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Abstract

Starting with an explanation of the general idea of simulation speed-up, first an overview is

given of the different simulation speed-up techniques which are examined and compared in this

thesis and also investigated with respect to the possibility to combine them in different ways.

Next, the aspect of the state space coverage is discussed and the effect of the local coefficient of

correlation is shown. Its influence on the convergence speed of the simulation is demonstrated

together with means to reduce this influence significantly, resulting in a considerable speed-up

potential.

An introduction is given to the RESTART algorithm to speed-up simulations with focus on rare

events. The optimisation of some aspects is discussed, and a technique is shown to be efficient

which extends the applicability of RESTART to cases with the only possible thresholds being

far away from the optimum.

It is demonstrated how to combine the RESTART algorithm with a parallelisation approach.

Different possible approaches are compared and discussed, as well as different possible network

architectures and hardware topologies. The chosen approach is explained, and it is shown that

there is an actual speed-up on a network of workstations with a high-speed network connection

hardware.

A new simulation concept, the short-term dynamic (STD) simulation, is presented. The concept

is explained, and it is proven analytically on the basis of a reference queueing model to provide

considerable speed-up by reducing the impact of the local correlation. Conceptual ideas are

discussed about combining the STD simulation concept with the other speed-up approaches

considered in this thesis.

Further, the application of the STD simulation concept to network planning of UMTS is pre-

sented. In example simulations of these complex models, the results of the analytic investigation

of the concept and the simulations with the reference model are confirmed. The speed-up of

the method is shown also for these models, although it is more difficult in such cases to obtain

accurate data for the comparison of the simulation performance which can be achieved by the

different methods and simulation set-ups.

With the simulation concepts addressed in this thesis, considerable simulation speed-up can be

achieved. The application of the presented techniques to other areas is a promising subject for

future research.



Kurzfassung

Beginnend mit einer Erklärung der allgemeinen Idee der Simulationsbeschleunigung wird zu

Anfang eine Übersicht über die verschiedenen Simulationsbeschleunigungstechniken gegeben.

Diese werden untersucht und verglichen, auch in Bezug auf ihre Eignung zu verschiedenen

Möglichkeiten der Kombination.

Als nächstes wird der Aspekt der Zustandsraumabdeckung diskutiert, und der Effekt der lo-

kalen Korrelation wird demonstriert. Deren Einfluss auf die Konvergenzgeschwindigkeit der

Simulation wird aufgezeigt sowie Mittel, diesen Einfluss zu reduzieren. Dies führt zu einem

beachtlichen Beschleunigungspotential.

Eine Einführung in den RESTART-Algorithmus zur Beschleunigung von Simulationen seltener

Ereignisse wird gegeben, sowie die Optimierung einiger Aspekte erörtert. Weiterhin wird eine

Technik vorgestellt und für effizient befunden, die RESTART um die Anwendbarkeit auf Fälle

erweitert, deren mögliche Schwellwerte weit vom Optimum entfernt liegen.

Es wird vorgestellt, wie der RESTART Algorithmus mit der Methode der Parallelisierung kom-

biniert werden kann. Sowohl verschiedene Ansätze werden vorgestellt und verglichen, als auch

verschiedene mögliche Netzarchitekturen und Hardwaretopologien. Es wird gezeigt, dass der

gewählte Ansatz einen tatsächlichen Gewinn erzeugt auf einem Network of Workstations mit

schnellem Verbindungsnetz.

Ein neues Simulationskonzept wird präsentiert, das Short-term Dynamic Simulation Konzept

(STD). Aus der Basis eines Referenz-Wartenetzmodells wird analytisch bewiesen, dass eine be-

achtliche Beschleunigung erreicht wird durch die Reduzierung der Auswirkungen der lokalen

Korrelation. Weiterhin werden Konzepte zur Kombination mit anderen Simulationsbeschleuni-

gungsansätzen erörtert.

Die Anwendung des STD Konzepts auf Netzplanung für UMTS wird vorgestellt. In Beispielsi-

mulationen dieser komplexeren Modelle werden die Ergebnisse der analytischen Untersuchung

und der Simulationen am Referenzmodell bestätigt. Eine Simulationsbeschleunigung ist auch

für diese komplexen Modelle erkennbar, obwohl es dort schwieriger ist, verlässliche Werte für

Vergleiche der Simulationsgeschwindigkeit zu bekommen, die für die verschiedenen Methoden

und Parametrierungen erreicht werden.

Mit den Simulationskonzepten, die hier behandelt werden, können beachtliche Simulationsbe-

schleunigungen erzielt werden. Die Anwendung der vorgestellten Techniken auf andere Gebiete

ist eine viel versprechende Richtung für zukünftige Forschungsarbeiten.
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Chapter 1

Introduction

C
ommunication networks of today must meet high demands regarding the Quality of Ser-

vice (QoS). Simulative performance evaluation of communication networks is an impor-

tant means for the design and configuration of such networks. Other methods of performance

evaluation are the measurement of an existing real system and the analytic evaluation of a model

describing the target system. Measurement is not possible in the design stage of a system, and

analytic methods are usually restricted to very simple models of the target system neglecting

some or many possibly important aspects.

In simulation, the complexity of the model and the level of details can be defined flexibly,

depending on the aspects the investigation is focused on. Simulations of more complex models,

however, are slower than simple models, i. e., they require more run time per simulation time

unit.

But the question is now, what is meant by slow or fast simulation. It has to be clarified what is

meant by speed-up, and how it can be defined. Assume that results of a reference simulation are

available and results from another simulation which has been performed with a certain speed-up

technique. The question remains how these techniques can be compared, and some comparison

parameter is needed.

This comparison parameter has to be taken from some sorted value space to map the state of the

simulation progress to. The progress state the reference simulation has reached when finished,

the reference progress state, is mapped to a certain reference value of that value space. The

simulation progress state of the other simulation to which the reference simulation is compared

also needs to be mapped to that same value space. In fact, for each progress state during the

simulation a value is needed. These values are intended to reflect the statistical accuracy, and

on the basis of these values, the simulations can be compared. If the test simulation reaches the

reference progress state in less time than the reference simulation, the test simulation is rated as

the faster simulation, or the simulation technique is the faster one.

Applying a speed-up technique to a simulation now means, a reference statistical accuracy can

be reached in shorter time, or a higher statistical accuracy can be reached within the reference

time. The simulation user knows the constraints for conducting simulations. Either the user has
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a maximum of available time for simulation, or a minimum statistical accuracy is required to

manifest a certain statement. In any case, a speed-up technique can either save time or increase

statistical accuracy.

The criterion for the statistical accuracy used in this thesis is the relative error for a given range

of the value space of the evaluated random variable. The so-called local correlation coefficient

makes a significant contribution to this relative error. Chapter 2 explains the effect of the cor-

relation on the state space coverage and the intrinsic simulation speed-up potential resulting

from the systematic reduction of the correlation. Further, a short introduction on parallelisation

is given and the evaluation algorithm Limited Relative Error (LRE) is explained which is of

fundamental importance for the investigations of all other chapters.

Special speed-up techniques for the simulation of rare events are indispensable. Otherwise,

reliable simulation results would not be obtainable within reasonable time. A technique called

importance splitting and especially a variant of it called RESTART is introduced in chapter 3.

It treats regions of the value space differently in order to reach the relative error limit for each

region in a comparable time.

Another speed-up technique is parallel processing. It uses a number of processing units to work

on different parts of the simulation task concurrently. Basic principles of parallelisation are

given at the end of chapter 2, and a combination with the RESTART technique is discussed

in chapter 4. It is different from the parallelisation of straightforward simulations, since the

RESTART algorithm itself is divided into autonomous parts which can run concurrently.

The short-term dynamic (STD) simulation concept is introduced in chapter 5, and it is compared

to the concepts of static and dynamic simulation. Its capability to reduce the local correlation

and in turn to speed-up the simulation, is investigated analytically on the basis of a simple

queueing model.

The way the STD simulation concept is applied to the network planning for the Universal Mo-

bile Telecommunications System (UMTS), is shown in chapter 6. The concept of a simulation

toolkit designed for this simulation concept is demonstrated. Simulations are presented showing

the potential and limitations of the STD concept.

Finally, in chapter 7, conclusions are drawn about the different concepts presented in this thesis,

and possible further combinations are evaluated.



Chapter 2

Statistical Accuracy

I
n simulation, the goal is either to achieve a most accurate estimate of the target characteristic

of the system within a certain time, or to reach an estimate with a certain accuracy as fast as

possible. Improving a simulation method to speed-up the simulation, or finding a new method,

increases the statistical accuracy. It is up to the user whether he profits from the achievement

by getting the same results as before, only faster, or by getting better results within the same

computation time. Thus, whenever something is denoted as simulation speed-up, instead it could

be called increasing the statistical accuracy. The term variance reduction is frequently used for

techniques increasing the statistical accuracy.

2.1 Discrete event simulation

In discrete event simulation (DES), a model describes some real world system. During the

simulation, at certain points in time ti the current system state is collected. Dependent on the

investigated n-dimensional random variable (RV) X , the corresponding n parameters of the sys-

tem state – possibly out of more than n – are obtained meaning that the resulting n-dimensional

value xi is saved for statistical evaluation. Save in this context does not necessarily mean that

the value is stored in memory for later usage, but can also mean immediate processing, depend-

ing on the way the statistical evaluation is conducted. Obtaining a single value xi is called an

observation.

The distribution function describing the random variable X is estimated by the distribution of

the relative frequency of the observations, resulting from all the xi . Within the n-dimensional

state space Z
n of the simulated model, corresponding to the discrete n-dimensional RV X , every

possible state x has its steady state probability PX (X = x) > 0 in a steady state simulation. For

a continuous RV X , every possible n-dimensional area x of the of the continuous n-dimensional

state space R
n has its steady state probability PX (X ∈ x) > 0, and PX (X = x) = 0 for a

continuous state space.

The accuracy of an estimate is reflected by the variance of the sample provided that the target

characteristic is the sample mean.
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It is more sophisticated if the target is the distribution function of the sample, since an error

measure has to be introduced which provides information about the estimate accuracy at every

possible position of the value space.

There are two major techniques for rare event simulation. One is the importance sampling which

changes the probability distribution of the simulated model to have events of interest occur more

frequently. The other is importance splitting, especially RESTART which is explained in chapter

3. In this method, states that are closer to the states forming the (rare) event of interest are

stored in order to restart the simulation from such states several times. The fact that conditional

probabilities are obtained by this method has to be incorporated into the final calculation of the

absolute probability of the event of interest.

2.2 State space coverage

To achieve a good estimate of the distribution function of X , the absolute frequency of every

possible state should be sufficient (see section 2.4). If the frequency is zero, the state would even

be considered as an impossible state. With an infinite or practically infinite state space, resulting

from either a large number of dimensions or a large value space within the dimensions, it may

not be possible to fulfil this requirement. The same applies for a continuous value space and,

furthermore, for the case of a rather small number of possible states but with some states having

extremely low probability. As a consequence, stochastic simulation techniques are required to

study such systems.

For evaluation purposes, the value space of a one-dimensional RV can either be discrete or, for

continuous RVs, the value space is divided into intervals of appropriate size, depending on the

problem, memory considerations, the requested accuracy, etc. This means, the determination of

a distribution function of a continuous one-dimensional RV also must be made discrete. Thus,

the value spaces are all considered to be discrete in the following. Continuous value spaces are

divided into regions for which the probability can be estimated, and are transformed into discrete

value spaces by making a single value of this interval represent the interval, e. g., a boundary

value or the mean value. Value spaces which are already discrete can be further quantised by

combining intervals. In the more general case of n-dimensional RVs with n > 1, value regions

have to be considered.

From the evaluation perspective, a region is considered to be a single value from the discretised

value space representing this region. The value space can be assumed to be covered well as soon

as all discrete values reach a predefined error limit, see section 2.4.

2.2.1 Effect of correlation

First, the influence of the correlation on the coverage will be discussed and visualised with

the help of example simulations. The correlation is a measure for the degree of similarity of
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two random variables. The term correlation used in this thesis always means the first order

auto-correlation which means the similarity is considered between two consecutive values of a

stochastic process. Values for the coefficient of correlation are in the range of [−1; +1]. Positive

values mean a high similarity for consecutive values while negative values mean dissimilarity.

A coefficient of correlation of zero indicates completely unrelated values.

In most cases in which the correlation is addressed, a global coefficient is considered. In this

thesis, the local coefficient of correlation ρ(x) is considered instead. It reflects the fact that the

degree of similarity between consecutive values also depends on the value (the location) x . As

an example, in a stochastic process there can be a value xi which is followed always by values

very close to xi , and the values which follow the value of x j are rather unrelated to x j . This

means, ρ(xi ) ≈ 1, and ρ(x j ) ≈ 0.

2.2.1.1 Uniformly distributed state space

Figure 2.1 shows for three different simulation approaches the observations that have been ob-

tained during example simulation runs. In all these simulations, the stationary distribution func-

tion of the states is uniform over the chosen and displayed value region of [0,180] × [50,170]

of the continuous value space which is dimensionless for simplicity. To make the difference

between these approaches visible, the simulated sample size ns was chosen to be quite small

with ns = 2000.

The points in the figure represent positions of elements, and the lines represent the movements

of the elements. This has been chosen to visualise the simulation principles. A very simple

mobility model has been used which allows an element to start at a random position and at

every movement to turn backwards, sidewards, or keep the direction. The travelled distance is

fixed. It has been taken care that the stationary spacial distribution of the element positions is

the same for all simulation examples.

The first simulation approach, figure 2.1 a), is a Monte-Carlo simulation, also called static sim-

ulation in the following. In a sequence of observations over the simulation time, all observations

are independent of the previous ones. In spite of the small sample size, the values (points) are

spread over the whole area almost uniformly.

The second approach, figure 2.1 b), is called short-term dynamic simulation (STD). Here, the

simulated sequence of observations consists of a sequence of sequences (groups). Such a se-

quence of observations (a group) is called an STD window, and the length of the sequence is

defined by the simulation user, either in time units or number of observations, or even randomly

following some probability distribution.

Within such an STD window, the observations are not independent, leading to correlated se-

quences. The observations within an STD window are independent of those of other STD win-

dows. If STD windows are considered as units, an STD simulation can be considered as a Monte

Carlo simulation of these units since subsequent units are independent.
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Figure 2.1: Uniformly distributed states
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Figure 2.2: Covered areas for uniformly distributed states
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This approach will be further discussed and analysed in chapter 5. Figure 2.1 b) shows these

groups of subsequent values represented by short lines. The groups themselves are spread over

the whole area, also quite uniformly. Considering the points, the distribution over the area is

less uniform than for the static simulation example.

The third approach, figure 2.1 c), is called dynamic simulation. As in the short-term dynamic

simulation, the sequence is correlated, but there is only a single long sequence instead of a

number of STD windows.

Figure 2.2 shows how differently these approaches cover the value space of a simulated random

variable. It shows combining parts of the value space to square areas. Different levels of quan-

tisation are shown, indicated by a step size s. Here, s = 5 means squares of the size 5 × 5 units

of the value space are combined, equivalently for s = 10 and s = 20. The upper part of each of

the three blocks of the figure shows the mean number of observations per unit square within the

combined square areas. Darker grey mean higher values. The lower parts show for a threshold

value of 0.08, which squares represent sufficiently covered areas. This applies to a square if the

mean number of observations per unit square (1 × 1) within that square area is larger than the

threshold. The very small threshold is due to the small sample size and is in this example about

86 % of the expectation value for a unit square.

In case of a static simulation as in figure 2.1 a), in the long run all possible values will be ob-

served equally often. For small levels of quantisation, large sample sizes (long simulations) are

needed to keep the frequency of observations of all possible values similar. The corresponding

parts of figure 2.2, which are 2.2 a), 2.2 b) and 2.2 c), show this effect. For s = 10 and s = 20,

(almost) all areas are covered, for s = 5 only less than 70 % of the squares are covered. Obvi-

ously, for s = 5 the sample size is far too small. The homogeneity of the coverage, however, is

high.

For the short-term dynamic simulation approach, the corresponding parts figures 2.2 d), 2.2 e)

and 2.2 f) show that the coverage is lower than for the static simulation. The sample size for this

approach is too small for all quantisations shown, even for s = 20, but an increasing tendency

can be clearly seen. And also here, the homogeneity of the coverage is quite high.

In the dynamic simulation approach, the simulation keeps for a while within a small area around

the starting value due to the highly dependent states. For the example simulation in figure 2.1 c),

figures 2.2 g), 2.2 h) and 2.2 i) show that for the short simulation time the simulation run covers

only a small part of the value space. Even larger quantisations do not help very much since most

parts of the value space have not been visited at all.

Dynamic Model

The dependent sequences generated for the graphs of the dynamic and the short-term dynamic

simulation represent moving objects in a 2-dimensional area. The directions to which the objects

move in the next step are determined with respect to predefined turning probabilities. These

probabilities are chosen in such a way that the steady state probabilities for all positions of the
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area are the same as for the static simulation. This representation has been chosen to visualise

correlated sequences for a 2-dimensional random variable.

The starting point of a sequence if drawn from a uniform distribution the same way as every

point in the static simulation. From there, the process kind of walks over the value space by

deciding on the direction and distance of the next step. The underlying mobility model must

be parametrised in such a way that in the long term the relative frequency of all possible states

matches the steady state distribution function of the starting points. For long-term comparabil-

ity, the boundary conditions must also be taken into considerations. For these examples, this

is neglected because very short runs are executed to make the correlation effect visible. The

mobility model follows the same principle as the mobility model introduced in section 6.2.3,

and here it is used with simplifications.

2.2.1.2 Tandem queue

In figure 2.4, a simple tandem-queue model as shown in figure 2.3 is simulated. The service

processes are Markovian, as well as the arrival process. The buffer sizes are infinite, the loads

are η0 = 0.95 for the first queue and η1 = 0.9 for the second queue.

M: λ
M: μ0 M: μ1

Figure 2.3: Simple tandem queue

On the x-axis, the occupancy of the first system (queue and server), and on the y-axis, the oc-

cupancy of the second system is shown. The state is evaluated whenever an arrival occurs from

the outside, i. e., to the first system. For the short-term dynamic and the dynamic simulation,

figures 2.4 b) and 2.4 c), subsequent observations are connected with lines. The density of these

lines gives an impression of the frequencies of the corresponding areas of the state space. The

frequency of a single value cannot be reflected by this way of representation, which is why only

a small sample size is simulated to distinguish between visited and unvisited states. In the case

of the static simulation, figure 2.4 a), the problem occurs again more seriously. It is resolved by

having the type and the size of the points reflect the observed frequency of the state. In the leg-

end of figure 2.4 a), the corresponding relative frequency for each point type and size is shown.

In contrast to the uniformly distributed states in the previous section, the probability of the states

with small or even zero occupation of both systems is higher than for large occupancies. The

theoretical mean values are

E[X ] = 19, E[Y ] = 9 (2.1)

with X and Y being the RVs for the occupancies of the first and the second system.
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Figure 2.4: Queue occupancy states of tandem model
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Static Simulation
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tandem queue loads η0 = 0.95 and η1 = 0.9, 20 time units per STD window,

≈ 2000 values simulated, threshold (coverage) 0.05 per value

Figure 2.5: Covered areas for tandem queue simulation



12 2 Statistical Accuracy

In figure 2.5, the covered areas of the considered state space are shown for the different sim-

ulation approaches and different levels of quantisation. Approximately ns ≈ 2000 values are

simulated, and the frequency counters are scaled to ns to achieve comparable results.

The results are in line with the results of figure 2.2. The coverage ratio increases with the

quantisation level and from dynamic over short-term dynamic to static simulation. The setup of

the example simulations is chosen within the limits beyond which the coverage ratio will not

change further. This applies to the quantisation level and to the threshold.

2.2.1.3 Interrupting the correlation

From the simulations it can be seen that the simulation approach with the long correlated ran-

dom sequences, the dynamic simulation, has a lower coverage ratio for the same sample size

than the simulation approaches with the shorter correlated sequences, i. e., the short-term dy-

namic simulation and especially the the static simulation with the completely uncorrelated ran-

dom sequence. This is the reason for the simulation speed-up here.

Approaches to interrupt the correlation by scrambling the sample of a dynamic simulation

would obviously not lead to any success. In the evaluation procedure, the LRE method (see

section 2.4) would indeed report lower correlation for the sample and, as a consequence, a

lower relative error for the values which have been observed. But this is only because the eval-

uation procedure is betrayed by providing it a different system. And further, the coverage ratio

does not increase, irrespective of the quantisation level.

In dynamic simulations, usually very well known states are chosen as the starting state, mostly

an empty system. Provided that it is a valid state and the simulation produces a large enough

sample, the choice of this starting state will not have a relevant influence on the error of the

simulation, even if the steady state probability of this state is quite low.

For a short-term dynamic simulation, starting with an arbitrary state or always with the same

state, e. g., the state that would be chosen for the dynamic simulation, would introduce an un-

known bias. As in the static simulation, the distribution functions of the input parameters must

be known. Input parameters can be, e. g., number, position and status of objects, while the out-
put parameters for which the simulation is conducted, are compound values like sums, mutual

influence between objects, etc. Further examples are discussed together with simulations of

mobile radio networks in chapter 5 and especially chapter 6.

2.2.2 Rare events

Figure 2.6 shows the probability density function of a continuous value space. For simplicity,

the value spaces are assumed to be dimensionless in the following. Figure 2.6 a) shows the

2-dimensional graph of the function which is z = s2 · exp(−α(x + y)). Here, s is the step

size as introduced in section 2.2.1, and α is a parameter of the negative exponential function

determining the decay rate. The highest value for the area x > 0, y > 0 is z = α2 at x = y = 0,
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Figure 2.6: Probability density function: z = f (x,y) = α2 · e(−α(x+y))

and the values for z are represented by shades of grey, with black representing z = α2. Figure

2.6 b) shows a one-dimensional extract of the two-dimensional density function for x = y and

for two different values of α.

In a simulation in which a random variable is evaluated which is distributed as in the graph, in

the long term the frequencies of observations in all regions will correspond to the distribution

function. The events which lead to observations in the upper right part of the graph are rare,

the lower left region will be observed rather often. To reach a certain error level, a minimum

number of observations for each considered discrete value must have been made. This minimum

value increases with decreasing requested error limit.

Figure 2.7 shows three different quantisations. The left diagrams have square regions of the size

5 × 5, the middle have 10 × 10 squares, and the bottom diagrams have 20 × 20 squares. In each

square, the values of the corresponding square of the left diagram are summed by integration.

If the sum exceeds a threshold, the square is painted grey, otherwise it is kept white. A grey

square represents a sufficiently evaluated discrete value for a given error level.

In this example, the threshold has been chosen to be 15 times the highest value at x = y = 0.

The upper parts show the function for α = 0.02. For the different quantisation levels s, 5, 10,

and 20, the considered value space has a coverage ratio of 3.8 %, 45 %, and 96 %. The gain in

coverage is achieved with a loss of precision by a factor of 4 between the quantisation levels.

With α = 0.02, there is indeed a gain, and with α = 0.1, there is no gain. The higher regions of

the value space have much lower probability than for α = 0.02 resulting in only the lowest left

square being covered, no matter what quantisation level is chosen.

In chapter 3, a method is introduced by which it is possible to make regions with very low

probability being visited and covered well within reasonable amounts of time. This is achieved

by storing system states every-time the stochastic process crosses a predefined threshold in the

direction towards the low probability region (the rare event). If the stochastic process crosses
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Figure 2.7: Levels of value space quantisation

back over this threshold, one of the stored states is restored from which the simulation proceeds.

The conditional probabilities which this approach is based on have to be incorporated in the

calculation of the total probability of the rare event.

2.3 Parallelisation

Parallelisation does not address the relation between the simulation accuracy and the sample

size, but the division of the simulation work into parts which can be done concurrently on a

number of computers, or, more generally, processes.

First, parallelisation can mean a single sequence of instructions (a program) for multiple parallel

sequences of data. This is called SIMD (Single Instruction, Multiple Data). From a program-

mers’ point of view, this is still sequential computing. Since this kind of parallelisation is not

appropriate for typical stochastic simulation problems, the speed-up is limited.

With the other type of parallelisation, autonomous processors with dedicated instruction streams

are working on dedicated data streams. This is called MIMD (Multiple Instructions, Multiple



2.3 Parallelisation 15

Data), and it is further referred to as distributed computing. Only this type is considered further

in the following and in chapter 4.

Although the processes have their own program and data, in distributed simulation they all work

on the same large problem. This means that somehow all parts have to interact. How much and

what kind of interaction is necessary, depends on the problem. Further, the parts that have to

interact must be enabled to do so, which means, that the structure of the interactions (the set

of programs) must fit to the connection structure. This is the communication platform and is

usually some kind of network or shared memory. The need for interaction leads to the need to

synchronise the processes. The efficiency of the simulation suffers from synchronisation loss

resulting from situations in which one of the processes has to pause until an interaction with

some other process can take place, see [Fuj00].

Three different systematics classify the parallelisation of simulations. They are introduced briefly

in the following.

2.3.1 Functional division

The functional division considers the different functions from the simulators’ view. A simulator

needs to generate (pseudo-)random number sequences, to evaluate and possibly to post-process

the obtained results and to visualise them. From each of these elements more than one can exist.

But there is only one control program which represents the actual simulation while all other pro-

cesses represent auxiliary functions. This limits the possible speed-up, but the synchronisation

loss is low. Special processors can be used for the different tasks.

2.3.2 Load division

The load division is a set of complete and independent simulation runs with different parametri-

sations and/or different seeds of their random generator(s) which are executed in parallel on

processors which generally do not even need to interact. In the case of only different seeds, the

results of the simulation runs all representing the same model with the same parametrisation

can be combined afterwards. In contrast to functional division, universal processors are needed

here which can perform all kinds of tasks.

2.3.3 Model division

The model division assigns components of the model to different logical processes which can

run on separate processors. An important issue for this approach is how the components are

logically connected. This means what change in the state of a certain component is relevant

for the process of a certain other component. These relevant change events have to be com-

municated and form the interaction structure of the model. The model time of the interacting

components has to be synchronised. For efficiency reasons, the components should be allowed
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to work autonomously as long as possible, otherwise the loss due to components waiting for

other components to send information is high.

Optimistic approaches assume that components can work autonomously for quite a long time.

They assume that the probability is low for the need to react on relevant events of other compo-

nents. This leads to lower communication overhead, but the system must be able to rollback the

state of the components to a point in time at which a relevant event occurred. This can be time

consuming if it happens frequently for a large number of components. Pessimistic approaches

only go forward to a certain point in model time for a component if it is definitely known that

all possible relevant events from other components will not be scheduled at an earlier point

in model time. This increases the frequency of components waiting for information from other

components. Furthermore, if this interaction structure is not carefully implemented, it can easily

lead to deadlocks, especially for more complex models.

2.3.4 Efficiency

The complexity of the simulation with respect to the required interaction between the parts of

the work determines how efficiently the divided work can be completed. In the load division,

the required communication will be low leading to high efficiency and speed-up. In the func-

tional division, the communication will also be quite low. The efficiency depends on how many

random numbers are needed per time unit, how many (single) results are produced, and how

fast these informations can be communicated. In the model division, the communication effort

depends strongly on the model and the choice of either an optimistic or a pessimistic approach.

Further discussion on parallelisation approaches is done in chapter 4 with application on the

rare event simulation speed-up technique RESTART.

2.4 Statistical evaluation with LRE

The algorithm called Limited Relative Error (LRE) [GS90], [SG96] is used for statistical eval-

uation. It not only provides an estimation for the probability of a special event of interest, but

also for the complete complementary cumulative distribution function (CCDF) and measures

for the relative error and the local correlation of each possible value of the value space. The

LRE measures the correlation within the sample sequence and incorporates this into the control

of the simulation run time, since higher correlations lead to lower state space coverage ratios

(section 2.2) and require larger samples sizes.

Since the above mentioned estimations are accessible during the simulation, the LRE can also

be used for simulation control. This includes on the one hand simply the question whether

the total number of observations (the size of the obtained sample) is large enough to fulfil the

error requirements given by the user and to finish the simulation. On the other hand, in the

RESTART/LRE algorithm (chapter 3), the LRE decides, whether a part of the simulation – a
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step – is sufficiently evaluated, and further serves as a decision making process for finding the

next threshold automatically with the help of the intermediate distribution function calculated

by the LRE.
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Figure 2.8: Markov chain for LRE [SG96]

Figure 2.8 shows a Markov chain with finite number of elements representing a one-dimensional

state space with a finite number of states (k + 1). The state space needs to be one-dimensional

because the states need to be ordered (every state needs two neighbours except from the bound-

ary states). For each state, two counters are managed. The first is the absolute state frequency

hi which counts how often the state i has occurred. The cumulative frequencies vi (figure 2.8)

are calculated as follows: vi = ∑k
j=i h j ∀ i = 0,1, . . . ,k with v0 = n, and n is the total size

of the simulated sample. The second counter is the transition frequency ci which counts how

often transitions from states j with index j ≥ i to states with index j < i have occurred.

To gain reliable results, the so-called large sample conditions of the LRE in equations (2.2), (2.3)

and (2.4) have to be fulfilled. ri , vi are the cumulative state frequencies of the states 0 . . . i − 1

resp. i . . . k with n = ri + vi , and they are needed to determine the state probabilities S0/1(x)

of the 2-element Markov chain, see figure 2.8. ai , ci are needed to determine the transition

probabilities p0/1(x) of the 2-element Markov chain.

An example is given in section B explaining the meaning of the large sample conditions in more

detail, which are:

n > 103 (2.2)
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ri > 102 ∧ vi > 102 (2.3)

ai > 10 ∧ ci > 10 ∧ ri − ai > 10 ∧ vi − ci > 10 (2.4)

The other equations for the measured CCDF G̃(x), which are the simulated mean value α̃

regarding the state of the Markov chain, the measured local coefficient of correlation ρ̃(x),

the corresponding correlation factor c̃ f (x), and the relative error dG(x) = σG(x)/G̃(x), are as

follows with i − 1 ≤ x < i and i = 1 . . . k:

G̃(x) = G̃i = vi/n (2.5)

α̃ = 1

n

k∑
i=1

vi (2.6)

ρ̃(x) = ρ̃i = 1 − ci/vi

1 − vi/n
(2.7)

c̃ f (x) = c̃ fi = 1 + ρ̃i

1 − ρ̃i
(2.8)

dG(x) = di = σG(x)/G̃(x) =
√

1 − vi/n
vi

· c̃ fi (2.9)

The local correlation ρ(x), as introduced at the beginning of section 2.2.1, indicates the degree

of similarity of the value x with the subsequent value in the stochastic process. The correlation

factor c̃ f (x) is included in the relative error and reflects the contribution of the local correlation

to the relative error.



Chapter 3

Simulation Speed-up with RESTART

I
n every simulation domain there is the goal to achieve the most accurate results within the

shortest possible run-time, see chapter 2. The basic idea and the necessity of simulation

speed-up has been discussed. In the domain of rare event simulation (RES), simulation speed-up

techniques are of particular importance, since otherwise no useful results would be obtainable

within an appropriate amount of time. A comparison of some essential simulation speed-up

techniques is given in [Hee95].

In this chapter, the principles of the technique RESTART are introduced. Many investigations

have been conducted with the simulation toolkit MuSICS (Multi Step Importance splitting

Class library System), initially developed by Oliver J. Fuß. Several extensions have been de-

veloped during this work to enable the investigations presented in this chapter. More details are

found in [GLA99], [LG00] and [LG04]. Investigations with distributed RESTART are shown in

chapter 4.

3.1 RESTART fundamentals

In 1991, J. and M. Villén-Altamirano have introduced this technique [VAVA91b] as an enhanced

variant of importance splitting which has been suggested by A. J. Bayes in 1970 [Bay70]. The

simulated random variable is considered in such a way that its value space is divided into impor-

tance regions which can be handled separately. In [GS96], [Gör97] and [GF98], the possibilities

of the combination of RESTART and LRE are shown.

3.1.1 Motivation

To investigate QoS in high-speed networks, e. g., cell loss probabilities (CLP) in ATM networks

in the range of 10−9, special simulation techniques are required which are able to evaluate the

statistical properties of such rare events with a sufficient accuracy.
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Figure 3.1: RESTART approaches

Figure 3.1 shows examples of simulation traces for a straightforward simulation and for RESTART

simulations. A trace shows the observations of a stochastic process plotted over time represent-

ing the random variable X . The simulation executes this stochastic process by identifying the

current value of the random variable at certain points in time. These time instants can be, e. g.,

the arrivals of new packets at the evaluated network node.

Thresholds divide the value space of X is into importance regions. In this example, there are

two importance regions and a single threshold I represented by the horizontal dashed line. The

importance region in the interval [0,I ] has a higher probability than the interval starting at I .

The rare event of interest is B, and all values x ≥ B form the rare event set.

A lower probability of the upper region leads to a lower sample size in the upper region than

in the lower region. A minimum sample size for each region is required to fulfil given error

conditions.

In the straightforward simulation in figure 3.1, the first vertical dashed line represents the time t0
at which the evaluation of the lower part of the random variable in the interval [0,I ] is evaluated

sufficiently with respect to its error condition. The dots in the developing of the values indicate

a large amount of model time during which the random variable remains below the threshold I .

After this point of time, the evaluation does not need further values for x < I , only the values

X ≥ I are needed. Values of the lower region would increase the accuracy of that region,
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however, this is no longer needed. Thus, the time spent in simulation producing values for

the lower region after the time t0 is wasted. Consequently, in RESTART the simulation of the

lower importance region after fulfilling its error condition at t0 is skipped in favour of the next

higher region. The intervals between the thresholds and the limits are called steps and match

the importance regions.

3.1.2 Requirements

The idea of RESTART is based on the conditional probability PB|I of B for X > I :

PB|I = P{x ≥ B | X > I } (3.1)

PB|I ≥ PB

Generally, on its path from the starting state at x = 0 to the rare event of interest B, the

stochastic process has to visit the intermediate states, including the threshold I . This leads to

the relation P0 > PI > PB . Further, this is why it can be expected to reach the rare event faster

from an intermediate state like the threshold I than from the starting state or other states below

I . To take advantage of this, B must be reachable from I with X > I , meaning the process does

not need to go below I to reach B afterwards.

E. g., if the system occupancy is evaluated, an empty system has a high probability, an occu-

pancy of 20 has a comparably low probability, and an occupancy of 10 has a medium probability.

Starting with the state with the high probability, at some time before the state with the low prob-

ability can be reached, the state with the medium probability must have been reached before. In

this example, it is B = 20 and I = 10.

Further discussion on the topic, whether there can be jumps over one or more thresholds and

the impact on the efficiency, can be found in [Gar00] and [VA98].

3.1.3 Procedure

To enable the favouring of importance regions, the simulation must stop at the time when a

transition from the current step to the next lower step is performed. Steps represent the important

regions and are called steps since they are ordered. At that transition, the simulation has to restart

with a trace which tends to go up again in order to remain in the current importance region and

to approach values closer to the rare event of interest. The required upward tendency can be

provoked by storing the system state of the simulation every time a threshold I is reached by an

upward transition from the step below to the step above the threshold I . The circles in figure 3.1

indicate such situations. The system states which are stored are called transition states. Picking

up (restoring) a previously stored transition state and starting the simulation again from that

state is called a retrial.
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Storing promising states with a tendency to the rare event and restarting from them in the next

higher step, forms the actual splitting. The name comes from the fact, that each transition state

is reused several times which splits the trace leading to the state into several traces. This can be

best seen at the global-step part of figure 3.1 where this is visible at every transition state. The

number of times the transition state is used, defines the splitting factor Ri at threshold Ii . For

the single threshold in the figure it is R0 = R = 3.

The difference between the single-step and the global-step approaches is as follows: In the

single-step method, only a single-step is simulated at a time. In the first phase, the first step

is simulated, and the transition states for the second step are collected. After finishing the first

step, the second step is simulated with retrials starting from selected transitions states of the

retrial pool. In a multiple step case, transition states for the third step are collected during the

simulation of the second step. In the global-step all steps are simulated concurrently. The order

of collecting a state and starting retrials is changed and reflects a recursive procedure. Both

approaches can have multiple steps and are implemented in MuSICS.

3.1.4 System state

A system state can have many parameters depending on the simulated model. In a simple sin-

gle server queue, the system state consists of the number of packets or jobs in the queue, the

remaining service time of the currently served packet, and the remaining time until the next

packet is generated. If the service or the generation process is memory-less, the corresponding

remaining time does not need to be stored. For an M/M/1 model, only the system occupancy

including queue and server has to be stored, resulting in a one-dimension state space. The state

space of a less simple model is usually multi-dimensional.

Attention has to be paid to the (pseudo) random number generator (RNG). It is impossible for

RESTART to provide any speed-up if the state of the RNG is also stored together with the

system state. The state of the RNG is either an inner state of the generation algorithm or the

position in the random number sequence in case of using a stored sequence. Storing this state

would lead to exact copies of the simulation traces starting from the same transition state.

3.1.5 Threshold setting

Now, the more general multi-step case is considered. It has more than two steps and, by that,

more than a single threshold. These thresholds are called Ii with I0 always being the threshold

above the first step and i = 0,..,m with Im = B, see figure 3.2. This setting consists of m + 1

steps and also m + 1 thresholds.

For RESTART with only one single-step, as in figure 3.1, the basic equation is PB = PB|I · PI .

For the multi-step case, it is as follows:

PIi = PIi |Ii−1 · PIi−1 (3.2)
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Figure 3.2: Splitting the CCDF for multi-step RESTART [Gör97]

The probability of the rare event or, more generally, the rare event set B is PB = P{X ≥ B} and

is given as the product of the conditional cumulative probabilities of the thresholds:

PB = G B = PI0 ·
m−1∏
i=0

PIi+1|Ii (3.3)

Figure 3.2 shows on the x-axis the value space of the random variable from x = 0 to x = B.

Larger values are not included since the value at x = B represents P{X ≥ B}, and for cases

in which values of x > B are possible, all values x ≥ B are considered as the rare event set,

and there is no concern for further fragmentation of the area x ≥ B. The example value space

displayed in the figure is discrete leading to the stepped distribution function. It represents the

Markov chain of all possibles states of the stochastic process. The Markov chain is the Markov

chain of the corresponding LRE, see figure 2.8 in section 2.4. The areas between the thresholds

Ii and between 0 and the threshold I0 represent the m + 1 steps.

The distance between the levels Hi = G(Ii ) of neighbouring thresholds should be set as close

to optimum as possible. If no further knowledge about model dependent parameters is taken

into account, see [PLG02] and the discussion in section 3.4, the distance should be equal for all

steps if the same step error limit dS is defined leading to the same number of trials per step:

Hi+1

Hi
≈ Hi

Hi−1
with Hi = G(Ii ) (3.4)

A larger number of steps leads to a higher relative error for B, provided that the steps are all

simulated with the same error limit dS. This is because every factor in the product of equation
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(3.3) contributes to the total error. In equation (3.5), the relation between the maximum error

dB for B and the per step error dS is shown:

dB =
√(

d2
S + 1

)m+1 − 1 ≈ ds

√
m + 1 (3.5)

Discussions about the optimum values R
∗
i and H

∗
i , the resulting number of steps and the sam-

ple size, depending on correlation and given maximum error, can be found, among others, in

[SG94], [GS96], [Gör97], and [PLG02].

3.2 Importance function

In the above examples, the parameter system occupancy has been used as the random variable

describing the stochastic process. The values of this parameter have been used to indicate the

system states, and thus, this parameter controls the RESTART activities of saving and restoring

the transition states. The thresholds reside within the value space of the parameter, and the rare

event set is described using the dimensions of the parameter.

In general, the state space of the model under investigation only needs to be mapped onto a real-

valued parameter, the so-called importance function (IF). This is represented by this parameter

in the above examples. The term has been introduced in [VAMMGFC94]. The only requirement

for an optimum importance function for a one-dimensional state space is that it is monotone

increasing, see [VAMMGFC94] and [Gar00].

3.2.1 Multivariate importance functions

In a multi-dimensional state space, which is the case for most not purely theoretical models,

however, not every importance function is efficient, see the discussions in [VAVA99]. This

makes it necessary to incorporate more than one parameter of the system state into the con-

trol of RESTART, i. e., to enable multivariate importance functions in MuSICS.

The evaluation of the IF is performed at discrete times, for which one network node object of

the simulated model is responsible. E. g., if the IF is simply the arrival occupancy at node A,

then this node is responsible for putting the occupancy of its queue into the evaluation process

every time a new job has arrived. For the node this is straightforward, since the information

about the queue occupancy is available to the node.

If parameters from more than one node need to be collected for the IF, e. g., the sum of the

occupancies of node A and node B, one node still must be responsible for the decision about the

discrete times when the values are collected and used for the IF. Such times can be the events

of arrivals to that node. Two approaches to collect the parameters from all involved nodes are

considered. Let A be the responsible node.
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1. At every time the responsible node A wants to calculate the current value of the IF, it asks

all involved nodes explicitly for their contributions, which is a polling mechanism.

2. Every time the contributed values change at the involved nodes except the responsible node

(in this case only node B), the node provides the updated information to the responsible

node A. At the time node A wants to calculate a new value of the IF, it uses the available

information.

The disadvantage of the first approach is that node A needs access to all other nodes. It is easier

to provide access to the responsible object to all nodes, which favours the second approach.

Similar is the application of a global object to which all involved nodes write their updated

parameter information and from which the responsible node reads the information when needed.

The second approach, however, can be less efficient if there are frequent updates of the con-

tributed parameters in node B, and this frequency is significantly higher than the updates in

node A.

In the inverse case, where the update frequency in node A is significantly higher, the second

approach avoids parsing a list of nodes although their values have not changed since the last

inquiry. This list is, however, usually very small. An IF with a high number of involved pa-

rameters would require very deep knowledge of the modelled system and would have to be

investigated as a separate research topic. Thus, the second approach with the global object for

the contributed parameter information is in general the better solution, even if in special cases

the other approach can be more efficient.

3.2.2 Random variable of interest

Generally, the simulation user is not interested in the evaluation of a multivariate random vari-

able which values are available just because the IF represents it for efficiency reasons. Now a

network is considered in which the occupancy of some queue is the random variable X while

the occupancy of some other queue is the random variable Y . For efficiency reasons, in this ex-

ample, the IF has been chosen to be some function of both X and Y , namely Z = f (X,Y ) ≥ 0.

The random variable of interest, however, is X . Now, with X > xR as the rare event of interest,

n + 1 thresholds Ii and the law of total probability

∑
i

P(Bi ) = 1 ⇒ P(X) =
∑

i

P(X ∩ Bi ), (3.6)

it follows

P(X ≥ xR) =
n+1∑
i=0

P(X ≥ xR ∩ Z ∈ [Ii−1,Ii ]) with I−1 = 0, In+1 = ∞ (3.7)

In each step i , a P(Z ≥ Ii ) is determined, which is the basic procedure in RESTART/LRE.

Additionally, as an element of the sum in equation (3.7), a P(X ≥ xR ∩ Z ∈ [Ii−1,Ii ]) is
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determined in each step i by calculating the relative frequency of events X ≥ xR ∩ Z ∈ [Ii−1,Ii ]

in step i . Since this leads in the first place to the conditional probability P(X ≥ xR ∩ Z ∈
[Ii−1,Ii ]|Z ≥ Ii−1), it has to be multiplied by P(Z ≥ Ii ).

The same way as for the RV Z , also for X ≥ x∩Z ∈ [Ii−1,Ii ] a cumulative distribution function

G(x) can be evaluated with the LRE. It has to be taken care about the fact that simulated

observations for which Z ∈ [Ii−1,Ii ] does not apply, have to be ignored for inclusion into the

X -LRE, while they are considered for the Z -LRE to enable the RESTART/LRE on the basis of

Z as the importance function.

3.2.3 Merging LREs

Each element of the sum in equation (3.7) represents one RESTART step and, by that, a single

LRE evaluation object of the random variable X for the corresponding step. The Ii , however, are

the thresholds of the random variable Z which is the IF for controlling the RESTART algorithm.

The intervals within the X -LREs have to be the same in all levels, to enable merging the com-

plete distribution function for X . If only the probability of the rare event P(X ≥ xR) is of

interest, this is not necessary, but one interval representing the rare event has to start at the same

value, preferably at xR .

3.3 States in single-step

In the global-step method, a trace which runs between the thresholds Ii−1 and Ii and hits the

upper threshold Ii is split immediately according to the splitting factor Ri . In single-step, the

transition states are collected until the current step is finished and the next step is simulated.

Some aspects about these state collections are now considered.

3.3.1 Required size of collection

A certain number of transition states collected in the current step are needed for the simulation

of the next step. The number Ri of new traces that will be started within the next step needs to

be estimated to make statements about the required collection size. Ri is a given parameter for

step i + 1 (between thresholds Ii and Ii+1).

Figure 3.3 shows a part of a simulation currently being in step i between thresholds Ii−1 and Ii .

The consecutive traces are plotted over the simulation time which is in the following expressed

in trials instead of time units.

The traces have different lengths which is not directly affected by whether the upper threshold

Ii is hit or not. This means, the trace is not terminated at the upper threshold as it is done in the

global-step method where immediately the new transition state is used to split the successful

trace. Thus, the length of the traces is independent of the choice of the upper threshold.
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Figure 3.3: Traces in single-step

The total number of trials needed in step i is ni . The number of obtained trials in step i as a

random variable Ni results from the number of traces ki starting from threshold Ii and from

the number of trials Si of which these traces consist. Si is a discrete random variable. The

discrete-time stochastic process Si,k is stationary, since the sequence of traces represent a re-

newal process with the renewal point shown by the squares in figure 3.3. Here, k is the sequence

number of the trace. The stationarity leads to a sequence of i. i. d. random variables Si,k = Si .

This results in

Ni =
ki∑

j=0

Si = ki Si (3.8)

The question, however, is not the total number of trials given a fixed number of traces, but

the random variable Ki which is the number of traces needed to obtain ni samples in step i .
The total number of trials in step i can be estimated incorporating the requested error level

and further information about the expected correlation. The actual number of trials will not be

predetermined, but there are some possibilities to estimate it like short pre-simulations with

higher error. Thus, it is now assumed to have an estimate ñi . The random variable Ki is now

Ki = ñi
1

Si
(3.9)

In typical applications, the state probabilities decrease with increasing importance function

which is a real-valued representation of these states. This leads to a lower probability of longer

traces. Further, it can be assumed that the traces are independent if they do not emerge from the

same transition state. Long term dependencies due to sharing of the same transition state one or

more thresholds further down are not taken into account in this consideration. Since generally
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no other attributes of the trace length distribution is known, it is assumed to be geometric re-

flecting the independence, the non-uniformity, and the fact that it has a minimum of 1 without

an upper limit.

The expectation of the trace length Si is E(Si ) = S̄i = p−1
i with pi being the success probability

of the geometric distribution, and the variance is σ 2
Si

= S̄2
i − S̄i . The probability mass function

for Ki is then

PK (Ki = k) = PS(Si = s) for s = ni

k

⇒ PK (Ki = k) = PS(Si = ni

k
) = pi (1 − pi )

ni
k −1 (3.10)

Under the assumptions made and chosing an optimum Ri , the number of traces Ki leads to the

number of states Zi needed in step i . It is Zi = 1
Ri

Ki with the expectation

E(Zi ) = 1

Ri

∞∑
k=1

p(1 − p)
ni
k −1 = 1

Ri

p
1 − p

∞∑
k=1

(1 − p)
ni
k (3.11)

The most important parameter p of the distribution of Zi is still unknown. Furthermore, the

type of distribution of Si can be slightly different from the geometric distribution. This means

that even if the mean value of Si is known, it remains difficult to calculate a good estimate for

K̄i without having a certain knowledge about the stochastic process Xt the sample is obtained

from. Pre-simulations of representative models for the investigated class of models, however,

can provide reasonable information about the required parameters. Also already gathered expe-

rience with similar models can be included into the estimation.

In contrast to Si , an estimate for the needed samples ñi can be concluded from the step which

is currently running. From the progress information of the achieved error levels, the number of

trials still needed to finish the step can be derived. This is because the number of needed trials

is proportional to the reciprocal square root of the maximum error.

3.3.2 State usage and limitation

The condition for the successful finish of step i is reaching the specified error level including

the fulfilment of the large sample conditions, see section 2.4. At the end of the simulation of

step i , the resulting total number of trials in that step is ni . The number of states for the next

step i +1 which have been collected in step i can be lower than expected as discussed in section

3.3.1. It can also be very high which leads to a large number of states that will not be used in

the next step or at least to a low usage factor Ri of the states for step i + 1 at the threshold Ii .

From the view of simulation efficiency, the effect is small. The number of operations to restore

a state in the next step is independent of the state collection size, at least if the underlying
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memory structure is not implemented in a sequential-access like manner for random access.

Only the number of operations to store a state is higher. Since the prediction of the needed

number of states for the next step is not trivial to do, as discussed in section 3.3.1, it is better

not to stop storing states in step i and continue until the simulation in step i is finished.

Another aspect is the memory consumption for the collection of the transition states. High

memory consumption can, in some cases, reduce the performance of a process, especially if

swapping to mass storage devices is involved. If the number of collected states exceeds the

necessary number for the next step by orders of magnitude, a limit to the collection can be

applied.

Pre-simulations, as discussed at the end of section 3.3.1, help to estimate the required number

of states. The fact that the resulting Ri is independent of the specified error level, the pre-

simulations can be conducted with a relaxed error level.

If these results show, e. g., an effective resulting Ri,res = 0.5 while the predefined one would

be the optimum value Ri = R
∗
i = e2 ≈ 7.4, only less than one of about ten states needs to

be stored. This can be done by stopping to store transition states after the estimated number

of states has been collected. Acting like this will lead to the situation that only the transition

states of the earlier simulation phases of step i are stored which can possibly have impact on the

accuracy of the results. A better way is to store only the first state in a group of ten consecutive

states.

3.3.3 State selection

From the retrial-pool, the collected states can be selected in a linear way or randomly. In the

linear way, the order in using the collected states is not changed from the order in which they

have been collected. When reaching the end of the pool, it is started over at the beginning

forming a circular selection procedure.

First, an optimum size of the state collection is assumed which will result in a good Ri . In

this case, the linear selection is the preferred one. There are no additional random operations

needed, and all states are reused equally making the linear selection kind of fair. More precisely,

it means, each state is used either �Ri� or �Ri� times. Even in cases of quite a low Ri of about

2 or 3, the selection fairness remains valid, and thus, the preferred selection is the linear one.

On the other hand, if the Ri is very low, e. g., significantly below 2, the size of the state collection

is higher than necessary, and a state limitation should be considered, see section 3.3.2. The

simulation should be conducted again, or at least the limitation could be applied to planned

simulations with similar parameters.

If the state collection size is very high and causes the operating system to do memory swapping,

the simulation should be aborted in any case if detected. The efficiency in such cases can easily

go far below the efficiency of straightforward non-RESTART simulations.
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If system memory is non-critical and a state limitation is not necessary because the efficiency

gain is expected to be small, see discussion in section 3.3.2, the random selection is to be

preferred. It is because it does not favour the earlier simulation phases from which all reused

states have been collected disregarding completely all states that have been collected in later

simulation phases.

A badly configured simulation can have very small Ri . The only reason can be that the proba-

bility to hit the upper threshold from the lower threshold is relatively high. This will lead to a

small number of required samples in that step and, consequently, to a small number of required

retrials. Optimally, Ri should be as close as possible to the reciprocal value of the conditional

probability PIi+1|Ii to reach threshold Ii+1 for X > Ii :

Ri ≈ P−1
Ii+1|Ii

(3.12)

This is because a number ni of trials in step i −1 lead to a number of states ki . If only one retrial

from each of these ki states would be made, there would be collected

ni+1 = ni PIi+1|Ii (3.13)

trials in step i . Here, a Poisson process is assumed if there is no further knowledge about the

process. If the thresholds are set optimally, the number of trials needed in the steps are equal:

ni = ni+1, and thus, equation (3.12) follows.

The reason for a badly configured simulation can either be that equation (3.12) has not been

applied, or that the conditional probabilities PIi+1|Ii have been estimated badly. If all this is not

the case and the simulation is well configured, the linear selection should be preferred because

of the prevention of additional computation overhead.

3.3.4 Combination of single-step and global-step

A combination of the single-step method with the global-step method can use the advantages

of both methods. As identified above, the single-step method consumes more memory as the

global-step method. The amount of required memory depends on the properties of the simu-

lated system defining the memory consumption for each transition state. But it can increase

significantly if the Ri,res is very low leading to a large number of states to be stored. In contrast

to this, in the global-step method only a single state per threshold needs to be stored at a time.

In the global-step method, however, the thresholds need to be defined in advance. This can lead

to a significantly decreased efficiency if the thresholds are far away from the optimum values.

The single-step method is able to collect a certain number of observations in a first phase of a

step without collecting transition states. From the distribution function resulting from this phase

an optimum threshold can be defined. In a second phase, the transition states at the threshold

which is now defined, can be collected. The first phase runs with a higher error limit of the LRE
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than the second phase. Apart from the error limit, the LRE evaluation is the same. This provides

the possibility for the simulation user to achieve a threshold selection close to optimum.

Combining these method means, in a first phase the single-step method finds the optimum

thresholds, and in the second phase, the global-step method runs using these thresholds. The

single-step simulation can run with a higher error limit, because it is only a pre-simulation

phase to determine the optimum parameters of the main simulation running with the global-

step method.

3.4 Threshold refinement

Not all scenarios allow for the application of the optimum parameters of the RESTART tech-

nique. One aspect is the geometric distance of the thresholds on the probability axis. Equation

(3.14) shows this as a relation of the levels Hi of the thresholds Ii :

Hi |X≥Ii−1 = Hi

Hi−1
∀i = 0, . . . ,m (3.14)

The theoretical optimum is Hi |X≥Ii−1 = e−2 as long as no unknown model dependent parame-

ters are taken into account, see [PLG02].

If the random variable is discrete, obviously the thresholds Ii cannot always be set to the exact

values corresponding to the optimum H
∗
i . They have to be rounded to the closest value of the

value space. Precisely, a threshold can also be put between two possible neighbouring values

of the random variable’s value space, but not more than one. Otherwise, no transition between

these thresholds would be possible, since always a transition would involve all these thresholds

together in one step.

In most cases, this will be sufficient. If the distance between two possible values for the thresh-

olds is large, however, at least for a region of the value space, this will cause a low efficiency

for the affected region.

As an example, figure 3.4 shows a random variable with a CCDF of G(x) = e−10·x . Possible

thresholds for a RESTART simulation of this random variable are the natural numbers 1,2,3,...,

indicated by the thick dashed vertical lines. They have a distance of Hi |X≥Ii−1 = G(x |X ≥
x − 1) = e−10. Thus, the optimum thresholds would be at 0.2,0.4,0.6,..., indicated by the thin

dashed vertical lines.

3.4.1 Partitioned service

In the event driven simulation applied in MuSICS, a packet generator (source) determines the

inter-arrival time values drawn from the RND and sends the next packet to the receiving server

node. This packet, however, does not know its size or duration, it is up to the RND of the
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receiving station managing the service process by which the decision about the service time is

made. The simulation-relevant point of time at which the packet is sent further to the next node

resp. removed from the network, is determined by this service time.

As a consequence, the station receiving a packet has to take care about the refinement of the

random variable’s value space (the queue occupancy), which in reality matches (a subset of) the

natural numbers. It starts at zero for an empty system and ends at the queue length plus one for

the servers, or the number of servers if it is a multi-server node.

At the event indicating the end of the service time of the currently served packet, the station

removes the packet from the system or forwards it to the next receiving node. In case of waiting

packets in the queue, the next service period starts at the end of the previous service period, and

otherwise it starts at the arrival of a new packet from the source. The duration of the new service

period is again determined by the serving station.

Threshold refinement (TR) is now made possible by partitioned service (PS), see figure 3.5.

In contrast to normal operation, the serving station does not remove the complete packet after

having fulfilled the service. Instead, the packet is partitioned into identical pieces with respect

to its service time. The simulation parameter g is the granularity which determines the number

of pieces into which the packets are divided. The number of events necessary for the service

of a single packet is increased from a single event for the end of the service time in non-PS

simulations to g in PS simulations, one event for each partial removal of a packet in service.

To prevent PS from influencing the behaviour of the other nodes in the network model, e. g., the

packet inter-arrival times at the other nodes, the departure event takes place at the same time as

it would do in non-PS simulations. This means, the succeeding nodes are not informed about

the partial end of the service of the packet before the service time has completely elapsed. This

guarantees that the behaviour of the simulation itself remains unchanged and only the evaluation

process for the arrival occupancy and by that the simulation control with RESTART is affected.

PS introduces an overhead into the simulation process which mainly results from the fact that

more information has to be computed and stored in transition states. Furthermore, a higher

number of events is needed for the completion of the service of a packet.

3.4.2 Non-RESTART simulations

To show the effect of PS, figures 3.6 and 3.7 show non-RESTART simulations. In figure 3.6,

a simple M/M/1 model is used with a load of η = 0.1 in sub-figure 3.6 a) resp. η = 0.2 in

sub-figure 3.6 b). Figure 3.7 shows simulation results for a simple M/D/1 model with a load of

η = 0.2 in sub-figure 3.7 a) resp. η = 0.4 in sub-figure 3.7 b).

Most important is that the results of the simulations with the different granularities g, of which

g = 1 means a non-PS simulation, perfectly match at the realistic x-values (the natural numbers

in this case) and only differ at intermediate x-values. This applies for all simulations of figures

3.6 and 3.7.
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Figure 3.6: M/M/1 non-RESTART simulation



3.4 Threshold refinement 35

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6

G
(x

)

x

Crude Monte Carlo simulations

g=1
g=2
g=4

a) Load η = 0.2

 0.0001

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6

G
(x

)

x

Crude Monte Carlo simulations

g=1
g=2
g=4

b) Load η = 0.4

Figure 3.7: M/D/1 non-RESTART simulation



36 3 Simulation Speed-up with RESTART

M/M/1

η g samples/sec

1 210684

0.1 2 140619

4 112872

1 176465

0.2 2 98679

4 94804

M/D/1

η g samples/sec

1 203810

0.2 2 139617

4 105779

1 209146

0.4 2 125159

4 103233

maximum relative error of 5 %

evaluation between x = 0 and x = 20

Table 3.1: Simulation overhead of PS simulations

Table 3.1 shows the simulation overhead of partitioned service. It results from the higher num-

ber of events which are needed to finish a packet in service, depending on the granularity. It is

shown for all graphs the number of samples which the simulation has been able to produce per

time period (seconds). The greatest performance decrease takes place between non-PS simu-

lations and PS simulations with the smallest possible granularity g = 2. Further performance

decrease for higher granularities is much smaller. The performance decrease has to be taken into

consideration when applying PS to RESTART simulations. Too high granularities will have no

more gain in efficiency for RESTART, but they will have further loss in efficiency for PS instead.

3.4.3 RESTART simulations

Figure 3.8 shows the RESTART simulations for both the M/M/1 and the M/D/1 model, but

with lower load η to stress the capabilities of RESTART and to chose configurations for which

threshold refinement leads to a significant gain in efficiency. Table 3.2 shows the performance

results for these simulations.

For the M/M/1 simulations in figure 3.8 a) and the upper part of table 3.2, the load η has been

chosen such that the optimum thresholds have a distance of �Ii = Ii − Ii−1 = 0.5 for η = e−4.

This leads at first sight to an optimum granularity of g = 2. The results in the table, however,

show a granularity of g = 4 to be even more efficient although only one additional step has

been introduced. The reason for this is the special situation at x = 0. For both g = 2 and g = 4,

all thresholds from I1 to the end have an optimum distance to their neighbour thresholds, and

all steps needed comparable simulation times to finish.

For the first threshold I0 the fact that G(0) = P{X > 0} < 1 leads to a different distance

between the corresponding probability values of the minimum value of the value space (which

is 0) and the first threshold I0, namely between P{X ≥ 0} = 1 and H0 = G(I0). Equation (3.15)

applies:
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M/M/1

η g steps samples time [sec] speed-up

1 19 704922000 12330 1.000
e−4 2 39 50022006 1767 6.978

4 40 23550018 1071 11.513

1 19 147288000 2727 1.000
2 · e−4 2 39 21513013 782 3.487

4 42 17445021 876 3.113

M/D/1

η g steps samples time [sec] speed-up

1 19 236761002 3624 1.000
0.1 2 39 25765004 775 4.676

4 40 11536018 486 7.457

1 19 45892001 630 1.000
0.2 2 39 11294011 332 1.898

4 30 5842149 185 3.405

maximum total relative error of 5 %

Table 3.2: Efficiency of PS in RESTART simulations

H0|X≥0 = H0

1
= G(I0) (3.15)

For a load of η = e−4, this distance is G(I0) = e−4(I0+1), for η = 2e−4 the distance is

G(I0) = (2e−4)I0+1. This means, the first threshold should be set to the smallest possible

value, which is I0 = 0.5 for g = 2 and I0 = 0.25 for g = 4. The first step in the interval

[0,I0] occupies in such cases the greatest portion of the total simulation time. This is why the

efficiency for g = 4 is significantly higher than for g = 2 in the case of the lower load η = e−4.

For the higher load, the distance G(I0) for the first possible threshold I0 is closer to the optimum

than for the lower load case, which leads to a smaller reduction of the sample size for g = 4

compared to g = 2. This reduction is too small to compensate the higher computation effort for

the higher granularity, which results in lower total efficiency.

The same statements can be made for the M/D/1 model, figure 3.8 b) and the lower part of table

3.2. For the lower load η = 0.1, the optimum �Ii ≈ 0.58 which is close to 0.5. This leads

to a behaviour comparable to one for the lower load of the M/M/1 model. For the higher load

η = 0.2 it is �Ii ≈ 0.724 which is close to 0.75. For g = 1 and g = 2, the possible �Ii

are quite far away from the optimum �Ii , but with a granularity of g = 4 the thresholds can

be set very close to the optimum ones. This explains the increase in efficiency for g = 4 and

η = 0.2 of the M/D/1 model even with only 30 steps (=29 thresholds) which are set at optimum

positions.
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3.4.4 Conclusions on threshold refinement

Threshold refinement supports the placement of the thresholds closer to the optimum. This is

important on the one hand for simulations of random variables of which the lowest possible

value in the value space has a high probability. It results in a jump in the distribution function,

and dimensioning the first step as small as possible is required in that case. This can be reached

by a high granularity with the drawback of higher computation effort. On the other hand, dis-

tribution functions which are very steep in some intervals or everywhere need threshold refine-

ment to increase the conditional probabilities of reaching a threshold from the next lower one.

The optimum granularity depends on the jump at the lowest value and on the predicted (local)

steepness of the distribution function.

Figures 3.6 and 3.7 show how accurately the distribution function G(x) is represented by the PS

simulations at all possibles values of x . Further, figure 3.8 shows the RESTART simulations.

In the M/D/1 case, figure 3.8 b), the agreement of the PS simulations (g > 1) with the non-

PS simulation (g = 1) is very good, and it is even better in the M/M/1 case, figure 3.8 a).

Considering the achievable speed-up (table 3.2), threshold refinement can contribute well to the

overall simulation accuracy.



Chapter 4

Distributed RESTART

F
or certain models, RESTART is a powerful method to simulate events up to an extremely

low probability with sufficient accuracy and within reasonable time. As shown in chapter

3, the speed-up can be very high. Generally, parallelisation can speed-up simulations, depending

on the problem to solve, see section 2.3. It appears natural to consider the possibilities to com-

bine these approaches and to find out which way of parallelisation provides optimum additional

speed-up for RESTART simulations.

It is essential to note that the parallelisation approach is not applied to a straightforward simula-

tion method but on the RESTART simulation speed-up method. This affects mainly the way the

decomposition of the simulation procedure is done, as it will be shown in more detail in section

4.1.1.

In the following it is shown which aspects have been considered for the development of dis-

tributed RESTART. The simulation toolkit MuSICS mentioned in chapter 3 has been extended

with the implementation to produce the simulation results presented in this chapter. More details

are found in [LG02] and [LG04].

4.1 Methodological aspects

On the way to an appropriate method for parallelising RESTART, several methodological as-

pects have to be considered. The choices which are possible for each of these aspects are dis-

cussed, and it is explained which choice is appropriate for MuSICS. The most relevant attributes

of these possible choices are the scalability and the communication overhead.

4.1.1 Decomposition

Different approaches regarding the principal decomposition methods are introduced in section

2.3. Here, they are discussed with respect to their applicability to RESTART.
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4.1.1.1 Model division

The model division is introduced in section 2.3.3. For this approach, model components have

to be identified to decide about the way they will be assigned to processes. These components

need to be as autonomous as possible to minimise the necessary communication between the

processes. Components can be the network nodes, preferably including the associated queue.

This has the advantage of eliminating necessary communication between queue and node about

the transfer of a job from the queue to the node. Only the transfer of jobs from nodes to other

nodes have to be communicated.

A significant limitation of the model division is the scalability. For small network models with

one source and one or two servers, the simulation could only be divided into two or three pro-

cesses. Assigning the queues to separate processes would only slightly increase the scalability

at the expense of the disadvantage discussed above.

Apart from this and the other usual problems with this approach discussed in section 2.3.3, the

RESTART-specific actions have to be initiated and controlled. The control of the RESTART/LRE

procedure is bound to the evaluation of a single random variable. The process of the network

component which provides the values for the random variable has to perform the evaluation. It

has to initiate the store and restore operations on all involved simulation objects on all processes.

The main aspect which disqualifies this approach for MuSICS is the very frequent transfer of

job related data between the processes representing the network nodes.

4.1.1.2 Functional and load division

Functional division usually means to divide simulations into functions like evaluation, random

number generation and the simulation itself, as introduced in section 2.3.1. A different extended

kind of functional division is considered for application with RESTART.

Apart from the possibility to separate the above mentioned functionalities, the simulation func-

tionality can be divided into trajectories. A trajectory or trace is a sequence of simulated values

starting from a restored state which has been previously stored and ending at a situation at which

a new state has to be restored. At the end of a trace, possibly the reached system state is stored

again. A trace can be considered as a part of a sequential RESTART simulation run. The sim-

ulation of a trace is completely independent of the rest of the simulation which is why several

traces can be simulated concurrently by different processes. This is rather a load division even

though only simulation parts are distributed to separate processes.

Evaluation

Conforming with the original idea of functional division, one process has to be responsible for

the evaluation. Irrespective of the way how the simulation results are merged, they have to build

one central result. One way is that the processes doing the simulation of the traces perform
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some pre-evaluation of the results and calculate statistics which can be merged by the central

evaluation instance. This requires that the applied evaluation method is capable of merging these

statistics. The other way is simply to have the simulation processes send all observations to the

central evaluation instance which evaluates all observations within a single procedure as if they

came from a single sequential simulation.

In RESTART/LRE it is essential for the evaluation procedure to have access to the intermediate

results since the evaluation procedure also controls the simulation. This means that the interme-

diate statistics provided by the LRE also include the current actual value of the relative error.

On this parameter, an important decision for the simulation is based, namely whether a step

is completely simulated regarding the target maximum relative error. Thus, a central instance

deciding on the simulation status and the required actions needs to get results or statistics from

the simulation processes at regular intervals, not necessarily periodically.

Further down in section 4.1.3, the centralised and decentralised evaluation approaches are com-

pared in more detail.

Work distribution

master

slave queue

job queue

1

2

3

N

slaves

Figure 4.1: Master-slave architecture

Another central instance – the master process – has to manage the simulation work to be done.

A single stored system state in RESTART will be used (replicated) Ri times as the starting

state of a new trace in step i . This leads to a number of Ri new simulation jobs for each stored

system state of the step i − 1. These system states are extended with the information on the step

it belongs to and by this form the simulation jobs. They are provided to simulation processes

asking for new work after having completed the simulation of a single trace. The simulation

processes are called slaves.

Such a central instance needs to know when a job has been simulated to keep the replication

counter consistent. Thus, it is efficient to let this instance control the job distribution to the

simulation processes. The alternative is to let a simulation process itself replicate a state and

distribute the jobs to the other simulation processes. This raises the problem that it is not known
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to these processes which other process is still performing a simulation. Either each simula-

tion process would need a queue for incoming work requests (job) which has to be managed

by some other process, or the process sending the job would have to wait. The latter is pro-

hibitively inefficient, and the first needs some non-blocking communication mechanism lacking

the possibility of acknowledging the acceptance of a job.

A central instance managing the evaluation and by that knowing the overall simulation status

can most efficiently manage the work distribution. Only the central manager has to know about

the number and status of the simulation processes. It can use queues to manage the available

jobs and the slaves waiting for a new job to simulate. This is shown in figure 4.1.

Simulation

In addition to the auxiliary functionalities described above, the main work is assigned to pro-

cesses doing the actual simulation, all containing the complete simulation model.

Combination of the above functionalities are possible. One is the combination of a central mas-

ter evaluation process with a decentralised pre-evaluations, see section 4.1.3.

4.1.2 Communication

Processes that need to exchange information have to communicate the information in some way.

One process is willing to send information, and another process expects to receive information.

If the receiving process can be addressed, the other process can explicitly send the information

to it. Another way for a process willing to send is to announce the availability of information,

and other processes which are interested in this information can collect it without the sending

process knowing the receiving process.

4.1.2.1 High Level Architecture

In the High Level Architecture (HLA) [KWD99] [Fuj00], an implicit communication is used. In

the explicit communication, the process representing the information source directly addresses

the process representing the information sink. In contrast to that, within the HLA, the informa-

tion source process only makes the information available and announces the availability. The

information sink process has to check for the availability of the information it wants to receive.

In case of a positive check, the process has to fetch the information on its own. Generally, the

source does not know which sink, if any, has collected the information, and vice versa.

To make this kind of communication possible, some central instance is needed which is known

to all communicating processes, since otherwise the direct addressing of the peer process would

still be needed. The so-called Run-time Infrastructure (RTI) undertakes this task. Processes

needing information have to tell the RTI which type of information they need. They register for

this information. The RTI is now able to tell the process about newly available information that
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is relevant for the process, every time the status of availability changes. The processes providing

information have to tell the RTI the type of information, and they have to announce changes to

the availability status to it. The RTI can forward this announcements to the processes interested

in the corresponding types of information.

This type of parallelising simulations has been invented by the Department of Defence (DoD)

for a special type of simulation, the distributed interactive simulation (DIS). This is a special

type of real-time simulation which is distributed to a number of users interactively operating

their own simulators. With the HLA, even heterogeneous simulators can be coupled.

In contrast to the real-time simulations, the simulations considered in this thesis represent the

class of so-called as-fast-as-possible (AFAP) simulations. In [LKG01], it has been identified

that in the application of the HLA on this class of simulations the management of the model

time is a critical issue.

On the other hand, parallelising RESTART with the HLA would lead to a master-slave architec-

ture similar to figure 4.1 with independent slaves and only jobs and results to be communicated.

Nevertheless, the communication needs to be as fast as possible (non real-time). Since the HLA

is quite complex and has been designed for real-time simulations, the performance of the imple-

mentations has been found to be insufficient for the parallelisation of RESTART with its very

frequent necessity to exchange information.

4.1.2.2 Message passing

The explicit communication is called message passing and can be implemented according to

the message passing interface (MPI) [GLS99]. Each single communication (a message) has one

sender and one or many receivers, and the sender knows the receiver(s) of the message and vice

versa.

The MPI is an application programming interface (API) which is widely used by many imple-

mentations for many architectures and platforms, and it has been designed for efficient commu-

nication. Thus, for most systems which are used for distributed computing, optimised imple-

mentations are available. For the simulations of this thesis, different MPI implementations have

been used, depending on the platform.

4.1.3 Merging statistics

In the central evaluation, all obtained values have to be communicated to the evaluation process.

This leads to a large communication effort. An alternative approach is to have the simulation

processes evaluate their own samples and send the result of the evaluation to the master evalua-

tion process which combines the results to an overall result.

A prerequisite is to keep necessary auxiliary values for the result combination procedure. If,

e. g., only the overall mean value is needed, sending only the mean values of the simulation
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processes to the master is not sufficient if the sample sizes are different. For evaluation of

distribution functions as done with the LRE, the intervals must be at the same locations for all

participating simulation processes. See also section 3.2.3.

In the following consideration, it is assumed to have a central process – the master – calculating

the overall result, and a number of M simulation processes – the slaves, all with the same

configuration evaluating the same value space. The statistics are done with the LRE method.

4.1.3.1 Simulation

The pre-evaluated results of the slaves are sent to the master process. Since the intervals of

the LRE objects are the same for all slaves, the result combination, or the merging, is done

by cumulating all internal counters of all contributing LRE objects for each interval. The main

counter represents the number of occurrences of the interval value, and another counter manages

the leftward transitions according to the corresponding 2-node Markov chain in figure 2.8.

In the centralised evaluation, all observations of a certain slave are sent to the master after a

simulation job has been finished. The values collected during the simulation of a single job are

called a trace. These traces can be grouped to form trace groups of, e. g., of 1000 values, in order

to reduce the number of messages. It is more efficient to have a smaller number of messages to

be sent than a large number with the same cumulated message size, see [LG02]. There, it has

been further pointed out that large trace groups cause wasting of simulation time. It is possible

that the master has already collected enough values and has reached the target error level, but

some slaves are still simulating since they have not yet filled their trace group. The main reason

for this to happen is the nescience of the slaves about the current error level.

In the decentralised approach, the master does not know about the error level reached by a

certain slave. Instead, the slaves do know about this, but only about their individual error level,

not about the overall error level. The total error of the merged statistics for step i is shown in

equation (4.1) where ni,k represents for each slave k the number of observations obtained for

step i .

di ∝ 1√∑M
k=1 ni,k

(4.1)

The problem that the master does not know about the error level at the slaves and by that also

about the current overall error has to be solved. Some instance has to decide about the finishing

of step i . With the above equation, it is possible to have the slaves themselves decide about the

finish of their individual contribution to step i . Under homogeneous circumstances, all slaves

can be assumed to produce comparable numbers of observations within the same time. For M
slaves, each slave produces approximately an Mth part of the overall needed observations ni to

reach the total error di for step i , thus ni,k is as follows:
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ni,k = ni

M
∀ k = 1 . . . M (4.2)

Using equations (4.1) and (4.2), the individual error level di,k is

di,k = di · √
M (4.3)

With these adapted error limits for the slaves, all slaves can autonomously perform their work

and send afterwards the pre-evaluated results to the master process for merging. Probably, the

achieved total error level d̃i will not be exactly di,k/
√

M . A significant oversampling leading

to an actual relative error far below the target would waste simulation effort. This case is very

unlikely, however. A small deviation of the target error level can happen, and in this case, the

master initiates some more simulation work until the step i is finally simulated sufficiently.

4.1.3.2 Communication

Now it has to be considered the amount of data to be transmitted for an object containing the

status of an LRE evaluation, or in other words the data needed to unambiguously reconstruct

the corresponding LRE object on the side of the master process. If the target for the total error

is reached without the master needing to distribute additional jobs after having received the

pre-evaluated results from all slaves, this transmission is only needed once per slave and step i .

In the implementation of the LRE for the investigated computer architectures, an LRE object has

a fixed part of about 200 byte and a value space dependent part with an amount of 20 byte per

possible value resp. per interval. The latter is an array of a data structure consisting of a pointer,

the value itself, and two counters for the occurrence frequency and the leftward transitions.

As an example, and without loss of generality, a discrete value space xi ∈ 0,1, . . . ,B is chosen

for the random variable X . This leads to B + 1 elements in the array and to a overall message

size Nb(decentral)

Nb(decentral) = 200 + 20 · (B + 1) (4.4)

In the central approach, the total message size is compared to the decentralised approach as

follows:

Nb(central) = 8 · ni,k ≈ 8 · ni

M
(4.5)

Here, it is assumed to have values of double precision requiring 8 byte per value. While in the

decentralised approach only a single message has to be sent, and possibly a few additional ones

if the target error level has not been reached, in the central approach, a usually large number

of values ni need to be obtained and sent. Even for quite large trace groups, the number of

messages will be large.
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Again considering the total amount of data to be transmitted to the master, it will be much larger

for the central approach since ni
M will usually be much larger than B. Let, e. g., B = 89, M = 4,

and a even quite low figure ni = 106. For this example, in the central approach a factor of 1000

times more data has to be transmitted than for the decentralised approach. The decentralised

approach, however, has not yet been implemented since major recoding of the LRE would have

been necessary.

4.1.4 Decision

The decided method is the master slave topology with message passing using the MPI. The

master manages the simulation work and distributes it to the simulation processes called slaves.

The slaves send their results and newly found transition states to the master, and the master

performs the evaluation centrally.

4.2 Simulations

A collection of simulation results is presented here to show the performance of the method

chosen in section 4.1.4. Simulations have been conducted on different platforms and network

topologies.

4.2.1 Platforms

The platforms on which the simulation has been conducted were a plain network of workstations

(NOW), an SMP (symmetric multiprocessor) machine, and a combination of this. The latter was

a network of dual processor machines.

4.2.1.1 Network of workstations

As pointed out in [LG02], a NOW is easy to set up in the sense that cheap off-the-shelf hardware

can be used to build a parallel computer. The communication between the processes, however,

has to take place over network hardware. This is slow compared to communication on the level

of the system bus as in SMP system or even massively parallel processors (MPPs).

4.2.1.2 Symmetric multiprocessor

SMP systems have the advantage that communication between processes on different processors

of the system is an intra-system communication, and it can take place on the fast system bus

level. Every external network hardware puts overhead to the communication compared to the

intra-system communication.
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The main disadvantage is the limited scalability. SMP system with a high number of processors

are either not available or at least comparably expensive.

4.2.1.3 Network of SMPs

A combination of the two platforms above is to connect a number of SMP systems via external

network hardware. The limited scalability of plain SMP systems does not apply, and small SMP

systems with two processors are hardly more expensive than two single processor systems, they

are usually even cheaper. Even four-processor systems are affordable.

The advantage of fast intra-system communication for neighbouring processes makes it a faster

system than a NOW of single-processor machines, at for certain interaction structures, see sec-

tion 2.3.

The structure of the chosen method with a master process and several slaves, however, does not

benefit from this. The interaction structure is a star, and only the slave process(es) on the same

machine as the master process can make use of the faster intra-system communication.

4.2.2 Network technology

Different network technologies are possible, of which only the well known Ethernet is consid-

ered, and furthermore a representative for high-speed networks, namely SCI (scalable coherent

interface), on which simulations have been conducted in this thesis.

4.2.2.1 Fast Ethernet

Ethernet is the most used network technology, it is cheap, and it is nowadays installed on-board

without needing an extra network card. Fast Ethernet with 100 Mbit/s already is standard, faster

transfer rates are common.

Even with high transfer rates, or throughput, however, the main disadvantage for high speed

parallel computing with significant communication effort is the high latency of the Ethernet

technology.

4.2.2.2 Scalable coherent interface

As latency is critically important for efficient distributed computing, SCI as a technology with

low latency has been considered. The transfer time of small messages from one machine to

another is about 150 times less than with Ethernet. The throughput is higher than Gigabit Eth-

ernet, but with the high number of small messages generated by the method discussed here, as

identified in [LG02], the latency is the limiting factor.
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The topologies possible with SCI are a one-dimensional ring, and grids of two and three dimen-

sions. The setup used for the SCI simulations in this thesis consists of four dual-processor SMP

machines (nodes), and thus, a ring topology has been used. For an increasing number of nodes,

the number of dimensions has to increase to keep the communication efficient.

4.2.3 Simulation results

To evaluate the performance of the chosen parallelisation method, two comparisons are pre-

sented in the following.

4.2.3.1 Plain NOW vs. SMP system

In this section, simulation runs are compared which have been conducted on a plain NOW and

on an SMP machine. The SMP machine was a Sun Enterprise server with four processors with

400 MHz each. The NOW contains single-processor machines with 1 GHz Athlon processors

connected via a Fast Ethernet network. To keep the simulation results of the NOW comparable

with the SMP results, only up to (the quite small number of) 3 slaves have been used also in the

NOW simulations.

model M/M/1 Jackson

time [s] gain eff (sl) eff (tot) time [s] gain eff (sl) eff (tot)

single 45.5 1.00 1.000 1.000 32.1 1.00 1.000 1.000

2 slaves 48.7 0.93 0.467 0.311 33.6 0.96 0.478 0.318

3 slaves 49.2 0.92 0.308 0.231 30.6 1.05 0.350 0.262

Table 4.1: Results for Fast Ethernet plain NOW

model M/M/1 Jackson

time [s] gain eff (sl) eff (tot) time [s] gain eff (sl) eff (tot)

single 136.5 1.00 1.000 1.000 107.0 1.00 1.000 1.000

2 slaves 97.4 1.40 0.701 0.467 76.2 1.40 0.702 0.468

3 slaves 74.3 1.84 0.612 0.459 53.9 1.99 0.662 0.496

Table 4.2: Results for SMP system

Tables 4.1 and 4.2 show the run-times of simulations with two different models. The first model

is an M/M/1 model, the second one is a simple Jackson network with two sources and three

stations. In these tables, the keywords have the following meanings:

time: Run-time in seconds

slaves: Number of slave processes. In the NOW case, this is equal to the number of slave nodes

since single-processor machines have been used.
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single: The non-parallelised simulation as reference.

gain: Ratio of the run-times of the non-parallelised simulation and the parallelised simulation.

As reference value, the gain of the non-parallelised simulation is 1.0.

eff (sl): Slave efficiency, i. e., gain divided by number of participating slaves.

eff (tot): Total efficiency, i. e., gain divided by number of participating processes, which is the

number of slaves plus one.

Originally, the different models have been chosen to investigate the impact of different message

sizes on the performance. The run-times, however, result from optimised simulations where

the slaves send groups of found transition states to the master and in turn receive a group of

jobs to simulate from the master. This reduces the number of messages to be sent significantly,

and, which is relevant for this consideration, it makes the communication overhead much less

dependent on the size of the system states. The different run-times for the two models result

from the simulation of the models, not from the different size of the communicated messages.

In the NOW simulations of table 4.1, the gain of the parallelised simulations is around 1.0 for

all runs. That means, it is actually a loss in most cases. The efficiency values are low, and the

slave efficiency values as well as the total efficiency values are lower in the simulations with the

higher number of slaves. For both models, the behaviour is very similar.

In the SMP simulations of table 4.2, the gain of the parallelised simulations is higher than 1.0,

and thus, there is indeed a gain in the application of the distributed RESTART on an SMP

system. The slave efficiency only slightly decreases with an increasing number of slaves, and

the total efficiency remains almost constant or even increases.

4.2.3.2 Fast Ethernet vs. SCI technology

In this section, an M/M/1 model has been simulated on two systems with different network

technologies. In the simulations of table 4.3, the inter-system communication has taken place

over a Fast Ethernet network, and for table 4.4, the SCI network has been used.

As in the previous section, the tables show the run-times of the simulations with the resulting

gain and efficiency values. Additionally, to achieve a higher precision for the gain and efficiency

values, the number of observations simulated and by this the number of observations per second

have been considered. The reference values are here the number of observations per second of

the non-parallelised simulation runs.

In these tables, additional to the tables in section 4.2.3.1, the keywords have the following

meanings:

nodes: Number of contributing nodes including node executing the master process. Since dual-

processor machines have been used, this information is needed additionally to the number

of (slave-)processes.

observations: Number of observations simulated, also called the sample size.
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slaves nodes time [s] observations observ./s gain eff (sl) eff (total)

single 1 237.47 62388774 262722 1.00 1.000 1.000

2 1∗∗ 353.49 62379731 176470 0.67 0.336 0.336

2 2∗ 264.20 62378458 236107 0.90 0.449 0.300

2 2 399.20 62306763 156080 0.59 0.297 0.198

2 3 303.82 62264142 204940 0.78 0.390 0.260

3 2∗ 232.98 62182673 266901 1.02 0.339 0.254

3 3 273.09 62161802 227621 0.87 0.289 0.217

3 4 232.44 62111685 267215 1.02 0.339 0.254

4 3∗ 190.16 62342438 327845 1.25 0.312 0.250

4 3 252.58 62325538 246753 0.94 0.235 0.188

4 4∗ 173.05 62203616 359462 1.37 0.342 0.274

4 4 226.75 62350396 274979 1.05 0.262 0.209

5 3∗ 190.65 62208029 326296 1.24 0.248 0.207

5 4∗ 175.26 62254812 355215 1.35 0.270 0.225

5 4 217.94 62364940 286159 1.09 0.218 0.182

6 4∗ 175.07 62229016 355442 1.35 0.225 0.193

6 4 217.15 62286768 286841 1.09 0.182 0.156

7 4∗ 182.00 62377945 342733 1.30 0.186 0.163

8 4∗∗ 180.46 62306823 345271 1.31 0.188 0.164

Table 4.3: Results for Fast Ethernet cluster

slaves nodes time [s] observations observ./s gain eff (sl) eff (total)

single 1 237.47 62388774 262722 1.00 1.000 1.000

2 1∗∗ 1035.65 62316546 60171 0.23 0.115 0.115

2 2∗ 277.28 62322268 224762 0.86 0.428 0.285

2 2 283.88 62273311 219367 0.83 0.417 0.278

2 3 279.94 62266611 222431 0.85 0.423 0.282

3 2∗ 199.19 62150887 312013 1.18 0.396 0.297

3 3 198.21 62203843 313822 1.19 0.398 0.299

3 4 197.35 62155652 314953 1.20 0.400 0.300

4 3∗ 157.96 62207077 393814 1.50 0.375 0.300

4 3 157.90 62237533 394166 1.50 0.375 0.300

4 4∗ 157.61 62326743 395448 1.51 0.376 0.301

4 4 158.78 62296409 392336 1.49 0.373 0.299

5 3∗ 139.25 62343668 447704 1.70 0.341 0.284

5 4 138.92 62265749 448212 1.71 0.341 0.284

6 4∗ 133.32 62231937 466795 1.78 0.296 0.254

6 4 133.72 62341118 466218 1.77 0.296 0.254

7 4∗ 132.89 62373242 469362 1.79 0.255 0.223

8 4∗∗ 323.85 62285788 192331 0.73 0.092 0.092

Table 4.4: Results for SCI cluster
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observ./s: Number of observations simulated per second.
∗: Node count values with this symbol mean that the node with the master process also holds

one slave process.
∗∗: Node count values with this symbol mean that the node with the master process also holds

two slave processes, i. e., three processes on a dual-processor machine.

For the Fast Ethernet results in table 4.3, it can be seen an increasing gain with increasing

number of participating slave processes. In the runs with a slave process sharing the node with

the master process (with the ∗ symbol), the gain is higher than in the other runs with the same

number of processes. Obviously, the fact that a part of the communication can be done on

intra-system level is essential. Among these runs, the ones with the higher number of nodes are

faster. On a node with two slave processes communicating via the inter-system network with

the master, twice the number of messages and twice the amount of traffic has to pass the high

latency network connection than on a node with one idle processor.

In the SCI simulations, the gain is in almost all cases notably higher than in the corresponding

Fast Ethernet simulation. In turn, this applies also for the efficiency values. It also has a certain

gain already with only 2 slaves.

In contrast to the Ethernet simulations, the performance of the SCI simulations is completely

independent of the distribution of the processes over the nodes. Exceptions are the cases when

there is more than one process assigned to a processor, indicated with the ∗∗ symbol. This in-

dependence shows that the high speed network connections do not suffer from a higher number

of messages. Furthermore, the CPU is hardly bothered at all with the network traffic. In the

Ethernet case, an idle processor can take over the overhead CPU load that is due to the network

traffic, while in the case of both processors simulating, the overhead CPU load is subtracted

from the resources for the simulation processes.

4.3 Conclusions

A reduction of the time from the start to the end of a RESTART/LRE simulation is achievable

by the application of the distributed approach. This is referred to as the gain. Depending on

the platform and the network technology, a minimum number of slave processes is required to

achieve an actual gain.

A common property of parallel computing is the fact that the speed-up compared to the non-

parallelised case is non-linear and less than the number of participating processors. In other

words, the efficiency will be smaller than 1. This applies also to the distributed RESTART

approach.

The gain, if any, achieved with the Ethernet based system is very low, see tables 4.1 and 4.3.

These systems cannot efficiently cope with the high communication effort that is mainly due to

the high number of messages as identified in [LG02].
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The system with the low latency SCI network technology shows increased efficiency com-

pared to the Ethernet based systems. In this configuration, having available at least three dual-

processor nodes makes the application of distributed RESTART reasonable, since the results

will be available faster. The efficiency, however, is still quite low, and it is expensive in terms of

hardware resources. The network hardware is much more costly than usual Ethernet equipment

without increasing the efficiency significantly.

On SMP systems, the distributed RESTART behaves indeed as expected for parallel comput-

ing. A gain is achieved already with the smallest possible number of slave processes, and the

efficiency values are very similar. Although these statements can only be made for a small

setup with very few processes, it is remarkable that the efficiency values outperform all other

efficiency values of the NOW and the cluster systems, even with the high-speed network tech-

nology.

The original intention has been to make a distributed RESTART approach applicable on in-

expensive systems. This, indeed, is possible. Only on SMP systems, however, the approach

provides a satisfying performance, and SMP systems with a high number of processors are

expensive.

An approach for future investigations is to take a number of SMP systems with at least four

processors each and set up an additional hierarchy level for the evaluation and the simulation

control. This means each SMP machine has its own local master process, and all slave processes

only communicate with their local master. The local masters have to synchronise the simulation

progress information with a single global master process at certain intervals. Also for small

scale SMP systems with two processors per node, however, as in the simulations presented in

this thesis, this approach can be investigated. It will lead to insight about which hierarchical

structure with which parametrisation will lead to performance improvements. A binary tree

would, e. g., be an obvious choice for the small scale SMP system.



Chapter 5

Short-Term Dynamic Simulation Concept

I
n 3rd generation mobile radio networks like UMTS, network planning has changed from the

way it has been for previous generations like GSM. In such systems, the Quality of Service

(QoS) almost entirely depended on the location where the user is when accessing the service.

This means, the parameters responsible for the radio coverage, mainly antenna positions, angles,

and azimuths, can be planned without taking into account the traffic which can occur in the

system.

GSM like systems are capacity limited [HT00], and the system capacity can be considered

separately from the coverage which is independent of the traffic. This is why the system capacity

can be considered after the antenna positions have been decided.

In interference limited systems like UMTS, the signal quality which determines the coverage

is not independent of the traffic. Users share the radio frequencies with the use of orthogonal

codes. The orthogonality is not perfect and decreases with the number of codes in use, and thus,

with the number of users. As a result, knowledge about the coverage to decide on the antenna

positions can only be gathered by simulations which also take into account predictions about

the traffic.

Three distinct simulation concepts can be used in UMTS network planning, of which the new

short-term dynamic simulation concept will be introduced and investigated. Starting with the

basic concept and an analytical investigation in this chapter, details regarding the simulation of

UMTS scenarios and the simulation toolkit are discussed in chapter 6.

5.1 Classification

The different simulation approaches which are possible for network planning with the focus on

UMTS radio networks are the static, the dynamic, and the short-term dynamic (STD) simulation

method. They have already been shortly introduced and compared qualitatively in section 2.2.1

with respect to simulation speed-up aspects.
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According to the discussion in section 2.2, the state space is infinite due to the large number of

dimensions and the – in some cases – continuous value space within these dimensions. Conse-

quently, stochastic simulation techniques are required.

In a stochastic simulation, the modelled system is represented by a stochastic process {X (t)|t ∈
T }. Since discrete event simulation is considered, T denotes an index set for the simulated

time span, over which t varies as the index parameter denoting the current simulation time. A

possible value of the value space of the RV X (t) is called a state [Tri02], and the set of possible

values for X (t) is the state space.

In a static or snapshot simulation, a sequence of independent snapshots is generated and eval-

uated. A snapshot represents a possible system state of the simulated model. The steady state

distribution function of all parameters which build a snapshot must be known in advance or

has to be assumed. These parameters are the input parameters, and they can be the number and

the positions of users in a scenario, probabilities of profiles for the users and the like. In the

simulation, the generated snapshot is investigated with respect to interferences between objects

in the scenario. Such interferences can lead – in the case of UMTS – to the calculation of load

on the air interface, soft-handover regions, and much more, see [TPL+03].

With this type of simulation technique, in contrast to the other techniques discussed in this

thesis, the system is not represented by a stochastic process. A time axis does not exist, thus,

the investigated system states are all snapshots with no history data. No information about the

past and the future of these snapshots is incorporated.

As a major aspect, Quality of Service (QoS) statistics like the probability that a user cannot

establish a call because load limits are exceeded, can also be obtained by static simulations.

Statistics which need some sort of system history, however, cannot be obtained. Such history

data can be, e. g., the elapsed time of a call, the duration of a finished call, and positions of

moving users in the past. Only with such knowledge about the history of the system or a part of

it, it is possible to deduce statistics as the frequency of regularly finished calls and the probability

of a call being dropped for a moving user. For these statistics, it is necessary that such system

dynamics providing history data are included into the simulation.

Naturally, the need to include dynamic aspects into the simulation would lead to a decision in

favour of a dynamic simulation. All desired dynamic aspects can be considered as detailed as

needed. This is very useful, e. g., for investigations on protocols where the level of detail is

needed to verify the accurate protocol behaviour. For complex systems and the requirement to

cover the state space well, as it is the case for UMTS network planning, the disadvantages of

the dynamic simulation method are shown in section 2.2.1.

The short-term dynamic (STD) method has been originally designed for UMTS network plan-

ning purposes, see [LPTG03]. It combines the faster state space coverage with the ability to

consider dynamic aspects. The user dynamics used to evaluate further QoS aspects, compared

to static simulations, are mainly the mobility (section 6.2.3) and the session of users (section

6.2.4). Important additional QoS aspects are real dropping, packet delays in packet switched

(PS) services, up- and downgrading of active calls, and the number of soft-handover events or
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Figure 5.1: Activity diagram of a single STD window in STD simulation, UML 2.0

cell changes per time unit or per session. For detection of dropping, users who have previously

started their session must be distinguished from newly emerging users. For the latter, a not ac-

cepted call is a blocked call. In static simulation, this distinction is only possible on a statistical

basis.

5.2 Concept

5.2.1 Snapshot

For the short-term dynamic simulation concept, it is necessary, first of all, to be able to generate

system states which follow a combination of stationary distributions of the involved objects and

attributes of the state. A generated system state is a so-called snapshot. It consists mainly of a

static input part, a random input part, and dynamic aspects which cause changes to the system

state and which are triggered by events.

Figure 5.1 shows an activity diagram in UML 2.0 for a single STD window. The activity has

two partitions, namely the static part and the short-term dynamic part. The components are

explained in the following.
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5.2.1.1 Random input data

These are all the parts of a snapshot that follow stationary random variables. For network mod-

els, these are the number of present users, their positions, their state of activity, etc. In the

simple model, this is only the queue occupancy. In case of a non-Markovian service process in

the simple model, the elapsed service time of a currently served job would be another random

part.

The random input has to be generated during the simulation. At the start of the STD window,

indicated by the starting node (the small filled circle) of the activity diagram, the generate
random input action generates this part of the initial snapshot. The square attached to the action

symbol represents the generated data object which flows to the process input action. This square

always represents this random part of the input data, also at all other action nodes in the diagram.

5.2.1.2 Static input data

The static input rectangle is the object node representing all data, parameters, and information

which do not change between subsequent snapshots. The static scenario data are of this category,

like the positions of antennas, buildings, and other obstacles, and the clutter maps. Further, also

the dynamic objects have static parameters, like power limits of mobile stations. In the simple

model used for the analytical investigation in section 5.3, this is simply the fact that the model

has one server and one queue.

Different from the random input, the static input is always present from the beginning of the

main simulation. It only has to be retrieved once from some data source.

5.2.1.3 Process input action

The action process input processes the random input of the initial snapshot as well as the dy-

namically changed data during the STD window. The latter data object is still of the type random
input, only its generation is different.

Generally, interferences between objects which have been assigned parameters from the random
input, like position and status, are considered here. This is necessary if the parameters of random

objects are not independent of other random objects but have influence on them. In UMTS, e. g.,

the transmission power of mobile stations does not only depend on their position relative to base

stations, but also on their positions relative to other mobile stations which can in turn change

their activity status assigned by the random input.

In case of the simple model, the random input data is passed through unchanged to the evalua-

tion and to the short-term dynamic part of the activity.
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5.2.1.4 New dynamic input data

The dynamic parts of the system do not occur in the snapshot itself. The action generate new
dynamic input initiates the changes in the system state regarding the random parts, like changing

the position of the users (mobility) and their activity state (session dynamics). These changes

to the processed input are triggered by events. This takes place in the mentioned action which

represents the actual event driven part of the simulation system. An STD window as a whole

represents a small but complete discrete event simulation (DES).

In a more detailed diagram, another part of the static input data would be additional input for the

generate new dynamic input action. These parts are the static parameters describing the random

numbers for the events. E. g., a static matrix is needed which holds for every possible position

the probabilities to keep the direction or turn to another possible direction when moving, see

section 6.2.3.

5.2.1.5 Miscellaneous

The process input action sends the processed input also to the evaluation action evaluate static
results. Similarly, the dynamically changed input data is sent to the evaluation action evaluate
dynamic results. The flow final nodes – represented by the circles with the “X” inside – after the

evaluation actions make the activity diagram consistent. Actually, the evaluation results have to

be stored somewhere, and also the evaluation actions need access to more information than is

shown in the diagram. The evaluation is only indicated because the main focus in the diagram

is on the generation and processing of the data building the system state.

The decision symbol named finish decides on whether the STD window can be terminated. The

criterion can be based on real convergence measurement of obtained data, or it can simply be

the expiration of a fix model time duration. The merge diamond will in the other case forward

the dynamically changed data back to the process input action. Only once, at the beginning of

the STD window, the merge symbol will be reached from the generate random input action

which provides the random part of the initial snapshot.

5.2.2 STD windows

In the previous section, the concept has been described on the level of the system state, and it

has been described what a single snapshot of the system consists of. In addition to this, figure

5.1 shows the processing of the system state data within an STD window with an orientation on

the termination of the STD window. Figure 5.2 shows from another possible perspective, how

the STD windows emerge.

On the z-axis, a parameter is plotted which represents the system state. The system state will

usually be multi-dimensional, but to demonstrate the concept, a simple and general system is

shown. On the x-axis, the simulation time is plotted.
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Figure 5.2: STD windows

A filled curve starting at the origin of the diagram stands for a possible development of the

parameter. An independent snapshot is now taken at a random point in time. This corresponds

to the snapshot which is generated by the generate random input action in figure 5.1.

Starting from this snapshot, the STD window is simulated. In the figure, the STD windows are

the highlighted areas on the filled curves. After the STD window is finished, another indepen-

dent snapshot is generated by chosing a random time from another possible development of the

system parameters.

The image of different possible simulation developments on the y-axis is used to express two

properties of the STD simulation concept. First, not only a single development starting from

some reference state like an empty system is possible. Instead, the model usually has an infinite

state space (see section 2.2), and from each possible system state a large or even infinite number

of possible states can occur as the subsequent state after an event has arrived.

Secondly, the idea of independent snapshots is emphasised. From the perspective represented

by figure 5.2, an STD window is an extract of a possible simulation development, and from

these as many are considered as STD windows are needed. If only a single very long simulation

development would be used to take the STD windows from, the fact that there is no long term

correlation between the initial snapshots of subsequent STD windows would not be pointed

out sufficiently. The independence of subsequent initial snapshots, however, is one of the most

fundamental assumptions in the application of the STD simulation concept.

5.3 Analytical investigation

To evaluate the short-term dynamic simulation method, it has to be investigated analytically. It

is important to look at the behaviour of STD simulations for very basic models to understand
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the concept and the benefit of the STD method. Only by applying such models, it is possible to

use analytical methods to calculate the behaviour.

The application of the simulation method on certain domains and scenarios, however, has to

be justified. Thus, the simple model selected for the analytical investigation has to represent

essential basic properties of the simulation model. The service which will remain one of the

most important ones for the mobile radio networks, especially in the early phases of the network

use, will be the speech service. The speech model used in all simulations was configured to

have the duration of its on- and off-phases negative exponentially distributed, in both up- and

downlink. Aggregation of user sessions with this behaviour leads to a Poisson process which is

a counting process having the Markov property.

The most basic model is the M/M/1 model. With its Markov property it allows for important

simplifications. The distribution of the arrival resp. departure time of the next arrival resp. de-

parture does not depend on the time elapsed since the last arrival resp. departure has taken

place.

M: μ
M: λ

Figure 5.3: M/M/1 model

The used model is shown in figure 5.3. The Markovian arrival process has the arrival rate λ, the

Markovian service process has the service rate μ, and the buffer size is infinite.

Relevant values in this domain of simulation speed-up, are the expected error over the value

space of the investigated random variable and the resulting number of samples needed to achieve

the target error limit.

Simulation setup The analytical calculations and the simulations presented in this chapter

have been conducted with the following default parameters: The arrival rate λ is normalised

to be 1 per time unit. Thus, the load η can be varied by changing the the service rate μ. The

simulation time is ts = 107 time units.

5.3.1 Dynamic simulation method

First, the dynamic simulation method is analysed to calculate the exact values of all properties

of interest and to use these values as reference to compare the dynamic simulation method with

the short-term dynamic simulation method with respect to correlation, relative error and, finally,

the resulting gain which can be achieved regarding the simulation speed-up.
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5.3.1.1 Markov chain of M/M/1 model

The intention is to investigate the simulation method according to the correlation and error

properties, see section 2.4 on page 16. For the formulas which are used in that section and in

[Sch87], as well as in this chapter, a Markov chain is needed in which the transition probabilities

between the states are available instead of transition rates. This is why a Discrete Time Markov

Chain (DTMC) is needed.

The considered M/M/1 model, however, is a continuous time model in which the considered

events, namely arrivals and departures of jobs, happen at arbitrary points of time on an con-

tinuous time axis. One way to build a DTMC for the model is to create an embedded Markov

Chain in which the states represent the arrival resp. departure occupancy. Every time an arrival

resp. a departure occurs, the occupancy of the system is evaluated, adding the arrived job after-

wards resp. subtracting the departed job before. The arrivals resp. departures act as a clock for

the discrete points of time at which the state transitions take place. For the M/M/1 model this

possibility would indeed be a choice, since the state probabilities would be the same as in the

corresponding Continuous Time Markov Chain (CTMC). This is because the memorylessness

of the Markov process makes it irrelevant for the state probabilities at which point of time the

occupancy is evaluated.

For the simulation, this possibility would be easy to setup. For the calculations conducted in this

chapter, however, the model gets more complicated, since many more state transitions are pos-

sible. The calculation of stationary state probabilities, transition probabilities, local correlation

and relative error gets less clear.

0 1 2

1 1 − ps

psps ps

1 − ps

Figure 5.4: Discrete time Markov chain of M/M/1 model

Thus, in the chosen model the system occupancy (including queue and server), described by the

discrete random variable X , is evaluated at every change, i. e., at arrivals as well as at departures.

This is possible because both the arrival process as well as the service process are Markovian.

The state transitions take place at the discrete points of time of the process resulting from the

aggregation of the arrival and the service process. With this approach, the model is represented

by a birth-death process, and the corresponding Markov chain is shown in figure 5.4.

A Markov chain which has even more properties equivalent to those of the CTMC can be created

by adding a loop transition at state 0, see figure 5.5. The loop is indicated by the transition

probability ps0, which is zero in figure 5.4. To achieve an exact match with the state probabilities

of the CTMC, it has been analytically verified (appendix A) to be
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Figure 5.5: DTMC of M/M/1 model with extra loop transition at state 0

ps0 = ps (5.1)

The local correlation, which will be discussed later, differs between the Markov chains in figure

5.4 and figure 5.5 only for the first two states.

From simulation perspective, the loop transition is not intuitive since it does not correspond to

a real system event like an arrival or a departure of a job. This means, the simulation would

introduce an artificial aspect. This model, however, is chosen because the representation of the

system is better regarding the state probabilities making some case differentiations for state 0

unnecessary.

The special behaviour that has to be included into the simulation procedure to represent the

loop transition, is to generate an event similar to a departure event when the system is empty

(state 0). The scheduled time for this event has to be generated with the same random number

generator used for the real departure events. It can be considered as drawing the service time

of a virtual job in state 0 causing a state transition back to state 0 after the service time has run

down. This special event, however, has to be treated as a conditional event. A state change from

a higher state (>0) to the next lower state means that the next departure event has been scheduled

to occur before the next arrival event, leading to the transition probabilities ps resp. 1 − ps. The

extra transition at state 0 can only be modelled correctly if the special event is deleted as soon

as a new arrival occurs. This is because the special event does not describe the departure of a

real job, but it only models the condition that the departure of the virtual job takes place ahead

of the next arrival. If the special event is not deleted, the the DTMC model would correspond to

a CTMC model as in figure 5.6.

210

μ μ

λ

μ

λ
μ

λ

Figure 5.6: CTMC of M/M/1 model with extra loop transition at state 0
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Since the state probabilities for a CTMC as in figure 5.6 are time weighted, the loop transition

does not change these probabilities. For the DTMC case, each loop transition increases the

counter for entering state 0, and thus, increases the state probability, since in the DTMC case

the probabilities are based on relative frequencies of occurrences. Not deleting the special event

would lead to a higher steady state probability for state 0 than it is for the DTMC in figure 5.5.

5.3.1.2 Transition and state probabilities

The probability for the event that the next service completion (departure) precedes the next

arrival, is described by ps. The transition probabilities pi j
1 derived from figure 5.5 are

pi j =

⎧⎪⎨⎪⎩
P{next departure before next arrival} for i = j + 1, j = 0 . . . ∞
P{next arrival before next departure} for i = j − 1, j = 1 . . . ∞
0 otherwise

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ps for i = j + 1, j = 0 . . . ∞
1 − ps for i = j − 1, j = 1 . . . ∞
ps for i = 0, j = 0

0 otherwise

(5.2)

A transition probability matrix p obeys the rule

P(x) · p = P(x) (5.3)

with P(x) being the column vector of the steady state probabilities. Now, the transition proba-

bility matrix p can be generated as follows

p =

⎛⎜⎜⎜⎝
ps 1 − ps 0 · · ·
ps 0 1 − ps 0 · · ·
0 ps 0 1 − ps 0 · · ·
0 0 ps 0

. . .
. . .

⎞⎟⎟⎟⎠ (5.4)

Given the arrival rate λ and the service rate μ and with this the utilisation η = λ/μ, ps can be

calculated as shown in equation (5.5). The random variables A resp. D describe the time until

the next arrival resp. departure event will happen.

1In this document, the intuitive form pi j = P( j |i) is used, describing a transition from state i to state j .
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pA(t) = λe−λt , pD(t) = μe−μt

ps = P(A > D) (5.5)

=
∫ ∞

0

pA(t)
∫ t

0

pD(τ )dτdt

= μ

λ + μ
= 1

1 + η

The Markov property of the arrival and the service process make pA(t) and pD(t) independent

of whether the last event was an arrival or a departure and how much time has elapsed since

then.

The stationary state probabilities can be calculated with a system of linear equations:

P(0) = P(0) · ps + P(1) · ps (5.6)

P(x) = P(x − 1) · (1 − ps) + P(x + 1) · ps for x = 1 . . . ∞ (5.7)∑
x

P(x) = 1 (5.8)

From equations (5.6) and (5.7), P(x) can be derived by induction:

P(x) = P(x − 1) · 1 − ps

ps
for x ≥ 1 (5.9)

From this, together with equation (5.8), it follows

P(x) = 2ps − 1

ps
·
(

1 − ps

ps

)x

(5.10)

Using equation (5.5) for ps, P(x) and E[X ] can be expressed in terms of η, as shown in the

following.

P(x) = (1 − η) · ηx (5.11)

E[X ] =
∞∑

x=0

x P(x) = η

1 − η
(5.12)

Figure 5.7 shows the probability mass functions for two example loads η using equations (5.10)

and (5.11). Although the probability mass function is only valid for discrete – in this case integer

– values of x , the points in the figure are connected by a line, for better readability.
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Figure 5.7: Probability mass function of the state probability

5.3.1.3 Local correlation

To evaluate the benefit the STD simulation technique has on the error development and with

this on the simulation run time, the local correlation has to be considered. It is the main factor

of the relative error in the evaluation method LRE (Limited Relative Error), see section 2.4. The

2-node Markov chain, see [Sch87], with its transition probabilities is shown in figure 5.8.

The transition probabilities p0(x) and p1(x) of the 2-node Markov chain of the considered

model are calculated as shown in equations (5.13) and (5.14). These are the original formulas

from [Sch87] and section 2.4 with the adaptations that the model considered there has a finite

state space representing a random variable with a continuous value space.

p0(x) = 1

1 − Gx
·

x∑
r=0

(
P(r)

∞∑
s=x+1

prs

)
(5.13)

p1(x) = 1

Gx
·

∞∑
r=x+1

(
P(r)

x∑
s=0

prs

)
(5.14)

These original formulas for p0(x) and p1(x) include all possible transitions from all states to

all other states. The equations (5.17) and (5.18) for the used model are much simpler since only

transitions to neighbouring states are possible in the birth-death Markov chain of the model:
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1 − ps

Sx−1 Sx

1 − ps

1 − p0(x) 1 − p1(x)

ps

S0(x) S1(x)

p1(x)

p0(x)

ps

1 − ps

ps

Sx+1 Sx+2

Figure 5.8: 2-node Markov chain for M/M/1 model

px,x+1 = P(x) · (1 − ps) = P(x) · η

1 + η
(5.15)

px+1,x = P(x + 1) · ps = P(x + 1) · 1

1 + η
(5.16)

p0(x) = 1

1 − Gx
· px,x+1 (5.17)

p1(x) = 1

Gx
· px+1,x (5.18)

The parameter Gx represents the cumulative state probability of all the states to the right of x ,

i. e., the CCDF, while 1 − Gx corresponds to the states left of x including x , i. e., the CDF.

Gx = P(X > x) =
∞∑

r=x+1

P(r), 1 − Gx =
x∑

r=0

P(r) (5.19)

Gx = G(x) = ηx+1 (5.20)

Simplifying p0(x) and p1(x) with the help of equations (5.10) and equations (5.17) and (5.18),

leads to
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p0(x) = 1

1 − Gx
· P(x) · η

1 + η
(5.21)

= 1

1 − (1 − η) · ∑∞
r=x+1 ηr · (1 − η)ηx · η

1 + η

= 1 − η

1 + η
· ηx+1

1 − (1 − η) · ηx+1 · ∑∞
r=0 ηr

= 1 − η

1 + η
· ηx+1

1 − (1 − η) · ηx+1 · 1
1−η

= 1 − η

1 + η
· ηx+1

1 − ηx+1

p1(x) = 1

Gx
· P(x + 1) · 1

1 + η
(5.22)

= 1

(1 − η) · ∑∞
r=x+1 ηr · (1 − η)ηx+1 · 1

1 + η

= 1 − η

1 + η
· ηx+1

(1 − η) · ηx+1 · ∑∞
r=0 ηr

= 1 − η

1 + η
· ηx+1

(1 − η) · ηx+1 · 1
1−η

= 1 − η

1 + η
· ηx+1

ηx+1

= 1 − η

1 + η
·

Finally, the local coefficient of correlation ρ(x) is calculated as

ρ(x) = 1 − (p0(x) + p1(x)) (5.23)

Using equations (5.21) and (5.22), equation (5.23) leads to

ρ(x) = 1 − 1 − η

1 + η
· 1

1 − ηx+1
(5.24)

Figure 5.9 shows the local correlation for different loads. For the comparison between simula-

tion results and analytical calculation, the values of the simulation are connected by a line while

the analytical values are represented by points. For higher x (the state number representing the

number of jobs in the system), the simulation results show increased variations resulting from

higher relative error for higher x . Therefore, the relative error is also shown in a separate plot

below, for which the same line types have been used as the corresponding curves for the corre-

lation. For lower loads, the higher x-values have a low probability. This is why the relative error
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Figure 5.9: Local correlation vs. state, dynamic simulation method

for the simulation results for the lower loads is higher than for the higher load curves, resulting

in shorter curves for the correlation values. For this, see section 5.3.1.4.

Figure 5.10 shows the local correlation from another perspective. For different states it shows

the correlation vs. the load. Here, only the analytical calculation is shown, since for higher x
and lower load the relative error for the simulation results will be very high. This would lead to

a high deviation of the simulated values from the analytical curves, making the plot unclear. In

figure 5.9 it is demonstrated how well the analytical equations and the simulations match.

Figure 5.11 shows the development of the two contributing parts of the correlation coefficient

ρ(x), namely p0(x) shown in figure 5.11 a) vs. state x and load η. In figure 5.11 b), p0(x) is

additionally shown as an array of curves for some example x-values. Further, the figure shows

p1(x) (the darker curve) only vs. the load η since it is independent of x , see equation (5.22).

For high load, the transition probability to the right p0(x) remains low. On the other side, the

probability for a transition to the left p1(x) starts at 1 and converges to 0 for high load. This

together with equation (5.23) leads to a correlation rising to 1 for high loads and increasing x .
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5.3.1.4 Relative error

As mentioned in equation (5.19), for the discrete random variable used for this model, Gx is

defined as Gx = P(X > x) = G(x). Compared to the description of the local correlation in

section 2.4 where a continuous state space is considered, the x used here is mapped to i − 1 of

section 2.4: x ↔ i − 1. The cumulative frequency vx is

vx =
∞∑

r=x+1

hr = G̃x · ns (5.25)

Here, G̃x is the obtained cumulative relative frequency of the states right of x , hx the obtained

relative frequency of state x , and ns the absolute number of evaluated samples of the random

variable X .

Using ρ̃(x) for the simulated local correlation, the relative error dG(x) of a simulated sample is

according to equation (2.9) as follows

dG(x) =
(

1

ns
· 1 − G̃x

G̃x
· 1 + ρ̃(x)

1 − ρ̃(x)

)1/2

(5.26)
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In this analytical investigation, the theoretical relative error d
∗
G(x) is needed to compare the

different simulation approaches. For this, the theoretical Gx is used instead of the simulated

G̃x , as well as ρ(x) instead of ρ̃(x):

d
∗
G(x) =

(
1

ns
· 1 − Gx

Gx
· 1 + ρ(x)

1 − ρ(x)

)1/2

(5.27)

Figure 5.12 shows the relative error for a load of η = 0.6, comparing simulation and analytical

results. The simulation results are shown by the solid line while the curve for the analytical

results shows the expected relative error from equation (5.27) and is represented by points.

5.3.2 Short-term dynamic simulation

While in the dynamic simulation each state transition corresponds to an event in the model,

in short-term dynamic simulation extra state transitions are introduced. These transitions take

place between STD windows and are responsible for the fact that the Markov chain is not a

simple birth-death model any longer. The reason is the independence of the starting state of

the STD window from the states before. An STD transition, which can also be called extra
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transition, starts from the last state of an STD window and cannot only go to a neighbouring

state but to any state of the state space. The STD transition probability from state i to the target

state x is equal to the steady state probability P(x) of the state x , independently of state i .

5.3.2.1 Markov chain of M/M/1 model

normal transition

STD window transition

x − 1 x x + 1 k − 1 k k + 1

Figure 5.13: Markov chain of M/M/1 model with STD extensions

Figure 5.13 shows the Markov chain of the model, similar to the one in figure 5.5, but with the

extra transitions for new STD windows.

The probability of an extra transition is pex. It represents the number of new STD windows

relative to the total number of state transitions. Its calculation will be discussed in section 5.3.2.2

in detail.

These extra transitions cause the calculation of the transition probabilities to be extended by

another term. Compared to the transition probability pi j,dyn of the dynamic simulation, the

pi j,STD of the short-term dynamic simulation is as follows:

pi j,STD = (1 − pex) · pi j,dyn + pex · pi j,ex (5.28)

While in the dynamic simulation the transition probabilities to non-neighbouring states are zero,

see equation (5.2), this is different for the extra transition:

pi j,ex = P{last state previous window = i|next starting state = j} (5.29)

= P{next starting state = j}
= P( j)

From equation (5.28), it now follows:

pi j,STD = (1 − pex) · pi j,dyn + pex · P( j) (5.30)
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5.3.2.2 Extra transition probability

The mean duration of an STD window is represented by T w. Keeping the total simulation

time ts constant, the mean number of STD windows N w = ts/T w. In case of constant STD

window lengths in units of time, T w resp. N w are simply tw resp. nw. Considering now constant

STD windows, the times of the state changes follow a plain Poisson process with the intensity

parameter λ + μ with a mean number of state transitions per STD window of λ + μ.

The mean number of evaluated states during an STD window ns,w is equal to the number of

state transitions within the window plus one. The additional one is because the starting state

and the last state of an STD window are evaluated. It is now

ns,w = (λ + μ) · T w + 1 (5.31)

The mean total number of evaluated states within the simulation ns, i. e., the mean number of

values obtained within the simulation, is

ns = ns,w · N w (5.32)

Finally, pex is

pex = 1

ns,w
· N w − 1

N w

= 1

(λ + μ) · T w + 1
· ts − T w

ts
(5.33)

The last STD window has no transition to another one, which is why the number of extra

transitions is one below the number of STD windows N w, inducing the term N w−1

N w
.

Usually, the number of STD windows should not be too small, since otherwise the difference

from the pure dynamic simulation is small, which in turn applies also for the gain that can

be achieved by the STD simulation. Thus, assuming N w � 1 or equivalently T w � ts, the

following approximation can be used:

pex ≈ 1

ns,w
= 1

(λ + μ) · T w + 1
(5.34)

5.3.2.3 Local correlation

Knowing the transition probability of an extra transition, the transition probabilities of the 2-

node Markov chain according to figure 5.8 and equations (5.17) and (5.18) can be adapted for

the STD case. Using equations (5.15) and (5.16), we have
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p0(x) = 1
1−Gx

·
(

(1 − pex) px,x+1 + pex ·
( x∑

r=0

(
P(r)

∞∑
s=x+1

P(s)

)))
(5.35)

p1(x) = 1
Gx

·
(

(1 − pex)px+1,x + pex ·
( ∞∑

r=x+1

(
P(r)

x∑
s=0

P(s)

)))
(5.36)

The sums in the extra part of p0(x) and p1(x) can be simplified:

∞∑
s=x+1

P(s) = Gx ,

x∑
s=0

P(s) = 1 − Gx (5.37)

x∑
r=0

(P(r) · Gx) = Gx ·
x∑

r=0

P(r) = Gx (1 − Gx)

∞∑
r=x+1

(P(r) · (1 − Gx)) = (1 − Gx) ·
∞∑

r=x+1

P(r) = (1 − Gx) Gx

These simplifications lead with equations (5.35) and (5.36) to

p0(x) = 1

1 − Gx
· (

(1 − pex)px,x+1 + pex · (1 − Gx)Gx
)

(5.38)

= (1 − pex) · 1

1 − Gx
px,x+1 + pex · Gx

p1(x) = 1

Gx
· (

(1 − pex)px+1,x + pex · Gx(1 − Gx)
)

(5.39)

= (1 − pex) · 1

Gx
px+1,x + pex · (1 − Gx)

Finally, the local correlation for the STD case, ρSTD(x), can be calculated:

ρSTD(x) = 1 −
(

(1 − pex) ·
(

1

1 − Gx
· px,x+1 + 1

Gx
· px+1,x

)
+ pex · (Gx + 1 − Gx)

)
= 1 −

(
(1 − pex) ·

(
1

1 − Gx
· px,x+1 + 1

Gx
· px+1,x

)
+ pex

)
= (1 − pex) +

(
(1 − pex) ·

(
1

1 − Gx
· px,x+1 + 1

Gx
· px+1,x

))
= (1 − pex) ·

(
1 −

(
1

1 − Gx
· px,x+1 + 1

Gx
· px+1,x

))
= (1 − pex) · ρ(x) (5.40)
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The local correlation ρSTD(x) in the STD case deviates from the dynamic case simply by the

factor 1 − pex.

Figure 5.14 shows the local correlation for the STD simulation method with different STD win-

dow sizes. They are indicated by “w =” with the subsequent number in the legend of the figure

and shown by the different dashed lines, while the solid line shows for comparison the corre-

lation for a dynamic simulation. The lines show the simulation results while the points show

the values of the analytical calculations. Further, the relative error for the simulation results is

shown to explain the deviation from the calculated values especially for larger x . This results

from the lower probability for larger x . Shorter STD windows lead to lower relative error.

For higher values of x , the relative error increases because compared to the relative error for the

lower x-values, the G(x) is lower. Combining the STD simulation concept with the RESTART

technique for rare event simulation can be a way to speed-up simulations which are evaluating

such rare events with the STD simulation concept. This is discussed in section 5.4.2.
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The value for w represents the STD window size in time units. Smaller STD windows result

in lower local correlation. Using the default parameters mentioned on page 61, the curve with

“w = 1” corresponds to a simulation with an STD window size of T w = 1 time units and a

mean number of (λ + μ) · T w = 8/3 transitions per STD window, resulting in a mean number

of ns,w = 11/3 evaluated states (for the given η = 0.6), see equation (5.31).

5.3.2.4 Relative error

In the STD case, the expected relative error is calculated similarly to the relative error of the

dynamic case, since the local correlation is the only variable in equation (5.27) which is different

in the STD case, provided the number of samples n is kept constant. The relative error d
∗
G(x) in

the STD case is now

d
∗
G(x) =

(
1

ns
· 1 − Gx

Gx
· 1 + ρSTD(x)

1 − ρSTD(x)

)1/2

(5.41)

=
(

1

ns
· 1 − Gx

Gx
· 1 + ρ(x)(1 − pex)

1 − ρ(x)(1 − pex)

)1/2

Figure 5.15 show the relative error for STD simulations with different STD windows sizes,

including the dynamic simulation for comparison. Smaller STD windows lead to lower relative

error.

5.3.2.5 Relative deviation

To confirm the fact that a smaller relative error caused by a smaller local correlation indeed leads

to more accurate results, figure 5.16 shows the distribution function of the model used above,

and further its accuracy. Figure 5.16 a) on the left side shows the complementary cumulative

distribution function which corresponds to the probability mass function for the load η = 0.6 in

figure 5.7. Increasing STD window sizes and further the dynamic simulation show decreasing

accuracy. To emphasise this fact, figure 5.16 b) on the right side shows the relative deviation

from the calculated distribution function for the different STD window sizes.

5.3.3 Group correlation

Another way to evaluate the STD simulation technique with respect to correlation is to consider

groups (sequences) of states and calculate the local correlation of the sequence of these groups.

A basis for the correlation can either be the starting state of a group or the mean value of the

states of a group.
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Figure 5.15: Relative error, STD simulation

In the following, P(h)
j (x) describes the probability that the j th state in the hth group is x , thus,

P(h)
0 (x) corresponds to the starting state in group h. The index n is defined to correspond to the

last state of the group, assuming in the first place that the number of states per group is constant.

5.3.3.1 Multi-step transition probabilities

In addition to the transition probability matrix of equation (5.4), probability vectors are needed

to describe multi-step transition probabilities. The probability vector for the kth state in group

h is v(h)
k . It is reached from the starting vector v(h)

0 by k-fold multiplication with the transition

probability matrix p:

v(h)
k = v(h)

0 · pk (5.42)

In dynamic simulation, the last state of a group is the first state of the next group, leading to

v(h)
0 = v(h−1)

n for h ≥ 1. The steady state probability vector is simply called v.

The single n-step transition probability pi j (n) from i to j is

pi j (n) = (
pn)

i+1, j+1
(5.43)



5.3 Analytical investigation 79

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0  5  10  15  20

G
(x

)

x

STD simulation method, simulation vs. calculation

dynamic
w=l00

w=l0
w=5
w=2
w=l

a) Distribution function (CCDF)

-60

-50

-40

-30

-20

-10

 0

 10

 20

 0  5  10  15  20  25

re
la

tiv
e 

de
vi

at
io

n 
of

 G
(x

) 
in

 [%
]

x

STD simulation method, simulation vs. calculation

w=100

dynamic

w=10
w=1

w=2

w=5

b) Relative deviation

STD simulation, 107 time units simulated

Figure 5.16: CCDF and relative deviation from analytical CCDF



80 5 Short-Term Dynamic Simulation Concept

 0 2 4 6 8 10 12

 0
 2

 4
 6

 8
 10

 12

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

p_ij(n)

to (j)

from (i)

p_ij(n)

n = 10 steps, η = 0.6, superposition of n-step and (n + 1)-step matrices

Figure 5.17: n-step transition probability matrix

Since the states start at 0 and the row and column indices in matrices always start at 1, the

transition probability pi j (n) is the element (i + 1, j + 1) of the above matrix. This mapping of

indices and state numbers applies generally to the matrices in the following sections, as well as

to the single-step transition probability matrix p.

The birth-death property of the used model results in the fact that from a certain state another

certain state can only be reached in either an odd or an even number of steps depending on the

distance of the states. E. g., state 5 can be reached from state 3 in two steps or in four, but not

in three or in five. An exception which breaks this rule is the transition at state 0 to state 0.

Therefore, state 5 can be reached from state 3 also in 9, 10, 11 or more steps.

This birth-death property causes the diagonals of p in equation (5.4) to be zero beyond state

0. A k-step transition is represented by pk . For an odd k, the main diagonal is (almost) zero as

in the single-step matrix p. For an even k, the main diagonal is non-zero but the neighbouring

diagonals are (almost) zero. The number of non-zero diagonals is k +1, surrounded by an upper

and a lower triangle with zero values. Due to the self-transition at state 0, the upper left part of

the k-step transition matrix is non-zero. This applies to the matrix elements of which the sum

of the column index and the row index is not larger than k + 1. This is why the diagonals are

referred to as (almost) zero.
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An example multi-step transition probability matrix is shown graphically in figure 5.17. The

(almost) zero diagonals and most of the non-zero values are surrounded by zero values, prohibits

to connect neighbouring values in the plot by lines because this would make the plot very

unclear.

It is possible to superpose the subsequent matrices pk and pk+1. After dividing the elements by

2, the resulting matrix is again a stochastic matrix and can be interpreted as follows: With the

probability 0.5 each, either k steps or k + 1 steps will be performed. Based on this, the plotted

matrix represents the probability to reach the target state from the starting state in either k or

k + 1 steps. The figure only shows the first part for i ≤ 12 and j ≤ 12 of the matrix which has

infinite dimensions.

5.3.3.2 Multi-step local correlation

Considering now the Markov chain applying the n-step transitions, the birth-death property is

lost. Therefore, the 2-node Markov chain needed to calculate the local correlation for this case

cannot be calculated as easily as in the original model. The corresponding n-step transition

probabilities p0(x,n) and p1(x,n), equations (5.44) and (5.45), are less simple than the ones of

equations (5.17) and (5.18).

p0(x,n) = 1

1 − Gx
·

x∑
r=0

(
P(r)

∞∑
s=x+1

prs(n)

)
(5.44)

p1(x,n) = 1

Gx
·

∞∑
r=x+1

(
P(r)

x∑
s=0

prs(n)

)
(5.45)

These equations can be simplified by using matrix expressions to make them more clear. Further,

this can be useful for working with mathematical software to calculate these values. First, a

special identity matrix is introduced which is used to zero out rows or columns of vectors and

matrices in multiplication. Equation (5.46) shows this Ix . In a real identity matrix, simply all

ai parameters are 1. For the form used in the lower part of the equation, the dimension of the

upper left sub-matrix is x .

Ix =

⎛⎜⎜⎜⎜⎝
a1 0 · · ·
0 a2 0 · · ·
... 0 a3 0

... 0
. . .

⎞⎟⎟⎟⎟⎠ with ai =
{

1 for 1 ≤ i ≤ x
0 otherwise

(5.46)

Ix =
(

I 0

0 0

)
I − Ix =

(
0 0

0 I

)
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Figure 5.18: Multi-step local correlation

Using this, equations (5.44) and (5.45) can be written as follows:

w(x) = 1

1 − Gx
· (vIx+1) · (p (I − Ix+1))

p0(x) =
∑

i

wi = w(x) · (1 1 . . .)T (5.47)

u(x) = 1

Gx
· (v (I − Ix+1)) · (pIx+1)

p1(x) =
∑

i

ui = u(x) · (1 1 . . .)T (5.48)

The matrix Ix zeroes out the appropriate columns right of x in the probability vector v and

the transition probability matrix p. The complementary matrix I − Ix does the same with the

columns left of x including x . To be precise: x +1 is used as the index since the row and column

indices of matrices always start with 1, but in this case x represents the state, and x is in the

range 0 . . . ∞.

Figure 5.18 shows the multi-step local correlation corresponding to the single-step local corre-

lation in figure 5.14. Different step sizes are shown, in pairs of two, meaning as stated above,
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that the figure shows the superposition of two adjacent matrices regarding the number of steps.

The simulations have been performed with the same sample size.

5.3.3.3 Complete STD window

Groups can simply match complete STD windows. In this case, the group correlation will be

zero in STD simulation and the starting probability vector of any group is independent of the

last probability vector of any other group. Instead, it is equal to the steady state probability

vector: v(h)
0 = v.

The reduction of the correlation compared to the dynamic simulation is therefore equal to the

multi-step correlation value corresponding to the window size in figure 5.18. In accordance with

the single-step local correlation, it decreases with increasing STD window size.

5.3.3.4 Mean value of groups
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Figure 5.19: Mean value of groups of different size, depending on starting state x0

Now, groups of fixed size are considered, i. e., a group consists of a fixed number of samples

ns,g. The mean value of a group, i. e., the expected value for the state during the simulation

of these ns,g samples, depends on the starting state. A mean probability vector v(h) can be
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calculated by adding all the k-step probability vectors v(h)
k of a group h and dividing it by the

number of the vectors:

v(h) = 1

ns,g

ns,g−1∑
k=0

v(h)
k = 1

ns,g

ns,g−1∑
k=0

v(h)
0 pk = 1

ns,g
v(h)

0

ns,g−1∑
k=0

pk (5.49)

An mean transition probability matrix p(ns,g) for (ns,g − 1) steps (ns,g samples) can be derived

from this. It represents the relative frequency of the states within a group of size ns,g depending

on the starting state. Each row pi (ns,g), with i = 1,2,.., of the matrix represents the correspond-

ing starting state i − 1. The matrix is

p(ns,g) = 1

ns,g

ns,g−1∑
k=0

pk (5.50)

With this, equation (5.49) can be written as equation (5.51). The starting state probability vector

v(h)
0 of group h multiplied with the relative frequency matrix results in the relative frequency of

the states in group h.

v(h) = v(h)
0 · p(ns,g) (5.51)

The starting state vector v(h)
0 of group h in a dynamic simulation results from the multiplication

of the first starting state vector v(1)
0 and the transition probability matrix p to the power of

(ns,g − 1) × (h − 1). Assuming, without loss of generality, that a dynamic simulation always

starts in state 0, v(h)
0 is equal to the first row of the matrix p(ns,g−1)·(h−1).

The relative frequency vector of the starting states v0 depends on the number of simulated

groups Ng which converges against v for large values of Ng and v0.

v0 = 1

Ng

Ng∑
h=1

v(h)
0 = 1

Ng

Ng∑
h=1

(
v(1)

0

(
pns,g−1

)h−1
)

= 1

Ng
v(1)

0

Ng∑
h=1

p(ns,g−1)·(h−1) (5.52)

The column vector x(ns,g) of the mean state values depending on the starting state is calculated

by multiplying the mean transition probability matrix p(ns,g) by a column vector representing

the state numbers:

x(ns,g) = p(ns,g) · (0 1 2 . . .)T (5.53)

Figure 5.19 shows x(ns,g) for different values of ns,g vs. x . The steady state expectation value

for the state – indicated by the horizontal line which is named mean value in the graph – is

not approached or more slowly for starting states far away from the expectation value and for

smaller group sizes.
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The mean state x (h) of group h can be simply calculated by multiplying the mean state probabil-

ity vector v(h) by a column vector representing the state numbers, or by multiplying the starting

state vector v(h)
0 of group h with the mean state vector x(ns,g):

x (h) = v(h) · (0 1 2 . . .)T = v(h)
0 · x(ns,g) (5.54)

A total mean state value x is simply as in equation (5.55). For large ns, i. e., for large ns,g and/or

large Ng, it converges against the expected value E[X ], equation (5.12).

x = v0 · x(ns,g) (5.55)

5.3.3.5 Distribution of mean value of groups

With the calculations above, the mean value for a group depending on the starting state is ob-

tained. To find the correlation among the mean values, however, the distribution of the mean

values in a group has to be calculated.

All possible paths of the length of the group and starting from a certain state x0, have to be

identified and classified by their weight, i. e., by the sum of the states visited within the path.

Further, each path has to be weighted by its probability, which is simply the product of the

probabilities of all involved transitions.

The frequency of these sums provides the distribution, and dividing the sums by the length of

the path (the size of the group), the mean value distribution is obtained. These are all conditional

for starting at state x0.

Keeping the matrix operations, the mean values are represented by the sums to have them repre-

sented by the rows and columns of the corresponding matrices. The matrix showing the proba-

bilities of the group sums s for a given starting state x0 is P(s|x0). The rows of P(s|x0) represent

the starting states, the columns represent the sums.

Next, the relative frequency of the sums independent of the starting state has to be calculated.

In equation (5.56), the relative frequency of the starting states v0, taken from equation (5.52), is

multiplied by the conditional probability matrix P(s|x0). S is defined as the random variable for

the state sums, and s is the row vector containing the relative frequencies PS(i) for i = 0,1, . . .

s = (PS(0) PS(1) . . .) = v0 · P(s|x0) (5.56)

Figure 5.20 shows for different group sizes ns,g the probability mass function according to the

probabilities represented by the vector s. The solid lines show calculation results from the above

equations, the points on them show the values obtained by simulation. Further, the relative error

for the simulation results is shown.
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Figure 5.20: Probability mass function for group-mean for different group sizes

5.3.3.6 Correlation of mean value of groups

To calculate the correlation between the sums – and by that between the mean values – the

transition probabilities between the sums are needed. A direct relation between the sums does

not exist. Instead, the conditional probability matrix P(s|x0) of a sum s for a given starting state

x0 is known. Further, the conditional probability matrix P(xn|s) of the starting state xn of the

next group for a sum s of the current group can be calculated.

In the same procedure in which the matrix P(s|x0) is built, the parts of P(xn|s) are calculated

simultaneously. For a certain starting state x0 all possible paths are calculated, and for the sum

of each path the two possible successor-states are figured out. These two states are the possible

starting states of the next group. The counting of these states is weighted with the product of

the path probability and the transition probability to the state. By this way, for each x0 a matrix

P(xn|s,x0) for the xn with the two conditions s and x0 is calculated. Multiplying the matrix with

the probability of x0 and summing up the results leads to the required P(xn|s):

P(xn|s) =
∑
x0

P(x0) · P(xn|s,x0) (5.57)
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To finally calculate the local correlation for the group mean values according to equations (5.13)

and (5.14), the transition probability matrix for the sums pg is

pg = P(xn|s) · P(s|x0) (5.58)

Similarly to equations (5.44) and (5.45), equations (5.59) and (5.60) calculate the two compo-

nents needed for the local correlation. Here, s is used instead of x to express the fact that these

considerations are about the group sums of the states and not about the states themselves.

p0(s) = 1

1 − Gs
·

s∑
i=0

⎛⎝PS(i)
∞∑

j=s+1

pi j

⎞⎠ (5.59)

p1(s) = 1

Gs
·

∞∑
i=s+1

⎛⎝PS(i)
s∑

j=0

pi j

⎞⎠ (5.60)

In matrix notation, similar to equations (5.47) and (5.48), they get the following form:

p0(s) = 1

1 − Gs
· (s · Is+1) ·

(
pg · (1 . . . 1 0 . . .)T

)
(5.61)

p1(s) = 1

Gs
· (s (I − Is+1)) ·

(
pg · (0 . . . 0 1 . . .)T

)
(5.62)

Just like equation (5.23), ρ(s) applies to the group means:

ρ(s) = 1 − (p0(s) + p1(s)) (5.63)

Figure 5.21 shows similar to the multi-step local correlation of figure 5.18 the local correlation

of the group mean values. The sample sizes of these simulations are the same for all group sizes.

5.3.3.7 Relative error

All the formulas leading to the group correlation are for the dynamic simulation. In the STD

simulation, the group correlation ρ(s) is zero per definition for the case that the group size is

the same as the STD window size. Thus, the values calculated for the group mean indicate the

gain γ (ρmax) with respect to the reduction of the correlation, and in turn the reduction of the

relative error of the group mean values.

Equation (5.64) shows the relative error for the group mean values for a ρ(s) as calculated in

equation (5.63) and with ρ(s) = 0 for the STD case.

d
∗
G(s) =

(
1

Ng
· 1 − Gs

Gs
· 1 + ρ(s)

1 − ρ(s)

)1/2

(5.64)
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5.3.4 Gain

As stated in chapter 2, the increased statistical accuracy of the STD simulation technique can

be expressed by the decreased simulation run-time resp. by the decreased sample size needed

to reach a predefined simulation status. This status can be represented by the relative error for

the investigated value space.

5.3.4.1 STD simulation

Fixing d in equations (5.27) and (5.41) leads to the gain in simulation time γ (pex,ρmax).

γ (pex,ρmax) = ns,dyn

ns
=

1+ρmax

1−ρmax

1+ρmax(1−pex)
1−ρmax(1−pex)

= ρ2
max − ρmax

pex

1−pex
− 1

1−pex

ρ2
max + ρmax

pex

1−pex
− 1

1−pex

(5.65)

Here, ρmax means the ρ(x) which causes the maximum relative error within the evaluated value

space for x. In the given model, the relative error is monotone in x , thus, the ρmax = ρ(xmax).
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Figures 5.22 and 5.23 show the achieved gain of equation (5.65) regarding the number of

samples required to fall below the specified maximum relative error. In figure 5.22 a), ρmax

is changed within its limits (from 0 to 1) while the pex is kept constant by keeping the STD

window size constant, tw = 10 in this example. In figure 5.23 a), pex is changed from 0 to 1

while ρmax is kept constant. For these plots, x = 20 has been used for ρmax. The plots at the

bottom (figures 5.22 b) and 5.23 b)) show the working points for the different loads η in the

plots above. These working points are the values of the parameter that has been kept constant

for the plots, e. g., for a load of η = 0.6, a constant pex ≈ 3.6 · 10−2, figure 5.23 b), is used for

the corresponding plot in figure 5.22 a), and a constant ρmax ≈ 0.723, figure 5.22 b), is used for

the corresponding plot in figure 5.23 a).

The constant ρmax corresponds to the model with a load of η = 0.6 at the position x = 20 which

makes a ρmax ≈ 0.723. The single point in each figure shows the gain value for the constant

parameter of the other figure.

5.3.4.2 Group correlation

The group correlation can be considered as a kind of smoothed correlation compared to the

first order local correlation investigated in sections 5.3.1 and 5.3.2. The group correlation with

respect to the group mean values has been investigated in section 5.3.3 to show that the statistical

accuracy of an STD simulation is higher compared to a pure dynamic simulation even if the

system is considered from a different perspective.

To confirm this, the gain based on the relative error of the group mean values, see section 5.3.3.7,

has to be calculated. Equation (5.66) shows this gain γ (ρmax) regarding the required number of

groups Ng calculated the same way as in equation (5.65) by fixing the relative error d
∗
G(s) and

using a ρmax of the considered range of s:

γ (ρmax) = 1 + ρmax

1 − ρmax
> 1 ∀ ρmax > 0 (5.66)

This confirms the above statement, since there is an actual gain γ (ρmax) > 1.

It is, however, possible to make use of the group correlation as a means for speeding-up the

simulation. For this, several aspects have to be taken into account. If only the mean values of the

groups are considered relevant, the STD simulation is fast in any case since the required number

of groups Ng is always lower than for the corresponding dynamic simulation, independent of

the group size ns,g. Only for large ns,g, the comparison group correlation converges to zero, and

the dynamic simulation will be as fast as the STD simulation.

Since the mean value of a group can only be determined after all the associated values have

been simulated, the speed-up potential based on the group correlation will not be very large.

This is different in situations where the process evaluating the mean values is much more time

consuming than the process calculating them. The process evaluating the mean values will be
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responsible for the decision about reaching the given error limit. This is why it is indeed helpful

to have knowledge about the group mean correlation in dynamic and STD simulations. Section

5.4.1 and especially section 5.4.1.2 shows an application.

5.4 Combined speed-up approaches

In chapter 4, a combination of the two distinct speed-up approaches RESTART and paralleli-

sation, as introduced in chapter 3 resp. section 2.3, is described already. In this section, addi-

tionally, some approaches are discussed that combine the STD simulation concept with each of

these.

5.4.1 STD and parallelisation

The fact that the STD windows are mutually independent automatically brings up the idea

of parallelisation. It appears to be a straightforward approach and it will be basically a load

division. It can be compared to a simulation project which starts a set of concurrent simulations

with the same model and parametrisation but different random seeds, see section 2.3.2.

5.4.1.1 Scalability

With the usual load division, the set of simulations can be started with a relaxed (a higher) error

limit which is a-priori known. Equations (5.26), (5.41) and (5.64) show that the relative error is

indirectly proportional to the square root of the sample size. For a total target error level dtot and

a number of np processes doing the load division, each process should run with an error limit of

d = √np ·dtot having each process simulating an equal part of the total sample size. Eventually,

this leads to the above overall target error level.

In contrast to that, in STD simulations, the size of the STD windows is a parameter specified

before the simulation is started. The number of STD windows needed to reach an error limit can,

indeed, be determined during the simulation, see discussion in section 6.5. This means, after the

STD window size has been decided according to the evaluation requirements, see discussion

in section 6.5.4, all simulations started at the beginning will finish at least one complete STD

window. It should be calculated with a task granularity of about the size of an STD window.

The granularity of the tasks into which the simulation can be divided for the concurrent pro-

cessing, builds a limit for the scalability of the parallelisation approach. If large STD windows

are needed, e. g., of 100 s, and 10 processors are available for the simulation, the total simula-

tion time will be at least 1000 s. If a certain target error level is going to be reached after 500 s

without knowing this in advance, half of the simulation resources are wasted. For small STD

windows, this is less likely to happen.
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5.4.1.2 Evaluation

An issue with this kind of parallelisation is the combination of the results. This is similar to

the completely independent runs of the usual kind of load division. Either all observations, i. e.,

the complete obtained sample, is relevant, and in turn all samples have to be stored for some

kind of central integration after all simulations have finished. Another possibility is to have the

separate simulations runs pre-evaluate the results on basis of single STD windows and have a

certain entity merge these statistics afterwards, see the brief discussion in section 3.2.3.

In any case, the results of the different STD windows have to be combined in some way. For

that, they have to be communicated to some central entity. While large STD windows have the

disadvantage of limited granularity for a decision about the finish of the simulation, simulations

with small STD windows need to frequently communicate the (pre-evaluated) results of the

STD windows.

It can be more expensive – with respect to resources or time – to communicate results than

to produce them. Of course, this depends on the setup. A quite large STD window takes a

considerable amount of processing time, and the results will probably not take such long time

to be communicated over a network, even if quite detailed information about the complete STD

window is transmitted. For smaller STD windows, this is different. The ratio of processing time

and frequency of communication of results makes the communication an important part of the

total run time.

In cases where only the mean value of certain parameters on the basis of an STD window

is relevant, the communication of this result will take less time than the communication of

the complete sample or even a pre-evaluated statistics of the parameter. These mean values

will not be correlated in the STD simulation, thus, the evaluation process will reach the given

error limit more quickly than it would for a dynamic simulation also sending mean values of

consecutive sample groups. As a conclusion on this aspect, knowing the mean value correlation

in a dynamic simulation helps to justify the application of a parallelised STD simulation for the

above mentioned cases with small STD windows and only group mean values being relevant.

5.4.2 STD and RESTART

A link between the STD simulation concept and the RESTART method is the starting state for

a part of the simulation. The simulation control finishes this part and decides about another

system state from which the next part of the simulation is going to be started.

In RESTART, all system states from which the simulation can start a retrial have been col-

lected before by the simulation itself during the elapsed simulation time. Furthermore, all states

belonging to the same level have in common the value of the importance function (IF). More

precisely, after having obtained a previous value below the threshold, either the current value is

exactly the same as the threshold or it has a value above the threshold.
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In contrast to this, in the STD simulation concept, a system state building the initial snapshot

from which an STD window is started is generated on the basis of the statistical data describing

the scenario and its configuration.

5.4.2.1 Specifying initial snapshots

The fact that statistical information is available about the scenario does not make simulation

dispensable. In the UMTS application, e. g., see chapter 6, first, the number of users is a random

variable, next, the position of each of these users is a set of random variables, and finally, the

session and mobility dynamics of each user consisting of many single events is generated on

the basis of many random generators. The simulation user is interested in the interactions of the

individual simulation objects and the probabilities of certain situations.

An example for the application of this kind of combination is a quite simple queueing network.

The evaluation target is the behaviour of a small part of the network under the condition of

another small part of the network being in a special state. The components of this small part are

included in the importance function (IF) which can simply be the occupancy of a single node, as

with the simple model used in section 5.3. The special state is the occupancy having the exact

value of a chosen threshold. All states for which the IF is above or equal to the threshold is

considered as the target importance region in the following discussion.

For this application, it is assumed that the cumulative probability of the target importance re-

gion can be calculated from the statistical information used to generate the snapshots. Possible

dependencies of the occupancy of this node from other random parts of the network have to be

incorporated into the calculation.

It is now possible to generate the initial snapshots matching the threshold and study the be-

haviour of the small part of the network model for these situations. This part can be some

neighbouring nodes, and the evaluation target is the rare event set and can be the buffer over-

flows in these nodes. Compared to STD simulations with initial snapshots representing the

whole state space, the target can be evaluated much faster.

Since the evaluation target is the total, i. e., unconditional, probability of the evaluation tar-

get (the rare event set) A, but the simulation provides only the conditional target A|B always

reached after starting from a subset (the target importance region) B, P(B) is needed. From the

statistical information about the state space, the probability P(B) is assumed to be known. If it

is possible to reach A not only from B, but also from states B̄ with the IF below the threshold,

i. e., P(A|B̄) > 0, however, this has to be respected:

P(A) = P(A|B)P(B) + P(A|B̄)P(B̄) (5.67)

It means, parts of the rare event set are outside the area of the state space which is limited by

the threshold. Such configurations should be avoided if possible.
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In a more complex UMTS example, see chapter 6, the number of users connected to a certain

cell in a scenario is the threshold, and for a quite high number of users, the overload behaviour

of the cell is studied. If, e. g., the dropping is counted, according to the statements above, the

dropping in cases of less users than the threshold has to be considered. This is possible even

in low load situations if users move too far away from the base station and are dropped due to

power limitations. From this example it is obvious that the above-mentioned configurations are

not always avoidable.

5.4.2.2 History of states

In contrast to RESTART, where a system state has been stored after it has been reached from

some other state below the threshold, in STD simulations, system states representing indepen-

dent initial snapshots of STD windows have to be generated. In principle, these snapshots can

be generated in such a way that they match exactly the value of a threshold.

This kind of independent snapshot generation, however, completely lacks any information about

the history of the system state represented by the initial snapshot. This is why it cannot be

decided whether the generated snapshot can represent a transition from a region below to a

region above or equal to the threshold. On the other hand, a transition downwards during the

STD window can be detected, and the STD window can be terminated the same way a trace is

terminated in RESTART.

One way to cope with this lack of history is to simply ignore this fact. An IF with a single

threshold, in the first place, is chosen. Snapshots are generated matching the threshold. STD

windows are terminated as soon as the IF falls below the threshold limiting the evaluation to the

target importance region.

The usual application of this method combination will be such that the evaluation target is a

special quite rare situation. Also the target importance region will not have a very high proba-

bility since otherwise the application of this method combination would make no sense. As a

consequence, many of the generated initial snapshots will be of no use.

If, e. g., the probability of the target importance region is 10 %, the other 90 % of the generated

snapshots are wasted. This is because the IF will fall below the threshold with the very first

value following the snapshot. The probability of the target importance region and the effort to

generate a snapshot has to be taken into account when planning to apply this approach.

The criteria for terminating an STD window could be chosen differently from the way it would

be done in RESTART. In some variations of RESTART, the downward threshold is different

from the upward threshold which introduces a hysteresis. Discussions on the efficiency of such

variations can be found among others in [VAVA99] and [Gar00]. For the combination of STD

and RESTART, however, this hysteresis can at least compensate the lack of history to some

extent.
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5.4.2.3 Support statistical information

As stated above, usually the total probabilities of events are to be determined. If now the prob-

ability of the target importance region is not easy to calculate from the statistical information

about the state space, this can be evaluated by an STD simulation.

If the stationary distributions of the states for the initial snapshots and the subsequent dynamic

parts of the STD window match very well, see discussion in section 6.5.3, this approach can

provide the necessary probability value.

If the probability of the target importance region can be calculated but only with assumptions

or other influences on the precision, the method to simulate the probability can at least support

the statistical information.

5.4.2.4 Finding initial snapshots

While in section 5.4.2.1 the statistical information about the system states is used to generate

specific initial snapshots with no history, such snapshots can also be found by simulation which

enables to store these states and provides them with a history. The approach of section 5.4.2.3

is one way to achieve this. The process of evaluating the probability of the target importance

region can be utilised for this purpose.

Another possibility is to start from some defined state, e. g., an empty system. In STD simu-

lations, however, long transient phases at the start of the STD windows conflict with the STD

window size considerations with respect to efficiency. This will be the case if the mean num-

ber of objects in the system is high, e. g., users in the UMTS applications of chapter 6, and

furthermore, the arrival rates are small with long dwell times, see Little’s law in equation 6.1.

5.5 Conclusions

The perspective which is usually taken, is to consider all values for evaluation. For a simple

simulation model, it has been proven analytically that the STD simulation method increases the

statistical accuracy. The gain that will be achieved by this is shown in section 5.3.4.1.

As expected, the gain is higher for smaller STD windows, since the behaviour of STD simula-

tions become more similar to the behaviour of static simulations with decreasing STD window

sizes, and more similar to dynamic simulations with increasing STD window sizes. Depending

on the evaluation target, STD window sizes down to quite small ones can still make sense. This

is further discussed in chapter 6, especially in sections 6.3 and 6.5.

Some approaches to combine the STD simulation concept with the other simulation speed-up

techniques parallelisation and RESTART have been identified and discussed. The efficiency that

can be expected from applying these approaches depends on the kind of simulation model and

the evaluation targets.



Chapter 6

STD Simulation of UMTS Models

A fter the general concept of STD simulation and its analytical investigation have been

presented in chapter 5, this chapter describes the application to UMTS network planning.

6.1 Introduction to UMTS

6.1.1 Architecture

A UMTS system consists of three main components, namely the UTRAN, the core network

(CN), and the user equipment (UE).

As a major difference to 2G systems as GSM, the access technology on the air interface has

changed to a CDMA (Code Division Multiple Access) system instead of FDMA (Frequency

Division Multiple Access) or TDMA (Time Division Multiple Access). Therefore, another

Radio Access Network (RAN) was necessary, the UMTS Terrestrial Radio Access Network

(UTRAN). Except from special cases with very small cells and high data-rates where it is

reasonable to apply TDD (Time Division Duplexing), in UTRAN FDD (Frequency Division

Duplexing) is used.

The main components of the UTRAN are the base stations, also called Node-Bs, and the Radio

Network Controllers (RNC). The main functions of a base station which are relevant for this

chapter, are transmission and reception on the air interface, physical channel coding, and closed

loop power control. The main functions of the RNCs are Radio Resource Control (RRC), ad-

mission control, and handover control. The base stations are connected to the core network via

the RNCs, and one RNC can support one or more base stations.

As the main function, the core network provides switching, routing and transit for user traffic.

The network management functions are also contained in the core network, as are the databases

EIR (Equipment Identity Register), HLR (Home Location Register), and VLR (Visitor Location

Register).
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The user equipment interfaces with the user and the air interface. A UE consists of two compo-

nents. One is the mobile equipment (ME) which is the radio terminal. The other is the USIM

(UMTS Subscriber Identity Module). The latter stores the subscriber information as identity

and encryption key, and it performs the authentication. In the following, the user equipment is

referred to as a mobile station (MS).

6.1.2 Power control

To separate the signals of different mobile stations at the base station, the spreading codes of the

connections need to be used since in FDD, the mobile stations transmit at the same frequency

in uplink direction. If each MS would transmit at the same power, the received power of a far

away MS would be far below the received power of an MS close to the base station because

of the higher path loss of the far away MS. The signals of these mobile stations would not be

separable anymore.

The closed loop power control algorithm takes care of the fact that the received power per bit of

all connections will be equal. Frequent measurements of the received SIR (Signal to Interference

Ratio) are performed, and the values are compared to a target SIR. The MS is commanded to

either lower or increase it transmission power to reach this target. This measurement cycle is

performed at 1500 Hz to prevent any power mismatch among the uplink signals received at the

base station.

In contrast to the closed loop power control, the RNC performs an open loop power control.

This is to roughly estimate the required transmission power, and it is only used at the beginning

of a connection.

6.1.3 Regular scenario

Two scenarios representing two different classes are exemplarily shown here. They demonstrate

the abilities of the simulation concept, and further, the following sections use variants of these

scenarios. This section shows a regular scenario, the next section shows a realistic scenario.

A regular scenario is introduced without any distinction between areas with different surfaces or

different heights, and without any other irregularity like buildings or other obstacles. The base

stations are arranged in a hexagonal grid because the antennas can form circular-like cells on

plain scenarios. For such shapes, the hexagonal arrangement provides the best level of regularity.

Circular-like shapes are formed by omni-directional antennas or a little less regular by sectorised

antennas with three sectors.

Figure 6.1 shows such a scenario. It consists of seven sites (base stations) with three sectors

(cells) each. The sites are indicated by the numbers surrounded by squares, and the antenna

sectors are the three short lines originating at the number of each site and identified by another

number at the end of the line. As a result, the scenario has 21 cells.
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Figure 6.1: Regular hexagonal scenario, 7 sites

The left part, figure 6.1 a), shows for each pixel the colour representing the cell to which the

position has the best possible connection, the so-called best server. The cell structure is re-

flected by this view. The right part, figure 6.1 b), shows the minimum pathloss for each pixel.

Areas close to the antennas have smaller pathloss and are darker. The lightest areas indicate cell

boundaries meaning that beyond that boundary the pathloss is smaller to another cell.

6.1.4 Realistic scenario

Similar to the regular hexagonal scenario, figure 6.2 shows a realistic scenario of Berlin which

consists of 143 cells. The scenario is publicly available and has been setup within the IST project

MOMENTUM, see [Mom03]. The left part, figure 6.2 a), shows the best server plot reflecting

the cell structure. The right part, figure 6.2 b), shows the minimum pathloss for each pixel.

Some regions are a little darker than the surroundings, indicating areas with water on which the

pathloss is small compared to other surface types.

6.2 UMTS simulation concept

According to the concept described in chapter 5, in the STD simulation concept for the applica-

tion to UMTS, a simulation is started with an initial snapshot. This system state will be changed

dynamically within the event driven part of the simulation until the STD window terminates and

another snapshot is generated, independent of the previous initial snapshot.

Based on this concept, see [TPL+03] and [PLG+04], the simulation toolkit MoRaNET (Mobile

Radio Network Evaluation Toolkit) has been developed within the framework of the IST project

MOMENTUM. It has two modes, the static and the STD mode. The STD mode, see [LPTG03],
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a) Best server b) Minimum pathloss

Figure 6.2: Realistic scenario Berlin
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is as described above and has been developed and implemented during this work. In the static

mode, only random snapshots are generated, independent of each other. No event driven simu-

lation is performed which would apply dynamic changes to a generated snapshot. A time axis

is not present, the series of independent snapshots only uses a counter. The static mode is ac-

cording to the left part of figure 5.1.

In figure 6.3, the major loops of a UMTS related STD simulation with MoRaNET are shown.

The most inner loop takes place inside the iterative algorithm which performs the system re-

calculation, and it represents the process input action in the static part of figure 5.1. The loop

ends when the iteration has converged according to a certain convergence criteria. The goal

of this procedure is to reach a state in which all mobile stations of a cell send and receive on

power levels which take not only the position relative to the base station but also the positions

and power levels of surrounding mobile stations into account. Since the mobile stations influ-

ence each other, this calculation cannot be conducted within a single-step. For a more detailed

description of this concept, see [TPL+03].
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In the intermediate loop, the dynamic changes to the system, corresponding to the generate
new dynamic input action in the short-term dynamic part of figure 5.1, are applied, and the

loop continues until the end of the STD window is reached. An overall convergence criterion

is checked in the outer loop. This can be an error calculation for a certain indicator function

consisting of one or more system parameters, or it is simply the end of the last of a fixed number

of STD windows. If the simulation end is not reached, another STD window starts after a new

initial snapshot has been generated. This new snapshot corresponds to the generate random
input action in the static part of figure 5.1. In figure 6.3, the loop outside the STD windows is

included, while figure 5.1 is only related to a single STD window.

The static input data and the dynamic changes are described in the following. Most of the

position oriented information is managed with the help of pixel maps. The size of the pixels is

constant, but all pixel maps can have different pixel sizes. For more details on static scenario

data as buildings, surface information, antenna positions and properties, etc., it is referred to the

corresponding project documents [Mom03].

6.2.1 User profiles

A user profile is categorised by the service type. It specifies which service the user is going

to use with a call. The different service types with their traffic source descriptions are listed in

section 6.2.4. Popular user profiles are SpeechTelephony and WWW.

A user profile is connected to a list of so-called usage types. A usage type contains the infor-

mation which mobility type it belongs to. The reason for having such a list for each user profile

is that some combinations of service and mobility type are not reasonable, e. g., in the default

configuration, the service type VideoTelephony is not possible together with the mobility type

highway. The concept, however, is flexible, and if the person using the service sits in the back

of the car while a driver is driving, the combination can be configured to be possible. Further-

more, if the requirements and possibilities change, highway users can, e. g., even be enabled

on water environment to simulate speed boats. On the other hand, the restrictions which are

configured make it possible to detect errors in the map configuration before performing lengthy

simulations.

For each user profile which is present in the considered model, two traffic maps are required. The

first is the average load grid (ALG) which represents the profile’s stationary user distribution

by determining for each location the mean number of users present of the profile. The second

is the busy hour call attempts grid (BHCA) which determines the mean number of new users

which emerge at the location within one (busy) hour.

For static users, i. e., non-moving users, the ALG can be easily calculated from the BHCA grid

by using the mean dwell time for each pixel. For every pixel, Little’s law applies:

N = λT (6.1)
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In the equation, N is the mean number of objects in a system, λ is the mean number of objects

arriving per time unit to the system, and T is the mean number of time units an object dwells

in the system. Applying this to the pixels, the system is the pixel itself, T is the dwell time

from the mobility map, see section 6.2.3, λ is the arrival rate from the BHCA grid, and N is the

resulting value for the ALG for that pixel.

6.2.2 Operational environment

At the time a user is generated, the initial position within the scenario is chosen. This position

determines the operational environment and by this the mobility type of the user. The opera-

tional environment map manages for each location a list of possible mobility types for each user

profile which is possible at the location.

The operational environments which are used are the following: water, railway, highway, main-
road, street, rural, suburban, open, urban, cbd (central business district).

To give some examples, in the operational environment street, for the service types Video-
Telephony and StreamingMultimedia only the pedestrian and static mobility is possible, while

for other service types which can occur in that operational environment also the mobility type

street is possible. On water, only static mobility is possible for all possible service types which

can occur there. In rural environment, the penetration ratio of static vs. pedestrian mobility is

1 : 9, in urban environment it is 3 : 7.

The system, however, is flexible in the way that every possible combination of a list of service

types, each with a list of mobility types and their penetration ratio, can be considered as an

operational environment.

6.2.3 Mobility

A new pixel oriented mobility model has been introduced for UMTS network simulations, see

[PEF+02]. This model takes care of keeping a user within appropriate areas, and it allows

for modelling different traffic situations at different locations forcing users to change their be-

haviour based on their location. This enables, e. g., that a high-speed user can change his average

speed when changing between highway, street and traffic jam environments.

With a mobility map, in which every part of the area has a set of parameters, these goals can be

achieved. A part must represent a well-defined area. Easy to manage and to handle are maps in

which every part is a regular area, optimally a square. Such a square is now called pixel, and for

a single mobility map, all pixels are of the same size.

The parameters for a pixel consist of the mean dwell time for the pixel and the turning probabil-

ities. Each pixel has 16 values for turning probabilities, for each of the four possible directions

from which a user can enter the pixel, and for each of these incoming directions four values for
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Figure 6.4: Single pixel from mobility map with example turning probabilities

the outgoing direction. Another four values are needed for users which emerge within the pixel

and do not have an incoming direction. This results in 21 values for each pixel.

Termination probabilities for a pixel are not considered. An outgoing direction for a user which

is located within the area represented by this pixel is only chosen if the user’s dwell time for

this pixel has elapsed while the session is still active, so that the user will leave the pixel. The

point of time at which a user will not leave a pixel but terminate the session within the pixel, is

always determined by the session duration and not by the pixel configuration.

With the turning probabilities, users can be restricted to appropriate areas, as mentioned above.

At the scenario limits, e. g., all directions which would lead out of the scenario, are set to zero,

and users will bounce back from the border or walk along the border, depending on the con-

figuration. Also at the borders of operational environments, this technique can and should be

applied. This is used to prevent, e. g., highway users from leaving the streets.

Figure 6.4 shows an example pixel configuration for a pedestrian mobility type. On the left

side, figure 6.4 a), a pixel of the mobility map including a part of its parameters is shown. The

situation displayed is for a user entering the pixel from the south, indicated by the thicker arrow

at the bottom of the pixel. For such users, the probabilities to leave the pixel by one of the four

directions are written next to the arrows at the corresponding pixel borders. The example shows

a user coming from south and the leaving the pixel to the east after the dwell time has elapsed.

The table, figure 6.4 b), shows the values for the complete parameter set for the turning proba-

bilities of the pixel. In this example, the pixel is north-bounded, meaning that it is not possible

to leave the pixel to the north, no matter where the user has come from, and also impossible to

enter the pixel from the north, if the maps have been configured correctly.

Since the mobility is quantised, the parameters only depend on the incoming direction and not

on the exact position on the border. The arrow only means a user coming from the pixel adjacent

to the south of the current pixel.

Only the mobility itself is quantised, however, not the user positions. Consider the follow-

ing example: The pixel has the index (100,200), starting the map with (0,0) in the south-
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western corner. The pixel size is 10 m, and thus, the pixel expands from (100 m,200 m) to

(110 m,210 m). Now, a new user has been started in the pixel south to the displayed pixel,

at position (101 m,197 m). After entering the displayed pixel, the user will be placed at the

position (101 m,207 m). It is important not to put all users of a pixel at the same position in

the center of the pixel. This would lead to unrealistic situations, especially regarding the radio

conditions.

Since a pixel map is present for each mobility type in use, the speed of the users of this mobility

type can be modelled heterogeneously within the areas possible for this mobility type. By this,

a part of a street with high traffic jam probability can be configured with significantly lower

average speed (higher value for the mean dwell time parameter) for the mobility type street. A

street user passing through this area will automatically decrease the average speed at entering

the area and again increase it after leaving. A pedestrian user, e. g., should have a lower average

speed at crossroads, which also applies to the other non-static mobility types.

The mobility model reflects a short-memory model. The time a user has spent in the previous

pixel is not taken into account at the determination of the actual dwell time in the current pixel.

Also, the direction from which the user has entered the previous pixel is disregarded.

In contrast to static users, for moving users the calculation of the ALG from the BHCA grid

(see section 6.2.1) is not sufficient to achieve an arbitrary but stationary user distribution. To

illustrate this, an area is imagined where many users emerge according to the corresponding

values of the BHCA grid, but from where the users move away with high probability, and to

where users from surrounding areas move only with low probability. Even if the average dwell

times for users passing this area would be comparable to the dwell times of other areas, the

mean number of users in that area will be small.

For a steady state simulation as discussed in this work, it is mandatory that the number of users

is stationary for every user type in every region. Therefore, the number of users per time unit

entering the region must be equal to the number of users leaving. Since entering and leaving a

region can be caused either by session events (start and end of a call) and mobility, calculation

of the ALGs for non-static user types must take into account the corresponding BHCA and the

mobility. See [PEF+02] for a detailed description of the algorithm.

6.2.4 Session

The service type is assigned to a user profile and classifies it. The description of the service

contains a list of radio bearers allowed for the service including information about statistical

properties and requirements regarding the radio conditions when using the radio bearer. Further

parameters deal with the up- and downgrading effects of the radio resource control (RRC).

Each service also has a description of the corresponding traffic source. It contains the informa-

tion needed to generate events for the activity changes.
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Figure 6.5: CS and PS sessions

In figure 6.5, a circuit switched (CS) session and a packet switched (PS) session are shown with

respect to the phases of activity and inactivity.

The CS session in figure 6.5 a) is a voice session. Both uplink and downlink are used. In the

uplink, the user is talking, in the downlink, the dialogue partner is talking. Pauses with inactive

up- and downlink are also possible as are phases where the user and the partner are both talking.

In a CS session, the involved link occupies the resources permanently. The difference between

active and inactive phases is the lower interference contributed by an inactive link.

Active links contribute to the cell load, either by power (in DL) or by interference (in UL). This

applies to CS sessions as well as to PS sessions. The uplink and downlink loads are defined as

ρUL = 1 − PN

Itotal
(6.2)

ρDL = Ptotal,DL

Pmax,DL
(6.3)

According to [HT00], PN is the background and receiver noise, and Itotal is the total received

interference at the receiver in uplink. In downlink, Ptotal,DL is the total downlink transmission

power of the base station, and Pmax,DL is the maximum transmission power.

Figure 6.5 b) shows a general PS session. The simulation is performed on the level of packet

calls. In the configuration of a PS service, the distributions of the number of packets per packet

call, and of the length of the packets in data units are specified. Further, the number of packet

calls per session and the time between packet calls are specified. This results in a distribution

of the amount of data per packet call. At the time of generation of a PS session, the number of

packet calls and for each packet call the amount of data is determined.

The major difference between CS and PS sessions is that the length of a CS session and of its

activity phases is time oriented, while in a PS session, it is data oriented in the sense that the

determined amount of data has to be transmitted until the session terminates. The time needed

for this transmission depends on the traffic situation. If there is a lot of traffic and the cells
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Bearer [kbit/s] 384 128 64 32

FileDownload 0.64 s 1.91 s 3.82 s —

WWW 18.43 s — 30.57 s 45.14 s

Table 6.1: Traffic dependent PS session duration

serving the PS user is highly loaded, the user is only allowed to transmit at a lower data-rate

resulting in a delayed session end. For CS services which can be transmitted with different data-

rates, a lower data-rate only leads to lower quality of the transmitted data. The speech quality in

voice services and the image and sound quality of streaming services will be decreased, but the

session end is not delayed. Data oriented CS services are not included in this concept and will

not be considered.

A problem resulting from this fact is the difficulty to calculate the ALG from the BHCA grid

in cases where the session durations of PS services are traffic dependent. This problem is eased

by the fact that load contribution of a PS user transmitting at a lower data-rate is lower than at a

higher data-rate, and the load is the most fundamental basis for the decisions of the system about

up- and downgrading, soft-handover, etc. This effect, however, is non-linear, meaning that two

PS users transmitting at half the usual data-rate together do not have the same load contribution

as a single PS user transmitting at the usual data-rate.

As an example, the WWW service is considered. Is has a mean number of packet calls per

session of 5, geometrically distributed. Also geometrically distributed is the number of packets

per packet call with the average of 26. A single packet has a Pareto distributed length with a

mean of 896 byte. The negative exponentially distributed reading time between packet calls is

4 s. This configuration of the service has been taken from the UMTS standard [ETS98] and

the project documents [Mom03], as has been done also for all other services in simulations

considered in this thesis. Assuming now the highest possible data-rate using a radio bearer with

384 kbit/s during the entire session leads to an average session duration of about 18.43 s of

which 16 s are pure reading time. Table 6.1 shows for the WWW and the FileDownload service

the mean session durations for the three radio bearers which are possible for each service.

The services can all be freely designed with respect to the distributions for packets, packet calls,

and the reading times for the PS services, and to distributions of on- and off-phases for the CS

services. The configurations considered in this thesis are – as mentioned above – taken from the

UMTS standard and the project documents, see [ETS98] and [Mom03]. The used CS services

are SpeechTelephony (the voice service), VideoTelephony and StreamingMultimedia, the used

PS services are EMail, LBS (location based services), MMS, FileDownload and WWW.

Further possible important differentiations between the services are link restrictions, e. g., only

up-, only downlink, or selective, i. e., either up- or downlink but not both for the lifetime of a

session. Possible data-rates and configuration regarding Quality of Service aspects are speci-

fied. The latter includes parameters for the radio resource management (RRM) which decides

about actions like up- and downgrading, blocking, and dropping of calls. These actions can be
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classified and weighted to make optimisation possible for different goals like highest possible

utilisation of the radio network, lowest possible ratio of dissatisfied users due to blocking or

dropping of calls, etc.

6.2.5 User generation

Each user type has its own module responsible for the generation of users of this type. Two

maps are needed for the user generation, as mentioned in section 6.2.1. The first map, the ALG,

is used at the beginning of an STD window for the initial snapshot. The number of users of this

type is drawn which will be in the initial snapshot. Next, these users are distributed over the

scenario area according to the map.

During the STD window, newly arriving users are generated one by one. Not the number of

users is drawn, as in the beginning, but the inter-arrival time for the next user of this type. This

single user is placed onto the scenario according to the BHCA map which is similar but not

exactly equal to the ALG.

6.2.5.1 Classification process

For both, the initial generation of users and the single user generation, the position of each

generated user is determined. According to the pixel this position belongs to, the operational

environment (OE) is determined. This information is needed to determine the mobility type of

the user.

Assigned to the pixel of the operational environment map is the index of the OE. Each OE

has a configuration with a list of user profiles which are allowed within this OE, or it has a

single entry without specification of the user profile meaning that the entry is common to all

user profiles. It is an error if a user of a certain profile has been put to a pixel where the OE has

entries specifying the possible user profiles and the user profile corresponding to the user is not

in this list.

An entry in the configuration of an OE specifies the possible mobility types, either general or

for a specific user profile. The possible mobility types have a probability, all of which have to

sum up to unity within a single configuration entry of an OE.

At this point, finally, the generated user has, additional to its user profile, the position where to

start, and the mobility type. The mobility type cannot be changed during the session (lifetime)

of a user, but the speed and operational environment can be changed.

To recall this procedure, the following enumeration shows the order of decisions made when

generating a user:

1. All user profiles used in the scenario are selected sequentially.

2. For the selected user profile, a group of users or a single user is generated.
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3. For each generated user, the position in the scenario area is decided.

4. The operational environment is determined at the pixel to which the position belongs.

5. The general or user profile specific list of possible mobility types is selected.

6. From that list, a mobility type is randomly selected, taking the probabilities for the mobility

types into account.

6.2.5.2 Event generation

After the user has been placed and configured, the events reflecting the dynamic aspects of the

user have to be generated according to the user profile and the mobility type.

First, the duration of the session is determined. According to this, all mobility events, i. e., loca-

tion changes from one pixel to another, are pre-generated. The duration of certain session types

can be extended due to downgrading, i. e., a given amount of data in a PS session needs more

time for transmission if the data-rate is lower than requested. For these session types, mobility

events are generated for a longer duration. This means the worst case assuming the lowest data-

rate. The pre-generation of events allows for simpler techniques to re-schedule pending events

in case of up- or downgraded sessions.

Changes to the data-rate due to up- or downgrading are also a kind of activity change, but the

corresponding events are generated during the simulation and not at the time of the user and

session generation.

Up- resp. downgrading of the data oriented PS services require a recalculation of the pending

activity changes since the time at which the current packet call will be finished has to be put to

an earlier time resp. has to be postponed. Up- and downgrading during an inactive phase of a

PS session does not occur since the session is in a state occupying no resources.

6.3 Evaluation of dynamic QoS

A flexible design with a central evaluation controller makes it possible to implement code for

evaluation probes at any point in the simulation source where data of interest can be gathered.

The data can be provided to evaluation modules producing the appropriate statistics.

Many kinds of information can already be used and processed by a static simulation, but only

static data can be collected that way. These are statistics about system related parameters like

soft-handover probability for each pixel, or user related statistics like blocking probabilities for

different services and areas of the scenario.

Soft-handover (SHO) is the case in which a call is connected to more than one cell. If these

cells belong to the same base station, it is called softer-handover (SSHO). In this concept,

softer-handover is a subset of soft-handover, meaning SHO includes also the SSHO cases. Soft-

handover is described in more detail in section 6.4.
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Quality of Service (QoS) as one of the most important performance aspects needs to be pre-

dictable to make it possible for providers to satisfy their customers and fulfil contracts with the

least possible costs. Dynamic QoS parameters cannot be evaluated by static simulations, only

static QoS like the blocking mentioned above.

For dynamic QoS, the dynamic aspects of the mobility and the session need to be considered,

as it is done in the STD simulation concept. As one of the most popular examples, call dropping

can only occur if the call has been accepted previously. Some changes in the environment of the

dropped call cause the call to be dropped. Usually, the user has moved to an overloaded cell or

an uncovered area, or the load situation of the connected cell has changed.

What distinguishes a dynamic QoS parameter from a static one is the fact that a history of the

investigated parameter is required to evaluate it, and possibly also information about its future.

In the case of dropping, only the single fact is needed that the call has already existed before.

For parameters like the delay in PS sessions, all delays a call has experienced up to the current

simulation time need to be accumulated, and for a cut session in case of an ended STD window,

the planned end also needs to be taken into account.

Many statistics of different categories are possible, and the following lists show the most im-

portant ones which have been implemented and used.

6.3.1 Session based

Session based QoS statistics are those which evaluate a counter or a duration value on a per

session basis.

Soft-handover ratio: The session based SHO ratio describes the sum of the durations of all

phases in which a user has been in SHO, and this is put in relation to the total session

duration.

Soft-handover duration: This is the time between entering a SHO area and leaving it again. It

can happen several times within a session, and the times are considered separately without

accumulation. If the mean value of these phases is taken and a distribution of these mean

values is evaluated over all sessions, this is a session based statistics. It can also be a system

based statistics, see section 6.3.2.

Softer-handover duration: Similar to the soft-handover duration, this statistics considers the

softer-handover. This can also be evaluated system based.

Dropping: The probability for a user that his session is disconnected during the session lifetime.

Downgrading: Several statistics are related to down- and upgrading. The relative usage of the

radio bearers possible for the service can be evaluated on a per session basis. The distri-

bution of these ratios over all sessions can, in turn, be evaluated. Another session based

statistics is counting the users who have been downgraded during the session and calculat-

ing the downgrading ratio. A user who has not been given the best possible radio bearer at

the start of the session is also classified as being downgraded, and the difference between

the assigned data-rate and the best possible data-rate can be evaluated. These users can
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also be evaluated with the static simulation, while this is not possible for the users who

have been downgraded during their sessions.

Delays: Delays can only occur in the data oriented PS sessions. The distribution of the delays is

a possible statistics, and further, the ratio of delayed sessions. The latter is closely related

to the ratio of downgraded sessions, but CS sessions can also be downgraded. According

to the statements further down in section 6.3.3, reasonable statistics on the delay will be

service type restricted. Figure 6.6 shows two examples.

Cell changes and visits: During a session, a user can change the reference cell, i. e., the best cell

in the active set. The statistics about cell changed counts all changes during a session. A

cell change can be, e. g., in SHO changing from an active set A,B with A being best cell to

an active set B,A with B being best cell. Also leaving SHO by changing the active set from

A,B to B is a cell change. In contrast to this, leaving SHO by changing from A,B to A is

not counted here. The number of cell changes can be 0, especially for non-moving users.

In the statistics on cell visits, each cell which has been best cell at least once during the

session, will be counted only once, and thus, the minimum number is 1.

Session based evaluations have to cope with the possibility of having cut a session of which

information has been gathered. A cut induced by the system is fine since it does not bias the

evaluation, but a cut induced by the simulation at the end of an STD window either makes the

affected session unusable for evaluation, or some kind of realistic prediction is needed to make

the session usable. It is up to the simulation operator whether sessions are disregarded which

already existed as active session in the initial snapshot, and whether sessions are disregarded

which have not finished before the end of the STD window, i. e., the cut sessions.
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Figure 6.6: Delay histograms for PS sessions

Figure 6.6 shows the session delays for the realistic scenario. The session delay is not related

to transmission delays, but it is defined as the difference between the actual session duration

and the time the session would have lasted if the MS could have transmitted always at the

highest data-rate. Such a session which has started with the highest data-rate and has never

been downgraded, thus, has a zero delay per definition. Delays are absolute and given in units
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of seconds, and so sessions with higher data volume are more likely to suffer higher delays.

In figure 6.6 a), the delays for the WWW users are shown, and in figure 6.6 b), the delays

of the FileDownload users are shown. Only new and completed sessions have been evaluated

disregarding the sessions that have been active at the initial snapshot or that have not been

finished before the end of the STD window, see end of section 6.3.1.

6.3.2 Location or system based

Location oriented QoS statistics are those which evaluate counters or ratios of parameters at

pixel level without paying attention to the rest of the session which the obtained value has been

taken of.

Soft-handover ratio: The location oriented SHO ratio is at the first sight the same as the static

location oriented SHO probability. The dynamic version of the SHO algorithm, however,

takes into account the hysteresis parameters, and this can have some impact on the ratio

especially at the borders of SHO regions.

Softer-handover ratio: Similar to the soft-handover ratio, but this statistics is about the softer-

handover.

Active set size This evaluates the location oriented (mean) active set size for users at that pixel.

The statement from above about the static nature of these statistics and the difference in

applying the dynamic SHO algorithm applies to all static SHO statistics.

Branch events: These events indicate a change of the composition of the active set of a user.

Either a cell is added, a cell is deleted, or a cell is replaced by another cell. These different

events can also be evaluated separately. Evaluation of these events is impossible with static

simulations since either the user has moved to another area making the consideration of

mobility necessary, or the radio conditions at the borders of SHO regions have changed

while the user remains motionless.

Blocking: This is the probability for a new user to be blocked at the pixel the user was planned

to start the session. This is very close to a simple static statistics, but while in a static

simulation all users in the system are treated equally, in the STD simulation a new user

is blocked in favour of already existing users in high load situations. In static simula-

tions, among those users whose blocking would resolve the high load situation, one user

is chosen randomly. In STD simulation, it will be the new user who is blocked. In static

simulation, among the generated users some can be classified as new users while the oth-

ers are treated as existing users. This enables the preferred blocking of new users and even

the distinction between blocking and dropping, but only on a statistical basis including

a-priori information to classify the users as being new or already active ones.

System oriented statistics can be, e. g., on cell level or on system level. As stated in section 6.3.1,

the SHO duration can be evaluated for a certain cell without considering individual sessions or

the exact pixel position.
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6.3.3 Common methods

All statistics described in sections 6.3.1 and 6.3.2 can be restricted to certain parameters. The

most important restrictions are the following:

Service type: Only obtained values for which the user profile of the corresponding user matches

a given service type are taken into account for evaluation.

Service class: As for the service type, the restriction can be on the service class which is less

strict. Service classes are conversational, streaming, interactive and background.

Cell: Only users whose reference cell matches the given (list of) cell(s) are considered. For ses-

sion based statistics, the cell restriction is intuitively important, e. g., finding the dropping

rate in a certain cell can influence the decisions on resource dimensioning for the corre-

sponding base station. On the other hand, the kind of location orientation introduced by

cell oriented statistics is already included in the location oriented statistics and even with

finer resolution, but a pixel can belong to more than one cell in SHO situations. It can in

any case be interesting, however, to have the statistics on cell basis.

6.3.4 Detailed radio resource management

In the STD concept it is also possible to examine some more detailed protocol behaviour. One

example is the radio resource management (RRM) with focus on the call admission control

(CAC) and congestion control (CC). This has been implemented as an optional feature which

does not need to be activated. Essential actions controlled by the RRM are blocking, dropping,

up- and downgrading.

An important aspect to adhere to is the realistic modelling of the availability of information to

the different model components involved. In the basic mode without the RRM extension, the

decisions about the RRM actions are based on the measured cell load. This parameter, however,

is not available at the entity which makes the decision, but has to be estimated instead. Solutions

for this can be integrated into the simulation toolkit according to the planned solutions of the

network hardware manufacturer or the network operator.

The assumptions which the estimation mechanism is based on can be evaluated by the simula-

tion to which the real load values are available. The estimation mechanism itself can be tested.

E. g., static and adaptive approaches can be simulated. In the static approach, all parameters for

the estimation mechanism are defined prior to the simulation run, and they keep their values

unchanged. Adaptive approaches can make use of the fact that there is some instance in the

network knowing the real values. Regularly, these values can be communicated to check the

quality of the parameters of the estimation mechanism.

Even more advanced approaches can try to detect a relation between parameters indicating

the current network situation and the best parameters for the estimation mechanism for such

a network situation. Information gathered by such investigations can be used to optimise less

advanced or even the static estimation mechanism.
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Figure 6.7: Handover events: Addition (1A), Replacement (1C), Deletion (1B)

6.4 Soft-handover

Soft-handover (SHO) is an algorithm of the (W)-CDMA standard where an MS can be simulta-

neously connected to two or more cells during a call. The purpose is to have seamless handover

while moving, without having a noticeable service disruption. In contrast to 2G systems as GSM

which follow the break before make strategy by disconnecting the current cell before connect-

ing to the new cell, in 3G systems as UMTS, the make before break strategy is followed. The

connection to the new cell is established before the connection to the old cell is released.

Another advantage of SHO is the link gain. On the one hand, there is the diversity gain that

comes from the reception of the same signal from more than one transmitter (in downlink).

Similarly, in the uplink more than one base station receives the signal. In both cases, the required

transmission power for a certain signal quality is lower in the SHO if the pathloss difference

between the connected base stations is not too high. For details see [HT00].

6.4.1 Basic Principle

Each link between the MS and the base stations involved in a SHO are referred to as a branch.

Continuous measurements of the strength of pilot carrier transmissions (Common Pilot Channel

- CPICH) between the MS and the neighbouring cells are carried out.

Figure 6.7 shows the variation over time of three such measurements (CPICH1, CPICH2,

CPICH3) corresponding to an MS. These measurements are referenced in the following as

Mnew,dBm, Mbest,dBm and Mold,dBm, depending on the branch event.
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The main parameters of the SHO algorithm which are involved in deciding the handover events,

are the Reporting Range (R), the Addition/Deletion Hysteresis (H1a, H1b) and Replacement

Hysteresis (H1c), specified in dB. The three branch events radio link addition (RLA), combined
radio link addition and removal (CRLAR) and radio link removal (RLR), are introduced in the

following. They are also called branch addition, branch replacement, and branch deletion.

6.4.1.1 Radio link addition

In the example situation shown in figure 6.7 originally the MS is connected to cell 1. Once

the condition for Radio Link Addition (RLA) is satisfied according to equation (6.4), a link is

established between the MS and cell 2, making the cell a member of the active set of the MS

(event 1A in figure 6.7):

Mnew,dBm ≥ Mbest,dBm − (R − H1a/2) (6.4)

In figure 6.7, Mnew,dBm is CPICH2 and Mbest,dBm is CPICH1 for this event.

6.4.1.2 Combined radio link addition and removal

A branch replacement (event 1C in figure 6.7) takes place when the active set of the MS has

reached its maximum size and the strength of a CPICH decreases and becomes the worst while

another CPICH gradually increases leading to satisfaction of the condition for Combined Radio

Link Addition and Removal (CRLAR):

Mnew,dBm ≥ Mold,dBm + H1c/2 (6.5)

In figure 6.7, Mnew,dBm is CPICH3 and Mold,dBm is CPICH1 for this event.

6.4.1.3 Radio link removal

When the signal of a cell decreases significantly leading to satisfaction of the condition for

Radio Link Removal (RLR), then cell 3 is deleted from the active set (event 1B in figure 6.7):

Mold,dBm ≤ Mbest,dBm − (R + H1b/2) (6.6)

In figure 6.7, Mold,dBm is CPICH3 and Mbest,dBm is CPICH2 for this event.

The conditions for the branch events contain parameters which are a subject for optimisation

regarding the system performance in a process of network dimensioning.

The reporting range R specifies a gap between the received signal quality (regarding the com-

mon pilot channel) of two cells. If the signal difference is lower than the gap, a new cell is
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considered to be included into the active set. Additional hysteresis margins for adding, deleting

and replacing a cell avoid fast in and out actions reducing the signalling traffic between the

base station and the radio network controller (RNC). The parameters influence the total soft-

handover ratio (the percentage of users in soft-handover), the soft-handover durations per user,

the cell sizes and the hardware utilisations in the access network.

6.4.2 Static and dynamic soft-handover simulations

In static simulations, where only a snapshot of the system is available, only the reporting range

can be used to determine the members of the active set. The branch events for which the condi-

tions in the equations (6.4), (6.5) and (6.6) have to be fulfilled, do not actually happen. E. g., at

the time when the event 1A happens in figure 6.7, to a static simulation only the current mea-

surement values for the three pilot channels are available. Therefore, all cells which MdBm have

a distance less than R to the Mbest,dBm become members of the active set, up to the maximum

number allowed for an active set.

In dynamic and STD simulations, the incorporation of history information makes it possible to

consider the difference between the current situation and the previous situation. Especially the

mobility of the users can be taken into account. Mobility is the main reason for changes needed

in the active set of the user.

In figure 6.7 at event 1A the cell with the CPICH2 can be identified as a cell which has been

absent from the active set before and is now approaching the CPICH1. As a cell which is con-

sidered for addition to the active set, equation (6.4) can be applied using the addition margin

H1a. The CPICH of a cell considered for addition has to be by H1a closer to the cell with the

best pilot level than the reporting range R. This makes it more difficult for a cell to be added.

Similar at the event 1B in the figure, the cell with the CPICH3 is known to having been member

of the active set, and it is considered for deletion from the active set. Knowing this, the SHO

algorithm uses equation (6.6) including the deletion margin H1b. All three branch events cannot

be realistically simulated with static simulations that need to use a SHO algorithm which is

different from the (short-term) dynamic SHO algorithm introduced in section 6.4.3.

A further possibility of the dynamic and STD simulation is to implement the time to trigger
feature. By this, the execution of a branch event can be made dependent on the time elapsed

since the conditions for the branch event became true. The number of branch events can be

reduced by this mechanism, which reduces signalling traffic.

6.4.3 Algorithm

In the soft-handover algorithm for a single MS (figure 6.8) the so-called input active set is

determined. It is used to tell the simulation not to generate the active set with the static method.

The algorithm is conducted prior to every system recalculation.



116 6 STD Simulation of UMTS Models

generate active list
and candidate list

Soft−handover

active
connection

have
candidate

set

over or new
hard hand−

packet call

move best candidate
to active list

active list as reference
fix current best of

set
replaced =false

AND NOT
cand set empty

active set full

replaced

Deletion−
Loop

Addition−/

replace as long as possible
and update lists

set
replaced = true

active set finally
determined

no

yes

no

yes

yesno

no

no

yes

yes

Figure 6.8: Soft-handover algorithm



6.4 Soft-handover 117

It is first checked, whether the connection is active. This only concerns inactive PS connections

(between packet calls), since in this concept, users with CS sessions only exist while their

session is active. The next is the check for a candidate set. If the mobile station does not currently

have a candidate, it is in outage and not considered further by the algorithm.

The next step is to consider the intersection of the current active set with the candidate set. This

will form an active list as an initial set for the decisions on adding, deleting and replacing. The

candidate list is the list of candidate cells without the cells included in the active list.

If the active list is empty, either a hard handover has happened or a new packet call (PS service)

has started (during the inactive reading time there was no active set). In that case, the best of the

candidate set is put to the active list to form a non-empty initial set.

For upcoming decisions which are based on cell specific configurations, the current best server

is fixed to use it as reference. This is necessary, since later after adding some cell, the real best

server could be changed.

Next it is checked, whether a replacement is possible. This is the case only if the active set,

i. e., the active list in this context, is full, meaning it has reached its maximum size. In this case,

replacements are conducted as long as the corresponding conditions hold, see equation (6.5).

Only if no replacement has taken place, the addition-deletion loop is entered. In this loop, it

is tried first to add as many cells as possible according to the conditions, next the same will

be tried with deletions. Since it is possible that after one or more deletions again one or more

additions are possible if the size of the active set is less than the maximum, the loop is executed

once again, if a deletion has happened before. This will be repeated until convergence, i. e., no

deletion has happened within the last loop. A possible objection to this behaviour could be that

a deletion followed by an addition could also be done by a single replacement. From the system

view, however, this is not the same, and the parameters H1a, H1b and H1c can be configured in

such a way, that combinations of additions and deletions are preferred against replacements or

vice versa.

After going through the loop, the active set is considered to be finalised from the view of the

soft-handover algorithm.

6.4.4 Simulations

Examples of simulation results are shown in table 6.2 and in figure 6.9. The default settings

have been 1 dB for the margin parameters H1a, H1b, and H1c, and the default reporting range

has been R = 4 dB. The simulated models have been a regular scenario with 19 sites (base

stations) and 3 sectors (cells) for each site, resulting in 57 cells, and the realistic scenario shown

in figure 6.2. In the regular scenario, two mobility types, namely mainroad and pedestrian,

have been simulated separately. They differ in average speed (54 km/h vs. 3 km/h) and in the

movement behaviour, see section 6.2.3. E. g., the tendency to keep the current direction is higher

for mainroad users than for pedestrian users.
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mobility ratios / % mean time / s mean mean # mean # BEs / s

type SHO SSHO SHO SSHO AS CV CC BA BD BR

pedestrian 24.8 7.6 50.7 44.1 1.31 1.01 0.08 0.78 0.94 0.03

mainroad 24.1 7.8 10.6 7.0 1.30 1.39 0.82 18.5 19.2 0.76

AS: active set size, CV/CC: cell visits/changes, BEs: branch events,

BA/BD/BR: branch additions/deletions/replacements

Table 6.2: Soft-handover characteristics of voice users, regular scenario

With the default parameters, the regular scenario provides the following results (table 6.2):

About 24 % to 25 % of the users are in soft-handover (SHO), whereas 7.6 % to 7.8 % are in

softer-handover (SSHO). The mean time [s] column represents the soft(er)-handover duration

as described in section 6.3.1. The table shows the mean values for both mobility types. These

mean values are higher for the slower pedestrian users than for the faster mainroad users.

The mean active set size is almost the same for both mobility types, while the number of cell

changes and visits (see section 6.3.1) is much higher for the faster users, as it is expected. The

higher number of branch events per time unit (see section 6.3.2) for the high speed users also

corresponds to the higher number of cell visits and changes.

In figure 6.9, the SHO and SSHO ratios are plotted over the reporting range R, and the mean

active set size is plotted over the deletion margin H1b. The above mentioned default parameters

have been fixed while in figure 6.9 a) the reporting range and in figure 6.9 b) the deletion margin

has been varied.

The reporting range parameter has the highest influence on the system performance. An in-

creased reporting range not only increases the SHO ratio by including relatively weaker con-

nections, it also increases the soft-handover areas since mobile stations further away from the

base station can be included. As a consequence, the mean active set size increases.

Since the SHO ratio in this example changes very similarly to the mean active set size, in figure

6.9 a) only the SHO ratio is shown, and in figure 6.9 b) only the mean active set size.

In figure 6.9 a), the SHO ratios and the SSHO ratios increase almost linearly for all scenarios.

Approximately one third of the mobiles in soft-handover are in softer-handover for the regular

scenario. For the realistic scenario, the number of users in soft-handover is quite large, causing

the SSHO figure to be much lower at about one fifth. This fraction increases with increasing

reporting range for the regular scenario whereas no such increase is observed for the realistic

scenario. This effect is explained by the fact that in realistic scenarios both the soft- and softer-

handover regions are irregular, see figure 6.2 b).

The impact of the three margin parameters is shown exemplarily for the deletion margin in

figure 6.9 b) in the range from 0 dB to 2 dB. The influence on the mean active set size is shown.

The addition and deletion margins affect the mean active set size and the SHO ratio antithetical.

While an increased addition margin delays a user entering an SHO situation and by this shortens
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the SHO region, an increased deletion margin delays a user being in SHO releasing a cell from

the active set, and by this it stretches the SHO region. Resulting from this, increased addition

hysteresis prevents some users from entering SHO at all, leading to a decreased SHO ratio.

Increased deletion hysteresis increases the SHO ratio and consequently the mean active set

size. These effects are more dominant for users moving at high speed (mainroad) than for the

lower speed pedestrian users, see figure 6.9 b).

6.5 STD performance

For the investigation of the performance of STD simulations, quantitative statements about the

development of the relative error need to be investigated. These error measurements are based

on the LRE algorithm, see section 2.4, taking into account the local correlation of the evaluated

sample. Reaching a certain error level is one event which can be defined as having reached

convergence. To recognise this convergence, an appropriate parameter is needed. The real-time

evaluation of this parameter can be used as a convergence indicator.

6.5.1 Choice of convergence indicator

The dynamic QoS parameters, see section 6.3, are usually counters or ratios. A major disad-

vantage emerging from this fact is that there is no sequence of values of which conclusions

about the correlation can be drawn. This makes these parameters inappropriate for correlation

oriented error observation.

Other parameters usually are of the kind duration of X or time between X1 and X2, or a dis-

tribution of such parameters. These parameters cannot be used as indicators with small STD

windows, and as it has been shown in section 5.3, only for quite small STD windows a signifi-

cant performance gain can be achieved.

Consequently, a parameter with instantaneous values is needed without evaluation focus. It

means that since the dynamic QoS parameters of interest are inappropriate for this purpose,

another parameter can be chosen which the simulation operator does not need to be interested

in regarding a statistics about that parameter, but it is chosen only to indicate the simulation

convergence.

The parameter of choice for the convergence status variable or the indicator, is the cell load.

Apart from providing instantaneous values, the cell load has two properties qualifying it for this

task. First, the effects about the dynamically changing amount of active users and active links

are incorporated which is the most fundamental dynamic factor of the system. Secondly, a large

sample size is provided since the observations occur very frequently, namely with each system

recalculation.

The relation of the cell load to the system dynamics has already been introduced in section

6.2.4. The load of a cell depends on the number of active links corresponding to the number
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of users currently connected to the cell and currently having an on-phase in the corresponding

link. In the uplink case of, e. g., voice sessions, it corresponds to actively speaking users.

Further parameters which the cell load depends on, are the positions of the users, mainly the

positions relative to the antenna. This relative position consists of the distance, the angle, and

the azimuth.

The cell load in uplink or downlink of a certain cell is only a single dimension of the system

state which has a practically infinite number of dimensions. This indicator, however, is suitable

to investigate the local correlation of the corresponding stochastic process representing a small

part of the complete system behaviour. And if required, a combination of convergence indicators

representing different areas of the scenario can be performed, i. e., with an AND relation.

6.5.2 Comparison with analytical investigation

In contrast to section 5.3 which showed an analytical examination of a simulation model, the

purpose of this section is to show for simple simulation models which cause some parts of the

simulation process to have Markovian properties, that the behaviour regarding the correlation is

similar to the model used in the the analytical investigation in section 5.3.

6.5.2.1 Similar model

To compare the results of the analytical investigation of section 5.3 with the results of UMTS

simulations, the simulations in this section are focused on the speech model. A user changing

from an on-phase to an off-phase in uplink (the user stops or pauses speaking) reduces the load

in the uplink of the cell(s) to which the user is currently connected. The same applied to the

downlink which is considered separately from the uplink.

Because of the quite large number of parameters forming the cell load, mainly every user’s rel-

ative position to the antenna, the corresponding random variable is a continuous one. This is

different from the random variable representing the occupancy in section 5.3 and which corre-

sponds to the states of the Markov chain.

The number of active voice users with active uplink or downlink is, however, the major pa-

rameter contributing to the uplink or downlink load, and the duration of the on- and off-phases

are negative exponentially distributed as well as the session duration. Thus, the variation of the

uplink or downlink load over the simulation time reflects a stochastic process very close to a

Markov process.

The states of the Markov chain would simply be the sum of active voice users connected to the

cell and being currently in on-phase in uplink or downlink, depending on the link considered for

this special process. In case of different intensity parameters for the on- and off phases, a state

could be described by a pair of sums for the voice users in on- and in off-phase. This model

would be possible to be calculated analytically, admittedly with more effort than the model used

in section 5.3.
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Figure 6.10: Local correlation vs. UMTS load, dynamic simulation

6.5.2.2 Simulations

The uplink load is chosen here to represent the system state, and only one cell (index 0, one

of the cells of the central site) is considered. The scenario used is the scenario described in

section 6.1.3. 500 active users with voice service are distributed uniformly over the scenario.

The variable plotted on the x-axis is always the uplink load, or the mean value of a group of

uplink load values.

The ranges of the uplink load which are shown in the following figures are not chosen to show

only extracts of the results. It always shows the complete range for which the simulation pro-

vided sufficiently accurate values with respect to the given error limit for all plots included in a

single figure.

First, figure 6.10 shows the local correlation for a dynamic simulation part. This means, only

a single STD window has been evaluated, or more precisely, the first 200,000 values of an

STD window have been evaluated. The correlation is very high, the variations are very small

considering the very small range on the y-axis. It corresponds to figure 5.9, in which the model

even with the highest load (the utilisation of the M/M/1 model) remains far below the correlation

in figure 6.10.

Next, figure 6.11 shows the local correlation for the STD simulation. Fixed STD window sizes

have been simulated, with ns,w values ranging from 1 to 20, indicated by the “n =” in the figure.

It means, after simulating ns,w values in an STD window, a new STD window is started. For

the n = 1 plot this means, a pure static simulation is represented. This results in the correlation
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Figure 6.11: Local correlation vs. UMTS load, short-term dynamic simulation

around 0. In the corresponding figure 5.14, the STD window sizes are given in time units,

meaning that the STD 1 plot does not directly correspond to the n = 1 plot here.

Large STD windows, leading to a smaller pex, result in higher local correlation. This agrees

with the analytical calculations in figure 5.14. For n = 20, the correlation is again close to the

correlation in figure 6.10. Considerations concerning the relative error of the simulation results

and the impact on the simulation run-time are discussed below.

Next, figure 6.12 shows multi-step local correlation for the dynamic simulation. The plot for

n = 1 shows the single-step local correlation, exactly the same as in figure 6.10. All other plots

show the correlation which has been obtained by evaluating every second value (for n = 2),

every sixth value (for n = 6), and so forth. This is also the reason for the higher variations of

the curves for higher n, since the same simulation trace has been evaluated but with a smaller

number of values. It could be considered to use the unused values for evaluation by doing

a second pass over the sample starting over with the second value for n = 2, and even more

passes for the higher n. This would, however, break the correlation at the wrap-around, inducing

an additional unknown error. Compared to figure 5.18, the local correlation is higher for all step

sizes, but the tendency is the same.

Next, figure 6.13 shows the group mean local correlation for the dynamic simulation. As intro-

duced in sections 5.3.3.4 to 5.3.3.6, the mean value is calculated for each group of the given size
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Figure 6.12: Multi-step local correlation vs. UMTS load, dynamic simulation

n in the sequence of groups. The correlation within this sequence of mean values is considered.

Here, only the first 10,000 groups have been evaluated, which means, that all of the 200,000

values have been considered for the n = 20 plot, only the first half of them for the n = 10

plot, and so forth. This has been done to have the same number of group-mean values for the

evaluation. Otherwise, the n = 1 plot would have been exactly the same as in figures 6.10 and

6.12, since for n = 1 it is again a single-step correlation. Compared to figure 5.21, again the

tendency is the same, but the correlation here is much higher.

Finally, figure 6.14 shows the group mean local correlation for the short-term dynamic simula-

tion. Obviously, as expected, the group-means are not correlated. The values are not all exactly

0, but they are very small. This results from an error limit which cannot be infinitely small. Fur-

ther, the pseudo random number generators are not perfect in generating a totally uncorrelated

random sequence, and thus, a small correlation will remain even between independent value

traces. The curves for all n are very close to each other because the same STD simulation trace

was used for all different n. Always the first n values of the STD windows have been evaluated.
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Figure 6.13: Group-mean local correlation (group size n), dynamic simulation

6.5.3 STD convergence

In section 6.5.1, the choice of an indicator for convergence of the evaluation has been explained.

The scenario used is the one of section 6.1.3. In this section, simulations have been performed

with the focus on the simulation time needed to reach convergence. According to the investi-

gations in section 5.3, it is expected that the simulations with smaller STD windows converge

more quickly to the given convergence criteria than the simulations with larger STD windows

and the dynamic simulation. For the dynamic simulations, the same simulation toolkit is used

with the only difference that there is one single STD window which lasts until the simulation

ends.

6.5.3.1 Voice model

Just like in section 6.5.2, the first investigations have been performed with a voice-only config-

uration with 500 users. Since the parameter for the on- and off-phases in up- and downlink are

the same, only one link needs to be considered here, of which the uplink has been chosen. The

cells of the central site (cells 0, 1 and 2) have been used as convergence indicators.

In figure 6.15, it is plotted the development of the mean value of the simulated sample up to the

simulation time, meaning all values obtained from the start of the simulation are included in the
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calculation of the mean value. The x-axis shows the simulation time in logarithmic scale, and

the relative deviation in [%] from the mean value of the uplink load is shown on the y-axis.

On the left, figure 6.15 a) shows the development for the different STD window sizes. As ex-

pected, the speed with which the curves approach the zero deviation line increases from dynamic

simulation over the simulation with large STD windows (100 s) to the simulation with smaller

ones (10 s). On the right, figure 6.15 b) confirms that the slow convergence of the dynamic

simulation not only is a special case for cell 0, but it applies also for the other two cells.

6.5.3.2 Convergence evaluation

Different from the simulations in chapter 5, the LRE has not been used to evaluate the con-

vergence. The slow convergence and the large deviation from the actual mean value can lead

in some cases with large STD windows and especially in the dynamic simulation to a misin-

terpreted early convergence. An example is the dynamic simulation with the indicator cell 0 in

figure 6.15 where the convergence has been identified at the simulation time of 952 s with the

mean value being close to its lowest value. A detailed description of this example is given in

appendix B.

In that example, a relative error limit of 10 % has been reached far too early (at 952 s) with its

simulated mean value more than 15% lower than the actual mean value. For an error limit of
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5 %, the deviation has reduced to 8 %, and with a limit of 2 %, the deviation was far below 1 %.

In contrast to this, all STD simulations even with the quite large STD window size of 100, for all

mentioned error limits the deviation from the actual mean value never has been far above 1 %.

Obviously, to achieve accurate results, especially for the dynamic simulation, the specification

of the error limit can be a sensitive task, provided the actual mean value is a-priori unknown.

It is not desirable to choose a very low error limit only to avoid large deviations from correct

values due to non-representative simulated sequences. In the example, the fast but only virtual

convergence gives the wrong impression of a fast simulation with sufficiently accurate results.

To avoid such misinterpretations in the convergence evaluation in this section, another mech-

anism has been used to which the actual mean value of the convergence indicator is a-priori

known. This actual mean value has been obtained by a long static simulation with very low

error limit.

As the convergence point, it has been defined the time at which the simulated mean value has

been for a certain time uninterruptedly within a certain interval �m around the (a-priori known)

actual mean value. The chosen interval is here �m = 1 % which means the simulated mean

value has to stay between 99 % and 101 % of the actual mean value. The time it has to stay

there uninterruptedly has been chosen to be relative to the elapsed simulation time at which the

simulated mean has entered the interval the last time, or relative to the end of the initial phase,

either of which comes later. It is called the relative duration trel and is specified in [%]. During

the initial phase ti, the mean value is collected but not checked against the interval condition,

which is to reach a certain minimum sample size including the statistical significance before

evaluating the sample.

E. g., if the mean value enters the interval at 653 s and the required relative duration trel = 10 %,

the convergence point is reached at 718 s if the mean value does not leave the interval up to that

time. If the simulated mean stays within the interval already from 10 s while the initial phase

ti = 200 s, the condition with the 10 % will be reached at 220 s.

The method depending on the a-priori knowledge of the indicator mean value cannot be used in

exactly the same manner for run-time control purposes as the application of the LRE. Without

knowing anything about the statistical properties of the evaluated random sequence, the method

cannot decide whether the simulation has provided satisfactory results and can therefore be

terminated. The mean value of the convergence indicator, however, can be determined by a

static simulation and with using the LRE. It should be avoided to spend too much time with this

pre-simulation, but the interval chosen for the convergence evaluation should be much larger

than the relative error reached with the static pre-simulation. Otherwise a simulation of which

the simulated mean value approaches the actual mean will be most of the time outside the

interval around the pre-simulated mean value of the static simulation.
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6.5.3.3 Convergence results

Given in tables 6.3 and 6.4 are the simulation time until convergence. Some figures could only

be estimated since the convergence had not been reached within the simulation which has pro-

duced a long but finite random sequence. Thus, the bold figures represent numbers above the

given value.

As expected, the results show the tendency to reach the convergence points later for increasing

STD window size including the dynamic simulation considered as the largest. In the results of

table 6.3, the initial phase ti has been set to ti = 100 s (left part) and ti = 400 s (right part).

In both cases, the interval �m has been set to 5 %, 2 %, and 1 %. Overall, the stability of the

tendency is higher for the longer initial phase, and it increases with the smaller intervals. The

stability of this tendency is small for small relative durations of trel = 10 % and trel = 20 %, and

it increases for trel ≥ 50 %.

In table 6.4, only the highest accuracy (�m = 1 %) is shown. The right part with an initial phase

of ti = 400 s repeats the corresponding part of table 6.3, in the left part, ti = 200 s has been

applied. Compared to the 400 s case, only the simulations with the small STD windows and the

small trel are affected.

To have a fair comparison for all STD window sizes, ti must be the same for all. For very

small STD windows, however, the convergence is faster, and the table gives the impression of

saturation for tw ≤ 1 for the interval �m = 1 %, even more for the larger intervals. To compare

convergence for small STD windows, the ti needs to be smaller.

6.5.4 STD window size

As has been found out, significant speed-up versus dynamic simulation can be reached with

small STD windows. This has been proven for a theoretical model in section 5.3, and also for

the simulation in this section, this statement is valid, apart from some limitations due to the

complexity of the simulated system.

Depending on the kind of evaluation the simulation is focused on, see section 6.3, the STD

window size may have to be quite large. An example is to evaluate the total session delay of a

certain PS service, and only full sessions are of interest which started after the initial snapshot

and finished before the end of the STD window. Furthermore, the variation of the amount of data

to be transmitted is high, resulting in sub-exponentially decaying distributions of the session

duration, especially if additionally the traffic load is high. For this situation, quite large STD

windows are needed.

It can be easily calculated how large the STD windows need to be at minimum if the distribution

function of the time based parameter is known and also the limit up to which a full session must

be able to be evaluated. If, e. g., the voice service with a negative exponentially distributed

session duration with a mean value of 120 s is evaluated and the simulation user wants 90 % of

the calls to be included, the minimum STD window size must be 276 s. With an STD window
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(a) 5% interval

trel ti = 100 s ti = 400 s

tw 10% 20% 50% 100% 10% 20% 50% 100%

0.1 s 110 120 150 200 440 480 600 800

1 s 110 120 150 200 440 480 600 800

10 s 110 120 150 200 440 480 600 800

100 s 152 476 614 819 440 480 614 819

1000 s 130 142 177 261 440 480 1107 1476

dynamic 646 705 881 1174 646 705 881 1174

(b) 2% interval

trel ti = 100 s ti = 400 s

tw 10% 20% 50% 100% 10% 20% 50% 100%

0.1 s 110 120 150 200 440 480 600 800

1 s 110 120 150 200 440 480 600 800

10 s 115 126 157 209 440 480 600 800

100 s 682 744 930 1240 682 744 930 1240

1000 s 194 212 1355 2735 994 1084 1355 2735

dynamic 763 833 1041 8488 763 833 1041 8488

(c) 1% interval

trel ti = 100 s ti = 400 s

tw 10% 20% 50% 100% 10% 20% 50% 100%

0.1 s 110 120 150 200 440 480 600 800

1 s 130 144 180 240 440 480 600 800

10 s 117 162 947 1263 509 739 947 1263

100 s 718 1317 1706 8874 718 1317 1706 8874

1000 s 205 224 2721 15000 1086 1698 2721 15000
dynamic 904 1769 18356 25000 904 6024 18356 25000

Long-term mean values for cells 0, 1 and 2:

ρ0 = 0.09060821345, ρ1 = 0.09057746281, ρ2 = 0.09016453876,

bold figures represent a number above the given value,

tw: STD window size, trel: relative duration, ti: initial phase

Table 6.3: Convergence points in [s], different ti, different intervals �m
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trel ti = 200 s ti = 400 s

tw 10% 20% 50% 100% 10% 20% 50% 100%

0.1 s 220 240 300 400 440 480 600 800

1 s 220 240 300 400 440 480 600 800

10 s 253 739 947 1263 509 739 947 1263

100 s 718 1317 1706 8874 718 1317 1706 8874

1000 s 220 1698 2721 15000 1086 1698 2721 15000
dynamic 904 6024 18356 25000 904 6024 18356 25000

Table 6.4: Convergence points in [s], different ti, interval �m = 1 %

size of only 120 s, only 63 % of the possible calls will be included. This applies only for the

sessions starting immediately after the initial snapshot, while sessions starting later will be

included with a smaller probability. Another effect has to be paid attention to: Since unfinished

sessions at the end of the STD window are not included into the evaluation, the session duration

of the evaluated sessions is not representative because long sessions are disregarded. This has to

be taken into account if information about longer sessions is important, at least in an interpolated

manner.

Many other possible statistics can be evaluated with small STD windows. E. g., for the dwell

time in SHO regions (SHO duration), if not evaluated session based, the STD windows can be

in the order of seconds if the users are moving fast and the SHO regions are not too large.

Dropping can be evaluated with practically any STD window size. Any session being active in

the initial snapshot can be dropped in one of the very next moments if some of the dynamic

changes have a sufficient impact on the load situation of the corresponding user, e. g., if a move-

ment into a more critical region has been performed.

In section 6.3.4, examination of detailed RRM is discussed. One way to evaluate such details

is to trace several types of events and parameters. Information like the effort needed to resolve

a certain traffic load situation, the frequency of situations which require such effort, and many

others, can be obtained with simulations with small STD windows.

6.6 Speed-up by event grouping

In an STD simulation, the system recalculation principally has to be performed after every

event, according to figure 6.3 and the process input action of figure 5.1. This is very frequently,

but it is required to keep the system in a consistent state. Otherwise it would be possible for a

user to move into an area where no radio coverage exists or where the user would need to be

connected to another cell, etc. The system recalculation, however, consumes the major part of

the simulation run-time of an STD simulation.

Since, in contrast to static simulation in which the difference between two consecutive system

states is usually high because of the independence, in STD simulations only very small changes
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are aligned with a single event. The impact of such changes on the system parameters which in

turn have impact on the performance of other users or the network, can be small, but it depends

on the type of event. The impact on the cell load, which is incorporated into all RRC decisions,

is quite small if only a voice user changes the activity. The impact is higher if a user enters resp.

leaves the scenario, or if a user moves.

The amount of changes the event causes to the system, or the relevance of the event, depends

on further parameters like the service type in connection with the radio bearer and on the pixel

size which determines the travelled distance for every mobility event.

Especially for larger scenarios, a system recalculation takes a long time while a single event

causes only small impact to the system which is also limited to local areas. The distance up to

which the impact of a single event reaches cannot be easily predicted, but in large scenarios not

all cells will be influenced.

6.6.1 Grouping and weighting

An idea is now to collect some of the changes caused by the events and perform a system

recalculation not after every single event. A simple way to do so is, to have a fixed number T , the

so-called threshold, up to which the events are counted (grouped) before a system recalculation

is performed.

A more sophisticated approach is to assign a weight w(ei ) to an event with ei being an event

with the index i , and to accumulate these weights up to a threshold T , equation (6.7):

cc∑
i=cl+1

w(ei ) ≥ T (6.7)

Here, cl resp. cc mean the index of the event after which the last recalculation has taken place

resp. the index of the current (latest) event. After a recalculation, the index value cl is updated

to cc. In the simple approach only counting the events, it is w(ei ) = w = 1.

Starting with the distinction of two different classes of events, the heavy events representing

significant changes, and the light events. A light event is assigned a weight of w(eL) = 1,

and a heavy event has a weight of w(eH) = T . This makes a heavy event initiate a system

recalculation immediately, since every time a heavy event occurs, the threshold T is reached.

With this setup, it is possible to predict the total number of system recalculations NR that will be

performed in a simulation with a total number of N events and a threshold T . The probability

pH of a heavy event can be assumed as independent of the class of the previous events, resulting

in a geometrically distributed number of light events until the next heavy event occurs. If pH

is high, the gain by saving on system recalculation will be small. Equation (6.8) shows the

derivation for NR:
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NR = NH + NH · E [XR] (6.8)

= NH · (1 + E[XR])

E [XR] =
∞∑

x=1

⌊ x
T

⌋
P(XH = x)

P(XH = x) = pH · px
L

pL = 1 − pH

pH = NH

NH + NL
= NH

N
N = NH + NL

This finally leads to equation (6.9):

NR = NH ·
(

1 +
∞∑

x=1

⌊ x
T

⌋
· NH

N
·
(

1 − NH

N

)x
)

(6.9)

XR means the RV for the number of recalculations between 2 heavy events, XH is the RV for

the number of events from last heavy event to the next heavy event, and NH resp. NL are the

total number of heavy resp. light events. pH resp. pL are the probabilities of a heavy resp. a

light event.

6.6.2 Simulation results

The probability of a heavy event pH depends on the scenario and on the classification. For a

relatively simple scenario with only voice users, user arrivals, session terminations, and mobility

events should be considered as heavy events, while activity changes should be the light events.

This has been applied to the example simulation with the results shown in table 6.5.

Type of event Event count

20 m 5 m

Activity changes 4235 4683

Movements 87 352

New user arrivals 29 25

Call terminations 31 33

Light events NL 4235 4683

Heavy events NH 147 410

pH 3.35 % 8.05 %

Table 6.5: Occurring number of events during two example simulations
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Figure 6.16: Achievable gain vs. threshold T with event grouping

Pixel sizes of 5 m and 20 m have been used. It has been taken care of a comparable total travelled

distance of the users to demonstrate the influence of the higher number of mobility events for

smaller pixel sizes. Figure 6.16 shows the gain that is achieved by applying event grouping

for the two examples of table 6.5 for different thresholds T . As with non-grouped simulations

NR = N , the gain is defined to be as in equation (6.10):

gain = N
NR

(6.10)

For the plot, the formula of equation (6.9) has been applied on the basis of the pH derived from

the example simulations.

Larger T will not lead to further significant increase of the gain. This is because the probabil-

ity to have at least T − 1 successive light events before a heavy event occurs decreases with

increasing T . This effect is stronger for the smaller pixel size because of the larger number of

mobility events. It leads to a higher percentage of heavy events pH. For the figure, the formula

has been applied with the empirical pH from the simulation, and the deviation from the actually

acquired number of system recalculations in the corresponding simulations is below 0.3 % for

threshold values up to T = 10.

Concluding, the formula can be used to estimate the gain which a grouping with a certain

threshold T could achieve with a pH that has been obtained by short simulations of a typical
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configuration of the investigated scenarios. In case of an expected gain, the application of event

grouping can save significant amounts of time. Longer simulations also with different scenarios

have shown the accuracy of the results do not suffer from the application of event grouping up

to a threshold of T = 10.

It is relevant here to consider the accuracy from the perspective of the network behaviour. In

the evaluation of QoS parameters, the decisions of the RRM are most important, leading to

blocking, dropping, soft-handover, etc. On these decisions, however, the delayed inclusion of

the light events can only have significant influence in situations of very high load where very

small load changes can lead to crossing of load limits.

6.6.2.1 Outlook

Even more sophisticated would be to have a finer classification of the events. The weight of the

activity changes of PS calls would depend on the radio bearer and its estimated load contribu-

tion, and the PS activity changes would further be classified rather like user arrivals and call

terminations because new resources are occupied resp. occupied resources are freed in contrast

to CS sessions. Bearer dependence should also be taken into account for CS sessions, if appli-

cable. It is also important to classify the mobility events according to the pixel size. Smaller

pixels lead to a larger number of mobility events, but each of these have smaller impact due to

the smaller distance travelled for a single pixel. The velocity of a user could also be considered

since the requirements concerning the signal quality are higher for users travelling with higher

speed, resulting in a higher load contribution for such users. This applies also for a distinction

between the service types which have, in general, different requirements concerning the signal

quality, independent of the speed. Since the system relevance of the events would be considered

more precisely, these improvements would eliminate some of the uncertainty discussed in the

previous paragraph.

6.7 Conclusions

It has been shown how the STD simulation concept can be applied to the domain of network

planning for 3rd generation mobile networks such as UMTS. Possible targets for evaluation

have been identified, and it has been explained why it is reasonable to use the STD simulation

and what has to be taken into account.

In the investigation of the performance of the STD simulation concept, it has been shown that

not only for simple models as in section 5.3 a significant speep-up can be achieved with small

STD windows, but also for simulations of realistic UMTS scenarios.

It has been identified that for some evaluation targets the STD simulation makes sense even for

very small STD windows with accordingly high gain.



Chapter 7

Conclusions

I
n this work, the basic idea of simulation speed-up is highlighted. The term statistical accu-
racy is introduced to allow a comparison of reference simulation techniques with speed-up

approaches. One important factor for statistical accuracy is the state space coverage and its

sources. Several possibilities to increase the statistical accuracy by changing parameters influ-

encing the coverage are identified. The evaluation method LRE is described as the means for

evaluation and simulation control for the simulation methods addressed in this work.

Different simulation speed-up approaches are examined. These are RESTART as a method to

speed-up simulations of rare events, general parallelisation, and the new short-term dynamic

simulation concept. Combinations of these approaches are investigated to different extents.

The basic principle of the rare event simulation technique RESTART is introduced. The im-

portance function is considered with respect to its usage in the RESTART simulation toolkit

MuSICS. It is shown how multivariate importance functions can be applied together with the

LRE as the evaluation and simulation control mechanism, and further, how the functionality of

the importance function can be separated from the evaluation of the target random variable.

It is discussed how to handle transition states in single-step mode. Usually, the linear selection

should be applied, and a state limitation can be applied if incorrect configurations cannot be

eliminated completely. Predictions of the needed number of transition states are based on as-

sumptions which in general can be not justifiable. It is recommended to perform pre-simulations

if such information is needed for optimisation purposes. Pre-simulations with single-step com-

bined with subsequent global-step simulation saves time and memory and this is therefore rec-

ommended as a combined strategy.

One of the shortcomings of the RESTART mechanism is the sometimes limited placement pos-

sibility of the thresholds. The ability of refining the thresholds allows placing them closer to the

optimum in cases with regions of steep decline in the complementary cumulative distribution

function, especially at the origin of the evaluated value space. Configured carefully it provides

remarkable speed-up together with adequate accuracy.

One of the main contributions of this work is the in-depth investigation of the new short-term

dynamic (STD) simulation concept. After describing the short-term dynamic simulation con-
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cept in detail, an analytical proof on the basis of a simple queueing model shows that the concept

is able to speed-up simulations considerably. This is achieved by a reduction of the local cor-

relation without changing the behaviour of the system model. The best speed-up is, however,

achieved with small STD windows, while large STD windows reflect a behaviour with a ten-

dency towards dynamic simulations.

For the application of the short-term dynamic simulation concept to the network planning in

UMTS, the concept of a simulation toolkit is described. A method to reduce the number of

system recalculations has been found to reduce the simulation run-time in many cases without

reducing the quality of the results.

The performance of the concept is examined on the basis of UMTS models, which are more

complex than the simple model used for the analytical investigation. The results of the analytical

evaluation and the simple queueing network are confirmed. The evaluation of the simulation

methods and scenarios further confirm a gain as identified in the analytical investigation also

for these complex models.

It is shown that certain combinations of the different speed-up methods addressed in this work

have a remarkable speed-up potential. With a fast network interconnection technology, the com-

bination of RESTART and parallelisation provides a performance gain also on networks of

workstations. Because of the communication overhead, however, on a network of workstations,

the combination requires fast hardware solutions. On SMP systems with more than two pro-

cessors per node, better performance results are achieved. Resulting from the relatively small

optimum splitting level of the RESTART method, the scalability of this combination is limited.

Combining the STD simulation concept with parallelisation is principally intuitive. The merg-

ing of the results of the STD windows, however, has to be taken into account. For large STD

windows, the scalability is limited, but the effort for communicating the results is low in contrast

to cases with small STD windows. For those, the scalability is better.

A critical issue when combining the STD simulation concept with RESTART is the lack of

information about past events. This history information is incorporated in the transition states

of RESTART, but the initial snapshots of the STD windows are generated without such data.

On the other hand, the STD simulation can create snapshots as needed according to statistical

properties, while in RESTART such system states have to be obtained during the simulation.

This enables the STD simulation to force a simulation in a defined target importance region.

Without a history of the initial snapshots, however, many of them will not contribute to the

target evaluation. Defining a hysteresis region can help to compensate this effect.

This work has shown that the STD simulation concept is well suited to increase the statistical

accuracy. The method can be applied if representative independent snapshots can be generated

with the same statistical properties as the STD window. This requirement is proven to be fulfilled

for simple models as it can be assumed for mobile network models. Examples from the area of

UMTS network planning have been presented where the STD method allowed the evaluation of

dynamic performance measures profiting from the speed-up of this method.
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Mathematical Derivations

Extra loop transition at state 0 in DTMC

In section 5.3.1.1, it is explained why a DTMC model has been chosen which has an extra

loop transition at state 0. The transition probability has been named ps0. Now, it is shown the

derivation of equation (5.1). For clearness, figure 5.5 has been repeated here as figure A.1.

210

ps

1 − ps1 − ps0

ps

1 − psps0

ps

Figure A.1: DTMC of M/M/1 model with extra loop transition at state 0

Equations (A.1) to (A.4) are according to equations (5.6) to (5.8) where equation (5.1) has

already been incorporated.

P(0) = P(0) · ps0 + P(1) · ps (A.1)

P(1) = P(0) · (1 − ps0) + P(2) · ps (A.2)

P(x) = P(x − 1) · (1 − ps) + P(x + 1) · ps for x = 2 . . . ∞ (A.3)∑
x

P(x) = 1 (A.4)

Equations (A.1) and (A.2) lead to
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P(0) = P(1) · ps

1 − ps0
(A.5)

P(1) = P(2) · ps

1 − ps
(A.6)

By induction, according to equation (5.9), equations (A.5) and (A.6) lead to

P(x) = P(x − 1) ·
{

1−ps0

ps
for x = 1

1−ps

ps
for x ≥ 2

(A.7)

This leads to

P(x) =
(

1 − ps

ps

)x−1

· 1 − ps0

ps
· P(0) for x ≥ 1 (A.8)

Together with equation (A.4), P(0) can be calculated as follows

P(0) +
∞∑

x=1

(
1 − ps

ps

)x−1

· 1 − ps0

ps
· P(0) = 1

⇒ P(0) ·
(

1 + 1 − ps0

ps
·

∞∑
x=1

(
1 − ps

ps

)x
)

= 1

⇒ P(0) ·
(

1 + 1 − ps0

ps
· 1

1 − 1−ps

ps

)
= 1

⇒ P(0) · 2ps − ps0

2ps − 1
= 1

⇒ P(0) = 2ps − 1

2ps − ps0
(A.9)

Together with equation (A.8) and according to equation (5.10), this leads to

P(x) = 2ps − 1

2ps − ps0
· 1 − ps0

ps
·
(

1 − ps

ps

)x−1

(A.10)

In the comparison model, the M/M/1 model considered as CTMC as in figure 5.6, the state

probabilities are as follows

Pref(0) = 1 − η (A.11)

Pref(x) = (1 − η) · ηx
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According to equation (5.5), ps = 1
1+η . With this, equation (A.9) becomes

P(0) =
2

1+η − 1

2
1+η − ps0

= 1 − η

2 − ps0 · (1 + η)
. (A.12)

To fulfil Pref(0) = P(0), it has to be

2 − ps0 · (1 + η)
!= 1 (A.13)

⇒ ps0 = 1

1 + η
= ps �
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LRE example behaviour

The phenomenon leading to the fast convergence of the dynamic simulation in table can be

explained as follows: The point of simulation time at which the detection of convergence has

taken place was at 952 s, exactly the time when in the figure the corresponding plot turns to

raise again from its absolute minimum.

Since the mean value development is considered, the divergent behaviour of the curve can be

explained with a value sequence with values far below the static mean value of 0.0906082

especially for the majority of the simulation time up to point of 952 s.

In fact, the evaluation process has received a sample of a certain size with a mean value far

below the steady state mean value of the model. This mean value is, however, not known a-

priori to the evaluation process. Thus, if the aspects building the error calculation lead to an

error below the given maximum, the evaluation process cannot be accused of misinterpretation

of the given simulation sample.

The fact that the convergence has been reached a short time after the simulated mean value has

reached its absolute minimum, can be explained with the large sample conditions, see section

2.4 and especially equation (2.4). The first large sample condition in equation (2.2) is fulfilled

after 1000 observations have been made, which happens in the example after a little more than

2 s simulation time.

The second large sample condition in equation (2.3) is about the cumulative frequencies of the

intervals and, thus, related to the aimed distribution function. Into these intervals the value space

corresponding to the distribution function is divided. This is done in evaluation processes as the

LRE either automatically or with given interval boundaries. The left part of the equation is about

the ri and related to the distribution function F(x) while the right part about vi is related to the

complementary cumulative distribution function G(x), and i is the index of the interval. Both

of them have to be larger than 100 for each i which is critical only for the boundary intervals.

This condition can be easily fulfilled if the probabilities of the boundary intervals are not too

small which can be decided by setting the limit probability for the intervals to, e. g., 10%.
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The last large sample condition in equation (2.4) is about the correlation. First, according to

the left two parts of the equation, the transition frequencies have to be larger than 10 for both

directions at every interval boundary. This assures that there is at least a minimum negative

contribution to the local correlation at the interval boundary to prevent a local correlation of

+1.0. Further, according to the right part of the equation, the difference between the cumulative

frequency of the one side and the transition frequency to that side must be larger than 10. This is

giving a lower bound contribution to the positive local correlation to prevent a local correlation

of −1.0 at that boundary. This would mean that a transition to state Si from a state left resp.

right of Si would be followed every time and immediately by a transition back to a state left

resp. right of Si .

In this special case, a jump from low values to higher values has been made which made the

mean value increase again. After this jump, the missing number of transitions from the lowest

values to the higher ones has been collected fulfilling equation (2.4) as the last criteria.
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