols obtained from the sequences in ΣA. More precisely, we
denote by Σ+

A the set of sequences (i0i1 · · · ) such that

(i0i1 · · · ) = (j0j1 · · · )

for some sequence (· · · j−1j0j1 · · · ) ∈ ΣA. Similarly, we denote by Σ−
A the set of

sequences (· · · i−1i0) such that

(· · · i−1i0) = (· · · j−1j0)

for some sequence (· · · j−1j0j1 · · · ) ∈ ΣA. We note that Σ−
A is canonically identified

with Σ+
At , where At denotes the transpose of A, by the bijective map

Σ−
A ∋ (· · · i−1i0) �→ (i0i−1 · · · ) ∈ Σ+

At .

We also consider the one-sided topological Markov chains

σ+ : Σ+
A → Σ+

A and σ− : Σ−
A → Σ−

A

defined respectively by

σ+(i0i1 · · · ) = (i1i2 · · · ) and σ−(· · · i−1i0) = (· · · i−2i−1). (4.31)

The following construction is described by Bowen in [38, Lemma 1.6]. We
choose a number p of points ω1, . . ., ωp ∈ ΣA such that ωi ∈ ΣA ∩ CiCC for each i
(here CiCC is a cylinder set of length 1; see Definition 3.2.2). Set Ω = (ω1, . . . , ωp).
We define the function rΩ : ΣA → ΣA by

rΩ(· · · i−1i0i1 · · · ) = (· · · j−2j−1i0i1i2 · · · ),
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where (· · · j−1j0j1 · · · ) = ωi0 . Furthermore, given a function ϕ : ΣA → R we define
a new function θu = θu

Ω : ΣA → R by

θu(ω) = ϕ(rΩ(ω)) +

∞∑

j=0

[
ϕ(σj+1rΩ(ω)) − ϕ(σjrΩ(σω))

]
.

Now we introduce the concept of cohomology in dynamical systems.

Definition 4.2.10. Given a continuous transformation f : X → X of a topological
space X , two functions ϕ1 : X → R and ϕ2 : X → R are said to be cohomolo-
gous on X with respect to f , or simply cohomologous if there exists a continuous
function ψ : X → R such that

ϕ1 − ϕ2 = ψ − ψ ◦ f on X.

One can easily show that the functions θu and ϕ are cohomologous, and that
they have the same topological pressure (see Lemma 1.6 in [38]). In particular,
they have the same equilibrium measures.

Now let

π+ : ΣA → Σ+
A and π− : ΣA → Σ−

A

be the projections defined respectively by

π+(· · · i−1i0i1 · · · ) = (i0i1 · · · ) and π−(· · · i−1i0i1 · · · ) = (· · · i−1i0). (4.32)

One can easily verify that

θu(· · · i−1i0i1 · · · ) = θu(· · · i′−1i
′
0i

′
1 · · · )

whenever ij = i′j for every j ≥ 0. Similarly, one can define a function θs = θs
Ω

in ΣA such that

θs(· · · i−1i0i1 · · · ) = θu(· · · i′−1i
′
0i

′
1 · · · )

whenever ij = i′j for every j ≤ 0. We thus have the following statement.

Proposition 4.2.11. Given a continuous function ϕ : ΣA → R, the following prop-
erties hold:

1. there exists a function ϕu : Σ+
A → R such that θu = ϕu ◦ π+ in ΣA;

2. there exists a function ϕs : Σ−
A → R such that θs = ϕs ◦ π− in ΣA;

3. the functions ϕ, ϕu ◦ π+, and ϕs ◦ π− are cohomologous;

4. we have

PΣPP
A
(ϕ) = PΣPP +

A
(ϕu) = PΣPP −

A
(ϕs). (4.33)
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Now let ϕ : ΣA → R be a Holder continuous function, and let¨ ν be its unique
equilibrium measure in ΣA. One can easily show that the functions ϕu and ϕs are
also Holder continuous (see [38]). Let¨ νu be the equilibrium measure of ϕu in Σ+

A,
and let νs be the equilibrium measure of ϕs in Σ−

A. We also define a measure π+
∗ ν

in Σ+
A by

(π+
∗ ν)(B) = ν((π+)−1B)

for every measurable subset B ⊂ Σ+
A. Similarly, we define a measure π−

∗ ν in Σ−
A

by
(π−

∗ ν)(B) = ν((π−)−1B)

for every measurable subset B ⊂ Σ−
A. We note that

νu = π+
∗ ν in Σ+

A,

since both are equilibrium measures for the function ϕu, and that

νs = π−
∗ ν in Σ−

A,

since both are equilibrium measures for the function ϕs. This implies that

νu(C+
iC
0···in

) = ν(CiCC 0···in
) and νs(C−

iC
0···in

) = ν(CiCC 0···in
), (4.34)

where
C+

iC
0···in

= π+(CiCC 0···in
) and C−

iC
−n···i0

= π−(CiCC
−n···i0).

By Proposition 3.2 in [111] and (4.34) we have

ϕu(ω+) − PΣPP +
A
(ϕu) = lim

n→∞
log

νu(C+
iC
0···in

)

νu(C+
iC
1···in

)
= lim

n→∞
log

ν(CiCC 0···in
)

ν(CiCC 1···in
)

for every ω+ = (i0i1 · · · ) ∈ Σ+
A (with uniform convergence), and

ϕs(ω−) − PΣPP −

A
(ϕs) = lim

n→∞
log

νs(C−
iC
−n···i0

)

νs(C−
iC
−n···i1

)
= lim

n→∞
log

ν(CiCC
−n···i0)

ν(CiCC
−n···i1)

for every ω− = (· · · i−1i0) ∈ Σ−
A (with uniform convergence). In particular, this

implies that the functions ϕu and ϕs are independent of Ω.
The following statement shows that any equilibrium measure of a Hölder¨

continuous function in a topological Markov chain has a product structure. This
follows immediately from the identities in (4.34).

Proposition 4.2.12. There exist constants K1, K2 > 0 such that for every n, m ∈ N

and (· · · i−1i0i1 · · · ) ∈ ΣA we have

K1 ≤ ν(CiCC
−m···in

)

νu(C+
iC
0···in

)νs(C−
iC
−m···i0

)
≤ K2.
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Now let Λ be a locally maximal hyperbolic set of a diffeomorphism f , and
let R1, . . . , Rp be the elements of a Markov partition of Λ. For each x ∈ Λ, we set

Au(x) = V u
ρVV (x) ∩ R(x) and As(x) = V s

ρVV (x) ∩ R(x), (4.35)

where V u
ρVV (x) and V s

ρVV (x) are the local unstable and stable manifolds at x (see (4.21)
and (4.22)), and where R(x) is a fixed element of the Markov partition that con-
tains x. For each ω′ ∈ ΣA we have

χ(ω′) ∈ V u
ρVV (x) ∩ R(x) whenever π−ω′ = π−ω

and
χ(ω′) ∈ V s

ρVV (x) ∩ R(x) whenever π+ω′ = π+ω,

where x = χ(ω) (here χ is the coding map in (4.25)). Therefore, writing ω =
(· · · i−1i0i1 · · · ), the set Au(x) can be identified with the cylinder set

C+
iC
0

= {(j0j1 · · · ) ∈ Σ+
A : j0 = i0} ⊂ Σ+

A, (4.36)

and the set As(x) can be identified with the cylinder set

C−
iC
0

= {(· · · j−1j0) ∈ Σ−
A : j0 = i0} ⊂ Σ−

A. (4.37)

Now let ψ : Λ → R be a Holder continuous function, and let¨ μ be its equi-
librium measure in Λ. Then ϕ = ψ ◦ χ is a Holder continuous function in Σ¨ A.
Furthermore, μ = χ∗ν, where ν is the unique equilibrium measure of ϕ, that is,

μ(B) = ν(χ−1B) for every measurable subset B ⊂ Λ.

Moreover, for each x ∈ Λ ∩ χ(CiCC 0 ), we define the measures

μs
x = χ∗(ν

s|CiCC 0 ) in As(x),

and
μu

x = χ∗(ν
u|CiCC 0) in Au(x),

with νs and νu as above. The following statement is an immediate consequence of
Proposition 4.2.12.

Proposition 4.2.13. There exist constants K1, K2 > 0 such that for any x ∈ Λ and
any Borel sets E ⊂ As(x) and F ⊂ Au(x) we have

K1μ
u
x(E)μs

x(F ) ≤ μ([E, F ]) ≤ K2μ
u
x(E)μs

x(F ).

For μ-almost every x ∈ Λ, let νu
x and νs

x be respectively the conditional
measures of μ in Au(x) and As(x). We note that

νu
x = μu

x and νs
x = μs

x (4.38)

for μ-almost every x ∈ Λ.
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4.3 Dimension of hyperbolic sets of conformal maps

We study in this section the dimension of hyperbolic sets of conformal diffeomor-
phisms. Let f : M → M be a diffeomorphism, and let Λ ⊂ M be a hyperbolic set
of f .

Definition 4.3.1. We say that f is conformal on Λ if the linear transformations
dxf |Es(x) and dxf |Eu(x) are multiples of isometries for every x ∈ Λ.

For example, if M is a surface and dimEs(x) = dim Eu(x) = 1 for every
x ∈ Λ, then f is conformal on Λ.

The following result is a version of Theorem 4.1.7 for hyperbolic sets. We
consider the functions ϕs : Λ → R and ϕu : Λ → R defined by

ϕs(x) = log ‖dxf |Es(x)‖ and ϕu(x) = − log ‖dxf |Eu(x)‖. (4.39)

Theorem 4.3.2 (Dimension of hyperbolic sets of conformal maps). Let Λ be a
locally maximal hyperbolic set of a C1+ε diffeomorphism, for some ε > 0, such
that f is conformal and topologically mixing on Λ. Then

dimH(V s
ρVV (x) ∩ Λ) = dimB(V s

ρVV (x) ∩ Λ) = dimB(V s
ρVV (x) ∩ Λ) = ts (4.40)

and

dimH(V u
ρVV (x) ∩ Λ) = dimB(V u

ρVV (x) ∩ Λ) = dimB(V u
ρVV (x) ∩ Λ) = tu, (4.41)

where ts and tu are the unique real numbers such that

P (tsϕs) = P (tuϕu) = 0. (4.42)

Furthermore,
dimHΛ = dimBΛ = dimBΛ = ts + tu. (4.43)

Proof. Let R1, . . . , Rp be the elements of a Markov partition of Λ with diameter at
most ρ, where ρ is the size of the local stable and unstable manifolds (we recall that
there exist Markov partitions with diameter as small as desired). Given x, y ∈ Λ
in the same rectangle Ri, we denote by Hs

x,yH : V u
ρVV (x) → V u

ρVV (y) the holonomy map
along the stable manifolds, given by

Hs
x,yH (z) = [z, y].

Analogously, we denote by Hu
x,yH : V s

ρVV (x) → V s
ρVV (y) the holonomy map along the

unstable manifolds, given by

Hu
x,yH (z) = [y, z].

We note that the maps Hs
x,yH and Hu

x,yH depend continuously on x and y. Fur-
thermore, by results of Hasselblatt in [71], since f is conformal on Λ the stable
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and unstable distributions are smooth, and thus the local product structure is a
Lipschitz homeomorphism with Lipschitz inverse. This implies that the holonomy
maps Hs

x,yH and Hu
x,yH are Lipschitz.

Now we establish the identities in (4.40) and (4.41). We only consider V u
ρVV (x)

since the arguments for V s
ρVV (x) are entirely analogous. Choose segments ViVV of local

unstable manifolds, for i = 1, . . . , p, such that

ViVV ∩ Λ = V u
ρVV (xi) ∩ Λ ∩ Ri (4.44)

for some point xi ∈ Ri. We notice that ViVV ∩ intRj = ∅ whenever j 	=		 i. Since
the holonomy maps are Lipschitz, the numbers dimH(ViVV ∩ Λ), dimB(ViVV ∩ Λ), and
dimB(ViVV ∩ Λ) are independent of xi. Furthermore, since f is topologically mixing
on Λ we have

dimH(ViVV ∩ Λ) = dimH(VjVV ∩ Λ),

dimB(ViVV ∩ Λ) = dimB(VjVV ∩ Λ),

dimB(ViVV ∩ Λ) = dimB(VjVV ∩ Λ)

(4.45)

for every i and j. Set V =
⋃p

i=1 ViVV . We define

Ri0···in
=

n⋂

k=0

f−kRik
and ViVV 0···in

= V ∩ Ri0···in

for every (· · · i−1i0i1 · · · ) ∈ ΣA and n ∈ N, where A is the transition matrix
obtained from the Markov partition as in (4.2).

We first obtain an upper estimate for the upper box dimension. Note that

fnViVV 0···in
⊂ V u

ρVV (fnxi0) ∩ Rin

and
Hs

fnxi0 ,xin
fn(ViVV 0···in

∩ Λ) = ViVV
n
∩ Λ.

Furthermore, each point in ViVV ∩ Λ has exactly one preimage under the holon-
omy map Hs

fnxi0 ,xin
. Hence, if U is a cover of ViVV

n
∩ Λ, then the collection of

sets f−n(Hs
xH

in ,fnxi0
U) is a cover of ViVV 0···in

∩ Λ, and thus,

N(ViVV 0···in
∩ Λ, r) ≤ N(ViVV

n
∩ Λ, K−1rλi0···in

)

for every r > 0, where K ≥ 1 is a Lipschitz constant for the holonomy map, and

λi0···in
= max{‖dxf−n|Eu(x)‖ : x ∈ Ri0···in

}.

Therefore,

N(V ∩ Λ, r) ≤
∑

i0···in

N(ViVV 0···in
∩ Λ, r) ≤

∑

i0···in

N(V ∩ Λ, K−1rλi0···in
).
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Now take s > dimB(V ∩Λ). Then there exists r0 > 0 such that N(V ∩Λ, r) < r−s

for every r ∈ (0, r0). Setting

cn(s) =
∑

i1···in

λi0···in

s
,

we obtain
N(V ∩ Λ, r) ≤ r−sKscn(s)

for every r < λnKr0, where

λn = min
i0···in

λi0···in
.

By induction we obtain

N(V ∩ Λ, r) ≤ r−sKscn(s)m

for every r < (λnK)mr0. Notice that λnK < 1 for all sufficiently large n. Therefore,

log N(V ∩ Λ, r)

− log r
≤ s +

m log cn(s)

− log r
≤ s +

m log cn(s)

− log[(λnK)mr0]
,

and

dimB(V ∩ Λ) ≤ s + lim sup
m→+∞

m log cn(s)

− log[(λnK)mr0]
= s − log cn(s)

log(λnK)
.

Letting s ց dimB(V ∩ Λ) we obtain

cn(dimB(V ∩ Λ)) ≥ 1.

On the other hand,

cn(s) =
∑

i0···in

λi0···in

s
=
∑

i0···in

exp max
x∈Ri0···in

(
s

n∑

k=0

ϕu(fkx)

)
,

and

P (sϕu) = lim
n→∞

1

n
log cn(s) ≥ 0 = P (tuϕu).

Since the function s �→ P (sϕu) is strictly decreasing it follows that s ≤ tu for
every s > dimB(V ∩ Λ), and thus dimB(V ∩ Λ) ≤ tu.

Now we consider the Hausdorff dimension. We proceed by contradiction.
Assume on the contrary that dimH(V ∩ Λ) < tu, and let s be a positive number
such that

dimH(V ∩ Λ) < s < tu. (4.46)

Then m(V ∩Λ, s) = 0, and since V ∩Λ is compact, for each δ > 0 there is a finite
cover U of V ∩ Λ by open balls such that

∑

U∈U

(diamU)s < δs. (4.47)
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For each n ∈ N, let δn be a positive number such that

pn(U) := card{(i0 · · · in) : U ∩ Ri0···in
	=		 ∅} < p

whenever diamU < δn (the existence of δn follows easily from the properties of
the Markov partition). We note that δn → 0 as n → ∞. It follows from (4.47)
with δ = δn that diamU < δn, and hence that pn(U) < p for every U ∈ U. Set
N = n + m − 1, for some m ∈ N such that Am > 0 (recall that f is topologically
mixing on Λ). For each (i0i1 · · · ) ∈ ΣA and n ∈ N, we consider the cover Ui0···iN

of V composed of the projections along the stable leaves onto V of the sets fNU
with U ∈ U such that U ∩ Ri0···in

	=		 ∅. We have

∑

U∈Ui0···iN

(diamU)s ≤ λi0···iN

−s
∑

U∈U, U∩Ri0···in �=�� ∅

(diamU)s,

where

λi0···in
= min{‖dxf−n|Eu(x)‖ : x ∈ Ri0···in

}.

Now assume that for every (i0i1 · · · ) ∈ ΣA and n ∈ N we have

∑

U∈Ui0···iN

(diamU)s ≥ δn
s.

Then

pδn
s > p

∑

U∈U

(diamU)s ≥
∑

U∈U

pn(U)(diam U)s

=
∑

i0···in

∑

U∈U, U∩Ri0···in �=�� ∅

(diamU)s

≥ p−m+1
∑

i0···iN

∑

U∈U, U∩Ri0···in �=�� ∅

(diamU)s

≥ p−m+1
∑

i0···iN

⎛
⎝
⎛⎛

λi0···iN

∑

U∈Ui0···iN

(diamU)s

⎞
⎠
⎞⎞

≥ p−m+1δn
s
∑

i0···iN

λi0···iN

s.

(4.48)

We observe that by a property analogous to the bounded distortion in (4.11) there
is a constant C > 0 (independent of n ∈ N and (i0 · · · in)) such that

C−1 ≤ λi0···in

λi0···in

≤ C.
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Therefore, by (4.48),

P (sϕu) = lim
N→∞

1

N

∑

i0···iN

λi0···in

s

≤ lim
N→∞

1

N

∑

i0···iN

λi0···in

s ≤ 0.

(4.49)

Since the function s �→ P (sϕu) is strictly decreasing and P (tuϕu) = 0, we have
that (4.49) contradicts (4.46). Hence, we must have

∑

U∈Ui0···iN

(diamU)s < δn
s (4.50)

for some finite sequence (i0 · · · iN ) and all sufficiently large n (recall that N =
n + m − 1). Now we restart the process using the cover V1 = Ui0···iN

to find
inductively finite covers Vl of V ∩Λ for each l ∈ N. By (4.50) we have diamVl < δn,
and hence pn(U) < p for every U ∈ Vl. This implies that cardVl+1 < cardVl, and
hence cardVl = 1 for some l = l(n). Writing Vl(n) = {UnUU } we obtain

diam(V ∩ Λ) ≤ diamUnUU < δn → 0 as n → ∞,

which is impossible. This contradiction shows that dimH(V ∩ Λ) ≥ tu.
We have thus shown that

dimH(V ∩ Λ) = dimB(V ∩ Λ) = dimB(V ∩ Λ) = tu.

By (4.44) and (4.45) this establishes (4.40). The identities in (4.41) follow from
similar arguments.

It remains to establish (4.43). Since f is conformal on Λ the local product
structure is a Lipschitz homeomorphism with Lipschitz inverse, and thus

dimH [V s
ρVV (x) ∩ Λ, V u

ρVV (x) ∩ Λ] = dimH((V s
ρVV (x) ∩ Λ) × (V u

ρVV (x) ∩ Λ)),

dimB [V s
ρVV (x) ∩ Λ, V u

ρVV (x) ∩ Λ] = dimB((V s
ρVV (x) ∩ Λ) × (V u

ρVV (x) ∩ Λ)),

dimB [V s
ρVV (x) ∩ Λ, V u

ρVV (x) ∩ Λ] = dimB((V s
ρVV (x) ∩ Λ) × (V u

ρVV (x) ∩ Λ)).

(4.51)

Since the inequalities

dimHA + dimHB ≤ dimH(A × B)

and
dimB(A × B) ≤ dimBA + dimBB

hold for any subsets A and B of Rm, it follows from (4.40), (4.41), and (4.51) that

dimH [V s
ρVV (x) ∩ Λ, V u

ρVV (x) ∩ Λ] = dimB[V s
ρVV (x) ∩ Λ, V u

ρVV (x) ∩ Λ]

= dimB[V s
ρVV (x) ∩ Λ, V u

ρVV (x) ∩ Λ]

= ts + tu.

(4.52)
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On the other hand, since Λ is locally maximal we have

[V s
ρVV (x) ∩ Λ, V u

ρVV (x) ∩ Λ] ⊂ Λ

for every x ∈ Λ, and we can choose points x1, . . . , xN ∈ Λ such that

Λ =
N⋃

n=1

[V s
ρVV (xn) ∩ Λ, V u

ρVV (xn) ∩ Λ].

The identities in (4.43) follow now immediately from (4.52). �

McCluskey and Manning showed in [100] that

dimH(V s
ρVV (x) ∩ Λ) = ts and dimH(V u

ρVV (x) ∩ Λ) = tu

for every x ∈ Λ. We note that [100] does not contain a proof of the identity
dimHΛ = ts + tu. The equality between the Hausdorff dimension and the lower
and upper box dimensions is due to Takens [152] in the case of C2 diffeomorphisms
(see also [109]), and to Palis and Viana [110] in the general C1 case. Barreira
[3] and Pesin [115] presented alternative proofs of Theorem 4.3.2 based on the
thermodynamic formalism. Our proof of Theorem 4.3.2 follows closely [3], which
in its turn is inspired in arguments in [152] (see also [109]). The proof of Pesin
in [115] uses essentially the same arguments as the proof of Theorem 4.1.7. With
the purpose of illustrating an alternative argument (which incidentally could also
be used to establish Theorem 4.1.7) we follow instead [3]. We observe that the
proof depends crucially on the fact that f is conformal on Λ. In fact, any local
product structure is always a Hölder continuous homeomorphism with H¨¨ older¨
continuous inverse. But in general it is not more than Holder continuous for a¨
generic diffeomorphism in a certain open set, in view of work of Schmeling in [140]
(see also [144]). On the other hand, when f is conformal on Λ, any local product
structure is a Lipschitz homeomorphism with Lipschitz inverse. It is this property
that allows us to add the dimensions in the stable and unstable directions.

4.4 Dimension for nonconformal maps: brief notes

We already observed that the dimension theory of invariant sets of nonconformal
maps (both invertible and noninvertible) still lacks a satisfactory approach in its
most general version. Indeed, in most related works the authors make additional
assumptions essentially to avoid two main types of difficulties: the lack of a clear
separation between different Lyapunov directions, connected with a possible small
regularity of the associated distributions (which typically are only Hölder continu-¨
ous); and the existence of number-theoretical properties that may cause a variation
of the Hausdorff dimension with respect to a certain typical value (such as the one
in [51], see Theorem 4.4.2). Other authors have obtained results not for a concrete
invariant set, but instead for an invariant of a typical transformation, such as for
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example for Lebesgue almost all values in some parameter space (although usually
without knowing what happens for any specific value of the parameter). Moreover,
in the case of nonconformal transformations we are often only able to establish
estimates instead of giving a formula for the dimension of the invariant set. Thus,
sometimes the emphasis is on how to obtain sharp dimension estimates.

Nevertheless, there exist some partial results towards a nonconformal theory,
for certain classes of repellers and hyperbolic sets, starting essentially with the
seminal work of Douady and Oesterle [48]. We formulate some of these results,´
without proofs. Given a linear map L : Rn → Rn, let

σ1(L) ≥ · · · ≥ σn(L) ≥ 0

be the singular values of L, that is, the eigenvalues of (L∗L)1/2, counted with their
multiplicities, where L∗ is the adjoint of L. Following [48], for each s ∈ [0, n] we
set

ωs(L) = σ1(L) · · ·σ⌊s⌋(L)σ⌊s⌋+1(L)s−⌊s⌋

where ⌊s⌋ is the integer part of s. Using these numbers, Falconer [54] computed
the Hausdorff dimension of a class of repellers of nonconformal transformations
(building on his former work [52]). His main result can be reformulated as follows.

Theorem 4.4.1. Let J be a repeller of a C2 transformation f which is topologically
mixing on J . If

‖(dxf)−1‖2‖dxf‖ < 1 for every x ∈ J,

then
dimBJ = dimBJ ≤ s,

where s is the unique real number such that P (Φs) = 0 for the sequence Φs formed
by the functions ϕn,s : J → R, n ∈ N given by

ϕn,s(x) = log ωs((dxfn)−1).

Under an additional geometric assumption, satisfied for example when J
contains a nondifferentiable arc, the number s in Theorem 4.4.1 is equal to dimHJ
(see [54]). In another direction, Hu [77] computed the box dimension of a class of
repellers of nonconformal transformations that leave invariant a strong unstable
foliation. His formula for the box dimension is also expressed in terms of the
topological pressure. Related results were obtained earlier by Bedford in [26] (see
also [27]), for a class of self-similar sets that are graphs of continuous functions. In
many of the former works the maps are assumed to be piecewise affine, sometimes
with constant rates of expansion.

In another direction, Falconer [51] studied a class of limit sets of geometric
constructions obtained from the composition of affine transformations that are not
necessarily conformal. Consider affine transformations fiff : Rn → Rn, i = 1, . . . , p
given by fiff (x) = Aix+ bi for some linear contraction Ai and some vector bi ∈ Rn.
Then there is a unique nonempty compact set J ⊂ R

n such that J =
⋃p

i=1 fiff (J)
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(see [78]), and for every nonempty compact set R ⊂ Rn such that fiff (R) ⊂ R for
i = 1, . . . , p we have

J =

∞⋂

k=1

⋃

i1···ik

(fiff 1 ◦ · · · ◦ fiff
k
)(R).

Set

s = inf

{
d ∈ [0, n] :

∞∑

k=1

∑

i1···ik

ωd(Ai1 ◦ · · · ◦ Aik
) < ∞

}
.

We emphasize that the number s does not depend on the vectors b1, . . . , bp.

Theorem 4.4.2. We have dimBJ ≤ s. In addition, if ‖Ai‖ < 1/2 for i = 1, . . . , p,
then for Lebesgue almost every (b1, . . . , bp) ∈ (Rn)p we have

dimHJ = dimBJ = dimBJ = s.

The statement in Theorem 4.4.2 is due to Falconer [51] when ‖Ai‖ < 1/3 for
i = 1, . . . , p, and to Solomyak [151] in the general case.

Related ideas were applied by Simon and Solomyak in [149] to compute the
Hausdorff dimension of a class of solenoids in R3, obtained from C1+α transfor-
mations of the form

(x, y, z) �→ (ϕ(x, z) + a, ψ(y, z) + b, ζ(z)).

We recall that a solenoid is a hyperbolic set Λ =
⋂∞

n=1 fnT , where T ⊂ R3 is
diffeomorphic to a solid torus S1 ×D for some closed disk D ⊂ R2, and f : T → T
is a diffeomorphism such that for each x ∈ S1 the section

Λx = f(T ) ∩ ({x} × D)

is a disjoint union of a fixed number of sets homeomorphic to a closed disk. Assum-
ing that |∂ϕ/∂x|, |∂ψ/∂y| < 1/2 and |ζ′| > 1, it is shown in [149] how to compute
the Hausdorff dimension of the solenoid for Lebesgue almost every (a, b) ∈ R2.
Again, the dimension is expressed implicitly in terms of the topological pressure.

Bothe [35] and then Simon [148] (also using his methods in [147] for nonin-
vertible transformations) studied earlier the dimension of solenoids (see [115, 145]
for a related discussion). In particular, it is shown in [35] that under certain con-
ditions on the diffeomorphism the map x �→ dimHΛx is constant (even though the
holonomies are typically not Lipschitz). More recently, Hasselblatt and Schmeling
conjectured in [74] (see also [73]) that, in spite of the difficulties due to the pos-
sible low regularity of the holonomies, the Hausdorff dimension of hyperbolic sets
can be computed by adding the dimensions of the stable and unstable sections.
They prove this conjecture for a class of solenoids, by showing that the Hausdorff
dimension of the sections is in fact independent of the section.



Chapter 5

Measures of Maximal
Dimension

We establish in this chapter the existence of ergodic measures of maximal dimen-
sion for hyperbolic sets of conformal diffeomorphisms. This is a dimensional version
of the existence of ergodic measures of maximal entropy. A crucial difference is
that while the entropy map is upper semicontinuous, the map ν �→ dimH ν is nei-
ther upper semicontinuous nor lower semicontinuous. Our approach is based on
the thermodynamic formalism. It turns out that for a generic diffeomorphism with
a hyperbolic set, there exists an ergodic measure of maximal Hausdorff dimension
in a particular two-parameter family of equilibrium measures. On the other hand,
generically there exists no measure of full dimension, in strong contrast with what
happens in the case of repellers (see Chapter 4).

5.1 Basic notions and basic properties

Let Λ be a locally maximal hyperbolic set of a C1+ε diffeomorphism f , for some
ε > 0, such that f is conformal and topologically mixing on Λ.

In an analogous manner to the case of repellers (see (4.17)) one can ask
whether there exists an invariant measure μ in Λ such that

dimHΛ = dimHμ. (5.1)

It happens that, in strong contrast with the case of repellers, in general the answer
is negative. We show below (see the discussion after Definition 5.1.3) that there
exists an invariant measure μ in Λ satisfying (5.1) if and only if the functions tsϕs

and tuϕu (see (4.39) and (4.42)) are cohomologous (see Definition 4.2.10), that is,
if there exists a continuous function ψ : Λ → R such that

tsϕs − tuϕu = ψ − ψ ◦ f. (5.2)
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By Livschitz’s theorem (see, for example, [84, Theorem 19.2.1]), this happens if
and only if

‖dxfn|Es(x)‖ts‖dxfn|Eu(x)‖tu = 1

for every x ∈ Λ and n ∈ N such that fnx = x.
Instead, one can ask whether the supremum

δ(f) := sup{dimHν : ν is an f -invariant probability measure in Λ} (5.3)

is attained. A related quantity was introduced by Denker and Urbanski in [46]´
(with the supremum in (5.3) replaced by the supremum over all ergodic mea-
sures with positive entropy). This quantity has been intensively studied in one-
dimensional complex dynamics (see [155] for details).

Definition 5.1.1. Any invariant probability measure attaining the supremum in
(5.3) is called a measure of maximal Hausdorff dimension or simply a measure of
maximal dimension.

The measures of maximal dimension attain maximal complexity from the
point of view of dimension theory. In particular, each of them is a dimensional
counterpart of the measures of maximal entropy, which attain maximal complexity
from the point of view of entropy theory. We recall that under the assumptions of
Theorem 4.3.2 the entropy map μ �→ hμ(f) is upper semicontinuous, and thus there
exist measures of maximal entropy. The same does not happen with the Hausdorff
dimension since the dimension map μ �→ dimHμ is never upper semicontinuous.
To verify that this is the case it is sufficient to consider the sequence of measures
(μ + (n − 1)δ)/n where dimHμ > 0 and δ is an atomic measure. Nevertheless,
it was proved by Barreira and Wolf in [23] that the supremum in (5.3) is always
attained and that it is attained at an ergodic measure (see Theorem 5.2.1 below).
Before presenting the result we introduce some auxiliary material.

Since f is of class C1+ε, the stable and unstable distributions Es and Eu

are Holder continuous (see, for example, [84, Section 19.1]). Hence, the functions¨
ϕs and ϕu in (4.39) are also Hölder continuous. Now let¨ M be the family of f -
invariant probability Borel measures in Λ equipped with the weak∗ topology, and
let ME ⊂ M be the subset of all ergodic measures. Then M is a compact metrizable
space. For each ν ∈ M we define

λs(ν) =

∫

Λ

∫∫
ϕs dν and λu(ν) = −

∫

Λ

∫∫
ϕu dν. (5.4)

It was shown by Young in [165] (see Theorem 13.2.3 below) that

if ν ∈ ME , then dimHν = d(ν), (5.5)

where

d(ν) := hν(f)

(
1

λu(ν)
− 1

λs(ν)

)
.
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We also need several additional properties of the topological pressure which
we formulate without proof (we refer to [132] for details). Given ε ∈ (0, 1], let Cε(Λ)
be the space of Hölder continuous functions¨ ϕ : Λ → R with Hölder exponent¨ ε.

Theorem 5.1.2. The following properties hold:

1. the map ϕ �→ P (ϕ) is analytic in Cε(Λ);

2. each function ϕ ∈ Cε(Λ) has a unique equilibrium measure νϕ ∈ M; further-
more νϕ is ergodic, and given ψ ∈ Cε(Λ) we have

d

dt
P (ϕ + tψ)

∣∣∣∣∣∣∣
t=0

=

∫

Λ

∫∫
ψ dνϕ; (5.6)

3. for each ϕ, ψ ∈ Cε(Λ) we have νϕ = νψ if and only if ϕ−ψ is cohomologous
to a constant;

4. for each ϕ, ψ ∈ Cε(Λ) and t ∈ R we have

d2

dt2
P (ϕ + tψ) ≥ 0, (5.7)

with equality if and only if ψ is cohomologous to a constant.

The approach in [23] to establish the existence of (ergodic) measures of max-
imal dimension is based on the study of the function Q : R2 → R defined by

Q(p, q) = P (pϕu + qϕs).

Since ϕs and ϕu are Holder continuous, by property 1 in Theorem 5.1.2 the func-¨
tion Q is analytic. Furthermore, by property 2, for each (p, q) ∈ R2 the function
pϕu + qϕs has a unique equilibrium measure, say νp,qνν ∈ ME . We use the notation

λu(p, q) = λu(νp,qνν ), λs(p, q) = λs(νp,qνν ), h(p, q) = hνp,q
(f).

Accordingly, we also think of λu, λs, and h as functions in R2. Note that by
Theorem 2.3.3 we have

Q(p, q) = h(p, q) − pλu(p, q) + qλs(p, q). (5.8)

We now briefly describe how these functions relate to dimension theory. Note that

0 = h(tu, 0) − tuλu(tu, 0) ≥ hν(f) − tuλu(ν)

with strict inequality if and only if ν 	=		 νtνν
u,0, and that

0 = h(0, ts) + tsλs(0, ts) ≥ hν(f) + tsλs(ν)

with strict inequality if and only if ν 	=		 ν0,ts
. Therefore,

tu = max
ν∈M

hν(f)

λu(ν)
=

h(tu, 0)

λu(tu, 0)
and ts = max

ν∈M

hν(f)

−λs(ν)
= − h(0, ts)

λs(0, ts)
. (5.9)

Furthermore, the maxima in (5.9) are respectively uniquely attained at the mea-
sures νtνν

u,0 and ν0,ts
.
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Definition 5.1.3. A measure μ in Λ is called a measure of full dimension if dimHΛ =
dimHμ.

Together with (5.5) and (4.43), the uniqueness of the maxima in (5.9) implies
that there exists a measure μ ∈ ME of full dimension if and only if νtu,0 = ν0,ts

,
in which case μ = νtνν

u,0 = ν0,ts
. In view of (4.42) and Theorem 5.1.2 this occurs if

and only if identity (5.2) holds for some continuous function ψ : Λ → R. We notice
that if there exists a measure of full dimension in ME , then it is unique.

Example 5.1.4. We show that if f preserves volume, then there exists an ergodic
invariant measure of full dimension, and that in this case we have tu = ts. A short
argument is the following. If fnx = x ∈ Λ and k ∈ Z, then

1 = | det dxfkn| = exp[kϕs(f
nx) − kϕu(fnx)] sin ∠(Eu(x), Es(x)).

Letting k → ±∞ we obtain

ϕs(f
nx) − ϕu(fnx) = 0

whenever fnx = x ∈ Λ. Therefore, by Livschitz’s theorem (see, for example, [84,
Theorem 19.2.1]), the function ϕs − ϕu is cohomologous to zero. This implies
that Q(t, 0) = Q(0, t) for every t ∈ R, and hence tu = ts. Therefore tuϕu is
cohomologous to tsϕs, and νtu,0 = ν0,ts

is the ergodic invariant measure of full
dimension.

In the case of hyperbolic polynomial automorphisms of C2 it was shown by
Wolf in [164] that if there exists an ergodic invariant measure of full dimension,
then either the map is volume preserving, or ϕs and ϕu are both cohomologous to
a constant (in which case the ergodic invariant measure of full dimension coincides
with the measure of maximal entropy).

5.2 Existence of measures of maximal dimension

The existence of ergodic invariant measures of maximal dimension was established
by Barreira and Wolf in [23] for diffeomorphisms on surfaces with one-dimensional
stable and unstable distributions. Their approach extends without change to the
more general case of hyperbolic sets of conformal maps.

Theorem 5.2.1 (Measures of maximal dimension). Let Λ be a locally maximal
hyperbolic set of a C1+ε diffeomorphism f , for some ε > 0, such that f is conformal
and topologically mixing on Λ. Then

δ(f) = max{dimHμ : μ ∈ ME}.

Proof. Since the maps ν �→ λu(ν) and ν �→ λs(ν) defined by (5.4) are continuous
in M, and M is compact, we can set

λmin
u = min λu(M), λmax

u = maxλu(M),
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and
λmin

s = min λs(M), λmax
s = maxλs(M).

We consider the intervals

IuII = (λmin
u , λmax

u ) and IsI = (λmin
s , λmax

s ).

Note that IuII 	=		 ∅ if and only if ϕu is not cohomologous to a constant, and that
IsI 	=		 ∅ if and only if ϕs is not cohomologous to a constant. We also consider the
functions

du(p, q) = h(p, q)/λu(p, q) and ds(p, q) = −h(p, q)/λs(p, q). (5.10)

It follows from (5.6) that

∂Q

∂p
= −λu and

∂Q

∂q
= λs. (5.11)

Since Q is analytic, the functions λu and λs are also analytic. We conclude from
(5.8) that h is analytic, and it follows from (5.10) that the functions du and ds are
also analytic. Now we establish a few additional properties of these functions.

Lemma 5.2.2. The following properties hold:

1. if ϕu is not cohomologous to a constant and q ∈ R, then:

(a) λu(·, q) is strictly decreasing and {λu(p, q) : p ∈ R} = IuII ;

(b) h(·, 0) is strictly decreasing in [0,∞);

(c) du(·, 0) is strictly increasing in (−∞, tu] and is strictly decreasing in
[tu,∞).

2. if ϕs is not cohomologous to a constant and p ∈ R, then:

(a) λs(p, ·) is strictly decreasing and {λs(p, q) : q ∈ R} = IsI ;

(b) h(0, ·) is strictly decreasing in [0,∞);

(c) ds(0, ·) is strictly increasing in (−∞, ts] and is strictly decreasing in
[ts,∞).

Proof of the lemma. Assume that ϕu is not cohomologous to a constant and fix
q ∈ R. By (5.7) and (5.11) we have

∂λu

∂p
= −∂2Q

∂p2
< 0, (5.12)

and thus λu(·, q) is strictly decreasing. The continuity of the function λu(·, q)
implies that {λu(p, q) : p ∈ R} is an open interval. We claim that

lim
p→∞

λu(p, q) = λmin
u and lim

p→−∞
λu(p, q) = λmax

u . (5.13)
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If the first identity did not hold, then there would exist ν ∈ M and δ > 0 such
that λu(ν) + δ < λu(p, q) for every p ∈ R. Now we take p > 0 satisfying

pδ > h(f) − qλs(ν) + qλs(p, q)

(such a p always exists since the function λs(·, q) is bounded). We obtain

Q(p, q) = h(p, q) − pλu(p, q) + qλs(p, q)

< h(f) − p(λu(ν) + δ) + qλs(p, q)

< hν(f) − pλu(ν) + qλs(ν),

which contradicts Theorem 2.3.3. This establishes the first identity in (5.13).
A similar argument establishes the second identity and property 1a follows.

It follows from (5.8) that

h(p, 0) = Q(p, 0) + pλu(p, 0).

Using (5.11) and (5.12) it is straightforward to verify that

∂h

∂p
(p, 0) = p

∂λu

∂p
(p, 0). (5.14)

This establishes property 1b.
Finally, using (5.8), (5.12), and (5.14) we obtain

∂du

∂p
(p, 0) =

p∂λu/∂p(p, 0)λu(p, 0) − h(p, 0)∂λu/∂p(p, 0)

λu(p, 0)2

= −∂λu

∂p
(p, 0)

Q(p, 0)

λu(p, 0)2

=
∂2Q

∂p2
(p, 0)

Q(p, 0)

λu(p, 0)2
.

(5.15)

On the other hand, it follows from Theorem 2.3.3 that the function Q(·, q) is
strictly decreasing. This implies that

Q(p, 0) > Q(tu, 0) = 0 for p < tu,

and that

Q(p, 0) < Q(tu, 0) = 0 for p > tu.

Property 1c follows now immediately from (5.12) and (5.15).
The proofs of the statements for the stable part are entirely analogous. �

Using Lemma 5.2.2 we can introduce two curves that are crucial for our
approach.
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Lemma 5.2.3. The following properties hold:

1. for each a ∈ IuII there exists a unique function γu : R → R satisfying

λu(γu(q), q) = a for every q ∈ R,

and γu is analytic;

2. for each b ∈ IsI there exists a unique function γs : R → R satisfying

λs(p, γs(p)) = b for every p ∈ R,

and γs is analytic.

Proof of the lemma. We only prove the second statement. The proof of the first
statement is entirely analogous. Let b ∈ IsI . In particular IsI 	=		 ∅, and ϕs is not
cohomologous to a constant. By statement 2a in Lemma 5.2.2 and (5.11), for each
p ∈ R there exists a unique number γs(p) ∈ R such that

∂Q

∂q
(p, γs(p)) = λs(p, γs(p)) = b.

Since ϕs is not cohomologous to a constant, we have ∂2Q/∂q2(p, q) > 0 for every
(p, q) ∈ R2. It follows from the implicit function theorem that the map p �→ γs(p)
is analytic. �

We proceed with the proof of the theorem. Let (νn)n∈N be a sequence of
measures in ME such that

lim
n→∞

dimHνn = sup{dimHν : ν ∈ ME}. (5.16)

Since M is compact in the weak∗ topology, we can also assume that (νn)n∈N

converges to some measure m ∈ M. Since the entropy map M ∋ ν �→ hν(f) is
upper semicontinuous, it follows from (5.5) and from the continuity of the maps
ν �→ λu(ν) and ν �→ λs(ν) that

lim
n→∞

dimHνn ≤ d(m). (5.17)

By (5.16) and (5.17) we obtain

sup{dimHν : ν ∈ ME} ≤ d(m). (5.18)

Therefore, in order to establish the existence of a measure μ ∈ ME satisfying

dimHμ = sup{dimHν : ν ∈ ME}, (5.19)

it is sufficient to show that there exists μ ∈ ME such that

dimHμ = d(m). (5.20)



74 Chapter 5. Measures of Maximal Dimension

Clearly, any measure μ ∈ ME satisfying (5.20) also satisfies (5.19). We note that
when m is ergodic, it follows from (5.5) that dimHm = d(m), and hence (5.19)
holds for μ = m. However, m may not be ergodic.

Set a = λu(m) and b = λs(m). By Lemma 5.2.3, when a ∈ IuII (respectively
b ∈ IsI ) we can consider the curve γu (respectively γs) associated to the number a
(respectively b). We first prove some auxiliary statements.

Lemma 5.2.4. If λs(m) ∈ IsI , then there exists p ∈ [0, hm(f)/λu(m)] such that
λu(p, γs(p)) = λu(m).

Proof of the lemma. The assumption λs(m) ∈ IsI guarantees that the function γs

is well-defined. Since νp,γνν
s(p) is the equilibrium measure of pϕu + γs(p)ϕs we have

h(p, γs(p)) − pλu(p, γs(p)) + γs(p)λs(p, γs(p))

≥ hm(f) − pλu(m) + γs(p)λs(m) (5.21)

for every p ∈ R. Note that λu(p, γs(p)) > 0. It is straightforward to verify that

h(p, γs(p))

λu(p, γs(p))
− hm(f)

λu(m)
≥
(

1 − λu(m)

λu(p, γs(p))

)(
p − hm(f)

λu(m)

)
. (5.22)

Let κ = hm(f)/λu(m). Setting p = κ, it follows from (5.22) that

h(κ, γs(κ))/λu(κ, γs(κ)) ≥ hm(f)/λu(m). (5.23)

Now assume that
λu(κ, γs(κ)) > λu(m).

By (5.23) we obtain h(κ, γs(κ)) > hm(f). It follows from (5.5) and (5.23) that
dimHνκ,γs(κ) > d(m). This contradicts (5.18), and thus we must have

λu(κ, γs(κ)) ≤ λu(m). (5.24)

On the other hand, it follows from (5.5) and (5.18) that

h(0, γs(0))

λu(0, γs(0))
− h(0, γs(0))

λs(m)
≤ hm(f)

λu(m)
− hm(f)

λs(m)
. (5.25)

Setting p = 0 in (5.21) we obtain h(0, γs(0)) ≥ hm(f), and it follows from (5.25)
that

λu(0, γs(0)) ≥ λu(m). (5.26)

By the continuity of the function p �→ λu(p, γu(p)) together with (5.24) and (5.26),
there exists p ∈ [0, κ] such that λu(p, γs(p)) = λu(m). This completes the proof of
the lemma. �

Lemma 5.2.5. Assume that neither ϕu nor ϕs are cohomologous to a constant.
Then λu(m) ∈ IuII if and only if λs(m) ∈ IsI .
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Proof of the lemma. Assume that λs(m) ∈ IsI . By Lemma 5.2.4, there exists p
such that λu(p, γs(p)) = λu(m). Lemma 5.2.2 implies that λu(p, γs(p)) ∈ IuII , and
hence λu(m) ∈ IuII . A similar argument together with the corresponding version of
Lemma 5.2.4 show that λs(m) ∈ IsI whenever λu(m) ∈ IuII . �

We note that by Lemma 5.2.5 it is sufficient to consider the following four
cases:

1. λs(m) ∈ IsI and λu(m) ∈ IuII ;

2. λs(m) ∈ IsI and ϕu is cohomologous to a constant;

3. λu(m) ∈ IuII and ϕs is cohomologous to a constant;

4. λs(m) 	∈ IsI and λu(m) 	∈ IuII .

We continue with an auxiliary statement.

Lemma 5.2.6. If p, q ∈ R are such that λu(p, q) = λu(m) and λs(p, q) = λs(m),
then m = νp,qνν .

Proof of the lemma. We have

h(p, q) +

∫

Λ

∫∫
(pϕu + qϕs) dνp,qνν = h(p, q) − pλu(m) + qλs(m)

≥ hm(f) +

∫

Λ

∫∫
(pϕu + qϕs) dm.

Hence h(p, q) ≥ hm(f), with equality if and only if νp,qνν = m. On the other hand,
combining (5.5) with (5.18) yields that h(p, q) ≤ hm(f). Therefore h(p, q) = hm(f)
and m = νp,qνν . �

Now we consider each of the above four cases.

Lemma 5.2.7. If λu(m) ∈ IuII and λs(m) ∈ IsI , then there exist p, q ∈ R such that
(p, γs(p)) = (γu(q), q) and m = νp,qνν .

Proof of the lemma. The hypotheses guarantee that the curves γu and γs are well-
defined. Since λs(p, γs(p)) = λs(m), it follows from Lemma 5.2.4 and the unique-
ness of γu that (p, γs(p)) = (γu(q), q) for some p, q ∈ R. In particular,

λu(p, q) = λu(m) and λs(p, q) = λs(m).

It follows from Lemma 5.2.6 that m = νp,qνν . �

Lemma 5.2.8. If λs(m) ∈ IsI and ϕu is cohomologous to a constant, then there
exist p, q ∈ R such that m = νp,qνν .
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Proof of the lemma. Since λs(m) ∈ IsI , the curve γs is well-defined, and we have
λs(p, γs(p)) = λs(m) for every p. On the other hand, the cohomological assumption
ensures that λu(p, γs(p)) = λu(m). Setting q = γs(p) we obtain

λu(p, q) = λu(m) and λs(p, q) = λs(m).

It follows from Lemma 5.2.6 that m = νp,qνν . �

An analogous argument establishes the following.

Lemma 5.2.9. If λu(m) ∈ IuII and ϕs is cohomologous to a constant, then there
exist p, q ∈ R such that m = νp,qνν .

Finally we consider the fourth case.

Lemma 5.2.10. If λu(m) /∈// IuII and λs(m) /∈// IsI , then:

1. λu(m) = λmin
u and λs(m) = λmax

s ;

2. there exists a measure ν ∈ ME such that

λu(ν) = λu(m), λs(ν) = λs(m), and hν(f) = hm(f).

Proof of the lemma. We first establish property 1. When IuII = IsI = ∅ (that is,
when ϕu and ϕs are both cohomologous to constants) there is nothing to prove.
Now assume that

IuII = ∅, IsI 	=		 ∅, and λs(m) = λmin
s . (5.27)

Since ν0,0 is the measure of maximal entropy, we have h(0, 0) ≥ hm(f). Hence,
it follows from λu(0, 0) = λmin

u , statement 2a in Lemma 5.2.2, and (5.5) that
dimHν0,0 > d(m). But this contradicts (5.18), and hence (5.27) cannot occur.
Analogously we can show that it is impossible to have IsI = ∅, IuII 	=		 ∅, and
λu(m) = λmax

u .
In order to complete the proof of property 1 it remains to consider the case

when IuII 	=		 ∅ and IsI 	=		 ∅. We then have

λu(m) ∈ ∂IuII = {λmin
u , λmax

u } and λs(m) ∈ ∂IsI = {λmin
s , λmax

s }.

Assume first that
λu(m) = λmax

u and λs(m) = λmin
s . (5.28)

Since ν0,0 is the measure of maximal entropy, we have h(0, 0) ≥ hm(f). On the
other hand, it follows from Lemma 5.2.2 that

λu(0, 0) < λu(m) and λs(0, 0) > λs(m).

By (5.5) we obtain dimHν0,0 > d(m). But this contradicts (5.18), and hence (5.28)
cannot occur. Assume now that

λu(m) = λmin
u and λs(m) = λmin

s . (5.29)
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We claim that
h(p, 0) > hm(f) (5.30)

for every p > 0. Otherwise, if h(p, 0) ≤ hm(f) for some p > 0, then it would follow
from Lemma 5.2.2 that

h(p, 0) − pλu(p, 0) < hm(f) − pλu(m).

But this is impossible since νp,νν 0 is the equilibrium measure of pϕu. We also claim
that

du(p, 0) ≥ hm(f)/λu(m) (5.31)

for all sufficiently large p (see (5.10) for the definition of the function du). Oth-
erwise, Lemma 5.2.2 would guarantee the existence of p0 ∈ R and δ > 0 such
that

du(p, 0) + δ < hm(f)/λu(m)

for every p ≥ p0. It would then follow from (5.13) that hm(f) > h(p, 0) for all
sufficiently large p. But this contradicts (5.30), and hence (5.31) holds for all
sufficiently large p. It follows from (5.29)–(5.31) that

dimHνp,νν 0 = du(p, 0) + ds(p, 0) ≥ hm(f)

λu(m)
− h(p, 0)

λs(p, 0)
> d(m)

for all sufficiently large p. This contradicts (5.18), and hence (5.29) cannot occur.
Analogously one can show that it is impossible to have

λu(m) = λmax
u and λs(m) = λmax

s .

Therefore, property 1 holds.
To establish property 2 we consider an ergodic decomposition τ of the mea-

sure m, i.e., a probability Borel measure in the metrizable space M with τ(ME) = 1
such that ∫

M

∫∫ ∫

Λ

∫∫
ϕdν dτ(ν) =

∫

Λ

∫∫
ϕdm (5.32)

for every continuous function ϕ : Λ → R (see also Definition 13.1.2 below). Setting
ϕ = ϕu in (5.32) yields

λmin
u = λu(m) =

∫

M

∫∫
λu(ν) dτ(ν).

Since λu(ν) ≥ λmin
u for every ν ∈ M, there exists A1 ⊂ ME with τ(A1) = 1 such

that λu(ν) = λmin
u for every ν ∈ A1. Analogously, there exists A2 ⊂ ME with

τ(A2) = 1 such that λs(ν) = λmax
s for every ν ∈ A2. We conclude from (5.5) and

(5.18) that hν(f) ≤ hm(f) for every ν ∈ A1 ∩ A2. On the other hand, since

τ(A1 ∩ A2) = 1 and hm(f) =

∫

M

∫∫
hν(f) dτ(ν)

(see, for example, [45]), there exists A ⊂ A1∩A2 with τ(A) = 1 such that hν(f) =
hm(f) for every ν ∈ A. This completes the proof of the lemma. �
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By Lemmas 5.2.7–5.2.10, in each of the four cases there exists a measure
μ ∈ ME satisfying (5.20), namely each measure νp,qνν in Lemmas 5.2.7–5.2.9, and
each measure ν in statement 2 in Lemma 5.2.10. This completes the proof of the
theorem. �

See [164] for a related result of Wolf in the particular case of polynomial
automorphisms of C

2. It was shown by Rams in [127] that in general there exists
no unique ergodic invariant measure of maximal dimension, even in the case of
linear horseshoes (more precisely, it was shown in [127] that there exists a one-
parameter family of Bernoulli measures of maximal dimension). We refer to [23]
for further properties of the measures of maximal dimension.



Part II

Multifractal Analysis:
Core Theory



Chapter 6

Multifractal Analysis of
Equilibrium Measures

The objective of this chapter is to present the multifractal analysis of repellers
and hyperbolic sets of conformal maps. Multifractal analysis is a subarea of the
dimension theory of dynamical systems. Briefly speaking, it studies the complexity
of the level sets of invariant local quantities obtained from a dynamical system.
For example, we can consider Birkhoff averages, Lyapunov exponents, pointwise
dimensions, and local entropies. These functions are usually only measurable and
thus their level sets are rarely manifolds. Therefore, to measure the complexity of
these sets it is appropriate to use quantities such as the topological entropy or the
Hausdorff dimension.

6.1 Dimension spectrum for repellers

Let ν be a finite Borel measure in a metric space X , and let Y ⊂ X be the set
of points x ∈ X for which the pointwise dimension in (2.9) is well-defined. We
consider the level sets of the pointwise dimension, that is, the sets

Kα =

{
x ∈ Y : lim

r→0

log ν(B(x, r))

log r
= α

}
(6.1)

for each α ∈ [−∞, +∞], where B(x, r) ⊂ X is the ball of radius r centered at x.
These sets are pairwise disjoint and we obtain a multifractal decomposition of X
given by

X =
(
X \ Y ) ∪

⋃

α∈[−∞,+∞]

Kα. (6.2)

One way to measure the complexity of the sets Kα is to compute their Hausdorff
dimension.



82 Chapter 6. Multifractal Analysis of Equilibrium Measures

Definition 6.1.1. The dimension spectrum of the measure ν is the function

D = Dν : {α ∈ [−∞, +∞] : Kα 	=		 ∅} → R

defined by
D(α) = dimHKα.

Now let J be a repeller of a C1+ε transformation f , for some ε > 0 (see
Section 4.1 for the definition). We always assume in this section that f is conformal
and topologically mixing on J . Consider a Hölder continuous function¨ ψ : J → R

with P (ψ) = 0, where P denotes the topological pressure on J . We define a
function T : R → R by requiring that

P (−T (q) log ‖df‖ + qψ) = 0 (6.3)

for every q ∈ R. To verify that the function T is well-defined, we first observe that
the statement in Theorem 5.1.2 also holds for repellers, simply with Λ replaced
by J (we refer to [132] for details). In particular, the map Q : R2 → R defined by

Q(t, q) = P (−t log ‖df‖ + qψ) (6.4)

is analytic. Furthermore, by (5.6),

∂Q

∂t
(t, q) = −

∫

J

∫∫
log ‖df‖ dνt,q,

where νt,qνν is the unique equilibrium measure of −t log ‖df‖ + qψ. Proceeding as
in (4.7) and using (4.1) we obtain

∂Q

∂t
(t, q) ≤ − logβ < 0 for every t, q ∈ R.

It follows from the implicit function theorem that T is well-defined and analytic.
See Figure 6.1 for a typical graph of the function T .

The following result of Pesin and Weiss in [119] describes the dimension
spectrum D of a Gibbs measure in a repeller of a conformal map. See Figure 6.2
for a typical graph of the function D. Set

α(q) = −T ′(q)

and let (α, α) be the range of the function α(q). We also denote by μ the equilib-
rium measure of −(dimHJ) log ‖df‖ (this is the measure of maximal dimension;
see Theorem 4.1.8), and by νq the equilibrium measure of the function

−T (q) log ‖df‖ + qψ.

Notice that μ = ν0.
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q

T (q)

Figure 6.1: Typical graph of the function T

α

D(α)

Figure 6.2: Typical graph of the function D (in fact, for a generic potential, the
spectrum D is zero at the endpoints of its domain; see Theorem 7.6.1)
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Theorem 6.1.2 (Multifractal analysis of equilibrium measures). Let J be a repeller
of a C1+ε transformation f , for some ε > 0, such that f is conformal and topolog-
ically mixing on J . If ν is the equilibrium measure of a Hölder continuous functionH¨H
ψ : J → R with P (ψ) = 0, then:

1. the set Kα(q) is f -invariant and dense for every q ∈ R;

2. if ν = μ, then α = α = dimHJ and D is a delta function;

3. if ν 	=		 μ, then D : (α, α) → R is analytic and strictly convex;

4. D is the Legendre transform of T , that is, for each q ∈ R we have

D(α(q)) = T (q) + qα(q); (6.5)

5. for each q ∈ R we have νq(Kα(q)) = 1 and

lim
r→0

log νq(B(x, r))

log r
= T (q) + qα(q)

for νq-almost every x ∈ Kα(q).

Proof. Let R1, . . . , Rp be the elements of a Markov partition of J . Since νq is an
equilibrium measure of a Hölder continuous function it is a Gibbs measure and¨
there exist constants D1, D2 > 0 such that

D1 ≤ νq(Δi1···in
)

‖dxfn‖−T (q) exp
(
q
∑n−1

k=0 ψ(fkx)
) ≤ D2 (6.6)

for every n ∈ N and x ∈ Δi1···in
. On the other hand, taking derivatives with

respect to q in (6.3) we obtain

0 = T ′(q)
∂Q

∂t
(T (q), q) +

∂Q

∂q
(T (q), q),

and using (5.6),

0 = −T ′(q)

∫

J

∫∫
log ‖df‖ dνT (q),q +

∫

J

∫∫
ψ dνT (q),q.

Since νT (q),q = νq we obtain

α(q) = −T ′(q) = −
∫

J

∫∫
ψ dνq∫

J

∫∫
log ‖df‖ dνq

. (6.7)

For each q ∈ R set

JqJJ =

{
ω ∈ Σ+

A : − lim
n→∞

∑n−1
k=0 ψ(χ(σkω))

log ‖dχ(ω)fn‖ = α(q)

}
, (6.8)
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where the transition matrix A is obtained from the Markov partition as in (4.2).
Given δ > 0, for each ω ∈ JqJJ there exists r(ω) > 0 such that for r ∈ (0, r(ω)) we
have

α(q) − δ < −
∑n(ω,r)−1

k=0 ψ(χ(σkω))

log ‖dχ(ω)fn(ω,r)‖ < α(q) + δ. (6.9)

Now we consider appropriate Pesin sets. Namely, given l > 0 we define

Ql = {ω ∈ JqJJ : r(ω) ≥ 1/l}. (6.10)

Clearly,

Ql ⊂ Ql+1 and JqJJ =
⋃

l>0

Ql. (6.11)

Since νq is ergodic, it follows from (6.7) that νq(χ(JqJJ )) = 1, and thus there exists
l0 > 0 such that νq(χ(Ql)) > 0 for every l > l0. Now we construct a Moran cover of
χ(Ql) for l > l0. Given ω = (i1i2 · · · ) ∈ Ql and r ∈ (0, 1), we consider the unique
integer n = n(ω, r) satisfying (4.8). Then the sets Δ(ω, r) in (4.9) are pairwise
disjoint and form a cover of χ(Ql). Proceeding as in the proof of Theorem 4.1.7
we show that there exists a constant C > 0 (independent of r) such that each ball
B(x, r) ⊂ Rm intersects at most a number C of the sets Δ(ω, r).

Lemma 6.1.3. For νq-almost every x ∈ χ(JqJJ ) we have dνq
(x) ≥ T (q) + qα(q).

Proof of the lemma. Let Δ̃j = Δ(ωj , r), for j = 1, . . . , N(r), be the sets in the
Moran cover of χ(Ql), where ωj ∈ Ql for each j. Given r < 1/l it follows from (6.6)
and (6.9) that

νq(B(x, r) ∩ χ(Ql)) ≤
∑

Δ̃j∩B(x,r) �=�� ∅

νq(Δ(ωj , r))

≤ D2

∑

Δ̃j∩B(x,r) �=�� ∅

‖dχ(ωj)f
n(ωj ,r)‖−T (q)

× exp

(
q

n(ωj ,r)−1∑

k=0

ψ(fk(χ(ωj)))

)

≤ D2

∑

Δ̃j∩B(x,r) �=�� ∅

‖dχ(ωj)f
n(ωj ,r)‖−T (q)−q(α(q)−δ).

Using (4.8) we conclude that there exists C′ > 0 such that

νq(B(x, r) ∩ χ(Ql)) ≤ C′rT (q)+q(α(q)−δ) (6.12)

for every x ∈ J and r ∈ (0, 1/l). By the Borel density lemma (see, for example,
[59, Theorem 2.9.11]), for νq-almost every x ∈ χ(Ql) we have

lim
r→0

νq(B(x, r) ∩ χ(Ql))

νq(B(x, r))
= 1,
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and thus there exists ρ(x) > 0 such that for every r ∈ (0, ρ(x)),

νq(B(x, r)) ≤ 2νq(B(x, r) ∩ χ(Ql)).

Together with (6.12) this implies that for νq-almost every x ∈ χ(Ql),

dνq
(x) = lim inf

r→0

log νq(B(x, r))

log r

≥ lim inf
r→0

log νq(B(x, r) ∩ χ(Ql))

log r

≥ T (q) + q(α(q) − δ).

By (6.11) we conclude that

dνq
(x) ≥ T (q) + q(α(q) − δ)

for νq-almost every x ∈ χ(JqJJ ). Since δ is arbitrary this implies the desired result.
�

By Lemma 6.1.3 it follows from Theorem 2.1.5 that

dimHχ(JqJJ ) ≥ dimHνq ≥ T (q) + qα(q). (6.13)

Lemma 6.1.4. For every x ∈ χ(JqJJ ) we have dνq
(x) ≤ T (q) + qα(q).

Proof of the lemma. We continue to consider the Moran cover constructed above.
It follows from (4.12) that B(x, 2r) ⊃ Δ(ω, r) for every x = χ(ω) with ω ∈ Ql and
r ∈ (0, 1), provided that the diameter of the Markov partition is sufficiently small.
Hence, using (4.8), (6.6), and (6.9), for each x ∈ χ(Ql) and r < 1/l we obtain

νq(B(x, 2r)) ≥ νq(Δ(ω, r))

≥ D1‖dxfn(ω,r)‖−T (q) exp

(
q

n(ω,r)−1∑

k=0

ψ(fkx)

)

≥ D1‖dxfn(ω,r)‖−T (q)−q(α(q)+δ)

≥ DrT (q)+q(α(q)+δ) ,

for some constant D > 0 (independent of x and r). Therefore, for each x ∈ χ(Ql)
we have

dνq
(x) = lim sup

r→0

log νq(B(x, r))

log r
≤ T (q) + q(α(q) + δ).

By (6.11) and the arbitrariness of δ we obtain the desired result. �

By Lemma 6.1.4 it follows from Theorem 2.1.5 that

dimHχ(JqJJ ) ≤ T (q) + qα(q).
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Together with (6.13) this implies that

dimHχ(JqJJ ) = T (q) + qα(q). (6.14)

Furthermore, by Lemmas 6.1.3 and 6.1.4, for νq-almost every x ∈ χ(JqJJ ) we have

dνq
(x) = dνq

(x) = T (q) + qα(q). (6.15)

Now we establish a crucial property of the measure ν that allows us to transfer
the results at the level of symbolic dynamics to results for the repeller. Since ν
is the equilibrium measure of ψ it is a Gibbs measure and there exist constants
D1, D2 > 0 such that

D1 ≤ ν(Δi1···in
)

exp
∑n−1

k=0 ψ(fkx)
≤ D2 (6.16)

for every n ∈ N and x ∈ Δi1···in
.

Lemma 6.1.5. There exists C > 0 such that for every x ∈ J and r > 0 we have

ν(B(x, 2r)) ≤ Cν(B(x, r)).

Proof of the lemma. Given r > 0, we consider a Moran cover Δ̃1, . . . , Δ̃N(x,r) of

the ball B(x, 2r) by sets Δ̃j = Δ(ωj , r/2) as in (4.9) with ωj ∈ Σ+
A for each j.

Proceeding as in the proof of Theorem 4.1.7 we can show that there exists N > 0
such that N(x, r) ≤ N for every x ∈ J and r > 0. It follows from (6.16) that

ν(B(x, 2r)) ≤
N(x,r)∑

j=1

ν(Δ̃j)

≤ D2

N(x,r)∑

j=1

exp

n(ωj ,r/2)−1∑

k=0

ψ(fkχ(ωj)).

(6.17)

Since ψ is Holder continuous, proceeding in a¨ similar manner to that in (4.10)
and (4.11) we show that there exist constants D1, D2 > 0 such that

D1 ≤
∏n−1

k=0 exp ψ(fkx)
∏n−1

k=0 exp ψ(fky)
≤ D2 (6.18)

for every n ∈ N and x, y ∈ Δi1···in
. Furthermore, it follows easily from (4.11) and

the choice of n(ω, r) in (4.8) that there exists κ > 0 such that

|n(ω, r) − n(ω′, r)| ≤ κ

for every ω, ω′ ∈ Σ+
A with χ(ω′) ∈ Δ(ω, r) and r > 0. Together with (6.18) this

implies that there exist constants D′
1, D

′
2 > 0 (independent of x and r) such that

D′
1 ≤

∏n(ωj ,r/2)−1
k=0 exp ψ(fkχ(ωj))

∏n(ωl,r/2)−1
k=0 expψ(fkχ(ωl))

≤ D′
2 (6.19)
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for every j, l ∈ {1, . . . , N(x, r)} and r > 0. Now we observe that by (4.12) there
exists l such that Δ̃l ⊂ B(x, r). It follows from (6.17) and (6.19) that

ν(B(x, 2r)) ≤ D2N(x, r)D′
2 exp

n(ωl,r/2)−1∑

k=0

ψ(fkχ(ωl))

≤ D2ND′
2D

−1
1 ν(Δ̃l)

≤ D2ND′
2D

−1
1 ν(B(x, r)).

This completes the proof of the lemma. �

Lemma 6.1.6. We have χ(JqJJ ) = Kα(q).

Proof of the lemma. Let r ∈ (0, 1). Taking n = n(ω, r) as in (4.8) and proceeding
as in the proof of Theorem 4.1.7 (see (4.12) and (4.13)), we show that there exists
κ > 0 (independent of r) such that for each x = χ(ω) ∈ J there exists y ∈ Δ(ω, r)
for which

B(y, κr) ⊂ Δ(ω, r) ⊂ B(x, 2r). (6.20)

On the other hand, since diamΔ(ω, r) < r we have B(x, r) ⊂ B(y, 2r). Therefore,
by Lemma 6.1.5 and (6.20) we have

ν(Δ(ω, r)) ≤ ν(B(x, 2r)) ≤ Cν(B(x, r))

≤ Cν(B(y, 2r)) ≤ Cn+2ν(B(y, r2−n))

≤ Cn+2ν(B(y, κr)) ≤ Cn+2ν(Δ(ω, r)),

provided that n ∈ N is chosen so that 2−n < κ. This implies that if either of the
two limits

lim
r→0

log ν(Δ(ω, r))

log r
and lim

r→0

log ν(B(x, r))

log r
(6.21)

exists, then the other one also exists and has the same value. On the other hand,
by (6.16) and (4.8), if the first limit in (6.21) exists, then

lim
r→0

log ν(Δ(ω, r))

log r
= lim

r→0

∑n(ω,r)−1
k=0 ψ(fkx)

log r

= lim
r→0

∑n(ω,r)−1
k=0 ψ(χ(σkω))

− log ‖dχ(ω)fn(ω,r)‖ .

Therefore, by (6.8), ω ∈ JqJJ if and only if

lim
r→0

log ν(Δ(ω, r))

log r
= α(q),

and thus, by (6.21), ω ∈ JqJJ if and only if x ∈ Kα(q). In other words we have
Kα(q) = χ(JqJJ ). �
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By Lemma 6.1.6, the last two statements in Theorem 6.1.2 follow immediately
from (6.14) and (6.15).

For the third statement in the theorem recall that we have already shown
that T (q) and thus also that α(q) are analytic functions. We continue with an
auxiliary statement.

Lemma 6.1.7. We have T ′(q) ≤ 0 and T ′′(q) ≥ 0 for every q ∈ R. Furthermore,
T ′′(q) > 0 for every q ∈ R if and only if ν is not the equilibrium measure of
−(dimHJ) log ‖df‖.
Proof of the lemma. By (6.7) we have

T ′(q) =

∫
J

∫∫
ψ dνq∫

J

∫∫
log ‖df‖ dνq

. (6.22)

In view of (4.1) we obtain
∫

J

∫∫
log ‖df‖ dνq ≥ log β > 0.

Furthermore,

0 = P (ψ) ≥ hνq
(f) +

∫

J

∫∫
ψ dνq,

and ∫

J

∫∫
ψ dνq ≤ −hνq

(f) < 0.

It follows from (6.22) that T ′(q) < 0 for every q ∈ R. On the other hand, using
the function Q in (6.4) we obtain

T ′(q) = −∂Q/∂q

∂Q/∂t

and thus,

T ′′(q) = −T ′(q)2∂2Q/∂t2 + 2T ′(q)∂2Q/∂q∂t + ∂2Q/∂q2

∂Q/∂t
, (6.23)

where all partial derivatives are computed at the point (T (q), q). Now we use
the formula for the second derivative of the topological pressure given by Ruelle
in [132]. Namely,

∂2P (ϕ + t1ϕ1 + t2ϕ2)

∂t1∂t2

∣∣∣∣∣∣∣∣∣∣
t1=t2=0

= Bϕ(ϕ1, ϕ2), (6.24)

where Bϕ is the bilinear form in Cε(J) given by

Bϕ(ϕ1, ϕ2) =

∞∑

k=0

(∫

J

∫∫
ϕ1(ϕ2 ◦ fk) dνϕ −

∫

J

∫∫
ϕ1 dνϕ

∫

J

∫∫
ϕ2 dνϕ

)
, (6.25)
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where νϕ is the equilibrium measure of ϕ. It is also shown in [132] that Bϕ(ψ, ψ) ≥
0, and that Bϕ(ψ, ψ) > 0 if and only if ψ is not cohomologous to a constant. It
follows from (6.25) that

∂2Q

∂t2
(T (q), q) = Bϕq

(log ‖df‖, log ‖df‖),

∂2Q

∂q2
(T (q), q) = Bϕq

(ψ, ψ),

∂2Q

∂q∂t
(T (q), q) = −Bϕq

(ψ, log ‖df‖),

where
ϕq = −T (q) log ‖df‖ + qψ.

Therefore, by (6.23) we obtain

T ′′(q) =
Bϕq

(ψ − T ′(q) log ‖df‖, ψ − T ′(q) log ‖df‖)∫
J

∫∫
log ‖df‖ dνq

.

This shows that T ′′(q) ≥ 0. Furthermore, T ′′(q) > 0 if and only if the function
ψ − T ′(q) log ‖df‖ is not cohomologous to a constant.

When u = log ‖df‖ is cohomologous to a constant we have T ′′(q) > 0 for
every q ∈ R if and only if ψ is not cohomologous to a constant, and thus if and
only if ψ is not cohomologous to −su, where s = dimHJ .

Now we assume that u is not cohomologous to a constant. When ψ is coho-
mologous to −su we have ν = μ = ν0, and by (6.22),

T ′(0) =

∫
J

∫∫
ψ dν0∫

J

∫∫
u dν0

=

∫
J

∫∫
ψ dν∫

J

∫∫
u dν

.

Since

0 = P (ψ) = hν(f) +

∫

J

∫∫
ψ dν,

we obtain

T ′(0) = − hν(f)∫
J

∫∫
u dν

= − hμ(f)∫
J

∫∫
u dμ

,

and it follows from

0 = P (−su) = hμ(f) − s

∫

J

∫∫
u dμ

that T ′(0) = −s. Therefore, ψ − T ′(0)u = ψ + su is cohomologous to a constant,
and T ′′(0) = 0. Conversely, assume that T ′′(q) = 0 for some q ∈ R. Then ψ−T ′(q)u
is cohomologous to a constant, say c ∈ R. Integrating with respect to the measure
νq we obtain ∫

J

∫∫
ψ dνq − T ′(q)

∫

J

∫∫
u dνq = c,
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and it follows from (6.22) that c = 0. That is, ψ and T ′(q)u are cohomologous,
and hence

P (T ′(q)u) = P (ψ) = 0.

This implies that T ′(q) = −s, and ψ is cohomologous to −su.
We have thus shown that T ′′(q) > 0 for every q ∈ R if and only if ψ is not

cohomologous to −su, that is, if and only if ν 	=		 μ. �

It follows from (6.5) that

D
′(α(q))α′(q) = T ′(q) + α(q) + qα′(q) = qα′(q),

and hence, D′(α(q)) = q. Taking derivatives we obtain

D
′′(α(q))α′(q) = 1,

and by Lemma 6.1.7, we conclude that

D
′′(α(q)) = − 1

T ′′(q)
< 0 for every q ∈ R (6.26)

if and only if ν is not the equilibrium measure of −(dimHJ) log ‖df‖. This estab-
lishes the strict convexity of the function D in statement 3 in the theorem. The
analyticity of D can be obtained directly from the formula D′(α(q)) = q by invert-
ing the analytic function q �→ α(q) (recall that α′(q) = −T ′′(q) < 0 and thus α is
strictly decreasing). This establishes the analyticity of D′ and thus also of D.

For the second statement in the theorem we note that if ν = μ, then by
Theorem 4.1.8 there exist constants D1, D2 > 0 such that

D1 <
ν(B(x, r))

rdimHJ
< D2

for every x ∈ J and every sufficiently small r > 0. Therefore,

lim
r→0

log ν(B(x, r))

log r
= dimHJ

for every x ∈ J . In particular, α = α = dimHJ and D is a delta function.
Finally, the first statement in the theorem follows easily from the fact that

at the level of symbolic dynamics the limit in (6.8) only depends on the future.
More precisely, it follows from (4.4) that

χ ◦ σk = fk ◦ χ

for every k ∈ N, where χ is the coding map in (4.3). We thus obtain

∑n−1
k=0 ψ(χ(σkω))

− log ‖dχ(ω)fn‖ =

∑n−1
k=0 ψ(fkx)

− log ‖dxfn‖ ,
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where x = χ(ω). Therefore, if x ∈ Kα, then y = χ(ω′) ∈ Kα for every ω′ in the
set

K =
{
ω′ ∈ Σ+

A : σnω′ = ω for some n ∈ N
}
.

We note that K is dense in Σ+
A (recall that Am > 0 for some m ∈ N, since f is

topologically mixing on J), and the same happens with χ(K). Since χ(K) ⊂ Kα

we conclude that Kα is dense. This completes the proof of the theorem. �

Statement 1 in Theorem 6.1.2 was observed by Barreira and Schmeling in [21].
In [142], Schmeling showed that the domain of D coincides with [α, α], i.e., that
Kα 	=		 ∅ if and only if α ∈ [α, α] (see Theorem 7.4.1). One can also show that

α = inf
τ∈ME

−
∫

J

∫∫
ψ dτ∫

J

∫∫
log ‖df‖ dτ

and α = sup
τ∈ME

−
∫

J

∫∫
ψ dτ∫

J

∫∫
log ‖df‖ dτ

,

where ME is the family of all ergodic f -invariant probability Borel measures
in J (see Theorem 7.4.1). Furthermore, the maximum of the function D is equal
to dimHJ (see Figure 6.2).

Theorem 6.1.2 reveals an enormous complexity of multifractal decomposi-
tions. In particular, it shows that the decomposition in (6.2) is composed of an
uncountable number of pairwise disjoint invariant sets, each of them dense and
with positive Hausdorff dimension. We will see in Section 8.1 that the set X \ Y
in (6.2) is also very complex: even though it has zero measure with respect to
any finite invariant measure (this is a simple consequence of Birkhoff’s ergodic
theorem), we will see that it has full Hausdorff dimension (see Section 8.5).

In [4], Barreira and Gelfert considered repellers of nonconformal transforma-
tions satisfying a certain cone condition, and obtained a version of multifractal
analysis for the topological entropy of the level sets of the Lyapunov exponents.
We note that due to the nonconformality, one cannot use Birkhoff’s ergodic the-
orem neither Gibbs measures. Related works are due to Feng and Lau [62] and
Feng [60, 61], with a study of products of nonnegative matrices and their ther-
modynamic properties, and to Barreira and Radu [12], with lower bounds for the
dimension spectra for a class of repellers of nonconformal transformations.

We mention briefly a few directions of research concerning nonuniformly hy-
perbolic systems and countable topological Markov chains. For finite topological
Markov chains the dimension and entropy spectra of an equilibrium measure of a
Holder continuous function (see Section 7.1) has bounded domain and is analytic.¨
In strong contrast, in the case of nonuniformly hyperbolic systems and count-
able topological Markov chains the spectrum may have unbounded domain and
need not be analytic. In [123], Pollicott and Weiss presented a multifractal anal-
ysis of the Lyapunov exponent for the Gauss map and the Manneville–Pomeau
transformation. Related results were obtained by Yuri in [166]. In [97, 98, 99],
Mauldin and Urbanski developed the theory of infinite conformal iterated func-´
tion systems, studying in particular the Hausdorff dimension of the limit set (see
also [69]). Related results were obtained by Nakaishi in [103]. In [88], Kesseböhmer¨
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and Stratmann established a detailed multifractal analysis for Stern–Brocot inter-
vals, continued fractions, and certain Diophantine growth rates, building on their
former work [87]. In [79], Iommi obtained a detailed multifractal analysis for count-
able topological Markov chains, using the so-called Gurevich pressure introduced
by Sarig in [135] (building on former work of Gurevich [66] on the notion of topolog-
ical entropy for countable Markov chains). In [5], Barreira and Iommi considered
the case of suspension flows over a countable topological Markov chain, build-
ing also on work of Savchenko [139] on the notion of topological entropy. In [80],
Iommi and Skorulski studied the multifractal analysis of conformal measures for
the exponential family z �→ λez with λ ∈ (0, 1/e) (we note that in this setting the
Julia set is not compact and that the dynamics is not Markov on the Julia set).
They use a construction described by Urbanski and Zdunik in [157].´

6.2 Dimension spectrum for hyperbolic sets

Now let f be a C1+ε diffeomorphism, for some ε > 0, and let Λ be a locally
maximal hyperbolic of f . We always assume in this section that f is conformal
and topologically mixing on Λ (see Definition 4.3.1).

Consider a Hölder continuous function¨ ψ : Λ → R with P (ψ) = 0, where
P denotes the topological pressure on Λ. We define functions TsTT : Λ → R and
TuTT : Λ → R by requiring that

P (TsTT (q) log ‖df |Es‖ + qψ) = 0

and
P (−TuTT (q) log ‖df |Eu‖ + qψ) = 0

for every q ∈ R. Proceeding in a similar manner to that in Section 6.1 we can
easily verify that the functions TsTT and TuTT are well-defined and analytic. We set

T (q) = TsTT (q) + TuTT (q) and α(q) = −T ′(q).

We also denote by (α, α) the range of α(q).
Consider a Markov partition of Λ and the associated transition matrix A with

entries given by (4.2). Given q ∈ R we construct a measure νq in each rectangle of
the Markov partition as follows. By Proposition 4.2.11 there exist functions

ϕs
q : Σ−

A → R and ϕu
q : Σ+

A → R

such that ϕs
q ◦ π− and ϕu

q ◦ π+ are cohomologous respectively to the functions

(
TsTT (q) log ‖df |Es‖ + qψ

)
◦ χ and

(
− TuTT (q) log ‖df |Eu‖ + qψ

)
◦ χ,

where χ is the coding map in (4.25), and where π− and π+ are the projections
defined by (4.32). Moreover, let μs

q be the equilibrium measure of ϕs
q in Σ−

A (with
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respect to σ−), and let μu
q be the equilibrium measure of ϕu

q in Σ+
A (with respect

to σ+). Given x ∈ Λ we consider a rectangle R(x) of the Markov partition con-
taining x. We have R(x) = χ(CiCC 0 ) where x = χ(· · · i0 · · · ). We also consider the
measures

νs
q = χ∗(μ

s
q|C−

iC
0
) in As(x),

and

νu
q = χ∗(μ

u
q |C+

iC
0
) in Au(x),

with As(x) and Au(x) as in (4.35). Finally, we define a measure νq in the rectangle
R(x) = [As(x), Au(x)] by

νq = νs
q × νu

q .

The following result of Pesin and Weiss in [120] (see also [115] for a related
discussion) describes the dimension spectrum D of the equilibrium measure of the
function ψ.

Theorem 6.2.1 (Multifractal analysis of equilibrium measures). Let Λ be a locally
maximal hyperbolic set of a C1+ε diffeomorphism f , for some ε > 0, such that f
is conformal and topologically mixing on Λ. If ν is the equilibrium measure of a
Holder continuous function¨ ψ : Λ → R with P (ψ) = 0, then:

1. if dimHν = dimHΛ, then α = α = dimHΛ and D is a delta function;

2. if dimHν 	= dim		 HΛ, then D : (α, α) → R is analytic and strictly convex;

3. D is the Legendre transform of T , that is, for each q ∈ R we have

D(α(q)) = T (q) + qα(q);

4. for each q ∈ R we have νq(Kα(q)) = 1 and

lim
r→0

log νq(B(x, r))

log r
= T (q) + qα(q)

for νq-almost every x ∈ Kα(q).

Proof. With some appropriate modifications the proof follows closely the argu-
ments in the proof of Theorem 6.1.2 in the case of repellers. Let R1, . . . , Rp be the
elements of a Markov partition of Λ. By Proposition 4.2.11 there exist functions
ψs, ds : Σ−

A → R and ψu, su : Σ+
A → R such that:

1. ψ ◦ χ, ψs ◦ π−, and ψu ◦ π+ are cohomologous;

2. log ‖df−1|Es‖ ◦ χ and ds ◦ π− are cohomologous;

3. log ‖df |Eu‖ ◦ χ and du ◦ π+ are cohomologous.
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Given ω ∈ ΣA and r ∈ (0, 1), we consider the unique integers n = n(ω, r) and
m = m(ω, r) such that

‖dxf−n|Es(x)‖−1 < r ≤ ‖dxf−(n−1)|Es(x)‖−1 (6.27)

and

‖dxfm|Eu(x)‖−1 < r ≤ ‖dxfm−1|Eu(x)‖−1, (6.28)

where x = χ(ω). For each q ∈ R, let JqJJ be the set of points ω ∈ ΣA such that

− lim
r→0

(∑n(ω,r)−1
k=0 ψs(σkω−)

∑n(ω,r)−1
k=0 ds(σkω−)

+

∑m(ω,r)−1
k=0 ψu(σkω+)

∑m(ω,r)−1
k=0 du(σkω+)

)
= α(q),

where ω− = π−ω and ω+ = π+ω (see (4.32) for the definition of π− and π+).
By (4.33), we have

PΣPP −

A
(−TsTT (q)ds + qψs) = PΣPP +

A
(−TuTT (q)du + qψu) = 0.

Therefore,

0 = −T ′
sTT (q)

∫

Σ

∫∫

−

A

ds dμs
q +

∫

Σ

∫∫

−

A

ψs dμs
q,

and

0 = −T ′
uTT (q)

∫

Σ

∫∫

+
A

du dμu
q +

∫

Σ

∫∫

+
A

ψu dμu
q .

We thus obtain

αs(q) := −T ′
sT (q) = −

∫
Σ

∫∫
−

A

ψs dμs
q∫

Σ

∫∫
−

A

ds dμs
q

and

αu(q) := −T ′
uTT (q) = −

∫
Σ

∫∫
+
A

ψu dμu
q∫

Σ

∫∫
+
A

du dμu
q

.

Since the measures μs
q and μu

q are ergodic, by Birkhoff’s ergodic theorem for μs
q-

almost every ω− ∈ Σ−
A we have

lim
n→∞

−
∑n−1

k=0 ψs(σkω−)
∑n−1

k=0 ds(σkω−)
= αs(q),

and for μu
q -almost every ω+ ∈ Σ+

A we have

lim
m→∞

−
∑m−1

k=0 ψu(σkω+)
∑m−1

k=0 du(σkω+)
= αu(q).
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Therefore, given δ > 0 and ω ∈ ΣA there exists r(ω) > 0 such that for r ∈ (0, r(ω))
we have

αs(q) − δ < −
∑n(ω,r)−1

k=0 ψs(σkω−)
∑n(ω,r)−1

k=0 ds(σkω−)
< αs(q) + δ, (6.29)

and

αu(q) − δ < −
∑m(ω,r)−1

k=0 ψu(σkω+)
∑m(ω,r)−1

k=0 du(σkω+)
< αu(q) + δ, (6.30)

where again ω− = π−ω and ω+ = π+ω. Now we consider appropriate Pesin sets.
Namely, given l > 0 we consider the sets Ql in (6.10). Clearly, (6.11) holds.

Now we observe that since μs
q and μu

q are equilibrium measures of Hölder¨
continuous functions they are Gibbs measures. That is, there exist constants
D1, D2 > 0 such that for every n, m ∈ N and ω = (· · · i−1i0i1 · · · ) ∈ ΣA we
have

D1 ≤
μs

q(C
−
iC
−n···i0

)

exp
(
−TsTT (q)

∑n−1
k=0 ds(σkω−) + q

∑n−1
k=0 ψs(σkω−)

) ≤ D2 (6.31)

and

D1 ≤
μu

q (C+
iC
0···im

)

exp
(
−TuTT (q)

∑m−1
k=0 du(σkω+) + q

∑m−1
k=0 ψu(σkω+)

) ≤ D2. (6.32)

Repeating arguments in the proof of Lemma 6.1.3 we show that

dνs
q
(y) ≥ TsTT (q) + q(αs(q) − δ)

for νs
q -almost every y ∈ As(x) ∩ χ(Ql), and

dνu
q
(z) ≥ TuTT (q) + q(αu(q) − δ)

for νu
q -almost every z ∈ Au(x)∩χ(Ql) (see (4.35) for the definition of the sets As(x)

and Au(x)). It follows from (6.11) and the arbitrariness of δ that

dνs
q
(y) ≥ TsTT (q) + qαs(q)

for νs
q -almost every y ∈ As(x) ∩ χ(JqJJ ), and

dνu
q
(z) ≥ TuTT (q) + qαu(q)

for νu
q -almost every z ∈ Au(x) ∩ χ(JqJJ ). Since νq = νs

q × νu
q it follows from Propo-

sition 4.2.13 that

dνq
(x) = lim inf

r→0

log νq(B(x, r))

log r

≥ dνs
q
(x) + dνu

q
(x) ≥ T (q) + qα(q)

(6.33)
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for νq-almost every x ∈ χ(JqJJ ). By Theorem 2.1.5 and (6.33) we obtain

dimHχ(JqJJ ) ≥ T (q) + qα(q). (6.34)

On the other hand, it follows from the choice of n and m in (6.27) and (6.28)
that there exists a constant K > 0 such that for every x = χ(ω) ∈ Λ and r ∈ (0, 1)
we have

Δ(ω, r) :=

m(ω,r)⋃

j=−n(ω,r)

f−kRij
⊂ B(x, Kr). (6.35)

It follows from (6.31) and (6.32) that for every x = χ(ω) with ω ∈ Ql, and r < 1/l,
setting n = n(ω, r) and m = m(ω, r) we have

νq(B(x,Kr)) ≥ νq(Δ(ω, r)) = μs
q(C

−
iC
0···in

)μu
q (C+

iC
0···im

)

≥ D2
1 exp

(
−TsTT (q)

n−1∑

k=0

ds(σkω−) + q

n−1∑

k=0

ψs(σkω−)

)

× exp

(
−TuTT (q)

m−1∑

k=0

du(σkω+) + q

m−1∑

k=0

ψu(σkω+)

)

= D2
1 exp

(
−TsTT (q) log ‖dxf−n|Es(x)‖ + q

n−1∑

k=0

ψ(f−kx)

)

× exp

(
−TuTT (q) log ‖dxfm|Eu(x)‖ + q

m−1∑

k=0

ψ(fkx)

)
.

Therefore, by (6.27), (6.28), (6.29), and (6.30) we obtain

dνq
(x) = lim sup

r→0

log νq(B(x, r))

log r

≤ TsTT (q) lim sup
r→0

− log ‖dxf−n(ω,r)|Es(x)‖
log r

+ TuTT (q) lim sup
r→0

− log ‖dxfm(ω,r)|Eu(x)‖
log r

+ lim sup
r→0

q
∑m(ω,r)−1

k=−(n(ω,r)−1) ψ(fkx)

log r

≤ TsTT (q) + TuTT (q) + q(αs(q) + 2δ)

for every x ∈ χ(Ql). It follows from (6.11) and the arbitrariness of δ that

dνq
(x) ≤ T (q) + qα(q). (6.36)

By Theorem 2.1.5 it follows from (6.36) that

dimHχ(JqJJ ) ≤ T (q) + qα(q).
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Together with (6.34) this implies that

dimHχ(JqJJ ) = T (q) + qα(q). (6.37)

We want to show that χ(JqJJ ) = Kα(q). For this we first establish a version of
Lemma 6.1.5 for the measure ν.

Lemma 6.2.2. Given γ > 1, there exists K > 0 such that for every y ∈ R(x) and
every sufficiently small r > 0 we have

ν(B(y, γr)) ≤ Kν(B(y, r)).

Proof of the lemma. For ν-almost every y ∈ Λ, let νs
y and νu

y be respectively the
conditional measures of ν in As(x) and Au(x) (see Section 4.2.3). Modifying in a
straightforward manner the arguments in the proof of Lemma 6.1.5, we show that
there exists C > 0 such that for every y ∈ Λ and every sufficiently small r > 0 we
have

νu
y (Bu(y, 2r)) ≤ Cνu

y (Bu(y, r)) and νs
y(Bs(y, 2r)) ≤ Cνs

y(Bs(y, r)), (6.38)

where Bu(y, r) and Bs(y, r) are the open balls centered at y of radius r with respect
to the distances induced respectively on the local unstable and stable manifolds
V u(y) and V s(y). Now we observe that given γ > 1 there exists κ > 1 such that

Λ ∩ B(y, γr) ⊂
[
Λ ∩ Bs(y, κr), Λ ∩ Bu(y, κr)

]
(6.39)

and [
Λ ∩ Bs(y, r/κ), Λ ∩ Bu(y, r/κ)

]
⊂ Λ ∩ B(y, r) (6.40)

for every y ∈ Λ and every sufficiently small r > 0. It follows from (6.39) and
Proposition 4.2.13 that for some constant c > 0 (independent of y and r) we have

ν(B(y, γr)) ≤ cνu
y (Bu(y, κr))νs

y(Bs(y, κr)).

Applying (6.38) a number n of times such that κ2−n < 1/κ, we obtain

ν(B(y, γr)) ≤ C2nνu
y (Bu(y, r/κ))νs

y(Bs(y, r/κ)).

It follows from (6.40) and Proposition 4.2.13 that for some constant ¯ > 0 (inde-
pendent of y and r) we have

ν(B(y, γr)) ≤ cC¯ 2nν(B(y, r)),

and the desired inequality holds with K = cC¯ 2n. �

Lemma 6.2.3. We have χ(JqJJ ) = Kα(q).
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Proof of the lemma. Let r ∈ (0, 1). Taking n = n(ω, r) and m = m(ω, r) as
in (6.27) and (6.28), and proceeding in a similar manner to that in the proof
of Theorem 4.1.7, we show that there exists κ > 0 (independent of r) such that
for each x = χ(ω) ∈ Λ there exists y ∈ Δ(ω, r) (see (6.35) for the definition) for
which

B(y, κr) ⊂ Δ(ω, r) ⊂ B(x, Kr).

On the other hand, since diamΔ(ω, r) < dr for some constant d > 0 (independent
of ω and r), we have B(x, r) ⊂ B(y, d̄r) for some constant d̄ > 0 (independent of x
and r). Using Lemma 6.2.2, we can repeat arguments in the proof of Lemma 6.1.6
to show that if either of the two limits

lim
r→0

log ν(Δ(ω, r))

log r
and lim

r→0

log ν(B(x, r))

log r
(6.41)

exists, then the other one also exists and has the same value. On the other hand,
since ν is the equilibrium measure of ψ and P (ψ) = 0, if the first limit exists then

a := lim
r→0

log ν(Δ(ω, r))

log r
= lim

r→0

∑m(ω,r)−1
k=−(n(ω,r)−1) ψ(fkx)

log r
.

It follows from (6.27) and (6.28) that x = χ(ω) ∈ χ(JqJJ ) if and only if

a = lim
r→0

(∑n(ω,r)−1
k=0 ψ(f−kx)

log r
+

∑m(ω,r)−1
k=0 ψ(fkx)

log r

)

= lim
r→0

( ∑n(ω,r)−1
k=0 ψ(f−kx)

− log ‖dxf−n(ω,r)|Es(x)‖ +

∑m(ω,r)−1
k=0 ψ(fkx)

− log ‖dxfm(ω,r)|Eu(x)‖

)
= α(q).

That is, x ∈ χ(JqJJ ) if and only if the second limit in (6.41) is equal to Kα(q). �

The two last statements in Theorem 6.2.1 follow readily from Lemma 6.2.3
together with (6.33), (6.36), and (6.37). The two first statements in the theo-
rem can be obtained by modifying arguments in the proof of Theorem 6.1.2. In
particular, we can show that

T ′′(q) = T ′′
sT (q) + T ′′

uTT (q) ≥ 0.

If dimHν 	= dim		 HΛ, then by the discussion after Definition 5.1.3 the functions

ψs = ts log ‖df |Es‖ and ψu = −tu log ‖df |Eu‖

are not cohomologous. In particular, either ψ is not cohomologous to ψs or ψ
is not cohomologous to ψu (or to both). Repeating arguments in the proof of
Lemma 6.1.7 we show that either T ′′

sTT (q) > 0 for every q ∈ R or T ′′
uTT (q) > 0 for

every q ∈ R. Therefore, if dimHν 	= dim		 HΛ then T ′′(q) > 0 for every q ∈ R, and
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it follows from (6.26) that the function D is strictly convex. The analyticity of D

can be obtained as in the proof of Theorem 6.1.2.
Finally, when dimHν = dimHΛ, again by the discussion after Definition 5.1.3,

ν is simultaneously the equilibrium measure of ψs and ψu. Therefore, there exist
constants D1, D2 > 0 such that

D1 ≤ ν(Δ(ω, r))

‖dxf−n(ω,r)|Es(x)‖−ts‖dxfm(ω,r)|Eu(x)‖−tu
≤ D2

for every x = χ(ω) ∈ Λ and r ∈ (0, 1). Hence, by (6.27) and (6.28) we obtain

lim
r→0

log ν(Δ(ω, r))

log r
= ts + tu

for every ω ∈ ΣA. It follows from Theorem 4.3.2 and the equality between the
limits in (6.41) that

dν(x) = ts + tu = dimHΛ

for every x ∈ Λ, and thus α = α = dimHΛ. �

Statement 3 in Theorem 6.2.1 was first established by Simpelaere in [150]. In
the case of hyperbolic flows appropriate versions of Theorem 6.2.1 were obtained
by Pesin and Sadovskaya in [117] and by Barreira and Saussol in [14] (in the case
of entropy spectra; see Section 7.1), using the symbolic dynamics developed by
Bowen [36] and Ratner [129].



Chapter 7

General Concept of Multifractal
Analysis

The concept of multifractal analysis, that was studied for repellers and hyperbolic
sets in the former chapter, can be extended to other classes of dynamical systems
and other invariant local quantities, besides the pointwise dimension considered
in (6.1). With the purpose of unifying the theory, in [9] Barreira, Pesin and Schmel-
ing proposed a general concept of multifractal analysis that we describe in this
chapter. In particular, this provides many spectra that can be seen as potential
multifractal moduli, in the sense that they may contain nontrivial information
about the dynamical system. In particular, we describe in detail the multifractal
analysis of the so-called u-dimension, which allows us to unify and generalize the
results in Chapter 6.

7.1 General concept and basic notions

Consider a function g : Y → [−∞, +∞] in a subset Y of the space X . The level
sets

Kg
α = {x ∈ Y : g(x) = α}

are pairwise disjoint, and in a similar manner to that in (6.2) we obtain a multi-
fractal decomposition of X given by

X = (X \ Y ) ∪
⋃

α∈[−∞,+∞]

Kg
α. (7.1)

Now let G be a function defined in the set of subsets of X .

Definition 7.1.1. The multifractal spectrum F : [−∞, +∞] → R of the pair (g, G)
is defined by

F(α) = G(Kg
α).
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When X is a smooth manifold and g is differentiable, each level set Kg
α is a

hypersurface for all values of α that are not critical values of g. But in the theory
of multifractal analysis we are mostly interested in studying the level sets of func-
tions that are not differentiable, which naturally occur in ergodic theory. In fact,
functions such as Birkhoff averages, Lyapunov exponents, pointwise dimensions,
and local entropies are typically only measurable.

Now we describe some of the functions g and G that naturally occur in the
theory of dynamical systems. Let X be a compact metric space and let f : X → X
be a continuous function. We define functions GD and GE by

GD(Z) = dimHZ and GE(Z) = h(f |Z),

obtained from the Hausdorff dimension and the topological entropy (here we are
using the notion of topological entropy for arbitrary subsets of a compact space,
introduced by Bowen in [37]; see Section 7.2).

Definition 7.1.2. We call the multifractal spectra generated by GD and GE re-
spectively dimension spectra and entropy spectra.

Let μ be a finite Borel measure in X , and let Y ⊂ X be the set of points
x ∈ X for which the pointwise dimension

gD(x) = gD,μ(x) = lim
r→0

log μ(B(x, r))

log r

is well-defined. We obtain two multifractal spectra

DD = DD,μ and DE = DE,μ

generated respectively by the pairs (gD, GD) and (gD, GE). The spectrum DD = D

was already considered in Sections 6.1 and 6.2. We observe that for C1+ε diffeo-
morphisms and hyperbolic invariant measures, Theorem 14.3.4 below ensures that
μ(X \ Y ) = 0.

Now let f : X → X be a measurable transformation preserving a probability
measure μ in X . Given a partition ξ of X into measurable subsets, for each n ∈ N

we define a new partition of X by ξn =
∨n−1

k=0 f−kξ. Let Y ⊂ X be the set of
points x ∈ X for which the local entropy

gE(x) = gE,μ(x) = lim
n→∞

− 1

n
log μ(ξn(x))

is well-defined, where ξn(x) denotes the element of ξn containing x (which is well-
defined for μ-almost every x ∈ X). We obtain two multifractal spectra

ED = ED,μ and EE = EE,μ

generated respectively by the pairs (gE , GD) and (gE , GE). It follows readily from
Shannon–McMillan–Breiman’s theorem (see, for example, [84]) that μ(X \Y ) = 0.
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Moreover, if ξ is a generating partition and μ is ergodic, then gE(x) = hμ(f) for
μ-almost every x ∈ X .

For repellers and hyperbolic sets of C1+ε conformal maps, Pesin and Weiss
obtained in [119, 120] a multifractal analysis of the spectrum DD (see Theo-
rems 6.1.2 and 6.2.1). Barreira, Pesin and Schmeling, building on results in [119],
obtained in [9] a multifractal analysis of the spectrum EE for repellers of C1+ε

expanding maps that are not necessarily conformal. In [153], Takens and Verbit-
ski obtained a multifractal analysis of the spectrum EE for expansive homeomor-
phisms with specification and equilibrium measures of a certain class of continuous
functions (we note that these systems need not have Markov partitions).

We note that the spectra DD and EE are of different nature from the spectra
DE and ED. Namely, the first two relate local quantities—the pointwise dimension
and the local entropy—with global quantities that are naturally associated to
them—respectively the Hausdorff dimension and the topological entropy. This is
not the case of the spectra DE and ED that put together quite different local and
global quantities. Because of this we refer to them as mixed spectra. We describe
their multifractal properties in Section 9.4.

We can also consider multifractal spectra defined by the Lyapunov exponents.
Here we mention only a particular case, that essentially corresponds to considering
only the top Lyapunov exponent. This particular case is well-adapted to the study
of conformal dynamics. Let X be a smooth manifold and let f : X → X be a C1

map. Consider the set Y ⊂ X of points x ∈ X for which the limit

gL(x) = lim
n→+∞

1

n
log ‖dxfn‖

exists. We obtain two multifractal spectra LD and LE generated respectively by
the pairs (gL, GD) and (gL, GE). By Theorem 14.2.3 below (or by Kingman’s
subadditive ergodic theorem), if μ is an f -invariant probability Borel measure
in X , then μ(X \ Y ) = 0. When the Lyapunov exponent takes more than one
value at each point the study of the associated multifractal spectra becomes much
more complicated.

7.2 The notion of u-dimension

We first recall the notion of topological pressure for arbitrary subsets of a compact
metric space. It was introduced by Pesin and Pitskel in [116] as a Carathéodory´
characteristic. We note that the level sets of the pointwise dimension and of the
local entropy are often noncompact. In fact, in some appropriate sense this is the
generic situation. For example, under the hypotheses of Theorem 6.1.2 the level
sets Kα are all noncompact if and only if ν is not the measure of maximal dimen-
sion μ in Theorem 4.1.8, that is, if and only if the function ψ is not cohomologous
to −(dimHJ) log ‖df‖ (see also Theorem 8.4.2).
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Let f : X → X be a continuous transformation of a compact metric space,
and let U be a finite open cover of X . Using the notation in Section 3.3.1, we say
that the collection Γ ⊂ ⋃

n≥1 Wn(U) covers the set Z ⊂ X provided that

⋃

U∈Γ

X(U) ⊃ Z.

Consider a continuous function ϕ : X → R. Given U ∈ Wn(U) we define

ϕ(U) =

{
supX(U)

∑n−1
k=0 ϕ ◦ fk if X(U) 	=		 ∅

−∞ if X(U) = ∅
. (7.2)

For each Z ⊂ X and α ∈ R we set

M(Z, α, ϕ, U) = lim
n→∞

inf
Γ

∑

U∈Γ

exp(−αm(U) + ϕ(U)),

where the infimum is taken over all finite or countable collections Γ ⊂ ⋃
k≥n Wk(U)

covering Z. Denoting by diamU the diameter of the cover U, one can easily show
that

PZP (ϕ) := lim
diam U→0

inf{α ∈ R : M(Z, α, ϕ, U) = 0}

is well-defined.

Definition 7.2.1. The number PZP (ϕ) is called the topological pressure of ϕ in the
set Z ⊂ X (with respect to f).

We emphasize that Z need not be compact nor f -invariant. When Z = X the
number PXP (ϕ) coincides with the topological pressure for compact sets introduced
by Ruelle in [131] in the case of expansive maps, and by Walters in [161] in the
general case. When ϕ = 0, the number

h(f |Z) := PZP (0) = lim
diam U→0

inf

{
α ∈ R : lim

n→∞
inf
Γ

∑

U∈Γ

exp(−αm(U)) = 0

}
,

(7.3)
where the infimum in Γ is taken over all finite or countable collections Γ ⊂⋃

k≥n Wk(U) covering Z, is called the topological entropy of f in the set Z (with
respect to f). It was introduced by Pesin and Pitskel in [116], and coincides with
the notion of topological entropy for noncompact sets introduced earlier by Bowen
in [37]. Again we emphasize that the set Z need not be compact nor f -invariant.
When Z = X we recover the notion of topological entropy in Definition 2.3.2.

Now we recall a related notion introduced by Barreira and Schmeling in [21].
Let f be a continuous transformation of a compact metric space X , and let U be
a finite open cover of X . Let also u : X → R be a positive continuous function.
Given U ∈ Wn(U) we define u(U) as in (7.2). For each Z ⊂ X and α ∈ R we set

N(Z, α, u,U) = lim
n→∞

inf
Γ

∑

U∈Γ

exp(−αu(U)), (7.4)
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where the infimum is taken over all finite or countable collections Γ ⊂
⋃

k≥n Wk(U)
covering Z. Set

dimu,U Z = inf{α ∈ R : N(Z, α, u,U) = 0}. (7.5)

We can easily show that

dimuZ := lim
diam U→0

dimu,U Z

is well-defined.

Definition 7.2.2. The number dimuZ is called the u-dimension of the set Z (with
respect to f).

The following result gives a relation between the u-dimension and the topo-
logical pressure. It follows easily from the definitions.

Proposition 7.2.3. We have dimuZ = α, where α is the unique real number such
that PZP (−αu) = 0.

Furthermore, given a probability Borel measure μ in X , we set

dimu,U μ = inf{dimu,U Z : μ(Z) = 1}.

One can easily show that the number

dimuμ := lim
diam U→0

dimu,U μ

is well-defined, and we call it the u-dimension of μ.
We are particularly interested in the following examples.

Example 7.2.4. If u = 1, then dimuZ = h(f |Z) for every set Z ⊂ X , and dimuμ =
hμ(f) for every probability measure μ in X .

Example 7.2.5. Let X be a repeller of a C1+ε conformal expanding map f , for
some ε > 0 (see Section 4.1). If u = log ‖df‖, then dimuZ = dimHZ for every set
Z ⊂ X , and dimuμ = dimHμ for every probability measure μ in X . Indeed, since
f is of class C1+ε, it follows from the bounded distortion property that there exist
constants c1, c2 > 0 such that

c1(diamX(U))α ≤ exp(−αu(U)) ≤ c2(diamX(U))α (7.6)

for every U ∈
⋃

n≥1 Wn(U) and α ∈ R. The two identities follow immediately
from (7.6) and Theorem 4.1.7.

We also introduce local quantities that are generalizations of the lower and
upper pointwise dimensions.
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Definition 7.2.6. The lower and upper u-pointwise dimensions of μ at the point
x ∈ X are defined by

dμ,u(x) = lim
diam U→0

lim inf
n→∞

inf
U

− logμ(X(U))

u(U)

and

dμ,u(x) = lim
diam U→0

lim sup
n→∞

sup
U

− log μ(X(U))

u(U)
,

where the infimum and supremum are taken over all vectors U ∈ Wn(U) such that
x ∈ X(U).

The following statement was formulated by Barreira and Schmeling in [21].

Proposition 7.2.7. If μ is an ergodic f -invariant probability Borel measure in X,
then

dimuμ = lim
diam U→0

dμ,u(x, U) = lim
diam U→0

dμ,u(x, U) =
hμ(f)∫
X

∫∫
u dμ

(7.7)

for μ-almost every x ∈ X.

Proof. The proof follows similar arguments to those of Pesin in [115, Proposi-
tion 11.1]. Given x ∈ X , n ∈ N, and δ > 0 we consider the sets

B(x, n, δ) =
{
y ∈ X : d(f ix, f iy) < δ for i = 0, . . . , n − 1

}
,

where d is the distance in X . Now let U be a finite open cover of X and let δ(U)
be its Lebesgue number. One can easily verify that for every x ∈ X and U ∈⋃

n≥1 Wn(U) such that x ∈ X(U) we have

B
(
x, m(U), δ(U)/2

)
⊂ X(U) ⊂ B

(
x, m(U), 2 diam U

)
. (7.8)

We recall the local entropy formula established by Brin and Katok in [43].

Lemma 7.2.8. Let μ be an f -invariant probability Borel measure in X. For μ-
almost every x ∈ X we have

hμ(x) : = lim
δ→0

lim sup
n→∞

− 1

n
log μ(B(x, n, δ))

= lim
δ→0

lim inf
n→∞

− 1

n
log μ(B(x, n, δ)).

(7.9)

Furthermore, the function x �→ hμ(x) is μ-integrable, is f -invariant μ-almost ev-
erywhere, and satisfies

hμ(f) =

∫

X

∫∫
hμ(x) dμ(x). (7.10)
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When μ is ergodic, it follows from Lemma 7.2.8 and (7.8) that

hμ(f) = lim
diam U→0

lim inf
n→∞

inf
U

− 1

n
log μ(X(U))

= lim
diam U→0

lim sup
n→∞

sup
U

− 1

n
log μ(X(U)),

(7.11)

where the infimum and supremum are taken over all vectors U ∈ Wn(U) such that
x ∈ X(U).

On the other hand, since u is continuous and X is compact, given ε > 0 there
exists δ > 0 such that

|u(x) − u(y)| < ε whenever d(x, y) < δ.

This implies that if diamU < δ, then for μ-almost every x ∈ X we have
∣∣∣∣∣∣∣∣∣∣∣∣∣lim inf

n→∞
inf
U

sup
y∈X(U)

1

n

n−1∑

k=0

u(fky) −
∫

X

∫∫
u dμ

∣∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ε

and ∣∣∣∣∣∣∣∣∣∣∣∣∣lim sup
n→∞

sup
U

sup
y∈X(U)

1

n

n−1∑

k=0

u(fky) −
∫

X

∫∫
u dμ

∣∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ε,

where the infimum and supremum in U are taken over all U ∈ Wn(U) such that
x ∈ X(U). Since ε is arbitrary we obtain

∫

X

∫∫
u dμ = lim

diam U→0
lim inf
n→∞

inf
U

sup
y∈X(U)

1

n

n−1∑

k=0

u(fky)

= lim
diam U→0

lim sup
n→∞

sup
U

sup
y∈X(U)

1

n

n−1∑

k=0

u(fky),

that is,
∫

X

∫∫
u dμ = lim

diam U→0
lim inf
n→∞

inf
U

u(U)

n

= lim
diam U→0

lim sup
n→∞

sup
U

u(U)

n
.

(7.12)

It follows from (7.11) and (7.12) that

lim
diam U→0

dμ,u(x, U) = lim
diam U→0

dμ,u(x, U) =
hμ(f)∫
X

∫∫
u dμ

.

The first identity in (7.7) can be obtained with a simple modification of the argu-
ments in the proofs of Theorems 2.1.5 and 2.1.6. �
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7.3 Multifractal analysis of u-dimension

We present in this section a complete multifractal analysis of the spectra generated
by the u-dimension, for a one-sided or two-sided topological Markov chain σ|Σ (see
Definitions 4.1.3 and 4.2.7), that is, such that either Σ ⊂ Σ+

p or Σ ⊂ Σp. Let μ
be a probability Borel measure in Σ and let u : Σ → R+ be a continuous function.
For each x ∈ Σ we write

dμ,u(x) = lim inf
n→∞

− log μ(CnCC (x))

(Snu)(x)

and

dμ,u(x) = lim sup
n→∞

− log μ(CnCC (x))

(Snu)(x)
,

where CnCC (x) is the cylinder set of length n that contains x, and where

(Snu)(x) =

n−1∑

k=0

u(σkx). (7.13)

We can easily show that if u is Holder continuous, then¨

dμ,u(x) = dμ,u(x, U) and dμ,u(x) = dμ,u(x,U)

for every x ∈ Σ and every open cover U of Σ by cylinder sets (not necessarily all
with the same length). For every α ∈ R, we consider the set

Kα =
{
x ∈ Σ: dμ,u(x) = dμ,u(x) = α

}
.

Whenever Kα 	=		 ∅ and x ∈ Kα, we denote the common value α of dμ,u(x) and

dμ,u(x) by dμ,u(x), and we call it the u-pointwise dimension of μ at x.

Definition 7.3.1. The u-dimension spectrum (for the u-pointwise dimensions) of
the measure μ is the function

Du = Du,μ : {α ∈ R : Kα 	=		 ∅} → R

defined by
Du(α) = dimuKα.

Now let ϕ be a continuous function in Σ. For each q ∈ R, we consider the
function

ϕq = −TuTT (q)u + qϕ, (7.14)

where TuTT (q) is the unique real number such that P (ϕq) = 0 (here P denotes the
topological pressure in Σ; see Proposition 3.2.1). Proceeding as in Section 6.1 we
can show that if the functions u and ϕ are Holder continuous, then¨ TuTT : R → R is
analytic. We then set

αu(q) = −T ′
uTT (q)
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and we denote by (αu, αu) the range of the function αu. We also denote by νq and
mu respectively the equilibrium measures of ϕq and −(dimuΣ)u with respect to σ
(see Definition 3.2.3).

The following statement contains a complete multifractal analysis of the spec-
trum Du for topological Markov chains. It was formulated by Barreira and Schmel-
ing in [21].

Theorem 7.3.2. Given a one-sided or two-sided topologically mixing topological
Markov chain σ|Σ, let u and ϕ be Holder continuous functions in¨ Σ, such that u
is positive and P (ϕ) = 0, and let μ be the equilibrium measure of ϕ with respect
to σ. Then the following properties hold:

1. the set Kαu(q) is σ-invariant and dense for every q ∈ R;

2. for μ-almost every x ∈ Σ we have

dμ,u(x) = dμ,u(x) = −
∫
Σ

∫∫
ϕdμ∫

Σ

∫∫
u dμ

=
hμ(σ)∫
Σ

∫∫
u dμ

;

3. the function TuTT : R → R is analytic, and satisfies T ′
uTT (q) ≤ 0 and T ′′

uTT (q) ≥ 0
for every q ∈ R; moreover, TuTT (0) = dimuΣ and TuTT (1) = 0;

4. if μ = mu, then αu = αu = dimuΣ and Du is a delta function;

5. if μ 	=		 mu, then the functions Du : (αu, αu) → R and TuTT are analytic and
strictly convex;

6. Du is the Legendre transform of TuTT , that is, for each q ∈ R we have

Du(αu(q)) = TuTT (q) + qαu(q);

moreover,

αu(q) = −
∫
Σ

∫∫
ϕdνq∫

Σ

∫∫
u dνq

; (7.15)

7. for each q ∈ R we have νq(Kαu(q)) = 1 and

lim
n→∞

− log νq(CnCC (x))

(Snu)(x)
= TuTT (q) + qαu(q)

for νq-almost every x ∈ Kαu(q); moreover,

dνq,u(x) ≤ TuTT (q) + qαu(q)

for every x ∈ Kαu(q), and Du(αu(q)) = dimuνq for each q ∈ R.
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Proof. For one-sided shifts statement 1 follows immediately from the σ-invariance
of Kαu(q). For two-sided shifts we note that σ−1|Σ is a topological Markov chain
with transition matrix equal to the transpose of the transition matrix of σ|Σ, and
thus σ−1|Σ is also topologically mixing. Since

Kαu(q) = Σ ∩ π−1(πKαu(q)),

where π : {1, . . . , p}Z → {1, . . . , p}N is the canonical projection, we conclude that
the set Kαu(q) is dense.

Since μ is ergodic, statement 2 follows immediately from Proposition 7.2.7.

The proof of statements 3–7 can essentially be obtained by repeating argu-
ments in the proof of Theorem 6.1.2, simply replacing J and Σ by log ‖df‖ and u,
and thus the details are omitted. For statement 7 note that by Proposition 7.2.3
we have PΣPP (−su) = 0, where s = dimuΣ, and since mu is the equilibrium measure
of the function −su there exist constants c1, c2 > 0 such that

c1 exp[−s(Snu)(x)] ≤ mu(CnCC (x)) ≤ c2 exp[−s(Snu)(x)]

for every n ∈ N and x ∈ Σ. Therefore, if μ = mu then

dμ,u(x) = lim
n→∞

− logmu(CnCC (x))

Snu(x)
= dimuΣ

for every x ∈ Σ. This implies that

Kα =

{
Σ if α = dimuΣ,

∅ if α 	= dim		 uΣ,

and thus,

Du(α) =

{
dimuΣ if α = dimuΣ,

0 if α 	= dim		 uΣ.

This completes the proof of the theorem. �

We note that the measure mu is in fact the unique σ-invariant probability
Borel measure in Σ with

dimumu = dimuΣ. (7.16)

It is also the unique ergodic σ-invariant probability Borel measure in Σ satisfy-
ing (7.16).

Definition 7.3.3. The measure mu is called the measure of maximal u-dimension.
For each q ∈ R, the measure νq is called the full measure for the spectrum Du at
the point αu(q).
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7.4 Domain of the spectra

The statements in the remaining sections of this chapter were established by
Schmeling in [142] for the dimension and entropy spectra. Following [21] we re-
formulate them for the u-dimension. We continue to denote by (αu, αu) the range
of αu, that is,

αu = lim
q→+∞

αu(q) and αu = lim
q→−∞

αu(q).

Theorem 7.4.1. The following properties hold:

1. we have

αu = inf
x∈Σ

dμ,u(x) = inf
ν∈ME

−
∫
Σ

∫∫
ϕdν∫

Σ

∫∫
u dν

and

αu = sup
x∈Σ

dμ,u(x) = sup
ν∈ME

−
∫
Σ

∫∫
ϕdν∫

Σ

∫∫
u dν

;

2. for each α ∈ R, we have Kα = ∅ if and only if α 	∈ [αu, αu].

Proof. We first prove an auxiliary statement.

Lemma 7.4.2. We have

inf
ν∈ME

−
∫
Σ

∫∫
ϕdν∫

Σ

∫∫
u dν

= αu and sup
ν∈ME

−
∫
Σ

∫∫
ϕdν∫

Σ

∫∫
u dν

= αu. (7.17)

Proof of the lemma. We only prove the first identity. The proof of the second one
is entirely analogous. In view of Theorem 7.3.2 it remains to prove that

inf
ν∈ME

−
∫
Σ

∫∫
ϕdν∫

Σ

∫∫
u dν

≤ αu.

We first observe that

TuTT (q) = inf
ν∈ME

hν(σ) + q
∫
Σ

∫∫
ϕdν∫

Σ

∫∫
u dν

=
hνq

(σ) + q
∫
Σ

∫∫
ϕdνq∫

Σ

∫∫
u dνq

,

that is,

TuTT (q) = inf
ν∈ME

(
dimHν + q

∫
Σ

∫∫
ϕdν∫

Σ

∫∫
u dν

)
= dimHνq + q

∫
Σ

∫∫
ϕdνq∫

Σ

∫∫
u dνq

. (7.18)

Indeed, since P (ϕq) = 0 it follows from Theorem 2.3.3 that

0 ≥ hν(σ) − TuTT (q)

∫

Σ

∫∫
u dν + q

∫

Σ

∫∫
ϕdν
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for every ν ∈ ME, with equality if and only if ν = νq. Therefore,

TuTT (q) ≥ hν(σ) + q
∫
Σ

∫∫
ϕdν∫

Σ

∫∫
u dν

,

with equality if and only if ν = νq. This establishes (7.18).
Given ε > 0 and q < 0 such that αu(q) − αu < ε, it follows from (7.15)

and (7.18) that

(1 − q)αu ≥ (q − 1)

∫
Σ

∫∫
ϕdνq∫

Σ

∫∫
u dνq

− (1 − q)ε

= dimHνq + q

∫
Σ

∫∫
ϕdνq∫

Σ

∫∫
u dνq

− (1 − q)ε

= TuTT (q) − (1 − q)ε

= inf
ν∈ME

(
dimHν + q

∫
Σ

∫∫
ϕdν∫

Σ

∫∫
u dν

)
− (1 − q)ε

≥ −q inf
ν∈ME

−
∫
Σ

∫∫
ϕdν∫

Σ

∫∫
u dν

− (1 − q)ε.

Dividing by −q and letting q → −∞ we obtain the first identity in (7.17). �

We proceed with the proof of the theorem. In view of Theorem 7.3.2, to
obtain the first identity in statement 1 we prove that

αu ≤ inf
x∈Σ

dμ,u(x).

Let us assume that this was not the case. Then there would exist δ > 0, x ∈ Σ,
and an increasing sequence nk = nk(x) of natural numbers such that

−
∑nk

j=0 ϕ(σjx)
∑nk

j=0 u(σjx)
< αu − δ.

Now let ν be an accumulation point of the sequence of measures

νk =
1

nk

nk−1∑

j=0

δσjx,

where δpδ is the probability delta measure at p, that is, δpδ ({p}) = 1. We have

−
∫
Σ

∫∫
ϕdνk∫

Σ

∫∫
u dνk

= −
∑nk

j=0 ϕ(σjx)
∑nk

j=0 u(σjx)
< αu − δ,

and hence,

−
∫
Σ

∫∫
ϕdν∫

Σ

∫∫
u dν

≤ αu − δ,

which contradicts Lemma 7.4.2. This establishes the first identity.
Statement 2 is an immediate consequence of the first statement. �
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7.5 Existence of spectra with prescribed data

Now we establish the existence of u-dimension spectra for any prescribed data at
the endpoints of the domain of the spectrum. We note that

(αu, Du(αu), αu, Du(αu)) ∈ B,

where

B =
{
(x1, y1, x2, y2) ∈ R

4 : y1 ≤ x1 ≤ dimuΣ and y2 ≤ dimuΣ ≤ x2

}
.

Given θ ∈ (0, 1], we denote by Cθ(Σ) the space of Hölder continuous functions¨
ϕ : Σ → R with Hölder exponent¨ θ, equipped with the norm

‖ϕ‖θ = sup{|ϕ(x)| : x ∈ Σ} + sup

{ |ϕ(x) − ϕ(y)|
d(x, y)θ

: x, y ∈ Σ and x 	=		 y

}
. (7.19)

We note that Cθ(Σ) is a Baire space with the induced topology.
The following statement was obtained by Schmeling in [142].

Theorem 7.5.1. Given a one-sided or two-sided topologically mixing topological
Markov chain σ|Σ, let u be a positive Holder continuous function in¨ Σ. For each
(x1, y1, x2, y2) ∈ int B there exists a Holder continuous function¨ ϕ : Σ → R such
that the spectrum Du of the equilibrium measure of ϕ satisfies

(αu, Du(αu), αu, Du(αu)) = (x1, y1, x2, y2).

Proof. We start with an auxiliary result.

Lemma 7.5.2. Given numbers di < dimuΣ, i = 1, 2, there exist disjoint closed
σ-invariant sets Si ⊂ Σ with dimuSi = di, and numbers λi, i = 1, 2 such that for
every x ∈ Si we have

lim
n→∞

1

n

n−1∑

j=0

u(σjx) = λi.

Proof of the lemma. We construct inductively topological Markov chains σ|Si,n

that approximate the sets σ|Si. Set

λu =

∫

Σ

∫∫
u dmu, hu = hmu

(σ), λ = min u, and λ = max{u, 1}.

Fix ε > 0 such that

ε < min(dimuΣ − di)λu for i = 1, 2.

For each m ∈ N we consider the sets

Λm
ε =

⎧
⎨
⎧⎧

⎩
⎨⎨

x ∈ Σ :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1

n

n−1∑

j=0

u(σjx) − λu

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ Lε for every n ≥ m

⎫
⎬
⎫⎫

⎭
⎬⎬

,
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where
L = 1/ min{4(di + 1) : i = 1, 2},

and

Hm
εH =

{
x ∈ Σ :

∣∣∣∣∣∣∣∣∣∣hu +
1

n
log mu(CnCC (x))

∣∣∣∣∣∣∣∣∣∣ ≤ ε for every n ≥ m

}
.

We also write Γm
ε = Λm

ε ∩ Hm
εH , and we define

κ = min{m ∈ N : mu(Γm
ε ) > 1/2}.

By Birkhoff’s ergodic theorem and Shannon–McMillan–Breiman’s theorem, the
number κ is finite. Set

n = max

{⌊
4(K + M)λ(di + 1)

ε

⌋
+ 1,

⌊
1 + log 4

(dimuΣ − di)λu − ε

⌋
, κ

}
,

where ⌊·⌋ denotes the integer part, K = ‖u‖θe
λ/(1 − eλ), and M is the smallest

positive integer such that AM > 0 (recall that σ|Σ is topologically mixing).
Given m > n we set

Cm = {CmCC (x) : x ∈ Γn
ε }.

For each C ∈ Cm we have mu(C) ≤ e−mhu+mε, and

cardCm ≥ mu(Γm
ε )

maxmu(C)
≥ 1

2
emhu−mε.

Since ε < (dimuΣ− d1)λu, by the choice of n there exists a subset C1,1 ⊂ Cn with

cardC1,1 = ⌊exp[n(λud1 + d1ε/4)]⌋+ 1.

Now we consider the set S1,1 of points x ∈ Σ with the property that there exists
l < n + M such that

CnCC (σl+j(n+M)x) ∈ C1,1 for every j ∈ N.

We note that σ|S1,1 is a topological Markov chain. Since AM > 0 we have S1,1 	=		 ∅,

lim inf
k→∞

1

k
log card{Ck(x) : x ∈ S1,1} ≥ lim inf

k→∞

1

k
log
[
(cardC1,1)

⌊k/(n+M)⌋−1
]

≥ λud1 + ε/2,

and

lim sup
k→∞

1

k
log card{Ck(x) : x ∈ S1,1}

≤ lim sup
k→∞

1

k
log
[
(cardC1,1)

⌊k/(n+M)⌋p⌊k/(n+M)⌋+l
]

≤ λud1 + 3ε/2,
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where A is assumed to be a p × p matrix. Hence,

λud1 + ε/2 ≤ h(σ|S1,1) ≤ λud1 + 3ε/2. (7.20)

On the other hand, for each x ∈ S1,1 we have

lim sup
k→∞

1

k

k−1∑

j=0

u(σjx)

≤ lim sup
k→∞

⌊(n+M)/k⌋+1∑

l=0

1

n + M

n−1∑

j=0

[
u(σj+l(n+M)x) + Mλ

]

≤ λu + Lε +
K

n + M
+

M

n + M
≤ λu + (L + 1)ε,

and

lim inf
k→∞

1

k

k−1∑

j=0

u(σjx)

≥ lim inf
k→∞

⌊(n+M)/k⌋+1∑

l=0

1

n + M

n−1∑

j=0

[
u(σj+l(n+M)x) + Mλ

]

≥ λu − Lε − K

n + M
− M

n + M
≥ λu − (L + 1)ε.

It follows from (7.20) and these estimates that

d1 + ε/4 < dimuS1,1 < d1 + 2ε.

Now we construct a topological Markov chain σ|S2,1 with S2,1 ⊂ Σ \ S1,1. Since
ε < (dimuΣ − d2)λu, by the choice of n there exists a subset C2,1 ⊂ Cn with

cardC2,1 = ⌊exp[n(λud2 + d2ε/4)]⌋+ 1.

We note that there is a cylinder set Ĉ ⊂ Σ of length n with empty intersection
with S1,1. Let m = 8n/ε. We consider the set S2,1 of points x ∈ Σ with the
property that there exists l < m + M such that for each j ∈ N the cylinder
set CmCC +n(σl+j(m+n+M)x) is of the form Cn,CC 1 · · ·Cn,mCC Ĉ, where Cn,iCC ∈ C2,1 for i =
1, . . . ,m, and where C1C2CC is the cylinder set C1∩σ−|C1|C2CC . Clearly, S1,1∩S2,1 = ∅,
and σ|S2,1 is a topological Markov chain.

It follows from estimates similar to those for S1,1 that

λud2 + 3ε/8 ≤ h(σ|S2,1) ≤ λud2 + 13ε/8. (7.21)

Furthermore, for each x ∈ S2,1 we have

lim sup
k→∞

1

k

k−1∑

j=0

u(σjx) ≤ λu +

(
L +

9

8

)
ε
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and

lim inf
k→∞

1

k

k−1∑

j=0

u(σjx) ≥ λu −
(

L +
9

8

)
ε.

It follows from (7.21) and these estimates that

d2 + ε/8 < dimuS2,1 < d2 + 17ε/8.

Now let us assume that for a sufficiently small δ > 0 and each l ≤ r we
have constructed topological Markov chains σ|S1,l and σ|S2,l with the following
properties for i = 1, 2:

1. Si,l ⊂ Si,l−1 for l = 2, . . . , r;

2. for l = 1, . . . , r we have

λudi +
δ

2l+1
≤ h(σ|Si,l) ≤ λudi +

δ

2l−2
;

3. for l = 1, . . . , r there exists λi,l ∈ R such that for every x ∈ Si,l we have

lim sup
k→∞

1

k

k−1∑

j=0

u(σjx) ≤ λi,l +
δ

2l

and

lim inf
k→∞

1

k

k−1∑

j=0

u(σjx) ≥ λi,l −
δ

2l
;

4. for l = 1, . . . , r we have

di +
δ

2l+1
< dimuSi,l < di +

δ

2l−2
.

In particular, setting δ = ε we can assume that λi,l = λu.
Now we repeat the construction of S1,1 in Σ replacing Σ by S1,r and setting

ε = δ/2r. The role of the measure of maximal dimension mu is now played by the
measure of maximal dimension μ1,r in S1,r. We obtain in this manner a topological
Markov chain σ|S1,r+1 which satisfies properties 1–4 for l = r+1. Similarly, we can
construct a topological Markov chain σ|S2,r+1 replacing Σ by S2,r and proceeding
as above.

We thus obtain topological Markov chains σ|Si,r for i = 1, 2 and r ∈ N that
satisfy properties 1–4. In particular, for each i the sets Si,r form a nested sequence.
Furthermore, for i = 1, 2 the sequence λi,r converges to some number λi as r → ∞.
Set

Si =
⋂

r∈N

Si,r, i = 1, 2.
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For each x ∈ Si we have

lim
k→∞

1

k

k−1∑

j=0

u(σjx) = λi,

and

dimuSi ≤ inf
r∈N

dimuSi,r = di.

Moreover, S1∩S2 = ∅, since S1,1∩S2,1 = ∅. On the other hand, any accumulation
point μi of the sequence of measures (μi,r)r∈N is concentrated on the set Si. By
the upper semicontinuity of the Kolmogorov–Sinai entropy we obtain

dimuSi ≥ dimuμi ≥ lim inf
r→∞

dimuμi,r = lim inf
r→∞

dimuSi,r = di.

This completes the proof of the lemma. �

It follows from Lemma 7.5.2 that h(σ|Si) = λidi for i = 1, 2.
Now we construct a function ϕ : Σ → R with maximum in S1 and minimum

in S2, such that for the u-dimension spectrum of its equilibrium measure we have

Du(αu) = d1 and Du(αu) = d2.

Given real numbers z1 > z2 we consider the set F(z1, z2) of functions ϕ ∈ Cθ(Σ)
such that ϕ|Si = zi for i = 1, 2, and

ϕ|
(
Σ \ (S1 ∪ S2)

)
∈ (z2, z1).

Lemma 7.5.3. If d1 = dimuS1 < −z1 < dimuΣ and −z2 > dimuΣ, then there
exists a function ϕ0 ∈ F(z1, z2) such that P (ϕ0u) = 0.

Proof of the lemma. Let U1,n ⊃ S1 and U2UU ,n ⊃ S2 be two nested sequences of
open sets converging respectively to S1 and S2. For each n ∈ N we consider two
functions ϕ1,n and ϕ2,n in Σ such that

ϕ1,n(x) =

⎧
⎪
⎧⎧
⎨⎪⎪

⎪

⎨⎨

⎩⎪⎪

z1 if x 	∈ U2UU ,n,

z2 if x ∈ S2,

∈ (z2, z1) otherwise,

and

ϕ2,n(x) =

⎧
⎪
⎧⎧
⎨⎪⎪

⎪
⎨⎨

⎩⎪⎪

z1 if x ∈ S1,

z2 if x 	∈ U1,n,

∈ (z2, z1) otherwise.

We note that these functions exist because the sets Si are closed, and that they
are in the closure of F(z1, z2). Denoting by Pi,nPP , i = 1, 2 the topological pressure
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of ϕi,nu, we obtain

P1PP ,n = max
μ∈ME

{
hμ(σ) +

∫

Σ

∫∫
ϕ1,nu dμ

}

≥ hu +

∫

Σ

∫∫
ϕ1,nu dmu

≥ hu + z2λumu(U2UU ,n) + z1λu(1 − mu(U2UU ,n)).

Since dimuS2 < dimuΣ, we have mu(S2) = 0. Therefore, mu(U2UU ,n) → 0 as n → ∞.
Hence, by the assumptions in the lemma we obtain

lim inf
n→∞

P1PP ,n ≥ hu + z1λu > 0. (7.22)

On the other hand,

P2PP ,n = max
μ∈ME

{
hμ(σ) +

∫

Σ

∫∫
ϕ2,nu dμ

}

= max

{
max
μ∈M1

{
hμ(σ) +

∫

Σ

∫∫
ϕ2,nu dμ

}
, max
μ∈M2

{
hμ(σ) +

∫

Σ

∫∫
ϕ2,nu dμ

}}

≤ max

{
hu +

∫

Σ

∫∫
ϕ2,nu dmu, h(σ|S1) + max

μ∈M2

∫

Σ

∫∫
ϕ2,nu dμ

}
,

where

M1 = {μ ∈ ME : μ(S1) = 0} and M2 = {μ ∈ ME : μ(S2) = 0}.

Furthermore,

hu +

∫

Σ

∫∫
ϕ2,nu dmu ≤ hu + z2λu + z1λumu(U1,n),

and

h(σ|S1) + max
μ∈M2

∫

Σ

∫∫
ϕ2,nu dμ ≤ d1λ1 + z1λ1 + max

μ∈M2

{z2μ(U1,n)}min u.

Since z1, z2 < 0, this implies that

lim sup
n→∞

P2PP ,n ≤ max{hu + z2λu, (d1 + z1)λ1} < 0. (7.23)

Finally, since the topological pressure is a continuous function in Cθ(Σ) and
F(z1, z2) is a connected set, it follows from (7.22) and (7.23) that there exists
a function ϕ0 ∈ F(z1, z2) such that P (ϕ0u) = 0. �
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Given a transformation f : X → X , we denote by VfVV (x) the set of accumu-
lation points of the sequence of measures

1

n

n−1∑

j=0

δfjx.

We need the following result of Bowen in [37].

Lemma 7.5.4. Let f : X → X be a continuous transformation of a compact metric
space. If

YtYY = {x ∈ X : hμ(f) ≤ t for some μ ∈ VfVV (x)},

then h(f |YtYY ) ≤ t.

A simple consequence of Lemma 7.5.4 is the following.

Lemma 7.5.5. If S ⊂ Σ is a compact σ-invariant set, then the set R of points
x ∈ Σ such that VσVV (x) contains a σ-invariant probability measure in S satisfies
h(σ|R) = h(σ|S).

Proof of the lemma. Since S is compact we have S ⊂ R, and h(σ|S) ≤ h(σ|R).
On the other hand, hμ(σ) ≤ h(σ|S) for every σ-invariant probability measure μ
in S, and thus

R ⊂ {x ∈ Σ : hμ(σ) ≤ h(σ|S) for some μ ∈ VσVV (x)}.

It follows from Lemma 7.5.4 that h(σ|R) ≤ h(σ|S). �

Let di, Si, and zi, i = 1, 2 be as in Lemmas 7.5.2 and 7.5.3. Let also ϕ0 ∈
F(z1, z2) be as in Lemma 7.5.3.

Lemma 7.5.6. For the spectrum Du of the equilibrium measure of ϕ0u we have

αϕ0u = −z1, αϕ0u = −z2, Du(αϕ0u) = d1, and Du(αϕ0u) = d2.

Proof of the lemma. Set α = αϕ0u and α = αϕ0u. We show that if x ∈ Kα (re-
spectively x ∈ KKα), then VσVV (x) contains a σ-invariant probability measure in S1

(respectively S2). Since for each x ∈ Si the set VσVV (x) contains a σ-invariant prob-
ability measure in Si, the desired statement follows from Lemma 7.5.5 because
dimuSi = di, and

dν(x) = −
∫

S

∫∫
i
ϕ0u dρ

∫
S

∫∫
i
u dρ

= −zi (7.24)

for each x ∈ Si, where ρ ∈ VσVV (x) and ν is the equilibrium measure of the function
ϕ0u. Identity (7.24) follows from Theorem 7.3.2 together with the fact that ϕ0|Si =
zi for i = 1, 2.
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Fix x ∈ Σ and assume that VσVV (x) contains no σ-invariant probability measure
in S1. Then

lim sup
n→∞

1

n

n−1∑

j=0

ϕ0(σ
jx) =: w < z1 and lim sup

n→∞

A(n, x)

n
< 1,

where A(n, x) = cardG(n) and

G(n) = {0 ≤ j ≤ n − 1 : ϕ0(σ
jx) ≥ w}.

We obtain

lim sup
n→∞

∑n−1
j=0 ϕ0(σ

jx)u(σjx)
∑n−1

j=0 u(σjx)

≤ lim sup
n→∞

∑
j∈G(n) ϕ0(σ

jx)u(σjx) +
∑

j �∈G(n) ϕ0(σ
jx)u(σjx)

∑n−1
j=0 u(σjx)

≤ z1 − (z1 − w) lim sup
n→∞

(
1 − A(n, x)

n

)
min u

maxu
< z1,

and thus x 	∈ Kα. The proof for α is entirely analogous. �

Now let ϕ0 be as in Lemma 7.5.3 with z1 = −x1, z2 = −x2, d1 = y1, and
d2 = y2. The statement in the theorem follows immediately from Lemma 7.5.6. �

7.6 Nondegeneracy of the spectra

The following result of Schmeling in [142] shows that a typical u-dimension spec-
trum Du is nondegenerate, that is, Du is zero at the endpoints of its domain.

Theorem 7.6.1. For each θ ∈ (0, 1], there is a residual set R ⊂ Cθ(Σ) such that
αu < αu and

Du(αu) = Du(αu) = 0

for the spectrum Du of the equilibrium measure of each function in R.

Proof. We start with an auxiliary result. Set

M(ϕ) = {x ∈ Σ : ϕ(x) = maxϕ} and M(ϕ) = {x ∈ Σ : ϕ(x) = min ϕ}.

Lemma 7.6.2. Let ϕ be a Holder continuous function in¨ Σ and let E = D1 be
the entropy spectrum of its equilibrium measure. If M(ϕ) and M(ϕ) are compact
σ-invariant sets, then

E(α1) = h(σ|M(ϕ)) and E(α1) = h(σ|M(ϕ)).
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Proof of the lemma. Since

sup
x∈Σ

lim sup
n→∞

1

n

n−1∑

j=0

ϕ(σjx) ≤ max ϕ =
1

n

n−1∑

j=0

ϕ(σjy)

for every point y ∈ M(ϕ), we have M(ϕ) ⊂ Kα1
. Similarly, M(ϕ) ⊂ Kα1

. This
implies that

E(α1) ≤ h(σ|M(ϕ)) and E(α1) ≤ h(σ|M(ϕ)).

For the reverse inequalities, we observe that

x ∈ D−
α1

if and only if lim sup
n→∞

1

n

n−1∑

j=0

ϕ(σjx) = maxϕ.

But this is only possible if VσVV (x), that is, the set of accumulation points of the
sequence of measures

1

n

n−1∑

j=0

δσjx,

contains a σ-invariant probability measure in M(ϕ). It follows from Lemma 7.5.4
that E(α1) = h(σ|M(ϕ)). The argument for E(α1) is entirely analogous. �

For each α ∈ R set

D−
α = {x ∈ Σ : dμ(x) = α} and D+

α = {x ∈ Σ : dμ(x) = α}.

Lemma 7.6.3. We have:

1. dimuD−
αu(q) ≤ Du(αu(q)) for each q ≥ 0;

2. dimuD+
αu(q) ≤ Du(αu(q)) for each q ≤ 0.

Proof of the lemma. Fix q ≥ 0. Given ε > 0, set

s = Du(αu(q)) + ε = TuTT (q) + qαu(q) + ε.

By Theorem 7.3.2, if x ∈ D−
αu(q) then

−
∑nk−1

j=0 ϕ(σjx)
∑nk−1

j=0 u(σjx)
≤ αu(q) +

1

k
(7.25)

for some sequence nk = nk(x) ∈ N such that nk ր ∞ as k → ∞. Therefore,
proceeding as in the construction of Moran covers (see the proof of Theorem 4.1.7),
we show that there exists a constant M > 0 such that for each n ∈ N we can find
a finite set

C = {x1, . . . , xl} ⊂ D−
αu(q)

and integers k1, . . . , kl ∈ N such that:
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1. mi = nki
(xi) ≥ n for i = 1, . . . , l;

2. the cylinder sets CmCC
i
(xi), i = 1, . . . , l cover D−

αu(q);

3. each point in D−
αu(q) intersects at most a number M of these cylinder sets.

Since νq is the equilibrium measure of −TuTT (q)u + qϕ, it follows from (7.25) that

l∑

i=1

exp(−s(Smi
u)(xi)) =

l∑

i=1

mi−1∏

j=0

exp[−(TuTT (q) + qαu(q) + ε)u(σjxi)]

≤ C1

l∑

i=1

mi−1∏

j=0

exp[−TuTT (q)u(σjxi) + qϕ(σjxi)]

≤ C2CC
l∑

i=1

νq(CmCC
i
(xi)) ≤ M,

for some constants C1, C2CC > 0, provided that n is sufficiently large (so that q/ki < ε
for i = 1, . . . , l). This implies that

N(D−
αu(q), s, u, U) ≤ M

(see (7.4)), where U is the cover of Σ by cylinder sets of length 1. We obtain

dimuD−
αu(q) ≤ s = Du(αu(q)) + ε,

and the arbitrariness of ε yields the first statement. A similar argument establishes
the second statement. �

Given S ⊂ Σ and m ∈ N we set CmCC (S) =
⋃

x∈S CmCC (x) and

UmUU (S) =
{
x ∈ Σ : σkx ∈ CmCC (S) for every k ∈ N

}
.

For each x ∈ Σ we also consider the set

A(S, m, x) = card{0 ≤ k ≤ m : σkx ∈ S}.

Lemma 7.6.4. For any σ-invariant set S ⊂ Σ and any m ∈ N we have

lim
a→1

h

(
σ|
{

x ∈ Σ : lim inf
N→∞

A(CmCC (S), N, x)

N
≥ a

})
= h(σ|UmUU (S)).

Proof of the lemma. Since S is σ-invariant we have UmUU (S) 	=		 ∅. Moreover, CmCC (S)
is a finite union of cylinder sets, and its characteristic function ψ is Holder con-¨
tinuous. It is easy to verify that for the function u = 1 we have

Kα =

{
x ∈ Σ : lim

N→∞

A(UmUU (S), N, x)

N
= −α + P (ψ)

}
,
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and

D−
α =

{
x ∈ Σ : lim sup

N→∞

A(UmUU (S), N, x)

N
≥ −α + P (ψ)

}
.

We thus obtain α1 = P (ψ) − 1, α1 = P (ψ), and for each a ∈ (0, 1),

UmUU (S) ⊂ Kα1
⊂

⋃

α∈(α1,α1+1−a)

D−
α = D−

α1+1−a

=

{
x ∈ Σ : lim inf

N→∞

A(CmCC (S), N, x)

N
≥ a

}
.

Together with Lemma 7.6.3 this yields the desired statement. �

We proceed with the proof of the theorem. The following statement considers
the particular case of the entropy spectrum.

Lemma 7.6.5. For each θ ∈ (0, 1], there is a residual set Θ ⊂ Cθ(Σ) such that
the entropy spectrum E = D1 of the equilibrium measure of each function in Θ is
nondegenerate.

Proof of the lemma. We find a residual set Θ ⊂ Cθ(Σ) such that any function
ϕ ∈ Θ satisfies

h(σ|M(ϕ)) = h(M(ϕ)) = 0. (7.26)

The result follows then from Lemma 7.6.2. We first find an open and dense subset
Θε

1 ⊂ Cθ(Σ) for each ε > 0. Given ε > 0, r ∈ N, and ϕ ∈ Cθ(Σ), there is a periodic
point x0 of period n0 such that

MϕMM − ε

r
<

1

n0

n0−1∑

j=0

ϕ(σjx0) < MϕMM ,

where

MϕMM := sup
x∈Σ

lim sup
n→∞

1

n

n−1∑

j=0

ϕ(σjx).

We consider the set

C := CnCC 0(Sx0) =

n0−1⋃

j=0

CnCC 0(σ
jx0),

where Sx0 is the orbit of x0. We observe that U := UnUU 0(Sx0) = Sx0 , and hence
h(σ|U) = 0. Now we consider a function close to ϕ, defined by

ϕ̂(x) =

{
ϕ(x) if x ∈ C,

ϕ(x) − ε if x 	∈ C.
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Clearly, ϕ̂ ∈ Cθ(Σ) and ‖ϕ−ϕ̂‖θ < ε. We show that h(σ|M(ϕ̂)) < ε. For each x ∈ Σ
and n ∈ N we have

1

n

n−1∑

j=0

ϕ̂(σjx) =
1

n

⎛
⎝
⎛⎛
∑

σjx∈C

ϕ̂(σjx) +
∑

σjx �∈C

ϕ̂(σjx)

⎞
⎠
⎞⎞

≤ 1

n

⎛

⎝

⎛⎛
∑

σjx∈C

ϕ(σjx) +
∑

σjx �∈C

ϕ(σjx) − (n − A(C, n, x))ε

⎞

⎠

⎞⎞

≤ 1

n

n−1∑

j=0

ϕ(σjx) −
(

1 − A(C, n, x)

n

)
ε

≤ MϕMM −
(

1 − A(C, n, x)

n

)
ε

≤ Mϕ̂MM +
ε

r
−
(

1 − A(C, n, x)

n

)
ε,

since

Mϕ̂MM ≥ 1

n0

n0−1∑

j=0

ϕ(σjx0) ≥ MϕMM − ε

r
.

Therefore,

M(ϕ̂) ⊂

⎧
⎨
⎧⎧

⎩
⎨⎨

x ∈ Σ : lim sup
n→∞

1

n

n−1∑

j=0

ϕ(σjx) = Mϕ̂MM

⎫
⎬
⎫⎫

⎭
⎬⎬

⊂
{

x ∈ Σ : lim sup
n→∞

A(C, n, x)

n
≥ 1 − 1

r

}
.

By Lemma 7.6.4 there exists ε > 0 such that

ε > h

(
σ|
{

x ∈ Σ : lim sup
n→∞

A(C, n, x)

n
≥ 1 − 1

r

})
≥ h(σ|M(ϕ̂)).

Now set
Ωε

1(ϕ) = {ψ ∈ Cθ(Σ) : ‖ϕ̂ − ψ‖θ < ε}.
We observe that the above estimates hold with ε′ = 2ε for every ψ ∈ Ωε

1(ϕ).
Therefore, for each ε > 0 the set

Θε
1 =

⋃

ϕ∈Cθ(Σ)

Ωε
1(ϕ) (7.27)

is open and dense in Cθ(Σ). Furthermore,

h(σ|M(ϕ)) < 2ε for every ϕ ∈ Θε
1.
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Repeating the above procedure we construct a set Θε
2 ⊂ Cθ(Σ) with the property

that
h(σ|M(ϕ)) < 2ε for every ϕ ∈ Θε

2.

Set

Θ =

∞⋂

N=0

⋃

n≥N

(Θ
1/n
1 ∩ Θ

1/n
2 ).

Clearly, Θ is a residual subset of Cθ(Σ), and (7.26) holds for every ϕ ∈ Θ. This
completes the proof of the lemma. �

We have seen in the proof of Lemma 7.5.6 that the boundary values of the
spectrum Du of the equilibrium measure of ϕu coincide with those of the entropy
spectrum E = D1 of the equilibrium measure of ϕ. The desired statement follows
from the observation that since u is positive, the transformation ϕ �→ ϕu is a
homeomorphism in the space Cθ(Σ), and thus it transforms residual subsets into
residual subsets. �



Chapter 8

Dimension of Irregular Sets

In Chapters 6 and 7 we described the main components of multifractal analysis
for several multifractal spectra and several classes of dynamical systems. These
spectra are obtained from multifractal decompositions such as the one in (7.1). In
particular, we possess very detailed information from the ergodic, topological, and
dimensional points of view about the level sets Kg

α in each multifractal decomposi-
tion. On the other hand, we gave no nontrivial information about the irregular set
in these decompositions, that is, the set X \Y in (7.1). Furthermore, the irregular
set is typically very small from the point of view of ergodic theory. Namely, for
many “natural” multifractal decompositions it has zero measure with respect to
any finite invariant measure. Nevertheless, it may be very large from the topolog-
ical and dimensional points of view. This is the main theme of this chapter, where
we also describe a general approach to the study of the u-dimension of irregular
sets.

8.1 Introduction

We start by considering a model case. Birkhoff’s ergodic theorem says that if
S : X → X is a measurable transformation preserving a finite measure μ in X ,
then for each measurable function ϕ ∈ L1(X, μ) the limit

ϕS(x) := lim
n→∞

1

n

n−1∑

k=0

ϕ(Skx)

exists for μ-almost every x ∈ X . Furthermore, if μ is ergodic then

ϕS(x) =
1

μ(X)

∫

X

∫∫
ϕdμ (8.1)

for μ-almost every x ∈ X . Of course this does not mean that identity (8.1) holds
for every x ∈ X for which ϕS(x) is well-defined. For each α ∈ R we consider the



128 Chapter 8. Dimension of Irregular Sets

level set of Birkhoff averages

Kα(ϕ) =

{
x ∈ X : lim

n→∞

1

n

n−1∑

k=0

ϕ(Skx) = α

}
, (8.2)

i.e., the set of points x ∈ X such that ϕS(x) is well-defined and is equal to α. We
also consider the set

K(ϕ) =

{
x ∈ X : lim inf

n→∞

1

n

n−1∑

k=0

ϕ(Skx) < lim sup
n→∞

1

n

n−1∑

k=0

ϕ(Skx)

}
. (8.3)

We obtain the multifractal decomposition

X = K(ϕ) ∪
⋃

α∈[−∞,+∞]

Kα(ϕ).

By Birkhoff’s ergodic theorem, the irregular set K(ϕ) in (8.3) has zero measure
with respect to any S-invariant finite measure in X . Therefore, at least from
the point of view of ergodic theory, the set K(ϕ) can be discarded. However, we
will see that, remarkably, from the point of view of dimension theory this set is
as large as the whole space. We note that if ϕ1 and ϕ2 are cohomologous, then
K(ϕ1) = K(ϕ2). In particular, if the function ϕ is cohomologous to a constant
then K(ϕ) = ∅.

The following result of Barreira and Schmeling in [21] shows that if ϕ is not
cohomologous to a constant then K(ϕ) is as large as the whole space from the
points of view of the topological entropy and of the Hausdorff dimension. We recall
that h(f |Z) denotes the topological entropy of f in the set Z ⊂ X (see (7.3)).

Theorem 8.1.1 (Irregular sets). Let X be a repeller of a C1+ε transformation f ,
for some ε > 0, such that f is conformal and topologically mixing on X, and let
ϕ : X → R be a Holder continuous function. Then the following properties are¨
equivalent:

1. K(ϕ) 	=		 ∅;

2. K(ϕ) is dense in X;

3. ϕ is not cohomologous to a constant;

4.
h(f |K(ϕ)) = h(f |X) and dimHK(ϕ) = dimHX. (8.4)

Theorem 8.1.1 is a simple consequence of Theorem 8.5.3. Under the hypothe-
ses of Theorem 8.1.1, we can also show (see Theorem 8.5.1) that if ϕi : X → R,
for i = 1, . . . , p, are Holder continuous functions none of them cohomologous to a¨
constant, then

h(f |K(ϕ1) ∩ · · · ∩ K(ϕp)) = h(f |X)
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and
dimH(K(ϕ1) ∩ · · · ∩ K(ϕp)) = dimHX.

For topological Markov chains, the first identity in (8.4) was extended by Fan,
Feng and Wu in [57] to arbitrary continuous functions. We note that in the case of
topological Markov chains the two identities in (8.4) are in fact equivalent. This is
an immediate consequence of the particular distance in (3.9). For repellers of C1+ε

conformal transformations, the second identity in (8.4) was extended by Feng, Lau
and Wu in [63] to arbitrary continuous functions. See also Theorem 8.6.1 for an
appropriate version of Theorem 8.1.1 in the case of hyperbolic sets.

In order to highlight the main ideas involved in the proof of Theorem 8.1.1
we give a sketch in the particular case when ‖df‖ is constant in X .

Sketch of the proof of Theorem 8.1.1. Let ϕ : X → R be a Holder continuous func-¨
tion which is not cohomologous to a constant. By Theorem 6.1.2, given δ > 0 there
exist ergodic f -invariant probability measures μ1 	=		 μ2 in X such that

∫

X

∫∫
ϕdμ1 	=		

∫

X

∫∫
ϕdμ2, (8.5)

and
min{dimHμ1, dimHμ2} > dimHX − δ. (8.6)

For this it is sufficient to take equilibrium measures μ1 and μ2 of two functions
q1ϕ and q2ϕ with q1 	=		 q2 sufficiently close to 0. Indeed, since ‖df‖ is constant
in X , it follows from (6.7) that for the dimension spectrum D of the equilibrium
measure of ϕ we have

α(q) = −T ′(q) = −
∫

ϕdνq

log ‖df‖ ,

where νq is the equilibrium measure of qϕ. Furthermore, since ϕ is not cohomol-
ogous to a constant, it follows from Lemma 6.1.7 that α′(q) < 0 for every q ∈ R.
Therefore, we can choose q1 	=		 q2 such that the measures μ1 = νq1 and μ2 = νq2

satisfy (8.5) (we note that this is the same as α(q1) 	=		 α(q2)). Since ν0 is the mea-
sure of maximal dimension, to obtain (8.6) we simply consider q1 and q2 sufficiently
close to 0.

The proof of Theorem 8.1.1 starts with the juxtaposition of cylinder sets (at
the level of symbolic dynamics, given by some Markov partition of X) that are
alternatively typical with respect to μ1 and μ2. We say that a point x ∈ X is
typical with respect to μi if:

1.

lim
n→∞

1

n

n−1∑

k=0

ϕ(fkx) =

∫

X

∫∫
ϕdμi; (8.7)

2.
dμi

(x) = dimHμi. (8.8)
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By Birkhoff’s ergodic theorem and Shannon–McMillan–Breiman’s theorem the
identities in (8.7) and (8.8) hold for μi-almost every x ∈ X . We repeat the juxta-
position process indefinitely, with cylinder sets of sufficiently large (and increasing)
length, centered at points whose images under the coding map are alternatively
typical with respect to μ1 and μ2. We obtain in this manner a set I of sequences
in the symbolic dynamics which is contained in K(ϕ), as a consequence of (8.5).

The next step is the construction of a probability measure μ in I, essentially
given by an alternate infinite product of the measures μ1 and μ2 (roughly speaking,
we use the measure μi when we are on a piece of sequence obtained from a cylinder
set centered at a point which is typical with respect μi). We note that μ is never
invariant since it is concentrated on the set K(ϕ). Using (8.6) we can show that

lim inf
r→0

log μ(B(x, r))

log r
> dimHX − 2δ

for every x ∈ χ(I), where χ is the coding map of the repeller (see (4.3)). Since the
measure μ is concentrated on K(ϕ), this implies that

dimHK(ϕ) > dimHX − 2δ.

It follows from the arbitrariness of δ that dimHK(ϕ) = dimHX . �

Now let K =
⋃

ϕ K(ϕ) with the union taken over all Hölder continuous¨
functions ϕ : X → R. Under the hypotheses of Theorem 8.1.1 we have

h(f |K) = h(f |X) and dimHK = dimHX. (8.9)

The first identity in (8.9) was established earlier by Pesin and Pitskel in [116] for
the Bernoulli shift with two symbols, i.e., when A = ( 1 1

1 1 ) is the transition matrix.
We note that their methods are different from those in [21].

8.2 Irregular sets and distinguishing measures

We now describe a general approach proposed by Barreira and Schmeling in [21]
to obtain sharp estimates from below for the u-dimension of irregular sets (see
Section 7.2 for the notion of u-dimension). Let σ|Σ be a one-sided or two-sided
topological Markov chain, where σ is the shift map in Σ. We consider sequences
of functions FiFF = {fi,nff : Σ → R}n∈N for i = 1, . . . ,m.

Definition 8.2.1. The irregular set F(F1FF , . . . , FmFF ) ⊂ Σ specified by the sequences
F1FF , . . ., FmFF is defined by

{
x ∈ Σ: lim inf

n→∞
fk,nff (x) < lim sup

n→∞
fk,nff (x) for k = 1, . . . ,m

}
. (8.10)
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For example, if m = 1 and

f1,n =
1

n

n−1∑

k=0

(ϕ ◦ σk)

for each n ∈ N, then F(F1FF ) coincides with the set K(ϕ) in (8.3).
We will show, under mild additional assumptions, that any irregular set car-

ries full topological entropy and full Hausdorff dimension. Our approach is based
on the notion of a distinguishing collection of measures introduced in [21].

Definition 8.2.2. A collection of measures μ1, . . . , μk is said to be distinguishing
for the sequences F1FF , . . . , FmFF if for each i = 1, . . . ,m there exist distinct integers
j1 = j1(i), j2 = j2(i) ∈ [1, k] and numbers ai,j1 	=		 ai,j2 such that

lim
n→∞

fi,nff (x) = ai,j1 for μj1 -almost every x ∈ Σ,

and

lim
n→∞

fi,nff (x) = ai,j2 for μj2 -almost every x ∈ Σ.

We note that we can always assume that k ≤ 2m in Definition 8.2.2. For
an example of a distinguishing collection of measures, let μ1 and μ2 be distinct
ergodic σ-invariant probability measures in Σ. Then there exists a continuous
function g : Σ → R such that

∫

Σ

∫∫
g dμ1 	=		

∫

Σ

∫∫
g dμ2.

By Birkhoff’s ergodic theorem, the measures μ1 and μ2 form a distinguishing
collection for the sequence {Sng/n}n∈N, where Sng is defined by (7.13).

Now we consider arbitrary subshifts σ|Σ (which are obtained from a com-
pact σ-invariant set Σ), and not only topological Markov chains. Let ZΣ be the
family of cylinder sets in Σ. We denote by CC′ the cylinder set obtained from the
juxtaposition of C, C′ ∈ ZΣ, in this order. That is,

CC′ = C ∩ σ−|C|C′,

where |C| is the length of the cylinder set C. We denote by CnCC (x) ∈ ZΣ the
cylinder set of length n containing the point x ∈ Σ.

Definition 8.2.3. We say that a subshift σ|Σ has the specification property if there
exists m ∈ N such that for every C1, C2CC ∈ ZΣ there exists a cylinder set C ∈ ZΣ

of length m such that C1CC2CC ∈ ZΣ.

With the help of distinguishing collections of measures we can obtain sharp
lower bounds for the u-dimension of irregular sets. We now formulate the main
result in this direction established by Barreira and Schmeling in [21].
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Theorem 8.2.4. If σ|Σ is a one-sided or two-sided subshift with the specification
property, μ1, . . . , μk is a distinguishing collection of ergodic σ-invariant measures
for F1FF , . . . , FmFF , and u is a positive Holder continuous function in¨ Σ, then

dimuF(F1FF , . . . , FmFF ) ≥ min{dimuμ1, . . . , dimuμk}.

Proof. We first establish some auxiliary results.

Lemma 8.2.5. If μ1 and μ2 are probability measures in Σ, and u is a positive
Holder continuous function in¨ Σ, then for every δ > 0 we have

μ1({x ∈ Σ: dμ2,u(x) > dimuμ1 − δ}) > 0. (8.11)

Proof of the lemma. If (8.11) did not hold, then the set

Γδ = {x ∈ Σ: dμ2,u(x) ≤ dimuμ1 − δ} (8.12)

would have full μ1-measure. For each x ∈ Γδ, let {nk(x)}k∈N be an increasing
sequence of positive integers such that

− log μ2(CnCC
k(x)(x))

Snk(x)u(x)
≤ dimuμ1 − δ/2

for every k ∈ N. We observe that given two cylinder sets either they are disjoint,
or one of them is contained in the other. Hence, for each L > 0 there is a finite or
countable cover {CmCC

i
(xi) : i ∈ N} of Γδ formed by disjoint cylinder sets, for some

points xi ∈ Γδ and some integers mi ∈ {nk(xi) : k ∈ N} such that mi > L for
every i ∈ N. We obtain

μ2(Γδ) =

∞∑

i=1

μ2(CmCC
i
(xi))

≥
∞∑

i=1

exp[−(dimuμ1 − δ/2)Smi
u(xi)]

≥ c
∞∑

i=1

sup
x∈Cmi

(xi)

exp[−(dimuμ1 − δ/2)Smi
u(x)],

where c > 0 is a constant depending only on the Hölder exponent of¨ u. Since
μ1(Γδ) = 1 we obtain

dimuμ1 − δ/2 ≥ dimuΓδ ≥ dimuμ1.

This contradiction yields the desired result. �

Lemma 8.2.6. Let μ1 and μ2 be probability measures in Σ, and let u be a positive
Holder continuous function in¨ Σ. If μ1 is an ergodic σ-invariant measure, then

μ1({x ∈ Σ: dμ2,u(x) ≥ dimuμ1}) = 1.
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Proof of the lemma. We note that for each δ > 0, the set Γδ in (8.12) is σ-invariant.
By Lemma 8.2.5 we have μ1(Σ \ Γδ) = 1 for every δ > 0, and hence the set

⋂

δ>0

(Σ \ Γδ) = {x ∈ Σ: dμ2,u(x) ≥ dimuμ1}

has also full μ1-measure. �

We proceed with the proof of Theorem 8.2.4. For the sake of clarity we first
present the proof when m = 1. The general case is discussed at the end.

Let m = 1. We write fnff = f1,n for each n ∈ N, and without loss of generality
we may assume that μ1 and μ2 form a distinguishing collection of measures for
F = {fnff }n∈N with dimuμ1 ≥ dimuμ2. We also write a1,j = aj for j = 1, 2.
We may always assume that aj 	= 0 for		 j = 1, 2. Otherwise we can consider the
sequence of functions F + a = {fnff + a}n∈N, where a is a nonzero constant, since
F(F + a) = F(F ).

Choose δ > 0 such that

|a1 − a2| > 4δ, (8.13)

and for each s ∈ N set

ps =

{
1 if s is odd,

2 if s is even.

For each ℓ ∈ N, let Γ̂ℓ
1 ⊂ Σ be the set of points x ∈ Σ such that for every n ≥ ℓ

and i = 1, 2 we have

|fnff (x) − a1| < δ and − log μi(CnCC (x))

Snu(x)
> dimuμ1 − δ. (8.14)

For each ℓ ∈ N, let also Γ̂ℓ
2 ⊂ Σ be the set of points x ∈ Σ such that for every

n ≥ ℓ we have

|fnff (x) − a2| < δ and − log μ2(CnCC (x))

Snu(x)
> dimuμ2 − δ. (8.15)

Clearly, Γ̂ℓ+1
i ⊃ Γ̂ℓ

i for each ℓ ∈ N and i = 1, 2.
Now fix ε ∈ (0, 1), and for each s ∈ N set

ℓs = min
({

ℓ ∈ N : μps
(Γ̂ℓ

ps
) > 1 − ε/2s+1

}
∪ {ℓs−1}

)
,

where ℓ0 = ∞. We note that ℓs ≥ ℓs−1. It follows from Lemma 8.2.6 and Propo-
sition 7.2.7 that ℓs < ∞ for every s ∈ N.

Moreover, for j = 1, 2, since μj is σ-invariant, the set of points x ∈ Σ such
that

lim
n→∞

fnff (x) = lim
n→∞

fnff (σmx) = aj
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for every m ∈ N has full μj-measure. We consider the number

Dn,m(x) = max
{
|fnff +m(y)/fmff (x)|, |fmff (x)/fnff +m(z)| : y, z ∈ σ−nx

}
.

By Lusin’s Theorem, for each j = 1,2 and δ > 0 there exists an integer rj(n, δ) ≥ n
such that Dn,m(x) < 1 + δ for every m > rj(n, δ) and every x in a set Y n

jYY (ε) of
μj-measure at least 1 − δ.

We define inductively increasing sequences of positive integers {ns}s∈N and
{ms}s∈N by m1 = n1 = ℓ1, and for each s ≥ 2 by

ms = rps
(ns−1 + m, ε/2s+1) + ℓs+1! (8.16)

and
ns = ns−1 + m + ms + 1. (8.17)

Setting
Γℓs

ps
= Γ̂ℓs

ps
∩ Y ns−1

pYY
s

(ε/2s+1), (8.18)

we have
μps

(Γℓs
ps

) > 1 − ε/2s. (8.19)

For each s ∈ N, we also consider the family of cylinder sets

Cs = {CmCC
s
(x) : x ∈ Γℓs

ps
}. (8.20)

Moreover, we set D1 = C1, and

Ds =
{
CCC ∈ ZΣ : C ∈ Ds−1, C ∈ Cs and C ∈ ZΣ is minimal

}
, (8.21)

where the minimality refers to the order < in ZΣ defined as follows: if the cylinder
sets C, C′ ∈ ZΣ are distinct, then C < C′ if |C| < |C′|, or if |C| = |C′| but C is
smaller than C′ in the lexicographical order.

We show that for each s ≥ 2 and CCC ∈ Ds with C ∈ Ds−1 and C ∈ Cs,
we have |C| ≤ ns−1 and |C| < m. This is clear for s = 2 since n1 = m1. Using
(8.16)–(8.17) and induction on s > 2, we obtain

|CCC| ≤ ns−1 + m + ms < ns,

and hence, |C′| ≤ m for each C ′C′C′ ∈ Ds+1 with C′ ∈ Ds and C′ ∈ Cs+1.
Now set

Λ =
⋂

s≥1

⋃

C∈Ds

C. (8.22)

We define a measure μ in Λ by μ(C) = μ1(C) if C ∈ D1, by

μ(CCC) = μ(C)μps
(C) (8.23)

if CCC ∈ Ds for some s > 1, and arbitrarily for backward cylinder sets, i.e.,
cylinder sets with coordinates fixed in the past. We extend μ to the whole Σ by
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μ(A) = μ(A∩Λ) for each measurable subset A ⊂ Σ. For each s ∈ N and C ∈ Ds−1,
it follows from (8.19) that

μ

⎛

⎝

⎛⎛
⋃

C∈Ds

C ∩ C

⎞

⎠

⎞⎞

≥ μ(C)
(
1 − ε

2s

)
,

and hence,

μ(Λ) ≥
∞∏

s=1

(
1 − ε

2s

)
> 0

for all sufficiently small ε.
Now let x ∈ C ∈ Ds. We have ms ≤ |C| ≤ ns, and

σ|C|−msx ∈ Γℓs
ps

for each s ∈ N.

By (8.14) and (8.15), we obtain

|f|C|(x) − aps
| ≤ |fmff

s
(σ|C|−msx) − aps

| × f|C|(x)/fmff
s
(σ|C|−msx)

+ |1 − f|C|(x)/fmff
s
(σ|C|−msx)| × |aps

|
≤ D|C|−ms,ms

(x) × |fmff
s
(σ|C|−msx) − aps

|
+ (D|C|−ms,ms

(x) − 1) × |aps
|.

This implies that for all sufficiently large s, if x ∈ C ∈ Ds then

|f|C|(x) − aps
| < 2δ. (8.24)

It follows from (8.13) and (8.24) that

F(F ) ⊃ Λ. (8.25)

Lemma 8.2.7. If x ∈ Λ, then

lim inf
n→∞

− log μ(CnCC (x))

Snu(x)
≥ dimuμ2 − 3δ.

Proof of the lemma. Let x ∈ Λ. For each q ∈ N, we choose an integer sq such that
|Csq | ≤ q < |Csq+1|, where

Dsq+1 ∋ Csq+1 ⊂ CqCC (x) ⊂ Csq ∈ Dsq
.

We first assume that
|Csq | ≤ q ≤ |Csq | + m + ℓsq+1. (8.26)

We have (m + ℓsq+1)/|Csq | → 0 as q → ∞, and hence

Squ(x)

S|Csq |u(x)
≤

S|Csq |+m+ℓsq+1
u(x)

S|Csq |u(x)

≤ 1 +
m + ℓsq+1

|Csq | × max u

min u
→ 1
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as q → ∞. Therefore, there exists q1 ∈ N such that

− log μ(CqCC (x))

Squ(x)
≥ − log μ(Csq )

Squ(x)

≥ − logμ(Csq )

S|Csq |u(x)
× S|Csq |u(x)

Squ(x)

≥ dimuμ2 − 2δ

(8.27)

for every q ≥ q1. In particular,

− logμ(Csq )

S|Csq |u(x)
≥ dimuμ2 − 2δ (8.28)

for every q ≥ q1. When (8.26) does not hold, we have

μ(CqCC (x)) = μ(Csq )μpsq
(C̃) ≤ μ(Csq )μpsq+1(C̃),

where CqCC (x) = CsqCC̃ and the cylinder C̃ contains an element of Csq+1. Moreover,

|C| < m and |C̃| > ℓsq+1. This implies that

|Csq | + |C̃| ≤ q ≤ |Csq | + m + |C̃|,

and
S|Csq |u(x) + S|C̃|u(σq−|C̃|x)

Squ(x)
→ 1

as q → ∞. It follows from the definition of Γ
ℓsq+1

psq+1 (see (8.18)) and (8.28) that
there exists q2 ≥ q1 such that

− log μ(CqCC (x))

Squ(x)
≥ 1

Squ(x)

(
− log μ(Csq ) − log μpsq+1(C̃)

)

≥
S|Csq |u(x)(dimuμ2 − 2δ) + S|C̃|u(σq−|C̃|x)(dimuμ2 − δ)

Squ(x)

≥
S|Csq |u(x) + S|C̃|u(σq−|C̃|x)

Squ(x)
(dimuμ2 − 2δ)

≥ dimuμ2 − 3δ

(8.29)

for every q ≥ q2. The desired statement follows now immediately from (8.27)
and (8.29). �

Lemma 8.2.8. We have

dimuΛ ≥ dimu(μ|Λ) ≥ dimuμ2 − 3δ. (8.30)
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Proof of the lemma. Set α = dimuμ2 − 3δ. We may assume that α > 0 since
otherwise there is nothing to prove. By Lemma 8.2.7, given ε ∈ (0, α), for each
x ∈ Λ there exists n(x) ∈ N such that if n > n(x), then

μ(CnCC (x)) ≤ exp[−(α − ε)Snu(x)]. (8.31)

Given m ∈ N, we set
Λm = {x ∈ Λ : n(x) ≤ m}.

Clearly,

Λm1 ⊂ Λm2 for m1 ≥ m2, and Λ =
⋃

m∈N

Λm.

Take m ∈ N with μ(Λm) ≥ μ(Λ)/2, and let Z ⊂ Λ be an arbitrary set of full
(μ|Λ)-measure. Consider any collection of cylinder sets (Cki

(xi))i∈I such that

⋃

i∈I

Cki
(xi) ⊃ Z ∩ Λm.

Without loss of generality we can also assume that Cki
(xi) ∩ Λm 	=		 ∅ for every

i ∈ I. Hence, there exists some point yi ∈ Cki
(xi)∩Λm for each i ∈ I. Furthermore,

due to the particular distances in (3.9) in the case of one-sided shifts, and in (4.24)
in the case of two-sided shifts, there exists N ∈ N such that Cki

(xi) ⊂ Cki−N (yi)
for every i ∈ I. Therefore, whenever ki − N > m for every i ∈ IiII it follows
from (8.31) that

∑

i∈I

exp[−(α − ε)Ski
u(xi)] ≥

∑

i∈I

exp[−(α − ε)Ski−N (yi) − (α − ε)N supu]

≥ exp[−(α − ε)N sup u]
∑

i∈I

μ(Cki−N (yi))

≥ exp[−(α − ε)N sup u]μ(Λm)

≥ exp[−(α − ε)N sup u]/2.

We thus obtain

N(Z ∩ Λm, α − ε, u, U) ≥ exp[(α − ε)N supu]/2

(see (7.4)), where U is the cover of Σ by cylinder sets of length 1. This implies
that dimu(Z ∩ Λm) ≥ α − ε, and it follows from the arbitrariness of ε that

dimuZ ≥ dimu(Z ∩ Λm) ≥ α.

We obtain dimu(μ|Λ) ≥ α, and thus also (8.30). �

By (8.25), it follows from Lemma 8.2.8 and the arbitrariness of δ that

dimuF(F ) ≥ dimuμ2.
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Since dimuμ1 ≥ dimuμ2, this completes the proof of the theorem when m = 1.
Now we briefly discuss how to deal with the case when m > 1. For each s ∈ N

set ps = s (mod k) + 1. Without loss of generality, we may assume that

dimuμj1(i) ≥ dimuμj2(i) for every 1 ≤ i ≤ m,

and that
dimuμj ≥ dimuμk for every 1 ≤ j ≤ k.

For each ℓ ∈ N and i = 1, . . . , m, let Γ̂ℓ
i,j1(i) ⊂ Σ be the set of points x ∈ Σ such

that for every n ≥ ℓ and t = k, j1(i) we have

|fi,nff (x) − ai,j1(i)| < δ and − log μt(CnCC (x))

Snu(x)
> dimuμj1(i) − δ.

For each ℓ ∈ N and i = 1, . . . , m, let also Γ̂ℓ
i,j2(i) ⊂ Σ be the set of points x ∈ Σ

such that for every n ≥ ℓ and t = k, j2(i) we have

|fi,nff (x) − ai,j2(i)| < δ and − log μt(CnCC (x))

Snu(x)
> dimuμj2(i) − δ.

We then construct a set Λ ⊂ Σ in a similar manner to that when m = 1, by
juxtaposing alternatively cylinder sets whose centers are in the sets

Γ1,j1(1), Γ1,j2(1), Γ2,j1(2), Γ2,j2(2), . . ., Γm,j1(m), and Γm,j2(m)

that are obtained as in (8.18) (although not necessarily in this order; compare
with (8.20) and (8.21)). The remaining arguments are analogous. �

We remark that in the case of two-sided subshifts the cylinder sets used in
the construction of the set Λ in (8.22) are forward cylinder sets, that is, they are
completely determined by a finite number of symbols in the future. Moreover, for
the purpose of the proof of Theorem 8.2.4, the noninvariant measure μ constructed
in (8.23) can be defined arbitrarily for backward cylinder sets, essentially since we
only require the statement in Lemma 8.2.7 when n → +∞. We can also consider
“two-sided” irregular sets, for which there exist no limits both when n → +∞ and
when n → −∞, and establish a similar statement to the one in Theorem 8.2.4
(see [21] for details).

8.3 Existence of distinguishing measures

In order to effectively use Theorem 8.2.4, we need to find distinguishing collections
of measures. The following statement solves this problem for topological Markov
chains. We recall that mu and νq denote respectively the measure of maximal
u-dimension and the full measure at αu(q) (see Definition 7.3.3).
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Theorem 8.3.1 (Existence of distinguishing measures [21]). Let σ|Σ be a one-sided
or two-sided topologically mixing topological Markov chain, and let ϕ1, . . . , ϕm, g, u
be Holder continuous functions in¨ Σ with g, u > 0. If for every i = 1, . . . ,m the
function ϕi is not cohomologous to αig, where αi is the unique real number such
that P (αig) = P (ϕi), then for every ε > 0 there exist ergodic σ-invariant measures
μ1, . . . , μm in Σ such that:

1. μ1, . . . , μm are full measures for the spectrum Du;

2. μ1, . . . , μm, mu is a distinguishing collection of measures for the sequences
of functions {Snϕ1/Sng}n∈N, . . . , {Snϕm/Sng}n∈N;

3. min{dimuμ1, . . . , dimuμm} > dimuΣ − ε.

Proof. For each i = 1, . . . ,m, we have

lim
n→∞

−Snϕi(x)

Sng(x)
= −

∫
Σ

∫∫
ϕi dmu∫

Σ

∫∫
g dmu

for mu-almost every x ∈ Σ.

Since ϕi is not cohomologous to αig, we can show that for each α > 0 the set of
points q ∈ [−α, α] such that

∫

Σ

∫∫
ϕi dνq = αi

∫

Σ

∫∫
g dνq

is finite. Otherwise, by the analytic dependence of
∫
Σ

∫∫
ϕi dνq and

∫
Σ

∫∫
g dνq on q, we

would have ∫

Σ

∫∫
ϕi dμ = αi

∫

Σ

∫∫
g dμ (8.32)

for the equilibrium measure μ of every function in a Cθ(Σ)-open neighborhood of
some ϕq (see (7.14)). Here Cθ(Σ) is the space of Hölder continuous functions in Σ¨
with Hölder exponent¨ θ ∈ (0, 1], equipped with the norm in (7.19). In fact this
implies that (8.32) holds for every equilibrium measure μ. But this is impossible
because ϕi is not cohomologous to αig. Therefore, by Theorem 7.3.2, given ε > 0
there exists a full measure μi for the spectrum Du such that dimuμi > dimuΣ− ε,
and

lim
n→∞

−Snϕi(x)

Sng(x)
	=		 −

∫
Σ

∫∫
ϕi dmu∫

Σ

∫∫
g dmu

for μi-almost every x ∈ Σ.

The collection of measures μ1, . . ., μm has the desired properties. �

8.4 Topological Markov chains

We consider in this section the particular case of topological Markov chains, and
we combine the results in the former sections to show that a large class of irregular
sets has full u-dimension. Given sequences of functions FiFF = {fi,nff : Σ → R}n∈N

for i = 1, . . . , m, we consider the irregular set in (8.10).
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Theorem 8.4.1 ([21]). Let σ|Σ be a one-sided or two-sided topologically mixing
topological Markov chain, and let ϕ1, . . . , ϕm, g, u be Holder continuous functions¨
in Σ with g, u > 0. The following properties are equivalent:

1. ϕi is not cohomologous to αig for any i = 1, . . . ,m, where αi is the unique
real number such that P (αig) = P (ϕi);

2.
dimuF({Snϕ1/Sng}n∈N, . . . , {Snϕm/Sng}n∈N) = dimuΣ.

Proof. The statement follows readily from Theorems 8.2.4 and 8.3.1. �

By using Markov partitions the statement in Theorem 8.4.1 can also be
established for repellers and hyperbolic sets (see Sections 8.5 and 8.6).

We note that a priori it could happen that the cohomology assumptions in
Theorem 8.4.1 were almost never satisfied, but it turns out that precisely the
opposite happens. We formulate a rigorous result in the particular case when g is
constant. Let C(Σ) be the space of continuous functions in Σ, equipped with the
supremum norm.

Theorem 8.4.2 ([21]). If σ|Σ is a topologically mixing topological Markov chain,
then the following properties hold:

1. the family of Hölder continuous functions in¨ Σ which are not cohomologous
to 0 contains a dense subset of C(Σ);

2. for each θ ∈ (0, 1), the family of functions in Cθ(Σ) which are not cohomol-
ogous to 0 contains an open and dense subset of Cθ(Σ).

Proof. Let L be the family of nonconstant linear combinations of characteristic
functions of cylinder sets (of arbitrary length). Clearly, L is a C(Σ)-dense family
composed of Hölder continuous functions.¨

Lemma 8.4.3. If σ|Σ is a topologically mixing topological Markov chain, then the
following properties hold:

1. the family L contains a C(Σ)-dense subset of functions which are not coho-
mologous to 0;

2. for each θ ∈ (0, 1), the family L ∩ Cθ(Σ) contains a Cθ(Σ)-dense subset of
functions which are not cohomologous to 0.

Proof of the lemma. Let g ∈ L. By Livschitz’s theorem (see, for example, [84,
Theorem 19.2.1]), if there exist n ∈ N and periodic points x, y ∈ Σ with σnx = x
and σny = y such that Sng(x) 	=		 Sng(y), then g is not cohomologous to 0. Given
δ > 0, we can find a function h ∈ L which is δ-close to g (with respect to the
supremum norm) simply by changing slightly the value of g in a sufficiently small
cylinder set containing the orbit of only one of the points x and y, such that
Snh(x) 	=		 Snh(y). Again by Livschitz’s theorem, h is not cohomologous to 0.
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We conclude that in any C(Σ)-open neighborhood of a function in L there exist
functions in L which are not cohomologous to 0. Furthermore, if g ∈ Cθ(Σ) is
not cohomologous to 0, then any sufficiently small Cθ(Σ)-open neighborhood of
g contains only functions which are not cohomologous to 0. This completes the
proof of the lemma. �

The statement in the theorem is an immediate consequence of the lemma. �

8.5 Repellers

We show in this section how to use Markov partitions and Theorem 8.4.1 to
obtain corresponding results in the case of repellers. See Section 8.6 for the case
of hyperbolic sets.

Theorem 8.5.1 ([21]). Let J be a repeller of a C1+ε transformation f , for some
ε > 0, such that f is conformal and topologically mixing on J . If ϕ1, . . . , ϕm, g
are Holder continuous functions in¨ J with g > 0, then the following properties are
equivalent:

1. ϕi is not cohomologous to αig for every i = 1, . . . , m, where αi is the unique
real number such that P (αig) = P (ϕi);

2.

h(f |F({Snϕ1/Sng}n∈N, . . . , {Snϕm/Sng}n∈N)) = h(f |J), (8.33)

and

dimHF({Snϕ1/Sng}n∈N, . . . , {Snϕm/Sng}n∈N) = dimHJ.

Proof. Set

F := F({Snϕ1/Sng}n∈N, . . . , {Snϕm/Sng}n∈N).

Repeating arguments in the proof of Theorem 6.1.2 (see Lemma 6.1.6) we find that
F coincides with the image under the coding map χ (see (4.3)) of the corresponding
irregular set F′ ⊂ Σ, for the symbolic dynamics σ|Σ associated to some Markov
partition R.

In the case of the topological entropy, identity (8.33) can be obtained as
follows. We start with an auxiliary result.

Lemma 8.5.2. If R is a Markov partition of J , then h(f |∂R) < h(f |J).

Proof of the lemma. The partition R is a generating partition, and hence the di-
ameter of the image under χ of cylinder sets tends (uniformly) to zero as the
length of the cylinder sets tends to infinity. Therefore, there exist n ∈ N and
C ∈ ∨n

k=0 f−kR such that C ∩ ∂R = ∅. Since f(∂R) ⊂ ∂R, the coding of the
boundary in the symbolic dynamics does not contain at least the cylinder set
corresponding to C. This implies that h(f |∂R) < h(f |J). �
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Since the topological entropy of a set coincides with the topological entropy
of its invariant hull, it follows from Lemma 8.5.2 that

h(f |
∞⋃

n=1

f−n∂R) < h(f |J).

Since the coding map χ is a homeomorphism on the set J \⋃∞
n=1 f−n∂R, if A ⊂ Σ

is such that h(σ|A) = h(σ|Σ), then

h(f |χ(A)) = h(f |J) = h(σ|Σ).

Identity (8.33) is now an immediate consequence of Theorem 8.4.1.
Now we consider the Hausdorff dimension. For each sufficiently small r > 0,

let Ur be the associated Moran cover of J . We recall that the cover is composed
of images under χ of cylinder sets, such that given x ∈ X and a sufficiently small
r > 0 the number of elements in Ur that intersect the ball B(x, r) is bounded from
above by a constant κ > 0 independent of x and r.

We equip Σ with the unique distance such that each cylinder set C of length n
has diameter supx∈C(‖dχ(x)f

n‖−1). Setting u = log ‖df‖◦χ, the Hausdorff dimen-
sion associated to this distance coincides with the u-dimension in Σ. Now let U be
a cover of F by open balls. For each B ∈ U of radius r there are at most κ cylinder
sets (not necessarily all with the same length) such that their images under χ are
the elements of the Moran cover Ur that intersect B. Collecting the cylinder sets
for every B ∈ U, we obtain a family V of cylinder sets in Σ which form a cover
of F′. Furthermore,

∑

U∈U

(diamU)s ≤
∑

C∈V

(diamC)s ≤ κ sup ‖df‖s
∑

U∈U

(diamU)s.

This implies that dimuF′ = dimHF. Furthermore, repeating this argument with
F replaced by J we conclude that dimuΣ = dimHJ . By Theorem 8.4.1, we have
dimuF′ = dimuΣ, and hence dimHF = dimHJ . �

In particular, Theorem 8.5.1 indicates that the boundaries of Markov parti-
tions have no influence in the study of the topological entropy and the Hausdorff
dimension of irregular sets of repellers.

Now we describe several irregular sets which carry full topological entropy
and full Hausdorff dimension. Let

B =

{
x ∈ Σ : lim inf

n→∞

1

n
Sng(x) < lim sup

n→∞

1

n
Sng(x) for some g ∈ C(J)

}
,

where C(J) is the space of continuous functions in J . We also set Bf = χ(B).
Note that

Bf ⊃
{

x ∈ J : lim inf
n→∞

1

n
Sng(x) < lim sup

n→∞

1

n
Sng(x) for some g ∈ C(J)

}
.
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We define the irregular set for the Lyapunov exponents of f by

Lf =

{
x ∈ J : lim inf

n→∞

1

n
log ‖dxfn‖ < lim sup

n→∞

1

n
log ‖dxfn‖

}
.

Given a probability measure in Σ we set

H(μ) =

{
x ∈ Σ : lim inf

n→∞
− logμ(CnCC (x))

n
< lim sup

n→∞
− log μ(CnCC (x))

n

}
,

and given a probability measure μ in J , we define the irregular set for the local
entropies of μ by

Hf (μ) = χ(H(μ ◦ χ)),

and the irregular set for the pointwise dimensions of μ by

D(μ) = {x ∈ J : dμ(x) < dμ(x)}.

Finally, we denote by μD and mE respectively the measures of maximal dimension
and maximal entropy.

Theorem 8.5.3 ([21]). If J is a repeller of a C1+ε transformation f , for some
ε > 0, such that f is conformal and topologically mixing on J , then the following
properties hold:

1. h(f |Bf ) = h(f |J) and dimHBf = dimHJ ;

2. mD 	=		 mE if and only if h(f |Lf ) = h(f |J) and dimHLf = dimHJ .

If, in addition, μ is the equilibrium measure of a Hölder continuous function in¨H J ,
then:

3. μ 	=		 mD if and only if h(f |D(μ)) = h(f |J) and dimHD(μ) = dimHJ ;

4. μ 	=		 mE if and only if h(f |Hf (μ)) = h(f |J) and dimHHf (μ) = dimHJ ;

5. the three measures μ, mD, and mE are distinct if and only if

h(f |D(μ) ∩ Hf (μ) ∩ Lf ) = h(f |J)

and
dimH(D(μ) ∩ Hf (μ) ∩ Lf ) = dimHJ.

Proof. Let μ be the equilibrium measure of a Hölder continuous function¨ ϕ in J
with P (ϕ) = 0. All the identities follow from Theorem 8.5.1 taking respectively
for each statement the sequences of functions:

1. {Sng/n}n∈N, where g is any Hölder continuous function which is not coho-¨
mologous to 0, since

Bf ⊃ χ(B(g)) = χ(F({Sng/n}n∈N));
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2. {Sn log ‖df‖/n}n∈N;

3. {Snϕ/Sn log ‖df‖}n∈N;

4. {Snϕ/n}n∈N;

5. {Snϕ/Sn log ‖df‖}n∈N, {Snϕ/n}n∈N, and {Sn log a/n}n∈N.

This completes the proof of the theorem. �

8.6 Hyperbolic sets

We describe in this section several irregular subsets of hyperbolic sets which carry
full topological entropy and full Hausdorff dimension. Given a hyperbolic set Λ
of a diffeomorphism f , we denote by MD the set of f -invariant probability Borel
measures in Λ of full dimension (see Definition 5.1.3). We note that MD may be
empty (see the discussion after Definition 5.1.3). We continue to denote by mE

the measure of maximal entropy.

Theorem 8.6.1 ([21]). If Λ is a locally maximal hyperbolic set of a C1+ε diffeomor-
phism f , for some ε > 0, such that f is conformal and topologically mixing on Λ,
then the following properties hold:

1. h(f |Bf ) = h(f |Λ) and dimHBf = dimHΛ;

2. log ‖df |Eu‖ is not cohomologous to 0 if and only if

h(f |Lf ) = h(f |Λ) and dimHLf = dimHΛ;

3. log ‖df |Es‖ is not cohomologous to 0 if and only if

h(f |Lf−1) = h(f |Λ) and dimHLf−1 = dimHΛ.

If, in addition, μ is the equilibrium measure of a Hölder continuous function in¨H Λ,
then:

4. μ 	∈ MD if and only if

h(f |D(μ)) = h(f |Λ) for dimHD(μ) = dimHΛ;

5. μ 	=		 mE if and only if

h(f |Hf (μ)) = h(f |Λ) for dimHHf (μ) = dimHΛ;

6. μ 	=		 mE and μ 	∈ MD if and only if

h(f |D(μ) ∩ Hf (μ)) = h(f |Λ) and dimH(D(μ) ∩ Hf (μ)) = dimHΛ.
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Proof. The case of hyperbolic sets can be reduced to the case of repellers in the
following manner. By Proposition 4.2.11, if g is a continuous function in a two-
sided topological Markov chain ΣA, then there exists a cohomologous function g+

such that

g+(· · · i−1i0i1 · · · ) = g+(· · · i′−1i
′
0i

′
1 · · · )

whenever ik = i′k for every k ≥ 0. Let Σ+
A be the one-sided topological Markov

chain with the same transition matrix A. Then the irregular set B(g+) with respect
to Σ+

A coincides with B(g). This establishes the first three statements.
For statement 4 we decompose Λ into local stable and unstable manifolds.

For μ-almost every x ∈ Λ we can define conditional measures νs
x and νu

x in the lo-
cal stable and unstable manifolds at x. These coincide μ-almost everywhere with
the measures μs

x and μu
x constructed in Section 4.2.3 (see (4.38)). By Proposi-

tion 4.2.13, there exists a constant κ > 0 such that

κ−1μ(A) < (μs
x × μu

x)(A) < κμ(A)

for every measurable set A in a small rectangle. Furthermore, the measures μs
x

and μu
x are equilibrium measures of some Hölder continuous functions¨ ϕs

x and ϕu
x

(see Section 4.2.3). Since μ 	∈ MD, the measures μs
x and μu

x cannot be both equiv-
alent respectively to the measures of maximal dimension in the local stable and
unstable manifolds at x. Without loss of generality we assume that μu

x is not
equivalent to the measure of maximal dimension in the local unstable manifold.

Let Du
x(μ) be the set of points in V u(x) for which the pointwise dimension

of μu
x does not exist, and set g = log ‖df |Eu‖. We note that Du

x(μ) is the im-
age under the coding map χ (see (4.25)) of the set of points y ∈ ΣA such that
(Snϕu

x/Sng)(y) does not converge. Proceeding as in the proof of Theorem 8.5.3, it
follows from Theorem 8.5.1 that

h(f |Du
x(μ)) = h(f |F({Snϕu

x/Sng}n∈N)) = h(f |V u(x) ∩ Λ),

and

dimHD
u
x(μ) = dimgF({Snϕu

x/Sng}n∈N) = dimH(V u(x) ∩ Λ).

Now let ms
D,x be the measure of maximal dimension in V s(x). This is the equi-

librium measure of ts log ‖df |Es‖ (see (4.42)). One can easily verify that Du
y (μ) ⊂

D(μ) for every y ∈ V s(x) in a set GD,x of full ms
D,x-measure. Therefore, the set⋃

y∈GD,x
Du

y (μ) is contained in D(μ), and has full stable and unstable dimensions.
We thus obtain the second identity in statement 4.

For the first identity in statement 4, let ms
E,x be the measure of maximal

entropy in V s(x), and let GE,x be a set of full ms
E,x-measure such that Du

y(μ) ⊂
D(μ) for every y ∈ GE,x. The set

B =
⋃

y∈GE,x

D
u
y(μ)
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has full topological entropy with respect to f , and hence,

h(f |D(μ)) ≥ h(f |B) = h(f |Λ).

This completes the proof of statement 4.
The proofs of the remaining statements are analogous. �

Shereshevsky proved earlier in [146] that for a generic C2 surface diffeomor-
phism with a locally maximal hyperbolic set Λ, and an equilibrium measure μ of
a Holder continuous¨ C0-generic function,

dimHY =

{
x ∈ Λ : lim inf

r→0

log μ(B(x, r))

log r
< lim sup

r→0

log μ(B(x, r))

log r

}
> 0.

This statement can easily be recovered from Theorem 8.6.1 (see [21] for details).



Chapter 9

Variational Principles in
Multifractal Analysis

Following the general concept of multifractal analysis introduced in Section 7.1,
one can consider several multifractal spectra. In particular, we showed in Chap-
ters 6 and 7 that the spectra DD and EE are analytic in several contexts. Further-
more, they coincide with the Legendre transform of certain functions defined in
terms of the topological pressure, and this allows us to show that they are always
convex (in fact, in a certain sense, they are “generically” strictly convex; see The-
orem 8.4.2). A priori it is unclear whether it is possible to effect a similar analysis
in the case of the mixed multifractal spectra DE and ED which combine local
and global characteristics of distinct nature. This is precisely the main theme of
this chapter. In particular, we show that the mixed spectra are analytic in several
contexts. The analyticity follows from a conditional variational principle for the
u-dimension which is also established in this chapter, and which is important in
its own right. On the other hand, we show that there are many nonconvex mixed
spectra.

9.1 Conditional variational principle

Let f be a continuous transformation in the compact metric space X . We denote
by C(X) the space of continuous functions ϕ : X → R. Given ϕ, ψ ∈ C(X) with
ψ > 0, we set

Kα = Kα(ϕ, ψ) =

{
x ∈ X : lim

n→∞

ϕn(x)

ψn(x)
= α

}
, (9.1)

where

ϕn(x) =

n−1∑

k=0

ϕ(fkx) and ψn(x) =

n−1∑

k=0

ψ(fkx).
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Moreover, given a positive function u ∈ C(X) we continue to denote by dimuZ
the u-dimension of the set Z ⊂ X (see Definition 7.2.2). For example, if u = 1,
then dimuZ coincides with the topological entropy h(f |Z).

Definition 9.1.1. The function FuFF = Fu,FF (ϕ,ψ) defined by

FuFF (α) = dimuKα(ϕ, ψ)

is called the u-dimension spectrum of the pair (ϕ, ψ).

We denote by D(X) ⊂ C(X) the family of continuous functions with a unique
equilibrium measure, and we denote by P the topological pressure in X . We collect
in the following statement a few properties of the pressure.

Theorem 9.1.2. If the Kolmogorov–Sinai entropy is upper semicontinuous, that is,
if the map μ �→ hμ(f) is upper semicontinuous, then the following properties hold:

1. each function ϕ ∈ C(X) has an equilibrium measure;

2. given ϕ ∈ C(X), the function q �→ P (ϕ + qψ) is differentiable at q = 0 for
every ψ ∈ C(X) if and only if ϕ ∈ D(X); furthermore, the unique equilibrium
measure μϕ is ergodic, and given ψ ∈ C(X) we have

d

dq
P (ϕ + qψ)

∣∣∣∣∣∣∣
q=0

=

∫

X

∫∫
ψ dμϕ; (9.2)

3. if ϕ, ψ ∈ C(X) are such that span{ϕ, ψ} ⊂ D(X), then the function q �→
P (ϕ + qψ) is of class C1 in R;

4. the family D(X) is dense in C(X).

We refer to [132, 86] for details (in particular, see [86, Theorem 4.2.11] for
statement 3 and [132, Theorem 6.14] for statement 4).

For example, when f is a one-sided or two-sided topological Markov chain,
or an expansive homeomorphism, then the entropy is upper semicontinuous (see,
for example, [86, Theorem 4.5.6]). Furthermore, if f is a one-sided or two-sided
topologically mixing topological Markov chain, or an expansive homeomorphism
with the specification property, and ϕ ∈ Cf (X) (see Definition 9.1.3), then ϕ has
a unique equilibrium measure, that is, Cf (X) ⊂ D(X) (see [84] for details).

Definition 9.1.3. We denote by Cf (X) ⊂ C(X) the family of continuous functions
ϕ : X → R for which there exist constants ε > 0 and κ > 0 such that

∣∣∣∣∣∣∣∣∣∣∣∣∣
n−1∑

k=0

ϕ(fkx) −
n−1∑

k=0

ϕ(fky)

∣∣∣∣∣∣∣∣∣∣∣∣∣ < κ

whenever d(fkx, fky) < ε for every k = 0, . . ., n − 1.
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On the other hand, there exist many transformations without the specifica-
tion property for which the entropy is upper semicontinuous. For example, all β-
shifts are expansive, and thus their entropy map is upper semicontinuous (see [86]
for details), but it was shown by Schmeling in [141] that for β in a residual set
of full Lebesgue measure (although the complement has full Hausdorff dimension)
the corresponding β-shift does not have the specification property. On the other
hand, it follows from work of Walters in [162] that for every β-shift the family of
Lipschitz functions is contained in D(X).

Now we present a conditional variational principle for the multifractal spec-
trum FuFF , obtained by Barreira and Saussol in [16]. We denote by M the family
of f -invariant probability Borel measures in the compact metric space X , and by
ME ⊂ M the subset of all ergodic measures. Let also

α = α(ϕ, ψ) = inf

{∫
X

∫∫
ϕdμ∫

X

∫∫
ψ dμ

: μ ∈ M

}
, (9.3)

and

α = α(ϕ, ψ) = sup

{∫
X

∫∫
ϕdμ∫

X

∫
ψ dμ

: μ ∈ M

}
. (9.4)

Theorem 9.1.4. Assume that the Kolmogorov–Sinai entropy is upper semicontin-
uous. If ϕ, ψ, u ∈ C(X) with ψ, u > 0 are such that span{ϕ, ψ, u} ⊂ D(X), then
the following properties hold:

1. if α 	∈ [α, α], then Kα = ∅;

2. if α ∈ (α, α), then Kα 	=		 ∅ and

FuFF (α) = max

{
hμ(f)∫
X

∫∫
u dμ

: μ ∈ M and

∫
X

∫
ϕdμ∫

X

∫∫
ψ dμ

= α

}
; (9.5)

3. the function FuFF is continuous in (α, α);

4.

inf
q∈R

P (qϕ − qαψ − FuFF (α)u) = 0;

5. if Δ(p, q) is the unique real number such that

P (qϕ − pψ − Δ(p, q)u) = 0,

then

FuFF (α) = inf
q∈R

Δ(qα, q). (9.6)

Proof. We start with some preparatory lemmas.
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Lemma 9.1.5. If α ∈ R, then

inf
q∈R

P (qϕ − qαψ − FuFF (α)u) ≥ 0.

Proof of the lemma. By Proposition 7.2.3, the number FuFF (α) coincides with the
unique root δ of the equation PKP

α
(−δu) = 0, where PKP

α
is the topological pressure

in the set Kα (see Definition 7.2.1). Given δ > 0 and τ ∈ N, we consider the set

Lδ,τ =
{
x ∈ X : |ϕn(x) − αψn(x)| < δn for every n ≥ τ

}
.

Since ψ > 0 we can easily show that

Kα ⊂
⋂

δ>0

⋃

τ∈N

Lδ,τ .

Now let U be an open cover of X with sufficiently small diameter so that if n ∈ N

is sufficiently large, U ∈
⋃

k≥n Wk(U), and x ∈ X(U), then

|ϕ(U) − ϕm(U)(x)| ≤ δm(U) and |ψ(U) − ψm(U)(x)| ≤ δm(U).

This implies that if U ∈
⋃

k≥n Wk(U) and X(U) ∩ Lδ,τ 	=		 ∅, then

|ϕ(U) − αψ(U)| < (2 + |α|)δm(U),

and we obtain

PLP
δ,τ

(−FuFF (α)u, U) ≤ PLP
δ,τ

(qϕ − qαψ − FuFF (α)u, U) + (2 + |α|)δ|q|.

Letting diamU → 0 yields

PLP
δ,τ

(−FuFF (α)u) ≤ P (qϕ − qαψ − FuFF (α)u) + (2 + |α|)δ|q|,

and hence,

0 ≤ P⋃PP
τ∈N

Lδ,τ
(−FuFF (α)u) = sup

τ∈N

PLP
δ,τ

(−FuFF (α)u)

≤ P (qϕ − qαψ − FuFF (α)u) + (2 + |α|)δ|q|.

Since δ is arbitrary, we obtain

inf
q∈R

P (qϕ − qαψ − FuFF (α)u) ≥ 0.

This completes the proof of the lemma. �

We denote by ζ = ζq,α,δ the unique equilibrium measure of qϕ − qαψ − δu,
which is well-defined in our setting (see Theorem 9.1.2).

Lemma 9.1.6. For each δ ∈ R and α ∈ (α, α) there exists q = q(δ, α) such that∫
X

∫∫
ϕdζ/

∫
X

∫∫
ψ dζ = α.
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Proof of the lemma. Given δ ∈ R and α ∈ (α, α), we define a function S : R → R

by

S(q) :=

∫

X

∫∫
ϕdζ − α

∫

X

∫∫
ψ dζ =

d

dq
P (qϕ − qαψ − δu). (9.7)

By the upper semicontinuity of the entropy and Theorem 9.1.2, the function

q �→ P (qϕ − qαψ − δu)

is of class C1, and thus S is continuous.
Now we prove that S(q) > 0 for all sufficiently large q > 0. Since ζ is an

equilibrium measure, if q > 0 then

S(q) =
1

q

[
P (qϕ − qαψ − δu) + δ

∫

X

∫∫
u dζ − hζ(f)

]

= sup
μ∈M

[∫

X

∫∫
ϕdμ − α

∫

X

∫∫
ψ dμ +

δ(
∫

X

∫
u dζ −

∫
X

∫∫
u dμ) + hμ(f) − hζ(f)

q

]

≥ sup
μ∈M

[∫

X

∫∫
ϕdμ − α

∫

X

∫∫
ψ dμ +

δ(
∫

X

∫∫
u dζ −

∫
X

∫∫
u dμ) + hμ(f) − hζ(f)

q

]

+ (α − α) inf ψ.

Since the functions ψ, u and the entropies are bounded, and (α− α) inf ψ > 0, we
conclude that S(q) > 0 for all sufficiently large q > 0. A similar argument shows
that S(q) < 0 for all sufficiently small q < 0. The desired result follows from the
continuity of S. �

Lemma 9.1.7. Given α ∈ (α, α), if δ ∈ R is such that

P (qϕ − qαψ − δu) ≥ 0 for every q ∈ R, (9.8)

then there exists μ ∈ ME such that
∫

X

∫∫
ϕdμ/

∫

X

∫∫
ψ dμ = α and dimuμ ≥ δ.

Proof of the lemma. Let q = q(δ, α) be as in Lemma 9.1.6. We continue to write
ζ = ζq,α,δ. By (9.8) we have

hζ(f) − δ

∫

X

∫∫
u dζ = hζ(f) + q

∫

X

∫∫
ϕdζ − qα

∫

X

∫∫
ψ dζ − δ

∫

X

∫∫
u dζ ≥ 0.

It follows from Proposition 7.2.7 that δ ≤ hζ(f)/
∫

X

∫∫
u dζ = dimuζ. �

Lemma 9.1.8. If α ∈ (α, α), then Kα 	=		 ∅ and

FuFF (α) = sup

{
dimuμ : μ ∈ ME and

∫
X

∫∫
ϕdμ∫

X

∫
ψ dμ

= α

}
. (9.9)
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Proof of the lemma. By Lemma 9.1.5 we can apply Lemma 9.1.7 with δ = FuFF (α)
to obtain

FuFF (α) ≤ sup

{
dimuμ : μ ∈ ME and

∫
X

∫∫
ϕdμ∫

X

∫∫
ψ dμ

= α

}
.

Now let μ ∈ ME be a measure such that

∫

X

∫∫
ϕdμ/

∫

X

∫∫
ψ dμ = α.

Birkhoff’s ergodic theorem implies that μ(Kα) = 1, and it follows from Proposi-
tion 7.2.7 that

FuFF (α) ≥ dimuμ =
hμ(f)∫
X

∫
u dμ

.

This completes the proof of the lemma. �

Lemma 9.1.9. If α ∈ (α, α), then

inf
q∈R

P (qϕ − qαψ − FuFF (α)u) = 0.

Proof of the lemma. Since u is positive, it follows from Lemma 9.1.5 and the
continuity of the topological pressure (in the supremum norm) that there exists
δ∗ ≥ FuFF (α) such that

inf
q∈R

P (qϕ − qαψ − δ∗u) = 0.

On the other hand, by Lemma 9.1.7 there exists μ ∈ ME such that

∫

X

∫∫
ϕdμ/

∫

X

∫∫
ψ dμ = α and dimuμ ≥ δ∗.

It follows from Lemma 9.1.8 that FuFF (α) ≥ δ∗. �

We now establish the continuity of the spectrum.

Lemma 9.1.10. The function FuFF is continuous in (α, α).

Proof of the lemma. We first show that FuFF is upper semicontinuous. Given α ∈
(α, α), let αn ∈ (α, α) be any sequence converging to α. By Lemma 9.1.6, for each
n ∈ N there exists qn ∈ R such that

∫

X

∫∫
ϕdμn = αn

∫

X

∫∫
ψ dμn,

where μn = ζqn,αn,Fu(αn). By Lemma 9.1.9, the function

q �→ P (qϕ − qαnψ − FuFF (αn)u)



9.1. Conditional variational principle 153

attains its infimum at q = qn (and the infimum is equal to zero). Since μn is an
equilibrium measure, we have

hμn
(f) = FuFF (αn)

∫

X

∫∫
u dμn.

Now let β = lim supn→∞ FuFF (αn). Taking a subsequence, if necessary, we may as-
sume that FuFF (αn) converges to β, and that the sequence of measures μn converges
weakly to some measure μ. Since the entropy is upper semicontinuous, we obtain

hμ(f) ≥ lim sup
n→∞

hμn
(f) = lim sup

n→∞
FuFF (αn)

∫

X

∫∫
u dμ. (9.10)

Since μn ⇀ μ and αn → α, we have

∫

X

∫∫
ϕdμ − α

∫

X

∫∫
ψ dμ = 0,

and hence,

P (qϕ − qαψ − FuFF (α)u) ≥ hμ(f) − FuFF (α)

∫

X

∫∫
u dμ

for every q ∈ R. Taking the infimum over q, it follows from Lemma 9.1.9 that

FuFF (α)

∫

X

∫∫
u dμ ≥ hμ(f).

Since u > 0, we conclude from (9.10) that FuFF is upper semicontinuous.
Now we show that FuFF is lower semicontinuous. Let α∗ ∈ (α, α). We consider

the functions

χq = qϕ − qα∗ψ − FuFF (α∗)u and F (q) = PXP (χq).

By Lemma 9.1.5 we have F (q) ≥ 0 for every q ∈ R. On the other hand, by
Theorem 9.1.2 the function F is of class C1 and

S(q) := F ′(q) =

∫

X

∫∫
ϕdμq − α∗

∫

X

∫∫
ψ dμq, (9.11)

where μq is the equilibrium measure of χq. We note that S is increasing, by the
convexity of the topological pressure. By Lemma 9.1.6, there exists q∗ = q∗(α∗) ∈
R such that S(q∗) = 0. Furthermore, it is shown in the proof of Lemma 9.1.6 that
S(q) > 0 for all sufficiently large q > 0, and that S(q) < 0 for all sufficiently
small q < 0. Therefore, we can always choose q∗ so that S(q) > 0 for every q > q∗.

Let ε > 0. Since S is continuous, there exists δ ∈ (0, ε) such that

sup{|S(q)| : q ∈ (q∗ − δ, q∗ + δ)} ≤ ε inf u.



154 Chapter 9. Variational Principles in Multifractal Analysis

Since μq is the equilibrium measure of χq and F (q) ≥ 0, it follows from Proposi-
tion 7.2.7 that

dimuμq =
hμq

(f)∫
X

∫∫
u dμq

= FuFF (α∗) +
F (q) − qS(q)∫

X

∫∫
u dμq

≥ FuFF (α∗) −
qS(q)∫
X

∫∫
u dμq

≥ FuFF (α∗) − (|q∗| + ε)ε.

(9.12)

For every sufficiently small α > α∗ it follows from the continuity of S and the
choice of q∗ that there exists q = q(α) ∈ (q∗, q∗ + δ) such that

α = α∗ + S(q)/

∫

X

∫∫
ψ dμq, (9.13)

and hence, by (9.11), ∫

X

∫∫
ϕdμq = α

∫

X

∫∫
ψ dμq. (9.14)

By Lemma 9.1.8 and (9.12) we conclude that

FuFF (α) ≥ dimuμq ≥ FuFF (α∗) − (|q∗| + ε)ε. (9.15)

Since ε is arbitrary, this establishes the right lower semicontinuity of FuFF .
The left lower semicontinuity of FuFF can be established in a similar manner.

If necessary, we first rechoose q∗ so that S(q) < 0 for every q < q∗. For every
sufficiently small α < α∗ there exists q = q(α) ∈ (q∗−δ, q∗) with α as in (9.13), and
hence (9.14) holds. By Lemma 9.1.8 and (9.12), we conclude that (9.15) holds, and
the arbitrariness of ε implies that FuFF is left lower semicontinuous. This completes
the proof of the lemma. �

Now we proceed with the proof of Theorem 9.1.4. Setting δ = FuFF (α) in
Lemma 9.1.6 we conclude that for q = q(δ, α) the equilibrium measure ζ = ζq,α,δ

satisfies

P (qϕ − qαψ − FuFF (α)u) = hζ(f) − FuFF (α)

∫

X

∫∫
u dζ,

and hence,

FuFF (α) =
hζ(f)∫
X

∫∫
u dζ

= dimuζ.

This shows that in (9.9) we can replace the supremum by the maximum.
Now let μ ∈ M be a measure such that

∫
X

∫∫
ϕdμ/

∫
X

∫∫
ψ dμ = α (we note that

μ is not necessarily ergodic). To complete the proof of statement 2 it is sufficient
to show that

FuFF (α) ≥ hμ(f)∫
X

∫∫
u dμ

. (9.16)
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We first observe that

P (qϕ − qαψ − FuFF (α)u)

≥ hμ(f) + q

∫

X

∫∫
ϕdμ − qα

∫

X

∫∫
ψ dμ − FuFF (α)

∫

X

∫∫
u dμ

= hμ(f) − FuFF (α)

∫

X

∫∫
u dμ.

Taking the infimum over q ∈ R, it follows from Lemma 9.1.9 that

0 ≥ hμ(f) − FuFF (α)

∫

X

∫∫
u dμ,

and hence (9.16) holds. This establishes statement 2. Statement 1 is an immediate
consequence of statement 2.

The continuity of FuFF is established in Lemma 9.1.10. Statement 4 is the
content of Lemma 9.1.9. Statement 5 is an immediate consequence of statement 4.
This completes the proof of the theorem. �

For a repeller of a C1+ε conformal expanding map f , when u = log ‖df‖ (that
is, in the case of the Hausdorff dimension) the identity in (9.5) was established by
Feng, Lau and Wu in [63] for arbitrary continuous functions.

Definition 9.1.11. Identity (9.5) is called a conditional variational principle for the
u-dimension spectrum FuFF .

Identity (9.6) shows that the spectrum FuFF is given by a formula that may
remind a Legendre transform of the topological pressure. However, in general the
spectrum is not convex (see Proposition 9.2.2).

Taking u = 1 in Theorem 9.1.4 we obtain a conditional variational principle
for the entropy spectrum.

Theorem 9.1.12 ([16]). Assume that the Kolmogorov–Sinai entropy is upper semi-
continuous. If ϕ, ψ ∈ C(X) with ψ > 0 are such that span{ϕ, ψ} ⊂ D(X), and
α ∈ (α, α), then

h(f |Kα) = max

{
hμ(f) : μ ∈ M and

∫
X

∫∫
ϕdμ∫

X

∫
ψ dμ

= α

}
. (9.17)

When ψ = 1, identity (9.17) (with the maximum replaced by the supremum)
was established by Takens and Verbitski in [154], under the assumptions that f is
a continuous transformation with the specification property, and ϕ is an arbitrary
continuous function (which thus may have more than one equilibrium measure).
We note that they use a different approach. In [121] the authors discuss a problem
with the proof in [154] but they also give the appropriate correction.

In [18], Barreira and Saussol obtained conditional variational principles for
hyperbolic flows.
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9.2 Topological Markov chains

Now we consider the particular case of one-sided and two-sided topological Markov
chains (see Definitions 4.1.3 and 4.2.7).

Theorem 9.2.1 ([16]). If σ|Σ is a topologically mixing topological Markov chain,
and ϕ, ψ, u ∈ CσCC (Σ) with ψ, u > 0, then the following properties hold:

1. if α 	∈ [α, α], then Kα = ∅;

2. if α ∈ (α, α), then Kα 	=		 ∅ and

FuFF (α) = max

{
hμ(σ)∫
Σ

∫∫
u dμ

: μ ∈ M and

∫
Σ

∫∫
ϕdμ∫

Σ

∫∫
ψ dμ

= α

}
. (9.18)

Proof. It is well known that for topologically mixing topological Markov chains
and functions in CσCC (Σ) the assumptions in Theorem 9.1.4 are satisfied. The desired
statement is thus an immediate consequence of that theorem. �

In the case of the full shift and for ψ = u = 1, the identity in (9.18) was first
established by Olivier [105, 106], for the more general class of g-measures. This
class, introduced by Keane in [85], is composed of equilibrium measures of a class
of continuous functions that need not be Hölder continuous. It is known that any¨
Gibbs measure is a g-measure (see [106] for details).

Now we provide an explicit example for which the spectrum FuFF is not convex.
This strongly contrasts with what happens with the multifractal spectra studied
in Chapters 6 and 7, which are always Legendre transforms of the topological
pressure, and which thus are always convex.

Proposition 9.2.2 ([16]). Let σ|Σ+
2 be the full shift on two symbols. There exist

Holder continuous functions¨ ϕ, ψ, and u in Σ+
2 such that the spectrum FuFF is not

convex.

Proof. We have Σ+
2 = {1, 2}N. Set ϕ(x1x2 . . .) = ϕx1 , with ϕ1 = 0 and ϕ2 = 1,

ψ = 1, and u(x1x2 . . .) = ux1 , for some positive numbers u1 and u2. Writing

βμ = μ({(x1x2 . . .) ∈ Σ+
2 : x1 = 1}),

it follows from Theorem 9.2.1 that

FuFF (α) = max
μ∈M

{
hμ(σ)

v1(1 − βμ) + v2βμ
: βμ = α

}

=
1

−α(v1 − v2) + v1
max
μ∈M

{hμ(σ) : βμ = α} .
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Now let ξ be the partition of Σ+
2 into cylinder sets of length 1. For each μ ∈ M

with βμ = α we have

hμ(σ) = inf
n∈N

1

n
HμH

(
n−1∨

k=0

σ−kξ

)
≤ HμH (ξ)

= −α log α − (1 − α) log(1 − α),

with equality if μ is the Bernoulli measure in Σ+
2 with βμ = α. Therefore,

FuFF (α) =
α log α + (1 − α) log(1 − α)

α(u1 − u2) − u1
.

For example, taking u1 = 1 and u2 = 100 the function FuFF is not convex. �

See Figure 9.1 for the graph of a nonconvex spectrum FuFF , as constructed in
the proof of Proposition 9.2.2.

Figure 9.1: A nonconvex u-dimension spectrum

We also show that for topological Markov chains the multifractal spectrum FuFF

is analytic, thus substantially improving statement 3 in Theorem 9.1.4.

Theorem 9.2.3 ([16]). If σ|Σ is a topologically mixing topological Markov chain,
and ϕ, ψ, and u are Holder continuous functions in¨ X with ψ, u > 0, then the
following properties hold:

1. if ϕ is cohomologous to some multiple of ψ, then α = α;

2. if ϕ is not cohomologous to any multiple of ψ, then the function FuFF is analytic
in the nonempty interval (α, α).

Proof. We assume first that there exist β ∈ R and a continuous function χ : Σ → R

such that ϕ − βψ = χ ◦ σ − χ. Then

ϕn

ψn
− β =

χ ◦ σn − χ

ψn
→ 0 as n → ∞,
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where

ϕn =
n−1∑

k=0

ϕ ◦ σk and ψn =
n−1∑

k=0

ψ ◦ σk.

By Birkhoff’s ergodic theorem, if μ ∈ M is ergodic, then
∫
Σ

∫∫
ϕdμ∫

Σ

∫∫
ψ dμ

= β,

and hence, α = α = β. This establishes the first property.
We continue with an auxiliary lemma.

Lemma 9.2.4. If ϕ − βψ is not cohomologous to a constant for every β ∈ R, then
the spectrum FuFF is analytic in the nonempty interval (α, α).

Proof of the lemma. For α ∈ (α, α) we set

F (q, δ, α) = P (qϕ − qαψ − δu).

By Theorem 9.1.4, the number FuFF (α) coincides with the unique δ ∈ R such that

inf
q∈R

F (q, δ, α) = 0.

It is well known that in the present context the topological pressure is analytic
in the space of Holder continuous functions (with a given H¨¨ older exponent), and¨
thus F is analytic in all variables. In addition, due to the cohomology assumption
the function q �→ F (q, δ, α) is strictly convex. Hence, if there exists q ∈ R such
that the derivative ∂F/∂q vanishes, then the minimum is attained at q. But

∂F

∂q
(q, δ, α) = S(q),

with S(q) as in (9.7). By Lemma 9.1.6, there exists q = q(δ, α) ∈ R such that
S(q) = 0 (we note that such a q is necessarily unique, by the strict convexity of
q �→ F (q, δ, α)). The u-dimension FuFF (α) is then given by the unique root δ = δ(α)
of the system of equations

F (q(δ, α), δ, α) =
∂F

∂q
(q(δ, α), δ, α) = 0.

We want to apply the implicit function theorem in order to obtain the regu-
larity of the functions q(α) = q(δ(α), α) and δ(α). Writing

G(q, δ, α) =

(
F (q, δ, α)

∂F/∂q(q, δ, α)

)
,

it is sufficient to show that

det

[(
∂G

∂q
,
∂G

∂δ

)]
=

∂F

∂q
· ∂2F

∂δ∂q
− ∂2F

∂q2
· ∂F

∂δ
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does not vanish when δ = δ(α) and q = q(δ(α), α). Since ∂F/∂q = 0 at q(δ, α), it
is sufficient to show that ∂2F/∂q2 and ∂F/∂δ are nonzero. We observe that

∫

Σ

∫∫
(ϕ − αψ) dζq,α,δ

= 0

when q = q(δ(α), α) and δ = δ(α). Since ϕ−αψ is not cohomologous to a constant,
∂F/∂q2 does not vanish (see [132]). Finally,

∂F

∂δ
= −

∫

Σ

∫∫
u dζq,α,δ ≤ − inf u < 0.

This shows that δ(α) and q(α) are analytic. �

By Lemma 9.2.4, to prove the second statement in the theorem it remains to
consider the case when there exist β, c ∈ R with c 	= 0, and a continuous function		
χ : Σ → R such that

ϕ − βψ = c + χ ◦ σ − χ, (9.19)

but ϕ is not cohomologous to β′ψ for every β′ ∈ R. We can easily verify that
x ∈ Kα(ϕ, ψ) if and only if x ∈ Kc/(α−β)(ψ, 1). Furthermore, it follows from (9.19)
that

ϕn

ψn
− β =

cn

ψn
+

χ ◦ σn − χ

ψn
.

Since ψ > 0 and c 	= 0, we conclude that		 β 	=		 α for every α ∈ R such that
Kα(ϕ, ψ) 	=		 ∅. This shows that the function α �→ c/(α − β) is real analytic
in (α, α).

Furthermore, we observe that ψ cannot be cohomologous to a constant, say
γ ∈ R. Otherwise the function ϕ would be cohomologous to βψ + c = (β + c/γ)ψ
(since ψ > 0, the constant γ would be positive), which contradicts the hypothesis
that ϕ is not cohomologous to β′ψ for every β′ ∈ R. Therefore, we can apply
Lemma 9.2.4 to the pair of functions (ψ, 1) to conclude that the spectrum Fu,FF (ψ,1)

is analytic in the nonempty interval (β, β), where

β = inf

{∫

Σ

∫∫
ψ dμ : μ ∈ M

}
and β = sup

{∫

Σ

∫∫
ψ dμ : μ ∈ M

}
.

Since ψ > 0, we have β > 0.
Since Fu,FF (ϕ,ψ) is the composition of the analytic functions Fu,FF (ψ,1) and α �→

c/(α − β), we conclude that it is also analytic. Furthermore,

(α, α) =

{
(β + c/β, β + c/β) when c > 0,

(β + c/β, β + c/β) when c < 0.

This completes the proof of the theorem. �
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9.3 Dimension of irregular sets

Let σ|Σ be a subshift, obtained from a compact σ-invariant set Σ. Given functions
ϕ, ψ ∈ C(Σ) with ψ > 0, we obtain the multifractal decomposition

Σ =
⋃

α∈[α,α]

Kα(ϕ, ψ) ∪ I(ϕ, ψ),

where Kα(ϕ, ψ), α, and α are defined by (9.1), (9.3), and (9.4) (with X = Σ), and
where

I(ϕ, ψ) =

{
x ∈ Σ : lim inf

n→∞

ϕn(x)

ψn(x)
< lim sup

n→∞

ϕn(x)

ψn(x)

}
.

Definition 9.3.1. The set I(ϕ, ψ) is called the irregular set for the pair (ϕ, ψ).

By Birkhoff’s ergodic theorem, I(ϕ, ψ) has zero measure with respect to any
finite invariant measure.

The following result of Barreira and Saussol [16] shows that from the point
of view of dimension theory the irregular set I(ϕ, ψ) is as large as the whole space.
The proof uses the techniques developed in [21] (see Chapter 8).

Theorem 9.3.2. Let σ|Σ be a subshift with the specification property. If ϕ, ψ, u ∈
C(Σ) with ψ, u > 0 are such that span{ϕ, ψ, u} ⊂ D(Σ), and α < α, then

dimuI(ϕ, ψ) = dimuΣ.

Proof. By Theorem 9.1.4, the function FuFF is continuous in (α, α). Now we show
that FuFF is continuous where it attains its maximum even if this occurs at α ∈
{α, α}. Let mu be the measure of maximal dimension, that is, the equilibrium
measure of −dimuΣ · u. Clearly, FuFF (α) ≤ dimumu for every α. Furthermore, we
can easily verify that if

α =

∫

Σ

∫∫
ϕdmu/

∫

Σ

∫∫
ψ dmu,

then FuFF (α) = dimumu. Therefore, when α ∈ {α, α} we can use a similar argument
to that in the proof of Lemma 9.1.10 to establish the continuity at α.

We also need the following statement, which is an immediate consequence of
Theorem 8.2.4.

Lemma 9.3.3. If σ|Σ is a subshift with the specification property, and μ1, μ2 ∈ ME

are such that ∫
Σ

∫∫
ϕdμ1∫

Σ

∫∫
ψ dμ1

	=		
∫
Σ

∫∫
ϕdμ2∫

Σ

∫∫
ψ dμ2

,

then

dimuI(ϕ, ψ) ≥ min{dimuμ1, dimuμ2}.
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The continuity of FuFF at the point α =
∫
Σ

∫∫
ϕdmu/

∫
Σ

∫∫
ψ dmu guarantees that

for each ε > 0 there exists an equilibrium measure μ ∈ ME such that

∫
Σ

∫∫
ϕdμ∫

Σ

∫∫
ψ dμ

	=		 α and dimuμ > dimuΣ − ε.

By Lemma 9.3.3, we conclude that

dimuI(ϕ, ψ) ≥ min{dimuμu, dimuμ} > dimuΣ − ε.

The arbitrariness of ε implies the desired result. �

Using the techniques described in Chapter 8, when σ|Σ is a subshift with the
specification property, we can show that if the functions ϕi, ψi, u ∈ C(Σ) with
ψi, u > 0 are such that span{ϕi, ψi, u} ⊂ D(Σ) and α(ϕi, ψi) < α(ϕi, ψi) for i = 1,
. . ., k, then

dimu

k⋂

i=1

I(ϕi, ψi) = dimuΣ.

In the particular case of topologically mixing topological Markov chains and Hölder¨
continuous functions, the statement in Theorem 9.3.2 was obtained by Barreira
and Schmeling in [21].

9.4 Repellers and mixed spectra

Now we consider the case of repellers. Using Markov partitions we establish a
conditional variational principle for the u-dimension, as well as the analyticity of
the spectrum FuFF . We also obtain versions of the remaining results in the former
sections. We continue to denote by M the family of f -invariant probability Borel
measures, and by ME ⊂ M the subset of all ergodic measures.

Theorem 9.4.1 ([16]). Let J be a repeller of a C1+ε transformation f , for some
ε > 0, such that f is conformal and topologically mixing on J , and let ϕ, ψ, and u
be Holder continuous functions in¨ J with ψ, u > 0. If ϕ is not cohomologous to
any multiple of ψ, then:

1. the function FuFF is analytic in (α, α);

2. if α ∈ (α, α), then

FuFF (α) = max

{
hμ(f)∫
J

∫∫
u dμ

: μ ∈ M and

∫
J

∫∫
ϕdμ∫

J

∫∫
ψ dμ

= α

}
= inf

q∈R

Δ(qα, q),

where Δ(p, q) is the unique real number such that

P (qϕ − pψ − Δ(p, q)u) = 0;
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3. for every α ∈ (α, α) we have

inf
q∈R

P (qϕ − qαψ − FuFF (α)u) = 0;

4. dimuI(ϕ, ψ) = dimuJ .

Proof. Let R1, . . ., Rp be the elements of a Markov partition of J , and let χ : Σ → J
be the associated coding map. The following result is due to Schmeling [143].

Lemma 9.4.2. We have dimu◦χ B = dimuχ(B) for every set B ⊂ Σ.

Proof of the lemma. Clearly,

dimuχ(B) ≤ dimu◦χB for every set B ⊂ Σ.

For the reverse inequality, let U be a finite open cover of J , and consider a collection
Γ ⊂ ⋃

n∈N
Wn(U) covering χ(B). For each U ∈ Γ, let CiCC (U) ⊂ Σ, i = 1, . . . , N(U)

be the cylinder sets of length m(U) such that χ(CiCC (U)) intersects χ(U). Since f
is conformal on J , we have M := supU∈Γ N(U) < ∞. The set

V =
{
CiCC (U) : U ∈ Γ and i = 1, . . . , N(U)

}

is a cover of B, and

∑

C∈V

exp
[
− α inf

x∈C
S|C|u(χ(x))

]
≤ M

∑

U∈Γ

exp[−αu(U)]. (9.20)

Note that due to the uniform continuity of u in J (and thus of u ◦χ in Σ), we can
replace the supremum in (7.2) by the infimum (see (3.40)). Therefore, it follows
from (9.20) that dimu◦χ B ≤ dimuχ(B). �

The statement in the theorem is now a simple consequence of Theorems 9.1.4,
9.2.1, 9.2.3, and 9.3.2, together with Lemma 9.4.2 (in a similar manner to that in
the proof of Theorem 6.1.2; see Lemma 6.1.6). �

Let J be a repeller of f . Given a Hölder continuous function¨ ϕ : J → R, we
consider the sets

D =

{
−

∫
J

∫∫
ϕdμ∫

J

∫∫
log ‖df‖ dμ

: μ ∈ M

}
,

E =

{
−
∫

J

∫∫
ϕdμ : μ ∈ M

}
, L =

{∫

J

∫∫
log ‖df‖ dμ : μ ∈ M

}
.

Using Theorem 9.4.1 we can obtain conditional variational principles for each
of the multifractal spectra introduced in Section 7.1.

Theorem 9.4.3 ([16]). Let J be a repeller of a C1+ε transformation f , for some ε >
0, such that f is conformal and topologically mixing on J . If ν is the equilibrium
measure of a Hölder continuous function¨ ϕ in J with P (ϕ) = 0, then:
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1. the set D is an interval or a point, it coincides with the domains of the
functions DD,ν and DE,ν , and if α ∈ intD then

DD,ν(α) = max

{
dimHμ : μ ∈ ME and −

∫
J

∫∫
ϕdμ∫

J

∫∫
log ‖df‖ dμ

= α

}
,

DE,ν(α) = max

{
hμ(f) : μ ∈ ME and −

∫
J

∫∫
ϕdμ∫

J

∫∫
log ‖df‖ dμ

= α

}
;

2. the set E is an interval or a point, it coincides with the domains of the
functions ED,ν and EE,ν , and if α ∈ intE then

ED,ν(α) = max

{
dimHμ : μ ∈ ME and −

∫

J

∫∫
ϕdμ = α

}
,

EE,ν(α) = max

{
hμ(f) : μ ∈ ME and −

∫

J

∫∫
ϕdμ = α

}
;

3. the set L is an interval or a point, it coincides with the domains of the
functions LD and LE, and if α ∈ intL then

LD(α) = max

{
dimHμ : μ ∈ ME and

∫

J

∫∫
log ‖df‖ dμ = α

}
,

LE(α) = max

{
hμ(f) : μ ∈ ME and

∫

J

∫∫
log ‖df‖ dμ = α

}
.

Proof. Set ψ = log ‖df‖. We have

dν(x) = lim
n→∞

−ϕn(x)

ψn(x)
, hν(x) = lim

n→∞
−ϕn(x)

n
,

λ(x) = lim
n→∞

ψn(x)

n
,

whenever the corresponding limits exist. Therefore, by Theorem 9.4.1:

1. setting u = log ‖df‖ (see Example 7.2.5) we obtain each of the first identities
in statements 1, 2, and 3 in the theorem, considering respectively the pairs
of functions (ϕ,−ψ), (ϕ,−1), and (ψ, 1);

2. setting u = 1 (see Example 7.2.4) we obtain each of the second identities in
statements 1, 2, and 3 in the theorem, considering respectively the pairs of
functions (ϕ,−ψ), (ϕ,−1), and (ψ, 1).

This completes the proof of the theorem. �
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We remark that the conformality of f on J is essential to all but the spec-
trum EE,ν . Indeed, we can formulate the following stronger statement for this
spectrum.

Theorem 9.4.4 ([16]). Let J be a repeller of a C1+ε transformation f , for some
ε > 0, such that f is topologically mixing on J . If ν is the equilibrium measure of
a Holder continuous function¨ ϕ in J with P (ϕ) = 0, then

EE,ν(α) = max

{
hμ(f) : μ ∈ ME and −

∫

J

∫∫
ϕdμ = α

}
.

Proof. Considering the functions u = 1 and ψ = −1, the statement is an immediate
consequence of Theorem 9.2.1 and Lemma 9.4.2. �

For a repeller of a conformal map, let mD and mE be respectively the mea-
sures of maximal dimension and maximal entropy. The following is an immediate
consequence of statement 2 in Theorem 9.2.3.

Theorem 9.4.5 ([16]). If J is a repeller of a C1+ε transformation f , for some ε > 0,
such that f is conformal and topologically mixing on J , and ν is the equilibrium
measure of a Hölder continuous function in¨ J , then:

1. if ν 	=		 mD, then the functions DD,ν and DE,ν are analytic;

2. if ν 	=		 mE, then the functions ED,ν and EE,ν are analytic;

3. if mD 	=		 mE, then the functions LD and LE are analytic.



Part III

Multifractal Analysis:
Further Developments



Chapter 10

Multidimensional Spectra and
Number Theory

In the theory of dynamical systems we are sometimes interested in more than
one local quantity at the same time. Examples include Lyapunov exponents, local
entropy, and pointwise dimension. However, the theory of multifractal analysis
described in the former chapters only considers separately each of these local
quantities. This led Barreira, Saussol and Schmeling to develop in [20] a multi-
dimensional version of the theory of multifractal analysis. For example, we can
consider intersections of level sets of Birkhoff averages of different functions, and
describe their multifractal properties, including their “size” in terms of topological
entropy and of Hausdorff dimension. It turns out that the corresponding multi-
dimensional multifractal spectra exhibit several nontrivial phenomena that are
absent in the one-dimensional case. A unifying element continues to be the use of
the thermodynamic formalism.

10.1 Conditional variational principle

As an illustration we first formulate a rigorous statement in the case of topological
Markov chains.

Let M be the family of σ-invariant probability Borel measures in a topolog-
ical Markov chain Σ. Given continuous functions ϕ, ψ : Σ → R, we consider the
intersections of the level sets of Birkhoff averages

Kα,β = Kα(ϕ) ∩ KβK (ψ), (10.1)

where

Kα(ϕ) =

{
x ∈ Σ : lim

n→∞

1

n

n−1∑

k=0

ϕ(σkx) = α

}
,
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and

KβK (ψ) =

{
x ∈ Σ : lim

n→∞

1

n

n−1∑

k=0

ψ(σkx) = β

}
.

We also consider the set

D =

{(∫

Σ

∫∫
ϕdμ,

∫

Σ

∫∫
ψ dμ

)
∈ R

2 : μ ∈ M

}
.

The following result is a conditional variational principle for the sets Kα,β in (10.1).
It was established by Barreira, Saussol and Schmeling in [20].

Theorem 10.1.1. Let σ|Σ be a topologically mixing topological Markov chain, and
let ϕ and ψ be Holder continuous functions in¨ Σ. Then for each (α, β) ∈ intD we
have Kα,β 	=		 ∅, and

h(σ|Kα,β) = sup

{
hμ(σ) : μ ∈ M and

(∫

Σ

∫∫
ϕdμ,

∫

Σ

∫∫
ψ dμ

)
= (α, β)

}

= inf
{
P (p(ϕ − α) + q(ψ − β)) : (p, q) ∈ R

2
}

.

(10.2)

Theorem 10.1.1 is a particular case of Theorem 10.1.4 below. The first iden-
tity in (10.2) was established independently by Fan, Feng and Wu [57], also for
arbitrary continuous functions ϕ and ψ. We will show that the second identity
in (10.2) can be applied with success to several problems in number theory (see
Section 10.7).

The following result was also established in [20].

Theorem 10.1.2. If σ|Σ is a topologically mixing topological Markov chain, and ϕ
and ψ are Holder continuous functions in¨ Σ, then the following properties hold:

1. if (α, β) 	∈ D, then Kα,β = ∅;

2. if for every (p, q) ∈ R2 the function pϕ+qψ is not cohomologous to a constant,
then D = intD;

3. the function (α, β) �→ h(σ|Kα,β) is analytic in intD;

4. there is an ergodic equilibrium measure μα,β ∈ M with

∫

Σ

∫∫
ϕdμ = α and

∫

X

∫∫
ψ dμ = β,

such that
μα,β(Kα,β) = 1 and hμα,β

(σ) = h(σ|Kα,β).

Theorem 10.1.2 is also a consequence of Theorem 10.1.4 below. In partic-
ular, statement 2 gives a condition which guarantees that the identities in The-
orem 10.1.1 are valid for a dense set of pairs (α, β) ∈ D. We note that this is
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automatic in the case of one-dimensional spectra, since then D is an interval (see
Chapters 6, 7, and 9).

Now let f be a continuous transformation in the compact metric space X .
We continue to denote by C(X) the space of continuous functions ϕ : X → R.
Given d ∈ N, consider a pair of vectors (Φ, Ψ) ∈ C(X)d × C(X)d, and write

Φ = (ϕ1, . . . , ϕd) and Ψ = (ψ1, . . . , ψd).

We always assume in this chapter that ψi > 0 for i = 1, . . ., d. Given α =
(α1, . . . , αd) ∈ Rd we set

Kα = Kα(Φ, Ψ) =
d⋂

i=1

{
x ∈ X : lim

n→∞

ϕi,n(x)

ψi,n(x)
= αi

}
, (10.3)

where for each i,

ϕi,n(x) =

n−1∑

k=0

ϕi(f
kx) and ψi,n(x) =

n−1∑

k=0

ψi(f
kx).

We continue to denote by M the family of f -invariant probability Borel measures
in X , and we define a function P = P(Φ,Ψ) : M → Rd by

P(μ) =

(∫
X

∫∫
ϕ1 dμ∫

X

∫∫
ψ1 dμ

, . . . ,

∫
X

∫∫
ϕd dμ∫

X

∫
ψd dμ

)
. (10.4)

Since M is compact and connected, and P is continuous, the image P(M) is also
compact and connected.

Let u ∈ C(X) be a positive function.

Definition 10.1.3. The function FuFF = Fu,FF (Φ,Ψ) defined by

FuFF (α) = dimuKα(Φ, Ψ) (10.5)

is called the u-dimension spectrum of the pair (Φ, Ψ).

Now we formulate a conditional variational principle for the spectrum FuFF ,
that was established by Barreira, Saussol and Schmeling in [20]. Given a vector
α = (α1, . . . , αd) ∈ Rd we write

α ∗ Φ = (α1ϕ1, . . . , αdϕd) ∈ C(X)d and 〈α, Φ〉 =
d∑

i=1

αiϕi ∈ C(X).

Theorem 10.1.4 (Multidimensional conditional variational principle). Assume that
the Kolmogorov–Sinai entropy of f is upper semicontinuous, and that

span{ϕ1, ψ1, . . . , ϕd, ψd, u} ⊂ D(X).

If α 	∈ P(M), then Kα = ∅. Furthermore, if α ∈ intP(M), then Kα 	=		 ∅ and the
following properties hold:
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1.

FuFF (α) = max

{
hμ(f)∫
X

∫∫
u dμ

: μ ∈ M and P(μ) = α

}
; (10.6)

2. we have
FuFF (α) = inf{TuTT (q) : q ∈ R

d},
where TuTT (q) is the unique real number such that

P (〈q, Φ − α ∗ Ψ〉 − TuTT (q)u) = 0;

3. there exists an ergodic equilibrium measure μα ∈ M with P(μα) = α and
μα(Kα) = 1 such that

dimuμα =
hμα

(f)∫
X

∫∫
u dμα

= FuFF (α). (10.7)

Proof. We begin with some preparatory lemmas. Let ‖q‖ = |p| + · · · + |qd| be the
norm of a vector q ∈ R

d.

Lemma 10.1.5. If α ∈ P(M), then

inf
q∈Rd

P (〈q, Φ − α ∗ Ψ〉 − FuFF (α)u) ≥ 0.

Proof of the lemma. We first assume that FuFF (α) = 0. By the definition of P, there
exists μ ∈ M such that ∫

X

∫∫
Φ dμ =

∫

X

∫∫
α ∗ Ψ dμ.

We obtain

P (〈q, Φ − α ∗ Ψ〉) ≥ hμ(f) +

〈
q,

∫

X

∫∫
(Φ − α ∗ Ψ) dμ

〉
= hμ(f) ≥ 0.

Now we imitate the argument in the proof of Lemma 9.1.5, using the notion of
topological pressure in Section 7.2. Assume that FuFF (α) > 0. By Proposition 7.2.3,
the number FuFF (α) is equal to the unique root δ of the equation PKP

α
(−δu) = 0.

Given δ > 0 and τ ∈ N, we consider the sets

Lδ,τ =
{
x ∈ X : ‖Φn(x) − αΨn(x)‖ < δn for every n ≥ τ

}
,

where

Φn =

n−1∑

k=0

Φ ◦ fk and Ψn =

n−1∑

k=0

Ψ ◦ fk.

Since all components of Ψ are positive, we can easily show that

Kα ⊂
⋂

δ>0

⋃

τ∈N

Lδ,τ .
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Now let U be a finite open cover of X with sufficiently small diameter such that
if n ∈ N is sufficiently large, U ∈ ⋃k≥n Wk(U), and x ∈ X(U), then

‖Φ(U) − Φm(U)(x)‖ ≤ δm(U) and ‖Ψ(U) − Ψm(U)(x)‖ ≤ δm(U),

where

Φ(U) = (ϕ1(U), . . . , ϕd(U)) and Ψ(U) = (ψ1(U), . . . , ψd(U)).

This implies that if U ∈
⋃

k≥n Wk(U) and X(U) ∩ Lδ,τ 	=		 ∅, then

‖Φ(U) − αΨ(U)‖ < (2 + |α|)δm(U).

Therefore,

PLP
δ,τ

(−FuFF (α)u, U) ≤ PLP
δ,τ

(〈q, Φ − α ∗ Ψ〉 − FuFF (α)u, U) + (2 + |α|)δ|q|.

Letting diamU → 0 yields

PLP
δ,τ

(−FuFF (α)u) ≤ P (〈q, Φ − α ∗ Ψ〉 − FuFF (α)u) + (2 + |α|)δ|q|,

and hence,

0 ≤ P⋃PP
τ∈N

Lδ,τ
(−FuFF (α)u) = sup

τ∈N

PLP
δ,τ

(−FuFF (α)u)

≤ P (〈q, Φ − α ∗ Ψ〉 − FuFF (α)u) + (2 + |α|)δ|q|.

The arbitrariness of δ implies the desired result. �

Lemma 10.1.6. If α ∈ intP(M), then

inf
q∈Rd

P (〈q, Φ − α ∗ Ψ〉 − FuFF (α)u) = 0,

and there exists an ergodic equilibrium measure μα ∈ M with P(μα) = α and
μα(Kα) = 1 such that dimuμα = FuFF (α).

Proof of the lemma. Let

r = inf{‖α − β‖ : β ∈ R
d \ P(M)} > 0.

We claim that the infimum over q ∈ Rd of the function

F (q) = P (〈q, Φ − α ∗ Ψ〉 − FuFF (α)u)

is attained inside the ball of radius

R =
dimuX · sup u + F (0)

r mini inf ψi
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centered at zero. Take q ∈ Rd such that ‖q‖ ≥ R. We show that F (q) ≥ F (0). Let
a ∈ (0, 1) and β ∈ Rd such that βi = αi + ar sgn qi. Clearly, β ∈ P(M), and hence
there exists μ ∈ M such that

∫

X

∫∫
Φ dμ =

∫

X

∫∫
β ∗ Ψ dμ.

We obtain

F (q) ≥ hμ(f) +

〈
q,

∫

X

∫∫
(Φ − α ∗ Ψ) dμ

〉
− FuFF (α)

∫

X

∫∫
u dμ

≥
〈

q,

∫

X

∫∫
(β − α) ∗ Ψ dμ

〉
− dimuX · sup u

≥ ‖q‖ar min
i=1,...,d

inf ψi − dimuX · sup u

> adimuX · sup u + F (0) − dimuX · sup u.

We obtain the claim letting a → 1.
Since F is of class C1 its minimum is attained at a point q = q(α) with

‖q(α)‖ < R such that ∇F (q(α)) = 0. Let μα be the equilibrium measure of the
function

〈q(α), Φ − α ∗ Ψ〉 − FuFF (α)u.

Then ∫

X

∫∫
(Φ − α ∗ Ψ) dμα = ∇F (q(α)) = 0,

and hence P(μα) = α. Furthermore,

F (q(α)) = hμα
(f) − FuFF (α)

∫

X

∫∫
u dμα.

By Lemma 10.1.5, we have F (q(α)) ≥ 0, and thus,

dimuμα =
hμα

(f)∫
X

∫∫
u dμα

≥ FuFF (α).

On the other hand, since μα is ergodic and

∫

X

∫∫
Φ dμα =

∫

X

∫∫
α ∗ Ψ dμα,

it follows from Birkhoff’s ergodic theorem that μα(Kα) = 1. Therefore,

FuFF (α) ≥ dimuμα,

and hence dimuμα = FuFF (α). This completes the proof of the lemma. �
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We proceed with the proof of the theorem. Let α ∈ Rd with Kα 	=		 ∅, and
take x ∈ Kα. The sequence of measures

μn =
1

n

n−1∑

k=0

δfkx

has an accumulation point, say μ, which is invariant. Moreover, for i = 1, . . ., d
we have

∫
X

∫∫
ϕi dμn/

∫
X

∫∫
ψi dμn → αi when n → ∞. This implies that

∫

X

∫∫
ϕi dμ

/∫

X

∫∫
ψi dμ = αi

for i = 1, . . ., d, and hence α ∈ P(M). This proves the first statement.
Now let α ∈ intP(M). For each μ ∈ M with P(μ) = α, it follows from

Lemma 10.1.6 that

0 = inf
q∈Rd

P (〈q, Φ − α ∗ Ψ〉 − FuFF (α)u) ≥ hμ(f) − FuFF (α)

∫

X

∫∫
u dμ.

Therefore,

hμ(f)
/∫

X

∫∫
u dμ ≤ FuFF (α).

On the other hand, again by Lemma 10.1.6 there exists an ergodic measure μα

such that μα(Kα) = 1, P(μα) = α, and

FuFF (α) = dimuμα =
hμα

(f)∫
X

∫∫
u dμα

(using ergodicity and Proposition 7.2.7). This establishes the identities in (10.6)
and (10.7). Statement 2 is an immediate consequence of Lemma 10.1.6. This com-
pletes the proof of the theorem. �

When ψ1 = · · · = ψd = 1 and u = 1 the identity in (10.6) (with the maxi-
mum replaced by the supremum) was established by Takens and Verbitski in [154]
under the assumptions that f is a continuous transformation with the specifica-
tion property, and ϕ1, . . . , ϕd are arbitrary continuous functions (see also [121]).
See [81] for related results.

We refer to [20] for the study of irregular sets of multidimensional spectra.

10.2 Geometry of the domains

Theorem 10.1.4 gives very detailed information about the multifractal spectrum
inside intP(M). Therefore, it is important to discuss the properties of this set, and
in particular to give conditions under which it is nonempty.
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For each q, α ∈ Rd, we consider the function Sqα : R → R defined by

Sqα(t) = PXP (t〈q, Φ − α ∗ Ψ〉).

For example, when f |X is a topological Markov chain, and the components of
Φ−α∗Ψ are Holder continuous, the function¨ Sqα has the following interpretation.
Let

Eqα(β) = h

(
f |
{

x ∈ X : lim
n→∞

1

n

n−1∑

k=0

〈q, Φ − α ∗ Ψ〉(fkx) = β

})
.

Using (9.2) we obtain

βqα(t) := −S′
qα(t) = −

∫

X

∫∫
〈q, Φ − α ∗ Ψ〉 dμt〈q,Φ−α∗Ψ〉,

and by Theorem 7.3.2,

Eqα(βqα(t)) = Sqα(t) + tβqα(t)

for every t ∈ R. In other words, Sqα is the Legendre transform of Eqα.
The following statement gives a characterization of the points in the set

intP(M) which is optimal in a certain sense.

Theorem 10.2.1 ([20]). Assume that f |X has finite topological entropy, and that
Φ, Ψ ∈ C(X)d. For each α ∈ P(M) we have:

1. if Sqα is constant for no q ∈ Rd, then α ∈ intP(M);

2. if Sqα is constant for some q ∈ Rd, then α 	∈ intP(M).

Proof. Replacing if necessary Φ by Φ − α ∗ Ψ, we may assume without loss of
generality that α = 0. Note that this corresponds to a translation of the set P(M)
by the vector −α.

Now we establish the first statement. Since α = 0 ∈ P(M), there exists a
measure m0 ∈ M with

∫
X

∫∫
Φ dm0 = 0. Moreover, the map m �→

∫
X

∫∫
Φ dm is affine

in the convex set M, and hence

M(Φ) :=

{∫

X

∫∫
Φ dm : m ∈ M

}

is also convex. We show that it has nonempty interior. If intM(Φ) = ∅, then
M(Φ) is contained in some hyperplane, and hence there exists q ∈ Rd such that
〈q,
∫

X

∫∫
Φ dm〉 = 0 for every m ∈ M. This implies that for any real number t we

have

P (t〈q, Φ〉) = sup
m∈M

(
hm(f) + t

∫

X

∫∫
〈q, Φ〉 dm

)

= sup
m∈M

hm(f) = P (0),
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which contradicts the hypotheses in the theorem. Therefore, intM(Φ) 	=		 ∅, and
there exist measures m1, . . ., md ∈ M such that the vectors

∫

X

∫∫
Φ dm1,

∫

X

∫∫
Φ dm2, . . . ,

∫

X

∫∫
Φ dmd (10.8)

form a basis of Rd. Consider the set

Δ =
{
p ∈ R

d : pi ≥ 0 for i = 1, . . ., d, and p1 + · · · + pd ≤ 1
}
.

For each p ∈ Δ let

μp = p1m1 + · · · + pdmd +

(
1 −

d∑

i=1

pi

)
m0 ∈ M.

We define a map β : Δ → Rd by

β(p) =

(∫
X

∫∫
ϕ1 dμp∫

X

∫∫
ψ1 dμp

, . . . ,

∫
X

∫∫
ϕd dμp∫

X

∫
ψd dμp

)
.

Since
∫

X

∫∫
Φ dm0 = 0 we have

∂

∂pj

(∫
X

∫∫
ϕi dμp∫

X

∫∫
ψi dμp

)∣∣∣∣∣∣∣
p=0

=

∫
X

∫∫
ϕi dmj −

∫
X

∫∫
ϕi dm0∫

X

∫∫
ψi dμp

∣∣∣∣∣∣∣
p=0

−
(∫

X

∫∫
ψi dmj −

∫
X

∫∫
ψi dm0

) ∫
X

∫∫
ϕi dμp

(∫
X

∫∫
ψi dμp

)2
∣∣∣∣∣∣∣
p=0

=

∫
X

∫∫
ϕi dmj∫

X

∫∫
ψi dm0

.

Therefore, the map β is of class C1, and its derivative at p = 0 is given by

d0β =

⎡
⎢
⎡⎡

⎢⎢⎣⎢⎢

∫
X

ϕ1 dm1∫
X

ψ1 dm0
· · ·

∫
X

ϕ1 dmd∫
X

ψ1 dm0

...
. . .

...∫
X

ϕd dm1∫
X

ψd dm0
· · ·

∫
X

ϕd dmd∫
X

ψd dm0

⎤
⎥
⎤⎤

⎥⎥⎦⎥⎥ .

Denoting by M = (MijMM ) the d×d matrix with entries MijMM =
∫

X

∫
ϕj dmi, we obtain

det d0β =

⎛
⎝
⎛⎛

d∏

j=1

∫

X

∫∫
ψj dm0

⎞
⎠
⎞⎞−1

detM.

Since the vectors in (10.8) are linearly independent, the matrix M is invertible,
and thus β is a local diffeomorphism at 0. Hence, there exist open sets U ⊂ Δ
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and D = β(U) such that 0 ∈ U , and β is a diffeomorphism from U onto D. In
particular, we have 0 ∈ D, and

α = 0 ∈ intβ(Δ) ⊂ intP(M).

Now we prove the second statement. We continue to assume that α = 0.
There exists q ∈ Rd such that P (t〈q, Φ〉) = P (0) for every t ∈ R. We show that

{sq : s ∈ R} ∩ P(M) = {0},

which immediately implies the statement in the theorem. Let s 	= 0. If		 sq ∈ P(M),
then there exists μ ∈ M such that

∫

X

∫∫
Φ dμ = sq ∗

∫

X

∫∫
Ψ dμ.

For each t > 0 we obtain

P (0) = P (t〈sq, Φ〉) ≥ hμ(f) + t

〈
sq,

∫

X

∫∫
Φ dμ

〉
≥ t|sq|2 inf

i=1,...,d
inf ψi.

But this is impossible when t is sufficiently large. Therefore, α = 0 	∈ intP(M).
This completes the proof of the theorem. �

A noteworthy consequence of Theorem 10.2.1 is that if the topological pres-
sure is strictly convex, that is, if for any q ∈ Rd and α ∈ P(M) the function Sqα is

strictly convex, then P(M) = intP(M).
We note that if f |X is a subshift with the specification property, and ϕi,

ψi ∈ Cf (X) for i = 1, . . ., d (see Definition 9.1.3), then for each α ∈ P(M) the
following properties are equivalent:

1. the function q �→ P (〈q, Φ − α ∗ Ψ〉) is strictly convex;

2. the function Sqα is constant for no q ∈ Rd;

3. the functions ϕi −αiψi, i = 1, . . ., d are linearly independent as cohomology
classes.

For each q ∈ S2d−1 := {x ∈ R2d : ‖x‖ = 1} we set

Γ(q) = ∂
{
P(μt〈q,(Φ,Ψ)〉) : t ∈ R

}
,

where ∂A denotes the boundary of the set A.

Theorem 10.2.2 ([20]). If f |X is a subshift with the specification property, and ϕi,
ψi ∈ Cf (X) for i = 1, . . . , d, then

∂P(M) ⊂
⋃

q∈S2d−1

Γ(q).

If, in addition, the functions 1, ϕ1, . . ., ϕd, ψ1, . . ., ψd are linearly independent
as cohomology classes, then P(M) = intP(M).
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Proof. The second statement follows immediately from Theorem 10.2.1. Now let

E2d(μ) = −
(∫

X

∫∫
Φ dμ,

∫

X

∫∫
Ψ dμ

)
,

and

P̂ =

{(
α1

β1
, . . . ,

αd

βd

)
: (α, β) ∈ ∂E2d(M)

}
.

We show that E2d(M) = intE2d(M). The proof consists of three claims.

Claim. We have ∂P(M) ⊂ P̂.

Let (α, β) ∈ intE2d(M). This means that (α, β) + ε ∈ E2d(M) for all suf-
ficiently small ε ∈ R2d, and thus, by Theorem 10.1.4, there exists an ergodic
measure με ∈ M with P(με) = (α, β) + ε. Hence, for all sufficiently small δ ∈ Rd

the δ-neighborhood of (α1/β1, . . . , αd/βd) is contained in P(M). This establishes
the claim.

Claim. The set E2d(M) is convex.

Since the function E2d is linear, the claim follows immediately from the con-
vexity of M.

Claim. For each (α, β) ∈ ∂E2d(M) there exists a vector q ∈ S2d−1 such that
〈(α, β), q〉 ∈ ∂WqWW , where

WqWW = −
{∫

X

∫∫
〈q, (Φ, Ψ)〉 dμ : μ ∈ M

}
.

Since E2d(M) is a convex set each of its boundary points has a supporting
plane. Let (α, β) ∈ ∂E2d(M), and denote by Q the orthogonal projection of E2d(M)
onto the normal to the supporting plane at (α, β). The point (α, β) is mapped by Q
to a boundary point of the interval Q(E2d(M)). The orthogonal projection of a
point (α, β) onto a line in the direction of a normal vector q ∈ S2d−1 is given by
〈(α, β), q〉. This establishes the claim since WqWW is the image of E2d(M) under this
projection.

Now we are ready to prove the theorem. Let (α, β) ∈ R2d be such that

(α1/β1, . . . , αd/βd) ∈ P̂.

This means that (α, β) ∈ ∂E2d(M). Therefore, there exists q ∈ S2d−1 such that
〈(α, β), q〉 ∈ ∂WqWW . This completes the proof. �

10.3 Regularity of the multifractal spectra

Now we give conditions to obtain the analyticity of the spectrum, as an application
of Theorems 10.1.4 and 10.2.1.
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Theorem 10.3.1 ([20]). Assume that:

1. the Kolmogorov–Sinai entropy of f is upper semicontinuous;

2. the topological pressure of f is analytic.

If α ∈ intP(M) is such that the second derivative of q �→ P (〈q, Φ − α ∗ Ψ〉) is a
positive definite bilinear form for each q ∈ R

d, then FuFF is analytic in some open
neighborhood of α.

Proof. Let α ∈ intP(M) and consider the function

Q(δ, q, α) = P (〈q, Φ − α ∗ Ψ〉 − δu).

Proceeding as in the proof of Lemma 10.1.6, we show that there exist q(α) ∈ R
d

and an ergodic equilibrium measure μα such that q �→ Q(FuFF (α), q, α) attains a
minimum at q = q(α), and thus

∂Q

∂q
(FuFF (α), q(α), α) =

∫

X

∫∫
(Φ − α ∗ Ψ) dμα = 0.

By Lemma 10.1.6 we have

Q(FuFF (α), q(α), α) = 0.

Consider the system of equations

Q(δ, q, α) = 0 and
∂Q

∂q
(δ, q, α) = 0.

We want to apply the implicit function theorem to establish the uniqueness of the
solution (δ, q) = (FuFF (α), q(α)) of this system, and to obtain its regularity in α. In
particular, this will establish the regularity of the spectrum. Let

G(q, δ, α) =

(
Q(δ, q, α),

∂Q

∂p
(δ, q, α), . . . ,

∂Q

∂qd
(δ, q, α)

)
. (10.9)

It is sufficient to show that the matrix

(∂/∂δ, ∂/∂p, . . . , ∂/∂qd)
tG =

⎡
⎢
⎡⎡

⎢⎢⎢⎢⎢⎢⎣⎢⎢

∂Q
∂δ

∂2Q
∂δ∂p · · · ∂2Q

∂δ∂qd

∂Q
∂p

∂2Q
∂p∂p · · · ∂2Q

∂p∂qd

...
...

. . .
...

∂Q
∂qd

∂2Q
∂qd∂p · · · ∂2Q

∂qd∂qd

⎤
⎥
⎤⎤

⎥⎥⎥⎥⎥⎥⎦⎥⎥
(10.10)

is invertible at (q(α), FuFF (α), α). For each i = 1, . . . , d we have

∂Q

∂qi
(FuFF (α), q(α), α) = 0,
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and δ = FuFF (α). This shows that the first column of the matrix in (10.10) is zero
at (q(α), FuFF (α), α), with the exception of the first term which is

∂Q

∂δ
(FuFF (α), q(α), α) = −

∫

X

∫∫
u dμq,δ,α < 0,

where μq,δ,α is the unique equilibrium measure of the function 〈q, Φ−α ∗Ψ〉− δu.
Therefore, it is sufficient to show that the right lower d × d matrix, say H , is
invertible. The second derivative of the topological pressure at q(α) is a bilinear
symmetric form B : Rd × Rd → R, and we have

∂2Q

∂qi∂qjq
(FuFF (α), q(α), α) = B(ei, ej)

where e1, . . . , ed is the canonical basis of Rd. By hypothesis B is positive definite.
If H was not invertible, then some nontrivial linear combination of its columns
would be equal to zero, and thus there would exist λ ∈ R

d \ {0} such that

d∑

j=1

λjB(ei, ej) = 0

for i = 1, . . . , d. Setting g =
∑d

i=1 λiei we obtain

B(g, g) =

d∑

i=1

λi

d∑

j=1

λjB(ei, ej) = 0.

Since g 	= 0 this contradicts the positive definiteness of		 B. Thus H is invertible.
By the implicit function theorem, the functions δ(α) and q(α) are as regular as
the analytic function G in (10.9). This completes the proof of the theorem. �

10.4 New phenomena in multidimensional spectra

When d = 1, the connectedness of P(M) implies that only one of the following two
exclusive alternatives can occur:

1. The spectrum is degenerate: in this case P(M) = {a} for some a ∈ R. Fur-
thermore, Ka = X , and Kα = ∅ for every α 	=		 a.

2. The spectrum is nondegenerate: in this case P(M) = [a, a] for some real
numbers a < a. In particular, P(M) has nonempty interior, and P(M) =
intP(M).

When d > 1, that is, for multidimensional multifractal spectra, several new phe-
nomena can occur. Namely:

1. P(M) may not be convex;
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2. intP(M) may have more than one connected component;

3. P(M) may have empty interior, but still be uncountable.

See Examples 10.4.1 and 10.4.2 for explicit constructions.
When d = 1 the existence of a cohomology relation between the functions ϕ

and ψ immediately implies that the domain of the spectrum FuFF consists of a single
point. This is not the case for multidimensional spectra, as the following example
illustrates.

Example 10.4.1. Consider a topological Markov chain f |X and set d = 2. Let
ϕ, ψ ∈ Cf (X) be such that ϕ, ψ, and 1 are linearly independent as cohomology
classes. We assume that

∫
X

∫∫
ϕdμ = 0 for some measure μ ∈ M, and that ψ > 0.

Setting

ϕ1 = ϕ, ϕ2 = ϕ, ψ1 = 1, and ψ2 = ψ

we obtain 0 ∈ P(M) (since
∫

X

∫
ϕdμ = 0), and

(ϕ1 − 0 · ψ1) − (ϕ2 − 0 · ψ2) = 0.

On the other hand, it is easy to verify that ϕ1 − α1ψ1 and ψ2 − α2ψ2 are lin-
early independent as cohomology classes whenever α = (α1, α2) 	= 0, and hence		
P∗ := P(M) \ {0} is nonempty, by Theorem 10.2.1. Moreover, it follows from
Theorem 10.2.1 that P∗ ⊂ intP(M). Since P(M) is closed, we conclude that
P(M) = intP(M). This shows that even though there exists a cohomology re-
lation, the set P(M) is uncountable. Furthermore, it has nonempty interior.

The first drawing in Figure 10.1 is an explicit example of a set P(M) when
f is the Bernoulli shift on three symbols. Namely, we took the functions

ϕ = χ1 − χ2 and ψ = χ1 + χ2 + 2χ3,

where χi is the characteristic function of the cylinder set CiCC of length 1. Observe
that in this particular case intP(M) has two connected components. Furthermore,
the set P(M) is not convex, but each connected component of intP(M) is still
convex.

The second drawing in Figure 10.1 is also obtained from the Bernoulli shift
on three symbols, now with the functions

ϕ1 = −4χ1 + 4χ2 + 8χ3 and ϕ2 = −6χ1 − 3χ2 + 5χ3,

ψ1 = 2χ1 + 9χ2 + 2χ3 and ψ2 = 6χ1 + χ2 + 2χ3.

Again the set intP(M) has two connected components, but one of them is not
convex. �

Now we illustrate that P(M) may have empty interior, but still be uncount-
able.
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Figure 10.1: Two examples of the set P(M) for which the interior has two connected
components, due to the presence of a cohomology relation. The curves represent
the boundary of P(M).

Example 10.4.2. Consider the Bernoulli shift on two symbols and set d = 2. In a
similar manner to that in Example 10.4.1 we define functions

ϕ1 = a1χ1 + b1χ2, ϕ2 = a2χ1 + b2χ2, and ψ1 = ψ2 = u = 1.

We assume that a1b2 − b1a2 = 1. The case when a1b2 − b1a2 	= 1 can be treated		
in a similar manner. Observe that

b2ϕ1 − b1ϕ2 = χ1 and a1ϕ2 − a2ϕ1 = χ2.

Since χ1 + χ2 = 1 we obtain (see (8.2))

K(α1,α2) = Kb2α1−b1α2(χ1) = Ka1α2−a2α1(χ2),

where we must have
b2α1 − b1α2 + a1α2 − a2α1 = 1. (10.11)

It follows from Theorem 10.1.4 and (10.11) that

h(f |K(α1,α2)) = sup{hμ(f) : μ(C1) = b2α1 − b1α2}
= − (b2α1 − b1α2) log(b2α1 − b1α2)

− (a1α2 − a2α1) log(a1α2 − a2α1).

Furthermore, the domain of the spectrum (α1, α2) �→ h(f |K(α1,α2)) is a segment
contained in the straight line defined by (10.11). �

We remark that in some sense the situation described in Example 10.4.2
should be considered degenerate. Indeed, Theorem 10.2.1 implies that the degen-
eracy in Example 10.4.2, with the domain of the spectrum contained in a straight
line, is due to the presence of cohomology relations. When this happens we can
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replace the 2d components of the vectors Φ and Ψ by a maximal set of functions
that are independent as cohomology classes, without changing the level sets (up
to a change of variables), and in such a way that the domain of the spectrum with
respect to the new functions has nonempty interior.

10.5 Topological Markov chains

We show in this section that for topological Markov chains the spectrum FuFF is
often analytic and nondegenerate, that is, FuFF (α) = 0 for every α ∈ ∂P(M).

Theorem 10.5.1 ([20]). Let f |X be a topologically mixing topological Markov chain.
If the functions (Φ, Ψ) and u are Holder continuous, then the spectrum¨ FuFF is
analytic in intP(M).

Proof. We consider the functions

G = Φ − α ∗ Ψ and F (q) = P (〈q, G〉).

Ruelle’s formula for the second derivative of the topological pressure (see (6.24)
and (6.25)) shows that for every p ∈ Rd we have

d2
qF (p, p) =

∫

X

∫∫
〈p, G〉2 dμq + 2

∞∑

n=1

∫

X

∫∫
〈p, G〉 · 〈p, G ◦ fn〉 dμq ≥ 0,

where μq is the unique equilibrium measure of the function 〈q, G〉.
We prove that d2

qF (p, p) > 0 whenever p 	= 0. Assume on the contrary that		
d2

qF (p, p) is zero. Then the function 〈p, G〉 must be cohomologous to a constant,
say c. Since α ∈ P(M) there exists a measure μ ∈ M such that

∫
X

∫∫
Gdμ = 0.

This implies that c = 0. Since 〈p, G〉 is cohomologous to zero we conclude that
t �→ P (t〈p, G〉) is a constant function. By Theorem 10.2.1 this never happens when
α ∈ intP(M), and thus d2

qF (p, p) > 0. The analyticity of the spectrum follows now
immediately from Theorem 10.3.1. �

The following result shows that typically the spectrum FuFF is nondegenerate.
We continue to denote by Cθ(X) the space of Hölder continuous functions¨ ϕ : X →
R with Hölder exponent¨ θ, equipped with the norm in (7.19).

Theorem 10.5.2 ([20]). Let f |X be a topologically mixing topological Markov chain.
There exists a residual subset Θ ⊂ Cθ(X)d × Cθ(X)d such that if (Φ, Ψ) ∈ Θ and
u ∈ Cθ(X) with u > 0, then:

1. P(M) = intP(M);

2. FuFF (α) = 0 for every α ∈ ∂P(M).

Proof. We need an auxiliary statement.
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Lemma 10.5.3. The set of vectors (ϕ1, . . . , ϕd) ∈ Cθ(X)d such that ϕ1, . . ., ϕd are
linearly independent as cohomology classes is residual in Cθ(X)d.

Proof of the lemma. Consider d distinct periodic points x1, . . ., xd respectively
with periods n1, . . ., nd, and set

Sij =
1

ni

ni−1∑

k=0

ϕj(f
kxi).

By Livschitz’s theorem (see, for example, [84, Theorem 19.2.1]), if the d × d ma-
trix S with entries Sij has rank d, then the functions ϕ1, . . ., ϕd are linearly
independent as cohomology classes. The desired statement follows now from the
fact that the condition rankS = d is generic. �

Set
u = min{u(x) : x ∈ X} and u = max{u(x) : x ∈ X}.

It follows from the definition of N(Z,α, u,U) in (7.5) that

N(Z, αu, 1, U) ≤ N(Z, α, u,U) ≤ N(Z, αu, 1, U).

Therefore,
dim1,U Z

u
≤ dimu,U Z ≤ dim1,U Z

u
,

and hence
h(f |Z)/u ≤ dimuZ ≤ h(f |Z)/u. (10.12)

This shows that F1(α) = 0 if and only if FuFF (α) = 0. Hence, it is sufficient to prove
that the topological entropy vanishes at the boundary of P(M).

We first reduce the problem to a one-dimensional problem. Set HθHH = Cθ(X)d.
For each q, α ∈ Rd and (Φ, Ψ) ∈ HθHH × HθHH we consider the function

χΦΨ = 〈q, Φ − α ∗ Ψ〉.

It is shown in the proof of Lemma 7.6.5 (see (7.27)) that there exists an open and
dense subset Θε ⊂ Cθ(X) such that if χ ∈ Θε, then

h

(
f |
{

x ∈ X : lim
n→∞

1

n

n−1∑

k=0

χ(fnx) ∈ {β, β}
})

< ε, (10.13)

where

β = inf

{∫

X

∫∫
χ dμ : μ ∈ M

}
and β = sup

{∫

X

∫∫
χ dμ : μ ∈ M

}
.

Therefore, for each fixed q, α ∈ Rd the set

Θε
qα = {(Φ, Ψ) ∈ HθHH × HθHH : χΦΨ ∈ Θε}
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is open and dense in HθHH × HθHH .
It follows from Lemma 10.5.3 that by changing Θε

qα slightly while still leaving
it open and dense we may assume that there is no cohomology relation between
the functions ϕi − αiψi, i = 1, . . . , d. This implies that the vector (q, α) has an
open neighborhood U(q, α) ⊂ Rd×Rd with the property that there is an open and
dense subset Θε

qα ⊂ HθHH × HθHH without cohomology relations such that (Φ, Ψ) ∈
Θε

q′α′ for every (q′, α′) ∈ U(q, α). Now we choose a sequence (qn, αn) such that⋃∞
n=1 U(qn, αn) = Rd × Rd, and we set

Θ =

∞⋂

m=1

∞⋃

n=1

Θ1/m
qnαn

. (10.14)

By construction the set Θ is residual, and for each (Φ, Ψ) ∈ Θ there are no
cohomology relations (see Theorem 10.2.1 and the discussion after this theorem).
This establishes the first statement in the theorem.

By Theorem 10.2.2, for each (Φ, Ψ) ∈ Θ the boundary points of P(M) are
contained in

⋃
q∈S2d−1 Γ(q). By construction of the set Θ (see (10.13) and (10.14))

the spectrum F1 vanishes at these points (and by (10.12) the same happens for FuFF ).
This completes the proof of the theorem. �

When d = 1 the statement in Theorem 10.5.2 was established by Schmeling
in [142] (see Theorem 7.6.1). We note that when d > 1 the set ∂P(M) may be
uncountable (see Examples 10.4.1 and 10.4.2), and by property 1 in Theorem 10.5.2
this is the generic situation.

10.6 Finer structure of the spectrum

Now we have a closer look at the finer structure of the level sets Kα in (10.3).
In particular, we show that the u-dimension of Kα is entirely carried by a certain
level set of another set of functions, which is strictly inside Kα.

Let f |X be a topologically mixing topological Markov chain. Given functions
(Φ, Ψ) ∈ Cθ(X)d ×Cθ(X)d, we define P(μ) and FuFF (α) as in (10.4) and (10.5). For
each (p, q) ∈ Rd × Rd, we consider the unique real number T (p, q) such that

P (〈p, Φ〉 + 〈q, Ψ〉 − T (p, q)u) = 0,

and we denote by μp,q the equilibrium measure of the function

〈p, Φ〉 + 〈q, Ψ〉 − T (p, q)u.

Set
β(p, q) := ∇pT (p, q) and γ(p, q) := ∇qT (p, q).

For each (β, γ) ∈ Rd × Rd, we consider the set Kβ,γK of points x ∈ X such that

lim
n→∞

∑n
k=0 ϕi(f

kx)∑n
k=0 u(fkx)

= βi and lim
n→∞

∑n
k=0 ψi(f

kx)∑n
k=0 u(fkx)

= γi
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for every i = 1, . . ., d, where β = (β1, . . . , βd) and γ = (γ1, . . . , γd). Now we estab-
lish the relation between the d-dimensional spectrum FuFF and the 2d-dimensional
spectrum

Hu(β, γ) = dimuKβ,γK .

Theorem 10.6.1 ([20]). Let f |X be a topologically mixing topological Markov chain.
If the functions (Φ, Ψ) and u are Holder continuous, then the following properties¨
hold:

1. μp,q(KβK (p,q),γ(p,q)) = 1 and

Hu(β(p, q), γ(p, q)) = dimuμp,q

= T (p, q) − 〈p, β(p, q)〉 − 〈q, γ(p, q)〉;

2. if α ∈ intP(M), then there exists γ ∈ Rd such that

FuFF (α) = Hu(α ∗ γ, γ).

Proof. Applying Theorem 10.1.4 with Ψ = (1, . . . , 1), we obtain

μp,q(KβK (p,q),γ(p,q)) = 1 and Hu(β(p, q), γ(p, q)) = dimuμp,q.

Furthermore,

β(p, q) =

∫
X

∫∫
Φ dμp,q∫

X

∫∫
u dμp,q

and γ(p, q) =

∫
X

∫∫
Ψ dμp,q∫

X

∫∫
u dμp,q

.

We obtain

dimuμp,q =
hμp,q

(f)∫
X

∫∫
u dμp,q

=
−
∫
X

∫∫
(〈p, Φ〉 + 〈q, Ψ〉 − T (p, q)u) dμp,q∫

X

∫∫
u dμp,q

= T (p, q)− 〈p, β(p, q)〉 − 〈q, γ(p, q)〉.

This completes the proof of the first statement in the theorem.
Now we establish the second statement. For each α ∈ intP(M), let μα be the

measure in Theorem 10.1.4. For μα-almost every x ∈ X there exist the limits

lim
n→∞

∑n
k=0 Φ(fkx)∑n
k=0 u(fkx)

= β(α) =

∫
X

∫∫
Φ dμα∫

X

∫
u dμα

and

lim
n→∞

∑n
k=0 Ψ(fkx)∑n
k=0 u(fkx)

= γ(α) =

∫
X

∫∫
Ψ dμα∫

X

∫∫
u dμα

,
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and β(α) = α ∗ γ(α). Therefore,

μα(KβK (α),γ(α)) = μα(Kα∗γ(α),γ(α)) = 1.

This implies that

dimuKα∗γ(α),γ(α) ≥ dimuμα = dimuKα.

On the other hand,

Kα∗γ,γ ⊂ Kα for every γ ∈ R
d, (10.15)

and thus

dimuKα∗γ,γ ≤ dimuKα.

We conclude that

dimuKα = sup{dimuKα∗γ,γ : γ ∈ R
d} = dimuKα∗γ(α),γ(α).

This completes the proof of the theorem. �

We observe that Hu is the Legendre transform of the function T .
By (10.15), the second statement in Theorem 10.6.1 says that the u-dimension

of the set Kα is entirely carried by some subset Kα∗γ,γ of Kα. In particular, the
spectrum FuFF can be obtained from the spectrum Hu by

FuFF (α) = max{Hu(α ∗ γ, γ) : γ ∈ R
d}

for each α ∈ intP(M). This conclusion is particularly remarkable since the inclu-
sion

⋃
γ Kα∗γ,γ ⊂ Kα may be proper, and since the u-dimension of an uncountable

union
⋃γγ

γ IγII may be strictly larger than supγ dimuIγII .

10.7 Applications to number theory

The multifractal analysis of multidimensional spectra has several applications to
number theory. These were described by Barreira, Saussol and Schmeling in [19].
Instead of formulating general statements we describe explicit examples that il-
lustrate well the nature of the results.

Given m ∈ N, for each x ∈ [0, 1] we denote by x = 0.x1x2 · · · the base-m rep-
resentation of x. Note that the representation is unique except for countably many
points. Since countable sets have zero Hausdorff dimension, the nonuniqueness of
the representation does not affect the study of the dimensional properties.

For each k ∈ {0, . . . , m − 1}, x ∈ [0, 1], and n ∈ N we define

τkττ (x, n) = card{i ∈ {1, . . . , n} : xi = k}.
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When the limit

τkττ (x) = lim
n→∞

τkττ (x, n)

n

exists we call it the frequency of the number k in the base-m representation of x.
A classical result of Borel in [33] says that for Lebesgue-almost every x ∈ [0, 1] we
have

τkττ (x) = 1/m for k = 0, . . . ,m − 1. (10.16)

Furthermore, for m = 2, Hardy and Littlewood showed in [70] that for Lebesgue-
almost every x ∈ [0, 1], k = 0, 1, and all sufficiently large n ∈ N we have

∣∣∣∣∣∣∣∣∣∣
τkττ (x, n)

n
− 1

2

∣∣∣∣∣∣∣∣∣∣ <

√
log n

n
.

Of course, these remarkable results do not imply that the set of numbers in [0, 1]
for which (10.16) fails to hold is empty. In particular, consider the set

FmFF (α0, . . . , αm−1) =
{
x ∈ [0, 1] : τkττ (x) = αk for k = 0, . . . ,m − 1

}
,

with αi ∈ [0, 1] for each i, and α0 + · · · + αm−1 = 1. It was shown by Eggleston
in [50] that

dimHFmFF (α0, . . . , αm−1) = −
m−1∑

k=0

αk logm αk. (10.17)

This statement can also be obtained as a application of Theorem 10.6.1 (see Propo-
sition 10.7.3 below). A former result concerning the dimension of these sets is due
to Besicovitch [28]. For m = 2 he showed that if α ∈ (0, 1/2), then

dimH

{
x ∈ [0, 1] : lim sup

n→∞

τ1ττ (x, n)

n
≤ α

}
= −α log α + (1 − α) log(1 − α)

log 2
.

Identity (10.17) follows from Theorem 6.1.2 when m = 2, from Theorem 10.1.1
when m = 3, and from Theorem 10.1.4 when m ≥ 4 (see Theorem 10.7.2 and
Proposition 10.7.3). This provides a new proof of Eggleston’s result

Now we consider sets of more complicated nature. Let m = 3 and define

F = {x ∈ [0, 1] : τ1ττ (x) = 5τ0ττ (x)}. (10.18)

We emphasize that the frequency of the number 2 is arbitrary. The following result
is a consequence of work of Barreira, Saussol and Schmeling in [19].

Proposition 10.7.1. If F is given by (10.18), then

dimHF =
log(1 + 6/55/6)

log 3
. (10.19)
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In order to explain how this result is obtained, and its relation to the multi-
fractal analysis of multidimensional spectra, we first observe that

F =
⋃

α∈[0,1/6]

F3FF (α, 5α, 1 − 6α). (10.20)

We show that the constant in (10.19) is a lower bound for dimHF . It follows from
(10.17) and (10.20) that, since F ⊃ F3FF (α, 5α, 1 − 6α) for every α ∈ [0, 1/6],

dimHF ≥ max
α∈[0,1/6]

−α log α + 5α log(5α) + (1 − 6α) log(1 − 6α)

log 3
. (10.21)

The maximum in (10.21) is attained at α = 1/(55/6 + 6), and it is easy to verify
that it is equal to the constant in (10.19). This establishes a lower bound for the
Hausdorff dimension.

The corresponding upper bound is more delicate, essentially because the
union in (10.20) is composed of an uncountable number of pairwise disjoint sets.
Consider the map gm : [0, 1] → [0, 1] defined by gmx = mx (mod 1). We observe
that if 0.x1x2 · · · is a base-m representation of x ∈ [0, 1], then gmx = 0.x2x3 · · · .
Now consider a function ϕ : [0, 1] → R such that

ϕ(0.x1x2 · · · ) = ax1···xκ

for some constants ai1···iκ
∈ R for i1, . . ., iκ ∈ {0, . . . , m − 1}, and some fixed

κ ∈ N. The function ϕ is called a κ-locally constant function. It follows easily
from (3.12) that if ϕ is a 1-locally constant function, then

P (ϕ) = lim
n→∞

1

n
log

∑

i1···in

n∏

j=1

expaij
= log

m−1∑

k=0

exp ak. (10.22)

Taking ψi = 1 for i = 1, . . ., d in Theorem 10.1.4, for each α = (α1, . . . , αd) ∈ Rd

the set Kα in (10.3) is given by

Kα =

⎧
⎨
⎧⎧

⎩

⎨⎨
x ∈ [0, 1] : lim

n→∞

n∑

j=0

ϕi(gm
jx) = αi for i = 1, . . . , d

⎫
⎬
⎫⎫

⎭

⎬⎬
.

Let also M be the family of gm-invariant probability Borel measures in [0, 1]. For
each μ ∈ M set

Q(μ) =

(∫ 1

0

∫∫
ϕ1 dμ, . . . ,

∫ 1

0

∫∫
ϕd dμ

)
.

Theorem 10.7.2 ([19]). Let ϕi : [0, 1] → R be 1-locally constant functions for i =
1, . . . , d. If α = (α1, . . . , αd) ∈ intQ(M), then

dimHKα = inf

{
logm

m−1∑

k=0

exp

d∑

i=1

qi(ϕik − αi) : (q1, . . . , qd) ∈ R
d

}
,

where ϕik = ϕi([k/m, (k + 1)/m)).
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Proof. By (10.22) we have

P

(
d∑

k=1

qk(ϕk − αkψk)

)
= log

m−1∑

k=0

exp
d∑

i=1

qi(ϕik − αi).

Applying Theorem 10.1.4 we obtain the desired statement. �

A first consequence of Theorem 10.7.2 is the result of Eggleston in [50].

Proposition 10.7.3. For each (α0, . . . , αm−1) ∈ (0, 1)m with
∑m−1

k=0 αi = 1 the
identity in (10.17) holds.

Proof. Set d = m and ϕi = χ[i/m,(i+1)/m] for i = 1, . . . , d. For each α0, . . . , αm−1

as in the proposition, we have Kα = FmFF (α0, . . . , αm−1), and by Theorem 10.7.2,

dimHFmFF (α0, . . . , αm−1) = inf
q∈Rd

logm

m−1∑

k=0

eqk+1−
∑d

i=1 qiαi−1 .

Computing the gradient of the logarithm we obtain

1

log m
∇
(

log

m−1∑

k=0

eqk+1 −
d∑

i=1

qiαi−1

)

=
1

log m

(
eq1

∑m−1
k=0 eqk+1

− α0, . . . ,
eqd

∑m−1
k=0 eqk+1

− αd−1

)
.

This is the zero vector provided that

eq1

α0
= · · · =

eqd

αd−1
=

m−1∑

k=0

eqk+1 ,

which implies that there exists c > 0 such that eqk = αk−1c for every k. Therefore,

dimHFmFF = logm

m−1∑

k=0

αkc − 1

log m

m−1∑

k=0

log(αkc)αk

= − 1

log m

m−1∑

k=0

αk log αk,

which is the desired result. �

To establish (10.19) we need the following result.

Proposition 10.7.4. For each k 	=		 ℓ and β ≥ 0 we have

dimH{x ∈ [0, 1] : τkττ (x) = βτℓττ (x)} =
log(m − 2 + (β + 1)/ββ/(β+1))

log m
.
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Proof. Set d = 1 and

ϕ1 = χ[k/m,(k+1)/m) − βχ[ℓ/m,(ℓ+1)/m).

Since 0 ∈ intQ(M) = (−β, 1), it follows from Theorem 10.7.2 that

dimH{x ∈ [0, 1] : τkττ (x) = βτℓττ (x)} = inf
q∈R

log(eq + e−βq + m − 2)

log m
.

It is easy to verify that the infimum is attained at q = log β/(1 + β), and a
straightforward computation yields the desired result. �

By Propositions 10.7.3 and 10.7.4, for each k 	=		 ℓ and β ≥ 0 we have

dimH

{
x ∈ [0, 1] :

τkττ (x)

τℓττ (x)
= β

}
= max

⎧
⎨
⎧⎧

⎩
⎨⎨
−

m−1∑

j=0

αj logm αj :
αk

αℓ
= β

⎫
⎬
⎫⎫

⎭
⎬⎬

.

Therefore, there exists a set

FmFF (α0, . . . , αm−1) ⊂
{

x ∈ [0, 1] :
τkττ (x)

τℓττ (x)
= β

}

with

dimHFmFF (α0, . . . , αm−1) = dimH

{
x ∈ [0, 1] :

τkττ (x)

τℓττ (x)
= β

}
.

In particular, letting m = 3, k = 1, ℓ = 0, and β = 5 we conclude from (10.20)
that the inequality in (10.21) is in fact an identity, and we establish (10.19).



Chapter 11

Multifractal Rigidity

We consider in this chapter the phenomenon of multifractal rigidity. Roughly
speaking, it states that if two dynamical systems are topologically equivalent
and some of their multifractal spectra coincide, then the original data must be
equivalent (in some sense to be made precise). This leads to a “multifractal clas-
sification” of hyperbolic maps (either invertible or noninvertible) in terms of the
multifractal spectra. Furthermore, the theory of multifractal analysis has a privi-
leged relation with the experimental study of dynamical systems. In particular, the
so-called multifractal spectra, that are obtained from the study of the complexity
of the level sets, can be determined experimentally with arbitrary precision. On
the other hand, we may be able to recover information about a dynamical sys-
tem from the information contained in its multifractal spectra. Unfortunately, in
general, when we use a single spectrum there is no multifractal rigidity even for
topological Markov chains on three symbols.

11.1 Multifractal classification of dynamical systems

We illustrate the multifractal rigidity phenomenon with a model class of repellers.
Let f and g be piecewise linear expanding maps of the interval [0, 1] with repellers
given by

JfJ =
∞⋂

n=0

f−n(Af ∪ Bf ) and JgJJ =
∞⋂

n=0

g−n(Ag ∪ Bg),

where Af , Bf , Ag and Bg are closed intervals in [0, 1] such that

f(Af ) = f(Bf ) = g(Ag) = g(Bg) = [0, 1] and Af ∩ Bf = Ag ∩ Bg = ∅.

See Figure 11.1. Both repellers can be coded by the Bernoulli shift on two symbols.
We also consider Bernoulli measures μf and μg (on two symbols) that are invariant
respectively under f and g.
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The following result of Barreira, Pesin and Schmeling in [9] gives a multi-
fractal classification in terms of the spectrum D (see Definition 6.1.1).

0 1

1

Af Bf

Figure 11.1: Piecewise linear expanding map f

Theorem 11.1.1 (Multifractal rigidity). If Dμf
= Dμg

and the spectrum is not a
delta function, then there exists a homeomorphism χ : JfJ → JgJJ such that f ′ = g′◦χ
and μf = μg ◦ χ.

Proof. Set c1 = f ′|Af and c2 = f ′|Bf . The Bernoulli measure μf = μ(β1, β2),
β1 + β2 = 1 is the equilibrium measure of the function ψ : JfJ → R defined by

ψ|Af = log β1 and ψ|Bf = log β2.

As in (6.3), we define a function T : R → R by requiring that

P (−T (q) log ‖df‖ + qψ) = 0 (11.1)

for every q ∈ R. Proceeding as in (3.16) we show that identity (11.1) can be written
in the form

c
−T (q)
1 β1

q + c
−T (q)
2 β2

q = 1. (11.2)

By statement 4 in Theorem 6.1.2, the spectrum Dμf
is the Legendre transform

of T . By the uniqueness of the Legendre transform, the spectrum Dμf
uniquely

determines T (q) for every q ∈ R, and hence, it is sufficient to show that equa-
tion (11.2) uniquely determines the numbers β1, β2, c1, and c2 up to a permutation
of the indices 1 and 2.
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Set α(q) = −T ′(q) and α± = limq→±∞ α(q). We can easily verify that

α± = − lim
q→±∞

(T (q)/q).

Since the spectrum Dμf
is not a delta function, the function T is strictly convex,

and α+ < dimHJfJ < α−. Therefore, raising both sides of (11.2) to the power 1/q
and letting q → ±∞, we obtain

max{β1c1
α+ , β2c2

α+} = min{β1c1
α− , β2c2

α−} = 1.

We assume that β1c1
α+ = 1 (the case when β2c2

α+ = 1 can be treated in a similar
manner). Since α+ < α−, we must have β2c2

α− = 1.
Setting q = 0 in equation (11.2) we obtain c1

−s + c2
−s = 1, where s =

dimHJfJ . Furthermore, setting x = c1
−s, a = α+/s < 1, and b = α−/s > 1, we can

show that xa + (1 − x)b = 1. We can easily verify that this equation has a unique
solution x ∈ (0, 1), which uniquely determines the numbers c1 and c2, and hence,
also the numbers β1 and β2. �

See [10] for a version of Theorem 11.1.1 in the case of hyperbolic sets.

11.2 Entropy spectrum and topological Markov chains

We consider in this section the entropy spectrum E = EE of an invariant measure
(see Section 7.1), and we study in a systematic manner its multifractal rigidity
properties in the case of topological Markov chains. We follow closely Barreira and
Saraiva in [13]. In a certain sense, the entropy spectrum is the simplest possible
spectrum. In particular, it contains no information about distances, in strong
contrast with the dimension spectrum D.

11.2.1 Equivalence classes of functions

Given a Hölder continuous function¨ ϕ, we would like to recover as much informa-
tion as possible about the function from the entropy spectrum of its equilibrium
measure. Clearly, one cannot expect to recover completely the function ϕ. For
example, for each c ∈ R the functions ϕ and ϕ + c have the same equilibrium
measure. We consider instead certain equivalence classes of functions.

Let σ|Σ+
A be a topological Markov chain. We denote by Aut(Σ+

A) the family
of automorphisms of Σ+

A, that is, the homeomorphisms τ : Σ+
A → Σ+

A such that
τ ◦σ = σ ◦ τ . We show that if two functions are related by an automorphism, then
the entropy spectra of their equilibrium measures coincide. Let M be the family
of σ-invariant probability Borel measures in Σ+

A.

Proposition 11.2.1. Let σ|Σ+
A be a topologically mixing topological Markov chain,

and let ϕ1, ϕ2 : Σ+
A → R be Holder continuous functions. If¨ ϕ2 = ϕ1 ◦ τ for some
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automorphism τ ∈ Aut(Σ+
A), then

P (qϕ1) = P (qϕ2) for every q ∈ R, (11.3)

and thus the entropy spectra of the equilibrium measures of ϕ1 and ϕ2 coincide.

Proof. Given ν ∈ M, we define a new measure in Σ+
A by ντ (C) = ν(τ(C)) for each

measurable set C ∈ Σ+
A. Clearly, ντ ∈ M. We can easily verify that

hν(σ, ξ) = hντ
(σ, τ−1ξ),

and thus hν(σ) = hντ
(σ). We also have

∫

Σ

∫∫

+
A

ϕ2 dντ =

∫

Σ

∫∫

+
A

(ϕ1 ◦ τ) d(ν ◦ τ) =

∫

Σ

∫∫

+
A

ϕ1 dν,

and hence, for every q ∈ R,

hν(σ) + q

∫

Σ

∫∫

+
A

ϕ1 dν = hντ
(σ) + q

∫

Σ

∫∫

+
A

ϕ2 dντ .

By the variational principle of the topological pressure, we conclude that iden-
tity (11.3) holds for every q ∈ R.

In order to show that the entropy spectra coincide we notice that

T1TT (q) := P (qϕ1) − qP (ϕ1) = P (qϕ2) − qP (ϕ2) =: T2TT (q). (11.4)

By statement 6 in Theorem 7.3.2, the entropy spectra E = D1 of the equilibrium
measures of ϕ1 and ϕ2 are determined respectively by the functions T1TT and T2TT .
Thus, it follows from (11.4) that the spectra are equal. �

By Proposition 11.2.1, we can only discuss the multifractal rigidity problem
of recovering ϕ from its spectrum E up to an equivalence relation.

Definition 11.2.2. We say that two functions ϕ1, ϕ2 : Σ+
A → R are equivalent if

ϕ1 − ϕ2 ◦ τ is cohomologous to a constant for some τ ∈ Aut(Σ+
A).

We note that in each equivalence class any two functions have the same
entropy spectrum.

11.2.2 Locally constant functions

A function ϕ : Σ+
A → R is said to be k-locally constant if it is constant in cylinder

sets of length k. We denote by Lk the family of k-locally constant functions. We
say that an equivalence class of functions (see Definition 11.2.2) is an equivalence
class of Lk if it contains a k-locally constant function.

In fact, it is sufficient to consider 2-locally constant functions.



11.2. Entropy spectrum and topological Markov chains 195

Proposition 11.2.3. If ϕ : Σ+
A → R is a k-locally constant function, then there exist

a topological Markov chain Σ+
B and a homeomorphism π : Σ+

A → Σ+
B such that

π ◦ σ = σ ◦ π and ϕ ◦ π−1 ∈ L2. (11.5)

Proof. Fix a bijection γ between {1, . . . , p}k−1 and {1, . . . , pk−1}. Given a p × p
matrix A = (aij), we define a pk−1 × pk−1 matrix B = (bij) with entries

bij =

⎧
⎪
⎧⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪

⎪
⎨⎨

⎪⎪⎪⎪⎪⎪⎩⎪⎪

1, if aγ−1(i)lγ−1(i)l+1
= 1 for l = 1, . . . , k − 2,

aγ−1(j)lγ−1(j)l+1
= 1 for l = 1, . . . , k − 2,

and γ−1(i)m = γ−1(j)m−1 for m = 2, . . . , k − 1,

0, otherwise.

We also define a map π in Σ+
A by

π(α0α1 · · · ) = (γ(α0 · · ·αk−2)γ(α1 · · ·αk−1) · · · ).
We can easily show that π(Σ+

A) = Σ+
B . Indeed, for each α = (α1α2 · · · ) ∈ Σ+

A we
have bπ(α)iπ(α)i+1

= 1, since

aγ−1(π(α)i)lγ−1(π(α)i)l+1
= aαi+l−1αi+l

= 1 for l = 1, . . . , k − 2,

aγ−1(π(α)i+1)lγ−1(π(α)i+1)l+1
= aαi+lαi+l+1

= 1 for l = 1, . . . , k − 2,

and

γ−1(π(α)i)m = αi+m−1 = γ−1(π(α)i+1)m−1 for m = 2, . . . , k − 1.

Furthermore, π : Σ+
A → Σ+

B is a homeomorphism since it maps cylinder sets in Σ+
A

onto cylinder sets in Σ+
B , and we can easily verify that the identity in (11.5) holds.

Since π maps cylinder sets of length k onto cylinder sets of length 2, and ϕ ∈ Lk,
we conclude that ϕ ◦ π−1 ∈ L2. �

For functions in L2 there is an explicit expression for the topological pressure.
Given ϕ : Σ+

A → R in L2, we define the p × p matrix

A(ϕ) = (aij exp(ϕ|CijCC ))
p
i,j=1 . (11.6)

The following property is well known.

Proposition 11.2.4. If ϕ ∈ L2, then P (ϕ) = log ρA(ϕ), where ρA(ϕ) is the spectral
radius of the matrix A(ϕ).

By Proposition 11.2.4, if ϕ ∈ L2 and P (ϕ) = 0, then the matrix A(ϕ) has
spectral radius equal to 1.

Now we study the relations between the matrices A(ϕ) and A(ψ) of two
equivalent functions in L2. For a permutation γ of {1, . . . , p} such that aγ(i)γ(j) = 1

whenever aij = 1, we define an automorphism τ : Σ+
A → Σ+

A by

τ((αi)i∈N) = (γ(αi))i∈N, (11.7)

and we call it a permutation automorphism.
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Theorem 11.2.5 ([13]). Let ϕ, ψ : Σ+
A → R be functions in L2. Then:

1. ϕ − ψ is cohomologous to a constant if and only if

A(ϕ) = ecD−1A(ψ)D (11.8)

for some positive diagonal matrix D and some constant c ∈ R;

2. ϕ = ψ ◦ τ for some permutation automorphism τ if and only if

A(ϕ) = P−1A(ψ)P (11.9)

for some permutation matrix P such that A = P−1AP .

Proof. We begin with an auxiliary result.

Lemma 11.2.6. If ϕ, ψ ∈ L2, and

ϕ − ψ = u ◦ σ − u + c (11.10)

for some continuous function u and some constant c ∈ R, then u ∈ L1.

Proof of the lemma. We proceed by contradiction. If u was not in L1, then there
would exist sequences α = (α1α2 · · · ) and α′ = (α1α

′
2 · · · ) with α2 	=		 α′

2 such that
u(α) 	=		 u(α′). Now take β0 with aβ0α1 = 1, and consider the sequences

β = (β0α1α2 · · · ) and β′ = (β0α1α
′
2 · · · )

in CβC 0α1 . Since ϕ, ψ ∈ L2 we have

ϕ(β) − ψ(β) = ϕ(β′) − ψ(β′),

which is equivalent to

u(α) − u(α′) = u(β) − u(β′).

Similarly, for each n ∈ N we obtain sequences β(n), β′(n) ∈ CβC
n−1···β0α1 such that

u(β(n)) − u(β′(n)) = u(α) − u(α′) 	= 0		 .

Since d(β(n), β′(n)) → 0 when n → ∞, we obtain a contradiction (recall that u is
continuous). This shows that u ∈ L1. �

We proceed with the proof of the theorem. Assume that ϕ, ψ ∈ L2 are such
that ϕ − ψ is cohomologous to a constant, say c ∈ R. By Lemma 11.2.6, there is
a continuous function u ∈ L1 satisfying (11.10), and we obtain

ϕ|CijCC − ψ|CijCC = u|CjC − u|CiCC + c.



11.2. Entropy spectrum and topological Markov chains 197

This implies that (11.8) holds for the diagonal matrix

D = diag(exp(u|CiCC ))p
i=1. (11.11)

On the other hand, we can easily verify that if (11.8) is satisfied for some posi-
tive diagonal matrix D and some constant c, then (11.10) holds with u specified
by (11.11).

Now we assume that ϕ = ψ ◦ τ for some permutation automorphism τ .
Then ϕ|CijCC = ψ|CγCC (i)γ(j), and the matrices A(ϕ) and A(ψ) are conjugated by the
permutation matrix

P = (δiγ(j))
p
i,j=1, (11.12)

where δαβ = 1 if α = β, and δαβ = 0 otherwise. We show that A = P−1AP . Set
B = P−1AP . Since P−1 coincides with the transpose of P , we have

bij =

p∑

α=1

p∑

β=1

(P−1)iαaαβPβjPP =

p∑

α=1

p∑

β=1

δαγ(i)aαβδβγ(j) = aγ(i)γ(j),

where aij and bij are respectively the entries of A and B. If aij = 1, then there
exists ω = (ij · · · ) ∈ Σ+

A. The sequence τ(ω) = (γ(i)γ(j) · · · ) is in Σ+
A, and thus

aγ(i)γ(j) = 1. On the other hand, if aγ(i)γ(j) = 1, then there exists

ω′ = (γ(i)γ(j) · · · ) ∈ Σ+
A.

Since τ is a bijection, there exists ω ∈ Σ+
A with τ(ω) = ω′. Clearly, ω = (ij · · · ),

and thus aij = 1. Therefore, aγ(i)γ(j) = 1 if and only if aij = 1. This shows that
bij = aij for each i and j, and hence B = A.

On the other hand, we can easily verify that if (11.9) is satisfied for some
permutation matrix P such that A = P−1AP , then ϕ = ψ◦τ for some permutation
automorphism τ specified by the entries of P as in (11.12). �

11.2.3 Multifractal rigidity for locally constant functions

The following result of Barreira and Saraiva in [13] shows that for a full topological
Markov chain σ|Σ+

n , the entropy spectrum of an equivalence class of L1 completely
determines this class. This is the strongest possible multifractal rigidity.

Theorem 11.2.7. Let σ|Σ+
n be the full topological Markov chain on n symbols, and

let E be the entropy spectrum of an equivalence class of L1. Then E completely
determines the equivalence class.

Proof. Let ϕ ∈ L1, and write

ϕ|CiCC = log αi for i = 1, . . . , n. (11.13)

Without loss of generality, we assume that αi ≥ αi+1 for i = 1, . . . , n−1, and that
P (ϕ) = 0.
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We show how to determine the equivalence class of ϕ from the function
T (q) = P (qϕ). By statement 6 in Theorem 7.3.2, this is equivalent to determining
the equivalence class of ϕ from E. We have

P (qϕ) = lim
m→∞

1

m
log

∑

i1···im

exp

[
q sup

Ci1···im

Smϕ(x)

]
,

where

Smϕ(x) =

m−1∑

k=0

ϕ(σkx).

Since
sup

Ci1···im

Smϕ(x) = log(αi1 · · ·αim
),

we obtain

T (q) = lim
m→∞

1

m
log

∑

i1···im

(αi1 · · ·αim
)q

= lim
m→∞

1

m
log(αq

1 + · · · + αq
n)m = log(αq

1 + · · · + αq
n).

(11.14)

In order to determine the constants α1, . . . , αn from the function T , we use the
following result.

Lemma 11.2.8 (see, for example, [158]). Assume that the polynomial

p(x) = xn + an−1x
n−1 + · · · + a0 (11.15)

has roots αj, j = 1, . . . , n. Setting βk =
∑n

j=1 αk
j for each k ∈ N, we have

βk + an−1βk−1 + · · · + a0βk−n = 0 for k > n,

and
βk + an−1βk−1 + · · · + an−k+1β1 = −kan−k for 1 ≤ k ≤ n.

By (11.14), we have βk = expT (k) for k = 1, . . . , n, with α1, . . . , αn as
in (11.13). It follows from Lemma 11.2.8 that

−an−1 = β1,

−2an−2 = β2 + an−1β1,

−3an−3 = β3 + an−2β2 + an−3β1,

· · ·
−na0 = βn + an−1βn−1 + · · · + a1β1.

These identities allow us to determine the coefficients a0, . . . , an−1 of the polyno-
mial p in (11.15) from the function T . To determine ϕ and hence its equivalence
class we only need to compute the roots α1, . . . , αn of the polynomial. �



11.2. Entropy spectrum and topological Markov chains 199

Now we consider 2-locally constant functions in topological Markov chains on
two symbols, and we show that there is also a strong multifractal rigidity, although
not as strong as for 1-locally constant functions in Theorem 11.2.7. We start with
the full topological Markov chain.

Theorem 11.2.9 ([13]). Let σ|Σ+
2 be the full topological Markov chain on two sym-

bols, and let E be the entropy spectrum of an equivalence class of L2. Then the
equivalence class is completely determined by E, except when

T (q) = log(αq + (1 − α)q)

for some α ∈ (0, 1/2), in which case there exist three equivalence classes repre-
sented by functions ϕi, i = 1, 2, 3 with matrices A(ϕi) given by

(
1 − α 1 − α

α α

)
,

(
1 − α α

α 1 − α

)
,

(
α 1 − α

1 − α α

)
. (11.16)

Proof. We first notice that there exists ϕ ∈ L2 in the equivalence class of functions
determining the spectrum E such that P (ϕ) = 0, and

ϕ|C11 = log α11, ϕ|C12 = log α12, ϕ|C21CC = 0, ϕ|C22CC = log α22,

with α11 ≥ α22. Indeed, consider a function ϕ ∈ L2 with P (ϕ) = 0. We define
u ∈ L1 by u|C1 = −ϕ|C21CC and u|C2CC = 0, and we set

ψ = ϕ + u ◦ σ − u.

Clearly, ψ ∈ L2, P (ψ) = 0, and

ψ|C21CC = ϕ|C21CC + u|C1 − u|C2CC = 0.

We have (see (11.6))

A(ϕ) =

(
α11 α12

1 α22

)
.

We continue with an auxiliary result.

Lemma 11.2.10. Let ψ ∈ L2 be a function with ψ|CijCC = βij for i, j ∈ {1, 2}. Then

lim
q→+∞

∫

Σ

∫∫

+
2

ψ dμq = max
ν∈M

∫

Σ

∫∫

+
2

ψ dν = max{β11,
1
2 (β12 + β21), β22}, (11.17)

where μq is the equilibrium measure of qψ.

Proof of the lemma. We first show that

lim
q→+∞

∫

Σ

∫∫

+
2

ψ dμq = sup
ν∈M

∫

Σ

∫∫

+
2

ψ dν. (11.18)
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Let ν ∈ M. By the variational principle of the topological pressure,

hμq
(σ) +

∫

Σ

∫∫

+
2

qψ dμq ≥ hν(σ) +

∫

Σ

∫∫

+
2

qψ dν.

Since hν(σ) ≤ log 2 for every ν ∈ M, dividing by q and letting q → +∞ we obtain

lim
q→+∞

∫

Σ

∫∫

+
2

ψ dμq ≥
∫

Σ

∫∫

+
2

ψ dν.

Since μq ∈ M for every q ∈ R, we obtain (11.18).
Now we show that the supremum in (11.18) is in fact a maximum, and

that it is equal to the right-hand side of (11.17). Let ν ∈ M. We have ν(C1) =
ν(C11) + ν(C12) as well as

ν(C1) = ν(σ−1C1) = ν(C11) + ν(C21CC ).

Therefore, ν(C12) = ν(C21CC ), and
∫

Σ

∫∫

+
2

ψ dν = ν(C11)β11 + ν(C12)(β12 + β21) + ν(C22CC )β22.

We consider the function ρ : R3 → R defined by

ρ(x, y, z) = xβ11 + y(β12 + β21) + zβ22,

and the compact set

B = {(x, y, z) ∈ R
3 : x + 2y + z = 1 and x, y, z ≥ 0}.

Clearly,

sup
ν∈M

∫

Σ

∫∫

+
2

ψ dν = max{ρ(x, y, z) : (x, y, z) ∈ B}. (11.19)

Furthermore, the maximum in (11.19) is attained at one of the vertices of B, that
is, at (1, 0, 0), (0, 1/2, 0) or (0, 0, 1). Thus,

max{ρ(x, y, z) : (x, y, z) ∈ B} = max{β11,
1
2 (β12 + β21), β22}.

Now let δ(i1 · · · ik) ∈ M be the delta measure supported on the periodic point
(i1 · · · iki1 · · · ik · · · ). Setting

ν1 = δ(1), ν2 = 1
2 (δ(12) + δ(21)), ν3 = δ(2),

we have
∫

Σ

∫∫

+
2

ψ dν1 = β11,

∫

Σ

∫∫

+
2

ψ dν2 =
1

2
(β12 + β21),

∫

Σ

∫∫

+
2

ψ dν3 = β2.

This shows that the supremum in (11.19) is in fact a maximum. �
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Denoting by ρ(q) the spectral radius of the matrix

A(qϕ) =

(
αq

11 αq
12

1 αq
22

)
, (11.20)

it follows from Proposition 11.2.4 that T (q) = log ρ(q). By (7.15) we have

T ′(q) =

∫

Σ

∫∫

+
2

ϕ dμqϕ.

Set
c = lim

q→+∞
T ′(q) and c = lim

q→−∞
T ′(q). (11.21)

It follows from Lemma 11.2.10 that

c = max{logα11,
1

2
log α12} and c = min{1

2
log α12, log α22}.

Furthermore, since μ0 is the Bernoulli measure (1/2, 1/2), we have

T ′(0) =
1

4
(log α11 + log α12 + log α22). (11.22)

Now we consider three cases:

1.

log α22 ≤ 1

2
log α12 ≤ log α11, (11.23)

in which case c = log α11 and c = log α22;

2.
1

2
log α12 ≤ log α22 ≤ log α11, (11.24)

in which case c = log α11 and 2c = log α12;

3.

log α22 ≤ log α11 ≤ 1

2
log α12, (11.25)

in which case 2c = log α12 and c = log α22.

In the three cases, two of the numbers α11, α12, and α22 are determined by c
and c, although we are not able to say which ones. In order to determine the
third number we note that the matrix A(ϕ) is positive, and thus it has a positive
real eigenvalue which is greater than the absolute value of the other one. Since
the spectral radius of A(ϕ) is expP (ϕ) = 1 (by Proposition 11.2.4), this maximal
eigenvalue is exactly 1, and we can easily verify that the matrix A(ϕ) must be, in
each case,

(
ec (1 − ec)(1 − ec)
1 ec

)
,

(
ec e2c

1 1 − e2c

1−ec

)
,

(
1 − e2c

1−ec e2c

1 ec

)
.
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In Case 1 we have ec < 1. Indeed, if ec > 1, then the trace of A(ϕ) is greater
than 2, and thus its spectral radius is greater than 1. Furthermore, if ec = 1, then
α12 = 0, which is impossible. We also have ec < 1, since otherwise α12 ≤ 0 which
again is impossible. It follows from (11.23) that

e2c ≤ (1 − ec)(1 − ec) ≤ e2c,

which is equivalent to

ec − 1 +
√

(1 − ec)2 + 4(1 − ec)

2
≤ ec ≤ 1 − e2c

1 − ec
. (11.26)

In Case 2 we have ec < 1. Indeed, similarly, if ec > 1, then the trace of A(ϕ)
is greater than 2, and thus its spectral radius is greater than 1. Furthermore, if
ec = 1, then α22 would be undefined. Since c ≤ c we also have ec < 1. It follows
from (11.24) that

ec ≤ 1 − e2c

1 − ec
≤ ec,

which is equivalent to

1 − ec ≤ ec ≤ 1 − e2c

1 − ec
. (11.27)

In Case 3, proceeding as in Case 2, we show that ec < 1. Furthermore, we
also have ec < 1, since otherwise α11 would be negative, which is impossible. It
follows from (11.25) that

ec ≤ 1 − e2c

1 − ec
≤ ec,

which is equivalent to

ec − 1 +
√

(1 − ec)2 + 4(1 − ec)

2
≤ ec ≤ 1 − ec. (11.28)

We can easily verify that for ec > 1/2 the numbers

ec − 1 +
√√

(1 − ec)2 + 4(1 − ec)

2
, 1 − e2c

1 − ec
, and 1 − ec

are smaller than ec. Since ec is smaller than or equal to some of these numbers, we
conclude that for ec > 1/2 we would have ec < ec, which is impossible. Therefore,
we must have ec ≤ 1/2. Note that for ec ∈ [0, 1/2],

ec − 1 +
√

(1 − ec)2 + 4(1 − ec)

2
≤ 1 − ec ≤ 1 − e2c

1 − ec
,

with equalities when ec = 1/2.
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The three inequalities in (11.26), (11.27), and (11.28) can be satisfied simul-
taneously only if

ec = 1 − ec. (11.29)

When this happens, we are in a situation in which it is impossible to completely
recover the equivalence class. Moreover, we have three equivalence classes repre-
sented by the functions ϕi, i = 1, 2, 3 with matrices A(ϕi) given by

(
1 − ec ec(1 − ec)

1 ec

)
,

(
1 − ec e2c

1 1 − ec

)
,

(
ec (1 − ec)2

1 ec

)
.

When ec = 1/2 the three matrices coincide, and thus we obtain a single equivalence
class. When ec 	= 1		 /2 the functions are cohomologous to the ones represented by
the matrices in (11.16) with α = ec. Now we show that the three functions are not
equivalent although they have the same entropy spectrum.

Lemma 11.2.11. Let σ|Σ+
2 be the full topological Markov chain on two symbols,

and let ϕ1, ϕ2, ϕ3 ∈ L2 be the functions with matrices as in (11.16) for some
α ∈ (0, 1/2). Then the equilibrium measures of ϕ1, ϕ2, and ϕ3 have the same
entropy spectrum, but the functions are not equivalent.

Proof of the lemma. Computing the spectral radius of the matrices A(qϕi) we
obtain

P (qϕi) = log(αq + (1 − α)q), i = 1, 2, 3.

This shows that the entropy spectra of the three functions coincide.
Now we show that the functions are not equivalent. Note that any auto-

morphism τ ∈ Aut(Σ+
2 ) transforms fixed points of σn into fixed points of σn.

In particular, if γ1 = (11 · · · ) and γ2 = (22 · · · ), then {τ(γ1), τ(γ2)} = {γ1, γ2}.
Therefore, if two functions ψ1, ψ2 ∈ L2 with P (ψ1) = P (ψ2) are equivalent, then

{ψ1(γ1), ψ1(γ2)} = {ψ2(γ1), ψ2(γ2)}.

Since the functions ϕi, i = 1, 2, 3 have the same topological pressure P (qϕi) for
each q ∈ R, and the sets {ϕi(γ1), ϕi(γ2)}, i = 1, 2, 3 are distinct, we conclude that
ϕ1, ϕ2, and ϕ3 are not equivalent. �

Now we assume that (11.29) does not occur, i.e., that ec 	= 1		 − ec. There are
two possibilities: when

1 − ec < ec ≤ 1 − e2c

1 − ec
(11.30)

we are in Case 1 or Case 2 (see (11.23) and (11.24)), and when

ec − 1 +
√√

(1 − ec)2 + 4(1 − ec)

2
≤ ec < 1 − ec (11.31)

we are in Case 1 or Case 3 (see (11.23) and (11.25)). Using the parameter T ′(0)
we determine in which case we are, and thus we identify a single equivalence class.
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Assume first that (11.30) holds. By (11.22), in Case 1 we have

e4T ′(0) = ecec(1 − ec)(1 − ec), (11.32)

and in Case 2 we have

e4T ′(0) = ece2c

(
1 − e2c

1 − ec

)
. (11.33)

If only one of these identities holds, then we identify in which case we are, and thus
also the equivalence class. Otherwise, when both identities in (11.32) and (11.33)
are satisfied we must have

ec = 1 − ec or ec = 1 − e2c

1 − ec
. (11.34)

The first identity was already analyzed and corresponds to the situation when we
obtain three equivalence classes. When the second identity in (11.34) holds, the
equivalence classes in Case 1 and Case 2 coincide, and contain the function with
matrix (

1 − e2c

1−ec e2c

1 ec

)
.

Therefore, when (11.30) holds, since ec 	= 1		 − ec we identify a single equivalence
class of L2 that generates the spectrum.

Similarly, when (11.31) holds, in Case 1 we have

e4T ′(0) = ecec(1 − ec)(1 − ec), (11.35)

and in Case 3 we have

e4T ′(0) = e2cec

(
1 − e2c

1 − ec

)
. (11.36)

If only one of these identities holds, then we identify a single equivalence class.
Otherwise, when both identities in (11.35) and (11.36) are satisfied we must have

ec = 1 − ec or ec = 1 − e2c

1 − ec
.

When the second identity holds, the equivalence classes in Case 1 and Case 3
coincide, and contain the function with matrix

(
ec e2c

1 1 − e2c

1−ec

)
.

Therefore, when (11.31) holds, since ec 	= 1		 − ec we identify a single equivalence
class of L2 that generates the spectrum. This concludes the proof of the theorem.

�
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Now we consider the topological Markov chains σ|Σ+
A with transition matrix

A = ( 1 1
1 0 ) or A = ( 0 1

1 1 ).

Theorem 11.2.12 ([13]). Let σ|Σ+
A be the topological Markov chain with transition

matrix A = ( 1 1
1 0 ) or A = ( 0 1

1 1 ), and let E be the entropy spectrum of an equivalence
class of L2. Then E completely determines the equivalence class.

Proof. We only consider the case when A = ( 1 1
1 0 ) since the other one is entirely

similar. Let ϕ ∈ L2 be a function in the equivalence class generating the spectrum E

such that P (ϕ) = 0, and

ϕ|C11 = log α11, ϕ|C12 = log α12, ϕ|C21CC = 0

(proceeding as in the proof of Theorem 11.2.9 we can easily verify that there exists
a function ϕ with these properties). Let c and c be as in (11.21). Proceeding as in
the proof of Lema 11.2.10, we show that

c = max{logα11,
1

2
log α12} and c = min{logα11,

1

2
log α12}.

We can verify that there are two possibilities for the matrix A(ϕ), namely

(
ec e2c

1 0

)
and

(
ec e2c

1 0

)
. (11.37)

Since P (ϕ) = 0, the function ϕ is represented by a matrix with spectral radius 1,
and thus 1 is an eigenvalue of the matrices in (11.37). Therefore, in Case 1 we
have

ec + e2c = 1, (11.38)

and in Case 2 we have

e2c + ec = 1. (11.39)

In order that the identities (11.38) and (11.39) are satisfied simultaneously, the
number ec must be 0, (−1 +

√√
5)/2 or 1. But it cannot be 0, and also cannot be

1 since ec would then be 0. Thus, we must have ec = (−1 +
√√

5)/2. We can easily
verify that for this value the two matrices in (11.37) are equal.

To determine the equivalence class we only need to verify which of the iden-
tities in (11.38) and (11.39) is satisfied. When (11.38) holds, the equivalence class
is represented by the first matrix in (11.37). Otherwise, when (11.39) holds, the
equivalence class is represented by the second matrix in (11.37). When both iden-
tities hold, as we observed, the two matrices in (11.37) are equal, and thus we
obtain a single equivalence class. Therefore, each entropy spectrum determined byff
an equivalence class of L2 is determined by a single equivalence class. �
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11.2.4 Failure of multifractal rigidity

Following [13] we give an explicit example of a topological Markov chain on three
symbols for which there is no multifractal rigidity, even more in some generic sense.

Let ϕ ∈ L2 be a function with P (ϕ) = 0. By Proposition 11.2.4 we have

T (q) = P (qϕ) = log ρA(qϕ).

On the other hand, given a square matrix A = (aij) we consider its characteristic
polynomial

pA(z, q) = det(z Id−A(q)),

where A(q) = (aq
ij). We note that T can be computed from pA(ϕ). This follows

from the identity

pA(ϕ)(z, q) = det(z Id−A(ϕ)(q)) = det(z Id−A(qϕ))

(see (11.20)). Therefore, the entropy spectrum E can also be computed from the
characteristic polynomial pA(ϕ). However, we show that in general the knowledge
of pA(ϕ) is not sufficient to determine the equivalence class of ϕ. More precisely, we
exhibit functions in distinct equivalence classes that have the same characteristic
polynomial, and thus the same entropy spectrum.

Theorem 11.2.13 ([13]). Let σ|Σ+
A be the topological Markov chain with transition

matrix

A =

⎛
⎝
⎛⎛

0 1 1
1 0 1
1 1 0

⎞
⎠
⎞⎞

,

and let ϕ, ψ ∈ L2 be functions satisfying P (ϕ) = P (ψ) = 0, with matrices

A(ϕ) =

⎛

⎝

⎛⎛
0 α12 α13

1 0 α23

1 α32 0

⎞

⎠

⎞⎞

and A(ψ) =

⎛

⎝

⎛⎛
0 α12 α13

1 0 α13

α12
α32

1 α12

α13
α23 0

⎞

⎠

⎞⎞

,

where α12 > α13 > α23α32 and α13α32 	=		 α12α23. Then ϕ and ψ have the same
characteristic polynomial, and thus the same entropy spectrum, but are not equiv-
alent.

Proof. We can easily verify that pA(ϕ) = pA(ψ) = p, where

p(z, q) = z3 − (αq
12 + αq

13 + (α23α32)
q)z + (α12α23)

q + (α13α32)
q.

In order to show that the functions ϕ and ψ are not equivalent we first
observe that Aut(Σ+

A) ≈ S3, where S3 is the permutation group of three elements
(see Example 2.19 in [41]). Furthermore, to each permutation γ of {1, 2, 3} there
corresponds a permutation automorphism in Aut(Σ+

A) (see (11.7)). Therefore, the
automorphisms of Σ+

A are precisely the permutation automorphisms.
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We proceed by contradiction. Assume that ϕ and ψ are equivalent, that
is, there exist τ ∈ Aut(Σ+

A) obtained from a permutation γ as in (11.7), and a
continuous function u : Σ+

A → R such that

ϕ ◦ τ = ψ + u ◦ σ − u. (11.40)

Since ϕ, ψ ∈ L2, the function ϕ◦τ is also in L2. By Lemma 11.2.6 we have u ∈ L1,
and thus u|CiCC = log di for some constants di > 0, i = 1, 2, 3. We can easily verify
that identity (11.40) can be written in matrix form as

⎛
⎝
⎛⎛

0 αγ(1)γ(2) αγ(1)γ(3)

αγ(2)γ(1) 0 αγ(2)γ(3)

αγ(3)γ(1) αγ(3)γ(2) 0

⎞
⎠
⎞⎞

=

⎛
⎜
⎛⎛

⎝⎜⎜
0 d1

d2
α12

d1

d3
α13

d2

d1
0 d2

d3

α13

α12
α32

d3

d1

d3

d2

α12

α13
α23 0

⎞
⎟
⎞⎞

⎠⎟⎟ . (11.41)

We note that

αγ(1)γ(2)αγ(2)γ(1) = α12,

αγ(1)γ(3)αγ(3)γ(1) = α13,

αγ(2)γ(3)αγ(3)γ(2) = α23α32.

(11.42)

The matrix in the left-hand side of (11.41) can also be written in the form
P−1A(ϕ)P where P is the permutation matrix in (11.12). Since the set of entries
of PA(ϕ)P−1 is the same as the set of entries of A(ϕ), we can easily verify that
the identities in (11.42) together with the hypothesis α12 > α13 > α23α32 imply
that P is the identity matrix (and thus τ is the identity automorphism). Indeed,
if γ(1) = 2, then α2γ(2)αγ(2)2 = α12. Since α23α32 < α12 it cannot be γ(2) = 3.
Therefore, γ(2) = 1 and γ(3) = 3. But then, from the second identity in (11.42),
we should have α23α32 = α13, which contradicts the hypotheses in the theorem.
We can show in a similar manner that γ(1) = 3 yields a contradiction. Indeed, if
γ(1) = 3, then from the first identity in (11.42) we would have α3γ(2)αγ(2)3 = α12.
It follows from the hypotheses in the theorem that it cannot be γ(2) = 2, and thus
we must have γ(2) = 1 and γ(3) = 2. But then the second identity in (11.42) gives
α32α23 = α13, which again contradicts the hypotheses in the theorem. Therefore,
we must have γ(1) = 1, and the first identity in (11.42) gives α1γ(2)αγ(2)1 = α12.
If γ(2) = 3, then we obtain α13 = α12, which is forbidden by the hypotheses in
the theorem. Therefore, we must have γ(2) = 2 and γ(3) = 3. This shows that
γ = Id, and thus τ is the identity automorphism.

Hence, equation (11.41) reduces to

⎛

⎝

⎛⎛
0 α12 α13

1 0 α23

1 α32 0

⎞

⎠

⎞⎞

=

⎛
⎜
⎛⎛

⎝⎜⎜
0 d1

d2
α12

d1

d3
α13

d2

d1
0 d2

d3

α13

α12
α32

d3

d1

d3

d2

α12

α13
α23 0

⎞
⎟
⎞⎞

⎠⎟⎟ .

This implies that d1 = d2 = d3, and hence u is constant. Therefore, ψ = ϕ. On
the other hand, since α13α32 	=		 α12α23 we must have ψ 	=		 ϕ. This contradiction
shows that the functions ψ and ϕ cannot be equivalent. �
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We note that it could happen that using only the information given by
the function T we could obtain more equivalence classes than the two in The-
orem 11.2.13. However, it is shown in [13] that T contains sufficient information
to obtain exactly the two equivalence classes.



Chapter 12

Hyperbolic Sets: Past and
Future

We give a complete description of the dimension spectra of Birkhoff averages in a
hyperbolic set of a conformal diffeomorphism, considering simultaneously Birkhoff
averages into the past and into the future, i.e., both for negative and positive
time. We emphasize that the description of these spectra is not a consequence of
the results in Chapter 6. The main difficulty is that although the local product
structure provided by the intersection of local stable and unstable manifolds is
a Lipschitz homeomorphism with Lipschitz inverse, the level sets of Birkhoff av-
erages are never compact. This causes their box dimension to be strictly larger
than their Hausdorff dimension, and thus a product of level sets may have a Haus-
dorff dimension that a priori need not be the sum of the dimensions of the level
sets. Instead, we construct explicitly noninvariant measures concentrated on each
product of level sets having the appropriate pointwise dimension.

12.1 A model case: the Smale horseshoe

We briefly explain in this section why the results are nontrivial, even in the par-
ticular case of the linear Smale horseshoe. This is the product Λ = C × C of two
standard middle-third Cantor sets. Let f : Λ → Λ be the dynamics in the horse-
shoe, here assumed to be expanding in the vertical direction and contracting in
the horizontal direction. Given continuous functions ϕ, ψ : Λ → R we consider the
level sets of Birkhoff averages given for each α, β ∈ R by

Kαβ =

{
x ∈ Λ : lim

n→∞

1

n

n−1∑

k=0

ϕ(fkx) = α and lim
n→∞

1

n

n−1∑

k=0

ψ(f−kx) = β

}
.
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We define the dimension spectrum by

D(α, β) = dimHKαβ.

We want to explain why we cannot obtain a description of the spectrum D from
the results in Chapter 6. Let P and Q be the orthogonal projections respectively
onto the horizontal and vertical axes. It follows from the exponential behavior of f
along the stable and unstable manifolds that (see Theorem 12.2.2)

P (Kαβ) × C =

{
x ∈ Λ : lim

n→∞

1

n

n−1∑

k=0

ψ(f−kx) = β

}
,

and

C × Q(Kαβ) =

{
x ∈ Λ : lim

n→∞

1

n

n−1∑

k=0

ϕ(fkx) = α

}
.

Therefore,

Kαβ = [P (Kαβ) × C] ∩ [C × Q(Kαβ)] = P (Kαβ) × Q(Kαβ), (12.1)

and each level set Kαβ is a product of level sets of Birkhoff averages. We could try
to obtain a description of the spectrum D from the results in Chapter 6 applied
to P (Kαβ) and Q(Kαβ). The problem is that in general the Hausdorff dimension
of a product A×B need not be the sum of the Hausdorff dimensions of A and B,
unless, for example, dimHA = dimBA or dimHB = dimBB. Even more, we can
show that if the functions ϕ and ψ are not cohomologous to constants, then

dimHP (Kαβ) < dimBP (Kαβ) and dimHQ(Kαβ) < dimBQ(Kαβ)

for all α, β, except for one value of α and one value of β. So, even though it follows
immediately from (12.1) that

D(α, β) ≥ dimHP (Kαβ) + dimHQ(Kαβ), (12.2)

a priori this inequality could be strict. The main objective of this chapter is to
show that (12.2) is in fact an identity for every α and β (see Section 12.4). We
follow closely Barreira and Valls in [22].

12.2 Dimension spectra

We consider in this section the dimension spectra of Birkhoff averages on a locally
maximal hyperbolic set Λ of a diffeomorphism f . We assume that f is conformal
on Λ.

We continue to denote by Cε(Λ) the space of Hölder continuous functions¨
ϕ : Λ → R with a given Hölder exponent¨ ε ∈ (0, 1]. Fix κ ∈ N. We consider two
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pairs of functions (Φ+, Ψ+) and (Φ−, Ψ−) in H(Λ) := Cε(Λ)κ × Cε(Λ)κ, and we
write

Φ± = (ϕ±
1 , . . . , ϕ±

κ ) and Ψ± = (ψ±
1 , . . . , ψ±

κ ).

We always assume that ψ±
i > 0 for i = 1, . . ., κ (for simplicity we write Ψ± > 0).

For each α = (α1, . . . , ακ) ∈ Rκ we consider the level sets

K+
α =

κ⋂

i=1

{
x ∈ Λ : lim

n→∞

∑n
k=0 ϕ+

i (fkx)∑n
k=0 ψ+

i (fkx)
= αi

}
,

and

K−
α =

κ⋂

i=1

{
x ∈ Λ : lim

n→∞

∑n
k=0 ϕ−

i (f−kx)∑n
k=0 ψ−

i (f−kx)
= αi

}
.

Definition 12.2.1. We define the dimension spectrum D : Rκ × Rκ → R by

D(α, β) = dimH(K+
α ∩ K−

βK ).

We first consider separately the level sets K+
α and K−

α . Given ρ > 0, for
each x ∈ Λ we consider the local stable and unstable manifolds V s(x) = V s

ρVV (x)
and V u(x) = V u

ρVV (x) (see (4.21) and (4.22)). We also consider the global stable and
unstable manifolds at x ∈ Λ defined respectively by

W s(x) =
⋃

n∈N

f−nV s(fnx) and Wu(x) =
⋃

n∈N

fnV u(f−nx).

We recall the numbers ts and tu defined by (4.42).

Theorem 12.2.2. Let Λ be a locally maximal hyperbolic set of a C1+ε diffeomor-
phism f , for some ε > 0, such that f is conformal on Λ. Given pairs of functions
(Φ±, Ψ±) ∈ H(Λ) with Ψ± > 0, for each α ∈ Rκ and x± ∈ K±

α we have

Λ ∩ W s(x+) ⊂ K+
α , Λ ∩ Wu(x−) ⊂ K−

α , (12.3)

and

dimHK+
α = dimH(K+

α ∩ V u(x+)) + ts,

dimHK−
α = dimH(K−

α ∩ V s(x−)) + tu.

Proof. Let a, b : Λ → R be continuous functions with b > 0. It follows from the
exponential behavior of f along the unstable manifolds and the uniform continuity
of a and b in Λ that for each x ∈ Λ and δ > 0, given n ∈ N sufficiently large we
have

|a(fmy) − a(fmx)| < δ and |b(fmy) − b(fmx)| < δ
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for every y ∈ V s(x) and m > n. Therefore,

∣∣∣∣∣∣∣∣∣∣
∑m

k=0 a(fky)∑m
k=0 b(fky)

−
∑m

k=0 a(fkx)∑m
k=0 b(fkx)

∣∣∣∣∣∣∣∣∣∣

≤
∑m

k=0 |a(fky) − a(fkx)|∑m
k=0 b(fky)

+

∣∣∣∣∣∣∣∣∣∣
∑m

k=0 a(fkx)∑m
k=0 b(fky)

−
∑m

k=0 a(fkx)∑m
k=0 b(fkx)

∣∣∣∣∣∣∣∣∣∣

≤ n sup |b| + (m − n + 1)δ

(m + 1) inf b
+ (m + 1) sup |a|n sup b + (m − n + 1)δ

(m + 1)2(inf b)2

→ δ

inf b
+

δ sup |a|
(inf b)2

(12.4)

as m → ∞. Now assume that there exists β ∈ R such that

lim
m→∞

∑m
k=0 a(fkx)∑m
k=0 b(fkx)

= β.

Letting δ → 0 in (12.4) we obtain

lim
m→∞

∑m
k=0 a(fky)∑m
k=0 b(fky)

= β for every y ∈ V s(x).

This implies that Λ ∩ V s(x) ⊂ K+
α for every x ∈ K+

α . Furthermore, since the
set K+

α is f -invariant we conclude that

Λ ∩ f−nV s(fnx) ⊂ K+
α

for every x ∈ K+
α and n ∈ N. Therefore, Λ ∩ W s(x) ⊂ K+

α . Similar arguments
establish the second inclusion in (12.3).

Since f is conformal on Λ, by results of Hasselblatt in [71] the local prod-
uct structure (see Definition 4.2.5) is a Lipschitz homeomorphism with Lipschitz
inverse. This implies that for each x ∈ K+

α the set

Λ ∩
⋃

y∈K+
α ∩V u(x)

V s(y)

is taken onto the product (K+
α ∩ V u(x)) × (Λ ∩ V s(x)) by a Lipschitz map with

Lipschitz inverse. In view of (4.40) and (4.41) we obtain

dimHK+
α = dimH(K+

α ∩ V u(x)) + ts.

Similar arguments establish the corresponding identity for K−
α . This completes

the proof of the theorem. �
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12.3 Existence of full measures

We denote by M the family of f -invariant probability Borel measures in Λ, and
we define functions P± : M → Rκ by

P
±(μ) =

(∫
Λ

∫∫
ϕ±

1 dμ∫
Λ

∫∫
ψ±

1 dμ
, . . . ,

∫
Λ

∫∫
ϕ±

κ dμ∫
Λ

∫∫
ψ±

κ dμ

)
.

Theorem 12.3.1 ([22]). Let Λ be a locally maximal hyperbolic set of a C1+ε diffeo-
morphism f , for some ε > 0, such that f is conformal and topologically mix-
ing on Λ. Given pairs of functions (Φ±, Ψ±) ∈ H(Λ) with Ψ± > 0, if α ∈
intP+(M) and β ∈ intP−(M), then there exists a probability measure ν in Λ
with ν(K+

α ∩ K−
βK ) = 1, such that

lim
r→0

log ν(B(x, r))

log r
= dimHK+

α + dimHK−
βK − dimHΛ (12.5)

for ν-almost every x ∈ Λ, and

lim sup
r→0

log ν(B(x, r))

log r
≤ dimHK+

α + dimHK−
βK − dimHΛ (12.6)

for every x ∈ K+
α ∩ K−

βK .

Proof. Consider a Markov partition of Λ, and let σ|ΣA be the associated two-
sided topological Markov chain. We also consider the coding map χ : ΣA → Λ
obtained from the Markov partition, and the maps σ+, σ−, π+, and π− defined
by (4.31) and (4.32). The following statement is an immediate consequence of
Proposition 4.2.11.

Lemma 12.3.2. For each i = 1, . . . , κ there exist Holder continuous functions¨ ϕu
i ,

ψu
i , du : Σ+

A → R and ϕs
i , ψs

i , ds : Σ−
A → R, and continuous functions g±i , h±

i ,
ρ± : ΣA → R such that

ϕ+
i ◦ χ = ϕu

i ◦ π+ + g+
i − g+

i ◦ σ,

ψ+
i ◦ χ = ψu

i ◦ π+ + h+
i − h+

i ◦ σ,

log ‖df |Eu‖ ◦ χ = du ◦ π+ + ρ+ − ρ+ ◦ σ,

and

ϕ−
i ◦ χ = ϕs

i ◦ π− + g−i − g−i ◦ σ,

ψ−
i ◦ χ = ψs

i ◦ π− + h−
i − h−

i ◦ σ,

log ‖df−1|Es‖ ◦ χ = ds ◦ π− + ρ− − ρ− ◦ σ.
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Now we initiate the process of construction of the measure ν. Set

d+ = dimHK+
α − ts and d− = dimHK−

βK − tu.

By (4.43) we have

d+ + d− = dimHK+
α + dimHK−

βK − dimHΛ. (12.7)

We also write

Φu = (ϕu
1 , . . . , ϕu

κ), Ψu = (ψu
1 , . . . , ψu

κ),

Φs = (ϕs
1, . . . , ϕ

s
κ), Ψs = (ψs

1, . . . , ψ
s
κ).

Given vectors q± ∈ Rκ, we define Hölder continuous functions¨ au : Σ+
A → R and

bs : Σ−
A → R by

au = 〈q+, Φu − α ∗ Ψu〉 − d+du,

bs = 〈q−, Φs − β ∗ Ψs〉 − d−ds,
(12.8)

where 〈·, ·〉 is the standard inner product in Rκ, and where

α ∗ (ϕ1, . . . , ϕκ) = (α1ϕ1, . . . , ακϕκ).

Since f is topologically mixing on Λ (and hence the same happens with f−1),
there exist a unique equilibrium measure μu of au in Σ+

A (with respect to σ+),
and a unique equilibrium measure μs of bs in Σ−

A (with respect to σ−). We note
that μu and μs are Gibbs measures. Since α ∈ intP+(M) and β ∈ intP−(M), the
following statement is an immediate consequence of Theorem 10.1.4.

Lemma 12.3.3. There exist vectors q± ∈ Rκ such that the corresponding measures
μu and μs satisfy

PσPP +(au) = PσPP −(bs) = 0, (12.9)

and ∫

Σ

∫∫

+
A

Φu dμu = α ∗
∫

Σ

∫∫

+
A

Ψu dμu,

∫

Σ

∫∫

−

A

Φs dμs = β ∗
∫

Σ

∫∫

−

A

Ψs dμs.

Take x ∈ Λ, and let R(x) ⊂ Λ be a rectangle of the Markov partition con-
taining x. We define measures νu and νs in R(x) by

νu = μu ◦ π+ ◦ χ−1 and νs = μs ◦ π− ◦ χ−1,

using in (12.8) the vectors q± in Lemma 12.3.3. Finally, we consider the measure
ν = νu × νs in R(x). Since μu and μs are Gibbs measures, we have (see (4.36)
and (4.37))

ν(R(x)) = μu(C+
iC
0
)μs(C−

iC
0
) > 0.
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Lemma 12.3.4. Given γ > 1, there exists K > 0 such that for every x ∈ Λ and
every sufficiently small r > 0 we have

ν(B(x, γr)) ≤ Kν(B(x, r)).

Proof of the lemma. Consider the Hölder continuous functions¨ a, b : Λ → R de-
fined by

a = 〈q+, Φ+ − α ∗ Ψ+〉 − d+ log ‖df |Eu‖,
b = 〈q−, Φ− − β ∗ Ψ−〉 + d− log ‖df |Es‖.

We note that νu is the equilibrium measure of a with respect to f , and that νs

is the equilibrium measure of b with respect to f−1. Repeating arguments in the
proof of Lemma 6.1.5 we obtain the desired statement. �

We proceed with the proof of the theorem.

Lemma 12.3.5. We have

lim inf
r→0

log ν(B(x, r))

log r
≥ dimHK+

α + dimHK−
βK − dimHΛ

for ν-almost every x ∈ Λ.

Proof of the lemma. Using the variational principle of the topological pressure for
the functions in (12.8) it follows from Lemma 12.3.3 that

hμu(σ+)∫
Σ

∫∫
+
A

du dμu
= d+ and

hμs(σ−)∫
Σ

∫∫
−

A

ds dμs
= d−. (12.10)

By Shannon–McMillan–Breiman’s theorem and Birkhoff’s ergodic theorem, it fol-
lows from (12.10) that given δ > 0, for μu-almost every ω+ ∈ C+

iC
0

and μs-almost

every ω− ∈ C−
iC
0

there exists l(ω) ∈ N such that for every n, m > l(ω) we have

d+ − δ < −
log μu(C+

iC
0···in

)∑n
k=0 du((σ+)kω+)

< d+ + δ,

and

d− − δ < −
log μs(C−

iC
−m···i0

)
∑m

k=0 ds((σ−)kω−)
< d− + δ.

For each ω ∈ ΣA and each sufficiently small r > 0, let n = n(ω, r) and m = m(ω, r)
be the unique integers such that

−
n∑

k=0

du((σ+)kω+) > log r, −
n+1∑

k=0

du((σ+)kω+) ≤ log r, (12.11)
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and

−
m∑

k=0

ds((σ−)kω−) > log r, −
m+1∑

k=0

ds((σ−)kω−) ≤ log r, (12.12)

where ω+ = π+ω and ω− = π−ω. In a similar manner to that in the proof of
Theorem 6.2.1, there exists a constant ρ > 1 (independent of x = χ(ω) ∈ Λ
and r > 0) such that

B(y, r/ρ) ∩ Λ ⊂ χ(CiCC
−m ···in

) ⊂ B(x, ρr) (12.13)

for some point y ∈ χ(CiCC
−m···in

), where ω = (· · · i−1i0i1 · · · ). Furthermore, by
Lemma 12.3.4 there exists a constant c > 0 (independent of x and r) such that

ν(B(y, 2ρr)) ≤ cν(B(y, r/ρ)).

Since B(x, r) ⊂ B(y, 2ρr), it follows from (12.13) that

ν(B(x, r)) ≤ ν(B(y, 2ρr)) ≤ cν(B(y, r/ρ))

≤ cν(χ(CiCC
−m ···in

)) = cμu(C+
iC
0···in

)μs(C−
iC
−m ···i0

)

< c exp

[
(−d+ + δ)

n∑

k=0

du((σ+)kω+)

]

× exp

[
(−d− + δ)

m∑

k=0

ds((σ−)kω−)

]

≤ c exp[(log r + sup |du|)(d+ − δ) + (log r + sup |ds|)(d− − δ)],

and hence

lim inf
r→0

log ν(B(x, r))

log r
≥ d+ + d− − 2δ,

for ν-almost every point x ∈ Λ. In view of (12.7), the arbitrariness of δ implies
the desired result. �

Now let Λαβ ⊂ ΣA be the set of points ω ∈ ΣA such that for i = 1, . . . , κ we
have

lim
n→∞

∑n
k=0 ϕu

i ((σ+)kω+)∑n
k=0 ψu

i ((σ+)kω+)
= αi, lim

n→∞

∑n
k=0 ϕs

i ((σ
−)kω−)∑n

k=0 ψs
i ((σ

−)kω−)
= βi.

Lemma 12.3.6. The inequality in (12.6) holds for every x ∈ χ(Λαβ).

Proof of the lemma. Given δ > 0 and ω ∈ Λαβ, there exists r(ω) ∈ N such that
for every n > r(ω) we have

∥∥∥∥∥∥∥∥∥∥
〈

q+,

n∑

k=0

(Φu − α ∗ Ψu)((σ+)kω+)

〉∥∥∥∥∥∥∥∥∥∥ < δn sup
∣∣∣∣〈q+, Ψu〉

∣∣∣∣, (12.14)
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and ∥∥∥∥∥∥∥∥∥∥
〈

q−,

n∑

k=0

(Φs − β ∗ Ψs)((σ−)kω−)

〉∥∥∥∥∥∥∥∥∥∥ < δn sup
∣∣∣∣〈q−, Ψs〉

∣∣∣∣. (12.15)

Since μu and μs are Gibbs measures, in view of (12.9) there exists a constant
D > 0 such that for every ω+ ∈ C+

iC
0
, ω− ∈ C−

iC
0
, and n, m ∈ N we have

D−1 <
μu(C+

iC
0···in

)

exp
∑n

k=0 au((σ+)kω+)
< D,

and

D−1 <
μs(C−

iC
−m···i0

)

exp
∑m

k=0 bs((σ−)kω−)
< D.

Combining these inequalities with (12.14)–(12.15) we obtain

μu(C+
iC
0···in

) > D−1 exp

[
−d+

n∑

k=0

du((σ+)kω+) − δn sup
∣∣∣∣〈q+, Ψu〉

∣∣∣∣
]

, (12.16)

and

μs(C−
iC
−m···i0

) > D−1 exp

[
−d−

m∑

k=0

ds((σ−)kω−) − δm sup
∣∣∣∣〈q−, Ψs〉

∣∣∣∣
]

. (12.17)

Given ω ∈ Λαβ, we take r > 0 sufficiently small such that n(ω, r) > r(ω) and
m(ω, r) > r(ω) (the hyperbolicity of f on Λ guarantees that this is always possi-
ble). Combining (12.16)–(12.17) with (12.11)–(12.12) we obtain

ν(B(x, ρr)) ≥ ν(χ(CiCC
−m ···in

)) = μu(C+
iC
0···in

)μs(C−
iC
−m···i0

)

≥ D−2rd++d−

exp(−δn sup
∣∣∣∣〈q+, Ψu〉

∣∣∣∣− δm sup
∣∣∣∣〈q−, Ψs〉

∣∣∣∣)

for all sufficiently small r > 0. Note that by (12.11)–(12.12) we have

−n inf du > log r and − m inf ds > log r.

Therefore, for every x = χ(ω) with ω ∈ Λαβ we obtain

lim sup
r→0

log ν(B(x, r))

log r
≤ d+ + d− + δ

(
sup

∣∣∣∣〈q+, Ψu〉
∣∣∣∣

inf du
+

sup
∣∣∣∣〈q−, Ψs〉

∣∣∣∣

inf ds

)
.

Since δ is arbitrary, for every x ∈ χ(Λαβ) we have

lim sup
r→0

log ν(B(x, r))

log r
≤ d+ + d−.

In view of (12.7) this establishes the desired statement. �
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Lemma 12.3.7. We have χ(Λαβ) = K+
α ∩ K−

βK .

Proof of the lemma. It follows from Lemma 12.3.2 that

ϕ+
i (fk(χ(ω))) = ψ+

i (χ(σkω))

= ϕu
i (π+(σkω)) + g+

i (σkω) − g+
i (σk+1ω)

= ϕu
i ((σ+)kω+) + g+

i (σkω) − g+
i (σk+1ω),

with similar identities for the functions ψ+
i , ϕ−

i , and ψ−
i . Therefore,

∑n−1
k=0 ϕ+

i (fk(χ(ω)))
∑n−1

k=0 ψ+
i (fk(χ(ω)))

=

∑n−1
k=0 ϕu

i ((σ+)kω+) + g+
i (ω) − g+

i (σnω)
∑n−1

k=0 ψu
i ((σ+)kω+) + h+

i (ω) − h+
i (σnω)

, (12.18)

and
∑n−1

k=0 ϕ−
i (f−k(χ(ω)))

∑n−1
k=0 ψ−

i (f−k(χ(ω)))
=

∑n−1
k=0 ϕs

i ((σ
−)kω−) + g−i (ω) − g−i (σnω)

∑n−1
k=0 ψs

i ((σ
−)kω−) + h−

i (ω) − h−
i (σnω)

. (12.19)

Now we observe that

n−1∑

k=0

ψu
i ((σ+)kω+) ≥ n inf ψ+

i − 2 sup |h+
i |,

and
n−1∑

k=0

ψs
i ((σ

−)kω−) ≥ n inf ψ−
i − 2 sup |h−

i |.

Since ψ±
i > 0 for i = 1, . . . , κ, it follows from these inequalities that the limits

lim
n→∞

∑n−1
k=0 ϕ+

i (fk(χ(ω)))
∑n−1

k=0 ψ+
i (fk(χ(ω)))

and lim
n→∞

∑n−1
k=0 ϕ−

i (f−k(χ(ω)))
∑n−1

k=0 ψ−
i (f−k(χ(ω)))

exist if and only if the limits

lim
n→∞

∑n−1
k=0 ϕu

i ((σ+)kω+)
∑n−1

k=0 ψu
i ((σ+)kω+)

and lim
n→∞

∑n−1
k=0 ϕs

i ((σ
−)kω−)

∑n−1
k=0 ψs

i ((σ
−)kω−)

exist. In this case we have

lim
n→∞

∑n−1
k=0 ϕ+

i (fk(χ(ω)))
∑n−1

k=0 ψ+
i (fk(χ(ω)))

= lim
n→∞

∑n−1
k=0 ϕu

i ((σ+)kω+)
∑n−1

k=0 ψu
i ((σ+)kω+)

,

and

lim
n→∞

∑n−1
k=0 ϕ−

i (f−k(χ(ω)))
∑n−1

k=0 ψ−
i (f−k(χ(ω)))

= lim
n→∞

∑n−1
k=0 ϕs

i ((σ
−)kω−)

∑n−1
k=0 ψs

i ((σ
−)kω−)

.

In particular, ω ∈ Λαβ if and only if χ(ω) ∈ K+
α ∩K−

βK . This shows that χ(Λαβ) =

K+
α ∩ K−

βK . �
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Combining the above lemmas we readily obtain the statement in the theorem.
�

We note that the measure ν constructed in the proof of Theorem 12.3.1 is
not invariant.

12.4 Formula for the spectrum

We can use the former results to obtain a formula for the spectrum D.

Theorem 12.4.1 ([22]). Let Λ be a locally maximal hyperbolic set of a C1+ε diffeo-
morphism f , for some ε > 0, such that f is conformal and topologically mixing
on Λ. Given pairs of functions (Φ±, Ψ±) ∈ H(Λ) with Ψ± > 0, if α ∈ intP+(M)
and β ∈ intP−(M), then the set K+

α ∩ K−
βK is dense in Λ, and

D(α, β) = dimHK+
α + dimHK−

βK − dimHΛ. (12.20)

Proof. It follows easily from the construction of the functions Φu, Ψu, Φs, and Ψs

that the sets K+
α and K−

βK are dense in Λ (we note that by Theorem 12.3.1 they
are nonempty). Namely, by Lemma 12.3.2 (see also (12.18) and (12.19)) the ratios
of Birkhoff averages of these functions only depend on the symbolic past (in the
case of K+

α ) or on the symbolic future (in the case of K−
βK ). The fact that the set

K+
α ∩ K−

βK is dense in Λ is thus an immediate consequence of the identities

⋃

k∈N

(σ+)−kω+ = Σ+
A and

⋃

k∈N

(σ−)−kω− = Σ−
A,

valid for every ω+ ∈ Σ+
A and ω− ∈ Σ−

A.

Now let ν be the measure constructed in Theorem 12.3.1. By Theorem 2.1.5,
it follows from (12.5) that

dimHν = dimHK+
α + dimHK−

βK − dimHΛ.

Since ν(K+
α ∩ K−

βK ) = 1, we obtain

dimH(K+
α ∩ K−

βK ) ≥ dimHν = dimHK+
α + dimHK−

βK − dimHΛ.

For the reverse inequality, we note that by Theorem 2.1.5 it follows from (12.6)
that

dimH(K+
α ∩ K−

βK ) ≤ dimHK+
α + dimHK−

βK − dimHΛ.

This completes the proof of the theorem. �
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12.5 Conditional variational principle

We also obtain a conditional variational principle for the spectrum D.

Theorem 12.5.1 ([22]). Let Λ be a locally maximal hyperbolic set of a C1+ε diffeo-
morphism f , for some ε > 0, such that f is conformal and topologically mixing
on Λ. Given pairs of functions (Φ±, Ψ±) ∈ H(Λ) with Ψ± > 0, the following
properties hold:

1. if α ∈ intP+(M) and β ∈ intP−(M), then

D(α, β) =max

{
hμ(f)

−
∫
Λ

∫∫
log ‖df |Es‖ dμ

: μ ∈ M and P
+(μ) = α

}

+ max

{
hμ(f)∫

Λ

∫∫
log ‖df |Eu‖ dμ

: μ ∈ M and P
−(μ) = β

}
;

2. the spectrum D is analytic in intP+(M) × intP−(M).

Proof. In view of Theorem 12.4.1 (see (12.20)), the statements are immediate
consequences of Theorems 10.1.4 and 10.3.1. �
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Hyperbolicity and Recurrence



Chapter 13

Pointwise Dimension for
Hyperbolic Dynamics

Sometimes a given global invariant can be built with the help of a local quantity.
For example, the Kolmogorov–Sinai entropy and the Hausdorff dimension, which
are quantities of global nature, can be built (in a rigorous mathematical sense)
respectively with the help of the local entropy and the pointwise dimension. In
the case of the entropy this is due to Shannon–McMillan–Breiman’s theorem: the
Kolmogorov–Sinai entropy is obtained integrating the local entropy. In this chapter
we are mostly interested in the Hausdorff dimension of an invariant measure.
In particular, for repellers and hyperbolic sets of conformal maps we establish
explicit formulas for the pointwise dimension of an arbitrary invariant measure in
terms of the local entropy and the Lyapunov exponents. This allows us to show
that the Hausdorff dimension of a (nonergodic) invariant measure is equal to the
essential supremum of the Hausdorff dimensions of the measures in an ergodic
decomposition.

13.1 Repellers of conformal maps

13.1.1 Formula for the pointwise dimension

Let J be a repeller of a C1+ε transformation f , for some ε > 0, such that f is
conformal on J . Let also μ be an f -invariant probability measure in J .

By Birkhoff’s ergodic theorem, for μ-almost every x ∈ J there exists the limit

λ(x) = lim
n→∞

1

n
log ‖dxfn‖ = lim

n→∞

1

n

n−1∑

k=0

ϕ(fkx), (13.1)

where ϕ(x) = log ‖dxf‖. We note that the function x �→ λ(x) is f -invariant μ-
almost everywhere.
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For μ-almost every x ∈ J , let hμ(x) be the local entropy of μ at the point x
(see Lemma 7.2.8). Let also R = {R1, . . . , Rk} be any partition of J . Given
i0, . . . , in ∈ {1, . . . , k} we define the rectangle

Ri0···in
=
{
x ∈ J : f jx ∈ Rij

for j = 0, . . . , n
}
. (13.2)

By Shannon–McMillan–Breiman’s theorem, for μ-almost every x ∈ J we have

hμ(x) = lim
n→∞

− 1

n
log μ(Rn(x)), (13.3)

where Rn(x) is any rectangle Ri0···in
containing x. For definiteness, we assume from

the beginning that for each x we make a particular choice of rectangles Rn(x) for
all n ∈ N. Let X be a fixed full μ-measure f -invariant set of points x ∈ J such
that:

1. the number λ(x) in (13.1) is well-defined;

2. the number hμ(x) in (7.9) is well-defined and satisfies (13.3).

The following is a local formula for the pointwise dimension of invariant
measures that are not necessarily ergodic. It was obtained by Barreira and Wolf
in [24].

Theorem 13.1.1. Let J be a repeller of a C1+ε transformation f , for some ε > 0,
such that f is conformal on J , and let μ be an f -invariant probability measure
in J . Then for μ-almost every x ∈ J we have

dμ(x) = dμ(x) =
hμ(x)

λ(x)
.

Proof. Fix δ > 0. For each x ∈ X there exists p(x) ∈ N such that if n ≥ p(x), then

λ(x) − δ <
1

n
log ‖dxfn‖ < λ(x) + δ, (13.4)

and

−hμ(x) − δ <
1

n
log μ(Rn(x)) < −hμ(x) + δ. (13.5)

For each ℓ ∈ N, let

Qℓ = {x ∈ X : p(x) ≤ ℓ}.

We note that
⋃

ℓ∈N
Qℓ = X . Furthermore, for each x ∈ X there exists r(x) > 0

such that for every r ∈ (0, r(x)) there exists a unique integer n = n(x, r) ≥ p(x)
such that

‖dxfn‖−1 ≥ r and ‖dxfn+1‖−1 < r. (13.6)

We write R(x, r) = Rn(x,r)(x) for each x ∈ X and r ∈ (0, r(x)).
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We first obtain an upper bound for the pointwise dimension. Since f is confor-
mal on J , there exists κ > 0 (independent of x and r) such that B(x, κr) ⊃ R(x, r)
for each x ∈ X and r ∈ (0, r(x)). Hence,

μ(B(x, κr)) ≥ μ(R(x, r)) ≥ exp[(−hμ(x) − δ)n].

By (13.4) and (13.6) we obtain

μ(B(x, κr)) ≥ exp

[
(hμ(x) + δ)

log r

λ(x) − δ

]
,

and thus,

dμ(x) ≤ hμ(x) + δ

λ(x) − δ
.

The arbitrariness of δ implies that dμ(x) ≤ hμ(x)/λ(x) for every x ∈ X , and hence
for μ-almost every x ∈ J .

Now we obtain a lower bound for the pointwise dimension. Given x ∈ X we
define

Γ(x) =
{
y ∈ X : |hμ(y) − hμ(x)| < δ and |λ(y) − λ(x)| < δ

}
. (13.7)

Note that Γ(x) is f -invariant. The sets Γ(x) cover X , and we can choose points
yi ∈ X , i ∈ N such that setting Γi = Γ(yi) we have μ(Γi) > 0 for each i, and
μ(
⋃

i∈N
Γi) = 1.

Fix i, ℓ ∈ N. We construct a Moran cover of Γi ∩ Qℓ by sets of the form
R(x, r)∩Γi ∩Qℓ. For each x ∈ Γi∩Qℓ and r > 0, we denote by R′(x, r) the largest
rectangle containing x (among those in (13.2)) with the property that

R′(x, r) = R(y, r) for some y ∈ R′(x, r) ∩ Γi ∩ Qℓ,

and that

R(z, r) ⊂ R′(x, r) for every z ∈ R′(x, r) ∩ Γi ∩ Qℓ.

We note that two sets R′(x, r) and R′(y, r) either coincide or intersect at most
along their boundaries.

The Borel density lemma (see, for example, [59, Theorem 2.9.11]) tells us
that for μ-almost every x ∈ Γi ∩ Qℓ we have

lim
r→0

μ(B(x, r) ∩ Γi ∩ Qℓ)

μ(B(x, r))
= 1, (13.8)

and thus there exists (̄x) > 0 such that for each r ∈ (0, r̄(x)),

μ(B(x, r)) ≤ 2μ(B(x, r) ∩ Γi ∩ Qℓ). (13.9)
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Since f is conformal on J , there exist a constant K > 0 (independent of x and r)
and points x1, . . ., xk ∈ Γi ∩ Qℓ with k ≤ K such that

B(x, r) ∩ Γi ∩ Qℓ ⊂
k⋃

j=1

R′(xj , r).

By (13.5) and (13.9) we obtain

μ(B(x, r)) ≤ 2μ(B(x, r) ∩ Γi ∩ Qℓ) ≤ 2

k∑

j=1

μ(R′(xj , r))

≤ 2

k∑

j=1

exp[(−hμ(xj) + δ)n(xj , r)].

By the definition of Γi and (13.6) we conclude that

μ(B(x, r)) ≤ 2

k∑

j=1

exp

[
(hμ(yi) − 2δ)

log r + maxϕ

λ(xj) + δ

]

≤ 2K exp

[
(hμ(x) − 3δ)

log r + maxϕ

λ(x) + 2δ

]
,

where ϕ = log ‖df‖, and thus,

dμ(x) ≥ hμ(x) − 3δ

λ(x) + 2δ
.

The arbitrariness of δ implies that

dμ(x) ≥ hμ(x)/λ(x) (13.10)

for μ-almost every x ∈ Γi ∩Qℓ. Letting ℓ → ∞ we conclude that (13.10) holds for
μ-almost every x ∈ Γi. Finally, since

⋃
ℓ∈N

Γi has full μ-measure, (13.10) holds for
μ-almost every x ∈ J . �

Theorem 13.1.1 can be used to describe how the Hausdorff dimension of an
invariant measure behaves under an ergodic decomposition. We first recall the
notion of ergodic decomposition. Let M be the family of f -invariant probability
Borel measures in a compact metric space X , and let ME ⊂ M be the subset of
all ergodic measures.

Definition 13.1.2. A probability Borel measure τ in M (with the weak∗ topology)
is an ergodic decomposition of a measure μ ∈ M if τ(ME) = 1, and

∫

X

∫∫
ϕdμ =

∫

M

∫∫ (∫

X

∫∫
ϕdν

)
dτ(ν)

for every continuous function ϕ : X → R.
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We establish a lower bound for the dimension of an invariant measure.

Proposition 13.1.3. Let f : X → X be a Borel measurable transformation pre-
serving a probability measure μ in X. For any ergodic decomposition τ of μ we
have

dimHμ ≥ ess sup{dimHν : ν ∈ ME}, (13.11)

with the essential supremum taken with respect to τ .

Proof. If μ(X \ Z) = 0, then ν(X \ Z) = 0 for τ -almost every ν ∈ M. Hence,

dimHZ ≥ dimHν for τ -almost every ν ∈ M,

and we obtain
dimHZ ≥ ess sup{dimHν : ν ∈ ME}.

Taking the infimum over all sets Z with μ(X \ Z) = 0 we obtain the desired
statement. �

Example 13.1.4. We note that inequality (13.11) may be strict. A simple example
is given by a rational rotation of the circle. In this case each measure supported on
a periodic orbit has zero Hausdorff dimension, and thus when μ is the Lebesgue
measure we have a strict inequality in (13.11).

We observe that when the number of ergodic components is finite or even
infinite countable it is straightforward to verify that (13.11) becomes an identity,
that is,

dimHμ = ess sup{dimHν : ν ∈ ME}. (13.12)

Indeed, assume that X =
⋃

n∈N∪{0} Xn for some pairwise disjoint f -invariant sets

Xn, n ∈ N ∪ {0} such that f |Xn is ergodic with respect to μ for each n ∈ N, and
μ(X0) = 0 (that is, up to a zero measure set the number of ergodic components
is countable). Then it is simple to show that

dimHμ = sup{dimH(μ|Xn) : n ∈ N}.

In particular, (13.12) holds in the context of smooth ergodic theory (see [8]).
Namely, let μ be a finite hyperbolic measure (see Definition 14.3.1) invariant under
a C1+ε diffeomorphism of a compact manifold. Pesin showed in [113] that if μ is
absolutely continuous with respect to the volume, then up to a zero measure set
the number of ergodic components is countable, and thus (13.12) holds.

Combining Theorem 13.1.1 with (2.6), and using the μ-almost everywhere
f -invariance of the functions hμ and λ, we obtain the following formulas for the
Hausdorff dimension of an invariant measure (that is not necessarily ergodic).

Corollary 13.1.5. If J is a repeller of a C1+ε transformation f , for some ε > 0,
such that f is conformal on J , and μ is an f -invariant probability measure in J ,
then

dimHμ = ess sup

{
hμ(x)

λ(x)
: x ∈ J

}
.
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If, in addition, μ is ergodic, then

dμ(x) = dμ(x) = dimHμ =
hμ(f)∫

J

∫∫
log ‖df‖ dμ

(13.13)

for μ-almost every x ∈ J .

Identity (13.13) was first established by Pesin in [115]. We emphasize that
when μ is not ergodic, in general (13.13) may not hold. Examples can be read-
ily obtained from the fact that given invariant probability measures μ1, μ2 and
constants c1, c2 > 0 with c1 + c2 = 1, the measure μ = c1μ1 + c2μ2 satisfies

dimHμ = max{dimHμ1, dimHμ2}, (13.14)

and

hμ(f) = c1hμ1(f) + c2hμ2(f). (13.15)

13.1.2 Dimension along ergodic decompositions

The following statement gives a formula for the Hausdorff dimension of an invariant
measure in terms of an ergodic decomposition. We recall that ME is the set of all
ergodic f -invariant probability measures in J .

Theorem 13.1.6 ([24]). Let J be a repeller of a C1+ε transformation f , for some
ε > 0, such that f is conformal on J , and let μ be an f -invariant probability
measure in J . For any ergodic decomposition τ of μ we have

dimHμ = ess sup{dimHν : ν ∈ ME}, (13.16)

with the essential supremum taken with respect to τ .

Proof. By Proposition 13.1.3 we have

dimHμ ≥ ess sup{dimHν : ν ∈ ME}.

Now we establish the opposite inequality. By Corollary 13.1.5 we have

dimHμ = ess sup

{
hμ(x)

λ(x)
: x ∈ X

}
. (13.17)

Fix δ > 0. As in the proof of Theorem 13.1.1, choose points yi ∈ X , i ∈ N such
that the f -invariant sets Γi = Γ(yi) (see (13.7)) satisfy μ(Γi) > 0 for each i, and
μ(
⋃

i∈N
Γi) = 1. Given i ∈ N, we consider the normalized restriction μi of μ to Γi.

It follows from (7.10) and (13.7) that

hμi
(f |Γi) =

1

μ(Γi)

∫

Γ

∫∫

i

hμ(x) dμ(x) ≥ hμ(yi) − δ. (13.18)
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Set

Mi = {ν ∈ M : ν(J \ Γi) = 0},

where M is the family of all f -invariant probability measures in J . Since Γi is
f -invariant, there is a one-to-one correspondence between the ergodic f -invariant
probability measures in Γi and the measures in Mi∩ME . Therefore, it is straight-
forward to verify that τ(Mi ∩ ME) > 0, and that the normalization τiττ of τ |Mi is
an ergodic decomposition of μi. Since

hμi
(f |Γi) =

∫

M

∫∫

i

hν(f) dτiττ (ν)

(see, for example, [45]), there exists a set Ai ⊂ Mi ∩ ME of positive τiττ -measure,
and thus also of positive τ -measure, such that

hν(f) > hμi
(f |Γi) − δ for every ν ∈ Ai.

By (13.18), for every ν ∈ Ai and x ∈ Γi we have

hν(f) > hμi
(f |Γi) − δ ≥ hμ(yi) − 2δ > hμ(x) − 3δ,

and

λ(ν) :=

∫

Γ

∫∫

i

ϕdν ≤ λ(yi) + δ ≤ λ(x) + 2δ.

Therefore, for every ν ∈ Ai we have

hμ(x)

λ(x)
≤ hν(f) + 3δ

λ(ν) − 2δ
≤ dimHν + C(δ),

where δ �→ C(δ) is a function (independent of i and ν) that tends to zero as δ → 0.
Since τ(Ai) > 0, it follows from (13.17) and Corollary 13.1.5 that

dimHμ ≤ ess sup{dimHν : ν ∈ ME} + C(δ).

Letting δ → 0 we obtain the desired result. �

In the case of the entropy it is well known that (see, for example, [45])

hμ(f) =

∫

M

∫∫

E

hν(f) dτ(ν) (13.19)

for any ergodic decomposition τ of μ. Identities (13.16) and (13.19) are gener-
alizations respectively of (13.14) and (13.15) for an arbitrary number (possibly
uncountable) of ergodic invariant probability measures.



230 Chapter 13. Pointwise Dimension for Hyperbolic Dynamics

13.2 Hyperbolic sets of conformal maps

Now we consider hyperbolic sets of conformal maps, and we derive formulas for
the pointwise dimension and the Hausdorff dimension of an invariant measure
that is not necessarily ergodic. These formulas are versions of those for repellers
in Section 13.1.

13.2.1 Formula for the pointwise dimension

Let Λ be a locally maximal hyperbolic set of a C1+ε diffeomorphism f , for some
ε > 0, such that f is conformal on Λ. Let also μ be an f -invariant probability
measure in Λ.

Since f is conformal on Λ, it follows from Birkhoff’s ergodic theorem that
for μ-almost every x ∈ Λ there exist the limits

λs(x) = lim
n→∞

1

n
log ‖dxfn|Es(x)‖ = lim

n→∞

1

n

n−1∑

k=0

ϕs(f
kx), (13.20)

and

λu(x) = lim
n→∞

1

n
log ‖dxfn|Eu(x)‖ = lim

n→∞

1

n

n−1∑

k=0

ϕu(fkx), (13.21)

with ϕs and ϕu as in (4.39). The numbers λs(x) and λu(x) are respectively the
negative and positive values of the Lyapunov exponent at x.

Let R = {R1, . . . , Rk} be any partition of Λ. Given i−m, . . . , in ∈ {1, . . . , k}
we define the rectangle

Ri−m···in
= {x ∈ Λ : f j(x) ∈ Rij

for j = −m, . . . , n}.

By Shannon–McMillan–Breiman’s theorem, for μ-almost every x ∈ Λ we have

hμ(x) = lim
n,m→∞

− 1

n + m
log μ(Rn,m(x)), (13.22)

for any choice of rectangles Rn,m(x) = Ri−m···in
containing x. For definiteness,

we assume from the beginning that for each x we make a particular choice of
rectangles Rn,m(x) for all n, m ∈ N. Let X be a fixed full μ-measure f -invariant
set of points x ∈ Λ such that:

1. the numbers λs(x) and λu(x) in (13.20)–(13.21) are well-defined;

2. the number hμ(x) in (7.9) is well-defined and satisfies (13.22).

Now we consider invariant measures that are not necessarily ergodic, and fol-
lowing Barreira and Wolf in [24] we establish an explicit formula for the pointwise
dimension at a point x in terms of the values λs(x) and λu(x) of the Lyapunov
exponent, and the local entropy hμ(x).
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Theorem 13.2.1. Let Λ be a locally maximal hyperbolic set of a C1+ε diffeomor-
phism f , for some ε > 0, such that f is conformal on Λ, and let μ be an f -invariant
probability measure in Λ. Then for μ-almost every x ∈ Λ we have

dμ(x) = dμ(x) = hμ(x)

(
1

λu(x)
− 1

λs(x)

)
.

Proof. The proof is an elaboration of the proof of Theorem 13.1.1. Fix δ > 0. For
each x ∈ X there exists p(x) ∈ N such that if n, m ≥ p(x), then

λs(x) − δ <
1

n
log ‖dxfn|Es(x)‖ < λs(x) + δ, (13.23)

λu(x) − δ <
1

n
log ‖dxfn|Eu(x)‖ < λu(x) + δ, (13.24)

−hμ(x) − δ <
1

n + m
log μ(Rn,m(x)) < −hμ(x) + δ. (13.25)

For each ℓ ∈ N, let
Qℓ = {x ∈ X : p(x) ≤ ℓ}.

Clearly,
⋃

ℓ∈N
Qℓ = X . Furthermore, for each x ∈ X there exists r(x) > 0 such

that for every r ∈ (0, r(x)) there exist unique integers n = n(x, r) ≥ p(x) and
m = m(x, r) ≥ p(x) such that

‖dxfm|Es(x)‖ ≥ r and ‖dxfm+1|Es(x)‖ < r, (13.26)

‖dxfn|Eu(x)‖−1 ≥ r and ‖dxfn+1|Eu(x)‖−1 < r. (13.27)

We write
R(x, r) = Rn(x,r),m(x,r)(x).

Combining (13.23) with (13.26), and (13.24) with (13.27), for all sufficiently small δ
we obtain

m(λs(x) − δ) < log r − min ϕs and log r < m(λs(x) + δ), (13.28)

and

− log r + min ϕu < n(λu(x) + δ) and n(λu(x) − δ) < − log r. (13.29)

We first obtain an upper bound for the pointwise dimension. Since f is confor-
mal on Λ, there exists κ > 0 (independent of x and r) such that B(x, κr) ⊃ R(x, r).
Hence,

μ(B(x, κr)) ≥ μ(R(x, r)) ≥ exp[(−hμ(x) − δ)(n + m)].

Therefore,

μ(B(x, κr)) ≥ exp

[
(hμ(x) + δ)

(
log r

λu(x) − δ
− log r

λs(x) + δ

)]
,
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and hence,

dμ(x) ≤ (hμ(x) + δ)

(
1

λu(x) − δ
− 1

λs(x) + δ

)
.

The arbitrariness of δ implies that

dμ(x) ≤ hμ(x)

(
1

λu(x)
− 1

λs(x)

)

for every x ∈ X , and hence for μ-almost every x ∈ Λ.
Now we obtain a lower bound for the pointwise dimension. Given x ∈ X we

define

Γ(x) =
{
y ∈ X : |λs(y) − λs(x)| < δ, |λu(y) − λu(x)| < δ,

and |hμ(y) − hμ(x)| < δ
}
.

Note that Γ(x) is f -invariant. The sets Γ(x) cover X , and we can choose points
yi ∈ X , i ∈ N such that setting Γi = Γ(yi) we have μ(Γi) > 0 for each i, and
μ(
⋃

i∈N
Γi) = 1.

Now we proceed in a similar manner to that in the proof of Theorem 13.1.1 to
construct a cover of Γi∩Qℓ by sets R′(x, r) of the form R(x, r)∩Γi ∩Qℓ. It follows
from the Borel density lemma (see (13.8)) that for μ-almost every x ∈ Γi ∩ Qℓ

there exists a constant (̄x) > 0 such that for each r ∈ (0, r̄(x)),

μ(B(x, r)) ≤ 2μ(B(x, r) ∩ Γi ∩ Qℓ).

Since f is conformal on Λ, there exist a constant K > 0 (independent of x and r)
and points x1, . . ., xk ∈ Γi ∩ Qℓ with k ≤ K such that

B(x, r) ∩ Γi ∩ Qℓ ⊂
k⋃

j=1

R′(xj , r).

Using (13.25) we obtain

μ(B(x, r)) ≤ 2μ(B(x, r) ∩ Γi ∩ Qℓ)

≤ 2
k∑

j=1

μ(R′(xj , r))

≤ 2

k∑

j=1

exp[(−hμ(xj) + δ)(n(xj , r) + m(xj , r))].

By (13.28)–(13.29) and the definition of Γi we conclude that

μ(B(x, r)) ≤ 2

k∑

j=1

exp

[
(hμ(yi) − 2δ)

(
log r − min ϕu

λu(xj) + δ
− log r − min ϕs

λs(xj) − δ

)]

≤ 2K exp

[
(hμ(x) − 3δ)

(
log r − min ϕu

λu(x) + 2δ
− log r − min ϕs

λs(x) − 2δ

)]
,
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and hence,

dμ(x) ≥ (hμ(x) − 3δ)

(
1

λu(x) + 2δ
− 1

λs(x) − 2δ

)
.

The arbitrariness of δ implies that

dμ(x) ≥ hμ(x)

(
1

λu(x)
− 1

λs(x)

)
(13.30)

for μ-almost every x ∈ Γi ∩Qℓ. Letting ℓ → ∞ we conclude that (13.30) holds for
μ-almost every x ∈ Γi. Finally, since

⋃
i∈N

Γi has full μ-measure, (13.30) holds for
μ-almost every x ∈ Λ. �

We note that the existence of the pointwise dimension is known in much
greater generality. Namely, for any finite hyperbolic measure μ invariant under a
C1+ε diffeomorphism, it was shown by Barreira, Pesin and Schmeling in [11] that

dμ(x) = dμ(x) for μ-almost every x

(see Chapter 14 for details). We note that Theorem 13.2.1 can also be obtained
from work of Ledrappier and Young in [93] and work of Barreira, Pesin and Schmel-
ing in [11]. However, while these papers require the machinery of smooth ergodic
theory, we provide a direct short proof in the case of uniformly hyperbolic dynam-
ics.

Combining Theorem 13.2.1 with (2.6) we obtain a formula for the Hausdorff
dimension of an invariant measure.

Corollary 13.2.2. If Λ is a locally maximal hyperbolic set of a C1+ε diffeomor-
phism f , for some ε > 0, such that f is conformal on Λ, and μ is an f -invariant
probability measure in Λ, then

dimHμ = ess sup

{
hμ(x)

(
1

λu(x)
− 1

λs(x)

)
: x ∈ Λ

}
. (13.31)

When μ is ergodic, Theorem 13.2.1 (or Corollary 13.2.2) can be used to
recover Young’s formula in [165] for dimHμ in the uniformly hyperbolic case of
diffeomorphisms on surfaces (see also Chapter 14). Let

λs(μ) =

∫

Λ

∫∫
λs(x) dμ(x) and λu(μ) =

∫

Λ

∫∫
λu(x) dμ(x).

Theorem 13.2.3. If Λ is a locally maximal hyperbolic set of a C1+ε diffeomor-
phism f , for some ε > 0, such that f is conformal on Λ, and μ is an ergodic
f -invariant probability measure in Λ, then

dimHμ = hμ(f)

(
1

λu(μ)
− 1

λs(μ)

)
.
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Proof. Since the functions hμ, λs, and λu in the right-hand side of (13.31) are
f -invariant μ-almost everywhere and μ is ergodic, we have

hμ(x) = hμ(f), λs(x) = λs(μ), and λu(x) = λu(μ)

for μ-almost every x ∈ Λ. Therefore, the desired statement is an immediate con-
sequence of Corollary 13.2.2. �

Theorem 13.2.3 was first established by Pesin in [115, Theorem 24.2].

13.2.2 Dimension along ergodic decompositions

Using Theorem 13.2.1 we describe how the dimension of an invariant measure in
a hyperbolic set behaves with respect to an ergodic decomposition.

Theorem 13.2.4 ([24]). Let Λ be a locally maximal hyperbolic set of a C1+ε dif-
feomorphism f , for some ε > 0, such that f is conformal on Λ, and let μ be an
f -invariant probability measure in Λ. For any ergodic decomposition τ of μ we
have

dimHμ = ess sup{dimHν : ν ∈ ME},
with the essential supremum taken with respect to τ .

Proof. The proof is a simple modification of the proof of Theorem 13.1.6. By
Corollary 13.2.2 we have

dimHμ = ess sup

{
hμ(x)

(
1

λu(x)
− 1

λs(x)

)
: x ∈ Λ

}
. (13.32)

Fix δ > 0. As in the proof of Theorem 13.2.1, we consider the sets Γi = Γ(yi),
i ∈ N. Fix i and consider the normalized restriction μi of μ to Γi. Proceeding as
in the proof of Theorem 13.1.6, we show that there exists a set Ai ⊂ Mi ∩ ME

of positive τiττ -measure (where τiττ is the normalization of τ |Mi) such that for every
ν ∈ Ai and x ∈ Γi we have

hν(f) > hμi
(f |Γi) − δ ≥ hμ(yi) − 2δ > hμ(x) − 3δ.

Furthermore,

λs(ν) =

∫

Γ

∫∫

i

ϕs dν ≥ λs(yi) − δ ≥ λs(x) − 2δ,

and

λu(ν) = −
∫

Γ

∫∫

i

ϕu dν ≤ λu(yi) + δ ≤ λu(x) + 2δ.

We conclude that

hμ(x)

(
1

λu(x)
− 1

λs(x)

)
≤ (hν(f) + 3δ)

(
1

λu(ν) − 2δ
− 1

λs(ν) + 2δ

)
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for every ν ∈ Ai. Since τ(Ai) > 0, it follows from (13.32) that

dimHμ ≤ ess sup{dimHν : ν ∈ ME} + C(δ),

where δ �→ C(δ) is a function (independent of i and ν) that tends to zero as δ → 0.
By Proposition 13.1.3, the arbitrariness of δ implies the desired result. �

The following is an immediate consequence of Theorem 13.2.4.

Corollary 13.2.5. If Λ is a locally maximal hyperbolic set of a C1+ε diffeomor-
phism f , for some ε > 0, such that f is conformal on Λ, then

sup{dimHν : ν ∈ M} = sup{dimHν : ν ∈ ME}.



Chapter 14

Product Structure of
Hyperbolic Measures

We describe in this chapter the almost product structure of the hyperbolic invari-
ant measures, that is, the invariant measures with nonzero Lyapunov exponents
almost everywhere. We note that the existence of a hyperbolic measure ensures the
presence of nonuniform hyperbolicity almost everywhere, which together with the
nontrivial recurrence given by the invariant measure causes a very complicated
behavior of the system. It turns out that, to some extent, the almost product
structure of a hyperbolic measure imitates the local product structure defined by
the local stable and unstable manifolds, but its study is much more delicate. We
also describe the relation between the product structure of hyperbolic invariant
measures and the dimension theory of dynamical systems.

14.1 Nonuniform hyperbolicity

The concept of nonuniform hyperbolicity originated in seminal work of Pesin in
[112, 113, 114] (see also [6, 7, 8, 95, 159] and the references therein).

Let f : M → M be a diffeomorphism.

Definition 14.1.1. The trajectory {fnx : n ∈ Z} of a point x ∈ M is called
nonuniformly hyperbolic if there exist decompositions

TfT nxM = Es
fnx ⊕ Eu

fnx, n ∈ Z,

a constant λ ∈ (0, 1), and for each sufficiently small ρ > 0 a positive function CρC
defined in the trajectory of x such that if k ∈ Z, then:

1. CρC (fkx) ≤ eρ|k|CρC (x);

2. dxfkEs
x = Es

fkx and dxfkEu
x = Eu

fkx;
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3. if v ∈ Es
fkx and m > 0, then

‖dfkxfmv‖ ≤ CρC (fkx)λmeρm‖v‖;

4. if v ∈ Eu
fkx and m < 0, then

‖dfkxfmv‖ ≤ CρC (fkx)λ|m|eρ|m|‖v‖;

5. ∠(Eu
fkx, Es

fkx) ≥ CρC (fkx)−1.

The expression “nonuniform” refers to the estimates in conditions 3 and 4,
that may differ from the “uniform” estimate λm by a small exponential term. It is
immediate that any trajectory in a hyperbolic set is nonuniformly hyperbolic.

Among the most important properties due to nonuniform hyperbolicity is the
existence of invariant stable and unstable manifolds (with an appropriate version
of Theorem 4.2.2), and their absolute continuity established by Pesin in [112].
The theory also describes the ergodic properties of dynamical systems with an
invariant measure absolutely continuous with respect to the volume [113], and the
Pesin entropy formula expresses the Kolmogorov–Sinai entropy in terms of the
Lyapunov exponents [113] (see also [92]). Combining the nonuniform hyperbolicity
with the nontrivial recurrence due to the existence of a finite invariant measure,
the work of Katok in [83] revealed a very rich and complicated orbit structure.

Now we state the result concerning the existence of invariant stable and
unstable manifolds, established by Pesin in [112].

Theorem 14.1.2 (Existence of invariant manifolds). If {fnx : n ∈ Z} is a nonuni-
formly hyperbolic trajectory of a C1+ε diffeomorphism, for some ε > 0, then for
each sufficiently small ρ > 0 there exist manifolds V s(x) and V u(x) containing x,
and a function Dρ defined in the trajectory of x such that:

1. TxTT V s(x) = Es
x and TxTT V u(x) = Eu

x ;

2. Dρ(f
kx) ≤ e2ρ|k|Dρ(x) for every k ∈ Z;

3. if y ∈ V s(x), m > 0, and k ∈ Z, then

d(fm+kx, fm+ky) ≤ Dρ(f
kx)λmeρmd(fkx, fky); (14.1)

4. if y ∈ V u(x), m < 0, and k ∈ Z, then

d(fm+kx, fm+ky) ≤ Dρ(f
kx)λ|m|eρ|m|d(fkx, fky).

Definition 14.1.3. The manifolds V s(x) and V u(x) are called respectively local
stable manifold and local unstable manifold at x.
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Contrarily to what happens in the case of hyperbolic sets, for nonuniformly
hyperbolic trajectories the sizes of these manifolds may not be bounded from below
along the orbit (although they decrease at most with a small exponential speed
provided that ρ is sufficiently small).

The proof of Theorem 14.1.2 in [112] is an elaboration of the classical work
of Perron. In [133], Ruelle obtained a proof of Theorem 14.1.2 based on the study
of perturbations of products of matrices in the Multiplicative ergodic theorem (see
Theorem 14.2.3 below). Another proof of Theorem 14.1.2 was given by Pugh and
Shub in [126] with an elaboration of the classical work of Hadamard. In [125],
Pugh constructed a C1 diffeomorphism in a manifold of dimension 4, that is not
of class C1+ε for any ε > 0 and for which there exists no manifold tangent to Es

x

such that the inequality (14.1) holds in some open neighborhood of x. Therefore,
the hypothesis ε > 0 is crucial in Theorem 14.1.2. See [6, 58, 126] for detailed
expositions.

14.2 Dynamical systems with nonzero Lyapunov
exponents

The concept of nonuniform hyperbolicity is closely related to the study of Lya-
punov exponents. These numbers measure the asymptotic exponential rates of
contraction and expansion in the neighborhood of a given trajectory.

Let f : M → M be a diffeomorphism.

Definition 14.2.1. Given x ∈ M and v ∈ TxTT M , we define the (forward) Lyapunov
exponent of (x, v) by

χ(x, v) = lim sup
n→+∞

1

n
log ‖dxfnv‖,

with the convention that log 0 = −∞.

By the abstract theory of Lyapunov exponents (see [6] for a detailed exposi-
tion), for each x ∈ M there exist a positive integer p(x) ≤ dimM , numbers

χ1(x) < · · · < χp(x)(x), (14.2)

and linear subspaces

{0} = E0(x) ⊂ E1(x) ⊂ · · · ⊂ EpE (x)(x) = TxTT M

such that if i = 1, . . ., p(x), then

Ei(x) = {v ∈ TxTT M : χ(x, v) ≤ χi(x)},

and χ(x, v) = χi(x) for every v ∈ Ei(x) \ Ei−1(x).
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Definition 14.2.2. Given x ∈ M and v ∈ TxTT M , we define the (backward) Lyapunov
exponent of (x, v) by

χ−(x, v) = lim sup
n→−∞

1

|n| log ‖dxfnv‖.

Similarly, by the abstract theory of Lyapunov exponents, for each x ∈ M
there exist a positive integer p−(x) ≤ dimM , numbers

χ−
1 (x) > · · · > χ−

p−(x)(x),

and linear subspaces

TxTT M = E−
1 (x) ⊃ · · · ⊃ E−

p−(x)(x) ⊃ E−
p−(x)+1(x) = {0}

such that if i = 1, . . ., p−(x), then

E−
i (x) = {v ∈ TxTT M : χ−(x, v) ≤ χ−

i (x)},

and χ−(x, v) = χ−
i (x) for every v ∈ E−

i (x) \ E−
i+1(x).

A priori the structures for positive and negative time could be unrelated. The
following result of Oseledets in [108] shows that under mild additional assumptions
quite the contrary happens in a set of full measure with respect to any finite
invariant measure.

Theorem 14.2.3 (Multiplicative ergodic theorem). Let f : M → M be a C1 diffeo-
morphism, and let μ be an f -invariant finite measure in M such that log+ ‖df‖ and
log+ ‖df−1‖ are μ-integrable. Then for μ-almost every x ∈ M there exist subspaces
HjH (x) ⊂ TxTT M for j = 1, . . ., p(x) such that:

1. if i = 1, . . ., p(x), then Ei(x) =
⊕i

j=1 HjH (x), and

lim
n→±∞

1

n
log ‖dxfnv‖ = χi(x)

for every v ∈ Ei(x)\{0}, with uniform convergence in {v ∈ HiHH (x) : ‖v‖ = 1};
2. for each i 	=		 j we have

lim
n→±∞

1

n
log |∠(HiHH (fnx), HjH (fnx))| = 0.

We note that if M is compact, then the functions log+ ‖df‖ and log+ ‖df−1‖
are μ-integrable for any finite measure μ in M . The statement in Theorem 14.2.3
also holds in the more general case of linear cocycles over a measurable trans-
formation. See [6] for a detailed exposition and for a proof of the Multiplicative
ergodic theorem.
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Let f : M → M be a C1 diffeomorphism in a compact manifold, and let μ
be an f -invariant finite measure in M . We say that f is nonuniformly hyperbolic
with respect to μ if the set Λ ⊂ M of points whose trajectories are nonuniformly
hyperbolic has measure μ(Λ) > 0. In this case the constants λ and ρ in the defini-
tion of nonuniformly hyperbolic trajectory are replaced by measurable functions
λ(x) and ρ(x). It follows from Theorem 14.2.3 that the following two conditions
are equivalent:

1. f is nonuniformly hyperbolic with respect to μ;

2. χ(x, v) 	= 0 for each		 v ∈ TxTT M and each x in a set of μ-positive measure.

In other words, the nonuniformly hyperbolic diffeomorphisms with respect to a
given measure are precisely those with all Lyapunov exponents nonzero in a set of
positive measure.

Let M be a compact manifold. It was shown by Katok in [82] when dimM = 2
and by Dolgopyat and Pesin in [47] when dimM ≥ 3 that there exists a C∞

diffeomorphism f such that:

1. f preserves the Riemannian volume m in M ;

2. f has nonzero Lyapunov exponents m-almost everywhere;

3. f is a Bernoulli diffeomorphism.

When dimM ≥ 5, Brin constructed in [42] a C∞ Bernoulli diffeomorphism which
preserves the Riemannian volume and has all but one Lyapunov exponent nonzero.
In another direction, Bochi showed in [32] that when dimM = 2 there exists a
residual set D of C1 area preserving diffeomorphisms such each f ∈ D is either
an Anosov diffeomorphism or has all Lyapunov exponents zero. This result was
announced by Mañ̃e but his proof was never published.´

14.3 Product structure of hyperbolic measures

Let f : M → M be a diffeomorphism.

Definition 14.3.1. We say that an f -invariant measure μ in M is hyperbolic (with
respect to f) if all Lyapunov exponents are nonzero μ-almost everywhere, that
is, if

lim sup
n→+∞

1

n
log ‖dxfnv‖ 	= 0		

for every v ∈ TxTT M and every x in a full μ-measure set.

Let μ be a hyperbolic f -invariant measure. By Theorem 14.1.2, for μ-almost
every x ∈ M there exist local stable and unstable invariant manifolds V s(x)
and V u(x) at x. In a certain sense these manifolds reproduce the local product
structure that is present in the case of locally maximal hyperbolic sets. But a
priori it is unclear whether the hyperbolic measure μ imitates or not the local
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product structure determined by the invariant manifolds. This problem became
known among the specialists as the Eckmann–Ruelle conjecture, claiming that
locally a hyperbolic measure indeed imitates the local product structure deter-
mined by the local stable and unstable invariant manifolds. For example, one can
show that any Gibbs measures (see Definition 3.2.3) has a product structure (see
Proposition 4.2.12). Even though Eckmann and Ruelle apparently never formu-
lated the conjecture, their work [49] discusses several related problems and played
a fundamental role in the development of the theory.

In order to formulate a rigorous result about the solution of the Eckmann–
Ruelle conjecture we need the families of conditional measures μs

x and μu
x generated

by certain measurable partitions constructed by Ledrappier and Young in [93],
based on former work of Ledrappier and Strelcyn in [91]. Namely, they constructed
two measurable partitions ξs and ξu of M such that for μ-almost every x ∈ M we
have:

1. ξs(x) ⊂ V s(x) and ξu(x) ⊂ V u(x);

2. there exists γ = γ(x) > 0 such that

ξs(x) ⊃ V s(x) ∩ B(x, γ) and ξu(x) ⊃ V s(x) ∩ B(x, γ).

We recall that it was shown by Rohklin in [130] that any measurable partition
ξ of M has associated a family of conditional measures. More precisely, for μ-
almost every x ∈ M there is a probability measure μx defined in the element ξ(x)
of ξ containing x, and the conditional measures are characterized by the following
property: if Bξ is the σ-subalgebra of the Borel σ-algebra generated by the unions
of elements of ξ, then for each Borel set A ⊂ M the function x �→ μx(A ∩ ξ(x)) is
Bξ-measurable, and

μ(A) =

∫

A

∫∫
μx(A ∩ ξ(x)) dμ.

We denote by μs
x and μu

x the conditional measures associated respectively with
the partitions ξs and ξu. We represent by

Bs(x, r) ⊂ V s(x) and Bu(x, r) ⊂ V u(x)

the open balls centered at x of radius r with respect to the distances induced
respectively in V s(x) and V u(x).

We formulate the following result without proof.

Theorem 14.3.2 (Existence of pointwise dimensions). Let f be a C1+ε diffeomor-
phism in a manifold M , for some ε > 0, and let μ be an f -invariant finite measure
in M with compact support. If μ is hyperbolic, then the limits

ds
μ(x) := lim

r→0

log μs
x(Bs(x, r))

log r
and du

μ(x) := lim
r→0

log μu
x(Bu(x, r))

log r
(14.3)

exist for μ-almost every x ∈ M .
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We refer to [8] for a detailed proof of Theorem 14.3.2. Due to the need for
techniques of smooth ergodic theory the proof is beyond the scope of this book.

Definition 14.3.3. The limits in (14.3), when they exist, are called respectively the
stable and unstable pointwise dimensions of μ at x.

We can easily verify that the functions x �→ ds
μ(x) and x �→ du

μ(x) are f -
invariant μ-almost everywhere. Therefore, under the assumptions of Theorem 14.3,
if μ is ergodic, then there exist constants ds

μ and du
μ such that

ds
μ(x) = ds

μ and du
μ(x) = du

μ (14.4)

for μ-almost every x ∈ M .
The statement in Theorem 14.3.2 was established by Ledrappier and Young

in [93] for C2 diffeomorphisms. It was also established in [93] that

lim sup
r→0

log μ(B(x, r))

log r
≤ ds

μ(x) + du
μ(x) (14.5)

for μ-almost every x ∈ M . We note that Ledrappier and Young consider a more
general class of measures for which some Lyapunov exponents may be zero. The
only place in [93] where f is required to be of class C2 concerns the Lipschitz
regularity of the holonomies generated by the intermediate foliations (such as
any strongly stable foliation inside the stable foliation). In the case of hyperbolic
measures a new argument was given in [11] that establishes the Lipschitz regularity
of the intermediate foliations in the general case of C1+ε diffeomorphisms. This
ensures that (14.5) holds almost everywhere also when f is of class C1+ε (see [11]
for details).

The following result is due to Barreira, Pesin and Schmeling [11].

Theorem 14.3.4 (Product structure of hyperbolic measures). Let f be a C1+ε

diffeomorphism in a manifold M , for some ε > 0, and let μ be an f -invariant
finite measure in M with compact support. If μ is hyperbolic, then given γ > 0
there exists a set Λ ⊂ M with μ(Λ) > μ(M)− γ such that for each x ∈ Λ we have

rγ ≤ μ(B(x, r))

μs
x(Bs(x, r))μu

x(Bu(x, r))
≤ r−γ

for all sufficiently small r > 0.

See [8] for a detailed proof of Theorem 14.3.4. Again, due to the need for
techniques of smooth ergodic theory the proof is beyond the scope of this book.
In Section 14.4 we give a complete proof in the case of invariant measures in lo-
cally maximal hyperbolic sets, without using techniques of smooth ergodic theory.
Ledrappier and Misiurewicz showed in [90] that the hyperbolicity of the measure
is essential in Theorem 14.3.4.

The following is an immediate consequence of Theorems 14.3.2 and 14.4.1,
using the criterion in Theorem 2.1.6. We recall the numbers ds

μ and du
μ in (14.4)

when μ is ergodic.
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Theorem 14.3.5. Let f be a C1+ε diffeomorphism in a manifold M , for some
ε > 0, and let μ be an f -invariant finite measure in M with compact support. If μ
is hyperbolic, then

dμ(x) = dμ(x) = ds
μ(x) + du

μ(x)

for μ-almost every x ∈ M . If, in addition, μ is ergodic, then

dimHμ = dimBμ = dimBμ = ds
μ + du

μ.

The statement in Theorem 14.3.5 was established by Young in [165] when
M is a surface and by Ledrappier in [89] when μ is an SRB-measure (after Sinai,
Ruelle and Bowen; see, for example, [6] for the definition).

Theorems 14.3.5 and 2.1.5 yield a formula for the Hausdorff dimension of a
hyperbolic measure.

Corollary 14.3.6. If f is a C1+ε diffeomorphism in a manifold M , for some ε > 0,
and μ is an f -invariant hyperbolic finite measure in M with compact support, then

dimHμ = ess sup{ds
μ(x) + du

μ(x) : x ∈ M}.

14.4 Product structure of measures in hyperbolic sets

We show in this section that any finite invariant measure in a locally maximal hy-
perbolic set possesses an almost product structure. For simplicity we only consider
the case of ergodic measures (we briefly describe at the end of the section how to
deal with nonergodic measures). We follow closely Barreira, Pesin and Schmeling
in [11].

Theorem 14.4.1. Let f be a C1+ε diffeomorphism in a manifold M , for some
ε > 0, and let Λ be a locally maximal hyperbolic set of f . If μ is an ergodic f -
invariant finite measure in Λ, then given γ > 0 there exists a set Λ′ ⊂ Λ with
μ(Λ′) > μ(Λ) − γ such that for each x ∈ Λ′ we have

rγ ≤ μ(B(x, r))

μs
x(Bs(x, r))μu

x(Bu(x, r))
≤ r−γ (14.6)

for all sufficiently small r > 0.

Proof. Since the measure μ is ergodic and the values χi(x) of the Lyapunov expo-
nent (see (14.2)) are f -invariant μ-almost everywhere, they are constant μ-almost
everywhere, say equal to χ1 < χ2 < · · · < χp. Note that χ1 < 0 and χp > 0.

Consider a Markov partition R of Λ, and define new partitions

R
l
k =

l∨

i=−k

f i
R
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for each k, l ∈ N. For μ-almost every x ∈ Λ there is a unique element Rl
k(x) of the

partition Rl
k that contains x. Given δ ∈ (0, 1), there exists a set Γ ⊂ Λ of measure

μ(Γ) > μ(Λ) − δ/2, an integer n0 ∈ N, and a constant C > 1 such that for every
x ∈ Γ and n ≥ n0 the following properties hold:

(a) setting h = hμ(f), for every k, l ∈ N we have

C−1e−(l+k)h−(l+k)δ ≤ μ(Rl
k(x)) ≤ Ce−(l+k)h+(l+k)δ, (14.7)

C−1e−kh−kδ ≤ μs
x(R0

k(x)) ≤ Ce−kh+kδ , (14.8)

C−1e−lh−lδ ≤ μu
x(Rl

0(x)) ≤ Ce−lh+lδ; (14.9)

(b)

ξs(x) ∩
⋂

n∈N

R
n
0 (x) ⊃ Bs(x, e−n0), (14.10)

ξu(x) ∩
⋂

n∈N

R
0
n(x) ⊃ Bu(x, e−n0); (14.11)

(c)
e−ds

μn−nδ ≤ μs
x(Bs(x, e−n)) ≤ e−ds

μn+nδ, (14.12)

e−du
μn−nδ ≤ μu

x(Bu(x, e−n)) ≤ e−du
μn+nδ; (14.13)

(d)
R

an
an(x) ⊂ B(x, e−n) ⊂ R(x), (14.14)

R
0
an(x) ∩ ξs(x) ⊂ Bs(x, e−n) ⊂ R(x) ∩ ξs(x), (14.15)

R
an
0 (x) ∩ ξu(x) ⊂ Bu(x, e−n) ⊂ R(x) ∩ ξu(x), (14.16)

where a is the integer part of 2(1 + δ)max{χp,−χ1, 1};
(e) setting

Qn(x) =
⋃

R
an
an(y) (14.17)

with the union taken over all y ∈ Γ such that

R
an
0 (y) ∩ Bu(x, 2e−n) 	=		 ∅ and R

0
an(y) ∩ Bs(x, 2e−n) 	=		 ∅,

we have Ran
an(y) ⊂ Qn(x) for every y ∈ Qn(x), and

B(x, e−n) ∩ Γ ⊂ Qn(x) ⊂ B(x, 4e−n); (14.18)

(f)
Bs(x, e−n) ∩ Γ ⊂ Qn(x) ∩ ξs(x) ⊂ Bs(x, 4e−n), (14.19)

Bu(x, e−n) ∩ Γ ⊂ Qn(x) ∩ ξu(x) ⊂ Bu(x, 4e−n). (14.20)
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Properties (14.7), (14.8), and (14.9) follow from Shannon–McMillan–Breiman’s
theorem applied to the partition R. The inequalities in (14.12) and (14.13) are
obtained from Theorem 14.3.2. Since the values of the Lyapunov exponent are
constant μ-almost everywhere, the properties (14.14), (14.15), and (14.16) follow
from (14.10), (14.11), and the choice of a. The inclusions in (14.18) follow from the
continuous dependence of the stable and unstable manifolds in the C1+ε topology
on the base point.

By the Borel density lemma (see, for example, [59, Theorem 2.9.11]), there
exist an integer n1 ≥ n0 and a set Γ′ ⊂ Γ of measure μ(Γ′) > 1 − δ such that for
every n ≥ n1 and x ∈ Γ′ we have

μ(B(x, e−n) ∩ Γ) ≥ 1

2
μ(B(x, e−n)), (14.21)

μs
x(Bs(x, e−n) ∩ Γ) ≥ 1

2
μs

x(Bs(x, e−n)), (14.22)

μu
x(Bu(x, e−n) ∩ Γ) ≥ 1

2
μu

x(Bu(x, e−n)). (14.23)

We establish two additional properties of the partitions Rk
0 and R0

k.

Lemma 14.4.2. There exists a positive constant D = D(Γ′) ∈ (0, 1) such that for
every k ∈ N and x ∈ Γ we have

μs
x(Rk

0(x) ∩ Γ) ≥ D and μu
x(R0

k(x) ∩ Γ) ≥ D.

Proof of the lemma. By (14.10), for every k ∈ N and x ∈ Γ we have

R
k
0(x) ∩ Γ ⊃ Bs(x, e−n0) ∩ Γ.

It follows from (14.22) and (14.12) that

μs
x(Rk

0(x) ∩ Γ) ≥ 1

2
μs

x(Bs(x, e−n0)) ≥ 1

2
e−ds

μn0−n0δ =: D.

The second inequality in the lemma can be obtained in a similar manner using
the properties (14.11), (14.23), and (14.13). �

Lemma 14.4.3. For every x ∈ Γ and n ≥ n0 we have

R
an
an(x) ∩ ξs(x) = R

0
an(x) ∩ ξs(x),

R
an
an(x) ∩ ξu(x) = R

an
0 (x) ∩ ξu(x).

Proof of the lemma. It follows from (14.15) and (14.10) that

R
0
an(x) ∩ ξs(x) ⊂ R

0
an(x) ∩ Bs(x, e−n) ⊂ R

0
an(x) ∩ Bs(x, e−n0)

⊂ R
0
an(x) ∩ R

an
0 (x) ∩ ξs(x) = R

an
an(x) ∩ ξs(x).

Since Ran
an(x) ⊂ R0

an(x) this completes the proof of the first identity. The proof of
the second identity is entirely analogous. �
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Fix x ∈ Γ′ and an integer n ≥ n1. We consider two classes R(n) and F(n) of
elements of the partition Ran

an (we call these elements rectangles). Namely, we set

R(n) = {Ran
an(y) ⊂ R(x) : R

an
an(y) ∩ Γ 	=		 ∅},

and

F(n) = {Ran
an(y) ⊂ R(x) : R

0
an(y) ∩ Γ′ 	=		 ∅ and R

an
0 (y) ∩ Γ′ 	=		 ∅}.

The rectangles in R(n) carry the whole measure of the set R(x) ∩ Γ, that is,

∑

R∈R(n)

μ(R ∩ Γ) = μ(R(x) ∩ Γ).

Clearly, the rectangles in R(n) that intersect Γ′ belong to F(n).

We want to compare the number of rectangles in R(n) and F(n) that intersect
a given set. This allows us to evaluate the deviation of the measure μ from the local
product structure at the level n. Our main observation is that for “typical” points
y ∈ Γ′ the number of rectangles in R(n) that intersect V s(y) (respectively V u(y)) is
“asymptotically” the same up to a subexponential factor. However, in general, the
distribution of these rectangles along V s(y) (respectively V u(y)) may be different
for different points y. This causes a deviation from the local product structure.

For each set A ⊂ R(x), we define

N(n, A) = card{R ∈ R(n) : R ∩ A 	=		 ∅},

Ns(n, y, A) = card{R ∈ R(n) : R ∩ ξs(y) ∩ Γ ∩ A 	=		 ∅},

Nu(n, y, A) = card{R ∈ R(n) : R ∩ ξu(y) ∩ Γ ∩ A 	=		 ∅},

N̂s(n, y, A) = card{R ∈ F(n) : R ∩ ξs(y) ∩ A 	=		 ∅},

N̂u(n, y, A) = card{R ∈ F(n) : R ∩ ξu(y) ∩ A 	=		 ∅}.

We note that N(n, R(x)) is the cardinality of the set R(n), and Ns(n, y, R(x))
(respectively Nu(n, y, R(x))) is the number of rectangles in R(n) that intersect Γ
and the local stable (respectively unstable) manifold at y. Let Qn(x) be the set
in (14.17).

Lemma 14.4.4. For every y ∈ R(x) ∩ Γ and n ≥ n0 we have

Ns(n, y, Qn(y)) ≤ μs
y(Bs(y, 4e−n)) · Ceanh+anδ,

and

Nu(n, y, Qn(y)) ≤ μu
y (Bu(y, 4e−n)) · Ceanh+anδ.
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Proof of the lemma. It follows from (14.19) that

μs
y(Bs(y, 4e−n)) ≥ μs

y(Qn(y))

≥ Ns(n, y, Qn(y))

× min{μs
y(R) : R ∈ R(n) and R ∩ ξs(y) ∩ Qn(y) ∩ Γ 	=		 ∅}.

We note that the condition R ∩ ξs(y) ∩ Qn(y) 	=		 ∅ implies that R ∈ R(n). Let

z ∈ R ∩ ξs(y) ∩ Qn(y) ∩ Γ

for some R ∈ R(n). By Lemma 14.4.3 we obtain

μs
y(R) = μs

y(R0
an(z)) = μs

z(R
0
an(z)).

The first inequality in the lemma follows now from (14.8). The second inequality
can be obtained with a similar argument using (14.20). �

Lemma 14.4.5. For every y ∈ R(x) ∩ Γ′ and n ≥ n1 we have

μ(B(y, e−n)) ≤ N(n, Qn(y)) · 2Ce−2anh+2anδ.

Proof of the lemma. It follows from (14.21) and (14.18) that

1

2
μ(B(y, e−n)) ≤ μ(B(y, e−n) ∩ Γ) ≤ μ(Qn(y) ∩ Γ)

≤ N(n, Qn(y)) · max{μ(R) : R ∈ R(n) and R ∩ Qn(y) 	=		 ∅}.

We note that the condition R ∩ Qn(y) 	=		 ∅ implies that R ∈ R(n). The desired
inequality follows now from (14.7). �

Now we estimate the number of rectangles in the classes R(n) and F(n).

Lemma 14.4.6. For μ-almost every y ∈ R(x)∩Γ′ there exists an integer n2(y) ≥ n1

such that for every n ≥ n2(y) we have

N(n + 2, Qn+2(y)) ≤ N̂s(n, y, Qn(y)) · N̂u(n, y, Qn(y)) · 2C2e4a(h+ε)e4anδ.

Proof of the lemma. By the Borel density lemma, for μ-almost every y ∈ Γ′ there
is an integer n2(y) ≥ n1 such that for every n ≥ n2(y),

2μ(B(y, e−n) ∩ Γ′) ≥ μ(B(y, e−n)).

Since Γ′ ⊂ Γ, it follows from (14.18) that for every n ≥ n2(y),

2μ(Qn(y) ∩ Γ′) ≥ 2μ(B(y, e−n) ∩ Γ′) ≥ μ(B(y, e−n))

≥ μ(B(y, 4e−n−2)) ≥ μ(Qn+2(y)).
(14.24)
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For each m ≥ n2(y), by (14.7) and property (e) we have

μ(Qm(y)) =
∑

Ram
am(z)⊂Qm(y)

μ(Ram
am(z)) ≥ N(m, Qm(y)) · C−1e−2amh−2amδ.

Similarly, for each n ≥ n2(y),

μ(Qn(y) ∩ Γ′) =
∑

Ran
an(z)⊂Qn(y)

μ(Ran
an(z) ∩ Γ′) ≤ NnNN · Ce−2anh+2anδ,

where NnNN is the number of rectangles Ran
an(z) ∈ R(n) that intersect Γ′. Set m =

n + 2. The last two inequalities together with (14.24) imply that

N(n + 2, Qn+2(y)) ≤ NnNN · 2C2e4a(h+ε)+4anδ. (14.25)

On the other hand, since y ∈ Γ′ the sets Ran
0 (y)∩ξu(y)∩Γ′ and R0

an(y)∩ξs(y)∩Γ′

are nonempty.

Consider a rectangle Ran
an(v) ⊂ Qn(y) intersecting Γ′. Then the rectangles

R
0
an(v) ∩ R

an
0 (y) and R

0
an(y) ∩ R

an
0 (v)

are in F(n) and intersect respectively the local stable and unstable manifolds at y.
Hence, to each rectangle Ran

an(v) ⊂ Qn(y) intersecting Γ′ we can associate the pair
of rectangles

(R0
an(v) ∩ R

an
0 (y), R0

an(y) ∩ R
an
0 (v))

in the product

{
R ∈ F(n) : R ∩ ξs(y) ∩ Qn(y) 	=		 ∅

}
×
{
R ∈ F(n) : R ∩ ξu(y) ∩ Qn(y) 	=		 ∅

}
.

Clearly, this correspondence is injective. Therefore,

N̂s(n, y, Qn(y)) · N̂u(n, y, Qn(y)) ≥ NnNN ,

and the desired inequality follows from (14.25). �

Our next goal is to compare the growth rate in n of the number of rectangles
in F(n) and R(n). We start with an auxiliary result.

Lemma 14.4.7. For every x ∈ Γ′ and n ≥ n1 we have

N̂s(n, x, R(x)) ≤ D−1C2eanh+3anδ,

and

N̂u(n, x, R(x)) ≤ D−1C2eanh+3anδ.
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Proof of the lemma. Since R is a finite partition we can find points yi such that
the union of the rectangles Ran

0 (yi) is equal to R(x), and these rectangles are
pairwise disjoint. Without loss of generality we can assume that yi ∈ Γ′ whenever
Ran

0 (yi) ∩ Γ′ 	=		 ∅. We have

N(n, R(x)) ≥
∑

i

Ns(n, yi, R
an
0 (yi))

≥
∑

i:Ran
0 (yi)∩Γ′ �=�� ∅

Ns(n, yi, R
an
0 (yi)).

(14.26)

Now we estimate Ns(n, yi, R
an
0 (yi)) from below for each yi ∈ Γ′. By Lemmas 14.4.2

and 14.4.3, and (14.8) we obtain

Ns(n, yi, R
an
0 (yi)) ≥

μs
yi

(Ran
0 (yi) ∩ Γ)

max{μs
z(R

an
an(z)) : z ∈ ξs(yi) ∩ R(x) ∩ Γ}

≥ D

max{μs
z(R

an
an(z)) : z ∈ ξs(yi) ∩ R(x) ∩ Γ}

=
D

max{μs
z(R

0
an(z)) : z ∈ ξs(yi) ∩ R(x) ∩ Γ}

≥ DC−1eanh−anδ.

(14.27)

Similarly, it follows from (14.7) that

N(n, R(x)) ≤ μ(R(x))

min{μ(Ran
an(z)) : z ∈ R(x) ∩ Γ} ≤ Ce2anh+2anδ. (14.28)

Now we observe that

N̂u(n, x,R(x)) = card{i : R
an
0 (yi) ∩ Γ′ 	=		 ∅}. (14.29)

Combining (14.26), (14.27), (14.28), and (14.29) we conclude that

Ce2anh+2anδ ≥ N(n, R(x))

≥
∑

i:Ran
0 (yi)∩Γ′ �=�� ∅

Ns(n, yi, R
an
0 (yi))

≥ N̂u(n, x,R(x)) · DC−1eanh−anδ.

This yields
N̂u(n, x,R(x)) ≤ D−1C2eanh+3anδ.

The other inequality can be obtained in a similar manner. �

We emphasize that the procedure of filling in rectangles to obtain the class
F(n) may substantially increase the number of rectangles in a neighborhood of
some points. However, we show that at almost every point this procedure does not
add too many rectangles.
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Lemma 14.4.8. For μ-almost every y ∈ R(x) ∩ Γ′ we have

lim sup
n→+∞

N̂s(n, y, Qn(y))

Ns(n, y, Qn(y))
e−7anδ < 1,

and

lim sup
n→+∞

N̂u(n, y, Qn(y))

Nu(n, y, Qn(y))
e−7anδ < 1.

Proof of the lemma. By (14.19) and (14.22), for each n ≥ n1 and y ∈ Γ′,

μs
y(Qn(y)) ≥ μs

y(Bs(y, e−n) ∩ Γ) ≥ 1

2
μs

y(Bs(y, e−n)).

Since Ran
an(z) ⊂ R0

an(z) for every z, using (14.8) and (14.12) we obtain

Ns(n, y, Qn(y)) ≥
μs

y(Qn(y))

max{μs
z(R

an
an(z)) : z ∈ ξs(y) ∩ R(x) ∩ Γ}

≥ 1

2

μs
y(Bs(y, e−n))

max{μs
z(R

0
an(z)) : z ∈ ξs(y) ∩ R(x) ∩ Γ}

≥ 1

2C

e−ds
μn−nδ

e−anh+anδ
.

(14.30)

Consider the set

F =

{
y ∈ Γ′ : lim sup

n→+∞

N̂s(n, y, Qn(y))

Ns(n, y, Qn(y))
e−7anδ ≥ 1

}
.

For each y ∈ F there is an increasing sequence mj = mj(y) of positive integers
such that

N̂s(mj , y, Qmj
(y)) ≥ 1

2
Ns(mj , y, Qmj

(y))e7amjδ

≥ 1

4C
e−ds

μmj+amjh+5amjδ
(14.31)

for every j ∈ N (note that a > 1).
We show that μ(F ) = 0. Assume on the contrary that μ(F ) > 0. Let F ′ ⊂ F

be the set of points y ∈ F for which there exists the limit

lim
r→0

log μs
y(Bs(y, r))

log r
= ds

μ.

Clearly, μ(F ′) = μ(F ) > 0, and we can find y ∈ F such that

μs
y(F ) = μs

y(F ′) = μs
y(F ′ ∩ R(y) ∩ ξs(y)) > 0.
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It follows from Theorem 2.1.5 that

dimH(F ′ ∩ ξs(y)) = ds
μ. (14.32)

Consider the collection of balls

B = {B(z, 4e−mj(z)) : z ∈ F ′ ∩ ξs(y) and j ∈ N}.

By the Besicovitch covering lemma (see, for example, [96, Theorem 2.7]), there
exists a subcover C ⊂ B of F ′ ∩ ξs(y) with arbitrarily small diameter and finite
multiplicity ρ = ρ(dim M). This means that for any L > 0 we can choose a
sequence of points zi ∈ F ′ ∩ ξs(y) and a sequence of integers ti ∈ {mj(zi) : j ∈ N}
with ti > L for each i, such that the collection of balls

C = {B(zi, 4e−ti) : i ∈ N}

is a cover of F ′ ∩ ξs(y) with multiplicity at most ρ. Set Q(i) = Qti
(zi). We have

∑

B∈C

(diamB)ds
μ−δ = (8ds

μ−δ)

∞∑

i=1

e−ti(d
s
μ−δ),

and by (14.31),

∞∑

i=1

e−ti(d
s
μ−δ) ≤

∞∑

i=1

N̂s(ti, zi, Q(i)) · 4Ce−atih−4atiδ

≤ 4C
∞∑

q=1

e−aqh−4aqδ
∑

i:ti=q

N̂s(q, zi, Q(i)).

Since the multiplicity of the collection C is at most ρ, each set Q(i) occurs in the

sum
∑

i:ti=q N̂s(q, zi, Q(i)) at most a number of times equal to ρ. Hence,

∑

i:ti=q

N̂s(q, zi, Q(i)) ≤ ρN̂s(q, y, R(y)).

It follows from Lemma 14.4.7 that

∑

B∈C

(diamB)ds
μ−δ ≤ 4(8ds

μ−δ)C

∞∑

q=1

e−aqh−4aqδρN̂s(q, y, R(y))

≤ 4(8ds
μ−δ)D−1C3ρ

∞∑

q=1

e−aqh−4aqδ+aqh+3aqδ

= 4(8ds
μ−δ)D−1C3ρ

∞∑

q=1

e−aqδ < ∞.
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Since L can be chosen arbitrarily large (and thus also the numbers ti), we obtain

dimH(F ′ ∩ ξs(y)) ≤ ds
μ − δ < ds

μ.

This contradicts (14.32). Hence, μ(F ) = 0, and this yields the first inequality in
the lemma. The proof of the second inequality is similar. �

By Lemma 14.4.8, for μ-almost every y ∈ R(x) ∩ Γ′ there exists an integer
n3(y) ≥ n2(y) such that if n ≥ n3(y), then

N̂s(n, y, Qn(y)) < Ns(n, y, Qn(y))e7anδ, (14.33)

and
N̂u(n, y, Qn(y)) < Nu(n, y, Qn(y))e7anδ. (14.34)

By Lemmas 14.4.5 and 14.4.6, for μ-almost every y ∈ R(x)∩ Γ′ and n ≥ n2(y) we
have

μ(B(y, e−n−2)) ≤ N̂s(n, y, Qn(y)) · N̂u(n, y, Qn(y)) · 4C3e4a(h+δ)e−2anh+6anδ.

Hence, by (14.33), (14.34), and Lemma 14.4.4 we conclude that

μ(B(y, e−n−2)) ≤ Ns(n, y, Qn(y)) · Nu(n, y, Qn(y))

× 4C3e4a(h+δ)e−2anh+20anδ

≤ μs
y(B

s(y, 4e−n))μu
y (Bu(y, 4e−n)) · 4C5e4a(h+δ)e22anδ.

(14.35)

Moreover, by Lusin’s theorem, for each δ > 0 there exists a subset Γδ ⊂ Γ′ such
that

μ(Γδ) > μ(Γ′) − δ, nδ := sup{n1, n3(y) : y ∈ Γδ} < ∞,

and the inequalities (14.33) and (14.34) hold for every n ≥ nδ.

Lemma 14.4.9. For every δ > 0, if y ∈ Γδ and n ≥ nδ, then

μs
y(Bs(y, e−n))μu

y (Bu(y, e−n)) ≤ μ(B(y, 4e−n)) · 4C3e11anδ.

Proof of the lemma. Let z ∈ Γδ ∩ Qn(y). By (14.34), if n ≥ nδ then

Nu(n, y, Qn(y)) ≤ N̂u(n, y, Qn(y))

= N̂u(n, z, Qn(y)) < Nu(n, z, Qn(y))e7anδ,

and

Nu(n, y, Qn(y)) ≤ inf{Nu(n, z, Qn(y)) : z ∈ Γδ ∩ Qn(y)}e7anδ. (14.36)

Since N(n, Qn(y)) is equal to the number of rectangles R in Qn(y) we have

N̂s(n, y, Qn(y)) × inf{Nu(n, z, Qn(y)) : z ∈ Qn(y)} ≤ N(n, Qn(y)).
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By (14.36), if y ∈ Γδ and n ≥ nδ, then

Ns(n, y, Qn(y)) × Nu(n, y, Qn(y)) ≤ N(n, Qn(y))e7anδ.

In a similar manner to that in (14.30), if y ∈ Γδ and n ≥ nδ, then

Ns(n, y, Qn(y)) ≥ μs
y(Bs(y, e−n)) · (2C)−1eanh−anδ,

and
Nu(n, y, Qn(y)) ≥ μu

y (Bu(y, e−n)) · (2C)−1eanh−anδ.

Moreover, by (14.7) and (14.18),

N(n, Qn(y)) ≤ μ(Qn(y))

min{μ(Ran
an(z)) : z ∈ Qn(y) ∩ Γ}

≤ μ(B(y, 4e−n)) · Ce2anh+2anδ.

Combining these inequalities we obtain the desired result. �

The statement in the theorem follows now immediately from (14.35) and
Lemma 14.4.9. �

The case of nonergodic measures can be treated using a similar procedure to
the one in the proofs of Theorems 13.1.6 and 13.2.4. Given δ > 0, we decompose
the space into a countable number of invariant subsets

{
y ∈ M : |hμ(x) − hμ(y)| < δ, |ds

μ(x) − ds
μ(y)| < δ, and |du

μ(x) − du
μ(y)| < δ

}
.

Repeating arguments in the proof of Theorem 14.4.1, in each set of these sets we
obtain lower and upper estimates that deviate from (14.6) by small terms varying
uniformly with δ. Letting δ → 0 yields the desired result. We refer to [11] for
details.



Chapter 15

Quantitative Recurrence and
Dimension Theory

Poincare’s recurrence theorem (Theorem 2.2.2) is one of the basic but fundamental´
results of the theory of dynamical systems. Unfortunately it only provides informa-
tion of a qualitative nature. In particular, it does not consider the following natural
problems: with which frequency the orbit of a point visits a given set of positive
measure; with which rate the orbit of a point returns to an arbitrarily small neigh-
borhood of the initial point. Birkhoff’s ergodic theorem (Theorem 2.2.3) gives a
complete answer to the first problem. The second problem of quantitative recur-
rence has experienced a growing interest during the last decade, also in connection
with other fields, including for example compression algorithms. We describe in
this chapter several results that provide partial answers to the problem.

15.1 Basic notions

We consider a transformation f in a metric space X . The (first) return time of a
point x ∈ X to the ball B(x, r) (with respect to f) is defined by

τrττ (x) = inf{n ∈ N : d(fnx, x) < r},

where d is the distance in X .

Definition 15.1.1. For each x ∈ X , the lower and upper recurrence rates of x (with
respect to f) are defined by

R(x) = lim inf
r→0

log τrττ (x)

− log r
and R(x) = lim sup

r→0

log τrττ (x)

− log r
. (15.1)

When R(x) = R(x) we denote the common value by R(x), and we call it the
recurrence rate of x (with respect to f).
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We have the following identities.

Proposition 15.1.2. For each a > 0 and x ∈ X we have

R(x) = lim inf
n→∞

log τaeττ −n(x)

n
and R(x) = lim sup

n→∞

log τaeττ −n(x)

n
.

Proof. For each sufficiently small r > 0 there exists a unique integer n = n(r) ∈ N

such that

ae−(n+1) ≤ r < ae−n < 1.

We have

τaeττ −(n+1)(x) ≥ τrττ (x) ≥ τaeττ −n(x),

and thus
log τaeττ −n(x)

− log(ae−(n+1))
<

log τrττ (x)

− log r
<

log τaeττ −(n+1)(x)

− log(ae−n)
.

Note that n(r) → ∞ when r → 0, and that all integers are attained by n(r) as
r → 0. Therefore,

lim sup
n→∞

log τaeττ −n(x)

−n
= lim sup

n→∞

log τaeττ −n(x)

− log(ae−(n+1))

≤ lim sup
r→0

log τrττ (x)

− log r

≤ lim sup
n→∞

log τaeττ −(n+1)(x)

− log(ae−n)

= lim sup
n→∞

log τaeττ −n(x)

−n
,

(15.2)

and we obtain the first identity in the proposition. The second identity is obtained
replacing lim sup by lim inf everywhere in (15.2). �

15.2 Upper bounds for recurrence rates

The following result gives upper bounds for the lower and upper recurrence rates
in terms of the lower and upper pointwise dimensions. It was obtained by Barreira
and Saussol in [15].

Theorem 15.2.1. If f preserves a finite measure μ in X ⊂ Rm, then for μ-almost
every x ∈ X we have

R(x) ≤ dμ(x) and R(x) ≤ dμ(x). (15.3)

Proof. We start with an auxiliary result.
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Lemma 15.2.2. Given a probability measure μ in Rm, there is a constant η > 1
such that for μ-almost every x ∈ Rm and every ε > 0 there exists δ = δ(x, ε) such
that

μ(B(x, ηr)) ≤ μ(B(x, r))r−ε for every r < δ. (15.4)

Proof of the lemma. Clearly, it is sufficient to show that for μ-almost every x ∈ Rm

we have

μ(B(x, 2−n)) ≤ n2μ(B(x, 2−n−1)) (15.5)

for all sufficiently large n ∈ N. For each n ∈ N and δ > 0, let

KnKK (δ) =
{
x ∈ supp μ : μ(B(x, 2−n−1)) < δμ(B(x, 2−n))

}
.

Taking a maximal 2−n−2-separated set E ⊂ KnKK (δ) (see Section 2.3) we obtain

μ(KnKK (δ)) ≤
∑

x∈E

μ(B(x, 2−n−1)) ≤
∑

x∈E

δμ(B(x, 2−n)),

and there exists a constant M (depending only on m) such that E can be written in

the form E =
⋃M

i=1 Ei, where each set Ei is 2−n-separated. For each i = 1, . . ., M
the union

⋃
x∈Ei

B(x, 2−n) is disjoint, and

μ(KnKK (δ)) ≤
M∑

i=1

∑

x∈Ei

δμ(B(x, 2−n)) ≤ Mδ.

Since ∑

n>0

μ(KnKK (n−2)) ≤ M
∑

n>0

n−2 < ∞,

it follows from Borel–Cantelli’s lemma that (15.5) holds for μ-almost every x ∈ Rm

and all sufficiently large n ∈ N. This completes the proof of the lemma. �

It follows easily from Lemma 15.2.2 that for each fixed constant η > 1, for μ-
almost every x ∈ Z and every ε > 0, there exists δ = δ(x, ε, η) > 0 such that (15.4)
holds for every r < δ. Furthermore, the function δ(x, ·) in the lemma can be chosen
measurable for each x.

Fix ε > 0, and choose δ > 0 sufficiently small such that the set

G = {x ∈ X : δ(x, ε) > δ}

has measure μ(G) > μ(X) − ε. Given r, λ > 0 and x ∈ X , we consider the set

Ar,x =
{
y ∈ B(x, 4r) : τ4ττ r(y, x) ≥ λ−1μ(B(x, 4r))−1

}
,

where

τ4ττ r(y, x) = inf{k > 0 : d(fkx, y) < 4r}.
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We can easily verify that if d(x, y) < r, then

τ8ττ r(y) ≤ τ4ττ r(y, x) ≤ τ2ττ r(y). (15.6)

Chebychev’s inequality implies that

μ(Ar,x) ≤ λμ(B(x, 4r))

∫

B

∫∫

(x,4r)

τ4ττ r(y, x) dμ(y).

On the other hand, since μ is invariant, Kac’s lemma tells us that

∫

B

∫∫

(x,r)

τrττ (y) dμ(y) = 1, (15.7)

and hence,

∫

B

∫∫

(x,4r)

τ4ττ r(y, x) dμ(y) = μ({y ∈ X : τ4ττ r(y, x) < ∞}) ≤ 1.

Since B(x, 2r) ⊂ B(x, 4r), we obtain

μ
({

y ∈ B(x, 2r) : τ4ττ r(y, x)μ(B(x, 4r)) ≥ λ−1
})

≤ λμ(B(x, 4r)).

Furthermore,

τ4ττ r(y, x)μ(B(x, 4r)) ≥ τ8ττ r(y)μ(B(y, 2r))

whenever d(x, y) < 2r (see (15.6)), and thus,

μ({y ∈ B(x, 2r) : τ8ττ r(y)μ(B(y, 2r)) ≥ λ−1}) ≤ λμ(B(x, 4r)). (15.8)

We continue with an auxiliary statement.

Lemma 15.2.3. Let μ be a finite Borel measure in a separable metric space X,
and let G ⊂ suppμ be a measurable set. Given r > 0, there exists a countable set
E ⊂ G such that:

1. B(x, r) ∩ B(y, r) = ∅ for any distinct points x, y ∈ E;

2. μ(G \⋃x∈E B(x, 2r)) = 0.

Proof of the lemma. The existence of the set E can be obtained applying Zorn’s
lemma to the nonempty family of subsets of G which satisfy the first property,
ordered by inclusion. Then the second property holds for any maximal element.
Since μ(B(x, r)) > 0 for every x ∈ E ⊂ suppμ, the set E is at most countable. �
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By (15.8) with λ = r2ε and Lemma 15.2.2 with η = 4 (see also the discussion
after the lemma), we obtain

Dε(r) : = μ({y ∈ G : τ8ττ r(y)μ(B(y, 2r)) ≥ r−2ε})
≤
∑

x∈E

μ({y ∈ B(x, 2r) : τ8ττ r(y)μ(B(y, 2r)) ≥ r−2ε})

≤ r2ε
∑

x∈E

μ(B(x, 4r))

≤ rε
∑

x∈E

μ(B(x, r)) ≤ rε.

We conclude that

∑

n>− log δ

Dε(e
−n) ≤

∑

n>− log δ

e−εn < ∞.

It follows from Borel–Cantelli’s lemma that for μ-almost every x ∈ G,

log τ8ττ e−n(x)

n
≤ 2ε +

log μ(B(x, 2e−n))

−n

for all sufficiently large n ∈ N. The desired result follows now from Proposi-
tions 2.1.4 and 15.1.2, together with the arbitrariness of ε. �

The following example shows that the inequalities in (15.3) can be strict in
a set of positive μ-measure.

Example 15.2.4. Consider a rotation of the circle by an irrational number ω that is
well-approximated by rational numbers. This means that there exists κ > 1 such
that |ω− p/q| < 1/qκ+1 for an infinite number of coprime integers p and q, say pn

and qn for each n ∈ N. Since |qnω − pn| < 1/qn
κ, we have

τ1ττ /qn
κ(x) = inf{k > 0 : kω(mod1) < 1/qn

κ} ≤ qn

for every point x in the circle. Therefore,

R(x) ≤ lim inf
n→∞

log τ1ττ /qn
κ(x)

− log(1/qn
κ)

≤ 1

κ
< 1.

On the other hand, for any irrational rotation the Lebesgue measure m is the
unique invariant probability measure, and it satisfies dm(x) = dm(x) = 1 for
every x. In particular, R(x) < dm(x) for every point x (that is, the first inequality
in (15.3) is strict everywhere).

Theorem 15.3.1 below shows that under some hyperbolicity assumptions the
inequalities in (15.3) become identities in a full μ-measure set.
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Boshernitzan proved earlier in [34] that if the α-dimensional Hausdorff mea-
sure mα is σ-finite in X (that is, X can be written as a countable union of sets Xi,
i ∈ N such that mα(Xi) < ∞ for every i), and f preserves a finite measure μ in X ,
then

lim inf
n→∞

[n1/αd(fnx, x)] < ∞

for μ-almost every x ∈ X . He also proved that if, in addition, mα(X) = 0, then

lim inf
n→∞

[n1/αd(fnx, x)] = 0 (15.9)

for μ-almost every x ∈ X . This result should be compared with the following
consequence of Poincaré’s recurrence theorem. Nam´ ely, we can easily show that
for μ-almost every point x ∈ X we have

lim inf
n→∞

d(fnx, x) = 0. (15.10)

While (15.10) only indicates that some subsequence of the orbit of x converges
to x, the identity in (15.9) gives some quantitative information about the speed
of convergence to the point x, and thus about the speed of recurrence.

The following result shows that any upper bound for the lower recurrence
rate corresponds to precise quantitative information about the speed of recurrence.

Proposition 15.2.5. For each x ∈ X and d ≥ 0, we have R(x) ≤ d if and only if

lim inf
n→∞

[n1/(d+ε)d(T nx, x)] = 0 (15.11)

for every ε > 0.

Proof. We first assume that R(x) ≤ d. For each ε > 0, there exists a sequence of
numbers rn > 0 with rn → 0, such that

τrττ n
(x) < rn

−(d+ε) for every n ∈ N.

Let mn = τrττ n
(x). If the sequence mn is bounded, then x is periodic, and (15.11)

holds. Now assume that mn is unbounded. We have d(T mnx, x) < rn, and

mn
1/(d+2ε)d(T mnx, x) < τrττ n

(x)1/(d+2ε)rn

< rn
−(d+ε)/(d+2ε)rn = rn

ε/(d+ε).

Therefore,

lim inf
n→∞

[n1/(d+2ε)d(T nx, x)] ≤ lim inf
n→∞

[mn
1/(d+2ε)d(T mnx, x)] = 0.

This establishes (15.11) for every ε > 0.
Now we assume that (15.11) holds for every ε > 0. Setting rn = 2d(T nx, x),

we have τrττ n
(x) ≤ n, and it follows from (15.11) that

lim inf
n→∞

[τrττ n
(x)1/(d+ε)rn] = 0.
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Thus, there exists an unbounded sequence of positive integers kn such that

τrττ kn
(x)1/(d+ε)rkn

< 1

for every n ∈ N. Therefore,

R(x) ≤ lim inf
n→∞

log τrττ n
(x)

− log rn
≤ lim inf

n→∞

log(rkn

d+ε)

− log rkn

= d + ε.

The arbitrariness of ε implies that R(x) ≤ d. �

In view of Proposition 15.2.5 the statement in Theorem 15.2.1 for the lower
recurrence rate can be reformulated as follows.

Theorem 15.2.6. If f preserves a finite measure μ in X ⊂ Rm, then (15.9) holds
for μ-almost every x ∈ X such that dμ(x) < α.

15.3 Recurrence rate and pointwise dimension

The following result of Barreira and Saussol in [15] gives a complete answer to
the quantitative recurrence problem in the introduction to this chapter in the
case of equilibrium measures of Hölder continuous functions on locally maximal¨
hyperbolic sets.

Theorem 15.3.1 (Quantitative recurrence). Let Λ ⊂ Rm be a locally maximal
hyperbolic set of a C1+ε diffeomorphism, for some ε > 0. If μ is an equilibrium
measure of a Hölder continuous function in¨ Λ, then

R(x) = lim
r→0

log μ(B(x, r))

log r
(15.12)

for μ-almost every point x ∈ Λ.

Proof. We follow closely the alternative proof given by Saussol in [136]. We start
with an auxiliary statement. For each a > 0, set

Xa = {x ∈ Λ : dμ(x) > a}.

Lemma 15.3.2. Given a > 0, for each ρ > 0 and μ-almost every x ∈ Xa there
exists r(x) > 0 such that if r ∈ (0, r(x)) and n ∈ [r−a, μ(B(x, r))−1+ρ] ∩ N, then
d(fnx, x) ≥ r.

Proof of the lemma. Given r0 > 0, we set G = G1 ∩ G2 ∩ G3 where

G1 = {x ∈ Xa : μ(B(x, 2r)) ≤ ra for r ≤ r0},
G2 = {x ∈ Xa : μ(B(x, r/2)) ≥ rm+ρ for r ≤ r0},
G3 = {x ∈ Xa : μ(B(x, r/2)) ≥ μ(B(x, 4r))rρa/2 for r ≤ r0}.
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We note that μ(G) → μ(Xa) as r0 → 0. Indeed, by the definition of lower pointwise
dimension μ(G1) → μ(Xa) as r0 → 0. Furthermore, since dμ(x) ≤ m for μ-almost
every x ∈ Λ, we have μ(G2) → 1 as r0 → 0. Finally, by Lemma 15.2.2 we have
μ(G3) → 1 as r0 → 0.

For each r ≤ r0 we define the set

Aρ(r) =
{
y ∈ X : d(fny, y) < r for some n ∈ [r−a, μ(B(y, 3r))−1+ρ] ∩ N

}
.

Take x ∈ G. It follows from the triangle inequality that

B(x, r) ∩ Aρ(r)

⊂
{
y ∈ B(x, r) : d(fny, x) < 2r for some n ∈ [r−a, μ(B(x, 2r))−1+ρ] ∩ N

}

=
⋃

B(x, r) ∩ f−nB(x, 2r),

(15.13)

where the union is taken over all integers

n ∈ [r−a, μ(B(x, 2r))−1+ρ] ∩ N.

Now let ηr : [0,∞) → R be the (1/r)-Lipschitz map such that χ[0,r] ≤ ηr ≤ χ[0,2r],
and define the function

ϕx,r(y) = ηr(d(x, y)).

Clearly, ϕx,r is (1/r)-Lipschitz, and thus it is also Hölder continuous because Λ¨
is compact. Since f |Λ has exponential decay of correlations for any equilibrium
measure of a Holder continuous function (see, for example, [38]), we obtain¨

μ(B(x, r) ∩ f−nB(x, 2r)) ≤
∫

Λ

∫∫
ϕx,r(ϕx,2r ◦ fn) dμ

≤ r−2θn +

∫

Λ

∫∫
ϕx,r dμ

∫

Λ

∫∫
ϕx,2r dμ

≤ r−2θn + μ(B(x, 2r))μ(B(x, 4r)),

for some exponentially decreasing sequence θn > 0. Choose p > 1 such that
a(p − 1) − 2 ≥ m + 2ρ, and r0 sufficiently small so that

θn ≤ (p − 1)(n + 1)−p for n ≥ r−a
0 .

Since ∑

n≥q

n−p ≤ (q − 1)1−p/(p − 1),

it follows from (15.13) that for each r ∈ (0, r0),

μ(B(x, r) ∩ Aρ(r)) ≤ ra(p−1)−2 + μ(B(x, 2r))ρμ(B(x, 4r))

≤ μ(B(x, r/2))(rρ + rρa/2).
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Now let E ⊂ G be the set constructed in Lemma 15.2.3 with r replaced by r/2.
Since

μ

(
G|

⋃

x∈E

B(x, r)

)
= 0,

and the balls B(x, r/2) are disjoint, we have

μ(G ∩ Aρ(r)) ≤
∑

x∈E

μ(B(x, r) ∩ Aρ(r))

≤
∑

x∈E

μ(B(x, r/2))(rρ + rρa/2)

≤ rρ + rρa/2.

This implies that
∞∑

m=1

μ(G ∩ Aρ(e
−m)) < ∞.

Therefore, by Borel–Cantelli’s lemma, for μ-almost every y ∈ G there exists an
integer m(y) ∈ N such that

y 	∈ Aρ(e
−m) for every m ≥ m(y).

For each r ≤ e−m(y), if m is the unique integer such that e−m−1 < r ≤ e−m, then
eδm ≤ r−δ and 3e−m < 3er. Hence, there exists no integer

n ∈ [r−a, μ(B(y, 3er))−1+ρ] ∩ N

such that d(fny, y) < r. The desired result follows now from Lemma 15.2.2. �

We proceed with the proof of the theorem. By Theorem 15.2.1 we have

R(x) ≤ dμ(x) and R(x) ≤ dμ(x)

for μ-almost every x ∈ Λ. Furthermore, the first inequality implies that for all
a > 0 we have

{x ∈ Λ : R(x) > a} ⊂ Xa (mod 0).

For each x ∈ Λ such that R(x) > a we have τrττ (x) ≥ r−a for all sufficiently small r.
Given ρ > 0, it follows from Lemma 15.3.2 that

τrττ (x) ≥ μ(B(x, r))−1+ρ

for all sufficiently small r > 0 and μ-almost every x ∈ Λ with R(x) > a. Therefore,

R(x) ≥ (1 − ρ)dμ(x) and R(x) ≥ (1 − ρ)dμ(x)

for μ-almost every x ∈ Λ such that R(x) > a. The arbitrariness of ρ and a implies
that

R(x) = dμ(x) and R(x) = dμ(x)

for μ-almost every x ∈ X . The desired result is now an immediate consequence of
Theorem 14.4.1. �
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The study of the quantitative behavior of recurrence started with the work
of Ornstein and Weiss [107], closely followed by the work of Boshernitzan [34]
(see Section 15.4 for a description of the results). The first paper considers the
case of symbolic dynamics (with the distances d in (3.9) and (4.24)), and for an
ergodic σ-invariant measure μ it is shown that R(x) = hμ(σ) for μ-almost every x
(see Theorem 15.4.12). Theorem 15.3.1 is a version of this result in the case of
hyperbolic sets. See Theorem 15.4.1 for a related result in the case of repellers.
For piecewise-monotone maps of the interval and ergodic invariant measures with
nonzero entropy, the property in Theorem 15.3.1 (see (15.12)) was established by
Saussol, Troubetzkoy and Vaienti in [137], building on results in [107] and results
of Hofbauer and Raith in [75, 76].

We note that identity (15.12) relates two quantities of very different nature.
In particular, only R(x) depends on the diffeomorphism and only dμ(x) depends
on the measure. It follows from (15.1) and (15.12) that

lim
r→0

log inf{n ∈ N : d(fnx, x) < r}
− log r

= lim
r→0

log μ(B(x, r))

log r

for μ-almost every x ∈ Λ. This means that asymptotically

inf{k ∈ N : fkx ∈ B(x, r)} is approximately equal to 1/μ(B(x, r))

for all sufficiently small r > 0. This should be compared to Kac’s lemma, which
tells us that the average value of τrττ in B(x, r) is equal to 1/μ(B(x, r)) (see (15.7)).
Thus, Theorem 15.3.1 can be thought of as a local version of Kac’s lemma.

It was shown by Saussol and Wu in [138] that for a repeller J of a C1+ε

conformal transformation the recurrence rate has a constant dimension spectrum.
Moreover, they showed that

dimH

{
x ∈ J : R(x) = α and R(x) = β

}
= dimHJ

for every α ≤ β in [0, +∞]. A corresponding result in the case of symbolic dynamics
was established by Feng and Wu in [64].

15.4 Product structure and recurrence

We already described the local product structure of hyperbolic sets (see Defi-
nition 4.2.5) and the almost product structure of hyperbolic measures (see Sec-
tions 14.3 and 14.4). We describe in this section the product structure of the
recurrence rate.

15.4.1 Preliminary results

Let g : W → W be a Borel measurable transformation in the metric space W , and
let μ be a g-invariant probability measure in W . We recall that the entropy of a
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finite or countable partition Z of W by measurable sets is defined by

HμH (Z) = −
∑

Z∈Z

μ(Z) log μ(Z).

For each n ∈ N we consider the new partition Zn =
∨n−1

k=0 g−kZ. Given x ∈ W
and n ∈ N we denote by Zn(x) ∈ Zn the unique (mod 0) element of Zn that
contains x.

The following statement gives general conditions under which the inequalities
in (15.3) become identities in a full measure set. It was established by Barreira
and Saussol in [17].

Theorem 15.4.1. Let g : W → W be a Borel measurable transformation in a set
W ⊂ Rd, for some d ∈ N, let μ be an ergodic g-invariant nonatomic probability
measure in W , and let Z be a finite or countable partition of W by measurable sets
with HμH (Z) < ∞. Assume that:

1. there exists κ > 1 such that if n, m ∈ N and x ∈ W , then

μ(Zn+m(x)) ≤ κμ(Zn(x))μ(Zm(gnx)); (15.14)

2. there exists λ > 0 such that

sup{diamZ : Z ∈ Zn} < e−λn (15.15)

for all sufficiently large n ∈ N;

3. for μ-almost every x ∈ X there exists γ > 0 such that B(x, e−γn) ⊂ Zn(x)
for all sufficiently large n ∈ N.

Then for μ-almost every x ∈ W we have

R(x) = dμ(x) and R(x) = dμ(x). (15.16)

Proof. We first show that the entropy hμ(g) is finite and nonzero. Set

σn = sup{μ(Z) : Z ∈ Zn}.

It follows from (15.15) and the fact that μ is not atomic that σn → 0 as n → ∞.
Otherwise there would exist x ∈ W and ε > 0 such that μ(Zn(x)) → ε as n → ∞.
But using (15.15) we have

⋂
n∈N

Zn(x) = {x}, and thus μ({x}) = ε > 0, which
contradicts the fact that μ is not atomic. In particular, there exists p ∈ N such
that σpσ < 1/κ. By (15.14) we have

μ(Zpn(x)) ≤ (κσpσ )n

for every x ∈ W and n ∈ N. By Shannon–McMillan–Breiman’s theorem we obtain

hμ(g) ≥ lim inf
n→∞

log μ(Zpn(x))

−pn
≥ −1

p
log(κσpσ ) > 0.
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Furthermore, it follows from (15.15) that Z is a generating partition, and hence

hμ(g) = hμ(g, Z) ≤ HμH (Z) < ∞.

The hypotheses of the theorem ensure that for μ-almost every x ∈ W there
exists γ > 0 such that

B(x, e−γn) ⊂ Zn(x) ⊂ B(x, e−λn)

for all sufficiently large n ∈ N. It follows from Shannon–McMillan–Breiman’s the-
orem that

γdμ(x) ≥ hμ(g) ≥ λdμ(x)

for μ-almost every x ∈ W . Since 0 < hμ(g) < ∞, we conclude that

0 < dμ(x) ≤ dμ(x) < ∞ (15.17)

for μ-almost every x ∈ W .
The return time of the point y ∈ B(x, r) to B(x, r) is defined by

τrττ (y, x) = inf{k ∈ N : d(gky, x) < r}.

For each x ∈ W and r, ε > 0, we consider the set

Aε(x, r) =
{
y ∈ B(x, r) : τrττ (y, x) ≤ μ(B(x, r))−1+ε

}
.

The following criterion was obtained by Barreira and Saussol in [15].

Lemma 15.4.2. If dμ(x) > 0 and

lim inf
r→0

log μ(Aε(x, r))

log μ(B(x, r))
> 1 (15.18)

for μ-almost every x ∈ W and every sufficiently small ε > 0, then (15.16) holds
for μ-almost every x ∈ W .

Proof of the lemma. By Theorem 15.2.1 it remains to prove that

R(x) ≥ dμ(x) and R(x) ≥ dμ(x)

for μ-almost every x ∈ W .
By the hypotheses and Lemma 15.2.2, given ε > 0 sufficiently small there

exist numbers a, γ, ρ > 0 and a set G ⊂ W with μ(G) > 1 − ε such that if x ∈ G
and r ∈ (0, ρ), then

μ(Aε(x, 2r)) ≤ μ(B(x, 2r))1+γ , (15.19)

μ(B(x, 2r)) ≤ μ(B(x, r/2))r−aγ/2, (15.20)

μ(B(x, r)) ≤ ra. (15.21)
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We consider the set

Aε(r) =
{
y ∈ G : τrττ (y) ≤ μ(B(y, 3r))−1+ε

}
.

By (15.6), if d(x, y) < r, then τrττ (y) ≥ τ2ττ r(y, x). Since B(x, 2r) ⊂ B(y, 3r), if
x ∈ G, then using (15.19), (15.20), and (15.21) we obtain

μ(B(x, r) ∩ Aε(r)) ≤ μ
({

y ∈ B(x, r) : τ2ττ r(y, x) ≤ μ(B(x, 3r))−1+ε
})

≤ μ(Aε(x, 2r))

≤ μ(B(x, 2r))1+γ

≤ μ(B(x, r/2))r−aγ/2(2r)aγ .

Let E ⊂ G be the set given by Lemma 15.2.3. Then

μ(Aε(r)) ≤
∑

x∈E

μ(B(x, r) ∩ Aε(r))

≤
∑

x∈E

μ(B(x, r/2))r−aγ/2(2r)aγ

≤ 2aγraγ/2.

We conclude that
∞∑

n=1

μ(Aε(e
−n)) < ∞.

It follows from Borel–Cantelli’s lemma that for μ-almost every x ∈ G we have

τeττ −n(x) > μ(B(x, 3e−n))−1+ε

for all sufficiently large n ∈ N. By Propositions 2.1.4 and 15.1.2 we obtain

R(x) ≥ (1 − ε)dμ(x) and R(x) ≥ (1 − ε)dμ(x)

for μ-almost every x ∈ G. The desired statement follows now from the arbitrariness
of ε. �

Now we show that (15.18) holds, and the theorem follows from Lemma 15.4.2.
We define the return time of a set A to itself by

τ(A) = inf{n ∈ N : gnA ∩ A 	=		 ∅}.
Saussol, Troubetzkoy and Vaienti show in [137] that the return time of an element

of the partition Zn =
∨n−1

k=0 g−kZ to itself is typically large, in the following sense.

Lemma 15.4.3. Let g : W → W be a measurable transformation preserving an er-
godic probability measure μ in W . If Z is a finite or countable measurable partition
of W by measurable sets, and hμ(g, Z) > 0, then

lim inf
n→∞

τ(Zn(x))

n
≥ 1

for μ-almost every x ∈ W .
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Proof of the lemma. We follow closely the alternative proof given in [1].
We note that it is sufficient to consider the case of finite partitions. Indeed, if

Z = {ZiZZ : i ∈ N} is a countable partition, then for some m ∈ N the finite partition

Z
′ =

{
Z1, . . . , ZmZZ ,

⋃

l>m

Bl

}

has positive entropy. Since Z is finer than Z′, we have τ(Zn(x)) ≥ τ(Z′
n(x)) and

the claim follows.
Let Z be a finite partition of W with h = hμ(g, Z) > 0. By Shannon–

McMillan–Breiman’s theorem, given ε > 0, for μ-almost every x ∈ W there exists
n(x) ∈ N such that if n > n(x), then

∣∣∣∣∣∣∣∣∣∣
1

n
log μ(Zn(x)) + h

∣∣∣∣∣∣∣∣∣∣ < ε.

By Egoroff’s theorem, for all sufficiently large M = M(ε) the set

EM = {x ∈ W : n(x) < M}

has measure μ(EM ) > 1− ε. Furthermore, there exists a constant c > 0 such that
if x ∈ EM and n ∈ N, then

c−1e−nh−nε ≤ μ(Zn(x)) ≤ ce−nh+nε. (15.22)

Set E = EM(ε), δ = 1 − 3ε/h, and

Cn = {x ∈ E : τ(ZnZZ (x)) ≤ δn}.

Clearly, Cn =
⋃δn

k=1 Rn(k), where

Rn(k) = {x ∈ E : τ(ZnZZ (x)) = k}.

We want to show that
∑

n∈N
μ(Cn) < ∞.

Let k ≤ n, and set

F = {Zk(x) : x ∈ Rn(k)}.

For each Z ∈ F there exists a unique set Z ′ ∈ Zn such that Z ∩ Rn(k) ⊂ Z ′ ⊂ Z.
Therefore,

μ(Rn(k)) =
∑

Z∈F

μ(Z ∩ Rn(k)) ≤
∑

Z∈F

μ(Z ′).

Notice that for each Z ∈ F we have Z ∩ E 	=		 ∅ and Z ′ ∩ E 	=		 ∅. Hence, there
exists x ∈ E such that Z = Zk(x) and Z ′ = ξn(x). It follows from (15.22) that

μ(Zn(x)) ≤ ce−nh+nε and 1 ≤ cμ(Zk(x))ekh+kε.
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Multiplying these inequalities we obtain

μ(Z ′) ≤ c2e−nh+nεekh+kεμ(Z),

and thus,
μ(Rn(k)) ≤ c2e−(n−k)h+2nε.

Therefore,

μ(Cn) =

δn∑

k=1

μ(Rn(k)) ≤ c2 eh

eh − 1
e−n(h−δh−2ε).

Since h − δh − 2ε = ε > 0, we obtain
∑

n∈N
μ(Cn) < ∞. By Borel–Cantelli’s

lemma, for μ-almost every x ∈ E we have

τ(Zn(x)) ≥ (1 − 3ε/h)n

for all except finitely many n ∈ N. Since μ(E) > 1 − ε, the arbitrariness of ε
implies the desired result. �

Since hμ(g, Z) > 0 we can apply Lemma 15.4.3. By hypothesis 3 in Theo-
rem 15.4.1 we conclude that for μ-almost every x ∈ W there exists γ > 0 such
that

lim inf
r→0

τ(B(x, r))

− log r
= lim inf

n→∞

τ(B(x, e−γn))

γn

≥ lim inf
n→∞

τ(Zn(x))

γn
≥ 1

γ
.

(15.23)

The identity in (15.23) follows easily from the fact that given r > 0 there exists a
unique integer n = n(r) ∈ N such that e−γ(n+1) < r ≤ e−γn, and thus

τ(B(x, e−γ(n+1)))

γn
>

τ(B(x, r))

− log r
>

τ(B(x, e−γn))

γ(n + 1)
.

It follows from (15.23) that

B(x, r) ∩ g−kB(x, r) = ∅

whenever k is a positive integer such that k < − log r/(2γ), and r is sufficiently
small.

Let
Bk =

⋃

y∈B(x,r)

Zk(y),

and write this set as a disjoint union
⋃N

j=1 Zk(yj). We choose sets Z1, Z2, . . . ∈⋃
n∈N

Zn such that ZiZZ ∩ ZjZ = ∅ (mod 0) whenever i 	=		 j, and

B(x, r) =
⋃

ℓ∈N

ZℓZ (mod 0).
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It follows from (15.14) that

μ(Bk ∩ g−kB(x, r)) =

N∑

j=1

∑

ℓ∈N

μ(Zk(yj) ∩ g−kZℓZ )

≤
N∑

j=1

∑

ℓ∈N

κμ(Zk(yj))μ(ZℓZ )

= κμ(Bk)μ(B(x, r)).

By hypothesis 2 in Theorem 15.4.1 we have Bk ⊂ B(x, r+e−λk) for all sufficiently
small r > 0, and hence

μ(B(x, r) ∩ g−kB(x, r))

μ(B(x, r))
≤ κμ(B(x, r + e−λk)). (15.24)

By Lemma 15.2.2, if k ≥ − log r/λ, then

μ(B(x, r + e−λk)) ≤ μ(B(x, 2r)) ≤ μ(B(x, r))r−ε(r) , (15.25)

where ε(r) → 0 as r → 0. We note that the function ε(r) may depend on x.
Eventually rechoosing ε(r), we can assume that if k ≥ − log r/(2γ), then

μ(B(x, r + e−λk)) ≤ μ(B(x, rλ/(3γ))) ≤ rλdμ(x)/(3γ)r−ε(r), (15.26)

since λ/γ ≤ 1.
Combining the estimates in (15.25) and (15.26) with (15.24), and eventually

rechoosing ε(r), we obtain

μ(Aε(x, r))

μ(B(x, r))
≤

− log r/λ∑

k=− log r/(2γ)

rλdμ(x)/(3γ)r−ε(r) +

μ(B(x,r))−1+ε∑

k=− log r/λ

μ(B(x, r))r−ε(r)

≤
(
− 1

λ
+

1

2γ

)
log r

(
μ(B(x, r))1/(dμ(x)+ε)

)λdμ(x)/(3γ)

r−ε(r)

+

(
μ(B(x, r))−1+ε +

1

λ
log r

)
μ(B(x, r))r−ε(r)

≤
[
μ(B(x, r))λdμ(x)/[3γ(dμ(x)+ε)] + μ(B(x, r))ε

]
r−2ε(r)

for all sufficiently small r > 0. By (15.17), we have dμ(x) > 0 for μ-almost every
x ∈ W , and thus,

lim inf
r→0

log μ(Aε(x, r))

log μ(B(x, r))
≥ 1 + min

{
λdμ(x)

3γ(dμ(x) + ε)
, ε

}
> 1

for μ-almost every point x ∈ W . The theorem follows now immediately from
Lemma 15.4.2. �
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The statement in Theorem 15.4.1 was generalized by Urbanski in [156] to´
the so-called loosely Markov systems, and by Saussol in [136] to systems with
super-polynomial decay of correlations (see the proof of Theorem 15.3.1).

15.4.2 Stable and unstable recurrence rates

[fnx, x]

V u
ρVV (x)

V s
ρVV (x)

x

fnx

B(x, ρ)

Figure 15.1: Definition of the unstable return time (the grey area is the set of
points at a du-distance of V s

ρVV (x) at most r)

Let f : M → M be a C1+ε diffeomorphism, and let Λ ⊂ M be a locally
maximal hyperbolic set of f . Let also d be the distance in M .

We denote by ds and du the distances induced by d respectively in each local
stable and unstable manifolds. Given n ∈ N, when d(fnx, x) ≤ δ (with δ as in
Definition 4.2.5), the distances ds([x, fnx], x) and du([fnx, x], x) are well-defined.
Thus, for each ρ ≤ δ we can define (see Figure 15.1)

τs
rττ (x, ρ) = inf{n ∈ N : d(f−nx, x) ≤ ρ and ds([x, f−nx], x) < r},

and
τu
rττ (x, ρ) = inf{n ∈ N : d(fnx, x) ≤ ρ and du([fnx, x], x) < r}.

Definition 15.4.4. The integers τs
rττ (x, ρ) and τu

rττ (x, ρ) are called respectively the
stable and unstable return times.

We note that the functions ρ �→ τs
rττ (x, ρ) and ρ �→ τu

rττ (x, ρ) are nondecreasing.
Set

Rs(x, ρ) = lim inf
r→0

log τs
rττ (x, ρ)

− log r
, R

s
(x, ρ) = lim sup

r→0

log τs
rττ (x, ρ)

− log r
,
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and

Ru(x, ρ) = lim inf
r→0

log τu
rττ (x, ρ)

− log r
, R

u
(x, ρ) = lim sup

r→0

log τu
rττ (x, ρ)

− log r
.

Definition 15.4.5. We define the lower and upper stable recurrence rates of a point
x ∈ Λ (with respect to f) by

Rs(x) = lim
ρ→0

Rs(x, ρ) and R
s
(x) = lim

ρ→0
R

s
(x, ρ), (15.27)

and the lower and upper unstable recurrence rates of a point x ∈ Λ (with respect
to f) by

Ru(x) = lim
ρ→0

Ru(x, ρ) and R
u
(x) = lim

ρ→0
R

u
(x, ρ). (15.28)

When Rs(x) = R
s
(x) we denote the common value by Rs(x), and we call it the

stable recurrence rate of x (with respect to f). When Ru(x) = R
u
(x) we denote

the common value by Ru(x), and we call it the unstable recurrence rate of x (with
respect to f).

It was shown by Barreira and Saussol in [17] that the stable and unstable
recurrence rates are related to the stable and unstable pointwise dimensions. The
latter were shown to exist by Ledrappier and Young in [93] (see Theorem 14.3.2).
We recall the conditional measures μs

x and μu
x induced by a given measure μ in the

measurable partitions of local stable and unstable manifolds (see Section 14.3).

Theorem 15.4.6. Let Λ be a locally maximal hyperbolic set of a C1+ε diffeomor-
phism f , for some ε > 0, such that f is topologically mixing on Λ. If μ is an
equilibrium measure of a Hölder continuous function in¨ Λ, then

Rs(x) = lim
r→0

log μs
x(Bs(x, r))

log r
and Ru(x) = lim

r→0

log μs
x(Bu(x, r))

log r

for μ-almost every x ∈ Λ.

Proof. Let R = {R1, . . . , Rℓ} be a Markov partition of Λ. For each R ∈ R, we
denote by R∗ the set of points in R that return infinitely often to R. By Poincaré’s´
recurrence theorem we have μ(R∗) = μ(R). For each x ∈ R∗ we have

TRT (x) := inf{k ∈ N : fkx ∈ R} < ∞.

We define the induced map fRff : R∗ → R∗ by

fRff x = fTRT (x)x. (15.29)

Furthermore, given z ∈ intR we set

Wu
RW

∗
(z) := V u

ρVV (z) ∩ R∗,

and we define the map

F = fz,uff : Wu
RW

∗
(z) → Wu

RW
∗
(z)
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fRff x

R∗

V u
ρVV (z) x

fz,uff x

Figure 15.2: Construction of the map F = fz,uff

by Fx = [fRff x, x] (see the illustration in Figure 15.2). Observe that Fx = [fRff x, z].
The return times of the fRff -orbit of x are given by T 0

RT (x) = 0, and

T n
RT (x) = T n−1

RT (fRff x) + TRT (x), n ∈ N.

For each p ∈ N we define a new partition of Λ by Rp =
∨p−1

k=0 f−kR. We also
consider the partition Z of the set Wu

RW
∗
(z) defined by

{
Z ∩ Wu

RW
∗
(z) : Z ⊂ R, Z ∈ R

p, and TRT |Z = p, for some p ∈ N
}
. (15.30)

Finally, for each n ∈ N we consider the partition Zn =
∨n−1

k=0 F−kZ of Wu
RW

∗
(z). It

follows from the construction that

TRT (y) = TRT (x) whenever y ∈ Z(x).

Therefore, for each n ∈ N we have T n
RT (y) = T n

RT (x) whenever y ∈ Zn(x).
We want to apply Theorem 15.4.1 to the map F |Wu

RW
∗
(z) and the partition Z.

We thus show that the hypotheses in Theorem 15.4.1 are satisfied.

Lemma 15.4.7. The following properties hold:

1. Z is a countable Markov partition of Wu
RW

∗
(z) with respect to the map F , and

F |Z is onto for each Z ∈ Z;

2. there exists λ > 0 such that for all sufficiently large n ∈ N we have

sup{diamdu
Z : Z ∈ Zn} < e−λn;

3. there exist θ > 0 and α ∈ (0, 1] such that if n ∈ N, Z ∈ Zn, and x, y ∈ Z,
then

du(Fnx, Fny) ≤ exp(θT n
RT (x))du(x, y)α.
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Proof of the lemma. The first statement follows easily from the definitions. For
the second statement we first observe that each element Z ∈ Zn is contained in
some element of the partition RT n

RT (x) with x ∈ Zn. Choose λ > 0 such that

lim sup
n→∞

1

n
log du(f−nx, f−ny) < −2λ

for all sufficiently close points x and y in the same local unstable manifold. Since
T n

RT ≥ n, for all sufficiently large n we have

sup{diamdu
Z : Z ∈ Zn} < sup{e−λT n

RT (x) : Z ∈ Zn} ≤ e−λn

whenever Z ∈ Zn and x ∈ Z. It follows from the construction that F |Z is onto for
each Z ∈ Z.

Now we establish the third statement in the lemma. The Markov property
of the partition R implies that

Fnx = [fRff [fRff · · · [fRff x, x], . . . , x], x] = [fRff nx, x] = [fT n
RT (x)x, x], (15.31)

with fRff as in (15.29). Choose κ > 0 such that eκ is a Lipschitz constant for f . Let
Z ∈ Zn and x, y ∈ Z. Since T n

RT (x) = T n
RT (y), we obtain

d(fRff nx, fRff ny) = d(fT n
RT (x)x, fT n

RT (x)y) ≤ exp(κT n
RT (x))d(x, y).

Since the local product structure is Hölder continuous, there exist constants¨ c > 1
and α ∈ (0, 1] such that

du(Fnx, Fny) = du([fRff nx, z], [fRff ny, z])

≤ c d(fRff nx, fRff ny)α

≤ c(exp(κT n
RT (x)))αd(x, y)α

≤ c exp(καT n
RT (x))du(x, y)α.

Setting θ = κα + log c we obtain the third statement. This completes the proof of
the lemma. �

We notice that the second property in Lemma 15.4.7 corresponds to hypoth-
esis 2 in Theorem 15.4.1.

For each n ∈ N we define a new partition of Λ by Rn =
∨n

p=0 fpR. Then the
partition

R∞ = lim
n→∞

Rn = {Wu
RW (z) : z ∈ R ∈ R},

where Wu
RW (z) = V u

ρVV (z) ∩ R, is composed of local unstable manifolds. It induces a
family of conditional measures μu

z for μ-almost every z ∈ Λ, given explicitly by

μu
z (A) = lim

p→∞

μ(A ∩ Rp(z))

μ(Rp(z))
(15.32)
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for every measurable subset A ⊂ Λ. Each measure μu
z can be seen as a measure in

Wu
RW (z) = R∞(z). However, it may not be invariant under the map F in Wu

RW
∗
(z).

Because of this we construct a measure mu
z equivalent to μu

z which is F -invariant.
Given a set A ⊂ Wu

RW (z) we write

[A, R] := {[a, y] : a ∈ A and y ∈ R}.
We define a measure mu

z in Wu
RW (z) by

mu
z (A) :=

μ([A, R])

μ(R)
(15.33)

for every measurable subset A ⊂ Wu
RW (z). It follows from Theorem 4.2.8 that

μ(∂R) = 0, and thus mu
z is a well-defined probability measure in Wu

RW (z) with
the property that mu

z (∂Z) = 0 for μ-almost every z ∈ Λ. Here the boundary ∂Z is
computed with respect to the induced topology on Wu

RW (z).

Lemma 15.4.8. There exists a constant c > 0 such that for μ-almost every z ∈ R
the following properties hold:

1. mu
z is an ergodic F -invariant measure in Wu

RW (z);

2. the measures mu
z and μu

z are equivalent, and

c−1 <
dμu

z

dmu
z

< c.

Proof of the lemma. Let z ∈ intR. Since

[F−1A, R] = fRff −1[A, R],

the F -invariance of mu
z follows immediately from the fRff -invariance of the mea-

sure μ|R. The ergodicity of mu
z follows from the ergodicity of μ.

Now we establish the second property. Since the Markov partition is a gen-
erating partition, it is sufficient to verify the equivalence of the measures in the
elements of the partitions Rm ∨ Rn for each n, m ∈ N. We observe that for each
x ∈ Wu

RW (z) and p ∈ N we have Rp(x) = Rp(z). Set Z = Rm(x) ∩Rn(x). Since μ is
a Gibbs measure, there exists a constant a > 0 (independent of m, n, and x) such
that

a−1μ(Rm(x))μ(Rn(x)) ≤ μ(Z) ≤ aμ(Rm(x))μ(Rn(x)).

Dividing by μ(Rm(x)) and letting m → ∞, it follows from (15.32) that

a−1μ(Rn(x)) ≤ μu
z (Z) ≤ aμ(Rn(x))

for every n ∈ N. Since [Z,R] = Rn(x), it follows from (15.33) that mu
z (Z) =

μ(Rn(x))/μ(R), and hence

a−1μ(R) ≤ μu
z (Z)

mu
z (Z)

≤ aμ(R).

This yields the desired result. �
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Now we establish hypothesis 3 in Theorem 15.4.1.

Lemma 15.4.9. For μ-almost every z ∈ Λ and mu
z -almost every x ∈ Wu

RW (z), there
exists γ > 0 such that

B(x, e−γn) ⊂ Zn(x) (15.34)

for all sufficiently large n ∈ N.

Proof of the lemma. Set μR = (μ|R)/μ(R). By Kac’s lemma, the induced system
(fRff , μR) is ergodic, and

∫

R

∫∫
TRT (x) dμR(x) =

1

μ(R)
. (15.35)

Observe that

T n
RT (x) =

n−1∑

k=0

TRT (fRff kx)

for every n ∈ N and x ∈ R. By Birkhoff’s ergodic theorem, we have

μ

({
x ∈ R : lim

n→∞

1

n
T n

RT (x) =
1

μ(R)

})
= μ(R),

and thus (see (15.32)),

μu
z

({
x ∈ Wu

RW (z) : lim
n→∞

1

n
T n

RT (x) =
1

μ(R)

})
= 1

for μ-almost every z ∈ Λ. By Lemma 15.4.8 we conclude that

mu
z

({
x ∈ Wu

RW (z) : lim
n→∞

1

n
T n

RT (x) =
1

μ(R)

})
= 1

for μ-almost every z. Hence, for mu
z -almost every x ∈ Wu

RW (z) there exists δx >
1/μ(R) such that T n

RT (x) < δxn for every n ∈ N. We note that δx can be chosen in
such a way that x �→ δx is measurable.

Let ε, δ > 0, and set

Y0YY = {x ∈ Wu
RW (z) : δx < δ}.

We have mu
z (Y0YY ) > 1 − ε for all sufficiently large δ. Let Pn ⊂ Z be the collection

of elements Z ∈ Z such that TRT |[Z,R] ≤ n. If x ∈ Y0YY , then

Z(Fn−1x) ∈ Pδn (15.36)

for every n ∈ N, since

TRT (Fn−1x) ≤ T n
RT (x) < δxn < δn.
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Furthermore, by the construction of Z in (15.30) we have

[Pn, R] ⊂ R
1 ∪ · · · ∪ R

n.

We show that the orbit of a typical point in Y0YY stays sufficiently far away
from ∂Z. Using the Markov property of the partition R, we obtain [∂Pm, R] ⊂
∂Rm for every m ∈ N. It follows from the Hölder continuity of the local product¨
structure that there exists α > 0 such that

[
{x ∈ Wu

RW (z) : du(x, ∂Pm) < r}, R
]
⊂ {y ∈ R : d(y, ∂R

m) < rα}. (15.37)

Let
β0 = (1 + log max{‖dxf‖ : x ∈ Λ})δ/α,

and define
Bn =

{
x ∈ Y0YY : du(Fn−1x, ∂Z(Fn−1x)) ≤ e−β0n

}
.

Using (15.36) we obtain

mu
z (Bn) ≤ mu

z

({
x ∈ Y0YY : du(Fn−1x, ∂Pδn) ≤ e−β0n

})
,

and by the F -invariance of mu
z ,

mu
z (Bn) ≤ mu

z

({
x ∈ Wu

RW (z) : du(x, ∂Pδn) ≤ e−β0n
})

.

Set L = max{‖dxf‖ : x ∈ Λ}.
Lemma 15.4.10. If σ > L, then there exists ν > 0 such that

μ({x ∈ Λ: d(x, ∂R
n) < 1/σn}) ≤ c(L/σ)νn for every n ∈ N.

Proof of the lemma. Since L is a Lipschitz constant for f , if d(x, ∂Rn) < 1/σn,
then d(fkx, ∂R) < Lk/σn for some k < n. By Theorem 4.2.8 we obtain

μ({x ∈ Λ: d(x, ∂R
n) < 1/σn}) ≤

∑

k<n

μ({x ∈ Λ: d(fkx, ∂R) < Lk/σn})

≤
∑

k<n

c(Lk/σn)ν

≤ c(L/σ)νn.

This completes the proof of the lemma. �

By (15.33), (15.37), and Lemma 15.4.10, there exist constants c > 0 and
ν > 0 such that

mu
z (Bn) ≤ 1

μ(R)
μ
({

x ∈ R : d(x, ∂R
δn) ≤ e−αβ0n

})

≤ ce−nαβ0ν/δ ≤ ce−νn



278 Chapter 15. Quantitative Recurrence and Dimension Theory

for every n ∈ N. This implies that
∑

m∈N
mu

z (Bm) < ∞. By Borel–Cantelli’s
lemma, for mu

z -almost every x ∈ Y0YY we have x 	∈ Bm for all sufficiently large m,
that is,

du(Fm−1x, ∂Z(Fm−1x)) > e−β0m

for all sufficiently large m. Therefore, for some β > β0 there exists a set Y ⊂ Y0YY
of measure mu

z (Y ) > 1 − 2ε such that

du(Fm−1x, ∂Z(Fm−1x)) > e−βm (15.38)

for every m ∈ N and x ∈ Y (recall that by Theorem 4.2.8 the boundary ∂Z has
zero measure).

Fix γ > (β + θδ)/α, with θ as in Lemma 15.4.7. Let x ∈ Y , n ≥ 2, and
y ∈ B(x, e−γn). It is easy to verify that

ekθδe−αγn ≤ e−βn (15.39)

for every k ≤ n. By (15.38) and (15.39) with m = 1 and k = 0, we obtain

du(x, ∂Z(x)) > e−β > e−αγn > du(x, y),

and hence, y ∈ Z(x). By Lemma 15.4.7 we have

du(Fx, Fy) ≤ eθδd(x, y)α ≤ eθδe−αγn ≤ e−βn,

using (15.39) with k = 1. By (15.38) with m = 2 we obtain

du(Fx, ∂Z(Fx)) > e−2β ≥ du(Fx, Fy),

and hence Fy ∈ Z(Fx). This shows that y ∈ Z2(x). Again by Lemma 15.4.7, we
obtain

du(F 2x, F 2y) ≤ e2θδe−αγn ≤ e−βn,

using (15.39) with k = 2. We can repeat the above argument to show that for
every m ≤ n we have

du(Fm−1x, ∂Z(Fm−1x)) > e−mβ ≥ du(Fmx, Fmy),

and hence Fm−1x ∈ Z(Fm−1x). This shows that y ∈ Zm(x). Therefore, (15.34)
holds for every x ∈ Y and n ≥ 2. Since mu

z (Y ) > 1− 2ε, the arbitrariness of ε > 0
implies the desired statement. �

We proceed with the proof of the theorem. We denote by τu
rττ (x, R) the return

time of x to the ball Bu(x, r) with respect to the map F , that is,

τu
rττ (x, R) = inf{k ∈ N : F kx ∈ Bu(x, r)}, (15.40)

and we define the corresponding lower and upper recurrence rates by

Ru(x,R) = lim inf
r→0

log τu
rττ (x, R)

− log r
and R

u
(x,R) = lim inf

r→0

log τu
rττ (x,R)

− log r
.
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We verify that the system (F, mu
z ) satisfies the hypotheses of Theorem 15.4.1.

By Lemma 15.4.8, mu
z is an ergodic F -invariant measure. We observe that

[Z, R] is a partition of R. Furthermore, for each Z ∈ Z there exists p ∈ N such
that [Z, R] ∈ Rp and TRT |[Z, R] = p. The Gibbs property of the measure μ implies
that there exists a constant b > 0 (independent of p) such that μ([Z, R]) > e−bp,
and hence mu

z (Z) > e−bp for every Z ∈ Z. By (15.33), this implies that

−
∑

Z∈Z

mu
z (Z) log mu

z (Z) =
∑

p∈N

∑

Z∈Z:TRT |[Z,R]=p

mu
z (Z)(− log mu

z (Z))

≤
∑

p∈N

bp

μ(R)

∑

Z∈Z:TRT |[Z,R]=p

μ([Z, R])

=
b

μ(R)

∑

p∈N

pμ

⎛

⎝

⎛⎛
⋃

Z∈Z:TRT |[Z,R]=p

[Z,R]

⎞

⎠

⎞⎞

=
b

μ(R)

∫

R

∫∫
TRT dμ.

It follows from Kac’s lemma (see (15.35)) that

HmHH u
z
(Z) ≤ b/μ(R) < ∞.

Now we verify the remaining hypotheses of Theorem 15.4.1. We have

[Zn+m(x), R] = [Zn(x), R] ∩ f−p[Zm(y), R],

with [Zn(x), R] ∈ Rp and y = Fnx = fpx. It follows from (15.33) and the Gibbs
property of μ that there exists a constant κ > 0 (independent of m, n, and x) such
that

mu
z (Zn+m(x)) ≤ κmu

z (Zn(x))mu
z (Zm(Fnx)).

This shows that hypothesis 1 in Theorem 15.4.1 is satisfied. Hypothesis 2 is state-
ment 2 in Lemma 15.4.7, and hypothesis 3 is the content of Lemma 15.4.9. Thus,
it follows from Theorem 15.4.1 that

Ru(x, R) = dmu
z
(x) and R

u
(x, R) = dmu

z
(x) (15.41)

for μ-almost every z ∈ R and mu
z -almost every x ∈ Wu

RW (z).
On the other hand, by Theorem 14.3.2 (see also (14.4)) there exists a con-

stant du
μ such that

dμu
x
(x) = dμu

x
(x) = du

μ (15.42)

for μ-almost every x ∈ Λ. We recall that for each x ∈ Wu
RW (z) and p ∈ N we have

Rp(x) = Rp(z). Hence, it follows from (15.32) and (15.42) that

dμu
z
(x) = dμu

z
(x) = du

μ (15.43)
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for μ-almost every z ∈ Λ and μu
z -almost every x ∈ Wu

RW (z).
By Lemma 15.4.8 the measures mu

z and μu
z are equivalent for μ-almost every

z ∈ R, and hence

dmu
z
(x) = dμu

z
(x) and dmu

z
(x) = dμu

z
(x) (15.44)

for μ-almost every z ∈ Λ and μu
z -almost every x ∈ Wu

RW (z). Combining (15.41),
(15.43), and (15.44) we conclude that

Ru(x,R) = R
u
(x, R) = dmu

z
(x) = dmu

z
(x) = du

μ (15.45)

for μ-almost every z ∈ R and μu
z -almost every x ∈ Wu

RW (z).
On the other hand, it follows from (15.40) and (15.31) that

τu
rττ (x,R) = inf{k ∈ N : du([fRff kx, x], x) < r}.

Therefore,

T
τu

r (x,R)
RT (x) = inf

{
n ∈ N : fnx ∈ R and du([fnx, x], x) < r

}
. (15.46)

Furthermore, since μ is ergodic it follows from (15.35) that

lim
n→∞

1

n
T n

R
TT (x)(x) =

1

μ(R(x))

for μ-almost every x ∈ Λ, where R(x) is the element of R that contains x. There-
fore,

lim
n→∞

log T n
R

TT (x)(x)

log n
= 1 (15.47)

for μ-almost every x ∈ Λ.
Fix ρ > 0, and consider two Markov partitions R+ and R− of Λ. We assume

that R− has diameter at most ρ (it is well known that there exist Markov partitions
of Λ with diameter as small as desired), and we define

Λρ(R+) = {x ∈ Λ: d(x, ∂R+) > ρ}.

Observe that if x ∈ Λρ(R+), then

R−(x) ⊂ B(x, ρ) ∩ Λ ⊂ R+(x), (15.48)

where R−(x) and R+(x) are respectively the elements of R− and R+ that contain x.
Since Λ is invariant, the orbit of every point x ∈ Λ is contained in Λ. Therefore
(even though in general the intersection B(x, ρ)∩Λ in (15.48) cannot be replaced by
the ball B(x, ρ)), it follows from (15.48) and (15.46) that setting n+ = τu

rττ (x, R+)
and n− = τu

rττ (x, R−) we have

T
n+

R
TT

+(x)(x) ≤ τu
rττ (x, ρ) ≤ T

n−

R
TT

−(x)(x)
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for μ-almost every x ∈ Λρ(R+). We conclude from (15.47) that

Ru(x, R+) ≤ Ru(x, ρ) ≤ Ru(x, R−), (15.49)

and
R

u
(x,R+) ≤ R

u
(x, ρ) ≤ R

u
(x, R−) (15.50)

for μ-almost every x ∈ Λρ(R+). On the other hand, by (15.45) we have

Ru(x, R−) = R
u
(x, R−) = du

μ and Ru(x, R+) = R
u
(x, R+) = du

μ

for μ-almost every x ∈ Λ. It follows from (15.49) and (15.50) that

Ru(x, ρ) = R
u
(x, ρ) = du

μ (15.51)

for μ-almost every x ∈ Λρ(R+) and all sufficiently small ρ > 0. By Theorem 4.2.8,
the boundary ∂R+ has zero measure. Hence, the set

⋃
ρ>0 Λρ(R+) has full μ-

measure, and the identities in (13.17) hold for μ-almost every x ∈ Λ and all
sufficiently small ρ > 0 (possibly depending on x).

Using a version of (15.45) for the stable direction (which can be obtained
replacing everywhere the diffeomorphism f by f−1, and the index u by s), we can
show that

Rs(x, ρ) = R
s
(x, ρ) = ds

μ (15.52)

for μ-almost every x ∈ Λ and all sufficiently small ρ > 0 (possibly depending
on x). It follows from (15.51) and (15.52) that the limits in (15.27)–(15.28) are
not necessary provided that ρ is sufficiently small. Hence,

Rs(x) = Rs(x, ρ) = R
s
(x, ρ) = ds

μ, (15.53)

and
Ru(x) = Ru(x, ρ) = R

u
(x, ρ) = du

μ (15.54)

for μ-almost every x ∈ Λ and all sufficiently small ρ > 0 (possibly depending on x).
This completes the proof of the theorem. �

15.4.3 Product structure of recurrence

The following result of Barreira and Saussol in [17] is now a simple application of
Theorems 14.4.1, 15.3.1, and 15.4.6.

Theorem 15.4.11 (Product structure of recurrence). Let Λ be a locally maximal
hyperbolic set of a C1+ε diffeomorphism f , for some ε > 0, such that f is topo-
logically mixing on Λ, and let μ be an equilibrium measure of a H¨lder continuous¨
function in Λ. Then for μ-almost every x ∈ Λ the following properties hold:

1. the recurrence rate is equal to the sum of the stable and unstable recurrence
rates, that is,

R(x) = Rs(x) + Ru(x);



282 Chapter 15. Quantitative Recurrence and Dimension Theory

2. there exists ρ(x) > 0 such that for each ρ ∈ (0, ρ(x)) and δ > 0 there is
r(x, ρ, δ) > 0 such that if r < r(x, ρ, δ), then

rδ <
τs
rττ (x, ρ)τu

rττ (x, ρ)

τrττ (x)
< r−δ. (15.55)

Proof. By Theorem 14.4.1 we have

dμ(x) = dμ(x) = ds
μ + du

μ (15.56)

for μ-almost every x ∈ Λ. On the other hand, by Theorems 15.3.1 and 15.4.6,

R(x) = dμ(x), Rs(x) = ds
μ, and Ru(x) = du

μ

for μ-almost every x ∈ Λ. Together with (15.56) this establishes the first statement
in the theorem. In view of the arbitrariness of ρ in (15.53) and (15.54), the second
statement is an immediate consequence of the first one. �

The second statement in Theorem 15.4.11 shows that the return time is
approximately equal to the product of the return times in the stable and unstable
directions, as if they were independent.

In the case of symbolic dynamics, a version of Theorem 15.4.11 was obtained
earlier by Ornstein and Weiss in [107]. We formulate it without proof.

Theorem 15.4.12. The following properties hold:

1. if σ+|Σ+ is a one-sided topological Markov chain, and μ+ is an ergodic σ+-
invariant probability measure in Σ+, then

lim
k→∞

log inf{n ∈ N : (in+1 · · · in+k) = (i1 · · · ik)}
k

= hμ+(σ+) (15.57)

for μ+-almost every (i1i2 · · · ) ∈ Σ+;

2. if σ|Σ is a two-sided topological Markov chain, and μ is an ergodic σ-invariant
probability measure in Σ, then

lim
k→∞

log inf{n ∈ N : (in−k · · · in+k) = (i−k · · · ik)}
2k + 1

= hμ(σ) (15.58)

for μ-almost every (· · · i−1i0i1 · · · ) ∈ Σ.

We recall that σ|Σ has naturally associated two one-sided topological Markov
chains σ+|Σ+ and σ−|Σ− (see Section 4.2.3). Furthermore, any σ-invariant mea-
sure μ in Σ induces a σ+-invariant measure μ+ in Σ+ and a σ−-invariant measure
μ− in Σ−, such that

hμ+(σ+) = hμ−(σ−) = hμ(σ). (15.59)



15.4. Product structure and recurrence 283

For each ω = (· · · i−1i0i1 · · · ) ∈ Σ and k ∈ N, we set

τ+
kτ (ω) = inf{n ∈ N : (in+1 · · · in+k) = (i1 · · · ik)},

τ−
kτ (ω) = inf{n ∈ N : (i−n−k · · · i−n−1) = (i−k · · · i−1)},
τkττ (ω) = inf{n ∈ N : (in−k · · · in+k) = (i−k · · · ik)}.

The following is an immediate consequence of (15.57), (15.58), and (15.59).

Theorem 15.4.13 ([107]). Let μ be an ergodic σ-invariant measure in Σ. Given
ε > 0, for μ-almost every ω ∈ Σ and all sufficiently large k we have

e−kε ≤ τ+
kτ (ω)τ−

kτ (ω)

τkττ (ω)
≤ ekε.

Theorem 15.4.13 is a version of 15.55 in the case of symbolic dynamics.
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