


Recent Advances in Linear Models and Related Areas



●Shalabh  Christian Heumann

Recent Advances in Linear
Models and Related Areas

Essays in Honour of Helge Toutenburg



The use of general descriptive names, registered names, trademarks, etc. in this publication does not 
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective 
laws and regulations and therefore free for general use.

Cover design: WMXDesign GmbH, Heidelberg, Germany

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is 
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, 

or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, 
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication 

are liable for prosecution under the German Copyright Law.

Dr. Shalabh Dr. Christian Heumann
Institute of Statistics 

Akademiestr. 1
80799 Munich

ISBN 978-3-7908-2063-8 e-ISBN 978-3-7908-2064-5

in its current version, and permissions for use must always be obtained from Physica-Verlag. Violations

© 2008 Physica-Verlag Heidelberg

Ludwig-Maximilians-University Munich
Department of Mathematics & Statistics

Library of Congress Control Number: 2008929501

Kanpur - 208016 India

chris@stat.uni-muenchen.de

Indian Institute of Technology Kanpur

shalab@iitk.ac.in



Preface

This collection contains invited papers by distinguished statisticians to
honour and acknowledge the contributions of Professor Dr. Dr. Helge
Toutenburg to Statistics on the occasion of his sixty-fifth birthday.
These papers present the most recent developments in the area of the
linear model and its related topics.

Helge Toutenburg is an established statistician and currently
a Professor in the Department of Statistics at the University of
Munich (Germany) and Guest Professor at the University of Basel
(Switzerland). He studied Mathematics in his early years at Berlin and
specialized in Statistics. Later he completed his dissertation (Dr. rer.
nat.) in 1969 on optimal prediction procedures at the University of
Berlin and completed the post-doctoral thesis in 1989 at the University
of Dortmund on the topic of mean squared error superiority. He taught
at the Universities of Berlin, Dortmund and Regensburg before joining
the University of Munich in 1991.

He has various areas of interest in which he has authored and
co-authored over 130 research articles and 17 books. He has made
pioneering contributions in several areas of statistics, including linear
inference, linear models, regression analysis, quality engineering,
Taguchi methods, analysis of variance, design of experiments, and
statistics in medicine and dentistry. His most influential contributions
are in the area of optimal prediction in linear models, mean squared
error superiority of biased estimators, weighted mixed estimation in
missing data analysis, repeated measures designs and the unification
of various parameterizations of the carry-over effect in cross-over
designs. His books Prediction and Improved Estimation in Linear
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Models (Wiley) and Prior Information in Linear Models (Wiley) laid
the foundations for further work in the field of utilization of prior
information as well as in the field of prediction. Other pioneering
works include Linear Models and Generalizations: Least Squares and
Alternatives (Springer) and Statistical Analysis of Designed Experi-
ments (Springer). His books in German on descriptive and inductive
statistics, quality engineering, design of experiments and linear models
are among the popular textbooks in several universities in Germany.
He has also translated the celebrated books of Professor C.R. Rao
into German. His book on statistics in dentistry is the first book in
German in this area.

Helge Toutenburg maintains fruitful research collaboration with
researchers in different countries like the USA, India, Korea, etc. He
has hosted DAAD and Humboldt fellows. He is not only a well known
researcher but also an excellent teacher. He has advised Ph.D. students
from germany and abroad. His efficient working style has always been
appreciated by those who had a chance to collaborate with him. He has
been actively associated with the International Statistical Institute,
Deutscher Hochschulverband, Deutsche Statistische Gesellschaft,
Biometrical Society and Bernoulli Society for Mathematical Statistics
and Probability.

Besides having a great interest in statistics, Helge Toutenburg has
a great sense of humor, too. He has written several books on humor in
German to the pleasure of his friends and colleagues.

This collection of invited papers brings together the recent deve-
lopments in the field of linear models and its related sub-fields as well
as papers from Helge Toutenburg‘s other areas of interest.

As the editors of this book, we would like to express our heart-
ful thanks to the authors whose contributions and commitment made
this book possible. We would like to thank Michael Schomaker for his
immense help in the editorial process and Valentin Wimmer for his
help in typing. We are also thankful to Dr. Müller of Springer for his
cooperation in the publication of this book.

Munich, Shalabh
June, 2008 Christian Heumann



Contents

On the Identification of Trend and Correlation in
Temporal and Spatial Regression
Ludwig Fahrmeir, Thomas Kneib . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Estimating the Number of Clusters in Logistic
Regression Clustering by an Information Theoretic
Criterion
Guoqi Qian, C. Radhakrishna Rao, Yuehua Wu, Qing Shao . . . . . 29

Quasi Score and Corrected Score Estimation in the
Polynomial Measurement Error Model
Hans Schneeweiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Estimation and Finite Sample Bias and MSE of FGLS
Estimator of Paired Data Model
Weiqiang Qian, Aman Ullah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Prediction of Finite Population Total in Measurement
Error Models
Hyang Mi Kim, A.K.Md. Ehsanes Saleh . . . . . . . . . . . . . . . . . . . . . . 79

The Vector Cross Product and 4×4 Skew-symmetric
Matrices
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On the Identification of Trend and Correlation

in Temporal and Spatial Regression

Ludwig Fahrmeir1 and Thomas Kneib2

1 Department of Statistics, University of Munich, Ludwigstrasse 33, 80539
Munich, Germany ludwig.fahrmeir@stat.uni-muenchen.de

2 Department of Statistics, University of Munich, Ludwigstrasse 33, 80539
Munich, Germany thomas.kneib@stat.uni-muenchen.de

1 Introduction

In longitudinal or spatial regression problems, estimation of temporal
or spatial trends is often of primary interest, while correlation itself is
of secondary interest or is regarded as a nuisance component. In other
situations, the stochastic process inducing the correlation may be of
interest in itself. In this paper, we investigate for some simple time
series and spatial regression models, how well trend and correlation
can be separated if both are modeled in a flexible manner.

From a classical point of view, trends are considered as determinis-
tic unknown functions to be estimated from the data, whereas correla-
tion is thought to be generated from an unobservable, latent temporal
or spatial process. If the focus of statistical inference is on recovering
trends, then the latent error process is often only used to give some
guidance in choosing reasonable correlation functions to enhance qual-
ity of trend estimation. Even more, the derived correlation structure
may only be considered as working correlation such as in marginal mod-
els for longitudinal data, see e.g. Toutenburg (2003, Ch. 10) and the
references therein. To make the discussion concrete, let us consider a
simple nonparametric regression problem, where observations y(ti) on
a process {y(t), t ≥ 0} are available at time points t1 < . . . < tn, say.
The observable process is related to an unknown trend function f(t)
through the additive relation

y(ti) = f(ti) + ε(ti), i = 1, . . . , n , (1)

where ε(t), t ≥ 0 is an unobservable Gaussian error process with
marginal distributions ε(t) ∼ N(0, σ2). Defining the vectors y =
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(y(t1), . . . , y(tn))′, f = (f(t1), . . . , f(tn))′ and ε = (ε(t1), . . . , ε(tn))′,
we obtain the model in matrix notation as

y = f + ε, ε ∼ N(0, σ2R), (2)

where the correlation matrix R has elements rij = ρ(ε(ti), ε(tj)) with
some suitable correlation function ρ. In a purely parametric approach,
the trend function could be approximated as a linear combination

f(t) =

p∑
j=1

βjBj(t) (3)

of a few basis functions. To achieve optimality, the unknown coefficients
β = (β1, . . . , βp)

′ would then be estimated by minimizing a weighted
least squares criterion based on the ‘true’ correlation matrix R or a
consistent estimate R̂.

Simple parametric forms like (3) are often too restrictive, at least
prior to exploratory data analysis, for modelling trend functions. The
most popular nonparametric alternatives are basis function approaches
in combination with penalization, such as smoothing splines or penal-
ized splines, and kernel-based local regression techniques. In case of
i.i.d errors εt, where R = I, there is a close connection between both
concepts, see e.g. Fahrmeir and Tutz (2001, Ch. 5), and empirical expe-
rience shows that they often lead to rather comparable estimates from
a practical point of view.

It might intuitively be expected that this similarity in practical per-
formance transfers to the case of correlated error processes as long as a
good estimate of R is available. Surprisingly, this is not the case. Kohn,
Schimek and Smith (2000) point out some emerging yet different con-
sequences if correlation is neglected in estimation procedures, and they
suggest some remedies. Lin and Carroll (2000) show that common
kernel-based methods work best when correlation is neglected, i.e if
R = I is used as a working correlation matrix. Welsh, Lin and Car-
roll (2002) provide additional support for this result, but they also
confirm that efficient spline estimates are obtained when using the true
correlation structure. As a reaction to these somewhat surprising re-
sults, Wang (2003) and Linton, Mammen, Lin and Carroll (2004)
constructed modified kernel-based estimates which improve upon the
usual kernel estimates. Krivobokova and Kauermann (2007) investigate
penalized spline estimation for time series data within a mixed model
framework and provide some evidence that relatively robust nonpara-
metric estimates are obtained when smoothing parameters are cho-
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sen as restricted maximum likelihood estimates even if the correlation
structure is misspecified.

In this contribution we shed some further light on this puzzle from a
Bayesian perspective. We focus on approaches with Bayesian smoothing
priors for modeling trend functions, such as random walk models or ex-
tensions to Bayesian penalized (P-)splines. If the correlation-generating
error process has similar stochastic structure as the smoothing prior it
seems quite plausible that identifiability problems can arise. In partic-
ular, it can become difficult to separate trend from correlation. We first
exemplify this using a simple time series setting in Section 2. In Sec-
tion 3 we move on to the corresponding spatial situation, which arises
in geostatistics. Section 4 briefly points out extensions to the general
class of structured additive regression (STAR) models.

2 Trend and Correlation in Time Series Regression

Let us first revisit the classical smoothing problem already treated by
Whittaker (1923), which is closely related to the nonparametric re-
gression problem (2). Time series observations y(t) on an equidistant
grid of time points t = 1, . . . , n are assumed to be the sum

y(t) = f(t) + ε(t), t = 1, . . . , n (4)

of a smooth trend function f and an irregular noise component ε with
i.i.d. errors ε ∼ N(0, σ2). Whittaker suggested to estimate f by mini-
mizing the penalized least squares (PLS) criterion

PLS(f) =

n∑
t=1

(y(t) − f(t))2 + λ
n∑

t=d+1

(∆df(t))2 (5)

where λ is a given smoothing parameter, and the sum of (squared) first
(d = 1) or second (d = 2) order differences

∆1f(t) = f(t) − f(t− 1), ∆2f(t) = f(t) − 2f(t− 1) + 2f(t),

penalizes deviations from a horizontal or a straight line, respectively.
In matrix notation, the observation model becomes y = f + ε as in (2),
and the penalized least squares criterion (5) can be expressed as

PLS(f) = (y − f)′(y − f) + λf ′Kdf, (6)

with penalty matrix Kd, d = 1, 2, given by



4 Ludwig Fahrmeir and Thomas Kneib

Kd = D′
dDd (7)

where D1 and D2 are first and second order difference matrices, respec-
tively. It can be easily shown that

f̂ = (I + λKd)
−1y (8)

minimizes PLS(f). The (frequentist) covariance matrix of the PLS-
estimate is given by

Cov(f̂) = σ2(I + λKd)
−2 . (9)

The Bayesian version of the smoothing problem of Whittaker can be
formulated as a hierarchical model consisting of two stages. Assuming
i.i.d. Gaussian errors ε(t) ∼ N(0, σ2), the first stage is the observation
model

y|f ∼ N(f, σ2I).

The second stage specifies a smoothness prior for the unknown function,
more exactly for the vector f = (f(1), . . . , f(n))′ of function values.
The stochastic analogue of first or second order difference penalties are
random walk priors of first (RW (1)) or second (RW (2)) order

f(t) = f(t− 1) + u(t)

or

f(t) = 2f(t− 1) − f(t− 2) + u(t),

for the unknown function values. The errors u(t) are i.i.d. N(0, τ2)-
variables, where τ2 plays the role of an (inverse) smoothing parameter
allowing for larger or enforcing smaller deviations in the development
of f(t). Assuming diffuse priors for initial values, i.e.,

p(f(1)) ∝ constant

in case of first order random walks and

p(f(1)) ∝ constant, p(f(2)) ∝ constant

in case of second order random walks, the joint prior for the vector
f = (f(1), . . . , f(n))′ is multivariate Gaussian with density

p(f) ∝ exp

(
− 1

2τ2
f ′Kdf

)
(10)
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with precision matrix Kd given as in (7). Note that the random walk
smoothness priors are partially improper since Kd has rank n − d. It
can easily be shown that the posterior

p(f |y) ∝ p(y|f)p(f) (11)

is Gaussian with posterior mean

f̂ = E(f |y) = (I + λKd)
−1y, (12)

where the smoothing parameter λ = σ2/τ2 is defined as the noise-to-
signal ratio, i.e., the ratio of error variance and variance of the random
walk. The posterior covariance matrix is given by

Cov(f |y) = σ2(I + λKd)
−1.

Thus, the Bayesian posterior mean estimate and the frequentist PLS-
estimate coincide but the covariance matrices differ. To be more spe-
cific, the Bayesian posterior covariance matrix is larger (in terms of the
Löwner order) than its frequentist counter part.

Since the posterior p(f |y) is Gaussian, the posterior mean equals the
posterior mode, which is the maximizer of the right-hand side in (11).
Taking logarithms, it is straightforward to see that – up to a negative
constant factor – the penalized (log-)likelihood criterion

lpen(f) = log p(y|f) + log p(f)

is equal to the PLS criterion (6). This equivalence remains valid if
we assume that errors are correlated so that the observation model is
altered to

ε ∼ N(0, τ2R(α)), y|f ∼ N(f, σ2R(α))

with (nonsingular) covariance matrix R(α), where α parameterizes the
correlation structure. For example, the stochastic error process generat-
ing the correlation matrix might be a stationary autoregressive process
of first or second order, i.e.,

ε(t) = αε(t− 1) + u(t), |α| < 1,

ε(t) = α1ε(t− 1) + α2ε(t− 2) + u(t), |α2| < 1, |α1| < 1 + α2

with i.i.d. Gaussian variables u(t) ∼ N(0, σ2). The limiting cases α → 1
and α1 → 2, α2 → −1 lead to the (nonstationary) random walk models
RW (1) and RW (2), respectively. Defining suitable distributions for the
starting values, it can be shown that
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ε ∼ N(0, σ2K−1
d,α)

with (nonsingular) precision matrices

K1,α =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −α
−α 1 + α2 −α

. . .
. . .

. . .

−α 1 + α2 −α
−α 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and

K2,α =

⎛⎜⎜⎜⎜⎝
1 −α1 −α2 . . .

−α1 1 + α2
1 −α1(1 − α2) −α2 . . .

−α2 −α1(1 − α2) 1 + α2
1 + α2

2 −α1(1 − α2) −α2 . . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . . −α2 −α1(1 − α2) 1 + α2
1 + α2

2 −α1(1 − α2) −α2

. . . −α2 −α1(1 − α2) 1 + α2
1 −α1

. . . −α2 −α1 1

⎞⎟⎟⎟⎟⎠ .

In the limiting cases we obtain

lim
α→1

K1,α = K1, lim
α1→2,α2→−1

K2,α = K2,

i.e., the precision matrices of the corresponding random walks. For
simplicity, we only take a closer look at AR(1)-processes ε and RW (1)-
priors for f . Then, the PLS criterion (6) is replaced by the penalized
weighted least squares (PWLS) criterion

PWLS(f) = (y − f)′Kα(y − f) + λf ′K1f. (13)

The PWLS estimate is then given by

f̂α = (Kα + λK1)
−1Kαy. (14)

The corresponding Bayesian hierarchical model is now

y|f ∼ N(f, σ2K−1
α ),
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with the same Gaussian smoothness prior for f as in (10), with precision
matrix K1. The posterior p(f |y) is Gaussian, but now with posterior
mean

E(f |y) = f̂α = (Kα + λK1)
−1Kαy,

so that the equivalence of the frequentist and Bayesian point estimate
still holds. For α = 0, f̂α reduces to the unweighted PLS estimate (8).
For α close to 1, we may expect identification problems, since in the
limiting case α → 1, we get

Pα := Kα + λK1 → (1 + λ)K1,

where K1 is singular. These problems are reflected in the condition
number

κα =
λmax(Pα)

λmin(Pα)
,

where λmax(Pα) and λmin(Pα) denote the largest and the smallest eigen-
value of Pα, respectively. Note that Pα is also the Bayesian posterior
precision matrix of f̂ thereby providing a measure for the variability of
the estimate.

For large κα, inversion of Pα suffers from numerical instability as
exemplified in Figure 1 for n = 100 time points. For increasing values
of the autoregressive parameter α, the condition dramatically increases
regardless of the value of the smoothing parameter. Small values of
λ somewhat lower the effect, since the influence of K1 on Pα is re-
duced, but qualitatively the effect remains the same. Note also, that
the condition has been log-transformed in Figure 1 to enhance visibility.
Hence, the value 10, for example, corresponds to a condition number
of κα ≈ 22000.

The large condition number for values of α close to one reveals that
the nonparametric function f is not well separable from the correlation
and that, in particular, increasing variability of f̂ is observed for α → 1.
However, it seems plausible that we might still obtain a reasonable point
prediction for the response vector y. To investigate this conjecture more
closely, let us take a closer look at the behavior of the hat matrix P−1

α

projecting y on ŷ in the limiting case α → 1.
Therefore we rewrite P−1

α using the matrix inversion lemma Touten-
burg (2003, Theorem A.18) as

(Kα +D′
1λID1)

−1 = K−1
α −K−1

α D′
1

(
1

λ
I +D1K

−1
α D′

1

)−1

D1K
−1
α .
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Fig. 1. Condition number κα for varying values of the autoregressive para-
meter α and the smoothing parameter λ when the nonparametric effect is
modeled as first order random walk.

For α < 1, the matrix Kα is regular and its inverse is given by

K−1
α =

1

1 − α2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 α α2 . . . αn−1

α 1 α αn−2

...
. . .

. . .
. . .

...

αn−2 . . .
. . . α

αn−1 αn−2 . . . α 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Straightforward calculations lead to the following expression for ŷ in
the limiting case α → 1:

ŷ = (Kα + λK1)
−1Kαy −→

α→1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 − η 0 . . . . . . 0 η

η 1 − 2η 0 . . . 0 η
...

. . .
...

η 0 . . . 1 − 2η η

η 0 . . . 0 1 − η

⎞⎟⎟⎟⎟⎟⎟⎟⎠
y,

i.e.,
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ŷ(t) =

⎧⎪⎨⎪⎩
(1 − η)y(1) + ηy(n) t = 1

ηy(1) + (1 − 2η)y(t) + ηy(n) 2 ≤ t ≤ n− 1

ηy(1) + (1 − η)y(n) t = n,

where η = 0.5λ/(1 + λ). Therefore the prediction for ŷ(t) is always
a weighted average of y(1), y(t) and y(n), with the influence of y(t)
depending on the smoothness parameter. For λ → ∞ (and η → 0.5
correspondingly), the influence of y(t) disappears and the overall pre-
diction is just the constant 0.5(y(1) + y(n)). In the contrary extreme
(λ→ 0 or η → 0) the prediction simply interpolates the observed time
series.

These considerations lead to the following interpretation: If we try
to estimate the trend while simultaneously accounting for correlation,
serious multicollinearity problems arise if α → 1 since both the error
term and the trend function follow the same stochastic structure. The
prediction ŷ is still well-behaved as a point estimate with meaning-
ful limiting cases as the smoothing parameter λ is varied. However,
the variability of both the estimate f̂ and therefore the prediction ŷ
dramatically increases when α → 1.

It seems that the multicollinearity problem arises because the ran-
dom walk smoothness prior for f and the stochastic process (10) for ε
become so similar with α approaching 1. We may expect less problems
with other priors for the trend which imply additional smoothness prop-
erties, e.g. for (Bayesian) penalized spline regression. Then we assume
that f(t) is (approximated as) a linear combination

f(t) =

p∑
j=1

βj B
l
j(t)

of B-splines of degree l, defined for an equidistant grid of knots on
the time axis. The vector f of function values can then be expressed
as f = Xβ, where the design matrix X has elements X[t, j] = Bl

j(t),
t = 1, . . . , n, and j = 1, . . . , p. To enforce smoothness, the B-spline
coefficient vector β obeys the same difference penalties or – in the
Bayesian version – random walk priors as before. A standard choice
are cubic B-splines and a RW (2)-prior. Then the observation model is

y ∼ N(Xβ, σ2K−1
d,α)

and the smoothness prior is Gaussian and of the form (10) again. As
before, the PWLS estimate and the posterior mean estimate coincide
and are given as
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Fig. 2. Condition number κα for varying numbers of knots when the non-
parametric effect is modeled as a cubic P-spline with second order difference
penalty.

β̂α = (X ′Kd,αX + λKd)
−1Kd,αy.

For the popular choice of cubic B-splines and a RW (2)-prior for
β, Figure 2 shows the condition number κα of the matrix Pα =
X ′KαX + K2 as a function of the number of knots and for different
values of α. Although the shape of the condition number is quite differ-
ent depending on the amount of correlation, all curves show the same
qualitative behavior of an increasing condition number for larger num-
bers of knots. Note also the different scaling of the graphics: For high
autoregressive correlation, the increase is much more dramatic than for
moderate and small correlation.

We now move on a bit further and consider observation models of
the form

y(t) = f(t) + ε(t) + δ(t), t = 1, . . . , n (15)

where, from a frequentist point of view, f(t) is a (deterministic) trend
function, ε(t) is a (stationary) stochastic process inducing temporal
correlation as before, and δ(t) are additional i.i.d. errors representing
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pure measurement noise. Models of this form are the time series version
of geostatistic (“kriging”) models considered in the next section and
allow for the estimation (or prediction) of both the trend function and
the correlated error component. Assuming Gaussian errors, we have

y = f + ε+ δ, δ ∼ N(0, ω2I)

in matrix notation. As before, we adopt a basis function approach and
approximate the trend through f = Xβ, while ε follows an AR(1)
or AR(2)-process with Cov(ε) = σ2K−1

d,α. If the primary interest is in
estimating f , inference will be based on the marginal distribution

y|f ∼ N(Xβ, σ2V −1
α )

where ε and δ are assumed to be independent, and

σ2V −1
α = σ2(K−1

α + ηI), η = ω2/σ2.

is the covariance matrix of ε+ δ.
The resulting PWLS estimate for β is

β̂α = (X ′VαX + λKd)
−1Vαy.

In the special case of B-splines of degree zero, corresponding to random
walk models, we have X = I and f = β, and it may again be interesting
to take a closer look at

f̂α = (Vα + λ1K1)
−1Vαy

in the limiting case α → 1.
Problems of (weak) identifiability become quite obvious from a

Bayesian perspective if we consider the conditional distribution of y,
given the trend f and the stochastic process ε generating correlation,
i.e.,

y|f, ε ∼ N(f + ε, σ2I),

with f = Xβ. This means, we attempt to separate observation y into
three components f, ε and δ differing only through their prior specifi-
cations. If the smoothness prior for f and the stochastic process prior
for ε have similar stochastic structure, then it will obviously be diffi-
cult to distinguish them given a finite sample of data y. Moreover, the
Bayesian interpretation also reveals, that trend and correlation are per
se connected quite closely. If long range correlation is present in the
data (corresponding to α ≈ 1 in the AR(1) example), these correlation
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will almost appear as a smooth trend in the data. Vice versa, wiggly
trends may be equivalently interpreted as some kind of shorter ranged
correlation. Compare also the simulation result at the very end of this
section.

Obviously, random walk models for f in combination with a station-
ary autoregressive process, where the parameters approach the bound-
ary of the stationary region, are a simple prototype for weak identifia-
bility. It is easily derived that the posterior p(f, ε|y) is Gaussian, and

the posterior mean estimates f̂ , ε̂ satisfies(
I + λ1Kd I

I I + λ2Kd,α

)(
f̂

ε̂

)
=

(
y

y

)
,

where λ1 = ω2/τ2, λ2 = ω2/σ2. In the limiting case α → 1 the matrix
becomes singular and an identifiability problem arises if we want to
separate f from ε. In the following we explore these (weak) identifiabil-
ity issues empirically through some simulation experiments, focussing
on the situation where time series data are generated from models of
the form (15), with

y(t) = sin(t) + ε(t) + δ(t), t = 1, . . . , 100,

and grid length ∆t = 0.25. We set σ2 = Var(ε(t)) = ω2 = Var(δ(t)) =
0.5, which is close to the empirical variance of the sine function, so that
all three components have about the same variability. All data sets were
generated for α = 0.3 (low correlation), α = 0.6 (medium correlation),
and α = 0.9 (strong correlation).

For estimation, the true trend was approximated through penalized
P-splines, varying the degree l of the spline functions, the smoothness
penalty (RW (1) or RW (2)) for B-spline coefficients, and the number
of knots. For each selected combination of α-values and B-spline tuning
parameters, 50 data sets were generated according to the specific model.
The models were fitted either with full Bayesian inference using MCMC
or empirical Bayesian inference using mixed model technology. These
inference techniques are described in Fahrmeir, Kneib and Lang (2004)
and Lang and Brezger (2004), and are implemented in the software
BayesX (Brezger, Kneib and Lang (2007)). For each data set, goodness
of fit was assessed through
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SQ(f) =
100∑
t=1

(f(t) − f̂(t))2,

SQ(ε) =
100∑
t=1

(ε(t) − ε̂(t))2,

SQ(y) =
100∑
t=1

(y(t) − ŷ(t))2,

and variability measured through

V S(f) =
100∑
t=1

Var(f̂(t)),

V S(ε) =
100∑
t=1

Var(ε̂(t)),

V S(y) =
100∑
t=1

Var(ŷ(t)).

Figures 3–6 display boxplots of these characteristics, resulting from
estimation with different combinations of α and B-splines for the 50
data sets, respectively.

These figures and additional ones in Eschrich (2007) provide the
following empirical evidence:

• With increasing correlation, quality of estimation of the components
f and ε decreases (Figure 3, c,e). In contrast, the predictions for the

response ŷ = f̂ + ε̂ for the sum remain comparably stable regardless
of the amount of correlation (Figure 3, a). This confirms the results
for increasing α that we discussed from a theoretical perspective
earlier in this section: While separation between f and ε proves to
be difficult, the overall fit remains well identified. Note that even
the variance of ŷ is relatively stable while variability of both f̂ and
ε̂ increases.

• Figure 4 investigates the dependence of the results on the number of
knots for the standard choice of cubic P-splines with RW (2)-priors,
corresponding to a rather smooth prior. In this case, results seem
to be rather insensitive to the number of knots, as opposed to what
might have been guessed from the condition number displayed in
Figure 2. For the goodness of fit measures SQ(f) and SQ(ε), we
even obtain improved results for an increased number of knots and
therefore a better separation of trend and correlation.
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Fig. 3. Goodness of fit and variability measures for varying values of the
autoregressive parameter α. The nonparametric effect is modeled as a cubic
P-spline with second order random walk penalty and 40 knots.

• In contrast, if the prior for the nonparametric trend does not enforce
smoothness but is closer to the AR(1)-process results are qualita-
tively different. Figures 5 and 6 show results for zero degree P-
splines and a high amount of correlation for the autoregressive com-
ponent. When varying the number of knots (Figure 5), both the fit
of the nonparametric effect and the autoregressive component wors-
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Fig. 4. Goodness of fit and variability measures for varying numbers of knots
for the nonparametric effect. The autoregressive parameter is fixed at α = 0.6
and the nonparametric effect is modeled as a cubic P-spline with second order
random walk penalty.

ens, while the overall fit remains roughly the same. When comparing
RW (1) and RW (2) priors for the nonparametric effect, identifica-
tion somewhat worsens for the first order random walk, which is
closer to the AR(1)-process than the RW (2) prior (Figure 6). Over-
all, as expected, the worst choice in terms of identifiability is a zero
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Fig. 5. Goodness of fit and variability measures for varying numbers of knots
for the nonparametric effect. The autoregressive parameter is fixed at α = 0.9
and the nonparametric effect is modeled as a piecewise constant P-spline with
first order random walk penalty.

degree P-spline with random walk of first order as smoothness prior
for the trend and a large number of knots.

For the results presented so far, both the autoregressive error ε(t)
and the independent error δ(t) have been generated anew in each simu-
lation run. To be able to derive mean estimates averaged over the simu-
lation runs, we repeated parts of the simulations with a fixed sequence
of autoregressive errors (but still with varying independent errors, of
course). Figure 7 shows one exemplary result from these simulations,
where the nonparametric effect is modeled as a cubic P-spline with
20 knots and second order random walk penalty. The autocorrelation
parameter is fixed at the high value, such that the generated autocor-
related error varies relatively slowly as time progresses. Therefore a
large fraction of the autoregressive process is absorbed by the nonpara-
metric effect and the original sine curve as well as the autoregressive
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Fig. 6. Goodness of fit and variability measures for varying specifications of
the prior for the nonparametric effect. The autoregressive parameter is fixed
at α = 0.9 and the nonparametric effect is modeled as a piecewise constant
P-spline with 100 knots.

component are not very well identified. This again indicates, that trend
estimation and modelling of correlation are not opponent concepts but
overlapping areas of statistical inference.

3 Spatial Correlation

The modelling approaches for nonparametric trend estimation and tem-
poral correlation considered in the previous section can be extended to
estimation of spatial surfaces while simultaneously taking into account
spatial correlation. Therefore we replace the univariate temporal model
(15) with the bivariate spatial model

y(s) = f(s) + ε(s) + δ(s)

where s = (sx, sy) ∈ S ⊂ R
2 represents continuous coordinates in

some suitable spatial region S, f(s) models a smooth spatial trend
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Fig. 7. Separation between the temporal trend and the autoregressive error in
case of high autocorrelation (ρ = 0.9). The estimated effects are represented
as solid lines, the true effects as dashed lines.

function, ε ∼ N(0, σ2R) is a spatially correlated error term, and δ(s) is
an additional uncorrelated error term, usually referred to as the nugget
effect in the spatial regression literature (e.g. Cressie (1993)).

To make the discussion more concrete, we will now briefly describe
the necessary modifications of the temporal modelling components. For
the trend function, we have considered univariate penalized splines with
random walk priors or equivalent difference penalties. For bivariate
trend functions we therefore have to define bivariate spline basis func-
tions and to extend the penalty concept to two dimensions. The former
can be achieved by considering tensor product B-spline basis functions

Bl
j,k(sx, sy) = Bl

j(sx)Bl
k(sy) (16)

of degree l based on univariate B-splines in sx- and sy-direction,
see Dierckx (1993) for a mathematically rigorous definition of ten-
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sor product splines. The vector of spatial function evaluations f =
(f(s1), . . . , f(sn))′ can then be expressed as f = Xβ, where X is com-
posed of the function evaluations of the tensor product basis functions
in (16) and the vector β contains the corresponding regression coeffi-
cients.

A suitable penalty matrix for the vector β can be constructed
from Kronecker products of the univariate penalty matrices (see Kneib
(2005) for a more detailed discussion and related approaches for the
construction of penalties in bivariate smoothing). If Kx and Ky are the
penalty matrices corresponding to the univariate B-spline bases, the
bivariate analogue can be composed as

K = Kx ⊗ Iy + Ix ⊗Ky

where Ix and Iy are identity matrices with dimensions given by the size
of the univariate bases. Inflating the univariate penalty matrices in this
way leads to the penalization of row-wise and column-wise differences
in the field of regression coefficients corresponding to the bivariate basis
functions. The resulting penalty term is of quadratic form, given by

λβ′Kβ.

As in the univariate setting, a corresponding partially improper
Gaussian prior can be derived in a Bayesian formulation of the bi-
variate smoothing problem:

p(β) ∝ exp

(
− 1

2τ2
β′Kβ

)
(17)

(compare Brezger and Lang (2006) for more information on the
Bayesian formulation).

Note that for zero degree and a large number of basis functions (and
observations on a regular lattice), tensor product P-splines reduce to
an intrinsic Gaussian Markov random field prior for the spatial trend,
i.e.,

f(s)|[f(s′), s′ �= s] ∼ N

⎛⎝ 1

|N(s)|
∑

s′∈N(s)

f(s′),
τ2

|N(s)|

⎞⎠ , (18)

where N(s) denotes the set of spatial neighbors of f(s) and |N(s)| is
the number of such neighbors. This is consistent with the univariate
specifications where we obtained the random walk model, which is the
univariate analogue to an intrinsic Markov random field, as the special
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case of piecewise constant P-splines. In particular, the prior distribution
(17) is itself a Markov random field, specified for the field of regression
coefficients.

For the error component ε(s), the autoregressive prior shall be ex-
tended to the spatial case. We take the correlation function of the
AR(1)-process as a starting point, which is given by

ρ(ε(t), ε(t′)) = α|t−t′|.

The correlation function is exponentially decaying for increasing dis-
tance |t− t′| and this structure can be resembled in the spatial case by
assuming the exponential correlation function

ρ(ε(s), ε(s′)) = exp(−||s− s′||/φ) (19)

where ||s− s′|| denotes Euclidean distance and φ is a range parameter.
From the correlation function we can derive the full correlation matrix
R via

R[i, j] = ρ(si, sj) = exp(−||si − sj ||/φ).

Obviously this correlation function is also exponentially decaying with
the speed of the decay being driven by the range parameter φ. Relating
φ to the autoregressive parameter yields

α = exp(−1/φ) or φ = −1/ log(α) (20)

and therefore both correlation functions coincide if we only consider
discrete, univariate “spatial” points t. We will use connection (20) to
obtain values of the range parameter corresponding to the values con-
sidered in the temporal simulation setup later-on in this section.

Note that geostatistical models can be interpreted as bivariate
smoothers, where the correlation functions play the role of radial basis
functions. This provides a further hint that the joint specification of
a spatial nonparametric trend surface and a correlated error process
may yield identifiability problems, see Kneib (2005) for an intuitive
justification and Nychka (2000) for a theoretically sound treatment.

A different extension of the temporal autoregressive model would
have been possible based on so-called spatially autoregressive priors,
where the following structure is assumed for the spatially correlated
error component:

ε(s)|[ε(s′), s′ �= s] ∼ N

⎛⎝ α

|N(s)|
∑

s′∈N(s)

ε(s′),
σ2

|N(s)|

⎞⎠ ,
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with 0 < α < 1. This mimics an undirected representation of the
temporal autoregressive prior, where

ε(t)|[ε(t′), t′ �= t] ∼ N

(
α

2
(ε(t− 1) + ε(t+ 1)),

σ2

2

)
,

i.e., the (conditional) expected value at time t is a weighted average
of the two neighbors in time and the variance is inverse proportional
to the number of neighbors. For α → 1 the spatially autoregressive
error component converges to the intrinsic Markov random field (18)
showing the close connection to the bivariate penalized spline approach
which also contained intrinsic Markov random fields as a special case.
Note that, similarly as for autoregressive errors and random walks,
the spatially autoregressive model leads to a proper, stationary joint
distribution for the error term with full-rank precision matrix, while
the precision matrix for the intrinsic Markov random field is rank-
deficient. We will not pursue spatially autoregressive models in the
following simulation study, partly because no suitable software has been
available to estimate a spatially autoregressive model in combination
with nonparametric trend estimation.

Based on the extensions for the trend function and the error term,
the marginal observation model in the spatial case can be written as

y|β ∼ N(Xβ, σ2V −1)

with V −1 = R + ηI and η = ω2/σ2. From a Bayesian perspective, the
correlated error term is just another stochastic process prior, similar
to the prior of f = Xβ. This leads to the conditional view on the
observation model:

y|β, ε ∼ N(Xβ + ε, ω2I).

If estimation of β is based on the model, we obtain a PWLS criterion

(y −Xβ)′V (y −Xβ) + λβ′Kβ → min
β

yielding the PWLS estimate

β̂ = (X ′V X + λK)−1X ′V y

where λ = σ2/τ2. In the conditional view, both β as well as the error
component ε can be estimated based on the doubly penalized least
squares criterion

(y −Xβ − ε)′(y −Xβ − ε) + λ1β
′Kβ + λ2ε

′R−1ε
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leading to the system of equations(
X ′X + λ1K X ′I

IX I + λ2R
−1

)(
β̂

ε̂

)
=

(
X ′y
Iy

)

with smoothness parameters λ1 = ω2/τ2 and λ2 = ω2/σ2.
In summary, the spatial estimators are similar in spirit and structure

as for the temporal setting and it seems plausible to expect similar
identification problems when trying to separate trend and correlation
component. To validate this conjecture, we set up a simulation study
with the simulation model

y(si) = sin(six) sin(siy)︸ ︷︷ ︸
=f(si)

+ε(si) + δ(si), i = 1, . . . , 100,

where six and siy are taken from an equidistant grid of length 10 from
0 to 6. This results in a total combination of 100 pairs (sx, sy). The
variance of both the spatially correlated error component ε and the
uncorrelated error component δ are taken to be equal to 0.2 since this
value is close to the empirical variance of the spatial trend surface.
The correlation function of ε was chosen to be the exponential corre-
lation function (19). For the range parameter we considered the values
φ = 0.8, φ = 2 and φ = 10 corresponding to small, moderate and
large correlation between spatially close observation points. These val-
ues have been chosen from the relation (20) to coincide approximately
with the values in the simulation study on temporal correlation.

Inference in the spatial models can be performed, in analogy to the
univariate setting, based on either Markov chain Monte Carlo simu-
lation techniques or mixed model based procedures. Since numerical
difficulties have been observed in the latter case, the following results
have all been obtained from the MCMC analysis, see Eschrich (2007)
for a description of the corresponding algorithm and the implementa-
tion.

For comparison of the estimation results, we made use of the same
identification measures as in the previous section, i.e., the goodness of
fit measure SQ(·) and the variability measure V S(·). Figure 8 sum-
marizes results for cubic tensor product splines, 6 knots per univariate
basis, second order difference penalty, and the three choices for the
range parameter. Note that the total number of knots (6 × 6 = 36) is
still large enough to obtain a flexible function estimate, especially when
taking the small number of observations per coordinate direction into
account.
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While identifiability for the spatial surface f worsens with increas-
ing range parameter (Figure 8 c), this tendency is more or less absent
for the spatially correlated error process. In general, the identification
even seems to improve, although there are at least some single larger
values for SQ(ε). In terms of the variability measure, all three model
components y, f and ε show decreasing variability with increasing cor-
relation.

Figure 9 shows some results for varying numbers of knots when zero
degree B-splines are used in combination with first order penalization.
Again the results for the spatial case are qualitatively different from
the results in the temporal setting (Figure 5), since there seems to be
only minor dependence of the results on the number of basis functions.

In summary, the results from the temporal setting could not be
completely confirmed in the spatial framework. It might be speculated
that the spatial extension of the autoregressive error in our simulation
study caused this changing properties. As discussed earlier in this sec-
tion, there are two different ways to extend the temporal autoregressive
process to the spatial situation: Spatially autoregressive models and
geostatistical kriging models. Possibly both extensions have different
properties with respect to the identification of spatial trend and spa-
tial correlation, an issue that should be investigated further in future
studies.

4 Extensions

In the previous sections, we have considered simple temporal or spa-
tial models to highlight identification issues for trend and correlation.
The general aspects and problems are, of course, of relevance in more
complex models, e.g. for spatio-temporal regression data (yit, xit, sit),
i = 1, . . . , n, t = 1, . . . , T , where yit is the response for individual i at
time t, xit is a vector of possibly time-dependent covariates, and sit is
the location individual i pertains to at time t. A fairly general class of
space-time regression models is of the form

yit = ηit + εit

with predictor

ηit = f1(xit1) + . . .+ fk(xit) + ftime(t) + fspat(s) + u′itγ

where f1, . . . , fk are nonparametric functions of continuous, possibly
time-dependent covariates, ftime is a time trend as in Section 2, fspat
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Fig. 8. Goodness of fit and variability measures for varying values of the range
parameter. The spatial trend is modeled as a cubic tensor product P-spline
with second order random walk penalty and 6× 6 knots.

is a spatial trend as in Section 3, uit are covariates with usual linear
effects γ, and with with Gaussian errors, often assumed as i.i.d. vari-
ables. These models can be extended by including individual- or group-
specific random effects, space-time interactions, etc. in the predictor.
Furthermore, other types of responses as common in generalized linear
models may be considered. This leads to the general class of structured
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Fig. 9. Goodness of fit and variability measures for varying numbers of knots
for the spatial trend. The range parameter is fixed at φ = 10 and the non-
parametric effect is modeled as a zero degree tensor product P-spline with
first order random walk penalty.

additive regression (STAR) models presented in Fahrmeir, Kneib and
Lang (2004) and Kneib (2005) from a Bayesian perspective. Collecting
all observations and function values in vectors, it can be shown that
the predictor can always be written in the form

η = Uγ +X1β1 + . . .+Xrβr

of a large linear model, with appropriately defined design matrices Xj

and random effects βj obeying Gaussian priors. It becomes immedi-
ately clear that additional identification issues arise, for example if
time-dependent covariates are highly correlated with time itself, or if
one attempts to split up the spatial effect into a “deterministic” sur-
face and a random field of spatially correlated effects. Also it can be
problematic to admit (too) flexible correlation structures for the error
process when correlation is already (partially) accounted for by a flex-
ible (stochastic) model for the time trend. Finally, it is also obvious
from the linear form of the predictor that a thorough knowledge of lin-
ear models, including recent developments in matrix theory, as provided
by Rao, Toutenburg, Shalabh and Heumann (2008) and Toutenburg
(2003) is of high relevance for methodological research in and applica-
tion of more general regression models.



26 Ludwig Fahrmeir and Thomas Kneib

Acknowledgement

We thank Marco Eschrich for providing the simulation results and
Christian Seiler for support in the preparation of the manuscript. This
paper has been written during the summer term 2007, when the second
author was visiting the Faculty of Mathematics and Economics at the
University of Ulm.

References

Brezger A, Kneib T, Lang S (2007) BayesX: Software for Bayesian
Inference. Available online from
http://www.stat.uni-muenchen.de/~bayesx/.

Brezger A, Lang S (2006) Generalized additive regression based on
Bayesian P-splines. Computational Statistics and Data Analysis
50:967–991

Cressie NAC (1993) Statistics for Spatial Data. Wiley, New York
Dierckx P (1993) Curve and Surface Fitting with Splines. Clarendon

Press, Oxford
Eschrich M (2007) Identifikation von semiparametrischen Regres-

sionsmodellen für korrelierte Daten. Diploma Thesis, Ludwig-
Maximilians-University Munich

Fahrmeir L, Kneib T, Lang S (2004) Penalized structured additive re-
gression for space-time data: a bayesian perspective. Statistica Sinica
14: 715-745

Fahrmeir L, Tutz G (2001) Multivariate Statistical Modelling based on
Generalized Linear Models. Springer, New York

Kneib T (2005) Mixed model based inference in struc-
tured additive regression. PhD Thesis, Ludwig-
Maximilians-University Munich. Available online from
http://edoc.ub.uni-muenchen.de/archive/00005011/

Kohn R, Schimek MG, Smith M (2000) Spline and kernel regression for
dependent data. In: MG Schimek (ed), Smoothing and Regression.
Wiley, New York

Krivobokova T, Kauermann G (2007) A Note on Penalized Spline
Smoothing with Correlated Errors. To appear in Journal of the
American Statistical Association

Lang S, Brezger A (2004) Bayesian P-Splines. Journal of Computa-
tional and Graphical Statistics 13: 183-212



Trend and Correlation in Temporal and Spatial Regression 27

Lin X, Carroll RJ (2000) Nonparametric function estimation for clus-
tered data when the predictor is measured without/with error. Jour-
nal of the American Statistical Association 95: 520-534

Linton OB, Mammen E, Lin X, Carroll RJ (2004) Correlation and
marginal longitudinal kernel nonparametric regression. In D. Lin and
P. Heagerty (eds), Proceedings of the Second Seattle Symposium in
Biostatistics. Springer, New York

Nychka D (2002) Spatial-process estimates as smoothers. In: Schimek,
MG (ed) Smoothing and Regression. Wiley, New York

Rao CR, Toutenburg H, Shalabh, Heumann C (2008) Linear Models
and Generalizations - Least Squares and Alternatives (3rd edition).
Springer, Berlin Heidelberg New York

Toutenburg H (2003) Lineare Modelle. Theorie und Anwendungen (2nd
edition). Physica Verlag, Heidelberg

Wang N (2003) Marginal nonparametric kernel regression accounting
for within-subject correlation. Biometrika 90: 43-52

Welsh AH, Lin X, Carroll RJ (2002) Marginal longitudinal semipara-
metric regression: Locality and effciency of spline and kernel meth-
ods. Journal of the American Statistical Association 97: 482-493

Whittaker ET (1923) On a new method of graduation. Proceedings of
the Edinburgh Mathematical Society 41: 63–75



Estimating the Number of Clusters in Logistic

Regression Clustering by an Information

Theoretic Criterion

Guoqi Qian1, C. Radhakrishna Rao2, Yuehua Wu3 and Qing Shao4

1 Department of Mathematics and Statistics, University of Melbourne, VIC
3010, Australia g.qian@ms.unimelb.edu.au

2 Department of Statistics, Penn State University, University Park, PA
16802, U.S.A. crr1@psu.edu

3 Department of Mathematics and Statistics, York University, 4700 Keele
Street, Toronto, Ontario, M3J 1P3, Canada wuyh@yorku.ca

4 Biostatistics and Statistical Reporting, One Health Plaza, Bldg. 435 -
4173, Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936,
U.S.A. qing.shao@novartis.com

1 Introduction

It is well-known that a logistic regression model aims at finding how
a response variable Y is influenced by a set of explanatory variables
{x1, . . . , xp} when Y is either binary with values 0 and 1 or a proportion
of values between 0 and 1. A logistic regression model consists of three
components (McCullagh and Nelder (1989)):

1. A random component Y that is either binary with values 0 and 1
or a proportion with values between 0 and 1. In the latter case,
Y = Z/m where Z is assumed to have a binomial distribution
B(m,π) with the probability of “success” π and the number of
independent “experiments” m. We have binary data if m ≡ 1.

2. A systematic component (linear predictor) η = x′β, where x =
(x1, . . . , xp)

′ and β is the unknown p-vector parameter of interest.
3. A function π = h(η) = eη/(1+ eη) that relates the expectation π of

Y with the linear predictor η. The inverse function g(π) of h(η) is

named the logistic link function, where g(π)
def
= log(π/(1 − π)) = η.

Logistic regression has been one of the most frequently used techniques
in applications. Yet at times either the logistic curve does not describe
the probability of success π(x) adequately, or m is larger than 1 and Y
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is more variable than the binomial distribution allows, which is termed
over-dispersion in the literature. Over-dispersion relative to binomial
distribution is possible if the m trials in a set are positively correlated,
or an important covariate is omitted. A simple way to accommodate de-
partures from a single logit link and over-dispersion is to introduce the
logistic regression clustering model. Examples on the fitting of mixtures
of logistic regression to biological and marketing data may be found in
Farewell and Sprott (1988), Follmann and Lamber (1989, 1991), and
Wedel and DeSarbo (1995), etc.

This paper studies the problem of estimating the number of clus-
ters in the context of logistic regression clustering. The classification
likelihood approach is employed to tackle this problem. An informa-
tion theoretic criterion for selecting the number of logistic curves is
proposed in the sequel and then its asymptotic property is considered.

The paper is arranged as follows: In Section 2, some notations are
given and an information theoretic criterion is proposed for estimating
the number of clusters. In Section 3, the small sample performance of
the proposed criterion is studied by Monte Carlo simulation. In Sec-
tion 4, the asymptotic property of the criterion proposed in Section
2 is investigated. Some lemmas needed in Section 4 are given in the
appendix.

2 Notation and Preliminaries

Assume that we have n objects O(n) = {1, 2, . . . , n} with the associ-
ated data points (x1, y1), . . ., (xn, yn), where x′

j = (xj1, . . . , xjp) ∈ R
p

is a fixed explanatory p-vector and yj ∈ R is a random dependent
variable. The hidden true distributions of y1, . . . , yn are the binomial
distributions B(m1, π01), . . . , B(mn, π0n). The set of these n objects is
a random sample coming from a structured population. Suppose that
this population is composed of k0 sub-populations, each of which has
a distinct underlying linear predictor between the response variable
and the explanatory variables. Then, there exists a hidden true par-

tition of these n objects Π
(n)
k0

= {O(n)
1 , . . . ,O(n)

k0
}, and each cluster

O(n)
i � {i1, . . . , ini

} ⊆ O(n) is characterized by a class-specific linear
predictor

ηj,Oi
= x′

j,Oi
β0i, ηj,Oi

= log

(
π0j,Oi

1 − π0j,Oi

)
, j ∈ O(n)

i , (1)

where xj,Oi
and π0j,Oi

are just relabeled xj and π0j which indicate

that the associated object is the j-th object in the i-th cluster O(n)
i
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(i = 1, . . . , k0). We will use this double-index notation throughout this
paper. Let β0i ∈ R

p, i = 1, . . . , k0, be k0 unknown class-specific true
parameter vectors, which are assumed to be pairwise distinct. For con-

venience, we have suppressed the n in O(n)
i in (1).

However the true partition Πk0 and the associated model (1) are
not observable. Hence, based on the observed data values (xj , yj), j =
1, . . . , n, we need to estimate the number of clusters first, and then the
model (1).

Consider any possible partition of these n objects: Π
(n)
k =

{C(n)
1 , . . . , C(n)

k }, where k ≤ K is a positive integer. Then under the
clusterwise logistic regression model, the log-likelihood function for the
k parameter vectors βs is

l(β1, . . . ,βk|Yn, Xn)

=
k∑

s=1

∑
j∈Cs

{log

(
mj,Cs

mj,Csyj,Cs

)
+mj,Csyj,Cs log πj,Cs

+mj,Cs(1 − yj,Cs) log(1 − πj,Cs)}

=
k∑

s=1

∑
j∈Cs

log

(
mj,Cs

mj,Csyj,Cs

)
−

k∑
s=1

∑
j∈Cs

ξ(πj,Cs ; yj,Cs ,mj,Cs)

=

k∑
s=1

∑
j∈Cs

log

(
mj,Cs

mj,Csyj,Cs

)
−

k∑
s=1

∑
j∈Cs

ξ(h(x′
j,Cs

βi); yj,Cs ,mj,Cs),

where Yn = (y1, . . . , yn)′, Xn = (x1,x2, . . . ,xn)′. Again yj,Cs , xj,Cs ,
πj,Cs and mj,Cs are just relabeled yj ,xj , πj and mj (j = 1, . . . , n) to
indicate the cluster to which the associated object belongs, and

ξ(π; y,m) = −my log π −m(1 − y) log(1 − π).

Note that by convention ξ(0; y,m) = ξ(1; y,m) = 0. The clusterwise

maximum likelihood estimator (MLE) β̂s based on the partition Π
(n)
k

is defined to be

β̂s = arg max
βs

l(βs|Yn, Xn)

≡ arg min
βs

∑
j∈Cs

ξ(h(x′
j,Cs

βs); yj,Cs ,mj,Cs), s = 1, . . . , k.

We then propose an information theoretic criterion for determining the
number of clusters and subsequently classifying the data as follows:
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Let q(k) be a strictly increasing function of k, and An be a sequence of
constants. We define

Dn(Π
(n)
k )

def
=

k∑
s=1

∑
j∈Cs

ξ(h(x′
j,Cs

β̂s); yj,Cs ,mj,Cs) + q(k)An, (2)

and define k̂n, the estimate of k0, to satisfy the equation

Dn(k̂n) = min
1≤k≤M

min
Π

(n)
k

Dn(Π
(n)
k ). (3)

It is named Criterion LG-C, which stands for clustering by logistic re-
gression in this paper. It can be seen that in (2), the first term is
basically the negative maximum log-likelihood; the second term is the
penalty term measuring the complexity of the underlying model. In
addition, Criterion LG-C in (3) shows that we determine the optimal
number of clusters and the corresponding partitioning of the data si-
multaneously.

3 Monte Carlo Simulation

We constructed three models in the simulation study: the two-cluster
case; the three-cluster case with only one covariate; and the three-
cluster case with two covariates. The parameter values used to build
these models are listed in Table 1. We generate the covariates as follows:
for the first two cases, the covariate x is generated from N(0, 1), and the
two covariates x1, x2 in case 3 are generated from a bivariate Normal
distribution with the mean of 0, variance of 1 and the covariance being
0.3.

In this simulation study, q(k) = 3k(p + 3), where p is the number
of regression coefficients in the model and is a constant in our study;
k is the unknown number of clusters that we are seeking, and, An =

A
(i)
n , i = 1, 2, 3, 4, where A

(i)
n = (1/λ)((logn)λ)− 1, with λ1 = 1.5, λ2 =

1.8, λ3 = 2 and λ4 = 2.3.
For reducing the exhaustive computation needed by Criterion LG-

C, we adopt the approach used in Shao and Wu (2005) here. The only
change is that we fit a logistic regression other than a regression model
within each cluster in every iteration. Then, we first do logistic regres-
sion clustering for each k (the choice of k being the same as the previous
studies), and subsequently select the best k using Criterion LG-C. We
run the simulation for each model 500 times and obtain the relative fre-
quencies of selecting every k out of these 500 repetitions. The results
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Table 1. Parameter values used in the simulation study of logistic regression
clustering

Case k0 Regression coefficients Number of

observations

1 2 β01 =

(
1

6

)
, β02 =

(
1

−6

)
n1 = 70,

n2 = 50

n1 = 35,

2 3 β01 =

(
1

−1

)
, β02 =

(
−2

−1

)
, β03 =

(
−1

1

)
n2 = 35,

n3 = 50

n1 = 35,

3 3 β01 =

⎛⎜⎝ 1

−1
1
2

⎞⎟⎠ , β02 =

⎛⎜⎝−2

−1

− 1
2

⎞⎟⎠ , β03 =

⎛⎜⎝−1

1
1
2

⎞⎟⎠ n2 = 35,

n3 = 50

are summarized in Table 2. It can be seen that Criterion LG-C does
nearly perfect a job to detect the underlying number of groups for the
models considered in this simulation study.

Table 2. Relative frequencies of selecting k based on 500 simulations of lo-
gistic regression clustering

Case B1C2 (k0 = 2) B1C3 (k0 = 3) B2C3 (k0 = 3)

Model A
(1)
n A

(2)
n A

(3)
n A

(4)
n A

(1)
n A

(2)
n A

(3)
n A

(4)
n A

(1)
n A

(2)
n A

(3)
n A

(4)
n

k = 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 2 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.012 0.000 0.000 0.000 0.006

k = 3 0.000 0.000 0.000 0.000 1.000 1.000 1.000 0.988 1.000 1.000 1.000 0.994

k = 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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4 Asymptotic Property of Criterion LG-C

Denote the eigenvalues of a symmetric matrix B of order p by λ1(B) ≥
. . . ≥ λp(B). Let O� = {�1, . . . , �n�

} be any cluster or a subset of a

cluster corresponding to the true partition Π
(n)
k0

of O(n) , and n� = |O�|.
Let Xn�

= (x�1,O�
, . . . ,x�n�

,O�
)′ be the design matrix in O�. The Fisher

information for the parameter β0� is defined as

In�
(β0�) = −E ∂2l

∂β0�∂β′
0�

= X ′
n�
Mn�

Mπ�
Xn�

,

where

Mn�
= diag(m�1,O�

, . . . ,m�n�
,O�

)

Mπ�
= diag{π0�1,O�

(1 − π0�1,O�
), . . . , π0�n�

,O�
(1 − π0�n�

,O�
)}.

The following assumptions are needed in the discussion on the as-
ymptotic property of the criterion (3).

(A) For the true partition Π
(n)
k0

= {O(n)
1 , . . . ,O(n)

k0
}, let n0i = |Oi| be

the number of objects in the cluster O(n)
i . Then there exists a fixed

constant a0 > 0 such that

a0n ≤ n0i ≤ n, ∀i = 1, . . . , k0. (4)

(X1) limn�→∞ λζ{In�
(β0�)} = ∞, ζ = 1, . . . , p. Also, there exists some

constant a1 > 0 such that 0 < λp{In�
(β0�)} ≤ a1λ1{In�

(β0�)}.

(X2) Let δn�
=

(
max
j∈O�

m2
j,O�

x′
j,O�

In�
(β0�)

−1xj,O�

) 1
2

, then

δn�
(log log λp{In�

(β0�)})
1
2 = o(1).

(X3) a2n� ≤ λp{In�
(β0�)} ≤ a3n� holds for some positive constants a2

and a3.
(X4) a4n� ≤ λ{X ′

n�
Mn�

Xn�
} ≤ a5n� holds for some positive constants

a4 and a5.
(X5) Let d0 = 1

4 min1≤i�=�≤k0 |β0i − β0�|. Also let

Qn�
= diag{υ1, . . . , υn�

},

where υi = m�i,O�
e−d0||x�i,O�

||π0�i,O�
(1−π0�i,O�

), i = 1, . . . , n�. Then
there exists a constant a6 > 0 such that λ1{X ′

n�
Qn�

Xn�
} ≥ a6n�.
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(Z) n−1An → 0, (log logn)−1An → ∞, as n→ ∞.

Remark 4.1 Assumption (A) implicitly implies that the population
is comprised of k0 sub-populations with proportions p1, . . . , pk0 , where

0 < pi ≤ 1, i = 1, . . . , k0,
∑k0

i=1 pi = 1, and a0 = min1≤i≤k0 pi.

Remark 4.2 Assumptions (X1)–(X5) are essentially about the behav-
iour of the explanatory variables x. Roughly speaking, they mean that
most of the x observations should be finite and stay away from 0. In
fact, as observed by Qian and Field (2002), if we assume x to be a
random vector and x ∈ Oi are i.i.d. observations within each cluster
Oi of the true partitioning Πk0 , for all i = 1, . . . , k0, then by applying
the strong law of large numbers given in Chung (2001, p. 132, Theorem
5.4.1), it is easy to show that the following assumptions are sufficient
for (X1) to (X5) to hold:

(S1) P{x′t �= 0} > 0 for any t �= 0 in R
p, which implies that E(xx′) is

positive definite.
(S2) P{h(x′β0i)(1 − h(x′β0i)) �= |x′t �= 0} > 0 for any t �= 0 in R

p,
which implies that both E(π0Oi

(1−π0Oi
)xx′) and E(e−d0‖x|π0Oi

(1−
π0Oi

)xx′) are positive definite, where π0Oi
= h(x′β0i), ∀i =

1, . . . , k0.
(S3) E‖x‖2+κ <∞ for some constant κ > 0.
(S4) sup1≤k≤nmk <∞.

Since there is no essential complexity with random x, we will treat
the observations x1, . . . ,xn as deterministic in the sequel for ease of
notation throughout the rest of this paper.
Suppose that the assumptions (A), (X1)–(X5), (Z) hold, and that

Π
(n)
k0

= {O(n)
1 , . . ., O(n)

k0
} is the underlying true classification of the

n objects in O(n). Observe that the true partition Π
(n)
k0

is a sequence
of naturally nested classifications as n increases, i.e.,

O(n)
i ⊆ O(n+1)

i , i = 1, . . . , k0, for large n.

Consider any given sequence of classifications with k clusters

Π
(n)
k ={C(n)

1 , . . . , C(n)
k } of O(n) such that

C(n)
s ⊆ C(n+1)

s , s = 1, . . . , k, for large n,

when n increases. For simplicity, when no confusion appears, n will be

suppressed in Π
(n)
k0

, Π
(n)
k , O(n)

i , 1 ≤ i ≤ k0, and C(n)
s , 1 ≤ s ≤ k.
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Case 1: When k0 < k ≤ K, where K < ∞ is a fixed constant

First we have

Dn(Πk) −Dn(Πk0)

=
k∑

s=1

∑
j∈Cs

ξ(h(x′
j,Cs

β̂s); yj,Cs ,mj,Cs)

−
k0∑
i=1

∑
j∈Oi

ξ(h(x′
j,Oi

β̂0i); yj,Oi
,mj,Oi

) + (q(k) − q(k0))An,

where

β̂s = arg min
β

∑
j∈Cs

ξ(h(x′
j,Cs

β); yj,Cs ,mj,Cs), s = 1, . . . , k, (5)

β̂0i = arg min
β

∑
j∈Oi

ξ(h(x′
j,Oi

β); yj,Oi
,mj,Oi

), i = 1, . . . , k0. (6)

Note that

O(n) =

k0⋃
i=1

Oi =
k⋃

s=1

Cs =
k⋃

s=1

k0⋃
i=1

(Cs ∩ Oi).

Then

Dn(Πk) −Dn(Πk0)

=

k∑
s=1

k0∑
i=1

∑
j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂s); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0i); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

+ (q(k) − q(k0))An

=
k∑

s=1

k0∑
i=1

∑
j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂s); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0si); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

+
k∑

s=1

k0∑
i=1

∑
j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂0si); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0i); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

+ (q(k) − q(k0))An,

where β̂0si is the MLE of β defined by
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β̂0si = arg min
β

∑
j∈Cs∩Oi

ξ(h(x′
j,Cs∩Oi

β); yj,Cs∩Oi
,mj,Cs∩Oi

). (7)

By (5) and (7), we have∑
j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂s); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0si); yj,Cs∩Oi
,mj,Cs∩Oi

)
]
≥ 0.

By Assumptions (X1)-(X4), (25) in Lemma 3, (6), (7) and again the
fact that Cs ∩Oi is a subset of the cluster Oi corresponding to the true
partition Πk0 , we have

k∑
s=1

k0∑
i=1

∑
j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂0si); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β0i); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

= O(log logn),

and

k0∑
i=1

∑
j∈Oi

[
ξ(h(x′

j,Oi
β̂0i); yj,Oi

,mj,Oi
) − ξ(h(x′

j,Oi
β0i); yj,Oi

,mj,Oi
)
]

= O(log logn).

Using the fact that

k∑
s=1

k0∑
i=1

∑
j∈Cs∩Oi

ξ(h(x′
j,Cs∩Oi

β0i); yj,Cs∩Oi
,mj,Cs∩Oi

)

≡
k0∑
i=1

∑
j∈Oi

ξ(h(x′
j,Oi

β0i); yj,Oi
,mj,Oi

),

where

ξ(h(x′
j,Oi

β0i); yj,Oi
,mj,Oi

)

= −mj,Oi
yj,Oi

log π0j,Oi
−mj,Oi

(1 − yj,Oi
) log(1 − π0j,Oi

), (8)

and ξ(h(x′
j,Cs∩Oi

β0i); yj,Cs∩Oi
,mj,Cs∩Oi

) is similarly defined, we obtain
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k∑
s=1

k0∑
i=1

∑
j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂0si); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0i); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

=

k∑
s=1

k0∑
i=1

∑
j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂0si); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β0i); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

−
k0∑
i=1

∑
j∈Oi

[
ξ(h(x′

j,Oi
β̂0i); yj,Oi

,mj,Oi
)

− ξ(h(x′
j,Oi

β0i); yj,Oi
,mj,Oi

)
]

= O(log logn). (9)

Hence by (8), (9) and Assumption (Z) and the fact that q(k) −
q(k0) > 0, we have that for large n,

Dn(Πk) −Dn(Πk0) ≥ O(log logn) + (q(k) − q(k0))An > 0. (10)

Case 2: When k < k0

By Lemma 1, for any partition Π
(n)
k = {C(n)

1 , . . . , C(n)
k }, there exist one

cluster in Π
(n)
k and two distinct clusters in the true partition Π

(n)
k0

, say

C1 ∈ Π
(n)
k and O1,O2 ∈ Π

(n)
k0

, such that

b0n < |C1 ∩ O1| < n and b0n < |C1 ∩ O2| < n, (11)

where b0 = a0/k0 > 0 is a constant.
Consider ∑

j∈C1∩O1

ξ(h(xj,C1∩O1)
′β̂1; yj,C1∩O1 ,mj,C1∩O1)

and ∑
j∈C1∩O2

ξ(h(xj,C1∩O2)
′β̂1; yj,C1∩O1 ,mj,C1∩O2),

where β̂1 is defined in (5) with s = 1. Then in view of the convexity
of ξ(·) and (5), (11) and the fact that β01,β02 are two distinct true
parameter vectors, at least one of the below two inequalities hold:
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j∈C1∩O1

ξ(h(xj,C1∩O1)
′β̂1; yj,C1∩O1 ,mj,C1∩O1)

>
∑

j∈C1∩O1

ξ(h(xj,C1∩O1)
′β; yj,C1∩O1 ,mj,C1∩O1), ∀β : |β − β01| ≤ d0,

(12)∑
j∈C1∩O2

ξ(h(xj,C1∩O2)
′β̂1; yj,C1∩O2 ,mj,C1∩O2)

>
∑

j∈C1∩O2

ξ(h(xj,C1∩O2)
′β; yj,C1∩O2 ,mj,C1∩O2), ∀β : |β − β02| ≤ d0,

where d0 is defined in Assumption (X5). Without loss of generality,
we assume that (12) holds. Now let us focus our discussion on the set
C1 ∩ O1 first. Let n11 = |C1 ∩ O1|. We want to find out the order of∑

j∈C1∩O1

[
ξ(h(x′

j,C1∩O1
β̂1); yj,C1∩O1 ,mj,C1∩O1)

−ξ(h(x′
j,C1∩O1

β̂011); yj,C1∩O1 ,mj,C1∩O1)
]

def
= T

as n increases to infinity, where β̂011 is defined in (7). For simplicity,
we will use single indices exclusively for observations in the set C1∩O1,
i.e., xj , yj , mj and π0j will respectively represent xj,C1∩O1 , yj,C1∩O1 ,
mj,C1∩O1 and π0j,C1∩O1 until the equation (18).

First note that

T =
∑

j∈C1∩O1

[
ξ(h(x′

jβ̂1); yj ,mj) − ξ(h(x′
jβ̂011); yj ,mj)

]
=

∑
j∈C1∩O1

[
ξ(h(x′

jβ̂1); yj ,mj) − ξ(h(x′
jβ01); yj ,mj)

]
−

∑
j∈C1∩O1

[
ξ(h(x′

jβ̂011); yj ,mj) − ξ(h(x′
jβ01); yj ,mj)

]
def
= T1 + T2.

By Lemma 3 and (7), we have that for large n,

T2 =
∑

j∈C1∩O1

[
ξ(h(x′

jβ̂011); yj ,mj) − ξ(h(x′
jβ01); yj ,mj)

]
= log logn11 = o(n11). (13)

Now let us consider the order of T1. For any β, define
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H(β) =
∑

j∈C1∩O1

{
ξ(h(x′

jβ); yj ,mj) − ξ(h(x′
jβ01); yj ,mj)

}
.

From the definitions of ξ(π; y,m) and w(u, v), it follows that

H(β) =
∑

j∈C1∩O1

{
−mjyjx

′
j(β − β01) −mj log

1 − h(x′
jβ)

1 − h(x′
jβ01)

}
= −

∑
j∈C1∩O1

mj(yj − π0j)x
′
j(β − β01)

+
∑

j∈C1∩O1

mjw(x′
jβ,x

′
jβ01)

def
= H1(β) +H2(β). (14)

Let A0 = {β : ‖β − β01‖ ≤ d0}. Then by Lemma 3 it can be shown
that

inf
β∈∂A0

H1(β) = O(
√
n11 log logn11) inf

β∈∂A0

‖β − β01‖

= O(
√
n11 log logn11) a.s. (15)

By (23) of Lemma 2 and Assumption (X5), we derive that

inf
β∈∂A0

H2(β)

≥ inf
β∈∂A0

1

4

∑
j∈C1∩O1

mje
−|x′

j(β−β01)|h(x′
jβ01)(1 − h(x′

jβ01))

×(x′
jβ − x′

jβ01)
2

=
1

4
inf

β∈∂A0

(β − β01)
′X ′

C1∩O1
Qn11XC1∩O1(β − β01)

≥ 1

4
a6n11 inf

β∈∂A0

‖β − β01‖ =
1

4
d0a6n11. (16)

From (14), (15) and (16) it follows that there exists a constant τ > 0
such that for large n,

inf
β∈∂A0

H(β) ≥ τn11. (17)

By (12) and (17), we have that

T1 =
∑

j∈C1∩O1

[
ξ(h(x′

jβ̂1); yj ,mj) − ξ(h(x′
jβ01); yj ,mj)

]
≥ inf

β∈∂A0

H(β) ≥ τn11. (18)
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Hence by combining results from (13) and (18), we have∑
j∈C1∩O1

[
ξ(h(x′

j,C1∩O1
β̂1); yj,C1∩O1 ,mj,C1∩O1)

−ξ(h(x′
j,C1∩O1

β̂011); yj,C1∩O1 ,mj,C1∩O1)
]
≥ τn11. (19)

Note that Dn(Πk) −Dn(Πk0) can be partitioned as follows:

Dn(Πk) −Dn(Πk0)

=
k∑

s=1

∑
j∈Cs

ξ(h(x′
j,Cs

β̂s); yj,Cs ,mj,Cs)

−
k0∑
i=1

∑
j∈Oi

ξ(h(x′
j,Oi

β̂0i); yj,Oi
,mj,Oi

) + (q(k) − q(k0))An

=
∑

j∈C1∩O1

[
ξ(h(x′

j,C1∩O1
β̂1); yj,C1∩O1 ,mj,C1∩O1)

−ξ(h(x′
j,C1∩O1

β̂011); yj,C1∩O1 ,mj,C1∩O1)
]

+
∑
Jis

∑
j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂s); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0si); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

+

k∑
s=1

k0∑
i=1

∑
j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂0si); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0i); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

+ (q(k) − q(k0))An,

where Jis = {i, s : i = 1, . . . , k; s = 1, . . . , k0; i and s can not be 1
simultaneously} and hence Jis corresponds to all possible intersection

sets of Πk and Πk0 excluding C1 ∩ O1; β̂i, β̂0i and β̂0si are defined in
(5), (6), and (7), respectively. By (8), we obtain∑∑

Jis

∑
j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂s); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0si); yj,Cs∩Oi
,mj,Cs∩Oi

)
]
≥ 0. (20)

By following the same line of argument as in proving (9), we can show
that
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k∑
s=1

k0∑
i=1

∑
j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂0si); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0i); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

= O(log logn) = o(n).(21)

Hence in terms of (11), (19), (20) and (21) and Assumption (Z), we
obtain that for large n,

Dn(Πk) −Dn(Πk0) ≥ τb0n+ o(n) + (q(k) − q(k0))An > 0. (22)

Therefore combining the results from (10) in Case 1 and (22) in Case
2, we have showed that the true classification is preferable when n
increases to infinity.

Appendix

Lemma 1. Suppose that Assumption (A) holds, for any possible parti-

tion Π
(n)
k of O(n), if k < k0, where k is the number of clusters for Π

(n)
k

and k0 is the true number of clusters in O(n), there exist Cs ∈ Π
(n)
k and

Oi,Ol ∈ Π
(n)
k0

such that

|Cs ∩ Oi| > b0n and |Cs ∩ Ol| > b0n,

where b0 = a0/k0 > 0 is a fixed constant.

The proof can be found in Shao and Wu (2005).

Lemma 2. Define w(u, v) = − log(1− h(u))/(1− h(v))− h(v)(u− v),
where h(u) = eu/(1 + eu). Then w(u, v) is strictly convex with respect
to u. Further, we have

w(u, v) ≥ 1

4
e−ζh(v)(1 − h(v))(u− v)2 if |u− v| ≤ ζ, ∀ζ > 0.(23)

The proof can be found in Qian and Field (2002).

Lemma 3. Suppose that Assumptions (X1)–(X4) hold. Then we have
that for large n,

∂l

∂β

∣∣∣∣
β=β0�

=
∑
j∈O�

mj,O�
(yj,O�

− π0j,O�
)xj,O�

= X ′
n�
Mn�

(Yn�
− Π0n�

) = O(
√
n� log logn�), (24)
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and

0 ≤
∑
j∈O�

{ξ(h(x′
j,O�

β̂n�
); yj,O�

,mj,O�
) − ξ(h(x′

j,O�
β0�); yj,O�

,mj,O�
)}

= O(log logn�), (25)

where Yn�
= (y�1 , . . . , y�n�

)′ and Π0n�
= diag{π�1 , . . . , π�n�

}.
See Qian and Field (2002) for the proof. In fact, (24) and (25) are
respectively the results of Lemma 2 and Theorem 2 in that paper.
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1 Introduction

Despite the many results that have been found in recent years on
the estimation of regression coefficients of a polynomial model with
measurement errors in the covariable, cf., e.g., Cheng and Schneeweiss
(1998), Cheng and Schneeweiss (2002), Kukush et al. (2005), Kukush
and Schneeweiss (2005), Shklyar et al. (2007), some issues concerning
the computation of estimators and their asymptotic covariance matri-
ces (ACM) are still open to investigation.

The polynomial measurement error model is given by the regression
equation

y = ζ	β + ε,

with ζ	 =
(
1, ξ, · · · , ξk

)
, β := (β0, β1, · · · , βk)

	, Eε = 0, Vε = σ2
ε , ε

and ξ independent, and the measurement equation

x = ξ + δ,

δ ∼ N(0, σ2
δ) being the measurement error, which is independent of ξ

and ε. It is assumed that σδ is known. In addition, we here assume
that ξ ∼ N(µξ, σ

2
ξ). The problem is to estimate β from an i.i.d. sample

(xi, yi), i = 1, · · · , n.
In addition to the naive(N) estimator , we consider two consistent

estimators: the (structural) quasi score (QS) and the (functional) cor-
rected score (CS) estimator . The first one utilizes the distribution of
ξ, the latter one does not. Both methods are based on a transformation
of the powers xr

i of the data xi into new (artificial) data, µr(xi) for QS
and tr(xi) for CS.
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The first issue of this paper is to explore some, up to now unknown,
properties of the variables µr and tr and to reveal a peculiar dual-
ity between them. Another issue is to transform the formulas for the
ACMs and their small-σδ approximations so that they become easier
to compute, possibly with the help of a matrix oriented programming
language. In particular, they should be written in terms of the ob-
servable variable x instead of the unobservable ξ. An important point
in this respect is the evaluation of the terms in the ACM of QS that
stem from the estimation of the nuisance parameters µξ and σ2

ξ . Con-
trary to what one might conclude from the original form of the ACM
in Kukush et al. (2005), it turns out that these additional terms can
be computed without any integration (although integration remains
necessary to compute the main term of the ACM formula).

Shklyar et al. (2007) have studied a simplified version of the QS
estimator, the so-called simple score (SS) estimator . Two equivalent
formulas for its ACM are presented. The ACM formula has the same
term originating from the estimation of the nuisance parameters as the
ACM of QS.

If this term is ignored (i.e., if the nuisance parameters are taken to
be known), the difference of the ACMs of the CS and SS estimators is
p.s.d., cf. Shklyar et al. (2007). It is an open question whether this is
still true if the nuisance parameters have to be estimated.

In Section 2, the variables µr and tr are investigated. Some results
on the derivatives of the µr are found in Section 3. Section 4 deals with
the ACM of the QS estimator in the polynomial model and in particu-
lar with the terms resulting from estimating the nuisance parameters.
Section 5 has a reformulation of the ACM of the CS estimator, and
Section 6 deals with the SS estimator. Section 7 discusses efficiency
problems. Section 8 has some concluding remarks.

2 QS and CS: The Variables µr and tr

The QS estimator β̂Q of the polynomial measurement error model is
based on the quasi score function

ψQ(y, x, β) = (y − µ	β)v−1µ,

where µ := E(ζ|x) =: (µ0, µ1, · · · , µk)
	 and v := V(y|x). The elements

of the conditional mean vector µ, µr = E(ξr|x), are polynomials in x
of degree r. µ0 = 1 and µ1 = µ1(x) = E(ξ|x) is given by
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µ1 =
σ2

δ

σ2
x

µx +

(
1 − σ2

δ

σ2
x

)
x. (1)

The other µr are polynomials of µ1 of degree r, c.f. Thamerus (1998):

µr =
r∑

j=0

(
r

j

)
µ∗jµ

r−j
1 (2)

with

µ∗j =

⎧⎪⎨⎪⎩
0 if j is odd

(j − 1)!!τ j if j is even,
(3)

τ2 := V(ξ|x) = σ2
δ

(
1 − σ2

δ

σ2
x

)
, (4)

where (j − 1)!! is short for 1 · 3 · 5 · · · (j − 1) and (−1)!! = 1. The
conditional variance v is given by

v = σ2
ε + β	

(
M − µµ	

)
β, (5)

where M = M(x) is a (k+1)×(k+1)-matrix with elements Mrs = µr+s,
r, s = 0, · · · , k. Note that the µr(xi) can be computed from the data
xi if the nuisance parameters µx and σ2

x are given. Typically they are
unknown and must be estimated from the data xi in the usual way.

The CS estimator β̂C is based on the corrected score function

ψC(y, x, β) = yt− Tβ,

where t = t(x) is such that E(t|ξ) = ζ. Thus t = (t0, t1, . . . , tk)
	 and

E(tr|ξ) = ξr. T = T (x) is a (k + 1) × (k + 1)-matrix with elements
Trs = tr+s. The tr are polynomials in x of degree r. They can be
computed via the recursion formula, cf. Stefanski (1989) and Cheng
and Schneeweiss (1998),

tr+1 = trx− rtr−1σ
2
δ ; t0 = 1, t−1 = 0. (6)

Note the duality in the definitions of µ and t:

µ = E(ζ|x), E(t|ξ) = ζ

and also in the matrices M and T :
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M = E(ζζT |x), E(T |ξ) = ζζ	.

This duality reaches farther. It turns out that, although the defining
formulas (2) and (6) for µ and t, respectively, are quite different, there
are other ways of computing µ and t, which very much resemble (2)
and (6), but with the role of µ and t interchanged.

Theorem 1. The variables µr can be computed via the recursion for-
mula

µr+1 = µrµ1 + rµr−1τ
2, µ0 = 1, µ−1 = 0. (7)

Proof:

According to (2)

µr+1 =

r+1∑
j=0

(
r + 1

j

)
µr+1−j

1 µ∗j

=
r+1∑
j=1

(
r

j − 1

)
µr+1−j

1 µ∗j +
r∑

j=0

(
r

j

)
µr+1−j

1 µ∗j

=
r∑

j=0

(
r

j

)
µr−j

1 µ∗j+1 +
r∑

j=0

(
r

j

)
µr+1−j

1 µ∗j .

In the second equation, we used the identity(
r + 1

j

)
=

(
r

j − 1

)
+

(
r

j

)
, 1 ≤ j ≤ r.

Now again by (2), the right hand side of the recursion formula (7)
is

r∑
j=0

(
r

j

)
µr+1−j

1 µ∗j + r
r−1∑
j=0

(
r − 1

j

)
µr−1−j

1 µ∗jτ
2

=
r∑

j=0

(
r

j

)
µr+1−j

1 µ∗j +
r−1∑
j=0

(
r

j + 1

)
µr−1−j

1 µ∗j+2

=
r∑

j=0

(
r

j

)
µr+1−j

1 µ∗j +
r∑

j=0

(
r

j

)
µr−j

1 µ∗j+1 = µr+1.

In the second equation, the identity,

(j + 1)µ∗jτ
2 = µ∗j+2,

see (3), was used and in the third equation the fact that µ∗1 = 0.
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Remark:

The proof is similar to the proof of (6) as given in Cheng and
Schneeweiss (1996).

Theorem 2. tr can be computed via the closed form formula

tr =
r∑

j=0

(
r

j

)
µ+

j x
r−j , (8)

µ+
j :=

⎧⎪⎨⎪⎩
0 if j is odd

(j − 1)!!(−1)
j

2σj
δ if j is even.

Proof:

If we replace µr, µ1, and τ j with tr, x and (−1)
j

2σj
δ, respectively, then

(7) changes to (6) and (2) changes to (8). By Theorem 1, (7) follows
from (2), and so (6) follows from (8). But as (6) defines the tr uniquely,
the tr defined by (6) must be the same as those defined by (8).
This completes the proof.

The great similarity in the construction of the variables µr and tr
can also be seen by looking at its values, e.g.:

µ1 = µ1, µ2 = µ2
1 + τ2, µ3 = µ3

1 + 3τ2µ1, µ4 = µ4
1 + 6τ2µ2

1 + 3τ4

and

t1 = x, t2 = x2 − σ2
δ , t3 = x3 − 3σ2

δx, t4 = x4 − 6σ2
δx

2 + 3σ4
δ .

3 Derivatives of µr

By (2) and (3), µr is a function of µ1 and τ2. We can derive formulas
for the derivatives of µr with respect to µ1 and τ2, which will be useful
later on.

Theorem 3.

∂µr

∂µ1

= rµr−1, r ≥ 1 (9)

∂µr

∂τ2
=

(
r

2

)
µr−2, r ≥ 2 . (10)
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Proof:

Instead of (9), we will prove the stronger proposition

µr = r

∫ µ1

0
µr−1dµ1 + µ∗r .

Indeed, by (2) the right hand side of this equation equals

r

∫ µ1

0

r−1∑
j=0

(
r − 1

j

)
µ∗jµ

r−1−j
1 dµ1 + µ∗r

= r
r−1∑
j=0

(
r − 1

j

)
µ∗j

µr−j
1

r − j
+ µ∗r

=

r−1∑
j=0

(
r

j

)
µ∗jµ

r−j
1 + µ∗r

=
r∑

j=0

(
r

j

)
µ∗jµ

r−j
1 ,

which is equal to µr by (2).
To prove (10), first note that by (3), for j even and j ≥ 2,

∂µ∗j
∂τ2

= (j − 1)!!
j

2
τ j−2

=

(
j

2

)
(j − 3)!!τ j−2 =

(
j

2

)
µ∗j−2.

Now from (2) and the previous equation, for r ≥ 2,

∂µr

∂τ2
=

r∑
j=2

(
r

j

)(
j

2

)
µ∗j−2µ

r−j
1

=
r(r − 1)

2

r∑
j=2

(
r − 2

j − 2

)
µ∗j−2µ

r−j
1

=

(
r

2

)
r−2∑
j=0

(
r − 2

j

)
µ∗jµ

r−2−j
1 =

(
r

2

)
µr−2.

This completes the proof.
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By stacking the formulas (9) and (10), respectively, for r = 0, . . . , k,
we can now give corresponding expressions for the vector µ. We intro-
duce the (k + 1) × (k + 1) triangular band matrices

D1 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1 0

2 0

· · ·
· · ·
k 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D2 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0 0(
2

2

)
0 0(
3

2

)
0 0

· · ·
· · ·(
k

2

)
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

and note that

D2 =
1

2
D2

1. (12)

Theorem 3 then, translates immediately into.

Theorem 4.

∂µ

∂µ1

= D1µ (13)

∂µ

∂τ2
= D2µ. (14)

Finally we also have

Theorem 5.

µ1

∂µ

∂µ1

= (D − τ2D2
1)µ (15)

with D := diag(0, 1, 2, . . . , k).
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Proof:

First note that by Theorem 1

µ1µ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

µ1

µ2

µ3
...

µk+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− τ2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

µ0

2µ1
...

kµk−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The last vector equals D1µ, and the first vector on the right hand side
multiplied by D1 equals Dµ. Therefore

µ1

∂µ

∂µ1

= D1µ1µ = Dµ− τ2D2
1µ.

4 The ACM of QS

According to Kukush et al. (2005), the ACM of β̂Q is given by

ΣQ = (Ev−1µµ	)−1 + (Ev−1µµ	)−1(σ2
xF1F

	
1 +

2

σ4
x

F2F
	
2 )(Ev−1µµ	)−1

(16)

where

Fp = Ev−1µ
∂µ	

∂γp

β, p = 1, 2, γ1 = µx, γ2 =
1

σ2
x

.

The F -terms stem from the estimation of the nuisance parameters. The
purpose of this section is to evaluate these terms so that they become
computationally more accessible. It turns out that it is not necessary
to compute the expected value as prescribed in the definition of Fp.

Theorem 6. The ACM of β̂Q equals

ΣQ = (Ev−1µµ	)−1 + F, (17)

where

F = σ4
δ(G

	
1 ββ

	G1 + 2G	
2 ββ

	G2),

G1 =
1

σx
D1,

G2 =
1

σ2
x − σ2

δ

(µXD1 −D + τ2D2).
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Proof:

As µ is a function of µ1 and τ2, we have

∂µ

∂γp

=
∂µ

∂µ1

∂µ1

∂γp

+
∂µ

∂τ2

∂τ2

∂γp

, p = 1, 2.

For p = 1 and p = 2, we find because of (1) and (4)

∂µ

∂γ1

=
∂µ

∂µ1

σ2
δ

σ2
x

,

∂µ

∂γ2

=

[
∂µ

∂µ1

(µx − x) − ∂µ

∂τ2
σ2

δ

]
σ2

δ .

With

µx − x =
σ2

x

σ2
x − σ2

δ

(µx − µ1),

which follows from (1), the latter becomes

∂µ

∂γ2

= σ2
δ

[
∂µ

∂µ1

σ2
x

σ2
x − σ2

δ

(µx − µ1) −
∂µ

∂τ2
σ2

δ

]
.

Finally, by (13) to (15),

∂µ

∂γ1

=
σ2

δ

σ2
x

D1µ =
σ2

δ

σx
G1µ,

∂µ

∂γ2

= σ2
δ

[
σ2

x

σ2
x − σ2

δ

(µxD1 −D + τ2D2
1)µ− σ2

δD2µ

]
.

Because of (12) and (4), the latter becomes

∂µ

∂γ2

= σ2
δ

σ2
x

σ2
x − σ2

δ

(µxD1 −D + τ2D2)µ = σ2
δσ

2
xG2µ.

We thus have

F1 =
σ2

δ

σx
Ev−1µµ	G	

1 β,

F2 = σ2
δσ

2
xEv−1µµ	G	

2 β.

By substituting F1 and F2 in (16) we finally obtain (17).
This completes the proof.

For k = 2 the two matrices G1 and G2 are, respectively,
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G1 =
1

σx

⎛⎜⎝0 0 0

1 0 0

0 2 0

⎞⎟⎠ , (18)

G2 =
1

σ2
x − σ2

δ

⎛⎜⎝ 0 0 0

µx −1 0

τ2 2µx −2

⎞⎟⎠ . (19)

An approximation to ΣQ can be derived for small σ2
δ . The general

formula in Kukush and Schneeweiss (2005) can be specialized to the
polynomial case and yields

ΣQ = σ2
ε (EZ)−1

+σ2
δ(EZ)−1

E

{(
∂z	

∂x
β

)2

Z + σ2
ε

(
1

2

∂2Z

∂x2
+
∂z

∂x

∂z	

∂x

)}
(EZ)−1

+O(σ4
δ),

where z := (1, x, . . . , xk)	 and Z := zz	. By noting that

∂z

∂x
= D1z,

∂2Z

∂x2
= D2

1Z + 2D1ZD
	
1 + ZD	2

1 ,

this can be written as

ΣQ = σ2
ε (EZ)−1 + σ2

δ(EZ)−1
E{(β	D1ZD

	
1 β)Z

+σ2
ε (D2Z + ZD	

2 + 2D1ZD
	
1 )}(EZ)−1 +O(σ4

δ). (20)

It may be noted that, contrary to (17), the expectations involved
simply yield moments of x and are therefore easy to compute.

From Kukush et al. (2005) a similar formula can be derived, which
however is stated in terms of ξ rather than x. Both formulas differ in
value but the difference is of the order σ4

δ .

5 The ACM of CS

In Kukush et al. (2005) a formula for the ACM of β̂C has been derived:

ΣC = (Eζζ	)−1{σ2
εEtt

	 + E(T − tζ	)ββ	(T − ζt	)}(Eζζ	)−1.(21)

This is a hybrid formula in so far as t and T are functions of x, whereas
ζ is a function of ξ. With (5) and with the help of the identity
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E[(T − tζ	)ββ	(T − ζt	)|x]

= Tββ	T − tµ	ββ	T − Tββ	µt	 + tβ	Mβt	

= (T − tµ	)ββ	(T − µt	) + tβ	(M − µµ	)βt	,

(21) can be written as

ΣC = (ET )−1
E{(T − tµ	)ββ	(T − µt	) + vtt	}(ET )−1. (22)

Again only moments of x are needed in order to compute the ACM of
β̂C . We have several options to evaluate ET because, cf. Shklyar et al.
(2007),

ET = EM = Etµ	 = Eζζ	.

In passing, it might be worthwile to mention the ACM of the naive (N)

estimator β̂N := (
∑n

1 ziz
	
i )−1

∑n
1 ziyi. A hybrid formula for its ACM

is given in Kukush et al. (2005). It can be “improved” to a formula
that is based on the observed variables xi solely:

ΣN = (EZ)−1
EvZ(EZ)−1.

6 SS and its ACM

Another structural estimator can be constructed as a simplified version
of QS. It is called simple score (SS) estimator and is based on the
simplified score function

ψS(y, x, β) = (y − µ	β)t.

An equivalent score function for SS is

ψ∗
S(y, x, β) = (y − µ	β)µ,

cf. Shklyar et al. (2007), which differs from ψQ just by the omission of

the factor v−1.
The merit of the SS estimator is that it is much simpler to compute

than the QS estimator. It is, however, (slightly) less efficient than the
latter, but it is still more efficient than the CS estimator as long as µξ

and σ2
ξ are known and need not be estimated, see Section 7. It serves

as an intermediate estimator between QS and CS and is useful if one
wants to compare the relative efficiencies of the latter two.
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The ACM of the SS estimator is given by two equivalent formulas
depending on whether it is derived from ψS or ψ∗

S :

ΣS = (ET )−1
Evtt	(ET )−1 + F

= (Eµµ	)−1Evµµ	(Eµµ	)−1 + F, (23)

where F is the same as in (17).
The first formula (23) is implicitly given in Shklyar et al. (2007),

the second one follows in a similar way from ψ∗
S . Their equivalence can

be directly seen by noting that t = Kµ with some nonsingular matrix
K and that E(µt	) = Eζζ	 = ET , cf. Shklyar et al. (2007).

7 Efficiency Comparison

One can show that ΣQ ≤ ΣS , cf. Shklyar et al. (2007). Indeed, since
the term F in (17) and (23) is the same, one needs only to compare
the first terms in (17) and (23), respectively, and for this comparison
one can use the Cauchy-Schwarz inequality.

These arguments do not hold for an efficiency comparison of CS and
SS. The difference of their ACMs is

ΣC −ΣS = (ET )−1
E(T − tµ	)ββ	(T − µt	)(ET )−1 − F. (24)

It is not clear at the outset whether this difference is always ≥ 0. (It
is, of course, ≥ 0 and, indeed, even > 0 if the last term vanishes, which
occurs when the nuisance parameters need not be estimated: ΣC > ΣS

if µξ and σ2
ξ are both known and (β1, β2) �= (0, 0), cf. Shklyar et al.

(2007)).
There are cases where ΣC − ΣS is singular if nuisance parameters

are present. E.g., in a quadratic model, a detailed algebraic calculation
shows that det(ΣC − ΣS) = 0, implying that SS is not strictly more
efficient than CS if nuisance parameters have to be estimated. But we
still have ΣC ≥ ΣS in a quadratic model. In particular, all the diagonal
elements of ΣC −ΣS are positive and tend to ∞ for σ2

δ → ∞.
On the other hand, it is known that in a polynomial model of degree

k > 2 with or without nuisance parameters, QS is always strictly more
efficient than CS as long as βk �= 0, see Kukush et al. (2006).

8 Conclusion

The ACMs of three estimators (CS, QS, and SS) have been studied for
the polynomial measurement error model. Some alternative formulas
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that are based solely on the observable variables have been presented.
The ACMs of QS and SS (and also of other structural estimators) have
a term that stems from the estimation of the nuisance parameters. This
term has been evaluated.

The presence of this term in the ACMs of the QS and SS estimators
diminishes the efficiency of QS and SS, which would be greater if the
nuisance parameters were known. In particular, for a polynomial model,
the efficiency of SS is so much reduced that, at least for the quadratic
model, it is not strictly higher than the efficiency of CS anymore (as it
would be if the nuisance parameters were known).

In the polynomial model, the CS and QS estimators are constructed
with the help of transformed variables tr(xi) and µr(xi), respectively.
New formulas for the computation of these variables have been derived.
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1 Introduction

There is a growing interest in treating the cross sectional dependence in
panel data models. The need to control the intracluster dependence was
demonstrated in Kloek (1981) and Moulton (1990). When the cross sec-
tional dependence is ignored, the estimated standard errors computed
without considering clustering can be understated for OLS estimator,
as shown in Cameron and Golotvina (2005). Recent work on treating
cross-sectional dependence can be found in Pesaran (2006).

In this paper, we consider a paired data model where the dependent
variable is measured according to different pairs of cross sectional units.
The cross sectional dependence is introduced by each unit’s influence
on the paired data. Examples of such paired data can be exchange
rates and trade data on countries. Cameron and Golotvina (2005) con-
sidered feasible generalized least square estimator (FGLS) for a paired
data model. We consider a similar model to theirs and give a tractable
FGLS estimator and investigate its finite sample bias and mean square
error (MSE). Our estimator uses OLS and fixed effect (FE) residuals to
estimate the covariance matrix of composite errors. Under the assump-
tion of normal disturbances, we derive the finite sample bias and MSE
of the slope estimator up to orders O(n−2) and O(n−4), respectively.
We conducted simulation studies to investigate the influence of num-
ber of cross section units on bias and MSE of our FGLS estimator and
the influence of changing variances of clustering effects and individual
effects. We found that the change in variance of individual effects has
a much bigger effect on MSE than that of variance of clustering effect.
The finite sample MSE becomes close to asymptotic MSE when n is
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relatively large and exhibit downward correction from asymptotic MSE
for large n and upward correction for small n.

The paper is organized as follows: Section 2 introduces the model;
Section 3 develops a FGLS estimator and states the main results of
its finite sample bias and MSE under normality; Section 4 provides the
derivations of main results; Section 5 reports the simulation results and
Section 6 concludes.

2 Model with Paired Data

Let us consider the cross-sectional paired data model as

yi,j = x′i,jβ + αi + αj + εi,j (1)

where i = 1, 2, . . . , n − 1 and j = i + 1, . . . , n are the pair of cross-
sectional clusters, yi,j is the dependent variable, xi,j is a vector of 1×k
variables, αi and αj are the cluster effects for the ith and jth clusters,
εi,j is the individual effect, yi,j = yj,i and xi,j = xj,i. Here the clusters
could be taken as countries. For example, in the case of trade volume
between countries, yi,j represents the trade volume between the ith and
jth countries and is equal to yj,i.

Stacking over j for cluster i gives us⎡⎢⎢⎣
yi,i+1

...

yi,n

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x′i,i+1β

...

x′i,nβ

⎤⎥⎥⎦ +

⎡⎢⎢⎣
αi

...

αi

⎤⎥⎥⎦ +

⎡⎢⎢⎣
αi+1

...

αn

⎤⎥⎥⎦ +

⎡⎢⎢⎣
εi,i+1

...

εi,n

⎤⎥⎥⎦
or

yi = Xiβ + Piα+Niα+ εi (2)

where yi and εi are (n− i)×1 vectors, Xi is an (n− i)×k matrix, β is
a k×1 parameter vector and α is an n×1 vector of cluster effects. The
matrices Pi and Ni are (n− i) × n matrices of zeroes and ones with

Pi =

⎡⎢⎢⎣
0 · · · 0 1 0 · · · 0
...

...
...

...
...

0 · · · 0 1 0 · · · 0

⎤⎥⎥⎦ Ni =

⎡⎢⎢⎢⎢⎢⎣
0 · · · 0 1 0 · · · 0
...

... 0 1 · · · ...
...

...
...

. . . 0

0 · · · 0 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎦
=

[
0(n−i)×(i−1) ln−i 0(n−i)×(n−i)

]
=

[
0(n−i)×i In−i

]
where 0j×i represents a matrix of zeroes with j rows and i columns,
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li represents a vector of ones of i rows, Ii is an identity matrix of
dimension i.

Stacking over all i,

Y = Xβ + Pα+Nα+ ε (3)

= Xβ + Lα+ ε

= Xβ + ω

where Y is a T × 1 vector, X is a T × k nonstochastic matrix that
exhibits variation within each column, ω = Lα + ε, L = P + N and
L, P and N are T × n matrices with T = n (n− 1) /2. In deriving our
results on the bias and MSE of FGLS estimator of slope coefficients,
we assume that εij is uncorrelated with αi and

εij ∼ i.i.d.n.
[
0, σ2

ε

]
, αi ∼ i.i.d.n.

[
0, σ2

α

]
(4)

where i.i.d.n. stands for independent and identically distributed with
normal distribution.

Under assumption of (4),

Cov [ωij , ωkl] =

⎧⎪⎨⎪⎩
2σ2

α + σ2
ε, if i = k, j = l

0, if i �= k �= j �= l

σ2
α, otherwise.

This gives the error variance matrix as

Ω = E
[
ωω′] = σ2

ε

[
IT +

1

λ
LL′

]
(5)

where λ = σ2
ε/σ

2
α.

3 Main Results

Under model (3), when ignoring the clustering effects, the usual ordi-
nary least squares (OLS) estimator is

β̂OLS =
(
X ′X

)−1
X ′Y (6)

which is an unbiased, consistent but not efficient estimator for β. Using
(5), it is straightforward to show that the variance of OLS estimator is

V
[
β̂OLS

]
= σ2

ε

(
X ′X

)−1
[
I +

1

λ
X ′LL′X

(
X ′X

)−1
]
.
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Taking the cluster effect α to be fixed, the FE estimator of β can
be obtained as follows.

We define the differencing matrix Q = IT − Q̄, Q̄ = L (L′L)−1 L′
such that QL = 0 hence Qω = Qε. Then we can transform the model
(3) into following by multiplying both sides by Q

QY = QXβ +Qε. (7)

The FE estimator is therefore obtained as

β̂FE =
(
X ′QX

)−1
X ′QY

and one can obtain its variance as

V
(
β̂FE

)
= σ2

ε

(
X ′QX

)−1
.

The FE estimator is efficient when α is indeed nonrandom and not
so when α is random under our assumptions, in which case, we can
construct a GLS estimator

β̂GLS =
(
X ′Ω−1X

)−1
X ′Ω−1Y

where Ω−1 = σ−2
ε

[
IT − L (λIn + L′L)−1 L′

]
from (5), which can also

be written as:

Ω−1 = σ−2
ε

[
IT − 1

λ+ (n− 2)

(
LL′ − 4

λ+ 2 (n− 1)
lT l

′
T

)]
(8)

by using l′TL = (n− 1) l′n, Lln = 2lT , L
′L = (n− 2) In + lnl

′
n.

Using estimate of Ω̂−1, we can construct a FGLS estimator of the
coefficients β as

β̂FGLS = (X ′Ω̂−1X)−1X ′Ω̂−1Y

where Ω̂ = σ̂2
ε

[
IT +

(
σ̂2

α/σ̂
2
ε

)
LL′] and Ω̂−1 is given as in (8) with σ2

ε

and σ2
α replaced by their respective consistent estimators obtained as

follows.
The estimate of σ2

ε can be obtained using the FE residuals:

σ̂2
ε =

ε′(Q−QX (X ′QX)−1X ′Q)ε

T − n− k
(9)

while the estimator of σ2
α can be obtained from OLS residuals ω̂OLS

from (6) and using σ̂2
ε.

Consider
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σ̂2
ω =

ω̂′
OLSω̂OLS

tr (G)
, (10)

since E
(
σ̂2

ω

)
= σ2

α + T−k
tr(G)σ

2
ε, we can obtain an estimator for σ2

α:

σ̂2
α = σ̂2

ω − T − k

tr (G)
σ̂2

ε. (11)

Note that (11) follows from

E
(
ω̂′

OLSω̂OLS

)
= E

(
Y ′

(
IT −X

(
X ′X

)−1
X ′

)
Y
)

= tr (G)σ2
α + (T − k)σ2

ε

where G = L′ML and M = IT −X (X ′X)−1X ′.

Theorem 1. Under assumption (4), the finite sample approximations

for the bias vector E(β̂FGLS − β) up to O(n−2) and MSE matrix

E(β̂FGLS − β)(β̂FGLS − β)′ up to O(n−4) are given by

Bias = 0

MSE = n−2
(
X ′Ω−1X/n2

)−1
+ n−3

[
4P1

(
λ (1 − h)σ2

α

h2

)]
+n−4

[
2P2

(
λ2

h2
σ2

α

)
+ 4P3

(
λ

h2
ITσ

2
ε

)
+ 4P4

(
λ (1 − h)

h2
σ2

α

)
−4P5

(
λ

h2
ITσ

2
ε

)
+ 8P1

(
λ (2 − λh)

h2
σ2

α

)]
where h = tr (G)/n2, P1, P2, P3, P4 and P5 are given in
(45), in which A = X ′Ω−1X/n2, B = X ′ΦX/n2, Φ =[
a (LL′/n) − 3

2ab
(
lT l

′
T /n

2
)]
/σ2

ε, a = 1/(1 + λ−2
n ) and b =

4/(2 + λ−2
n ).

We note that the first term in MSE is of order O(n−2), because the
model in (3) is based on T = n (n− 1) /2 observations. Further remarks
on the results are given below.

Remark 1. When σ2
α = 0, λ = ∞, P1, P2, P3, P4, P5 are 0, Ω−1 =

σ−2
ε IT , the finite sample approximate MSE of FGLS estimator is

n−2
(
X ′X/n2

)−1
σ2

ε; which is the usual variance of the OLS estima-

tor of β; when σ2
ε = 0, λ = 0, Ω−1 = σ−2

α (LL′)−1 , finite sample MSE

of FGLS estimator is n−2
(
X ′ (LL′)−1X/n2

)−1
σ2

α. The finite sample

MSE are the same as asymptotic values under these two situations.
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Remark 2. When λ is constant, Φ is constant, increasing in σ2
ε and σ2

α

proportionally leads to decrease in Ω−1, increase in P1, P2, P3, P4, P5,
and proportional increase in the MSE.

Remark 3. When σ2
α is held constant, an increase in σ2

ε leads to de-
crease in Ω−1, increase in P1, P2, P3, P4, P5, and increase in the MSE;
similar increase in MSE will result when increasing σ2

α while holding
σ2

ε constant. Also noting

dΩ−1

dσ2
ε

= − 1

σ4
ε

IT +
1

e2
[2λ+ (n− 2)]LL′

− 4

f2

[
3λ2 + (6n− 8)λ+ 2 (n− 2) (n− 1)

]
lT l

′
T

dΩ−1

dσ2
α

= − 1

e2
λ2LL′ +

4

f2
λ2 [2λ+ 3n− 4] lT l

′
T

where e = σ2
ε [λ+ (n− 2)] is O (n) , f = σ2

ε [λ+ (n− 2)] [λ+ 2 (n− 1)]

is O
(
n2

)
. Hence dΩ−1

dσ2
ε

< 0 is of O (1) and dΩ−1

dσ2
α

< 0 is of O
(
n−2

)
.

The ratio dMSE
dσ2

ε
/dMSE

dσ2
α

is of O
(
n2

)
. That is, a change in variance of

individual effect has a much bigger influence on the MSE of β than a
comparable change in variance of cluster effect.

4 Derivation

To obtain the finite sample expansion of bias and MSE of β̂FGLS , we

need the finite sample expansion of Ω̂−1. To obtain this, we first look
at the expansion of σ̂2

ε and σ̂2
ω and use them to obtain the expansion

of λ̂ = σ̂2
ε/σ̂

2
α.

For σ̂2
ε, from (9), up to O

(
n−2

)
,

σ̂2
ε =

ε′(Q−QX (X ′QX)−1X ′Q)ε

T − n− k

= 2
ε′Qε− ε′QX (X ′QX)−1X ′Qε

n2 − 3n− 2k

=
2

n2 − 3n

[
1 − 2k

n2 − 3n

]−1 [
σ2

ε

(
n2 − 3n

2

)(
1 +

νε√
T

)
− σ2

εν
∗
ε

]
=

2

n2 − 3n

[
1 +

2k

n2 − 3n
+

(
2k

n2 − 3n

)2

+ . . .

]

×
[
σ2

ε

(
n2 − 3n

2

)(
1 +

νε√
T

)
− σ2

εν
∗
ε

]
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= σ2
ε

[
1 +

νε√
T

+
2 (k − ν∗ε)
n2 − 3n

]
= σ2

ε

[
1 +

(√
2

n
+

√
2

2n2

)
νε +

2 (k − ν∗ε)
n2

]
(12)

where

νε =
√
T

(
ε′Qε

(T − n)σ2
ε

− 1

)
,

ν∗ε = ε′QX
(
X ′QX

)−1
X ′Qε/σ2

ε.

For σ̂2
ω, from (10),

ω̂′
OLSω̂OLS = Y ′

(
IT −X

(
X ′X

)−1
X ′

)
Y

= ω′
(
IT −X

(
X ′X

)−1
X ′

)
ω

= ω′ω − ω′X
(
X ′X

)−1
X ′ω (13)

in which the first term, since L′L = (n− 2) In + lnl
′
n,

ω′ω = (Lα+ ε)′ (Lα+ ε)

= α′L′Lα+ ε′ε+ 2ε′Lα
= (n− 2)α′α+ α′lnl′nα+ ε′ε+ 2ε′Lα
= n (n− 2)σ2

α

(
1 + υα

√
n
)

+ n
(
1 + υαα/

√
n
)

+Tσ2
ε

(
1 + εε/

√
T
)

+ 2
√
Tσ2

ωυαε

where

υα =
√
n

(
α′α
nσ2

α

− 1

)
, εε =

√
T

(
ε′ε
Tσ2

ε

− 1

)
, (14)

υαα =
√
n

(
α′lnl′nα
nσ2

α

− 1

)
, υαε =

ε′Lα√
Tσ2

ω

. (15)

Now consider the second term in (13),

ω′X
(
X ′X

)−1
X ′ω = (Lα+ ε)′X

(
X ′X

)−1
X ′ (Lα+ ε) (16)

= α′L′X
(
X ′X

)−1
X ′Lα

+ε′X
(
X ′X

)−1
X ′ε+ 2α′L′X

(
X ′X

)−1
X ′ε

= σ2
αtr (Z)

(
1 + υ∗α/

√
n
)

+σ2
ω

(
ε∗ε + 2

√
tr (Z)υ∗αε

)
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where

Z = L′X
(
X ′X

)−1
X ′L,

υ∗α =
√
n

(
α′Zα

tr (Z)σ2
α

− 1

)
,

ε∗ε = ε′X
(
X ′X

)−1
X ′ε/σ2

ω,

υ∗αε =
α′L′X (X ′X)−1X ′ε

σ2
ω

√
tr (Z)

.

We now have

tr (G) σ̂2
ω = ω′ω − ω′X

(
X ′X

)−1
X ′ω

= n (n− 2)σ2
α

(
1 + υα/

√
n
)

+ nσ2
α

(
1 + υαα/

√
n
)

+Tσ2
ε

(
1 + εε/

√
T
)

+ 2
√
Tσ2

ωυαε

−
[
σ2

αtr (Z)
(
1 + υ∗α/

√
n
)

+ σ2
ω

(
ε∗ε + 2

√
tr (Z)υ∗αε

)]
= (T − k)σ2

ε + tr (G)σ2
α + n (n− 2)σ2

αυα/
√
n

+nσ2
αυαα/

√
n+ Tσ2

εεε/
√
T + 2

√
Tσ2

ωυαε

−σ2
αtr (Z) υ∗α/

√
n− σ2

ω

(
ε∗ε + 2

√
tr (Z)υ∗αε

)
+ kσ2

ε.

Dividing both sides by tr (G) , we have

σ̂2
ω = σ2

ω

[
1 +

√
n (n− 2)

tr (G)

σ2
α

σ2
ω

υα +
σ2

α

σ2
ω

√
nυαα

tr (G)
+
σ2

ε

σ2
ω

√
Tεε

tr (G)
+ 2

√
T

tr (G)
υαε

−σ2
α

σ2
ω

tr (Z)

tr (G)

υ∗α√
n
−

(
ε∗ε + 2

√
tr (Z)υ∗αε

)
tr (G)

+
k

tr (G)

σ2
ε

σ2
ω

⎤⎦ .
For the orders of tr (Z) and tr (G) , by Cholesky Decomposition,

X (X ′X)−1X ′ = AA′, where A is a T × T matrix and

tr
(
AA′) =

T∑
i=1

T∑
j=1

a2
ij = tr

(
X

(
X ′X

)−1
X ′

)
= k,

thus aij is O
(
T−1

)
= O

(
n−2

)
and each element of L′A is O(n−1) since

for any T ×m matrix X, X ′L = (n− 1) [x̄1 . . . x̄n], where

x̄i = [(xi,i+1 + . . .+ xi,n) + (x1,i + . . .+ xi−1,i)] / (n− 1) .
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Thus

tr (Z) = tr
(
L′AA′L

)
= O (n) ,

tr (G) = tr(L′L− Z) = n (n− 2) + n− tr (Z) = O
(
n2

)
.

Now writing
σ2

α

σ2
ω

=
1

1 + dλ
,

σ2
ε

σ2
ω

=
λ

1 + dλ
, (17)

where

d =
T − k

tr (G)
= O (1) ,

we obtain, up to O(n−2),

σ̂2
ω = σ2

ω

[
1 +

√
n (n− 2)

n2h

1

1 + dλ
υα +

1

1 + dλ

√
nυαα

n2h
+

λ

1 + dλ

√
Tεε
n2h

+2

√
T

n2h
υαε − 1

1 + dλ

g

nh

υ∗α√
n
− ε∗ε
n2h

− 2
1

n3/2

√
g

h
υ∗αε

+
k

n2h

λ

1 + dλ

]
= σ2

ω

[
1 + n−1/2 1

h (1 + dλ)
υα + n−1

(
1√
2h

λ

1 + dλ
εε +

√
2

h
υαε

)

+n−3/2

(
−2

1

h (1 + dλ)
υα +

1

h (1 + dλ)
υαα − g

h

1

1 + dλ
υ∗α

−2

√
g

h
υ∗αε

)
+ n−2

(
λ

2
√

2 (1 + dλ)
εε +

1√
2h
υαε +

kλ

h (1 + dλ)

)]
(18)

where

g =
tr(Z)

n
= O (1) , h =

tr (G)

n2
= O (1) ,

and we use
√
T

n2h
=

1√
2nh

√
1 − 1

n
=

1√
2nh

(
1 +

1

2n
+

1

8n2
+

1

16n3
+ . . .

)
.

Now using the expansions of σ̂2
ε and σ̂2

ω in (12) and (18), we can

obtain the expansion of λ̂, estimator of λ = 1/c, where c = σ2
α/σ

2
ε,

which is given by λ̂ = 1/ĉ = σ̂2
ε/σ̂

2
α, and
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ĉ =
σ̂2

ω

σ̂2
ε

− T − k

tr (G)
.

Now define

C =
σ̂2

ω − σ2
ω

σ2
ω

, D =
σ̂2

ε − σ2
ε

σ2
ε

, Ch =
1

h (1 + dλ)
,

then using (12) and (18), we can write, up to O
(
n−1

)
,

ĉ =
σ̂2

ω

σ̂2
ε

− T − k

tr (G)

=
σ2

ω

σ2
ε

(
1 + C

1 +D

)
− T − k

tr (G)
(19)

=
σ2

ω

σ2
ε

[
1 + (C −D) − CD +D2

]− T − k

tr (G)

= c+
1 + dλ

λ

[
n−1/2Chυα + n−1

(
λChεε√

2
+

√
2

h
υαε −

√
2νε

)]
.

Further, we have

λ̂ =
1

ĉ
=

1

c+∆c
= λ

(
1 − λ∆c + λ2∆2

c

)
where ∆c = ĉ− c. Using (19), up to O

(
n−1

)
,

λ̂ = λ

{
1 − (1 + dλ)

[
n−1/2Chυα + n−1

(
λChεε√

2
+

√
2

h
υαε −

√
2νε

)]

+ (1 + dλ)2
1

n
C2

hυ
2
α

}
= λ

{
1 − (1 + dλ)n−1/2Chυα + (1 + dλ)

×n−1

[
(1 + dλ)C2

hυ
2
α −

(
λChεε√

2
+

√
2

h
υαε −

√
2νε

)]}

= λ+ n−1/2

(
−λ
h
υα

)
+n−1

(
λ

h2
υ2

α − λ2

√
2h
εε −

√
2Cd

h
υαε +

√
2Cdνε

)
(20)

where Cd = λ (1 + dλ) .
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Consider the terms of Ω̂−1 in (8), we note that up to O
(
n−2

)
,

1

1 + λ̂−2
n

=
1

1 + λ−2
n

{1 + λ (1 + dλ)n−3/2Chυα

− λ (1 + dλ)n−2

[
(1 + dλ)C2

hυ
2
α −

(
λChεε√

2
+

√
2

h
υαε −

√
2νε

)]
}

(21)

and

4

2 + λ̂−2
n

=
4

2 + λ−2
n

{
1 +

λ (1 + dλ)

2
n−3/2Chυα

−λ (1 + dλ)

2
n−2

[
(1 + dλ)C2

hυ
2
α −

(
λChεε√

2
+

√
2

h
υαε −

√
2νε

)]}
.

(22)

Therefore, using (21) and (22) in (8), we can write Ω̂−1, up to
O

(
n−2

)
as

Ω̂−1 = Ω−1 + Φ
∆λ

n

where, with a =
(
1 + λ−2

n

)−1
and b = 4

(
2 + λ−2

n

)−1
, define

Φ =

[
a (LL′/n) − 3

2ab
(
lT l

′
T /n

2
)]

σ2
ε

(23)

∆λ = λ̂− λ. (24)

Further, up to O
(
n−2

)
,

X ′Ω̂−1X

n2
= A+B

∆λ

n
(25)

where

A =
X ′Ω−1X

n2
, B =

X ′ΦX
n2

(26)
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and using property of X ′L, it’s easy to see that X ′LL′X/n3 is O (1),
thus A and B are O (1) , respectively.

This gives

n
(
β̂FGLS − β

)
=

(
A+B

∆λ

n
+Op

(
n−5/2

))−1

×
(
X ′

(
Ω−1 + Φ

∆λ

n
+Op

(
n−5/2

)))
ω/n

= ζ0 + ζ−1 + ζ−3/2 (27)

where

ζ0 = A−1

(
X ′Ω−1ω

n

)
,

ζ−1 =

(
A−1X ′ΦLα

n3/2

)
∆λ√
n
,

ζ−3/2 =

(
A−1X ′Φε

n
− A−1BA−1X ′Ω−1ω

n

)
∆λ

n
,

and the subscript of ζ represents its order in terms of power of n. From
(27)

E
(
n
(
β̂FGLS − β

))
= A−1

(
X ′Φ−BA−1X ′Ω−1

)
E

(
ω
∆λ

n

)
(28)

where using assumption (4), it can be easily verified that E
(
ω∆λ

n

)
=

0 by noting that E [(Lα+ ε) υα] = 0, E
[
(Lα+ ε) υ2

α

]
= 0,

E [(Lα+ ε) εε] = 0 and E [(Lα+ ε) υαε] = 0. Hence the bias of β̂FGLS

multiplied by n is

E
(
n
(
β̂FGLS − β

))
= 0.

The MSE of β̂FGLS multiplied by n2 is

E

(
n2

(
β̂FGLS − β

)(
β̂FGLS − β

)′)
= E

(
ζ0ζ

′
0 + ζ0ζ

′
−1 + ζ0ζ

′
−3/2 + ζ−1ζ

′
0 + ζ−1ζ

′
−1 + ζ−3/2ζ

′
0

)
(29)

where
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E
(
ζ0ζ

′
0

)
= A−1 =

(
X ′Ω−1X

n2

)−1

, (30)

E
(
ζ0ζ

′
−1

)
=
A−1X ′Ω−1E (∆λωα′)L′ΦXA−1

n3
, (31)

E
(
ζ−1ζ

′
−1

)
=
A−1X ′ΦLE

(
αα′ (∆λ)2

n

)
L′ΦXA−1

n3
, (32)

E
(
ζ0ζ

′
−3/2

)
=
A−1X ′Ω−1E (∆λωε′)ΦXA−1

n3

−A
−1X ′Ω−1E (∆λωω′)Ω−1XA−1BA−1

n3
. (33)

The terms involving expectations in (31) to (33) are derived below,
and they are obtained by using the results in Ullah (2004, p. 187) for
the normal case.

We first look at E (∆λωω′) in (33):

E
(
∆λωω′) = LE

(
αα′∆λ

)
L′ + LE

(
αε′∆λ

)
+E

(
εε′∆λ

)
+ E

(
εα′∆λ

)
L′. (34)

Using (20), we can get firstly,

E
(
αα′∆λ

)
=n−1/2

(
−λ
h
E

(
αα′υα

))
+ n−1

(
λ

h2
E

(
αα′υ2

α) − λ2

√
2h
E

(
αα′εε

)
−
√

2Cb

h
E

(
αα′υαε

)
+
√

2CbE
(
αα′υε

))

=n−1

(
−2λ (1 − h)

h2
Inσ

2
α

)
+ n−2 8λ

h2
Inσ

2
α. (35)

The above result is obtained by noting:

E
(
αα′υα

)
= E

(
αα′√n

(
α′α
nσ2

α

− 1

))
=

√
n

(
Eαα′α′α
nσ2

α

− E
(
αα′))

=
2√
n
σ2

αIn,
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E
(
αα′υ2

α

)
= nE

(
Eαα′α′αα′α

n2σ4
− 2

Eαα′α′α
nσ2

α

+ Eαα′
)

=
1

n
(n+ 2) (n+ 4) Inσ

2
α − 2 (n+ 2) Inσ

2
α + nInσ

2
α,

=
2 (n+ 4)

n
Inσ

2
α,

E
(
αα′εε

)
= 0, E

(
αα′υαε

)
= 0, E

(
αα′υε

)
= 0.

Secondly,

E
(
αε′∆λ

)
= n−1/2

(
−λ
h
E

(
αε′υα

))
+ n−1

[
λ

h2
E

(
αε′υ2

α

)
− λ2

√
2h
E

(
αε′εε

)− √
2Cb

h
E

(
αε′υαε

)
+
√

2CbE
(
αε′υε

)]

= −n−1

(√
2Cb

h

σ2
ασ

2
ε

σ2
ω

)
L′, (36)

since

E
(
αε′υα

)
= 0, E

(
αε′υ2

α

)
= 0, E

(
αε′εε

)
= 0, E

(
αε′υε

)
= 0

E
(
αε′υαε

)
= E

(
αε′

ε′Lα√
Tσ2

ω

)
=

1√
Tσ2

ω

σ2
ασ

2
εL

′.

Thirdly,

E
(
εε′∆λ

)
= n−1/2

(
−λ
h
E

(
εε′υα

))
+ n−1

(
λ

h2
E

(
εε′υ2

α

))
− λ2

√
2h
E

(
εε′εε

)− √
2Cb

h
E

(
εε′υαε

)
+

√
2CbE

(
εε′υε

)
= n−1

(
2λ

h2
ITσ

2
ε −

√
2λ2

h
√
T
ITσ

2
ε + 2

√
2Cb

√
T

T − n
ITσ

2
ε

)
,(37)

which is obtained by using

E
(
εε′υα

)
= 0,

E
(
εε′υ2

α

)
= σ2

εITE

(
n

(
Eα′αα′α
n2σ4

α

− 2
α′α
nσ2

α

+ 1

))
= 2σ2

εIT ,



73

E
(
εε′εε

)
= E

((
εε′

)√
T

(
ε′ε
Tσ2

ε

− 1

))
=

√
TE

(
εε′ε′ε
Tσ2

ε

− εε′
)

=
2√
T
ITσ

2
ε,

E
(
εε′υαε

)
= 0,

E
(
εε′υε

)
=

√
TE

(
εε′ε′Qε

(T − n)σ2
ε

− εε′
)

=
2
√
T

T − n
ITσ

2
ε.

Using (35), (36) and (37) in (34), and noting

1√
T

=

√
2

n

(
1 +

1

2n
+

1

8n2
+

1

16n3
+ . . .

)
,

we obtain

E
(
∆λωω′) = n−1

(
−2λ (1 − h)

h2
σ2

αLL
′
)

+n−2

(
2λ− hλ2

h2

)
4σ2

αLL
′ + n−1

(
2λ

h2
ITσ

2
ε

)
. (38)

Similarly, other expectation terms in (31) to (33) are

E
(
∆λωα′) = LE

(
αα′∆λ

)
+ E

(
εα′∆λ

)
= n−1

(
−2λ (1 − h)

h2

)
σ2

αL+ n−2

(
2λ

h

(
4

h
− λ

))
σ2

αL,

(39)

E
(
∆λωε′

)
= LE

(
∆λαε′

)
+ E

(
∆λεε′

)
= n−1 2λ

h2
ITσ

2
ε + n−2

(
4Cb − 2λ2

h

)
ITσ

2
ε

−n−2

(
2λ2

h

)
σ2

αLL
′, (40)
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E
(
αα′ (∆λ)2

)
= E

(
αα′n−1λ

2

h2
υ2

α

)
= n−1λ

2

h2
E

(
αα′υ2

α

)
= n−1 2λ2

h2
Inσ

2
α + n−2 8λ2

h2
Inσ

2
α. (41)

Using (38), (39), (40) and (41) in (29), we obtain

E
(
ζ0ζ

′
−1

)
=
A−1X ′Ω−1LL′ΦXA−1

n3

×
[
n−1

(
2λ (1 − h)σ2

α

h2

)
+ n−2 2λ (4 − λh)

h2
σ2

α

]
= P1

[
n−1

(
2λ (1 − h)σ2

α

h2

)
+ n−2 2λ (4 − λh)

h2
σ2

α

]
, (42)

E
(
ζ0ζ

′
−3/2

)
=
A−1X ′Ω−1ΦXA−1

n3

×
(
n−1 2λ

h2
ITσ

2
ε + n−2

(
4Cb − 2λ2

h

)
ITσ

2
ε

)
+
A−1X ′Ω−1LL′ΦXA−1

n3

(
−n−2

(
2λ2

h

)
σ2

α

)
+
A−1X ′Ω−1LL′Ω−1XA−1BA−1

n3

×
(
n−1

(
2λ (1 − h)

h2
σ2

α

)
− n−2

(
2λ− hλ2

h2

)
4σ2

α

)
+
A−1X ′Ω−1Ω−1XA−1BA−1

n3

(
−n−1

(
2λ

h2
ITσ

2
ε

))
= P3

(
n−2 2λ

h2
ITσ

2
ε + n−3

(
4Cb − 2λ2

h

)
ITσ

2
ε

)
+P1

(
−n−2

(
2λ2

h

)
σ2

α

)
+ P4

(
n−2

(
2λ (1 − h)

h2
σ2

α

)
−n−3

(
2λ− hλ2

h2

)
4σ2

α

)
+ P5

(
−n−2

(
2λ

h2
ITσ

2
ε

))
,

(43)

E
(
ζ−1ζ

′
−1

)
=
A−1X ′ΦLL′ΦXA−1

n3

(
n−2 2λ2

h2
σ2

α

)
= P2

(
n−2 2λ2

h2
σ2

α

)
(44)

where
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P1 = A−1X ′Ω−1LL′ΦXA−1/n3,

P2 = A−1X ′ΦLL′ΦXA−1/n3,

P3 = A−1X ′Ω−1ΦXA−1/n2,

P4 = A−1X ′Ω−1LL′Ω−1XA−1BA−1/n2,

P5 = A−1X ′Ω−1Ω−1XA−1BA−1/n2.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(45)

Here note that each of A, B, P1, P2, P3, P4 and P5 is O (1) .

Substituting (30), (42), (43) and (44) into (29), the MSE of (β̂FGLS−
β) up to order O(n−4) is:

E
(
β̂FGLS − β

)(
β̂FGLS − β

)′

= n−2
(
X ′Ω−1X/n2

)−1
+

(
P1 + P ′

1

) [
n−3

(
2λ (1 − h)σ2

α

h2

)
+n−4 2λ (4 − λh)

h2
σ2

α

]
+

(
P3 + P ′

3

)(
n−4 2λ

h2
ITσ

2
ε

)
+

(
P1 + P ′

1

)(−n−4

(
2λ2

h

)
σ2

α

)
+
(
P4+ P ′

4

)(
n−4

(
2λ (1 − h)

h2
σ2

α

))
+

(
P5 + P ′

5

)(−n−4

(
2λ

h2
ITσ

2
ε

))
+ P2

(
n−4 2λ2

h2
σ2

α

)
.

5 Simulation

In the following, we conduct simulation of a random effects model.
We estimate the slope coefficient by the estimators described in the
foregoing section and study the behavior of bias and MSE for different
values of λ and n.

We use the following data generating process for model (3),

yij = 2xij + αi + αj + εij

where αi ∼ i.i.d.n.[0, 1] and εij ∼ i.i.d.n.[0, 1], and xij ∼ iidn[0, σ2
x],

where σ2
x is chosen so that R2 � 0.5 from OLS regression. We first pick

n = 50 and replicate 1000 times. The results are reported in Table 1,
there, the “Correct se” is the theoretical standard deviation under our
simulation setup; “Simulation se” is the sample standard deviation of
the estimators from 1000 replications while “Default se” refers to the
usual OLS standard deviation under homoscedastic disturbances.

We can see that FGLS estimator shows significant improvement over
OLS estimator in terms of bias and standard error. Using the usual form

Estimation and Finite Sample Bias and MSE of FGLS Estimator
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of OLS variance here leads to under-estimate of the standard error of
the OLS estimator.

Then we investigate effects of the number of cross section units on
bias and MSE and compare finite sample MSE values with simulated
MSE and asymptotic counterparts. We start with n = 5 and increase
n by 5 till n = 50. For every n, the experiment is repeated 1000 times.
The results are reported in Table 2. There, n refers to number of clus-
ters. β̂FGLS is mean value of the suggested FGLS estimates of slope
coefficient obtained from 1000 replications. These replication values of
β are used in calculating simulation MSE and Bias. The results are
reported in columns named “Simulation MSE” and “Simulation Bias”.
“Finite Sample MSE” column reports, up to O

(
n−4

)
, the theoretical

MSE while “Asymptotic MSE” column reports the asymptotic values
of MSE of β̂FGLS .

As n increases, both the bias and MSE become smaller. For each n,
the bias is of smaller magnitude than the square root of MSE. The finite
sample MSE is closer to the simulation MSE than asymptotic values
in all cases, and it demonstrates an upward correction to asymptotic
value when n is small (n = 5) and a downward correction when n is
large (n > 5). The correction becomes smaller as n increases.

At both n = 20 and n = 50 cases, we conduct simulation using dif-
ferent values of σ2

ε and σ2
α, hence different λs, and examine their effects

on MSE. The results are reported in table 3 and 4. An increase in σ2
α

and/or σ2
ε increases MSE. When λ is held constant, increasing σ2

α and
σ2

ε at the same rate leads to a proportional increase in MSE. However,

the finite sample MSE of β̂FGLS is governed mostly by disturbances in
individual effects: the effect of an increase in variance of cluster effects,
σ2

α, on MSE is much smaller than that of variance of individual effects,
σ2

ε. For example, in n = 20 case, starting from σ2
α = 0.5 and σ2

ε = 0.5,
when σ2

ε is increased to 1, the increase in MSE is 0.000994332 while the
increase in MSE when σ2

α is increased to 1 is 0.000006110. The ratio
of these two is 162.74, which is of the magnitude of n2. This result is
consistent with Remark 3 in Section 3.

6 Conclusion

This paper proposes a FGLS estimator for a cross-sectional paired data
model, where the cluster effects are considered random. We investi-
gate the estimator’s finite sample bias and mean square error under
Gaussian effects. We report that the finite sample bias of FGLS esti-
mator is zero up to order O(n−2) and its MSE is mainly governed by
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variances of individual effects although increasing variance in cluster
effects and/or individual effect increases MSE. The finite sample MSE
up to order O(n−4) has a downward correction to asymptotic values
when cluster size is large and has an upward correction in case of a
small cluster size.

Appendix

Table 1. Estimation results for random effects model

True Value Estimator

OLS FGLS

Slope 2.0000 1.9995 1.9997

Correct se 0.04996 0.0029079

Simulation se 0.05009 0.029884

Default se 0.049304

Table 2. MSE and bias under different n

n β̂FGLS Simulation Simulation Finite sample Asymptotic

MSE bias MSE MSE

5 2.008 0.11252 0.008 0.11074 0.09869

10 2.0006 0.0079999 0.0006 0.0082579 0.0082738

15 2.0005 0.0042634 0.0005 0.0043822 0.0043858

20 2.0001 0.001608 0.0001 0.0017099 0.0017106

25 1.99997 0.001134 -0.00003 0.0011562 0.0011564

30 2.0002 0.00098 0.0002 0.00094531 0.00094539

35 2.0001 0.00057599 0.0001 0.00060076 0.00060083

40 1.9998 0.00047991 0.0002 0.00049426 0.00049429

45 2.0004 0.00041199 0.0004 0.00037668 0.0003767

50 1.9999 0.00028349 -0.0001 0.00027909 0.0002791

Estimation and Finite Sample Bias and MSE of FGLS Estimator
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Table 3. Effect of different values of σ2
α and σ2

ε on MSE of β̂FGLS , n = 20
case

σ2
ε

0.5 1 2.5 5 10

0.5 0.0010170 0.0020113 0.0048876 0.0094389 0.0180599

σ2
α 1 0.0010231 0.0020339 0.0050020 0.0097752 0.0188779

2.5 0.0010269 0.002049 0.0050848 0.0100565 0.0197211

5 0.0010282 0.0020538 0.0051154 0.0101697 0.020113

10 0.0010289 0.0020564 0.0051313 0.0102308 0.0203394

Table 4. Effect of different values of σ2
α and σ2

ε on MSE of β̂FGLS , n = 50
case

σ2
ε

0.5 1 2.5 5 10

0.5 0.00014669 0.00029312 0.00073101 0.00145680 0.00289711

σ2
α 1 0.00014676 0.00029338 0.00073249 0.00146201 0.00291360

2.5 0.00014680 0.00029354 0.00073345 0.00146561 0.00292633

5 0.00014681 0.00029359 0.00073378 0.00146689 0.00293121

10 0.00014682 0.00029362 0.00073395 0.00146756 0.00293379
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1 Introduction

Measurement error regression models are different from classical regres-
sion models mainly that the covariates are measured with errors. This
paper deals with the prediction of finite population total based on re-
gression models with measurement errors. General treatment of regres-
sion problems with measurement errors is considered in the pioneering
book by Fuller (1987) and Cheng and Van Ness (1999). Later Sprent
(1966) proposed methods based on generalized least-squares approach
for estimating the regression coefficients. Lindley (1966) and Lindley
and Sayad (1968) pioneered Bayesian approach to the problem. Fur-
ther, contribution in Bayesian approach have been made by Zellner
(1971) and Reilly and Patino-Leal (1981). Fuller (1975) points out not
much research is done for problems in finite population with measure-
ment error models. However, Bolfarine (1991) investigated the problem
of predictors for finite population with errors in variable models. Re-
cently, Kim and Saleh (2002, 2003, 2005) pioneered the application
of preliminary test and shrinkage estimation methodology in measure-
ment error models. Recent book of Saleh (2006) presents an overview
on the theory of preliminary test and Shrinkage estimators. This pa-
per contains the application of these ideas for the prediction of finite
population totals using simple linear model with measurement errors .

Let the finite population is denoted by P = {1, · · · , N} consisting
of N units, where N is known. Associated with the t th unit of P ,
there be the vector, {(Yt, xt)|t = 1, · · · , N}′, which is a random sample
of size N from the conditional distribution distribution.
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Y0t = β0 + β1xt + et, t = 1, 2, · · · , N
where et ∼ N(0, σee). To gain information about the population total,
T = Y1 + · · · + YN , a sample of size n is selected at random from P.
Let the observed sample of the Y ’s be Ys = (Y01, · · · , Y0n)′ and the
remaining N −n vectors of Y ’s are unobserved. Let this set be denoted
r = P − s. Our object is to estimate the total, T =

∑
j∈s Yj +

∑
j∈r Yj .

We assume that the sample Y01, · · · , Y0n satisfy the model

Y0t = β0 + β1xt + et, t = 1, 2, · · · , n (1)

such that et ∼ N(0, σee) and xt are observed with error, i.e.,

X0t = xt + ut, ut ∼ N (0, σuu) (2)

and X0t’s are completely known for all t = 1, · · · , N .
Our problem is reduced to the estimation of T =

∑
j∈s Yj +

∑
j∈r Yj

based on the observed sample {(Y0t, X0t)|t = 1, · · · , n}′ and study prop-
erties of the estimators using (1) and (2). Section 2 deals with usual
classical linear model without measurement errors and section 3 deals
with the simple regression model with measurement errors.

2 Prediction of Population Total Without Measurement

Error

In this section, we consider the prediction of finite population totals
based on the sub-sample of the model (1) and (2),

Y0t = β0 + β1X0t + et, t = 1, 2, · · · , n
where X0t is known explanatory variable for t ∈ s and et ∼ N(0, σee).
The ordinary least square (OLS) estimate of β0 and β1 are given by

β̃0(OLS) = Ȳ0s − β̃1(OLS)X̄0s and β̃1(OLS) = S−1
X0X0

SX0Y0

where X̄0s = 1
n

∑
t∈sX0t, Ȳ0s = 1

n

∑
t∈s Y0t, SX0X0 =

∑
t∈s(X0t−X̄0s)

2,

and SX0Y0 =
∑

t∈s(X0t − X̄0s)(Y0t − Ȳ0s). Also, σ̃ee = 1
n−2

∑
t∈s(Y0t −

β̃0(OLS) − β̃1(OLS)X0t)
2.

If β1 is suspected to be equal to 0 (zero), then we define the pre-
liminary test estimator (PTE) and shrinkage estimator (SE) of β1 as
given below following Saleh (2006):
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(i) β̂
PTE

1(OLS) = β̃1(OLS) − β̃1(OLS) I(F < Fα)

and (ii) β̂
SE

1(OLS) = β̃1(OLS) − c

√
σ̃ee√
SX0X0

β̃1(OLS)

|β̃1(OLS)|
,

where F =
SX0X0 β̃

2
1(OLS)

σ̃ee
,

is the test statistics for testing H0 : β1 = 0 against the alternative
HA : β1 �= 0 and Fα is the upper α-level critical value of the F -
statistic. The distributional results follow from the fact that

β̃1(OLS) ∼ N
(
β1,

σee

SX0X0

)
and

SX0X0 β̃
2
1(OLS)

σ̃ee
∼ F1,m(�2), (m = n− 2)

where F1,m(�2) is a non-central F -distribution with (1, m) degree of
freedom and non-centrality parameter 1

2�2 where �2 is defined by

�2 =
SX0X0β

2
1

σee
.

The power function of this test is given by

1 −G1,m(Fα;�2) ≥ α = 1 −G1,m(Fα; 0).

This test is unbiased and most powerful for H0 : β1 = 0. Note that
Gν1,ν2(x;�2) stands for the c.d.f. of the non-central F -distribution with
(ν1, ν2) d.f. and non-centrality parameter 1

2�2 with the c.d.f.

Gν1,ν2(x;�2)
∑
r≥0

e−
�2

2 (�
2

2 )r

Γ (r + 1)
Iy

(ν1

2
+ r :

ν2

2

)
,

where y = ν1x
ν2+ν1x and

Iy

(ν1

2
+ r :

ν2

2

)
=

1

B(ν1
2 + r : ν2

2 )

∫ y

0
x

ν1
2

+r−1(1 − x)
ν2
2
−1dx

is the incomplete Beta function . These results may be found in Ahsan-
ullah and Saleh (1972), Ahmed and Saleh (1988) and Kim and Saleh
(2002) among others.
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Now we consider the finite population and related estimation of
T as described in the introduction. Then we consider the generalized
regression predictors (GREP) of the form

T̂G = NȲ0s + (N − n)(X̄0r − X̄0s)β̃1(G)

where β̃1(G) is any general estimator of β1 and X̄0r = 1
N−n

∑
t∈rX0t.

The predictor T̂G has been shown to be the best unbiased predictor
(BUP) of T under normal theory in Bolfarine and Zacks (1991). Thus
we may define four predictors of T when β1 may equal zero (≈ 0) as
follow:

(i) unrestricted predictor (UP)

T̂UP
OLS = NȲ0s + (N − n)(X̄0r − X̄0s)β̃1(OLS),

(ii) restricted predictor (RP)

T̂RP
OLS = NȲ0s,

(iii) preliminary test predictor (PTP)

T̂PTP
OLS = NȲ0s + (N − n)(X̄0r − X̄0s)β̂

PT

1(OLS),

and
(iv) shrinkage predictor (SP)

T̂SP
OLS = NȲ0s + (N − n)(X̄0r − X̄0s)β̂

SE

1(OLS) .

In order to calculate the bias and the MSE expressions of the above
estimators we use the following identities:

(i) T̂UP
OLS − T = (N − n)[(X̄0r − X̄0s)(β̃1(OLS) − β1) + (ēs − ēr)]

(ii) T̂RP
OLS − T = (N − n)[(X̄0r − X̄0s)β1 + (ēs − ēr)]

(iii) T̂PTP
OLS − T = (N − n)[(X̄0r − X̄0s)(β̂

PT

1(OLS) − β1) + (ēs − ēr)]

and

(iv) T̂SP
OLS − T = (N − n)[(X̄0r − X̄0s)(β̂

SE

1(OLS) − β1) + (ēs − ēr)],

respectively.
The bias and MSE expressions may be obtained as given below.

First, the bias expressions:



Prediction of Finite Population Total in Measurement Error Models 83

(i) b1(T̂
UP
OLS) = 0, (3)

(ii) b2(T̂
RP
OLS) = (N − n)(X̄0r − X̄0s)β1

(iii) b3(T̂
PTP
OLS ) = −(N − n)β1(X̄0r − X̄0s)G3,m

(1

3
Fα;�2

)
, m = n− 2

and

(iv) b4(T̂
SP
OLS) = −c(N − n)

√
σeeKn

{
2Φ(�2) − 1

}√
K(X).

Similarly, the MSE expressions are given by

(i) M1(T̂
UP
OLS) = N

1

f
(1 − f)σee[1 +Nf(1 − f)K(X)]

(ii) M2(T̂
RP
OLS) = N

1 − f

f
σee + (N − n)2σeeK(X)�2

= N
1 − f

f
σee

[
1 +Nf(1 − f)K(X)�2

]
(iii) M3(T̂

PTP
OLS ) = M1(T̂

UP
OLS) − σeeN

2(1 − f)2K(X)

×
{
G3,m

(1

3
Fα;�2

)
−�2

[
2G3,m

(1

3
Fα;�2

)
−G5,m

(1

5
Fα;�2

)]}
and

(iv) M4(T̂
SP
OLS) = M1(T̂

UP
OLS) − σeeN

2(1 − f)2K(X)
2

π
K2

n

×
{

2e−�2/2 − 1
}

where Fα is the upper α- level critical value from the central F -

distribution with (1,m) d.f with �2 =
β2

1σee

SXX
, f = n

N , Kn =√
2

n−2

Γ ( n−1
2

)

Γ ( n−2
2

)
and K(X) = (X̄0r−X̄0s)2

SX0X0
.

Now we compare the four estimators based on their MSE expressions.

(A) T̂RP
OLS versus T̂UP

OLS

In this case, the relative efficiency of T̂RP
OLS compared to T̂UP

OLS is given
by,

E(T̂RP
OLS : T̂UP

OLS) =
[
N

1 − f

f

(
1 +Nf(1 − f)K(X)

)]
×
[N
f

+N2(1 − f)2K(X)�2
]−1

=
[
1 +Nf(1 − f)K(X)

][
1 +Nf(1 − f)K(X)�2

]−1
.

First note that the efficiency is a decreasing function of �2. The max-
imum occurs as �2 = 0, i.e. β1 = 0, with the value
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(1 − f)

{
1 +Nf(1 − f)K(X)

}]
.

Then, it decreases crossing the 1-line at �2 = 1, then converges to zero
as �2 → ∞. Thus, T̂RP

OLS is better than T̂UP
OLS in the range 0 ≤ �2 ≤ 1

and beyond this range T̂UP
OLS is better than T̂RP

OLS .

(B) T̂PTP
OLS versus T̂UP

OLS
In this case, the relative efficiency is given by

E(T̂PTP
OLS : T̂UP

OLS) =
[
1 +Nf(1 − f)K(X)(1 +Nf(1 − f)K(X))−1

×
{
�2

(
2G3,m

(1

3
Fα;�2

)
−G5,m

(1

5
Fα;�2

))
−G3,m

(1

3
Fα;�2

)}]−1
.

Note that E(T̂PTP
OLS : T̂UP

OLS) is a function of (α,�) and for fixed α (0 <
α < 1) it decreases crossing the 1-line to a minimum, then increases
towards the 1-line as �2 tends to infinity. Further, �2-intercept is given
by

(i) E(T̂PTP
OLS : T̂UP

OLS)
≥
< 1 according as

�2 ≤
>

G3,m(1
3Fα;�2)

2G3,m(1
3Fα;�2) −G5,m(1

5Fα;�2)
= KS(α,�2)(≤ 1).

Hence T̂PTP
OLS performs better than T̂UP

OLS if �2 ≤ KS(α : �2), otherwise

T̂UP
OLS performs better.

(ii) Maximum efficiency for fixed α is attained for �2 = 0 and equals{
1 − Nf(1 − f)K(X)

1 +Nf(1 − f)K(X)
G3,m

(1

3
Fα; 0

)}−1

(4)

and as �2 → ∞, the efficiency goes to unity.
(iii) PTP can not be uniformly better that T̂UP

OLS but one may deter-
mine a PTP with minimum guaranteed efficiency, say, E0 by choosing
an optimum level of significance α∗ by the maxmin rule

max
α

min
�2

E(α : �2) ≥ E0.

The efficiency may go up to (4) if β1 is near the origin.

(iv) As α → 1, T̂PTP
OLS → T̂UP

OLS . Figure 1 displays one graph of the

efficiency of T̂PTP
OLS relative to T̂UP

OLS when n = 8, α = 0.15, K(X) = 3
and Nf(1 − f) = 4.
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(C) T̂PTP
OLS versus T̂RP

OLS
In this case, the efficiency expression is given by

E[T̂PTP
OLS : T̂RP

OLS ] = E[T̂RP
OLS : T̂UP

OLS ]−1
[
1 − g(�2)

M1(T̂UP
OLS)

]−1

where

g(�2) = σee

{
N2(1 − f)2K(X)G3,m

(1

3
Fα;�2

)
−�2

[
2G3,m

(1

3
Fα;�2

)
−G5,m

(1

5
Fα;�2

)]}
.

Here the efficiency is a function of (α,�2). For �2 = 0, the efficiency
reduces to{

(1 − f) +Nf(1 − f)2K(X)
}−1{

1 − Nf(1 − f)K(X)

1 +Nf(1 − f)K(X)

×G3,m

(1

3
Fα; 0

)}−1

and as �2 → ∞ the efficiency blows up. Also, under H0 : β1 = 0 the
MSE satisfies the following dominance picture.
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M2(T̂
RP
OLS) < M3(T̂

PTP
OLS ) < M1(T̂

UP
OLS).

The relationship changes as �2 diverts from 0 as

M2(T̂
UP
OLS) < M3(T̂

PTP
OLS ) < M1(T̂

RP
OLS)

beyond the intersection of M1(T̂
UP
OLS) and M3(T̂

PTP
OLS ) depending on the

size of the test.

(D) T̂SP
OLS versus T̂UP

OLS
In this case, the efficiency expression is given by

E[T̂SP
OLS : T̂UP

OLS ] =
{

1 − 2Nf(1 − f)K(X)K2
n(2e−�2/2 − 1)

π[1 +Nf(1 − f)K(X)]

}−1
.

The efficiency is a decreasing function of �2 with a maximum value{
1 − 2Nf(1 − f)K(X)

π[1 +Nf(1 − f)K(X)]

}−1 ≥ 1 (5)

at �2 = 0 while as �2 → ∞, the efficiency reduces to{
1 +

2Nf(1 − f)K(X)

π[1 +Nf(1 − f)K(X)]

}−1
(≤ 1) (6)

giving a lower bound of the efficiency. Thus efficiency drops from (5)
to (6) as �2 continues to grow from 0 to ∞. The efficiency function

intersects the 1-line at �2 = ln 4. Thus, T̂SP
OLS is better than T̂UP

OLS in

the interval 0 ≤ �2 ≤ ln 4 while T̂UP
OLS is better than T̂SP

OLS otherwise.
For more comparisons, see Saleh (2006, Chapter 3).

3 Prediction of Population Total With Measurement

Error

In this section, we consider that the population t-th unit is associated
with a pair (Yt, xt)

′ assumed to be satisfy the model

Y0t = β0 + β1xt + et (7)

X0t = xt + ut, t = 1, 2, · · · , N
where

(xt, et, ut)
′ ∼ N3{(µx, 0, 0)′; diag(σxx, σee, σuu)}
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for t = 1, 2, · · · , N . The pair (Y0t, xt)
′ is not observed directly instead

(Y0t, X0t)
′, t ∈ s is observed where s is the observed sample. Further,

it is assumed that the all X ′s, i.e., X01, · · · , X0N are available for the
population. Clearly, (Y0t, X0t) ∼ N (β0 + β1µx, Σ), where

Σ =

(
β2

1σxx + σuu β1σxx

β1σxx σxx + σuu

)
.

Thus the conditional distribution of Y0t given X0t is normally distrib-
uted with mean ν0 + ν1X0t and σzz, which we may write as

Y0t = ν0 + ν1X0t + Zt; t = 1, 2, · · · , N
Zt ∼ N(0, σzz),

σzz = σee + β2
1σxx(1 − κxx),

ν0 = β0 + β1µx(1 − κxx), ν1 = κxxβ1,

and κxx = σxx(σxx + σuu)−1 (reliability ratio).

The reliability ratio (r.r.) κxx is typically assumed to be known. Thus,
model exactly mimics the model described earlier where ν0 is a trans-
lation of β0 and ν1 is a scaled version of β1.

Consider a random sample of size n from the finite population. Let
{(Y0t, X0t)|t = 1, · · · , n} be the observed pairs satisfying (7). Our objec-
tive is to predict the population total T based on the sample. In terms of
the model (7) we write the expansion predictor as T̂ = nȲ0+(N−n)Ȳ0r

where Ȳ0s is the average of the observed responses where Ȳ0r is the av-
erage of the unobserved responses. Thus, conditionally, we propose the
four predictors defined by

T̂G = NȲ0s + (N − n)(X̄0r − X̄0s)ν̃1(G)

where ν̃1(G) is any estimator of ν1. However, the OLS of ν1 is given by

ν̃1(OLS) = S−1
X0X0

SX0Y0

with SX0X0 =
∑

t∈s(X0t − X̄0s)
2 and SX0Y0 =

∑
t∈s(X0t − X̄0s)(Y0t −

Ȳ0s). We also consider test-statistics for testing H0 : ν1 = 0 v.s. Ha :
ν1 �= 0 and use the conditional test

F =
SX0X0 ν̃1(OLS)

σ̃zz
, σ̃zz =

1

m

∑
{(Y0t − Ȳ0s) − ν̃1(OLS)(X0t − X̄0s)}2

with m = n− 2. Conditionally the distribution of F under H0 is



88 Hyang Mi Kim and A.K.Md. Ehsanes Saleh

SX0X0 ν̃
2
1(OLS)

σ̃zz

D
= F1,m(�∗2) m = n− 2,

where F1,m(�∗2) follows a non-central F -distribution with (1, m) de-
gree of freedom and non-centrality parameter 1

2�∗2 and �∗2 defined
by

�∗2 =
SX0X0β1

2κ2
xx

σzz

SX0X0β1
2κ2

xx

σee + β1
2σxx(1 − κxx)

=
SX0X0β1

2κ2
xx

σee + β2
1σuuκxx

=
�2κ2

xx

1 + β2
1δκxx

≤ �2 =
SX0X0β

2
1

σee
,

where δ = σuu

σee
. Thus, we may write the predictors T̂UP

OLS , T̂RP
OLS , T̂PTP

OLS

and T̂SP
OLS as

(i) T̂UP
OLS = NȲ0s + (N − n)(X̄0r − X̄0s)ν̃1(OLS)

(ii) T̂RP
OLS = NȲ0s

(iii) T̂PTP
OLS = NȲ0s + (N − n)(X̄0r − X̄0s)ν̃

PT
1(OLS)

and

(iv) T̂SP
OLS = NȲ0s + (N − n)(X̄0r − X̄0s)ν̃

SE
1(OLS),

respectively. The bias and the MSE expressions may be obtained using
the following expressions:

(i) T̂UP
OLS − T = (N − n)[(X̄0r − X̄0s)(ν̃1(OLS) − ν1) + (Z̄s − Z̄r)]

(ii) T̂RP
OLS − T = (N − n)[(X̄0r − X̄0s)ν1 + (Z̄s − Z̄r)]

(iii) T̂PTP
OLS − T = (N − n)[(X̄0r − X̄0s)(ν̃

PT
1(OLS) − ν1) + (Z̄s − Z̄r)]

and

(iv) T̂SP
OLS − T = (N − n)[(X̄0r − X̄0s)(ν̂

SE
1(OLS) − ν1) + (Z̄s − Z̄r)],

respectively.
Next, we compute the unconditional bias and MSE expressions for

the predictors. The conditional expressions are similar to the expression
given by (3) and (4) with some modifications. We thus present the
unconditional expression for bias and MSE’s. It is easy to see that

b1(T̂
UP
OLS) = b2(T̂

RP
OLS) = b3(T̂

PTP
OLS ) = b4(T̂

SP
OLS) = 0.

Consider the expressions for MSE’s. First, note that SX0X0σ
−1
X0X0

fol-
lows the chi-squared distribution with (n − 2) d.f. while Nf(1 −
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f)σ−1
X0X0

(X̄0r − X̄0s)
2 follows chi-squared distribution with one d.f. in-

dependent of SX0X0σ
−1
X0X0

. Therefore,{
1 +Nf(1 − f)E

[
(X̄r − X̄s)

2

SX0X0

]}
=
n− 2

n− 3
.

This yields the result

M1(T̂
UP
OLS) = N

1

f
(1 − f)

n− 2

n− 3
σzz,

while

M1(T̂
RP
OLS) = N

1

f

[
1 +

1

n− 3
�∗2

u

]
σzz, �∗2

u =
σX0X0β

2
1κ

2
xx

σzz
.

Hence, efficiency of T̂RP
OLS compared to T̂UP

OLS is

E∗(T̂RP
OLS : T̂RP

OLS) =
(n− 2

n− 3

)[
1 +

1

n− 3
�∗2

u

]−1
.

Under H0 : β1 = 0, the efficiency reduces to
(

n−2
n−3

)
(≥ 1) then increase

to zero, as �∗2
u increases crossing the 1-line. The crossing point on the

1-line is �∗2
u = 1. Thus, T̂RP

OLS is better than T̂UP
OLS in the range [0, 1)

and outside this range T̂UP
OLS is better than T̂RP

OLS .
Now we find that

M3(T̂
PTP
OLS ) = N

1

f
(1 − f)σzz

[n− 2

n− 3
−G

(2)
3,m

(1

3
Fα : �∗2

u

)
+�∗2

u

{
2G

(1)
3,m

(1

3
Fα : �∗2

u

)
−G

(1)
5,m

(1

5
Fα : �∗2

u

)}]
where

G
(j)
1+2i,m

( 1

1 + 2i
Fα : �∗2

u

)
=

∑
r≥0

2j−2Γ (n−1
2 + r + j − 2)(�∗2

u )r

Γ (r + 1)Γ (n−1
2 )(1 + �∗2

u )
n−1

2
+r+j−2

Iy

(1 + 2i

2
+ r :

m

2

)
,

j = 1, 2, y = Fα

n−1+Fα
and �∗2

u =
β2

1σXXκ2
xx

σzz
and G

(j)
1,m(x;�∗2

u ), j = 1, 2
is the unconditional cdf of the test statistic under HA.

Now we compare T̂PTP
OLS relative to T̂UP

OLS . The efficiency expression
is given by
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E∗(T̂PTP
OLS : T̂UP

OLS) =
[
1 +

n− 3

n− 2

{
�∗2

u

(
2G

(1)
3,m

(1

3
Fα : �∗2

u

)
−G(1)

5,m

(1

5
Fα : �∗2

u

))
−G

(2)
3,m

(1

3
Fα : �∗2

u

)}]−1
.

Note that E∗(T̂PTP
OLS : T̂UP

OLS) is a function of (α : �∗2
u ) and for fixed

α (0 < α < 1) it decreases crossing the 1-line to a minimum, then
increases towards the 1-line as �2 tends to infinity. Further,

(i) E∗(T̂PTP
OLS : T̂UP

OLS)
≥
< 1 according as

�∗2
u

≤
>

G
(2)
3,m(1

3Fα;�∗2
u )

2G
(1)
3,m(1

3Fα;�∗2
u ) −G

(1)
5,m(1

5Fα;�∗2
u )

= K∗
OLS(α : �∗2

u )(≤ 1).

Hence T̂PTP
OLS performs better than T̂UP

OLS if �∗2
u < K∗

OLS(α : �∗2
u ).

(ii) Maximum attainable efficiency for fixed α is attained for �∗2
u = 0

and equals {
1 − n− 3

n− 2
G

(2)
3,m

(1

3
Fα; 0

)}−1

and as �∗2
u → ∞, the efficiency goes to unity.

(iii) PTP can not be uniformly better that T̂UP
OLS but one may deter-

mine a PTP with minimum guaranteed efficiency, say, E0 by choosing
α∗ by the maximin rule

max
α

min
�∗2

u

E(α : �∗2
u ) ≥ E0.

The efficiency with this α∗ goes to (8) when ν1 is close to 0.

(iv) As α → 1, T̂PT
OLS → T̂UP

OLS .

Figure 2 displays the graphs of the efficiency of T̂PTP
OLS relative to T̂UP

OLS .
Table 1 provides the minimum (E∗

min) and maximum (E∗
max) relative

efficiency of using the PTP estimator relative to using UP estimator of
the slope parameter for varying values of α and �∗2

u -value at which the
minimum relative efficiency occur. To choose an optimum level of sig-
nificance α∗ for given fixed efficiency E∗ = E∗

0 (say), one goes through
the tabular values of efficiency and α, then choose α∗ corresponding the
closest efficiency to E∗

0 . This value α∗ guarantees the minimum value
of efficiency E∗ which may increase if H0 is true. For example, if the
experimenter wants to have an OLS predictor which has relative effi-
ciency no less than 0.9231, then using Table 1, one would use α∗ = 0.2
because it maximizes E∗(α, 0) and the maximum attainable relative
efficiency is 1.0717.
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Table 1. Maximum and minimum efficiency of PTP relative to UP of β1 for
various values of α when n = 8 and κ2

xx = 0.8

α 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Emax 1.1486 1.1155 1.0909 1.0717 1.0565 1.0442 1.0342 1.0262 1.0197 1.0145

Emin 0.7824 0.8563 0.8966 0.9231 0.9420 0.9561 0.9668 0.9752 0.9817 0.9867

�2
min 3.2157 2.5261 2.1900 1.9806 1.8348 1.7266 1.6429 1.5764 1.5227 1.4786

Now, we consider the MSE expressions for T̂SP
OLS given by

M4(T̂
SP
OLS) = N

1

f
(1 − f)σzz

[n− 2

n− 3

− 1

n− 3

2

π
K2

n

{ 2

(�∗2
u + 1)(n−1)/2−1

− 1
}]

where �∗2
u =

β2
1σX0X0

κ2
xx

σzz
. Then the unconditional efficiency expression

of T̂SP
OLS compared to T̂UP

OLS is given by

E∗(T̂SP
OLS : T̂UP

OLS) =
[
1 − 1

n− 2

2

π
K2

n

{ 2

(�∗2
u + 1)(n−1)/2−1

− 1
}]−1

.
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Note that the efficiency is a decreasing function of �∗2
u . In general,

E∗(T̂SP
OLS : T̂UP

OLS) decreases from
[
1 − 2

π
1

n−2K
2
n

]−1
at �∗2

u = 0 and

crosses the 1-line at �∗2
u =

n−3
2
√

2 − 1 then drops to the minimum

value
[
1 + 2

π
1

n−2K
2
n

]−1
(≤ 1) as �∗2

u → ∞. The loss of efficiency is

1−
[
1 + 2

πK
2
n

]−1
while the gain in efficiency is

[
1− 2

πK
2
n

]−1
. Thus, for

0 ≤ �∗2
u ≤

(
n−3

2
√

2 − 1
)
, T̂SP

OLS performs better than T̂UP
OLS , otherwise

T̂UP
OLS performs better outside this interval.
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1 Introduction

Let us consider 4×4 skew-symmetric matrices M which in general can
be written as

M =

⎛⎜⎜⎜⎜⎜⎜⎝
0 −a3 a2 b1

a3 0 −a1 b2

−a2 a1 0 b3

−b1 −b2 −b3 0

⎞⎟⎟⎟⎟⎟⎟⎠
with entries a1, a2, a3, b1, b2, b3 being real numbers.

These matrices have become important in robotics (see Selig (1996)
or Murray, Li and Sastry (1994)). Furthermore, when letting b1 = −a1,
b2 = −a2 and b3 = −a3, the matrix M + a0I4, where a0 is a real
scalar and In is the n × n identity matrix, can be used to define left
multiplication of quaternions (see Altmann (2003) or Groß , Trenkler
and Troschke (2001)).

Observe that M can be written in the partitioned form

M =

⎛⎝ Ta b

−b′ 0

⎞⎠ , (1)

where b = (b1, b2, b3)
′ and the 3 × 3 skew-symmetric matrix
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Ta =

⎛⎜⎜⎜⎝
0 −a3 a2

a3 0 −a1

−a2 a1 0

⎞⎟⎟⎟⎠ (2)

corresponds to the vector a = (a1, a2, a3)
′.

In the following we analyze the matrices given in (1) on the basis of
the facts concerning the matrix Ta, where use will be made of properties
of partitioned matrices.

2 The Vector Cross Product

It is well-known that the matrix Ta in (2) can be used to define the
vector cross product in R

3 (see Rao and Mitra (1969) or Room (1952)).
In fact

Tax = a × x

for any vector x from R
3. We report here some properties of Ta (see

e.g. Trenkler (1998) or Trenkler (2001)). For a,b ∈ R
3 we have:

(i) For α, β ∈ R it holds that Tαa+βb = αTa + βTb

(ii) Tab = −Tba
(iii) Ta = −T′

a

(iv) Taa = 0
(v) TaTb = ba′ − a′bI3

(vi) TaTaTa = −(a′a)Ta.

For an m× n matrix A the Moore-Penrose inverse (MP-inverse) of
A is the unique matrix A† simultaneously satisfying the conditions

AA†A = A, A†AA† = A†, (A†A)′ = A†A, (AA†)′ = AA†,

(see Ben-Israel and Greville (2003)). From (v) and (vi) it easily follows
that

(vii) T†
a = −(1/a′a)Ta, provided that a �= 0.
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3 Eigenvalues and Inverses of 4×4 Skew-symmetric

Matrices

As demonstrated in section 1, a 4 × 4 skew-symmetric matrix can be
written in the form

M =

⎛⎝ Ta b

−b′ 0

⎞⎠ (3)

for some vectors a,b ∈ R
3. Let us first calculate the determinant of M.

To avoid trivial cases we assume that a and b are different from the
zero vector.

Theorem 1. The determinant of the skew-symmetric matrix M given
in (3) is

det(M) = (a′b)2. (4)

Proof:

According to a well-known result concerning the determinant of bor-
dered matrices (see e.g. Meyer (2000, p. 485)) it follows that

det(M) = b′T#

ab,

where T#

a is the adjugate of Ta, i.e., the transpose of the matrix of
cofactors of Ta. Some straightforward calculations show that T#

a = aa′.
Hence det(M) = b′aa′b = (a′b)2.
This completes the proof.

Let us now proceed to the problem of determination of the eigen-
values of M.

Theorem 2. The characteristic polynomial of M is

PM(λ) = λ4 + λ2(a′a + b′b) + (a′b)2. (5)
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Proof:

The characteristic polynomial of M is

PM(λ) = det(M − λI4) = det

⎛⎝Ta − λI3 b

−b′ −λ

⎞⎠ .

If λ = 0, then PM(λ) = det(M) = (a′b)2. Suppose that λ �= 0. Then
Ta − λI3 is nonsingular and

(Ta − λI3)
−1 = − 1

a′a + λ2

(
Ta + λI3 +

1

λ
aa′

)
. (6)

By a well-known result concerning the determinant of bordered matri-
ces (see Meyer (2000, p. 475)) we obtain

det

⎛⎝Ta − λI3 b

b′ −λ

⎞⎠ = det(Ta − λI3)
(−λ+ b′(Ta − λI3)

−1b
)
.

Using (6) and the identity det(Ta−λI3) = −λ3−λa′a, after some easy
calculations we arrive at (5).
This completes the proof.

To obtain the eigenvalues of M, put λ2 = x. Then PM(λ) = 0 is
equivalent to the equation

x2 + x(a′a + b′b) + (a′b)2 = 0,

which has the two solutions

x1,2 = −a′a + b′b
2

±
√

(a′a)2 + (b′b)2 + 2(a′a)(b′b) − 4(a′b)2

2
.

Since x1 + x2 = −a′a − b′b and x1x2 = (a′b)2, by Vieta’s law, we see
that x1,2 ≤ 0. Thus the four eigenvalues λ1,2 = ±√

x1 and λ3,4 = ±√
x2

are purely imaginary which is clear since M is skew-symmetric.
As a side effect, using Gerschgorin’s Theorem (see Meyer (2000,

p. 498)) we find the inequality

‖a+b‖ ≤ max{|a2|+|a3|+|b1|, |a1|+|a3|+|b2|, |a1|+|a2|+|b3|, |b1|+|b2|+|b3|}
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for orthogonal vectors a and b. Here ‖ · ‖ denotes the common Euclid-
ean norm. Setting a = (1,−1, 0)′ and b = (1, 1, 1)′ one sees that this
upper bound can be sharper than ‖a‖ + ‖b‖, known from the triangle
inequality.

Let us now proceed to the determination of the inverse or the MP-
inverse of M, depending on the determinant of M. For this purpose we
introduce the following quantities (see Meyer (1972)):

k = T†
ab =

1

a′a
T′

ab = − 1

a′a
Tab,

h = (T†
a)

′(−b) = T†
ab = k,

ω1 = 1 + k′k = 1 +

(
1

a′a

)2

b′TaT
′
ab = 1 +

(a′a)(b′b) − (a′b)2

(a′a)2
,

ω2 = 1 + h′h = ω1,

β = −(−b′)T†
ab = 0 (since T†

a is skew-symmetric),

u = (I3 − TaT
†
a)b = aa†b =

a′b
a′a

a,

v = (I3 − T†
aTa)(−b) = −u.

Case 1: det(M) �= 0.
Then by 4 we have a′b �= 0, and thus u �= 0. Since b does not belong
to the column space of Ta by a′b �= 0, we have rk(M) = rk(Ta) + 2
(see Meyer (1972)). On the other hand, the matrix Ta is of rank 2,
confirming the nonsingularity of M. By condition (i) of the Theorem
in Meyer (1972), we obtain

M−1 =

⎛⎝T†
a − ku† − v′†h′ v′†

u† 0

⎞⎠ . (7)

It is easy to check that

u† =
1

a′b
a′, ku† = − 1

(a′a)(a′b)
Taba′,

v′† = − 1

a′b
a, v′†h′ = − 1

(a′a)(a′b)
ab′Ta.

Using these expressions, from (7) it follows that
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M−1 =
1

a′b

⎛⎝ (a′b)T†
a +

1

a′a
(Taba′ + ab′Ta) −a

a′ 0

⎞⎠ .

Now for vectors f and g we have the rule (see Trenkler (2001)):

gf ′ − fg′ = TTfg. (8)

Using this we get

Taba′ + ab′Ta = Taba′ − ab′T′
a = (a′b)Ta − (a′a)Tb,

and M−1 becomes

M−1 = − 1

a′b

⎛⎝ Tb a

−a′ 0

⎞⎠ .

This result is not surprising since the adjugate of M is

M# = −a′b

⎛⎝ Tb a

−a′ 0

⎞⎠ ,

and hence M−1 = M#/ det(M).

Case 2: det(M) = 0.

Then again k = − 1
a′a

Tab = h, but ω1 simplifies to ω1 = ω2 = 1 + b′b
a′a

.
Furthermore we obtain u = 0 and v = 0. Since a′b = 0, we have
b ∈ N(a′) = R(Ta), where N(·) and R(·) denote the null space and
the column space of a matrix, respectively. Consequently, case (iii) of
the Theorem in Meyer (1972) applies. It follows that

M† =
1

ω1

⎛⎝ω1T
†
a − hh′T†

a − T†
ahh′ T†

ah

h′T†
a 0

⎞⎠ .

Straightforward calculations yield M† in the somewhat simpler form

M† =
1

ω1

⎛⎜⎝ω1T
†
a +

(
1

a′a

)2

[Tabb′ + bb′Ta] − 1

a′a
b

1

a′a
b′ 0

⎞⎟⎠ .
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Using again rule (8) it turns out that Tabb′ + bb′Ta = b′bTa, which
leads to

M† = − 1

a′a + b′b

⎛⎝ Ta b

−b′ 0

⎞⎠ .

This shows the remarkable fact that the MP-inverse of M is a scalar
multiple of itself, sharing this property with Ta.

Furthermore we get

MM† =
1

ω1

⎛⎝ω1TaT
†
a − hh′ h

h′ h′h

⎞⎠
= − 1

a′a + b′b

⎛⎝T2
a − bb′ Tab

−b′Ta −b′b

⎞⎠ .

Observe that since M is normal we can state that M†M = MM†.
It is interesting to note that a simple generalized inverse of M is

given by

M− =

⎛⎝ T†
a a

−a′ 0

⎞⎠ .

The condition MM−M = M can easily be shown.
To summarize our preceding results we get

Theorem 3.

(i) If a′b �= 0, M is nonsingular, and its inverse is

M−1 = − 1

a′b

⎛⎝ Tb a

−a′ 0

⎞⎠ .
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(ii) If a′b = 0, M is singular, and its MP-inverse is

M† = − 1

a′a + b′b

⎛⎝ Ta b

−b′ 0

⎞⎠ ,

and a generalized inverse of M is

M− =

⎛⎝ T†
a a

−a′ 0

⎞⎠ .

4 The Cayley Transform

Finally let us pay some attention to the Cayley transform of M. In
general, the Cayley transform of an n× n matrix A is given as

C(A) = (In + A)−1(In − A),

provided In +A is nonsingular. Observe that by the identity In −A =
2In − (In + A) we can write

C(A) = 2(In + A)−1 − In.

Since the eigenvalues of M are purely imaginary, sharing this prop-
erty with any skew-symmetric matrix, it is clear that I4 + M is non-
singular. Hence

C(M) = 2(I4 + M)−1 − I4. (9)

To determine C(M) in dependence of Ta and b, we have to get an
expression for (I4 + M)−1. For I + M we obtain

I4 + M =

⎛⎝Ta + I3 b

−b′ 1

⎞⎠ ,

whose upper left matrix T = Ta + I3 is nonsingular. By (6) it follows
that

T−1 =
1

1 + a′a
(−Ta + I3 + aa′) .

Let s = 1 + b′T−1b = (1 + a′a + b′b + (a′b)2)/(1 + a′a) be the
Schur complement of T in I4 + M. Then by a well-known formula for
the inverse of a partitioned matrix (see Meyer (2000, p. 123)) we obtain
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(I4 + M)−1 =
1

s

⎛⎝sT−1 − T−1bb′T−1 −T−1b

b′T−1 1

⎞⎠ .

Using the representation (9), we finally arrive at

C(M) =

⎛⎜⎜⎝C(Ta) − 2

s
T−1bb′T−1 −2

s
T−1b

2

s
b′T−1 2

s
− 1

⎞⎟⎟⎠ ,

where

C(Ta) = 2(I3 − Ta)
−1 − I3 =

1

1 + a′a
(−2Ta + 2aa′ + (1 − a′a)I3)

is the Cayley transform of Ta. Clearly, C(M) is an orthogonal matrix.
Let us finally have a look at the Rodrigues’ formula . For the matrix

Ta it states that (see Murray, Li and Sastry (1994, p. 28))

exp[Ta] = I3 +
sin θ

θ
Ta +

1 − cos θ

θ2 T2
a,

where θ =
√

a′a. Similarly, when a′b = 0 we obtain

exp[M] = I4 +
sin ε

ε
M +

1 − cos ε

ε2
M2,

where ε =
√

a′a + b′b. This follows from the identity M3 = −ε2M (see
Theorem 3, (ii)).

5 Concluding Remark

Starting point of the preceding investigations was the paper by Pryce
(1969), where, for instance, the determinant of M was given. Special
attention was paid there to the Cayley transform of M, where however,
its entries were not given completely and the chosen approach was
somewhat complicated.
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1 Introduction

Prediction is an important aspect of decision-making process through
statistical methodology. Linear regression modeling plays an important
role in the prediction of an unknown value of study variable correspond-
ing to a known value of explanatory variable. Usually, when the least
square estimators are used to construct the predictors, they yield the
best linear unbiased predictors provided the data recorded on variables
is measured without any error. In practice, many applications fail to
meet the assumption of error free observations due to various reasons.
For example, due to indirect measurements, practical difficulties, qual-
itative variables and proxy measurements etc., the measurement error
is induced in the data. The usual statistical tools in the context of lin-
ear regression analysis like ordinary least squares method then yields
biased and inconsistent estimators, see Cheng and Van Ness (1999),
Fuller (1987) for more details. Consequently, the predictors obtained
through these estimators also then become invalid. Construction of
good predictors for measurement error-ridden data and study of their
performance properties under measurement error models is attempted
in this article.

The problem of prediction in the presence of measurement errors in
the data has been considered in the literature in various contexts, see
e.g., Ganse, Amemiya, and Fuller (1983), Reilman and Gunst (1986),
Schaalje and Butts (1993), Buonaccorsi (1995), Huwang and Hwang
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(2002), Nummi and Möttönen (2004). Traditionally, the predictions
are obtained either for the average value or the actual value of study
variable but not for both simultaneously. In many applications, it may
be imperative to obtain both of them simultaneously. For example,
suppose a pharmaceutical firm develops a new medicine for pain relief,
which claims to increase the number of hours of pain relief. The firm’s
interest lies in knowing the average number of hours for which the pain
is relived after using the medicine. On the other hand, the patient,
who is the user of medicine, would be more interested in knowing the
actual increase in the number of hours of pain relief. Here the interest
of the firm lies in the prediction of average number of pain relief hours
whereas patient’s interest lies in the actual number of pain relief hours.
The query of only one of the persons can be answered with the classical
approach of prediction. In order to protect the interest of both, we need
to construct a framework which provides the prediction of average and
actual values of study variable simultaneously. Shalabh (1995) pro-
posed a target function which enables to predict the actual and average
values of study variable simultaneously, see also, Rao, Toutenburg, Sha-
labh and Heumann (2008), Dube and Manocha (2002), Chaturvedi,
Wan and Singh (2002), Toutenburg and Shalabh (1996), Toutenburg
and Shalabh (2000), Toutenburg and Shalabh (2002) for the applica-
tion of target function under different set ups.

In general, the measurement errors are assumed to follow a normal
distribution. When measurement errors do not necessarily follow a nor-
mal distribution, the statistical inferences do not remain valid. Fuller
(1987) and Cheng and Van Ness (1999) have discussed the prediction
in measurement error model with the assumption of jointly normal
distribution of observations as well as measurement errors. Also, if the
true value of variable is not normally distributed, then the introduction
of normal measurement error will destroy the linearity of the relation
between observations (Kendall and Stuart (1967, p. 48)). Shalabh
(1995) studied the issues related with the simultaneous prediction with
not necessarily normally distributed errors under an unreplicated ultra-
structural model with known variances of measurement errors. Thus,
the assumption of normal distribution of measurement errors may be-
come a cause of misleading inference and which may be violated easily
in practice. What is the effect of departure from normality of measure-
ment errors on the predictive properties of the predictors is an issue
which is addressed in this article.

We have considered an ultrastructural model with replicated ob-
servations. The availability of replicated observations is utilized to es-
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timate the measurement error variances and then used to obtain the
consistent estimators of regression coefficient. Thus obtained estimators
are then used to construct the predictors. The asymptotic properties
of these predictors are derived under an ultrastructural model when
measurement errors are not necessarily normally distributed.

The organization of this article is as follows. In next Section 2, we
discuss the model and the target function of prediction. The predictors
are constructed and discussed in Section 3. In Section 4, we derive
and analyze the large sample asymptotic performance properties of the
predictors in within and outside sample prediction cases. A Monte-
Carlo simulation experiment is conducted to study the performance
properties of the predictors in finite sample and its findings are reported
in Section 5. Some concluding remarks are given in Section 6. The
derivations of the results are given in Section 7.

2 The Model and the Target Function

Let the n observations on true values of explanatory variable Xi and
study variable Yi are linearly related as

Yi = α+ βXi , (i = 1, 2, . . . , n) (1)

where α is the intercept term and β is the slope parameter. Due to the
presence of measurement errors in the observations, we can not observe
true Xi and Yi. Instead, we observe r replicated observations on Xi and
Yi as xij and yij , respectively as

xij = Xi + vij (2)

yij = Yi + uij , (j = 1, 2, . . . , r) (3)

where vij and uij are the measurement errors associated with xij and
yij , respectively.

Further we assume that Xi has a distribution with mean mi, so we
can express

Xi = mi + wi (4)

where wi is the random error component associated with Xi. This com-
pletes the specification of an ultrastructural model which encompasses
the functional and structural forms of measurement error models as its
particular cases, see Dolby (1976).

The error terms uij , vij and wi are assumed to be statistically inde-
pendent of each other and with the true values of variables. The mea-
surement errors uij ’s are assumed to be independent and identically
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distributed with mean 0, variance σ2
u, third central moment γ1uσ

3
u and

fourth central moment (γ2u + 3)σ4
u where γ1. and γ2. are the Pearson’s

coefficients of skewness and kurtosis of distributions of errors appear-
ing in the subscript. Similarly, vij ’s are assumed to be independent and
identically distributed with mean 0, variance σ2

v, third central moment
γ1vσ

3
v and fourth central moment (γ2v + 3)σ4

v. The random error com-
ponents wi’s are assumed to be independent and identically distributed
with mean 0, variance σ2

w along with third and fourth central moments
γ1wσ

3
w and (γ2w + 3)σ4

w, respectively.
Traditionally, the predictions are obtained either for the actual value

of the study variable (y) or for the average value of the study variable
(E(y)) but not for both simultaneously. A target function, proposed
by Shalabh (1995), which provides a framework for the simultaneous
prediction of y and E(y) is given as,

P = λy + (1 − λ)E(y) ; 0 ≤ λ ≤ 1 (5)

where λ is a nonstochastic scalar which determines the weight to be
assigned to the actual value prediction, see also Rao, Toutenburg, Sha-
labh and Heumann (2008). When λ = 0, the target function provides
the average value prediction and when λ = 1, the target function pro-
vides the actual value prediction. For any other choice of λ between
0 and 1, it provides the simultaneous prediction of actual and average
values with weight λ. The choice of weight is governed by considerations
like the nature of the problem, social considerations and the preference
of the practitioner.

3 Construction of Predictors

We now consider the construction of predictors for within and outside
sample predictions.

3.1 Within Sample Prediction

We can have two types of predictions for the kth true value of study
variable in within sample under the replicated ultrastructural model.

Prediction of (k, j)th Observation of Study Variable

Suppose we are interested in predicting the jth replicate of kth true
value of study variable when the corresponding value of explanatory
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variable is known and lies within the sample. Let ykj and E(ykj) be the
actual and average values of study variable to be predicted. Then the
target function is

Pw = λykj + (1 − λ)E(ykj) ; 0 ≤ λ ≤ 1 . (6)

The natural linear predictor in this case is

ŷkj = ȳ + β(xkj − x̄) (7)

where xkj is the jth observation on kth true value of explana-
tory variable, x̄ and ȳ are the sample means of explanatory and
study variables, respectively. The slope parameter β is unknown
and this restricts the use of this predictor. Further, the direct and
reverse regression estimators of β arising by the use of (xij , yij)
(i = 1, 2, . . . , n; j = 1, 2, . . . , r) are b1 = Sxy/Sxx and b2 =
Syy/Sxy, respectively which are inconsistent in the presence of
measurement errors where Sxy = 1

nr

∑n
i=1

∑r
j=1 (xij − x̄) (yij − ȳ),

Sxx = 1
nr

∑n
i=1

∑r
j=1 (xij − x̄)2, Syy = 1

nr

∑n
i=1

∑r
j=1 (yij − ȳ)2, x̄ =

1
n

∑n
i=1

∑r
j=1 xij and ȳ = 1

n

∑n
i=1

∑r
j=1 yij . If we replace β by b1 and

b2, then the resulting predictor will not be useful. Another alterna-
tive strategy is to estimate the measurement error variances σ2

u and σ2
v

using the replicated observations and adjust b1 and b2 for their inconsis-
tency. The respective resulting asymptotically unbiased and consistent
estimators of β are

β̂1 =
Sxy

Sxx − σ̂2
v

; Sxx > σ̂2
v

=
(r − 1)Sxy

rBxx − Sxx
(8)

and

β̂2 =
Syy − σ̂2

u

Sxy
; Syy > σ̂2

u

=
rByy − Syy

(r − 1)Sxy
, (9)

respectively, where σ̂2
v = r

r−1 (Sxx −Bxx), σ̂2
u = r

r−1(Syy −Byy), Bxx =
1
n

∑n
i=1 (x̄i − x̄)2, Byy = 1

n

∑n
i=1(ȳi − ȳ)2, x̄i = 1

r

∑r
j xij and ȳi =

1
r

∑r
j=1 yij .

Now, replacing β by its consistent estimators β̂1 and β̂2 in (7) pro-
vides the following predictors for within sample prediction,
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P1wD = ȳ + β̂1(xkj − x̄) (10)

and
P1wR = ȳ + β̂2(xkj − x̄), (11)

respectively.

Prediction of Average of r Replicates

Suppose the information on explanatory variable is available in the
form of average taken over r replications and we want to predict the
corresponding value of study variable which is an average based on
r replications. Such situations may occur frequently in many applica-
tions. For example, let us consider a case of poultry farm with n sheds
of poultry and each shed with r chickens. The chickens are fed with
some particular type of feed and the experimenter is interested in pre-
dicting their gain in weight. Here it is very difficult to know the exact
amount of food which a particular chicken has consumed whereas it is
easier to know that how much, on an average, a chicken has consumed.
Here the chickens in the kth shed are getting on an average x̄k amount
of food daily where x̄k = 1

r

∑r
j=1 xkj . It makes more sense to predict

the gain in weight in the chickens of the kth shed in such cases. Then
we have the following linear predictor,

ˆ̄yk = ȳ + β(x̄k − x̄). (12)

When β is unknown, then (12) can not be used as the predictor. So
we replace β by its consistent estimators.

Use of ȳi and x̄i (i = 1, 2, . . . , n) for the direct and reverse regression
procedures yield the estimators b3 = Bxy/Bxx and b4 = Byy/Bxy,
respectively as an estimator of β where Bxy = 1

n

∑n
i=1 (x̄i − x̄) (ȳi − ȳ).

Both b3 and b4 are inconsistent for β in the presence of measurement
errors. So an adjustment for their inconsistency gives the following
asymptotically unbiased and consistent estimators

β̂3 =
Bxy

Bxx − σ̂2
v

r

; Bxx >
σ̂2

v

r

=
(r − 1)Bxy

rBxx − Sxx
(13)

and
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β̂4 =
Byy − σ̂2

u

r

Bxy
; Byy >

σ̂2
u

r

=
rByy − Syy

(r − 1)Bxy
, (14)

respectively. Replacing β in (12) by β̂3 and β̂4, we obtain the following
predictors

P2wD = ȳ + β̂3(x̄k − x̄) (15)

and
P2wR = ȳ + β̂4(x̄k − x̄), (16)

respectively. The corresponding target function in this case is given by

P ∗
w = λȳk + (1 − λ)E(ȳk) ; 0 ≤ λ ≤ 1. (17)

3.2 Outside Sample Prediction

We assume that beside a sample of n observations, some additional
observations on explanatory variable are available but the correspond-
ing values on study variable are not known. Here we assume that the
additional observations are independent of the existing sample observa-
tions. Further, we assume that the additional observations also satisfy
the underlying model (1)-(4).

Prediction of (f, j)th Value Outside the Sample

Let xfj be the value of explanatory variable, which lies outside the
sample and is independent of given n sample units and let yfj be the
corresponding value of study variable, which is to be predicted. The
target function in such a case can be formulated as:

Po = λyfj + (1 − λ)E(yfj) ; 0 ≤ λ ≤ 1 (18)

and the natural linear predictor for outside sample prediction in this
case is

ŷfj = ȳ + β(xfj − x̄) (19)

where β is unknown. We propose to replace β by its consistent esti-
mators β̂1 and β̂2, which provides the following predictors for outside
sample prediction:

P1oD = ȳ + β̂1(xfj − x̄) (20)

and
P1oR = ȳ + β̂2(xfj − x̄), (21)

respectively.
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Prediction of Average of r Replicates Outside the Sample

Let us suppose that the additional information on explanatory variable
is in the form of average taken over r replicates, which are independent
and outside the existing sample values. The corresponding value of
study variable is not known and is to be predicted. We assume that
this additional observations satisfy the underlying model (1)-(4). Let
x̄f be the known value of on explanatory variable from outside the
sample and we wish to predict the corresponding value ȳf of study
variable. Then the target function in this case can be written as

P ∗
o = λȳf + (1 − λ)E(ȳf ) ; 0 ≤ λ ≤ 1 (22)

and the linear predictor in this case is given by

ˆ̄yf = ȳ + β(x̄f − x̄). (23)

Now we replace the unknown β by its consistent estimator β̂3 and β̂4,
which yield the following predictors:

P2oD = ȳ + β̂3(x̄f − x̄) (24)

and
P2oR = ȳ + β̂4(x̄f − x̄), (25)

respectively.

4 Efficiency Properties of Predictors

The exact expression of predictive bias and predictive mean squared
error of the proposed predictors are difficult to derive even when the
errors are distributed normally. The situation becomes more compli-
cated when the errors are distributed non-normally and the variables
have repeated observations. We, therefore, use the large sample as-
ymptotic approximation theory to derive the efficiency properties of
the predictors. We assume that Smm = 1

n

∑n
i=1(mi − m̄)2 tends to a

finite limit as n grows large. This assumption is needed for the applica-
tion of large sample asymptotic approximation theory and rules out the
possibility of any trend in the explanatory variables, see Schneeweiss
(1982), Schneeweiss (1991). Further, we assume that n grows large
while r remains fixed.

Let

d =
σ2

w

Smm + σ2
w

; 0 ≤ d ≤ 1,
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θ =
σ2

v

Smm + σ2
w + σ2

v

; 0 ≤ θ < 1,

and

q =
σ2

u

β2σ2
v

; q ≥ 0.

These quantities help in determining the nature of measurement er-
ror models. In case of functional form of the measurement error model,
all Xi’s are fixed and so wi = 0 for all i = 1, 2, . . . , n. Consequently,
σ2

w = 0 and this implies d = 0. Similarly, in the case of structural
model, all mi’s are same and thus Smm = 0. This implies d = 1. Thus d
serves as a measure of departure of ultrastructural model from its two
forms, viz., the functional form and the structural form. When there
is no measurement errors in the explanatory variables, then σ2

v = 0.
This gives that θ = 0 and then the ultrastructural model reduces to
the classical regression model. Hence, a non-zero value of θ serves as
a measure of departure of ultrastructural model from the classical re-
gression model, see also Srivastava and Shalabh (1997a), Srivastava
and Shalabh (1997b).

Now, we present the asymptotic efficiency properties of the pre-
dictors arising from the application of direct regression and reverse
regression in the following Theorems.

Theorem 1. The predictive bias (PB) and predictive mean squared er-
ror (PM) of direct regression predictor in within sample prediction up
to order O(n−1) are given by

PB(P1wD) = E(P1wD − Pw)

=
βθ(mk − m̄)

nr(1 − θ)

[
2 +

2θ

(r − 1)(1 − θ)

]
(26)

PB(P2wD) = E(P2wD − P ∗
w) = PB(P1wD) (27)

PM(P1wD) = E(P1wD − Pw)2

= β2σ2
v

[
1 + qλ2 +

d(1 − λ)2

θ(1 − θ)

]
+

β2σ2
v

nr(1 − θ)

[
q {(1 − θ) − 2λ(1 + d)} − (1 + θ) − 2d

(1 − θ)

−θ
{

2(1 + λq) − θ

(1 − θ)

{
q +

2

(r − 1)

+
(1 − θ)(1 + q)

θ

}}
(mk − m̄)2

σ2
v

− 2θ(mk − m̄)γ1v

σv

]
(28)
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PM(P2wD) = E(P2wD − P ∗
w)2

=
β2σ2

v

r

[
1 + qλ2 +

d(1 − λ)2

θ(1 − θ)

]
+
β2σ2

v

nr
[(1 − 2λ(1 + d))q

−1 − 2θ

r(1 − θ)

(
1 + λq +

dr

θ(1 − θ)

)
− θ

(1 − θ)

{
2(1 + λq) − θ

(1 − θ)

(
q

r
+

2

r − 1

+
(1 − θ)(1 + q)

θ

)}
(mk − m̄)2

σ2
v

− 2θ(mk − m̄)γ1v

r(1 − θ)σv

]
.

(29)

The proof of this Theorem is outlined in Section 7.
From (26) and (27), we observe that both the predictors P1wD and

P2wD are positively biased if mk − m̄ > 0, and negatively biased if
mk − m̄ < 0 for β > 0 up to the order of approximation O(n−1).
Both exhibit equal magnitude of bias and no influence of skewness and
kurtosis of distribution of measurement errors as well as random error
component is observed on the predictive bias of the predictors. The
difference in the predictive bias and the effect of skewness and kurtosis
of error terms distributions may precipitate if we consider higher order
approximation.

The predictive mean squared errors of both the predictors P1wD and
P2wD are affected by the skewness of measurement errors distribution
associated with explanatory variable. There is no influence of skewness
of distributions of ui’s and wi’s. Also, there is no influence of kurtosis
of distribution of any of the error terms in the predictive mean squared
error of the predictors at least up to the order of approximation. It may
be observed that if we consider the higher order approximation, then
this may precipitate.

Theorem 2. The predictive bias (PB) and predictive mean squared er-
ror (PM) of reverse regression predictors up to order O(n−1) in within
sample prediction are given by

PB(P1wR) = E(P1wR − Pw)

=
(mk − m̄)

nr

qθβ(3θ − 2)

(1 − θ)2
(30)

PB(P2wR) = E(P2wR − P ∗
w)

=
(mk − m̄)

nr2

qθβ[θ − 2r(1 − θ)]

(1 − θ)2
(31)
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PM(P1wR) = E(P1wR − Pw)2

= β2σ2
v

[
1 + qλ2 +

d(1 − λ)2

θ(1 − θ)

]
+
β2σ2

v

nr

[{
1 − 2λ

(
1 + d− θ

(1 − θ)

)}
q − 1

− θ

(1 − θ)

{
2 (1 + (1 + q)(1 − λ))

d

θ(1 − θ)
+ 2q

−(mk − m̄)2

σ2
v

{
2(1 + λq) − θ

(1 − θ)

(
q +

2q2

(r − 1)

+
(1 − θ)(1 + q)

θ

)}}
− 2θ(mk − m̄)γ1v

(1 − θ)σv

]
(32)

PM(P2wR) = E(P2wR − P ∗
w)2

=
β2σ2

v

r

[
1 + qλ2 +

rd(1 − λ)2

θ(1 − θ)

]
+
β2σ2

v

nr

[{
1 − 2λ

(
1 + d− θ

r(1 − θ)

)}
q − 1

− θ

(1 − θ)

{
2 (1 + (1 + q)(1 − λ))

d

θ(1 − θ)
+

2q

r

+
(mk − m̄)2

σ2
v

{
2(1 + λq) − θ

1 − θ

(
q

r
+

2q2

(r − 1)

+
(1 − θ)(1 + q)

θ

)}}
− 2θ(mk − m̄)γ1v

r(1 − θ)σv

]
. (33)

The proof of this Theorem is outlined in Section 7.
We observe from expression (30) and (31) that the magnitude of

predictive bias of P2wR is smaller than the magnitude of predictive
bias of P1wR. The nature of predictive bias of P1wR will be positive
for (mk − m̄) > 0 and β > 0 if θ > 2/3. The predictor P2wR becomes
positively biased for (mk − m̄) > 0 and β > 0, if θ > 2r/(2r + 1).
No influence of skewness and kurtosis of distribution of any of the
measurement error terms in the bias of the predictors is observed up to
the order of approximation. It may precipitate when we consider the
higher order approximation.

The predictive mean squared error of both the predictors P1wR and
P2wR is affected by the skewness of distribution of measurement errors
associated with explanatory variable. No effect of skewness of distribu-
tions of uij ’s and wi’s and effect of kurtosis of distribution of any of the
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error terms is observed at least up to the order of approximation. When
we consider the higher order approximation, the effect of skewness and
kurtosis of other error distributions may precipitate.

Theorem 3. The predictive bias (PB) and predictive mean squared er-
ror (PM) of direct regression predictor in outside sample prediction up
to order O(n−1) are given by

PB(P1oD) = E(P1oD − Po)

=
βθ(mf − m̄)

nr(1 − θ)

[
3 +

2θ

(r − 1)(1 − θ)

]
(34)

PB(P2oD) = E(P2oD − P ∗
o ) = PB(P1oD) (35)

PM(P1oD) = E(P1oD − Po)
2

= β2σ2
v

[
1 + qλ2 +

d(1 − λ)2

θ(1 − θ)

]
+
β2σ2

v

nr
[q + 1

+
2θ

(1 − θ)

{
3 +

2θ

(1 − θ)(r − 1)

}(
1 +

d(1 − λ)

θ(1 − θ)

)
+

θ2

(1 − θ)2

(
(mf − m̄)2

σ2
v

+ 1 +
d

θ(1 − θ)

)
×

{
q +

2

(r − 1)
+

(1 − θ)(1 + q)

θ

}]
(36)

PM(P2oD) = E(P2oD − P ∗
o )2

=
β2σ2

v

r

[
1 + qλ2 +

rd(1 − λ)2

θ(1 − θ)

]
+
β2σ2

v

nr
[q + 1

+
2θ

(1 − θ)

(
3 +

2θ

(1 − θ)(r − 1)

)(
1

r
+

(1 − λ)d

θ(1 − θ)

)
+

θ2

(1 − θ)2

(
(mf − m̄)2

σ2
v

+
1

r
+

d

θ(1 − θ)

)
×

{
q

r
+

2

(r − 1)
+

(1 − θ)(1 + q)

θ

}]
.

(37)

The proof of this Theorem is outlined in the Section 7.
From (34) and (35), we observe that the predictive bias of both

the predictors P1oD and P2oD are equal, at least up to the order of
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approximation O(n−1). Both of them are positively biased if mf −m̄ >
0, and negatively biased if mf − m̄ < 0 for β > 0. We do not observe
any effect of skewness and kurtosis of the distribution of measurement
errors and random error distributions towards the bias of predictors at
least up to the order of approximation.

Again, we consider the predictive mean squared error of the direct
regression predictors P1oD and P2oD. The effect of skewness as well as
kurtosis of any of the error term distributions is not observed, at least
up to O(n−1) of approximation.

Theorem 4. The predictive bias (PB) and predictive mean squared er-
ror (PM) of reverse regression predictors up to order O(n−1) in outside
sample prediction are given by

PB(P1oR) = E(P1oR − Po)

=
θβ(mf − m̄)

nr(1 − θ)

[
(1 − 2q) +

qθ

(1 − θ)

]
(38)

PB(P2oR) = E(P2oR − P ∗
o )

=
θβ(mf − m̄)

nr(1 − θ)

[
(1 − 2q) +

qθ

r(1 − θ)

]
(39)

PM(P1oR) = E(P1oR − Po)
2

= β2σ2
v

[
1 + qλ2 +

d(1 − λ)2

θ(1 − θ)

]
+
β2σ2

v

nr

[
1 + q +

θ

(1 − θ)

{
d

θ(1 − θ)
{(1 + q)

+2(1 − λ)(1 − 2q) +
qθ

(1 − θ)

(
3 − 2λ+

2q

r − 1

)}
+3(1 − q) +

qθ

(1 − θ)

(
3 +

2q

r − 1

)
+

(mf − m̄)2

σ2
v(1 − θ)

(
1 + q +

qθ

(1 − θ)

(
1 +

2q

(r − 1)

))}]
(40)
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PM(P2oR) = E(P2oR − P ∗
o )2

=
β2σ2

v

r

[
1 + qλ2 +

rd(1 − λ)2

θ(1 − θ)

]
+
β2σ2

v

nr

[
q + 1 +

d

(1 − θ)2
{1 + q + 2(1 − λ)(1 − 2q)

+
qθ

(1 − θ)

(
(3 − 2λ)

r
+

2q

r − 1

)
}

+
1

r

{
3(1 − q) +

qθ

(1 − θ)

(
3

r
+

2q

r − 1

)}
+

(mf − m̄)2

σ2
v

{
1 + q +

qθ

(1 − θ)

(
1

r
+

2q

r − 1

)}]
. (41)

The proof of this Theorem is outlined in Section 7.
From (38) and (39), we observe that the predictive bias of P2oR is

smaller than that of P1oR . The predictor P1oR is negatively biased
when θ < 2/3 for (mf − m̄) > 0 and β > 0 whereas P2oR is negatively
biased when θ < 2r/(2r + 1) for (mf − m̄) > 0 and β > 0. The
magnitude of bias of both of the predictors depend on the difference
between sample mean (m̄) and mean of the additional observations
(m̄f ) on explanatory variable. It indicates that the predictors will have
large magnitude of bias if the additional observation is far away from
the mean of existing sample. We do not observe any effect of skewness
and kurtosis of distribution of measurement errors as well as random
error components towards the bias of the predictors at least up to the
order of approximation. Such effect may precipitate if we consider the
higher order approximation.

We see that the PM’s of P1oR and P2oR are affected by the skew-
ness of distribution of vij ’s. No role of skewness of distribution of other
error terms is observed in the variability of predictors up to the order
of approximation. Also, there is no effect of kurtosis of any of the dis-
tribution of error terms in the PM of the predictors, at least up to the
order of approximation.

Further, we observe from (28) and (30) that P1wR is better than
P1wD when

(mk − m̄)2

σ2
v

[
(2θ − 1)q +

2

(r − 1)

{
θ − (1 − θ)q2

}
+ (1 − θ)(2θ − 1)(1 + q)] ≥ 2(1 + q)

[
θ − d(1 − λ)

(1 − θ)

]
−2λ [d− 1 − θ + q(1 + d)(1 − θ)] . (42)
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The reverse holds true with a reversed inequality sign. Also, it is ob-
served from (29) and (33) that P2wR is better than P2wD when

(mk − m̄)2

σ2
v

[
(1 + qλ)(1 − θ)

θ
− θ(1 − q2)

(1 − θ)(r − 1)

]
≤ (1 + q)

r
+
d(1 + q)(1 − λ)

θ(1 − θ)
. (43)

The reverse holds true with a reversed inequality sign. Similar condi-
tions can also be derived for the superiority of other predictors in other
cases also.

5 Monte-Carlo Simulation Study

The large sample properties of the predictors give an idea when the
sample size is large. To study the performance of the predictors in
finite samples, we conducted a Monte-Carlo simulation experiment. The
design and procedure of the simulation experiment is as follows:

• We considered two samples of sizes 15 (small sample) and 43 (large
sample) to provide the value of mi’s for which Smm = 0.23.

• Random error component wi’s are generated from normal distribu-
tion with standard deviation 0.1. Since we are mainly interested in
knowing the effect of non-normality of measurement errors distrib-
utions on the predictive behavior of the predictors, so without loss
of generality, we prefer to fix the distribution of wi’s to be normal
with mean 0 and standard deviation 0.1..

• The measurement errors uij ’s and vij ’s are generated from nor-
mal, central t, and gamma distributions with mean 0 and dif-
ferent combinations of standard deviations σu = 0.1, 0.2, 0.3 and
σv = 0.1, 0.5, 0.7.

• The other chosen values are α = 1, β = 0.3, mk = 1.87, mf = 5, r=
4, n = 15 and 43.

• The value of λ are chosen between 0 and 1 at an interval of 0.1.

The empirical predictive bias (EPB) and empirical predictive mean
squared error (EPM) of predictors are calculated based on 5000 iter-
ations under respective target functions for selected values of λ. Only
some of the results of the experiments are presented in Tables 1-8 to
economize the space.
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Table 1. Empirical predictive bias (EPB) and empirical predictive mean
squared error (EPM) of predictors in within sample prediction through direct
regression predictors with σu = 0.1, σv = 0.1, σw = 0.1

n=15 n=43

P1wD P2wD P1wD P2wD

λ EPB EPM EPB EPM EPB EPM EPB EPM

Normal 0.1 0.0101 0.0024 0.0098 0.0017 0.0095 0.0020 0.0090 0.0013

0.3 0.0285 0.0030 0.0283 0.0022 0.0282 0.0027 0.0276 0.0019

0.5 0.0469 0.0044 0.0468 0.0035 0.0468 0.0041 0.0461 0.0032

0.7 0.0653 0.0065 0.0654 0.0055 0.0655 0.0063 0.0647 0.0052

0.9 0.0837 0.0094 0.0839 0.0081 0.0841 0.0092 0.0832 0.0079

t 0.1 0.0093 0.0024 0.0099 0.0017 0.0095 0.0020 0.0096 0.0014

0.3 0.0278 0.0029 0.0285 0.0022 0.0280 0.0027 0.0281 0.0020

0.5 0.0464 0.0043 0.0471 0.0035 0.0465 0.0041 0.0465 0.0032

0.7 0.0649 0.0064 0.0657 0.0055 0.0650 0.0063 0.0650 0.0052

0.9 0.0834 0.0093 0.0843 0.0082 0.0835 0.0092 0.0835 0.0080

Gamma 0.1 0.0095 0.0023 0.0095 0.0017 0.0096 0.0020 0.0093 0.0013

0.3 0.0282 0.0029 0.0282 0.0022 0.0283 0.0026 0.0278 0.0019

0.5 0.0470 0.0042 0.0468 0.0035 0.0469 0.0040 0.0463 0.0032

0.7 0.0657 0.0063 0.0655 0.0055 0.0655 0.0061 0.0648 0.0051

0.9 0.0845 0.0091 0.0841 0.0082 0.0842 0.0089 0.0833 0.0079

Now, we analyze the results of simulation experiment. Some out-
comes are true in general for all the predictors regarding their EPB
and EPM. The magnitude of EPB and EPM of the predictors decrease
as sample size increases. The values of EPB and EPM of same predic-
tor are different under different types of distributions of measurement
errors. It confirms the role of skewness and kurtosis of the error terms
distributions on the EPB and EPM. The results which are specific to
any predictor are stated later.

First we consider the EPB and EPM of P1wD and P2wD from Tables
1 and 2. From the tabulated results, we observe that the magnitude of
EPB of P2wD is generally smaller than that of P1wD. The difference
between their EPB decreases as λ increases. Also, the magnitude of
EPB is increasing with the increase in the value of λ. It means that the
magnitude of EPB for average value prediction is smaller than the cor-
responding EPB of actual value prediction. When standard deviations
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Table 2. Empirical predictive bias (EPB) and empirical predictive mean
squared error (EPM) of predictors in within sample prediction through direct
regression predictors with σu = 0.3, σv = 0.7, σw = 0.1

n=15 n=43

P1wD P2wD P1wD P2wD

λ EPB EPM EPB EPM EPB EPM EPB EPM

Normal 0.1 0.1359 8.6343 0.1576 2.7603 0.0241 0.3204 0.0309 0.0321

0.3 0.1542 8.6357 0.1762 2.7656 0.0424 0.3215 0.0494 0.0333

0.5 0.1725 8.6384 0.1948 2.7717 0.0606 0.3239 0.0679 0.0353

0.7 0.1908 8.6425 0.2134 2.7786 0.0789 0.3276 0.0863 0.0382

0.9 0.2091 8.6480 0.2320 2.7865 0.0971 0.3327 0.1048 0.0420

t 0.1 0.2022 86.4926 0.1608 5.1580 0.0347 0.2376 0.0318 0.0864

0.3 0.2208 86.4988 0.1795 5.1640 0.0535 0.2395 0.0503 0.0877

0.5 0.2395 86.5064 0.1982 5.1710 0.0723 0.2428 0.0689 0.0898

0.7 0.2582 86.5153 0.2169 5.1787 0.0911 0.2474 0.0875 0.0928

0.9 0.2769 86.5256 0.2356 5.1874 0.1099 0.2534 0.1060 0.0966

Gamma 0.1 0.1169 8.2360 0.1152 3.3173 0.0364 0.1589 0.0312 0.0764

0.3 0.1354 8.2414 0.1338 3.3216 0.0549 0.1610 0.0498 0.0776

0.5 0.1538 8.2481 0.1523 3.3268 0.0734 0.1644 0.0685 0.0798

0.7 0.1723 8.2561 0.1709 3.3328 0.0919 0.1693 0.0871 0.0827

0.9 0.1908 8.2655 0.1895 3.3397 0.1104 0.1756 0.1057 0.0865

of measurement errors are lower, than P2wD has generally lower bias
than P1wD but reverse is true when standard deviations of measurement
errors are higher. The effect of non-normality of measurement errors
on the EPB of predictors is more distinct when standard deviations of
measurement errors become large. Now, we analyze the EPM of P1wD

and P2wD. We observe that the predictor P2wD has smaller EPM than
P1wD in all experimental settings. When we increase σv while keep-
ing σu and σw fixed at 0.1, the EPM of both the predictors increases.
The rate of increase in EPM is higher in small sample cases than in
large sample cases. When we fix σv and σw at 0.1 and increase σu only,
then we do not observe any significant changes in the EPM of both the
predictors. Again, when we increase σu and σv both simultaneously,
then we observe an increase in the EPM of both the predictors. The
highest change in the EPM of both the predictors is observed under
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Table 3. Empirical predictive bias (EPB) and empirical predictive mean
squared error (EPM) of predictors in within sample prediction through direct
regression predictors with σu = 0.1, σv = 0.1, σw = 0.1

n=15 n=43

P1oD P2oD P1oD P2oD

λ EPB EPM EPB EPM EPB EPM EPB EPM

Normal 0.1 0.0041 0.0207 0.0045 0.0190 0.0032 0.0084 0.0024 0.0073

0.3 0.0042 0.0213 0.0046 0.0189 0.0034 0.0088 0.0025 0.0072

0.5 0.0042 0.0227 0.0047 0.0190 0.0037 0.0101 0.0026 0.0074

0.7 0.0043 0.0251 0.0047 0.0195 0.0039 0.0123 0.0027 0.0078

0.9 0.0043 0.0283 0.0048 0.0202 0.0041 0.0154 0.0028 0.0085

t 0.1 0.0032 0.0216 0.0036 0.0199 0.0014 0.0084 0.0011 0.0073

0.3 0.0039 0.0225 0.0038 0.0199 0.0012 0.0094 0.0009 0.0073

0.5 0.0045 0.0248 0.0039 0.0204 0.0010 0.0117 0.0007 0.0077

0.7 0.0052 0.0285 0.0041 0.0212 0.0009 0.0153 0.0005 0.0084

0.9 0.0059 0.0335 0.0043 0.0224 0.0007 0.0202 0.0002 0.0096

Gamma 0.1 0.0020 0.0188 0.0017 0.0179 0.0030 0.0083 0.0028 0.0072

0.3 0.0021 0.0192 0.0018 0.0178 0.0027 0.0087 0.0028 0.0071

0.5 0.0021 0.0202 0.0019 0.018 0.0025 0.0101 0.0029 0.0073

0.7 0.0021 0.0219 0.0020 0.0184 0.0022 0.0122 0.0029 0.0076

0.9 0.0022 0.0244 0.0022 0.0191 0.0020 0.0151 0.0030 0.0082

t-distributed measurement errors, particularly in small samples when
standard deviations of measurement errors are high.

Next we analyze the EPB and EPM of the direct regression pre-
dictors in outside sample prediction cases from Tables 3 and 4. The
magnitude of EPB of P2oD is smaller than the magnitude of EPB of
P1oD. As the standard deviation of measurement errors increases, the
magnitude of EPB of both the predictors increases. The magnitude of
EPB for average and actual value predictions are very close under the
same experimental settings. The EPB is positive in most of the cases.
In general, the EPB of P1oD and P2oD increases as λ increases except
in case of P1oD in large samples with gamma distributed measurement
errors when standard deviations of measurement errors are quite small.
Now we analyze the EPM of the predictors P1oD and P2oD. As we in-
crease σv while keeping σu and σw fixed at 0.1, we observe an increase
in the EPM of both the predictors. This increment rate is higher in
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Table 4. Empirical predictive bias (EPB) and empirical predictive mean
squared error (EPM) of predictors in within sample prediction through direct
regression predictors with σu = 0.3, σv = 0.7, σw = 0.1

n=15 n=43

P1oD P2oD P1oD P2oD

λ EPB EPM EPB EPM EPB EPM EPB EPM

Normal 0.1 0.9405 87.8417 1.0372 85.3772 0.1978 1.0677 0.1767 0.5826

0.3 0.9415 87.8395 1.0380 85.3897 0.1977 1.0738 0.1766 0.5842

0.5 0.9425 87.8446 1.0388 85.4040 0.1977 1.0870 0.1764 0.5876

0.7 0.9435 87.8568 1.0397 85.4202 0.1976 1.1072 0.1763 0.5929

0.9 0.9445 87.8763 1.0405 85.4382 0.1975 1.1345 0.1761 0.6001

t 0.1 2.1212 1446.51 1.7906 693.818 0.2004 2.6302 0.1888 1.1968

0.3 2.1210 1446.52 1.7908 693.847 0.2009 2.6369 0.1882 1.1998

0.5 2.1207 1446.55 1.7911 693.878 0.2014 2.6532 0.1876 1.2052

0.7 2.1205 1446.58 1.7913 693.913 0.202 2.6791 0.1869 1.2130

0.9 2.1203 1446.63 1.7915 693.950 0.2025 2.7146 0.1863 1.2233

Gamma 0.1 0.8787 92.9530 0.8871 52.7379 0.1751 1.5097 0.1785 1.1196

0.3 0.8790 92.9709 0.8873 52.7480 0.1762 1.5167 0.1791 1.1223

0.5 0.8793 92.9959 0.8876 52.7601 0.1773 1.5297 0.1797 1.1267

0.7 0.8797 93.0280 0.8879 52.7741 0.1784 1.5488 0.1802 1.1329

0.9 0.8800 93.0673 0.8881 52.7900 0.1794 1.5739 0.1808 1.1408

small sample than in large sample. Next, when we increase σu keeping
σv and σw fixed at 0.1, then there is little change in the EPM of P1oD

and P2oD in small sample. No significant change in large sample is ob-
served. Again when we increase σv and σu together, the EPM of both
the predictors increases. In general, the EPMs are significantly affected
when sample size is small and standard deviations of measurement er-
rors are high. The highest EPM of both predictors is observed under
t-distributed measurement errors.

Next, we consider the EPB and EPM of P1wR and P2wR under
various experimental settings from Tables 5 and 6. We observe that
the magnitude of EPB of P2wR is smaller than the magnitude of EPB
of P1wR except in the case of normally distributed measurement errors
in small sample with high standard deviations of measurement errors.
The EPB and EPM of both the predictors increases as the value of λ
increases. The EPB of actual value prediction is higher than average
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Table 5. Empirical predictive bias (EPB) and empirical predictive mean
squared error (EPM) of predictors in within sample prediction through direct
regression predictors with σu = 0.1, σv = 0.1, σw = 0.1

n=15 n=43

P1wR P2wR P1wR P2wR

λ EPB EPM EPB EPM EPB EPM EPB EPM

Normal 0.1 0.0052 0.0024 0.0049 0.0017 0.0075 0.0020 0.0070 0.0014

0.3 0.0237 0.0028 0.0235 0.0021 0.0261 0.0026 0.0255 0.0019

0.5 0.0421 0.0040 0.0420 0.0032 0.0447 0.0039 0.0441 0.0031

0.7 0.0605 0.0060 0.0605 0.0050 0.0634 0.0060 0.0626 0.0050

0.9 0.0789 0.0087 0.0790 0.0075 0.0820 0.0089 0.0812 0.0076

t 0.1 0.0051 0.0024 0.0054 0.0018 0.0075 0.0021 0.0075 0.0014

0.3 0.0236 0.0029 0.0240 0.0022 0.0260 0.0026 0.0260 0.0019

0.5 0.0421 0.0041 0.0426 0.0033 0.0445 0.0040 0.0445 0.0031

0.7 0.0607 0.0060 0.0612 0.0051 0.0630 0.0061 0.0629 0.0051

0.9 0.0792 0.0088 0.0798 0.0076 0.0815 0.0089 0.0814 0.0077

Gamma 0.1 0.0049 0.0119 0.0051 0.0115 0.0080 0.0020 0.0076 0.0013

0.3 0.0237 0.0123 0.0238 0.0119 0.0267 0.0026 0.0261 0.0019

0.5 0.0424 0.0135 0.0424 0.0131 0.0453 0.0039 0.0446 0.0031

0.7 0.0612 0.0155 0.0611 0.0149 0.0640 0.0060 0.0631 0.0050

0.9 0.0799 0.0181 0.0797 0.0175 0.0826 0.0088 0.0817 0.0077

value prediction. We observe that both the predictors have small EPM
for small values of σu, σv and σw. When we increase σv keeping σu

and σw fixed at 0.1, we observe small change in the EPM of both
the predictors. When we increase σu keeping σv and σw fix at 0.1, we
observe a small changes in the EPM of both the predictors. Again, when
we increase σv and σu simultaneously, we observe significant increase
in the EPM of both the predictors in small sample cases. The rate of
increment of EPM is higher in small sample cases than in large sample.
The EPM of both the predictors is much higher under t-distributed
measurement errors and small sample than in other distributions.

Next, we analyze the results for P1oR and P2oR from Tables 7 and
8. These predictors have nearly equal magnitude of EPB for average
and actual value prediction in most of the cases. Both predictors are
negatively biased for small values of σu, σv and σw. When σu, σv and σw

are high, than the sign of EPB changes except in case of t-distributed
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Table 6. Empirical predictive bias (EPB) and empirical predictive mean
squared error (EPM) of predictors in within sample prediction through direct
regression predictors with σu = 0.3, σv = 0.7, σw = 0.1

n=15 n=43

P1wR P2wR P1wR P2wR

λ EPB EPM EPB EPM EPB EPM EPB EPM

Normal 0.1 -0.0162 30.4082 0.0117 27.1988 0.0522 0.8669 0.0103 0.0472

0.3 0.0021 30.4091 0.0303 27.2008 0.0705 0.8698 0.0288 0.0478

0.5 0.0204 30.4113 0.0489 27.2036 0.0887 0.8739 0.0472 0.0493

0.7 0.0387 30.4149 0.0674 27.2073 0.1070 0.8794 0.0657 0.0516

0.9 0.0570 30.4199 0.0860 27.2119 0.1252 0.8862 0.0842 0.0548

t 0.1 0.2267 143.222 0.0642 7.4700 0.0643 20.0653 0.0049 0.0249

0.3 0.2454 143.226 0.0829 7.4734 0.0831 20.0715 0.0234 0.0254

0.5 0.2641 143.231 0.1016 7.4777 0.1019 20.0790 0.0420 0.0267

0.7 0.2827 143.238 0.1203 7.4829 0.1207 20.0879 0.0606 0.0290

0.9 0.3014 143.246 0.1389 7.4889 0.1395 20.0981 0.0791 0.0321

Gamma 0.1 0.0682 1.7113 0.0333 0.6958 0.0296 0.6129 0.0075 0.0606

0.3 0.0867 1.7155 0.0519 0.6973 0.0481 0.6148 0.0262 0.0611

0.5 0.1052 1.7211 0.0704 0.6996 0.0666 0.6182 0.0448 0.0625

0.7 0.1236 1.7279 0.0890 0.7027 0.0851 0.6229 0.0634 0.0648

0.9 0.1421 1.7361 0.1076 0.7067 0.1036 0.6291 0.0821 0.0679

measurement errors in small samples. The EPM of P1oR is larger than
that of P2oR. When we increase σv keeping σu and σw fixed at 0.1,
we observe an increase in the EPM of both the predictors. The rate
of increment in the EPM of both the predictors is higher in small
sample case than in large sample case. The effect of non-normality of
measurement errors on the EPM of these predictors is more significant
in small samples and when standard deviations of measurement errors
are high. In particular, the t-distributed measurement errors affect more
than normal and gamma distributed measurement errors. Again, when
we increase σu while fixing σv and σw at 0.1, we observe higher EPM of
both the predictors. When we increase σu and σv simultaneously and
keep fix σw = 0.1, then the EPM of both predictions increases. The
increment is higher in small sample cases than in large sample cases.
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Table 7. Empirical predictive bias (EPB) and empirical predictive mean
squared error (EPM) of predictors in within sample prediction through direct
regression predictors with σu = 0.1, σv = 0.1, σw = 0.1

n=15 n=43

P1oR P2oR P1oR P2oR

λ EPB EPM EPB EPM EPB EPM EPB EPM

Normal 0.1 -0.0276 0.0303 -0.0286 0.0291 -0.0076 0.0111 -0.0082 0.0101

0.3 -0.0275 0.0309 -0.0285 0.0290 -0.0073 0.0116 -0.0081 0.0099

0.5 -0.0275 0.0323 -0.0285 0.0291 -0.0071 0.0129 -0.0080 0.0101

0.7 -0.0274 0.0346 -0.0284 0.0295 -0.0068 0.0150 -0.0079 0.0105

0.9 -0.0273 0.0378 -0.0283 0.0302 -0.0066 0.0181 -0.0077 0.0112

t 0.1 -0.0293 0.0308 -0.0295 0.0291 -0.0073 0.0113 -0.0077 0.0101

0.3 -0.0287 0.0318 -0.0293 0.0292 -0.0074 0.0123 -0.0079 0.0101

0.5 -0.0280 0.0341 -0.0291 0.0296 -0.0076 0.0146 -0.0082 0.0105

0.7 -0.0273 0.0377 -0.0290 0.0304 -0.0077 0.0182 -0.0084 0.0112

0.9 -0.0267 0.0427 -0.0288 0.0316 -0.0079 0.0231 -0.0086 0.0124

Gamma 0.1 -0.0177 0.0244 -0.0190 0.0228 -0.0076 0.0112 -0.0076 0.0103

0.3 -0.0176 0.0246 -0.0189 0.0226 -0.0079 0.0116 -0.0075 0.0102

0.5 -0.0176 0.0262 -0.0187 0.0227 -0.0082 0.0129 -0.0075 0.0103

0.7 -0.0176 0.0271 -0.0186 0.0231 -0.0084 0.0150 -0.0074 0.0109

0.9 -0.0175 0.0295 -0.0185 0.0237 -0.0087 0.0179 -0.0074 0.0112

6 Concluding Remarks

We have used the availability of replicated observations to construct the
consistent estimators of regression coefficients in the presence of mea-
surement error in the data. Thus obtained estimators are then used
to construct the predictors for predicting the actual and average val-
ues of study variable simultaneously. The asymptotic properties of the
predictors are derived and analyzed under the specification of an ul-
trastructural model with not necessarily normally distributed measure-
ment errors using large sample asymptotic approximation theory. The
effect of departure from normality is clearly present in the predictive
properties of the predictors in terms of departure from symmetry and
peakedness of the distributions. The results from Monte-Carlo experi-
ment confirm such an outcome in the finite samples also. The degree of
departure in the values of predictive bias and predictive mean squared
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Table 8. Empirical predictive bias (EPB) and empirical predictive mean
squared error (EPM) of predictors in within sample prediction through direct
regression predictors with σu = 0.3, σv = 0.7, σw = 0.1

n=15 n=43

P1oR P2oR P1oR P2oR

λ EPB EPM EPB EPM EPB EPM EPB EPM

Normal 0.1 0.0917 362.763 0.3308 84.8731 0.2204 9.806 0.0289 1.1516

0.3 0.0927 362.78 0.3317 84.8757 0.2203 9.8138 0.0288 1.1533

0.5 0.0937 362.805 0.3325 84.8802 0.2202 9.8287 0.0286 1.1570

0.7 0.0947 362.837 0.3333 84.8865 0.2201 9.8507 0.0285 1.1625

0.9 0.0957 362.876 0.3342 84.8947 0.2200 9.8797 0.0283 1.1700

t 0.1 -0.5560 782.679 0.2224 240.014 0.1509 116.018 0.1360 46.4133

0.3 -0.5562 782.744 0.2226 240.028 0.1514 116.054 0.1354 46.4187

0.5 -0.5564 782.820 0.2228 240.054 0.1519 116.099 0.1348 46.4264

0.7 -0.5567 782.908 0.2231 240.065 0.1524 116.155 0.1341 46.4366

0.9 -0.5569 783.007 0.2234 240.100 0.1532 116.255 0.1332 46.4566

Gamma 0.1 0.2619 167.214 -0.1588 183.775 0.1684 16.9305 0.0634 2.6882

0.3 0.2622 167.234 -0.1585 183.772 0.1695 16.937 0.0640 2.6887

0.5 0.2625 167.244 -0.1582 183.772 0.1706 16.9496 0.0646 2.6910

0.7 0.2628 167.269 -0.1580 183.773 0.1717 16.9682 0.0652 2.6950

0.9 0.2631 167.302 -0.1577 183.776 0.1727 16.9929 0.0658 2.7008

error depend on the values of coefficients of skewness and kurtosis of the
respective distributions, sample size and measurement error variances.

7 Derivation of Results

Let

X = col.(X1, X2, . . . , Xn),

Y = col.(Y1, Y2, . . . , Yn),

u = col.(u11, . . . , u1r, u21, . . . , u2r, . . . , un1, . . . , unr),

v = col.(v11, . . . , v1r, v21, . . . , v2r, . . . , vn1, . . . , vnr),
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w = col.(w1, w2, . . . , wn),

m = col.(m1,m2, . . . ,mn),

x = col.(x11, . . . , x1r, x21, . . . , x2r, . . . , xn1, . . . , xnr),

y = col.(y11, . . . , y1r, y21, . . . , y2r, . . . , yn1, . . . , ynr),

ez = col.(1, 1, . . . , 1),

ln = col.(0, . . . , 1, . . . , 0),

lnr = col.(0, . . . , 1, . . . , 0)

where ez is a (z×1) column vector with each element unity, ln is a (n×1)
vector with 1 at ith place and 0 at all other places, (i = 1, 2, . . . , n),
and lnr is a (nr × 1) vector with 1 at (i× j)th place and 0 at all other
places, (j = 1, 2, . . . r), and pnr = ln ⊗ er where ⊗ is the Kronecker
product operator of matrices.

Then we can write wi = l
′

nw; vij = l
′

nrv ; uij = l
′

nru; v̄i = v′pnr/r
and ūi = u′pnr/r. Let

A = Inr − 1

nr
enre

′
nr,

B =
1

r

(
In ⊗ e′r −

1

n
ene

′
nr

)
,

C = In − 1

n
ene

′
n,

and

D =
1

r

(
In ⊗ ere

′
r −

1

n
enre

′
nr

)
.

We observe that BB′ = C/r, B′B = D/r,AD = D, and CB = B.
Also A, C and D are idempotent matrices with trA = nr − 1,

trC = n− 1 and trD = n− 1.
Further, we define the following quantities and each is of order of

Op(1):

Qu = e′nru√
nr

=
√
nū, Qv = e′nrv√

nr
=

√
nv̄, Qw = e′nw√

n
=

√
nw̄,

gxy =
1√
nσ2

v

{ 1

β
(m+ w)′Bu+ (m+ w)′Bv + 2m′Cw

+(w′Cw − nσ2
w)},

gxx =
1√
nσ2

v

{
2m′Cw + 2(m+ w)′Bv + (w′Cw − nσ2

w)
}
,

gyy =
1√
nσ2

v

{ 2

β
(m+ w)′Bu+ 2m′Cw + (w′Cw − nσ2

w)},
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txy =
1√

nrβσ2
v

v′Au , t∗xy =
1√

nrβσ2
v

u′Dv,

txx =
1√
nrσ2

v

(v′Av − nrσ2
v) , t∗xx =

1√
nrσ2

v

(v′Dv − nσ2
v),

tyy =
1√

nrβ2σ2
v

(u′Au− nrσ2
u) and t∗yy =

1√
nrβ2σ2

v

(u′Du− nσ2
u).

Now we can express,

Sxy =
1

nr

n∑
i=1

r∑
j=1

(xij − x̄)(yij − ȳ) = βσ2
v

[
(1 − θ)

θ
+

1√
n

(gxy + txy)

]
.

Similarly,

Sxx = σ2
v

[
1

θ
+

1√
n

(gxx + txx)

]
,

Syy = β2σ2
v

[
(1 − θ)

θ
+ q +

1√
n

(
gyy + tyy

)]
,

Bxy = βσ2
v

[
(1 − θ)

θ
+

1√
n

(
gxy + t∗xy

)]
,

Bxx = σ2
v

[
(1 − θ)

θ
+

1

r
+

1√
n

(gxx + t∗xx)

]
,

and

Byy = β2σ2
v

[
(1 − θ)

θ
+
q

r
+

1√
n

(
gyy + t∗yy

)]
.

Proof of Theorems:
Now, the estimation error of estimator of β̂1 can be expressed as,

β̂1 − β =
θβ√

n(1 − θ)

[
gxy + txy − gxx − r

r − 1
t∗xx +

1

r − 1
txx

]
×

[
1 +

θ√
n(1 − θ)

{
gxx +

r

r − 1
t∗xx − 1

r − 1
txx }

]−1

=
1√
n
η−1/2 +

1

n
η−1 +Op(n

−3/2)

where
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η−1/2 =
θβ

(1 − θ)

{
gxy + txy − gxx − r

r − 1
t∗xx +

1

r − 1
txx

}
,

η−1 = − βθ2

(1 − θ)2

(
gxx +

r

r − 1
t∗xx − 1

r − 1
txx

)
×

{
gxy + txy − gxx − r

r − 1
t∗xx − 1

r − 1
txx

}
.

Similarly, the estimation errors of β̂2, β̂3 and β̂4 can be expressed
as

β̂2 − β =
1√
n
ξ−1/2 +

1

n
ξ−1 +Op(n

−3/2),

β̂3 − β =
1√
n
φ−1/2 +

1

n
φ−1 +Op(n

−3/2),

β̂4 − β =
1√
n
ψ−1/2 +

1

n
ψ−1 +Op(n

−3/2),

where

ξ−1/2 =
θβ

(1 − θ)

[
gxy + t∗xy − gxx − r

r − 1
t∗xx +

1

r − 1
txx

]
,

ξ−1 = − θ2β

(1 − θ)2

[(
gxx +

r

r − 1
t∗xx − 1

r − 1
txx

)
×

{
gxy + t∗xy − gxx − r

r − 1
t∗xx +

1

r − 1
txx

}]
,

φ−1/2 =
θβ

(1 − θ)

(
gyy +

r

r − 1
t∗yy −

1

r − 1
tyy − gxy − txy

)
,

φ−1 = − θ2β

(1 − θ)2
(gxy + txy)

{
gyy +

r

r − 1
t∗yy

− 1

r − 1
tyy − gxy − txy

}
,

ψ−1/2 =
θβ

(1 − θ)

(
gyy +

r

r − 1
t∗yy −

1

r − 1
tyy − gxy − t∗xy

)
,

ψ−1 = − θ2β

(1 − θ)2
(
gxy + t∗xy

){
gyy +

r

r − 1
t∗yy

− 1

r − 1
tyy − gxy − t∗xy

}
.
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Then the prediction error of predictors P1wD, P2wD, P1wR and P2wR

in predicting the kth true value of study variable, when corresponding
value on explanatory variable is available, can be expressed as:

P̂ − P = (β̂ − β)(mk − m̄+ wk + vkj) − 1√
n

(β̂ − β)(Qv +Qw)

+
1√
n

(Qu − βQv) + β(1 − λ)wk + βvkj − λukj

where P̂ can be substituted with P1wD, P2wD, P1wR and P2wR with P
being the corresponding target function. Substituting the correspond-
ing expression of (β̂ − β), we can obtain different prediction errors.

Similarly, the prediction error of predictors with target function P̃o

in case of outside sample prediction is given by

P̂o − P̃o = (β̂ − β)(mf − m̄+ wf + vfj) − 1√
n

(β̂ − β)(Qv +Qw)

+
1√
n

(Qu − βQv) + β(1 − λ)wk + βvfj − λufj .

Substituting P̂o= P1oD, P2oD with corresponding P̃o = Po, P
∗
o and

β̂ = β̂1, β̂3, we can obtain the prediction errors of P1oD and P2oD.

Proof of Theorem 1
Now, the predictive bias of P1wD is given by

PB(P1wD) = E(P1wD − Pw)

= E
[
(mk − m̄)(β̂1 − β) + (β̂1 − β)(wk + vkj)

− 1√
n

(β̂1 − β)(Qw +Qv)

+
1√
n

(Qu − βQv) + β(1 − λ)wk + βvfj − λufj

]
(44)

and the predictive mean squared error of P1wD is given by:

E(P1wD − Pw)2 = E
[
(mk − m̄)(β̂1 − β) + (β̂1 − β)(wk + vkj)

− 1√
n

(β̂1 − β)(Qw +Qv)

+
1√
n

(Qu − βQv) + β(1 − λ)wk + βvfj − λufj

]2

.

(45)
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Similar expressions for the predictive bias and predictive mean
squared error of P2wD can also be derived. Utilizing the distributional
properties of of u, v, and w and following Srivastava and Tiwari (1976),
we can derive different Expectations of product of vectors and matrices.
Using them in (44) and (45), we derive the results stated in Theorem
1.

The results for Theorem 2, 3 and 4 can also be derived in the similar
way.
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1 Introduction

Diagnostic testing has traditionally been an important aspect of sta-
tistical modeling, but in recent years, sensitivity analysis has also been
drawing increasing attention from econometricians and statisticians.
Essentially, a diagnostic test ascertains if the model coincides with the
assumed data generating process, while sensitivity analysis investigates
if it matters at all that the model deviates from what is being assumed.
That is, sensitivity analysis answers the question of whether a wrong
model is still useful for certain purposes, and if so, it matters little
that the model may be incorrect. For example, Banerjee and Magnus
(1999) pointed out that the ordinary least squares (OLS) estimator of
the coefficients in a linear regression model is in fact not very sensitive
to disturbances’ deviation from the white noise assumption. Conse-
quently, it is quite usual to find the estimates of the parameters not
changing much after fitting the model with a more general covariance
structure. However, the F and t tests based on the OLS residuals are
sensitive to covariance misspecification in the sense that a small step-
ping away from white noise disturbances is likely to cause a substantial
distortion in the significance levels of the tests (Banerjee and Magnus
(2000)).

In addition to the above mentioned work, Magnus and Vasnev
(2007) showed that for many problems encountered in practice, di-



136 Huaizhen Qin, Alan T.K. Wan and Guohua Zou

agnostic testing and sensitivity analysis are in fact independent as-
ymptotically. In other words, diagnostic test results do not necessarily
provide insights into the sensitivity of the parameter estimates. Seen in
this light it becomes important to have a set of tools that measure the
sensitivity of the estimates. Banerjee and Magnus (1999) and Banerjee
and Magnus (2000) introduced sensitivity statistics for measuring the
effects of possibly non-white noise disturbances on the OLS coefficient
and variance estimators and the usual F and t tests in a linear regres-
sion. Wan, Zou and Qin (2007) provided an analytic proof showing
that the coefficient and variance sensitivity statistics given in Banerjee
and Magnus (1999) are approximately uncorrelated in large samples,
and generalized Banerjee and Magnus’ (1999) work to the restricted
regression model allowing for possibly incorrect restrictions.

The current paper continues this line of research. We are concerned
with a linear regression with a possibly incorrect inequality restric-
tion (as opposed to strict equality restrictions as in Wan, Zou and Qin
(2007)) on the coefficients. In econometric applications inequality re-
strictions frequently arise on the parameters. Finite sample properties
of the inequality constraint least squares (ICLS) estimator have been
investigated by Thomson (1982), Judge and Yancey (1986), Wan
(1994a), Wan (1994b), among others. Judge and Yancey (1986), Wan
(1994a), Wan (1994b), Wan (1995) and Wan (1996) considered the
properties of the so-called inequality pre-test (IPT) estimator which
chooses between the inequality restricted and OLS estimators depend-
ing on the outcome of a one-sided t test. In this paper, we investigate
the sensitivity of the ICLS and IPT estimators to deviations of the
disturbances from the white noise assumption. In the spirit of Baner-
jee and Magnus (1999), we propose sensitivity measures on the ICLS
and IPT estimators to covariance misspecification and investigate the
properties of these measures allowing for both correctly and incorrectly
specified constraints.

The rest of this paper is organized as follows. Section 2 gives some
preliminary results and defines sensitivity statistics to measure the sen-
sitivity of the ICLS and IPT coefficient and variance estimators to
covariance misspecification. Section 3 emphasizes the case of AR(1)
disturbances and derives results concerning the limiting behavior of
the sensitivity statistics when the AR(1) parameter is near the unit-
root. Section 4 presents numerical findings on the sensitivity of the
estimators under a variety of AR(1) and MA(1) settings and Section 5
concludes. Proofs of theorems are contained in Appendix A.
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2 Definitions and Preliminary Results

The model under consideration is the classical full rank linear regression
model,

y = Xβ + u, u ∼ N(0, σ2Ω(θ)) (1)

where y and u are n × 1 vectors; X (n × k) is a non-stochastic ma-
trix of full column rank; β (k × 1) is a vector of unknown coefficients;
Ω(θ) (n × n) is a known1function of θ = (θ1, ..., θp)

′, positive-definite,
differentiable at least in a neighborhood of θ = 0 and equal to In when
θ = 0.

If θ is known, the familiar generalized least squares (GLS) es-

timators of β and σ2 are β̂(θ) = S−1(θ)X ′Ω−1(θ)y and σ̂2(θ) =

(y − Xβ̂(θ))′Ω−1(θ)(y − Xβ̂(θ))/(n − k) respectively, where S(θ) =
X ′Ω−1(θ)X. Sensitivity analysis in the context of (1) has been con-
cerned with the question of whether there is any real difference between
the OLS estimates (which assume θ = 0) and the GLS estimates when θ
is non-zero. If θ deviates from 0, but the GLS estimates are nevertheless
close to the corresponding OLS estimates, then the OLS estimator may
still be a useful tool for analysis in the face of a non-spherical error co-
variance structure. Indeed, Banerjee and Magnus (1999) showed that

β̂(θ) is not very sensitive to covariance misspecification even though
σ̂2(θ) can be sensitive. Furthermore, in the case of AR(1) errors, the
Durbin-Watson test only indicates the sensitivity of σ̂2(θ), but tells us

little about how sensitive β̂(θ) is to changes in the AR(1) parameter.
Banerjee and Magnus (1999) showed via a Monte-Carlo study that
the Durbin-Watson test statistic is approximately uncorrelated with
the sensitivity indicator of β̂(θ). Wan, Zou and Qin (2007) provided
some theoretical support for Banerjee and Magnus’ (1999) numerical
findings. Sensitivity analysis therefore matters, and “sensitivity statis-
tics” (as opposed to diagnostic test statistics) are needed to decide if
an estimate is sensitive to covariance misspecification.

In this paper we are concerned with the case where additional in-
formation is available in the form of a single inequality hypothesis
H0 : Rβ ≥ r, where R(1 × k) and r(1 × 1) are both known. Adding
the constraint Rβ ≥ r to (1) and estimating the model by the method
of least squares leads to the inequality constrained GLS (ICGLS) esti-
mators

1 The assumption of a known structure on Ω leads to no loss of generality here
given the purpose of the paper is to investigate if the estimates that incorrectly
assume θ = 0 are really different from the GLS estimates based on a correct error
covariance structure.
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¯̄β(θ) = I(−∞,r)

(
Rβ̂(θ)

)
β̄(θ) + I[r,∞)

(
Rβ̂(θ)

)
β̂(θ) (2)

and
¯̄σ2(θ) = I(−∞,r)

(
Rβ̂(θ)

)
σ̄2(θ) + I[r,∞)

(
Rβ̂(θ)

)
σ̂2(θ) (3)

of β and σ2 respectively, where I(.)(.) is an indicator function which
equals 1 if the event inside the bracket occurs and 0 otherwise, and
β̄(θ) = β̂(θ) + S−1(θ)R′(RS−1(θ)R′)−1(r − Rβ̂(θ)) and σ̄2(θ) = (y −
Xβ̄(θ))′Ω−1(θ)(y − Xβ̄(θ))/(n − k + 1) are the equality constrained
GLS (ECGLS) estimators which make use of the exact prior constraint
Rβ = r. If the inequality restriction Rβ ≥ r is redundant the ICGLS
estimator is the corresponding GLS estimator. Alternatively if the re-
striction is binding the ICGLS estimator reduces to the ECGLS esti-
mator. Consider also the problem of testing H0 : Rβ ≥ r. In principle
one could decide if the ICGLS estimators should be used with the aid of
a one-sided t-test of H0, leading to the inequality generalized pre-test
(IGPT) estimators

β̃(θ) = I(−∞,c) (t(θ)) β̂(θ) + I[c,∞) (t(θ)) ¯̄β(θ) (4)

and
σ̃2(θ) = I(−∞,c) (t(θ)) σ̂2(θ) + I[c,∞) (t(θ)) ¯̄σ2(θ), (5)

where t(θ) =
(
Rβ̂(θ) − r

)
/
√
σ̂2(θ)RS−1(θ)R′, and c(< 0) is the size-

α critical value for the Student’s t distribution with n − k degrees of
freedom2.

In the case of θ = 0, the properties of the ICGLS and IGPT estima-
tors have been thoroughly investigated. Good discussions on inequality
pre-testing in the linear model are given, for example, by Judge and
Yancey (1986) and Wan, Zou and Ohtani (2006). In this paper we
examine the sensitivity of the ICGLS and IGPT estimators to covari-
ance misspecification . Specifically, assuming θ �= 0, we ascertain the
question of how far the ICGLS and IGPT estimates are from the cor-
responding estimates which assume θ = 0. That is, are the results that
assume θ = 0 really different from the results based on the more gen-
eral error covariance structure? We will also examine the relationship
between the restriction specification error and the sensitivity of the es-
timators. The sensitivity of the ECGLS estimators was investigated in
Wan, Zou and Qin (2007).

2 The case of c ≥ 0 is of no interest as t(θ) ≥ c would then imply Rβ̂(θ) ≥ r .
Hence the unrestricted GLS estimator is always chosen when c ≥ 0 , irrespective
of whether H0 is accepted or not.
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Along the lines of Banerjee and Magnus (1999), we develop sensi-
tivity measures in the following fashion. Let Λ(θ) be a generic notation
of the relevant estimator of interest. The Taylor series expansion for
Λ(θ) evaluated about the point θ = 0 gives the result

Λ(θ) = Λ(0) +

p∑
s=1

θs
∂Λ(θ)

∂θs

∣∣∣∣∣
θ=0

+ . . . (6)

Obviously, if
∑p

s=1 θs
∂Λ(θ)

∂θs

∣∣∣∣
θ=0

≈ 0 then Λ(θ) and Λ(0) are very close.

A sufficient condition for this is that

∂Λ(θ)

∂θs

∣∣∣∣
θ=0

= 0 for s = 1, 2, ..., p. (7)

Putting this general framework in the context of our analysis, we

define ¯̄zs =
∂
[
y(θ)

]
∂θs

∣∣∣∣∣
θ=0

, ¯̄λs =
∂ ¯̄σ2(θ)

∂θs

∣∣∣∣
θ=0

, z̃s =
∂ [ỹ(θ)]

∂θs

∣∣∣∣
θ=0

and

λ̃s =
∂σ̃2(θ)

∂θs

∣∣∣∣
θ=0

as the sensitivity measures of the ICGLS and IGPT

predictors and variance estimators with respect to θs, respectively,
where ¯̄y(θ) = X ¯̄β(θ) and ỹ(θ) = Xβ̃(θ). Corresponding to each of these
measures is a statistic suitable for assessing the sensitivity of the pre-
dictor or estimator of interest. Transforming these sensitivity measures
in the manner of Banerjee and Magnus (1999) leads to

¯̄Bs =
¯̄z′s(

¯̄Cs
¯̄C ′

s)
+ ¯̄zs[

n− k + I(−∞,r)

(
Rβ̂(0)

)]
¯̄σ2(0)

, (8)

¯̄Ds =
¯̄λs

¯̄σ2(0)
=

∂ log
[
¯̄σ2(θ)

]
∂θs

∣∣∣∣∣
θ=0

, (9)

B̃s =
z̃′s(C̃sC̃

′
s)

+z̃s

(n− k + κ) σ̃2(0)
, (10)

and

D̃s =
λ̃s

σ̃2(0)
=

∂ log
[
σ̃2(θ)

]
∂θs

∣∣∣∣∣
θ=0

(11)

as the corresponding sensitivity statistics of ¯̄y(θ), ¯̄σ2(θ), ỹ(θ) and σ̃2(θ),

respectively, where ¯̄Cs = I(−∞,r)

(
Rβ̂(0)

)
C̄s +I[r,∞)

(
Rβ̂(0)

)
Cs, C̄s =

(In−M̄)AsM̄, Cs = (In−M)AsM, As = ∂Ω(θ)/∂θs|θ=0, (
¯̄Cs

¯̄C ′
s)

+ is the
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Moore-Penrose inverse of ¯̄Cs
¯̄C ′

s, (C̃sC̃
′

s)
+ is defined analogously, M =

In −XS−1X ′ and M̄ = M +H(H ′H)−1H ′ are symmetric idempotent
matrices of rank n− k and n− k + 1 respectively, H = XS−1R′, S =

X ′X, κ = I(−∞, r)

(
Rβ̂(0)

)
I[c,∞) (t(0)) and C̃s = I(−∞, c) (t(0))Cs +

I[c, ∞) (t(0)) ¯̄Cs = (1 − κ)Cs + κC̄s. Note that M̄M = MM̄ = M ,

C̄sM̄ = C̄s and 0 ≤ r̄s = rank(C̄s) ≤ min {k − 1, n− k + 1} .
It can be observed that B̃s and D̃s collapse to ¯̄Bs and

¯̄Ds as c → −∞. Now, write ȳ = y − H(H ′H)−1r, z̄s =
−C̄sȳ, zs = −Csy,, λ̄s = −ȳ′M̄AsM̄ȳ

/
(n− k + 1), λs =

−y′MAsMy/(n− k), W̄s = C̄ ′
s(C̄sC̄

′
s)

+C̄s, Ws = C ′
s(CsC

′
s)

+Cs,
v = u/σ, δ = (r −Rβ)/σ, v̄ = v − H(H ′H)−1δ, B̄s =
ȳ′W̄sȳ

/
ȳ′M̄ȳ, Bs = y′Wsy/y

′My, D̄s = −ȳ′M̄AsM̄ȳ
/
ȳ′M̄ȳ and Ds =

−y′MAsMy/y′My. Hence we have κ = I(−∞, δ) (H ′v) I[c,∞) (t(0)) and

t(0) =
(√

n− k(H ′v − δ)
)
/
(√

(H ′H)(v′Mv)
)
. After some straight-

forward calculations, we obtain the following theorem which provides
a convenient basis upon which the sensitivity statistics may be further
evaluated:

Theorem 1. The sensitivity statistics ¯̄Bs,
¯̄Ds, B̃s and D̃s may be writ-

ten as

¯̄Bs = I(−∞,δ)

(
H ′v

) v̄′W̄sv̄

v̄′M̄v̄
+ I[δ,∞)

(
H ′v

) v′Wsv

v′Mv
, (12)

¯̄Ds = −I(−∞,δ)

(
H ′v

) v̄′M̄AsM̄v̄

v̄′M̄v̄
− I[δ,∞)

(
H ′v

) v′MAsMv

v′Mv
, (13)

B̃s = κ
v̄′W̄sv̄

v̄′M̄v̄
+ (1 − κ)

v′Wsv

v′Mv
, (14)

and

D̃s = −κv̄
′M̄AsM̄v̄

v̄′M̄v̄
− (1 − κ)

v′MAsMv

v′Mv
. (15)

Proof:

See Appendix A.

Several aspects concerning the properties of the sensitivity statistics
deserve mention. First, these stochastic representations of the sensitiv-
ity statistics depend on the unknown parameters only through δ. For a
given δ value, equations (12) to (15) are distributional invariant with
respect to changes in the regression and constraint parameters. This
allows us to conveniently investigate their properties by varying the
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values of δ. Second, each of the sensitivity statistics presented in (12)
to (15) has a discontinuity at precisely the point where the estimator
whose sensitivity the statistic is designed to measure has a discontinu-
ity. Third, the distributions of the sensitivity statistics are in fact data
dependent; nevertheless, the stochastic representations given in (12) to
(15) provide a useful basis for the subsequent Monte-Carlo evaluations
on the properties of these statistics and the sensitivity of the ICGLS
and IGPT estimators under varying circumstances.

3 Limiting Behavior Near Unit-root

To gain further insights into the properties of these sensitivity statistics,
in this section we specialize our treatment to the AR(1) process, which
is often regarded as the first step away from white noise errors. Let ut

be generated by the stationary AR(1) process ut = φ1ut−1 + εt, where
0 ≤ φ1 < 1 and ε′ts are white noises. So

Ω(φ1) = (ωIJ(φ1)) , where ωIJ(φ1) =

{
1/(1 − φ2

1) if I = J,

φ
|I−J |
1 /(1 − φ2

1) if I �= J.

(16)
Let T (1) = (tIJ) be the symmetric Toeplitz matrix such that tIJ = 1

if |I−J | = 1, and tIJ = 0 otherwise. Note that for AR(1) disturbances,
As = ∂Ω(φ1)/∂φ1|φ1=0 = T (1). In conformity with the notations of
Banerjee and Magnus (1999) and Wan, Zou and Qin (2007), we denote

the sensitivity statistics ¯̄Bs,
¯̄Ds, B̃s and D̃s under the AR(1) setting as

¯̄B1, ¯̄D1, B̃1 and D̃1 respectively. The following theorem presents exact
theoretical results on the limiting behavior of ¯̄B1 and ¯̄D1 as the AR(1)
parameter approaches the unit-root.

Theorem 2. Suppose that u ∼ N
(
0, σ2Ω(φ1)

)
with Ω(φ1) given in

(16), and c ¯̄B1and c ¯̄D1 are arbitrary constants:

i) If Mi �= 0 and H ′i �= 0, then

lim
φ1→1

Pr( ¯̄B1 > c ¯̄B1) =

⎧⎪⎨⎪⎩
0 if c ¯̄B1 > b1 ∨ b̄1,
1
2 if b1 < c ¯̄B1 < b̄1 or b1 > c ¯̄B1 > b̄1,

1 if c ¯̄B1 < b1 ∧ b̄1,
(17)

and
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lim
φ1→1

Pr( ¯̄D1 ≤ c ¯̄D1) =

⎧⎪⎨⎪⎩
0 if c ¯̄D1 < d1 ∧ d̄1,
1
2 if d1 > c ¯̄D1 > d̄1 or d1 < c ¯̄D1 < d̄1,

1 if c ¯̄D1 > d1 ∨ d̄1,
(18)

where b̄1 = i′W̄ (1)i
/
i′M̄i, b1 = i′W (1)i

/
i′Mi, d̄1 = −i′M̄T (1)M̄i

/
i′M̄i,

d1 = −i′MT (1)Mi
/
i′Mi, W̄ (1) = C̄(1)′(C̄(1)C̄(1)′)+C̄(1), C̄(1) =

(In−M̄)T (1)M̄ , W (1) = C(1)′(C(1)C(1)′)+C(1), C(1) = (In−M)T (1)M ,
and i is an n× 1 vector of ones.

ii) If Mi �= 0 and H ′i = 0, then

lim
φ1→1

Pr( ¯̄B1 > c ¯̄B1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if c ¯̄B1 > b1 ∨ b̄1,
Pr

(
H ′P̄ η < δ

)
if b1 < c ¯̄B1 < b̄1,

Pr
(
H ′P̄ η ≥ δ

)
if b1 > c ¯̄B1 > b̄1,

1 if c ¯̄B1 < b1 ∧ b̄1,

(19)

and

lim
φ1→1

Pr( ¯̄D1 ≤ c ¯̄D1) =

{
0 if c ¯̄D1 < d1 ∧ d̄1,
1 if c ¯̄D1 > d1 ∨ d̄1, (20)

where P̄ = J̄P, J̄ is an n × (n − 1) matrix such that J̄ ′ = [0|In−1], P
is an (n− 1)× (n− 1) lower triangular matrix with ones on and below
the diagonal and zeroes elsewhere, and η ∼ N(0, In−1).

iii) If Mi = 0 and H ′i �= 0, then

lim
φ1→1

Pr( ¯̄B1 > c ¯̄B1) =

{
1
2 Pr

(
B(1)(η) > c ¯̄B1

)
if c ¯̄B1 > b̄1,

1
2

[
1 + Pr

(
B(1)(η) > c ¯̄B1

)]
if c ¯̄B1 < b̄1,

(21)
and

lim
φ1→1

Pr( ¯̄D1 ≤ c ¯̄D1) =

{
1
2 Pr

(
D(1)(η) ≤ c ¯̄D1

)
if c ¯̄D1 < d̄1,

1
2

[
1 + Pr

(
D(1)(η) ≤ c ¯̄D1

)]
if c ¯̄D1 > d̄1.

(22)
iv) If M̄i = 0, then

lim
φ1→1

Pr( ¯̄B1 > c ¯̄B1) = Pr
(
B̄(1)(η) > c ¯̄B1, H ′P̄ η < δ

)
+ Pr

(
B(1)(η) > c ¯̄B1, H ′P̄ η ≥ δ

)
(23)
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and

lim
φ1→1

Pr( ¯̄D1 ≤ c ¯̄D1) = Pr
(
D̄(1)(η) ≤ c ¯̄D1, H ′P̄ η < δ

)
+ Pr

(
D(1)(η) ≤ c ¯̄D1, H ′P̄ η ≥ δ

)
, (24)

where B̄(1)(η) = l′W̄ (1)l
/
l′M̄l, D̄(1)(η) = −l′M̄T (1)M̄l

/
l′M̄l, l =

P̄ η + µ̄, µ̄ = −H(H ′H)−1δ, B(1)(η) = η′P̄ ′W (1)P̄ η
/
η′P̄ ′MP̄η, and

D(1)(η) = −η′P̄ ′MT (1)MP̄η
/
η′P̄ ′MP̄η.

Proof:

See Appendix A.
Theorem 2 holds for all values of δ and the limiting results de-

rived apply to both the cases of correct and incorrect constraints. Note
that Mi = 0 when the model contains an intercept. Parts i) and ii)
of Theorem 2 therefore correspond to the case where the model has
no intercept. Here, when H ′i �= 0 as in part i), Pr( ¯̄B1 > c ¯̄B1) and

Pr( ¯̄D1 ≤ c ¯̄D1) approach 0, 1/2 or 1 depending on the conditions in
(17) and (18). In part ii), H ′i = 0, and the limiting probability of
¯̄D1 ≤ c ¯̄D1 is either 0 or 1, while the limiting probability of ¯̄B1 > c ¯̄B1 is

0, 1, Pr
(
H ′P̄ η < δ

)
or Pr

(
H ′P̄ η ≥ δ

)
depending on the conditions in

(19). Interestingly, these limiting results are quite different from those
under the unrestricted and equality restricted models, where the cor-
responding sensitivity statistics have limiting probabilities of either 1
or 0 when the model has no intercept, as Banerjee and Magnus (1999)
and Wan, Zou and Qin (2007) demonstrated. It is also worth noting
that since H �= 0, the conditions Mi �= 0 and H ′i = 0 in part ii) in fact
imply d̄1 = d1 and H ′P̄ �= 0 and accordingly, H ′P̄ η ∼ N(0, H ′P̄ P̄ ′H).
Also, in the special case of δ = 0, Pr

(
H ′P̄ η < δ

)
=Pr

(
H ′P̄ η ≥ δ

)
=

1/2. Parts iii) and iv) of Theorem 2 correspond to the case when there
is an intercept in the model. The conditions of Mi = 0 and H ′i �= 0
in part iii) imply that the inequality restriction involves the intercept,
while in part iv), the restriction does not involve the intercept since
M̄i = 0 only when Mi = 0 and H ′i = 0. In both parts iii) and iv), the

limiting probabilities of both ¯̄B1 > c ¯̄B1 and ¯̄D1 ≤ c ¯̄D1 tend towards
some constants between 0 and 1.

The next theorem presents the analogous results on the limiting
behavior of B̃1 and D̃1:

Theorem 3. Suppose that u ∼ N
(
0, σ2Ω(φ1)

)
with Ω(φ1) given in

(16), and cB̃1and cD̃1 are arbitrary constants:



144 Huaizhen Qin, Alan T.K. Wan and Guohua Zou

i) If Mi �= 0 and H ′i �= 0, then

lim
φ1→1

Pr
(
B̃1 > cB̃1

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if cB̃1 > b1 ∨ b̄1,
0 if b1 < cB̃1 < b̄1 and |t̄(0)| > −c,
1
2 if b1 < cB̃1 < b̄1 and |t̄(0)| < −c,
1
2 if b1 > cB̃1 > b̄1 and |t̄(0)| > −c,
1 if b1 > cB̃1 > b̄1 and |t̄(0)| < −c,
1 if cB̃1 < b1 ∧ b̄1,

(25)
and

lim
φ1→1

Pr
(
D̃1 ≤ cD̃1

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if cD̃1 < d1 ∧ d̄1,
0 if d1 > cD̃1 > d̄1 and |t̄(0)| > −c,
1
2 if d1 > cD̃1 > d̄1 and |t̄(0)| < −c,
1
2 if d1 < cD̃1 < d̄1 and |t̄(0)| > −c,
1 if d1 < cD̃1 < d̄1 and |t̄(0)| < −c,
1 if cD̃1 > d1 ∨ d̄1,

(26)

where t̄(0) =
√

(n− k)/H ′HH ′i
/√

i′Mi.

ii) If Mi �= 0 and H ′i = 0, then

lim
φ1→1

Pr
(
B̃1 > cB̃1

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if cB̃1 > b1 ∨ b̄1,
Pr

(
H ′P̄ η ≤ δ

)
if b1 < cB̃1 < b̄1,

Pr
(
H ′P̄ η > δ

)
if b1 > cB̃1 > b̄1,

1 if cB̃1 < b1 ∧ b̄1,

(27)

and

lim
φ1→1

Pr
(
D̃1 ≤ cD̃1

)
=

{
0 if cD̃1 < d1,

1 if cD̃1 > d1,
(28)

provided that cB̃1 �= b̄1 and �= b1, and cD̃1 �= d1.

iii) If M̄i �= 0 and Mi = 0, then

lim
φ1→1

Pr
(
B̃1 > cB̃1

)
= Pr

(
B(1)(η) > cB̃1

)
, (29)

and
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lim
φ1→1

Pr
(
D̃1 ≤ cD̃1

)
= Pr

(
D(1)(η) ≤ cD̃1

)
, (30)

provided that cB̃1 �= b̄1 and cD̃1 �= d̄1.

iv) If M̄i = 0, then

lim
φ1→1

Pr
(
B̃1 > cB̃1

)
= Pr

(
B̄(1)(η) > cB̃1, c ≤ t(1)(η) < 0

)
+ Pr

(
B(1)(η) > cB̃1, t

(1)(η) < c
)

+ Pr
(
B(1)(η) > cB̃1, t

(1)(η) ≥ 0
)
, (31)

and

lim
φ1→1

Pr
(
D̃1 ≤ cD̃1

)
= Pr

(
D̄(1)(η) ≤ cD̃1, c ≤ t(1)(η) < 0

)
+ Pr

(
D(1)(η) ≤ cD̃1, t

(1)(η) < c
)

+ Pr
(
D(1)(η) ≤ cD̃1, t

(1)(η) ≥ 0
)
, (32)

where t(1)(η) =
√

(n− k)/H ′H
(
H ′P̄ η − δ

)/√
η′P̄ ′MP̄η.

Proof:

See Appendix A.

Qualitatively, the results emerged from Theorem 3 are analogous to
those observed in Theorem 2. In parts i) and ii) of Theorem 3 where the
regression contains no intercept, the limiting probabilities of B̃1 > cB̃1

and D̃1 ≤ cD̃1 are not necessarily 0 or 1 depending on the conditions
involved. Again, this differs from the published results for the unre-
stricted and equality restricted models. Interestingly, in part iii) where
the model contains an intercept which is also part of the inequality re-
striction, the sensitivity statistics B̃1 and D̃1 take on the same limiting
probabilities as their unrestricted counterparts (Banerjee and Magnus
(1999)).

4 Numerical Studies

The purpose of this section is to examine the sensitivity of the ICGLS
and IGPT estimators through numerical evaluations of the behavior
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of the proposed sensitivity statistics. We consider the cases of AR(1)
and MA(1) disturbances. In the latter case ut = ψ1εt−1 + εt, where
0 ≤ ψ1 ≤ 1 and Ω(ψ1) = (1 + ψ2

1)In + ψ1T
(1). Note that under MA(1)

disturbances, as in the case of AR(1) disturbances. The statistics ¯̄B1,
¯̄D1, B̃1 and D̃1 therefore also measure the sensitivity of the estimators
in the MA(1) case. Our numerical study is based on data constructed
from linear combinations of the following two data sets: the first com-
prises the eigenvectors t1, t2, . . . , tn that correspond to the eigenvalues
of the n×n Toeplitz matrix T (1); in the second data set, the regressors

are s1 = in/
√
n, sp =

(
i′p−1, 1 − p, 01×(n−p)

)′
/√

p(p− 1), where ip is

a p × 1 vector of ones, 2 ≤ p ≤ n. The intercept term in the regressor
matrix is represented by the constant dummy s1. We set n = 15, k = 4,
and R = [1, 0, 0, 0]. Table 1 gives the design matrices used in our numer-
ical experiments. Models 1 and 2 contain no intercept term. In model 3,
the regression has an intercept and an inequality restriction is placed on
the intercept. In model 4, the regression contains an intercept which is
not part of the inequality restriction. Some characteristics of the design

matrices are also given in Table 1, where � =
√
H ′T (1)MJ̄J̄ ′MT (1)H

is the length of H ′T (1)MJ̄. For each design matrix X = [X1|X2], the
restriction is in the form of β1 ≥ r, where β1 is the coefficient corre-
sponding to X1. All our experiments set σ = 1 and δ = (r − β1)/σ is
set to −10,−2, 0, 2 and 10. The inequality constraint β1 ≥ r is correct
if δ ≤ 0, and incorrect otherwise.

Table 1. Design matrices

Model X1 X2 i′Mi H ′i H ′T (1)Mi �

1 t3 [t12, t13 + t14, t14 + t15] 7.7345 −0.8035 −1.1480 1.2818

2 s15 [s2, s4, s14] 15 0 0 0.2323

3 s1 [s10 + s13, s11 + s14, s12 +
s15]

0 3.8730 0 0.1966

4 s6 [s1, s2, s3] 0 0 0 1.3025

The investigation of the sensitivity of the ICGLS and IGPT estima-
tors is based on the following procedure. Take the ICGLS estimators
as an example. First, we determine the values of c ¯̄B1 and c ¯̄D1 such that

Pr( ¯̄B1 > c ¯̄B1) = Pr( ¯̄D1 ≤ c ¯̄D1) = α under the white noise disturbances
assumption. Then for values of φ1 and ψ1 between 0 and 1, we com-

pute Pr( ¯̄B1 > c ¯̄B1) and Pr( ¯̄D1 ≤ c ¯̄D1) which measure the sensitivity
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of y(θ) and ¯̄σ2(θ) with respect to θ ( = φ1 or ψ1). We call the resul-
tant probability curves the sensitivity curves. If the probabilities on
the sensitivity curves do not significantly deviate from α, the ICGLS
estimators that assume θ = 0 are said to be robust against non white
noise disturbances. In the same way, Pr(B̃1 > cB̃1) and Pr(D̃1 ≤ cD̃1)
measure the sensitivity of the IGPT estimators with respect to θ. The
critical values are calculated using a Monte-Carlo procedure described
in Appendix B.

We report the results of the numerical studies in two parts. Firstly,
the sensitivity of the ICGLS estimators is discussed. Secondly, the
IGPT estimators are considered, and their sensitivity with respect to
θ is discussed in an analogous manner.

4.1 The ICGLS Estimators

Figures 1a – 4d provide plots of the sensitivity curves of the ICGLS
estimators for several representative cases. In all cases we set α = 0.05.
We observe, first, that the limiting characteristics of the sensitivity
curves are in accord with the theoretical findings presented in Theorem
2. Models 1 and 2 involve regressions with no intercept. In the case of
AR(1) disturbances, Figure 1a shows, for example, that when δ = 2,

the limiting probability of ¯̄B1 > c ¯̄B1 in model 1 (for which H ′i �= 0)
is 1/2. This is consistent with our theoretical findings as in this case
b1 = 0.0541 > c ¯̄B1 = 0.4756 > b̄1 = 0.4710, so it may be seen from

part i) of Theorem 2 that Pr( ¯̄B1 > c ¯̄B1) → 1/2 as φ1 → 1. Figures
1b and 2b also show that for models 1 and 2, the limiting probabilities
of ¯̄D1 ≤ c ¯̄D1 approach one as φ1 → 1 regardless of the value of δ.

Again, this arises because under both models, c ¯̄D1 > d1 ∨ d̄1 for all δ
considered. Models 3 and 4 both contain intercept terms. The limiting
probabilities of ¯̄B1 > c ¯̄B1 and ¯̄D1 ≤ c ¯̄D1 therefore lie between 0 and
1 (Figures 3a, 3b, 4a and 4b) as predicted from parts iii) and iv) of
Theorem 3.

Secondly, under AR(1) and MA(1) errors, the sensitivity curves re-
veal quite different patterns. In the former case, depending on the data
matrix and the values of φ1 and δ, both ¯̄y(θ) and ¯̄σ2(θ) can be sensi-
tive to covariance misspecification. In general, the variance estimator
is more sensitive than the predictor to AR(1) disturbances. As may be

seen from the figures, the ¯̄B1 sensitivity curves under AR(1) errors are
quite close in value to the benchmark of 0.05 for small to moderate
values of φ1. On the other hand, the ¯̄D1 curves show that the variance
estimator can be highly sensitive even for small values of φ1. In the case
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of MA(1) disturbances, the ¯̄B1 curves are often flat and do not deviate

significantly in value from 0.05 while the ¯̄D1 curves tend to rise above
the 0.05 level as ψ1 increases even though the deviations of the curves
from 0.05 are not as marked as under AR(1) errors.

Thirdly, provided that the inequality constraint is correct (i.e.,
δ ≤ 0), the magnitude of δ appears to have little bearing on the ICGLS
estimators’ sensitivity. However, when δ > 0, a change in the magni-
tude of δ can alter the results to some extent. Frequently an increase
in the constraint specification error can weaken the variance estima-
tor’s sensitivity to covariance misspecification. Under MA(1) errors,

Pr( ¯̄B1 > c ¯̄B1) is fairly constant irrespective of the value of δ. Generally
speaking, the effect of incorrect restrictions on the sensitivity of both
ICGLS predictor and variance estimator is greater for AR(1)than for
MA(1) disturbances.

4.2 IGPT Estimators

Figures 5a – 8d illustrate the behavior of the sensitivity curves of the
corresponding IGPT regression predictor and variance estimator. The
significance level of the pre-test is set at 0.05 in each case. First, the
findings on the limiting behavior of the statistics portrayed by Theorem
3 are consistent with the numerical results observed. Second, the IGPT
estimator appears to be relatively insensitive to MA(1) errors but can
be sensitive to AR(1) errors. Under MA(1) errors the B̃1 curves are in-
variably flat and robust to variations in ψ1. But with AR(1) errors the
results are more diverse, and the behavior of the B̃1 sensitivity curves
can be quite different depending on the underlying data matrix and the
value of δ. In Figure 6a, for example, the underlying model is model 2,
which contains no intercept and Hi = 0. There, the sensitivity curve of
B̃1 for δ = 10 increases at first as φ1 increases, then falls rapidly to zero
as φ1 approaches the unit-root. Our figures also reveal a feature com-
monly observed in other similar contexts. There is a tendency for σ̃2(θ)
to be more sensitive than ỹ(θ) to covariance misspecification. In many
circumstances, the D̃1 curves tend to rise significantly above the bench-
mark 0.05 level even for moderate values of φ1 and ψ1. With AR(1)
errors, the deviation from the 0.05 level is especially noticeable. In gen-
eral, the pattern of results appears to depend mainly on the underlying
data and the type of covariance misspecification. The magnitude of the
constraint specification errors is of less importance. Depending on the
data matrix, an incorrect null can exacerbate or weaken the estimator’s
sensitivity to covariance misspecification.
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5 Conclusions

The main purpose of this paper is to explore the sensitivity of the single
inequality restricted least squares and pre-test estimators in the linear
regression model to disturbance covariance misspecification. This paper
gains some interesting insights into the practical question of whether it
matters at all that one fails to take account of the non-spherical struc-
ture of error covariances. Some exact analytical results are derived and
these are evaluated for various data sets and for the cases of AR(1)
and MA(1) errors. The principal conclusions to be drawn from these
results may be stated quite briefly, and in some cases they reinforce
the conclusions of Banerjee and Magnus (1999) and Wan, Zou and
Qin (2007). First of all, while the ICGLS and IGPT variance estima-
tors are generally very sensitive to covariance misspecification, whether
or not the corresponding predictor or estimators of the coefficients are
sensitive depends on the error process and the underlying data ma-
trix. Generally, in the case of MA(1) disturbances, both y(θ) and ỹ(θ)
are insensitive regardless of the regression matrix. If the disturbances
are AR(1), then both y(θ) and ỹ(θ) can still be quite robust against
covariance misspecification for small to moderate values of the auto-
correlation parameter. For highly correlated AR(1) errors, however, the
results are somewhat mixed and depend largely on the underlying data
matrix. Indeed, the extent to which the X matrix affects the results
is a notable feature of this study. The latter issue prevails when one
considers the effect of restriction misspecification on the sensitivity of
the variance estimator. With AR(1) errors, depending on the under-
lying data, specification errors in the restriction usually weaken but
sometimes also exacerbate the estimators’ sensitivity. With regard to
the effects of pre-testing on sensitivity, pre-testing does not have any
serious detrimental effect on the sensitivity of parameter estimates.
Again, the exact patterns of results depend on the underlying data in
each case. Sensitivity of other econometric estimators is currently be-
ing explored by the authors, in relation in particular to other common
pre-test strategies used in econometrics (Magnus (1999);Wan and Zou
(2003)).

Appendix A

Proof of Theorem 1:
Using the definition of the ICGLS estimator of β and recognizing

that Pr(Rβ̂(0) �= r) = 1 (i.e., Rβ̂(0) �= r occurs almost surely), we can
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write
¯̄zs = I(−∞,r)

(
Rβ̂(0)

)
z̄s + I[r,∞)

(
Rβ̂(0)

)
zs. (A.1)

Hence we have

¯̄Bs = I(−∞,r)

(
Rβ̂(0)

)
B̄s + I[r,∞)

(
Rβ̂(0)

)
Bs. (A.2)

It is straightforward to show that

Bs =
y′Wsy

y′My
=
u′Wsu

u′Mu
=
v′Wsv

v′Mv
, (A.3)

Rβ̂(0) = H ′y = Rβ +H ′u, (A.4)

I(−∞,r)(Rβ̂(0)) = I(−∞,δ)(H
′v), (A.5)

and
I[r,∞)(Rβ̂(0)) = I[δ,∞)(H

′v). (A.6)

Also, recall that M̄H = H and ȳ = y −H(H ′H)−1r. Hence from (1),

M̄ȳ = M̄ [u+H(H ′H)−1(Rβ − r)] = σM̄v̄. (A.7)

Therefore,

B̄s =
v̄′W̄sv̄

v̄′M̄v̄
. (A.8)

We obtain (12) by substituting (A.3), (A.5), (A.6) and (A.8) in
(A.2). Equation (13) can be verified similarly. Equations (14) and (15)
can be obtained by further noting that Pr{t(0) �= c} = 1.

Proof of Theorem 2:
We only prove the results for ¯̄B1. The results for ¯̄D1 can be obtained

by similarity. Note that

Pr( ¯̄B1 > c ¯̄B1) = Pr
(
B̄1 > c ¯̄B1, H

′v < δ
)

+ Pr
(
B1 > c ¯̄B1, H

′v ≥ δ
)
.

(A.9)
Using the proof to Theorem B.1 in Banerjee and Magnus (1999), write
(1 − φ2

1)Ω(φ1) as (1 − φ2
1)Ω(φ1) = LL′, where

L = L0 + ρL1 +O(ρ2) (A.10)

as φ1 → 1, ρ =
√

1 − φ2
1, L0 = [i|0n×(n−1)], L1 = diag (0, P ), and P is

defined in Theorem 2. Since ρu = σL(ξ, η′)′ with (ξ, η′)′ ∼ N(0, In), it
follows from (A.10) that

ρv = L(ξ, η′)′ = iξ + ρP̄ η +Op(ρ
2). (A.11)
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Therefore,

ρH ′v = H ′L(ξ, η′)′ = H ′iξ + ρH ′P̄ η +Op(ρ
2). (A.12)

Since Pr (H ′v < δ) = Pr (ρH ′v < ρδ) for arbitrary ρ > 0, it follows
from (A.12) that

lim
φ1→1

Pr
(
H ′v < δ

)
=

{
1
2 if H ′i �= 0,

Pr
(
H ′P̄ η < δ

)
if H ′i = 0.

(A.13)

For any arbitrary ρ > 0, we observe from (A.8) and (A.11) that as
φ1 → 1,

B̄1 =
(ρv + ρµ̄)′W̄ (1)(ρv + ρµ̄)

(ρv + ρµ̄)′M̄(ρv + ρµ̄)

p−→
{
b̄1 if M̄i �= 0,

B̄(1)(η) if M̄i = 0.
(A.14)

Now, from Banerjee and Magnus (2000), as φ1 → 1,

B1 =
(ρv)′W (1)(ρv)

(ρv)′M(ρv)

p−→
{
b1 if Mi �= 0,

B(1)(η) if Mi = 0.
(A.15)

Parts i) and ii)
Note that Mi �= 0 implies M̄i �= 0. It then follows from (A.14) and

(A.15) that B̄1
p−→ b̄1 and B1

p−→ b1 as φ1 → 1. So if c ¯̄B1 > b̄1 ∨ b1,
it follows from (A.9) that

Pr( ¯̄B1 > c ¯̄B1) ≤ Pr
(
B̄1 > c ¯̄B1

)
+ Pr

(
B1 > c ¯̄B1

) → 0. (A.16)

This proves the first result of (17) and the first result of (19). The last
result of (17) and the last result of (19) can be obtained analogously.
Now, let b1 < c ¯̄B1 < b̄1. Observe that

Pr
(
H ′v < δ

) ≥ Pr
(
B̄1 > c ¯̄B1, H

′v < δ
)

(A.17)

= Pr
(
H ′v < δ

)− Pr
(
B̄1 ≤ c ¯̄B1, H

′v < δ
)

≥ Pr
(
H ′v < δ

)− Pr
(
B̄1 ≤ c ¯̄B1

)
.

Since c ¯̄B1 < b̄1, it follows from B̄1
p−→ b̄1 that Pr

(
B̄1 ≤ c ¯̄B1

) → 0 as
φ1 → 1. So, by (A.17) we have

lim
φ1→1

Pr
(
H ′v < δ, B̄1 > c ¯̄B1

)
= lim

φ1→1
Pr

(
H ′v < δ

)
. (A.18)

Since b1 < c ¯̄B1 and Pr
(
H ′v ≥ δ, B1 > c ¯̄B1

) ≤ Pr
(
B1 > c ¯̄B1

)
, it fol-

lows from B1
p−→ b1 that
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lim
φ1→1

Pr
(
H ′v ≥ δ, B1 > c ¯̄B1

)
= 0. (A.19)

The first part of the second result in (17) and the second result in (19)
can be obtained by substituting (A.13), (A.18) and (A.19) in (A.9).
The second part of the second result in (17) and the third result in
(19) can be proven by a similar mechanism.

Part iii)
It follows from (A.9) that

Pr( ¯̄B1 > c ¯̄B1) = Pr

(
(ρv + ρµ̄)′W̄ (1)(ρv + ρµ̄)

(ρv + ρµ̄)′M̄(ρv + ρµ̄)
> c ¯̄B1, ρH ′v < ρδ

)

+ Pr

(
(ρv)′W (1)(ρv)

(ρv)′M(ρv)
> c ¯̄B1, ρH ′v ≥ ρδ

)
. (A.20)

Consider the case of c ¯̄B1 > b̄1. Note that M̄i �= 0 when Mi = 0 and
H ′i �= 0. Hence we obtain from (A.14), (A.15) and (A.20) that

lim
φ1→1

Pr( ¯̄B1 > c ¯̄B1) = Pr
(
B(1)(η) > c ¯̄B1, H ′iξ ≥ 0

)
(A.21)

= Pr
(
H ′iξ ≥ 0

)
Pr

(
B(1)(η) > c ¯̄B1

)
=1

2 Pr
(
B(1)(η) > c ¯̄B1

)
.

Next, consider the case of c ¯̄B1 < b̄1. It follows from (A.14), (A.15)
and (A.20) that

lim
φ1→1

Pr( ¯̄B1 > c ¯̄B1) = Pr
(
H ′iξ < 0

)
+ Pr

(
B(1)(η) > c ¯̄B1, H ′iξ ≥ 0

)
(A.22)

=1
2 + Pr

(
H ′iξ ≥ 0

)
Pr

(
B(1)(η) > c ¯̄B1

)
=1

2

[
1 + Pr

(
B(1)(η) > c ¯̄B1

)]
.

This completes the proof to part iii).

Part iv)
Note that M̄i = 0 if and only if Mi = 0 and H ′i = 0. As H �= 0,

H ′i = 0 implies H ′J̄ �= 0. Hence equation (23) follows straightfor-
wardly from (A.11), (A.12) and (A.20).
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Proof of Theorem 3:

Again, the proofs that follow relate to the limiting behavior of B̃1
only. The results on the limiting behavior of D̃1 can be obtained by
analogy. Now, from (14),

Pr
(
B̃1 > cB̃1

)
= Pr

(
B̄1 > cB̃1, c ≤ t(0) < 0

)
+ Pr

(
B1 > cB̃1, t(0) ≥ 0

)
+ Pr

(
B1 > cB̃1, t(0) < c

)
. (A.23)

From Qin et al. (2007), we have

t(0)
p−→

⎧⎪⎨⎪⎩
t̄(0)ξ/|ξ| if Mi �= 0 and H ′i �= 0,

0 if Mi �= 0 and H ′i = 0,

t(1)(η) if Mi = 0 and H ′i = 0.

(A.24)

One can verify parts i), ii) and iv) of Theorem 3 using (A.14), (A.15),
(A.23) and (A.24). For part iii) of Theorem 3, note that by the definition
of t(0) and (A.15), we have

Pr
(
B1 > cB̃1, t(0) < c

)
= Pr

(
(ρv)′W (1)(ρv)

(ρv)′M(ρv)
> cB̃1,

√
n− k√
H ′H

ρH ′v − ρδ√
v′Mv

< ρc

)
(A.25)

for any ρ > 0. Since H ′i �= 0, we have ρH ′v = H ′iξ + Op(ρ) as ρ =√
1 − φ2

1 → 0 from (A.12). In addition, by Mi = 0, we observe from

(A.11) that v′Mv = η′P̄ ′MP̄η + Op(ρ) and v′W (1)v = η′P̄ ′W (1)P̄ η +
Op(ρ). Using these results in (A.25), we obtain

Pr
(
B1 > cB̃1, t(0) < c

)→Pr

(
B(1)(η) > cB̃1,

√
n− k√
H ′H

H ′iξ√
η′P̄ ′MP̄η

< 0

)
= Pr

(
B(1)(η) > cB̃1

)
Pr

(
H ′iξ < 0

)
=1

2 Pr
(
B(1)(η) > cB̃1

)
. (A.26)

Similarly,

Pr
(
B1 > cB̃1, t(0) ≥ 0

) → 1
2 Pr

(
B(1)(η) > cB̃1

)
. (A.27)

Now,
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Pr
(
B̄1 > cB̃1, c ≤ t(0) < 0

) ≤ Pr (c ≤ t(0) < 0)

= Pr (t(0) < 0) − Pr (t(0) < c) → 0 (A.28)

Part iii) of Theorem 3 follows straightforwardly from (A.23) and
(A.26) – (A.28).

Appendix B: Algorithm for Quantiles Detection

We adopted the following Monte-Carlo procedure to compute the quan-
tiles c ¯̄B1 and c ¯̄D1. We first drew 10 000 white noise series v′is, each of
which contains n = 15 realizations from N(0, 1). Let δ = r − β1 and
v̄i = vi −H(H ′H)−1δ for 1 ≤ i ≤ 10 000. For an arbitrary ca ∈ [0, 1],

the probability Prθ=0

(
¯̄B1 > ca

)
was approximated by

p̂(0, ca) =
10 000∑
i=1

I
(

¯̄B(i) > ca

)
10 000

, (B.1)

where

¯̄B(i) = I(−∞, δ)

(
H ′vi

) v̄′iW̄ (1)v̄i

v̄′iM̄v̄i
+ I[δ, ∞)

(
H ′vi

) v′iW (1)vi

v′iMvi
(B.2)

(See Theorem 1). Almost surely, p̂ decreases as ca increases, p̂(0, 0) = 1
and p̂(0, 1) = 0. To detect c ¯̄B1, we first set l0 = 0, g0 = 1 and ca =
(l0 + g0)/2, then calculated p̂ (0, ca) . We set l0 = ca if p̂ (0, ca) > α, else
we set g0 = ca. The revised value of cawas given by ca = (l0 + g0)/2,
which provided a new estimate of p̂ (0, ca) . This procedure was repeated
until |p̂(0, ca) − 0.05| < 10−5, and the final value of ca was taken to
be the estimate of c ¯̄B1. In the same manner we estimated the quantile
c ¯̄D1.
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1 Introduction

Linear models have a long tradition in statistics as nicely summarized in
Rao, Toutenburg, Shalabh, Heumann (2008). When the number of co-
variates is large the estimation of unknown parameters frequently raises
problems. Then the interest usually focusses on data driven subset se-
lection of relevant regressors. The sophisticated monitoring equipment
which is now routinely used in many data collection processes makes it
possible to collect data with a huge amount of regressors, even with con-
siderably more explanatory variables than observations. One example
is the analysis of microarray data of gene expressions. Here the typical
tasks are to select variables and to classify samples into two or more
alternative categories. Binary responses of this type may be handled
within the framework of generalized linear models (Nelder and Wed-
derburn (1972)) and are also considered in Rao, Toutenburg, Shalabh,
Heumann (2008).

There are several approaches to attain subset selection in general-
ized linear models. Shrinkage methods with L1 norm penalties such as
the lasso estimator are one class of methods. The lasso estimator was
introduced by Tibshirani (1996) for the linear model and extended to
generalized linear models in Park and Hastie (2007). An alternative
approach is componentwise boosting (see Bühlmann and Yu (2003)).
Boosting uses an ensemble of weak learners to improve the estimator.
One obtains subset selection if each learner is restricted to use a subset
of covariates.

One aspect in subset selection, highlighted by Zou and Hastie
(2005), is the treatment of highly correlated covariates. Instead of
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choosing only one representative out of a group of highly correlated
variables one could encourage strongly correlated covariates to be in
or out of the model together. Zou and Hastie (2005) refer to it as the
grouping effect.

In this paper we propose a new regularization method and a boosted
version of it, which explicitly focus on the selection of groups. To reach
this target we consider a correlation based penalty which uses correla-
tion between variables as data driven weights for penalization. See also
Tutz and Ulbricht (2006) for a similar approach to linear models. This
new method and some of its main properties are described in Section
2. A boosted version of it that will be presented in Section 3 allows for
variable selection. In Section 4 we use simulated and real data sets to
compare our new methods with existing ones.

2 Penalized Maximum Likelihood Estimation

Consider a set of n independent one-dimensional observations y1, . . . , yn

with densities from a simple exponential family type

f(y|θ, φ) = exp

{
yθ − b(θ)

φ
+ c(y, φ)

}
, (1)

where θ is the natural scalar parameter of the family, φ > 0 is a nuisance
or dispersion parameter, b(·) and c(·) are measurable functions. For
each observation, also values of a set of p explanatory variables xi =
(xi1, . . . , xip)

	 are recorded. They form a linear predictor ηi = β0 +
x	

i βββ
∗, where β0 is a constant and βββ∗ = (β1, . . . , βp)

	 is a p dimensional
parameter vector. It is assumed that the expectation of yi is given by
µi = h(ηi), where h(·) is a differentiable monotone response function
and µi is the expectation of yi.

Assuming that the dispersion parameter φ is known, we are inter-
ested in finding the unknown parameter vector βββ = (β0,βββ

∗	)	, which
maximizes the corresponding log likelihood function

l(βββ) =
n∑

i=1

{
yiθ[h(β0 + x	

i βββ
∗)] + b(θ[h(β0 + x	

i βββ
∗)])

φi

+ c(yi, φi)

}
.

(2)
Simple derivation yields the score function

s(βββ) =
∂l(βββ)

∂βββ
=

n∑
i=1

yi − b′(θi)

V ar(yi)

∂h(ηi)

∂η
xi = X	DΣ−1(y −µµµ), (3)
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where X	 = (x1, . . . ,xn),

D = diag

{
∂h(η1)

∂η
, . . . ,

∂h(ηn)

∂η

}
, Σ = diag {V ar(y1), . . . , V ar(yn)} .

The Fisher matrix is given by

F (βββ) = −E
[
∂2l(βββ)

∂βββ∂βββ	

]
= E[s(βββ)s(βββ)	] = X	WX, (4)

where W = DΣ−1D	. The unknown parameter vector can be found
iteratively by applying numerical methods for solving nonlinear equa-
tion systems, such as Newton-Raphson. Under weak assumptions the
maximum likelihood estimator β̂ββ is consistent and asymptotically nor-
mal with asymptotic covariance matrix Cov(β̂ββ) = (X	WX)−1, see
Fahrmeir and Kaufmann (1985).

In their seminal paper, Hoerl and Kennard (1970) show that the
least squares estimate in the linear regression model tends to overesti-
mate the length of the true parameter vector if the prediction vectors
are not mutually orthogonal. Segerstedt (1992) shows similar effects
when estimating generalized linear models. Early attempts of a gen-
eralizing ridge estimation were limited to logistic regression, see e.g.
Anderson and Blair (1982), Schaefer et al. (1984) and Duffy and Sant-
ner (1989). Nyquist (1991) introduces ridge estimation of generalized
linear models in the context of restricted estimation.

Since the maximum likelihood estimator of the unknown parameter
vector has the tendency to overestimate length, it is advisable to fix its
squared length. This restriction is formulated as constraint, so that we
can use the Lagrangian approach. Formally, we solve the optimization
problem

β̂̂β̂β = arg max
βββ

{l(βββ) − P (βββ)} , (5)

where

P (βββ) = λ‖βββ‖2
2 = λ

p∑
j=1

β2
j (6)

with ‖βββ‖2
2 denoting the the squared L2 norm of β and λ > 0 is a tuning

parameter. Let β̂̂β̂βridge(λ) denote the resulting GLM ridge estimator for

given λ. Hence, β̂̂β̂βridge(λ) is based on an L2 penalty term.
Typically there exists a tuning parameter λ, so that the asymptotic

mean squared error of the GLM ridge estimator is smaller than the
asymptotic variance of the maximum likelihood estimator, for the proof
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see Segerstedt (1992). Nevertheless, the major drawback of β̂̂β̂βridge(λ) is
its lack in producing sparse solutions.

In the linear model setting the most important penalized regression
approach that automatically includes subset selection is the lasso, as
introduced by Tibshirani (1996). The L1 based lasso penalty

P (βββ) = λ‖βββ‖1 = λ

p∑
j=1

|βj | (7)

leads to regression fits that are sparse and interpretable, in the sense
that many variables are “pruned” from the model. Shevade and Keerthi
(2003) propose an L1 penalization for logistic regression. Park and
Hastie (2007) introduce a corrector-predictor algorithm for generalized
linear models with lasso penalty. The main problem in using L1 penal-
ties within the GLM framework is the instability of coefficient estimates
when some explanatory variables are strongly correlated. Furthermore,
the solution might not be unique if some regressors are multicollinear.
Therefore Park and Hastie (2007) modify the lasso penalty term to

P (βββ) = λ1‖βββ‖1 +
λ2

2
‖βββ‖2

2, (8)

where λ1 > 0 is an arbitrary tuning parameter and λ2 is a fixed small
positive constant. The elastic net penalty as introduced in Zou and
Hastie (2005) is algebraically identical to (8), up to a rescaled tuning
parameter of the L2 penalty term. Using (8) in the way of Zou and
Hastie (2005) requires simultaneous tuning parameter selection, e.g. by
cross-validation, in two dimensions. This can be computationally cum-
bersome. One motivation Zou and Hastie (2005) give for the elastic net
is its property to include groups of variables which are highly corre-
lated. If variables are highly correlated, as for example gene expression
in microarray data, the lasso selects only one out of the group whereas
the elastic net catches “all the big fish”, meaning that it selects the
whole group.

In this paper we propose an alternative regularization procedure
which aims at the selection of groups of correlated variables. In the
simpler version it is based on a penalty that explicitly uses correlation
between variables as weights. In the extended version boosting tech-
niques are used for groups of variables. The correlation based penalty
is introduced as
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Pc(βββ) = λ

p−1∑
i=1

∑
j>i

{
(βi − βj)

2

1 − �ij

+
(βi + βj)

2

1 + �ij

}

= 2λ

p−1∑
i=1

∑
j>i

β2
i − 2�ijβiβj + β2

j

1 − �2
ij

(9)

where �ij denotes the (empirical) correlation between the ith and
the jth predictor. It is designed to focus on the grouping effect,
that is highly correlated effects show comparable values of estimates
(|β̂i| ≈ |β̂j |) with the sign being determined by positive or negative
correlation. For strong positive correlation (�ij → 1) the first term be-
comes dominant having the effect that estimates for βi, βj are similar

(β̂i ≈ β̂j). For strong negative correlation (�ij → −1) the second term

becomes dominant and β̂i will be close to −β̂j . Consequently, for weakly
correlated data the performance is quite close to the ridge penalty. The
correlation based penalty (9) can be written as a quadratic form

Pc(βββ) = λβββ	Mβββ, (10)

where M = (mij) is given by

mij =

⎧⎨⎩2
∑

s�=i
1

1−�2
is

, i = j

−2
�ij

1−�2
ij

, i �= j.

We denote the resulting penalized maximum likelihood estimator of
the unknown coefficient vector as β̂̂β̂βc and refer to it in the following as
GLM PenalReg estimator.

Due to the additive structure between log likelihood function and
the penalty term the computation of the correlation based penalized
estimator, abbreviated by GLM PenalReg, is easily done by using the
score function and Fisher matrix of the log likelihood function. For the
penalized log likelihood with Pc(βββ) = λβββ	Mβββ one obtains

lp(βββ) = l(βββ) − λ

2
βββ	Mβββ, (11)

where we use a rescaling of λ for computational simplicity. Hence, the
penalized score is

sp(βββ) =
∂lp(βββ)

∂βββ
= s(βββ) − λMβββ = X	DΣ−1(y −µµµ) − λMβββ, (12)

and the penalized Fisher matrix is given by
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Fp(βββ) = −E
[
∂sp(βββ)

∂βββ	

]
= X	WX + λM, (13)

As in non-penalized maximum likelihood estimation we need to solve
a nonlinear system of equations. In the same way as the GLM ridge
estimator the GLM PenalReg estimator can be written as an iteratively
re-weighted least squares estimator, given by

β̂cβ̂cβ̂c
(k+1) = (X	WX + λM)−1X	Wỹ(k), (14)

where ỹ(k) = Xβ̂cβ̂cβ̂c
(k) + D−1(y −µµµ).

Based on a first order Taylor approximation one obtains the asymp-
totic covariance matrix

Cov[β̂cβ̂cβ̂c(λ)] = (X	WX + λM)−1X	WX(X	WX + λM)−1. (15)

Note that we get similar results for the generalized ridge estimator
βββridge(λ) when we substitute the identity matrix for the penalty matrix
M, see Segerstedt (1992) for details. A systematic report on mean
squared error comparisons of competing biased estimators for the linear
model is given in Trenkler and Toutenburg (1990). For performance
comparisons in several simulation and practical data situations we refer
to section 4.

3 Generalized Blockwise Boosting

The main drawback of the correlation based penalized estimator is its
lack of sparsity. In particular when high dimensional data such as mi-
croarray data are considered one wants to select an appropriate subset
of regressors. One method that is able to overcome this disadvantage
is componentwise boosting as introduced by Bühlmann and Yu (2003).
They propose to update in one boosting step only the component that
maximally improves the fit.

Boosting methods are multiple prediction schemes that average es-
timated predictions from re-weighted data. With its origins in the ma-
chine learning community the first major field of applications was bi-
nary classification. The link between boosting and a gradient descent
optimization technique in function space as outlined in Breiman (1998)
provided the application of boosting methods in other contexts than
classification. Friedman (2001) developed the L2 Boost algorithm for a
linear base learner, an optimization algorithm with squared error loss
function for application in regression, which provides the foundations
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of componentwise boosting. For a detailed overview on boosting see
e.g. Meir and Rätsch (2003). Componentwise likelihood based boost-
ing applied to the generalized ridge estimator is described in Tutz and
Binder (2007). The base learner of this boosting algorithm is the first
step of the Fisher scoring algorithm.

Let S(m) ⊂ {0, 1, . . . , p} denote the index set of the variables
considered in the mth step, where the index 0 refers to the inter-
cept term of the predictor. The input data to the base learner are

{(x1, r1), . . . , (xn, rn)}, where ri = yi − µ̂
(m−1)
i (i = 1, . . . , n) denotes

the residual between the origin response yi and the estimated response
from the previous boosting step.

The basic concept is to choose within the mth step of the iterative
procedure the subset of variables which provides the best improvement
to the fit. In componentwise maximum likelihood based boosting it
is common to use the deviance as a measure of goodness-of-fit. We
choose the Akaike information criterion (AIC) rather than the deviance,
because it includes an automatic penalization of large subsets.

The following algorithm GenBlockBoost is a boosted version of the
correlation based penalized estimate.

Algorithm GenBlockBoost

Step 1: (Initialization)

Fit the model µi = h(β0) by iterative Fisher scoring yielding β̂̂β̂β(0) =

(β̂0, 0, . . . , 0)	. Set η̂̂η̂η(0) = Xβ̂̂β̂β(0), µ̂̂µ̂µ(0) = h(η̂̂η̂η(0)).
Step 2: (Iteration)

For m = 1, 2, . . .

(a) Find an appropriate order of regressors according to their improve-
ments of fit
For j ∈ {0, . . . , p} compute the estimates based on one step Fisher
scoring

b̂{j} = (x	
{j}W(η̂̂η̂η(m−1))x{j} + λ)−1x	

{j}W(η̂̂η̂η(m−1))D(η̂̂η̂η(m−1))−1

×(y − µ̂̂µ̂µ(m−1)),

yielding b̂j0 , . . . , b̂jp such that Dev(b̂j0) ≤ . . . ≤ Dev(b̂jp), where

Dev(b̂jk
) = 2

n∑
i=1

{
li(yi) − li

[
h(η̂

(m−1)
i + xijk

b̂jk
)
]}

, k = 0, 1, . . . , p.
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(b) Find a suitable number of regressors to update
For r = 0, . . . , p

With Sr = {j0, . . . , jr} we compute the estimates based on one
step Fisher scoring

b̂Sr = (X	
Sr

W(η̂̂η̂η(m−1))XSr + λ|Sr|MSr)
−1X	

Sr
W(η̂̂η̂η(m−1))

×(D(η̂̂η̂η(m−1))−1y − µ̂̂µ̂µ(m−1)),

yielding estimates b̂Sr and AIC criterion AIC(b̂Sr).
(c) Selection

Select the subset of variables which has the best fit, yielding

S(m) = arg min
Sr

AIC(b̂Sr).

(d) Refit
The parameter vector is updated by

β̂
(m)

j =

⎧⎨⎩ β̂
(m−1)

j + b̂j , if j ∈ S(m)

β̂
(m−1)

j , otherwise,

yielding β̂̂β̂β(m) = (β̂
(m)

1 , . . . , β̂
(m)

p )	, η̂̂η̂η(m) = Xβ̂̂β̂β(m), µ̂̂µ̂µ(m) = h(η̂̂η̂η(m)).

The number of possible combinations of regressors is 2p. Due to
computational limitation we cannot apply a full search for the best
subset. Therefore in a first step of each boosting iteration we order the
regressors according to their individual potential improvement to the
fit. This improvement is measured by the (potential) deviance

Dev(b̂j) = 2
n∑

i=1

{
li(yi) − li

[
h(η̂

(m−1)
i + xij b̂j)

]}
, j = 0, . . . , p,

where xi0 = 1 for all i = 1, . . . , n.
For making the base learner a weak learner, so that only a small

change in parameter estimates occurs within one boosting iteration, the
tuning parameter λ is chosen very large. This also leads to more stable
estimates. The price to pay for this choice is an increase in computation
time when the value of the tuning parameter becomes larger.

For subsets S that contain only one variable the correlation based
penalty (10) cannot be used directly. In those cases we define the
penalty by the ridge type penalty Pc,{j} = λβ2

j .



Boosting Correlation Based Penalization 173

Within the algorithm the correlation based estimator is used for
subsets of varying size. The tuning parameter λ that is used has to be
adapted to the number of refitted regressors. If one considers the case of
uncorrelated variables the penalty for all variables reduces to Pc(βββ) =
2λ(p−1)

∑p
i=1 β

2
i which equals the ridge penalty with tuning parameter

2λ(p − 1). Thus λ|Sr| in step 2b of the GenBlockBoost algorithm is
chosen by λ|Sr| = λ(|Sr|−1), where |Sr| denotes the number of refitted
regressors.

In order to avoid overfitting, a stopping criterion is needed for es-
timating the optimal number of boosting iterations. We use the AIC
criterion

AIC(β̂̂β̂β(m)) = Devm + 2tr(Hm), (16)

with

Devm = 2

n∑
i=1

[
li(yi) − li(µ̂

(m)
i )

]
.

An approximation of the hat matrix is given by

Hm =
m∑

j=0

Mj

j−1∏
i=0

(I − Mi),

so that µ̂(m) ≈ Hmy, where

Ml = Σ1/2
m W1/2

m XS(m)(X	
S(m)WmXS(m)+λMS(m))−1X	

S(m)W
1/2
(m)Σ

−1/2
m

and M0 = 1
n1n1	n . See Tutz and Leitenstorfer (2007) for the derivation

of this approximation. An estimate of the sufficient number of boosting
iterations is

m∗ = arg min
m

AIC(β̂̂β̂β(m)).

In the next section we investigate the performance of the correlation
based penalized estimator for GLMs and the GenBlockBoost algorithm
in several simulation and data settings.

4 Simulations and Real Data Example

In the simulations, we consider predictors which are given in 10 blocks,
each block contains q variables, resulting in p = 10q variables. All
variables have unit variances. The correlations between xi and xj are

�|i−j| if xi and xj belong to the same block, otherwise they are given by
a truncated N(0, 0.12) distribution. For the true predictor η we choose
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the set V of all covariates that belong to three randomly chosen blocks
so that

η = x	βββ,

where x = (x1, . . . , xp)
	 and βββ = c · (β1, . . . , βp)

	 is determined by

βj ∼ N(1, 1) for j ∈ V, βj = 0 otherwise.

That means each variable included in one of the chosen blocks is con-
sidered as relevant. Note that β0 = 0 in all simulations, but all methods
are allowed to include a nonzero intercept in their vector of estimated
coefficients. The final response y corresponding to the expected value
of the response µ = E(y|x) = h(η), where h(η) = exp(η)/(1 + exp(η))
is drawn from a binomial distribution B(µ, 1). The constant c is chosen
so that the signal-to-noise ratio

signal-to-noise ratio =

∑n
i=1(µi − µ̄)2∑n
i=1 V ar(yi)

,

with µ̄ = 1
n

∑n
i=1 µi, is (approximately) equal to one. We use the New-

ton algorithm to find c in this case. The estimation of unknown para-
meters is based on 100 training data observations. The evaluation uses
1000 test data observations. We use an additional independent vali-
dation data set consisting of 100 observation to determine the tuning
parameters.

We compare the GLM PenalReg estimator and the GenBlockBoost
algorithm with the maximum likelihood estimator (ML), L2 penalized
maximum likelihood estimation (ridge), L1 penalized maximum likeli-
hood estimation (lasso) and a boosted version of the L2 penalized max-
imum likelihood estimator (GenRidgeBoost). For further details on the
GenRidgeBoost algorithm see Tutz and Binder (2007). The computa-
tion of the L1 penalized maximum likelihood estimator is done with
the R package glmpath by Mee Young Park and Trevor Hastie.

The performance of data fitting is measured by the deviance and
the deviation between estimated and true parameter vector. The latter
is defined as

MSEβ = |β̂̂β̂β − βββ|2. (17)

Besides the prediction performance as an important criterion for com-
parison of methods the variables included into the final model are of
special interest to practitioners. The final model should be as parsi-
monious as possible but all relevant variables should be included. We
use the criteria hits and false positives to evaluate the identification of
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relevant variables. Hits refers to the number of correctly identified influ-
ential variables, false positives is the number of non-influential variables
dubbed influential.

The simulation results are given in Table 1, 2, 3 and Figures 1 and
2. GenBlockBoost has the best prediction performance almost all the
time. Considering the fit of true parameters PenalReg performs very
good, but GenBlockBoost shows good results among the variable select-
ing procedures for small and medium sized blocks. GlmPath performs
better for huge blocks. In the hits and false positives analysis Gen-
BlockBoost clearly outperforms GlmPath and also chooses more rele-
vant covariates than GenRidgeBoost. GenRidgeBoost generally tends
to more parsimonious models, hence its median number of false posi-
tives is smaller in comparison to GenBlockBoost.

ML Ridge PenalReg GenRidgeBoost GenBlockBoost GlmPath (Lasso)

q = 3 � = 0.95 17983.21 875.22 866.16 965.81 901.05 904.78

� = 0.8 16791.35 928.75 923.54 916.89 907.23 940.89

� = 0.5 15497.62 965.58 966.91 890.67 881.59 936.87

q = 5 � = 0.95 20035.41 894.60 892.68 891.95 851.78 908.84

� = 0.8 21152.08 939.29 934.00 906.33 897.05 949.74

� = 0.5 19842.48 1005.99 1011.70 993.47 958.38 1007.23

q = 10 � = 0.95 - 871.39 854.36 868.69 859.35 907.84

� = 0.8 - 970.10 947.54 937.15 915.58 982.49

� = 0.5 - 1099.91 1085.18 1119.54 1110.80 1083.11

Table 1. Median deviances for simulated data based on 20 replications.

ML Ridge PenalReg GenRidgeBoost GenBlockBoost GlmPath (Lasso)

q = 3 � = 0.95 423640.00 2.19 1.80 2.69 2.56 3.55

� = 0.8 106086.80 1.98 1.68 1.89 1.62 1.92

� = 0.5 47861.17 2.00 2.04 1.30 1.43 1.63

q = 5 � = 0.95 345348.10 1.60 1.51 3.62 2.07 3.71

� = 0.8 77118.91 2.35 1.97 2.27 1.95 2.80

� = 0.5 33738.83 2.15 2.19 2.12 1.78 2.18

q = 10 � = 0.95 - 1.43 1.08 2.87 2.40 2.22

� = 0.8 - 2.02 1.55 2.72 2.49 2.46

� = 0.5 - 2.51 2.38 2.67 2.79 2.58

Table 2. Median MSEβ for simulated data based on 20 replications.

For an application to real data we use the leukemia cancer gene
expression data set as described in Golub et al. (1999). In cancer treat-



176 Jan Ulbricht and Gerhard Tutz

ML Ridge PenalReg GenRidgeBoost GenBlockBoost GlmPath (Lasso)

q = 3 � = 0.95 9/22 9/22 9/22 4/1 6/3 5/7

� = 0.8 9/22 9/22 9/22 5/1 5/2 6/8

� = 0.5 9/22 9/22 9/22 6/2 6/3 7/10

q = 5 � = 0.95 15/36 15/36 15/36 6/3 12/4 6/9

� = 0.8 15/36 15/36 15/36 7/3 11/6 8/9

� = 0.5 15/36 15/36 15/36 8/3 9/5 9/9

q = 10 � = 0.95 - 30/71 30/71 9/2 17/8 8/5

� = 0.8 - 30/71 30/71 10/2 16/5 12/10

� = 0.5 - 30/71 30/71 12/2 17/9 14/12

Table 3. Median hits/false positives for simulated data based on 20 replica-
tions.
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Fig. 1. Deviances for various estimators for the simulations.

ment it is important to target specific therapies to pathogenetically
distinct tumor types, to gain a maximum of efficacy and a minimum of
toxicity. Hence, distinguishing different tumor types is critical for suc-
cessful treatment. The challenge of the leukemia data set is to classify
acute leukemia into those arising from lymphoid precursors (acute lym-
phoblastic leukemia, ALL) and those arising from myeloid precursors
(acute myeloid leukemia, AML), based on the simultaneous expression
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Fig. 2. MSEβ for various estimators for the simulations.

monitoring of 7129 genes using DNA microarrays. The data set con-
sists of 72 samples, out of which 47 observations are ALL and 25 are
AML. We use 20 random splits into a training and an independent test
sample of sizes 38 and 34, respectively.

Besides the test deviance

Devtest = 2

ntest∑
i=1

[
li(yi,test) − li(µ̂i,test)

]
, (18)

which is based on the test sample, we consider the number of genes
identified as relevant variables. Since the main focus is on classification
we focus on the numbers of correctly classified respective misclassified
observations in the test data set as performance measures for discrim-
ination.

Due to the 20 random splits we consider the median performance
results which are given in Table 4. All three considered algorithms show
quite similar performances. At the median number of correctly classi-
fied types of leukemia, GenRidgeBoost is slightly better for the ALL
class, GenBlockBoost is slightly better for the AML class. When consid-
ering the overall misclassification GlmPath has the best discrimination



178 Jan Ulbricht and Gerhard Tutz

power. Due to the test deviance, the test data fits best to the model es-
timated by GenBlockBoost. Here, the GenRidgeBoost estimator is only
poor. When we consider the number of selected genes GenRidgeBoost
is slightly more sparse than the competitors.

Performance measure GenBlockBoost GlmPath GenRidgeBoost

ALL correctly classified 9 10 11

AML correctly classified 21 20 20

misclassification 5 3 5

Devtest 17.75 19.11 84.98

No. of genes used 11 10 9

Table 4. Median performance results for the leukemia cancer gene expression
data for 20 random splits into 38 learning data and 34 test data.

5 Concluding Remarks

We presented two approaches for parameter estimation in generalized
linear models with many covariates. The GLM PenalReg estimator
gives special attention to the grouping effect, the GenBlockBoost algo-
rithm moreover put additional attention on subset selection. The sim-
ulations demonstrate the competitive data fitting performance and the
small deviation between estimated and true parameter vectors. The
GenBlockBoost algorithm is slightly less sparse than the GenRidge-
Boost algorithm but this is a consequence of the more tightly focused
grouping effect. Nevertheless the correct identification of relevant vari-
ables is quite good. As a result, the GenBlockBoost estimator can be
seen as a strong competitor in the field of subset selection in generalized
linear models.

Both methods may be extended to the case of multivariate gener-
alized linear models, such as with multinomial response. Furthermore,
some further theoretical aspects on MSE comparisons with the GLM
ridge estimator might by interesting. Here, Trenkler and Toutenburg
(1990) provides an initial point for the challenging application to gen-
eralized linear models.
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1 Introduction

In the literature of multiple regression models, the customary analysis
is the estimation and hypothesis testing about the parameters of the
model. However, in various applications, it is utmost important for a
practitioner to predict the future values of the response variable. The
most common way to tackle with such a problem is the use of Best
Linear Unbiased Predictors (BLUP) discussed by Theil (1971), Hen-
dersion (1972) and Judge, Griffiths, Hill, Lütkepohl and Lee (1985).
For further details of the BLUP one can see Toyooka (1982) and Kariya
and Toyooka (1985). The Stein-rule predictors and the shrinkage rules
based on Stein-rule technique to forecast have also got considerable at-
tention of the researchers in recent past. Copas (1983) considered the
prediction in regression using a Stein-rule predictor. Copas and Jones
(1987) applied the regression shrinkage technique for the prediction
in an autoregressive model. Zellner and Hong (1989) used Bayesian
shrinkage rules to forecast international growth rate. Hill and Fomby
(1992) analyzed the performance of various improved estimators under
an out-of-sample prediction mean square error criterion. Gotway and
Cressie (1993) considered a class of linear and non-linear predictors in
the context of a general linear model with known disturbances covari-
ance matrix and observed that, under the quadratic loss function, the
proposed class of predictors has uniformly smaller risk than the BLUP.
Khan and Bhatti (1998) obtained the prediction distribution for a set
of future responses from a multiple linear regression model following an
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equi-correlation structure. Tuchscheres, Herrendorfer and Tuchscheres
(1998) proposed Estimated Best Linear Unbiased Predictor (EBLUP)
with the help of a designated simulation experiment using MSE and
GSD technique for evaluation.

In predicting the dependent variable of a regression model, a tradi-
tional practice is to obtain the prediction for either the actual values
of the response variable or its average. In some circumstances, it may
be desired to consider the simultaneous prediction of both the actual
and the average values of a variable for the forecast period. Shalabh
(1995) discussed several practical examples where one may encounter
with such situations. Keeping this in view, Shalabh (1995) proposed
a composite target function for the simultaneous prediction of the re-
sponse variable in the context of a linear model with independent and
identically distributed disturbances. He developed the predictors based
on ordinary least squares and Stein-rule estimation methods and ex-
amined the bias and mean squared error of the predictors with re-
spect to this target function, see also Srivastava and Shalabh (1996).
Toutenburg and Shalabh (1996), and Rao, Toutenburg, Shalabh and
Heumann (2008) utilized the same methodology for restricted regres-
sion model. Shalabh (1998) extends his results for the linear regression
model with equi-correlated responses and analyzes the efficiency prop-
erties of the proposed predictors. Chaturvedi, Wan and Singh (2002)
discussed the large sample asymptotic properties of a class of Stein-
rule predictors based on composite target function in a general linear
model. Chaturvedi and Singh (2000) estimated the MSE matrix of the
proposed SR predictor when disturbances covariance matrix is known.

The present paper deals with the problem of prediction based on
shrinkage estimator in a general linear model with nonspherical distur-
bances. A general family of predictors for the composite target function,
considered by Shalabh (1995), has been proposed and its asymptotic
distribution has been derived employing large sample asymptotic the-
ory. The risk based on quadratic loss structure of the proposed family
of predictors has been obtained. The performance of proposed family
of predictors is compared with the feasible Best Linear Unbiased Pre-
dictor (FBLUP) under the MSE matrix criterion and Quadratic loss
function criterion. Further, we obtain the expression for an estimator
for the MSE matrix of the proposed predictor. The results of a numer-
ical simulation have been presented and discussed.
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2 The Model and the Estimators

Let us consider the general linear model

y = Xβ + u (1)

where y is a n × 1 vector of observations on the dependent variable,
X is a n × p non-stochastic matrix of n observations on each of the
p explanatory variables, β is a p × 1 vector of unknown regression
coefficients and u is a n× 1 vector of disturbances.

Let yf denotes a T×1 vector of unobservable values of the dependent
variable for T forecast periods generated by the process

yf = Xfβ + uf (2)

where Xf is a T × p matrix of pre-specified observations on the ex-
planatory variables for T forecast periods and uf is a T × 1 vector of
disturbances for the forecast periods. Further, we assume that[

u

uf

]
∼ N(0, σ2Σ),

with

Σ =

[
Φ

V ′
V

Ψ

]
.

Thus, σ2Φ is a n×n covariance matrix of u, σ2Ψ is a T×T covariance
matrix of uf and σ2V is a n×T matrix of covariance between u and uf .
We assume that the elements of Σ are functions of a q × 1 parameter
vector θ, so that we can write Σ = Σ(θ).

Let us consider the following target function discussed by Shalabh
(1995) and Toutenburg (1982) which allows the prediction of both yf

and E(yf ):

τ = λyf + (1 − λ)E(yf )

= Xfβ + λuf (3)

where λ, (0 ≤ λ ≤ 1) is a non-stochastic scalar assigning weights to
actual and expected values of yf .

For convenience we write Ω = Φ−1. If θ is known then BLUP for τ
is given by

τ̃ = λỹf + (1 − λ)Xfβ
∗ (4)

where
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ỹf = Xfβ
∗ + V ′Ω(y −Xβ∗) (5)

is the BLUP of yf (see Toutenburg (1982, p.138)) and

β∗ = (X ′ΩX)−1X ′Ωy

is the GLS estimator of β. Substituting (6) in (5), we obtain

τ̃ = Xfβ
∗ + λV ′Ω(y −Xβ∗). (6)

Let us consider the following general family of shrinkage estimators
for β:

β∗
S =

[
1 − k

n− p+ 2

r(η∗)
η∗

]
β∗,

where

η∗ =
β∗′X ′ΩXβ∗

(y −Xβ∗)′Ω(y −Xβ∗)
,

k (≥ 0) is a characterizing scalar and r(η∗) is a function of η∗.
If β∗ is replaced by β∗

S in (4), we obtain the following general family
of shrinkage regression predictor:

τ∗S = Xfβ
∗
S + λV ′Ω(y −Xβ∗

S). (7)

On the other hand, if θ is unknown and estimated by θ̂, then re-
placement of θ by θ̂ in (6) leads to the FBLUP for τ given by:

τ̂ = Xf β̂ + λV̂ ′Ω̂(y −Xβ̂) (8)

where Ω̂ and V̂ are obtained by replacing θ by θ̂ inΩ and V respectively,
and β̂ = (X ′Ω̂X)−1X ′Ω̂y is the FGLS estimator of β. Notice that the
first term on the right hand side of (8) is an estimator of the non-

stochastic part Xfβ of τ whereas V̂ ′Ω̂(y −Xβ̂) is an estimator of the

disturbance term uf . Further, replacement of θ by θ̂ in (7) gives the
following predictor based on the shrinkage estimator:

τ̂S = Xf β̂S + λV̂ ′Ω̂(y −Xβ̂S) (9)

where

β̂S =

[
1 − k

n− p+ 2

r(η̂)

η̂

]
β̂;

η̂ =
β̂
′
X ′Ω̂Xβ̂

(y −Xβ̂)′Ω̂(y −Xβ̂)
.
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Obviously, for k = 0, the predictor τ̂ s reduces to τ̂ and for r(η̂) = 1
it reduces to τ̂ sr given by

τ̂ sr = Xf β̂Sr + λV̂ ′Ω̂(y −Xβ̂Sr) (10)

where

β̂Sr =

[
1 − k

n− p+ 2

(y −Xβ̂)′Ω̂(y −Xβ̂)

β̂
′
X ′Ω̂Xβ̂

]
β̂.

3 Asymptotic Distribution

In this section we obtain the asymptotic distribution of the predictor
τ̂ s when the sample size is large. We assume that

i) For any n × n finite matrix C with elements of order O(1), the
quantity n−1X ′CX is of order O(1) as n→ ∞.

ii) For any arbitrary matrix with elements of order O(1), the quantity
n−1/2X ′Cu is of order Op(1) and

iii) The estimator θ̂ of θ is an even function of Mu, where

M = In −X(X ′X)−1X ′.

Let us write

A =
1

n
X ′ΩX, Â =

1

n
X ′Ω̂X, η̃ =

β
′

Aβ

υσ2
, α∗ =

1

(σ
√
n)
X ′Ω̂u,

υ =
1

n
ε′2(P

′Ω−1P )−1P ′Ω−1(Ω̂ − Ω̂X(X ′Ω̂X)−1X ′Ω̂)

×Ω−1P (P ′Ω−1P )−1ε2,

γ =

√
n

σ
(τ̂ s − τ).

Since M is an idempotent matrix of rank n− p, there exists a n×
(n − p) matrix P such that P ′P = In−p and PP ′ = M . Consider the
transformation ε1 = X ′Ωu/(σ

√
n) and ε2 = P ′u/σ. Then from the

normality of u and observing that P ′X = 0, it follows that ε1 and ε2
are independently distributed with ε1 ∼ N(0, A), ε2 ∼ N(0, P ′Ω−1P ).

Further, assumption (iii) implies that θ̂ is an even function of ε2.
Let us define
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µ(ε2) =
−kσυ√
nβ′Âβ

r (η̃) (Xf − λV̂ ′Ω̂X)β

+

[
(Xf − λV̂ ′Ω̂X)A−1X

′Ω̂√
n

+ λ
√
n(V̂ ′Ω̂ − V ′Ω)

]
×Ω−1P (P ′Ω−1P )ε2

and

Ξ(ε2) = λ2n(Ψ − V ′ΩV )

+(Xf − λV ′ΩX)A−1(Xf − λV ′ΩX)′

− 2kσ2

nβ′Aβ
r(η̃)(Xf − λV ′ΩX)

(
A−1 − 2ββ′

β′Aβ

)
(Xf − λV ′ΩX)′

+2λ(V̂ ′Ω̂ − V ′Ω)(Xf − λV ′ΩX)′

+λ2(V̂ ′Ω̂ − V ′Ω)XA−1X ′(V̂ ′Ω̂ − V ′Ω)′

+
4k

nβ′Aβ
r (η̃) (Xf − λV̂ ′Ω̂X)ββ′(Xf − λV̂ ′Ω̂X)′.

Theorem 1. The conditional asymptotic distribution of γ given ε2, up
to order Op(n

−1), is normal with mean vector µ(ε2) and variance co-
variance matrix Ξ(ε2).

Proof:

See Appendix.

Denoting the probability density function of a normal distribu-
tion with mean vector µ(ε2) and variance-covariance matrix Ξ (ε2) by
φ (µ(ε2), Ξ (ε2)), the asymptotic unconditional distribution of γ, up to
order Op(n

−1), is given by

f(γ) = Eε2 [φ (µ(ε2), Ξ (ε2))] . (11)

The bias vector of the predictor τ̂ s, up to order Op(n
−1), is given

by

E(τ̂ s − τ) = −kσ
2

n
Eε2

[
1

β′Âβ
υr (η̃) (Xf − λV ′ΩX)β

]
+

σ√
n
Eε2

[{
1√
n

(Xf − λV̂ ′Ω̂X)A−1X ′Ω̂

+λ
√
n(V̂ ′Ω̂ − V Ω)

}
Ω−1P (P ′ΩP )−1ε2

]
. (12)
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Since θ̂ is an even function of ε2, the second term in equation (12)
vanishes and the expression for the bias vector of τ̂ s reduces to

E(τ̂ s − τ) = −kσ
2

n
Eε2

[
1

β′Âβ
υr (η̃) (Xf − λV ′ΩX)β

]
= − kσ2

nβ′Aβ
r (η) (Xf − λV ′ΩX)β +O(n−3/2) (13)

where η = β′Aβ/σ2h, h = n− p.
From (13), we observe that the bias of τ̂ s increases in magnitude

as
(
β′Aβ/σ2

)
decreases. The bias, in magnitude, is also a decreasing

function of n. Obviously the feasible BLUP τ̂ is unbiased up to order
O(n−1).

4 Comparison of Predictors

The difference between the MSE matrices of the predictors τ̂ and τ̂ s,
up to order O(n−2), is given by

E
[
(τ̂ − τ)(τ̂ − τ)′

]− E
[
(τ̂ s − τ)(τ̂ s − τ)′

]
=

2kσ4

n2β′Aβ
r (η) (Xf − λV ′ΩX)

(
A−1 − 4 + kr (η)

β′Aβ
ββ′

)
×(Xf − λV ′ΩX)′

+
4kσ2

n2β′Aβ
r′ (η) (Xf − λV ′ΩX)ββ′(Xf − λV ′ΩX)′.

In order to establish the dominance of τ̂ s over τ̂ under the MSE
matrix criterion, we assume that r′ (η) > 0. Then τ̂ s dominates τ̂ iff
the matrix [

A−1 − 1

2β′Aβ
(4 + kr (η))ββ′

]
is positive semi-definite. Following Rao, Toutenburg, Shalabh and
Heumann (2008, p. 506), we observe that the above matrix is posi-
tive semi-definite iff

1

2

[
4 + kr

(
β′Aβ
σ2υ

)]
≤ 1.

However, it is impossible as both k and r (η) are non-negative.
Hence, under the MSE matrix criterion, the predictor τ̂ s cannot uni-
formly dominate τ̂ . Similarly τ̂ dominates τ̂ s iff
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1

2β′Aβ
(4 + kr (η))ββ′ −A−1

]
is positive semi-definite, which is also not possible, (see Rao, Touten-
burg, Shalabh and Heumann (2008, p. 507)). Hence we conclude that
neither of the predictors τ̂ nor τ̂ s uniformly dominate the other under
the MSE matrix criterion at least to order O(n−2).

For comparing the performance of two predictors let us consider the
risk under the following quadratic loss function

L(τ̃ , τ) = (τ̃ − τ)′Qn(τ̃ − τ),

where τ̃ is a predictor of τ and Qn is a positive definite symmetric
matrix of order O(1).

Let us write

ω =
tr{A−1(Xf − λV ′ΩX)′Qn(Xf − λV ′ΩX)}
µl{A−1(Xf − λV ′ΩX)′Qn(Xf − λV ′ΩX)} .

Up to the order of our approximation, the difference between risks of
two predictors is given by

R [τ̂ ] −R [τ̂ s]

=
kσ4

n2β′Aβ
r (η)

[
2tr{A−1(Xf − λV ′ΩX)′Qn(Xf − λV ′ΩX)′}

− 1

β′Aβ
(4 + kr (η))β′(Xf − λV ′ΩX)′Qn(Xf − λV ′ΩX)β

]
+

4k

nβ′Aβ
r′ (η)β′(Xf − λV ′ΩX)′Qn(Xf − λV ′ΩX)β. (14)

A lower bound for the difference between risks is given by

R [τ̂ ] −R [τ̂ s] ≥
kσ4

n2β′Aβ
r (η)µl

[
A−1(Xf − λV ′ΩX)′Qn(Xf − λV ′ΩX)

]
× [2ω − (4 + kr (η))] .

Hence, up to the order of our approximation, a sufficient condition
for τ̂ s to dominate τ̂ is given by

0 ≤ kr (η) ≤ 2(ω − 2), ω > 2. (15)
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5 Estimation of the MSE Matrix

Let us assume that θ is known and σ2 is unknown. The following the-
orem gives an unbiased estimator for the MSE matrix of the predictor
τ̃ s:

Theorem 2. An unbiased estimator of the MSE matrix of the predictor
τ̃ s is given by

M̂(τ̃ s) =
υ

h
∆− k

h+ 2

υ2

β∗′X ′ΩXβ∗W
[∫ 1

0
th/2r (η∗) dt

] (
X ′ΩX

)−1
W ′

− 2k

h+ 2
W

[∫ 1

0
th/2−2

{
υt

β∗′X ′ΩXβ∗ r
′ (η∗)

−
(

υt

β∗′X ′ΩXβ∗

)2

r (η∗)

}
dt

]
β∗β∗′W ′

+

(
k

h+ 2

)2 [r2(η∗)
η∗2

{
Wβ∗β∗′W ′

}]
Wβ∗β∗′W ′. (16)

Proof:

See Appendix.

In general, the form of the estimator in equation (16) is not readily
computable and requires numerical integration if it is to be calculated.
In such a situation, an alternative is to derive an estimator of the scaled
MSE matrix of τ̃ s, defined as M(σ−1τ̃ s).

Theorem 3. An unbiased estimator of the scaled MSE matrix
M

(
σ−1τ̃ s

)
is given by

M̃(σ−1τ̃ s) =
υ

h
∆− 2kυ

h (h+ 2)
r∗ (η∗)W

(
X ′ΩX

)−1
W ′

+

[
4k

h (h+ 2)

{
υ

β∗′X ′ΩXβ∗′ r
′ (η∗)

−
(

υ

β∗′X ′ΩXβ∗

)2

r (η∗)

}
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+

(
k

h+ 2

)2 (h− 2)

h
r2(η∗)

−4r∗(η∗)
h

η∗
{

υ

β∗′X ′ΩXβ∗ r
′ (η∗)

−
(

υ

β∗′X ′ΩXβ∗

)2

r (η∗)

}]
Wβ∗β∗′W ′. (17)

Proof:

See Appendix.

The MSE matrix of the predictor τ̃ s can be estimated by

M̃ (τ̃ s) =
υ

h
M̃

(
σ−1τ̃ s

)
.

When θ is unknown, we replace it by θ̂ in (16) or (17) to obtain the
estimator for the MSE matrix of the predictor τ̂ s.

6 Monte-Carlo Study

In order to observe the performance of different predictors numerically,
we carried out a Monte-Carlo simulation. The computational results
are based on the model

y = Xβ + u

with the disturbance term u following an AR(1) process

ut = ρut−1 + εt; t = 1, 2, . . . , n.

Here ρ is the autoregression parameter so that |ρ| < 1 and εt’s iden-
tically and independently distributed random variables from N

(
0, σ2

ε

)
implying that var(ut) = σ2

ε/(1−ρ2). The matrix H = (X Xf ) is chosen
so that H ′H = I. Further,

Σ =

[
Ω−1 V

V ′ Ψ

]
.

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ2 . . . ρn+T−1

ρ 1 ρ . . . ρn+T−2

ρ2 ρ 1 . . . ρn+T−3

...
...

...
. . .

...

ρn+T−1 ρn+T−2 ρn+T−3 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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We have evaluated the relative risk for n = 20, 50, 100; T = 4; p = 4,
10; β’β= 1, 5, 10, 15, 20; ρ= -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8;
λ= 0, 0.25, 0.50, 0.75, 1.00. However in the tables 1-5, the relative risk
of four common forms of Stein-type estimators, the Stein-rule estima-
tors (SR), the double k-class of estimators (KK), the Minimum Mean
Square Error estimator (MMSE) and the Admissible Feasible MMSE
(AFMMSE, denoted by AMSE in the table) in comparison to the risk
of predictor based on FGLS estimator are presented only for n = 100;
β’β = 1, 10, 20 and all the values of T , p, ρ and λ mentioned above. The
relative risks for other choices of n and β’β show almost the same kind
of pattern. Each of the simulation result is based on 5000 repetitions.
The relative risks are evaluated by setting Qn = I and k = p−2. From
the numerical results, we draw the following conclusions:

• For majority of cases the relative risks of predictors based on differ-
ent shrinkage estimators with respect to predictor based on FGLS
estimator are less than 1. Further, except for some cases with ex-
treme values of ρ along with λ ≥ 0.75, we have the following rela-
tionship between the risks of different predictors:

R(τ̂) > R(τ̂AM ) > R(τ̂SR) > R(τ̂KK) > R(τ̂MM ).

• As the value of β′β increases, the relative risk of different estimators
has a tendency to incline (or decline, whatever the case) towards 1.
Hence, in general, as β′β increases, the performance of different
estimators goes similar in terms of risk.

• The relative risk of different predictor increases with increasing λ.
• In general, as |ρ| increases, the relative risk decreases up to |ρ| = 0.6

and at |ρ| = 0.8, the relative risk increases.
• Usually, the relative risk attains maximum for ρ=0. However, there

are some exceptional cases too where relative risk is maximum for
|ρ| = 0.8 or, in few cases, for |ρ| = 0.6.

Appendix

Proof of Theorem 1:
We can write γ as

γ =

√
n

σ
(τ̂ s − τ)

=

√
n

σ

[
Xf (β̂S − β) + λV̂ ′Ω̂(y −Xβ̂S) − λuf

]
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Table 1. Relative risk of estimators for λ = 0.00

p = 4 p = 10

ρ β′β SR KK MMSE AMSE SR KK MMSE AMSE

-0.8 1 0.9934 0.9916 1.0005 0.9947 0.9553 0.9831 0.9557 0.9886

10 0.9993 0.9992 1.0002 0.9995 0.9937 0.9942 0.9938 0.9986

20 1.0000 0.9999 1.0008 0.9999 0.9975 0.9974 0.9977 0.9994

-0.6 1 0.9987 0.9932 1.0135 0.9971 0.9461 0.9830 0.9448 0.9872

10 0.9988 0.9986 0.9993 0.9992 0.9959 0.9954 0.9967 0.9988

20 1.0005 1.0004 1.0019 1.0001 0.9966 0.9967 0.9967 0.9992

-0.4 1 0.9931 0.9905 1.0040 0.9939 0.9434 0.9831 0.9417 0.9861

10 0.9995 0.9992 1.0010 0.9995 0.9931 0.9937 0.9933 0.9984

20 0.9998 0.9997 1.0006 0.9997 0.9955 0.9957 0.9954 0.9991

-0.2 1 0.9954 0.9911 1.0091 0.9949 0.9280 0.9818 0.9240 0.9836

10 0.9991 0.9988 1.0004 0.9993 0.9929 0.9933 0.9934 0.9983

20 0.9994 0.9993 0.9998 0.9996 0.9964 0.9963 0.9967 0.9991

0 1 0.9868 0.9886 0.9914 0.9907 0.9253 0.9816 0.9208 0.9830

10 0.9993 0.9989 1.0007 0.9994 0.9919 0.9930 0.9921 0.9982

20 0.9993 0.9992 0.9997 0.9995 0.9950 0.9953 0.9949 0.9989

0.2 1 0.9864 0.9891 0.9883 0.9908 0.9181 0.9814 0.9125 0.9824

10 0.9992 0.9989 1.0002 0.9994 0.9913 0.9928 0.9912 0.9981

20 0.9991 0.9990 0.9990 0.9994 0.9959 0.9960 0.9960 0.9991

0.4 1 0.9826 0.9893 0.9763 0.9896 0.9162 0.9815 0.9099 0.9829

10 0.9987 0.9986 0.9986 0.9992 0.9907 0.9926 0.9902 0.9981

20 0.9995 0.9995 0.9996 0.9997 0.9952 0.9957 0.9949 0.9990

0.6 1 0.9789 0.9893 0.9640 0.9885 0.9051 0.9815 0.8953 0.9834

10 0.9976 0.9978 0.9958 0.9987 0.9901 0.9928 0.9889 0.9983

20 0.9993 0.9993 0.9988 0.9996 0.9947 0.9955 0.9940 0.9991

0.8 1 0.9765 0.9889 0.9549 0.9879 0.8889 0.9811 0.8725 0.9839

10 0.9975 0.9978 0.9951 0.9987 0.9870 0.9917 0.9841 0.9982

20 0.9988 0.9988 0.9976 0.9994 0.9936 0.9950 0.9921 0.9991

=

√
n

σ

[
(Xf − λV̂ ′Ω̂X)(β̂ − β)

− k

n− p+ 2

r(η̂)

η̂
(Xf − λV̂ ′Ω̂X)β̂ + λV̂ ′Ω̂u− λuf

]
.

Further, we have Ω̂−Ω = Op(n
−1/2), V̂ −V = Op(n

−1/2) and α∗−ε1 =

Op(n
−1/2).

Now, following Kariya and Toyooka (1992), we observe that

X(X ′ΩX)−1X ′Ω +Ω−1P (P ′Ω−1P )P ′ = In (A.1)
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Table 2. Relative risks of estimates for λ=0.25

p = 4 p = 10

ρ β′β SR KK MMSE AMSE SR KK MMSE AMSE

-0.8 1 0.9578 0.9802 0.9181 0.9783 0.8933 0.9809 0.8759 0.9851

10 0.9910 0.9920 0.9818 0.9954 0.9641 0.9770 0.9546 0.9954

20 0.9952 0.9955 0.9903 0.9976 0.9790 0.9837 0.9733 0.9973

-0.6 1 0.9463 0.9767 0.8969 0.9724 0.8539 0.9760 0.8318 0.9793

10 0.9891 0.9905 0.9779 0.9944 0.9555 0.9729 0.9439 0.9942

20 0.9943 0.9947 0.9884 0.9971 0.9747 0.9810 0.9679 0.9967

-0.4 1 0.9360 0.9743 0.8780 0.9670 0.8267 0.9738 0.8024 0.9753

10 0.9875 0.9892 0.9745 0.9936 0.9490 0.9706 0.9358 0.9934

20 0.9934 0.9939 0.9866 0.9966 0.9711 0.9789 0.9633 0.9963

-0.2 1 0.9301 0.9732 0.8674 0.9640 0.8100 0.9731 0.7851 0.9726

10 0.9864 0.9885 0.9724 0.9930 0.9438 0.9687 0.9293 0.9927

20 0.9928 0.9934 0.9853 0.9963 0.9682 0.9774 0.9596 0.9959

0 1 0.9294 0.9735 0.8666 0.9636 0.8044 0.9731 0.7796 0.9717

10 0.9857 0.9880 0.9711 0.9927 0.9413 0.9681 0.9262 0.9924

20 0.9925 0.9931 0.9847 0.9961 0.9664 0.9765 0.9574 0.9957

0.2 1 0.9311 0.9739 0.8694 0.9645 0.8035 0.9731 0.7787 0.9715

10 0.9863 0.9884 0.9723 0.9930 0.9412 0.9681 0.9261 0.9924

20 0.9927 0.9933 0.9851 0.9963 0.9664 0.9765 0.9574 0.9957

0.4 1 0.9401 0.9763 0.8856 0.9692 0.8171 0.9742 0.7932 0.9736

10 0.9876 0.9894 0.9749 0.9937 0.9443 0.9692 0.9300 0.9928

20 0.9934 0.9939 0.9865 0.9966 0.9682 0.9775 0.9597 0.9959

0.6 1 0.9530 0.9802 0.9094 0.9758 0.8379 0.9761 0.8152 0.9770

10 0.9895 0.9909 0.9787 0.9946 0.9512 0.9719 0.9385 0.9937

20 0.9943 0.9947 0.9884 0.9971 0.9718 0.9795 0.9642 0.9964

0.8 1 0.9709 0.9868 0.9433 0.9851 0.8857 0.9818 0.8678 0.9843

10 0.9925 0.9934 0.9848 0.9962 0.9636 0.9780 0.9541 0.9953

20 0.9957 0.9960 0.9912 0.9978 0.9775 0.9831 0.9714 0.9971

so that

u =
[
X(X ′ΩX)−1X ′Ω +Ω−1P (P ′Ω−1P )P ′]u (A.2)

= σ

[
1√
n
XA−1ε1 +Ω−1P (P ′Ω−1P )ε2

]
.

Hence, up to order Op(n
−1)
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Table 3. Relative risks of estimates for λ=0.50

p = 4 p = 10

ρ β′β SR KK MMSE AMSE SR KK MMSE AMSE

-0.8 1 0.9763 0.9891 0.9535 0.9879 0.9398 0.9898 0.9294 0.9919

10 0.9954 0.9959 0.9906 0.9977 0.9811 0.9879 0.9761 0.9976

20 0.9976 0.9977 0.9951 0.9988 0.9893 0.9917 0.9864 0.9986

-0.6 1 0.9676 0.9864 0.9369 0.9835 0.9060 0.9856 0.8909 0.9873

10 0.9944 0.9951 0.9886 0.9971 0.9756 0.9852 0.9692 0.9969

20 0.9971 0.9973 0.9940 0.9985 0.9868 0.9901 0.9833 0.9983

-0.4 1 0.9616 0.9850 0.9255 0.9804 0.8830 0.9836 0.8657 0.9842

10 0.9935 0.9945 0.9869 0.9967 0.9717 0.9837 0.9642 0.9964

20 0.9966 0.9969 0.9931 0.9983 0.9847 0.9888 0.9805 0.9980

-0.2 1 0.9575 0.9843 0.9180 0.9783 0.8694 0.9829 0.8514 0.9822

10 0.9929 0.9940 0.9855 0.9964 0.9687 0.9827 0.9606 0.9960

20 0.9963 0.9966 0.9925 0.9981 0.9830 0.9880 0.9784 0.9978

0 1 0.9558 0.9840 0.9148 0.9774 0.8603 0.9822 0.8416 0.9809

10 0.9926 0.9938 0.9850 0.9962 0.9669 0.9821 0.9583 0.9957

20 0.9962 0.9965 0.9922 0.9980 0.9820 0.9875 0.9772 0.9977

0.2 1 0.9572 0.9843 0.9175 0.9781 0.8599 0.9824 0.8414 0.9809

10 0.9928 0.9939 0.9854 0.9963 0.9667 0.9821 0.9581 0.9957

20 0.9963 0.9966 0.9924 0.9981 0.9820 0.9874 0.9771 0.9977

0.4 1 0.9625 0.9856 0.9275 0.9809 0.8719 0.9834 0.8543 0.9825

10 0.9935 0.9945 0.9869 0.9967 0.9689 0.9829 0.9609 0.9960

20 0.9966 0.9969 0.9931 0.9983 0.9830 0.9880 0.9784 0.9978

0.6 1 0.9706 0.9879 0.9428 0.9850 0.8910 0.9849 0.8749 0.9853

10 0.9945 0.9952 0.9887 0.9972 0.9724 0.9841 0.9651 0.9964

20 0.9971 0.9973 0.9941 0.9985 0.9848 0.9889 0.9807 0.9980

0.8 1 0.9813 0.9916 0.9632 0.9905 0.9296 0.9892 0.9182 0.9906

10 0.9959 0.9964 0.9917 0.9979 0.9780 0.9867 0.9722 0.9972

20 0.9978 0.9979 0.9954 0.9989 0.9874 0.9905 0.9839 0.9984

1

n
(y −Xβ̂)′Ω̂(y −Xβ̂)

=
1

n

[
u′

(
Ω̂ − Ω̂X(X ′Ω̂X)−1X ′Ω̂

)
u
]

=
σ2

n

[
ε′2(P

′Ω−1P )−1P ′Ω−1
(
Ω̂ − Ω̂X(X ′Ω̂X)−1X ′Ω̂

)
×Ω−1P (P ′Ω−1P )−1ε2

]
= σ2υ.
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Table 4. Relative risks of estimates for λ=0.75

p = 4 p = 10

ρ β′β SR KK MMSE AMSE SR KK MMSE AMSE

-0.8 1 0.9840 0.9926 0.9684 0.9918 0.9575 0.9930 0.9501 0.9944

10 0.9969 0.9972 0.9937 0.9984 0.9874 0.9919 0.9840 0.9984

20 0.9984 0.9985 0.9967 0.9992 0.9929 0.9945 0.9910 0.9991

-0.6 1 0.9779 0.9908 0.9566 0.9887 0.9327 0.9899 0.9217 0.9911

10 0.9962 0.9967 0.9923 0.9981 0.9837 0.9901 0.9793 0.9979

20 0.9980 0.9982 0.9960 0.9990 0.9911 0.9933 0.9887 0.9989

-0.4 1 0.9737 0.9898 0.9487 0.9866 0.9162 0.9886 0.9035 0.9889

10 0.9956 0.9963 0.9911 0.9978 0.9809 0.9890 0.9759 0.9975

20 0.9978 0.9979 0.9954 0.9989 0.9897 0.9925 0.9869 0.9987

-0.2 1 0.9702 0.9891 0.9422 0.9848 0.9046 0.9879 0.8912 0.9873

10 0.9952 0.9959 0.9902 0.9975 0.9787 0.9883 0.9731 0.9973

20 0.9975 0.9977 0.9949 0.9987 0.9886 0.9919 0.9855 0.9985

0 1 0.9691 0.9889 0.9401 0.9843 0.8986 0.9876 0.8849 0.9865

10 0.9951 0.9958 0.9900 0.9975 0.9775 0.9879 0.9716 0.9971

20 0.9974 0.9976 0.9947 0.9987 0.9879 0.9915 0.9846 0.9984

0.2 1 0.9702 0.9892 0.9422 0.9848 0.9004 0.9879 0.8869 0.9867

10 0.9952 0.9959 0.9902 0.9975 0.9773 0.9878 0.9714 0.9971

20 0.9975 0.9977 0.9949 0.9987 0.9879 0.9916 0.9846 0.9984

0.4 1 0.9743 0.9902 0.9499 0.9869 0.9086 0.9886 0.8958 0.9878

10 0.9956 0.9963 0.9911 0.9978 0.9787 0.9883 0.9731 0.9973

20 0.9977 0.9979 0.9954 0.9988 0.9885 0.9919 0.9855 0.9985

0.6 1 0.9798 0.9917 0.9604 0.9897 0.9251 0.9899 0.9139 0.9901

10 0.9963 0.9968 0.9925 0.9981 0.9812 0.9893 0.9763 0.9976

20 0.9981 0.9982 0.9961 0.9990 0.9898 0.9926 0.9870 0.9987

0.8 1 0.9882 0.9947 0.9766 0.9940 0.9515 0.9927 0.9436 0.9936

10 0.9974 0.9977 0.9946 0.9986 0.9850 0.9910 0.9810 0.9981

20 0.9986 0.9987 0.9971 0.9993 0.9915 0.9936 0.9892 0.9989

Further

1

n−1(Y −Xβ̂)′Ω̂(Y −Xβ̂)
≡ 1

σ2υ
+Op(n

−1),

1

n− p+ 2
=

1

n
+O(n−2) ,



196 Anoop Chaturvedi, Suchita Kesarwani and Ram Chandra

Table 5. Relative risks of estimates for λ=1.00

p = 4 p = 10

ρ β’β SR KK MMSE AMSE SR KK MMSE AMSE

-0.8 1 0.9879 0.9945 0.9762 0.9939 0.9673 0.9947 0.9615 0.9957

10 0.9977 0.9979 0.9953 0.9988 0.9906 0.9940 0.9881 0.9988

20 0.9988 0.9989 0.9975 0.9994 0.9947 0.9959 0.9933 0.9993

-0.6 1 0.9834 0.9931 0.9674 0.9916 0.9484 0.9924 0.9399 0.9932

10 0.9972 0.9975 0.9942 0.9986 0.9877 0.9925 0.9844 0.9984

20 0.9985 0.9986 0.9970 0.9992 0.9933 0.9950 0.9915 0.9991

-0.4 1 0.9799 0.9923 0.9607 0.9898 0.9367 0.9915 0.9270 0.9917

10 0.9967 0.9972 0.9933 0.9983 0.9856 0.9917 0.9818 0.9982

20 0.9983 0.9984 0.9965 0.9991 0.9922 0.9944 0.9901 0.9990

-0.2 1 0.9775 0.9918 0.9562 0.9885 0.9265 0.9908 0.9159 0.9903

10 0.9964 0.9969 0.9926 0.9981 0.9839 0.9911 0.9797 0.9979

20 0.9981 0.9983 0.9962 0.9990 0.9914 0.9939 0.9890 0.9989

0 1 0.9766 0.9917 0.9545 0.9881 0.9222 0.9907 0.9116 0.9897

10 0.9963 0.9969 0.9924 0.9981 0.9829 0.9908 0.9784 0.9978

20 0.9981 0.9982 0.9961 0.9990 0.9909 0.9936 0.9884 0.9988

0.2 1 0.9775 0.9919 0.9561 0.9885 0.9238 0.9909 0.9134 0.9900

10 0.9964 0.9970 0.9927 0.9982 0.9829 0.9908 0.9784 0.9978

20 0.9981 0.9983 0.9962 0.9990 0.9909 0.9936 0.9884 0.9988

0.4 1 0.9803 0.9926 0.9616 0.9900 0.9315 0.9915 0.9217 0.9910

10 0.9967 0.9972 0.9933 0.9983 0.9839 0.9912 0.9797 0.9979

20 0.9983 0.9984 0.9965 0.9991 0.9914 0.9939 0.9891 0.9989

0.6 1 0.9851 0.9939 0.9708 0.9924 0.9428 0.9924 0.9341 0.9925

10 0.9973 0.9976 0.9944 0.9986 0.9858 0.9919 0.9820 0.9982

20 0.9986 0.9987 0.9971 0.9993 0.9923 0.9944 0.9902 0.9990

0.8 1 0.9918 0.9963 0.9838 0.9958 0.9634 0.9946 0.9574 0.9952

10 0.9981 0.9983 0.9961 0.9990 0.9886 0.9931 0.9856 0.9985

20 0.9990 0.9990 0.9979 0.9995 0.9936 0.9952 0.9918 0.9992

β̂
′
Âβ̂=

(
β +

σ√
n
Â−1α∗

)′

Â

(
β +

σ√
n
Â−1α∗

)
=β′Âβ

(
1 +

2σ√
n

β′α∗

β′Âβ

)
so that

β̂

β̂
′
Âβ̂

=

[(
β +

σ√
n
Â−1α∗

)′

Â

(
β +

σ√
n
Â−1α∗

)]−1

×
(
β +

σ√
n
Â−1α∗

)
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=
β

β′Aβ
+

σ√
n

1

β′Aβ

(
A−1 − 2ββ′

β′Aβ

)
ε1 +Op

(
n−1

)
.

Again, up to order Op(n
−1/2)

η̂ =
1

σ2υ
β′Aβ +

2

σ
√
n
β′α∗ ,

r(η̂) = r

(
β′Aβ
σ2υ

)
+

2

σ
√
n
r′
(
β′Aβ
σ2υ

)
β′α∗.

Hence, up to order Op(n
−1), γ can be written as

γ = (Xf − λV̂ ′Ω̂X)Â−1α∗ − kσυ√
n

1

β′Aβ
r (η̃) (Xf − λV̂ ′Ω̂X)β

− kσ2

n

1

β′Aβ
r (η̃) (Xf − λV̂ ′Ω̂X)

(
A−1 − 2ββ′

β′Aβ

)
ε1

+
2k

n

1

β′Aβ
r′ (η̃) (Xf − λV̂ ′Ω̂X)ββ′α+

λ
√
n

σ
(V̂ ′Ω̂u− uf ). (A.3)

Let us consider the transformation[
u

uf

]
=

[
In

V ′Ω
0

IT

][
u

σε0

]
. (A.4)

We observe from the normality assumption for (u′, u′f ) that ε0 is

distributed independently of u (and hence independently of ε1 and ε2)
and follows a normal distribution with mean vector 0 and covariance
matrix Ψ − V ′ΩV . Making use of this transformation, to the order of
our approximation, γ can be written as

γ =(Xf − λV̂ ′Ω̂X)Â−1α∗ − kσυ√
n

1

β′Aβ
r (η̃) (Xf − λV̂ ′Ω̂X)β

− aσ2

n

1

β′Aβ
r (η̃) (Xf − λV̂ ′Ω̂X)

(
A−1 − 2ββ′

β′Aβ

)
ε1

+
2k

n

1

β′Aβ
r′ (η̃) (Xf − λV̂ ′Ω̂X)ββ′α∗

+
λ
√
n

σ
(V̂ ′Ω̂ − V ′Ω)u− λ

√
nε0
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= −λ√nε0 − kσυ√
n

1

β′Âβ
r (η̃) (Xf − λV̂ ′Ω̂X)β

×
[
(Xf − λV̂ ′Ω̂X)Â−1X

′Ω̂√
n

+
λ
√
n

σ
(V̂ ′Ω̂ − V ′Ω)

]
×Ω−1P (P ′Ω−1P )−1ε2

+

[
(Xf − λV ′ΩX)A−1 − kσ2

nβ′Aβ
r (η̃) (Xf − λV ′ΩX)

×
(
A−1 − 2ββ′

β′Aβ

)]
ε1

+ λ(V̂ ′Ω̂ − V ′Ω)XA−1ε1 +
2k

nβ′Aβ
r′ (η̃) (Xf − λV̂ ′Ω̂X)ββ′ε1. (A.5)

Since ε0, ε1, ε2 are independently distributed and υ,Â,Ω̂ and V̂ are
functions of ε2, we observe that up to order O(n−1), the conditional
expectation of γ given ε2 is normal with mean vector µ(ε2) and
variance-covariance matrix Ξ (ε2).

Proof of Theorem 2:
Let us define

W = Xf − λV ′ΩX.

Then, we can write τ̃ s as

τ̃ s = τ̃ − k

h+ 2

r(η∗)
η∗

Wβ∗
S .

The MSE matrix of τ̃S is given by

M (τ̃ s) = E
[
(τ̃ s − τ) (τ̃ s − τ)

′
]

= E
[
(τ̃ − τ) (τ̃ − τ)

′
]

− k

h+ 2
E

[
r(η∗)
η∗

{
Wβ∗

S (τ̃ − τ)
′

+ (τ̃ − τ)β∗′
SW

′
}]

+

(
k

h+ 2

)2

E

[
r2(η∗)
η∗2

{
Wβ∗

Sβ
∗′
SW

′
}]

. (A.6)

Now
E

[
(τ̃ − τ) (τ̃ − τ)

′
]

= σ2∆

where
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∆ = XfA
−1W ′ +WA−1X ′

f −XfA
−1X ′

f + λ2
(
Ψ − V ′MV

)
.

An unbiased estimate of it is (υ/h)∆.
Further, unbiased estimate of third term of M (τ̃ s) is(

k

h+ 2

)2 r2(η∗)
η∗2

{
Wβ∗β∗′W ′

}
. (A.7)

Now, we have to obtain unbiased estimator of the second term of
M (τ̃ s). We know that conditional distribution of uf given u is normal
N

(
V ′Ωu, σ2(Ψ − V ′ΩV )

)
. We have

E

[
r(η∗)
η∗

(τ̃ − τ)β∗′
SW

′
]

=E

[
r(η∗)
η∗

{Xf (β∗ − β) + λ {Xf (β∗ − β) −Xf (β∗ − β)

+ V ′Ω
(
y −X

(
X ′ΩX

)−1
X ′Ωy

)
− uf

}}
β∗′W ′

]
=E

[
r(η∗)
η∗

{
Xf (β∗ − β) + λV ′M (Xβ + u) − λuf

}
β∗′W ′

]
=E

[
r(η∗)
η∗

{
Xf (β∗ − β) + λV ′Mu− λV ′Ωu

}
β∗′W ′

]
=WE

[
r(η∗)
η∗

(β∗ − β)β∗
]
W ′. (A.8)

Let Z = (X ′ΩX)1/2β∗, θ = (X ′ΩX)1/2β and r∗(η∗) = r(η∗)
η∗ . Notice

that Z ∼ N(θ, σ2Ip×p), υ/σ
2 ∼ χ2(h) and Z and υ are independently

distributed. Thus we have

E

[
r(η∗)
η∗

(β∗ − β)β∗′
]

=
(
X ′ΩX

)−1/2
E

[
(Z − θ)Z ′r∗

(
Z ′Z
υ

)] (
X ′ΩX

)−1/2

=
(
X ′ΩX

)−1/2
σ2E

[
∂

∂Z

(
Z ′r∗

(
Z ′Z
υ

))] (
X ′ΩX

)−1/2

=
(
X ′ΩX

)−1/2
σ2E

[
r∗

(
Z ′Z
υ

)
+ 2

ZZ ′

υ
r∗

(
Z ′Z
υ

)] (
X ′ΩX

)−1/2

=
(
X ′ΩX

)−1
σ2E [r∗ (η∗)] + 2E

[
β∗β∗′ σ

2

υ
r∗ (η∗)

]
. (A.9)
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Hence, the second term in (A.6) becomes

− k

h+ 2
W

[
2
(
X ′ΩX

)−1
σ2E {r∗ (η∗)} + 4E

{
β∗β∗′ σ

2

υ
r∗ (η∗)

}]
W ′

= −
{

2k

h+ 2
W

(
X ′ΩX

)−1
Eβ∗

[
Eυ

(
σ2r∗ (η∗)

)]
W ′

+
4k

h+ 2
WEβ∗

[
Eυ

(
β∗β∗′ σ

2

υ
r∗ (η∗)

)]
W ′

}
. (A.10)

For a continuous differentiable function H(υ) of υ, it can be shown
that

1

σ2
Eυ

[(
υ − hσ2

)
H(υ)

]
= 2Eυ

[
υ
∂

∂υ
H(υ)

]
or

Eυ [υH(υ)] = σ2Eυ

[
υH(υ) + 2υ

∂

∂υ
H(υ)

]
. (A.11)

Equation (A.11) implies that if we set

υH(υ) + 2υ
∂

∂υ
H(υ) = r∗ (η∗) . (A.12)

Then an unbiased estimate of σ2Eυ (r∗ (η∗)) is υH(υ).
Equation (A.12) is a first order differential equation and its solution

is given by

H(υ) =
1

2

∫ 1

0

{
th/2 r(η

∗/t)
η∗

}
dt.

Therefore an unbiased estimator of 2Eβ∗

[
Eυ

(
σ2r∗(η∗)

)]
is[

υ

∫ 1

0

{
th/2−1 r(η

∗/t)
η∗

}
dt

]
.

Utilizing the above expression, we observe that an unbiased estima-
tor of

2Eβ∗

[
Eυ

(
σ2

υ

d

dη∗
r∗ (η∗)

)]
is given by ∫ 1

0
t

h
2
−1 d

dη∗
r∗(η∗/t)dt

=

∫ 1

0
t

h
2
−1 d

d(η∗/t)
r∗(η∗/t)

d

dη∗
(η∗/t)dt

=

∫ 1

0
t

h
2
−1 r

′(η∗/t)
η∗

dt−
∫ 1

0
th/2 r(η

∗/t)
η∗2

dt.



Simultaneous Prediction Based on Shrinkage Estimator 201

Hence an unbiased estimator of

4Eβ∗

[
β∗β∗′Eυ

(
σ2

υ

d

dη∗
r∗

′

(η∗)
)]

is obtained as

2

[∫ 1

0
th/2−1 r

′(η∗/t)
η∗

dt−
∫ 1

0
th/2 r(η

∗/t)
η∗2t

dt

]
β∗β∗′ .

Putting these values in (A.9), we have the following unbiased esti-
mator of second term of (A.6) as

k

h+ 2
W

[
υ

∫ 1

0
th/2 r(η

∗/t)
η∗

dt

] (
X ′ΩX

)−1
W ′

+
2k

h+ 2
W

[∫ 1

0
t

h
2
−1 r

′(η∗/t)
η∗

dt−
∫ 1

0
th/2 r(η

∗/t)
η∗2

dt

]
β∗β∗′W ′. (A.13)

Putting (A.7), (A.8) and (A.13) in (A.6), we have

M̂(τ̃ s) =
υ

h
∆− k

h+ 2

υ2

η∗
W

[∫ 1

0
th/2r

(
η∗

t

)
dt

] (
X ′ΩX

)−1
W ′

− 2k

h+ 2
W

[∫ 1

0
th/2−2

[
t

η∗
r′
(
η∗

t

)
−

(
t

η∗

)2

r

(
η∗

t

)]
dt

]
β∗β∗′W ′

+

(
k

h+ 2

)2 [r2(η∗)
η∗2

{
Wβ∗β∗′W ′

}]
Wβ∗β∗′W ′

which leads to (17).

Proof of Theorem 3:
Let M̂(σ−1τ̃ s) be an unbiased estimator of M(σ−1τ̃ s). Then

M(σ−1τ̃ s) = E
[
M̃(σ−1τ̃ s)

]
= ∆− 1

σ2

k

h+ 2
E

[
r(η∗)
η∗

{
Wβ∗ (τ̃ − τ)

′

+ (τ̃ − τ)β∗′W ′
}]

+

(
k

h+ 2

)2 1

σ2
E

[
r2(η∗)
η∗2

{
Wβ∗β∗′W ′

}]
. (A.14)
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From (A.10), an unbiased estimator of the second term of (A.14) is
given by

−
{

2k

h+ 2
W

(
X ′ΩX

)−1
r∗(η∗)W ′ +

4k

h+ 2
Wβ∗β∗′ 1

υ
r∗(η∗)W ′

}
.

In addition, by virtue of equation (A.11), we obtain an unbiased
estimator of the third term of equation (A.14) as[(

k

h+ 2

)2

Wβ∗β∗′
{

(h− 2)
r∗2(η∗)

υ
+ 4r∗(η∗)

∂

∂υ
r∗(η∗)

}
W ′

]
.

(A.15)
Putting these in equation (A.14), we have

M̃(σ−1τ̂ s) = ∆− 2k

h+ 2
W

{(
X ′ΩX

)−1
r∗(η∗) + 2β∗β∗′ 1

υ
r∗

′

(η∗)
}
W

+

[(
k

h+ 2

)2

Wβ∗β∗′
{

(h− 2)
r∗2(η∗)

υ

+ 4r∗(η∗)
∂

∂υ
r∗(η∗)

}
W ′

]
. (A.16)

Substituting the values of r∗ (η∗) and r∗′ (η∗) in (A.16) leads to the
result of the theorem.
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1 Introduction

Finite mixture models have now been used for more than hundred
years (Newcomb (1886), Pearson (1894)). They are a very popular sta-
tistical modeling technique given that they constitute a flexible and
easily extensible model class for (1) approximating general distribu-
tion functions in a semi-parametric way and (2) accounting for un-
observed heterogeneity. The number of applications has tremendously
increased in the last decades as model estimation in a frequentist as
well as a Bayesian framework has become feasible with the nowadays
easily available computing power.

The simplest finite mixture models are finite mixtures of distribu-
tions which are used for model-based clustering. In this case the model
is given by a convex combination of a finite number of different dis-
tributions where each of the distributions is referred to as component.
More complicated mixtures have been developed by inserting different
kinds of models for each component. An obvious extension is to es-
timate a generalized linear model (McCullagh and Nelder (1989)) for
each component. Finite mixtures of GLMs allow to relax the assump-
tion that the regression coefficients and dispersion parameters are the
same for all observations. In contrast to mixed effects models, where
it is assumed that the distribution of the parameters over the obser-
vations is known, finite mixture models do not require to specify this
distribution a-priori but allow to approximate it in a data-driven way.

In a regression setting unobserved heterogeneity for example occurs
if important covariates have been omitted in the data collection and
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hence their influence is not accounted for in the data analysis. In ad-
dition in some areas of application the modeling aim is to find groups
of observations with similar regression coefficients. In market segmen-
tation (Wedel and Kamakura (2001)) one kind of application among
others of finite mixtures of GLMs aims for example at determining
groups of consumers with similar price elasticities in order to develop
an optimal pricing policy for a market segment.

Other areas of application are biology or medicine, see Aitkin (1999),
Follmann and Lambert (1989), Wang et al. (1996), Wang and Puter-
man (1998). An example for a biological application is illustrated by
the “Aphids” data set in Boiteau et al. (1998). The data contains the
results of 51 independent experiments in which varying numbers of
aphids were released in a flight chamber containing 12 infected and 69
healthy tobacco plants. After 24 hours, the flight chamber was fumi-
gated to kill the aphids, and the previously healthy plants were moved
to a greenhouse and monitored to detect symptoms of infection. The
number of plants displaying such symptoms was recorded. The rela-
tionship between the proportion of infected plants given the number of
released aphids is depicted in Figure 1.

Clearly the proportion of infected plants in dependence of the num-
ber of released aphids does not cluster around a single regression line,
but around two different regression lines. For one regression line no in-
fection takes place while for the other the proportion of infected plants
increases with the number of aphids. Fitting a finite mixture of bino-
mial logit models allows to determine the expected number of infected
plants given the number of released aphids for each of the components
and the proportion of times where no infection takes place.

In Section 2 the finite mixture model of GLMs is specified starting
with the standard GLM formulation. The general mixture model class
is presented and several special cases which are included in this model
class are discussed. In Section 3 the identifiability of finite mixtures of
GLMs is analyzed and sufficient conditions to guarantee “generic” iden-
tifiability are given. As additional problems to the case of finite mix-
tures of distributions can occur in the regression setting, model identi-
fication has to be again investigated and results obtained for mixtures
of distributions can not be directly transferred without further consid-
eration. After an outline of model estimation using the EM algorithm
and a brief overview on Bayesian methods in Section 4 the application
of the model class is illustrated in a cluster-wise regression setting as
well as in a situation where overdispersion in a Poisson standard GLM
is observed and a random intercept model is fitted to account for this
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Fig. 1. “Aphids” data set.

overdispersion. An outlook on several possible extensions is given in
the last section. All computations and graphics in this paper have been
done using package flexmix (Leisch (2004b), Grün and Leisch (2006),
Grün and Leisch (2007)) in R, an environment for statistical computing
and graphics (R Development Core Team (2007)).

2 Model Specification

In the standard linear model the dependent variable y is assumed to
follow a Gaussian distribution where the mean value is determined
through a linear relationship given the covariates x:

E[y|x] = x′β,

where β are the regression coefficients. This signifies that y|x ∼
N(x′β, σ2).

The assumption that the dependent variable follows a Gaussian dis-
tribution is relaxed in the generalized linear model framework. The
distribution of the dependent variable is assumed to be from the ex-
ponential family of distributions (e.g. Gaussian, binomial, Poisson or
gamma). This allows to take certain data characteristics into account
such as that the dependent variable y is for example a counting variable
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with values in N which is then in general assumed to follow a Poisson
distribution.

The density of a distribution from the exponential family is given
by

f(y|θ, φ) = exp

{
yθ − b(θ)

a(φ) + c(y, θ)

}
for some specific functions a(·), b(·) and c(·). For the Gaussian distrib-
ution N(µ, σ2) with mean µ and variance σ2 and the assumption that
θ = µ and φ = σ2 these functions are for example given by

a(φ) = φ, b(θ) =
θ2

2
, c(y, φ) = −1

2

{
y2

φ
+ log(2πφ)

}
.

The relationship between the linear predictor η and the expected
value µ of the dependent variable y is modeled via a link function

η = g (E[y|x]) = x′β,

where η is the linear predictor and g(·) the link function. Different
link functions are possible. A special link function is the canonical link
which is given by

η = x′β = θ.

For the Gaussian distribution the identity function is the canonical link,
for the Poisson the log function, for the binomial the logit function and
for the gamma distribution the reciprocal function.

The GLM framework is embedded in the finite mixture framework
by inserting GLMs into the components. The resulting models are also
referred to as GLIMMIX models (Wedel and Kamakura (2001)). A
finite mixture density of GLMs with K components is given by

h(y|x,Θ) =
K∑

k=1

πkfk(y|x, θk)

where Θ denotes the vector of all parameters for the mixture density
h(). The dependent variable is y and the independent variables are
x. fk is the component specific density function which is assumed to
be univariate and from the exponential family of distributions. The
component specific parameters are given by θk = (β′

k, φk) where βk

are the regression coefficients and φk is the dispersion parameter. The
mean of each component is given by
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µk(x) = g−1
k (x′βk),

where gk() is the component specific link function.
For the component weights πk it holds

K∑
k=1

πk = 1 and πk > 0, ∀k. (1)

Several special cases and extensions of this model class exist. Of-
ten it is assumed that the component specific densities are from the
same parametric family for each component, i.e., fk ≡ f for nota-
tional simplicity, and that the link function is also the same for all
components (gk ≡ g). In a cluster-wise regression setting this will be
an obvious model choice as no a-priori knowledge about differences in
distributional families of the components is available. Another popular
extension is to have a so-called concomitant variable model for the prior
class probabilities, such that the πi also depend on a set of explanatory
variables (e.g., using a multinomial logit model).

A special case where different component specific distributions are
used is a model where only a single component is specified to follow
a different distribution in order to allow this component to capture
outlying observations (Dasgupta and Raftery (1998)). This approach
is similar to the specification of zero-inflated models (Böhning et al.
(1999)). Even though the component specific densities are in general
assumed to be from the same parametric family (e.g. Poisson or bino-
mial), the parameters are fixed a-priori for one component such that
this component absorbs all excess zeros in the zero-inflated model.

In order to decrease the number of parameters equality constraints
can be imposed over the components for a subset of the component spe-
cific parameters θk. A special case are random intercept models where
only the intercept follows a finite mixture distribution while all other
regression coefficients are constant over the components, see Follmann
and Lambert (1989). These models are often used if overdispersion
is encountered in Poisson or binomial GLMs in order to determine a
model which describes the data in an appropriate way.

3 Identification

Statistical models are in general represented by parameter vectors. For
finite mixture models the parameter vector Θ which consists of the
component weights and the component specific parameters determines
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a mixture distribution, i.e., there is a mapping from the parameter
space to the model space. For identifiability this mapping has to be
injective, i.e., for each model in the model space there is a unique pa-
rameter vector in the parameter space which is mapped to the model.
Lack of identifiability can be a problem for model estimation or if pa-
rameters are interpreted.

In the following let Ω denote the space of admissible parameters for
K-component mixtures where the following conditions are fulfilled

• πk > 0 ∀k = 1, . . . ,K, and
• ∀k, l ∈ {1, . . . ,K}: k �= l ⇒ θk �= θl.

These two conditions prevent overfitting and identifiability problems
which occur due to empty components where θk cannot be uniquely
determined and due to components with equal component parameter
vectors where different values for πk are possible.

Let AK = AK(f,Ω) be the set of all finite mixture models with K
components, component specific density function f and mixture densi-
ties of form h(·|·, Θ), Θ ∈ Ω. Each parameter vector Θ ∈ Ω corresponds
to one model a ∈ AK , but each model a has at least K! parameteriza-
tions Θ due to all possible permutations of the components, also known
as label switching (Redner and Walker (1984)).

AK induces a system of equivalence classes Ξ on Ω where two ele-
ments of Ω are in the same equivalence class if they correspond to the
same model a:

Θ, Θ̃ ∈ Ξ ⇔ h(·|·, Θ) ≡ h(·|·, Θ̃).

The usual definition of model identifiability is that either all equivalence
classes contain only one element (which is trivially not true for mixture
models), or that at least a unique representative for each equivalence
class can be selected.

Let ident(Ω) ⊂ Ω be the subset of parameterizations which contain
only one permutation of each possible set of component parameters.
ident(Ω) can be obtained from Ω by imposing an ordering constraint on
the components with respect to a certain parameter (or a combination
of several parameters). We refer to any identifiability problems which
are present for ident(Ω) as generic (Frühwirth-Schnatter (2006)).

3.1 Generic Identifiability

Generic identifiability problems have already been analyzed for finite
mixtures of distributions by Titterington et al. (1985). In nearly all
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cases only mixtures where the component distribution is from the same
distributional family have been considered. General results for certain
kinds of distribution as well as specific results for a given component
specific distribution function have been derived. Generic identifiabil-
ity is guaranteed for important continuous distributions such as the
Gaussian, gamma and Poisson distribution. A special case are finite
mixtures of binomial distributions which are only identifiable if the
number of components is limited. For the model class of finite mix-
tures of binomial distributions Bi(π, T ) with success probability π and
repetition parameter T a necessary and sufficient condition for identi-
fiability is T ≥ 2K − 1.

The analysis of identifiability of mixtures of Gaussian regression
models revealed that requiring a covariate matrix of full rank – as
postulated previously for example by Wang and Puterman (1998) –
is not sufficient (Hennig (2000)). Contrarily, it is necessary to check
a coverage condition in order to ensure identifiability. With respect
to generic identifiability of finite mixtures of regression models three
influencing factors can therefore be distinguished:

• component distribution f ,
• covariate matrix and
• repeated observations/labelled observations.

Repeated observations where the class membership is fixed are nec-
essary for mixtures of binomial distributions to be identifiable. In a
regression setting repetitions over different covariate points can help in
making a mixture identifiable as it changes the set of feasible hyper-
planes for the coverage condition. Labels for some observations indicat-
ing that they belong to the same component have the same influence.

In order to present a theorem on sufficient conditions for identifi-
ability of finite mixtures of GLMs a data representation is necessary
which takes repeated observations of the same individual where the
component membership is fixed into account. The observations for an
individual t are combined and given by:

(yt, xt) = (yi, xi)i∈It ,

where It contains the set of indices corresponding to the observations
of individual t. In the following X and Y denote the matrix of all x
and y observations of all N individuals.



212 Bettina Grün and Friedrich Leisch

Theorem 1. The model defined by

h(Y |X,Θ) =
N∏

t=1

[ K∑
k=1

πk

∏
i∈It

f(yi|µk
i , φk)

]
and

g−1
(
µk

i

)
= x′iβk

is identifiable if the following conditions are fulfilled:

1. (a) ∃Ĩ �= ∅: Ĩ ⊆ ⋃N
t=1 It: The mixture of distributions given by

K∑
k=1

πkf(yi|µk
i , φk)

is identifiable ∀i ∈ Ĩ.
(b) q∗ > K with

q∗ := min

{
q : ∀i∗ ∈ Ĩ : ∃Hj ∈ {H1, . . . , Hq} :

{xi : i ∈ It(i∗) ∩ Ĩ} ⊆ Hj ∧Hj ∈ HU

}
where HU is the set of H(α) := {x ∈ R

U : α′x = 0} with α �= 0.
2. The matrix X has full column rank.

The proof is straight-forward given the previous results for finite
mixtures of standard linear regression models by Hennig (2000) and
finite mixtures of GLMs and multinomial logit models with varying
and fixed effects in the regression coefficients by Grün (2006), Grün
and Leisch (2007).

For Condition (1a) the generic identifiability of finite mixtures with
the given component specific distribution is essential. If the component
specific distribution is either Gaussian, Poisson or gamma this condi-
tion is no restriction as mixtures of these distributions are generically
identifiable, i.e., Ĩ =

⋃N
t=1 It. In the case of the binomial distribution

the repetition parameter has to be checked for each observation in order
to determine if it can be included in Ĩ. Condition (1b) indicates that for
each individual t there has to be one of the q hyperplanes through the
origin Hj which covers all identifiable observations of this individual.
The rank condition (2) ensures that the regression coefficients can be
uniquely determined given the linear predictor.
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These conditions indicate that identifiability problems can especially
occur if the covariate matrix contains categorical variables. We refer to
identifiability problems due to the violation of the coverage condition
as

Intra-component label switching: If the labels are fixed in one covari-
ate point according to some ordering constraint, then labels may
switch in other covariate points for different parameterizations of
the model.

For mixtures where the component distributions are identifiable this
means that the component weights and possible dispersion parameters
are unique, but the regression coefficients vary because they depend on
the combination of the components between the covariate points. This
identifiability problem is also of concern for prediction, because given
the class membership the predicted value for new data depends on the
chosen solution.

Unidentified mixture models with several isolated non-trivial
(global) modes in the likelihood are to some extent more of a theoretical
problem, because, e.g., minimal changes of the component weights πk

often make the model identified by breaking symmetry. However, mod-
els “close” to an unidentified model will have multiple local modes.

The following example presents a simple mixture of regression mod-
els with intra-component label switching. The model is unidentified
(with two non-trivial modes) only if both components have exactly the
same probability.

Example 1. Assume we have a mixture of standard linear regression
models with one measurement per object and a single categorical re-
gressor with two levels. The usual design matrix for a model with in-
tercept uses the two covariate points x1 = (1, 0)′ and x2 = (1, 1)′.
Furthermore, let the mixture consist of two components with equal
component weights. The mixture regression is given by

h(y|x,Θ) =
1

2
fN (µ1(x), 0.1) +

1

2
fN (y|µ2(x), 0.1)

where µk(x) = x′βk and fN (y|µ, σ2) is the normal distribution with
mean µ and variance σ2.

Now let µ1(x1) = 1, µ2(x1) = 2, µ1(x2) = −1 and µ2(x2) = 4. As
Gaussian mixture distributions are generically identifiable the means,
variances and component weights are uniquely determined in each co-
variate point given the mixture distribution. However, as the coverage
condition is not fulfilled, the two possible solutions for β are:
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Fig. 2. Balanced sample from the artificial example with the two theoretical
solutions. The solid lines correspond to solution 1 and the dashed lines to
solution 2.

Solution 1: β
(1)
1 = (2, 2)′, β(1)

2 = (1,−2)′

Solution 2: β
(2)
1 = (2,−3)′, β(2)

2 = (1, 3)′.

In Figure 2 a balanced sample with 50 observations in each covariate
point is plotted together with the two solutions for combining x1 and
x2.

This mixture model would be identifiable if either

1. three different covariate points were available, or
2. observations for both covariate points for the same object were

available, or
3. the component weights were unequal, e.g. π1 = 0.6.

Condition 1 is not an option, for instance, for a single 2-level categor-
ical regressor. Condition 2 is not possible if the categorical regressor
cannot change for repeated observations of the same subject like, for
instance, the gender of a person. However, when developing a suitable
measurement design, the possibility of these problems to occur should
be considered in order to develop a suitable design matrix.

The identifiability conditions given in Theorem 1 have the drawback
that they are only sufficient conditions for a certain model class. The
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conditions can therefore only indicate if the model class contains at
least one single model which is not identifiable. In addition they are
hard to verify in practice as it is an NP hard problem (Hennig (2000)).
In general it will be of interest if a fitted model suffers from identifi-
ability problems. This means that it has to be checked if there exist
several modes of the likelihood in the parameter space ident(Ω) given
data sets sampled from the fitted mixture model. In a frequentist esti-
mation setting bootstrap methods can be used to investigate potential
identifiability problems of a fitted finite mixture model, see Grün and
Leisch (2004, 2007).

4 Estimation

Finite mixture models can be either estimated within a frequentist
framework, within a Bayesian framework, with moment estimators
(Lindsay (1989)) or by applying graphical tools (Titterington et al.
(1985)). An important characteristic of the estimation method is if the
number of components has to be fixed a-priori or is simultaneously es-
timated. In the following maximum likelihood estimation with the EM
algorithm is described and a short overview on Bayesian estimation
using MCMC samplers is given.

4.1 Frequentist Maximum Likelihood with the EM
Algorithm

There exist different methods for frequentist estimation of finite mix-
ture models. The most popular is the EM algorithm (Dempster et al.
(1977), McLachlan and Krishnan (1997)) which aims at determining
the ML estimator for a finite mixture model with a given number of
components K. The EM algorithm has the advantage that it provides
a general framework for estimating different kinds of mixture models
as often only the M-step has to be modified if different component spe-
cific models are used. In addition, already available tools for weighted
maximum likelihood estimation can be applied. Nevertheless, there are
also some known disadvantages such as slow convergence or that one
might get stuck in local optima, i.e., it is in general difficult to ensure
that the root corresponding to the maximum likelihood estimator was
detected.

The EM algorithm uses a data augmentation scheme and is a general
estimation method in the presence of missing data. In the case of finite
mixture models the missing data is the latent variable Dt ∈ {0, 1}K
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for each individual t which indicates the component membership. This
means that Dtk equals 1 if individual t is from component k and 0
otherwise. The data is therefore augmented with estimates of the com-
ponent memberships, i.e., the estimated a-posteriori probabilities p̂tk.

For simplicity of notation it is in the following assumed that the com-
ponent density function f(·|·) takes all observations from each individ-
ual as arguments. For a sample ofN individuals {(y1, x1), . . . , (yN , xN )}
the EM-algorithm is given by:

E-step: Given the current parameter estimates Θ(j) in the jth itera-
tion, replace the missing data Dtk by the estimated a-posteriori
probabilities

p̂tk =
π

(j)
k f(yt|xt, θ

(j)
k )

K∑
l=1

π
(j)
l f(yt|xt, θ

(j)
l )

.

M-step: Given the estimates for the a-posteriori probabilities p̂tk

(which are functions of Θ(j)), obtain new estimates Θ(j+1) of the
parameters by maximizing

Q(Θ(j+1)|Θ(j)) = Q1(θ
(j+1)|Θ(j)) +Q2(π

(j+1)|Θ(j)),

under the restriction for the component weights given in Equa-
tion (1) and where

Q1(θ
(j+1)|Θ(j)) =

N∑
t=1

K∑
k=1

p̂tk log(f(yt|xt, θ
(j+1)
k ))

and

Q2(π
(j+1)|Θ(j)) =

N∑
t=1

K∑
k=1

p̂tk log(π
(j+1)
k ).

Q1 and Q2 can be maximized separately. The maximization of
Q1 gives new estimates θ(j+1) and the maximization of Q2 gives

(π
(j+1)
k )k=1,...,K . Q1 is maximized using weighted ML estimation of

GLMs and the parameter estimates π
(j+1)
k which maximize Q2 are

given by

π
(j+1)
k =

1

N

N∑
t=1

p̂tk ∀k = 1, . . . ,K.



Finite Mixtures of GLMs 217

Before each M-step the average component sizes (over the given data
points) are checked and components which are smaller than a given (rel-
atively) small size are omitted in order to avoid too small components
where fitting problems might arise. This strategy has also been rec-
ommended for the a variant of the EM algorithm, the stochastic EM
(Celeux and Diebolt (1988)), in order to determine the number of com-
ponents. For the SEM algorithm an additional step between the E- and
M-step is performed where estimates for Dkt are determined by drawing
a sample from the multinomial distribution implied by the posteriors
for each observations and these estimates are then used as weights in
the M-step. If the algorithm is started with too many components they
will be omitted during the estimation process. The algorithm is stopped
if the relative change in the likelihood is smaller than a pre-specified ε
or the maximum number of iterations is reached.

It has been shown that the values of the likelihood are monotonically
increased during the EM algorithm. This ensures the convergence of the
EM algorithm if the likelihood is bounded. Unboundedness of the like-
lihood, however, might occur at the edge of the parameter space, e.g., if
the variance of one component tends to zero for mixtures of Gaussian
distributions. As even in the case of boundedness only the detection
of a local maximum can be guaranteed, it is in general recommended
to repeat the EM algorithm with different initializations and to choose
as final solution the one with the maximum likelihood. Different ini-
tialization strategies for the EM algorithm have been proposed, as its
convergence to the optimal solution depends on the initialization.

4.2 Bayesian MCMC Sampling

Estimation within a Bayesian framework has become popular with the
advent of MCMC methods, an overview on the different sampling ap-
proaches is given in Frühwirth-Schnatter (2006, chap. 3). Gibbs sam-
pling is the most commonly used approach and it is done by augmenting
the data with the unobservable variable of class membership similar to
the EM algorithm. A drawback of the Gibbs sampler is that it might
fail to escape the attraction area of one mode and therefore does not
explore the entire parameter space. It was therefore suggested to use
Metropolis-Hastings sampling schemes. Alternatively, the permutation
sampler may be used.
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5 Application

Three different applications of finite mixtures of regressions are pre-
sented. As the main purpose is to illustrate the application of the model
class data sets are chosen which can be easily visualized in order to fa-
cilitate the understanding of the fitted models. In two cases (“Aphids”
and “Movies” data set) the presence of latent groups is assumed and
clustering the observations is one of the modeling aim. The difference
between the two application however is that for the “Aphids” data set
the presence of two separate groups with different regression coefficients
can already be visually distinguished while for the “Movies” data set no
separate groups can be observed even though considerable heterogene-
ity in the regression coefficients is present between the observations. If
a mixed-effects model was fitted to the “Movies” data set this hetero-
geneity would be modeled through an a-priori specified distribution.
The advantage of finite mixtures in this application are that (1) it is
not required to specify the distribution for modeling heterogeneity in
regression coefficients a-priori and (2) the components allow to easily
inspect the range of heterogeneity present in the data. For the third
data set (“Fabric faults”) a random intercept model is assumed in order
to account for overdispersion in the data.

5.1 Infection of Tobacco Plants

A finite mixture of binomial logit models is fitted to the “Aphids” data
set from Section 1. The model is given by

h(n.inf|n.aphids, Θ) =
K∑

k=1

πkfBi(n.inf|πk(n.aphids), 69),

where fBi(·|π, T ) denotes the binomial distribution with success prob-
ability π and repetition parameter T which is in this application given
by 69. n.inf is the number of infected plants and n.aphids the number
of released aphids. The component specific mean value is given by

logit(πk(n.aphids)) = βk1 + n.aphidsβk2.

Figure 1 suggests that the number of componentsK = 2. In addition
to the visual inspection the number of components can be selected by
fitting mixtures with different number of components to the data and
determine the model with the minimum BIC. The BIC values for the
mixtures with components 1 to 5 are 424.04, 274.92, 284.18, 295.5 and
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305.83 where each of the mixtures is the best result of 5 different runs
with random initialization to avoid local optima. This criterion hence
confirms the results of the visual inspection. The fitted regression lines
for each of the components together with the data are given in Figure 3.
The relative sizes πk of the 2 components are 0.54 and 0.46.
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Fig. 3. “Aphids” data set with fitted regression lines for each component.
The observations are plotted in different symbols according to the assignment
to the component with the maximum a-posteriori probability.

As the repetition parameter T is equal to 69 the mixtures of binomial
distributions are identifiable in each observation point for mixtures with
up to 35 components as induced by the constraint T ≥ 2K − 1. Given
that observations are available for a range of different n.aphids values
generic identifiability is guaranteed for the fitted mixtures with up to
5 components.

The suitability of the fitted mixture to induce a clustering of the
data can be assessed by investigating the a-posteriori probabilities. If
for each observation the maximum a-posteriori probability over all com-
ponents is high the observations can be with a high confidence assigned
to one of the components and hence a partitioning of the observations
into K groups can be reasonably done using the fitted mixture model.
For the “Aphids” data set the maximum a-posteriori probabilities have
a mean of 0.98 with a standard deviation of 0.05 and a median of
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1.00. This indicates that for each observation (n.inf, n.aphids) it can
be with high confidence decided to which component it belongs. This
also means that the two components are strongly separated and in fact
constitute two different regimes.

From a practitioner’s point of view further investigations are im-
portant to identify reasons why and when the two different regimes
emerge. One possible explanation is that some batches of aphids con-
sisted of insects that had passed their “maiden” phase. Low or zero
levels of transmission of the virus are observed in this case because
after the maiden phase the aphids tend to settle on the first plant they
encounter.

5.2 Market Share Patterns of Movies

Finite mixtures of Gaussian regression models have been previously
fitted to market share data of movies at the box office and theaters in
the USA to investigate different patterns of decay (Jedidi et al. (1998)).
The box office and theaters data for 407 movies playing between May
5, 2000 and December 7, 2001 were collected from a popular website
of movie records (www.the-number.com), see Krider et al. (2005). The
gross box-office takings for the 40 most popular movies for each weekend
in the time period are recorded and transformed into market shares to
account for the difference in volume between weekends. The market
share is used as dependent variable and the number of weeks since
release as covariate. For the data analysis the data is restricted to the
first 20 weeks after release of a movie. This reduces the number of
movies in the data set to 394. On average 8 observations are available
for each movie which gives a total of 3149 observations.

The data is given in Figure 4. Each line represents a movie and its
development of market share over the weeks after release. Most of the
movies have a decline in market share over the weeks, but there also
some films where an increase in market share over the first weekends can
be observed. Due to this opposite trends and also due to the differences
in decay for the movies loosing market shares the overlap in market
shares between the movies is high which renders it impossible to discern
different patterns of decay.

As most movies exhibit an exponential decay in market share the
following mixture model is used to describe the data

h(share|week, Θ) =
K∑

k=1

πkfN (log(share)|µk(week), σ
2
k),
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Fig. 4. Market share patterns of the “Movies” data set.

with the mean given by

µk = β1k + weekβ2k.

As it is assumed that the component membership is fixed over the
weeks for the movies, the information which observations are from the
same movie is included in the estimation process.

Using an exponential decay model signifies that movies with a rise
in market share at the beginning and a decline afterwards can only be
approximated through a straight line which is still reasonable consider-
ing the small recorded time interval of 20 weeks. In addition we restrict
the feasible mixtures to those where all component weights are at least
0.1, i.e., each component represents 39 movies or more.

Finite mixtures with 1 to 10 components are fitted and for each
number of components the EM algorithm is repeated 10 times with
random initialization in order to insure that the global optimum is
detected. The BIC criterion is again used to determine the optimal
number of components. The BIC suggests 5 components. However, it
has to be noted that even though mixtures with up to 10 components
are initially specified the EM algorithm did not converge to a mixture
with more than 5 components as components with a weight of less than
0.1 are omitted during the run of the algorithm.

The parameter estimates are given in Table 1. Ck indicates that
the parameters in this column belong to the kth component. The com-
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ponents are sorted in decreasing order with respect to parameter β1k.
The predicted mean values of market share for each component are
depicted in Figure 5. The numbers indicate the component to which
the line corresponds. For ease of comparison of the fitted parameters
between the components they are plotted together with approximate
95% confidence intervals in Figure 6.

Parameter C1 C2 C3 C4 C5

π 0.15 0.17 0.23 0.13 0.32

β1k -1.99 -2.39 -2.95 -4.73 -6.49

β2k -0.29 -0.42 -0.61 -0.03 -0.01

σ 0.80 0.66 0.74 1.21 0.62

Table 1. Estimated parameters for the mixture with 5 components fitted to
the “Movies” data set.
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Fig. 5. Mean market share patterns of the finite mixture fitted to the
“Movies” data set.

Comparing the intercepts given by β1k indicates that there are three
components with higher market shares at the release weekend. Compo-
nents 1, 2, and 3 start with market shares of around 8.7%. The other
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two components achieve only market shares of 0.9% and 0.2% respec-
tively on their release weekend. With respect to β2k, which indicates
the long-term success of a movie, component 3 has the strongest decline
over the weeks indicating that in contrast to component 1 and 2 it is
not able to stay on a high market share level for a longer time period.
Component 1 seems to consist of the successful films which are also
highly promoted leading to high market shares at the beginning and a
slow decay over the weeks. Component 4 and 5 both have insignificant
decay coefficients which indicates that they stay at about the same low
level of market share during the first 20 weeks after release.

Comp. 5
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Comp. 3

Comp. 2

Comp. 1

-6 -4 -2 0

(Intercept)

-0.6 -0.4 -0.2 0.0

Weeks

Fig. 6. Fitted regression coefficients and their approximate 95% confidence
intervals for the “Movies” data set.

The a-posteriori probabilities are determined for each movie and
used to assign them to the different components. Most of the films
can be with high confidence assigned to one of the components. The
mean of the maximum a-posteriori probabilities is 0.97 with a standard
deviation of 0.08 and the median is 1.00. Rootograms of the posteriors
of each component are given in Figure 7 (Leisch (2004a)). A rootogram
is a modified version of a histogram where the square roots of the
frequencies instead of the frequencies are used as heights for each bar.
Please note that posteriors of less than 10−4 are omitted in order to
ensure that the bar at zero does not dominate the plot.

The overlap of the components can be investigated by plotting the
posteriors which correspond to observations assigned to a given com-
ponent in a different color. If the posteriors for component 5 are high-
lighted it can be observed that the overlap with component 1 which
consists of the most successful films is surprisingly high.
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Fig. 7. Rootograms of the a-posteriori probabilities of the fitted mixture to
the “Movies” data set. The posteriors of observations which are assigned to
component 5 are shaded in dark grey.

The proportions of movies assigned to each component using the
maximum a-posteriori probabilities are 0.34, 0.16, 0.11, 0.23 and 0.15.
The quality of the partition of the data achieved by using the fitted
finite mixture model can be investigated in Figure 8 where the market
share patterns of the are plotted in different panels for each cluster.

5.3 Fabric Faults

The “Fabric faults” data set consists of 32 observations of number of
faults in rolls of fabric of different length (Aitkin (1996)). The depen-
dent variable is the number of faults (n.fault) and the covariate is the
length of role in meters (length). The data is given in Figure 9.

As the dependent variable is a counting variable in a first step a
standard GLM with Poisson distribution is fitted to the data where
the logarithm of the lengths is used as independent variable. The fitted
regression line is given in the left panel in Figure 10. An analysis of
the model fit indicates that substantial overdispersion is present with
a residual deviance of 64.54 on 30 degrees of freedom. To account for
this overdispersion a random intercept model is fitted which is given
by
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Fig. 8. Clustered market share patterns of the “Movies” data set.

Length (in meters)

N
um

be
r 

of
 fa

ul
ts

0

5

10

15

20

25

200 400 600 800

Fig. 9. “Fabric faults” data set.

h(n.fault|length, Θ) =
K∑

k=1

πkfPoi(n.fault|λk(length))
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where fPoi(·|λ) denotes the Poisson distribution with mean λ. The mean
λk is in the random intercept model given by

log(λk) = β1k + log(length)β2.

Please note that the coefficient of the covariate does not have an index
k which means that it is constant over the components.

Again the optimal number of components is selected using the BIC
criterion after fitting the model with the EM algorithm for different
number of components ranging from 1 to 5 and 5 repeated fittings with
random initialization and the number of components fixed. The BIC
values are 194.77, 186.53, 193.46, 200.39 and 207.32 and consequently
the mixture with 2 components is selected. The resulting regression
lines for each of the components separately are the dashed lines in the
right panel of Figure 10. The full line represents the fitted regression
line of the random intercept model to the complete data set. The plot-
ting symbols of the observations in the right panel are according to
an assignment of the observations to the two components given the
maximum a-posteriori probabilities.
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Fig. 10. Fitted regression lines to the “Fabric faults” data set for the standard
GLM and a random intercept model with 2 components.
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6 Conclusion and Outlook

Finite mixtures of GLMs are an important statistical modeling tech-
nique which is an obvious extension of standard GLMs. They relax the
assumption of homogeneity of parameters, but do not require to a-priori
specify and fix the distribution which accounts for the heterogeneity in
parameters as in mixed-effects models. In addition this flexible model
class contains important special cases such as zero-inflated or random
intercepts models.

The model class of finite mixtures of GLMs can be easily specified
within the finite mixture model framework and the modification of
existing estimation methods is often straight-forward in order to be able
to fit the models. For the EM algorithm it is only necessary to adapt the
M-step by determining the weighted ML estimator for the component
specific model. Different problems in model fitting and diagnostics than
in standard mixtures of distributions however might be encountered due
to trivial and generic identifiability problems.

Further extensions of finite mixtures are possible for the regression
case. Instead of using GLMs as component specific models generalized
additive models can be used which allow to relax the assumption that
the functional relationship between covariates and dependent variable
is a-priori known. Another possibility is to relax the assumption of
homogeneity within the components and fit a mixed-effects model in
each component.

In the future model identification and diagnostics need further in-
vestigation in the regression case for finite mixtures. The performance
of newly proposed methods such as a new model selection criterion for
mixtures of regression models (Naik et al. (2007)) needs for example
to be validated in real applications on different empirical data sets. In
addition new visualization techniques which enable the researcher to
easily explore the characteristics of a fitted model and compare com-
peting models would be a valuable enhancement of the finite mixture
modeling toolbox.
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1 Dalarna University, Sweden, and Tianjin University of Finance and
Economics, China chh@du.se
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1 Introduction

In a recent paper, Ding, Granger and Engle (1993) introduced a class
of autoregressive conditional heteroskedastic models called Asymmetric
Power Autoregressive Conditional Heteroskedastic (A-PARCH) mod-
els. The authors showed that this class contains as special cases a large
number of well-known ARCH and GARCH models. The A-PARCH
model contains a particular power parameter that makes the condi-
tional variance equation nonlinear in parameters. Among other things,
Ding, Granger and Engle showed that by letting the power parameter
approach zero, the A-PARCH family of models also includes the log-
arithmic GARCH model as a special case. Hentschel (1995) defined
a slightly extended A-PARCH model and showed that after this ex-
tension, the A-PARCH model also contains the exponential GARCH
(EGARCH) model of Nelson (1991) as a special case as the power para-
meter approaches zero. Allowing this to happen in a general A-PARCH
model forms a starting-point for our investigation.

A notable feature of the A-PARCH model is that, due to its para-
meterization, it is only possible to find analytically certain fractional
moments of the absolute values of the original process related to the
power parameter. Expressions for such moments were derived in He and
Teräsvirta (1999d). In this paper we first define a slight generalization
of the class of EGARCH models. Then we derive the autocorrelation
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function of squared and logarithmed observations for this class of mod-
els. For Nelson’s EGARCH model it is possible to reconcile our results
with those in Breidt, Crato and de Lima (1998). Furthermore, we
show that this autocorrelation function follows as a limiting case from
the autocorrelation function of some fractional powers of the absolute
values of the original observations.

On the other hand, if we want to derive the autocorrelation func-
tion of squares of the original observations and not their logarithms
for the EGARCH model then the techniques applied in this paper do
not apply. The solution to that problem can be found in He, Teräsvirta
and Malmsten (2002). The autocorrelation functions can be used for
evaluating an estimated model by checking how well the model is able
to reproduce stylized facts; see Malmsten and Teräsvirta (2004) for
an example. This means estimating the autocorrelation function from
the data and comparing it with the corresponding autocorrelations ob-
tained by plugging in the parameter estimates from the PARCH model
into the theoretical expressions of the autocorrelations.

This approach cannot be applied if the autocorrelations compared
are, say, autocorrelations of squared observations instead of autocor-
relations of suitable fractional moments of their absolute values. This
is the case for example when one wants to compare autocorrelations
of squares implied by two different models, for instance a standard
GARCH and a symmetric PARCH model , with each other. The only
possibility is to estimate the autocorrelations of squared observations
for the PARCH model by simulation. This becomes an issue in this
paper, for the role of the power parameter in the PARCH model will
be an object of our investigation.

Applications of the A-PARCH model to return series of stocks and
exchange rates have revealed some regularities in the estimated values
of the power parameter; see Ding, Granger and Engle (1993), Brooks,
Faff, McKenzie and Mitchell (2000) and McKenzie and Mitchell
(2002). We add to these results by fitting symmetric first-order PARCH
models to return series of 30 most actively traded stocks of the Stock-
holm Stock Index. Our results agree with the previous ones and sug-
gest that the power parameter lowers the autocorrelations of squared
observations compared to the corresponding autocorrelations implied,
other things equal, by the standard first-order GARCH model. In the
present situation this means estimating the autocorrelation function of
the squared observations from the data and comparing that with the
corresponding values obtained by plugging the parameter estimates
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into the theoretical expressions of the autocorrelations. Another exam-
ple can be found in He and Teräsvirta (1999d).

The plan of the paper is as follows. Section 2 defines the class of
models of interest and introduces notation. The main theoretical results
appear in Section 3. Section 4 contains a comparison of autocorrelation
functions of squared observations for different models and Section 5 a
discussion of empirical examples. Finally, conclusions appear in Section
6. All proofs can be found in Appendix.

2 The Model

Let {εt} be a real-valued discrete time stochastic process generated by

εt = ztht (1)

where {zt} is a sequence of independent identically distributed random
variables with mean zero and unit variance, and ht is a Ft−1-measurable
function, where Ft−1 is the sigma-algebra generated by {zt−1, zt−2, zt−3,
...}, and positive with probability one. Let

h2δ
t = α0 + cδ(zt−1)h

2δ
t−1, δ > 0 (2)

where α0 is a positive scalar and cδt = cδ(zt) is a well-defined func-
tion of zt. The sequence {cδt} is a sequence of independent identically
distributed random variables such that each cδt is stochastically inde-
pendent of h2δ

t . Function cδt contains parameters that determine the
moment structure of {εt}. Constrains on these parameters are necessary
to guarantee that h2δ

t remains positive with probability 1. We call (1)
and (2) a general power ARCH (GPARCH(δ, 1, 1)) model. This model
appeared in He and Teräsvirta (1999d) in a slightly more general form
with α0 = g(zt) being a stochastic variable.

Setting cδ(zt−1) = α(|zt| − φzt)
2δ + β in equation (2), defines, to-

gether with equation (1), the Asymmetric Power ARCH (A-PARCH)
(1,1) model of Ding, Granger and Engle (1993). Note that these au-
thors use δ in place of 2δ in equation (2) but that does not affect the
results. Hentschel (1995) also defined a parametric family of GARCH
models similar to (1) and (2) in order to highlight relationships between
different GARCH models and their treatment of asymmetry.

In this paper we are interested in the limiting case δ → 0. Taking
logarithms of (1) yields

ln ε2t = ln z2
t + lnh2

t . (3)
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On the other hand, equation (1) can be modified such that it relates the
Box-Cox transformed ε2t , that is, ϕδ(ε

2
t ) = (ε2δ

t − 1)/δ, to {(ztht)
2δ −

1}/δ. Then by applying l’Hôpital’s rule it can be shown that letting
δ → 0 in the modified equation also leads to (3). This entitles us to
consider certain exponential GARCH models as limiting cases of the
power ARCH model (1) and (2). In order to see that, rewrite (2) in
terms of (h2δ

t − 1)/δ and define cδ(zt) = δg(zt) + β. It can be shown
that under certain conditions, as δ → 0, equation (2) becomes

lnh2
t = α0 + g(zt−1) + β lnh2

t−1 (4)

where g(zt) is a well-defined function of zt. Equation (4) is thus a
limiting case of (2). We call the models defined by equations (1) and (4)
or (3) and (4) a limiting class of GPARCH(1,1) models. They contain
certain well-known models as special cases. For example, setting g(zt) =
φzt + ψ(|zt| − E |zt|) in (4) yields

lnh2
t = α0 + φzt−1 + ψ(|zt−1| − E |zt−1|) + β lnh2

t−1. (5)

This equation, jointly with (1), defines the EGARCH(1,1) model of
Nelson (1991). Similarly, we may set cδ(zt) = αgδ

1(zt)+β where g1(zt) >
0 for all t with probability one. Then, by l’Hôpital’s rule, (2) converges
to

lnh2
t = α0 + α ln g1(zt−1) + (α+ β) lnh2

t−1 (6)

as δ → 0. Equations (1) and (6) define a class of logarithmic GARCH
(LGARCH(1,1)) models. Setting g1(zt) = z2

t in (6) yields

lnh2
t = α0 + α ln ε2t−1 + β lnh2

t−1 (7)

which is the LGARCH(1,1) model of Geweke (1986) and Pantula
(1986). Since (4) and (6) have a similar structure, we mainly consider
results for the limiting GPARCH(1,1) model (1) and (4). They can be
easily modified to apply to the class of LGARCH(1,1) models.

3 The Limiting Results

In this section we derive the asymptotic moment structure of the
GPARCH(1,1) model (1) and (2) as δ → 0 under the Box-Cox trans-
formation. We first give the moment structure of (1) and (2) for δ > 0.
Having done that we derive the moment structure of model (3) with
(4). Finally, we show that this result may be also obtained as a limiting
case of model (1) with (2) as δ → 0.

To formulate our first result let γδ = Ecδt and γ2δ = Ec2δt. We have
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Lemma 1. For the GPARCH(δ,1,1) model (1) with (2), a necessary
and sufficient condition for the existence of the 4δ-th unconditional
moment µ4δ = E |εt|4δ of {εt} is

γ2δ < 1. (8)

If (8) holds, then

µ4δ = α2
0ν4δ(1 + γδ)/{(1 − γδ)(1 − γ2δ)} (9)

where ν2ψ = E |zt|2ψ , ψ>0. The autocorrelation function ρn(δ) =

ρ(|εt|2δ , |εt−n|2δ), n ≥ 1, of {|εt|2δ} has the form

ρ1(δ) =
ν2δ[γδ(1 − γ2

δ) − ν2δγδ(1 − γ2δ)]

ν4δ(1 − γ2
δ) − ν2

2δ(1 − γ2δ)
(10)

where γδ = E(|zt|2δ cδt), and ρn(δ) = γδρn−1(δ), n ≥ 2.

Proof:

See Appendix.

Let Mδ(µ4δ, ρn(δ)) denote the analytic second moment structure
defined by Lemma 1 for the GPARCH(δ,1,1) model (1) and (2). It con-
sists of µ4δ and the autocorrelations ρn(δ), n ≥ 1. It is seen that Mδ(·)
is a function of power parameter δ. Note that the autocorrelation func-
tion of {|εt|2δ} is decaying exponentially with the discount factor γδ. In
particular, setting δ = 1 in equations (8) and (10) yields the existence
condition of the fourth moment and the autocorrelation function of the
squared observations of the standard GARCH(1,1) model (Bollerslev
(1986)) with non-normal errors.

It is customary to also consider the kurtosis of any given GARCH
process, see, for example, Bollerslev (1986) or He and Teräsvirta

(1999b). In this case, the kurtosis of |εt|δ or ϕδ(|εt|) = (|εt|δ − 1)/δ
may be defined as

κ4(δ) =
E(|εt|δ − E |εt|δ)4

{E(|εt|δ − E |εt|δ)2}2

=
E(ϕδ(|εt|) − Eϕδ(|εt|))4

{E(ϕδ(|εt|) − Eϕδ(|εt|))2}2

so that the limiting case
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lim
δ→0

κ4(δ) =
E(ln |εt| − E ln |εt|)4

{E(ln |εt| − E ln |εt|)2}2
. (11)

The kurtosis (11) is thus the limiting case of the kurtosis of the

absolute-valued process {|εt|δ}. Computing it would require the expec-
tations E(ln |εt|)4 and E(ln |εt|)3 or, alternatively, E(ln ε2t )

4 and E(ln ε2t )
3

for which no analytical expressions have been derived above. The kur-
tosis of ln |εt| is a concept quite different from that of εt, and for this
reason it is not considered any further here.

For the limiting GPARCH(1,1) process we obtain the following re-
sult:

Lemma 2. For the limiting GPARCH(1,1) process (3) and (4), assume
that variances of (ln z2

t )2 and (g(zt))
2 are finite for any t. Then the

second unconditional moment of ln ε2t exists if and only if

|β| < 1. (12)

When (12) holds, this second moment can be expressed as

µ0 = E(ln ε2t )
2 =

∆

(1 − β)(1 − β2)
(13)

where ∆ = γ(ln z2)2(1 − β)(1 − β2) +2γln z2(α0 + γg)(1 − β2) +[α2
0(1 +

β) + 2α0(1 + β)γg +2βγ2
g +(1 − β)γg2 ] and γ(ln z2)2 = E(ln z2

t )2,

γln z2 = E ln z2
t , γg = Eg(zt) and γg2 = E(g(zt))

2. Furthermore, the

autocorrelation function ρ0
n = ρ(ln ε2t , ln ε

2
t−n), n ≥ 1, of {ln ε2t } has the

form

ρ0
1 =

(1 − β2)(γg ln z2 − γgγln z2) + β(γg2 − γ2
g)

(1 − β2)(γ(ln z2)2 − γ2
ln z2) + (γg2 − γ2

g)
,

ρ0
n = ρ0

1β
n−1, n ≥ 2, (14)

where γg ln z2 = E(g(zt) ln z2
t ).

Proof:

See Appendix.

Nelson (1991) derived the autocovariance function of the logarithm
of the conditional variance of the EGARCH process. Breidt, Crato and
de Lima (1998) obtained the autocorrelation function of {ln ε2t } for the
EGARCH model. In both articles the authors made use of the infinite
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moving average representation of the logarithm of the conditional vari-
ance. Lemma 2 gives the corresponding result for the first-order process
directly in terms of the parameters of the original model, which is prac-
tical for model evaluation purposes.

Let M0(µ0, ρ
0
n) denote the second moment structure defined by

Lemma 2 for the limiting GPARCH(1,1) process (3) and (4) and assume
that δ < δ0 such that γ2δ0

< 1. We have
Theorem Assume that Mδ(·) is defined for γ2δ0

< 1 and the functions
defining Mδ(·) are continuous and twice differentiable with respect to
δ. Then, under the transformation ϕδ(ε

2
t ) = (ε2δ

t − 1)/δ,

Mδ(µ4δ, ρn(δ)) → M0(µ0, ρ
0
n) (15)

that is, µ4δ → µ0 and ρn(δ) → ρ0
n, n ≥ 1, as δ → 0.

Proof:

See Appendix.

Remark. It has been pointed out above that, under the Box-Cox trans-
formation ϕδ(ε

2
t ) = (ε2δ

t −1)/δ, equation (1), when appropriately mod-
ified, converges to equation (3) as δ → 0. The theorem then says that
under this transformation the moment structure of the GPARCH(δ,1,1)
model (1) and (2) approaches the moment structure of the limiting
GPARCH(1,1) model as δ → 0: µ4δ → µ0 and ρn(δ) → ρ0

n. This con-
vergence shows that the moment structure M0(·) belongs to the class
of structures Mδ(·) as a boundary case. Besides, the parameter δ in the
GPARCH(δ,1,1) process defines a value for which the autocorrelation

function ρ(|εt|δ , |εt−k|δ), k ≥ 1, decays exponentially with k.
In order to consider the practical value of these results suppose, for

example, that γ4 < 1. Then we have a class of GPARCH(δ, 1, 1) mod-
els with the same parameter values such that the available Mδ(·) is
defined on [0, 1], that is, γ2δ < 1, δ ≤ 1. Practitioners may want to
use these results to see what kind of moment implications GPARCH
models they estimate may have. Results in Mδ(·) defined on [0, 1] may
also be useful in checking how well different GPARCH models represent
the reality, which is done by comparing parametric moment estimates
from a GPARCH(δ, 1, 1) model with corresponding nonparametric ones
obtained directly from the data. First-order LGARCH and EGARCH
models may thus be compared with, say, a standard GARCH(1,1)
model in this respect if both are estimated using the same data.
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4 Autocorrelation Functions of Squared Observations

In this section we show how the autocorrelation function of ε2t varies
with δ across GPARCH(δ,1,1) models with normal errors. We demon-
strate how the power parameter increases the flexibility of the specifi-
cation compared to the GARCH model. We also include the symmetric
first-order EGARCH model and LGARCH models in our comparison.
The three parameters in the GARCH model are selected such that the
unconditional variance equals unity, the kurtosis equals 12, and the de-
cay rate of the autocorrelations of ε2t equals 0.95. For the GARCH(1,1)
model, this decay rate is obtained by setting α + β = 0.95. The pa-
rameter values for the EGARCH model and the LGARCH are chosen
such as to make the models as comparable with the GARCH model
as possible. Thus, β = 0.95 in the EGARCH model and α + β = 0.95
in the LGARCH model correspond to α + β = 0.95 in the GARCH
model, because β and α+ β, respectively, control the decay of the au-
tocorrelation function of the squared observations in these two models.
Note, however, that while the decay rate of the autocorrelation of ε2t
in the GARCH(1,1) model equals α+β, it only approaches β from be-
low with increasing lag length in the EGARCH(1,1) model and α + β
from below in the LGARCH(1,1) model. The individual parameters are
chosen such that the unconditional variance and the kurtosis are the
same in all three models as well. This can be done using the analytic
expressions for the relevant moments of the EGARCH(1,1) model in
He, Teräsvirta and Malmsten (2002) and the LGARCH(1,1) model in
the Appendix (Lemma 3).

In order to illustrate the role of δ, we consider the GPARCH(1,1)
model with δ = 1.5 and δ = 1 under the assumption that the other
parameters are the same as in the GARCH(1,1) model. For δ = 1.5
the autocorrelations of ε2t cannot be obtained analytically, and we have
computed them by simulation from 1,000 series of 100,000 observations
each. For δ = 1, they are available from He and Teräsvirta (1999b)
where this special case is considered under the name absolute-valued
GARCH model. It can be seen from Figure 1 that δ < 2 reduces the
autocorrelations of ε2t (other things equal) compared to δ = 2 (the
GARCH model). The difference in autocorrelations between δ = 1.5
and δ = 1 is smaller than the corresponding difference between δ = 2
and δ = 1.5 which is quite large. The autocorrelations of ε2t for the
EGARCH and the LGARCH model are different from the ones for the
GARCH model. As already mentioned, the decay is exponential for the
autocorrelations of the GARCH model but faster than exponential and
exponential only asymptotically (as a function of the lag length), both



Higher-order Dependence in GPARCH Process 239

for the EGARCH model and the LGARCH model. This is also in fact
the case for the GPARCH models for which δ < 2.

Fig. 1. Autocorrelation functions of squares for five first-order GARCH mod-
els, EGARCH (dashed line, short dashes), GARCH (solid line), LGARCH
(dashed line, long dashes), PGARCH δ = 1.5 (dashed-dotted line) and
PGARCH δ = 1 (dotted line).

5 Empirical Examples

Ding, Granger and Engle (1993) demonstrated the potential of the
GPARCH model by fitting the model with normal errors to the long
S&P 500 daily stock return series from January 3, 1928, to August
30, 1991, 17055 observations in all. The estimate of the power para-
meter δ was equal to 1.43 and significantly different from two (the
GARCH model). Brooks, Faff, McKenzie and Mitchell (2000) applied
the GPARCH(1,1) model with t-distributed errors to national stock
market returns for 10 countries plus a world index for the period Feb-
ruary 1989 to December 1996, which amounted to a total of 2062 daily
observations. Except for three extremes cases, the power parameter es-
timates were between 1.17 and 1.45, with most values close to the mean
value 1.36. The authors concluded that in the absence of leverage ef-
fects there is moderate evidence supporting the need for the power
parameter. In the case of six countries plus the world index, the stan-
dard GARCH model could not be rejected in favour of the symmetric
GPARCH model at the 5% significance level. The evidence against
the standard GARCH model was, however, much stronger in case of a
combination of leverage and power effects. More specifically, with the
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exception of one national return series, the GARCH model was strongly
rejected in favour of the asymmetric GPARCH model.

McKenzie and Mitchell (2002) applied the GPARCH model to daily
return series of 17 heavily traded bilateral exchange rates and found the
estimated power parameter equal to 1.37 on average. All power para-
meter estimates were between one and two. For seven of the estimated
models the power parameter was significantly different from two. The
results were thus quite similar to the ones Brooks, Faff, McKenzie and
Mitchell (2000) reported.

Tse and Tsui (1997) fitted the A-PARCH model to two exchange
rate return series, the Malaysian ringgit and the Singaporean dollar.
Their results do not fit the aforementioned pattern. The most no-
table fact was the large change in the estimated value of δ when the
t-distributed errors are substituted for the normal ones. The estimated
degrees of freedom of the t-distribution were in both cases so low that
they alone practically excluded the existence of the finite fourth mo-
ment for the underlying GARCH process.

In order to further explore the role of the power parameter in
practice we consider daily return series of the 30 most actively
traded stocks in Stockholm Stock Exchange and estimate a symmet-
ric GPARCH(δ,1,1) model (with normal errors), a standard GARCH
model and an EGARCH model for these series. The names of the stocks
can be found in Table 1 together with information about the length of
the series. The period investigated ends April 24, 2001. The return
series have been obtained from Datastream.

In Table 1 we report the maximum likelihood estimates of the power
parameter δ. The estimates of δ lie between 1.21 and 1.49, most of them
close to the mean value of 1.40. We find that the estimates are remark-
ably similar (around a mean value of 1.40) to the ones Brooks, Faff,
McKenzie and Mitchell (2000) obtained for their return series. The es-
timates of δ are significantly different from two in a majority of cases,
see Table 1, where the p-value of the test is less than 0.01 in 15 cases
out of 29. It should be noted, however, that some of the estimated au-
tocorrelations may not actually have a theoretic counterpart because
the moment condition γ2δ < 1 appearing in Lemma 1 is not satisfied.
This does not mean that the 2δth moment of εt cannot exist, because
γ̂2δ is an estimate, but empirical support for the existence of this mo-
ment cannot be argued to be strong. If we merely compare standard
GARCH and EGARCH models using tests of non-nested hypotheses,
the results reported in Malmsten (2004) indicate that both models fit
the 30 series more or less equally well.
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Table 1. The stocks, the estimates of the power parameter, length of the
series, p-values of the likelihood ratio test of GARCH against GPARCH, and
the estimated left-hand side of the moment condition of Lemma 1.

y δ T p γ̂2δ

ABB 1.41 3717 0.008 1.013

Assa A. 1.37 1617 0.382 0.733

Assi D. 1.40 1769 0.003 1.015

Astra 1.37 3591 3 × 10−7 1.029

Atlas C. 1.40 2915 0.001 0.976

Autoliv 1.30 1690 9 × 10−5 1.055

Electrolux 1.42 4577 0.1648 0.959

Ericsson 1.42 4576 1 × 10−6 0.962

FSB 1.49 1470 0.1915 0.622

Gambro 1.41 2454 0.037 1.004

Holmen 1.42 4568 0.022 0.959

Industriv. 1.43 2061 0.200 0.905

Investor 1.42 4146 0.009 0.944

Nokia 1.41 2907 5 × 10−5 0.993

OMG 1.43 2084 9 × 10−6 0.962

Pharmacia 1.44 1370 0.339 0.826

Sandvik 1.38 4576 9 × 10−6 1.037

Scania 1.38 1268 2 × 10−14 1.173

Securitas 1.33 2461 9 × 10−5 1.025

Skandia 1.42 4566 0.314 0.959

SEB 1.43 2984 0.003 0.957

Skanska 1.41 4337 0.173 0.984

SKF 1.43 4578 0.012 0.939

SSAB 1.45 2963 0.719 0.784

Stora 1.42 3263 0.197 0.964

SCA 1.39 4576 0.290 1.019

SHB 1.43 2612 5 × 10−5 0.920

Sw. Match 1.21 1239 0.045 1.039

VOLVO 1.37 5324 2 × 10−8 1.033
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As a detailed example we consider the return series of SEB which
is plotted in Figure 2. For this series we estimate the autocorrelation
function of the squared observations from the data and compare them
with the autocorrelations obtained by plugging the parameter estimates
for the three estimated models into the theoretical expressions of the
autocorrelations. Note that from the GARCH(1,1) model estimated for
this series one obtains γ̂4 < 1, so the fourth-moment condition is satis-
fied and we can discuss the autocorrelation function of squares of the
GPARCH(1,1) model with some confidence. It is seen from Figure 3
that for all models the discrepancy between the autocorrelation func-
tions and the autocorrelations estimated directly from data is large
at small lags. For long lags, the gap between the two is much smaller
for the GPARCH(δ,1,1) model than for the two other models. As al-
ready noted, augmenting the GARCH model by the power parameter
δ, other things equal, reduces autocorrelations of squared observations
compared to the two other models. This probably explains the results
obtained by Brooks, Faff, McKenzie and Mitchell (2000) and McKenzie
and Mitchell (2002).

Fig. 2. Daily returns of the stock SEB, from 1989 to April 2001.

The present example shows that the estimated power parameter
considerably improves the correspondence between the estimated au-
tocorrelations on the one hand and the autocorrelation estimates from
the model on the other. But then, the rapid decrease of the autocorre-
lations at first lags is not accounted for by any of the models; a higher-
order model is required for the purpose. He and Teräsvirta (1999c)
showed how a second-order GARCH model already can have an auto-
correlation function of squared observations that is much more flexible
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Fig. 3. Autocorrelation functions of squared observations, estimated for the
SEB (dashed line), and computed from three estimated first-order GARCH
models; GARCH (solid line), EGARCH (dashed-dotted line), and GPARCH
(dotted line).

than the corresponding autocorrelation function for the GARCH(1,1)
model.

6 Final Remarks

In this chapter we derive the autocorrelation structure of the logarithms
of squared observations of a class of power ARCH processes and show
that it may be obtained as a limiting case of a general power ARCH
model. An interesting thing to notice is that the autocorrelation struc-
ture of the δth power of absolute-valued observations of this first-order
GPARCH process is exponential for all GPARCH(δ, 1, 1) processes such
that the 4δth fractional moment exists. This property is retained at the
limit as the power parameter approaches zero, which means that the
autocorrelation function of the process of logarithms of squared obser-
vations also decay exponentially. While this is true for the logarithmed
squared observations of an LGARCH(1,1) or EGARCH(1,1) process
it cannot simultaneously be true for the untransformed observations
defined by these processes as shown in He, Teräsvirta and Malmsten
(1999) for the EGARCH(1,1) case.

Conversely, if we have the original GARCH(1,1) [GPARCH(1,1,1)]
process of Bollerslev (1986) with the autocorrelations of {ε2t } decay-
ing exponentially, the autocorrelation function of {ln ε2t } does not have
this property. The practical value of these facts when discriminating be-
tween GARCH(1,1) and EGARCH(1,1) models is not clear, but they
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illustrate the theoretical differences in the higher-order dynamics be-
tween these two classes of models. Note that possible asymmetry is not
an issue here. Nelson’s EGARCH(1,1) model is a member of the limiting
GPARCH(1,1) family independent of the value of the asymmetry para-
meter. Likewise, if the standard GARCH(1,1) process is generalized to
an asymmetric GJR-GARCH(1,1) (Glosten, Jagannathan and Runkle
(1993)) process the argument remains the same. This is because the
GJR-GARCH model is still a member of the GPARCH(1,1,1) class;
see Ding, Granger and Engle (1993) and He and Teräsvirta (1999b)
for more discussion.

In order to explain the role of the power parameter we present a
detailed analysis of how the autocorrelation function of ε2t differ across
members of the GPARCH(δ,1,1) models. We demonstrate that δ < 2
reduces the autocorrelations of ε2t (other things equal) compared to
δ = 2 (the GARCH model). This fact may explain the regularities in
estimation results in papers in which GPARCH models have been fit-
ted to stock return series. In an empirical example we show that the
estimated power parameter considerably improves the correspondence
between the estimated autocorrelations on the one hand and the auto-
correlation estimates from the model on the other.

Proofs

A.1 Lemma 1

(i) We shall show that {εt} defined in (1) and (2) is strictly stationary
if γδ < 1. Note that under γδ < 1 (2) has a representation

h2δ
t = α0 +

∞∑
i=1

cδ(zt−i).

Since {cδ(zt)} is a sequence of iid and V ar(cδ(zt)) is finite,
∞∑
i=1

V ar(cδ(zt−i)) < ∞. It follows from Billingsley (1986) (Theo-

rem 22.6) that {h2δ
t } is finite almost surely. This, combined with

Theorem 2.1 in Nelson (1991) and γ2δ < 1 implies that {εt} in (1)
and (2) is strictly stationary.

(ii) That {h4δ
t } is finite almost surely follows by the fact that γ2δ < 1

and (2) is strictly stationary. Thus, the results in He and Teräsvirta
(1999b) and He and Teräsvirta (1999c) apply and thus (9) and (10)
hold.
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if
∞∑
i=1

V ar(cδ(zt−i)) = ∞, then {h4δ
t } = ∞ almost surely. Thus the

necessary condition (8) holds.

This completes the proof.

A.2 Lemma 2

(i) Similarly to (i) of Lemma 1, strict stationarity of {ln ε2t } in (3)
and (4) follows from the fact that |β| < 1, and V ar(ln z2

t )2 and
V ar(g(zt))

2 are finite.
(ii) As (ii) and (iii) in Lemma 1, under the assumptions of Lemma 2,

{(ln ε2t )2} is finite almost surely if and only |β| < 1.
(iii)To compute µ0 under (12), we repeatedly apply (4) to lnh2

t , which
yields

lnh2
t = α0

k+1∑
i=1

βi−1 +
k+1∑
i=1

βi−1g(zt−1) + βk+1 lnh2
t−(k+1). (A.1)

Taking expectations of both sides of (A.1) and letting k → ∞ yield

E(lnh2
t ) = (α0 + γg)/(1 − β). (A.2)

Similarly, repeated application of

(lnh2
t )

2 = (α0 + g(zt−1))
2 + 2β(α0 + g(zt−1)) lnh2

t−1

+ β2(lnh2
t−1)

2

yields

(lnh2
t )

2 =

k∑
i=1

[β2(i−1)(α0 + g(zt−i))
2]

+2β
k∑

i=1

β2(i−1)(α0 + g(zt−i))(lnh
2
t−i) + β2k(lnh2

t−k)
2.

Thus, under (12) by letting k → ∞ and taking expectations

E(lnh2
t )

2 =[α2
0(1 + β) + 2α0(1 + β)γg + 2βγ2

g

+ (1 − β)γg2 ]/[(1 − β)(1 − β2)]. (A.3)

It follows from formulas (3), (A.2) and (A.3) that expression (13)
is valid.

(iii)It follows from Theorems 22.3 and 22.8 in Billingsley (1986) that



246 Changli He, Hans Malmsten and Timo Teräsvirta

Next, consider the n-th order autocorrelation of {ln ε2t }

ρ0
n =

E(ln ε2t ln ε2t−n) − (E(ln ε2t ))
2

E(ln ε2t )
2 − (E(ln ε2t ))

2
. (A.4)

We have

ln ε2t ln ε2t−n = ln z2
t ln z2

t−n + ln z2
t lnh2

t−n + lnh2
t ln z2

t−n + lnh2
t lnh2

t−n.
(A.5)

It follows from (A.1) that

(lnh2
t )(lnh

2
t−n) = α0

n∑
i=1

βi−1 lnh2
t−n + (

n∑
i=1

βi−1g(zt−1)) lnh2
t−n

+ βn(lnh2
t−n)2 (A.6)

and

lnh2
t ln z2

t−n = α0

n∑
i=1

βi−1 ln z2
t−n + (

n−1∑
i=1

βi−1g(zt−1)) ln z2
t−n

+ βn−1g(zt−n) ln z2
t−n + βn ln z2

t−n lnh2
t−n. (A.7)

The expectation of (A.5) is obtained by taking expectations of both
sides of (A.6) and (A.7) and inserting them to (A.5). Applying this
expectation to (A.4) yields (14).
This completes the proof.

A.3 Theorem

For the ease of exposition, write (2) as

h2δ
t = α∗

0 + cδ(zt−1)h
2δ
t−1 (A.8)

where cδ(zt−1) = δg(zt−1) + β. Following Ding, Granger and Engle
(1993), decompose α∗

0 as

α∗
0 = (1 − γδ)ω

δ (A.9)

where γδ = δγg + β and ωδ = Eh2δ
t , ω > 0. Rewrite (A.8) as

(h2δ
t − 1)/δ = (α∗

0 + β − 1)/δ + g(zt−1)h
2δ
t−1

+β(h2δ
t−1 − 1)/δ. (A.10)

Insert (A.9) into (A.10) and let δ → 0 on both sides of (A.10). Then,
by l’Hôpital’s rule (A.10) converges to (4). In particular,
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(α∗
0 + β − 1)/δ → α0, (A.11)

where α0 = (1 − β)(E lnh2
t ) − γg is the constant term in (4). Besides,

from (A.9) we have, as δ → 0,

α∗
0 → 1 − β. (A.12)

The convergence results (A.11) and (A.12) are used to prove the fol-
lowing results.

(i) We shall show that µ4δ → µ0 as δ → 0 under the Box-Cox trans-
formation. From Lemma 1 we obtain

µ2δ = Eε2δ
t =

α∗
0ν2δ

1 − γδ

. (A.13)

From (A.13) it follows for the Box-Cox transformed ε2δ
t that

Eϕδ(ε
2
t ) =

[α∗
0(ν2δ − 1) + (α∗

0 + β − 1)]/δ + γg

1 − γδ

. (A.14)

Letting δ → 0 on both sides of (A.14) and applying (A.11) and
(A.12) to the right-hand side of (A.14) gives

µ0
2 = E ln ε2t =

γln z2(1 − β) + (α0 + γg)

1 − β
. (A.15)

From (9) it follows that

E(ϕδ(ε
2
t ))

2 =

[
α∗2

0 ν4δ(1 + γδ)

(1 − γδ)(1 − γ2δ)
− 2Eε2δ

t + 1

]
/δ2. (A.16)

Applying (A.13) to the right-hand side of expression (A.16) it is
seen that (A.16) is equivalent to

E(ϕδ(ε
2
t ))

2 =
1

(1 − γδ)(1 − γ2δ)

{
1

δ2

[
α∗2

0 ν4δ(1 + β) − 2α∗
0ν4δ(1 − β2)

+1 − β − β2 + β3
]
+

1

δ

[
α∗2

0 ν4δγg + 4α∗
0βν2δγg

−γg(1 + 2β − 3β2)
]
+

[
2α∗

0βν2δγg2 − γg2(1 − β)

+2βγ2
g

]
+ δγgγg2

}
. (A.17)

Note that, as δ → 0, E(ϕδ(ε
2
t ))

2 → E(ln ε2t )
2, (ν4δ − 2ν2δ + 1)/δ2 →

E(ln z2
t )2 and (ν2δ − 1)/δ → E(ln z2

t ). Apply those facts and (A.11)
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and (A.12) to the right-hand side of (A.17) while letting δ → 0
on both sides of (A.17). It follows from l’Hôpital’s rule that (A.17)
converges to

µ0 = E(ln ε2t )
2 =

∆

(1 − β)(1 − β2)
. (A.18)

Then µ4δ → µ0 holds in (15).
(ii) We shall now prove that lim

δ→0
ρn(δ) = ρ0

n. Since lim
δ→0

ρn(δ) =

lim
δ→0

ρ1(δ)γ
n−1
δ = βn−1 lim

δ→0
ρ1(δ), we have to prove that lim

δ→0
ρ1(δ) →

ρ0
1.

Let ρ1(δ) = u/v in (10) where u = ν2δ[γδ(1 − γ2
δ) − ν2δγδ(1 − γ2δ)]

and v = ν4δ(1 − γ2
δ) − ν2

2δ(1 − γ2δ). Since lim
δ→0

u = 0 and lim
δ→0

v = 0

we need to apply l’Hôpital’s rule in order to obtain lim
δ→0

ρ1(δ). Note

that

∂

∂δ
u = (ν2δ − β2ν2δ − ν2

2δ + β2ν2
2δ)γg

+δ
∂

∂δ
(ν2δ − β2ν2δ − ν2

2δ + β2ν2
2δ)γg

+
∂

∂δ
(−δ3ν2δγgγ

2
g − δ2βν2

2δγ
2
g − 2δ2βν2δγgγg

+δ3ν2
2δγ

2
gγg2 + δ2βν2

2δγg2 + 2δ2βγ2
g)

and

∂

∂δ
v =

∂

∂δ
(ν4δ(1 − δ2γ2

g − 2δβγg − β2)

−ν2
2δ(1 − δ2γg2 − 2δβγg − β2))

imply that lim
δ→0

∂
∂δu = 0 and lim

δ→0

∂
∂δv = 0. Thus we have to calculate

∂2

∂δ2u and ∂2

∂δ2 v. We obtain

∂2

∂δ2u =
∂

∂δ
[(ν2δ − β2ν2δ − ν2

2δ + β2ν2
2δ)γg]

+
∂

∂δ
(ν2δγg − β2ν2δγg − ν2

2δγg + β2ν2
2δγg)

+δ
∂2

∂δ2 (ν2δγg − β2ν2δγg − ν2
2δγg + β2ν2

2δγg)

+
∂2

∂δ2 (−δ3ν2δγgγ
2
g − δ2βν2

2δγ
2
g − 2δ2βν2δγgγg

+δ3ν2
2δγ

2
gγg2 + δ2βν2

2δγg2 + 2δ2βγ2
g)
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and

∂2

∂δ2 v = (1 − δ2γ2
g − 2δβγg − β2)(

∂2

∂δ2 ν4δ)

−4(δγ2
g − βγg)(

∂

∂δ
ν4δ) − 2γ2

gν4δ

−2νδ(1 − δ2γg2 − 2δβγg − β2)(
∂2

∂δ2 ν2δ)

−2(1 − δ2γg2 − 2δβγg − β2)(
∂

∂δ
ν2δ)

2

+4νδ(δγg2 − βγg)(
∂

∂δ
ν2δ) + 2ν2

2δγg2 .

Note that

lim
δ→0

∂

∂δ
ν2δ = lim

δ→0
(
∂

∂δ
Ez2δ

t ) = lim
δ→0

∫
∂

∂δ
x2δf(x)dx

=

∫
lim
δ→0

x2δ(lnx2)f(x)dx = E(ln z2
t ). (A.19)

lim
δ→0

∂2

∂δ2 ν2δ = lim
δ→0

(
∂2

∂δ2 Ez2δ
t ) = lim

δ→0

∫
∂2

∂δ2x
2δf(x)dx

=

∫
lim
δ→0

x2δ(lnx2)2f(x)dx = E(ln z2
t )2. (A.20)

lim
δ→0

∂

∂δ
γg = lim

δ→0

∂

∂δ
E(z2δ

t g(zt)) = lim
δ→0

∫
∂

∂δ
(x2δg(x))f(x)dx

=

∫
lim
δ→0

(x2δg(x) lnx2)f(x)dx = E(g(zt) ln z2
t ). (A.21)

Applying (A.19) - (A.21) gives lim
δ→0

∂2

∂δ2u and lim
δ→0

∂2

∂δ2 v, respectively.

We see that ρ1(δ) → ρ0
1 as δ → 0.

This completes the proof.

A.4 Lemma 3

Consider the LGARCH (1,1) model (1) and (7) and assume zt’s to
be identically distributed following N(0, 1). Then the autocorrelation
function of squared observations has the form
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ρn =

2Γ (1 + 0.5α(α+ β)n−1)

B(1 + 0.5α(α+ β)n−1, 0.5)

n−1∏
i=1

Γ1i(.)

B1i(.)

∞∏
i=1

Γ2i(.)

B2i(.)
−

∞∏
i=1

(
Γ1i(.)

B1i(.)
)2

3
∞∏
i=1

Γ3i(.)

B3i(.)
−

∞∏
i=1

(
Γ1i(.)

B1i(.)
)2

(A.22)
where

Γ1i(.)

B1i(.)
=

Γ (0.5α(α+ β)i−1)

B(0.5α(α+ β)i−1, 0.5)

Γ2i(.)

B2i(.)
=

Γ (0.5α(1 + (α+ β)n)(α+ β)i−1)

B(0.5α(1 + (α+ β)n(α+ β)i−1, 0.5)

Γ3i(.)

B3i(.)
=

Γ (α(α+ β)i−1)

B(α(α+ β)i−1, 0.5)

and Γ (·) and B(·) are the Gamma function and the Beta function,
respectively.

Proof:

See He, Teräsvirta and Malmsten (2002).
This completes the proof.
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He C, Teräsvirta T, Malmsten H (1999) Fourth moment structure of
a family of first-order exponential GARCH models. Working Paper
Series in Economics and Finance, No. 345, Stockholm School of Eco-
nomics
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1 Introduction

A widespread problem in applying regression analysis is the presence of
data deficiency. In most surveys a not negligible proportion of data is
missing, and sophisticated methods are needed to avoid severely biased
estimation. Reviews on this important topic are provided, in particular,
by Rao et al. (2008, Chapter 8), Little and Rubin (2002), Toutenburg
et al. (2002) and Toutenburg, Fieger and Heumann (2000). Recent
developments include, for instance, Toutenburg and Srivastava (1999)
and Toutenburg and Srivastava (2004), who discuss corrected esti-
mation of population characteristics from partially incomplete survey
data. Toutenburg and Shalabh (2001), Heumann (2004), Shalabh and
Toutenburg (2005), Toutenburg and Shalabh (2005), Toutenburg et
al. (2006), Toutenburg et al. (2005) and Toutenburg, Srivastava and
Shalabh (2006) provide neat methods for handling missing data in
linear and nonlinear regression models, while, among others, Strobl,
Boulesteix and Augustin (2007) and Svejdar et al. (2007) are con-
cerned with classification under missing data.1

1 A completely different paradigm to handle missing data has been developed,
among others, by Horowitz and Manski (2000), Manski and Tamer (2002) Zaf-
falon (2002), Manski (2003), Zaffalon and de Cooman (2004), Zaffalon M (2005)
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But even if data is recorded completely, or correction procedures
for missing data have been applied, a similar problem remains, since
the data at hand do often not exactly convey the information in which
one is interested: Frequently, the variables of material interest, called
ideal variables or gold standard, cannot be observed directly or mea-
sured correctly, and one has to be satisfied with surrogates (often also
named indicators or proxies), i.e., with somehow related, but different
variables (see also Figure 1). If one ignores the difference between the
ideal variables in the model and the observable variables and just plugs
in the surrogates instead of the variables (‘naive estimation’), then
all the estimators must be suspected to be severely biased. Error-in-
variables modeling, also called measurement error modeling, provides
a methodology.2 In such cases it develops procedures to adjust for the
measurement error based on an error model describing the relation be-
tween ideal variables and surrogates. Recent surveys, also containing
many examples from different fields of application, include Cheng and
Van Ness (1999) and Wansbeek and Meijer (2000), who mainly con-
centrate on linear models, and Stefanski (2000), Caroll et al. (2006),
Van Huffel et al. (2002), Schneeweiß and Augustin (2006), who are
concerned with non-linear models.

Some recent developments on measurement error correction are con-
cerned with linear models (see, e.g., Shalabh (2001a), Shalabh (2003),
Shalabh (2001b)), polynomial regression (like Cheng and Schneeweiß
(1998)), Cheng et al. (2000), Huang and Huwang (2001), Kuha
and Temple (2003), Kukush et al. (2004), Kukush and Schneeweiss
(2005a), Shklyar, Schneeweiss and Kukush (2007) and generalized lin-
ear models (cp., for instance, Kukush, Schneeweiss and Wolf (2004),
Kukush and Schneeweiss (2005b), Shklyar and Schneeweiss (2005),

and Utkin and Augustin (2007). They advocate in favor of a cautious, but re-
liable, handling of missing data by considering a set of models, namely the set
of all models being compatible with potential observations of the missing val-
ues. Then the theory of interval probability or imprecise probability (Kuznetsov
(1991),Walley (1991), Weichselberger (2001)) is used for statistical analysis and
decision making.

2 Typically the terms ‘measurement error’ and ‘error-in-variables’ are applied to
continuous data only. The corresponding problem for categorical data is usu-
ally termed ‘misclassification’, see, in particular, Küchenhoff et al. (2006) and
Küchenhoff et al. (2007), for a recently developed method and further references
on this topic. For handling deliberately contaminated data for purposes of data
disclosure and anonymity see, e.g., Schmid (2006); Schmid et al. (2007), Ron-
ning (2005), and the references therein; for investigations on measurement error
arising from heaping and rounding data see, e.g., Ahmad (2006), Augustin and
Wolff (2004), Wolff and Augustin (2003).



Cox Regression Under Heteroscedastic Measurement Error 255
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Fig. 1. Regression under covariate measurement error

Schneeweiss and Cheng (2006), Heid et al. (2006)). Also in the Cox
model, which is considered here, covariate measurement error correc-
tion has become an area of intensive and fruitful research in the last
decade: Next to the regression calibration approaches listed below, so-
called functional approaches are developed and extended, e.g., in Buzas
(1998), Kong (1999), Kong and Gu (1999), Huang and Wang (2000),
Li and Lin (2003), Hu et al. (2002), Augustin (2004), Hu and Lin
(2004), Huang and Wang (2006), Yi and Lawless (2007) and Martin-
Magniette and Taupin (2006), while, for instance, Hu et al. (1998),
Pepe, Self and Prentice (1989), Bender, Augustin, Bletter (2005),
Dupuy (2005) and Rummel et al. (2007) consider the so-called struc-
tural model and the Berkson error; see also the survey and comparison
of basic approaches, including the classical work by Prentice (1982)
and Nakamura (1992), in Augustin and Schwarz (2002) and Liu et al.
(2004).

From the practical point of view, it should be stressed explicitly
that the topic of measurement error is not simply a matter of sloppy re-
search; quite often the ‘true value’ is unascertainable eo ipso. A typical
example, which also motivates the present contribution, is the record-
ing of protein intakes in surveys on the influence of eating habits on
certain diseases. Though much attention is paid to the high quality of
the questionnaire and the subsequent procedures, a considerable ran-
dom distortion in the data cannot be avoided. Below we reanalyze
data from the WHO MONICA Augsburg substudy on dietary intake,
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see Döring and Kußmaul (1997), Winkler et al. (1991).3 This study,
which is embedded into the WHO MONICA project (MONItoring of
trends and determinants in Cardiovascular disease), is concerned with
the question whether changes in dietary intake can explain trends in
the incidence and mortality of cardiac infarctions.4

Since severe error is present in the measurements of animal and
plant protein intake from a seven day food diary, naively applying Cox
regression to answer this question could lead to wrong conclusions. As
a first approach to adjust for the measurement error, we rely on a vari-
ant of the regression calibration approach, which is one of the most
universal methods to correct for measurement error (see Caroll et al.
(2006, Chapter 4) for a general description). Its basic idea is to run
a standard analysis where the unobservable variables are replaced by
values predicted from the observable ones. For Cox regression, regres-
sion calibration type methods were introduced by Prentice (1982) and
were studied and developed further in Pepe, Self and Prentice (1989),
Clayton (1991), Hughes (1993), Wang et al. (1997) and Xie et al.
(2001).

Here we adapt and extend this method taking into account three
general methodological issues, which also deserve special attention in
the data analyzed below:

• Heteroscedastic measurement error. Recent research in nutritional
epidemiology strongly suggests that the measurement error must
be expected to vary considerably among the different study partic-
ipants (cf., e.g., Willett (1998, pp. 33-48)).

• The presence of replication data. The protein intake measurements
are based on diaries, where all food intake had to be recorded in
great detail for seven days. Taking for every individual the errors
in these measurements as independently and identically distributed
gives us the opportunity to estimate the error variances.

• The non-linearity of the influence. Previous studies showed that
the effect of protein intake on morbidity and mortality could be
nonlinear: both types of extreme intakes, very high as well as very

3 The MONICA Augsburg study is currently continued as the KORA study (Co-
operative health research in the area of Augsburg).

4 The quality of Swedish nutrition data was investigated in Johansson et al. (2002),
where the reproducibility of food frequency measurements of a sample of respon-
dents to the Swedish MONICA study was considered. It may be mentioned that,
if such local studies are combined and compared, additional measurement error
arises: It is quite important to take into account the variation in these aggregated
observations (cf. Kulathinal et al. (2002)).
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low intakes, could be detrimental, and so it is of great importance
to work with quadratic predictors. While introducing non-linearity
in the covariates does not encounter much difficulty in the error-
free situation, under measurement error it is often very difficult to
handle non-linear terms. (For the problems already arising in the
linear polynomial model see, e.g., Cheng and Schneeweiß (1998).
For some models a general result (Stefanski (1989, Theorem 1))
can be used to prove even the non-existence of a so-called corrected
score function.)

As shown below, the convenience of regression calibration is main-
tained in this extended setting; still the core parts of the estimation
can be done by standard software packages. Applying this correction
method shows a complex relationship between naive and corrected es-
timates. After having adjusted for measurement error, some of the es-
timates change substantially, others do not. Sometimes there is a high
deattenuation, sometimes the absolute values even get smaller. Since,
however, regression and calibration is known to be only an approxima-
tive correction method, reducing the bias but not necessarily producing
consistent estimators, we understand our analysis more as an illustra-
tion of methodological issue and as a motivation for further research
than as the last word on the topic.

The paper is organized as follows: The next section describes our
modeling of the replication data. Section 3 adapts the idea of regression
calibration to replication data and to quadratic predictors. The appli-
cation to the MONICA data is reported in Section 4, while Section 5
concludes by sketching some topics for further research.

2 Survival Data with Replicated Covariate

Measurements

The basic setup is described in this section , followed by a brief detour
on systematic measurement error.

2.1 The Main Setting

Let n be the sample size and T1, . . . , Tn the lifetimes, which may be
subject to noninformative independent censorship in the sense of, e.g.,
Kalbfleisch and Prentice (2002). For every i = 1, . . . , n we split the
vector of covariates into a vector Xi and a vector Zi. All error-prone
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variables are collected in Xi, while Zi consists of the correctly measured
variables. Let all elements of Xi be measured on a metrical scale, Zi

may contain metrical and categorical covariates in 0/1-coding. Both
types of covariates should be not time-varying. With the application
below in mind, we additionally consider another vector, denoted by

Xi , which contains the squared elements of Xi.
We assume that Cox’s (Cox (1972)) proportional hazard model

describes the relationship between the lifetimes and the covariates; the
individual hazard rate λ(t|Xi, Zi) has the form

λ(t|Xi, Zi) = λ0(t) exp
(
β′

1Xi + β′
2Xi + β′

ZZi

)
, (1)

with the unspecified baseline hazard rate λ0(t) and the regression pa-
rameter vector β = (β′

1, β
′
2, β

′
Z)′.

For Xi, i.e., plant and animal protein in the application discussed
below, replicated measurements Wi1, . . . ,Wik, k > 1 (later on, k=7)
are available for every unit i. We assume them to follow the additive
error model

Wij = Xi + Uij , j = 1, . . . , k, i = 1, . . . , n, (2)

and make the usual assumptions. The errors (Uij), j = 1, . . . , k,
i = 1, . . . , n, have zero mean (see Section 2.2) and are independent
among each other as well as of X1, . . . , Xn and T1, . . . , Tn. It will prove
important to allow for heteroscedasticity of the errors, where, for i
fixed, Ui1, . . . , Uik are i.i.d., but the covariance matrix Σi may vary
among the units i = 1, . . . , n. The common covariance matrix in the
homoscedastic case will be denoted by Σ .

In a naive analysis, for every unit i, the individual average

W i :=
1

k

k∑
j=1

Wij (3)

would function as the surrogate for Xi. Additionally defining

U i :=
1

k

k∑
j=1

Uij (4)

leads us back to the classical error model

W i = Xi + U i, i = 1, . . . , n, (5)

2

2
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with E(U i) = 0 and V(U i) = 1
kΣi . The particular attractiveness of

replication data is based on the fact that the measurement error vari-
ances can be estimated from the data.5 Therefore, in contrast to most
cases relying on the classical error model, it is possible here to avoid
additional assumptions, which are quite often difficult to justify.

2.2 A Note on Systematic Measurement Error

Before addressing the main topic, the assumption E(Uij) = 0 deserves
some attention. If it is violated, i.e., if systematic measurement error
with E(Uij) = a �= 0 of unknown size a is present, then it becomes
important to distinguish whether the covariates act merely linearly or
also in a nonlinear way. In order to bring out this point most clearly,
concentrate on the following special case: Xi is one-dimensional, there
are no error-free covariates Zi, and there is only a deterministic error
a so that (5) reads as

W i = Xi + a, i = 1, . . . , n.

In the case of no quadratic influence, where in (1) the parameter β2 in
(1) is set to zero and then (1) can be written as

λ0(t) exp(β1W i) = λ0(t) exp(β1a+ β1Xi) =: λ∗0(t) exp(β1Xi) . (6)

Therefore, the naive partial likelihood estimator based on replacing
Xi by W i still estimates β1 consistently, and a bias only occurs in
the estimation of λ0(t), where the naive standard methods estimate
λ∗0(t) = λ0(t) exp(β1a) instead of λ0(t) itself. If, however, quadratic
terms are taken into account, then we have to consider

λ0(t) exp(β1W i + β2W
2
i )

= λ0(t) exp(β1a+ β1Xi + β2X
2
i + 2β2aXi + β2a

2) (7)

=: λ∗∗0 (t) exp(β1Xi + β2X
2
i + 2β2aXi) ,

and also inconsistencies in the estimation of the regression parameters
must be expected.

3 Regression Calibration Under Replication Data

In this section, the regression calibration approach is elaborated in the
context of the intended application.

5 See Shalabh (2003) for a sophisticated method where replication data are directly
used to construct consistent estimator in linear models under measurement error.
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3.1 The Basic Concept

Regression calibration (cf., in particular, Caroll et al. (2006, Chap-
ter 4)) is an universally applicable, easy-to-handle method to adjust
for measurement error. The main idea is to utilize the surrogate W i

from (3), together with the error-free variable Zi, to predict the corre-
sponding value of the unobservable variable Xi, and then to proceed

with a standard analysis where Xi is replaced by its prediction X̂i.
Applying this concept, the vector (X

′

i , Z
′

i)
′ of covariates is assumed

to be i.i.d., with unknown mean vector (µ′X , µ
′
Z)′ and unknown covari-

ance matrix ⎛⎝ΣX,X ΣX,Z

Σ′
X,Z ΣZ,Z

⎞⎠ .

Based on Relation (5), the best linear prediction of Xi given Wi and
Zi is (cf., e.g., Rao et al. (2008))

X̂i = µX + (ΣX,X ΣX,Z)

⎛⎝ΣX,X + 1
kΣi ΣX,Z

Σ′
X,Z ΣZ,Z

⎞⎠−1⎛⎝W i − µX

Zi − µZ

⎞⎠ .(8)

If additionally Xi, Ui and Zi are Gaussian then (8) is exactly the con-
ditional expectation of Xi given Wi and Zi.

As mentioned above, replication data play an important role in mea-
surement error modeling. Here they are used to estimate all nuisance
parameters in (8), i.e., the parameters µX , µZ , ΣX and ΣZ of the dis-
tribution of (X ′

i, Z
′
i)
′ as well as the measurement error variances Σi,

from the data. We firstly adopt the procedure for the homoscedastic
case (Σi ≡ Σ), taken from Caroll et al. (2006, Chapter 4.4.2), and
then discuss the generalization to the heteroscedastic case.

3.2 The Case of Homoscedastic Measurement Error

Following (5) the overall mean is suggested as

W :=
1

n

n∑
i=1

W i (9)

which is an unbiased estimator for µX ; analogously µZ is estimated by
Z := 1

n

∑n
i=1 Zi.

In order to derive the estimators for other parameters, it is illumi-
nating to embed the situation under homoscedastic measurement error
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into the theory of design of experiments. Then (2) is reinterpreted as
a one-factorial model with a random effect (e.g., Toutenburg (2002,
pp. 147-150), ), yielding the estimators

Σ̂ =
1

n(k − 1)

n∑
i=1

k∑
j=1

(
Wij −W i

) (
Wij −W i

)′
, (10)

Σ̂X,X =

(
1

n− 1

n∑
i=1

(
W i −W

) (
W i −W

)′)− 1

k
Σ̂, (11)

Σ̂X,Z =
1

n− 1

n∑
i=1

(
W i −W

) (
Zi − Z

)′
, (12)

Σ̂Z,Z =
1

n− 1

n∑
i=1

(
Zi − Z

) (
Zi − Z

)′
. (13)

3.3 The Case of Heteroscedastic Measurement Error

Under heteroscedastic measurement error, the relation

V(Uij) = V(Uij |Xi) = V(Xi|Xi) + V(Uij |Xi) = V(Xi + Uij |Xi)

= V(Wij |Xi)

plays a central role. It provides

Σ̂i =
1

(k − 1)

k∑
j=1

(
Wij −W i

) (
Wij −W i

)′
, i = 1, . . . , n, (14)

as an estimator for the error covariance matrices Σi at the individual
level. ΣX,Z and ΣZ,Z are estimated in the same way as in (12) and in
(13). To get an idea how to estimate ΣX,X , it is helpful to apply the
covariance decomposition formula

Cov(W i[l1],W i[l2]) = Cov
(
E
(
W i[l1] |Xi

)
,E

(
W i[l2]

∣∣Xi

))
+E

(
Cov

(
W i[l1],W i[l2]

∣∣Xi

))
to every pair (W i[l1],W i[l2]) of components of W i. For the covariance
matrices this finally yields, in somewhat informal notation, the relation

V(W i) = V
(
E(W i|Xi)

)
+ E

(
V(W i|Xi)

)
= V(Xi) + E

(
V(U i|Xi)

)
,

which suggests to generalize (11) by using the pooled version

Σ̂X,X =
1

n

n∑
i=1

((
W i −W

) (
W i −W

)′ − 1

k
Σ̂i

)
. (15)
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3.4 Calibrating the Quadratic Part

One natural way to deal with the quadratic part Xi is to replace every

component (Xi[l])
2 of Xi by the square

(
X̂i[l]

)2
of the corresponding

component X̂i[l] of X̂i. Alternatively to that procedure, which is also
pursued in the analysis below, one could prefer to calibrate (Xi[l])

2

‘directly’ by an appropriate approximation to E((Xi[l])
2|Wi, Zi). By

means of the relation

E

(
(Xi[l])

2|Wi, Zi

)
=

(
E
(
Xi[l]|Wi, Zi

))2
+ V(Xi[l]|Wi, Zi)

≈
(
X̂i[l]

)2
+ V(Xi[l]|Wi, Zi)

and arguments very similar to (6), both approaches lead to the same
estimator for β as long as V(Xi[l]|Wi, Zi) does not depend on i. This is
the case, for instance, if under homoscedastic Gaussian measurement
error (X ′

i, Z
′
i)
′ are Gaussian, too.

4 Application to the MONICA Data

In this section the methods just developed are applied to the MONICA
data.

4.1 The Data

Within the WHO MONICA project (MONItoring of trends and deter-
minants in CArdiovascular disease) also the influence of nutrition was
considered. We reanalyze data from a panel of the WHO MONICA sub-
study on dietary intake, conducted in 1984/1985 in Southern Germany,
which is currently continued as the KORA study (Cooperative health
research in the area of Augsburg), see Döring and Kußmaul (1997),
Winkler et al. (1991). A subpopulation of 899 male respondents, aged
from 45 to 65, filled in a comprehensive diary. For seven consecutive
days all meals had been listed in detail. By using a nutritional data
base also containing standard recipes, nutritional variables were de-
rived from the raw data given in every-day units like ladle or gram of
certain ingredients. Among other questions the role of the amount of
plant protein intake (PLANT in the table below) and animal protein
intake (ANIMAL) was investigated. Though high attention has been
paid to the exactness of the measurement procedure, substantial error

2

2
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in the calculation of protein intake is unavoidable, and so we applied
the correction methods developed above to adjust for it.

By a mortality and morbidity follow-up for more than 10 years, the
respondents’ first cardiac infarctions (total number 71 of 858 obser-
vations) and deaths (114 cases of 892 observations6) had been reg-
istered.7 The main interest focused on the influence protein intake
had on the response variable which was defined as age at the event.
In the analysis also confounders were incorporated, namely choles-
terol (mg/dl) (CHOL), daily alcohol consumption (g/day) (ALC) as
continuous variables, as well as hypertension (HYPER) and smoking8

(SMOKER) as categorical variables (1=yes, 0=no). The measurement
error in these variables may be expected to be quite low compared to
that in the protein intakes, and so the confounders were treated as er-
ror free. The estimated regression coefficients are written in the form
β̂[V ARIABLE], i.e., β̂[PLANT ], β̂[ANIMAL], etc.

4.2 The Results

Table 1 summarizes the results of naive and corrected proportional
hazards regression. The first two columns belong to the naive analysis,
which used the seven-days averages of calculated animal protein intake
and of calculated plant protein intake as surrogates for the true cor-
responding intake. They contain the naive estimates and the p-values
based on them.9 Column 3 and 5 report the corrected estimates after
having adjusted for homoscedastic measurement error by the methods
of Subsection 3.2, and for heteroscedastic measurement error along the
lines of Subsection 3.3, respectively. In Column 4 and 6 also “approxi-
mative p-values” are given, which, however, have to be used with par-
ticular reservation here. They are based on the standard errors which
usual software calculates after every Xi was replaced by the corre-

sponding X̂i; they are only meant to give a very rough impression and
should not be taken literally. Correct estimators for the standard error

6 The number of overall observations slightly differs for the two events, because for
some units there was no information about morbidity, but it could be found out
whether they died or survived the follow-up period.

7 The median of the follow-up times with respect to the occurrence of infarction
was 2302 days for the cases and 3996 days for the censored observations. The
median of the follow-up times concerning the death event was 2598.5 days for the
cases and 4006 days for the censored observations, respectively.

8 In this analysis persons who are currently smoking or are ex-smokers were sum-
marized into the smoker category.

9 It may be noted explicitly that not only the naive estimators of the regression
parameters are inconsistent, but also the estimators of the standard error.
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of regression calibration estimators are not straightforwardly found (cf.
Caroll et al. (2006, Chapter 4.6)), and so we used those easy available
values as a rule of thumb to judge the significance. Though they are not
correct, they still should give an impression of the correct magnitude.

In order to illustrate the overall influence of animal and plant protein
intake on morbidity and mortality, it is helpful to look at the functions

f(x) = β̂[ANIMAL]x+ β̂[(ANIMAL)2]x2 (16)

g(y) = β̂[PLANT ]y + β̂[(PLANT )2]y2 . (17)

They describe the estimated effect of the animal protein intake x, and of
the plant protein intake y, respectively, on the predictor in the hazard
function in (1). The domains of x and y are chosen such that they
cover approximately the whole range of the observed values. These
functions are plotted in Figure 4, where the dotted and dashed line
corresponds to the naive estimation. The results, after having adjusted
for homoscedastic or heteroscedastic measurement error, are plotted by
thin and thick solid lines, respectively.10

The Naive Analysis

For the naive analysis, the seven-days averages of calculated animal
protein intake and of calculated plant protein intake were used as sur-
rogates for the true corresponding intake in a proportional hazards
regression. The naive analysis judges the linear and quadratic terms
for animal protein to be significant at the five percent level, and choles-
terol to have a highly significant influence on morbidity. For mortality
the estimates β̂[PLANT ] and β̂[(PLANT )2] are significant at least at
the ten percent level, and hypertension becomes highly significant.

The decisive question following the naive analysis now is: are these
result still valid if one takes into account the substantial measurement
error which is naturally inherent in the protein intake?

10 As discussed in Section 5, we understand our analysis mainly as an illustration of
the methods, and therefore only as a first step motivating further investigations,
before neat material conclusion may be drawn.
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Adjusting for Homoscedastic Measurement Error

First the homoscedastic error model is considered. In order to obtain
corrected estimates the regression calibration method based on (8) and
the estimators from (10) to (13) are applied. Column 3 and 4 of Ta-
ble 1 report the corrected estimates for the influence on morbidity. In
comparison to the naive estimates the effects of animal protein are esti-
mated about twice as high; this results in the thin solid line in Figure 4
(top left). The point of minimal risk (x=59038) is about the same as in
the naive analysis (x=60079), and also the zeros are equal in essence,

but the curve is much steeper. β̂[PLANT ] is half as high as the naive

estimate. Now β̂[(PLANT )2] has a negative sign, too. The correspond-
ing function g(y), which is depicted as the thin solid line in Figure 4
(top right), is concave and decreasing in the amount of intake in a
monotone way: the higher the plant intake the higher is the reduction
of the risk by an additional unit of intake.

The role of the confounders is more or less the same. The estimated
strong influence of hypertension and smoking is confirmed. The re-
gression parameter for alcohol intake changes its sign, but it remains
insignificant.

Turning to mortality (cf. Table 1, the lower part), the absolute values
of the regression parameters of the linear and the quadratic terms in
the protein variables become higher by factors between 1.4 and 1.8, the
effects of the confounders remain unchanged in essence. The figures in
the lower part of Figure 4 show the corresponding curves, which are of
the same shape as those from the naive analysis, but run steeper again.

Adjusting for Heteroscedastic Measurement Error

As discussed above, the presence of replication data also allows, for
every unit i, i = 1, . . . , n, to estimate the covariance matrix Σi of the
error variable in animal protein intake and in plant protein intake at the
individual level (cf. Equation (14)). Even if one takes into account that
only seven observations are available to estimate Σi, the variation in the
estimated variances (Fig. 2 and Fig. 3) is high enough that a detailed
study of heteroscedastic measurement error appears promising.

The last two columns of the upper part in Table 1 refer to the
corrected estimates for morbidity, the corresponding curves are shown
by the thick solid lines in the upper parts of Fig. 4. Compared to
the analysis assuming homoscedastic measurement error, the absolute
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Fig. 2. Estimated individual error variances for animal protein intake: overall
and detail figure

Fig. 3. Estimated individual error variances for plant protein intake: overall
and detail figure

values of the estimates of the regression coefficients for the linear and
the quadratic terms in animal protein intake are attenuated, indeed
they are even closer to the results from the naive analysis. The curve
grows flatter (cf. Fig. 4, top left), the point of minimal risk and the
second zero are shifted to the left: from about x = 60000 to x = 52408,
and from about x = 120000 to x = 104098, respectively. In contrast
to this, the quadratic nature of the influence of plant protein becomes
much clearer. The regression coefficient for the quadratic term now
again has a positive sign, its value is about 30 times as high as in the
naive analysis. As can also be seen in Figure 4 (top right), the risk is
still decreasing with increasing plant protein intake, but now the curve
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is clearly convex: the relative gain in risk reduction becomes the smaller
the higher the intake is, and there would be a border value (outside the
domain of the data, at y=73241), where further intake would increase
the risk again.

Correcting for heteroscedastic measurement error in the estimation
of mortality confirms the results obtained from the homoscedastic error
model for plant protein intake (cf. also Fig. 4, down right). The absolute
values of the estimated coefficients of animal protein intake are lower
by the factor 2.4, which results in a much flatter curve in Fig. 4 (down
left).
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Fig. 4. Estimated overall influence of animal protein intake (left figures) and
plant protein intake on morbidity (upper part) and mortality (cf. (16) and
(17)), calculated from the naive estimates (dotted line), from the estimates
after having corrected for homoscedastic measurement error (thin solid line),
and from the estimates after having corrected for heteroscedastic measurement
error (thick solid line), respectively
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It is also worth mentioning that – in our analysis – morbidity and
mortality differ with respect to the consequences a certain amount of
protein intake has. Very high plant protein intake considerably reduces
the risk of cardiac infarction, but increases the risk of death. In the
case of animal protein the intake which minimizes the risk of death
(x=94263 for the heteroscedastic error model) has already a rather
high risk for cardiac infarction.

5 Concluding Remarks

We discussed an extended version of regression calibration to correct
for possibly heteroscedastic measurement error in Cox regression with
quadratic error-prone predictors when replication data are available.
This method was applied to a part of the MONICA Augsburg survey
to study the influence of eating habits on cardiovascular diseases.

It has become clear how important it is to take into account mea-
surement error carefully. In particular under heteroscedastic measure-
ment error there is a complex relationship between naive and corrected
estimation, which may alter the estimates substantially. Nevertheless,
the results reported here must be taken only as a first step towards
a more comprehensive analysis, suggesting and motivating further re-
search in several directions. Three areas of further investigation should
be mentioned explicitly, namely limitations of the measurement error
modeling and correction applied here, the use of alternative models,
and the dynamic nature of the problem:

First of all, it must not be forgotten that the regression calibra-
tion method is only an approximate method, reducing the bias of naive
analysis but not necessarily producing consistent estimators. Further-
more, the parameter estimates have to be interpreted in relative terms
because correct estimators for their standard errors are missing, and
therefore also no confidence regions were given. To derive such appro-
priate estimators is demanding (cf. Caroll et al. (2006, Chapter 4.6)),
an interesting alternative would be bootstrapping.

Also alternative correction methods should be applied, in order to
justify, or to correct, the preliminary results obtained here. Of special
interest here is a so-to-say dynamic regression calibration procedure,
developed by Xie et al. (2001), where at every failure time only those
units are taken into account which still are under risk (cf. also Wang
et al. (2001)). Another powerful method to correct for homoscedas-
tic measurement error in the Cox model was developed by Nakamura
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(1992) and extended to heteroscedastic error by Augustin (2004). How-
ever, prior to applying this method, further theoretic development is
needed, in order to be able to model the quadratic influence of the co-
variates. The inherent restriction to linear predictors is also the main
hurdle for an application of the nonparametric functional correction
method from Huang and Wang (2000), which would provide an ap-
pealing alternative to utilize replicated measurements. In addition the
error model itself leaves space for further improvement. In particular,
there are good reasons to doubt the assumption made above that the
measurement error should be independent of the true protein intake
and other covariates, and so more complex error models deserve spe-
cial attention (cf., e.g., Heitmann et al. (1995), Prentice (1996), Caroll
et al. (1998)). Also most probable the errors in the measurements of
the same units are not independent of each other.

The second issue to keep in mind is that valuable insights in the data
may be gained by applying different models, and so a study of accel-
erated failure time models or additive hazard models seems attractive.
Techniques for measurement error correction in accelerated failure time
models have not yet received much attention. One of the very rare ex-
ceptions is Nakamura (1990), where Nakmura illustrates his general
method of corrected score functions with members of the exponential
family. His approach is generalized to possibly censored Weibull distrib-
uted lifetimes in Giménez et al. (1999), see also Giménez et al. (2006);
He et al. (2007) applies the SIMEX method to accelerate failure time
models. Song and Huang (2006) consider covariate measurement error
in the additive hazards model, and Cheng and Wang (2001) propose
a method to correct for measurement error the semi-parametric trans-
formation model. A procedure handling error-prone covariates in the
nonparametric log-linear lifetime model is suggested by Wang (2000),
while Augustin (2002, Chapter 5f) proposes two methods for corrected
quasi-likelihood estimation in arbitrary parametric accelerated failure
time models. As discussed there, the latter approaches need some non-
standard treatment of censored observations, but have, on the other
hand, the advantage of being able to take also error-prone lifetimes
into account.Another promising variation in modeling concerns the ef-
fects themselves, and deeper insight may also be obtained by going
beyond the quadratic approach pursued here and allowing for flexible
modeling of the effects (see Rummel (2006, Chapter 4.3) for analyzing
the data by flexible binary regression, see also Rummel et al. (2007)).

The last item to be mentioned here may be the most difficult one:
Eating habits may change! Even if the Xi to be measured by the di-
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ary could be determined exactly, this measurement would only stem
from a cursory glance at a process developing over time. Morbidity
and mortality is also affected by the intake before as well as after the
recording. This leads to the superposition of the heteroscedastic mea-
surement error treated here with a complex kind of measurement error
where a time-dependent covariate is only observed at a certain time
point. (Compare for this also de Bruijne et al. (2001) and Andersen
and Liestol (2003), who consider Cox models where a time dependent
covariate is only observed irregularly.)
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1 Introduction

Analysis of variance (ANOVA) is a corner stone of statistical applica-
tions. The classical ANOVA model assumes that the error terms are
i.i.d. normal, in which case F -statistics have certain optimality prop-
erties (cf. Arnold (1981, Chapter 7)). Arnold (1980) showed that the
classical F -test is robust to the normality if the sample sizes tend to
infinity while the number of levels stays fixed. The past decade has
witnessed the generation of large data sets, involving a multitude of
factor levels, in several areas of scientific investigation. For example, in
agricultural trials it is not uncommon to see a large number of treat-
ments but limited replication per treatment. See Brownie and Boos
(1994) and Wang and Akritas (2006). Another application arises in
certain type of microarray data in which the nested factor corresponds
to a large number of genes. In addition to the aforementioned papers
by Brownie and Boos and Wang and Akritas, other relevant literature
includes Akritas and Arnold (2000), Bathke (2002) and Akritas and
Papadatos (2004).

The above papers deal only with crossed designs. In this article
we consider the two-fold nested design and establish the asymptotic
theory, both under the null and alternative hypotheses, for the usual
F-test statistics of sub-class effects when the number of sub-classes goes
to infinity but the number of classes and the number of observations
in each sub-class remain fixed. The fixed, random and mixed effects
models are all considered. The main finding of the paper is that the
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classical, normality-based, test procedure is asymptotically robust to
departures from the normality assumption.

The rest of this manuscript is organized as follows. The next sec-
tion contains a review of the statistical models, and states three re-
sults that are useful for the asymptotic derivations. In Sections 3 we
present the asymptotic theory for the fixed-effects model, while Sec-
tion 4 presents the asymptotic theory for both the random and the
mixed-effects model. Some simulation results are shown in Section 5,
and finally Section 6 states conclusions.

2 The Statistical Models and Auxiliary Results

2.1 The Fixed-effects Model

In the balanced two-fold fixed-effects model , we observe

Yijk = µij + σeijk, i = 1, . . . , r; j = 1, . . . , c; k = 1, . . . , n, (1)

where the µij are bounded and eijk are independent with

E(eijk) = 0, V ar(eijk) = 1, E(e4ijk) = κ. (2)

The means µij are typically decomposed as

µij = µ+ αi + δij , (3)

where

r∑
i=1

αi = 0 and δic ≡
c∑

j=1

δij = 0, ∀i, for any chosen c.

In this paper, we are mainly interested in testing H0: δij = 0 (no sub-
class effect). Let

MSδ =
n
∑r

i=1

∑c
j=1(Ȳij· − Ȳi··)2

r(c− 1)
,

MSE =

∑r
i=1

∑c
j=1

∑n
k=1(Yijk − Ȳij·)2

rc(n− 1)
,

Mδ
c ≡ 1

σ2

(
MSδ

MSE

)
,

(4)

then the usual F-test statistic for testing H0: δij = 0 is
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F δ
c ≡ MSδ

MSE
. (5)

If the eijk are i.i.d. N(0, 1), then

F δ
c ∼ Fr(c−1), rc(n−1), under H0 : δij = 0. (6)

2.2 The Random-effects Model

In the balanced two-fold nested random-effects model, we observe

Yijk = µ+ σaai + σddij + σeijk, (7)

i = 1, . . . , r; j = 1, . . . , c; k = 1, . . . , n, where ai, dij , eijk are random
variables independent of each other, and

E(ai) = E(dij) = E(eijk) = 0,

V ar(ai) = V ar(dij) = V ar(eijk) = 1,

E(a4
i ) = κa, E(d4

ij) = κd, E(e4ijk) = κ. (8)

Let

γd =
nσ2

d

σ2
, d̄i· =

1

c

c∑
j=1

dij . (9)

Define MSE, MSd, and Md
c as MSE, MSδ, and Mδ

c in (4). In the
random-effects model, the usual null hypothesis for testing the sub-
class effect is H0 : σ2

d = 0 (no sub-class effect) ⇔ γd = 0, and the
corresponding F-test statistic could be defined as

F d
c =

MSd

MSE
. (10)

If the ai, dij and eijk are i.i.d. N(0, 1), then

F d
c ∼ Fr(c−1), rc(n−1), under H0 : σ2

d = 0. (11)
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2.3 The Mixed-effects Model

In the balanced two-fold nested mixed-effects model , we observe

Yijk = µ+ αi + σddij + σeijk, (12)

i = 1, . . . , r; j = 1, . . . , c; k = 1, . . . , n, where the dij , eijk are random
variables independent of each other, and

E(dij) = E(eijk) = 0, V ar(dij) = V ar(eijk) = 1,

E(d4
ij) = κd, E(e4ijk) = κ. (13)

Further assume

r∑
i=1

αi = 0, (14)

and let γd and d̄i· be defined as (9). For testing H0 : σ2
d = 0 in

the mixed-effects model, we define MSE, MSd, Md
c and F d

c as in the
random-effects model. Under the normality assumption, (11) is true
also for the mixed-effects model.

2.4 Auxiliary Results and Notations

In this section we state two theorems from Akritas and Arnold (2000)
which are useful for our asymptotic derivations, state a simple asymp-
totic result concerning the F -distribution, and introduce some notation.

Following the notation in Akritas and Arnold (2000), we use E and
Cov for the expected value and covariance of vectors under the gen-
eral model, while EN and CovN are used when the normal model is
assumed.

Theorem 1. Suppose that e = (e1, . . . , eq)
′ is a q-dimensional random

vector such that the ei are independent with mean 0, variance 1, and
E(e4i ) = κ. Let α1, . . . ,αp be q-dimensional constant vectors, α =
(α1, . . . ,αp), and A1, . . . ,Ap be q × q symmetric matrices. Define

Qj(e, αj) = (e + αj)
′Aj(e + αj),

Q(e, α) =

⎛⎜⎜⎝
Q1(e, α1)

...

Qp(e, αp)

⎞⎟⎟⎠ .
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Then,
E(Q(e, α)) = EN (Q(e, α)).

In addition, if each Ai has constant diagonals and either α = 0 or
E(e3i ) = 0, then

Cov(Q(e, α)) = CovN (Q(e, α)))+
κ− 3

q
(EN (Q(e, 0)))(EN (Q(e, 0)))′.

Theorem 2. Consider the setting and notation of Theorem 1, and as-
sume further that a = (a1, . . . , as)

′ is a s-dimensional random vec-
tor such that the ai are independent with mean 0, variance 1, and
E(a4

i ) = κa. Let L1, . . . , Lp be q× s fixed matrices and let Cj = L′
jAjLj.

Define
Qj(e, a, αj) = (e + αj + Lja)

′Aj(e + αj + Lja),

Q(e, a, α) =

⎛⎜⎜⎝
Q1(e, a, α1)

...

Qp(e, a, αp)

⎞⎟⎟⎠ .

Then,
E(Q(e, a, α)) = EN (Q(e, a, α)).

In addition, if each Ai and each Ci has constant diagonals and either
α = 0 or E(e3i ) = E(a3

i ) = 0, then

Cov(Q(e, a, α)) = CovN (Q(e, a, α)))

+
κ− 3

q
(EN (Q(e, 0, 0)))(EN (Q(e, 0, 0)))′

+
κa − 3

s
(EN (Q(0, a, 0)))(EN (Q(0, a, 0)))′.

Theorem 3. Let the random variable Xc have the F(c−k1)�1,(c−k2)�2 dis-
tribution, where k1, k2, �1, and �2 are constants. Then, as c→ ∞,

√
c (Xc − 1)

d→ N

(
0, 2

(
1

�1
+

1

�2

))
.

The proof of the proposition is straight forward and is omitted.
We close this section by giving the following additional notation.

Uc ≈ Vc ⇔ √
c(Uc − Vc)

P→ 0, as c→ ∞,

ac ≈ bc ⇔ √
c(ac − bc) → 0, as c→ ∞,

where Uc and Vc are two sequences of random vectors, while ac and bc

are two sequences of constant vectors.
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3 Fixed Effects Model

In this section, we consider the fixed-effects model and derive the as-
ymptotic null distribution of F δ

c , defined in (5), as c → ∞ but r, n
remain fixed. The asymptotic distribution under alternatives is also
derived. Define

U δ
ij = n(ēij· +

δij

σ
)2, Ū δ

ic =
1

c

c∑
j=1

U δ
ij , Ū δ

·c =
1

r

r∑
i=1

Ū δ
ic, (15)

Wij =

∑n
k=1(eijk − ēij·)2

n− 1
, W̄ic =

1

c

c∑
j=1

Wij , W̄·c =
1

r

r∑
i=1

W̄ic,(16)

Vδ
ij =

(
U δ

ij

Wij

)
, V̄δ

ic =

(
Ū δ

ic

W̄ic

)
, V̄δ

·c =

(
Ū δ·c
W̄·c

)
. (17)

Note that Ū δ·c, W̄·c are related to MSδ,MSE respectively. In particular,

W̄·c =
1

σ2
MSE, and (18)

Ū δ
·c =

1

σ2
MSδ +

[
nc

r(c− 1)

r∑
i=1

ē2i·· −
1

c− 1
Ū δ
·c

]
.

It is straightforward to see that, as c→ ∞ and r, n remain fixed,

√
c

nc

r(c− 1)

r∑
i=1

ē2i··
P→ 0, and

√
c

1

c− 1
Ū δ
·c

P→ 0.

Combining the above we have that, as c→ ∞ and r, n remain fixed,

V̄δ
·c ≈ Mδ

c (19)

where Mδ
c is defined in (4).

Hence, the asymptotic joint distribution of MSδ/σ2 and MSE/σ2

is the same as the asymptotic joint distribution of Ū δ·c and W̄·c.

3.1 Null Distribution

Theorem 4. Consider the model and assumptions given in (1), (2),
and the decomposition of the means given in (3). Under the null hy-
pothesis H0 : δij = 0, and as c→ ∞ while r, n stay fixed,

√
c(F δ

c − 1)
d→ N

(
0,

2n

r(n− 1)

)
. (20)
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Corollary 1. Under the model and assumptions of Theorem 4, the
classical, normality-based, F -test for the hypothesis H0 : δij = 0 is
asymptotically valid.

Proof of Corollary 1:

The proof follows easily from Theorem 3 and Theorem 4.

Proof of Theorem 4:

Under H0, we have

U δ
ij = n(ēij·)2, Wij =

∑n
k=1(eijk − ēij·)2

n− 1
.

We will use Theorem 1 in order to find the expected value of Vij

and then we will use the multivariate CLT to find the asymptotic dis-
tribution of V̄δ·c. Because under the normal model, U δ

ij and Wij are

independent, U δ
ij ∼ χ2

1 and (n− 1)Wij ∼ χ2
n−1, application of Theorem

1 with α = 0 yields

E(Vδ
ij) =

(
EN (U δ

ij)

EN (Wij)

)
=

(
1

1

)
� µ

Cov(Vδ
ij) =

(
2 0

0 2
n−1

)
+
κ− 3

n

(
1 1

1 1

)
� Σ.

Since Vδ
ij are i.i.d., by the multivariate CLT,

√
c(V̄δ

ic − µ)
d→ N2(0, Σ),

and since V̄δ
ic are independent it follows that

√
c(V̄δ

·c − µ)
d→ N2(0, Σ/r), as c→ ∞.

Thus, by (19)

√
c(Mδ

c − µ)
d→ N2(0, Σ/r), as c→ ∞. (21)

Relation (21) and the ∆-method imply

√
c(F δ

c − 1)
d→ N

(
0, s′Σs/r

)
, where s′ = (1,−1).

Since s′Σs/r = 2n/r(n− 1), the result follows.
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3.2 Alternative Distribution

Theorem 5. Consider the model and assumptions given in Theorem
4. In addition assume that

E(e3ijk) = 0, and E|eijk|4+2ε <∞ for some ε > 0.

Then, under alternatives δij which satisfy

θδ
ic =

n
∑c

j=1 δ
2
ij

cσ2
≈ θi,

as c→ ∞ while r, n stay fixed,

√
c
(
F δ

c − (1 + θ)
)

d→ N

(
0,

2n+ 4nθ + 2θ2

r(n− 1)
+
κ− 3

rn
θ2

)
.

Proof:

Let U δ
ij and Wij be as defined in (15) and (16). We will use Theorem 1

again to find the expected value and covariance matrix of Vδ
ij , defined

in (17). Under the normal model, U δ
ij and Wij are independent, and

U δ
ij ∼ χ2

1

(
nδ2

ij

σ2

)
, (n− 1)Wij ∼ χ2

n−1.

Thus, by Theorem 1,

E(Vδ
ij) =

(
EN (U δ

ij)

EN (Wij)

)
=

(
1 +

nδ2
ij

σ2

1

)
,

Cov(Vδ
ij) =

(
2 + 4

nδ2
ij

σ2 0

0 2
n−1

)
+
κ− 3

n

(
1 1

1 1

)
,

where we used the fact that, if U ∼ χ2
1(γ) then

E(U) = 1 + γ, V ar(U) = 2 + 4γ.

Hence,

E(V̄δ
ic) =

(
1 + θδ

ic

1

)
≈

(
1 + θi

1

)
� µi

and
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c · Cov(V̄δ
ic) =

(
2 + 4θδ

ic 0

0 2
n−1

)
+
κ− 3

n

(
1 1

1 1

)

≈
(

2 + 4θi 0

0 2
n−1

)
+
κ− 3

n

(
1 1

1 1

)
� Σi.

Note that now Vδ
ij are not i.i.d. Under the assumption that

E|eijk|4+2ε < ∞ for some ε > 0, Lyapanov’s theorem and the Cramér-
Wold theorem yield,

√
c(V̄δ

ic − µi)
d→ N2(0, Σi), and

√
c(V̄δ

·c − µ)
d→ N2(0, Σ),

where

θ =
1

r

r∑
i=1

θi, µ =

(
1 + θ

1

)
, Σ =

(
2
r + 4θ

r 0

0 2
r(n−1)

)
+
κ− 3

rn

(
1 1

1 1

)
.

By the asymptotic equivalence between V̄·c and Mδ
c shown in (19),

√
c(Mδ

c − µ)
d→ N2(0, Σ), as c→ ∞.

Note that if s′ = (1,−(1 + θ)),
√
c s′(Mδ

c − µ) = [MSδ − (1 +
θ)MSE]/σ2 which, by Slutsky’s theorem, is asymptotically equivalent
to

√
c
(
F δ

c − (1 + θ)
)
. Thus, by the ∆-method, we have that as c→ ∞,

√
c
(
F δ

c − (1 + θ)
)

d→ N
(
0, s′Σs

)
= N

(
0,

2n+ 4nθ + 2θ2

r(n− 1)
+
κ− 3

rn
θ2

)
. (22)

Note that when θ = 0, equation (22) is in fact equivalent to equa-
tion (20).

4 Random and Mixed Effects Models

4.1 Random-effects Models

The following theorem presents the asymptotic distribution of the F -
statistic under both the null and alternative hypotheses.



288 Shu-Min Liao and Michael Akritas

Theorem 6. Consider the model and assumptions given in (7) and
(8), and the notation in (9). Then as c→ ∞, while r, n remain fixed,

√
c
(
F d

c − (1 + γd)
) d→ N

(
0, 2n(1+γd)2

r(n−1) +
γ2

d

r

(
κd − 3 + κ−3

n

))
, (23)

where F d
c is defined in (10). Under the null hypothesis H0 : σ2

d = 0 of
no sub-class effect, which is equivalently stated as γd = 0, we have

√
c
(
F d

c − 1
)

d→ N

(
0,

2n

r(n− 1)

)
, as c→ ∞. (24)

Remarks:

1. The asymptotic null distribution in this case is the same as in the
fixed-effects case; see equation (20).

2. Arguing as in Corollary 1, it is shown that under the model and
assumptions of Theorem 6, the classical, normality-based, F -test
for the hypothesis H0 : σ2

d = 0 is asymptotically valid.

Proof:

Define Wij , W̄ic, and W̄·c as in equation (16), and define

Ud
ij = n

(
ēij· +

σd

σ
dij

)2
, Ūd

ic =
1

c

c∑
j=1

Ud
ij , Ūd

·c =
1

r

r∑
i=1

Ūd
ic,

Vd
ij = Vd

ij(eij , dij) =

(
Ud

ij

Wij

)
, V̄d

ic =

(
Ūd

ic

W̄ic

)
, V̄d

·c =

(
Ūd·c
W̄·c

)
,

where
e′ij = (eij1, . . . , eijn)n×1.

Note that the relationship between W̄·c and MSE remains the same as
(18). In addition,

Ūd
·c =

1

σ2
MSd+

[
nc

r(c− 1)

∑
i

(
ēi·· +

σd

σ
d̄i·

)2 − 1

c− 1
Ūd
·c

]
.

It can be shown that, as c→ ∞ and r, n remain fixed,

√
c

nc

r(c− 1)

∑
i

(
ēi·· +

σd

σ
d̄i·

)2 P→ 0, and
√
c

1

c− 1
Ūd
·c

P→ 0.

Combining the above we have that, as c→ ∞ and r, n remain fixed,
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V̄d
·c ≈ Md

c (25)

where Md
c is defined in Section (2.2). Hence, the asymptotic joint dis-

tribution of MSd/σ2 and MSE/σ2 is the same as the asymptotic joint
distribution of Ūd·c and W̄·c. To find the expectation and covariance ma-
trix of Vd

ij , we will use Theorem 2. Under the normal model, Ud
ij and

Wij are independent, and

Ud
ij

1 + γd

∼ χ2
1, (n− 1)Wij ∼ χ2

n−1.

Thus, by Theorem 2, with α = 0,

E(Vd
ij) =

(
EN (Ud

ij)

EN (Wij)

)
=

(
1 + γd

1

)
� µ.

In addition, under the normality,

EN

(
Vd

ij(eij , 0)
)

=

(
1

1

)
, and EN

(
Vd

ij(0, dij)
)

=

(
γd

1

)
,

where

Vd
ij(eij , 0) =

(
n ē2ij·

k(eijk−ēij·)
2

n−1

)
and Vd

ij(0, dij) =

(
γd d

2
ij

0

)
.

Thus, by Theorem 2, with α = 0, again

Cov(Vd
ij) =

(
2(1 + γd)

2 0

0 2
n−1

)
+(κd−3)γ2

d

(
1 0

0 0

)
+
κ− 3

n

(
1 1

1 1

)
� Σ.

Since Vd
ij , j = 1, . . . , c, are i.i.d., by the multivariate CLT and the

Cramér-Wold theorem, we have

√
c(V̄d

ic − µ)
d→ N2(0, Σ), and

√
c(V̄d

·c − µ)
d→ N2(0, Σ/r).

Thus, by (25),

√
c(Md

c − µ)
d→ N2(0, Σ/r), as c→ ∞.

The ∆-method can now be used to obtain
√
c(F d

c − (1 + γd))
d→ N

(
0, s′Σs/r

)
, where s′ = (1,−(1 + γd)),

which implies the theorem.

Σ
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4.2 Mixed-effects Model

Theorem 7. Consider the model and assumptions given in (12)–(14),
and the notation in (9). Then as c → ∞, while r, n remain fixed, the
asymptotic distribution of the F-statistic for testing the sub-class effect
in the mixed-effects model is the same as the one in the random-effects
model.

Remark: Arguing as in Corollary 1 it is shown that under the model
and assumptions of Theorem 7, the classical, normality-based, F -test
for the hypothesis H0 : σ2

d = 0 is asymptotically valid.

Proof:

Since the F-statistic for testing the sub-class effect in the mixed-effects
model is defined in the same way as the one in the random-effects model
(see section 2.3), the proof follows by the same arguments used to show
Theorem 6.

5 Simulations

In this section, simulations under the fixed-effects model are used to
compare the achieved sizes of two procedures. The first procedure re-
jects at level α if

√
c(F δ

c − 1) >

√
2n

r(n− 1)
Zα, (26)

where F δ
c is defined in (5) and Zα is the (1− α)100th percentile of the

standard normal distribution. The second procedure rejects at level α
if

F δ
c > Fα

r(c−1),rc(n−1), (27)

where F δ
c is as before and Fα

r(c−1),rc(n−1) is the (1− α)100th percentile

of the Fr(c−1),rc(n−1) distribution. Thus the first procedure uses the as-
ymptotic null distribution (note that the null hypothesis is only rejected
for large values of the test statistic), while the second procedure can be
thought of as a finite-sample correction to the asymptotic distribution.
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The simulation uses 5 classes (r = 5) while the numbers of
sub-classes used are c = 5, 30, 100, and 500. The other parame-
ters of the decomposition in (3) are chosen as follows: µ = 0 and
α = (α1, α2, α3, α4 α5)

′ = (−3,−2,−1, 2, 4)′. There are 3 observa-
tions (n = 3) for each sub-class with randomly-generated errors eijk

from one of four distributions: (1) the standard normal; (2) the expo-
nential distribution with λ = 1; (3) the log-normal distribution whose
logarithm has mean 0 and standard deviation 2; and (4) the mixture
distribution defined as UX+(1−U)Y , where U ∼ Bernoulli(p = 0.9),
X ∼ N(−1.11, 1) and Y ∼ N(10, 1). All eijk are standardized to have
mean 0 and standard deviation 1. The simulated sizes are shown in
Table 1, in which “F-dist” represents the procedure with rejection rule
(27), while “N-dist” represents the procedure with rejection rule (26).
As we can see in Table 1, except in the case of the log-normal distrib-

c = 5 c = 30 c = 100 c = 500

α = 0.01 F-dist N-dist F-dist N-dist F-dist N-dist F-dist N-dist

Normal 0.0090 0.0454 0.0118 0.0238 0.0106 0.0165 0.0103 0.0125

Exponential 0.0126 0.0500 0.0119 0.0238 0.0105 0.0179 0.0098 0.0127

LNorm 0.0158 0.0348 0.0217 0.0285 0.0223 0.0253 0.0181 0.0201

Mixture 0.0189 0.0494 0.0151 0.0254 0.0124 0.0206 0.0106 0.0127

α = 0.05 F-dist N-dist F-dist N-dist F-dist N-dist F-dist N-dist

Normal 0.0481 0.0972 0.0523 0.0706 0.0499 0.0601 0.0492 0.0522

Exponential 0.0535 0.0988 0.0523 0.0696 0.0486 0.0582 0.0495 0.0536

LNorm 0.0359 0.0587 0.0407 0.0487 0.0396 0.0433 0.0350 0.0371

Mixture 0.0521 0.0905 0.0570 0.0753 0.0552 0.0630 0.0510 0.0540

α = 0.10 F-dist N-dist F-dist N-dist F-dist N-dist F-dist N-dist

Normal 0.0977 0.1413 0.1016 0.1193 0.0993 0.1072 0.0985 0.1019

Exponential 0.0994 0.1446 0.1000 0.1166 0.0992 0.1079 0.0981 0.1006

LNorm 0.0589 0.0807 0.0600 0.0666 0.0578 0.0609 0.0514 0.0529

Mixture 0.0908 0.1303 0.1024 0.1199 0.1032 0.1114 0.1020 0.1048

α = 0.20 F-dist N-dist F-dist N-dist F-dist N-dist F-dist N-dist

Normal 0.2014 0.2280 0.2010 0.2109 0.1970 0.2018 0.1995 0.2019

Exponential 0.1957 0.2231 0.1994 0.2108 0.1964 0.2019 0.1957 0.1969

LNorm 0.1050 0.1220 0.1008 0.1047 0.0987 0.1004 0.0919 0.0925

Mixture 0.1775 0.1998 0.1929 0.2016 0.1974 0.2012 0.1997 0.2012

Table 1. Sizes under over 10, 000 simulation runs (r = 5, n = 3).
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ution, the size achieved by procedure (27) is closer to the nominal size
than that achieved by procedure (26). In fact, the sizes achieved by
procedure (27) are surprisingly accurate and robust against the normal
assumption in most cases. In addition, the number of sub-classes (c)
seems to have small effect on the performance of procedure (27). On
the other hand, we can see that procedure (26) tends to be liberal but
becomes less so as c→ ∞.

6 Concluding Comments

We have established that the asymptotic null distribution of the usual
F-test statistic for the sub-class effect in the balanced two-folded nested
homoscedastic model is independent of the normal assumption as
c → ∞, but r, n remain fixed. Moreover, simulations indicate that
the traditional test procedure based on the F -distribution serves as a
successful finite sample correction to the asymptotic distribution of the
test statistic.
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1 Introduction.

In this paper we will deal with the linear model

E(y) = Xβ , Cov(y) = σ2I (1)

where y is a n × 1 vector of observations on response variable, X is a
n × k matrix of n observations on each of the k explanatory variables
and β is a k×1 vector of associated regression coefficients. We denote by
span{z1, . . . , zr} the linear subspace spanned by the vectors z1, . . . , zr

of the vector-space V . For a matrix A we denote the range of the matrix
A by im(A) and its rank by r(A). A g-inverse of A is denoted A− and
the Moore-Penrose of A is denoted by A+. PL denotes the orthogonal
projection into the linear subspace L of the vector-space V .

It should be noted that the model (1) is the most general linear
model. Further, (1) is understood with respect to a general inner prod-
uct, i.e.,

E(y, a) = (Xβ, a), Var(y, a) = σ2(a, a) (2)

with respect to a given inner product. If with respect to the classical
inner product (x, y)o = x′y and the relation Cov(y) = Q, (Q is nonneg-
ative definite matrix) is correct, then if im(X) ⊆ im(Q) with respect
to the inner product

(x, z) = (x,Q+z)0 = x′Q+z, (3)

then the relation Var(y, a) = σ2(a, a) holds. (x, z) is also equal to (x, ρ)o

where ρ is any solution of Qρ = z. This definition does not depend on
the selection ρ. If im(X) ⊆ im(Q) does not hold, then with respect to
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the estimation of E(y), we can “regularize” the model by replacing Q
by W = Q + cXX ′, c > 0. Then im(X) ⊆ im(W ) and for the inner
product

(x, z) = (x,W+z)o = x′W+z, (4)

again Var(y, a) = σ2(a, a). This is just what Cov y = σ2I means.
In the model (1) the BLUE (Best Linear Unbiased Estimator) or

GME (Gauss-Markov estimator) of Ey is

Gy = Pim(X)y, (5)

which is the orthogonal projection of y onto im(X). If X =
(x1, . . . , xk), xi ∈ Rk×1 and β = (β1, . . . , βk)

′ then

Xβ = β1x1 + . . .+ βkxk.

Gy is easy to compute if xi’s are pairwise orthogonal, i.e., (xi, xj) = 0
if i �= j. In this case

Gy =

k∑
i=1

β̂ixi, β̂i =

⎧⎨⎩
(xi, y)

(xi, xi)
if xi �= 0

arbitrary if xi = 0.
(6)

Also the measure of determination R2 = ||Gy||2/||y||2 can be easily
computed. Indeed,

||Gy||2 =
∑

i:xi �=0

(xi, y)
2

(xi, xi)
=

k∑
i=1

β̂
2

i (xi, xi)

and

R2 =
∑

i:xi �=0

(xi, y)
2

(xi, xi)(y, y)
=

∑
i:xi �=0

Corr2(xi, y)

where Corr(x, y) denotes the (empirical) correlation coefficient between
x and y.

When xi’s are not pairwise orthogonal, then by the orthogonal-
ization method due to Erhard Schmidt, late professor at “Humboldt-
University at Berlin”, it is possible to represent Xβ as follows:

Xβ =
s∑

i=1

αiqi, (7)
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where s = r(X) and qi’s are non-zero vectors which are pairwise
orthogonal. They are determined by the orthogonalization algorithm
which in the literature is mostly called Gram-Schmidt orthogonaliza-
tion method. If

xj =
s∑

l=1

rljql, j = 1, . . . , k ,

then it follows that (xj , ql) = rlj(ql, ql) and

rlj =
(xj , ql)

(ql, ql)
. (8)

Without loss of generality, we can assume that x1, . . . , xs are linearly
independent. If we then let q1 = x1, then r11 = 1 and if also rll = 1, l =
2, . . . , s, then

ql = xl −
l−1∑
j=1

(xl, qj)

(qj , qj)
qj . (9)

Since (xj , ql) = (qj , ql) if l ≥ j, it follows that rll = 1 and rlj = 0 if
j < l. Let

Q1 = (q1, . . . , qs), R1 = (rlj ; l = 1, . . . , s, j = 1, . . . , k).

Then

X = Q1R1 (10)

where R1 is an upper triangular matrix. This representation is called
QR-decomposition in numerical analysis (See Björck-Dahlquist (1972)
or Lawson and Hanson (1974)). Since Xβ = Q1α, α = (α1, . . . , αs)

′, it
follows that α̂ = (Q′

1Q1)
−1Q′

1y is the least squares estimator (BLUE,
GME) of α. From

Q1α =
s∑

l=1

αlql =
k∑

j=1

βjxj =
k∑

j=1

(
s∑

l=1

rljql) =
s∑

l=1

(
k∑

j=1

rljβj)ql = Xβ,

it follows that

αl =
k∑

j=1

rljβj = (R1β)l, l = 1, . . . , r,

implying R1β = α.

Theorem 1. Let α̂ = (Q′
1Q1)

−1Q′
1y and β̂ be any solution of the equa-

tion R1β̂ = α̂. Then (l, β̂) is BLUE of (l, β) whenever (l, β) is estimable.

There exists at least one solution of R1β̂ = α̂.
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Proof:

a) We have the representation X = Q1R1 and (l, β) is estimable iff
l ∈ im(X ′), i.e., l ∈ im(R′

1Q
′
1) or l = R′

1Q
′
1z for some z. Then

(l, β̂) = (R′
1Q

′
1z, β̂) = (Q′

1z,R1β̂) = (z,Q1α̂) (11)

and this is BLUE of (z,Q1α) = (z,Xβ) = (X ′z, β) = (l, β).

b) The equation R1β = α is solvable. Let R = (R′
11

...R12) where R11 is
of order s× s and R12 of order s× k− s. Since R11 is upper triangular
with diagonal elements equal to one, it follows that the determinant of

R11 equals one. Hence R11 is regular. If we split up β̂ as β̂
′
= (β̂

′
1, β̂

′
2)

where β1 of order s × 1 and β2 of order k − s × 1, then β̂1 = R−1
11 α,

β̂2 = 0, form a solution of R1β = α̂.

Since R1 and R11 are upper triangular the system R1β̂ = α̂ and
R11β̂1 = α̂ can be easily solved successively as follows:

β̂s = α̂s =
(qs, y)

(qs, qs)
(12)

β̂l = α̂l −
s∑

j=l+1

rlj β̂j

=
(ql, y)

(ql, ql)
−

s∑
j=l+1

rlj β̂j , l = s− 1, s− 2, . . . , 1. (13)

2 Estimable Functions and their Estimation

In the model E(y) = Xβ, Cov(y) = σ2I, the least squares estimator of
β is

β̂ = (X ′X)−1X ′y,

if X has full column-rank and

Cov(β̂) = σ2(X ′X)−1.

Let X = (X0
...xk), where X0 is of order n × (k − 1) and xk of order

n× 1. Then

X ′X =

(
X ′

0X0 x
′
kX0

X ′
0xk x′kxk

)
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and

(X ′X)−1 =

(
A B

C D

)
,

where D is the inverse of the Schur-complement as

x′kxk − x′kX0(X
′
0X0)

−1X ′
0xk = x′k(I −X0(X

′
0X0)

−1X ′
0)xk

= x′k(I − Pim(X0))xk

= ||(I − Pim(X0))xk||2. (14)

Let q = (I − Pim(X0))xk. Then if (a, b) = b′a is the classical inner
product used in this model, then

q′y
q′q

is an estimator with variance σ2/(q′q) and q′q is the Schur-complement
of x′kxk. Since

E(q′y) = q′Xβ = q′(X0β0 + βkxk) = q′βkxk = βkq
′xk = βkq

′q, (15)

it follows that

q′y
q′q

(16)

is the best linear unbiased estimator (BLUE) of βk. This result is also
correct in more general situations.

Theorem 2. Let the linear model E(y) = Xβ, Cov(y) = σ2I be given
and l ∈ R

k. Then for l �= 0

(i) (l, β) is estimable iff Xl /∈ X(l)⊥,

(ii) (l, β̂) = ||l||2 (q, y)

(q, q)
is BLUE of (l, β), where q = (I − PX(l)⊥)Xl,

(iii) Var(l, β̂) = σ2||l||4||q||−2.
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Proof:

The proof can already be found in Drygas (1976), but for the sake of
completeness, it is repeated here.

(i) If Xl ∈ X(l)⊥ then Xl = Xl1 for some l1 ⊥ l. Then X(l − l1) = 0,
(l, l− l1) = (l, l)−(l, l1) = (l, l) �= 0. Hence l /∈ im(X ′) = (X−1(0))⊥.

(ii)Let q = (I − PX(l)⊥)Xl. Then

E(l, β̂) = ||l||2(X ′(I − PX(l)⊥)Xl, β)/||q||2.
Now

X ′(I − PX(l)⊥)Xl = X ′PX
′−1(span(l))Xl = λl

for some λ ∈ R and

λ||l||2 = λ(l, l) = λ(l,X ′(I − PX(l)⊥)Xl)

= λ(Xl, (I − PX(l)⊥)Xl) = ||q||2,

i.e., λ = ||q||2||l||−2 and consequently

E(l, β̂) = (l, β).

(iii)(c, y) is BLUE of its expectation (X ′c, β) = (c,Xβ) iff c ∈ im(X).
This follows from the linear version of the Lehmann-Scheffé Theo-
rem which says that (c, y) is BLUE iff it is uncorrelated with every
linear unbiased estimator of 0. (b, y) is an unbiased estimator of zero
iff X ′b = 0. Thus (c, y) is BLUE iff (c, b) = 0 for every b ∈ X−1′(0),
i.e., c ∈ (X

′−1(0))⊥ = im(X). Since q ∈ im(X), the proof is com-
plete.

Corollary 3 Let xi be the i-th column of X and Xi be the matrix
obtained from X by deleting the i-th column. Then

β̂i =
(y, (I −Xi(X

′
iXi)

−X ′
i)xi

(xi, (I −Xi(X ′
iXi)−X ′

i)xi)
(17)

is BLUE of βi.

Still the problem of an actual computation of the least squares esti-
mator (l, β̂) remains. To solve this we need an appropriate form of the
Gram-Schmidt orthogonalization method.
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Theorem 4. Let x1, . . . , xk be the arbitrary vectors of the inner prod-
uct vector-space V and let Pi be the orthogonal projection onto
span{x1, . . . , xi}. If q1 = x1 and

qi = xi − Pi−1xi, i = 2, . . . , k

then {q1, . . . , qk} form a system of orthogonal vectors and
span{x1, . . . , xk} = span{q1, . . . , qk}.
Proof:

Firstly, we show that span{x1, . . . , xi} = span{q1, . . . , qi}, i = 1, . . . , k.
This assertion is true for i = 1 since x1 = q1. Since by induc-
tion assumption Pi−1 xi ∈ span{x1, . . . , xi−1} = span{q1, . . . , qi−1}
it follows that xi = qi + Pi−1xi ∈ span{q1, . . . , qi}. But qi ∈ xi −
Pi−1xi ∈ span{x1, . . . , xi}. Thus span{x1, . . . , xi} and span{q1, . . . , qi}
coincide. Moreover, if i < j then from qi ∈ span{q1, . . . , qj−1} =
span{x1, . . . , xj−1} it follows that

(qi, qj) = (qi, xj) − (qi, Pj−1xj) = (qi, xj) − (Pj−1qi, xj)

= (qi, qj) − (qi, qj) = 0.

Clearly, Piy =
∑

j≤i:qj �=0

(qj , y)qj
(qj , qj)

for both sides are equal to qi if y = qi

and vanish if y ⊥ q1, . . . , qi. From the properties of projections it also
follows that

||qi||2 = ||xi||2 − ||Pi−1xi||2 = ||xi||2 −
∑

j≤i:qj �=0

(xi, qj)
2

||qj ||2 .

This is an important formula for making computations.
Now we are in a position to solve the computation-problem for (l, β̂).

Let l1, . . . , lk−1 be an basis of (l)⊥ and perform the Gram-Schmidt
orthogonalization procedure for

Xl1, . . . , Xlk−1, Xl.

Then

qk = Xl − Pspan{Xl1,...,Xlk−1}Xl
= Xl − (PX(l)⊥)Xl = (I − PX(l)⊥)Xl.

Thus
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||l||2(qk, y)
||qk||2 (18)

is the BLUE of (l, β).
In order to find the BLUE of βi = (ei, β) = e′iβ, ei the i-th unit-

vector, we have to apply the orthogonalization process to the sequence

x1, . . . , xi−1, xk, xi+1, . . . , xk−1, xi.

Having found one formula, the other formulae are just obtained by
interchanging index k and i.

As an example let us at first consider the case k = 2. Then

q1 = x1, q2 = x2 − (x2, x1)

(x1, x1)
x1, ifx1 �= 0,

(if x1 = 0, then q2 = x2 and we have indeed the case k = 1),

||q2||2 = (x2, x2) − (x1, x2)
2

(x1, x1)

and

β̂2 =
(q2, y)

||q2||2

=

(x2, y) − (x2, x1)

(x1, x1)
(x1, y)

(x2, x2) − (x1, x2)
2

(x1, x1)

=
(x1, x1)(x2, y) − (x2, x1)(x1, y)

(x2, x2)(x1, x1) − (x1, x2)2
. (19)

(if q2 = 0, then β2 is not estimable and β̂1 =
(x1, y)

(x1, x1)
).

By interchanging index 1 and 2 we get β̂1:

β̂1 =
(x2, x2)(x1, y) − (x2, x1)(x2, y)

(x2, x2)(x1, x1) − (x1, x2)2
. (20)

From R1β̂ = α̂, we get an alternative representation of β̂1, namely

β̂1 =
(x1, y)

(x1, x1)
− (x2, x1)

(x1, x1)
β̂2. (21)
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This gives a possibility to check the computation of β̂1 and β̂2 compu-
tationally and numerically.

Now let us also consider the example k = 3

q1 = x1, q2 = x2 − (x2, x1)

(x1, x1)
x1, q3 = x3 − (x3, x1)

(x1, x1)
x1 − (x3, q2)

(q2, q2)
q2,

(22)

||q3||2 = (x3, x3) − (x3, x1)
2

(x1, x1)
− (x3, q2)

2(x1, x1)

(x2, x2)(x1, x1) − (x2, x1)2
. (23)

After some rearrangement the formula

q3 = x3 − (x3, x2)(x1, x1) − (x2, x1)(x3, x1)

(x2, x2)(x1, x1) − (x2, x1)2
x2

+

(
(x2, x1)

(x1, x1)

(x3, x2)(x1, x1) − (x2, x1)(x3, x1)

(x2, x2)(x1, x1) − (x2, x1)2
− (x3, x1)

(x1, x1)

)
x1

(24)

is obtained.
By interchanging Index 3 and 1 we get:

q
(1)
3 = x1 − (x1, x2)(x3, x3) − (x2, x3)(x3, x3)

(x3, x3)(x2, x2) − (x2, x3)2
x2

+

(
(x2, x3)

(x3, x3)

(x1, x2)(x3, x3) − (x2, x3)(x3, x1)

(x2, x2)(x3, x3) − (x2, x3)2
− (x3, x1)

(x3, x3)

)
x3

(25)

and by interchanging Index 3 and 2:

q
(2)
3 = x2 − (x3, x2)(x1, x1) − (x3, x1)(x2, x1)

(x3, x3)(x1, x1) − (x3, x1)2
x3

+

(
(x2, x1)

(x1, x1)

(x3, x2)(x1, x1) − (x2, x3)(x2, x1)

(x3, x3)(x1, x1) − (x3, x1)2
− (x2, x1)

(x3, x3)

)
x1.

(26)

Of course, β̂1 and β̂2 can be obtained from β̂3 and α̂i =
(qi, y)

(qi, qi)
, i = 1, 2

by solving R1β̂ = α̂.
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A final remark on the computation. There are, of course, computer-
programs such as R, SPSS etc. by which estimates of regression coeffi-
cients can easily and efficiently be calculated. But even with a pocket-
calculator or similar equipment it is possible to calculate the formula
derived in this section.

A pocket-calculator can calculate from a data-array x (an n-
dimensional vector x) the (empirical) mean and the (empirical)
standard-deviation (SD), if the numbers are plugged in. Moreover, for
two arrays x and y the (empirical) linear regression y = α+ βx can be
computed by just plugging in all numbers. The above formulae show
that from the inner products (xi, xj) and (xi, y) the regression coef-
ficients estimators can be obtained by some very few elementary cal-
culations. The inner product (x, x) can be obtained from mean and
variance. Now the estimator of regression coefficient β in the regression
y = α+ βx is given by

β̂ =
(x, y) − nx̄ȳ∑n

i=1(xi − x̄)2
. (27)

Thus the inner product (x, y) can be obtained from mean, variance and
regression coefficient. Another method is to use the formula

(x, y) =
1

2
((x+ y, x+ y) − (x, x) − (y, y))

and computing the standard deviation of x+ y. An alternative to (28)
is the Jordan-v.Neumann formula

(x, y) =
1

4
(||x+ y||2 − ||x− y||2) =

1

4
((x+ y, x+ y) − (x− y, x− y)).

Here mean and variance of x+ y and x− y are needed.

3 Linear Sufficiency

Baksalary and Kala (1981) and Drygas (1983) have introduced the
concept of a linearly sufficient statistic z = Ty in the linear model
Ey = Xβ, Cov(y) = σ2Q. Ty is called linear sufficient if the BLUE
of E(y) can be computed from Ty alone. The following theorem was
proved:
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Theorem 5. Ty is linearly sufficient iff

im(X) ⊆ im(WT ′), (28)

where W = Q+ cXX ′ is such that c ≥ 0 and im(X) ⊆ im(W ).
If we introduce the inner product (x, y)W+ = (x,W+y) = x′W+y,

then WT is just the adjoint T ∗ of T with respect to this inner product.
Indeed, for x, y ∈ im(W )

(Tx, y) = (x, T ′y) = (WW+x, T ′y) = (W+x,WT ′y)
= (x,WT ′y)W+ = (x, T ∗y)W+ . (29)

Thus im(X) ⊆ im(T ∗) is the more transparent formulation of linear
sufficiency.

Let us now return to the model E(y) = Xβ, Cov(y) = σ2I and let
q1, . . . , qs, qs+1, . . . , qk be the vectors obtained from the columns of X
by applying the Gram-Schmidt orthogonalization procedure to them.
Without restricting generality it can be assumed that qs+1 = qs+2 =
. . . = qk = 0. Then let

Q = (q1, . . . , qs, 0, . . . , 0) = (q1, . . . , qk)

and

Q1 = (q1, . . . , qs).

Theorem 6. Q′
1y and Q′y are linearly sufficient statistics.

Proof:

Since im(X) = im(Q) = im(Q1) it follows from theorem 5 that Q′y
and Q′

1y are linearly sufficient.
Linear sufficiency means that the BLUE of Xβ can be obtained from

Q′y and Q′
1y, respectively. Since Q(Q′Q)−Q′y and Q1(Q

′
1Q1)

−1Q′
1y,

respectively are the orthogonal projections onto im(X), this property
is evident.

The model E(y) = Xβ can be split up into X = (X1
...X2), where

X2 = X1A. Thus E(y) = X1(β1 + Aβ2), where β = (β′
1, β

′
2). Then

X1 = Q1R11 and X2 = Q1R12 and

Q1(Q
′
1Q1)

−1Q′
1 = Q1R11R

−1
11 (Q′

1Q1)
−1Q′

1y = X1R
−1
11 (Q′

1Q1)
−1Q′

1y.
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Thus R−1
11 (Q′

1Q1)
−1Q′

1y is the BLUE of β1 +Aβ2 in the model E(y) =
X1(β1 +Aβ2), Cov(y) = σ2I.

A similar representation is more complicated for Q. At first

X = QR, R =

⎛⎜⎝R1

· · ·
0

⎞⎟⎠ =

⎛⎜⎜⎝R11
... R12

· · · · · · · · ·
0

... 0

⎞⎟⎟⎠ . (30)

By Searle (1971, p. 4) generalized inverse of R and Q′Q can be found
as follows:

R− =

⎛⎜⎜⎝R−1
11

... 0

· · · · · · · · ·
0

... 0

⎞⎟⎟⎠ , (Q′Q)− =

⎛⎜⎜⎝ (Q′
1Q1)

−1
... 0

· · · · · · · · ·
0

... 0

⎞⎟⎟⎠ . (31)

Then RR−(Q′Q)− = (Q′Q)− and

Q(Q′Q)−Q′ = QRR−(Q′Q)−Q′ = XR−(Q′Q)−Q′. (32)

Thus R−(Q′Q)−Q′y = β̂ can be considered as an estimator of β in the

sense that (l, β̂) is BLUE of (l, β) whenever (l, β) is estimable.
It is remarkable to note that in the model E(Q′y) = Q′Xβ =

(Q′Q)Rβ, Cov(Q′y) = σ2(Q′Q) there is a linear unbiased estimator
of β if and only if Q′Q is regular, i.e., s = k. In this case

R−1(Q′Q)−1y = β̂

is the only unbiased estimator. It is at the same time the Aitken-
estimator

((Q′Q)R)′(Q′Q)−1((Q′Q)R)−1((Q′Q)R)′(Q′Q)−1y

= (R′(Q′Q)R)−1R′y
= R−1(Q′Q)−1(R′)−1R′y
= R−1(Q′Q)−1y.
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4 Application: Diabetes Mellitus

Diabetes mellitus is a disease where the autoregulation of metabolism
is disturbed. Normally after eating, the content of glucosis in the blood
decreases very rapidly after perhaps one hour to a value below 100
mg/dl (5.55 mmol/l). Under diabetes mellitus it takes perhaps 4 hours
to reach such a value - even under medicaments. However, by physical
training it is possible to get a lower value perhaps already after two
hours.

We will here discuss the behavior of glucosis during the night and
the early morning. Though there is in general no intensive consumption
of food in the late evening and during the night an acceptable value in
the morning seems to pose a serious problem.

Some years ago it was said that it can not be recommended to use
antidiabetic oral medicaments in the late evening unless you eat reg-
ularly during the night. To avoid hypoglycemia during the night (or
counter-reactions), it was recommended to eat one bread-unit (12 g
carbon-hydrats) just before bedtime. In later years the opinion about
this procedure was changed and oral antidiabetic medicaments of an
appropriate dose were also recommended before bedtime. There was,
however, no recommendation of change of the amount of food that
should be consumed at bedtime. The patients continued to eat one
bread-unit (BU) just before bedtime. Thus simultaneously measures
against too high and too low glucosis-values were taken. This seems to
be a rather contradictory proposal. In my opinion with fixed medica-
ments, the amount of food just before bedtime should depend on the
value of glucosis at this time. I finally decided that 100 mg/dl (5.55
mmol/l) and 150 mg/dl (8.32 mmol/l) should be the critical values for
this decision. If the glucosis is equal or above 150 mg/dl (8.32 mmol/l)
you should not eat anything. If however, the value is equal or below
100 mg/dl, then you should eat one bread-unit (1 BU). If the value is
between 100 and 150, then the last meal of day is less accordingly. For
example, if the value is 120, then 0.6 BU are eaten.

If you awake during the night between perhaps 1 A.M. and 2 A.M.
you repeat the procedure of the evening. If the value is equal or below
100mg/dl, you eat 1 BU and you eat no BU for values equal or above
150 mg/dl. For values between 100 and 150, you eat a fraction of a BU.

I have pursued this method since some time and I have constructed
and computed a regression model describing the behavior of the changes
of the glucosis-values. We have the following Variables:
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• y, change of the glucosis-values, i.e., the difference of the value dur-
ing the night and the value in the evening or the difference of the
values in the morning and value during the night

• x, the amount of food, measured in BU, taken in the evening and
during the night, respectively and

• t, time between two measurements.

The model which will be studied in the sequel is as follows:

y = α(t−D) + βx+ ε. (33)

Here

D = I{x>0} =

{
1 x > 0

0 x = 0 .

The idea behind this modelation is as follows: If you eat an amount x
then the glucosis will increase and it will reach its highest point after
approximately one hour.

Since the model (33) is difficult to treat by a pocket-calculator, we
have changed it to

ŷ =
y

(t−D)
= α+ βx̂+ δ , x̂ =

x

(t−D)
.

Table 1. Night/morning measurements (transformed)

No. Date y t x ŷ = y/(t−D) x̂ = x/(t−D)

1 26.3.07 -23 5.22 0.4 -5.4502 0.0948

2 28.3.07 -42 5.82 0.2 -8.7137 0.0415

3 29.3.07 30 3.12 1.0 14.1509 0.4717

4 30.3.07 -41 5.18 0.4 -9.1086 0.0957

5 31.3.07 -28 6.22 0 -4.5016 0

6 2.4.07 -29 5.28 0.6 -6.7757 0.1402

7 4.4.07 -13 3.53 0.6 -5.1383 0.2372

8 5.4.07 9 5.05 1.0 2.2222 0.2469

9 6.4.07 -48 5.17 0.4 -10.0719 0.0959

10 7.4.07 -18 3.42 0.2 -7.4380 0.0826

m=Mean -19.7 0.48 -4.1525 0.15065

σ=Standard Deviation 23.4665 0.3293 7.3329 0.1368

Regression ŷ = α̂+ β̂x̂, ŷ = −11.2354 + 47.0156x̂, r=0.8768090

1 − r2 = 0.2312059,
∑10

i=1(ŷi − ¯̂y)2 = 9σ2
0 = 483.9428,

σ̂2 = 1
8 × 0.2312059 × 483.9428 = 13.986304 = (3.7398)2.
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Table 2. Evening/night measurements (transformed)

No. Date y t x ŷ = y/(t−D) x̂ = x/(t−D)

1 25./26.3.07 -49 2.98 0 -1.6443 0

2 26./27.3.07 21 3.6 0 5.8333 0

3 27./28.3.07 -39 3.85 0 -10.1299 0

4 28./29.3.07 -85 3.73 0 -22.7882 0

5 29./30.3.07 0 3.57 0.2 0 0.0778

6 30./31.3.07 81 3.55 1 31.7647 0.3922

7 31.3/1.4.07 79 4.77 1 20.9549 0.2653

8 1.4./2.4.07 -38 3.73 0 -10.1877 0

9 2.4./3.4.07 -26 3.8 0 -6.8421 0

10 3.4./4.4.07 -3 5.03 0.6 -0.7444 0.1489

m=Mean -5.9 0.28 0.62163 0.08842

σ=Standard Deviation 53.9247 0.4237 15.8256 0.1391

Regression ŷ = α̂+ β̂x̂, ŷ = −8.1859 + 99.6107x̂, r = 0.8758071

1 − r2 = 0.23296,
∑10

i=1(ŷi − ¯̂y)2 = 9σ2
0 = 2254.05

σ̂2 = (1−r2)
8 ×∑10

i=1(ŷi − ¯̂y)2 = 65.6378 = (8.1017)2

The variation of y is very high, so is the coefficient β̂.
Since the value for the time t, as we will see later, is almost identical

for most values, so it could be hoped that there will be no large differ-
ence in the estimated regression coefficients. We have to see whether
this is actually the case.

We begin with the Night/morning values. We now proceed to Table
3 with the original data.

In order to find the measure of determination we must compute
(q1, y) and (q2, y). Here

q1 = x,

q2 = (t−D) − (t−D,x)

(x, x)
x
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Table 3. Night/morning measurements (original)

No. Date y t x t−D y + x y + t−D x+ t−D

1 26.3.07 -23 5.22 0.4 4.22 -22.6 -18.78 4.62

2 28.3.07 -42 5.82 0.2 4.82 -41.8 -37.18 5.02

3 29.3.07 30 3.12 1.0 2.12 31.0 32.12 3.12

4 30.3.07 -41 5.18 0.4 4.18 -40.6 -36.82 4.58

5 31.3.07 -28 6.22 0 6.22 -28 -21.78 6.22

6 2.4.07 -29 5.28 0.6 4.28 -28.4 -24.72 4.88

7 4.4.07 -13 3.53 0.6 2.53 -12.4 -10.47 3.13

8 5.4.07 9 5.05 1.0 4.05 10.0 13.05 5.05

9 6.4.07 -42 5.17 0.4 4.17 -41.6 -37.83 4.57

10 7.4.07 -18 3.42 0.2 2.42 -17.8 -15.58 2.62

m=Mean -19.7 0.48 3.901 -19.22 -15.791 4.381

s=Standard 23.4665 0.3293 1.2421 23.7229 22.7683 1.0993

Deviation

SQ = 9s2 8837 3.28 166.0631 8759.08 7161.6633 202.8071

+ 10m2

(y, x) = 1
2 ((y + x, y + x) − (y, y) − (x, x)) = −40.6

(y, t−D) = 1
2 ((y + t−D, y + t−D) − (y, y) − (t−D, t−D)) = −920.699

(x, t−D) = 1
2 ((x+ t−D,x+ t−D) − (x, x) − (t−D, t−D)) = 16.732

α̂ =
(y, t−D)(x, x) − (y, x)(t−D,x)

(x, x)(t−D, t−D) − (x, t−D)2
=

−2340.5765

264.7272
= −8.8415

β̂ =
−(t−D,x)(y, t−D) − (t−D, t−D)(y, x)

(x, x)(t−D, t−D) − (x, t−D)2
=

−8662.9888

264.7272
= 32.7242

=
(y, x) − (t−D,x)α̂

(x, x)
=

147.936 − 40.6

3.28
=

107.336

3.28
= 32.7244

Thus the regression function equals y = −8.8415(t−D) + 32.724x.

(q1, y) = (x, y) = −40.6,

(q2, y) = (t−D, y) − (t−D,x)

(x, x)
(x, y)

= −920.6999 +
16.732

3.28
40.6 = −713.5904,

(y, y) = 8837,
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(q1, q1) = (x, x) = 3.28,

(q2, q2) = (t−D, t−D) − (t−D,x)2

(x, x)

= 166.0631 − 16.7322

3.28
= 80.7095,

(q1, y)
2 = 1648.36,

(q2, y)
2 = (713.5904)2 = 509211.259,

R2 = 0.05687 + 0.71395 = 0.77082.

The estimator σ̂2 of σ2 is given by

σ̂2 =
1

8
(1 −R2)(y, y) = 253.1580 = (15.9109)2.

Finally we analyze the Evening/Night measurements in their origi-
nal form, see Table 4 for this. Thus the (estimated) regression function
is

y = −10.3167(t−D) + 105.68752x .

For the computation of the measure of determination let

q1 = (t−D),

q2 = x− (x, t−D)

(t−D, t−D)
(t−D).

Then

(q1, y) = −285.86998,

(q1, q1) = 122.49,

(q2, y) = 158.2 − (9.252)(−285.86998)

122.49
= 179.79523,

(q2, q2) = (x, x) − (x, t−D)2

(t−D, t−D)
= 2, 4 − 9.2522

122.49
= 1.70117.

Thus

R2 =
1

(y, y)

(
(q1, y)

2

(q1, q1)
+

(q2, y)
2

(q2, q2)

)
= 0.025181 + 0.07165366 = 0.7417176.

In the evening/night-tables, the high variance of y and the high
coefficients of the x-variables is very remarkable.
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Table 4. Evening/night measurements (original)

No. Date y x t t−D

1 25./26.3.07 -49 0 2.98 2.98

2 26./27.3.07 21 0 3.6 3.6

3 27./28.3.07 -39 0 3.85 3.85

4 28./29.3.07 -85 0 3.73 3.73

5 29./30.3.07 0 0.2 3.57 2.57

6 30./31.3.07 81 1 3.55 2.55

7 31.3/1.4.07 79 1 4.77 3.77

8 1.4./2.4.07 -38 0 3.73 3.73

9 2.4./3.4.07 -26 0 3.8 3.8

10 3.4./4.4.07 -3 0.6 5.03 4.03

m=Mean -5.9 0.28 3.461

s=Standard Deviation 53.1247 0.4237 0.5482

9s2 =
∑n

i=1(zi − z̄)2 26170.90 1.6160 2.4707

SQ = 9s2 + 10m2 26519 2.4 122.49

y = a1 + b1x , y = −36.1733 + 108.1188x, r = 0.8496

(y, x) − 10x̄ȳ = 174.7199, (y, x) = 158.2

y = a2 + b2(t−D) = 98.6086 − 30.1961(t−D), r = −0.3070

(y, t−D) − 10ȳ(t̄− D̄) = −81.67098, (t−D) = −285.86998

t−D = a3 + b3x = −3.537 − 0.2715x, r = −0.20589

(t−D,x) − 10(t̄− D̄)x̄ = −0.4388, (t−D,x) = 9.252, (t−D,x)2 = 85.5995

Det = (x, x)(t−D, t−D) − (x, t− d)2 = 208.3762

A1 = (t−D, t−D)(y, x) − (t−D,x)(y, t−D) = 22022.76414

A2 = −(t−D,x)(y, x) + (x, x)(y, t−D) = −2149.7544

β̂ = A1

det
= 105.68752

α̂ = A2

det
= [(y,t−D)−β̂(x,t−D)]

(t−D,t−D) = −10.3167.

σ̂2 =
1

8
(1 −R2)(y, y) = 854.2538 = (29.22762)2.

It may perhaps be interesting how large the fastening actual values in
the morning have been. These were as follows:
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Date 26.3 27.3 28.3 29.3 30.3 31.3 1.4 2.4 3.4 4.4 5.4 6.4 7.4

mg/dl 104 99 97 103 98 124 94 98 98 104 108 86 123

This is very a good result because these values are normal or close
to normality. The relative high values on 31th of March and 7th of
April can be explained by an additional medicament taken on that day
(Saturday).
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1 Introduction

It is well known in a Random Effects Model, that the Best inhomoge-
neously LInear Prediction (inhomBLIP) of the random effects vector is
equivalently generated by the standard Least-Squares (LS) approach.
This LS solution is based on an objective function that consists of two
parts, the first related to the observations and the second to the prior
information on the random effects; for more details, we refer to the
book by Rao, Toutenburg, Shalabh and Heumann (2008). We em-
phasize that, in this context, the second part cannot be interpreted as
“penalization term”.

A very similar objective function, however, could be applied in the
Gauss-Markov model where no prior information is available for the
unknown parameters. In this case, the additional term would serve as
“penalization” indeed as it forces the Penalized Least-Squares (PLS)
solution into a chosen neighborhood, not specialized through the model.
This idea goes, at least, back to Tykhonov (1963) and Phillips (1962)
and has since become known as (a special case of) “Tykhonov regu-
larization” for which the weight ratio between the first and the second
term in the objective function determines the degree of smoothing to
which the estimated parameters are subjected to. This weight ratio is
widely known as “Tykhonov regularization parameter”; for more de-
tails, we refer to Grafarend and Schaffrin (1993) or Engl et al. (1996),
for instance.

It is now of interest how the MSE-matrices in the two above-
mentioned cases differ even though the numerical results for the pa-
rameters may coincide. Moreover, we shall explore the possibility of
variance component estimation in the random effects model to find
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a new “quasi-optimal regularization parameter” in the Gauss-Markov
model, independent of the L-curve approach by Hansen and O’Leary
(1993) and the principle of cross-validation favored by Golub et al.
(1979). Such an idea was first proposed by Schaffrin (1995) and later
sketched out by Schaffrin (2005).

2 A Brief Review of Standard Least-Squares in the

Random Effects Model

Let us introduce the following Random Effects Model (REM)

y = Ax+ e, β0 = x+ e0 (β0 is given), (1)

e ∼ (0, Σ), e0 ∼ (0, Σ0), C{e, e0} = 0,

where y denotes a n × 1 vector of observations (increments), A is a
known n ×m coefficient matrix with rank(A) ≤ m < n, x is a m × 1
vector of unknown random effects (increments), β0 is the m× 1 vector
of “prior information” on x, e is a n× 1 random error vector with zero
expectation and positive-definite dispersion matrix Σ, e0 is a m × 1
random error vector with zero expectation and positive-definite disper-
sion matrix Σ0, and C denotes the “covariance”. Note that e and e0
are uncorrelated.

Now the standard (weighted) least-squares solution for x is based
on the minimization of the objective function

Φ (x) := (y −Ax)TP (y −Ax) + λ(β0 − x)TP0(β0 − x)

where the weight matrices may be chosen as P := σ2
0Σ

−1 and P0 :=
(σ2

0/λ)Σ−1
0 , respectively. Obviously, σ2

0 denotes the observational vari-
ance component, and λ denotes the appropriate variance ratio between
observational and prior information. Now we obtain

x̃ = (N + λP0)
−1(c+ λP0β0) for [N, c] := ATP [A, y] (2)

as standard LS-solution, which incidentally yields the Best inhomo-
geneously LInear Prediction (inhomBLIP) of x following Goldberger
(1962), Schaffrin (1985), or Rao, Toutenburg, Shalabh and Heumann
(2008). The latter is defined as a linear prediction

x̃ = Ly + γ0 (3)

for which the m × n matrix L and the m × 1 vector γ0 are to be
determined in such a way that the trace of the mean squared error
matrix
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MSE(x̃) = D(x̃− x) +E(x̃− x)E(x̃− x)T

= D [(LA− Im)x+ Le]

+E [(LA− Im)x+ γ0]E [(LA− Im)x+ γ0]
T

= L(Σ +AΣ0A
T )LT − LAΣ0 −Σ0A

TLT +Σ0

+ [γ0 − (Im − LA)β0] [γ0 − (Im − LA)β0]
T (4)

is being minimized where E denotes “expectation” and D “dispersion”.
This objective function immediately leads to

γ0 = (Im − LA)β0

and
(Σ +AΣ0A

T )LT −AΣ0 = 0

from which we first obtain the matrix L as

L = Σ0A
T (Σ +AΣ0A

T )−1 = Σ0A
T (In +Σ−1AΣ0A

T )−1Σ−1

= Σ0(Im + σ−2
0 NΣ0)

−1ATΣ−1 = (N + λP0)
−1ATP,

and finally the predicted vector

x̃ = β0 + L(y −Aβ0) = β0 + (N + λP0)
−1(c−Nβ0)

in full agreement with (2). Apparently, this solution of type inhomBLIP
is automatically weakly unbiased in the sense of

E(x̃) = β0 = E(x) for the given β0 (5)

and, therefore, represents the Best inhomogeneously LInear (weakly)
Unbiased Prediction (inhomBLUP) as well.

Consequently, the mean squared error matrix from (4) results in

MSE(x̃) = D(x̃− x) = LΣLT + (LA− Im)Σ0(LA− Im)T

= σ2
0(N + λP0)

−1N(N + λP0)
−1

+(N + λP0)
−1(N −N − λP0)Σ0

×(N −N − λP0)(N + λP0)
−1

= (N + λP0)
−1(σ2

0N + λ2P0Σ0P0)(N + λP0)
−1

= σ2
0(N + λP0)

−1 (6)

which differs from the dispersion matrix

D(x̃) = LΣLT = σ2
0(N + λP0)

−1N(N + λP0)
−1. (7)

We again emphasize that the second term in the objective function
from (2) should not be misinterpreted as “penalization” in this model.
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3 Penalized Least-Squares in the Gauss-Markov Model

In order for the second term in the objective function from (2) to be
interpreted as “penalization”, only the first term ought to refer to ran-
dom errors in the model. Consequently, we have to restrict ourselves to
the observation equations of a standard Gauss-Markov model, namely

y = Aξ + e, e ∼ (0, σ2
0P

−1), (8)

where the random effects vector x is now replaced by the m× 1 vector
ξ of fixed (i.e., nonrandom) parameters.

This automatically entails that R := λP0 can no longer be related
to a cofactor matrix (such as σ−2

0 Σ0 in section 2). Instead, the sym-
metric positive-(semi)definite matrix P0 must be chosen independently
to define the degree of penalization relative to the components of the
vector β0 − ξ of deviations from an “educated guess” (such as β0).

In contrast, we shall leave the coefficient λ unspecified at this point,
but emphasize that it no longer describes a variance ratio. An inter-
pretation as “weight ratio”, however, is still possible as it regulates the
impact of the penalization term on the final estimates of ξ, oftentimes
felt as (over-)smoothing; for more details, see section 4 below.

Now the application of (R-weighted) Penalized Least-Squares (PLS)
in minimizing the objective function

Φ (ξ) := (y −Aξ)TP (y −Aξ) + (β0 − ξ)TR(β0 − ξ)

leads to “Tykhonov regularization” with

ξ̂λ = (N +R)−1(c+Rβ0) = β0 + (N +R)−1(c−Nβ0)

as a linear estimate of ξ which, however, turns out to be biased in the
GM-Model from (8) according to:

E(ξ̂λ) − ξ = (N +R)−1(E(c) +Rβ0) − ξ

= (N +R)−1 [(Nξ +Rβ0) − (N +R)ξ]

= (N +R)−1R(β0 − ξ) �= 0, (9)

unless the “guess” β0 happens to coincide with the unknown parameter
vector ξ. (If we knew this right away, we would not bother to estimate
ξ.)

As a consequence, the mean squared error matrix for the PLS-
solution is computed as follows:
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MSE(ξ̂λ) = D[ξ̂λ] + [E(ξ̂λ) − ξ][E(ξ̂λ) − ξ]T

= (N +R)−1
[
D(c) +R(β0 − ξ)(β0 − ξ)TR

]
(N +R)−1

= σ2
0(N +R)−1

[
N +R(β0 − ξ)σ−2

0 (β0 − ξ)TR
]
(N +R)−1.

(10)

This matrix cannot coincide with that in (6) unless the rank-1 ma-
trix

(β0 − ξ)σ−2
0 (β0 − ξ)T ∈ {

R− ∣∣RR−R = R
}

(11)

belongs to the g-inverses of R := λP0 for which the matrix R needs to
have the rank 1 itself. Obviously, this would rather be the exception
from the rule.

Therefore, it makes sense to ask the question under which condition
the mean squared error matrix in (10) of the penalized least-squares
solution within the GM-model turns out to be better than the mean
squared error matrix in (6) of the inhomBLIP within the random effects
model, which is also known as “Bayesian estimate”; cf. Rao (1976).

Theorem 1. The penalized least-squares solution ξ̂λ with R := λP0 is
superior to the “Bayesian estimate” x̃ with P0 := (σ2

0/λ)Σ−1
0 whenever

the difference between their mean squared error matrices is, at least,
positive-(semi)definite:

MSE(x̃) −MSE(ξ̂λ) ≥L 0

where ≥L denotes Löwner’s partial ordering of matrices; see, e.g., Mar-
shall and Olkin (1979). This is the case if and only if the inequality

(β0 − ξ)TP0(β0 − ξ) ≤ σ2
0/λ

holds true.

Proof:

A direct comparison of (6) with (10) yields the following equivalent
statements

MSE(x̃) ≥L MSE(ξ̂) ⇔ R ≥L R(β0 − ξ)σ−2
0 (β0 − ξ)TR,

implying that

(β0 − ξ)TR(β0 − ξ) ≥ [
(β0 − ξ)TR(β0 − ξ)

]2 /
σ2

0 . (12)

If R(β0 − ξ) = 0, then the PLS-solution ξ̂ automatically becomes
superior to the “Bayesian estimate” x̃.
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If R(β0 − ξ) �= 0, then the inequality in (12) further implies

(β0 − ξ)TP0(β0 − ξ) ≤ σ2
0/λ

as in (1). This inequality, however, is also sufficient for (1) to hold, by
virtue of a result by Baksalary and Kala (1983).
This completes the proof.

Of course, the inequality in (1) is impractical as long as the quan-
tities ξ, σ2

0 and λ are unknown. In an empirical version of (1), these

quantities may be replaced by their estimates which would include ξ̂
from (3), as well as suitable estimates for σ2

0 and λ. We note that λ
represents Tykhonov’s “regularization parameter”.

4 A Quasi-optimal Choice for the Weight Ratio λ

When operating in the Random Effects Model from (1) and (2) that
may be rewritten as

yext :=

[
y

β0

]
=

[
A

Im

]
x+

[
e

e0

]
=: Aextx+ eext, (13)

[
e

e0

]
=: eext ∼

([
0

0

]
,

[
Σ 0

0 Σ0

])
(14)

where [
Σ 0

0 Σ0

]
= σ2

0

[
P−1 0

0 0

]
+ (σ2

0/λ)

[
0 0

0 P−1
0

]
,

we observe that λ could be estimated as the ratio of two variance
components, for instance on the basis of the reproBIQUUE principle
(reproducing Best Invariant Quadratic Uniformly Unbiased Estimate),
yielding

λ̂ = σ̂2
0/σ̂

2
00 for σ2

00 := σ2
0/λ. (15)

As was shown in all detail by Schaffrin (1983), the corresponding
nonlinear system of equations would read:[

tr(ŴQ ŴQ) |tr(ŴQ ŴQ0)

tr(ŴQ ŴQ0) |tr(ŴQ0 ŴQ0)

][
σ̂2

0

σ̂2
00

]
=

[
yT

extŴQŴyext

yT
extŴQ0Ŵyext

]
(16)

with
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Ŵ = W (σ̂2
0, σ̂

2
00) := Σ̂−1

ext − Σ̂−1
extAext(A

T
extΣ̂

−1
extAext)

−1AT
extΣ̂

−1
ext

and

Σ̂ext = σ̂2
0Q+ σ̂2

00Q0 := σ̂2
0

[
P−1 0

0 0

]
+ σ̂2

00

[
0 0

0 P−1
0

]
;

see also Rao and Kleffe (1988), or Searle et al. (1992). Specifically we
would find

σ2
0W =

[
P 0

0 λP0

]
−

[
P 0

0 λP0

][
A

Im

]
(N + λP0)

−1
[
AT , Im

] [P 0

0 λP0

]

=

[
P − PA(N + λP0)

−1ATP | − λPA(N + λP0)
−1P

−λP0(N + λP0)
−1ATP | λP0 − λ2P0(N + λP0)

−1P0

]

and, consequently,

σ2
0(WQ) =

[
In − PA(N + λP0)

−1AT | 0

−λP0(N + λP0)
−1AT | 0

]
as well as

σ2
0(WQ0) =

[
0 | −λPA(N + λP0)

−1

0 | λIm − λ2P0(N + λP0)
−1

]
which leads to the matrix elements in (16), namely

m11 := tr(WQWQ) = tr(
[
In − PA(N + λP0)

−1AT
]2

)
/
σ4

0 ,

m12 = m21 := tr(WQWQ0)

= λ2tr
[
P0(N + λP0)

−1N(N + λP0)
−1

] /
σ4

0 ,

m22 := tr(WQ0WQ0) = λ2tr(
[
Im − λP0(N + λP0)

−1
]2 /

σ4
0 .

Alternative expressions include

σ4
0m11 = n− tr

[
N(N + λP0)

−1
]

−λtr [P0(N + λP0)
−1N(N + λP0)

−1
]
,

σ4
0m22 = λ2tr

[
N(N + λP0)

−1N(N + λP0)
−1

]
which first imply the relationships

σ4
0(λm11 +m12) = λ

(
n− tr

[
N(N + λP0)

−1
])
,

σ4
0(λm12 +m22) = λ2tr

[
N(N + λP0)

−1
]
,
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and finally the “control formula”

λ2m11 + 2λm12 +m22 = n(λ2/σ4
0) = n/σ4

00.

For the PLS-solution, however, the model in (13) and (14) is not
applicable and needs to be replaced by the Gauss-Markov model from
(8) which, in turn, can be rewritten as

yext −Aextξ = emod :=
[
eT , δT

]T
(17)

with
e ∼ (0, σ2

0P
−1) and δ := β0 − ξ.

Nevertheless, in order to find estimates for σ2
0 and λ in this GM-

Model, the equation system from (16) may formally be adapted even
though, in a rigorous sense, the optimal properties (“reproBIQUUE”)
will be lost. Apparently, this approach would first result in the auxiliary
vector

σ2
0(Wyext) =

[
Py − PA(N + λP0)

−1(c+ λP0β0)

λP0β0 − λP0(N + λP0)
−1(c+ λP0β0

]

=

[
P (y −Aξ̂λ)

λP0(β0 − ξ̂λ)

]
=:

[
P ẽλ

λP0δ̂λ

]
(18)

and eventually in the nonlinear equations system[
m̂11 m̂12

m̂12 m̂22

][
σ̂2

0

σ̂2
0/λ̂

]
=

[
(ẽT

λP ẽλ)/σ̂4
0

λ̂
2
(δ̂

T

λP0δ̂λ)/σ̂4
0

]
(19)

after using (15). Separately, when applying (17) and (17), the two equa-
tions become:

ẽT
λP ẽλ = σ̂6

0(λ̂m̂11 + m̂12)
/
λ̂ = σ̂2

0

(
n− tr

[
N(N + λ̂P0)

−1
])

,

λ̂(δ̂
T

λP0δ̂λ) = σ̂6
0(λ̂m12 + m̂22)

/
λ̂

2
= σ̂2

0tr
[
N(N + λ̂P0)

−1
]
. (20)

Obviously, σ̂2
0 can now be eliminated, and we arrive at the nonlinear

equation

λ̂ =

(
ẽT
λP ẽλ

δ̂
T

λP0δ̂λ

)(
t̂

n− t̂

)
, t̂ = tr

[
(N + λ̂P0)

−1N
]
,
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that needs to be solved iteratively since t̂ = t(λ̂). Finally, the estimated
variance component is obtained through

σ̂2
0 = (ẽT

λP ẽλ)
/
(n− t̂) = (ẽT

λP ẽλ + λ̂δ̂
T

λP0δ̂λ) /n (21)

which cannot be expected to be unbiased since both ẽλ and δ̂λ are
themselves biased (as was ξ̂λ).

Theorem 2. For the penalized least-squares solution in (3) which is a
special case of “Tykhonov regularization”, a quasi-optimal weight ra-
tio, respectively a quasi-optimal “regularization parameter”, has been
defined through (4), along with a suitable variance component estimate
via (21).

On this basis an empirical version of the mean squared error matrix
in (10) can be computed, and an empirical decision can be made via
(1) whether the Penalized Least-Squares solution will be superior to the
“Bayesian estimate” in (2), i.e. inhomBLIP, whose empirical mean
squared error matrix would result from (6) in full analogy.

5 Conclusions

The distinction between the Penalized Least-Squares solution (within
a Gauss-Markov model) and the so-called “Bayesian estimate” (within
a Random Effects Model) has been carefully analyzed, particularly in
terms of the respective mean squared error matrices. An inequality has
been established to decide when one estimate is superior to the other.

In addition, a quasi-optimal estimate has been found for the weight
ratio between the “penalization” and “best fit” terms, incidentally lead-
ing to a novel approach to determine Tykhonov’s “regularization para-
meter”. It is still an open question, however, what exactly its statistical
characteristics are.
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1 Introduction

The central composite design (CCD) is a design widely used for esti-
mating second order response surfaces. It is perhaps the most popular
class of second order designs. Since introduced by Box and Wilson
(1951), the CCD has been studied and used by many researchers.

Let x1, x2, . . . , xk denote the explanatory variables being considered.
Much of the motivation of the CCD evolves from its use in sequential
experimentation. It involves the use of a two-level factorial or fraction
(resolution V) combined with the following 2k axial points:

x1 x2 . . . xk

−α 0 . . . 0

α 0 . . . 0

0 −α . . . 0

0 α . . . 0
...

...
. . .

...

0 0 . . . −α
0 0 . . . α

As a result, the design involves, say, F = 2k factorial points (or F =
2k−p fractional factorial points), 2k axial points, and n0 center points.
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The sequential nature of the design is quite obvious. The factorial points
represent a variance optimal design for a first-order model or a first-
order + two-factor interaction type model. The center points clearly
provide information about the existence of curvature in the system. If
curvature is found in the system, then addition of axial points allow
for efficient estimation of the pure quadratic terms.

Among many statisticians who have studied the CCD in response
surface methodology, Myers and Montgomery (2002) discussed the
efficiency of experimental designs, and compared the CCD with other
designs under D−, A− and E− optimality criterion. Box and Draper
(1963) suggested several criteria which can be used in the selection of
design. Myers (1976) suggested optimal CCDs under several design
criteria and Hader and Park (1978) discussed about slope-rotatable
CCDs.

This paper deals with optimal CCDs under several design criteria
for fitting second order response surface regression models. In Section 2,
results on optimal CCDs under the criteria of orthogonality, rotatabil-
ity and slope rotatability are reviewed. In Section 3, we discuss optimal
CCDs under alphabetic design optimality criteria. The appropriate val-
ues of α which minimize the squared bias when the true model is of
third order are suggested in Section 4. Finally, in Section 5, considering
all possible design criteria, suitable values of α for the practical design
purpose are recommended.

2 Orthogonality, Rotatability and Slope Rotatability

Let us consider the model represented by

yu = β0 +
k∑

i=1

βixiu +
k∑

i=1

βiix
2
iu +

k∑
i<j

βijxiuxju + εu (u = 1, 2, . . . , N)

(1)
where xiu is the value of the variable xi at the uth experimental point,
and εu’s are uncorrelated random errors with mean zero and variance
σ2. This is the second order response surface model.

2.1 Orthogonality

In this subsection, we consider the model with the pure quadratic terms
corrected for their means, that is,
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yu = β′
0 +

k∑
i=1

βixiu +
k∑

i=1

βii(x
2
iu − x2

i ) +
k∑

i<j

βijxiuxju + εu (2)

where β′
0 =

∑k
i=1 βiix

2
i and x2

i =
∑N

u=1 x
2
iu/N . In regard to orthogo-

nality, this model is often used for the sake of simplicity in calculation.
Let b′0, bi, bii, bij denote the least squares estimators of β′

0, βi, βii, βij ,
respectively. In the CCD, all the covariances between the estimated
regression coefficients except Cov(bii, bjj) are zero. But if the (X ′X)−1

matrix is a diagonal matrix, then Cov(bii, bjj) also becomes zero. This
property is called orthogonality. Here the detailed contents of the X
matrix are as follows:

X =

⎡⎢⎢⎢⎢⎣
1 x11 . . . xk1 x2

11 − x2
1 . . . x2

k1 − x2
k x11x21 . . . xk−1,1xk1

1 x12 . . . xk2 x2
12 − x2

1 . . . x2
k2 − x2

k x12x22 . . . xk−1,2xk2

...
...

. . .
...

...
. . .

...
...

. . .
...

1 x1N . . . xkN x2
1N − x2

1 . . . x
2
kN − x2

k x1Nx2N . . . xk−1,NxkN

⎤⎥⎥⎥⎥⎦ .
It is well-known (see Myers (1976, p. 134) and Khuri and Cornell

(1996, p. 122)) that the condition for a CCD to be an orthogonal design
is that

α =

{√
F (F + 2k + n0) − F

2

}1/2

.

The orthogonal CCD will provide an ease in computations and
uncorrelated estimates of the response model coefficients. Table 1 shows
the values of α for various k and n0 which make the CCD orthogonal.
Note that for k = 5 and 6, we also consider the case in which a fractional
factorial is used instead of a complete factorial.

2.2 Rotatability

It is important for a second order design to possess a reasonably sta-
ble distribution of NV ar[ŷ(x)]/σ2 throughout the experimental de-
sign region. Here ŷ(x) is the estimated response at the point x =
(x1, x2, . . . , xk)

′. It must be clearly understood that the experimenter
does not know at the outset where in the design space he or she might
wish to predict, or where in the design space the optimum may lie.
Thus, a reasonably stable NV ar[ŷ(x)]/σ2 provides values which are
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Table 1. Values of α for orthogonal CCDs

k F α

n0 = 1 n0 = 2 n0 = 3 n0 = 4 n0 = 5 n0 = 6

2 4 1.000 1.078 1.147 1.210 1.267 1.320

3 8 1.215 1.287 1.353 1.414 1.471 1.525

4 16 1.414 1.483 1.547 1.607 1.664 1.719

5 32 1.596 1.662 1.724 1.784 1.841 1.896

5(1/2 rep) 16 1.547 1.607 1.664 1.719 1.771 1.820

6 64 1.761 1.824 1.885 1.943 2.000 2.055

6(1/2 rep) 32 1.724 1.784 1.841 1.896 1.949 2.000

roughly the same throughout the region of interest. To this purpose,
Box and Hunter (1957) developed the notion of design rotatability.

A rotatable design is one for which NV ar[ŷ(x)]/σ2 has the same
value at any two locations that have the same distance from the design
center. In other words, NV ar[ŷ(x)]/σ2 is constant on spheres.

It is well-known that the condition for a CCD to be rotatable is that

α = F 1/4.

This means that the value of α for a rotatable CCD does not depend
on the number of center points.

Table 2. Values of α for rotatable CCDs

k F T N α

2 4 5 9 1.414

3 8 7 15 1.682

4 16 9 25 2.000

5 32 11 43 2.378

5 (1/2 rep) 16 11 27 2.000

6 64 13 77 2.828

6 (1/2 rep) 32 13 45 2.378

Table 2 gives the values of α for rotatable CCDs for various k. Note
that for k = 5 and 6, a CCD is also suggested in which a fractional
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factorial is used instead of a complete factorial. Also tabulated are F
and T , where T = 2k + 1.

The designs considered in the table 2 contain a single center point.
This by no means implies that one would always use only one center
point.

2.3 Slope Rotatability

Suppose that estimation of the first derivative of η is of interest (η is
the expected value of the response variable y). For the second order
model,

∂ŷ(x)

∂xi
= bi + 2biixi +

∑
j �=i

bijxj .

The variance of this derivative is a function of the point x at which
the derivative is estimated and also a function of the design.

Hader and Park (1978) proposed an analog of the Box-Hunter ro-
tatability criterion, which requires that the variance of ∂ŷ(x)/∂xi be
constant on circles (k = 2), spheres (k = 3), or hyperspheres (k ≥ 4)
centered at the design origin.

Estimates of the derivative over axial directions would then be
equally reliable for all points x equidistant from the design origin. They
referred to this property as slope rotatability, and showed that the con-
dition for a CCD to be a slope-rotatable design is as follows:

[2(F + n0)]α
8 − [4kF ]α6 − F [N(4 − k) + kF − 8(k − 1)]α4

+[8(k − 1)F 2]α2 − 2F 2(k − 1)(N − F ) = 0.

Table 3 gives slope-rotatable values of α for 2 ≤ k ≤ 6. For k = 5
and 6, CCDs involving fractional factorials are also considered.

3 The Alphabetic Design Optimality

3.1 D-Optimality

The best known and most often used criterion is D-optimality. D-
optimality is based on the notion that the experimental design should
be chosen so as to achieve certain properties in the matrix X ′X.
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Table 3. Values of α for slope-rotatable CCDs

k = 2 k = 3

N n0 α N n0 α

9 1 2.0903 15 1 2.4324

10 2 1.9836 16 2 2.3387

11 3 1.9106 17 3 2.2675

12 4 1.8586 18 4 2.2133

13 5 1.8203 19 5 2.1716

14 6 1.7912 20 6 2.1390

15 7 1.7684 21 7 2.1132

16 8 1.7501 22 8 2.0924

17 9 1.7352 23 9 2.0753

k = 4 k = 5

N n0 α N n0 α

25 1 2.7988 43 1 3.2034

26 2 2.7303 44 2 3.1607

27 3 2.6732 45 3 3.1228

28 4 2.6259 46 4 3.0892

29 5 2.5869 47 5 3.0597

30 6 2.5547 48 6 3.0337

31 7 2.5280 49 7 3.0108

32 8 2.5057 50 8 2.9907

33 9 2.4869 51 9 2.9729

k = 5 (1/2 rep) k = 6

N n0 α N n0 α

27 1 2.8722 77 1 3.6732

28 2 2.7750 78 2 3.6500

29 3 2.6954 79 3 3.6284

30 4 2.6321 80 4 3.6085

31 5 2.5828 81 5 3.5901

32 6 2.5444 82 6 3.5732

33 7 2.5143 83 7 3.5575

34 8 2.4903 84 8 3.5431

35 9 2.4709 85 9 3.5298
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k = 6 (1/2 rep)

N n0 α

45 1 3.2650

46 2 3.2066

47 3 3.1551

48 4 3.1103

49 5 3.0719

50 6 3.0391

51 7 3.0112

52 8 2.9874

53 9 2.9671

Here X is the following matrix:

X =

⎡⎢⎢⎢⎢⎣
1 x11 . . . xk1 x2

11 . . . x2
k1 x11x21 . . . xk−1,1xk1

1 x12 . . . xk2 x2
12 . . . x2

k2 x12x22 . . . xk−1,2xk2

...
...

. . .
...

...
. . .

...
...

. . .
...

1 x1N . . . xkN x2
1N . . . x2

kN x1Nx2N . . . xk−1,NxkN

⎤⎥⎥⎥⎥⎦
Also, the inverse of X ′X contains variances and covariances of the

regression coefficients, scaled by 1/σ2. As a result, control of the mo-
ment matrix by design implies control of the variances and covariances.

Suppose the maximum, arithmetic mean, and geometric mean of
the eigenvalues λ1, λ2, . . . , λp of (X ′X)−1 are indicated by λmax, λ, and

λ̃. It turns out that an important norm on the moment matrix is the
determinant; that is,

D = |X ′X| =

p∏
i=1

λ−1
i = λ̃

−p

where p is the number of parameters in the model. Under the assump-
tion of independent normal errors with constant variance, the deter-
minant of X ′X is inversely proportional to the square of the volume
of the confidence region for the regression coefficients. The volume of
the confidence region is relevant because it reflects how well the set of
coefficients are estimated. A D-optimal design is one in which |X ′X|
is maximized; that is,
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Maxζ |X ′X(ζ)|
where Maxζ implies that the maximum is taken over all design ζ ′s.

3.2 A-Optimality

The concept of A-optimality deals with the individual of the regression
coefficients. Unlike D-optimality, it does not make use of covariances
among coefficients; that is,

A =

p∑
i=1

λi = tr(X ′X)−1

= σ−2

⎡⎣var(b0) +
k∑

i=1

var(bi) +
k∑

i=1

var(bii) +
k∑

i<j

var(bij)

⎤⎦ .
The A-optimal design is defined as

Minζtr(X
′X(ζ))−1

where tr represents trace, that is, the sum of the variances of the coef-
ficients (weighted by N).

3.3 E-Optimality

The criterion E, evaluation of the smallest eigenvalue, also gains in
understanding by a passage to variances. It is the same as minimizing
the largest eigenvalue of the dispersion matrix; that is,

E = Maxiλi

where i = 1, 2, . . . , p.
In terms of variance, it is a minimax approach. Thus the E-optimal

design is defined as

MinζMaxi{λi}.
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1 x1 x2 x2
1 x2

1 x1x2

1 -1 -1 1 1 1

1 -1 1 1 1 -1

1 1 -1 1 1 -1

1 1 1 1 1 1

1 −α 0 α2 0 0

1 α 0 α2 0 0

1 0 −α 0 α2 0

1 0 α 0 α2 0

1 0 0 0 0 0

3.4 Application to the CCD

For fitting the two factor second order model, we can consider the
following CCD. It consists of (i) a 22 factorial, at levels ±1, (ii) a one-
factor-at-a-time array and (iii)n0 center points. That is, the matrix X
is given by

Then the matrix X ′X is given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N 0 0 a a 0

0 a 0 0 0 0

0 0 a 0 0 0

a 0 0 b F 0

a 0 0 F b 0

0 0 0 0 0 F

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where N is the number of experimental points, F is the number of
factorial points, a = F + 2α2 and b = F + 2α4.

For the two factor CCD, for example, the value of D is

D = n0Fa
2[N(b2 − F 2) − 2a2(b− F )]

where n0 is the number of center points.
Figure 1 shows a plot of D versus α for the indicated values of n0

for a CCD in k = 2 factors.
In CCDs, the determinant of moment matrix has a tendency of

increase as α increases. That is, a larger value of α is recommendable for
D-optimal sense. But in a practical experiment, the region of interest
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Fig. 1. Plots of D versus α for k = 2 factors

is usually restricted and the conditions of experiment cannot be set for
a large α. So it is necessary for the experimenter to choose α as large
as possible within the controllable region of interest.

On the other hand, for the two factor CCD, the value of A is

A =
∑

λi =
2

a
+

1

F
+

1

b− F
+

N + b+ F

N(b+ F ) − 2a2
.

Figure 2 shows plots of A versus α for the indicated values of n0 for
CCDs in k = 2 factors. Table 4 shows the results of optimal α values
for two factor CCDs.

4 Optimal CCDs When the True Model is of Third

Order

Suppose that we fit the second order response surface model, but the
true model is of third order. For this case, what value of α should be
used in the CCD?

We can generally formulate the problem by supposing that the ex-
perimenter fits a model ŷ(x1, x2, . . . , xk) of order d1 in a region R of
the explanatory variables. However, the true model is a polynomial
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Fig. 2. Plots of A versus α for k = 2 factors

Table 4. Comparison of optimal α values for two factor CCDs

number orthogonality rotatability slope D,A,E

of center rotatability

points

n0 = 1 1.000 1.414 2.0903 ∞
n0 = 2 1.078 1.414 1.9836 ∞
n0 = 3 1.147 1.414 1.9106 ∞
n0 = 4 1.210 1.414 1.8586 ∞
n0 = 5 1.267 1.414 1.8203 ∞

g(x1, x2, . . . , xk) of order d2, where d2 > d1. Then, a reasonable design
criterion is the minimization of

M =
N

σ2

∫
R
E[ŷ(x) − g(x)]2dx

/∫
R
dx. (3)

The multiple integral in (3) actually represents the average of the ex-
pected squared deviations of the true response from the estimated re-
sponse over the region R.
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Writing the integral
∫
R dx = 1/K,

M =
NK

σ2

∫
R
E[ŷ(x) − g(x)]2dx

=
NK

σ2

∫
R
E[ŷ − E(ŷ) + E(ŷ) − g(x)]2dx

=
NK

σ2

[∫
R
E[ŷ − E(ŷ)]2dx+

∫
R
[E(ŷ) − g(x)]2dx

]
. (4)

The first quantity in (4) is the variance of ŷ, integrated or, rather
averaged over the region R, whereas the second quantity is the square
of the bias, similarly averaged. Thus M is naturally divided as follows:

M = V +B

where V is the average variance of ŷ, and B is the average squared bias
of ŷ.

In this section, as a reasonable choice of design we will consider the
design which minimizes B. Such a design is called the all-bias design.

It is assumed here that the experimenter desires to fit a quadratic
response surface in a cuboidal region R but that the true function is
best described by a cubic polynomial. The actual measured variables
have been transformed to x1, x2, . . . , xk which are scaled so that the
region of interest R is a unit cube. Also the assumption on the design
is made that its center of gravity is at the origin (0, 0, . . . , 0) of the
cube. The equation of the fitted model is

ŷ = x′1β̂1,

where

x′1 = [1, x1, . . . , xk;x
2
1, . . . , x

2
k;x1x2, . . . , xk−1xk]

β̂
′
1 = [b0, b1, . . . , bk; b11, . . . , bkk; b12, . . . , bk−1,k].

The true relationship is written as

E(y) = x′1β1 + x′2β2

where

x′2 = [x3
1, x1x

2
2, . . . , x1x

2
k;x

3
2, x2x

2
1, . . . , x2x

2
k; . . . ;x

3
k, xkx

2
1, . . . , xkx

2
k−1;

x1x2x3, x1x2x4, . . . , xk−2xk−1xk]
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contains the cubic contribution to the actual model. The vector β′
2

contains the coefficients corresponding to terms in x′2; terms such as
β111, β122, . . . are included. The matrix X1 is given by

X1 =

⎡⎢⎢⎢⎢⎣
1 x11 . . . xk1 x2

11 . . . x2
k1 x11x21 . . . xk−1,1xk,1

1 x12 . . . xk2 x2
12 . . . x2

k2 x12x22 . . . xk−1,2xk,2

...
...

. . .
...

...
. . .

...
...

. . .
...

1 x1N . . . xkN x2
1N . . . x2

kN x1Nx2N . . . xk−1,Nxk,N

⎤⎥⎥⎥⎥⎦ .
In this case the matrix X2 is

X2 =

⎡⎢⎢⎢⎢⎣
x3

11 x11x
2
21 . . . x11x

2
k1 x3

21 x21x
2
11 . . . x21x

2
k1 . . .

x3
12 x12x

2
22 . . . x12x

2
k2 x3

22 x22x
2
12 . . . x22x

2
k2 . . .

...
...

. . .
...

...
...

. . .
...

. . .

x3
1N x1Nx

2
2N . . . x1Nx

2
kN x3

2N x2Nx
2
1N . . . x2Nx

2
kN . . .

x3
k1 xk1x

2
11 . . . xk1x

2
k−1,1 x11x21x31 . . . xk−2,1xk−1,1xk1

x3
k2 xk2x

2
12 . . . xk2x

2
k−1,2 x12x22x32 . . . xk−2,2xk−1,2xk2

...
...

. . .
...

...
. . .

...

x3
kN xkNx

2
1N . . . xkNx

2
k−1,N x1Nx2Nx3N . . . xk−2,Nxk−1,NxkN

⎤⎥⎥⎥⎥⎦ .
Let us now write

M11 = N−1X ′
1X1, M12 = N−1X ′

1X2,

µ11 = K

∫
R
x1x

′
1dx, µ12 = K

∫
R
x1x

′
2dx,

where K−1 =
∫
R dx. One can write the bias term as

B = α′
2[(µ22 − µ′12µ

−1
11 µ12)

+(M−1
11 M12 − µ−1

11 µ12)
′µ11(M

−1
11 M12 − µ−1

11 µ12)]α2,

where the vector α2 is merely β2

√
N/σ (see Myers (1976, p. 213)).

The first term in the square brackets in (5) contains only the re-
gion moment matrices and thus is independent of the design. The bias
term can be no smaller than the positive semidefinite quadratic form
α′

2(µ22 − µ′12µ
−1
11 µ12)α2. So the experimenter has to use designs which

minimize the positive semidefinite quadratic form
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α′
2(M

−1
11 M12 − µ−1

11 µ12)
′µ11(M

−1
11 M12 − µ−1

11 µ12)α2.

Now we will find out the value of α which makes the optimal design
in the CCDs. In practice, it is difficult to know α2. However, for an
illustration purpose, let’s assume that α2 is a vector of ones. That is,
α′

2 is (1,1,1,1) for the two factor CCDs when d1 = 2 and d2 = 3.
And, if we assume that the region of interest is −1 ≤ xi ≤ 1 where
i = 1, 2, . . . , k, then we can obtain region moment matrices (µ11 and
µ12).

For example, let’s consider the second order CCD which minimizes
the squared bias from the third order terms for k = 2. The design
consists of four factorial points, six axial points at a distance α from
the origin, and two center points. Then we obtain the following design
moment matrices and region moment matrices.

M11 =
1

10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 0 0 4 + 2α2 4 + 2α2 0

0 4 + 2α2 0 0 0 0

0 0 4 + 2α2 0 0 0

4 + 2α2 0 0 4 + 2α4 4 0

4 + 2α2 0 0 4 4 + 2α4 0

0 0 0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M12 =
1

10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
4+2α4

4+2α2 0 2
4+2α2 0

0 2
4+2α2 0 4+2α4

4+2α2

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

µ11 =
1

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 4
3

4
3 0

0 4
3 0 0 0 0

0 0 4
3 0 0 0

4
3 0 0 4

5
4
9 0

4
3 0 0 4

9
4
5 0

0 0 0 0 0 4
9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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µ12 =
1

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
12
5 0 4

3 0

0 4
3 0 12

5

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
So α′

2(M
−1
11 M12 − µ−1

11 µ12)
′µ11(M

−1
11 M12 − µ−1

11 µ12)α2 is obtained as

f(α) =
2(32 − 14α2 + 15α4)2

675(2 + α2)2
.

The value of α which minimizes f(α) is found to be

[2(
√

2 − 1)]1/2 = 0.91018.

A very interesting fact is that f(α) has nothing to do with the
number of center points. Table 5 gives the appropriate values of α for
second order CCD which minimize the squared bias from the third
order terms for k factors.

Table 5. Values of α for second order CCDs which minimize the squared bias
from the third order

k f(α) α

2 2(32−14α2+15α4)2

675(2+α2)2 0.91018

3 (104−19α2+15α4)2

225(4+α2)2 1.13644

4 4(96−8α2+5α4)2

75(8+α2)2 1.34088

5 (736−29α2+15α4)2

135(16+α2)2 1.52653

6 2(1792−34α2+15α4)2

225(32+α2)2 1.69446

5 Concluding Remarks

In this paper, we found out values of α which optimize CCDs for fitting
second order response surface models under several criteria. Table 6
gives the value of α in Tables 1, 2 and 5.
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Table 6. Values of α which optimize CCDs under several criteria

k Minimum bias
Orthogonality

Rotatability
n0 = 1 . . . n0 = 6

2 0.910 1.000 . . . 1.320 1.414

3 1.136 1.216 . . . 1.525 1.682

4 1.341 1.414 . . . 1.719 2.000

5 1.527 1.596 . . . 1.896 2.378

6 1.694 1.761 . . . 2.055 2.828

k
Slope rotatability

Alphabetic optimality
n0 = 1 n0 = 2 n0 = 3 n0 = 4 n0 = 5

2 2.090 1.984 1.911 1.859 1.820 ∞
3 2.432 2.339 2.268 2.213 2.172 ∞
4 2.799 2.730 2.673 2.626 2.587 ∞
5 3.203 3.161 3.123 3.089 3.060 ∞
6 3.673 3.650 3.628 3.609 3.590 ∞

From Table 6, we can find that the values of α tend to increase in
the following order:

Minimum bias < Orthogonality < Rotatability < Slope rotatability
< Alphabetic optimality.
Note that the optimal value of α under the minimum bias and ro-

tatability criteria does not depend on the number of center points. Also,
an interesting fact is that the optimal value of α under the minimum
bias criterion is very similar to that under the orthogonality criterion
with one center point.

In conclusion, we will consider reasonable choice of CCD for fitting
the second order model according to the following cases:

1. When the true model is of second order (d2 = 2).
2. When the true model is of third order (d2 = 3).

Table 7 shows values of α recommended for the CCD considering
the order d2.
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Table 7. Values of α recommended for CCD

k
d2 = 2 d2 = 3

recommended α appropriate α recommended α appropriate α

2 1.320∼1.414 1.4 0.910∼1.000 1.0

3 1.525∼1.682 1.6 1.136∼1.216 1.2

4 1.719∼2.000 2.0 1.341∼1.414 1.4

5 1.896∼2.378 2.3 1.527∼1.596 1.6

6 2.055∼2.828 2.8 1.694∼1.761 1.7
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1 Introduction

For many data sets, especially for non mandatory surveys, missing data
are a common problem. Deleting units that are not completely observed
and using only the remaining units is a popular, easy to implement ap-
proach in this case. This can possibly introduce severe bias if the strong
assumption of a missing pattern that is completely at random (MCAR)
is not fulfilled (see for example Rubin (1987)). Imputing the missing
values can overcome this problem. However, ad hoc methods like, e.g.,
mean imputation can destroy the correlation between the variables.
Furthermore, imputing missing values only once (single imputation)
generally doesn’t account for the fact that the imputed values are only
estimates for the true values. After the imputation process, they are
treated like truly observed values leading to an underestimation of the
variance in the data and by this to p values that are too significant.

Multiple imputation as proposed by Rubin (1978) overcomes these
problems. With multiple imputation, the missing values in a data set
are replaced by m > 1 simulated versions, generated according to a
probability distribution for the missing values given the observed data.
More precisely, let Yobs be the observed and Ymis the missing part of
a data set Y , with Y = (Ymis, Yobs), then missing values are drawn
from the Bayesian posterior predictive distribution of (Ymis|Yobs), or
an approximation thereof.

Over the years, two different methods emerged to generate draws
from the above distribution: joint modeling and fully conditional spec-
ification (FCS). The first assumes that the data follow a specific distri-
bution, e.g. a multivariate normal distribution. Under this assumption
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a parametric multivariate density P (Y |θ) can be specified with θ repre-
senting parameters from the assumed underlying distribution. Within
the Bayesian framework, this distribution can be used to generate draws
from (Ymis|Yobs). Methods to create multivariate imputations using this
approach have been described in detail by Schafer (1997), e.g., for the
multivariate normal, the log-linear, and the general location model.

FCS on the other hand does not depend on an explicit assumption
for the joint distribution of the data set. Instead, conditional distri-
butions P (Yj |Y−j , θj) are specified for each variable separately. Thus
imputations are based on univariate distributions allowing for different
models for each variable. Missing values in Yj can be imputed for ex-
ample by a linear or a logistic regression of Yj on Y−j , depending on
the character of Yj , where Y−j denotes all columns of Y excluding Yj .
The process of iteratively drawing from the conditional distributions
can be viewed as a Gibbs sampler that will converge to draws from the
theoretical joint distribution of the data.

In general, imputing missing values by joint modeling is faster and
the imputation algorithms are simpler to implement. However, empir-
ical data will seldom follow a standard multivariate distribution, espe-
cially if they consist of a mix of numerical and categorical variables.
Furthermore, FCS provides a flexible tool to account for bounds, inter-
actions, skip patterns or constraints between different variables.

Nevertheless, there is one drawback for FCS that is usually ignored:
The iterative draws from the different conditional distributions will only
converge to draws from the joint distribution, if this joint distribution
really exists. Rubin coined the acronym PIGS (potentially incompati-
ble Gibbs sampler) for FCS, since in practice it is often impossible to
proof the existence of a joint distribution for the specified conditional
distributions and it is widely unknown what happens, if the joint distri-
bution doesn’t exist. Usually convergence is assumed after a deliberate
number of iterations, where the number selected depends on the com-
plexity of the imputation model and even more problematic on the time
one can afford to wait for imputation results. Measures for convergence
have been proposed (Arnold, Castillo and Sarabia (1999)), but can be
misleading since the monitored estimates can stay stable for hundreds
of iterations before drifting off to infinity. For that reason, convergence
is seldom monitored and convergence simply is assumed.

If the fraction of missing values in the data set is low, this seems a
reasonable strategy. The Gibbs sampler will converge most of the times
and if not, the introduced bias will not be high. But in the last years a
new application of multiple imputation became more and more popu-
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lar: Multiple imputation for statistical disclosure control. Here the orig-
inally observed values are replaced by multiple draws from (Ysyn|Yobs),
where Ysyn denotes synthetic variables that can be released to the pub-
lic. This means that all values have to be replaced by imputed values.
In this case incompatible imputation models possibly could have dev-
astating consequences on the imputation results.

There have been some investigations on the impact of incompatible
conditional distributions on the validity of the imputation results, but
they are very limited in scope. This paper further investigates an ex-
ample of incompatibility discussed by Van Buren et al. (2006). Their
starting point is a bivariate normal distribution Y = (Y1, Y2), where
missing values are generated to resemble a design that is missing at
random (MAR). An incompatible imputation model is set up by draw-
ing new values for Y1 from a regression on Y2, but new values for Y2

from a regression of Y2 on Y 2
1 . Van Buren et al. (2006) illustrate that

imputations under this incompatible model can still yield valid results.
However, this is only true, if all imputed values are positive. We demon-
strate that even a small fraction of imputed negative values in Y can
lead to biased estimates from the imputed data set. This is an im-
portant result since in general the true underlying joint distribution is
only approximated and although most variables of interest will have
only positive observed values by definition (e.g. the number of employ-
ees or the number of cigarettes smoked per day), the imputation model
can generate some negative values. The standard procedure after im-
putation is to edit the data by setting negative values to zero. This
seems justified if the fraction of negative values is small. Editing the
data after imputation will not change descriptive statistics in a major
way. However, doing so ignores the fact that the negative values are
used as predictors for other variables during the imputation process.
This could lead to bias if, e.g., a quadratic function of the variable is
used.

The remainder of the paper is organized as follows. Section 2 re-
capitulates multiple imputation as a means of treating missing data
problems. Section 3 introduces the two different methods to generate
draws from the posterior distribution of (Ymis|Yobs) and describes the
conditions necessary for compatible conditional distributions. Section 4
extends the simulation study from Van Buren et al. (2006) using differ-
ent means for the bivariate normal distribution. The paper concludes
with some final remarks.
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2 Multiple Imputation for Missing Data

Multiple imputation, introduced by Rubin (1978) and discussed in de-
tail in Rubin (1987), Rubin (2004), is an approach that retains the
advantages of imputation while allowing the uncertainty due to impu-
tation to be directly assessed. With multiple imputation, the missing
values in a data set are replaced by m > 1 simulated versions, gener-
ated according to a probability distribution for the true values given
the observed data. More precisely, let Yobs be the observed and Ymis

the missing part of a data set Y , with Y = (Ymis, Yobs), then missing
values are drawn from the Bayesian posterior predictive distribution of
(Ymis|Yobs), or an approximation thereof. Typically, m is small, such as
m = 5. Each of the imputed (and thus completed) data sets is first an-
alyzed by standard methods designed for complete data; the results of
the m analyses are then combined in a completely generic way to pro-
duce estimates, confidence intervals, and test statistics that reflect the
missing-data uncertainty properly. In this paper, we discuss analysis
with scalar parameters only, for multidimensional quantities see Little
and Rubin (2002), Section 10.2. To understand the procedure of ana-
lyzing multiply imputed data sets, think of an analyst interested in an
unknown scalar parameter θ, where θ could be, e.g. the mean of a vari-
able, the correlation coefficient between two variables or a regression
coefficient in a linear regression.

Inferences for this parameter for data sets with no missing values
usually are based on a point estimate θ̂ , a variance estimate V̂ , and a
normal or Student’s t reference distribution. For analysis of the imputed
data sets, let θ̂i and V̂i for i = 1, 2, ...m be the point and variance
estimates achieved from each of the m completed data sets. To get a
final estimate over all imputations, these estimates have to be combined
using the combining rules first described by Rubin (1978).

For the point estimate, the final estimate simply is the average of
the m point estimates θ̂MI = 1

m

∑m
i=1 θ̂i with i = 1, 2, ...m. Its vari-

ance is estimated by T = V + (1 + m−1)B, where V = 1
m

∑m
i=1 V̂i

is the “within-imputation“ variance, B = 1
m−1

∑m
i=1(θ̂i − θ̂MI)

2 is

the “between-imputation“ variance, and the factor (1 + m−1) reflects

the fact that only a finite number of completed-data estimates θ̂i,
i = 1, 2, ...m are averaged together to obtain the final point estimate.
The quantity γ̂ = (1 +m−1)B/T estimates the fraction of information
about θ that is missing due to nonresponse.

Inferences from multiply imputed data are based on θ̂MI , T , and a
Student’s t reference distribution. Thus, for example, interval estimates
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for θ have the form θ̂MI ± t(1 − α/2)
√
T , where t(1 − α/2) is the

(1 − α/2) quantile of the t distribution. Rubin and Schenker (1986)
provide the approximate value νRS = (m − 1)γ̂−2 for the degrees of
freedom of the t distribution, under the assumption that with complete
data, a normal reference distribution would have been appropriate.
Barnard and Rubin (1999) relax the assumption of Rubin and Schenker
(1986) to allow for a t reference distribution with complete data, and
suggest the value νBR = (ν−1

RS + ν̂−1
obs)

−1 for the degrees of freedom in
the multiple-imputation analysis, where ˆνobs = (1 − γ̂)(νcom)(νcom +
1)/(νcom + 3) and νcom denotes the complete-data degrees of freedom.

3 Two Approaches to Generate Imputations for the

Missing Values

As discussed in the introduction, there are two main approaches to
generate draws from P (Ymis|Yobs): Joint modeling and fully conditional
specification (FCS). In the following Section both methods should be
described in more detail.

3.1 Joint Modeling

In general, it will not be possible to specify P (Ymis|Yobs) directly. Note
however, that we can write

P (Ymis|Yobs) =

∫
P (Ymis, ψ|Yobs)dψ

=

∫
P (Ymis|Yobs, ψ)P (ψ|Yobs)dψ. (1)

Given this equation, imputations can be generated in two steps:

1. Generate random draws for the parameter ψ from its observed-data
posterior distribution P (ψ|Yobs) given the observed values.

2. Generate random draws for Ymis from its conditional predictive
distribution P (Ymis|Yobs, ψ) given the actual parameter ψ from step
1.

With joint modeling the second step is straight forward. The distribu-
tion of (Ymis|Yobs, ψ) can be obtained from the underlying model. For
example a multivariate normal density can be assumed for the complete
data. But the first step usually requires Markov Chain Monte Carlo
techniques, since the observed-data posterior distribution for (ψ|Yobs)
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seldom follows standard distributions, especially if the missing pat-
tern is not monotone. Therefore, often simple random draws from the
complete-data posterior f(ψ|Yobs, Ymis) are performed. This means that
even for joint modeling convergence of the Markov Chain has to be
monitored and it is not guaranteed that it will ever converge. Though
the probability of non-convergence might be much lower in this context
than with FCS, it is still possible and Schafer (1997) provides examples
where the necessary stationary distribution can never be obtained.

3.2 Fully Conditional Specification (FCS)

With FCS the problem of drawing from a k-variate distribution is re-
placed by drawing k times from much easier to derive univariate dis-
tributions. Every variable in the data set is treated separately using
a regression model suitable for that specific variable. Thus, continu-
ous variables can be imputed using a normal model, binary variables
can be imputed with a logit model and so on. Here, we can specify
P (ψ|Yobs) directly and no iterations are necessary, because we don’t
have to draw from possibly awkward multivariate distributions. For
example, if we want to impute a continuous variable Y , we can as-
sume Y |X ∼ N(µ, σ2), where X denotes all variables that are used
as explanatory variables for the imputation. The two step imputation
approach described above can now be applied as follows:

Let n be the number of observations in the observed part of Y . Let
k be the number of regressors to be included in the regression. Let
σ̂2 and β̂ be the variance and the beta-coefficient estimates obtained
from regressions using only the observed data. Finally, let Xobs be the
matrix of regressors for the observed part of Y and Xmis be the matrix
of regressors for the fraction of the data where Y is missing. Imputed
values for Ymis can now be generated using the following algorithm:

Step 1: Draw new values for ψ = (σ2, β) from P (ψ|Yobs), i.e.,

• draw σ2|X ∼ (Yobs −Xobsβ̂)′(Yobs −Xobsβ̂)χ−2
n−k,

• draw β|σ2, X ∼ N(β̂, (X ′
obsXobs)

−1σ2).

Step 2: Draw new values for Ymis from P (Ymis|Yobs, ψ), i.e.,

• draw Ymis|β, σ2, X ∼ N(Xmisβ, σ
2).

Note that we are drawing new values for the parameters directly
from the observed-data posterior distributions. This means, we don’t
need Markov Chain Monte Carlo techniques to obtain new values from
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the complete-data posterior distribution of the parameters. However,
there are more variables with missing data. Thus, we generate new
values for Ymis by drawing from P (Ymis|β, σ2, X) and the matrix of
regressors X might contain imputed values from an earlier imputation
step. These values have to be updated now, based on the new infor-
mation in our recently imputed variable Y . Hence, we have to sample
iteratively from the fully conditional distribution for every variable in
the data set until the draws from the different conditional distributions
converge to draws from the joint distribution.

In a more detailed notation, for multivariate Y , let Yj |Y−j be the
distribution of Yj conditioned on all rows of Y except Yj and ψj be
the parameter specifying the distribution of Yj |Y−j . If Y consists of k
rows, and each Yj is univariate, then the tth iteration of the method
consists of the following successive draws:

ψ
(t)
1 ∼ P (ψ̂1|Y obs

1 , Y
(t−1)
2 , ..., Y

(t−1)
k ),

Y
(t)
1 ∼ P (Y mis

1 |Y (t−1)
2 , ..., Y

(t−1)
k , ψ

(t)
1 ),

...
ψ

(t)
k ∼ P (ψ̂k|Y obs

k , Y
(t)
1 , Y

(t)
2 , ..., Y

(t)
k−1),

Y
(t)
k ∼ P (Y mis

k |Y (t)
1 , ..., Y

(t)
k−1, ψ

(t)
k )

The sampler will converge to the desired joint distribution of
(Ymis |Yobs), but only if this joint distribution really exists. In practice
it is often impossible to verify this (if we would know the exact joint
distribution we would take samples from it directly), so its existence is
implicitly assumed. This is problematic, since it will always be possible
to draw from the conditional distributions and we will not get any
hint that our Gibbs sampler actually never converges.

Another problem may simply occur due to overparametrization, as
Van Buren et al. (2006) state: “With k incomplete variables, the vector
parameters [ψ1, ..., ψk] will generally depend on each other, and so the
sampler can be overparameterized. For example, the space spanned
by [ψ1, ..., ψk] generally has more dimensions than appropriate. If this
occurs, the implicit joint distribution does not exist.”

To conclude, the consequences of taking imputations from so called
incompatible Gibbs samplers as good estimates for the missing values
in Y are not fully investigated yet. To further understand the meaning
of incompatibility, we have to define what conditions are necessary to
make a Gibbs sampler compatible.



348 Jörg Drechsler and Susanne Rässler

3.3 Compatibility

Two conditional densities are considered as compatible if a joint distri-
bution exists that has the defined distributions as its conditional den-
sities. For example, Bhattacharryya (1943) noticed that a bivariate
normal density could be modeled from two conditional normal densi-
ties with the same variance by linear regression. In 1974 Besag (1974)
proofed that two conditional densities f(x|y) and g(y|x) are compatible
in the above sense if and only if the ratio of their densities f(x|y)/g(y|x)
can be factorized into u(x)v(y), where both u and v have to be inte-
grable functions.

4 An Example for Incompatibility

In their paper, Van Buren et al. (2006) use the following example
to evaluate the potential consequences of incompatible imputation
models: Their original data consist of 1000 draws from the bivariate
normal distribution Y = (Y1, Y2) with µ1 = µ2 = 5, σ2

1 = σ2
2 = 1

and ρ12 = 0.6. Missing values are generated using three different
missing data mechanisms MARRIGHT, MARMID, and MARTAIL.
For MARRIGHT the probability to be missing in Y1 increases with
increasing values in Y2 and vice versa, MARMID generates more
missing values at the center of the distribution and for MARTAIL
more missing values are generated at the tails of the distribution.
The exact missing data mechanisms are given by the following formulae:

MARRIGHT: logit(Pr(Y1 = missing)) = −1 + Y2/5
logit(Pr(Y2 = missing)) = −1 + Y1/5

MARTAIL: logit(Pr(Y1 = missing)) = −1 + 0.4 ∗ |Y1 −mean(Y1)|
logit(Pr(Y2 = missing)) = −1 + 0.4 ∗ |Y2 −mean(Y2)|

MARMID: 1 − Pr(MARTAIL).1

The authors note that for MARRIGHT “(t)he multivariate missing
data were not entirely MAR because the cases where Y1 or Y2 (or

1 In our setting we changed the parameters for MARMID to 1 − (−0.1 + 0.4 ∗
|Y2 − mean(Y2)|) because the originally suggested parameters 1 − (−1 + 0.4 ∗
|Y2 − mean(Y2)|) cause the probability that either Y1 or Y2 or both are missing
to become more than 88%, leaving only a small fraction of fully observed values
to estimate the imputation models. This leads to severe bias even for the com-
patible imputation model in some of the settings. With our parameters the above
probability decreases to roughly 70%.
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both) is (are) missing were more frequent for the higher values.” But
they argue that “(t)he regression lines are (. . .) not affected because the
nonresponse is generated symmetrically around the regression lines”
(Van Buren et al. (2006, p. 1059)). Argumentation for the other missing
mechanisms follows along the same line.

Multiple imputations for the missing values are generated under
three different imputation models. The compatible model imputes
missing values Y ∗

1 , Y
∗
2 by alternately drawing from Y ∗

1 |Y2 ∼ N(µ∗1 +
β∗

2Y2, σ
2∗
2 ) and Y ∗

2 |Y1 ∼ N(µ∗1+β∗
1Y1, σ

2∗
1 ), where ∗ indicates drawn val-

ues from the appropriate observed-data posterior distributions for the
different parameters. The first incompatible model replaces the second
imputation step given above by draws from Y ∗

2 |Y1 ∼ N(µ∗1+β∗
1Y

2
1 , σ

2∗
2 ).

Another incompatible model uses log(Y1) instead of Y 2
1 in the second

imputation step. For all simulations the number of iterations between
each imputation and the number of imputations are set to five. Finally
the number of replications for each setting is set to 500.

In our paper we focus on the first incompatible model. Results for
the setting described by Van Buren et al. (2006) are given in Table
1. Note however that we generate 10,000 draws from the bivariate nor-
mal distribution. For n = 1, 000 the sampling error overlays the bias
introduced by the incompatible Gibbs sampler in some of the following
examples. Thus, for n = 1, 000 we would see the bias only in the point
estimates and not in the 95%-confidence interval. Choosing n = 10, 000
drives down the sampling error visualizing the bias in the inference.

The estimates of interest are the mean of Y1 and the regression
coefficient β in the linear model Y1 = α + βY2 + ε. For the regres-
sion coefficient the standard error and the coverage are also reported.
The estimates E(β1/σ

2
1) and E(β2/σ

2
2), with β and σ2 taken from the

imputation model, are indicators for compatibility. Since, for the con-
ditionals from a bivariate normal distribution E(β1/σ

2
1) = E(β2/σ

2
2)

must hold. Note that E(β1/σ
2
1) �= E(β2/σ

2
2) does not necessarily mean

that the models are generally incompatible in the above sense, they are
just incompatible with the bivariate normal distribution.

In the original setting (µ1 = µ2 = 5) the compatible Gibbs sampler
provides good results, although E(Y1) is slightly biased downwards for
MARRIGHT and E(β) is slightly biased upwards for MARMID. Impu-
tations under the incompatible Gibbs sampler are only slightly biased
for MARTAIL (E(β)) and MARRIGHT (E(Y1)), while the complete
case analysis shows severe bias for E(β) under MARMID and MAR-
TAIL with coverage rates close to zero. Based on these results, Van
Buren et al. (2006) conclude that “imputation using the Gibbs sam-
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Table 1. Regression slopes, standard errors, and coverages (95% c.i.) under
one compatible and one incompatible multiple imputation model (bivariate
normal data, ρ = 0.6, n = 10, 000, m = 5, three symmetric data mechanisms,
500 replications) when compared with complete case analysis

Compatibility Estimates

Mechanism Method E(β1

σ2

1

) E(β2

σ2

2

) E(Y1) E(β) E(se(β)) Fmi2 Cov

Theoretical values 5.00 0.600 0.95

MARRIGHT CC analysis3 4.94 0.596 0.0160 0.94

MI comp. linear 0.99 0.99 4.96 0.602 0.0137 0.75 0.93

MI incomp. quadr. 0.98 0.097 4.96 0.596 0.0134 0.75 0.92

MARMID CC analysis 5.00 0.649 0.0137 0.06

MI comp. linear 0.99 1.00 5.00 0.609 0.0117 0.69 0.88

MI incomp. quadr. 1.01 0.10 5.00 0.602 0.0118 0.69 0.92

MARTAIL CC analysis 5.00 0.555 0.0125 0.04

MI comp. linear 0.97 0.98 5.00 0.597 0.0113 0.56 0.93

MI incomp. quadr. 0.99 0.10 5.00 0.591 0.0113 0.56 0.89

pler seems to be robust against incompatible-specified conditionals in
terms of bias and precision, thus suggesting that incompatibility may
be a relatively minor problem in multivariate imputation” (Van Buren
et al. (2006, p. 1061)).

This assumption only holds however, if Y1 and Y2 will never include
any negative values, neither in the original data nor in the imputed
data. According to our calculations, negative values in Y2 will lead
to negative values in Y1 because of the linear imputation model and
the positive correlation in the original data. But negative values in Y1

will drive down the linear correlation between Y1 and Y2 if we use the
incompatible imputation model, because imputations for Y2 are based
solely on Y 2

1 . This can be illustrated easily, if we take the example in
Table 1 and set µ1 = µ2 = 0. Table 2 provides the results for this
setting. Obviously, the compatible model still provides good results for
all estimates. In fact the estimates are almost similar to the estimates
in Table 1. For the incompatible model, the correlation and by this
the estimated regression coefficient is heavily biased. (Note, that for
this setting the coefficient β1 equals ρ12) As expected, the correlation

2 Fmi denotes the fraction of the data for which either Y1,Y2 or both are missing.
3 CC analysis (complete case analysis) = Only fully observed units are used for the

analysis.
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is underestimated. Interestingly, the estimates for one variable alone
(E(Y1)) are not affected.

The second setting displayed in Table 3 with µ1 = µ2 = 2.75 aims
to illustrate that only a very small fraction of negative values is neces-
sary to cause bias in the incompatible model (note that for a bivariate
normal distribution with µ = 2.75 and σ2 = 1 the probability for hav-
ing negative values is ≈ 0.6%). Though the bias is small compared
to the setting with µ1 = µ2 = 0, it is surprising that such a small
fraction of negative values can cause a bias of this magnitude. This is
an important result since in practical settings the true underlying dis-
tributions are unknown and the defined fully conditional distributions
for the imputation model are only approximations of the true distrib-
utions. In general this is not a problem since, if the explanatory power
of the covariates used is high, approximations will be very close to the
true distributions. Still it can happen that these approximations lead
to negative imputed values for a variable that by definition can only
have positive values, especially if the variable to be imputed contains a
high number of zeros. A common approach in this case is to check the
data after the imputation for such inconsistencies and, if the fraction
of negative values is low, set these negative values to zero. Only if this
fraction is high, the imputation model is usually revised. This seems
justified since these changes for only a very small fraction of the data
will not change inferences in a major way. But this assumption ignores
the fact that during the imputation process this variable is used as
a covariate in the imputation model for other variables that need to
be imputed. If only a quadratic function of the variable is used in the
imputation model, the correlation between the two variables could be
underestimated.

To illustrate this, we introduce a new missing data mechanism
MARLEFT, where the probability to be missing decreases with
an increasing value of the explanatory variable. Missing values are
generated using the formula:

MARLEFT: logit(Pr(Y1) = missing) = −0.5 + 0.05 ∗ (−Y2)
logit(Pr(Y2) = missing) = −0.5 + 0.05 ∗ (−Y1).

To mimic a setting where all observed values are positive, but the as-
sumed underlying distribution could be negative, data sets are gen-
erated as before by drawing from a bivariate normal distribution with
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Table 2. Setting similar to Table 1 with µ1 = µ2 = 0

Compatibility Estimates

Mechanism Method E(β1

σ2

1

) E(β2

σ2

2

) E(Y1) E(β) E(se(β)) Fmi Cov

Theoretical values 0.00 0.600 0.95

MARRIGHT CC analysis -0.03 0.596 0.0110 0.93

MI comp. linear 0.93 0.92 -0.01 0.599 0.0102 0.47 0.93

MI incomp. quadr. 0.54 -0.03 -0.01 0.402 0.0125 0.47 0.00

MARMID CC analysis 0.00 0.648 0.0137 0.06

MI comp. linear 0.93 0.92 0.00 0.609 0.0118 0.69 0.88

MI incomp. quadr. 0.43 0.02 0.00 0.304 0.0135 0.69 0.00

MARTAIL CC analysis 0.00 0.556 0.0126 0.05

MI comp. linear 0.90 0.92 0.00 0.598 0.0115 0.56 0.93

MI incomp. quadr. 0.41 -0.02 0.00 0.313 0.0139 0.56 0.00

Table 3. Setting similar to Table 1 with µ1 = µ2 = 2.75

Compatibility Estimates

Mechanism Method E(β1

σ2

1

) E(β2

σ2

2

) E(Y1) E(β) E(se(β)) Fmi Cov

Theoretical values 2.75 0.600 0.95

MARRIGHT CC analysis 2.70 0.597 0.0131 0.93

MI comp. linear 0.87 0.90 2.73 0.601 0.0116 0.62 0.95

MI incomp. quadr. 0.87 0.15 2.73 0.584 0.0116 0.62 0.73

MARMID CC analysis 2.75 0.649 0.0137 0.06

MI comp. linear 0.93 0.94 2.75 0.610 0.0120 0.69 0.88

MI incomp. quadr. 0.89 0.15 2.75 0.587 0.0119 0.69 0.83

MARTAIL CC analysis 2.75 0.555 0.0126 0.08

MI comp. linear 0.93 0.92 2.75 0.598 0.0114 0.56 0.93

MI incomp. quadr. 0.87 0.15 2.75 0.579 0.0114 0.56 0.58

µ1 = µ2 = 2.75 and Σ =

(
1 0.6

0.6 1

)
. But now missing values are gener-

ated under the MARLEFT missing design and the imputation process
only starts if no negative values remain in the observed part of the data
set after MARLEFT is applied. Otherwise a new data set is drawn and
missing values are generated in the above manner. The parameters for
the missing mechanism are selected to generate a fraction of missing
values that roughly equals the fraction of missing values generated by
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the other MAR mechanisms, while on the other hand keeping the num-
ber of draws necessary to fulfill the above requirements (no negative
values in the observed data) as low as possible. Drawing 10,000 times
from the above distribution will make it almost impossible that no sin-
gle negative value remains in the data set after the MARLEFT design
is applied. So we decided to set n = 1, 000 accepting the increase in
the sampling error. Even with n = 1, 000, the average number of draws
necessary under this setting is 35.36, so the data sets selected for the im-
putation reflect draws from a truncated bivariate normal distribution.
The results for the original data in Table 4 indicate, however, that the
introduced bias is only marginal. Nevertheless, the bias introduced by
the imputations under the incompatible model remains, although the
fraction of imputed negative values is very low (the empirical fraction
of negative values was 0.093% for Y1 and 0.090% for Y2 respectively).
This result, although alarming at first sight, does not necessarily mean

Table 4. Estimates for a data set with no observed negative values after
the application of the MARLEFT missing data mechanism, (bivariate normal
data, ρ = 0.6, n = 1, 000,m = 5, µ1 = µ2 = 2.75, 500 replications)

Compatibility Estimates

Mechanism Method E(β1

σ2

1

) E(β2

σ2

2

) E(Y1) E(β) E(se(β)) Fmi Cov

Theoretical values 2.75 0.600 0.95

MARLEFT Original Data 2.758 0.594 0.0255 0.96

CC analysis 2.77 0.592 0.0392 0.95

MI comp. linear 0.80 0.85 2.76 0.591 0.0350 0.57 0.95

MI incomp. quadr. 0.80 0.13 2.76 0.577 0.0356 0.57 0.90

that all imputation models using quadratic terms will have to guar-
antee that no negative values will be imputed. The scenario depicted
here is somewhat theoretical in a sense that regression models hardly
ever contain only the quadratic term of a covariate and omit the linear
term.

Table 5 presents results for the different settings discussed above,
but now imputations of Y2 are based on the standard model if a
quadratic function of the covariates is considered for imputation:
Y2 = β0 + β1Y1 + β2Y

2
1 + ε. Not surprisingly, under this specifica-

tion all estimates are unbiased for all settings, since the model includes
a linear term again and we could think of the quadratic term as be-
ing part of the residuals. This will lead to residuals with an awkward
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distribution and a mean that is definitely not zero. Nevertheless, the
above equations specify two linear conditional models for which a joint
distribution generally exists.

Table 5. Estimates for the mean of Y1 and the regression coefficient β in
the linear model Y1 = α + βY2 + ε from the imputation model: Y1 = β0 +
β1Y2 + ε and Y2 = β0 + β1Y1 + β2Y

2
1 + ε (bivariate normal data, ρ = 0.6, n =

10, 000,m = 5, different µ, 500 replications)

Compatibility Estimates

mean Mechanism E(β1

σ2

1

) E(β2

σ2

2

) E(Y1) E(β) E(se(β)) Fmi Cov

µ1 = µ2 = 5 MARRIGHT 0.94 -0.01 4.96 0.602 0.0137 0.75 0.93

MARMID 0.94 -0.01 5.00 0.609 0.0117 0.69 0.85

MARTAIL 0.93 0.00 5.00 0.598 0.0113 0.56 0.91

µ1 = µ2 = 2.75 MARRIGHT 0.96 -0.01 2.73 0.601 0.0115 0.63 0.92

MARMID 0.95 -0.01 2.75 0.609 0.0117 0.69 0.86

MARTAIL 0.93 0.00 2.75 0.598 0.0113 0.56 0.91

µ1 = µ2 = 0 MARRIGHT 0.90 0.00 -0.01 0.600 0.0102 0.47 0.94

MARMID 1.00 0.01 0.00 0.609 0.0116 0.69 0.85

MARTAIL 0.93 0.00 0.00 0.598 0.0113 0.56 0.91

5 Concluding Remarks

Fully conditional specifications are very flexible tools to generate mul-
tiple imputations. They are especially useful for settings where the
desired joint distribution for multivariate data doesn’t follow standard
distributions. In this case, joint modeling - generally based on the as-
sumption of a multivariate normal distribution - can lead to biased
estimates from the imputed data. However, this increased flexibility
comes at a price since FCS can be problematic, if the specified con-
ditional distributions don’t have a joint distribution. This means that
the underlying Gibbs sampler will never converge. The consequences
for the imputation results are still unknown.

In this paper we illustrate that an incompatible imputation model
can lead to biased estimates from the imputed data. These findings
are in contrast to the results in Van Buren et al. (2006) where the
authors presume that incompatible Gibbs samplers might have only
minor influences on the imputation results.
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Obviously, there is not yet a best practice how to deal with this
problem. In general, we would suggest to monitor convergence carefully
when using FCS. The depicted example for an incompatible imputa-
tion model is somewhat theoretical of course, since imputations will
never be based solely on the quadratic term of a covariate. Maybe it
is possible to show that only implausible imputation models can lead
to non-convergence. Then, even if FCS are PIGS, that doesn’t mean
they are not useful in many settings. For this reason one field of fur-
ther research could be to evaluate the risk of defining an incompatible
imputation model by chance.
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1 Introduction

We consider the standard linear regression model with N observations

y = Xβ + u,

where y is (N × 1) vector of observations on response variable, X is a
nonstochastic (N ×K) matrix of N observations on each of the K ex-
planatory variables with rank K and β is an unknown (K×1) vector of
associated regression coefficients. The components of u have expected
value E(u) = 0 and a common variance E(u2

i ) = σ2 (i = 1, 2, . . . , N).

The OLS estimate for β is β̂ = (X ′X)−1X ′y, and the OLS-based esti-
mate for σ2 is

s2 =
1

N −K
(y −Xβ̂)′(y −Xβ̂) =

1

N −K
u′Mu, (1)

where M = I − X(X ′X)−1X ′. It has long been known that s2 is

in general (and contrary to β̂) biased whenever V := Cov(u) is no
longer a multiple of the identity matrix. Krämer (1991) and Krämer
and Berghoff (1991) show that this problem disappears asymptotically
for certain types of temporal correlation such as stationary AR(1)-
disturbances, although it is clear from Kiviet and Krämer (1992) that
the relative bias of s2 might still be substantial for any finite sample
size. The present paper extends these analyses to the case of spatial
correlation, where we allow the disturbance vector u to be generated
by the spatial autoregressive scheme

u = ρWu+ ε, (2)
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where ε is a N ×1 random vector with mean zero and scalar covariance
matrix σ2

εI and W is some known N×N -matrix of nonnegative spatial
weights with wii = 0 (i = 1, . . . , N). Such patterns of dependence are
often entertained when the objects under study are positioned in some
“space,” whether geographical or sociological (in some social network,
say) and account for spillovers from one unit to its neighbors, whichever
way “neighborhood” may be defined. They date back to Whittle (1954)
and have become quite popular in econometrics recently. See Anselin
and Florax (1995) or Anselin (2001) for surveys of this literature.

The coefficient ρ in (2) measures the degree of correlation, which
can be both positive and negative. Below we focus on the empirically
more relevant case of positive disturbance correlation, where

0 � ρ �
1

λmax

and where λmax is the Frobenius-root of W (i.e., the unique positive
real eigenvalue such that λmax � |λi| for arbitrary eigenvalues λi). The
disturbances are then given by

u = (I − ρW )−1ε,

so
V = Cov(u) = σ2

ε [(I − ρW )′(I − ρW )]−1 (3)

and
V = σ2

εI

whenever ρ = 0.
Of course, for our analysis to make sense, the main diagonal of V

should be constant, i.e.,

V = σ2Σ, (4)

where Σ is the correlation matrix of the disturbance vector.1 It is
therefore important to clarify that many, though not all, spatial au-
tocorrelation schemes are compatible with homoscedasticity. Consider
for instance the following popular specification for the weight matrix
known as “one ahead and one behind:”

1 Note that σ2 = V ar(ui) need not be equal to σ2
ε = V ar(εi), unless Σ = I. In the

sequel, we keep σ2
ε fixed, so σ2 will in general vary with W and N .
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W̃ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 1

1 0
. . . 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . . 0
. . . 0

0 · · · 0 1 0 1

1 0 · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and renormalize the rows such that the row sums are 1. Then it is eas-
ily seen that E(u2

i ) is independent of i, and analogous results hold for
the more general “j ahead and j behind” weight matrix W which has
non-zero elements in the j entries before and after the main diagonal,
with the non-zero entries equal to j/2. This specification has been con-
sidered by, for instance, Kelejian and Prucha (1999) and Krämer and
Donninger (1987).

As another example, consider the equal-weight matrix (see, e.g.,
Kelejian and Prucha (2002), Lee (2004), Case (1992) or Kelejian
et al. (2006)), defined by

WEW = (wEW
ij ) =

{
1

N−1 for i �= j

0 for i = j.
(5)

One easily verifies that, for |ρ| < 1,

(I − ρWEW )−1 = δ1JN + δ2IN ,

where

δ1 =
ρ

(N − 1 + ρ)(1 − ρ)
, δ2 =

N − 1

N − 1 + ρ

and JN is an (N × N) matrix of ones. Without loss of generality, let
σ2

ε = 1. We then have, using symmetry of W ,

V = [(I − ρWEW )′(I − ρWEW )]−1

= (I − ρWEW )−1(I − ρWEW )−1

= (δ1JN + δ2IN )2.

Carrying out the multiplication, it is seen that

E(u2
i ) = (δ2

1 + δ2
2)

2 + (N − 1)δ2
1 for i = 1, . . . , N.
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So V is homoscedastic . It is straightforward to extend this result
to the case where W is block-diagonal with B blocks of dimension
(R×R), defined as

WEW
R = (wEW

R,ij ) =

{
1

R−1 for i �= j

0 for i = j,

where N = BR. We therefore conclude that our analysis is applicable
in many relevant spatial econometric specifications.

2 The Relative Bias of s2 in Finite Samples

We have

E

(
s2

σ2

)
= E

(
1

σ2(N −K)
u′Mu

)
=

1

σ2(N −K)
tr(MV )

=
1

N −K
tr(MΣ).

Watson (1955) and Sathe and Vinod (1974) derive the (attainable)
bounds

mean of N −K smallest eigenvalues of Σ

� E

(
s2

σ2

)
� (6)

mean of N −K largest eigenvalues of Σ,

which shows that the bias can be both positive and negative, depending
on the regressor matrix X, whatever Σ may be. Finally, Dufour (1986)
points out that the inequalities (6) amount to

0 � E

(
s2

σ2

)
�

N

N −K
(7)

when no restrictions are placed on X and Σ. Again, these bounds are
sharp and show that underestimation of σ2 is much more of a threat
in practise than overestimation.

The problem with Dufour’s bounds is that they are unnecessarily
wide when extra information on V is available. Here we assume a dis-
turbance covariance matrix V as in (3) and show first that the relative
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bias of s2 depends crucially on the interplay between X and W . In par-
ticular, irrespective of sample size and of the weighting matrix W , we
can always produce a regressor matrix X such that E(s2/σ2) becomes
as close to zero as desired. To see this, let W be symmetric2 and let

W =
N∑

i=1

λiωiω
′
i (8)

be the spectral decomposition of W , with the λi in increasing order
and ωi the corresponding orthonormal eigenvectors . Now it is easily
seen that

lim
ρ→1/λN

E

(
s2

σ2

)
= 0 (9)

whenever

MωN = 0. (10)

This follows from

V = σ2
ε

[
N∑

i=1

1

(1 − ρλi)2
ωiω

′
i

]
(11)

and

Σ =
1

σ2
V =

1∑N
i=1

1
(1−ρλi)2

ω2
i1

N∑
i=1

1

(1 − ρλi)2
ωiω

′
i, (12)

where ω2
i1 is the (1, 1)-element of ωiω

′
i (under homoscedasticity, we

could select any diagonal element of ωiω
′
i) and

σ2 = σ2
ε

N∑
i=1

1

(1 − ρλi)2
ω2

i1. (13)

Multiplying the numerator and denominator of (12) by (1− ρλN )2, we
obtain

Σ =
1

σ2
V =

1∑N
i=1

(1−ρλN )2

(1−ρλi)2
ω2

i1

N∑
i=1

(1 − ρλN )2

(1 − ρλi)2
ωiω

′
i, (14)

which tends to
2 Notice that for all the homoskedastic examples considered above, row-

normalization does not destroy symmetry of W .



362 Walter Krämer and Christoph Hanck

1

ω2
N1

ωNω
′
N (15)

as ρ → 1/λN . Given W , one can therefore choose X to be (N × 1)
and equal to ωN . Then, M is by construction orthogonal to ωN , which
implies that tr(MΣ) and therefore also E(s2/σ2) tend to zero as ρ →
1/λN .

Fig. 1. The relative bias of s2 as a function of ρ and N

For illustration, consider the following example. The largest eigen-
value λN of a row-normalized matrix such as W̃/2 is 1. (This follows
immediately from Theorem 8.1.22 of Horn and Johnson (1985).)
It is then readily verified that ωN = ι := (1, . . . , 1)′ is (up to the
usual multiple) the eigenvector corresponding to λN . Now, if X = ι,
MωN = (I − 1

N ιι
′)ι = 0. Figure 1 shows the behavior of the relative

bias as ρ → 1/λN = 1. We see that (9) holds for any given N . Also,
pointwise in ρ, the relative bias vanishes as N → ∞, as one would
expect. We now rigorously establish the latter property.

3 Asymptotic Bias and Consistency

From (7), it is clear that, for any V , the relative upward bias of s2 must
vanish as N → ∞. A sufficient condition for the relative downward bias
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to disappear as well is that the largest eigenvalue of Σ, µN , is

µN = o(N). (16)

This is so because, using
∑N

i=1 µi =
∑N−K

i=1 µi +
∑K

i=1 µi+N−K = N ,
we have
mean of N −K smallest eigenvalues of Σ =

=
N

N −K
− 1

N −K

K∑
i=1

µi+N−K

�
N

N −K
− K

N −K
µN

and the right-hand side tends to 1 when (16) holds as N → ∞.
Condition (16) also guarantees consistency. From (1), we have

s2 =
1

N
u′Mu =

1

N
u′u− 1

N
u′Hu, (17)

where H = X(X ′X)−1X ′. Since u′u/N p−→ σ2, it remains to show that

1

N
u′Hu p−→ 0. (18)

To this purpose, consider

E

(
1

N
u′Hu

)
= E

(
1

N
ε′Σ1/2HΣ1/2ε

)
(where ε = Σ−1/2u)

=
σ2

N
tr(Σ1/2HΣ1/2)

=
σ2

N
tr(HΣ)

�
σ2

N
K · µN , (19)

where the inequality follows from the fact that HΣ has rank K (since
rank (H) = K). Since no eigenvalue of HΣ can exceed µN , and
HΣ has exactly K nonzero eigenvalues, the inequality follows from
the well known fact that the trace of a matrix equals the sum of its
eigenvalues. By assumption, µN/N → 0 as N → ∞, so in view of
(19), E(u′Hu/N) → 0. As u′Hu is nonnegative, this in turn implies

u′Hu/N p−→ 0 and therefore the consistency of s2.
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The crucial condition (16) is a rather mild one; in the present con-
text, it obviously depends on the weighting matrix W . From (4) and
(11), we have

µN =
σ2

ε

σ2(1 − ρλN )2
, (20)

so the condition (16) obtains whenever

σ2(1 − ρλN )2N → ∞. (21)

For row-normalized weight matrices , λN ≡ 1 irrespective of N , so (21)
holds trivially, provided σ2 remains bounded away from zero. This in
turn follows from the fact that, in view of (13),

σ2 �
σ2

ε

(1 − ρλN )2

N∑
i=1

ω2
i1,

where
N∑

i=1

ω2
i1 = 1

as Ω = (ω1, . . . , ωN ) satisfies ΩΩ′ = I.
As another example, consider the “one ahead and one behind” ma-

trix adapted to a “non-circular world” where the (1, N) and (N, 1)
entries of W̃ are set to zero, such that after row-normalization ,

W ′ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.5 0 · · · 0 0

0.5 0
. . . 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . . 0
. . . 0

0 · · · 0 0.5 0 0.5

0 0 · · · 0 0.5 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Ord (1975) shows that the eigenvalues of W ′ are then given by

λ′i = cos

(
πi

N + 1

)
, i = 1, . . . , N,

so
λ′i ∈ [−1, 1], i = 1, . . . , N.
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1 Introduction

Genetic epidemiology has become a major field of interest at the border
of traditional epidemiology and genetics. Genetic data call for specific
epidemiological and statistical methods that have to account on the
one hand for the family structure within a data set and on the other
hand for the paired information of two alleles at each gene locus (geno-
type). In addition to these obvious dependencies genetic data can be
very complex. Often enormous numbers of hypotheses are investigated
simultaneously and various levels of data can be thought of, e.g. gene
expression data from different pathways as well as data on the pro-
tein level. Complexity arises from possible interactions between genes
and the environment and from the lack of methods to model biological
interactions by statistical interaction terms.

Two main concepts, linkage and association, form the basis of possi-
ble analysis. Linkage on the one hand describes the idea that two gene
loci are jointly inherited to the next generation more often than one
would expect by chance. Association on the other hand can be observed
between a phenotypic trait, e.g. a disease, and genetic information at
a certain gene locus. This concept is linked to the term statistical de-
pendence and will be in the focus of this paper.

Population-based association studies are increasingly used to inves-
tigate genetic risk factors for diseases. In the context of an association
study, a statistical association between an allele or genotype at a cer-
tain gene locus and the phenotype of the disease under investigation
may indicate that the gene is either a causal disease locus itself or
that it is in linkage disequilibrium with the disease locus. However,
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population-based studies might suffer from spurious association due to
undetected genetic heterogeneity of the population. This phenomenon
is commonly called population stratification . Population stratification
is statistically determined by trying to identify a number of subpopu-
lations with different allele frequencies in non-coding regions over the
whole genome in the population under study. Population stratification
has to be detected and accounted for in statistical analysis of associ-
ation studies, because it is likely to lead to false-positive results (see
Cardon and Palmer (2003)).

To deal with the problem of population stratification, different ap-
proaches were discussed in the literature (for a review see e.g. Car-
don and Palmer (2003) or Pritchard and Donnelly (2001)). Devlin and
Roeder (1999) proposed the use of unlinked null-markers, which they
called genomic controls (GC). These serve to correct the impact of
population stratification on the test statistic via an estimated factor
that inflates the observed value of the χ2-statistic. An alternative ap-
proach introduced by Pritchard et al. (2000a,b) is the structured as-
sociation approach, which has a more general aim. While the genomic
control approach targets to correct the value of the test statistic, the
structured association approach explores the nature of the structure.
Roughly speaking, each individual is assumed to possess fractions of
ancestry in underlying subpopulations. In the first step, these fractions
are estimated by a model-based cluster analysis. In the second step,
a test for association called STRAT of a candidate locus and the dis-
ease is carried out taking into account the estimated ancestry of the
individuals. Power comparisons of the GC approach, the structured as-
sociation (SA) approach and a family based test, the S-TDT, have been
conducted by Wawro et al. (2006).

This paper aims to provide an alternative approach to the model-
based cluster analysis that is carried out within the structured asso-
ciation approach. The dependence on distributional assumptions (see
Pritchard et al. (2000a)) when identifying the number of underlying
subpopulations will be avoided by the application of an exploratory
method, namely Self-Organizing Maps (SOMs). The paper organizes as
follows. Section 2 will give a brief introduction to the idea of the Self-
Organizing Maps. Section 3 investigates the limitations of this proposed
method as clustering tool by means of a simulation study. The focus is
on the identification of different population structure models and thus
on the identification of the number of underlying subpopulations. Some
concluding remarks will be given in Section 4 of the paper.
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2 Material and Methods

Self-Organizing Maps are a flexible tool to discover hidden structure
in a data set. They were developed by Kohonen (2001) in the eighties
and today still have a broad application in signal processing or speech
recognition, to name only two examples. The following sections give a
short introduction to the basic SOM algorithm.

2.1 The Idea of SOMs

Following Kohonen (2001) we present the idea and training algorithm
of SOMs. A SOM consists of a number of neurons J , connected to
each other by a, usually two-dimensional, grid and thus establishing a
relationship between the neurons Nj , j = 1, . . . , J . A simple example
of a net is given in Figure 1.

Fig. 1. Example of a Self-Organizing Map with two neighborhoods (radius 1
resp. 2) marked around neuron i

Each neuron has a weight vector wj . This weight vector will be
updated during the training process as follows (see also equation 1). At
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each training step one data vector x(t) ∈ {x1, . . . , xn} is processed. The
weight vector c which has minimum distance to that data vector will be
updated. In addition, all weight vectors within a certain neighborhood
defined by the neighborhood function h of neuron Nc will be updated
as well. This process is formalized by

w
(t+1)
j = w

(t)
j + h

(t)
cj [x(t) − w

(t)
j ] . (1)

The neighborhood function hcj is fixed, but the shape of the neighbor-
hood has to be chosen in advance, e.g. as bubble or gaussian neighbor-
hood. The learning rate is incorporated in the neighborhood function.
Roughly speaking, the weight vectors to be updated are adapted to the
data vector by moving them in its direction. The learning rate reflects
the magnitude by which the weight vector is moved in this direction
at that point in time. Both, the neighborhood function as well as the
learning rate are monotone decreasing during the training process. For
a more detailed introduction the reader is referred to Kohonen (2001)
where issues of convergence of the training process and ordering of the
map are discussed as well.

The initialization of the untrained map, that is the untrained weight
vectors, can be done in various ways. Most often a random sample of J
data vectors as {wj , j ∈ 1, . . . , J} or a initialization by random numbers
are used.

When the training process has converged, the trained weight vec-
tors can be interpreted as abstraction of the data set which leads to
a reduction of the dimensionality of the original data set. In a visual
representation of a SOM similar weight vectors should be closer to each
other than strongly differing weight vectors.

The input data x1, . . . , xn have to be on a metric scale to allow
calculating a meaningful difference in equation 1. This is also neces-
sary when the distances between weight vectors and data vector are
calculated by the Euclidean distance, as would be a natural choice.
All weight vectors wj and all data vectors xi are of the same dimension
1×L, where L is the number of variables of interest. When using SOMs
to detect population structure, L represents the number of loci from
which genetic information is available.

In this section the original SOM algorithm has been discussed
briefly. The extension and adaption of the algorithm to handle genetic
data appropriately is presented in a forthcoming paper by Wawro and
will not be discussed here.

The following section will focus on the application of SOMs as a
clustering tool in the context of population stratification.
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2.2 SOMs as a Clustering Tool

Clustering aims at identifying groups that are present in the data set
described by a number of attributes. Two main approaches have to be
distinguished: (1) fuzzy clustering, where each observation belongs to
each possible group with a certain probability, and (2) hard clustering,
where this probability is 100% for exactly one of the groups and 0 else.
In both cases, a cluster solution consists of all these probabilities for
the whole data set. A SOM yields a cluster solution as it divides the
data set into a number of groups equal to the number of neurons that
build the map. Each data vector has minimum distance to one neuron,
which represents the group the data vector is assigned to.

There is a variety of clustering algorithms that range from hierarchi-
cal to partitioning, model- or density-based methods. For an overview,
the reader is referred to Bock (1974), Everitt (1993) or Jain et al.
(1999). In a two step procedure within a SOM framework, first, the
weight vectors have to be trained and second the clustering algorithms
have to be applied to the trained weight vectors, not on the data vectors
of individuals. This two step procedure is more efficient as the weight
vectors are representatives of the data set, but with a far smaller di-
mension. Whenever a weight vector is assigned by a hard clustering
algorithm to a certain group, an individual is assigned to the same
group if its data vector has minimum distance to this weight vector.
This has been proposed by Vesanto and Alhoniemi (2000).

The groups present in the genomic data set are characterized by
the genetic background they represent. That is, each group repre-
sents a genetically homogenous subgroup of the population charac-
terized by a vector q = (q1, . . . , qK). Here, K represents the number
of subpopulations that form the population under investigation and
qi, i ∈ {1, . . . ,K}, denotes the fraction of ancestry from subpopulation
i. A cluster solution, no matter of fuzzy or hard, can be interpreted as
estimate of the genetic background q. This is straightforward, even in
a situation where K > 2 subpopulations build the basis of the genetic
background. Additional information, e.g. known genetic background for
a subsample of individuals, is needed to identify the relevant subpopu-
lations.

The crucial task is to identify the correct number of subpopulations
K. This has direct impact on the interpretation of a cluster solution.
Depending on the method of clustering a variety of indices exists to
evaluate the obtained cluster solution, such as the silhouette or the
Davies-Bouldin index (see Davies and Bouldin (1979)) for hard solu-
tions and the Xie-Beni index (see Xie and Beni (1991)) or the partition
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index for fuzzy solutions where in general smaller values of the indices
indicate better solutions. A major drawback of all these indices is that
they only give reasonable results for K ≥ 2. Especially in the context of
genetic epidemiology it is crucial to identify the situation of ‘one group
only’ as in this case no concerns arise from population stratification.
Tibshirani et al. (2001) developed the gap statistic as an index being
reasonable for K ≥ 1.

3 Simulation Study: Application of SOMs in the Context

of Genetic Epidemiology

This section outlines the simulation study that we conducted to in-
vestigate if SOMs are appropriate to detect population stratification
and to estimate the genetic background. This estimate can be used for
a stratified analysis or in the framework of the structured association
approach.

3.1 Simulation

For setting up the simulation design we had to select a population
model, the number of subpopulations, an information model and the
sample sizes. We will here present in detail the results of the discrete
population model, the corresponding results for the admixed models
will be briefly referred to in the discussion. In the following, the simu-
lation of the genetic data is described and a visualization of the data
on a SOM is presented. All simulations were carried out using R (R
Development Core Team (2004)).

Population Model of Interest

Since the population stratification model of interest is a discrete model
the population under investigation can be partitioned into a number K
of subpopulations and each individual has its origins in one and only
one subpopulation. K was chosen as either two or five. To simulate
the population of interest, subsamples of size ni, i = 1, . . . ,K, were
drawn from the K subpopulations. Each of the K subpopulations was
of size 5000. Subsamples were either of equal size or, more realistically,
of unequal size. For two subpopulations sample sizes were chosen either
n1 = n2 = 200 or n1 = 100, n2 = 500, for five subpopulations either
n1 = . . . = n5 = 100 or n1 = n2 = 300 and n3 = n4 = n5 = 600. Thus,
sample sizes of simulated data sets were increased with an increasing
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number of subpopulations to cope with the more challenging situation
of five subpopulations compared to two.

Genetic Data

Genetic data were simulated at L = 10 loci. All loci were micro satel-
lites, i.e., each allele represented the number of repeats (repeat score) of
a certain nucleotide sequence. Each genotype was simulated as two in-
dependent draws from the repeat score distribution. The repeat scores
were assumed to be normally distributed, where the parameters of the
normal distribution were varied for each subpopulation. Depending on
the choice of parameters, i.e., similar or rather unequal means, the sub-
populations can be more or less easily distinguished from each other.
Therefore, the different choices of the parameters are referred to as
‘information’ and are characterized in Table 1. To introduce a random
component the means were generated from a uniform distribution on
different intervals displayed in the following table.

Table 1. Intervals for the mean and standard deviations to simulate genotypes
with different information to distinguish subpopulations

K = 2

mean std. deviation

highly inform. (20;50), (70;100) 20

informative (50;70), (70;90) 20

uninform. (40;70), (60;100) 15 resp. 301

K = 5

mean std. deviation

highly inform. (20;30), (50;60), (80;90), (110;120), (140;150) 15

informative (20;40), (45;65), (70;90), (95;115), (120;145) 15

uninform. (60;130) 10, 15,

20, 25 resp. 30

The first type of information represents the situation where the
mean repeat score in all subpopulations is rather different and the stan-
dard deviation of the distribution is the same in all subpopulations. In
contrast, means under the second type of information are closer, so
these loci are less useful to distinguish the subpopulations. Finally,

1 Lower standard deviation has been assigned to mean drawn from lower interval.
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‘uninformative’ represents strongly overlapping distributions with mi-
nor information to detect population stratification. For illustrative pur-
poses, examples of different distributions for all three information types
for K = 2 subpopulations are displayed in Figure 2.

Fig. 2. Repeat score distributions for two subpopulations

In total, three different information models characterized by com-
binations of the three information types were chosen. Numbers of loci
under the respective information model were denoted by L1, L2 and L3

with L1 + L2 + L3 = L = 10. That is, in case that 100% of loci are
of highly informative type, the information model is called ‘no noise’.
Information model ‘little noise’ (‘lot of noise’) means that 70% (50%)
of loci were simulated from the highly informative distribution, 20%
(30%) of the loci were drawn from the informative distribution and the
remaining 10% (20%) were generated from the uninformative type.

All 12 different settings are summarized in Table 2.
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Table 2. Summary of the simulation design

Number of Information Sample

subpopulations model sizes

2
no, little or n1 = n2 = 200

lot of noise n1 = 100, n2 = 500

no, little or
n1 = . . . = n5 = 100

5
lot of noise

n1 = n2 = 300

n3 = n4 = n5 = 600

Training of SOMs

Since the population structure to be detected is unknown the appro-
priate net structure is not known either and a variety of nets has to
be trained and compared. For the simulation study described here, the
net sizes given in Table 3 have been chosen.

Table 3. Size of SOMs applied

K = 2 K = 5

8x4 10x5

5x1 10x1

2x1 5x1

The smallest net sizes represent the true situation. Each neuron
represents one subpopulation. The medium net size was chosen to in-
vestigate whether a certain net size is needed to adequately capture
the population structure whereas the largest net size was chosen suffi-
ciently large, assuming that no a priori information on the structure is
available. Both, the medium net size and the large net size were used
to investigate whether the correct number of subpopulations can be
identified based on cluster indices.

All nets were initialized and trained with the function som from
package som (Version 0.3-4). For this purpose, the following parameters
had to be fixed: a Gaussian kernel and rectangular net topography were
chosen; the length of the training resp. fine tuning phase was set to 6000
resp. 12000. Data sets generated were standardized in advance of the
training. Convergence was ensured by initializing and training the net
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three times and checking identity of obtained weight vectors, apart from
the net being mirrored or rotated.

Visual Inspection and Clustering of Data

After the weight vectors were trained, each data vector was assigned
to one weight vector. The assignment was defined by minimum dis-
tance. Figure 3 illustrates the visual inspection for the 5 × 1 net that
is represented by a chain of five cells.

1 2 1 2 1 2 1 2 1 2

n=129n=70n=132 n=68 n=1

Fig. 3. Assignment of data to weight vectors in 5×1 net by true origin. Equal
sample sizes and information model ‘little noise’

The two different patterns of bars in each cell represent the two true
possible subpopulations of origin. In a realistic setting, this information
is of course not available: otherwise application of the method is not
needed. Each cell is labeled by the number of data vectors assigned to
the respective neuron. According to the general features of SOMs indi-
viduals with a similar genetic background should be assigned to weight
vectors that are close to each other. Ideally the SOM is partitioned into
the different subpopulations.
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In Figure 3 all individuals from subpopulation two are assigned to
the first or second neuron and all individuals from subpopulation one
are assigned to the third or fourth neuron. One individual from sub-
population one is assigned to the medium neuron. Thus, we obtained
a nearly perfect partition of the map according to the true popula-
tion of origin. Further clustering of the weight vectors has led to the
desired solution of two subpopulations (see Section 3.2). For five sub-
populations and for larger net sizes an analogous visualization showed
a comparably promising partition.

In a next step, cluster algorithms were applied to the trained weight
vectors. Finally, cluster indices suggesting a number of clusters were cal-
culated as objective criteria to strengthen the above visual impression.
Based on hard clustering, we clustered the trained weight vectors by
two hierarchical algorithms, namely complete linkage and ward, and
the k-means algorithm. Then, each data vector was assigned to the
same group as the weight vector to which it had minimum distance.
The Davies-Bouldin (DB) index was not calculated for the weight vec-
tors but for the complete data set. As at each loci paired data were
simulated we had to work with data matrices instead of data vectors.
Thus, the Davies-Bouldin index had to be extended accordingly to be
applicable. Let Ωk denote the set of data matrices xi and Ck the clus-
ter center in cluster k. To calculate the mean distance SDB

k of data
matrices in cluster k to the cluster center we used the Frobenius norm
dF (., .) instead of the Euclidean norm:

SDB
k =

1

|Ωk|
∑
j∈Ωk

dF (xi,Ck) .

Analogously, the distance between two clusters i and k is measured by

MDB
ik = dF (Ci,Ck) .

Let

DBik =
SDB

i + SDB
k

MDB
ik

, i �= k , (2)

and DBi = maxi�=kDBik, i, k,∈ {1, . . . ,K}, then the Davies-Bouldin
index is defined as

DB =
1

K

K∑
i=1

DBi . (3)

The above hard clustering is appropriate for a discrete population
structure where the individuals belong to only one subpopulation. The
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more realistic situation of an admixed population structure is captured
by a fuzzy clustering since here it is allowed that each individual has a
certain fraction of ancestry in each subpopulation. The fuzzy clustering
was performed in a two step procedure. First, complete linkage cluster-
ing was carried out, as the results from the hard clustering approach
suggested. Cluster centers obtained from this first step were then used
to calculate a so-called membership function of each data matrix xi to
a cluster l by

ul(xi) =

(
K∑

k=1

(
dF (xi,Cl)

dF (xi,Ck)

)1/(m−1)
)−1

,m > 1 . (4)

The Xie-Beni index was calculated on the basis of this membership
function to evaluate the cluster solution:

XB =

∑N
i=1

∑K
k=1 uk(xi)

2dF (xi,Ck)2

N minj �=l{dF (Cj,Cl)2} . (5)

In the remaining discussion of the results, data are referred to as data
vectors since two data vectors belong to each individual, building the
data matrix.

3.2 Results

In the following, the results obtained by hard clustering will be de-
scribed in detail whereas the results obtained by fuzzy clustering will
only be briefly discussed.

Results Obtained by Hard Clustering

Table 4 shows the values obtained from the Davies-Bouldin index for
K = 2 subpopulations and all information models investigated. The
index was derived by assigning each data vector to the same group as
the weight vector to which it had minimum distance. Please note that
possible numbers of clusters depend on the size of the SOM that is to
be clustered.

On the largest map, the 8 × 4 net, the Davies-Bouldin index took
the minimum value for two subpopulations, i.e., for the correct num-
ber of groups. This held true for all three algorithms applied and all
information models. On the medium map of size 5 × 1 and for little
and lot of noise as information models, the Davies-Bouldin index took
its minimum value for three groups. Further inspection of the number
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Table 4. Davies-Bouldin indices of clustered data for all information models
and two subpopulations with equal sample sizes

Number of clusters

Net size Noise Algorithm 2 3 4 5 6 7 8

Complete 0.59 1.41 1.85 2.54 2.94 2.94 2.62

8×4 no Ward 0.59 1.41 1.85 2.46 3.04 3.08 3.08

k-means 0.59 1.41 2.39 2.54 4.28 3.09 2.78

Complete 0.88 1.99 2.50 2.15 2.38 2.60 2.38

8×4 little Ward 0.88 1.99 2.53 2.71 2.92 2.62 2.39

k-means 0.88 1.99 1.96 2.55 2.70 2.93 2.92

Complete 1.02 1.39 1.99 2.26 2.45 2.46 2.46

8×4 lot Ward 1.02 1.39 1.99 2.28 2.45 2.46 2.46

k-means 1.02 1.92 2.35 2.67 2.83 2.91 2.71

Number of clusters

Net size Noise Algorithm 2 3 4

Complete 0.59 0.59 2.89

5×1 no Ward 0.59 0.59 2.89

k-means 0.59 0.59 3.12

Complete 0.89 0.87 1.83

5×1 little Ward 0.89 0.87 1.83

k-means 0.89 0.87 1.83

Complete 1.02 0.97 2.04

5×1 lot Ward 1.02 0.97 2.04

k-means 1.02 0.97 2.04

Number of clusters

Net size Noise Algorithm 2

no 0.59

2×1 little 0.88

lot 1.02

of assigned data vectors to the respective clusters on the medium map
revealed that one cluster consisted of one individual only. This single
observation should therefore be regarded rather as an outlier than as
a separate cluster. This is supported by the fact that the minimum
value of the Davies-Bouldin index was very close to the value obtained
for the true number of two subgroups. For the smallest map represent-
ing the true situation that did not need to be clustered further, the
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Davies-Bouldin index yielded the same values for the correct number
of subpopulations on both the largest and the medium map.

Table 5. Davies-Bouldin indices of clustered data for all information models
and two subpopulations with unequal sample sizes

Number of clusters

Net size Noise Algorithm 2 3 4 5 6 7 8

Complete 0.60 2.05 2.05 2.05 3.03 2.81 3.02

8×4 no Ward 0.60 2.05 3.03 3.03 3.03 2.81 2.79

k-means 0.60 2.99 2.99 2.83 2.85 2.99 2.94

Complete 0.88 1.98 2.46 2.46 2.64 2.77 2.91

8×4 little Ward 0.94 1.98 2.46 2.64 2.77 2.77 2.91

k-means 0.88 2.15 2.60 2.65 2.81 2.90 2.97

Complete 0.96 2.40 2.73 2.33 2.24 2.37 2.47

8×4 lot Ward 0.96 2.40 2.73 2.54 2.24 2.36 2.49

k-means 0.97 2.63 2.57 2.35 2.56 3.02 2.45

Number of clusters

Net size Noise Algorithm 2 3 4

Complete 0.61 0.74 2.42

5×1 no Ward 0.61 0.74 2.42

k-means 0.60 0.74 4.34

Complete 0.94 1.89 2.84

5×1 little Ward 0.94 1.89 2.84

k-means 0.94 2.68 2.84

Complete 1.04 2.28 3.10

5×1 lot Ward 1.04 2.28 3.10

k-means 1.04 2.28 2.72

Number of clusters

Net size Noise Algorithm 2

no 0.95

2×1 little 1.37

lot 1.57

Table 5 shows similar results for the situation ‘unequal sample sizes’
of the two subpopulations. The correct number of subpopulations is
detected by the Davies-Bouldin index on the largest and the medium
map, irrespectively of the cluster algorithm and the information model
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applied. On the largest map, the minimum value of the index slightly
varied depending on the clustering algorithms. On the true 2× 1 map,
the index took higher values than on the clustered maps. If no further
clustering was carried out about 6-12% of individuals were misclassified.

Summarizing the above results for two subpopulations, the Davies-
Bouldin index proved to be an appropriate tool to detect the correct
number of clusters. As expected, its value increased when more noise
was introduced to the data. The different cluster algorithms only led
to slightly varying results.

Let us now investigate a discrete population structure with K = 5
subpopulations. Table 6 shows the values obtained from the Davies-
Bouldin index for all information models and equal and unequal sample
sizes.

As it becomes obvious from Table 6 for many situations the Davies-
Bouldin index led to exactly the same value which was caused by
‘empty’ clusters that contained no data vector. Therefore, collapsing
the respective cluster with another cluster did not change the cluster
solution. Thus, it is reasonable to choose the minimum number of clus-
ters that gave the same value of the index as the number of clusters.

Irrespectively of the sample size situation, i.e., equal or unequal sam-
ple sizes, the Davies-Bouldin index tended to overestimate the number
of clusters on the 10 × 5 map if the k-means algorithm was applied,
whereas the correct number of clusters was detected if the hierarchical
algorithms were used. All three algorithms led to quite similar values
of the index for most numbers of clusters. On the large map, the index
increased when noise was introduced to the data.

On the medium map, the Davies-Bouldin index tended to underes-
timate the number of clusters for the k-means algorithm and unequal
sample sizes. Analogously to the large map, the hierarchical algorithms
correctly detected the number of clusters. The minimum values of the
index did not differ for the different information models and the hierar-
chical algorithms. This was also the case for unequal sample sizes and
the k-means algorithm.

A comparison of the Davies-Bouldin index values on the clustered
maps and those obtained from the minimal 5 × 1 net showed that
especially for unequal sample sizes the clustered maps seemed to per-
form much better. In contrast to the situation of two subpopulations,
a higher proportion of misclassifications was observed for the small-
est net. However, the assignment derived from e.g. a 10 × 5 map with
‘complete linkage’ algorithm and lot of noise was perfect.
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Table 6 (...continued) Davies-Bouldin indices of clustered data for
all information models and five subpopulations.

Number of clusters Number of clusters

Net size Noise Algorithm 5 5

no 0.42 2.08

5×1 little 1.18 0.87

lot 0.70 1.56

Let us finally investigate whether SOMs are able to identify the
underlying population structure. For this purpose, the proportion of
correctly classified individuals is presented in Table 7. In general it can
be stated that SOMs in combination with the Davies-Bouldin index
proved to be a valid tool in genetic epidemiology to detect population
structure and to correctly classify individuals. To be somewhat more
specific, only small differences in the results for different information
models and assuming different sample sizes could be observed. Both
hierarchical clustering algorithms performed better than the k-means
algorithm and led to nearly equal solutions. Unequal sample sizes led
to slightly lower proportions of correctly classified individuals. For two
subpopulations, the proportion of correctly classified individuals de-
creased with increasing noise in the data, whereas this could not be
seen for K = 5 subpopulations.

Results Obtained by Fuzzy Clustering

For the sake of comparison we applied fuzzy clustering to detect a dis-
crete population structure with K = 2 and K = 5 subpopulations.
Fuzzy clustering needs for its application that the number of subpop-
ulation is correctly identified in advance. In the preceding section, this
has been shown to be feasible by applying the hard clustering approach.
Thus, we consider the correct number of subpopulations as given by the
Davies-Bouldin index.

We then proceeded as follows: the trained weight vectors were clus-
tered by the complete linkage algorithm and cluster centers were com-
puted as they were needed to calculate the membership function for
each data vector. The solution was assessed by the Xie-Beni index de-
fined in equation 5 (cf. Table 8).

For equal sample sizes, the Xie-Beni index came up with smaller val-
ues than for unequal sample sizes. This held for all information models
and showed that balanced groups were easier to separate. For K = 2
subpopulations the index increased with increasing noise in the data,
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Table 7. Proportion of correctly classified individuals in both discrete popu-
lation structure models

K = 2

equal sample sizes unequal sample sizes

Net size Noise Complete Ward k-means Complete Ward k-means

no 1 1 1 1 1 1

8 × 4 little 1 1 1 1 0.99 0.998

lot 1 1 1 1 1 1

no 1 1 1 0.998 0.998 1

5 × 1 little 0.998 0.998 1 0.988 0.988 0.988

lot 1 1 1 0.986 0.986 0.986

K = 5

equal sample sizes unequal sample sizes

Net size Noise Complete Ward k-means Complete Ward k-means

no 1 1 1 1 1 1

10 × 5 little 1 1 0.992 1 1 0.875

lot 1 1 0.8 1 0.875 0.625

no 1 1 0.8 1 1 0.875

10 × 1 little 1 1 1 1 1 0.832

lot 1 1 0.8 0.885 0.885 0.885

Table 8. Xie-Beni index for ‘fuzzy’ cluster solutions for all information mod-
els, net sizes and sample size models for discrete population structure

K = 2 K = 5

8 × 4 5 × 1 10 × 5 10 × 1

equal unequal equal unequal equal unequal equal unequal

Noise sample sizes sample sizes sample sizes sample sizes

no 0.15 0.20 0.20 0.36 0.21 0.22 0.40 0.47

little 0.29 0.32 0.35 0.57 0.27 0.35 0.63 0.45

lot 0.34 0.38 0.42 0.69 0.27 0.37 0.44 0.52

which could not be said to be generally true for K = 5 subpopulations.
All values of the Xie-Beni index were rather small, indicating a clear
separation of the data. This was not surprising as a discrete population
structure situation was present.

Let us also investigate in this situation whether the solution based on
the fuzzy clustering yielded a reasonable estimate of the genetic back-
ground. For this purpose, we inspected the value of the membership
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function as an estimate of the genetic background for each individual.
In contrast to the hard clustering approach, SOMs performed poorly.
Even though the values of the Xie-Beni index were small, the estimates
strongly deviated from the true values. The true value for each individ-
ual is the unit vector, as each individual has its origin in exactly one
subpopulation. The histogram in Figure 4 illustrates the distribution of
estimates for the fraction of ancestry in subpopulation one for K = 2
subpopulations, no noise in the data and equal sample sizes, obtained
from a 8 × 4 net. It can be seen that the fraction of ancestry in sub-
population one was estimated as about 75% for those individuals from
subpopulation one and as about 25% for those individuals that have
their origins in subpopulation two.

Fig. 4. Histogram representing the fraction of ancestry in subpopulation 1
for K = 2 subpopulations, no noise and equal sample sizes

4 Conclusion and Discussion

Summarizing the above results a fuzzy clustering approach cannot be
considered as appropriate if the population structure is discrete since
it does not lead to a sufficiently precise estimate of the genetic back-
ground. This is in contrast to the hard clustering approach which works
well in the considered situations. This is expected from the visual in-
spection of the trained map, incorporating unknown information on the
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true origins. If such information is not available, visual inspection of a
large map may allow to detect a discrete population structure if there
are neurons to which no data vectors are assigned. The decision on the
number of clusters can be taken based on the Davies-Bouldin index by
additionally inspecting the number of assigned data vectors, if neces-
sary. For instance, clusters including not more than one observation
should be discarded as these are rather outliers than subpopulations.

An important drawback of the Davies-Bouldin index is that it is
not applicable to decide for K = 1 cluster. To overcome this problem
the gap statistic introduced by Tibshirani et al. (2001) may be used.
Tibshirani et al. (2001) note that the statistic works well for non-
overlapping clusters. This was confirmed by our simulations, where
two resp. five clusters were detected for all noise models investigated.
Unfortunately, if no cluster was present in the data, the gap statistic
still detected two or three groups. Therefore, the use of the statistic
was not pursued any further.

The application of SOMs to detect admixed population structure
is beyond the scope of this paper. In this case each individual does
not belong to a single subpopulation of origin but possesses fractions
of ancestry in some or all subpopulations involved. This situation has
been investigated in Wawro (2005). It was possible to detect the correct
number of subpopulations involved in the random mating process but
the estimates of the genetic background based on the fuzzy algorithm
were poor, as has already been observed in the discrete case presented
above.

As a conclusion, SOMs can be successfully used to detect a dis-
crete population structure, but are of limited use for admixed popula-
tion structures. Comparing SOMs with genomic controls or the struc-
tured association approach for discrete population structure it has to
be pointed out that SOMs require less additional loci to be genotyped
to correctly detect the population structure.
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1 Introduction

Microarrays are powerful tools for global monitoring of gene expressions
in many areas of biomedical research (Brown and Botstein (1999)).
Since the first publication on the statistical analysis of data from mi-
croarray experiments (Chen et al. (1997)), considerable amount of re-
search has been carried out regarding such analysis. However, little
work has been done on designing microarray experiments despite the
fact that designing is the key for optimization of resources and efficient
estimation of the parameters of interest.

Microarray experiments consist of large number of steps, as a result
various sources of errors and variability crop-in during the experiment
which then affect the final outcome. However, the sources of variation
in the microarray experiment are yet to be completely understood.
The extent to which these sources of variations are known should be
considered while designing the experiment so as to obtain quality data
and precise results.

Among the various experimental settings, reference designs are the
most common (Kerr and Churchill (2001), Vinciotti et al. (2004), Wit
and McClure (2004)). They are known to be inefficient as they assign
50% of their resources in measuring a reference condition which is not of
any interest but they are mainly used because of their simplicity. Loop
designs have also been used for microarray experiments. Usually either
reference or loop design is chosen without estimating which would min-
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imize the effect of unwanted variations and maximize the precision of
the estimates of the parameters of interest. Though the importance of
randomization, blocking and replication has been repeatedly mentioned
in literature, unavailability of user-friendly statistical design software
makes it difficult to explore the design aspect of the microarray exper-
iments.

The main purpose of this article is to describe approaches for de-
signing microarray experiments considering both technical and biolog-
ical replicates. Our approach is similar to the ones taken by Churchill
(2002); Wit and McClure (2004). The method for searching optimal
designs has been implemented in Matlab. In Section 2, we describe the
various sources of variations in the microarray experiment. Section 3
describes the model, optimality criteria, and the implementation. In
Section 4, we illustrate our approach with examples. The paper con-
cludes with a discussion section.

2 Sources of Variation

The sources of variation in microarrays can be partitioned into bio-
logical and technical variations. Biological variation is intrinsic to all
organisms and is influenced by genetic or environmental factors. Tech-
nical variation is introduced during mRNA extraction from a biological
sample, labeling and hybridisation. Additional source of variation is as-
sociated with reading the signal from the array.

To understand the biological and technical variations, we consider a
microarray experiment where a treatment is applied to mice. The aim
of the experiment is to determine how the treatment affects the mice
in general. To answer this, we sample individual mice randomly from
the population. Sampling more than one mouse is essential in order to
draw conclusions that are valid for an entire population and not only
for a particular mouse. Selected mice for the experiment are referred to
as biological replicates. The variation among the sampled mice refers
to the biological variation (between-biological sample variation) of the
population they have been sampled from.

If mRNA sample from an individual mouse is hybridised several
times on different arrays then the variation introduced is termed as
technical variation (within-biological sample variation) and hybridiza-
tions with respect to the same mouse are referred as technical replicates.
Technical replicates reduce the uncertainty about gene expression in the
particular mRNA sample in a study. This is useful in situations where
mRNAs are of interest individually.
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3 Model, Optimality Criteria, and Implementation

In this section, the method is described for a single gene but the same
parameterisation can be employed separately for every gene on the
microarray.

3.1 Model

For a gene, the measured intensity can be characterized by the following
additive model:

log(Zij(r)) = µφ
ij(r) + αi + βj(r) + εij(r), (1)

where log(Zij(r)) is the log-intensity of the rth replicate of the jth

mRNA sample on the ith array ; µφ
ij(r) denotes the expected read-

ing of rth replicate of jth sample on ith array; αi denotes the array
effect of ith array; βj(r) denotes the mRNA effect of the rth replicate

of jth mRNA sample; and εij(r) is the model error of the rth replicate

of the jth mRNA sample on the ith array with mean zero and variance
V ar(εij(r)) = σ2 Note that µ′s are the parameters of interest and are
described by φ depending upon the condition which they represent (see
section 4.2 for more details).

An observation Yij(p)k(q) is the log-ratio of pth replicate of jth sample

and qth replicate of kth sample on ith array. It is defined as:

Yij(p)k(q) = log(Zij(p)) − log(Zik(q))

= (µφ
ij(p) + αi + βj(p) + εij(p)) − (µφ

ik(q) + αi + βk(q) + εik(q))

= (µφ
ij(p) − µφ

ik(q)) + (βj(p) − βk(q)) + (εij(p) − εik(q))

= µφ
ij(p)k(q) + (βj(p) − βk(q)) + εij(p)k(q), (2)

where εij(p)k(q) is the random error with mean zero and variance

V ar(εij(p)k(q)) = V ar(εij(p)−εik(q)) = σ2
ε . To simplify the notations, we

refer εij(p)k(q) = εi since the error corresponds to array i.
The log-ratios between different hybridizations could be correlated

if they involve technical and biological replicates. Our model in (2) does
not involve separate terms for technical and biological variability but
both can be interpreted by a single term βj(r). Further, we assume that
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Cov(βj(p), βj∗(r)) =

⎧⎪⎨⎪⎩
σ2

b

2 +
σ2

t

2 , if j = j∗; p = r
σ2

b

2 , if j = j∗; p �= r

0, otherwise,

(3)

where
σ2

b

2 and
σ2

t

2 are interpreted as biological and technical variations.
Similarly, εi represents the measurement error while measuring

Yij(p)k(q) on ith array . Then

Cov(εi, εi∗) =

{
σ2

ε , if i = i∗

0, otherwise.
(4)

Let us consider the covariance structure between two observations com-
ing from slide i and i∗:

Cov(Yij(p)k(q), Yi∗j∗(r)k∗(s)) = Cov(µφ
ij(p)k(q) + (βj(p) − βk(q)) + εi,

µφ
i∗j∗(r)k∗(s) + (βj∗(r) − βk∗(s)) + εi∗)

= Cov(βj(p), βj∗(r)) − Cov(βj(p), βk∗(s))

−Cov(βk(q), βj∗(r)) + Cov(βk(q), βk∗(s))

+Cov(εi, εi∗).
(5)

To simplify notation, j(p), j∗(r), k(q), k∗(s) can be written without
p, r, q, s. When i = i∗,

Cov(Yijk, Yijk) = V ar(Yijk) =

{
σ2

t + σ2
ε , if j = k

σ2
b + σ2

t + σ2
ε , otherwise,

(6)

and when i �= i∗,

Cov(Yijk, Yi∗j∗k∗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ2

b , if j = j∗; k = k∗; j �= k; j∗ �= k∗
σ2

b

2 , if j = j∗; k �= k∗; j �= k; j∗ �= k∗

or j �= j∗; k = k∗; j �= k; j∗ �= k∗

0, otherwise.

(7)

The above covariance structure can be obtained by assuming a random
effects model where βj(r) = βj + uj(r) where uj(r) ∼ N(0, σ2

t /2) and

βj = w + vj where vj ∼ N(0, σ2
b/2) with the usual assumption of

independence between ε’s, u’s, and v’s. If there are two populations
under study, then w’s can be defined differently for them. Note that
since we consider log-ratios, the entry of the covariance matrix will be
with the sign reversed if the dyes have been swapped.
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For each gene, a vector of n observations y = (y1, . . . , yn)t obtained
on n arrays can now be represented equivalently by a linear regression
model as

y = Xφ+ δ, (8)

where X is a (n × l) design matrix defining the relationship between
the values observed in the experiment and a set of l independent para-
meters φ, δ is a n× 1 vector of correlated δi = (βj(p) − βk(q)) + εi with
variance-covariance matrix (Cov(Yij(p)k(q), Yi∗j∗(r)k∗(s))). We denote
this variance-covariance matrix as V. For an experiment with m con-
ditions, one way to choose the parameter vector is φ = (φ1, φ2, . . . , φl)

t

where l = m− 1, φ1 is a change in the gene expression at the condition
2 and φj is a change at the condition j + 1 compared to the condition
1. Any other contrast can be obtained by the relation φij = φj − φi.
The goal is to obtain an estimate of φ separately for each gene. The
least square estimator of φ is:

φ̂ = (XtV −1X)−1XtV −1y, (9)

and variance-covariance matrix of φ̂ is (XtV −1X)−1(= M). The stan-

dard error φ̂i is given by
√
ai, where ai is the ith diagonal element of

the matrix M (Searle (1971)).

3.2 Optimal Design

In microarray experiments, the parameters of interest are the changes
in gene expressions from one condition to another, i.e., φ. In order to
select an optimal design, we need to choose a design that makes each of
the ai as small as possible so that the standard error of φ̂i, i = 1, . . . , l
is minimized. When comparing designs over a fixed number of arrays,
some of the ai may be smaller for one design and some may be smaller
for other designs. In addition, not all designs provide information about
all the parameters. The aim is to select those designs which provide the
most accurate estimates for φ using some optimality criterion. Here,
four definitions are used for comparing and finding optimal designs
(each of them may result into different optimal designs):

1. A-optimality: the trace of M (= A) is minimized,
2. G-optimality: the maximum of diagonal elements of M (= G) is

minimized,
3. D-optimality: the determinant of M (= D) is minimized (same as

maximising the determinant of XtV −1X),
4. E-optimality: the largest eigenvalue of M (= E) is minimized.
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To implement these optimality criteria, knowledge of biological and
technical variations is required.

3.3 Implementation

We implemented the four optimality criteria defined in the earlier sec-
tion using a computer program written in Matlab. For a particular
parametrization, the inputs required for this program are the number
of arrays, possible hybridizations on an array, biological variance, tech-
nical variance, and random error. The number of biological replicates
available is given along with the list of possible hybridizations. The
program then enumerates all possible designs, i.e., assignment of possi-
ble hybridizations for all the arrays under consideration. If a particular
biological replicate under certain treatment is used more than once, its
multiple copies are treated as technical replicates. The program calcu-
lates A,D,E and G for each design for which XTV −1X is non-singular
and searches for the A-, D-, E-, and G-optimal designs.

4 Illustrations

4.1 Comparison of Two Groups

When the aim is to compare two groups, the parameter of interest is
the difference of the two group means. In case of a single parameter
(as in here), the variance of the parameter estimator is directly the
A-score. Fig. 1 shows how using five and ten arrays, this parameter can
be estimated accurately with different values of biological and technical
variance, and with different number of biological replicates. The error
variance σ2

ε was set as 0.1. It is easy to conclude from the figure that
increase in the number of biological replicates minimizes the A-score
in the presence of biological variation. Also, increase in the number of
arrays affects A-score the most when biological and technical variances
are large.

4.2 Factorial Design

Consider an experiment with the aim of studying the impact of two
drugs. To study gender specific responses, the population was divided
into two groups: male (A) and female (B). Each group was given three
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Fig. 1. Comparison of two groups with five and ten arrays for various values
of σ2

b and σ2
t . A-score is shown along the vertical axis; σ2

b and σ2
t are shown

along the other two axes.

treatments: no drug (T0), drug 1 (T1), and drug 2 (T2). Two groups
and three treatments result in six possible conditions to study. Using
two dyes, six conditions result in (62) = 15 possible combinations that
can be hybridized on each array, see Fig. 2.

Let φa0 be the baseline parameter for males and φb0 denote the
change in the expression levels of females compared to males under
treatment T0. Similarly, φa1 and φa2 denote changes of expression levels
for T1 and T2 with respect to T0, respectively. The interactions between
groups and the treatments are represented by φb0a1 and φb0a2. Table 1
summarizes the parameterizations for this experiment. Note that the
interaction parameters are φb0a1 = (B1−A1)− (B0−A0) and φb0a2 =
(B2 − A2) − (B0 − A0). The parameters of interest are denoted by φ
= (φa1, φa2, φb0, φb0a1, φb0a2)

t.

With fifteen combinations and n arrays to hybridize, there are 15n

designs. This includes several equivalent designs, however the program
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B0 B1 B2

A2A1A0

Fig. 2. Fifteen hybridizations using two groups, three treatments, and two
dyes.

Table 1. Parametrization for two groups and three treatments experiment.

Group Intensity for T0 Intensity for T1 Intensity for T2

(log) (log) (log)

B B0 = A0 + φb0 B1 = B0 + φa1 + φb0a1 B2 = B0 + φa2 + φb0a2

A A0 = φa0 A1 = A0 + φa1 A2 = A0 + φa2

enumerate unique designs. Table 2 lists all, unique, and possible designs
for different number of arrays along with the time taken to search these
designs. In this particular example, five is the smallest number of arrays
required in order to estimate all parameters.

Fifteen hybridizations result when there is one biological replicate,
two dyes and six conditions. It should be noted that with unlimited
number of biological replicates, the complexity of the search is same
as with one biological replicate. In general, the number of hybridiza-
tions increases quadratically with the number of biological replicates
since each individual from one condition may be hybridized together
with each individual from another condition. Say, c represent possible
hybridizations when one biological replicate and n arrays. Therefore,
when there are b biological replicates, the possibilities are cb2n. Thus,
possibilities increase rapidly as the number of biological replicates or
arrays increase. To present how enormous the possibilities can grow
with a small increase in biological replicates, we consider a small ex-
ample with five arrays. With two biological replicates, the possibilities
are 1,000 times more and with three replicates, the possibilities are
60,000 times more than when there is one biological replicate.

The only practical way to search optimal designs in case of such huge
possibilities is to divide the search into multiple steps and first find an
optimal design for some feasible number of arrays. Then augment this
design with additional feasible number of arrays till the available num-
ber of arrays are utilized. This approach was used to find an optimal

Rashi Gupta, Panu Somervuo, Sangita Kulathinal and Petri Auvinen



Optimal Designs for Microarray Experiments 397

Table 2. Number of designs for different number of arrays in case of fifteen
possible hybridizations per array. Column ’Unique’ gives the number of designs
ignoring the order of hybridizations, ’Possible’ gives the number of designs for
which all parameters are estimable, and ’Time’ gives the search time in seconds
using standard computer.

Arrays All Unique Possible Time

5 155 11,628 1,296 2

6 156 38,760 10,140 7

7 157 116,280 47,100 23

8 158 319,770 168,285 76

9 159 817,190 509,545 218

10 1510 1,961,256 1,372,698 549

design with three biological replicates and ten arrays. The optimal de-
sign proposed is shown in Fig. 3. Following values were used to search
for this optimal design (σ2

b = 0.6, σ2
t = 0.3, σ2

ε = 0.1). Proposed optimal
design corresponds to the following model:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 1 0

0 0 1 0 1

0 1 0 0 1

1 0 0 1 0

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
φa1

φa2

φb0

φb0a1

φb0a2

⎞⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1

δ2

δ3

δ4

δ5

δ6

δ7

δ8

δ9

δ10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10)

Further, to investigate how parameters (φa1, φa2, φb0, φb0a1, φb0a2)
get affected by the number of biological replicates, optimal designs
with one, three and unlimited number of biological replicates were
found (note: unlimited number of biological replicates imply no tech-
nical replicates). Variances of the parameter estimators are shown in
Fig. 4. It can be seen that for any number of arrays, the difference be-
tween the variance of parameter estimators for one and three biological
replicates are larger than the differences between three and unrestricted
number of biological replicates.
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Fig. 4. Parameter variances of A-optimal designs in a two-group, three-
treatment, two-dye experiment, for different number of arrays and different
number of biological replicates available (’-’ denotes unrestricted number),
σ2

b = 0.6, σ2
t = 0.3, σ2

ε = 0.1. φa1 and φa2 are the main effects of treat-
ments, φb0 is the main effect of group difference, and φb0a1 and φb0a2 are the
interaction terms between the treatments and group.

5 Discussion

In this paper, we propose a linear model to find optimal designs using
various optimality criteria and considering both biological and technical
replicates. The proposed approach for searching optimal designs has
been implemented in Matlab.

We would like to point out that the biological variability needs to
be specified in order to search for optimal designs. In practice, this
variability is not known and has to be estimated from the data. Some
prior knowledge about this variability for the experiment under consid-
eration is obligatory for the program. The proposed design is optimal
for the given parameters and it does not guarantee that when the ex-
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periment is conducted, data obtained from the experiment have same
biological variability. Also, it does not maximize the degrees of freedom
required in a statistical test for finding differentially expressed genes.

The role of biological and technical replicates can be understood
by an example where the parameter is the difference of two popula-

tion means. The variance of the parameter is
2σ2

b

n +
4σ2

t

nr for r technical
replicates on n biological replicates where nr represents the number
of arrays. (Kerr (2003)). If the number of arrays is fixed, the second
term is constant and the first term can be minimized which depends
only on the number of biological replicates. So it is obvious that techni-
cal replicates can never substitute for biological replication but should
be considered to obtain precise information from the assay. Technical
replicates also help to detect failed hybridizations. As a result, some
arrays should be kept aside to repeat failed hybridizations.

The complexity of matrix inversion in our program grows cubically
with the number of parameters. The main source of complexity how-
ever is the number of arrays and the restricted number of biological
replicates. To design an experiment for a large number of arrays or
parameters may become computationally difficult to handle. A sequen-
tial approach to design may be more appropriate in such situations.
For example, to first search optimal designs using a small number of
arrays and extend the existing designs to remaining arrays to reduce
the complexity of the problem. Various heuristic approaches could also
be introduced.

Although the examples discussed in this paper are restricted to two
dyes, our program is generic and can be used for any number of dyes.
The idea of using more than two dyes have already been applied and
discussed in (Woo et al. (2005)). We also with our program design an
experiment with three dyes at Institute of Biotechnology, Helsinki. The
aim was to compare RhoG protein G12V (GTP, activated mutant) and
T17N (GDP, inactivated mutant) against a control. Restricted number
of arrays (10) were used to propose an optimal design. The hybridi-
sations were carried out according to the proposed design. The data
were analyzed to test which genes behaved differently in G12V and
T17N with respect to the control. The results of this analysis will be
published elsewhere.
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1 Introduction

The use of prior information in linear regression analysis is well known
to provide more efficient estimators of regression coefficients. Such prior
information can be available in different forms from various sources
like as past experience of the experimenter, similar kind of experiments
conducted in the past, etc. The available prior information sometimes
can be expressed in the form of exact, stochastic or inequality restric-
tions. The methods of restricted regression estimation, mixed estima-
tion (Theil and Goldberger (1961)) and minimax estimation are pre-
ferred when prior information is available in the form of exact, stochas-
tic and inequality restrictions, respectively. More details about these
estimation procedures can be found in Rao, Toutenburg, Shalabh and
Heumann (2008).

When the prior information is available in the form of stochastic re-
strictions, then in many applications a systematic bias is also present.
Such systematic bias can arise from different sources and due to various
reasons like personal judgements of the persons involved in the experi-
ment, in testing of general linear hypothesis in linear models when null
hypothesis is rejected, in imputation of missing values through regres-
sion approach etc. Teräsvirta (1980) and Hill and Ziemer (1983) have
given some interesting examples for this type of information. How to
incorporate such systematic bias in the estimation procedure is an is-
sue which is addressed in this article. The method of weighted mixed
regression estimation is utilized for the purpose. How to choose the
weights in this estimation procedure so as to have gain in efficiency
under the criterion of mean dispersion error matrix is also addressed.
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The plan of the paper is as follows. The model description and the
estimation of parameters are discussed in Section 2. The properties of
the estimators are derived and analyzed in Section 3. Some conclusions
are placed in Section 4.

2 Model Specification and Estimation of Parameters

Consider the linear regression model

y = Xβ + ε (1)

where y is a (T ×1) vector of study variable, X is a (T ×K) full column
rank matrix of T observations on each of the K explanatory variables,
β is a (K × 1) vector of regression parameters and ε is a (T × 1) vector
of random disturbances with E(ε) = 0 and V(ε) = σ2IT where σ2 is
unknown.

The application of Gauss–Markov theory on (1) yields the ordinary
least squares estimator (OLSE) of β as

β̂ = S−1X ′y (2)

where S = X ′X. The OLSE is the best linear unbiased estimator of β
with covariance matrix

V(β̂) = σ2S−1 .

Further we assume that some prior information about the regres-
sion coefficients is available which is stochastic in nature and contains
systematic bias. We use the framework of linear stochastic restrictions
to present the available prior information and systematic bias as

r = Rβ + δ + φ (3)

where r is a (J×1) vector and R is a (J×K) matrix of known elements;
δ is a (J × 1) vector that expresses the unknown systematic but non-
stochastic bias in the restrictions; and φ is a (J×1) vector representing
the stochastic nature of prior information. We assume that E(φ) = 0
and V(φ) = σ2IJ . For R, we assume full row rank (if J < K) or full
column rank (if J ≥ K).

Note that in many statistical applications, the assumption that the
prior information is unbiased, i.e., E(r) = Rβ is violated. Under those
cases, the set up of (3) fits well. Also, the mixed regression estimator
(Theil and Goldberger (1961)) which is an unbiased estimator of β
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when δ = 0 becomes biased when δ �= 0. Wijekoon and Trenkler (1995)
have used the framework of (3) in pre-test estimation of parameters.

The criterion of mean dispersion error matrix (MDEM) compari-
son allows a more general view on the properties of estimators in the
linear regression model when additional and possibly biased stochastic
restrictions are available. A motivation can be given as follows. Using
a quadratic loss function

L(β̂, β, A) = (β̂ − β)′A(β̂ − β)

where A ≥ 0 is a symmetric and nonnegative definite matrix, the
(quadratic) risk function R(β̂, β, A) of an estimator β̂ of β is the ex-
pected loss as

R(β̂, β, A) = EL(β̂, β, A) = E(β̂ − β)′A(β̂ − β) .

A theorem by Theobald (1974) and Trenkler (1985) gives a necessary
and sufficient condition that if an estimator is superior over other es-
timators under the criterion of MDE matrix (MDEM) (often called as
MSE–I superiority), then the same estimator remains uniformly supe-
rior over other estimators under the criterion of risk function also for
all nonnegative definite matrix A. The MDEM superiority means that
an estimator β̂2 of β is better than an estimator β̂1 of β when

∆(β̂1, β̂2) = M(β̂1, β) − M(β̂2, β) ≥ 0 , (4)

i.e., ∆(β̂1, β̂2) is nonnegative definite where MDEM of β̂ is

M(β̂, β) = E(β̂ − β)(β̂ − β)′

= V(β̂) + Bias(β̂, β)Bias(β̂, β)′ ,

covariance matrix of β̂ is

V(β̂) = E[(β̂ − E(β̂))(β̂ − E(β̂))′] ,

and bias of β̂ is
Bias(β̂, β) = E(β̂) − β .

The techniques of MDEM comparisons have been studied and illus-
trated, e.g. by Trenkler (1981), Teräsvirta (1982), Trenkler and
Toutenburg (1990) and Toutenburg and Trenkler (1990). An overview
can be found in Rao, Toutenburg, Shalabh and Heumann (2008). In or-
der to incorporate the restrictions (3) in the estimation of parameters,
we minimize
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(y −Xβ)′(y −Xβ) + w (r −Rβ)′(r −Rβ)

with respect to β where w is the weight lying between 0 and 1 such
that w �= 0 (w = 0 would lead to OLSE). The resulting estimator of β
is given by

β̂w = (S + wR′R)−1(X ′y + wR′r) = Z−1
w (X ′y + wR′r) (5)

where Zw = S +wR′R and β̂w is termed as weighted mixed regression
estimator (WMRE).

3 Properties and Efficiency of WMRE Over OLSE

Now we study the efficiency properties of weighted mixed regression
estimator and the dominance conditions for the MDEM superiority of
WMRE over OLSE.

The bias of β̂w is

Bias(β̂w, β) = E(β̂w) − β

= wZ−1
w R′δ (6)

and MDEM of β̂w is

M(β̂w, β) = σ2Z−1
w (S + w2R′R)Z−1

w + w2Z−1
w R′δδ′RZ−1

w . (7)

The covariance matrix of β̂w is

V(β̂w) = σ2Z−1
w (S + w2R′R)Z−1

w . (8)

The difference in the covariance matrices of OLSE and WMRE is

D(β̂, β̂w) = V(β̂) − V(β̂w)

= σ2S−1 − σ2Z−1
w (S + w2R′R)Z−1

w

= σ2Z−1
w

[
ZwS

−1Zw − S − w2R′R
]
Z−1

w

= w2σ2Z−1
w R′

[(
2

w
− 1

)
I +RS−1R′

]
RZ−1

w . (9)

The difference in (9) is positive definite when Zw is positive definite
and (

2

w
− 1

)
I +RS−1R′ > 0 , (10)

which is possible as long as w < 2.
Now there are two possible cases:
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1. When J < K, R has full row rank, therefore R′ has full column
rank and it follows that in this case we can only conclude that

D(β̂, β̂w) ≥ 0 .

2. When J ≥ K, R has full column rank and it is concluded that

D(β̂, β̂w) > 0 .

3.1 Case 1: When J < K

Now we study the necessary and sufficient condition for the MDEM su-
periority of WMRE over OLSE in case when J < K. The next theorem
presents a necessary and sufficient condition for such superiority.

Theorem 1. The WMRE β̂w is MDEM superior to OLSE β̂ in case
of J < K if and only if

ρ(w) = σ−2δ′
[
(2w−1 − 1)I +Rs−1R′]−1

δ ≤ 1 . (11)

Thereby we assume a priori, that 0 < w ≤ 1.

See Toutenburg (1989) for the derivation of (11). Note that for w = 0,
we get the OLSE and condition (11) is trivial, since ρ(0) = 0. Now we
show, that ρ(w) is monotone in w.

Theorem 2. ρ(w) is monotonic increasing in w.

Proof:

∂ρ(w)

∂w
=

=
∂

∂w
σ−2δ′

[
(2w−1 − 1)I +RS−1R′]−1

δ

= σ−2δ′
{

∂

∂w

[
(2w−1 − 1)I +Rs−1R′]−1

}
δ

= −σ−2δ′
[
(2w−1 − 1)I +RS−1R′]−1

{
∂

∂w

[
(2w−1 − 1)I +Rs−1R′]}

× [
(2w−1 − 1)I +RS−1R′]−1

δ

= 2w−2σ−2δ′
[
(2w−1 − 1)I +RS−1R′]−2

δ > 0 . (12)

This completes the proof.
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Now we derive the sufficient condition for the MDEM superiority of
WMRE over OLSE in case when J < K. To derive a sufficient domi-
nance condition, we use the following theorems, see e.g. Rao, Touten-
burg, Shalabh and Heumann (2008, Theorems A.39 and A.44):

1. If A is a (n × n) is a symmetric matrix and λ1 is its maximum
eigenvalue (the eigenvalues of a symmetric matrix are all real), then
for the quadratic form h′Ah,

sup
h

h′Ah
h′h

= λ1 .

2. If A > 0, then all the eigenvalues of A are positive.

Now, if µ1 ≥ . . . ≥ µJ > 0 are the real eigenvalues of positive
definite matrix RS−1R′, then the eigenvalues of the matrix

Q = (2w−1 − 1)I +RS−1R′ (13)

are also all positive as 0 < w ≤ 1.
Applying the spectral decomposition on RS−1R′ using Rao, Touten-

burg, Shalabh and Heumann (2008, Theorem A.30), the matrix Q in
(13) becomes

Q = (2w−1 − 1)I + P diag(µj) P
′

= (2w−1 − 1)PP ′ + P diag(µj) P
′

= P
[
diag(2w−1 − 1) + diag(µj)

]
P ′

= P diag(2w−1 − 1 + µj) P
′ (14)

where P is an orthogonal matrix.
So we obtain the condition (11) as

ρw = σ−2δ′Q−1δ

= σ−2δ′(P ′)−1 diag(2w−1 − 1 + µj)
−1(P ′)−1δ

= σ−2δ̃
′
diag

(
1

2w−1 − 1 + µj

)
δ̃ ≤ 1 , (15)

where
δ̃ = P ′δ.

An equivalent transformation of (15) is

δ̃
′
diag( 1

2w−1−1+µj
)δ̃

δ̃
′
δ̃

≤ σ2 1

δ̃
′
δ̃
.



Weighted Mixed Regression Estimation 407

Using

δ̃
′
δ̃ = δ′PP ′δ = δ′δ

and a result that the eigenvalues of a diagonal matrix are the diago-
nal elements themselves, we can derive the following condition for the
superiority of β̂w over β̂ with respect to w. The WMRE β̂w is MDEM

superior to OLSE β̂ if

sup
δ̃

δ̃
′
diag( 1

2w−1−1+µj
)δ̃

δ̃
′
δ̃

≤ σ2 1

δ̃
′
δ̃

or if

sup
δ̃

δ̃
′
diag( 1

2w−1−1+µj
)δ̃

δ̃
′
δ̃

≤ σ2

δ′δ

or if
1

2w−1 − 1 + µJ

≤ σ2

δ′δ

with 2w−1 − 1 + µJ > 0 (0 < w ≤ 1) and µJ being the smallest
eigenvalue of RS−1R′.

This can further be transformed into

2

w
≥ σ−2 δ′δ + 1 − µJ . (16)

Now we have two cases:

1. When σ−2δ′δ + 1 − µJ ≤ 0, i.e.,

µJ ≥ σ−2δ′δ + 1 . (17)

Then we obtain that every w ∈ (0, 1] can be chosen to obtain the

MDEM superiority of β̂w over β̂.
2. When σ−2δ′δ + 1 − µJ > 0, then (16) can be transformed into

w ≤ 2

σ−2δ′δ + 1 − µJ

. (18)

We again have two subcases:
• When 2/(σ−2δ′δ + 1 − µJ) ≥ 1, then

µJ ≥ σ−2δ′δ − 1 . (19)

Then we obtain that every w ∈ (0, 1] is selectable to obtain the

MDEM superiority of β̂w over β̂.
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• When 2/(σ−2δ′δ + 1 − µJ) < 1, then

w ∈
(

0,
2

σ−2δ′δ + 1 − µJ

]
(20)

can be selected to obtain the MDEM superiority of β̂w over β̂.

Now we can formulate the following theorem.

Theorem 3. A sufficient condition for the MDEM superiority of
WMRE β̂w over OLSE β̂ when J < K is given by the following choice
of w:

w ∈ (0, 1] if σ−2δ′δ ≤ 1 + µJ

w ∈
(
0, 2

σ−2δ′δ+1−µJ

]
otherwise .

}
(21)

Now we look for the existence of weight w∗ which guarantees the
MDEM superiority of WMRE over OLSE in case of J < K. This is
stated in the following theorem.

Theorem 4.

w∗ =
1

1 + σ−2δ′δ
(22)

always fulfills condition (11).

Proof:

It suffices to show that w∗ fulfills the condition (21). In case σ−2δ′δ ≤
1 + µJ , then this is fulfilled because of 0 < w∗ < 1 and in the other
case, we only have to show that

w∗ =
1

1 + σ−2δ′δ
≤ 2

σ−2δ′δ + 1 − µJ

.

This is also fulfilled because µJ > 0. Therefore, independent of J (J <
K), there exists a superiority guaranteed by w∗.
This completes the proof.

Next we obtain the distribution of estimated w∗ under the assump-
tion of normal distribution when J < K.

We assume that the error vectors ε and φ are independently and
normally distributed as follows.

ε ∼ N
(
0, σ2IT

)
and

φ ∼ N
(
0, σ2IJ

)
.
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In order to find the distribution of estimated w∗, we replace the un-
known parameters δ and σ2 in (22) by their unbiased estimators

δ̂ = r −Rβ̂

and

σ̂2 =
1

T −K
ε̂′ε̂ ,

respectively.
We note that for δ̂,

E(δ̂) = E(r −Rβ̂)

= δ (23)

and

V(δ̂) = V(r −Rβ̂)

= V(φ) + V(R(X ′X)−1X ′ε)
= σ2

[
IJ +RS−1R′] . (24)

So we obtain
δ̂ ∼ N

(
δ, σ2

[
IJ +RS−1R′])

and it follows that

σ−2(δ̂ − δ)′
[
IJ +RS−1R′]−1

(δ̂ − δ) ∼ χ2
J .

For the estimation of σ2, we use its unbiased estimator as σ̂2. We
obtain under the normal distribution assumption that

(T −K)σ̂2

σ2
∼ χ2

T−K .

Further we note that δ̂ and σ̂2 are also independent because δ̂ de-
pends on β̂ and; β̂ and σ̂2 are independent.

Then

ŵ∗ =
1

1 + δ
′
δ

σ2

=
σ̂2

σ̂2 + δ̂
′
δ̂

and it follows that

̂̂̂
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ŵ∗ ∼
σ2

T−KZ

σ2

T−KZ + Y ′Y
(25)

or

ŵ∗ ∼ σ2Z

σ2Z + (T −K)Y ′Y
(26)

where Z ∼ χ2
T−K and Y is distributed as δ̂ ∼ N

(
δ, σ2

[
IJ +RS−1R′]) .

For a better representation of this distribution, we choose another
illustration for the quadratic form Y ′Y from Mathai and Provost (1992,
p. 29, Representation 3.1a.1), with the special case A = I.

We use again the spectral decomposition for this as

σ2(IJ +RS−1R′) = Pdiag[σ2(1 + µj)]P
′ ,

where µj , (j = 1, . . . , J) are the eigenvalues of RS−1R.
Then we obtain

[
σ2

(
IJ +RS−1R′)]−1/2

= Pdiag

(
1

σ
√

1 + µj

)
P ′.

Further, let

b′ = P ′ [σ2
(
IJ +RS−1R′)]−1/2

δ

= P ′Pdiag

(
1

σ
√

1 + µj

)
P ′δ

= diag

(
1

σ
√

1 + µj

)
P ′δ

= diag

(
1

σ
√

1 + µj

)
δ̃

so that

b =

(
δ̃1

σ
√

1 + µ1

, . . . ,
δ̃J

σ
√

1 + µJ

)′

= (b1, . . . , bJ)′ .

with δ̃ = (δ̃1, . . . , δ̃J)′ = P ′δ.
Then we obtain
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Y ′Y =
J∑

j=1

σ2(1 + µj)(Uj + bj)
2

= σ2
J∑

j=1

(1 + µj)

(
Uj +

δ̃j

σ
√

1 + µj

)2

where
U = (U1, . . . , UJ)′,

and we have
E(U) = 0 and V(U) = IJ .

Because Y is assumed to be normally distributed, so Uj ’s are
also independent and standard normally distributed random variables.
Therefore Y ′Y is a linear combination of independent non-central χ2–
variables.

The distribution of ŵ∗ from (26) is then

ŵ∗ ∼ σ2χ2
T−K

σ2χ2
T−K + (T −K)σ2

∑J
j=1(1 + µj)χ

2
1(b

2
j )

(27)

or

ŵ∗ ∼ χ2
T−K

χ2
T−K + (T −K)

∑J
j=1(1 + µj)χ

2
1

(
δ̃
2
j

σ2(1+µj)

)
where χ2

1(b
2
j ) indicates the non-central χ2–distribution with non-

centrality parameter

b2j =
δ̃
2
j

σ2(1 + µj)
, (j = 1, . . . , J).

So the distribution of (27) depends on T, K, J, σ2, δ and the
eigenvalues of RS−1R′.

3.2 Case 2: When J ≥ K

Now we discuss the superiority of WMRE and OLSE over each other
when J ≥ K.

The necessary and sufficient condition for the MDEM superiority of
β̂w over β̂ in case when J ≥ K is mentioned in the next theorem.
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Theorem 5. The WMRE β̂w is MDEM superior over OLSE β̂ in case
when J ≥ K if and only if

ρw = Bias(β̂w)′D(β̂, β̂w)−1Bias(β̂w)

= w2δ′RZ−1
w

{
w2σ2Z−1

w R′
[(

2

w
− 1

)
I +RS−1R′

]
RZ−1

w

}−1

×Z−1
w R′δ

= σ−2δ′R
{(

2

w
− 1

)
R′R+R′RS−1R′R

}−1

R′δ

≤ 1 . (28)

Because R is assumed to have full column rank, so R′R is positive
definite and invertible. A transformation of (28) provides

ρw = wσ−2δ′R
[
(2 − w)R′R+ wR′RS−1R′R

]−1
R′δ

= wσ−2δ′R
[
2R′R− wR′R+ wR′RS−1R′R

]−1
R′δ (29)

and we obtain that
ρw = 0 , if w = 0 .

Now we show the monotonicity of ρw with respect to w in case of
J ≥ K. For this, we differentiate ρw in (29) with respect to w and use
again Rao, Toutenburg, Shalabh and Heumann (2008, Theorems A.94
and A.96).

Let

Q∗ =

(
2

w
− 1

)
R′R+R′RS−1R′R (30)

and so
∂

∂w
Q∗ = − 2

w2
R′R .

Then we obtain for 0 < w ≤ 1:

∂ρw

∂w
=

∂

∂w
σ−2δ′RQ−1

∗ R′δ

= σ−2δ′R
{

∂

∂w
Q−1

∗

}
R′δ

= −σ−2δ′RQ−1
∗

{
∂

∂w
Q∗

}
Q−1

∗ R′δ

=
2

w2
σ−2δ′RQ−1

∗ R′RQ−1
∗ R′δ ≥ 0 . (31)

We note from (31) that ρw is monotonic increasing in w.
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Also ρw = 0 for w = 0. So there exists a w∗ which guarantees the

MDEM superiority of β̂w over β̂.
Now we derive the sufficient condition for the MDEM superiority of

β̂w over β̂ in case when J ≥ K.
As in the case of J < K, we tried to obtain a sufficient condition

with the help of eigenvalue system. For this case, now we use again the
spectral decomposition for positive semi-definite matrix RS−1R′. To
accomplish this, first we use two times the inversion formula for ma-
trices from Rao, Toutenburg, Shalabh and Heumann (2008, Theorem
A.18 (iii)) on ρw.

Let

q =
2

w
− 1 (≥ 1)

and
SR = R′R .

Then we obtain:

ρw = σ−2δ′R
{
qSR + SRS

−1SR

}−1
R′δ

= σ−2δ′R

{
1

q
S−1

R − 1

q
S−1

R SR

[
S + SR

1

q
S−1

R SR

]−1

×SR
1

q
S−1

R

}
R′δ

=
1

q
σ−2δ′RS−1

R R′δ − 1

q2
σ−2δ′R

[
S +

1

q
SR

]−1

R′δ

=
1

q
σ−2δ′R(R′R)−1R′δ

− 1

q2
σ−2δ′R

[
S−1 − S−1R′ (

qI +RS−1R′)−1
RS−1

]
R′δ.

(32)

Now we use the spectral decomposition of RS−1R′ = Pdiag(µj)P
′.

Thereby µ1 ≥ . . . ≥ µJ ≥ 0 are again the eigenvalues of RS−1R′. In
contrast to the case J < K, some eigenvalues are zero now, and so in
particular, we can assume µJ = 0.

With this, we obtain
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ρw =
1

q
σ−2δ′R(R′R)−1R′δ

− 1

q2
σ−2δ′ Pdiag

(
µj −

µ2
j

q + µj

)
P ′δ

=
1

q
σ−2δ′R(R′R)−1R′δ

−σ−2δ′ Pdiag

(
µj

q(q + µj)

)
P ′δ. (33)

With
δ̃ = P ′δ and δ̃

′
δ̃ = δ′δ ,

we can derive the following condition. The WMRE β̂w is MDEM su-

perior to the OLSE β̂, if

ρw

δ′δ
=

1
q δ

′R(R′R)−1R′δ

δ′δ
−
δ′ Pdiag

(
µj

q(q+µj)

)
P ′δ

δ′δ
≤ σ2

δ′δ
or

ρw

δ′δ
=

1
q δ

′R(R′R)−1R′δ

δ′δ
−
δ̃
′
diag

(
µj

q(q+µj)

)
δ̃

δ̃
′
δ̃

≤ σ2

δ′δ
. (34)

Because the second term in (34) after the minus sign is positive,
we consider the worst case, viz., the first and second terms in (34) are
maximum and minimum, respectively.

The first term in (34) contains the idempotent matrix
δ′R(R′R)−1R′δ, whose eigenvalues are only zero and one (Rao, Touten-
burg, Shalabh and Heumann (2008, Theorem A.61 (i)).

The minimum eigenvalue of the diagonal matrix in the second term
of (34) is

µJ

q(q + µJ)
,

since ∂
∂x

x
(c2+cx)

> 0.

So a sufficient condition is

1

q
− µJ

q(q + µJ)
≤ σ2

δ′δ
or

1

2w−1 − 1 + µJ

≤ σ2

δ′δ
is sufficient for ρw ≤ 1.

Because µJ = 0 surely, this condition simplifies more in contrast to
the case when J < K. So we obtain the following theorem.
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Theorem 6. A sufficient condition for the MDEM superiority of β̂w

against β̂ in case when J ≥ K is

w ≤ min

{
1 ;

2

1 + σ−2δ′δ

}
. (35)

4 Conclusions

We have considered the method of weighted mixed regression estima-
tion to incorporate the systematic bias and randomness in the prior
information to estimate the regression coefficients in a linear regres-
sion model. The weighted mixed regression estimator is derived and its
dominance over the ordinary least squares estimator is studied under
the criterion of mean dispersion error matrix. The choice of weight is
found with which the MDEM dominance of WMRE over OLSE is ob-
tained. We find that the MDEM dominance depends on the range of
weight which itself depends on the model settings. The distribution of
the estimated weight is obtained. The choice of weight which guaran-
tees the MDEM dominance of WMRE over OLSE is found as well as
its distribution is derived which is a function of central and noncentral
χ2–variables.
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1 Introduction

A dicer’s dispute in 1654 led to the creation of the theory of proba-
bility by Blaise Pascal and Pierre de Fermat. Later, 350 years after
their famous correspondence, throwing a dice is still the standard way
of teaching the basic ideas of probability. The second classical exam-
ple for randomness is tossing of a coin. Famous experiments were run
by Buffon (he observed 2048 heads in 4040 coin tosses), Karl Pearson
(12012 heads in 24000 coin tosses), and by John Kerrich (5067 heads in
10000 coin tosses) while he was war interned at a camp in Jutland dur-
ing the second world war. The coin tossing or rolling dice experiments
are often performed in the classes to introduce the ideas and concepts
of probability theory. In higher classes students sometimes do not find
them attractive and get bored. An attempt is made here to illustrate
how these experiments can be made interesting by simple extensions.
Dunn (2005) proposed some nice variations rolling special types of
dice. In this article we focus on repeated coin spinning experiment by
several students. We show how planning experiments including the de-
termination of sample size, multiple testing, random effects models,
overdispersion, non standard testing and autocorrelation can be illus-
trated in the context of coin spinning.

2 The Experiments

Shortly after the Euro had been introduced in 12 European countries,
it was claimed in an article in The Times (Boyes, Baldwin and Hawkes
(2002)) that the new Euro coins are not “fair”. There are different coins
in all European countries of the Euro zone, but their diameter and
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weight are identical. There was a report on an experiment in spinning
the Belgian Euro coins on a table that resulted in 140 times head (the
head of King Albert) out of 250 trials. Therefore the author was asked
by a German TV station to conduct a similar experiment with the
German Euro coins in his statistics class. In the following chapters
we show how different statistical topics can be illustrated with this
experiment.

3 Planning and Sample Size

The first step is to clarify the research question and to plan the exper-
iment including the adequate sample size. It was decided to conduct
four experiments with the German 1 Euro and 2 Euro coins. Both types
of coins are tossed and spun. The main data analysis of the experiment
had to be fixed in advance. Here we consider a simple Binomial test
with the null hypothesis H0 : p = 0.5 against H1 : p �= 0.5 where p
denotes the probability of getting tails. If we want to conduct a signif-
icance test, one has to fix the significance level and the desired power
of test. In addition, the concept of the minimal relevant effect should
be addressed. Substantive considerations and data from former studies
have to be taken into account. In our example, the data from the Bel-
gian Euro experiment gave a proportion of 0.56 for “head”. We started
the calculation by a minimal relevant effect of 0.05. Note that the min-
imal relevant effect is not the expected effect. A good explanation for
a minimal relevant effect of 0.05 is that we are are not interested in
deviations from p = 0.5 which are less than 0.05. Using the normal
approximation of the Binomial distribution, this yields a sample size
of n = 783 for a type one error of α = 0.05 and a power of 1− β = 0.8
in a two–sided test. Since four different variations of the experiment
are conducted, the issue of multiple testing emerges in a natural way.
Using the Bonferroni inequality, the significance level can be chosen to
be 0.05/4. This translates to a sample size of n = 1112. In general, the
sample size is a function of three variables– significance level, power
and minimal relevant effect. A nice interactive tool for calculating the
sample size and illustrating this relationship has been provided by Ruth
Lenth (www.stat.uiowa.edu/∼rlenth/Power/). Determining a sensi-
ble sample size is always a balancing of these three input variables and
effort (costs) for the experiment. This can be illustrated in our case by
Table 1. One can argue similarly for a higher power of 0.95 or for a
higher or lower minimal relevant effect. The sample size of the exper-
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iments was fixed as n = 800 per experiment, which corresponds to a
minimal effect of 0.06 using a type one error of α = 0.054.

Table 1. Sample size determination using a Binomial test of the null hypoth-
esis H0 : p = 0.5.

Significance level (α) Power (1 − β) Minimal effect Minimal sample size (n)

0.05 0.8 0.05 783

0.0125 0.8 0.05 1112

0.0125 0.8 0.06 771

0.05 0.9 0.05 1048

0.05 0.8 0.1 194

Further aspects to be possibly addressed are – the model assump-
tions, the adequacy of the approximation (the calculations are based on
the normal approximation of the Binomial, which may not be suitable
in cases of small sample size), and the possibility to conduct a sample
size analysis by Monte Carlo simulations for complex study designs.

4 Conducting the Experiments and Simple Analysis

Before conducting the experiments, the exact conditions should be fixed
in a protocol (comparable to study protocols in medical and epidemio-
logical studies). In our case, 16 students conducted the experiment with
50 times tossing and then spinning the coins. They received a standard
form to fill in their results. There were clear rules regarding the validity
of a trial, e.g. when spinning the coins on a table and the coin fell on the
ground, this trial was not valid and had to be repeated. Furthermore, a
stable spinning of the coin had to be achieved to produce a valid trial.

The results of the experiments are detailed in Table 2.

Table 2. Analysis of the experiments with 800 trials and p–values correspond
to testing H0 : p = 0.5 by a simple Binomial test.

1 Euro 1 Euro 2 Euro 2 Euro

(tossing) (spinning) (tossing) (spinning)

Number of tails 406 411 395 495

proportion of tails 0.51 0.51 0.49 0.62

p–value 0.70 0.45 0.75 < 0.001
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It can be seen that there was only a significant result for spinning
the 2 Euro coins. The estimated probability for tails was 0.62. This type
of unexpected result makes the experiment exciting for the students.
One immediate step is to check the correctness of data, experiment
and plausibility of the result from physical point of view. There was
one student with 48 tails out of 50. Now a discussion about outliers in a
data analysis was conducted. Since there was no indication of cheating,
the observation was not excluded from the main analysis. For a sensi-
tivity analysis, these 50 trials were left out, still leading to a rejection
of the null hypothesis. Concerning the plausibility of the result, some
literature had to be consulted. There is wide agreement that there are
no effects or only small effects when tossing the coin. Basically the re-
sult is deterministic when the initial conditions are known. Typically
the distribution of the initial conditions in such an experiment lead to
a fair coin. For details, we refer to the interesting paper by Gelman
and Nolan (2002). Those authors conclude “the biased coin has long
been a part of statistical folklore, but it does not exist in the form in
which it is imagined.” In a recent paper, Diaconis, Holmes and Mont-
gomery (2007) show that there is a small effect (the probability for
heads is estimated to be 0.51) for a coin which is flipped starting from
heads. So finding no effect in the tossing experiments is not a surprise.
The physics for coin spinning for the ideal coin is still under discussion
(called as Euler’s disk, see Moffatt (2000)). For spinning of different
coins there are different reports on deviations from the probability of
0.5, see Gelman and Nolan (2002) and Paulos (1995). So our result
does not contradict current physical knowledge and seems to be plau-
sible.

5 Checking Assumptions

The next step in a statistical analysis is to check the assumptions. We
focus on the spinning experiment of the 2 Euro coins. Two basic as-
sumptions of a Binomial experiment are the independence of trials and
constant probability. Since in our case, every experiment was conducted
by one person with tossing of one coin 50 times, so the question arises
that whether there is a dependence between the probabilities and the
person. Denoting by I the number of persons, and by Ji the number of
trials for each person, a statistical model can be given by

P (Yij = 1) = pi, i = 1, . . . , I, j = 1, . . . , Ji. (1)
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with pi being the individual probability for one person. The question
is whether the pi’s are equal, i.e., we want to test the null hypothesis
H0 : p1 = p2 = . . . = pI . This can be done by different methods.

5.1 Contingency Table

Table 3. Results for the classroom experiment of 2 Euro coin spinning

Person No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sum

Number of head 23 29 24 18 12 20 22 27 12 14 17 20 13 18 34 2 305

Number of tails 27 21 26 32 38 30 28 23 38 36 33 30 37 32 16 48 495

The most simple way is to arrange the data in a (I×2) contingency
table, see Table 3, and to use a standard χ2–test for independence, see
e.g. Toutenburg (2005). Then the question of independence of outcome
and person is addressed. Here the test yields a rejection of the null
hypothesis (p–value < 0.001).

5.2 Logistic Regression

Independence is a symmetric concept, but in the case of our experiment
there is a clear indication of the possible effect. The person possibly
affects the result of the experiment and therefore a regression type
analysis can be performed. The standard for binary data is the logistic
regression model, which can be used with a categorical covariate:

P (Yij = 1) = G(τ i), i = 1, . . . , I, j = 1, . . . , Ji (2)

Here, G is the function t→ 1/(1 + exp(−t)). Then the null hypotheses
can be tested by likelihood ratio test or by a score test. In our case, this
also gives a clear indication for a person effect (p < 0.001). Note that
the score test of logistic regression model is identical to the χ2–test in
the contingency table mentioned earlier.

5.3 Random Effects

In both approaches discussed earlier, the pi and τ i are fixed unknown
parameters (fixed effects) which may not be suitable in this context,
see Toutenburg (2002, p. 111). So the concept of a random effect can
be introduced. Then in model (2), τ i is not treated as a parameter
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but as a random variable with the assumption τ i ∼ N(τ , σ2
τ ). The

existence of this random effect can be assessed by testing the null hy-
pothesis H0 : σ2

τ = 0. Note that this is a nonstandard test problem,
since the null hypothesis is on the border of the parameter space. This
causes some difficulties and there are still problems using these types of
tests in more complex situations; see Greven, Crainiceanu, Küchenhoff
and Peters (2008), Scheipl, Greven and Küchenhoff (2008) for this
problem in the context of linear mixed models. Here the model can be
fitted using maximum likelihood method and a likelihood ratio test can
be performed using a mixture of a χ2-distribution with one degree of
freedom and a point mass of 0.5 in 0, provided the number of experi-
menters is large enough to allow for a good asymptotic approximation.
So even current research topics can be addressed in this rather simple
experiment.

5.4 Overdispersion and Goodness of Fit

Another topic is overdispersion, which is a common problem in logistic
regression, see e.g. Rao, Toutenburg, Shalabh and Heumann (2008).
The idea can be illustrated by looking at the variance of the number of
“tails” for each person, which is denoted by Xi, i = 1, . . . , I. Assuming
no person effect, but a possible bias in the coin, the Xi are Binomial
with parameters n = 50 and probability p. The expected variance of the
Xi is estimated as n ·p · (1−p) = 50 ·0.6 ·0.4 = 11.8, while the observed
variance is 59.6 which is considerably high. This can be explained by a
variation between the persons which adds on to the Binomial variance.
Here the overdispersion factor is estimated to be 5.6. The effect can
also be confirmed by a significance test, see e.g. Tutz (2000).

An alternative is to test the hypothesis Xi ∼ Binomial(50, p) by a
goodness of fit test. This can be performed by χ2-test or Kolmogorov-
Smirnov test, see e.g. Toutenburg (2005).

5.5 Autocorrelation

Another possible deviation from the Binomial assumption is the auto-
correlation, i.e., that there is some dependence between two subsequent
trials. A simple way of checking this is to look at the conditional distri-
bution of tail given the result of the trial before. In the case of spinning,
we obtained 315 times ‘tail’ out of 488 trials (64.6%) when the preced-
ing spin was tails. When there was a head in the preceding trial then
the proportion of tails was 57.4% (126/296). The exact test of Fisher
for comparing two proportions shows that the difference is significant
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(p-value = 0.049). This looks plausible, but there is problem associated
with it – the observed correlation could be partly induced by the person
effect mentioned earlier. This can be illustrated in our experiment by
the extreme case of a person with 48 tails out of 50. Here the correlation
between two consecutive trials is very obvious and is simply due to the
person effect. So one has to find a method to check for autocorrelation
taking the person effect into account. One possible way is to extend
the logistic regression model (2) is by a possible effect of the preceding
trial.

P (Yij = 1) = G(βi + γYi,j−1), i = 1, . . . , I, j = 1, . . . , Ji. (3)

Indeed, the effect is no longer significant when the person effect is taken
into account. The discussion can be continued by using a random effects
model and testing for autocorrelation, e.g. modeled by a AR(1), see
Molenberghs and Verbeke (2005). Furthermore, a Bayesian approach
for the analysis of this experiment can also be used.

6 Correction of the Main Analysis

Since one main assumption for the simple Binomial model is not ful-
filled, the analysis should be redone including the person effect. Again
there are simple and more complex solutions. First we have to reformu-
late the concept of a fair coin. A random person i has a certain proba-
bility Pi for tails. Then the null hypothesis is given byH0 : E(Pi) = 0.5.

6.1 Normal Approximation

First the concept of a mixture distribution has to be introduced. The
number of tails Xi given Pi is Binomial Xi ∼ B(50, Pi). Assuming that
Pi is normal, the marginal distribution of X is Binomial–normal mix-
ture. The Binomial part can be approximated by a normal distribution,
so Xi is approximately normal with identical variances under the null
hypothesis. Therefore the t–test for null hypothesisH0 : E(Xi) = 50·0.5
can be conducted. As may be expected, the result is still significant,
but the p-value is much higher (p = 0.008) than in the simple Binomial
test. One could also discuss nonparametric alternatives like sign test
and signed rank test. The beta Binomial can be mentioned as a fur-
ther alternative. Here the individual probabilities are not assumed to
be normal, but have a beta distribution. The beta distribution has the
support [0, 1] and therefore – unlike the normal distribution – excludes
negative probabilities or probabilities greater than 1.
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6.2 Logistic with Overdispersion and GEE

As mentioned above, correction for overdispersion is a common tech-
nique used in logistic regression. For our experiment we can use a lo-
gistic model without covariates but with possible overdispersion due
to the person effect. Another similar possibility is a GEE model (see
Toutenburg (2002)), which also takes the correlation between the tri-
als of one person into account. Here the correlation between two trials
of the same person is assumed to be constant (exchangeable variance
structure). Both methods still give a significant effect (p = 0.005 for
logistic regression with overdispersion and p = 0.0213 for GEE).

7 Discussion and Other Experiments

There have been other proposals for further classroom experiments.
Schuster (2006) describes the following game: A two-player game con-
sists of repeated tosses (spins) of a coin, until one of the pre-specified
sequence of three outcomes occurs (for example, Tails, Heads, Tails
(THT)). Player 2 chooses his or her sequence after knowing the choice
of Player 1. This is a nice possibility of calculating elementary proba-
bilities and finding some surprising results.

Another well–known strategy for comparing randomness of tossing a
coin with human intuition of randomness is to ask one group of students
to do a coin tossing experiment (say 10 trials) and the other group
should just write down a “random” sequence of zeros and ones. Than
the number of changes in the sequence is Binomial B(n, 0.5) assuming
independence and a fair coin. Students in the second group usually have
too much changes in their “random sequences”. One could organize the
experiment such that the supervisor only receives the results of the two
groups and has to decide which is the group who really tossed the coins.

We have shown that many different statistical methods can be il-
lustrated by planning and evaluating a classroom experiment of coin
spinning. The main point is the possible existence of a person effect,
i.e., the possibility that every student could have a different probability
for tails in spinning experiments. Note that checking and interpreting
the model assumptions is straightforward, which makes the experiment
very attractive for teaching. For checking and correcting the person
effect, we have given an elementary solution (contingency table and
t-test) as well as a more complex solution (testing for a random effect,
GEE model). Of course this can be enhanced by further aspects like
sample size determination using the information that there is a person
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effect (“how many persons and how many experiments per person?”) or
finding differences between male and female students. When one person
uses different coins one could try to fit a model with a random person
and a random coin effect etc.

The described experiment was replicated in a live experiment in a
TV show and the result that the German 2 Euro coin is not fair in a
spinning experiment was confirmed (501 tails out of 800 spinning ex-
periments). Again, a clear person effect was found. Summarizing, the
2 Euro spinning experiment possibly leads to surprising results and
can serve as a good motivating example for discussing different sta-
tistical topics. This makes the experiment very attractive for teaching
statistics.
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für Windows. Springer, Heidelberg

Tutz G (2000) Die Analyse kategorialer Daten. Oldenbourg



Linear Models in Credit Risk Modeling

Thomas Nittner

UBS AG†, Credit & Country Risk Controlling, Pelikanstrasse 6/8, P.O. Box,
8098 Zurich, Switzerland thomas.nittner@ubs.com

1 Introduction

Linear models have been used in various applications. Credit risk analy-
sis is an important area which relies on linear regression models. The
objective of this article is to illustrate briefly the role of linear models
in credit risk analysis.

Although media told us about the subprime–crisis (caused by US
mortgage business) almost every day especially in early autumn and its
impact on European market, credit risk modeling still (or even more) is
one major part of daily banking business. The Basel–II Capital Accord
created a lot of new jobs with a main focus on implementing statistically
driven models, especially in assessing the creditworthiness of banking
clients (single obligor name basis) as well as in quantifying credit port-
folio risk. This covers many business segments, e.g. consumer credits,
mortgages (for self–used properties as well as for income producing real
estate), lombard loans or loans for corporate clients of different sizes.
For each of these business segments, one could think about developing
own statistical models on single obligor level which may provide the
probability of default (PD) for each client. This PD might be trans-
lated into a credit rating as being done by the three big rating agencies
Moody’s KMV, Standard & Poor’s and Fitch.1 However, the PD does

† The opinions expressed in this presentation are my own and do not represent the
ones of UBS AG or any affiliates. The risk control principles presented are not
necessarily used by UBS AG or any of its affiliates. This presentation does not
provide a comprehensive description of concepts and methods used in risk control
at UBS.

1 In general, one can differ between two approaches: models explicitly estimating
a PD for each client which then is mapped into a rating class or models yielding
a score which is translated to a rating; then, each rating class is assigned a PD
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not only reflect the risk that the client does not meet his obligations
within a given time frame (usually one year), e.g. he does not pay in-
terest rates for more than 90 days but together with the so–called loss
given default (LGD) and the exposure at default (EAD), it determines
the expected loss (EL) within this time horizon. The expected loss is
a statistical measure of the loss distribution. Consider a portfolio of n
clients, then the expected loss of the corresponding portfolio is given
by

EL =
1

n

n∑
i=1

PDi · LGDi · EADi . (1)

The expected loss determined by (1) is an essential measure which
characterizes the (unknown) loss distribution of a given portfolio.2 We
focus on the modeling of loss distributions and on one of its major
inputs on obligor level, the probability of default in this paper. The
reason why we focus on the estimation of the PD instead of LGD or
EAD is mainly driven by the fact that it is much easier to understand
PD than LGD or EAD models.

The linearity in the model can enter into the models because of the
assumed functional form of regression model, e.g. a linear model or a
logit link in logistic regression model. But here we are more interested
in studying the linearity implied by linear correlation.

However, correlation is a crucial aspect within this context in gen-
eral. On the one hand, we want to avoid correlation between the in-
dependent covariates within a regression–like context when developing
a rating model on obligor level. On the other hand, we need to cap-
ture the correlation when estimating a loss distribution. This does not
affect the two models themselves as they are separate models but not
modules within a common framework. It is interesting to know how
important correlation is and how it enters into the model development
from a practical point of view.

After a short note on measuring linear correlation, we give some
ideas about the development of rating models from a practical point of
view. The section about estimating the loss distributions will be more
theoretical and is followed by some notes on the simulation of losses.

(e.g. average PD of the rating class). Here, it was implicitly assumed to follow
the first approach.

2 Actually, we do not know the loss distribution but only the expected loss on
obligor level, EL = PD · LGD · EAD. Later, it will be shown that the loss distri-
bution is simulated by simulating defaults.
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2 Measuring Linear Correlation

Given two vectors of continuous variables, say X and Y , the (linear)
Pearson’s correlation coefficient is measured by

ρ(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
(2)

see e.g. Toutenburg (2005). In general, −1 ≤ ρ(X,Y ) ≤ 1, and when
ρ(X,Y ) = 0 then X and Y are said to be uncorrelated.

Assuming a response vector y to be dependent on a single factor X
in the context of a univariate linear regression model

y = a+ bX + ε

and further defining the coefficient of determination R2 by

R2 =
SSQREG

SSQTOT

, (3)

where SSQREG =
∑n

i=1(ŷi − ȳ)2 and SSQTOT =
∑n

i=1(yi − ȳ)2 are
the sum of squares due to regression and total, respectively, allows
us to translate the coefficient of determination of the classical linear
regression model into the linear correlation coefficient, cf. for example
Toutenburg (2003, pp. 56)

R2 = ρ2 .

3 Avoiding Correlation: Credit Rating Models

As already mentioned, credit rating models assess the creditworthiness
of a client and provide estimates for the PD based on historical data.
Here, we want to illustrate and give an idea how a rating model can
be developed and how correlation among the independent factors often
can be avoided in a simple case.

3.1 Data Preparation

Now assume that we are interested in developing a rating model for a
bank with its special focus on mortgage business for self–used proper-
ties. Further assume that the bank provides us the data on client level
which contain annually updated information3 about

3 This is a quite unrealistic assumption as information for private clients usually
is not updated on a regular base; however, within this context it does not affect
our further explanations.
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• the mortgage contract itself, e.g. mortgage value, interest rate, amor-
tization,

• the property funded, e.g. market value, ancillary costs,
• information about the financial situation of the client, e.g. tax state-

ment,
• a rating based on the above information.4

Assume that this information is contained in the data—each row
containing the information mentioned above for a given time stamp.
We may call it as client analysis. Additionally, we assume that the data
covers a time period of some years such that for each client analysis, a
default flag can be mapped. For example, one can measure default for a
given client analysis at time t by the rating of consecutive analysis until
time t+1. In case a client defaults within the period ]t; t+1] induced by
a corresponding rating, then the analysis at time t is flagged as default
and all future analysis are excluded from the data (absorbing state of
default).

The banks are generally interested in a tailor–made PD based on
the data we are provided with. Before explaining that how and where
the correlation analysis enters into model building, we summarize some
necessary steps, namely,

• data cleaning, e.g. assure absorbing default,5 data consistency
checks, e.g. check whether the value of total assets is not smaller
than the value of the property,

• factor definition (formula, hypothesis about direction with respect
to default) and factor calculation,

• factor transformation, e.g. remove non–linear relationships with the
default indicator to increase e.g. discriminatory power.

These steps are necessary from a practical point of view.6

3.2 Factor Calculation and Univariate Analysis

Usually the list of factors (we call it factor longlist) is built from the
input data which itself and within the context of retail business may
be classified into
4 This rating might be a calculated rating based on the current rating model in

place or it might be a rating of the credit officer in charge, due to an override.
5 That means that whenever a counterparty defaults, it is set to default to all future

time periods; this does not necessarily have to be the case in practice as clients
may recover and ‘come back’ as non–defaults

6 At this point in time, a cleaned development sample and a set of factors which
can be used to explain the risk of default exist.
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• income positions like salary, bonus or other regular income,
• expense positions like interest payments, amortizations or alimonies,
• asset positions like deposits, life insurance policies or real estate,

and, finally,
• debt positions like mortgages, loans or other credits.

Combining single positions to ratios provides a factor longlist. To
give some examples within this context, one may think about

• loan–to–value, defined by mortgage value/market value of a prop-
erty

• affordability, defined by expenses/income
• break–even, defined by (salary - expenses)/expenses.

Though today’s computer performance is quite advanced, but es-
timating multivariate models from a huge factor longlist can not be
recommended. Instead, the factor longlist can be reduced by running
univariate analyses controlling for discriminatory power, missing data
portion or other distribution relevant measures. Pre–defined cut–off
values often reduces the longlist to at least half of its length. Some first
multivariate analyses further shorten this list such that some dozens
of factors remain.7 This ‘shortlist’ then is used to estimate the models
which can be close to the final model. As our main focus here is on the
aspect of correlation, we refer to Henking, Bluhm und Fahrmeir (2006)
who give a very good and extensive overview about the development
of rating models. At this point, we would like to remark why (highly)
correlated factors should not enter the final model.

1. From a statistical point of view, correlations between the indepen-
dent variables of a regression model can affect the parameter es-
timates or makes even them not reliable.8 Note that correlation
is a necessary but not sufficient condition in the context of multi-
collinearity and that other measures, e.g. the condition index should
be used to detect multicollinearity, (cf. Belsley, Kuh and Welsch
(2004)).

2. In terms of the Basel–II validation process for A–IRB correlations
and the problem of multicollinearity is an essential topic to be cov-
ered.

3. The quality of rating models is not only determined by the sta-
tistical measures like goodness–of–fit or discriminatory power but

7 One could for example run models for all possible combinations and check which
of the factors enter the different models most often. In addition, one might check
this for forward, backward and stepwise selection procedures.

8 see e.g. Toutenburg (2003) pp. 112, within the context of linear regression models.
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also how they are accepted by people using it daily, i.e., the credit
officers. As already it is very difficult to think in a bivariate setup,
it is even more difficult to incorporate interactions between factors
in a multivariate setup.

The latter point should not be underestimated as rating models
considered as black boxes often can be asked to be revised shortly
after their implementation. Thus, correlations between factors should
be avoided at least up to a certain amount. But let’s go back to the
way how to avoid correlation.

3.3 Multivariate Analysis—Dealing with Correlations

Remember that we have a shortlist of factors entering candidate mod-
els. Calculating bivariate correlations among the factors of the list of-
ten shows that not only factors of the same group as defined earlier are
highly correlated. In order to avoid correlated factors being selected,
we propose to

1. define new factor groups driven by correlations, say up to 6 or 8
groups;

2. take into account business–relevant knowledge as well, as also dif-
ferent drivers from a business point of view should be contained in
the model;

3. determine a range for the number of factors of each group which
could be selected;

4. generate all possible combinations of factors based on the previously
defined ranges and a given total of factors allowed to enter the
model, e.g. all possible models for candidate models containing 6,
7, 8 or 9 factors;

5. estimate all these candidate models of the given size;
6. rank these models based on reliable measures in terms of

a) goodness–of–fit and
b) discriminatory power.

For each model size, we may now have a few dozens of best models.
A first business challenging as well as checking factor weights (none
should seriously dominate, none should show signs deviating from its
hypothesis) may further reduce the candidates. As we just tried to avoid
correlations on a bivariate level, we additionally should check collinear-
ity diagnostics like variance inflation factor or condition indices. Often
a handful of models remain and a more extensive round of business
challenging based on a representative sample of daily business cases
but also untypical cases might help to come up with a final proposal.
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4 Asking for Correlation: Credit Portfolio Models

4.1 Introduction

The PD as one main input for the calculation of the expected loss on
client as well as portfolio level contains information only about the
individual default probability. However, in the economic cycle, down-
turns and upturns have different implications on groups of clients in the
sense of common defaults within a given period. Within this context,
we talk about correlated defaults. Schönbucher (2000) gives a good
overview about modeling the dependent defaults with a special focus
on factor models; he further illustrates the impact of default correla-
tion on the joint probability of default and the conditional probability
of default. He shows that default correlation dominates both the proba-
bilities. Correlation substantially matters, especially in the tails of the
loss distribution. Assume for example a portfolio of 100 obligors all
having a PD of 5% and the same exposure of say EUR 1. Schönbucher
(2000) shows that without any asset correlation, the 99.9%–percentile
(VaR, Value–at–Risk) of the loss distribution equals EUR 13 but al-
ready slightly increasing the asset correlation to 10% or 20% yields a
VaR of EUR 27 or EUR 41, respectively. Loss distributions show a
right–skewed picture which is driven by correlated defaults in the tail
of the distribution meaning large portfolio losses with small probabil-
ities. Obviously, correlation has an influence on the shape of the loss
distribution. But how to measure default correlation? Though there ex-
ists a variety of methods to estimate the default correlation, e.g. Frey
and McNeil (2003), in most of the cases, time series of sufficient length
(covering at least one full business cycle) do not exist and the resulting
estimates are quite poor. Time series of PDs might not be a problem
but remember that here we need time series of defaulted loans. Thus,
default correlation must be tackled by a different concept.

4.2 Concept

Best practice in modeling default correlation is an underlying factor
model basically starting at the generalization of the correlation coef-
ficient introduced in (2) to the Bernoulli case, i.e., X = 1 in case of
default and X = 0 in case of non–default. Thus,

ρD
ij =

pij − pipj√
pi(1 − pi)

√
pj(1 − pj)

, (4)
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with pij denoting the joint default probability; pi and pj denote the
marginal PD of two obligors Xi and Xj , respectively. The crucial point
in determining or calculating the default correlation ρD

ij is the joint
probability of default pij . At this point, the famous asset value process
introduced by Merton (1974) enters into the concept. Here, default is
assumed to be triggered by the change in (correlated) asset values. It
is assumed that the default for an obligor i occurs if and only if his
assets Ri lie below his liabilities ci, i.e., as soon as

Ri < ci . (5)

This implies that the obligor specific probability of default is given by

pi = P (Ri < ci) . (6)

In the most simple case, Ri is assumed to follow a one–factor model,
namely,

Ri =
√
νi Z +

√
1 − νi εi , (7)

assuming Z to be i.i.d. and ε1, . . . , εn ∼ N(0, 1) and Z is called as a
systematic factor. Thus, E(Ri) = 0, Var(Ri) = 1 and Ri follow standard
normal distributions, too. Further, the correlation between two asset
values is given by

ρA
RiRj

=
√
νi
√
νj . (8)

The cut–off value for the asset values with respect to liabilities is

ci = φ−1(pi) , (9)

where φ−1 denotes the inverse of the normal density function. Usually,
the marginal default probabilities are known for each obligor and it
remains to calculate the joint probability of default for two obligors,

pij = P (Xi = 1, Xj = 1) , i �= j . (10)

Applying equation (6) and the fact that (Ri, Rj) are following a bivari-
ate normal distribution yields

P (Xi = 1, Xj = 1) = P (Ri < ci, Rj < cj)

= φ2(ci, cj ;
√
ρA

ij) , (11)

where φ2 denotes the density function of a bivariate normal distrib-
ution. Remember that ci and cj are known because we assumed the
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PD for both the obligors to be known as well. Hence, to determine
the joint probability of default, we use the asset correlation based on
the underlying process or the assumed factor model, respectively. To
obtain the default correlations—which typically is much smaller than
asset correlation—one has to

(I) estimate the parameters of model (7),
(II) calculate the joint probability of default based on equation (11),
(III) use pij to calculate the default correlation by using (4).

Of course, (II) and (III) is an exercise even feasible after a glass of
wine but step (I) needs some further explanation.

Basically, we want to focus on the two possibilities to estimate a
model of type (7). Though here we assume the most simple approach
of a one–factor model, it will give an understanding in depth of how it
can work for even more complex models. We refer to Bluhm, Overbeck
and Wagner (2003) who give an extensive overview over the whole
subject of credit risk modeling and to Pitts (2004) who proposes an
extended version of the Merton–style model.

Generally speaking, the question is not only how to estimate the
parameters of the regression(–like) model introduced in (7) but how to
gather the information about the underlying asset value process and
the systematic factor Z. In the following two subsections, we introduce
two approaches to make a portfolio model work – the simple classical
regression model briefly and a more complicated approach in more de-
tail. The next section will describe on how the predicted asset values
are used to simulate losses and a final loss distribution.

4.3 Linear Regression: Fixed Effects

The (classical) linear regression model assumes all inputs to be observed
and to minimize the sum of squares due to the necessary stochastic error
term ε. Transferring these assumptions to the one–factor model implies,
that the response vector (asset values) as well as the systematic factor
Z are to be observed in order to be able to apply estimation techniques
for linear regression, i.e., least squares or maximum–likelihood methods
of estimation. Though asset values, or, better log returns of asset values
are difficult to observe, we assume them to be given, e.g. by

• using time series of equity values (share prices) and their volatilities
(see e.g. Bluhm, Overbeck and Wagner (2003)), or
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• using data offered by rating agencies, e.g. Moody’s KMV which have
own models for asset values.

Given these asset values or their logarithmized returns, one would
have to search for data potentially describing the response for the un-
derlying portfolio; these explanatory factors for example could be indus-
try indices or country indices. In the most simple case, the parameters
of a linear model are estimated and used to predict asset values based
on given indices for all firms contained in the portfolio. Bluhm, Over-
beck and Wagner (2003), e.g., describe the three–level factor model of
Moody’s KMV and the whole background from a conceptual as well as
from a theoretical point of view.

4.4 Linear Regression: Random Effects

An extension of the classical (linear) regression model is the random
effect model. They are often used in the context of clustered data or
(time) dependent observations in general (see e.g. Fahrmeir and Tutz
(2001), Jiang (2007)). Here, the parameters are stochastic and assumed
to be draws of an underlying distribution. Its main idea within this
context of course is to estimate correlations of asset values based on
a set of covariates. Assume log asset returns yijt (say, log–returns) to
follow

yijt = αij + βjt + εijt , εijt ∼ N(0; τ2) . (12)

Here, i = 1, . . . , I denote firms, j = 1, . . . , J denote, e.g., branches and
t = 1, . . . , T denote time periods of the data being observed.

Thus, log–returns of the firm i doing business in branch j (βjt ∼
N(0;σ2

j )) depends on a firm–branch–specific intercept αij and a ran-
dom effect βjt for branch j in period t. The latter one describes the
systematic effect, the error term is the remaining idiosyncratic effect.
As we here assume βjt to be a random effect, it could be specified
further by a single factor model

βjt = γtδj + ζjt , (13)

where we assume γt ∼ N(0, 1), ζjt ∼ N(0, κ2) and E(γtζjt) =
E(ζjtζj′t) = 0 ∀ j �= j′. Thus, it holds that E(βjt) = 0 and Var(βjt) =

σ2
j = δ2

j + κ2. Further, correlation between two branch effects βjt and
βj′t′ is given by
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corr(βjt, βj′t′) =
δjδj′√

δ2
j + κ2

√
δ2
j′ + κ2

. (14)

This functionality can be translated into the covariance structure for
yijt which then can be estimated by statistical software packages, e.g. by
using SAS PROC MIXED. The resulting estimate for the covariance
matrix of the branch effects is then used for the simulation of the loss
distribution. Further, the variance of the idiosyncratic effect, τ2—which
e.g. can further carry firm–specific cluster effects as for example legal
entity—has to be estimated. All the estimated parameters will be used
in the simulation of losses. Though it is a short paper, Pitts (2004) gives
a good overview over the source of this model, its statistical estimability
and how this can be achieved in practice.

4.5 Simulating Losses

After the parameters have been estimated, we can start to simulate
losses on counterparty level. The simulation can be split into the fol-
lowing steps performed for the counterparties i = 1, . . . , n:

1. Simulate correlated log–returns following equation (12) for each
counterparty given
• its branch
• its domicile (country), and, if necessary,
• its legal form.

2. Check whether the predicted log asset return is below the cut–off
determined by the firms’ PD, namely, φ−1(PD).
a) If the log asset return is below the cut–off, the firm is assumed

to default and its loss is calculated by L = EAD · LGD.
b) If the log–return is above the cut–off, the firm did not default

and its loss is zero.
3. Update the portfolio loss at step (i) according to L(i) = L(i− 1) +

L, i = 1, . . . , n, L(0) = 0.
4. Repeat steps (1)–(3) R times and store the losses Lr, r = 1, . . . , R.

Having calculated the losses for all counterparties yields the port-
folio loss within one simulation experiment. Repeating steps (1)–(3) R
times, e.g. 106 times, gives 106 portfolio losses. These losses can be used
to draw a loss distribution and to calculate its entire measures such as
the expected loss, the unexpected loss (standard deviation of the loss
distribution) its VaR, and, another measure which often is reported,
the expected tail loss also known as expected shortfall; the latter is the
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conditional expectation given that the loss exceeded a given percentile.
There exists a variety of portfolio models, especially of the companies
Credit Suisse (Credit Risk+), McKinsey (Credit Portfolio View), Risk-
metrics (CreditMetrics) or Moody’s KMV (Portfolio Manager). Bluhm,
Overbeck and Wagner (2003) give a short overview over the main differ-
ences between the various models with a special focus on Credit Risk+.
Henking, Bluhm und Fahrmeir (2006) give some simple examples of
portfolios and describe how to simulate losses as well.

5 Summary

In this paper we connected linear models and credit risk. A linear mea-
sure for correlation was used to show how correlation plays an impor-
tant role in today’s credit risk models illustrated by choosing rating
models and portfolio models. Of course, measuring LGD and EAD was
left aside and correlation is present here, too. We know from practical
data, for example, that default rates and loss rates are correlated as
well, see e.g., Schürmann (2004). But, we better should celebrate the
guy we are writing for instead of worrying about what we could have
missed. Cheers Helge!
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