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Preface

The first question that I ask an environmental science student who comes seeking my

advice on a data analysis problem is Have you looked at your data? Very often, after

some beating around the bush, the student answers, Not really. The student goes on to
explain that he or she loaded the data into an analysis package provided by an advisor,

or downloaded off the web, and it didn’t work. The student tells me, Something is
wrong with my data! I then ask my second question: Have you ever used the analysis
package with a dataset that did work? After some further beating around the bush, the

student answers, Not really. At this point, I offer two pieces of advice. The first is to

spend time getting familiar with the dataset. Taking into account what the student has

been able to tell me, I outline a series of plots, histograms, and tables that will help him

or her prise out its general character and some of its nuances. Second, I urge the

student to create several simulated datasets with properties similar to those expected

of the data and run the data analysis package on them. The student needs to make sure

that he or she is operating it correctly and that it returns the right answers. We then

make an appointment to review the student’s progress in a week or two. Very often

the student comes back reporting, The problem wasn’t at all what I thought it was!
Then the real works begins, either to solve the problem or if the student has already

solved it—which often he or she has—to get on with the data analysis.

Environmental Data Analysis with MatLab is organized around two principles.

The first is that real proficiency in data analysis requires analyzing realistic data on

a computer, and not merely working through ultra-simplified examples with pencil

and paper. The second is that the skills needed to perform data analysis are best

learned in a series of steps that alternate between theory and application and that start

simple but rapidly expand as one’s toolkit of skills grows. The real world puts many

impediments in the way of analyzing data—errors of all sorts, missing information,

inconvenient units of measurements, inscrutable data formats, and more. Conse-

quently, real proficiency is as much about confidence and experience as it is about

formal knowledge of techniques. This book teaches a core set of techniques that

are widely applicable across all of Environmental Science, and it reinforces them

by leading the student through a series of case studies on real-world data that has both

the richness and the blemishes inherent in real-world things.

Two fundamental themes are used to tie together many different data analysis

techniques:

The first is that measurement error is a fundamental aspect of observation and

experiment. Error has a profound influence on the way that knowledge is distilled



from data. We use probability theory to develop the concept of covariance, the
key tool for quantifying error. We then show how covariance propagates through a

chain of calculations leading to a result that possesses uncertainty. Dealing with that

uncertainty is as important a part of data analysis as arriving at the result, itself.

From Chapter 3, where it is introduced, through the book’s end, we are always return-

ing to the idea of the propagation of error.

The second is that many problems are special cases of a linear model linking the

observations to the knowledge that we aspire to derive from them. Measurements of

the world around us create data, numbers that describe the results of observations and

experiments. But measurements, in and of themselves, are of little utility. The purpose

of data analysis is to distill them down to a few significant and insightful model pa-
rameters. We develop the idea of the linear model in Chapter 4 and in subsequent

chapters show that very many, seemingly different data analysis techniques are special

cases of it. These include curve fitting, Fourier analysis, filtering, factor analysis,

empirical function analysis and interpolation. While their uses are varied, they all

share a common structure, which when recognized makes understanding them easier.

Most important, covariance propagates through them in nearly identical ways.

As the title of this book implies, it relies very heavily on MatLab to connect the

theory of data analysis to its practice in the real world.MatLab, a commercial product

of The MathWorks, Inc., is a popular scientific computing environment that fully

supports data analysis, data visualization, and data file manipulation. It includes a

scripting language through which complicated data analysis procedures can be devel-

oped, tested, performed, and archived. Environmental Data Analysis with MatLab
makes use of scripts in three ways. First, the text includes many short scripts and ex-

cerpts from scripts that illustrate how particular data analysis procedures are actually

performed. Second, a set of complete scripts and accompanying datasets is provided as

a companion to the book. They implement all of the book’s figures and case studies.

Third, each chapter includes recommended homework problems that further develop

the case studies. They require existing scripts to be modified and new scripts to be

written.

Environmental Data Analysis with MatLab is a relatively short book that is appro-

priate for a one-semester course at the upper-class undergraduate and graduate level. It

requires a working knowledge of calculus and linear algebra, as might be taught in a

two-semester undergraduate calculus course. It does not require any knowledge of

differential equations or more advanced forms of applied mathematics. Students with

some familiarity with the practice of environmental science and with its underlying

issues will be better able to put examples in context, but detailed knowledge of the

science is not required. The book is self-contained; it can be read straight through,

and profitably, even by someone with no access to MatLab. But it is meant to be

used in a setting where students are actively using MatLab both as an aid to studying

(i.e., by reproducing the case studies described in the book) and as a tool for completing

the recommended homework problems.

Environmental Data Analysis with MatLab uses six exemplary environmental sci-

ence datasets:

viii Preface



Air temperature,

Chemical composition of sea floor samples,

Ground level ozone concentration,

Sea surface temperature,

Stream flow, and

Water quality.

Most datasets are used in several different contexts and in several different places in

the text. They are used both as a test bed for particular data analysis techniques and to

illustrate how data analysis can lead to important insights about the environment.

Chapter 1, Data Analysis with MatLab, is a brief introduction to MatLab as a data

analysis environment and scripting language. It is meant to teach barely enough to en-
able the reader to understand theMatLab scripts in the book and to begin to start using
andmodifying them.WhileMatLab is a fully featured programming language,Environ-
mental Data Analysis with MatLab is not a book on computer programming. It teaches

scripting mainly by example and avoids long discussions on programming theory.

Chapter 2, A First Look at Data, leads students through the steps that, in our view,
should be taken when first confronted with a new dataset. Time plots, scatter plots,

and histograms, as well as simple calculations, are used to examine the data with

the aim both of understanding its general character and spotting problems. We take

the position that all datasets have problems—errors, data gaps, inconvenient units

of measurement, and so forth. Such problems should not scare a person away from

data analysis! The chapter champions the use of the reality check—checking that

observations of a particular parameter really have the properties that we know it must

possess. Several case study datasets are introduced, including a hydrograph from the

Neuse River (North Carolina, USA), air temperature from Black Rock Forest

(New York), and chemical composition from the floor of the Atlantic Ocean.

Chapter 3, Probability and What It Has to Do with Data Analysis, is a review of

probability theory. It develops the techniques that are needed to understand, quantify,

and propagate measurement error. Two key themes introduced in this chapter and

further developed throughout the book are that error is an unavoidable part of the

measurement process and that error in measurement propagates through the analysis

to affect the conclusions. Bayesian inference is introduced in this chapter as a way of

assessing how new measurements improve our state of knowledge about the world.

Chapter 4, The Power of LinearModels, develops the theme that making inferences

from data occurs when the data are distilled down to a few parameters in a quantitative

model of a physical process. An integral part of the process of analyzing data is

developing an appropriate quantitative model. Such a model links to the questions

that one aspires to answer to the parameters upon which the model depends, and

ultimately, to the data. We show that many quantitative models are linear in form

and, thus, are very easy to formulate and manipulate using the techniques of linear

algebra. The method of least squares, which provides a means of estimating model

parameters from data, and a rule for propagating error are introduced in this chapter.

Chapter 5, Quantifying Preconceptions, argues that we usually know things about

the systems that we are studying that can be used to supplement actual observations.
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Temperatures often lie in specific ranges governed by freezing and boiling points.

Chemical gradients often vary smoothly in space, owing to the process of diffusion.

Energy and momentum obey conservation laws. The methodology through which this

prior information can be incorporated into the models is developed in this chapter.

Called generalized least squares, it is applied to several substantial examples in which

prior information is used to fill in data gaps in datasets.

Chapter 6, Detecting Periodicities, is about spectral analysis, the procedures used
to represent data as a superposition of sinusoidally varying components and to detect

periodicities. The key concept is the Fourier series, a type of linear model in which the

data are represented by a mixture of sinusoidally varying components. The chapter

works to make the student completely comfortable with the Discrete Fourier Trans-

form (DTF), the key algorithm used in studying periodicities. Theoretical analysis and

a practical discussion of MatLab’s DFT function are closely interwoven.

Chapter 7, The Past Influences the Present, focuses on using past behavior to

predict the future. The key concept is the filter, a type of linear model that connects

the past and present states of a system. Filters can be used both to quantify the physical

processes that connect two related sets of measurements and to predict their future

behavior. We develop the prediction error filter and apply it to hydrographic data,

in order to explore the degree to which stream flow can be predicted. We show that

the filter has many uses in addition to prediction; for instance, it can be used to explore

the underlying processes that connect two related types of data.

Chapter 8, Patterns Suggested by Data, explores linear models that characterize

data as a mixture of a few significant patterns, whose properties are determined by

the data, themselves (as contrasted to being imposed by the analyst). The advantage

to this approach is that the patterns are a distillation of the data that bring out features

that reflect the physical processes of the system. The methodology, which goes by the

names, factor analysis and empirical orthogonal function (EOF) analysis, is applied to
a wide range of data types, including chemical analyses and images of sea surface

temperature (SST). In the SST case, the strongest pattern is the El Niño climate

oscillation, which brings immediate attention to an important instability in the

ocean–atmosphere system.

Chapter 9, Detecting Correlations Among Data, develops techniques for quantify-
ing correlations within datasets, and especially within and among time series. Several

different manifestations of correlation are explored and linked together: from proba-

bility theory, covariance; from time series analysis, cross-correlation; and from

spectral analysis, coherence. The effect of smoothing and band-pass filtering on

the statistical properties of the data and its spectra is also discussed.

Chapter 10, Filling in Missing Data, discusses the interpolation of one and two

dimensional data. Interpolation is shown to be yet another special case of the linear

model. The relationship between interpolation and the gap-filling techniques devel-

oped in Chapter 5 are shown to be related to different approaches for implementing

prior information about the properties of the data. Linear and spline interpolation, as

well as kriging, are developed. Two-dimensional interpolation and Delaunay triangu-

lation, a critical technique for organizing two-dimensional data, are explained. Two
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dimensional Fourier transforms, which are also important in many two-dimensional

data analysis scenarios, are also discussed.

Chapter 11, Are My Results Significant?, returns to the issue of measurement error,

now in terms of hypothesis testing. It concentrates on four important and very widely

applicable statistical tests—those associatedwith the statistics,Z,w2, t, andF. Familiarity

with them provides a very broad base for developing the practice of always assessing the
significance of any inference made during a data analysis project. We also show how

empirical distributions created by bootstrapping can be used to test the significance

of results in more complicated cases.

Chapter 12, Notes, is a collection of technical notes that supplement the discussion

in the main text.

William Menke
December, 2010
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Advice on scripting for beginners

For many of you, this book will be your first exposure to scripting, the process of

instructingMatLab what to do to your data. Although you will be learning something

new, many other tasks of daily life will have already taught you relevant skills. Scripts

are not so different than travel directions, cooking recipes, carpentry and building

plans, and tailoring instructions. Each is in pursuit of a specific goal, a final product

that has value to you. Each has a clear starting place and raw materials. And each

requires a specific, and often lengthy, set of steps that need to be seen to completion

in order to reach the goal. Put the skills that you have learned in these other arenas of

life to use!

As a beginner, you should approach scripting as you would approach giving travel

directions to a neighbor. Always focus on the goal. Where does the neighbor want to

go?What analysis products do you wantMatLab to produce for you?With a clear goal

in mind, you will avoid the common pitfall of taking a drive that, while scenic, goes

nowhere in particular. WhileMatLab can make pretty plots and interesting tables, you

should not waste your valuable time creating any that does not support your goal.

When starting a scripting project, think about the information that you have.

How did you get from point A to point B, the last time that you made the trip? Which

turns should you point out to your neighbor as particularly tricky? Which aspects of

the script are likely to be the hardest to get right? It is these parts on which you want to

focus your efforts.

Consider the value of good landmarks. They let you knowwhen you are on the right

road (you will pass a firehouse about halfway) and when you have made the wrong

turn (if you go over a bridge). And remember that the confidence-building value of

landmarks is just as important as is error detection. You do not want your neighbor

to turn back, just because the road seems longer than expected. Your MatLab scripts

should contain landmarks, too. Any sort of output, such as a plot, that enables you to

judge whether or not a section of a script is working is critical. You do not want to

spend time debugging a section of your script that already works. Make sure that every

script that you write has landmarks.

Scripts relieve you from the tedium of repetitive data analysis tasks. A finished

script is something in which you can take pride, for it is a tool that has the potential

for helping you in your work for years to come.

Joshua Menke
February, 2011
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1.1 Why MatLab?

Data analysis requires computer-based computation. While a person can learn much

of the theory of data analysis by working through short pencil-and-paper examples, he

or she cannot become proficient in the practice of data analysis that way—for reasons

both good and bad. Real datasets, which are almost always too large to handle man-

ually, are inherently richer and more interesting than stripped-down examples. They

have more to offer, but an expanded skill set is required to successfully tackle them. In

particular, a new kind of judgment is required for selecting the analysis technique that

is right for the problem at hand. These are good reasons. Unfortunately, the practice of

data analysis is littered with bad reasons, too, most of which are related to the very

steep learning curve associated with using computers. Many practitioners of data anal-

ysis find that they spend rather too many frustrating hours solving computer-related

problems that have very little to do with data analysis, per se. That’s bad, especially in
a classroom setting where time is limited and where frustration gets in the way of

learning.

One approach to dealing with this problem is to conduct all the data analysis within

a single software environment—to limit the damage. Frustrating software problems

will still arise, but fewer than if data were being shuffled between several different

Environmental Data Analysis with MatLab. DOI: 10.1016/B978-0-12-391886-4.00001-5
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environments. Furthermore, in a group setting such as a classroom, the memory and

experience of the group can help individuals solve commonly encountered problems.

The trick is to select a single software environment that is capable of supporting real
data analysis.

The key decision is whether to go with a spreadsheet or a scripting language-type

software environment. Both are viable environments for computer-based data analy-

sis. Stable implementations of both are available for most types of computers from

commercial software developers at relatively modest prices (and especially for those

eligible for student discounts). Both provide support for the data analysis itself, as well

as associated tasks such as loading and writing data to and from files and plotting them

on graphs. Spreadsheets and scripting languages are radically different in approach,

and each has advantages and disadvantages.

In a spreadsheet-type environment, typified byMicrosoft Excel, data are presented
as one or more tables. Data are manipulated by selecting the rows and columns of a

table and operating on them with functions selected from a menu and with formulas

entered into the cells of the table itself. The immediacy of a spreadsheet is both its

greatest advantage and its weakness. You see the data and all the intermediate results

as you manipulate the table. You are, in a sense, touching the data, which gives you a

great sense of what the data are like. More of a problem, however, is keeping track of

what you did in a spreadsheet-type environment, as is transferring useful procedures

from one spreadsheet-based dataset to another.

In a scripting language, typified by The MathWorks MatLab, data are presented

as one or more named variables (in the same sense that the “c” and “d” in the formula

c¼ pd are named variables). Data are manipulated by typing formulas that create new

variables from old ones and by running scripts, that is, sequences of formulas stored in

a file. Much of data analysis is simply the application of well-known formulas to novel

data, so the great advantage of this approach is that the formulas that you type usually

have a strong similarity to those printed in a textbook. Furthermore, scripts provide a

way of both documenting the sequence of formulas used to analyze a particular dataset

and transferring the overall data analysis procedure from one dataset to another. The

main disadvantage of a scripting language environment is that it hides the data within

the variable—not absolutely, but a conscious effort is nonetheless needed to display it

as a table or as a graph. Things can go badly wrong in a script-based data analysis

scheme without the practitioner being aware of it. Another disadvantage is that the

parallel between the syntax of the scripting language and the syntax of standard math-

ematical notation is nowhere near perfect. One needs to learn to translate one into the

other.

While both spreadsheets and scripting languages have pros and cons, our opinion is
that, on balance, a scripting language wins out, at least for the data analysis scenarios

encountered in Environmental Science. In our experience, these scenarios often re-

quire a long sequence of data manipulation steps before a final result is achieved.

Here, the self-documenting aspect of the script is paramount. It allows the practitioner

to review the data processing procedure both as it is being developed and years after it

has been completed. It provides a way of communicating what you did, a process that
is at the heart of science.
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We have chosen MatLab, a commercial software product of The MathWorks, Inc.
as our preferred software environment for several reasons, some having to do with its

designs and others more practical. The most persuasive design reason is that its syntax

fully supports both linear algebra and complex arithmetic, both of which are important

in data analysis. Practical considerations include the following: it is a long-lived and

stable product, available since the mid 1980s; implementations are available for most

commonly used types of computers; its price, especially for students, is fairly modest;

and it is widely used, at least in university settings.

1.2 Getting started with MatLab

We cannot walk you through the installation of MatLab, for procedures vary from

computer to computer and quickly become outdated, anyway. Furthermore, we will

avoid discussion of the appearance of MatLab on your computer screen, because

its Graphical User Interface has evolved significantly over the years and can be

expected to continue to do so. We will assume that you have successfully installed

MatLab and that you can identify the Command Window, the place where MatLab
formula and commands are typed.

You might try typing

date

in this window. If MatLab responds by displaying the current date, you’re on track!

All the MatLab commands that we use are in MatLab scripts that are provided as

a companion to this book. This one is named eda01_01 and is in a MatLab script

file (m-file, for short) named eda01_01.m (conventionally, m-files have file names

that end with “.m”). In this case, the script is pretty boring, as it contains just this

one command, date, together with a couple of comment lines (which start with the

character “%”):

% eda01_01

% displays the current date

date (MatLab eda01_01)

After you installMatLab, you should copy the eda folder, provided with this book, to

your computer’s file system. Put it in some convenient and easy-to-remember place

that you are not going to accidentally delete!

1.3 Getting organized

Files proliferate at an astonishing rate, even in the most trivial data management pro-

ject. You start with a file of data, but then write m-scripts, each of which has its own

file. You will usually output final results of the data analysis to a file, and you may

well output intermediate results to files, too. You will probably have files containing

graphs and files containing notes as well. Furthermore, you might decide to analyze
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your data in several different ways, so you may have several versions of some of

these files.

A practitioner of data analysis may find that a little organization up front saves

quite a bit of confusion down the line.

As data analysis scenarios vary widely, there can be no set rule regarding organi-

zation of the files associated with them. The goal should simply be to create a system

of folders (directories), subfolders (sub-directories), and file names that are suffi-

ciently systematic so that files can be located easily and they are not confused with

one another. Predictability in both the pattern of filenames and in the arrangement

of folders and subfolders is an extremely important part of the design.

By way of example, the files associated with this book are in a three-tiered folder/

subfolder structure modeled on the chapter and section format of the book itself

(Figure 1.1). Most of the files, such as the m-files, are in the chapter folders. However,

some chapters have longish case studies that use a large number of files, and in those

instances, section folders are used. Folder and file names are systematic. The chapter

folder names are always of the form chNN, where NN is the chapter number. The section

folder names are always of the form secNN_MM, where NN is the chapter number and MM

is the section number. We have chosen to use leading zeros in the naming scheme

(for example, ch01) so that filenames appear in the correct order when they are sorted

alphabetically (as when listing the contents of a folder).

1.4 Navigating folders

The MatLab command window supports a number of commands that enable you to

navigate from folder to folder, list the contents of folders, and so on. For example,

when you type

pwd

(for “print working directory”) in the Command Window, MatLab responds by dis-

playing the name of the current folder. Initially, this is almost invariably the wrong

Main folder Chapter folders Chapter files and
section folders

Section files

eda ch01

ch02 file

file

ch03
. . .

. . . sec02_01 file

file. . .
file. . .

Figure 1.1 Folder (directory) structure used for the files accompanying this book.
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folder, so you will need to cd (for “change directory”) to the folder where you want to

be—the ch01 folder in this case. The pathname will, of course, depend on where you

copied the eda folder, but will end in eda/ch01. On our computer, typing

cd c:/menke/docs/eda/ch01

does the trick. If you have spaces in your pathname, just surround it with single quotes:

cd ‘c:/menke/my docs/eda/ch01’

You can check if you are in the right folder by typing pwd again. Once in the ch01

folder, typing

eda01_01

will run the eda01_01 m-script, which displays the current date. You can move to the

folder above the current one by typing

cd ..

and to one below it by giving just the folder name. For example, if you are in the eda

folder you can move to the ch01 folder by typing

cd ch01

Finally, the command dir (for “directory”), lists the files and subfolders in the current

directory.

dir (MatLab eda01_02)

1.5 Simple arithmetic and algebra

The MatLab commands for simple arithmetic and algebra closely parallel standard

mathematical notation. For instance, the command sequence

a ¼ 3.5;

b ¼ 4.1;

c ¼ aþb;

c (MatLab eda01_03)

evaluates the formula c¼ aþ b for the case a¼ 3.5 and b¼ 4.1 to obtain c¼ 7.6. Only

the semicolons require explanation. By default, MatLab displays the value of every

formula typed into the CommandWindow. A semicolon at the end of the formula sup-

presses the display. Hence, the first three lines, which end with semicolons, are eval-

uated but not displayed. Only the final line, which lacks the semi-colon, causes

MatLab to print the final result, c.

A perceptive reader might have noticed that the m-script could have been made

shorter by one line, simply by omitting the semicolon in the formula, c¼aþb.That is,

a ¼ 3.5;

b ¼ 4.1;

c ¼ aþb
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However, we recommend against such cleverness. The reason is that many interme-

diate results will need to be temporarily displayed and then un-displayed in the process

of developing and debugging a long m-script. When this is accomplished by adding

and then deleting the semicolon at the end of a functioning—and important—formula

in the script, the formula can be inadvertently damaged by deleting one or more extra

characters. Editing a line of the code that has no function other than displaying a value

is safer.
Note thatMatLab variables are static, meaning that they persist inMatLab’s Work-

space until you explicitly delete them or exit the program. Variables created by one

script can be used by subsequent scripts. At any time, the value of a variable can be

examined, either by displaying it in the Command Window (as we have done above)

or by using the spreadsheet-like display tools available throughMatLab’sWorkspace

Window. The persistence ofMatLab variables can sometimes lead to scripting errors,

as described in Note 1.1.

The four commands discussed above can be run as a unit by typing eda01_03. Now

open the m-file eda01_03 inMatLab, using the File/Open menu.MatLabwill bring up
a text-editor type window. First save it as a new file, say myeda01_03, edit it in some

simple way, say by changing the 3.5 to 4.5, save the edited file, and run it by typing

myeda01_03 in the CommandWindow. The value of c that is displayed will have chan-

ged appropriately.

A somewhat more complicated MatLab formula is

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
with a ¼ 3 and b ¼ 4

a ¼ 3;

b ¼ 4;

c ¼ sqrt(a^2 þ b^2);

c (MatLab eda01_04)

Note that the MatLab syntax for a2 is a^2 and that the square root is computed using

the function, sqrt(). This is an example ofMatLab’s syntax differing from standard

mathematical notation.

A final example is

c ¼ sin
npðx� x0Þ

L
with n ¼ 2, x ¼ 3, x0 ¼ 1, L ¼ 5

n ¼ 2; x ¼ 3; x0 ¼ 1; L ¼ 5;

c ¼ sin(n*pi*(x�x0)/L);

c (MatLab eda01_05)

Note that several formulas separated by semicolons can be typed on the same line.

Variables, such as x0 and pi above, can have names consisting of more than one char-

acter, and can contain numerals as well as letters (although they must start with a

letter). MatLab has a variety of predefined mathematical constants, including pi,

which is the usual mathematical constant, p.
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1.6 Vectors and matrices

Vectors and matrices are fundamental to data analysis both because they provide a

convenient way to organize data and because many important operations on data

can be very succinctly expressed using linear algebra (that is, the algebra of vectors

and matrices).

Vectors and matrices are very easy to define inMatLab. For instance, the quantities

r ¼ ½ 2 4 6 � and c ¼
1

3

5

2
4

3
5 ¼ ½ 1 3 5 �T and M ¼

1 2 3

4 5 6

7 8 9

2
4

3
5

are defined with the following commands:

r ¼ [2, 4, 6];

c ¼ [1, 2, 3]’;

M ¼[ [1, 4, 7]’, [2, 5, 8]’, [3, 6, 9]’]; (MatLab eda01_06)

Note that the column-vector, c, is created by first defining a row vector, [1, 3, 5], and

then converting it to a column vector by taking its transform, which in MatLab is in-

dicated by a single quote. Note, also, that the matrix, M, is being constructed from a

“row vector of column vectors”.

Although MatLab allows both column-vectors and row-vectors to be defined with

ease, our experience is that using both creates serious opportunities for error. A for-

mula that requires a column-vector will usually yield incorrect results if a row-vector

is substituted into it, and vice-versa. Consequently, we adhere to a protocol where all

vectors defined in this book are column vectors. Row vectors are created when

needed—and as close as possible to where they are used in the script—by transposing

the equivalent column vector. We also adhere to the convention that vectors have

lower-case names and matrices have upper-case names (or, at least, names that start

with an upper-case letter).

1.7 Multiplication of vectors of matrices

MatLab performs all multiplicative operations with ease. For example, suppose col-

umn vectors a and b, and matrices M and N are defined as

a ¼
1

3

5

2
4

3
5 and b ¼

2

4

6

2
4

3
5 and M ¼

1 0 2

0 1 0

2 0 1

2
4

3
5 and N ¼

1 0 �1

0 2 0

�1 0 3

2
4

3
5

Then,

s ¼ aTb ¼
1

3

5

2
4

3
5
T

2

4

6

2
4

3
5 ¼ ½ 1 3 5 �

2

4

6

2
4

3
5 ¼ 2� 1þ 3� 4þ 5� 6 ¼ 44
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T ¼ abT ¼
1

3

5

2
4

3
5 2

4

6

2
4

3
5
T

¼
2� 1 4� 1 6� 1

2� 3 4� 3 6� 3

2� 5 4� 5 6� 5

2
4

3
5 ¼

2 4 6

6 12 18

10 20 30

2
4

3
5

c ¼ Ma ¼
1 0 2

0 1 0

2 0 1

2
4

3
5 1

3

5

2
4

3
5 ¼

1� 1 þ 0� 3 þ 2� 5

0� 1 þ 1� 3 þ 0� 5

2� 1 þ 0� 3 þ 1� 5

2
4

3
5 ¼

11

3

7

2
4

3
5

P ¼ MN ¼
1 0 2

0 1 0

2 0 1

2
4

3
5 1 0 �1

0 2 0

�1 0 3

2
4

3
5 ¼

�1 0 5

0 2 0

1 0 1

2
4

3
5

corresponds to

s ¼ a0*b;
T ¼ a*b0;
c ¼ M*a;

P ¼ M*N; (MatLab eda01_07)

In MatLab, standard vector and matrix multiplication is performed just by using the

normal multiplications sign, * (the asterisk). There are cases, however, where one

needs to violate these rules and multiply the quantities element-wise (for example,

create a vector, d, with elements di ¼ aibi). MatLab provides a special element-wise

version of the multiplication sign, denoted.* (a period followed by an asterisk):

d ¼ a.*b; (MatLab eda01_07)

1.8 Element access

Individual elements of vectors and matrices can be accessed by specifying the relevant

row and column indices in parentheses; for example, a(2) is the second element of the

column vector a and M(2,3) is the second row, third column element of the matrix,M.

Ranges of rows and columns can be specified using the : operator; for example,

M(:,2) is the second column of matrix, M, M(2,:) is the second row of matrix, M,

and M(2:3,2:3) is the 2 � 2 submatrix in the lower right-hand corner of the 3 � 3

matrix, M (the expression, M(2:end,2:end), would work as well). These operations

are further illustrated below:

a ¼
1

2

3

2
4

3
5 and M ¼

1 2 3

4 5 6

7 8 9

2
4

3
5

s ¼ a2 ¼ 2 and t ¼ M23 ¼ 6 and b ¼
M12

M22

M32

2
4

3
5 ¼

2

5

8

2
4

3
5

c ¼ ½M21 M22 M23 �T ¼
4

5

6

2
4

3
5 and T ¼ M22 M23

M32 M33

� �
¼ 5 6

8 9

� �
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correspond to:

s ¼ a(2);

t ¼ M(2,3);

b ¼ M(:,2);

c ¼ M(2,:)’;

T ¼ M(2:3,2:3); (MatLab eda01_08)

The colon notion can be used in other contexts as well. For instance, [1:4] is the row

vector [1, 2, 3, 4]. The syntax, 1:4, which omits the square brackets, works fine in

MatLab. However, we usually use square brackets, as they draw attention to the pres-

ence of a vector. Finally, we note that two colons can be used in sequence to indicate

the spacing of elements in the resulting vector. For example, the expression [1:2:9] is

the row vector [1, 3, 5, 7, 9] and the expression [10:�1:1] is a row vector whose el-

ements are in the reverse order from [10:1].

1.9 To loop or not to loop

MatLab provides a looping mechanism, the for command, which can be useful when

the need arises to sequentially access the elements of vectors and matrices. Thus, for

example,

M ¼ [ [1, 4, 7]’, [2, 5, 8]’, [3, 6, 9]’ ];

for i ¼ [1:3]

a(i) ¼ M(i,i);

end (MatLab eda01_09)

executes the a(i) ¼ M(i,i)formula three times, each time with a different value of i

(in this case, i¼ 1, i¼ 2, and i¼ 3). The net effect is to copy the diagonal elements of

the matrixM to the vector, a, that is, ai¼Mii. Note that the end statement indicates the

position of the bottom of the loop. Subsequent commands are not part of the loop and

are executed only once.

Loops can be nested; that is, one loop can be inside another. Such an arrangement is

necessary for accessing all the elements of a matrix in sequence. For example,

M ¼ [ [1, 4, 7]’, [2, 5, 8]’, [3, 6, 9]’];

for i ¼ [1:3]

for j ¼ [1:3]

N(i,4�j) ¼ M(i,j);

end

end (MatLab eda01_10)

copies the elements of the matrix, M, to the matrix, N, but reverses the order of the

elements in each row; that is, Ni,j ¼Mi,4�j. Loops are especially useful in conjunction

with conditional commands. For example

a ¼ [ 1, 2, 1, 4, 3, 2, 6, 4, 9, 2, 1, 4 ]’;

for i ¼ [1:12]
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if ( a(i) >¼ 6 )

b(i) ¼ 6;

else

b(i) ¼ a(i);

end

end (MatLab eda01_11)

sets bi¼ ai if ai< 6 and sets bi¼ 6 otherwise (a process called clipping a vector, for it
lops off parts of the vector that are larger than 6).

A purist might point out thatMatLab syntax is so flexible that for loops are almost

never really necessary. In fact, all three examples, above, can be computed with one-

line formulas that omit for loops:

a ¼ diag(M);

N ¼ fliplr(M);

b ¼ a.*(a<6)þ6.*(a>¼6); (MatLab eda01_12)

The first two formulas are quite simple, but rely on theMatLab functions diag() and
fliplr()whose existence we have not heretofore mentioned. One of the problems of

a script-based environment is that learning the complete syntax of the scripting lan-

guage can be pretty daunting. Writing a long script, such as one containing a for

loop, will often be faster than searching through MatLab help files for a predefined

function that implements the desired functionality in a single line of the script. The

third formula points out a different problem: MatLab syntax is often pretty inscru-

table. In this case, the expression (a<6) creates a column-vector of ones and zeros,

depending on whether a given element of a is less-than or greater-than-or-equal-to 6.

Element-wise multiplication is then used to create a vector a.*(a<6) whose ele-

ments are either ai or 0. Similarly, 6.*(a>¼6) is a vector whose elements are either

0 or 6. Their sum is a vector whose elements are either ai or 6, depending on whether
ai is less-than or greater-than-or-equal-to 6. That’s pretty complicated!

Because MatLab’s syntax is so powerful, the same functionality can often be

achieved in several different ways. Thus, for example, the commands

b ¼ a;

b(find(a>6)) ¼ 6; (MatLab eda01_12)

will also clip the elements of the vector. The find() function returns a column-

vector of the indices of the vector, a, that match the condition, and then that list is

used to reset just those elements of b to 6, leaving the other elements unchanged.

When deciding between alternative ways of implementing a given functionality,

you should always choose the one which you find clearest. Scripts that are terse or

even computationally efficient are not necessarily a virtue, especially if they are dif-

ficult to debug. You should avoid creating formulas that are so inscrutable that you are

not sure whether they will function correctly. Of course, the degree of inscrutability of

any given formula will depend on your level of familiarity withMatLab. Your reper-
toire of techniques will grow as you become more practiced.
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1.10 The matrix inverse

Recall that the matrix inverse is defined only for square matrices, and that it has the

following properties:

A�1A ¼ AA�1 ¼ I ð1:1Þ

Here, I is the identity matrix, that is, a matrix with ones on its main diagonal and zeros

elsewhere. In MatLab, the matrix inverse is computed as

B ¼ inv(A); (MatLab eda01_13)

In many of the formulas of data analysis, the matrix inverse either premultiplies or

postmultiplies other quantities; for instance,

c ¼ A�1b and D ¼ BA�1

These cases do not actually require the explicit calculation of A-1; just the combina-

tions A�1b and BA�1, which are computationally simpler are sufficient. MatLab
provides generalizations of the division operator that implements these two cases:

c ¼ A\b;

D ¼ B/A; (MatLab eda01_14)

1.11 Loading data from a file

MatLab can read and write files with a variety of formats, but we start here with the

simplest and most common one, the text file.

As an example, we load a hydrological dataset of stream flow from the Neuse River

near Goldsboro NC. Our recommendation is that you always keep a file of notes about

any dataset that you work with, and that these notes include information on where you

obtained the dataset and any modifications that you subsequently made to it. Bill

Menke provides the following notes for this one (Figure 1.2):

I downloaded stream flow data from the US Geological Survey’s National Water
Informatiuon Center for the Neuse River near Goldboro NC for the time period,
01/01/1974-12/31/1985. These data are in the file, neuse.txt. It contains two col-
umns of data, time (in days starting on January 1, 1974) and discharge (in cubic feet
per second, cfs). The data set contains 4383 rows of data. I also saved information
about the data in the file neuse_header.txt.

We reproduce the first few lines of neuse.txt, here:

1 1450

2 2490

3 3250

. . .. . . ..
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The data is read into MatLab as follows:

D ¼ load(‘neuse.txt’);

t ¼ D(:,1);

d ¼ D(:,2); (MatLab eda01_15)

The load() function reads the data into a 4383 � 2 array, D. Note that the filename,

neuse.txt, needs to be surrounded by single quotes to indicate that it is a character
string and not a variable name. The subsequent two lines break outD into two separate

column-vectors, t, of time and d, of discharge. Strictly speaking, this step is not nec-

essary, but our opinion is that fewer mistakes will be made if each of the different

variables in the dataset has its own name.

1.12 Plotting data

One of the best things to do after loading a new dataset is to make a quick plot of it, just

to get a sense of what it looks like. Such plots are very easily created in MatLab:

plot(t,d);

The resulting plot is quite functional, but lacks some graphical niceties such as labeled

axes and a title. These deficiencies are easy to correct:

set(gca,‘LineWidth’,2);

plot(t,d,‘k�’,‘LineWidth’,2);

500

2.5
´104

1000 1500 2000 2500 3000 3500 4000 4500

2

1.5

1

0.5

0
0

Figure 1.2 Preliminary plot of the Neuse River discharge dataset. MatLab script eda01_05.
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title(‘Neuse River Hydrograph’);

xlabel(‘time in days’);

ylabel(‘discharge in cfs’); (MatLab eda01_16)

The set command resets the line width of the axes, to make them easier to see. Several

new arguments have been added to the plot() function. The ‘k�‘ changes the plot

color from its default value (a blue line, at least on our computer) to a black line.

The ‘LineWidth’, 2 makes the line thicker (which is important if you print the plot

to paper). A quick review of the plot indicates that the Neuse River discharge has some

interesting properties, such as pattern of highs and lows that repeat every few hundred

days. We will discuss it more extensively in Chapter 2.

1.13 Saving data to a file

Data is saved to a to text file in a process that is more or less the reverse of the one used

to read it. Suppose, for instance, that we want a version of neuse.txt that contains dis-

charge in the metric units of m3/s. After looking up the conversion factor, f¼ 35.3146,

between cubic feet and cubic meters, we perform the conversion and write the data to a

new file:

f ¼ 35.3146;

dm ¼ d/f;

Dm(:,1) ¼ t;

Dm(:,2) ¼ dm;

dlmwrite(‘neuse_metric.txt’,Dm,’\t’); (MatLab eda01_17)

The function dlmwrite() (for “delimited write”) writes the matrix, Dm, to the file neu-

se_metric.txt, putting a tab character (which in MatLab is represented with

the symbol, \t)between the columns as a delimiter. Note that the filename and the

delimiter are quoted; they are character strings.

1.14 Some advice on writing scripts

Practices that reduce the likelihood of scripting mistakes (“bugs”) are almost always

worthwhile, even though they may seem to slow you down a bit. They save time in the

long run, as you will spend much less time debugging your scripts.

1.14.1 Think before you type

Think about what you want to do before starting to type in a script. Block out the nec-

essary steps on a piece of scratch paper.Without some forethought, you can type for an

hour and then realize that what you have been doing makes no sense at all.
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1.14.2 Name variables consistently

MatLab automatically creates a new variable whenever you type a new variable name.

That is convenient, but it means that a misspelled variable becomes a new variable.

For instance, if you begin calling a quantity xmin but accidentally switch to minx half-

way through, you will unknowingly have two variables in your script, and it will not

function correctly. Do not tempt fate by creating two variables, such as xmin and miny,

with an inconsistent naming pattern.

1.14.3 Save old scripts

Cannibalize an old script to make a new one, but keep a copy of the old one too, and

make sure that the names are sufficiently different so that you will not confuse them

with each other.

1.14.4 Cut and paste sparingly

Cutting and pasting segments of code from one script to another, tempting though it

may be, is especially prone to error, particularly when variable names need to be chan-

ged. Read through the cut-and-pasted material carefully, to make sure that all neces-

sary changes have been made.

1.14.5 Start small

Build scripts in small sections. Test each section thoroughly before going into the

next. Check intermediate results, either by displaying variables to the CommandWin-

dow, examining them with the spreadsheet tool in theWorkspaceWindow, or by plot-

ting them, to ensure that they look right.

1.14.6 Test your scripts

Build test datasets with known properties to test whether or not your scripts give the

right answers. Test a script on a small, simple dataset before running it on large com-

plicated datasets.

1.14.7 Comment your scripts

Use comments to communicate the big picture, not the minutia. Consider the two

scripts in Figure 1.3. Which of the two styles of commenting code do you suppose

will make a script easier to understand 2 years down the line?

1.14.8 Don’t be too clever

An inscrutable script is very prone to error.

14 Environmental Data Analysis with MatLab



Problems

1.1 Write MatLab scripts to evaluate the following equations:

ðAÞ y ¼ ax2 þ bxþ c with a ¼ 2, b ¼ 4, c ¼ 8, x ¼ 3:5

ðBÞ p ¼ p0 expð�cxÞ with p0 ¼ 1:6, c ¼ 4, x ¼ 3:5

ðCÞ z ¼ h siny with h ¼ 4, y ¼ 31�

ðDÞ v ¼ phr2 with h ¼ 6:9, r ¼ 3:7
1.2 Write aMatLab script that defines a column vector, a, of length N¼ 12 whose elements are

the number of days in the 12 months of the year, for a nonleap year. Create a similar column

vector, b, for a leap year. Then merge a and b together into an N �M ¼ 12 � 2 matrix, C.

1.3 Write a MatLab script that solves the following linear equation, y ¼ M x, for x:

M ¼
1 �1 0 0

0 1 �1 0

0 0 1 �1

0 0 0 1

2
664

3
775 and y ¼

1

2

3

5

2
664

3
775

You may find useful theMatLab function zeros(N, N), which creates a N � Nmatrix of

zeros. Be sure to check that your x solves the original equation.

1.4 Create a 50� 50 version of theM, above. One possibility is to use a for loop. Another is to

use the MatLab function toeplitz(),as M has the form of a Toeplitz matrix, that is, a

matrix with constant diagonals. Type helptoeplitz in the CommandWindow for details

on how this function is called.

1.5 Rivers always flow downstream. Write a MatLab script to check that none of the Neuse

River discharge data is negative.

B esaCA esaC

% Evaluate Normal distribution CI=inv(C); % take inverse of C   
% with mean dbar and covariance, C

     
norm=1/(2*pi*sqrt(det(C))); % compute norm

CI=inv(C);
1/(2* i* t(d t(C)))

Pp=zeros(L,L);
% l inorm= p sqr e ;

Pp=zeros(L L);
 oop over 
for i = [1:L],

for i = [1:L]
 = 

% loop over j
for j = [1:L]
dd [d1(i) d1b d2(j) d2b ]'

for j = [1:L]
% dd i 2 t= i)- ar, - ar ;

Pp(i j)=norm*exp( −0 5 * dd' * CI* dd );
 is a -vector

dd = [d1(i)-d1bar d2(j)-d2bar]';,  .    
end

= i) , 
% compute exponential

;)dd *IC * 'dd* 5.0− (pxe*mron=)j,i(pPdne
den

end

Figure 1.3 The same script, commented in two different ways.
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2.1 Look at your data!

When presented with a new dataset, the most important action that a practitioner of

data analysis can take is to look closely and critically at it. This examination has three

important objectives:

Objective 1: Understanding the general character of the dataset.

Objective 2: Understanding the general behavior of individual parameters.

Objective 3: Detecting obvious problems with the data.

These objectives are best understood through examples, so we look at a sample dataset

of temperature observations from the Black Rock Forest weather station (Cornwall,

NY) that is in the file brf_temp.txt. It contains two columns of data. The first is time

in days after January 1, 1997, and the second is temperature in degree Celsius.

We would expect that a weather station would record more parameters than just

temperature, so a reasonable assumption is that this file is not the complete Black

Rock Forest dataset, but rather some portion extracted from it. If you asked the person

who provided the file—Bill Menke, in this case—he would perhaps say something

like this:

I downloaded the weather station data from the International Research Institute (IRI)
for Climate and Society at Lamont-Doherty Earth Observatory, which is the data cen-
ter used by the Black Rock Forest Consortium for its environmental data. About 20
parameters were available, but I downloaded only hourly averages of temperature.
My original file, brf_raw.txt has time in a format that I thought would be hard
to work with, so I wrote a MatLab script, brf_convert.m, that converted it into time
in days, and wrote the results into the file that I gave you (see Notes 2.1 and 2.2).

So our dataset is neither complete nor original. The issue of originality is important,

because mistakes can creep into a dataset every time it is copied, and especially when

it is reformatted. A purist might go back to the data center and download his or her

Environmental Data Analysis with MatLab. DOI: 10.1016/B978-0-12-391886-4.00002-7
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own unadulterated copy—not a bad idea, but one that would require him or her to

deal with the time format problem. In many instances, however, a practitioner of

data analysis has no choice but to work with the data as it is supplied, regardless

of its pedigree.

Any information about how one’s particular copy of the dataset came about

can be extremely useful, especially when diagnosing problems with the data.

One should always keep a file of notes that includes a description of how the data

was obtained and any modifications that were made to it. Unaltered data file(s)

should also be kept, in case one needs to check that a format conversion was

correctly made.

Developing some expectations about the data before actually looking at it has

value. We know that the Black Rock Forest data are sampled every hour, so the time

index, which is in days, should increment by unity every 24 points. As New York’s

climate is moderate, we expect that the temperatures will range from perhaps �20 �C
(on a cold winter night) to around þ40 �C (on a hot summer day). The actual temper-

atures may, of course, stray outside of this range during cold snaps and heat waves, but

probably not by much. We would also expect the temperatures to vary with the diurnal

cycle (24 h) and with the annual cycle (8760 h), and be hottest in the daytime and the

summer months of those cycles, respectively.

As the data is stored in a tabular form in a text file, we can make use of the load()

function to read it into MatLab:

D¼load(‘brf_temp.txt’);

t¼D(:,1);

d¼D(:,2);

Ns¼size(D);

L¼Ns(1);

M¼Ns(2);

L

M (MatLab eda02_01)

The load() function reads the data into the matrix, D. We then copy time into the

column vector t, and temperature into the column vector d. Knowing how much data

was actually read is useful, so we query the size of D with the size() function.

It returns a vector of the number of rows and columns, which we break out into the vari-

ables L and M and display.MatLab informs us that we read in a table of L¼110430 rows

and M¼2 columns. That is about 4600 days or 12.6 years of data, at one observation per

hour. A display of the first few data points, produced with the command, D(1:5,:),

yields the following:

0 17.2700

0.0417 17.8500

0.0833 18.4200

0.1250 18.9400

0.1667 19.2900

The first column, time, does indeed increment by 1/24 ¼ 0.0417 of a day. The tem-

perature data seems to have been recorded with the precision of hundredths of a �C.
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We are now ready to plot the data:

clf;

set(gca,‘LineWidth’,2);

hold on;

plot(t,d,‘k�’,‘LineWidth’,2); (MatLab eda02_02)

The resulting graph is shown in Figures 2.1 and 2.2. Most of the data range from about

�20 toþ35 �C, as was expected. The data are oscillatory and about 12 major cycles—

annual cycles, presumably � are visible. The scale of the plot is too small for diurnal

cycles to be detectable but they presumably contribute to the fuzziness of the curve.

The graph contains several unexpected features: Two brief periods of cold tempera-

tures, or cold spikes, occur at around 400 and 750 days. In each case, the temperature

dips below �50 �C. Even though they occur during the winter parts of cycles, such

cold temperatures are implausible for New York, which suggests some sort of error

in the data. A hot spike, with a temperature of about þ40 �C occurs around the time

of the second cold spike. While not impossible, it too is suspicious. Finally, two pe-

riods of constant—and zero � temperature occur, one in the 1400�1500 day range

and the other in the 4600�4700 day range. These are some sort of data drop-outs, time

periods where the weather station was either not recording data at all or not properly

receiving input from the thermometer and substituting a zero, instead.

Reality checks such as these should be performed on all datasets very early in the

data analysis process. They will focus one’s mind on what the data mean and help

reveal misconceptions that one might have about the content of the data set as well

as errors in the data themselves.
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Figure 2.1 Preliminary plot of temperature against time. MatLab script eda02_02.
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The next step is to plot portions of the data on a finer scale. MatLab’s
FigureWindow has a tool for zooming in on portions of the plot. However, rather than

to use it, we illustrate here a different technique, and create a new plot with a different

scale, that enlarges a specified section of data, with the section specified by a mouse

click. The advantage of the method is that scale of several successive enlarged sections

can be made exactly the same, which helps when making comparisons. The script is:

w¼1000; % width of new plot in samples

[tc, dc] ¼ ginput(1); % detect mouse click

i¼find((t>¼tc),1); % find index i corresponding to click

figure(2);

clf;

set(gca,‘LineWidth’,2);

hold on;

plot( t(i�w/2:iþw/2), d(i�w/2:iþw/2), ‘k�’,‘LineWidth’,2);

plot( t(i�w/2:iþw/2), d(i�w/2:iþw/2), ‘k.’,‘LineWidth’,2);

title(‘Black Rock Forest Temp’);

xlabel(‘time in days after Jan 1, 1997’);

ylabel(‘temperature’);

figure(1); (MatLab eda02_03)

This script needs careful explanation. The function ginput() waits for a mouse

click and then returns its time and temperature in the variables tc and dc.

The find() function returns the index, i, of the first element of the time vector, t, that

is greater than or equal to tc, that is, an element near the time coordinate of the click.

We now plot segments of the data, from i�w/2 to iþw/2, where w¼1000, to a new
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Figure 2.2 Annotated plot of temperature against time. MatLab script eda02_02.
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figure window. The figure() function opens this new window, and the clf command

(for ‘clear figure’) clears any previous contents. The rest of the plotting is pretty stan-

dard, except that we plot the data twice, once with black lines (the ‘k�’ argument) and

then again with black dots (the ‘k.’ argument). We need to place a hold on command

before the twoplot functions, so that the second does not erase the plotmade by the first.

Finally, at the end, we call figure() again to switch back to Figure 1 (so that when the

script is rerun, it will again put the cursor on Figure 1). The results are shown in

Figure 2.3.

The purpose behind plotting the data with both lines and symbols is to allow us to

see the actual data points. Note that the cold spike in Figure 2.3A consists of two

anomalously cold data points. The drop-out in Figure 2.3B consists of a sequence

of zero-valued data, although examination of other portions of the dataset uncovers

instances of missing data as well. The diurnal oscillations, each with a couple of

dozens of data points, are best developed in the left part of Figure 2.3B. A more elab-

orate version of this script is given in eda02_04.

A complementary technique for examining the data is through its histogram, a plot

of the frequency at which different values of temperature occur. The overall temper-

ature range is divided into a modest number, say Lh, of bins, and the number of ob-

servations in each bin is counted up. In MatLab, a histogram is computed as follows:

Lh ¼ 100;

dmin ¼ min(d);

dmax ¼ max(d);

bins ¼ dmin þ (dmax�dmin)*[0:Lh�1]’/(Lh�1);

dhist ¼ hist(d, bins)’; (MatLab eda02_05)

Here we use the min() and max() functions to determine the overall range of the data.

The formula dminþ(dmax�dmin)*[0:Lh�1]’/(Lh�1) creates a column vector of

length Lh of temperature values that are equally spaced between these two extremes.

The histogram function hist() does the actual counting, returning a column-vector
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Figure 2.3 Enlargements of two segments of the temperature versus time data. (A) Segment

with a cold spike. (B) Section with a drop-out. MatLab script eda02_03.
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dhistwhose elements are counts, that is, the number of observations in each of the bins.

The value of Lh needs to be chosen with some care: too large and the bin size will

be very small and the resulting histogram very rough; too small and the bins will be

very wide and the histogram will lack detail. We use Lh¼100, which divides the

temperature range into bins about 1 �C wide.

The results (Figure 2.4) confirm our previous conclusions that most of the data

fall in the range �20 to þ35 �C and that the near-zero temperature bin is way over-
represented in the dataset. The histogram does not clearly display the two cold-spike

outliers (although two tiny peaks are visible in the �60 to �40 �C range).

The histogram can also be displayed as a grey-shaded column vector (Figure 2.5B).

Note that the coordinate axes in this figure have been rotated with respect to those in

Figure 2.4. The origin is in the upper-left and the positive directions are down and right.
The intensity (darkness) of the grey-shade is proportional to the number of counts, as

is shown by the color bar at the right of the figure. This display technique is most

useful when only the pattern of variability, and not the numerical value, is of interest.

Reading numerical values off a grey-scale plot is much less accurate than reading

them off a standard graph! In many subsequent cases, we will omit the color bar,

as only the pattern of variation, and not the numerical values, will be of interest.

TheMatLab commands needed to create this figure are described in the next section.

An important variant of the histogram is the moving-window histogram. The idea

is to divide the overall dataset into smaller segments, and compute the histogram

of each segment. The resulting histograms can then be plotted side-by-side using

the grey-shaded column-vector technique, with time increasing from left to right
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(Figure 2.6). The advantage is that the changes in the overall shape of the distribution

with time are then easy to spot (as in the case of drop-outs). The MatLab code is as

follows:

offset¼1000;

Lw¼floor(N/offset)�1;

Dhist ¼ zeros(Lh, Lw);

for i ¼ [1:Lw];

j¼1þ(i�1)*offset;

k¼jþoffset�1;

Dhist(:,i) ¼ hist(d(j:k), bins)0;
end (MatLab eda02_07)

Each segment of 1000 observations is offset by 1000 samples from the next (the var-

iable, offset¼1000). The number of segments, Lw, is the total length, N, of the dataset

divided by the offset. However, as the result may be fractional, we round off to the

nearest integer using the floor() function. Thus, we compute Lw histograms, each of

length Lh, and store them in the columns of the matrix Dh. We first create an Lw � Lh
matrix of zeros with the zeros() function. We then loop Lw times, each time creating

one histogram from one segment, and copying the results into the proper columns of

Dh. The integers j and k are the beginning and ending indices, respectively, of segment

i, that is, d(j:k) is the i-th segment of data.
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2.2 More on MatLab graphics

MatLab graphics are very powerful, but accessing that power requires learning what

might, at first, seem to be a bewildering plethora of functions. Rather than attempting

to review them in any detail, we provide some further examples. First consider

% create sample data, d1 and d2

N¼51;

Dt ¼ 1.0;

t ¼ [0:N�1]’;

tmax¼t(N);

d1 ¼ sin(pi*t/tmax);

d2 ¼ sin(2*pi*t/tmax);

% plot the sample data

figure(7);

clf;

set(gca,‘LineWidth’,2);

hold on;

axis xy;

axis([0, tmax, �1.1, 1.1]);

plot(t,d1,‘k�’,‘LineWidth’,2);

plot(t,d2,‘k:’,‘LineWidth’,2);
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Figure 2.6 Moving-window histogram, where the counts scale with the intensity (darkness) of

the grey. MatLab script eda02_07.
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title(‘data consisting of sine waves’);

xlabel(‘time’);

ylabel(‘data’); (MatLab eda02_08)

The resulting plot is shown in Figure 2.7. Note that the first section of the code creates

a time variable, t, and two data variables, d1 and d1, the sine waves sin(pt/L) and
sin(2pt/L), with L a constant. MatLab can create as many figure windows as needed.

We plot these data in a new figure window, numbered 7, created using the figure()

function. We first clear its contents with the clf command. We then use a hold on,

which informs MatLab that we intend to overlay plots; so the second plot should

not erase the first. The axis xy command indicates that the axis of the coordinate sys-

tem is in the lower-left of the plot. Heretofore, we have been lettingMatLab auto-scale
plots, but now we explicitly set the limits with the axis() function. We then plot the

two sine waves against time, with the first a solid black line (set with the ‘k�’) and

the second a dotted black line (set with the ‘k:’). Finally, we label the plot and axes.

MatLab can draw two side-by-side plots in the same Figure Window, as is

illustrated below:

figure(8);

clf;

subplot(1,2,1);

set(gca,‘LineWidth’,2);

hold on;

axis([�1.1, 1.1, 0, tmax]);

axis ij;

plot(d1,t,‘k�’);

title(‘d1’);

ylabel(‘time’);

xlabel(‘data’);

subplot(1,2,2);

set(gca,‘LineWidth’,2);

hold on;

axis ij;

axis([�1.1, 1.1, 0, tmax]);

plot(d2,t,‘k�’);

title(‘d2’);

ylabel(‘time’);

xlabel(‘data’); (MatLab eda02_07)

Here the subplot(1,2,1) function splits the Figure Window into 1 column and 2 rows

of subwindows and directs MatLab to plot into the first of them. We plot data into this

subwindow in the normalway.After finishingwith the first dataset, the subplot(1,2,2)

directsMatLab to plot the second dataset into the second subwindow. Note that we have
used an axisij command, which sets the origin of the plots to the upper-left (in contrast

to axis xy, which sets it to the lower-left). The resulting plot is shown in Figure 2.8.

MatLab plots grey-scale and color images through the use of a color-map, that is,
a 3-column table that converts a data value into the intensities of the red, green, and

blue colors of a pixel on a computer screen. If the data range from dmin to dmax, then the
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top row of the table gives the red, green, and blue values associated with dmax and the

bottom row gives the red, green, and blue values associated with dmin, each of which

range from 0 to 1 (Figure 2.9). The number of rows in the table corresponds to the

smoothness of the color variation within the dmin to dmax range, with a larger number

of rows corresponding to a smoother color variation. We generally use tables of

256 rows, as most computer screens can only display 256 distinct intensities of color.

WhileMatLab is capable of displaying a complete spectrum of colors, we use only

black-and-white color maps in this book. A black-and-white color map has equal red,

green, and blue intensities for any given data value. We normally use

% create grey-scale color map

bw¼0.9*(256�[0:255]0)/256;
colormap([bw,bw,bw]); (MatLab eda02_06)

which colors the minimum data value, dmin, a light gray and the maximum data value,

dmax, black. In this example, the column vector bw is of length 256 and ranges from 0.9

(light grey) to 0 (black). A vector, dhist (as in Figure 2.5B), can then be plotted as a

grey-shade image using the following script:

axis([0, 1, 0, 1]);

hold on;

axis ij;

axis off;

imagesc( [0.4, 0.6], [0, 1], dhist);

text(0.66,�0.2,‘dhist’);

colorbar(‘vert’); (MatLab eda02_06)

Here, we set the axis to a simple 0 to 1 range using the axis() function, place the

origin in the upper left with the axis ij command, and turn off the plotting of the axis

and tick marks with the axis off command. The function,

imagesc( [0.4, 0.6], [0, 1], dhist);

plots the image. The quantities [0.4, 0.6] and [0, 1]are vectors x and y, respec-

tively, which together indicate where dhist is to be plotted. They specify the positions

of opposite corners of a rectangular area in the figure. The first element of dhist is

d

t
d1 r1 g1 b1

d2 r2 g2 b2

d3 r3 g3 b3

d4 r4 g4 b4

… … … …

d
Color-map

Figure 2.9 The data values are converted into color values through the color map.
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plotted at the (x1, y1) corner of the rectangle and the last at (x2, y2). The text() func-

tion is used to place text (a caption, in this case) at an arbitrary position in the figure.

Finally, the color bar is added with the colorbar() function.

A grey-shaded matrix, such as Dhist (Figure 2.6) can also be plotted with the

imagesc() function:

figure(1);

clf;

axis([�Lw/8, 9*Lw/8, �Lh/8, 9*Lh/8]);

hold on;

axis ij;

axis equal;

axis off;

imagesc( [0, Lw�1], [0, Lh�1], Dhist);

text(6*Lw/16,17*Lw/16,‘Dhist’); (MatLab eda02_06)

Here, we make the axes a little bigger than the matrix, which is Lw�Lh in size. Note

the axisequal command, which ensures that the x and y axes have the same length on

the computer screen. Note also that the two vectors in the imagesc function have been

chosen so that the matrix plots in a square region of the window, as contrasted to the

narrow and high rectangular area that was used in the previous case of a vector.

2.3 Rate information

We return now to the Neuse River Hydrograph (Figure 1.2). This dataset exhibits an

annual cycle, with the river level being lowest in autumn. The data are quite spiky. An

enlargement of a portion of the data (Figure 2.10A) indicates that the dataset contains

many short periods of high discharge, each�5 days long and presumably correspond-

ing to a rain storm.Most of these storm events seem to have an asymmetric shape, with

a rapid rise followed by a slower decline. The asymmetry is a consequence of the river

rising rapidly after the start of the rain, but falling slowly after its end, as water slowly

drains from the land.

This qualitative assessment can be made more quantitative by estimating the time

rate of change of the discharge—the discharge rate � using its finite-difference

approximation:

dd

dt
� Dd

Dt
¼ dðtþ DtÞ � dðtÞ

Dt
or

dd

dt

� �
i

� diþ1 � di
tiþ1 � ti

ð2:1Þ

The corresponding MatLab script is

dddt¼(d(2:L)�d(1:L�1)) ./ (t(2:L)�t(1:L�1)); (MatLab eda02_10)

Note that while the discharge data is of length L, its rate is of length L�1. The rate

curve (Figure 2.10B) also contains numerous short events, although these are two-
sided in shape. If, indeed, the typical storm event consists of a rapid rise followed
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by a long decline, we would expect that the discharge rate would be negative more

often than positive. This hypothesis can be tested by computing the histogram of

discharge rate, and examining whether or not it is centered about a rate of zero.

The histogram (Figure 2.10C) peaks at negative rates, lending support to the hypoth-

esis that the typical storm event is asymmetric.

We can also use rate information to examine whether the river rises (or falls) faster

at high water (large discharges) than at lowwater (small discharges).We segregate the

data into two sets of (discharge, discharge rate) pairs, depending on whether the dis-

charge rate is positive or negative, and then make scatter plots of the two sets

(Figure 2.11). The MatLab code is as follows:

pos ¼ find(dddt>0);

neg ¼ find(dddt<0);

- - -

plot(d(pos),dddt(pos),‘k.’);

- - -

plot(d(neg),dddt(neg),‘k.’); (MatLab eda02_11)

Here, the “- - -” means that we have omitted lines of the script (standard plot setup

commands, in this case). The find() function returns a column vector of indices of
dddt that match the given test condition. For example, pos contains the indices

of dddt for which dddt>0. Note that the quantities d(pos)and dddt(pos) are arrays
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Figure 2.10 (A) Portion of the Neuse River Hydrograph. (B) Corresponding rate of change of

discharge with time. (C) Histogram of rates for entire hydrograph. MatLab script eda01_10.
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of just the elements of d and dddt whose indices are contained in pos. Results are

shown in Figure 2.11. Only the negative rates appear to correlate with discharge, that

is, the river falls faster at high water than at lowwater. This pattern is related to the fact

that a river tends to run faster when it’s deeper, and can carry away water added by a

rain storm quicker. The positive rates, which show no obvious correlation, are more

influenced bymeteorological conditions (e.g., the intensity and duration of the storms)

than river conditions.

2.4 Scatter plots and their limitations

Both the Black Rock Forest temperature and the Neuse River discharge datasets are

time series, that is, data that are organized sequentially in time. Many datasets lack this

type or organization. An example is the Atlantic Rock Sample dataset, provided in the

file, rocks.txt. Here are notes provided by Bill Menke, who created the file:

I downloaded rock chemistry data from PetDB’s website at www.petdb.org. Their da-
tabase contains chemical information about ocean floor igneous and metamorphic
rocks. I extracted all samples from the Atlantic Ocean that had the following chemical
species: SiO2, TiO2, Al2O3, FeOtotal, MgO, CaO, Na2O, and K2O. My original file,
rocks_raw.txt included a description of the rock samples, their geographic
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Figure 2.11 Scatter plot of discharge rate against discharge. (A) Positive rates. (B) Negative

rates. MatLab script eda01_11.
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location, and other textual information. However, I deleted everything except the
chemical data from the file, rocks.txt, so it would be easy to read into MatLab.
The order of the columns is as given above and the units are weight percent.

Note that this Atlantic Rock dataset is just a fragment of the total data in the PetDB

database. After loading the file, we determine that it contains N ¼ 6356 chemical

analyses.

Scatter plots (Figure 2.12) are a reasonably effective means to quickly review the

data. In this case, the number, M, of columns of data is small enough that we can ex-

haustively review all of the M2/2 combinations of chemical species. A MatLab script

that runs through every combination uses a pair of nested for loops:

D ¼ load(‘rocks.txt’);

Ns ¼ size(D);

N ¼ Ns(1);

M ¼ Ns(2);

for i ¼ [1:M�1]

for j ¼ [iþ1:M]

clf;

axis xy;

hold on;

plot( D(:,i), D(:,j), ‘k.’ );

xlabel(sprintf(‘element %d’,i));

ylabel(sprintf(‘element %d’,j));

a ¼ axis;

[x, y]¼ginput(1);

end

end (MatLab eda02_12)

This nested for loop plots all combinations of species i with species j. Note that we

can limit ourselves to the j>i, as the j¼i case corresponds to plotting a species against

itself, and the j<i plots are redundant. Note that the outer for loop variable, i, ranges

from 1 to M�1 and the inner for loop variable, j, ranges over the interval from iþ1toM.

The pause between successive plots is implemented with the ginput() command;

clicking on the figure signals that it is time for the next graph to be displayed.

Note, also, the use of the sprintf() function (for “string print formatted’). It

creates a character string that includes both text and the value of a variable. This is

a useful, although fairly inscrutable function, and we refer readers to theMatLab help
pages for a detailed description. Briefly, the function uses placeholders that start with
the character % to indicate where in the character string the value of the variable

should be placed. Thus,

i¼2;

sprintf(‘element %d’,i);

returns the character string ‘element 2’. The %d is the placeholder for an integer. It is
replaced with ‘2’, the value of i. Several placeholders can be used in the same format
string; for example, the script
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i¼2;

j¼4;

sprintf(‘row %d column %d’, i, j);

returns the character string ‘row2column4’. If the variable is fractional, as contrasted

to integer, the floating-point placeholder, %f, is used instead. For example,

a¼4.71;

sprintf(‘a¼%f’, a);

returns the character string ‘a¼4.71’. The sprintf() command can be used in any

function that expects a character string, including title(), xlabel(), ylabel(),

load(), dlmwrite(), and disp(). In the special case of disp(), an alternative is also

available, with the command

fprintf(‘a¼%f\n’, a);

being equivalent to:

disp(sprintf(‘a¼%f’, a));
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Figure 2.12 Scatter plot of four combinations of chemical components of the Atlantic Ocean

rock sample dataset. MatLab script eda01_12.
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The \n (for newline) at the end of the format string ‘a¼%f\n’ indicates that subsequent

characters should be written to a new line in the command window, rather than

being appended to the end of the current line. In this book, our preference is to use

disp(sprintf()), as it preserves regularity of usage.

Four of the resulting 32 plots are shown in Figure 2.12. Note their effectiveness in

identifying both overall patterns in the data and data outliers that depart from the pat-

tern. Figure 2.12A and Figure 2.12D both have a single outlier, in K2O and TiO2, re-

spectively. We do not know whether they represent an unusual rock composition or an

error in the data, but this issue could possibly be resolved with further information

about the data. Note that two distinct groupings, or populations, of data are present

in Figure 2.12C, whereas only one is evident in Figure 2.12A. Figure 2.12B has a

well-defined linear variation of MgO with Al2O3, but Figure 2.12D has a more

complicated Y-shaped relationship of Al2O3 and TiO2.

On the one hand, this preliminary inspection has yielded interesting patterns that

would be worth pursuing in a more detailed analysis. On the other hand, it has revealed

one of the limitations of scatter plots when they are applied to multivariate data: the
plots all look different! Some pairs of parameters (chemical species, in this case) seem

uncorrelated, while others have strong correlations. Some have a single population,

others two or even more. The problem becomes even worse when one considers that

plots can also be made of combinations of parameters (e.g., a plot of MgO þ FeO

against NaOþK2O). The problem is that the patterns within the dataset are inherently

multidimensional, but a scatter plot reduces that pattern to just two dimensions.

This problem points to the need for more advanced data analysis tools that can get

at the underlying multidimensional patterns—tools that we will discuss later in this

book (e.g., the factor analysis discussed in Chapter 8).

Problems

2.1. Plot the Black Rock Forest temperature data on a graph whose time units are years. Check

whether the prominent cycles are really annual.
2.2. What is the largest hourly change in temperature in the Black Rock Forest dataset? Ignore

the changes that occur at the temperature spikes and drop-outs.

2.3. Examine the diurnal cycles in the Black Rock Forest dataset. Qualitatively, does their pat-

tern vary with time of year?

2.4. Adapt the eda02_03 script to plot segments of the Neuse River Hydrograph dataset.

2.5. Create histograms for the eight chemical species in the Atlantic Rock dataset.
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3.1 Random variables

Every practitioner of data analysis needs a working knowledge of probability for one

simple reason: error, an unavoidable aspect of measurement, is best understood using

the ideas of probability.

The key concept that we draw upon is the random variable. If d is a random var-

iable, then it has no fixed value until it is realized. Think of d as being in a box. As long
as it is in the box, its value is fuzzy or indeterminate; but when taken out of the box and

examined, d takes on a specific value. It has been realized. Put it back in the box, and
its value becomes indeterminate again. Take d out again and it will have a different

value, as it is now a different realization. This behavior is analogous to measurement

in the presence of noise, so random variables are ideal for representing noisy data.

Even when the random variable, d, is in the box, we may know something about it.

It may have a tendency to take on certain values more often than others. For example,

suppose that d represents the number of H (hydrogen) atoms in a CH4 (methane) mol-

ecule that are of the heavy variety called deuterium. Then d can take on only the dis-

crete values 0 through 4, with d ¼ 0 representing the no deuterium state and d ¼ 4

representing the all deuterium state. The tendency of d to take on one of these five
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values is represented by its probability, P(d), which can be depicted by a table

(Figure 3.1A).

Note that the probability is given in percent, that is, the percent of the realizations in

which d takes on the given value. The probability necessarily sums to 100%, as d must
take on one of the five possible values. We can write

P4
i¼0 PðdiÞ ¼ 100%. An alter-

native way of quantifying probability is with the numbers 0-1, with 0 meaning 0% and

1 meaning 100% (Figure 3.1B). In this case,
P4

i¼0 PðdiÞ ¼ 1. The probability can also
be represented graphically with a histogram (Figure 3.1C) or a shaded column vector

(Figure 3.1D).

Not all random variables are discrete. Some may vary continuously between two

extremes. Thus, for example, the depth, d, of a fish observed swimming in a 5-m-deep

pond can take on any value, even fractional ones, between 0 and 5. In this continuous

case, we quantify the probability that the fish is near depth, d, with the probability
density function, p(d). The probability, P, that the fish is observed between any

two depths, say d1 and d2, is defined as the area under the curve p(d) between d1
and d2 (Figure 3.2). This is equivalent to the integral

P

d

0.0 0.5

0
1

2
3

4

d P
0 0.10
1 0.30
2 0.40
3 0.15
4 0.05

d P
0 10%
1 30%
2 40%
3 15%
4 5%

(A)
P

(B) (C) (D) Figure 3.1 Four different

ways of representing the

probability, P(d).
(A) Table of percents;

(B) Table of fractions;

(C) Histogram, and

Shaded column vector.

p(d )

Area (A)

d1

d2

d

Figure 3.2 The probability, P, that the random variable, d, is between d1 and d2 is proportional
to the area, A (shaded), under the probability density function, p(d), from d1 to d2.

36 Environmental Data Analysis with MatLab



Pðd1, d2Þ ¼
ðd2
d1

p dð Þ dd ð3:1Þ

(Our choice of the variable name “d” for “data” makes the differential dd look a bit

funny, but we will just have to live with it!) Note the distinction between upper-case

and lower-case letters. Upper-case P, which quantifies probability, is a number be-
tween 0 and 1. Lower-case p is a function whose values are not easily interpretable,

except to the extent that the larger the p, the more likely that a realization will have a

value near d. One must calculate the area, which is to say, perform the integral,

to determine how likely any given range of d is. Just as in the discrete case, d must

take on some value between its minimum and maximum (in this case, dmin ¼ 0

and dmax ¼ 5). Thus

Pðdmin, dmaxÞ ¼
ðdmax

dmin

p dð Þ dd ¼ 1 ð3:2Þ

The function, P(dmin, d) (or P(d), for short), which gives the total amount of proba-

bility less than d, is called the probability distribution (or, sometimes, the cumulative
probability distribution) of the random variable, d.

Because all measurements contain noise, we view every measurement, d, as a ran-
dom variable. Several repetitions of the same measurement will not necessarily yield

the same value because of measurement error. On the other hand, repeated measure-

ments usually have some sort of systematic behavior, such as scattering around a typ-

ical value. This systematic behavior will be represented by the probability density

function, p(d). Thus, p(d) embodies both the “true” value of the quantity (if such a

thing can be said to exist) and a description of the measurement noise.

Practitioners of data analysis very typically compute derived quantities from their

data that are more relevant to the objective of their study. For example, temperature

measurements made at different times might be differenced (subtracted) in order to

determine a rate of warming. As we will discuss further below, functions of random

variables are themselves random variables, because any quantity derived from noisy

data itself contains error. The algebra of random variables will allow us to understand

how measurement noise affects inferences made from the data.

3.2 Mean, median, and mode

The probability density function of a measurement, p(d), is a function—possibly one

with a complicated shape. As an aid to understanding it, one might try to derive from it

two simple numbers, one that describes the typical measurement (i.e., the typical d)
and the other which describes the variability of measurements (i.e., the amount of scat-

ter around the typical measurement). Of course, the two numbers cannot completely

capture the information in p(d), but they can provide some insight into its behavior.
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Several different approaches to calculating a typical value of d are in use. The sim-

plest is the d at which p(d) takes on its maximum value, which is called the maximum
likelihood point or mode. The mode is useful because, in a list of repeated measure-

ments, a particular value is often seen to occur more frequently than any other value.

Modes can be deceptive, however, because while more measurements will be in the

vicinity of the mode than in the vicinity of any other value of d, the majority of mea-

surements are not necessarily in the vicinity of the mode. This effect is illustrated in

Figure 3.3, which depicts a very skewed probability density function, p(d) and a cor-

responding table of binned data. More data—15—are observed in the 1 < d < 2 bin,

which encloses the mode, than in any other bin. Nevertheless, full 80% of the mea-

surements are larger than the mode, and 50% are quite far from it.

This effect is often encountered in real-world situations. Thus, for example, while

ironwood (Memecylon umbellatum) is by far the most common of the �50 species of

trees in the evergreen forests of India’s Eastern Ghats, a randomly chosen tree there

would most likely not be ironwood, as this species accounts for only 21% of the in-

dividual trees (Chittibabu and Parthasarathy, 2000).

InMatLab, suppose that the column-vector, d, is d sampled at evenly spaced points,

and that the column-vector, p, contains the corresponding values of p(d). Then the

mode is calculated as follows:

[pmax, i] ¼ max(p);

themode ¼ d(i); (MatLab eda03_01)

(B)(A)

0 d Np(d )

0 to 1 5

1 to 2 15

2 to 3 9
dmode

3 to 4 11

4 to 5 8
5

5 to 6 7
Mode

6 to 7 5

7 to 8 4

8 to 9 6

9 to 10 7
10

7

10 to 11 5

11 to 12 3

12 to 13 4

13 to 14 6

14 to 15 515

dd

Figure 3.3 (A) The probability density function, p(d), has its maximum value at the mode,

d ¼ dmode � 1.5. (B) A binned table of 100 realizations of d. Note that while the bin with

the largest number of measurements is at the mode, the majority of measurements are larger

than the mode.
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Note that the function, max(p), returns both the maximum value, pmax, of the column-

vector, p, and the row index, i, at which the maximum value occurs.

Another way of defining the typical measurement is to pick the value below which

50% of probability falls and above which lies the other 50%. This quantity is called the

median (Figure 3.4).

InMatLab, suppose that the column vector d contains the data d sampled at evenly

spaced points, with spacing Dd, and that the column vector p contains the correspond-

ing values of p(d). Then, the median is calculated as follows:

pc ¼ Dd*cumsum(p);

for i¼[1:length(p)]

if(pc(i) > 0.5 )

themedian ¼ d(i);

break;

end

end (MatLab eda03_02)

The function cumsum() computes the cumulative sum (running sum) of p. The quan-

tity, Dd*cumsum(p), is thus an approximation for the indefinite integral,
Ð d
dmin

pðdÞdd,
which is to say the area beneath p(d). The for loop then searches for the first

occurrence of the area that is greater than 0.5, terminating (“breaking”) when this

condition is satisfied.

Yet another common way to define a typical value is a generalization of the

mean value of a set of measurements. The well-known formula for the sample mean

(B)(A)

0 d Np(d )

0 to 5 50

Area=
50%

5 to 15 50
dmedian

Median

10

Area=50%

15

d

Figure 3.4 (A) Fifty percent of the probability lies on either side of the median, d¼ dmedian� 5.

(B) A binned table of 100 realizations of d has about 50 measurements on either side of

the median.
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is �d ¼ 1=N
PN

i¼0 di. Let’s approximate this formula with a histogram. First, divide the

d-axis into M small bins, each one centered at d(s). Now count up the number, Ns, of

data in each bin. Then, �d � 1=N
PM

s¼0 d
ðsÞNs. Note that the quantity Ns/N is the

frequency of di; that is, the fraction of times that di is observed to fall in bin s. As this
frequency is, approximately, the probability, Ps, that the data falls in bin s,
�d � PM

s¼0 d
ðsÞPs. This relationship suggests that the mean of the probability density

function, p(d), can be defined as

�d ¼
ðdmax

dmin

d pðdÞ dd ð3:3Þ

Because of random variation, the mean of a set of measurements (the sample mean)

will not be the same as the mean of the probability density function from which the

measurements were drawn. However, as we will discuss later in this book, the sample

mean will usually be close to—will scatter around—the mean of the probability

density function (Figure 3.5).

In MatLab, suppose that the column-vector, d, contains the d sampled at evenly

spaced points, with spacing Dd, and that the column-vector, p, contains the correspond-

ing values of p(d). The definite integral
Ð d
dmin

dpðdÞdd is approximated as
P

idipðdiÞDd
as follows:

themean ¼ Dd*sum(d.*p); (MatLab eda03_03)

Note that the sum(v) function returns the sum of the elements of the column-

vector, v.

(A) (B)

0
d N d Np(d )

0 to 1 5 2.5

´

151 to 2 22.5

2 to 3 9 25

3 to 4 11 35

5 4 to 5 8 45

5 to 6 7 27.5

6 to 7 5 32.5dmean

7 to 8 4 37.5

68 to 9 42.5

9 to 10 710 7 47.5

10 to 11 5 52.5

Mean

 5
11 to 12 3 57.5

12 to 13 4 62.5

13 to 14 6 67.5

14 to 15 5 72.515

d
Sum 100 630

Figure 3.5 (A) The probability

density function, p(d), has its
mean value at dmean � 6.3. (B) A

binned table of 100 realizations of d.
Note that the mean is 630/100,

or 6.3.
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3.3 Variance

The second part of the agenda that we put forward in Section 3.2 is to devise a number

that describes the amount of scatter of the data around its typical value. This number

should be large for a wide probability density function—one that corresponds to noisy

measurements—and small for a narrow one. A very intuitive choice for a measure of

the width of a probability density function, p(d), is the length, d50, of the d-axis that
encloses 50% of the total probability and is centered around the typical value, dtypical.
Then, 50% of measurements would scatter between dtypical� d50/2 and dtypicalþ d50/2
(Figure 3.6). Probability density functions with a large d50 correspond to a high-noise
measurement scenario and probability density functions with a small d50 correspond
to a low-noise one. Unfortunately, this definition is only rarely used in the literature.

A much more commonly encountered—but much less intuitive—quantity is the

variance. It is based on a different approach to quantifying width, one not directly

related to probability. Consider the quadratic function q(d)¼ (d� dtypical)
2. It is small

near dtypical and large far from it. The product, q(d) p(d), will be small everywhere if

the probability density function is narrow, as near dtypical, large values of p(d) will be
offset by small values of q(d) and far from dtypical, large values of q(d) will be offset by
small values of p(d). The area under the product, q(d) p(d), will be small in this case.

Conversely, the area under the product, q(d) p(d), will be large if the probability density
function is wide. Thus, the area under q(p) p(d) has the desired property of being small

for narrow probability density functions and large for wide ones (Figure 3.7). With the

special choice, dtypical ¼ �d, it is called the variance and is given the symbol, sd
2:

s2d ¼
ðdmax

dmin

ðd � �dÞ2pðdÞ dd ð3:4Þ

Variance has units of d2, so the square root of variance, s, is a measure of the width of

the probability density function. A disadvantage of the variance is that the relationship

p(d )

dtypical – d50/2

dtypical Area (A ) = 50%

dtypical + d50/2

d

Figure 3.6 The shaded area of

the probability density

function, p(d), encloses 50% of

the probability and is centered

on the typical value.
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between it and the probability that �d � s encloses is not immediately known. It de-

pends on the functional form of the probability density function.

In MatLab, suppose that the column-vector, d, contains the data, d, sampled at

evenly spaced points, with spacing Dd and that the column-vector, p, contains the cor-

responding values of p(d). Then, the variance, s2, is calculated as follows:

q ¼ (d�dbar).^2;

sigma2 ¼ Dd*sum(q.*p);

sigma ¼ sqrt(sigma2); (MatLab eda03_04)

3.4 Two important probability density functions

As both natural phenomena and the techniques that we use to observe them are greatly

varied, it should come as no surprise that hundreds of different probability density

functions, each with its own mathematical formula, have been put forward as good

ways to model particular classes of noisy observations. Yet among these, two partic-

ular probability density functions stand out in their usefulness.

The first is the uniform probability density function, p(d) ¼ constant. This proba-

bility density function could be applied in the case of a measurement technique that

can detect a fish in a lake, but which provides no information about its depth, d. As far
as can be determined, the fish could be at any depth with equal probability, from its

surface, d¼ dmin, to its bottom, d ¼ dmax. Thus, the uniform probability density func-

tion is a good idealization of the limiting case of a measurement providing no useful

information. The uniform probability density function is properly normalized when

the constant is 1/(dmax � dmin), where the data range from dmin to dmax. Note that

d

p(d ) q(d) q(d)p(d)

d

d − s

d +s

dmax

dmin

Figure 3.7 Calculation of the variance. The probability density function, p(d), is multiplied by

the quadratic function, q(d). The area under the product q(d) p(d) is then calculated via

integration. See text for further discussion. MatLab script eda03_05.
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the uniform probability density function can be defined only when the range is finite.

It is not possible for data to be anything in the range from �1 to þ1 with equal

probability.

The second is the Normal probability density function:

pðdÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
exp �ðd � �dÞ2

2s2

( )
ð3:5Þ

The constants have been chosen so that the probability density function, when inte-

grated over the range �1 < d < þ1, has unit area and so that its mean is �d and

its variance is s2. Not only is the Normal curve centered at the mean, but it is peaked

at the mean and symmetric about the mean (Figure 3.8). Thus, both its mode and

median are equal to its mean, �d. The probability, P, enclosed by the interval
�d � ns (where n is an integer) is given by the following table:

n P,%
1 68:27
2 95:45
3 99:73 ð3:6Þ

It is easy to see why the Normal probability density function is seen as an attractive

one with which to model noisy observations. The typical observation will be near its

mean, �d, which is equal to the mode and median. Most of the probability (99.73%) is

concentrated within�3s of the mean and only very little probability (0.27%) lies out-

side that range. Because of the symmetry, the behavior of measurements less than the

mean is the same as the behavior greater than the mean. Many measurement scenarios

behave just in this way.

d

30

0

40 d =10

d

0

40 105 20 4015 20 25 σ =2.5

Figure 3.8 Examples of the Normal probability density functions. (Left) Normal probability

density functions with the same variance (s2 ¼ 52) but different means. (Right) Normal

probability density functions with the same mean (20) but different variances. MatLab scripts

eda03_06 and eda03_07. (See Note 3.2).
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On the other hand, the Normal probability density function does have limitations.

One limitation is that it is defined on the unbounded interval�1< d<þ1, while in

many instances data are bounded. The fish in the pond example, discussed above, is

one of these. Any Normal probability density function, regardless of mean and var-

iance, predicts some probability that the fish will be observed either in the air or buried
beneath the bottom of the pond, which is unrealistic. Another limitation arises from

the rapid falloff of probability away from the mean—behavior touted as good in the

previous paragraph. However, some measurement scenarios are plagued by outliers,
occasional measurements that are far from the mean. Normal probability density func-

tions tend to under-predict the frequency of outliers.

While not all noise processes are Normally distributed, the Normal probability den-

sity function occurs in a wide range of situations. Its ubiquity is understood to be a

consequence a mathematical result of probability theory called the Central Limit The-
orem: under a fairly broad range of conditions, the sum of a sufficiently large number

of random variables will be approximately Normally distributed, regardless of the

probability density functions of the individual variables. Measurement error often

arises from a several different sources of noise, which sum together to produce the

overall error. The Central Limit Theorem predicts that, in this case, the overall error

will be Normally distributed even when the component sources are not.

3.5 Functions of a random variable

An important aspect of data analysis is making inferences from data. The making of

measurements is not an end unto itself, but rather the observations are used to make

specific, quantitative predictions about the world. This process often consists of

combining the data into a smaller number of more meaningful model parameters.
These derived parameters are therefore functions of the data.

The simplest case is a model parameter, m, that is a function of a single random

variable, d; that is,m¼m(d).We need amethod of determining the probability density

function, p(m), given the probability density function, p(d), together with the func-

tional relationship, m(d). The appropriate rule can be found by starting with the

formula relating the probability density function, p(d), to the probability, P,
(Equation 3.1) and applying the chain rule.

Pðd1, d2Þ ¼
ðd2
d1

pðdÞ dd ¼
ðd2ðm2Þ

d1ðm1Þ
p½dðmÞ� @d

@m
dm ¼

ðm2

m1

PðmÞdm ¼ Pðm1,m2Þ

ð3:7Þ

where (m1, m2) corresponds to (d1, d2); that is m1 ¼ m1(d1) and m2 ¼ m2(d2). Then by
inspection, pðmÞ ¼ p½dðmÞ�@d=@m. In some cases, such as the functionm(d)¼ 1/d, the
derivative @d=@m is negative, corresponding to the situation where m1 > m2 and the

direction of integration along the m-axis is reversed. To account for this case, we take
the absolute value of @d=@m:
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pðmÞ ¼ p½dðmÞ� j @d
@m

j ð3:8Þ

with the understanding that the integration is always performed from the smaller of

(m1, m2) to the larger.

The significance of the @d=@m factor can be understood by considering the uniform

probability density function P(d)¼ 1 on the interval 0� d� 1 together with the func-

tion m ¼ 2d. The interval 0 � d � 1 corresponds to the interval 0 � m � 2 and

@d=@m ¼ �/� . Equation (3.8) gives p(m) ¼ 1 � �/� ¼ �/� , that is p(m) is also a uniform

probability density function, but with a different normalization than p(d). The total

area, A, beneath both p(d) and p(m) is the same, A ¼ 1 � 1 ¼ 2 � �/� ¼ 1. Thus,

@d=@m acts as a scale factor that accounts for the way that the stretching or squeezing

of the m-axis relative to the d-axis affects the calculation of area.

As linear functions, such as m ¼ cd, where c is a constant, are common in data

analysis, we mention one of their important properties here. Suppose that p(d)
has mean, �d, and variance, s2d. Then, the mean, �m, and variance, s2m, of p(m) are as

follows:

�m ¼
ð
m p mð Þ dm ¼

ð
cd p½d mð Þ� @d

@m

@m

@d
dd ¼ c

ð
d pðdÞ dd ¼ c�d ð3:9Þ

s2m ¼
ð
ðm� �mÞ2 pðmÞ dm ¼

ð
ðcd � c�dÞ2 p½dðmÞ� @d

@m

@m

@d
dd

¼ c2
ð
ðd � �dÞ2 pðdÞdd ¼ c2s2d ð3:10Þ

Thus, in the special case of the linear function, m ¼ cd, the formulas

�m ¼ c�d and s2m ¼ c2s2d ð3:11Þ

do not depend on the functional form of the probability density function, p(d).
In another example of computing the probability density function of a function of a

random variable, consider the probability density function p(d) ¼ 1 on the interval

0 � d � 1 and the function, m ¼ d2. The corresponding interval of m is 0 � d � 1,

d ¼ m�/�, and @d=@m ¼ �/�m��/� . The probability density function, p(m), is given as

pðmÞ ¼ p½dðmÞ� @d
@m

¼ 1� �/�m��/� ¼ �/�m��/� ð3:12Þ

on the interval 0 � m � 1.Unlike p(d), the probability density function p(m) is not
uniform but rather has a peak (actually a singularity, but an integrable one) at m ¼ 0

(Figure 3.9).

In this section, we have described how the probability density function of a function

of a single observation, d, can be computed. For this technique to be truly useful,
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we must generalize it so that we can compute the probability density function of a

function of a set ofmany observations. However, before tackling this problem, we will

need to discuss how to describe the probability density function of a set of

observations.

3.6 Joint probabilities

Consider the following scenario: A certain island is inhabited by two species of birds,

gulls and pigeons. Either species can be either tan or white in color. A census deter-

mines that 100 birds live on the island, 30 tan pigeons, 20 white pigeons, 10 tan gulls

and 40 white gulls. Now suppose that we visit the island. The probability of sighting a

birdof species, s, andcolor,c, canbe summarizedbya2�2 table (Figure3.10),which is

called the joint probability of species, s, and color, c, and is denoted byP(s, c). Note that
the elements of the table must sum to 100%:

P2
i¼1

P2
j¼1Pðsi, cjÞ ¼ 100%. P(s, c)

completely describes the situation, and other probabilities can be calculated from it.

If we sum the elements of each row, we obtain the probability that the bird is a given

d

0

1

m

0

1

p(d) p(m)

Figure 3.9 (Left) The probability density function, p(d)¼ 1, on the interval 0� d� 1. (Right)

The probability density function, p(m), which is derived from p(d) together with the functional

relationship, m ¼ d2. MatLab Script eda03_08.

Color (c)P(s,c)

White (w)Tan (t)

Pigeon (p) 30% 20%

Gull (g) 10% 40%
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ec
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s 

(s
)

Figure 3.10 Table of P(s, c), the joint probability of color and species.
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species, irrespective of its color:PðsÞ ¼ P2
j¼1Pðs, cjÞ. Likewise, ifwe sum the elements

of each column, we obtain the probability that the bird is a given color, irrespective

of its species: PðcÞ ¼ P2
i¼1Pðsi, cÞ (Figure 3.11).

Suppose that we observe the color of a bird but are not able to identify its species.

Given that its color is c, what is the probability that it is of species s ? This is called the
conditional probability of s given c and is written as P(sjc). We compute it by dividing

every element of P(s, c) by the total number of birds of that color (Figure 3.12):

PðsjcÞ ¼ Pðs, cÞP2
i¼1Pðsi, cÞ

¼ Pðs, cÞ
PðcÞ ð3:13Þ

Color (c)P(s,c) P(s)

Tan (t) White (w)
Sum
rows

30% 20% 50%Pigeon (p) Pigeon (p)

Gull (g) 10% 40% Gull (g) 50%

Sp
ec

ie
s 

(s
)

Sp
ec

ie
s 

(s
)

Sum
columns

P(c) Color (c)

Tan (t) White (w)

40% 60%

Figure 3.11 Computing P(s) and P(c) from P(s, c).

P(s,c) P(c|s)Color (c)
Divide
by row
sums

Color (c)

Tan (t) White (w) Tan (t) White (w)

Pigeon (p) 60% 40%

10% 40% 20% 80%Gull (g) Gull (g)

Divide by column sums
Color (c)P(s|c)

Tan (t) White (w)

Pigeon (p) 75% 33%

Pigeon (p) 30% 20%

Gull (g) 25% 67%Sp
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s 

(s
)
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Figure 3.12 Computing P(sjc) and P(cjs) from P(s, c).
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Alternatively, we could ask, given that its species is s, what is the probability that it is
of color c? This is the conditional probability of c given s, and is written as P(cjs). We

compute it by dividing every element of P(s, c) by the total amount of birds of that

species:

PðcjsÞ ¼ Pðs, cÞP2
j¼1Pðs, cjÞ

¼ Pðs, cÞ
PðsÞ ð3:14Þ

Equations (3.11) and (3.12) can be combined to give a very important result called

Bayes Theorem:

Pðs, cÞ ¼ PðsjcÞPðcÞ ¼ PðcjsÞPðsÞ ð3:15Þ

Bayes Theorem can also be written as

PðsjcÞ ¼ PðcjsÞPðsÞ
PðcÞ ¼ PðcjsÞPðsÞP

iPðsi, cÞ
¼ PðcjsÞPðsÞP

iPðcjsiÞPðsiÞ

PðcjsÞ ¼ PðsjcÞPðcÞ
PðsÞ ¼ PðsjcÞPðcÞP

jPðs, cjÞ
¼ PðsjcÞPðcÞP

jPðsjcjÞPðcjÞ

ð3:16Þ

Note that we have used the following relations:

PðcÞ ¼ P
i Pðsi, cÞ ¼

P
i PðcjsiÞPðsiÞ

PðsÞ ¼ P
j Pðs, cjÞ ¼

P
j PðsjcjÞPðcjÞ

ð3:17Þ

Note that the two conditional probabilities are not equal; that is, P(sjc) 6¼P(cjs). Con-
fusion between the two is a major source of error in both scientific and popular circles!

For example, the probability that a person who contracts pancreatic cancer “C” will
die “D” from it is very high, P(DjC) � 90%. In contrast, the probability that a dead

person succumbed to pancreatic cancer, as contrasted to some other cause of death, is

much lower, P(CjD) � 1.4%. Yet, the news of a person dying of pancreatic cancer

usually provokes more fear among people who have no reason to suspect that they

have the disease than this low probability warrants (as after the tragic death of actor

Patrick Swayze in 2009). They are confusing P(CjD) with P(DjC).

3.7 Bayesian inference

Suppose that we are told that an observer on the island has sighted a bird. We want to

know whether it is a pigeon. Before being told its color, we can only say that the prob-

ability of its being a pigeon is 50%, because pigeons comprise 50% of the birds on the
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island. Now suppose that the observer tells us the bird is tan. We can use Bayes

Theorem (Equation 3.12) to update our probability estimate:

Pðs¼ pjc¼ tÞ ¼ Pðc¼ tjs¼ pÞPðs¼ pÞ
Pðc¼ tjs¼ pÞPðs¼ pÞ þPðc¼ tjs¼ gÞPðs¼ gÞ

¼ 0:60� 0:5

0:60� 0:5þ 0:20� 0:5
¼ 0:30

0:40
¼ 75% ð3:18Þ

The probability that it is a pigeon improves from 50% to 75%. Note that the numerator

in Equation (3.18) is the percentage of tan pigeons, while the denominator is the per-

centage of tan birds. As we will see later, Bayesian inference is very widely applied as

a way to assess how new measurements improve our state of knowledge.

3.8 Joint probability density functions

All of the formalism developed in the previous section for discrete probabilities

carries over to the case where the observations are continuously changing variables.

With just two observations, d1 and d2, the probability that the observations are near

(d1, d2) is described by a two-dimensional probability density function, p(d1, d2).
Then, the probability, P, that d1 is between d1

L and d1
R, and d2 is between d2

L and

d2
R is given as follows:

PðdL1 , dR1 , dL2 , dR2 Þ ¼
ðdR

1

dL
1

ðdR
2

dL
2

pðd1, d2Þ dd1dd2 ð3:19Þ

The probability density function for one datum, irrespective of the value of the other,

can be obtained by integration (Figure 3.13):

pðd1Þ ¼
ðdmax

2

dmin
2

pðd1, d2Þdd2 and pðd2Þ ¼
ðdmax

1

dmin
1

pðd1, d2Þ dd1 ð3:20Þ

Here, d1
min, d2

max is the overall range of d1 and d2
min, d2

max is the overall range of d2.
Note that the joint probability density function is normalized so that the total proba-

bility is unity:

Pðdmin
1 , dmax

1 , dmin
2 , dmax

2 Þ ¼
ðdmax

1

dmin
1

ðdmax
2

dmin
2

pðd1, d2Þ dd1dd2 ¼ 1 ð3:21Þ

The mean and variance are computed in a way exactly analogous to a univariate prob-

ability density function:

�d1 ¼
ð ð

d1 pðd1,d2Þ dd1 dd2 and �d2 ¼
ð ð

d2 pðd1,d2Þ dd1 dd2

s21 ¼
ð ð

ðd1 � �d1Þ2 pðd1,d2Þ dd1 dd2 and s22 ¼
ð ð

ðd2 � �d2Þ2 pðd1,d2Þ dd1 dd2
ð3:22Þ

Probability and what it has to do with data analysis 49



Note, however, that these formulas can be simplified to just the one-dimensional for-

mulas (Equation 3.4), as the factors multiplying p(d1, d2) can be moved outside of one

integral. The interior integral then reduces p(d1, d2) to p(d1):

�d1 ¼
ð ð

d1pðd1, d2Þ dd1 dd2 ¼
ð
d1

ð
pðd1, d2Þ dd2 dd1 ¼

ð
d1pðd1Þ dd1

s21 ¼
ð ð

ðd1 � �d1Þ2 p d1, d2ð Þ dd1 dd2 ¼
ð
ðd1 � �d1Þ2

ð
pðd1, d2Þ dd2 dd1

¼
ð
ðd1 � �d1Þ2 p d1ð Þ dd1 ð3:23Þ

and similarly for �d2 and s22. InMatLab, we represent the joint probability density func-
tion, p(d1, d2), as the matrix, P, where d1 varies along the rows and d2 along the col-

umns. Normally, we would choose d1 and d2 to be evenly sampled with spacing Dd so

that they can be represented by column vectors of length, L. A uniform probability

density function is then computed as follows:

d1 ¼ Dd*[0:L�1]0;
d2 ¼ Dd*[0:L�1]0;
P ¼ ones(L,L);

norm ¼ (Dd^2)*sum(sum(P));

P ¼ P/norm; (MatLab eda03_10)

Note that the sum of all the elements of a matrix P is sum(sum(P)). The first sum()

returns a row vector of column sums and the second sums up that vector and produces

a scalar.

d1

d2

d1

Integrate 
over d2

Integrate 
over d1

d2

p(d1,d2)

p(d2)

p(d1)
Figure 3.13 Computing the

univariate probability density

functions, p(d1) and p(d2), from
the joint probability density

function, p(d1, d2). MatLab script
eda03_09
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An example of a spatially variable probability density function is

pðd1, d2Þ ¼ 1

2ps1s2
exp �ðd1 � �d1Þ2

2s21
� ðd2 � �d2Þ2

2s22

( )
ð3:24Þ

where �d1, �d2, s21, and s22 are constants. This probability density function is a general-

ization of the Normal probability density functions, and is defined so that the �d1 and �d2
are means and the s21 and s

2
2 are variances. We will discuss it in more detail, below. In

MatLab, this probability density function is computed:

d1 ¼ Dd*[0:L�1]0;
d2 ¼ Dd*[0:L�1]0;
norm¼1/(2*pi*s1*s2);

p1¼exp(�((d1�d1bar).^2)/(2*s1*s1));

p2¼exp(�((d2�d2bar).^2)/(2*s2*s2));

P¼norm*p1*p20; (MatLab eda03_11)

Here, d1bar, d2bar, s1, and s2 correspond to �d1, �d1, s21, and s22, respectively. Note
that we have made use here of a vector product of the form, p1*p20, which creates a

matrix, P, whose elements are Pij ¼ pipj.
In MatLab, the joint probability density function is reduced to a univariate prob-

ability density function by using the sum() function to approximate an integral:

% sum along columns, which integrates P along d2 to get p1¼p(d1)

p1 ¼ Dd*sum(P,2);

% sum along rows, which integrates P along d1 to get p2¼p(d2)

p2 ¼ Dd*sum(P,1)0;

The mean is then calculated as

d1mean ¼ Dd*sum(d1 .* p1 );

d2mean ¼ Dd*sum(d2 .* p2 ); (MatLab eda03_12)

and the variance is computed as

sigma12 ¼ Dd*sum( ((d1-d1mean).^2) .* p1 );

sigma22 ¼ Dd*sum( ((d2-d2mean).^2) .* p2 ); (MatLab eda03_13)

Finally, we define the conditional probability density functions, p(d1jd2) and p(d2jd1)
in a way that is analogous to the discrete case (Figure 3.14). Bayes Theorem then be-

comes as follows:

pðd1jd2Þ ¼ pðd2jd1Þ pðd1Þ
pðd2Þ ¼ pðd2jd1Þ pðd1ÞÐ

pðd1, d2Þ dd1 ¼
pðd2jd1Þ pðd1ÞÐ
pðd2jd1Þ pðd1Þ dd1

pðd2jd1Þ ¼ pðd1jd2Þ pðd2Þ
pðd1Þ ¼ pðd1jd2Þ pðd2ÞÐ

pðd1, d2Þ dd2 ¼
pðd1jd2Þ pðd2ÞÐ
pðd1jd2Þ pðd2Þ dd2

ð3:25Þ
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Here, we have relied on the relations

pðd1, d2Þ ¼ pðd1jd2Þpðd2Þ and pðd1Þ ¼
ð
pðd1, d2Þ dd2 ¼

ð
pðd1jd2Þ pðd2Þ dd2

pðd1, d2Þ ¼ pðd2jd1Þpðd1Þ and pðd2Þ ¼
ð
pðd1, d2Þ dd1 ¼

ð
pðd2jd1Þ pðd1Þ dd1

ð3:26Þ
In MatLab, the conditional probability density functions are computed using

Equation (3.23):

% sum along columns, which integrates P along d2 to get p1¼p(d1)

p1 ¼ Dd*sum(P,2);

% sum along rows, which integrates P along d1 to get p2¼p(d2)

p2 ¼ Dd*sum(P,1)0;
% conditional distribution P1g2 ¼ P(d1jd2) ¼ P(d1,d2)/p2

P1g2 ¼ P ./ (ones(L,1)*p20);
% conditional distribution P2g1 ¼ P(d2jd1) ¼ P(d1,d2)/p1

P2g1 ¼ P ./ (p1*ones(L,1)0); (MatLab eda03_14)

Note that the MatLab sum() function, when operating on a matrix, returns a column

vector of row sums or a row vector of column sums, depending on whether its second

argument is 1 or 2, respectively.

3.9 Covariance

In addition to describing the behavior of d1 and d2 individually, the joint probability
density function p(d1, d2) also describes the degree to which they correlate. The se-

quence of pairs of measurements, (d1, d2), might contain a systematic pattern where

unusually high values of d1 occur along with unusually high values of d2, and unusu-

ally low values of d1 occur along with unusually low values of d2. In this case, d1 and
d2 are said to be positively correlated (Figure 3.15). Alternatively, high values of d1
can occur along with unusually low values of d2, and unusually low values of d1 can
occur along with unusually high values of d2. This is a negative correlation.

d1

d2
p(d1,d2) p(d1\d2)

d1

d2

d1

d2
p(d2,d1)

Figure 3.14 The joint probability density function, p(d1, d2), and the two conditional

probability density functions computed from it, p(d1jd2), and p(d2jd1). MatLab script eda03_14.
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These cases correspond to joint probability density functions, p(d1, d2), that have a

slanting ridge of high probability. Probability density functions that have neither a

positive nor a negative correlation are said to be uncorrelated.
Suppose that we divide the (d1, d2) plane into four quadrants of alternating sign,

centered on a typical value such as the mean, ð�d1, �d2Þ. A positively correlated prob-

ability density function will have most of its probability in the positive quadrants, and

a negatively correlated probability density function will have most of its probability in

the negative quadrants. This suggests a strategy for quantifying correlation: multiply

p(d1, d2) by a function, say s(d1, d2), that has a four-quadrant alternating sign pattern

and integrate (Figure 3.16). The resulting number quantifies the degree of correlation.

When sðd1, d2Þ ¼ ðd1 � �d1Þðd2 � �d2Þ, the result is called the covariance, s1,2:

s1, 2 ¼
ð ð

ðd1 � �d1Þðd2 � �d2Þ pðd1, d2Þ dd1 dd2 ð3:27Þ

d1

d2
Positive correlation

d1

d2

d1

d2
Negative correlation Uncorrelated

Figure 3.15 The observations d1 and d2 can have either a positive or a negative correlation or

be uncorrelated, according to the shape of the joint probability density function, p(d1, d2).
MatLab scripts eda03_15 and eda03_16.

d1

d2p(d1,d2)

d1

d2

d1

d2s(d1,d2) s(d1,d2) p(d1,d2)

+
+
−

−

Figure 3.16 Covariance is computed bymultiplying the probability density functions, p(d1, d2),
by the four-quadrant function, s(d1, d2), and integrating to obtain a number called the

covariance. In the positively correlated case shown, p(d1, d2) has more area in the positive

quadrants, so the covariance is positive. MatLab script eda03_17.
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In MatLab, the covariance is computed as follows:

% make the alternating sign function

S ¼ (d1�d1bar) * (d2�d2bar)0;
% form the product

SP ¼ S .* P;

% integrate

cov ¼ (Dd^2)*sum(sum(SP)); (MatLab eda03_17)

Here, d1 and d2 are column vectors containing d1 and d2 sampled with spacing, Dd.

The variance and covariance can be combined into a single quantity, the covariance

matrix, C, by defining

Cij ¼
ð ð

ðdi � �diÞðdj � �djÞpðd1, d2Þ dd1 dd2 ð3:28Þ

Its diagonal elements are the variances, s1
2 and s2

2, and its off-diagonal elements are

the covariance, s1,2. Note that the matrix, C, is symmetric.

3.10 Multivariate distributions

In the previous section, we have examined joint probability density functions of exactly

two observations, d1 and d2. In practice, the number of observations can be arbitrarily

large, (d1, . . . dN). The corresponding multivariate probability density function,

p(d1, . . . dN), gives the probability that a set of observations will be in the vicinity of

the point (d1, . . . dN). We will write this probability density function as p(d), where d

is a column-vector of observations d ¼ [d1, . . . dN]
T. The mean, �d, is a length-N

column-vector whose components are the means of each observation. The covariance

matrix,C, is a N� Nmatrix whose i-th diagonal element is the variance of observation,

di, and whose (i, j) off-diagonal element is the covariance of observations di and dj.

�di ¼
ð
di pðdÞdNd and Cij ¼

ð
ðdi � diÞðdj � djÞ pðdÞdNd ð3:29Þ

All the integrals are N-dimensional multiple integrals, which we abbreviate here

as
Ð
dNd.

3.11 The multivariate Normal distributions

The formula for a N-dimensional Normal probability density function with mean, �d,
and covariance matrix, C, is

pðdÞ ¼ 1

ð2pÞN=2jCj�/�
expf��/�ðd� �dÞTC�1ðd� �dÞg ð3:30Þ
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where jCj is the determinant of the covariance matrix,C, andC�1 is its matrix inverse.

This probability density function bears a resemblance to the univariate Normal prob-

ability density function (Equation 3.5)—indeed it reduces to it in the N ¼ 1 case.

Equation (3.30) can be understood in the following way: The leading factor of

(2p)�N/2jCj��/� is just a normalization factor, chosen so that
Ð
pðdÞdNd ¼ 1. The rest

of the equation is the key part of the Normal curve, and contains, as expected, an ex-

ponential whose argument is quadratic in d. The most general quadratic that can be

formed from d is ðd� d0ÞMðd� d0ÞT, where d’ is an arbitrary vector and M is an

arbitrary matrix. The specific choices d0 ¼ �d andM¼C�1 are controlled by the desire

to have the mean and covariance of the probability density function be exactly �d and

C, respectively. Therefore, we need only to convince ourselves that Equation (3.27)

has the requisite total probability, mean, and covariance.

Surprisingly, given the complexity of Equation (3.27), these requirements can be

easily checked by direct calculation. All that is necessary is to transform the proba-

bility density function to the new variable y ¼ C��/� ðd� �dÞ and perform the requisite

integrations. However, in order to proceed, we need to recall that the rule for trans-

forming a multidimensional integral (the analog to Equation 3.7) is

ð
pðdÞdNd ¼

ð
pðdðyÞÞj @d

@y
jdNy ¼

ð
pðdðyÞÞ JðyÞdNy ð3:31Þ

where JðyÞ ¼ j@d=@yj is the Jacobian determinant; that is, the determinant of the

matrix whose elements are @di=@yj. (The rule, dNd ¼ j@d=@yjdNy is a multidimen-

sional generalization of the ordinary chain rule, dd ¼ jdd/dyjdy). In our case,

y ¼ C��/� ðd� �dÞ and j@d=@yj ¼ jCj�/� . Then, the area under p(d) is

ð
pðdÞdNd ¼ 1

ð2pÞN=2jCj�/�
ð
expf��/�yTygjCj�/�dNy

¼ 1

ð2pÞN=2
ð
expf��/�yTygdNy

¼
YN

i¼1

ð
1

ð2pÞ�/� expf��/�y2i gdyi ¼
YN

i¼1
1 ¼ 1 ð3:32Þ

Note that the factor of jCj�/� arising from the Jacobian determinant cancels the jCj��/� in

the normalization factor. As the final integral is just a univariate Normal probability

density function with zero mean and unit variance, its integral (total area) is unity.

We omit here the integrals for the mean and covariance. They are algebraically more

complex but are performed in an analogous fashion.

We run into a notational difficulty when computing a multivariate Normal prob-

ability density function in MatLab, of the sort that is frequently encountered when

coding numerical algorithms. Heretofore, we have been using column vectors starting

with lower-case “d” names, such as d1 and d2, to represent quantities sampled at
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L evenly spaced increments (d1 and d2 in this case). Now, however, the equation for

the Normal probability density function (Equation 3.30) requires us to group corre-

sponding ds into an N-vector, d ¼ [d1, d2, . . . dN]
T, which appears in the matrix mul-

tiplication, ðd� �dÞTC�1ðd� �dÞ. Thus, we are tempted to define quantities that will

also have lower-case “d” names, but will be N-vectors, which violates the naming con-

vention. Furthermore, the MatLab syntax becomes more inscrutable, for the N � N
matrix multiplication needs to be performed at each of L2 combinations of (d1, d2)
in order to evaluate p(d1, d2) on a L� L grid. There is no really good way around these

problems, but we put forward two different strategies for dealing with them.

The first is to use only L-vectors, and explicitly code the N � N matrix multipli-

cation, instead of having MatLab perform it. The N ¼ 2 case needed for the two-

dimensional probability density function p(d1, d2) is

ðd� �dÞTC�1ðd� �dÞ
¼ ½C�1�11ðd1 � �d1Þ2 þ ½C�1�22ðd2 � �d2Þ2 þ 2½C�1�12ðd1 � �d1Þðd2 � �d2Þ

ð3:33Þ
Note that we have made use of the fact that the covariance matrix, C, is symmetric.

The MatLab code for the Normal probability density function is then

CI¼inv(C);

norm¼1/(2*pi*sqrt(det(C)));

dd1¼d1�d1bar;

dd2¼d2�d2bar;

P¼norm*exp(�0.5*CI(1,1)*(dd1.^2)*ones(N,1)0 . . .
�0.5*CI(2,2)*ones(N,1)*(dd2.^2)0 . . .
�CI(1,2)*dd1*dd20); (MatLab eda03_15)

Here, C is the covariance matrix, and d1 and d2 are d1 and d2 sampled at L evenly

spaced increments.

The second strategy is to define both L-vectors and N-vectors and to use the

N-vectors to compute ðd� �dÞTC�1ðd� �dÞ using the normal MatLab syntax for

matrix multiplication. In the N ¼ 2 case, the 2-vectors must be formed explicitly

for each of the L � L pairs of (d1, d2), which is best done inside a pair of for loops:

CI¼inv(C);

norm¼1/(2*pi*sqrt(det(C)));

P¼zeros(L,L);

for i ¼ [1:L]

for j ¼ [1:L]

dd ¼ [d1(i)�d1bar, d2(j)�d2bar]0;
P(i,j)¼norm*exp(�0.5 * dd0 * CI * dd );

end

end (MatLab eda03_16)

The outer for loop corresponds to the L elements of d1 and the inner to the L elements

of d2. The code for the second method is arguably a little more transparent than the

code for the first, and is probably the better choice, especially for beginners.
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3.12 Linear functions of multivariate data

Suppose that a column-vector of model parameters, m, is derived from a column-

vector of observations, d, using the linear formula,m¼Md, whereM is some matrix.

Suppose that the observations are random variables with a probability density func-

tion, p(d), with mean, �d, and covariance, Cd. The model parameters are random vari-

ables too, with probability density function, p(m). We would like to derive the

functional form of the probability density function, p(m), as well as calculate its mean,
�m, and covariance, Cm.

If p(d) is a Normal probability density function, then p(m) is also a Normal prob-

ability density function, as can be seen by transforming p(d) to p(m) using the rule (see

Equation 3.31):

pðdÞ ¼ pðdðmÞÞ @d

@m

����
���� ¼ pðdðmÞÞ JðmÞ ð3:34Þ

As m ¼ Md, the Jacobian determinant is JðmÞ ¼ j@d=@mj ¼ jM�1j ¼ jMj�1
. Then:

pðmÞ¼ p d mð Þð Þ J mð Þ
¼ 1

ð2pÞN=2jCdj�/� jMj
expf��/�ðM�1m�M�1M�dÞTC�1

d ðM�1m�M�1M�dÞg

¼ 1

ð2pÞN=2jMCdM
Tj�/�

expf��/�ðm�M�dÞT½M�1TC�1
d M�1�ðm�M�dÞg

¼ 1

ð2pÞN=2jCmj�/�
expf��/�ðm� �mÞTC�1

m ðm� �mÞg

where �m¼M�d and C�1
m ¼M�1TC�1

d M�1 ð3:35Þ

Note that we have used the identities (AB)T ¼ BTAT, (AB)�1 ¼ B�1A�1, jABj ¼
jAj jBj, jCTj ¼ jCj, and jC�1j ¼ jCj�1. Thus, the transformed mean and covariance

matrix are given by the simple rule

�m ¼ M�d and Cm ¼ MCdM
T ð3:36Þ

Equation (3.36) is very important, for it shows how to calculate the mean and covari-

ance matrix of the model parameters, given the mean and variance of the data. The

covariance formula,Cm ¼ MCdM
T, can be thought of as a rule for error propagation.

It links error in the data to error in the model parameters. The rule is shown to be true

even when M is not square and when M�1 does not exist (see Note 3.1).

As an example, consider the case where wemeasure themasses of two objectsA and

B, by first putting A on a scale and then adding B, without first removing A. The

observation, d1, is the mass of object A and the observation d2 is the combined

mass of objects A and B. We assume that the measurements are a random process

with probability density function p(d1, d2), with means �d1 and �d2, variance, sd
2, and
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covariance, s1,2 ¼ 0. Note that both variances are the same, indicating that both mea-

surements have the same amount of error, and that the covariance is zero, indicating that

the two measurements are uncorrelated. Suppose that we want to compute the mass of

objectB and the difference inmasses of objectsB andA. Then,B¼ (Bþ A)�A!m1¼
d2 � d1, and B � A ¼ (B þ A) � 2A ! m2 ¼ d2 � 2d1. The matrix, M, is given by

M ¼ �1 1

�2 1

� �
ð3:37Þ

The mean is

�m¼M�d¼ �1 1

�2 1

� �
�d1
�d2

� �
or �m1 ¼ �d2 � �d1 and �m2 ¼ �d2 � 2�d1 ð3:38Þ

The covariance matrix is

Cm ¼ MCdM
T ¼ �1 1

�2 1

� �
s2d 0

0 s2d

� � �1 �2

1 1

� �
¼ s2d

2 3

3 5

� �

or

s2m1
¼ 2s2d and s2m2

¼ 5s2d and sm1, 2 ¼ 3s2d ð3:39Þ

Note that the ms have unequal variance even though the variances of the ds are equal,
and that thems have a non-zero covariance even though the covariance of the ds is zero
(Figure 3.17). This process of forming model parameters from data often results in

d1

p(d1,d2)

40

0

400 d2

m1

p(m1,m2)

20

−20

20−20 m2

Figure 3.17 The joint probability density functions, p(d1, d2) and p(m1, m2) where

m ¼ Md. See the text for the value of the matrix, M. The data, (d1, d2), have mean (15, 25),

variance (5, 5), and zero covariance. The model parameters, (m1, m2), have mean (10, �5),

variance (10, 25), and covariance, 15. MatLab script eda03_18.
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variances and degrees of correlation that are different from the underlying data. Depend-

ing on the situation, variance can be either reduced (good) or amplified (bad).While data

are often observed through a measurement process that has uncorrelated errors (good),

themodel parameters formed fromthemusually exhibit strongcorrelations (not sogood).

The rule for the mean and variance (Equation 3.33) is true even when the under-

lying probability density function, p(m), is not Normal, as can be verified by a calcu-

lation analogous to that of Equations (3.9) and (3.10):

�mi ¼
ð
mi pðmÞ dNm

¼
ðP

j Mijdj pðdÞ dNd

¼ P
j Mij

Ð
dj pðdÞdNd ¼ P

j Mij
�dj or �m ¼ M�d ð3:40Þ

½Cm�ij ¼
ð
ðmi � �miÞðmj � �mjÞpðmÞdNm

¼
ðP

p Mipðdp � �dpÞ
P

q Mjqðdq � �dqÞpðdÞdNd

¼ P
p Mip

P
qMjq

ð
ðdp � �dpÞðdq � �dqÞpðdÞdNd

¼ P
p Mip

P
qMjq½Cm�pq or Cm ¼ MCdM

T

ð3:41Þ

Here, we have used the fact that

pðmÞdNm ¼ pðmðdÞÞj@m=@djj@d=@mjdNd ¼ pðdÞdNd: :

In the case of non-Normal probability density functions, these results need to be

used cautiously. The relationship between variance and confidence intervals (e.g.,

the amount of probability falling between m1 � sm1 and m1 þ sm1) varies from

one probability density function to another.

Even in the case of Normal probability density functions, statements about confi-

dence levels need to be made carefully, as is illustrated by the following scenario.

Suppose that p(d1, d2) represents the joint probability density function of twomeasure-

ments, say the height and length of an organism, and suppose that these measurements

are uncorrelated with equal variance, sd
2. As we might expect, the univariate proba-

bility density function pðd1Þ ¼
Ð
pðd1, d2Þdd2, has variance, sd2, and so the probabil-

ity, P1, that d1 falls between d1 � sd and d1 þ sd is 0.6827 or 68.27%. Likewise, the

probability, P2, that d2 falls between d2� sd and d2þ sd is also 0.6827 or 68.27%. But

P1 represents the probability of d1 irrespective of the value of d2 and P2 represents the

probability of d2 irrespective of the value of d1. The probability, P, that both d1 and d2
simultaneously fall within their respective one-sigma confidence intervals is P¼ P1P2

¼ (0.6827)2 ¼ 0.4660 or 46.60%, which is significantly smaller than 68.27%.
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Problems

3.1 The univariate probability density function p(d) ¼ c(1 � d) is defined on the interval

0� d� 1. (A)What must the constant, c, be for the probability density function to be prop-
erly normalized? (B) Calculate the mode, median, and mean of this probability density

function analytically.

3.2 The univariate exponential probability density function is p(d)¼ lexp(�ld) where d is de-
fined on the interval 0 � d < 1. The parameter, l, is called the rate parameter. (A) Use
MatLab to plot shaded column-vectors of this probability density function and to compute

its mode, median, mean, and variance, for the cases l ¼ 5 and l ¼ 10. (B) Is it possible to

control the mean and variance of this probability density function separately?

3.3 Suppose that p(d) is a Normal probability density function with zero mean and unit vari-

ance. (A) Derive the probability density function ofm¼ jdj�/�, analytically. (B) UseMatLab
to plot shaded column-vectors of this probability density function and to compute its mode,

median, mean, and variance.

3.4 Suppose that a corpse is brought to a morgue and the coroner is asked to assess the prob-

ability that the cause of death was pancreatic cancer (as contrasted to some other cause of

death). Before examining the corpse, the best estimate that the coroner can make is 1.4%,

the death rate from pancreatic cancer in the general population. Now suppose the coroner

performs a test for pancreatic cancer that is 99% accurate, both in the sense that if test re-

sults are positive the probability is 99% that the cause of death was pancreatic cancer, and if

they are negative the probability is 99% that the cause of death was something else. Let the

cause of death be represented by the variable, D, which can take two discrete values, C, for
pancreatic cancer and E, for something else. The test is represented by the variable, T,
which can take two values, Y for positive and N for negative. (A) Write down the 2 � 2

table of the conditional probabilities P(DjT). (B) Suppose the test results are positive.

Use Bayesian Inference to assess the probability that the cause of death was pancreatic can-

cer. (C) How can the statement that the test is 99% accurate be used in a misleading way?

3.5 Suppose that two measurements, d1 and d2, are uncorrelated and with equal variance, sd
2.

What is the variance and covariance of two model parameters, m1 and m2, that are the sum

and difference of the ds?
3.6 Suppose that the vectors, d, of N measurements are uncorrelated and with equal variance,

sd
2. (A) What is the form of the covariance matrix, Cd? (B) Suppose that m ¼ Md. What

property mustM have to make them’s, as well as the d’s, uncorrelated? (C) Does the matrix

from Problem 3.5 have this property?
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4.1 Quantitative models, data, and model parameters

The purpose of any data analysis is to gain knowledge through a systematic examina-

tion of the data. While knowledge can take many forms, we assume here that it

is primarily numerical in nature. We analyze data to infer, as best we can, the values

of numerical quantities—model parameters, in the parlance of this book. The infer-

ence process is possible because the data and model parameters are linked through

a quantitative model. In the very broadest sense, the model parameters and the data

are linked though a functional relationship:

the data ¼ a function of the model parameters

or

d1 ¼ g1ðm1,m2, . . .,mMÞ
d2 ¼ g2ðm1,m2, . . .,mMÞ
..
.

dN ¼ gNðm1,m2, . . .,mMÞ
or

di ¼ giðm1,m2, . . .,mMÞ
or

d ¼ gðmÞ ð4:1Þ
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The data are represented by a length-N vector, d, and the model parameters by a length-

M column vector, m. The function, g(m), that relates them is called the quantitative
model. We may find, however, that no prediction of the model, regardless of the value

of m that is used, matches the observations, dobs, because of observational noise.

Then, Equation (4.1) must be understood in a more abstract sense: if we knew the true

values,mtrue, of themodel parameters, thenwe could make predictions, dpre, of data that

would match those obtained through noise-free observations, were such observations

possible. Alternatively, we could write Equation (4.1) as d ¼ g(m) þ n, where the

length-N column vector, n, represents measurement noise.

The function, d ¼ g(m), can be arbitrarily complicated. However, in very many

important cases it is either linear or can be approximated as linear. In those cases,

Equation (4.1) simplifies to

the data ¼ a linear function of the model parameters

or

di ¼ Gi1m1 þ Gi2m2 þ � � � þ GiMmM

or

d1 ¼ G11m1 þ G12m2 þ � � � þ G1MmM

d2 ¼ G21m1 þ G22m2 þ � � � þ G2MmM

..

.

dN ¼ GN1m1 þ GN2m2 þ � � � þ GNMmM

or

d1

d2
d3
� � �
dN

2
666664

3
777775
¼

G11 G12 G13 � � � G1M

G21 G22 G23 � � � G2M

G31 G32 G33 � � � G3M

� � � � � � � � � � � � � � �
GN1 GN2 GN3 � � � GNM

2
666664

3
777775

m1

m2

m3

� � �
mM

2
666664

3
777775

or

d ¼ Gm ð4:2Þ

Here, the matrix, G, contains the coefficients of the linear relationship. It relates

N data to M model parameters and so is N � M. The matrix, G, is often called the

data kernel. In most typical cases, N 6¼ M, so G is not a square matrix (and, conse-

quently, has no inverse).

Equation (4.2) can be used in several complementary ways. If the model parame-

ters are known—let us call them mest—then Equation (4.2) can be evaluated to pro-

vide a prediction of the data:

dpre ¼ Gmest ð4:3Þ

62 Environmental Data Analysis with MatLab



Alternatively, if the data are observed—we call them dobs—then Equation (4.2) can be

solved to determine an estimate of the model parameters:

find the mest so that dobs � Gmest ð4:4Þ

Note that an estimate of the model parameters will not necessarily equal their true

value, that is, mest 6¼ mtrue because of observational noise.

4.2 The simplest of quantitative models

The simplest linear model is that in which the data are all equal to the same constant.

This is the case of repeated observations, in which we make the same measurement

N times. It corresponds to the equation

the data ¼ a constant

or

d1
d2
d3

..

.

dN

2
6666664

3
7777775
¼

1

1

1

..

.

1

2
666664

3
777775
½m1�

or

d ¼ Gm ð4:5Þ

Here, the constant is given by the single model parameter, m1 so thatM¼ 1. The data
kernel is the matrix, G ¼ [1, 1, 1, . . ., 1]T. In practice, N observations of the same

thing actually would result in N different ds because of observational error.

Thus, Equation (4.5) needs to be understood in the abstract sense: if we knew the value

of the constant, m1, and if the observations, d, were noise-free, then they would all

satisfy di ¼ m1. Alternatively, we could write Equation (4.5) as d ¼ Gm þ n, where

the length-N column vector, n, represents measurement noise.

Far from being trivial, this one-parameter model is arguably the most important of

all the models in data analysis. It is equivalent to the idea that the data scatter around

an average value. As we will see later on in this chapter, when the observational data

are Normally distributed, a good estimate of the model parameter, m1, is the sample

mean, �d:

mest
1 ¼ �d ¼ 1

N

XN
i¼1

di ð4:6Þ
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4.3 Curve fitting

Another simple but important model is the idea that the data fall on—or scatter

around—a straight line. The data are assumed to satisfy the relationship

the data ¼ a linear function of x

or

di ¼ m1 þ m2xi

or

d1
d2
d3
..
.

dN

2
666664

3
777775
¼

1 x1
1 x2
1 x3
..
. ..

.

1 xN

2
666664

3
777775

m1

m2

� �

or

d ¼ Gm ð4:7Þ

Here, m1 is the intercept and m2 is the slope of the line. In order for this relation-

ship to be linear in form, the data kernel, G, must not contain any data or model

parameters. Thus, we must assume that the x’s are neither model parameters nor

data, but rather auxiliary parameters whose values are exactly known. This may

be an accurate, or nearly accurate, assumption in cases where the xs represent dis-
tance or time as, compared to most other types of data, time and distance can be

determined so accurately as to have negligible error. In other cases, it can be a poor

assumption.

A MatLab script that creates this data kernel is

M¼2;

G¼zeros(N,M);

G(:,1)¼1;

G(:,2)¼x; (MatLab eda04_01)

where x is a column vector of length M of x’s. Note the call to zeros(N,M), which cre-

ates a matrix with N rows and M columns. Strictly speaking, this command is not

necessary, but it helps in bug detection.

The formula for a straight line can easily be generalized to any order polynomial,

by simply adding additional model parameters that represent the coefficients of higher

powers of x’s and by adding corresponding columns to the data kernel containing

powers of the x’s. For example, the quadratic case has M ¼ 3 model parameters,

m ¼ [m1, m2, m3]
T, and the equation becomes
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the data ¼ a quadratic function of x’s

or

di ¼ m1 þ m2xi þ m3xi
2

or

d1
d2
d3
..
.

dN

2
666664

3
777775
¼

1 x1 x1
2

1 x2 x2
2

1 x3 x3
2

..

. ..
. ..

.

1 xN xN
2

2
666664

3
777775

m1

m2

m3

2
4

3
5

or

d ¼ Gm ð4:8Þ
A MatLab script that creates this data kernel is

M¼3;

G¼zeros(N,M);

G(:,1)¼1;

G(:,2)¼x;

G(:,3)¼x.^2; (MatLab eda04_02)

where x is a column vector of length M of x’s. Note the use of the element-wise

multiplication, x.^2, which creates a column vector with elements, xi
2. The data

kernel for the case of a polynomial of arbitrary degree is computed as

G¼zeros(N,M);

G(:,1) ¼ 1; % handle first column individually

for i ¼ [2:M] % loop over remaining columns

G(:,i) ¼ x .^ (i�1);

end (MatLab eda04_03)

This method is not limited to polynomials; rather, it can be used to represent any curve

of the form

the data ¼ a sum of functions, f , of known form

or

di ¼ m1f1ðxiÞ þ m2f2ðxiÞ þ � � � þ mM fMðxiÞ
or

d1
d2
d3
..
.

dN

2
666664

3
777775
¼

f1ðx1Þ f2ðx1Þ � � � fMðx1Þ
f1ðx2Þ f2ðx2Þ � � � fMðx2Þ
f1ðx3Þ f2ðx3Þ � � � fMðx3Þ

..

. ..
. ..

. ..
.

f1ðxNÞ f2ðxNÞ � � � fMðxNÞ

2
666664

3
777775

m1

m2

..

.

mM

2
6664

3
7775 ð4:9Þ
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Note that the model parameter, mj, represents the amount of the function, fj, in the

representation of the data.

One important special case—called Fourier analysis—is the modeling of data with

a sum of cosines and sines of different wavelength, li:

the data¼ a sum of cosines and sines

or

di ¼m1cos
2pxi
l1

0
@

1
Aþm2sin

2pxi
l1

0
@

1
Aþ � � �þmM�1cos

2pxi
lM=2

0
@

1
AþmMsin

2pxi
lM=2

0
@

1
A

or d¼Gm with

G¼

cos
2px1
l1

0
@

1
A sin

2px1
l1

0
@

1
A cos

2px1
l2

0
@

1
A sin

2px1
l2

0
@

1
A � � � cos

2px1
lM=2

0
@

1
A sin

2px1
lM=2

0
@

1
A

cos
2px2
l1

0
@

1
A sin

2px2
l1

0
@

1
A cos

2px2
l2

0
@

1
A sin

2px2
l2

0
@

1
A � � � cos

2px2
lM=2

0
@

1
A sin

2px2
lM=2

0
@

1
A

cos
2px3
l1

0
@

1
A sin

2px3
l1

0
@

1
A cos

2px3
l2

0
@

1
A sin

2px3
l2

0
@

1
A � � � cos

2px3
lM=2

0
@

1
A sin

2px3
lM=2

0
@

1
A

..

. ..
. ..

. ..
. ..

. ..
. ..

.

cos
2pxN
l1

0
@

1
A sin

2pxN
l1

0
@

1
A cos

2pxN
l2

0
@

1
A sin

2pxN
l2

0
@

1
A � � � cos

2pxN
lM=2

0
@

1
A sin

2pxN
lM=2

0
@

1
A

2
66666666666666666666664

3
77777777777777777777775

ð4:10Þ
As we will discuss in more detail in Section 6.1, we normally choose pairs of sines and

cosines of the same wavelength, li. The total number of model parameters isM, which

represents the amplitude coefficients of the M/2 sines and M/2 cosines.

A MatLab script that creates this data kernel is

G¼zeros(N,M);

Mo2¼M/2;

for i ¼ [1:Mo2]

ic ¼ 2*i�1;

is ¼ 2*i;

G(:,ic) ¼ cos( 2*pi*x/lambda(i) );

G(:,is) ¼ sin( 2*pi*x/lambda(i) );

end (MatLab eda04_04)

This example assumes that the column vector of wavelengths, lambda, omits the

lambda¼0 case, as it would cause a division-by-zero error. We use the variable wave-
number, k¼ 2p/l, instead of wavelength, l, in subsequent discussions of Fourier sums

to avoid this problem.

Gray-shaded versions of the polynomial and Fourier data kernels are shown in

Figure 4.1.
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4.4 Mixtures

Suppose that we view the data kernel as a concatenation of its columns, say c(j)

(Figure 4.2):

the data kernel¼ a concatenation of column-vectors

or

G¼
G11 G12 G13

G21 G22 G23

G31 G32 G33

2
4

3
5¼

G11

G21

G31

2
4

3
5 G12

G22

G32

2
4

3
5 G13

G23

G33

2
4

3
5

2
4

3
5¼ ½cð1Þ cð2Þ cð3Þ �

ð4:11Þ

i

(A)

i

j

(B)
1 M1 M

11

N
N

j

Figure 4.1 Grey-shaded plot of the data kernel,G, for the (A) polynomial and (B) Fourier cases.

i

1 M

1

N

G c(1) c(2) c(3) c(4) c(M)

Figure 4.2 The data kernel,G, can be thought of as a concatenation of itsM columns, c(j), each

of which is a column vector. MatLab script eda04_05.

The power of linear models 67



Then the equation d¼Gm can be understood to mean that d is constructed by adding

together the columns of G in proportions specified by the model parameters, mj:

the data ¼ a linear mixture of column-vectors

or

d ¼ m1c
ð1Þ þ m2c

ð2Þ þ m3c
ð3Þ þ . . .þ mMc

ðMÞ

or

d ¼ ½ cð1Þ cð2Þ cð3Þ �m ð4:12Þ

This summation can be thought of as a mixing process. The data are a mixture of the

columns of the data kernel. Each model parameter represents the amount of the cor-

responding column-vector in the mixture. Indeed, it can be used to represent literal

mixing. For example, suppose that a city has M major sources of pollution, such as

power plants, industrial facilities, vehicles (taken as a group), and so on. Each source

emits into the atmosphere its unique combination of N different pollutants. An air

sample taken from an arbitrary point within the city will then contain a mixture of

pollutants from these sources:

pollutants in air ¼ mixture of sources

or

pollutant 1 in air

pollutant 2 in air

pollutant 3 in air

..

.

pollutant N in air

2
6666664

3
7777775
¼ m1

pollutant 1 in source 1

pollutant 2 in source 1

pollutant 3 in source 1

..

.

pollutant N in source 1

2
6666664

3
7777775
þ � � � þ mM

pollutant 1 in sourceM

pollutant 2 in sourceM

pollutant 3 in sourceM

..

.

pollutant N in source M

2
6666664

3
7777775

ð4:13Þ

where the model parameters, mj, represent the contributions of the j-th source to the

pollution at that particular site. This equation has the form of Equation (4.12), and so

can be put into the form, d ¼ Gm, by concatenating the column vectors associated

with the sources into a matrix, G. Note that this quantitative model assumes that

the pollutants from each source are conservative, that is, the pollutants are mixed

as a group, with no individual pollutant being lost because of degradation, slower

transport, and so on.

4.5 Weighted averages

Suppose that we view the data kernel as a column vector of its rows, say r(i)

(Figure 4.2):
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the data kernel ¼ a concatenation of row-vectors

or

G ¼
G11 G12 G13

G21 G22 G23

G31 G32 G33

2
4

3
5 ¼

G11 G12 G13½ �
G21 G22 G23½ �
G31 G32 G33½ �

2
4

3
5 ¼

rð1Þ

rð2Þ

rð3Þ

2
4

3
5

ð4:14Þ

Then the equation, d¼Gm, can be understood to mean that the i-th datum, di, is con-
structed by taking the dot produce, r(i)m. For example, suppose that M ¼ 9 and

rð5Þ ¼ 0, 0, 0, �/� , �/� , �/� , 0, 0, 0½ � then d5 ¼ rð5Þm¼ �/�m4 þ �/�m5 þ �/�m6 ð4:15Þ
Thus, the 5-th datum is a weighted average of the 4-th, 5-th, and 6-th model

parameters. This scenario is especially useful when a set of observations are made

along one spatial dimension—a profile. Then, the data correspond to a smooth version

of the model parameters, with the amount of smoothing being described by the width

of averaging. The three-point averaging of Equation (4.15) corresponds to a data

kernel, G, of the form

G ¼

�/� �/� 0 0 0 0 0 0 0

�/� �/� �/� 0 0 0 0 0 0

0 �/� �/� �/� 0 0 0 0 0

0 0 �/� �/� �/� 0 0 0 0

0 0 0 �/� �/� �/� 0 0 0

0 0 0 0 �/� �/� �/� 0 0

0 0 0 0 0 �/� �/� �/� 0

0 0 0 0 0 0 �/� �/� �/�
0 0 0 0 0 0 0 �/� �/�

2
6666666666664

3
7777777777775

ð4:16Þ

Note that each row must sum to unity for the operation to represent a true weighted

average; otherwise, the average of three identical data would be unequal to their

common value. Thus, the top and bottom rows of the matrix pose a dilemma. A

three-point weighted average is not possible for these rows, because no m0 or

mMþ1 exists. This problem can be solved in two ways: just continue the pattern, in

which case these rows do not correspond to true weighted averages (as in

Equation 4.16), or use coefficients on those rows that make them true two-point

weighted averages (e.g., �/� and /̧� for the first row and /̧� and �/� for the last).

In MatLab, a data kernel, G, corresponding to a weighted average can be created

with the following script:

w ¼ [2, 1]0;
Lw ¼ length(w);

n ¼ 2*sum(w)�w(1);

w ¼ w/n;

r ¼ zeros(M,1); c ¼ zeros(N,1);

r(1:Lw)¼w; c(1:Lw)¼w;

G ¼ toeplitz(c,r); (MatLab eda04_06)
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We assume that the weighted average is symmetric around its central point, but allow

it to be of any length, Lw. It is specified in the column vector, w, which contains only

the central weight and the nonzero weights to the right of it. Only the relative size of

the elements of w is important, as the weights are normalized through computation of

and division by a normalization factor, n. Thus, w¼[2, 1]’ corresponds to the case

given in Equation (4.16). The matrix, G, is Toeplitz, meaning that all its diagonals

are constant, so it can be specified through its left column, c, and its top row, r, using

the toeplitz() function. Grey-scale images of the Gs for weighted averages of

different lengths are shown in Figure 4.3.

An important class of weighted averages that are not symmetric around the central

value is the causal filter, which appears in many problems that involve time. An

instrument, such as an aqueous oxygen sensor (a device that measures the oxygen

concentration in water), does not measure the present oxygen concentration, but rather

a weighted average of concentrations over the last few instants of time. This behavior

arises from a limitation in the sensor’s design. Oxygen must diffuse though a mem-

brane within the sensor before it can be measured. Hence, the sensor reading (obser-

vation, di) made at time ti is a weighted average of oxygen concentrations (model

parameters, mj), at times tj � ti. The weights are called filter coefficients, f, with

the data ¼ a weighted average of present and past values of m’s

or

di ¼ f1mi þ f2mi�1 þ f3mi�2 þ f4mi�3 þ � � � ð4:17Þ
The corresponding data kernel, G, has the following form:

G ¼

f1 0 0 0 0 . . .
f2 f1 0 0 0 . . .
f3 f2 f1 0 0 . . .
f4 f3 f2 f1 0 . . .
f5 f4 f3 f2 f1 . . .
. . . . . . . . . . . . . . . . . .

2
6666664

3
7777775

ð4:18Þ
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Figure 4.3 The data kernel, G, for weighted averages of different lengths. (A) Length of 3,

(B) 5, (C) 7. MatLab script eda04_06.

70 Environmental Data Analysis with MatLab



The data kernel, G, is both Toeplitz and lower triangular. For filters of length L, the
first L � 1 elements of d are inaccurately computed, because they require knowledge

of unavailable model parameters, those corresponding to times earlier than t1. We will

discuss filters in more detail in Chapter 7.

4.6 Examining error

Suppose that we have somehow obtained an estimate of the model parameters,mest—

for example, by guessing! One of the most important questions that can then be

asked is

How do the predicted data, dpre ¼ Gmest, compare with the observed data, dobs?

This question motivates us to define an error vector, e:

e ¼ dobs � dpre ¼ dobs �Gmest ð4:19Þ

When the error, ei, is small, the corresponding datum, di
obs, is well predicted and, con-

versely, when the error, ei, is large, the corresponding datum, di
obs, is poorly predicted.

A measure of total error, E, is as follows:

E ¼ eTe ¼ ½dobs �Gmest�T½dobs �Gmest� ð4:20Þ

The total error, E, is the length of the error vector, e, which is to say, the sum of squares

of the individual errors:

E ¼
XN
i¼1

e2i ð4:21Þ

The error depends on the particular choice of model parameters, m, so we can write

E(m). One possible choice of a best estimate of the model parameters is the choice for

which E(mest) is a minimum. This is known as the principle of least squares.
Plots of error are an extremely important tool for understanding whether a model

has the overall ability to fit the data as well as whether the dataset contains anomalous

points—outliers—that are unusually poorly fit. An example of the straight-line case is

shown in Figure 4.4.

In MatLab, the error is calculated as follows:

dpre ¼ G*mest;

e¼dobs�dpre;

E ¼ e0*e; (MatLab eda04_07)

where mest, dobs, and dpre are the estimated model parameters, mest, observed data,

dobs, and predicted data, dpre, respectively.

So far, we have not said anything useful regarding how one might arrive at a rea-

sonable estimate, mest, of the model parameters. In cases, such as the straight line,
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where the number of model parameters is small, one might try a grid search. The idea
is to systematically evaluate the total error, E(m), for many different m’s—a grid

of m’s—and choose mest as the m for which E(m) is the smallest (Figure 4.5). Note,

however, that the point of minimum error, Emin, is surrounded by a region of almost-

minimum error, that is, a region in which the error is only slightly larger than its value

at the minimum. Any m chosen from this region is almost as good an estimate as is

mest. As we will see in Section 4.9, this region defines confidence intervals for the

model parameters.

For a grid search to be effective, one must have a general idea of the value of

the solution, mest, so as to be able to choose the boundaries of a grid that contains

it. We note that a plot of the logarithm of error, ln[E(m)], is often visually more

effective than a plot of E(m), because it has less overall range.

In MatLab, a two-dimensional grid search is performed as follows:

% define grid

L1¼100; L2¼100;

m1min¼0; m1max¼4;

m2min¼0; m2max¼4;

m1¼m1minþ(m1max�m1min)*[0:L1�1]0/(L1�1);

m2¼m2minþ(m2max�m2min)*[0:L2�1]0/(L2�1);

% evaluate error at each grid point

E¼zeros(L1,L2);

for i ¼ [1:L1]

for j ¼ [1:L2]

15

10
di

pre

55 ei

di
obs

0

D
at

a 
(d

)

−5

−10

−6
−15

Auxiliary variable (x)
−4 −2 0 2 4 6

Figure 4.4 Observed data, dobs, predicted error, dpre, and error, e, for the case of a straight line.

MatLab script eda04_07.
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mest ¼ [ m1(i), m2(j) ]0;
dpre ¼ G*mest;

e ¼ dobs�dpre;

E(i,j) ¼ e0*e;
end

end

% search grid for minimum E

[Etemp, k] ¼ min(E);

[Emin, j] ¼ min(Etemp);

i¼k(j);

m1est ¼ m1(i);

m2est ¼ m2(j); (MatLab eda04_08)

The first section defines the grid of possible values of model parameters, m1 and m2.

The second section, with the two nested for loops, computes the total error, E, for

every point on the grid, that is, for every combination of m1 and m2. The third section

searches the matrix, E, for its minimum value, Emin, and determines the corresponding

best estimates of the model parameters, m1est and m2est. This search is a bit tricky.

The function min(E) returns a row vector, Etemp, containing the minimum values in

each column of E, as well as a row vector, k, of the row index at which the minimum

occurs. The function min(Etemp) searches for the minimum of Etemp (which is also

the minimum, Emin, of matrix, E) and also returns the column index, j, at which the

minimum occurs. The minimum of E is therefore at row, i¼k(j), and column, j, and

the best-estimates of the model parameters are m1(i) and m2(j).

The overall amplitude of E(m) depends on the amount of error in the observed data,

d
obs. The shape of the error surface, however, is mainly dependent on the geometry of

observations. For example, merely shifting the xs to the left or right has a major impact

on the overall shape of the error, E (Figure 4.6).

m1
est

0 4
m20

4

Point of minimum error, Emin 

m1

m2
est

Region of low error, E

Figure 4.5 Grey-shaded plot of the logarithm of the total error, E(m1, m2). The point of

minimum error, Emin, is shown with a circle. The coordinates of this point are the least

squares estimates of the model parameters, m1
est and m2

est. The point of minimum error is

surrounded by a region (dashed) of low error. MatLab script eda04_08.
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4.7 Least squares

In this section, we show that the least squares estimate of the model parameters can be

determined directly, without recourse to a grid search. First, however, we return to

some of the ideas of probability theory that we put forward in Chapter 3.

Suppose that the measurement error can be described by a Normal probability

density function, and that observations, di, are uncorrelated and with equal variance,

sd2. Then, the probability density function, p(di), for one observation, di, is as

follows:

pðdiÞ ¼ 1ffiffiffiffiffiffi
2p

p
sd

expf�ðdi � �diÞ2=ð2sd2Þg ð4:22Þ

where �d is the mean. As the observations are uncorrelated, the joint probability

density function, p(d), is just the product of the individual probability density

functions:

pðdÞ ¼ 1

ð2pÞN=2sN
exp � 1

2s2d

XN
i¼1

ðdi � �diÞ2
( )

¼ 1

ð2pÞN=2sN
exp � 1

2s2d
ðd� �dÞTðd� �dÞ

� �
ð4:23Þ

We now assume that the model predicts the mean of the probability density functions,
that is, �d ¼ Gm. The resulting probability density function is

10
−10

−10

10

m1

−10 10

m1

m2 m2 m2−10 10

m1

x Shifted left by 2 (A) (B) (C)No shift x Shifted right by 2 

Figure 4.6 Grey-shaded plot of the logarithm of the total error, E(m1, m2), for the straight-line

case. (A) The values of x are shifted to the left by Dx ¼ 2. (B) No shift. (C) The values of

x are shifted to the right by Dx¼ 2. Note that the shape of the error function is different in each

case. MatLab script eda04_09.
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pðdÞ ¼ 1

ð2pÞN=2sN
exp � 1

2s2d
ðd�GmÞTðd�GmÞ

8<
:

9=
; ¼ 1

ð2pÞN=2sN
exp � 1

2s2d
EðmÞ

8<
:

9=
;

with EðmÞ ¼ ðd�GmÞTðd�GmÞ
ð4:24Þ

In Chapter 3, we noted that the mean and mode of a Normal probability density func-

tion occur at the same value ofm. Thus, the mean of this probability density function

occurs at the point at which p(d) is maximum (the mode), which is the same as the

point where E(m) is minimum. But this is just the principle of least squares. Themest

that minimizes E(m) is also them such thatGmest is the mean of p(d). The two are one
and the same.

The actual value of mest is calculated by minimizing E(m) with respect to a

model parameter, mk. Taking the derivative, @E=@mk, and setting the result to zero

yields

0 ¼ @E

@mk
¼ @

@mk

XN
i¼1

di �
XM
j¼1

Gijmj

 !2

We then apply the chain rule to obtain

0 ¼ �2
XN
i¼1

XM
j¼1

Gij
@mj

@mk

 !
di �

XM
j¼1

Gijmj

 !

As mj and mj are independent variables, the derivative, @mj=@mk, is zero except

when j ¼ k, in which case it is unity (this relationship is sometimes written as

@mj=@mk ¼ djk, where djk, called the Kronecker delta symbol, is an element of

the identity matrix). Thus, we can perform the first summation trivially, that is, by

replacing j with k and deleting the derivative and first summation sign:

0 ¼ �2
XM
j¼1

Gik di �
XM
j¼1

Gijmj

 !
or 0 ¼ �GTdþGTGm or ½GTG�m ¼ GTd

As long as the inverse of the M � M matrix, [GTG], exists, the least-squares

solution is

mest ¼ ½GTG��1
GTdobs ð4:25Þ

Note that the estimated model parameters,mest, are related to the observed data, dobs,

by multiplication by a matrix, M ¼ [GTG]�1GT, that is, mest¼ Mdobs. According to
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the rules of error propagation developed in Chapter 3, the covariance of the estimated

model parameters, Cm, is related to the covariance of the observed data, Cd,

by Cm ¼ MCdM
T. In the present case, we have assumed that the data are uncorre-

lated with equal variance, sd2, so Cd ¼ sd2I. The covariance of the estimated model

parameters is, therefore

Cm ¼ ½½GTG��1
GT�s2dI½½GTG��1

GT�T ¼ s2d½GTG��1 ð4:26Þ

Here, we have used the rule (AB)T¼ BTAT. Note thatGTG is a symmetric matrix, and

that the inverse of a symmetric matrix is symmetric.

The derivation above assumes that quantities are purely real, which is the most

common case. See Note 4.1 for a discussion of least squares in the case where quan-

tities are complex.

4.8 Examples

In Section 4.2, we put forward the simplest linear problem, where the data are

constant, which has M ¼ 1, m ¼ [m1] and G ¼ [1, 1, . . ., 1]T. Then,

GTG ¼ 1 1 1 . . . 1½ �

1

1

1

..

.

1

2
666666664

3
777777775
¼ N and GTd¼ 1 1 1 . . . 1½ �

d1

d2

d3

. . .

dN

2
66666664

3
77777775
¼
XN
i¼1

di

ð4:27Þ

Then,

mest ¼ mest
1 ¼ ½GTG��1

GTd ¼ 1

N

XN
i¼1

di and Cm ¼ s2d
N

ð4:28Þ

As stated in Section 4.2,mest is the mean of the data—the sample mean. The result for
the variance of the sample mean,Cm¼ sd2/N, is a very important one. The variance of

the mean is less than the variance of the data by a factor of N�1. Thus, the more the

measurements, the greater is the precision of the mean. However, the confidence in-

tervals of the mean, which depend on the square root of the variance, decline slowly

with additional measurements: sm ¼ sd=
ffiffiffiffi
N

p
.
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Similarly, for the straight line case, we have

GTG ¼ 1 1 1 1 1

x1 x2 x3 � � � xN

" #
1 x1

1 x2

1 x3

..

. ..
.

1 xN

2
66666664

3
77777775
¼

N
XN
i¼1

xi

XN
i¼1

xi
XN
i¼1

x2i

2
66664

3
77775

GTd ¼ 1 1 1 1 1

x1 x2 x3 � � � xN

" #
d1

d2

d3

..

.

dN

2
66666664

3
77777775
¼

XN
i¼1

di

XN
i¼1

xidi

2
66664

3
77775

mest ¼ ½GTG��1
GTd ¼ 1

N
PN

i¼1x
2
i �

PN
i¼1xi

h i2

XN
i¼1

x2i �
XN
i¼1

xi

�
XN
i¼1

xi N

2
66664

3
77775

XN
i¼1

di

XN
i¼1

xidi

2
66664

3
77775

¼ 1

N
PN

i¼1x
2
i �

PN
i¼1xi

h i2

XN
i¼1

x2i
XN
i¼1

di �
XN
i¼1

xi
XN
i¼1

xidi

N
XN
i¼1

xidi �
XN
i¼1

xi
XN
i¼1

di

2
66664

3
77775

Cm ¼ s2d½GTG��1 ¼ s2d

N
PN

i¼1x
2
i �

PN
i¼1xi

h i2

XN
i¼1

x2i �
XN
i¼1

xi

�
XN
i¼1

xi N

2
66664

3
77775

ð4:29Þ

Here, we have used the fact that the inverse of a 2 � 2 matrix is

a b
c d

� ��1

¼ 1

ad � bc

d �b
�c a

� �
ð4:30Þ

In MatLab, all these quantities are computed by first defining the data kernel, G, and

then forming all the other quantities using linear algebra:
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G¼zeros(N,M);

G(:,1)¼1;

G(:,2)¼x;

mest ¼ (G0*G)\(G0*dobs);
dpre ¼ G*mest;

e¼dobs�dpre;

E ¼ e0*e;
sigmad2 ¼ E/(N�M);

Cm ¼ sigmad2*inv(G0*G); (MatLab eda04_10)

Note that we use the backslash operator,\, when evaluating the formula,

mest ¼ [GTG]�1GTd. An extremely important issue is how the variance of the data,

sd2, is obtained. In some cases, determining the observational error might be possible

in advance, based on some knowledge of the measurement system that is being used.

If, for example, a ruler has 1 mm divisions, then one might assume that sd is about
1 mm. This is called a prior estimate of the variance. Another possibility is to use

the total error, E, to estimate the variance in the data

s2d ¼
E

ðN �MÞ ð4:31Þ

as is done in the eda04_10 script above. This is essentially approximating the variance

by the mean squared error E/N ¼ (e1
2 þ e1

2 þ . . .þ eN
2)/N. The factor ofM is added

to account for the ability of an M-parameter model to predict M data exactly (e.g., a

straight line fan fits any two points, exactly). The actual variance of the data is larger

than E/N. This estimate is called a posterior estimate of the variance. The quantity,

N � M, is called the degrees of freedom of the problem.

One problemwith posterior estimates is that they are influenced by the quality of the

quantitative model. If the model is not a good one, then it will not fit the data well and a

posterior estimate of variance will be larger than the true variance of the observations.

We now return to the Black Rock Forest temperature data discussed in Chapter 2.

One interesting question is whether we can observe a long-term increase or decrease in

temperature over the 12 years of observations. The problem is detecting such a trend,

which is likely to be just fractions of a degree against the very large annual cycle. One

possibility is to model both:

di ¼ m1 þ m2ti þ m3 cos
2pti
T

þ m4 sin
2pti
T

ð4:32Þ

where T is a period of 1 year or 365.25 days. While we solve for four model

parameters, only m2, which quantifies the rate of increase of temperature with time,

is of interest. The other three model parameters are included to provide a better fit of

the model to the data.

Before proceeding, we need to have some strategy to deal with the errors that we

detect in the dataset. One strategy is to identify bad data points and throw them out.

This is a dangerous strategy because the data that are thrown out might not all be bad,

because the data that are included might not all be good, and especially because the
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reason why bad data are present in the data has never been determined. Nevertheless, it

is the only viable strategy, in some cases.

The Black Rock Forest dataset has three types of bad data: cold spikes that fall

below �40�C, warm spikes that with temperatures above 38�C, and dropouts with

a temperature of exactly 0 �C. The following MatLab script eliminates them:

Draw¼load(‘brf_temp.txt’);

traw¼Draw(:,1);

draw¼Draw(:,2);

n ¼ find((draw	¼0) & (draw>�40) & (draw<38));

t¼traw(n);

d¼draw(n); (MatLab eda04_11)

The find() function returns a column vector, n, of indices that satisfy a logical

expression, in this case

(draw	 ¼0) & (draw>�40) & (draw<38)

which means the elements of draw that satisfy di
raw 6¼ 0, di

raw > �40, and di
raw < 38.

Note that, in MatLab, the tilde, 	, means not, so that 	¼ means not equal. The
vector, n, is then used in the statements t¼traw(n) and d¼draw(n), which form

two new versions of data, d, and time, t, containing only good data.

The MatLab code that creates the data kernel, G, is

Ty¼365.25;

G¼zeros(N,4);

G(:,1)¼1;

G(:,2)¼t;

G(:,3)¼cos(2*pi*t/Ty);

G(:,4)¼sin(2*pi*t/Ty); (MatLab eda04_11)

The results of the fit are shown in Figure 4.7. Note that the model does poorly in fitting

the overall amplitude of the seasonal cycle,mainly because the annual oscillations,while

having a period of 1 year, do not have a sinusoidal shape. The estimated long-term slope

ism2¼�0.03�C/yr, corresponding to a slight cooling trend. The prior error of the slope,
based on an estimate of sd ¼ 0.01�C (the resolution of the data, which is recorded to

hundredths of a degree), is about sm2¼ 10�5 �C/yr. The error based on the posterior var-
iance of the data, sd ¼ 5.6 �C, is larger, sm2¼ 0.0046 �C/yr. In both cases, the slope

is significantly different from zero to better than 95% confidence, in the sense that

m2þ 2sm2< 0, so we may be justified in claiming that this site has experienced a slight

cooling trend. However, the poor overall fit of the model to the data should give any

practitioner of data analysis pause. More effort should be put into improving the model.

4.9 Covariance and the behavior of error

Back in Section 4.6, during our discussion of the grid search, we alluded to a relation-

ship between the shape of the total error, E(m) and the corresponding error in the

estimated model parameters, mest. We defined an elliptical region of near-minimum
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errors, centered on the point, mest, of minimum error, and claimed that any m within

this region was almost as good asmest. We asserted that the size of the elliptical region

is related to the confidence intervals, and its orientation to correlations between the

individual ms. This reasoning suggests that there is a relationship between the covari-
ance matrix, Cm, and the shape of E(m) near its minimum.

This relationship can be understood by noting that, near its minimum, the total

error, E(m), can be approximated by the first two nonzero terms of its Taylor series:

EðmÞ � EðmestÞ þ
XM
i¼1

XM
j¼1

�/� ½mi � mest
i �½mj � mest

j � @E

@mi@mj

�����
m¼mest

ð4:33Þ

Note that the linear term is missing, as @E=@mi is zero at the minimum of E(m).

The error is related to the data kernel, G, via

EðmÞ ¼ ½d�Gm�T d�Gm½ � ¼ dTd� 2dTGmþmT½GTG�m ð4:34Þ

This equation, when twice differentiated, yields

@E

@mi@mj

�����
m¼mest

¼ 2½GTG�ij ð4:35Þ
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Figure 4.7 (Top) Clean version of the observed Black Rock Forest temperature data, dobs.

(Middle) Predicted data, dpre, from M ¼ 4 parameter model. (Bottom) Prediction error,

e. MatLab script eda04_11.
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However, we have already shown that Cm ¼ sd2[G
TG]�1 (see Equation 4.26). Thus,

Equation (4.35) implies

Cm ¼ 2s2dD
�1 where Dij ¼ @E

@mi@mj

�����
m¼mest

ð4:36Þ

The matrix, D, of second derivatives of the error describes the curvature of the error

surface near its minimum. The covariance matrix, Cm, is inversely proportional to the

curvature. A steeply curved error surface has small covariance, and a gently curved

surface has large covariance.

Equation (4.36) is of practical use in grid searches, where a finite-difference ap-

proximation to the second derivative can be used to estimate the second-derivative

matrix, D, which can then be used to estimate the covariance matrix, Cm.

Problems

4.1. Suppose that a person wants to determine the weight, mj, ofM ¼ 40 objects by weighing

the first, and then weighing the rest in pairs: the first plus the second, the second plus the

third, the third plus the fourth, and so on. (A) What is the corresponding data kernel, G?

(B) Write a MatLab script that creates this data kernel and computes the covariance

matrix, Cm, assuming that the observations are uncorrelated and have a variance,

sd2¼ 1 kg2. (C) Make a plot of smj as a function of the object number, j, and comment

on the results.

4.2. Consider the equation di¼ m1exp(�m2ti). Why cannot this equation be arranged in

the linear form, d ¼ Gm? (A) Show that the equation can be linearized into the form,

d0¼ G0m0, where the primes represent new, transformed variables, by taking the loga-

rithm of the equation. (B) What would have to be true about the measurement error

in order to justify solving this linearized problem by least squares? (Notwithstanding

your answer, this problem is often solved with least squares in a let’s-hope-for-the-
best mode).

4.3. (A) What is the relationship between the elements of the matrix, GTG, and the columns,

c
(j), ofG? (B) Under what circumstance isGT

G a diagonal matrix? (C)What is the form of

the covariance matrix in this case? (D)What is the form least-squares solution in this case?

Is it harder or easier to compute than the case whereGTG is not diagonal? (E) Examine the

straight line case in this context?

4.4. The dataset shown in Figure 4.4 is in the file, linedata01.txt. WriteMatLab scripts to
least-squares fit polynomials of degree 2, 3, and 4 to the data. Make plots that show the

observed and predicted data. Display the value of each coefficient and its 95% confidence

limits. Comment on your results.

4.5. Modify theMatLab script, eda04_11, to try to achieve a better fit to the Black Rock Forest
temperature dataset. (A) Add additional periods of Ty/2 and Ty/3, where Ty is the period of
1 year, in an attempt to better capture the shape of the annual variation. (B) In addition to

the periods in part A, add additional periods of Td, Td/2, and Td/3, where Td is the period of
1 day. (C) Howmuch does the total error change in the cases? If it goes up, your code has a

bug! (D) How much do the slope, m2, and its confidence intervals change?
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5.1 When least square fails

The least-squares solution fails when [GTG] has no inverse, or equivalently, when its

determinant is zero. In the straight line case, the [GTG] is 2 � 2 and the determinant,

D, can readily be computed from Equation (4.29):

D ¼ N
XN
i¼1

x2i �
XN
i¼1

xi

 !2

Two different scenarios lead to the determinant being zero. If only one observation is

available (i.e., N ¼ 1), then

D ¼ x21 � ðx1Þ2 ¼ 0

This case corresponds to the problem of trying to fit a straight line to a single point.

The determinant is also zero when N > 1, but the data are all measured at the same

value of xi (say xi ¼ x*). Then,

D ¼ NNðx�Þ2 � ðNx�Þ2 ¼ 0

This case corresponds to the problem of trying to fit a straight line to many points, all

with the same x. In both cases, the problem is that more than one choice ofm has min-

imum error. In the first case, any line that passes through the point (x1, d1) has zero
error, regardless of its slope (Figure 5.1A). In the second case, all lines that pass
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through the point, ðx�, d�Þ, where d� is an arbitrary value of d, will have the same error,
regardless of the slope, and one of these will correspond to the minimum error

(d� ¼ �d, actually) (Figure 5.1B).

In general, the method of least squares fails when the data do not uniquely deter-
mine the model parameters. The problem is associated with the data kernel, G, which

describes the geometry or structure of the experiment, and not with the actual values of

the data, d, themselves. Nor is the problem limited to the case where [GTG]�1 is ex-

actly singular. Solutions when [GTG]�1 is almost singular are useless as well, because

the covariance of the model parameters is proportional to [GTG]�1, and it has very

large elements in this case. If almost no data constrains the value of a model param-

eter, then its value is very sensitive to measurement noise. In these cases, the matrix,

GTG, is said to be ill-conditioned.
Methods are available to spot deficiencies in G that lead to GTG being ill-

conditioned. However, they are usually of little practical value, because while they

can identify the problem, they offer no remedy for it. We take a different approach

here, which is to assume that most experiments have deficiencies that lead to at least

a few model parameters being poorly determined.

We will not concern ourselves too much with which model parameters are causing

the problem. Instead, we will use a modified form of the least-squares methodology

that leads to a solution in all cases. This methodology will, in effect, fill in gaps in
information, but without providing much insight into the nature of those gaps.

5.2 Prior information

Usually, we know something about the model parameters, even before we perform any

observations. Even beforewemeasure the density of a soil sample, we know that its den-

sity will be around 1500 kg/m3, give or take 500 or so, and that negative densities are

(A) (B)
d d

d1

d*

xx1
xx*

Figure 5.1 (A) All lines passing through (xi, di) have zero error. (B) All lines passing through

(x*, d*) have the same error.
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nonsensical. Even before we measure a topographic profile across a range of hills, we

know that it can contain no impossibly high and narrow peaks. Even before we measure

the chemical components of an organic substance, we know that they should sum

to 100%. Further, even before we measure the concentration of a pollutant in

an underground reservoir,we know that its dispersion is subject to the diffusion equation.

These are, of course, just preconceptions about the world, and as such, they are

more than a little dangerous. Observations might prove them to be wrong. On the other

hand, most are based on experience, years of observations that have shown that, at

least on Earth, most physical parameters commonly behave in well-understood

ways. Furthermore, we often have a good idea of just how good a preconception is.

Experience has shown that the range of plausible densities for sea water, for example,

is much more restricted than, say, that for crude oil.

These preconceptions embody prior information about the results of observations.
They can be used to supplement observations. In particular, they can be used to fill in the
gaps in the information content of a dataset that prevent least squares from working.

We will express prior information probabilistically, using the Normal probability

density function.

This choice gives us the ability to represent both the information itself, through the

mean of the probability density function, and our uncertainty about the information,

through its covariance matrix. The simplest case is when we know that the model pa-

rameters,m, are near the values, �m, where the uncertainty of the nearness is quantified

by a prior covariancematrix,Cp
m. Then, the prior information can be represented as the

probability density function:

ppðmÞ¼ 1

ð2pÞM=2
Cp

m

�� ��1=2 exp �1

2
ðm� �mÞT½Cp

m��1ðm� �mÞ
8<
:

9=
;

¼
expf�1

2
EpðmÞg

ð2pÞM=2
Cp

m

�� ��1=2 with EpðmÞ ¼ ðm� �mÞT½Cp
m��1ðm� �mÞ

ð5:1Þ

Note that we interpret the argument of the exponential as depending on a function,

Ep(m), which quantifies the degree to which the prior information is satisfied.

It can be thought of as a measure of the error in the prior information (compare with

Equation 4.24).

In the soil density case above, we would choose, �m ¼ 1500 kg/m3 and Cp
m ¼ s2mI,

with sm ¼ 500 kg/m3. In this case, we view the prior information as uncorrelated, so

Cp
m / I.

Note that the prior covariance matrix, Cp
m, is not the same as the covariance matrix

of the estimated model parameters, Cm (which is called the posterior covariance

matrix). The matrix, Cp
m, expresses the uncertainty in the prior information about

the model parameters, before we make any observations. The matrix, Cm, expresses

the uncertainty of the estimated model parameters, after we include the observations.
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A more general case is when the prior information can be represented as a linear

function of the model parameters:

a linear function of the model parameters ¼ a known value

or

Hm ¼ �h ð5:2Þ
whereH is a K �Mmatrix, where K is the number of rows of prior information. This

more general representation can be used in the chemical component case mentioned

above, where the concentrations need to sum to 100% or unity. This is a single piece of

prior information, so K ¼ 1 and the equation for the prior information has the form

sum of model parameters ¼ unity

or

½ 1 1 1 . . . 1 �m ¼ 1

or

Hm ¼ �h ð5:3Þ
The prior probability density function of the prior information is then

ppðhÞ ¼ 1

ð2pÞM=2
Chj j1=2

exp � 1

2
ðHm� �hÞT½Ch��1ðHm� �hÞ

8<
:

9=
; ¼

exp � 1

2
EpðmÞ

8<
:

9=
;

ð2pÞM=2
Chj j1=2

where EpðmÞ ¼ ðHm� �hÞT½Ch��1ðHm� �hÞ
note that

ppðmÞ ¼ pp½hðmÞ�JðmÞ / pp½hðmÞ� ð5:4Þ
Here the covariancematrix,Ch, expresses the uncertainty towhich themodel parameters

obey the linear equation, Hm ¼ �h. Note that the Normal probability density function

contains the a quantity, Ep(m), which is zero when the prior information, Hm ¼ �h, is
satisfied exactly, and positive otherwise. Ep(m) quantifies the error in the prior informa-

tion. The probability density function for m is proportional to the probability density

function for h, as the Jacobian determinant, J(m), is constant (see Note 5.1).

5.3 Bayesian inference

Our objective is to combine prior information with observations. Bayes theorem

(Equation 3.25) provides the methodology through the equation

pðmjdÞ ¼ pðdjmÞpðmÞ
pðdÞ ð5:5Þ

We can interpret this equation as a rule for updating our knowledge of the model

parameters. Let us ignore the factor of p(d) on the right hand side, for the moment.

Then the equation reads as follows:
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the probability of the model parameters, m, given the data, d

is proportional to

the probability that the data, d, was observed, given a particular

set of model parameters, m multiplied by

the prior probability of that set of model parameters, m
ð5:6Þ

We identify p(m) with pp(m), that is, our best estimate of the probability of the model

parameters, before the observations are made.. The conditional probability density

function, p(djm), is the probability that data, d, are observed, given a particular choice

for the model parameters, m. We assume, as we did in Equation (4.23), that this

probability density function is Normal:

pðdjmÞ ¼ 1

ð2pÞN=2 Cdj j1=2
exp � 1

2
ðGm� dÞT½Cd��1ðGm� dÞ

8<
:

9=
; ¼

exp � 1

2
EðmÞ

8<
:

9=
;

ð2pÞN=2 Cdj j�/�

where EðmÞ ¼ ðGm� dÞT½Cd��1ðGm� dÞ ð5:7Þ

where Cd is the covariance matrix of the observations. (Previously, we assumed that

Cd ¼ sd
2I, but now we allow the general case). Note that the Normal probability

density function contains the quantity, E(m), which is zero when the data are exactly

satisfied and positive when they are not. This quantity is the total data error, as
defined in Equation (4.24), except that the factor C�1

d acts to weight each of the

component errors. Its significance will be discussed later in the section.

We now return to the factor of p(d) on the right-hand side of Bayes theorem

(Equation 5.5). It is not a function of the model parameters, and so acts only as a

normalization factor. Hence, we can write

pðmjdÞ/pðdjmÞpðmÞ

/ exp �1

2
ðGm�dÞT½Cd��1ðGm�dÞ�1

2
ðHm��hÞT½Ch��1ðHm��hÞ

8<
:

9=
;

¼ exp �1

2
½EðmÞþEpðmÞ�

8<
:

9=
;¼ exp �1

2
ETðmÞ

8<
:

9=
;

with ETðmÞ¼EðmÞþEpðmÞ ð5:8Þ

Note that p(mjd) contains the quantity, ET(m), that is the sum of two errors: the error

in fitting the data; and the error in satisfying the prior information. We call it the gen-
eralized error. We do not need the overall normalization factor, because the only op-

eration that we will perform with this probability density function is the computation

of its mode (point of maximum likelihood), which (as in Equation 4.24) we will iden-

tify as the best estimate,mest, of the model parameters. An example for the very simple

N ¼ 1, M ¼ 2 case is shown in Figure 5.2. However, before proceeding with more
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complex problems, we need to discuss an important issue associated with products of

Normal probability density functions (as in Equation 5.8).

5.4 The product of Normal probability density distributions

The conditional probability density function, p(mjd), in Equation (5.8) is the product

of two Normal probability density functions. One of the many useful properties of

Normal probability density functions is that their products are themselves Normal

(Figure 5.3). To verify that this is true, we start with three Normal probability density

functions, pa(m), pb(m), and pc(m):

paðmÞ / exp � 1

2
ðm� �aÞT C�1

a ðm� �aÞ
8<
:

9=
;

pbðmÞ / exp � 1

2
ðm� �bÞT C�1

b ðm� �bÞ
8<
:

9=
;

pcðmÞ / exp � 1

2
ðm� �cÞT C�1

c ðm� �cÞ
8<
:

9=
;

¼ exp � 1

2
ðmT C�1

c m� 2mTC�1
c �c þ �cTC�1

c �cÞ
8<
:

9=
; ð5:9Þ
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pp(m)  p(d|m) p(m|d)

m1 m1

Figure 5.2 Example of the application of Bayes theorem to a N ¼ 1,M ¼ 2 problem. (A) The

prior probability density function, pp(m), for the model parameters has its maximum at (20,10)

and is uncorrelated with variance (62,102). (B) The conditional probability density function,

p(djm), is for one observation, m1 � m2 ¼ d1 ¼ 0 with a variance of 32. Note that this

observation, by itself, is not sufficient to uniquely determine two model parameters. The

conditional probability density distribution, p(mjd) / p(djm)pp(m), has its maximum at

(m1
est, m2

est)¼ (13,15). The estimated model parameters do not exactly satisfy the observation,

m1
est � m2

est 6¼ d1, reflecting the observational error represented in the probability density

function, p(djm). They do not exactly satisfy the prior information, either, reflecting the

uncertainty represented in pp(m). MatLab script eda05_01.
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Note that the second version of pc(m) is just the first with the expression within the

braces expanded out. We now compute the product of the first two:

paðmÞpbðmÞ / exp �1

2
ðm� �aÞT C�1

a ðm� �aÞ� 1

2
ðm� �bÞT C�1

b ðm� �bÞ
8<
:

9=
;

¼ exp �1

2
ðmT½C�1

a þC�1
b �m� 2mT½C�1

a
�aþC�1

b
�b� þ ½aTC�1

a aþbTC�1
b b�Þ

8<
:

9=
;

ð5:10Þ

We now try to choose �c and Cc in Equation (5.9) so that pc(m) in Equation (5.8)

matches pa(m) pb(m) in Equation (5.10). The choice

C�1
c ¼ C�1

a þ C�1
b ð5:11Þ

matches the first pair of terms (the ones quadratic inm) and gives, for the second pair

of terms (the ones linear in m)

2mTðC�1
a þ C�1

b Þ�c ¼ 2mTðC�1
a �aþ C�1

b
�bÞ ð5:12Þ

Solving for �c, we find that these terms are equal when

�c ¼ ðC�1
a þ C�1

b Þ�1ðC�1
a �aþ C�1

b
�bÞ ð5:13Þ

Superficially, these choices do make the third pair of terms (the ones that do not con-

tainm) equal. However, as these terms do not depend onm, they just correspond to the

multiplicative factors that affect the normalization of the probability density function.

m2 m2 m2(A) (B)pa(m1,m2) pb(m1,m2) (C) pc(m1,m2) 

m1 m1m1

Figure 5.3 The product of two Normal distributions is itself a Normal distribution. (A)

A Normal distribution, pa(m1, m2). (B) A Normal distribution, pb(m1, m2). (C) The product,

pc(m1, m2) ¼ pa(m1, m2) pb(m1, m2). MatLab script eda05_02.
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We can always remove the discrepancy by absorbing it into the normalization. Thus,

up to a normalization factor, pc(m) ¼ pa(m)pb(m); that is, a product of two Normal

probability density functions is a Normal probability density function.

In the uncorrelated, equal variance case, these rules simplify to

s�2
c ¼ s�2

a þ s�2
b and �c ¼ ðs�2

a þ s�2
b Þ�1ðs�2

a �aþ s�2
b
�bÞ ð5:14Þ

Note that in the case where one of the component probability density functions, say

pa(m), contains no information (i.e., whenCa
�1! 0), the multiplication has no effect

on the covariance matrix or the mean (i.e.,Cc
�1¼Cb

�1 and �c ¼ �b). In the case where
both pa(m) and pb(m) contain information, the covariance of the product will, in gen-

eral, be smaller than the covariance of either probability density function

(Equation 5.11), and the mean, �c, will be somewhere on a line connecting �a and �b
(Equation 5.13).

Thus, p(mjd) in Equation (5.8), being the product of two Normal probability den-

sity functions, is itself a Normal probability density function.

5.5 Generalized least squares

We now return to the matter of deriving an estimate of model parameters that com-

bines both prior information and observations by finding the mode of Equation (5.8).

As noted above, this equation defines the generalized error, ET(m):

pðmjdÞ / exp � 1

2
ETðmÞ

8<
:

9=
;

where ETðmÞ ¼ EpðmÞ þ EðmÞ ¼ ðHm� �hÞT½Ch��1ðHm� �hÞ
þðGm� dÞT½Cd��1ðGm� dÞ

ð5:15Þ

The mest that maximizes the probability, p(mjd), is the same m that minimizes the

generalized error, ET(m). We obtain an equation formest by differentiating E(m) with

respect to mj and setting the result to zero. We omit the algebra here, which is tedious

but straightforward. The resulting equation is

½GT½Cd��1
GþHT½Ch��1

H�mest ¼GT½Cd��1
dþHT½Ch��1�h

mest ¼ ½GT½Cd��1
GþHT½Ch��1

H��1½GT½Cd��1
dþHT½Ch��1�h�

ð5:16Þ

This result is due to Tarantola and Valette (1982) and is further discussed by Menke

(1989). Superficially, this equation looks complicated, but it becomes vastly simpli-

fied by noting that the equation
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C
�1=2
d G

C
�1=2
h H

" #
mest ¼ C

�1=2
d d

C
�1=2
h

�h

" #
or Fmest ¼ f

with F ¼ C
�1=2
d G

C
�1=2
h H

" #
and f ¼ C

�1=2
d d

C
�1=2
h

�h

" #
ð5:17Þ

reproduces Equation (5.16) when solved by simple least squares. That is, [FTF]mest¼
FTf, when multiplied out, is the same equation as Equation (5.16). Its solution is

mest ¼ [FTF]�1FTf. The covariance matrix, Cm, is computed by the normal rules

of error propagation:

Cm ¼ ð½FTF��1
FTÞCf ð½FTF��1

FTÞT ¼ ½FTF��1

¼ ½GT½Cd��1
GþHT½Ch��1

H��1
since Cf ¼ I ð5:18Þ

Here, the vector, f, has covariance, Cf ¼ I, because its component quantities, C
�1=2
d d

and C
�1=2
h h, have been normalized so as to have unit covariance. For example, by the

usual rule for error propagation, the covariance of C
�1=2
d d is C

�1=2
d Cd½C�1=2

d �T ¼ I.

Equation (5.17) can be very simply interpreted, as can be seen by considering the

uncorrelated, equal variance case, where C
�1=2
d ¼ s�1

d I and C
�1=2
h ¼ s�1

h I:

s�1
d G

s�1
h H

� �
mest ¼ s�1

d d

s�1
h
�h

� �
ð5:19Þ

The rows of the two matrix equations, Gmest ¼ d and Hmest ¼ �h are combined into a

single matrix equation, Fmest¼ f, with the N rows ofGmest¼ d being weighted by the

certainty of the data (i.e., by the factor s�1
d ), and the K rows of Hmest ¼ �h being

weighted by the certainty of the prior information (i.e., by the factor s�1
h ). Observa-

tions and prior information play exactly symmetric roles in this generalized least-
squares solution. Provided that enough prior information is added to “fill in the gaps,”

the generalized least-squares solution,mest ¼ [FTF]�1FTf will be well-behaved, even

when the ordinary least-squares solution, mest ¼ [GTG]�1GTd, fails. The prior infor-

mation regularizes the matrix, [FTF]�1.

One type of prior information that always regularizes a generalized least-squares

problem is the model parameters being close to a constant, �m. This is the case where

K ¼ M, H ¼ I, and �h ¼ �m. The special case of �h ¼ �m ¼ 0 is called damped least
squares, and corresponds to the solution

mest ¼ ½GTGþ E2I� GTd with E2 ¼ s2
d=s

2
m ð5:20Þ

The attractiveness of the damped least squares is the ease with which it can be used.

One merely adds a small number, E2, to the main diagonal of [GTG]. However, while it

is easy, damped least squares is warranted only when there is good reason to believe

that the model parameters are actually near-zero.
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In the generalized least squares formulation, all model parameters are affected by

the prior information, even those that are well-determined by the observations. Unfor-

tunately, alternative methods that target prior information at only underdetermined or

poorly determined model parameters are much more cumbersome to implement and

are, in general, computationally unsuited to problems with a large number of model

parameters (e.g.,M> 103 or so). On the other hand, by choosing the magnitude of the

elements of Ch
�1 to be sufficiently small, a similar result can be achieved, although

trial and error is often required to determine how small is small.
As an aside, we mention an interesting interpretation of the equation for the gen-

eralized least-squares solution (Equation 5.16) in the special case where M ¼ K and

H�1 exists, so we can write �m ¼ H�1�h. Then, if we subtract

½GT½Cd��1
GþHT½Ch��1

H� �m

from both sides of Equation (5.16), we obtain

½GT½Cd��1
GþHT½Ch��1

H�ðmest � �mÞ ¼ GT½Cd��1ðd�G �mÞ ð5:21Þ

which involves the deviatoric quantities Dm ¼ mest � �m and Dd ¼ d�G �m. In this

view, the generalized least-squares solution determines the deviation, Dm, of the so-

lution away from the prior model parameters, �m, using the deviation, Dd, of the data
away from the prediction, G �m, of the prior model parameters.

5.6 The role of the covariance of the data

Generalized least squares (Equation 5.17) adds an important nuance to the estimation

of model parameters, even in the absence of prior information, because it weights the

contribution of an observation, d, to the error, E(m), according to its certainty (the

inverse of its variance):

EðmÞ ¼ ðGm� dÞT½Cd��1ðGm� dÞ ¼ eT½Cd��1
e ð5:22Þ

This effect is more apparent in the special case where the data are uncorrelated with

variance, s2di. Then, Cd is a diagonal matrix and the error is

EðmÞ ¼ eT

s�2
d1 0 . . . 0

0 s�2
d2 . . . 0

0 0 .. 0

. . . . . . . . . . . .
0 0 0 s�2

dN

2
66664

3
77775e ¼

XN
i¼1

e2i
s2di

ð5:23Þ

Thus, poorly determined data contribute less to the total error than well-determined

data and the resulting solution better fits the data with small variance (Figure 5.4).
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The special case of generalized least squares that weights the data according to

its certainty but includes no prior information is called weighted least squares.
In MatLab, the solution is computed as

mest ¼ (G0*Cdi*G)\(G0*Cdi*d); (MatLab eda05_03)

where Cdi is the inverse of the covariance matrix of the data, Cd
�1. In many cases,

however, the covariance is diagonal, as in Equation (5.23). Then, defining a column

vector, sigmad, with elements, sdi, Equation (5.19) can be used, as follows:

for i¼[1:N]

F(i,:)¼G(i,:)./sd(i);

end

f¼d./sd;

mest ¼ (F0*F)\(F’*f); (MatLab eda05_04)

where sd is a column vector with elements, sdi.

5.7 Smoothness as prior information

An important type of prior information is the belief that the model parameter vector,

m, is smooth. This notion implies some sort of natural ordering of the model param-

eters in time or space, because smoothness characterizes how model parameters vary

from one position or time to another one nearby. The simplest case is when the model

parameters vary with one coordinate, such as position, x. They are then a discrete ver-
sion of a function, m(x), and their roughness (the opposite of smoothness) can be
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Figure 5.4 Example of least-squares fitting of a line to N ¼ 50 data of unequal variance. The

data values (circles) in (A) and (B) are the same, but their variance (depicted here by 2sd error
bars) is different. (A) The variance of the first 25 data is much greater than that of the second

25 data. (B) The variance of the first 25 data is much less than that of the second 25 data.

The best-fit straight line (solid line) is different in the two cases, and in each case more closely

fits the half of the dataset with the smaller error. MatLab scripts eda05_03 and eda05_04.
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quantified by the second derivative, d2m/dx2. When the model parameters are evenly

spaced in x, say with spacing Dx, the first and second derivative can be approximated

with the finite differences:

dm

dx

���
xi
� mðxi þ DxÞ � mðxiÞ

Dx
¼ 1

Dx
½miþ1 � mi�

d2m

dx2

���
xi
� mðxi þ DxÞ � 2mðxiÞ þ mðxi � DxÞ

ðDxÞ2 ¼ 1

ðDxÞ2 ½miþ1 � 2mi þ mi�1� ð5:24Þ

The smoothness condition implies that the roughness is small. We represent roughness

with the equation, Hm ¼ �h ¼ 0, where each row of the equation corresponds to

a second derivative centered at a different x-position. A typical row ofH has elements

proportional to

0 . . . 0 1 �2 1 0 . . . 0

However, a problem arises with the first and last row, because the model parameters

m0 and mMþ1 are unavailable. We can either omit these rows, in which case H will

contain only M � 2 pieces of information, or use different prior information there.

A natural choice is to require the slope (i.e., the first derivative, dm/dx) to be small

at the ends (i.e., the ends are flat), which leads to

H ¼ 1

ðDxÞ2

�Dx Dx 0 0 0 . . . 0

1 �2 1 0 0 . . . 0

0 1 �2 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . 0 1 �2 1 0

0 . . . 0 0 1 �2 1

0 . . . 0 0 0 �Dx Dx

2
6666666664

3
7777777775

ð5:25Þ

The vector, �h, is taken to be zero, as our intent is to make the roughness and steep-

ness—the opposites of smoothness and flatness—as small as possible.

One simple application of smoothness information is the filling in of data gaps. The

idea is to have the model parameters represent the values of a function on a grid, with

the data representing the values on a subset of grid points whose values have been

observed. The other grid points represent data gaps. The equation, Gm ¼ d, reduces

to mi ¼ dj, which has a G as follows:

G ¼
0 1 0 0 0 0 0 . . . 0

0 0 0 1 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . 0 . . . . . .

0 0 0 0 0 1 0 . . . 0

2
664

3
775 ð5:26Þ
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Each row of G hasM � 1 zeros and a single 1, positioned to match up an observation

with the model parameter corresponding to at the same value of x. In MatLab, the
matrix, F, and vector, f, are created in two stages. The first stage creates the top part

of F and f (i.e., the part containing G and d):

L¼NþM;

F¼zeros(L,M);

f¼zeros(L,1);

for p ¼ [1:N]

F(p,rowindex(p)) ¼ 1;

f(p)¼d(p);

end (MatLab eda05_05)

Here, rowindex is a column vector that specifies the correspondence of observation,

dp, and its corresponding model parameter. For simplicity, we assume that the obser-

vations have unit variance, and so omit factors of sd
�1. The second stage creates the

bottom part of F and f (i.e., the part containing H and h)

shi ¼ 1e–6;

for p ¼ [1:M�2]

F(pþN,p) ¼ shi/Dx2;

F(pþN,pþ1) ¼ �2*shi/Dx2;

F(pþN,pþ2) ¼ shi/Dx2;

f(pþN)¼0.0;

end

F(L�1,1)¼�shi*Dx;

F(L�1,2)¼shi*Dx;

f(L�1)¼0;

F(L,M�1)¼�shi*Dx;

F(L,M)¼shi*Dx;

f(L)¼0; (MatLab eda05_05)

Here, we assume that the prior information is uncorrelated and with equal variance, so

we can use a single variable shi to represent sh
�1. We set it to a value much smaller

than unity so that it will have much less weight in the solution than the data. This way,

the solution will favor satisfying the data at points where data is available. A for loop

is used to create this part of the matrix, F, which corresponds to smoothness. Finally,

the flatness information is put in the last two rows of F. The estimated model param-

eters are then calculated by solving Fm ¼ f in the least squares sense:

mest ¼ (F0*F)\(F0*f); (MatLab eda05_05)

An example is shown in Figure 5.5.

5.8 Sparse matrices

Many perfectly reasonable problems have large number of model parameters—

hundreds of thousands or even more. The gap-filling scenario discussed in the previ-

ous section is one such example. If, for instance, we were to use it to fill in the gaps in
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theBlackRockForest dataset (seeChapter 2),wewouldhaveN � M � 105.TheL�M
matrix,F,whereL¼MþN,would thenhave about 2N2 � 2� 1010 elements—enough

to tax the memory of a notebook computer, at least! On the other hand, only

about 3N � 3� 105 of these elements are nonzero. Such a matrix is said to be sparse.
A computer’s memory is wasted storing the zero elements and its processing power is

wasted multiplying other quantities by them (as the result is a foregone conclusion—

zero). An obvious solution is to omit storing the zero elements of sparsematrices and to

omit any multiplications involving them. However, such a solution requires special

software support to properly organize the matrix’s elements and to optimize arithmetic

operations involving them.

InMatLab, a matrix needs to be defined as sparse, but once defined,MatLab more

or less transparently handles all array-element access and arithmetic operations. The

command

L¼MþN;

F¼spalloc(L,M,4*N); (MatLab eda05_06)

creates a L � M sparse matrix, F, capable of holding 4N nonzero elements. MatLab
will properly process the command:

mest ¼ (F0*F)\(F0*f);

Nevertheless, we do not recommend solving for mest this way, except when M is

very small, because it does not utilize all the inherent efficiencies of the generalized

2
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Figure 5.5 The model parameters, mi, consist of the values of an unknown function, m(x),
evaluated at M ¼ 100 equally spaced points, xi. The data, di, consist of observations (circles)
of the function at N ¼ 40 of these points. Prior information, that the function is smooth, is

used to fill in the gaps and produce an estimate (solid line) of the function at all points, xi.
MatLab script eda05_05.
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least-squares equation, FTFm ¼ FTf. Our preferred technique is to use MatLab’s
bicg()function, which solves the matrix equation by the biconjugate gradient
method. The simplest way to use this function is

mest¼bicg(F0*F,F0*f,1e�10,3*L);

As you can see, two extra argument are present, in addition to the matrix, F0*F, and the
vector, F0*f. They are a tolerance (set here to 1e�10) and a maximum number of it-
erations (set here to 3*L). The bicg() function works by iteratively improving an ini-

tial guess for the solution, with the tolerance specifying when the error is small enough

for the solution to be considered done, and the maximum number of iterations spec-

ifying that the method should terminate after this limit is reached, regardless of

whether or not the error is smaller than the tolerance. The actual choice of these

two parameters needs to be adjusted by trial and error to suit a particular problem.

Each time it is used, the bicg()function displays a line of information that can be use-

ful in determining the accuracy of the solution.

This simple way of calling bicg()has one defect—it requires the computation of

the quantity, FTF. This is undesirable, for while FTF is sparse, it is typically not nearly

as sparse as F, itself. Fortunately, the biconjugate gradient method utilizes FTF in only

one simple way: it multiplies various internally constructed vectors to form products

such as FTFv. However, this product can be performed as FT(Fv), that is, v is first

premultiplied by F and the resulting vector is then premultiplied by FT so that the ma-

trix FTF is never actually calculated. MatLab provides a way to modify the bicg()

function to perform the multiplication in this very efficient fashion. However, in order

to use it, we must first write aMatLab function, stored in a separate file that performs

the twomultiplications (see Note 5.2).We call this function, afun, and the correspond-

ing file, afun.m:

function y ¼ afun(v,transp_flag)

global F;

temp ¼ F*v;

y ¼ F0*temp;
return (MatLab afun.m)

We have not said anything about theMatLab function command so far, and will say

little about it here (however, see Note 5.2). Briefly,MatLab provides a mechanism for

a user to define functions of his or her own devising that act in analogous fashion to

built-in functions such a sin() and cos(). However, as the afun() function will not

need to be modified, the user is free to consider it a black box. In order to use this

function, the two commands

clear F;

global F; (MatLab eda05_06)

need to be placed at the top of the script that uses the bicg() function. They ensure that

MatLab understands that the matrix, F, in the main script and in the function refers to

the same variable. Then the bicg() function is called as follows:

mest¼bicg(@afun,F0*f,1e�10,3*L); (MatLab eda05_06)

Quantifying preconceptions 97



Note that only the first argument is different than in the previous version, and that this

argument is a reference (a function handle) to the afun() function, indicated with

the syntax, @afun. Incidentally, we gave the function the name, afun(), to match

the example in the MatLab help page for bicg() (which you should read). A more

descriptive name might have been better.

5.9 Reorganizing grids of model parameters

Sometimes, the model parameters have a natural organization that is more compli-

cated than can be represented naturally with a column vector, m. For example,

the model parameters may represent the values of a function, m(x, y), on a two-

dimensional (x, y) grid, in which case they are more naturally ordered into a matrix,

A, whose elements are Aij ¼ m(xi, yj). Unfortunately, the model parameters must still

be arranged into a column vector, m, in order to use the formulas of least squares, at

least as they have been developed in this book. One possible solution is to unwrap
(reorganize) the matrix into a column vector as follows:

A ¼ A11 A12

A21 A22

� �
! m ¼

A11

A12

A21

A22

2
664

3
775 or mk ¼ Aij with k ¼ ði� 1ÞJ þ j

ð5:27Þ

Here,A is assumed to be an I� Jmatrix so thatm is of length, M¼ IJ. InMatLab, the
conversions from k to (i,j) and back to k are given by

k ¼ (i�1)*Jþj;

i ¼ floor((k�1)/J)þ1;

j ¼ k�(i�1)*J; (MatLab eda05_07)

The floor() function rounds down to the nearest integer. See Note 5.3 for a discus-

sion of several advanced MatLab functions that can be used as alternatives to these

formulas.

As an example, we consider a scenario in which spatial variations of pore pressure

cause fluid flow in aquifer (Figure 5.6). The aquifer is a thin layer, so pressure,

p(x, y), varies only in the (x, y) plane. The pressure is measured in N wells, each located

at (xi, yi). These measurements constitute the data, d. The problem is to fill in the data

gaps, that is, to estimate the pressure on an evenly spaced grid,Aij, of (xi, yj) points. These
gridded pressure values constitute an I � J matrix, A, which can be unwrapped into a

column vector of model parameters, m, as described above. The prior information is

the belief that the pressure satisfied a known differential equation, in this case, the dif-

fusion equation q2p/qx2þ q2p/qy2¼ 0. This equation is appropriate when the fluid flow

obeys Darcy’s law and the hydraulic properties of the aquifer are spatially uniform.
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The problem is structured in a manner similar to the previous one-dimensional gap-

filling problem. Once again, the equation,Gm¼ d, reduces to di¼mj, where index, j,
matches up the location, (xi, yi), of the i-th data to the location, (xj, yj), of the j-th model

parameter. The differential equation contains only second derivatives, which have

been discussed earlier (Equation 5.24). The only nuance is that one derivative is taken

in the x-direction and the other in the y-direction so that the value of pressure at five

neighboring grid points is needed. (Figure 5.7):

q2m
qx2

���
xi,yj

¼ ½Aiþ1, j� 2Ai, jþAi�1, j�
ðDxÞ2 and

q2m
qy2

���
xi,yj

� ½Ai, jþ1� 2Ai, jþAi, j�1�
ðDyÞ2

ð5:28Þ

j j+1j −1

j

i−1

i

i+1

p(xi,yj)

i

Figure 5.7 The expression, q2p/qx2 þ q2p/qy2, is calculated by summing finite difference

approximations for q2p/qx2 and q2p/qy2. The approximation for q2p/qx2 involves the column

of three grid points (circles) parallel to the i-axis and the approximation for q2p/qy2 involves
the row of three grid points parallel to the j-axis.

Well

yy

x Aquifer

Figure 5.6 Scenario for

aquifer example. Ground

water is flowing through

the permeable aquifer

(shaded layer), driven by

variations in pore

pressure. The pore

pressure is measured in N
wells (cylinders).
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Note that the central point, Aij, is common to the two derivatives, so five, and not six,

grid points are involved. While these five points are neighboring elements of A, they

do not correspond to neighboring elements of m, once A is unwrapped.

Once again, a decision needs to bemade aboutwhat to doon the edges of the grid.One

possibility is to assume that the pressure derivative in the direction perpendicular to the

edge of the grid is zero (which is the two-dimensional analog to the previously discussed

one-dimensional case). This corresponds to the choice, qp/qy ¼ 0, on the left and right

edges of the grid, and qp/qx¼ 0 on the top and bottom edges. Physically, these equations

imply that the pore fluid is not flowing across the edges of the grid (an assumption that

may or may not be sensible, depending on the circumstances). The four corners of the

grid require special handling, as two edges are coincident at these points. One possibility

is to compute the first derivative along the grid’s diagonals at these four points.

In the exemplary MatLab script, eda05_08, the equation, Fm ¼ f, is built up row-

wise, in a series of steps: (1) the N “data” rows; (2) the (I� 2)(J� 2) Laplace’s equa-

tion rows; (3) the (J� 2) rows of first derivatives top-of-the-grid rows; (4) the (J� 2)

rows of first derivatives bottom-of-the-grid rows; (5) the (I � 2) rows of first deriv-

atives left-of-the-grid rows; (6) the (I � 2) rows of first derivatives right-of-the-grid

rows; and (7) the four rows of first derivatives at grid-corners. When debugging a

script such as this, a few exemplary rows of, F and f, from each section should be

displayed and carefully examined, to ensure correctness.

The script, eda05_08, is set up to work on a file of test data, pressure.txt, that is

created with a separate script, eda05_09. The data are simulated or synthetic data,

meaning that they are calculated from a formula and that no actual measurements

are involved. The test script evaluates a known solution of Laplace’s equation

pðx, yÞ ¼ P0sinðkxÞexpð�kyÞ where k and P0 are constants ð5:29Þ

on N randomly selected grid points and adds a random noise to them to simulate mea-

surement error. Random grid points can be selected and utilized as follows:

rowindex¼unidrnd(I,N,1);

xobs ¼ x(rowindex);

colindex¼unidrnd(J,N,1);

yobs ¼ y(colindex);

kappa ¼ 0.1;

dtrue ¼ 10*sin(kappa*xobs).*exp(�kappa*yobs); (MatLab eda05_09)

Here, the function, unidrnd(), returns an N � 1 array, rowindex, of random integers

in the range (1, I). A column vector, xobs, of the x-coordinates of the data is then cre-
ated from the grid coordinate vector, x, with the expression, xobs ¼ x(rowindex). A

similar pair of expressions creates a column vector, yobs, of the y-coordinates of the
data. Finally, the (x, y) coordinates of the data are used to evaluate Equation (5.28) to
construct the “true” synthetic data, dtrue.

Normally distributed random noise can be added to the true data to simulate

measurement error:

sigmad ¼ 0.1;

dobs ¼ dtrue þ random(‘normal’,0.0,sigmad,N,1); (MatLab eda05_09)
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Here, the random() function returns an N� 1 column vector of random numbers with

zero mean and variance, sd
2.

Results of the eda05_07 script are shown in Figure 5.8. Note that the predicted

pressure is a good match to the synthetic data, as it should be, for the data are, except

for noise, exactly a solution of Laplace’s equation. This step of testing a script on

synthetic data should never be omitted. A series of tests with synthetic data are more

likely to reveal problems with a script than a single application to real data. Such a

series of tests should vary a variety of parameters, including the grid spacing, the

parameter, k, and the noise level.

Problems

5.1 The first paragraph of Section 5.2 mentions one type of prior information that cannot be

implemented by a linear equation of the form, Hm ¼ �h. What is it?

5.2 What happens in the eda05_05 script if it is applied to an inconsistent dataset (meaning a

dataset containing multiple points with the same xs but different ds)? Modify the script to

implement a test of this scenario. Comment on the results.

5.3 Modify the eda05_05 script to fill in the gaps of the cleaned version of the Black Rock

Forest temperature dataset. Make plots of selected data gaps and comment on how well

the method filled them in. Suggestions: First create a short version of the dataset for test

purposes. It should contain a few thousand data points that bracket one of the data gaps. Do

not run your script on the complete dataset until it works on the short version. Only the top

part of the script needs to be changed. First, the data must be read using the load() func-

tion. Second, you must check whether all the times are equally spaced. Missing times must

be inserted and the corresponding data set to zero. Third, a vector, rowindex, that gives the

row index of the good data but excludes the zero data, hot spikes, and cold spikes must be

computed with the find() function.

y

x

Observed pressure, pobs(x,y)(A) (B)
y

x

Predicted pressure, ppre(x,y)

Figure 5.8 Filling in gaps in pressure data, p(x, y), using the prior information that the pressure

satisfies Laplace’s equation, q2p/qx2 þ q2p/qy2 ¼ 0. (A) Observed pressure, pobs(x, y).
(B) Predicted pressure, ppre(x, y). MatLab script eda05_08.
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5.4 Run the eda05_07 script in a series of tests in which you vary the parameter, k, and the

noise level, sd. You will need to edit the eda05_08 script to produce the appropriate file,

pressure.txt, of synthetic data. Comment on your results.

5.5 Suppose that the water in a shallow lake flows only horizontally (i.e., in the (x, y) plane) and
that the two components of fluid velocity, vx and vy are measured at a set of N observation

points, (xi, yi). Water is approximately incompressible, so a reasonable type of prior infor-

mation is that the divergence of the fluid velocity is zero; that is qvx/qx þ qvy/qy ¼ 0. Fur-

thermore, if the grid covers the whole lake, then the condition that no water flows across the

edges is a reasonable one, implying that the perpendicular component of velocity is zero at

the edges. (A) Sketch out how scripts eda05_07andeda05_08might be modified to fill in

the gaps of fluid velocity data.

5.6 Write scripts to solve Problem 5.5, above. Here are some suggestions on how to proceed.

(A) You will need to modify the eda05_08 script to write a test file, say velocity.txt.

The file should have four columns of data, x, y, vx, and vy. The vector,

vx ¼ Lxsinðpx=LxÞcosðpy=LyÞ and vy ¼ �Lycosðpx=LxÞsinðpy=LyÞ

with 0<x<Lx and 0<y<Ly, might make a good test function. It has zero divergence in the

interior of the lake and has no flow across its edges. (B) Initially, just modify the eda05_07

script to apply the existing Laplace’s equation information to vx and vy, solving for both in a
single equation. This way, you will be able to test the book-keeping associated with having

two subsets of model parameters, vx and vy, with a set of equations known to work. Be sure
to carefully examine plots of vx and vy. (C) Then implement the divergence equation as

additional information, with a different variance than the for Laplace’s equation information.

Tune the relative size of the two variances to give the divergence information the greater

weight in the solution. Laplace’s equation will force the solution to be smoother than it

would if the divergence information was used alone, which is a desirable property in this

case. (D) The quantity

X
x

X
y

@vx
@x

þ @vy
@y

� �2

@vx
@x

� �2

þ @vy
@y

� �2

is useful in diagnosing how well the divergence equation is satisfied, so compute and dis-

play it.
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6.1 Describing sinusoidal oscillations

Sinusoidal oscillations—those involving sines and cosines—are very common in the

environmental sciences.We encountered them in the Neuse River Hydrograph and the

Black Rock Forest datasets, where they were associated with seasonal variations in

river discharge and air temperature, respectively. This chapter examines oscillatory

behavior in more detail, developing systematic methods for detecting and quantifying

periodicities.

Periodicities can be both temporal and spatial in character, with a somewhat dif-

ferent nomenclature used for each. In both cases, the height of the oscillation is called

its amplitude. Temporal periodicities have a period, T, the time between successive

cycles. Spatial periodicities have a wavelength, l, the distance between successive

cycles. The rate at which temporal cycles occur is called the frequency and the rate

at which spatial cycles occur is called wavenumber. Frequency can be measured in

units of cycles per unit time, in which case it is given the symbol, f, or it can be mea-

sured in units of radians per unit time, in which case it is given the symbol,o. The units
of cycles per second are called Hertz, abbreviated Hz. Similarly, wavenumber can

be measured in either cycles per unit distance or radians per unit distance. Unfortu-

nately, both units of wavenumber tend to be given the same symbol, k, in the literature.
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In this book, we use k exclusively to mean radians per unit distance. These quantities

are related as follows:

f ¼ 1

T
¼ o

2p
and

1

l
¼ k

2p
ð6:1Þ

Generic temporal, d(t), and spatial, d(x), cosine oscillations of amplitude, C, can be

written as

dðtÞ ¼ C cos
2pt
T

� �
¼ C cosf2pftg ¼ C cosfotg and

dðxÞ ¼ C cos
2px
l

� �
¼ C cosfkxg ð6:2Þ

In nature, oscillations rarely “start” at time (or distance) zero. A cosine wave with

amplitude, C, that starts (peaks) at time, t0, is given by (Figure 6.1)

dðtÞ ¼ C cos
2p ðt� t0Þ

T

� �
¼ C cosfoðt� t0Þg ¼ C cosfot� fg ð6:3Þ

The quantity, f ¼ ot0, is called the phase. The rule,

cosða�bÞ ¼ cosðaÞ cosðbÞ þ sinðaÞ sinðbÞ ð6:4Þ

3

2 Amplitude (C)2

11

0d(
t)

-1

-2

Period (T )

-3
0 10 20 30 40 50 60 70 80 90

3

Delay (t0)
Time (t)

Figure 6.1 The sinusoidal function, d(t) ¼ Ccos{2p(t � t0)/T}, has amplitude, C ¼ 2, period,

T ¼ 50, and delay, t0 ¼ 10. MatLab script eda06_01.
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when applied to Equation (6.1), yields

dðtÞ ¼ C cos oðt� t0Þf g
¼ C cosðot0Þ cosðotÞ þ C sinðot0Þ sinðotÞ ¼ AcosðotÞ þ B sinðotÞ

with

A ¼ C cosðot0Þ and B ¼ C cosðot0Þ
and

C ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
and t0 ¼ o�1 tan�1ðB=AÞ ð6:5Þ

See Note 6.1 for a discussion of how the arc-tangent is to be correctly computed.

A time-shifted cosine can be represented as the sum of a sine and a cosine. An explicit

time-shift variable such as t0 is unnecessary in formulas describing periodicities, as

long as sines and cosines are paired up with one another.

6.2 Models composed only of sinusoidal functions

Suppose that we have a dataset in which a variable, such as temperature, is sampled at

evenly spaced intervals of time, ti (a time series), say with sampling interval, Dt. One
extreme is a dataset composed of only sinusoidal oscillations:

the data ¼ sum of sines and cosines

dðtiÞ ¼ A1 cosðo1tiÞ þ B1 sinðo1tiÞ þ A2 cosðo2tÞ þ B2 sinðo2tÞ þ � � �
ð6:6Þ

This formula is sometimes referred to as a Fourier series or an inverse discrete
Fourier transform and the column vector containing the As and Bs is called the dis-
crete Fourier transform (DFT) of d. The As and Bs are the model parameters and the

corresponding frequencies are taken to be auxiliary variables. Note that sines and

cosines of a given frequency, oi, are paired, as was discussed in the previous section.

Two key questions involve the number of frequencies that ought to be included in this

representation and what their values should be. The answers to these questions involve

a surprising fact about time series:

frequencies higher than fny ¼ 1

2Dt
cannot be detected ð6:7Þ

This is called Nyquist’s Sampling Theorem. It says that the periods shorter than two

time increments cannot be detected in time series with evenly spaced samples.

Furthermore, as we will see below, any frequencies in the data that are higher than

the Nyquist frequency, fny, are erroneously mapped into the (0, fny) frequency

range. Choosing the frequency range (0, fny) in Equation (6.5) is, therefore, natural.

Furthermore, if we were to choose the number of frequencies to be �/�N þ 1, then

the number, M, of coefficients of the sines and cosines would exactly equal the

number, N, of data. These choices imply
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fny ¼ 1

2Dt
and ony ¼ p

Dt
and Do ¼ 2p

NDt
and Df ¼ 1

NDt
ð6:8Þ

The reason that this relationship calls for �/�Nþ 1, as contrasted to �/�N of them, is that

the first and last sine term is identically zero; that is,

B1 sinð0 tiÞ ¼ 0 and BðN=2Þþ1 sin
2p
2Dt

ti

� �
¼ BðN=2Þþ1 sinðnpÞ ¼ 0 ð6:9Þ

where, n ¼ ti/Dt, is an integer. Hence, these two terms are omitted from the sum. Thus,

the Fourier series contains the frequencies [0, Df, 2Df, . . ., �/�NDf]T. The lowest

frequency is zero. It corresponds to a cosine of zero period, that is, to a constant.

The next highest frequency isDf. It corresponds to a sine and a cosine that have one com-

plete oscillation over the length of the data. The next highest frequency is 2Df. It corre-
sponds to a sine and a cosine that have two complete oscillations over the length of the

data. The highest frequency is fny ¼ �/�NDf ¼ 1/(2Dt). It corresponds to a highly oscil-
latory cosine that reverses sign at every sample; that is [1,�1, 1,�1, . . .]T (Figure 6.2).
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Figure 6.2 Plots of columns of the matrix, G. with rows indicated by solid circles. (A) First

column, the constant 1. (B, C) Next two columns are, cos(Dot) and sin(Dot), respectively.
They have one period of oscillation over the time interval of the data. (D, E) Next two columns

are cos(2Dot) and sin(2Dot), respectively. They have two periods of oscillation over the

time interval of the data. F) Last column switches between 1 and �1 every row. MatLab
script eda06_02.
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In MatLab, frequency-related quantities are defined as follows:

Nf¼N/2þ1;

fmax ¼ 1/(2*Dt);

Df ¼ fmax/(N/2);

f ¼ Df*[0:Nf�1]0;
Nw¼Nf;

wmax ¼ 2*pi*fmax;

Dw ¼ wmax/(N/2);

w ¼ Dw*[0:Nw�1]0 (MatLab script eda06_02)

Here, Dt is the sampling interval and N is the length of the data. N is assumed to be an

even integer.

The problem that arises with frequencies higher than the Nyquist frequency can be

seen by examining a pair of cosines and sines from Equation (6.5), written out for a

particular time, tk, and frequency, on.

cosðontkÞ ¼ cosððn� 1Þðk � 1Þ DoDtÞ ¼ cos
2p ðn� 1Þðk � 1Þ

N

0
@

1
A

sinðontkÞ ¼ sinððn� 1Þðk � 1Þ DoDtÞ ¼ sin
2p ðn� 1Þðk � 1Þ

N

0
@

1
A ð6:10Þ

Here, we have used the rule, DoDt¼ 2p/N. Note that we index time and frequency so

that t1 ando1 correspond to zero time and frequency, respectively; that is, tk¼ (k�1)Dt
and on ¼ (n�1)Do. Now let us examine a frequency, om, that is higher than the

Nyquist frequency, say m ¼ n þ N, where N is the number of data:

cosðomtkÞ¼ cosððn� 1þNÞðk� 1ÞDoDtÞ ¼ cos
2pðn� 1þNÞðk� 1Þ

N

0
@

1
A

¼ cos
2pðn� 1Þðk� 1Þ

N

0
@

1
Acosð2pðk� 1ÞÞ� sin

2pðn� 1Þðk� 1Þ
N

0
@

1
A sinð2pðk� 1ÞÞ

¼ cos
2pðn� 1Þðk� 1Þ

N

0
@

1
Aþ 0

sinðomtkÞ ¼ sinððn� 1þNÞðk� 1ÞDoDtÞ ¼ sin
2pðn� 1þNÞðk� 1Þ

N

0
@

1
A

¼ sin
2pðn� 1Þðk� 1Þ

N

0
@

1
Acosðpðk� 1ÞÞþ cos

2pðn� 1Þðk� 1Þ
N

0
@

1
A sinðpðk� 1ÞÞ

¼ sin
2pðn� 1Þðk� 1Þ

N

0
@

1
Aþ 0 ð6:11Þ
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Here, we have used the rules, cos(aþ b)¼ cos(a)cos(b)� sin(a)sin(b) and sin(aþ b)
¼ sin(a)cos(b) þ cos(b)sin(a), together with the rule that cos(2p(k þ 1)) ¼ 1 and sin

(2p(kþ 1))¼ 0, for any integer, k. Comparing Equations (6.8) and (6.9), we conclude

cosðontkÞ ¼ cosðomtkÞ and sinðontkÞ ¼ sinðomtkÞ ð6:12Þ

The frequencies,onþN andon, areequivalent, in the sense that theyyield exactly the same

sinusoids (Figure 6.3). A similar calculation, omitted here, shows that oN�n and �on

are equivalent in this same sense. But sines and cosines with negative frequencies have

the same shape, up to a sign, as those with corresponding positive frequencies; that is,

cos(�ot) ¼ cos(ot) and sin(�ot) ¼ �sin(ot). Thus, only sinusoids in the frequencies
in the range o1 (zero frequency) to oN/2þ1 (the Nyquist frequency) have unique shapes

(Figure 6.3C). In a digital world, no frequencies are higher than the Nyquist.
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Figure 6.3 Example of aliasing. (A) Low-frequency oscillation, d1(t) ¼ cos(o1t), with
o1 ¼ 2Do, evaluated every Dt (circles). Bottom) High-frequency oscillation, d2(t) ¼ cos{o2t},
with o2 ¼ (2 þ N)Do, evaluated every Dt (circles). Note that both the true curve (dashed) and

low-frequency curve (solid) pass through the data points. (C) Schematic representation of aliasing,

showing pairs of points on the frequency-axis that are equivalent. MatLab script eda06_03.
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This limitation implies that special care must be taken when observing a time series

to avoid recording any frequencies that are higher than the Nyquist frequency.

This goal is usually achieved by creating a data recording system that attenuates—

or eliminates—high frequencies before the data are converted into digital samples.

If any high frequencies persist, then the dataset is said to be aliased, and spurious

low frequencies will appear.

The linear equation, d ¼ Gm, form of the Fourier series is as follows:

the data ¼ sum of sines and cosines

d1
d2
d2
..
.

dN

2
666664

3
777775
¼

1 cosðo2t1Þ sinðo2t1Þ . . . cosðoN=2t1Þ sinðoN=2t1Þ 1

1 cosðo2t2Þ sinðo2t2Þ . . . cosðoN=2t2Þ sinðoN=2t2Þ �1

1 cosðo2t3Þ sinðo2t3Þ . . . cosðoN=2t3Þ sinðoN=2t3Þ 1

1 ..
. ..

. ..
. ..

. ..
. ..

.

1 cosðo2tNÞ sinðo2tNÞ . . . cosðoN=2tNÞ sinðoN=2tNÞ �1

2
666664

3
777775

A1

A2

B2

..

.

AN=2

AN=2

AðN=2Þþ1

2
6666666664

3
7777777775

ð6:13Þ

In MatLab, the data kernel, G, is created as follows:

% set up G

G¼zeros(N,M);

% zero frequency column

G(:,1)¼1;

% interior M/2�1 columns

for i ¼ [1:M/2�1]

j ¼ 2*i;

k ¼ jþ1;

G(:,j)¼cos(w(iþ1).*t);

G(:,k)¼sin(w(iþ1).*t);

end

% nyquist column

G(:,M)¼cos(w(Nw).*t); (MatLab eda06_02)

Here, the number of model parameters, M, equals the number of data, N, and the fre-

quency values are in a column vector, w.

Remarkably, the matrices, [GTG] and [GTG]�1, which play such an important role

in the least-squares solution, can be shown to be diagonal:

½GTG� ¼ N diagð1, �/� , �/� , . . ., �/� , �/� , 1Þ

and

½GTG��1 ¼ 1

N
diagð1, 2, 2, . . ., 2, 2, 1Þ ð6:14Þ
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Note that we have used the rule that the inverse of a diagonal matrix,M, is the matrix of

reciprocals of the elements of themain diagonal; that is [M�1]ii¼ 1/Mii. Equation (6.14)

can be understood by noting that the elements of GTG are just the dot products of the

columns, c, of the matrix,G. Many of these dot products are clearly zero (meaning that

[GTG]ij ¼ c(i)Tc(j) ¼ 0 when i 6¼ j). For instance, the second column, cos(Dot), is sym-

metric about its midpoint, while the third column, sin(Dot), is antisymmetric about it, so

their dot product is necessarily zero (see Figure 6.3B and C). What is not so clear—but

nevertheless true—is that every column is orthogonal to every other. We will not derive

this result here, for it requires rather nitty-gritty trigonometric manipulations (but see

Note 6.2). Its consequence is that the least-squares solution,m¼ [GT
G]�1

G
T
d requires

only matrix multiplication, and not matrix inversion. Furthermore, when the data are

uncorrelated, then the model parameters,m, which represent the amplitudes of the sines

and cosines, are also uncorrelated, as Cm ¼ s2
d[G

TG]�1 is diagonal. Furthermore, all

but the first and last model parameters have equal variance.

In MatLab, the least-squares solution is computed as follows:

gtgi ¼ 2* ones(M,1)/N;

gtgi(1)¼1/N;

gtgi(M)¼1/N;

mest¼gtgi .* (G’*d); (MatLab eda06_04)

The column vectors,

½A2
1,A

2
2 þ B2

2, . . . ,A
2
N=2 þ B2

N=2,A
2
N=2þ1�T

andffiffiffiffiffi
A2
1

p
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
2 þ B2

2

p
, . . . ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
N=2 þ B2

N=2

q
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
N=2þ1

qh iT ð6:15Þ

are called the power spectral density and amplitude spectral density of the time series,

respectively. Either can be used to quantify the overall amount of oscillations at any

given frequency, irrespective of the phase. InMatLab, the power spectral density, s, is
computed from mest as follows:

% zero frequency

s¼zeros(Nw,1);

s(:,1)¼mest(1)^2;

% interior points

for i ¼ [1:M/2�1]

j ¼ 2*i;

k ¼ jþ1;

s(iþ1) ¼ mest(j)^2 þ mest(k)^2;

end

% Nyquist frequency

s(Nw) ¼ mest(M)^2; (MatLab eda06_04)
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When applied to the Neuse River discharge data, this method produces an amplitude

spectral density that is largest at low frequencies (Figure 6.4). In such cases, plotting

the spectrum as a function of period allows one to see details that would otherwise be

squeezed near the origin. The amplitude spectral density consists of several peaks,

superimposed on a “noisy background” that gradually declines with period. The three

largest peaks have periods of 365.2, 182.6, and 60.2, (one, one-half, and one-sixth

years) and are associated with oscillations in stream flow caused by seasonal fluctu-

ations in rainfall.

A common practice is to omit the zero-frequency element of the spectral density

from the plots (as was done here). It only reflects the mean value of the time series and

is not really relevant to the issue of periodicities. Large values can require a vertical

scaling that obscures the rest of the plot.

The MatLab script, eda06_04, worked fine calculating the spectral density of an

N� 4000 length time series. However, theN�Nmatrix,G, will become prohibitively

large for larger datasets. Fortunately, a very efficient algorithm, called the fast Fourier
transform (FFT), has been discovered for solving for mest that requires much less

storage and much less computation than “brute force” multiplication by GT. We will

return to this issue later in the chapter.
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Figure 6.4 Amplitude spectral density of the Neuse River discharge dataset. Top)

Amplitude spectral density as a function of frequency. Bottom) Amplitude spectral density

as a function of period. Note the prominent peaks with periods of 60.0, 182.6 and 365.2 days.

MatLab scripts eda06_04 and eda06_05.
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6.3 Going complex

Many of the formulas of the previous section can be substantially simplified by

switching from sines and cosines to complex exponentials, utilizing Euler’s formulas:

expðiotÞ ¼ cosðotÞ þ isinðotÞ
expð�iotÞ ¼ cosðotÞ � isinðotÞ ð6:16Þ

Here, i is an imaginary unit. These formulas imply

cosðotÞ ¼ expðiotÞ þ expð�iotÞ
2

and sinðotÞ ¼ expðiotÞ � expð�iotÞ
2i

ð6:17Þ

The main complication (besides the need to use complex numbers) is that both pos-

itive and negative frequencies are needed in the Fourier series. Previously, we paired

sines and cosines; now we will pair complex exponentials with positive and negative

frequencies:

dðtÞ ¼ � � �A cosðotÞ þ B sinðotÞ � � � ¼ � � �C� expð�iotÞ þ Cþ expðiotÞ � � �
ð6:18Þ

Here, C� and Cþ are the coefficients of the negative-frequency and positive-

frequency terms, respectively. The requirement that these two different repre-

sentations be equal implies a relationship between the As and Bs and the Cs.
We write out the Cs in terms of their real and imaginary parts, C� ¼ CR

� þ iCI
�

and Cþ ¼ CR
þ þ iCI

þ and perform the multiplication explicitly:

C� expð�iotÞ þ Cþ expðiotÞ ¼ ðC�
R þ iC�

I Þ cosðotÞ � i sinðotÞf g
þ ðCþ

R þ iCþ
I Þ cosðotÞ þ i sinðotÞf g

¼ ðC�
R þ Cþ

R Þ cosðotÞ þ ðC�
I � Cþ

I Þ sinðotÞ
þ iðC�

I þ Cþ
I Þ cosðotÞ þ iðCþ

R � C�
R Þ sinðotÞ

ð6:19Þ

As the time series, d(t), is real, the two imaginary termsmust be zero. This happens when

C� and Cþ are complex conjugates of each other: C� ¼ CR � iCI and C
þ ¼ CR þ iCI.

Comparing Equations (6.16) and (6.15), we find

A ¼ ðC�
R þ Cþ

R Þ ¼ 2Cþ
R and B ¼ ðC�

I � Cþ
I Þ ¼ �2Cþ

I ð6:20Þ

The power spectral density is now computed from C2
R þ C2

I , which is equivalent to C
times its complex conjugate: C2

R þ C2
I ¼ Cj j2 ¼ C�C. Here, the asterisk means

complex conjugation.
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We can represent a function as a Fourier series that involves sines and cosines of

real amplitudes, A and B, respectively, or alternatively, as a Fourier series that in-

volves complex exponentials with complex coefficients, C:

dk ¼
XN2þ1

n¼1

An cos ontkð Þ þ Bn sin ontkð Þf g with on ¼ 0,Do, 2Do, . . . , �/�NDoð Þ

ð6:21aÞ

dk ¼ 1

N

XN
n¼1

Cn expðiontkÞ with on ¼ ð0,Do, 2Do, . . ., �/�NDo,

� ð�/�N � 1ÞDo, . . ., � 2Do, � DoÞ
ð6:21bÞ

Note the nonintuitive ordering of the frequencies in the summation of the complex

exponentials, which we will discuss in detail below. The factor of N�1 has been

added to the complex summation in order to match MatLab’s convention so that

now (2/N)Ci ¼ Ai � iBi.

The solution of Equation (6.21b) for the coefficients, Cn, requires the complex ver-

sion of least squares (see Note 4.1). We will not discuss it in any detail here, except to

note that the matrix, [GHG]�1 ¼ N�1I, is diagonal (see Note 6.2) so that, like the sine

and cosine version of the DFT, matrix inversion is not required. The complex coef-

ficients, Cj, are calculated from the time series, d(tn), by

Cj ¼
XN
n¼1

dðtnÞ expð�iojtnÞ ð6:22Þ

In the sine and cosine case, the sum has N/2 þ 1 pairs of sines and cosines, but the

coefficients of the first and last pairs are zero, so the total number of unknowns is

N. In the complex exponential case, the sum has N complex coefficients, but except

for the first and last, they occur in complex conjugate pairs, so only the N/2 þ 1 co-

efficients of the nonnegative frequencies count for the unknowns. Each of these has a

real and imaginary part, except for the first and the last, which are purely real, so the

number of unknowns is once again 2(N/2 þ 1) �2 ¼ N.
We return now to the issue of the ordering of the frequencies, which is to say, the

order of the model parameters, m. The ordering presented in Equation (6.21b) has

the nonnegative frequencies first and the negative frequencies last. This ordering,

while nonintuitive, is actually more useful than a strictly ascending ordering, because

the nonnegative frequencies are really the only ones needed when dealing with real

time series. The negative frequencies, being complex conjugates of the positive ones,

are redundant. However, the ordering has a more subtle rationale related to aliasing.

The negative frequencies correspond exactly to the positive frequencies that one

would get, if the positive ordering were extended past the Nyquist frequency.

For example, the last frequency, �Do, is exactly equivalent to þ(N�1)Do, in the

sense that both correspond to the same complex exponential.
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In MatLab, the arrays of frequencies are created as follows:

M¼N;

tmax¼Dt*(N�1);

t¼Dt*[0:N�1]0;
fmax¼1/(2.0*Dt);

df¼fmax/(N/2);

f¼df*[0:N/2,�N/2þ1:�1]0;
Nf¼N/2þ1;

dw¼2*pi*df;

w¼dw*[0:N/2,�N/2þ1:�1]0;
Nw¼Nf; (MatLab eda06_05)

Here, N is the length of the data, again presumed to be an even integer. The quantities,

Nf and Nw, are the numbers of nonnegative frequencies.MatLab’s fft() (for fast Fou-
rier transform) function solves for the complex Fourier coefficients very efficiently,

and should always be used in preference to the least-squares procedure. The amplitude

spectral density is computed as follows:

% compute Fourier coefficients

mest ¼ fft(d);

% compute amplitude spectral density

s¼abs(mest(1:Nw)); (MatLab eda06_05)

Note that the amplitude spectral density is computed from the complex absolute value

of the coefficients, C. The results are, of course, identical to least-squares, but they are
computed with orders of magnitude less time and storage requirements (as can be seen

by comparing the run times of scripts eda06_04 and eda06_05). The time series can be

rebuilt from its Fourier coefficients by using the ifft() function:

dnew ¼ ifft(mest);

6.4 Lessons learned from the integral transform

The Fourier series is very closely related to the Fourier transform, as can be seen by a
side-by-side comparison of the two:

~dðoÞ ¼
ðþ1

�1
dðtÞexpð�iotÞdt and CðojÞ ¼

XN
k¼1

dðtkÞexpð�iojtkÞ ð6:23Þ

The integral converts the function, d(t), into its Fourier transform, the function, ~dðoÞ.
Similarly, the summation converts a time series, d(tj), into itsDFT, the column vector,

C(oj). If we assume that the data are nonzero only between 0 and tmax, then the integral
can be approximated by its Riemann sum:

ðtmax

0

dðtÞexpð�iojtÞdt � Dt
XN
k¼1

dðtkÞexpð�iojtkÞ ð6:24Þ
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Comparing Equations (6.22) and (6.23), we deduce that ~dðojÞ � Dt CðojÞ, that is, the
Fourier transform and DFT coefficients differ only by the constant, Dt. A similar re-

lationship holds between the inverse transform and the Fourier summation as well:

dðtjÞ ¼ 1

2p

ðþ1

�1
~dðoÞ expðiotjÞ do � Do

2p

XN
k¼1

~dðokÞ exp ðioktjÞ ð6:25Þ

This again gives ~dðojÞ � Dt CðojÞ (as DoDt ¼ 2p/N).
In the context of this book, Fourier transforms are of interest because they can be

more readily manipulated than Fourier series. Many of the relationships that are true

for Fourier transforms will also be true—or approximately true—for Fourier series.

We summarize a few of the most useful relationships below.

6.5 Normal curve

The transform of the Normal function, d(t) ¼ exp(�a2t2), is

~dðoÞ ¼
ðþ1

�1
expð�a2t2Þexpð�iotÞdt ¼ 2

ðþ1

0

expð�a2t2ÞcosðotÞdt

¼
ffiffiffi
p

p
a

exp � o2

4a2

� �
ð6:26Þ

Here, we have expanded exp(ot) into cos(ot) þ isin(ot). The integrand, sin(ot)
exp(�a2t2), consists of an odd function (the sine) of timemultiplied by an even function

(the exponential) of time. It is, therefore, odd and so its integral over (�1,þ1) is zero.

The product, cos(ot)exp(�a2t2), is an even function, so its integral on (�1, þ1) is

twice its integral on (0, 1). A standard table of integrals (e.g., integral 679 of the

CRC Standard Mathematical Tables) is used to evaluate the final integral.

If we write a2 ¼ 1/2s2, then the exponential has the form of a Normal curve cen-

tered at time zero:

dðtÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
exp � t2

2s2

� �
and ~dðoÞ ¼ exp � o2

2s�2

� �
ð6:27Þ

Thus, up to an overall normalization, the transform of a Normal curve with variance,

s2, is a Normal curve with variance, s�2.

This result is extremely important because it quantifies how the widths of functions

and the widths of their Fourier transforms are related. When d(t) is a wide function,
~dðoÞ is narrow, and vice-versa. A spiky function, such as a narrow Normal curve, has

a transform that is rich in high frequencies. A very smooth function, such as a wide

Normal curve, has a transform that lacks high frequencies (Figure 6.5).
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6.6 Spikes

The relationship between the width of a function and its Fourier transform can be pur-

sued further by defining the Dirac delta function—aNormal curve in the limit of van-

ishing small variance:

dðt� t0Þ ¼ lim
s!0

1ffiffiffiffiffiffi
2p

p
s
exp �ðt� t0Þ2

2s2

 !
ð6:28Þ

This generalized function is zero everywhere, except at the point, t0, where it is sin-
gular. Nevertheless, it has unit area. When the product, d(t � t0)f(t), is integrated, the
result is just f(t) evaluated at the point, t ¼ t0:

ðþ1

�1
dðt� t0Þf ðtÞdt ¼ f ðt0Þ ð6:29Þ

This result can be understood by noting that the Dirac function is nonzero only in a

vanishingly small interval of time, t0. Within this interval, the function, f(t), is just the
constant, f(t0). No error is introduced by replacing f(t) with f(t0) everywhere and taking
it outside the integral, which then integrates to unity.

The Fourier transform of a spike at t0 ¼ 0 is unity (Figure 6.6):

~dðoÞ ¼
ðþ1

�1
dðtÞexpð�iotÞ dt ¼ expð�iotÞ t¼0 ¼ 1j ð6:30Þ
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Figure 6.5 (A) Shaded column-vectors of a series of Normal functions with increasing

variance. (B) Corresponding amplitude spectral density MatLab script eda06_06.
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This is the limiting case of an indefinitely narrow Normal function (see

Equation 6.27).

The Dirac function, being “infinitely spiky,” has a transform that contains all

frequencies in equal proportions. The transform with a spike at t ¼ t0, is

~dðoÞ ¼
ðþ1

�1
dðt� t0Þexpð�iotÞdt ¼ expð�iotÞ t¼t0 ¼ expð�iot0Þj ð6:31Þ

Although it is an oscillatory function of time, its power spectral density is constant:

sðoÞ ¼ ~d
�ðoÞ~dðoÞ ¼ expðþiot0Þ expð�iot0Þ ¼ 1.

The Dirac function can appear in a function’s Fourier transform as well. The trans-

form of cos(o0t) is

~dðoÞ ¼ p ðdðo� o0Þ þ dðoþ o0ÞÞ ð6:32Þ

This formula can be verified by inserting it into the inverse transform:

dðtÞ ¼ 1

2p

ðþ1

�1
pðdðo� o0Þ þ dðoþ o0ÞÞ expðiotÞdo

¼ expðio0tÞ þ expð�io0tÞ
2

¼ cosðo0tÞ ð6:33Þ

As one might expect, the transform of the pure sinusoid, cos(o0t), contains only two

frequencies, �o0.

1
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Figure 6.6 (A) Spike function is zero except at time, t ¼ 0. (B) Corresponding transform is

unity. MatLab script eda06_07.
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6.7 Area under a function

The area, A, under a function, d(t), is its Fourier transform evaluated at zero frequency;

that is, A ¼ ~dðo ¼ 0Þ:

~dðo ¼ 0Þ ¼
ðþ1

�1
dðtÞexpð0Þdt ¼

ðþ1

�1
dðtÞdt ¼ A ð6:34Þ

as exp(0) ¼ 1. In MatLab, the area is computed as (Figure 6.7)

dt¼fft(d);

area ¼ real(dt(1)); (MatLab eda06_08)

6.8 Time-delayed function

Multiplying the transform, ~dðoÞ, by the factor, exp(�iot0), time-delays the function

by a time interval, t0:

~ddelayedðoÞ ¼
ðþ1

�1
dðt� t0Þexpð�iotÞdt ¼

ðþ1

�1
dðt0Þexpð�ioðt0 þ t0ÞÞdt0

¼ expð�iot0Þ
ðþ1

�1
dðt0Þ expð�iot0Þdt0 ¼ expð�iot0Þ~dðoÞ ð6:35Þ
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Figure 6.7 The area under the exemplary function, d(t), is computed by the sum() and fft()

functions. Both give the same value, 2.0014. MatLab script eda06_08.
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Here, we use the transformation of variables, t0 ¼ t � t0, noting that dt0 ¼ dt and that

t0! �1 as t0! �1. In the literature, the process of modifying a Fourier transform

by multiplication with a factor, expð�iot0Þ, is sometimes referred to as introducing a

phase ramp, as it changes the phase by an amount proportional to frequency (i.e., by a

ramp-shaped function):

’ðoÞ ¼ ot0 ð6:36Þ

The time-shift result appeared previously, when we were calculating the transform of

a time-delayed spike (Equation 6.31). The transform of the time-shifted spike differed

from the transform of a spike at time zero by a factor of exp(�iot0). In MatLab, the
time delay is accomplished as follows (Figure 6.8).:

t0 ¼ t(16);

ds¼ifft(exp(�i*w*t0).*fft(d)); (MatLab eda06_09)

where t0 is the delay. Note that the symbol i is being used as the imaginary unit.

This is theMatLab default, but one must be careful not to reset its value to something

else, for example, by using it as a counter in a for loop (see Note 2.1).
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Figure 6.8 The exemplary function, d(t), is time shifted by an interval, t0. MatLab script

eda06_09.
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6.9 Derivative of a function

Multiplying the transform, ~dðoÞ, by the factor, io, computes the transform of the

derivative, dd/dt:

ðþ1

�1

dd

dt
expð�iotÞdt ¼ dðtÞexpð�iotÞ

���þ1

�1
� ð�ioÞ

ðþ1

�1
dðtÞ expð�iotÞdt

¼ 0þ ðioÞ~dðoÞ ¼ io~dðoÞ ð6:37Þ
Here, we have used integrations by parts,

Ð
udv ¼ uv�Ð vdu, together with the limit,

exp(�iot) ! 0 as t ! �1. In MatLab, the derivative can be computed as follows

(Figure 6.9):

dddt¼ifft(i*w.*fft(d)); (MatLab eda06_10)

6.10 Integral of a function

Dividing the transform, ~dðoÞ, by the factor, io, computes the transform of the integral,Ð
d(t) dt:

d(
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dd
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Figure 6.9 (A) exemplary function, d(t). (B) Derivative of d(t) as computed by finite

differences. (C) Derivative as computed by fft(). MatLab script eda06_10.
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ðþ1

�1

ðt
0

dðt0Þdt0expð�iotÞdt ¼
ðt
0

dðt0Þdt0 expð�iotÞ
�io

����
þ1

�1
� 1

�io

ðþ1

�1
dðtÞ expð�iotÞdt

¼ 0þ 1

io
~dðoÞ ¼ 1

io
~dðoÞ ð6:38Þ

Here, we have used integrations by parts,
Ð
udv ¼ uv�Ð vdu together with the limit,

exp(�iot)! 0 as t! � 1. Note, however, that the zero-frequency value is undefined

(as 1/0 is undefined). As shown in Equation (6.25), this value is the total area under the

curve, so it functions as integration constant and must be set to an appropriate value.

InMatLab, with the zero-frequency value set to zero, the integral is calculated as follows
(Figure 6.10):

int2¼ifft(�i*fft(d).*[0,1./w(2:N)0]0); (MatLab eda06_11)

6.11 Convolution

Finally, we derive a result that pertains to the convolution operation, which will be

developed further and utilized heavily in subsequent chapters. Given two functions,

f(t) and g(t), their convolution (written f*g) is defined as
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Figure 6.10 (A) exemplary function, d(t). (B) Integral of d(t) as computed by Riemann sums.

C) Integral as computed by fft(). Notice that the two integrals differ by a constant offset.

MatLab script eda06_11.
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f ðtÞ � gðtÞ ¼
ðþ1

�1
f ðtÞgðt� tÞdt ð6:39Þ

The transform of the convolution is

ð�1

�1

ðþ1

�1
f ðtÞgðt� tÞdt expð�iotÞdt ¼

¼
ð�1

�1
f ðtÞ

ðþ1

�1
gðt� tÞ expð�iotÞdtdt

¼
ð�1

�1
f ðtÞ

ðþ1

�1
gðt0Þ expð�ioðt0 þ tÞÞdt0dt

¼
ð�1

�1
f ðtÞ expð�iotÞdt

ðþ1

�1
gðt0Þ expð�iot0Þdt0

¼ ~f ðoÞ~gðoÞ ð6:40Þ

Here, we have used the transformation of variables, t0 ¼ t � t. Thus, the transform of

the convolution of two functions is the product of their transforms.

6.12 Nontransient signals

Previously, in developing the relationship between the Fourier integral and its discrete

analog, we assumed that the function of interest, d(t), was zero outside of the time

window of observation. Only transient signals have this property; we can theoretically
record the whole phenomenon, as it lasts only for a finite time. An equally common

scenario is one in which the data represent just a portion of an indefinitely long phe-

nomenon that has no well-defined beginning or end. Both the Neuse River

Hydrograph and Black Rock Forest temperature datasets are of this type.

Many nontransient signals do not vary dramatically in overall pattern from one

time window of observation to another (meaning that their statistical properties are

stationary; that is, constant with time). One parameter that is independent of the win-

dow length is the power, P:

P ¼ 1

T

ð
½dðtÞ�2dt � Dt

NDt

XN
i¼1

½diðtÞ�2 ¼ 1

N
dTd ð6:41Þ

In some cases, such as when d(t) represents velocity, P literally is power, that is
energy per unit time. Usually, however, the word is understood in the more abstract

sense to mean the overall size of a signal that is fluctuating about zero. Note that when

the data have zero mean, P¼ N�1dTd is the formula for the variance of d. In this spe-

cial case, the power is equivalent to the variance of the signal, d(t).
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The power in a time series has a close relationship to its power spectral density.

A time series is related to its Fourier transform by the linear rule, d ¼ Gm, where

m is a column vector of Fourier amplitudes. If we were to use the sines and cosines

representation of the Fourier transform, then thematrix,G, is given in Equation (6.13).

Substituting d ¼ Gm into Equation (6.39) yields

P ¼ 1

N
dTd ¼ 1

N
ðGmÞTðGmÞ ¼ 1

N
mT½GTG�m ð6:42Þ

However, according to Equation (6.14), GTG ¼ (N/2)I (except for the first and last

coefficient, which we shall ignore). Hence,

P ¼ 1

N

N

2
mTm ¼ 1

2

XN2þ1

i¼1

ðA2
i þ B2

i Þ ¼
1

2

XN2þ1

i¼1

4

N2
Cij j2 ¼ 2

ðDtÞ2N2Df

ðfny

0

~dðf Þ�� ��2df ð6:43Þ

This result is called Parseval’s Theorem. Here, the As and Bs are the coefficients in the
cosines and sines representation of the Fourier series (Equation 6.13) and theCs are the
coefficients of the MatLab’s version of the DFT (Equation 6.21a). The two represen-

tations are related by (2/N)Ci ¼ Ai � iBi. The Fourier transform is approximately,
~dðf Þ ¼ DtCi. If we define the power spectral density, s

2(f), of a nontransient signal as

s2ðf Þ ¼ 2

T
~dðf Þ�� ��2 then P ¼

ðfny
0

s2ðf Þdf ð6:44Þ

Here, we have used the relations T ¼ NDt and DtDf ¼ N�1 to reduce 2/[(Dt)2N2Df] to
2/T. The power is the integral of the power spectral density from zero frequency to the

Nyquist frequency. In MatLab, the power spectral density is computed as follows:

tmax¼N*Dt;

C¼fft(d);

dbar¼Dt*C;

thepsd ¼ (2/tmax) * abs(dbar(1:Nf)).^2; (MatLab eda06_12)

and the total power (variance) is:

P ¼ Df * sum(thepsd); (MatLab eda06_12)

Here, the data, d, are presumed to have sampling interval, Dt, and length, N.

This simple generalization of the idea of spectral density is closely connected to the

limitation that we cannot take the Fourier transform of the whole phenomenon, for it is

indefinitely long, but only a portion of it. Nevertheless, we would like for our results to

be relatively insensitive to the length of the time window. The factor of 1/T in

Equation (6.42) normalizes for window length.

Suppose the units of d(t) are u. Then, the Fourier transform, ~dðoÞ, has units of u-s
and the power spectral density has units of u2s2/s ¼ u2s ¼ u2/Hz. For example, for

discharge data with units of cubic feet per second, u¼ ft3/s, and power spectral density
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has units of ft3, or ft3/s Hz�1 (in the Neuse river hydrograph shown in Figure 6.11,

we use the mixed units of ft3/s per cycle/day).

The amplitude spectral density has units of the square root of the power spectral

density; that is, u Hz�1/2.

We have yet to discuss two important elements of working with spectra: First, we

have made no mention of confidence limits, yet these are important in determining

whether an observed periodicity (i.e., an observed spectral peak) is statistically signif-

icant. The reason we have omitted it so far is that the power spectral density is not a

linear function of the model parameters, but instead depends on the sum of squares of

the model parameters. We lack the tools to propagate error between the data and re-

sults in this case. Second, we have made no mention of the tapering process that is

often used to prepare data before computing its Fourier transform. We will address

these important issues in Chapters 11 and 9, respectively.

Problems

6.1. Write aMatLab script that uses the fft() function to differentiate the Neuse River Hydro-
graph dataset. Plot the results.

6.2. What is the Fourier transform of sin(o0t)? Compare it to the transform of cos(o0t).
6.3. TheMatLab script, eda06_14, creates a file, noise.txt, containing normally distributed

random time series, d(t), with zero mean and unit variance. (A) Compute and plot the

power spectral density of this time series. (B) Create a second time series, a(t), that is a
moving window average of d(t); that is, each point in a(t) is the average of, say L, neigh-
boring points in d(t). (C) Compute and plot the power spectral density of a(t) for a suite of
values of L. Comment on the results.
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Figure 6.11 (A) Neuse River hydrograph, d(t). (B) Its power spectral density, s2(f). MatLab
script eda06_13.
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6.4. Suppose that you needed to compute the DFT of the function

dðtÞ ¼ exp � t2

2s2

� �

usingMatLab’s fft() function. This function is centered on t¼ 0, and therefore has non-

negligible values for points to the left of the origin. Unfortunately, we have defined the

time and data column-vectors, t and d, to start at time zero, so there seems to be no place

to put these data values. One solution to this problem is to shift the function to the center of

the time window, say by an amount, t0, compute its Fourier transform, and then multiply

the transform by a phase factor, exp(iot0), that shifts it back. Another solution relies on the
fact that, in discrete transforms, both time and frequency suffer from aliasing. Just as the

last frequencies in the transform were large positive frequencies and small negative fre-

quencies, the last points in the time series are simultaneously

t ¼ ½ . . . ðN � 3ÞDt ðN � 2ÞDt ðN � 1ÞDt �T

and

t ¼ ½ � � � �3Dt � 2Dt � Dt �T

Therefore, one simply puts the negative part of d(t) at the right-hand end of d. Write a

MatLab script to try both methods and check that they agree.

6.5. Compute and plot the amplitude spectral density of a cleaned version of the Black Rock

Forest temperature dataset. (A) What are its units? (B) Interpret the periods of any spectral

peaks that you find.
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7.1 Behavior sensitive to past conditions

Consider a scenario in which a thermometer is placed on the flame emitted by a burner

(Figure7.1A).Thegas supplied to theburnervarieswith time,causing theheat,h(t),of the
flame,measured inWatts (W), to fluctuate. An ideal thermometerwould respond instan-

taneously tochanges inheat, so the temperature,y(t),measured inKelvin (K),would track

heat exactly, that is,y(t)/ h(t). In this case, the past history of the heat has noeffect on the
temperature.The temperaturenowdependsonlyon theheatat thismoment. If, however, a

metal plate is inserted into the flame between the burner and the thermometer

(Figure 7.1B), the situation changes radically. The plate takes time to warm up or cool

down. The thermometer does not immediately detect a change in heat; it now takes time

to respond to changes. Even if the flamewere turned off, the thermometer would not im-

mediately detect the event. For a while, it would continue to register high temperatures

that reflected the heat supplied by the flame in the past. In this case, y(t) would not be

proportional to h(t), although the two would still be related in some fashion.

The relationship between y(t) and h(t) might be linear. Suppose that the time his-

tory of heat, h(t), caused temperature, y(t). If the heat were doubled to 2h(t), we might

find that the temperature also doubled, to 2y(t). Moreover, if two flames were operated

individually, with h1(t) causing y1(t) and h2(t) causing y2(t), we might find that the

combined heat of the two flames, h1(t) þ h2(t), caused temperature, y1(t) þ y2(t).
Another aspect of this scenario is that only relative time matters. If we turn on the

burner at 9 AM today, varying its heat, h(t), and recording temperature, y(t), we might

expect that the same experiment, if started at 9 AM tomorrow with the same h(t),
would lead to exactly the same y(t) (as long as we measured time from the start of

each experiment). The underlying notion is that the physics of heat transport through

the plate does not depend on day of the week.

Environmental Data Analysis with MatLab. DOI: 10.1016/B978-0-12-391886-4.00007-6
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This linear behavior can be quantified by assuming that both the heat, h(t), and tem-

perature, y(t), are time series; then writing the temperature, yi, at time, ti, as a linear
function of past and present heat, hj, with j � I,

the data ¼ a linear function of past values of another time series

yi ¼ g1hi þ g2hi�1 þ g3hi�2 þ g4hi�3 þ � � �
yiþ1 ¼ g1hiþ1 þ g2hi þ g3hi�1 þ g4hi�2 þ � � �
yiþ2 ¼ g1hiþ2 þ g2hiþ1 þ g3hi þ g4hi�1 þ � � �

or yi ¼
X1
j¼ 1

gjhi�jþ1 or u ¼ g � h ð7:1Þ

Note that each formula involves only current and past values of the heat. This is an

expression of causality—the future cannot affect the present. The relationship embod-

ied in Equation (7.1) is called a convolution, and is denoted by the asterisk, * (which

does not mean multiplication when used in this context).

The gs in Equation (7.1) are coefficients that express the linear proportionality

between heat and temperature. Note that exactly the same coefficients, g1, g2,
g3, g4 . . . are used in all the formulas in Equation (7.1). This pattern implements

the time-shift invariance that we discussed earlier—only the relative time between

the application of the heat and the measurement of the temperature matters. Of course,

this is only an idealization. If, for instance, the plate were oxidizing during the exper-

iment, then its thermal properties would change with time and the set of coefficients

that linked y(t) to h(t) at one time would be different from that at another.

For Equation (7.1) to be of any practical use, we need to assume that only the

recent past affects the present, that is, the coefficients, g1, g2, g3, g4, . . ., eventually
diminish in magnitude, sufficiently for the sequence to be approximated as having a

(A) (B)

Figure 7.1 (A) Instantaneous response of a thermometer to heat emitted by burner. (B) Delayed

response, due to plate that takes time to warm and cool.
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finite length. This notion implies that the underlying physics has a characteristic time

scale over which equilibration occurs. Heat that was supplied prior to this charac-

teristic response time has negligible effect on the current temperature. In the case

of the flame in the laboratory, we would not expect that yesterday’s experiment

would affect today’s experiment. The temperature of the plate has adequate time

to equilibrate overnight.

As Equation (7.1) is linear, it can be arranged into a matrix equation of the form

d ¼ Gm:

temperature ¼ linear, causal, time-shift invariant function of heating

or

y1
y2
y3
� � �
yN

2
66664

3
77775 ¼

g1 0 0 � � � 0

g2 g1 0 � � � 0

g3 g2 g1 � � � 0

� � � � � � � � � � � � 0

gN gN�1 gN�2 � � � g1

2
66664

3
77775

h1
h2
h3
� � �
hN

2
66664

3
77775

or

u ¼ Gh ð7:2Þ

Note, however, that a problem arises because of the lack of observation before time, t1.
Here, we have simply ignored those values (or equivalently, assumed that they are

zero). At time t1, the best that we can write is y1 ¼ g1h1, as we have no information

about heating at earlier times.

When grouped together in a column vector, g, the coefficients are called a filter.
A filter has a simple and important interpretation as the temperature time series

that one would observe if a unit impulse (spike) of heat were applied: inserting

h ¼ [1, 0, 0, 0, . . ., 0]T into Equation (7.2) yields u ¼ [g1, g2, g3, . . ., gN]
T. Thus, the

time series, g, is often called the impulse response of the system (Figure 7.2). The equa-

tion, u¼ g * h, can then be understood to mean that the output—the data, u—equals the

input—the heat, h—convolved with the impulse response of the system.

Each column, c(i), of the matrix,G, in Equation (7.2) is the time series, g, which is

shifted so that g1 aligns with row i; that is, it is the response of an impulse at time ti.
If we read the matrix equation as u ¼ h1c

(1) þ h2c
(2) þ h3c

(3) þ, . . ., then we can see

that the temperature, u, is built up by adding together many time-shifted versions of

the impulse response, each with an amplitude governed by the amount of heat. In this

view, the time series of heat is composed of a sequence of spikes and the time series

for temperature is constructed by mixing together scaled versions of the impulse

responses of each of those spikes (Figure 7.3).

So far, we have been examining a scenario in which the data vary with time.

The same sort of behavior occurs in spatial contexts as well. Consider a scenario

in which a spatially variable mass, h(x), of a pollutant is accidentally spilled on a
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Figure 7.2 Hypothetical impulse response of the hot plate scenario. (A) An impulse (spike) of

heat, h, is applied to the bottom of the plate at time, t ¼ 0. (B) The temperature, y, of the
top surface of the plate first increases, as heat begins to diffuse through plate. It then decreases,

as the plate cools.
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Figure 7.3 Interpretation of the response to heating. (A) The heat, h(t), is viewed as consisting
of a sequence of impulses (spikes). (B) The temperature, y(t), is viewed as consisting of a

sum of scaled and delayed impulse responses (dashed curves). A spike in heat of amplitude, h(t0)
at time, t ¼ t0, makes a contribution, h(t0)g(t�t0), to the overall temperature.
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highway. If, a year later, its concentration, y(x), on the road surface is measured, it

will not obey y(x) / h(x), because weather and traffic will have spread out the de-

posit. This type of scenario can also be represented with filters, but in this case they

are noncausal, that is, the concentration at position x0 is affected by deposition at

both x � x0 and x > x0:

concentration ¼ linear, spatial-shift invariant function of mass at all positions

or

yi ¼ � � � þ g�2hiþ3 þ g�1hiþ2 þ g0hiþ1 þ g1hi þ g2hi�1 þ g3hi�2 þ g4hi�3 þ � � �

We need to assume that the filter coefficients (the gs) die away at both the left and the
right so that the filter can be approximated by one of finite length.

7.2 Filtering as convolution

Equations (7.1) and (7.2) involve the discrete time series u, h, and g. They can readily
be generalized to the corresponding continuous case, for functions y(t), h(t), and g(t),
by viewing Equation (7.1) as the Riemann sum approximation of an integral. Then the

heat, h(t), is related to the temperature, y(t), by the convolution integral introduced in
Section 6.11:

yðtÞ ¼
Z þ1

�1
hðt� tÞ gðtÞ dt ! yðtiÞ � Dt

X1
j¼1

hðti � tjÞ gðtjÞ � Dt
X1
j¼1

hi�jþ1gj

ð7:3Þ
Note that the function, g(t) (as in Equation 7.3), and the time series, g (as in

Equation 7.1) differ by a scaling factor: gi ¼ Dtg(ti), which arises from the Dt in
the Riemann summation.

The integral formulation isusefulbecause itwill allowus todeducepropertiesof filters

that might not be so obvious from the matrix equation (Equation 7.2) that describes

the discrete case. As an example, we note that an alternative form of the convolution

can be derived from Equation (7.3) by the transformation of variables, t0 ¼ (t�t):

yðtÞ ¼
Z þ1

�1
hðt� tÞ gðtÞ dt ! yðtÞ ¼

Z þ1

�1
gðt� tÞ hðtÞ dt

or

yðtÞ ¼ hðtÞ � gðtÞ ¼ gðtÞ � hðtÞ ð7:4Þ
For causal filters, the function, g(t), is zero for times t < 0. In the first integral, g(t) is
forward in time and h(t) is backward in time, and in the second integral, it is vice-

versa. Just as with the discrete version of the convolution, the integral version is

denoted by the asterisk: y(t) ¼ h(t) * g(t). The integral convolution is symmetric,

in the sense that h(t) * g(t) ¼ g(t) * h(t).
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In Section 7.1, we interpreted the discrete convolution, u ¼ g * h, to mean that the

output, u, is the input, h, convolved with the impulse response of the system, g.

We interpreted the column vector, g, as the impulse response because u ¼ g when

the input is a spike, h ¼ [1, 0, 0, 0, . . ., 0]T. The same rationale carries over to the

integral convolution. The equation y(t) ¼ g(t) * h(t) means that the output, y(t), is
the input, h(t), convolved with the impulse response of the system, g(t). We represent

the spike with the Dirac function, d(t) (see Section 6.6). Then y(t) ¼ g(t) when h(t) ¼
d(t) (as can be verified by inserting h(t) ¼ d(t) into Equation 7.4).

The alternative form of the integral convolution (Equation 7.4), when converted to

a Riemann summation, yields the following matrix equation:

output ¼ linear function of impulse response

or

y1
y2
y3
� � �
yN

2
66664

3
77775 ¼

h1 0 0 � � � 0

h2 h1 0 � � � 0

h3 h2 h1 � � � 0

� � � � � � � � � � � � 0

hN hN�1 hN�2 � � � h1

2
66664

3
77775

g1
g2
g3
� � �
gN

2
66664

3
77775

ð7:5Þ

In Equation (7.2), the heat plays the role of the model parameters. If solved by least

squares, this equation allows the reconstruction of the heat, using observations of tem-

perature (with the impulse response assumed known, perhaps by deriving it from the

fundamental physics). In Equation (7.4), the impulse response plays the role of the

model parameters. If solved by least squares, this equation allows the reconstruction

of the impulse response, using observations of temperature. In this case, the heat is

assumed to be known, perhaps by measuring it, too. (Note, however, that the data ker-

nel would then contain potentially noisy observations, which violates one of the un-

derlying assumptions of least-squares methodology.)

As another example of the utility of the integral formulation of the convolution,

note that we had previously derived a relation pertaining to the Fourier transform of

a convolution (see Section 6.11). In this context, the Fourier transform of temperature,
~yðoÞ, is equal to the product of the transforms of the heat and the impulse response,
~yðoÞ ¼ ~hðoÞ~gðoÞ. As we will see later in the chapter, this relationship will prove

useful in some computational scenarios.

7.3 Solving problems with filters

Here, we consider a more environmentally relevant temperature scenario, which,

however, shares a structural similarity with the burner example. Suppose a thin

underground layer generates heat (for example, because of a chemical reaction) and

the temperature of the surrounding soil or sediment is measured. As with the burner

example, the heat production, h(t), of the layer is unknown and the temperature,

y(t), of the soil at a distance, z ¼ 1 meter, away from the layer is the observation.
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(Perhaps direct observation of the layer is contraindicated owing to concerns about

release of hazardous chemicals). The impulse response, g(t), of such a layer is

predicted on the basis of the physics of heat flow (Menke and Abbott, 1990, their

Equation 6.3.4):

gðtÞ ¼ 1

rcp

1ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffi
2kt

p exp � 1

2

z2

2kt

� �
ð7:6Þ

Note that the impulse response is proportional to a Normal curve with variance, 2kt,
centered about z¼ 0. The equation involves three material constants, the density, r, of
the soil, its heat capacity, cp, and its thermal diffusivity, k. Typical values for soil are
r� 1500 kg/m3, cp� 800 J/kg K, and k� 1.25� 10�6 m2/s. Note that time is divided

by the quantity (2k)�1� 4� 105 s, which defines a time scale of about 4.6 days for the

heat transport process. Thus, observations made every few hours are sufficient to ade-

quately measure variations of temperature. The quantity, rcp� 1.2� 106 J/kg K, is the

amount of heat, 1.2 million Joules in this case, that needs to be supplied to raise the

temperature of a cubic meter of rock by 1 K. Thus, for example, a chemical reaction

supplying heat at a rate of 1 W/m2 will warm up a cubic meter of soil by 0.08 K

in 1 day.
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Figure 7.4 (A) Impulse response, g(t), of a heat-generating layer. (B) Hypothetical heat

production, htrue(t). (C) Corresponding temperature, ytrue(t), at 1 m distance from the layer.

MatLab script eda07_01.
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The impulse response (Figure 7.4A) is problematical in two respects: (1) Although

it rapidly rises to its maximum value, it then decays only slowly, so a large number of

samples are needed to describe it accurately. (2) It contains a factor of t�1/2 that is

singular at time, t ¼ 0 although the function itself is zero, as the exponential factor

tends to zero faster than the t�1/2 factor blows up. Thus, the t¼ 0 value must be coded

separately in MatLab:

M¼1024;

N¼M;

Dtdays ¼ 0.5;

tdays ¼ Dtdays*[0:N�1]0;
Dtseconds ¼ Dtdays*3600*24;

tseconds ¼ Dtseconds*tdays;

–––

g ¼ zeros(M,1);

g(1)¼0.0; % manually set first value

g(2:M) ¼ (1/(rho*cp)) * (Dtseconds/sqrt(2*pi)) .* . . .

(1./sqrt(2*kappa*tseconds(2:M))) .* . . .

exp(�0.5*(z^2)./ (2*kappa*tseconds(2:M))); (MatLab eda07_01)

Note that two column vectors of time are being maintained: tdays, with units of days

and sampling of ½ day, which is used for plotting, and tseconds, with units of sec-

onds, which is used in formulas that require SI units. Note also that the formula for the

impulse response contains a factor of Dt not present in Equation (7.6), the scaling fac-
tor between the continuous and discrete forms of the convolution.

Given a heat production function, h(t) (Figure 7.4B), the temperature can be pre-

dicted by performing the convolution y(t) ¼ g(t) * h(t). In MatLab, one can build the

matrix, G (Equation 7.2) and then perform the matrix multiplication:

G ¼ toeplitz([g‘, zeros(N�M,1)’]0, [g(1), zeros(1,M�1)]);

qtrue2 ¼ G*htrue; (MatLab eda07_01)

Here we use the character, q, instead of y, as MatLab variables need to have Latin

names. An alternative (and preferable) way to perform the convolution is to use

MatLab’s conv() (for convolve) function, which performs the convolution summation

(Equation 7.1) directly:

tmp ¼ conv(g, htrue);

qtrue¼tmp(1:N);

The conv() function returns a column vector that is N þ M � 1 samples long, which

we truncate here to N samples.

When we attempt to solve this problem with least squares,MatLab reports that the
solution,

hest1¼(G0*G)\(G0*qobs);

is ill-behaved. Apparently, more than one heat production, hest, predicts the same—or

nearly the same—observations. A quick fixup is to use the damped least squares so-

lution, which adds prior information that hest is small. The damped least squares

solution is easy to implement. We merely add a factor of E2I to GTG:
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GTG¼G0*G;
GTGmax ¼ max(max(abs(GTG)));

e2¼1e�4*GTGmax;

hest1¼(GTGþe2*eye(M,M))\(G’*qobs); (MatLab eda07_01)

The function eye() returns the identity matrix, I. In principle, the size of E2 should
be governed by the ratio of the variance of the data to the variance of the prior in-

formation. However, we make no pretense here of knowing what this ratio might

be. Instead, we take a more pragmatic approach, choosing a value for E2 (e2 in the

script) by trial-and-error. In order to expedite the trial-and-error tuning, we write E2

as proportional to the largest element inGTG, so that a small damping factor (10�4,

in this case) corresponds to the case where E2I is smaller than G
T
G.

The damped least squares solution returns a heat production, hest, that closely

resembles the true heat production, htrue, when run on synthetic data with a low

(0.1%) noise level (Figure 7.5). The situation is less favorable as the noise level

is increased to 1% (Figure 7.6). Although the two peaks in heat production, htrue,

can still be discerned in hest, they are superimposed on a background of high am-

plitude, high-frequency fluctuations. The problem is that the impulse response,

g(t), is a slowly varying function that tends to smooth out high-frequency varia-

tions in heat production. Thus, while the low-frequency components of the heat

production are well constrained by the data, uobs, the high-frequency components

are not. The damped least squares implements the prior information of smallness,
but smallness does not discriminate between frequencies and, so, does little

to correct this problem. As an alternative, we try prior information of smoothness,
implemented with generalized least squares. As a smooth solution is one
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Figure 7.5 (A) Synthetic temperature data, yobs(t), constructed from the true temperature plus

random noise. (B) True heat production, htrue(t). (C) Estimated heat production, hest(t),
calculated with damped least squares. MatLab script eda07_01.
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lacking high-frequency fluctuations, this method does much better (Figure 7.7).

The MatLab code that created and solved the generalized least squares

equation, Fm ¼ f, is as follows:

e¼10*max(max(abs(G)));

F¼zeros(N þ M,M);

f¼zeros(N þ M,1);

F(1:N,1:M)¼G;

f(1:N)¼ qobs2;

H¼toeplitz(e*[�2, 1, zeros(1,M�2)]0, e*[�2, 1, zeros(1,M�2)]);

F(Nþ1:NþM,:)¼H;

f(Nþ1:NþM)¼0;

hest3 ¼ (F0*F)\(F0*f); (MatLab eda07_02)

Here the matrix equation, f ¼ Fm, is built up from its two component parts, the data

equation, d ¼ Gm and the prior information equation, h ¼ Hm. As before, the quan-

tity E is in principle controlled by the square-root of the ratio of the variances of the

data and the prior information. However, we again take a pragmatic approach and tune

it by trial-and-error.

The above code makes rather inefficient use of computer memory. The matrix, G,

is constructed from exactly one column-vector, g, so that almost all of the elements of

the matrix are redundant. Similarly, the matrix, H, has only three nonzero diagonals,

so most of its elements are zero. This wastefulness is not a problem for short filters,

0.5

(A)

(B)

(C)

0 50 100 150 200 250 300 350 400 450 500
0

qob
s (

t)
 (

K
)

htr
ue

(t
) 

(W
/m

2 )
hes

t (t
) 

(W
/m

2 )

10

−10

0

0 50 100 150 200 250 300 350 400 450 500

10

0

−10
0 50 100 150 200 250 300 350 400 450 500

Time t (days)

Time t (days)

Time t (days)

Figure 7.6 (A) Synthetic temperature data, yobs(t), constructed from the true temperature plus

a higher level of random noise than in Figure 7.5. (B) True heat production, htrue(t). (C)
Estimated heat production, hest(t), calculated with damped least squares. MatLab script

eda07_02.
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but the storage requirements and computation time quickly becomes unmanageable

for long ones. The solution can be computed much more efficiently using MatLab’s
bicg() function. As was described in Section 5.7, this function requires a user-sup-

plied function that efficiently computes FT(Fv) ¼ GT(Gv) þ HT(Hv), where v is an

arbitrary vector. This function, which we call filterfun(), is analogous to (but more

complicated than) the afun() function discussed in Section 5.7:

function y ¼ filterfun(v,transp_flag)

global g H;

% get dimensions

N ¼ length(g);

M ¼ length(v);

[K, M2] ¼ size(H);

temp1 ¼ conv(g,v); % G v is of length N

a¼temp1(1:N);

b¼H*v; % H v is of length K

temp2¼conv(flipud(g),a); % GT (G v) is of length M

a2 ¼ temp2(N:NþM�1);

b2 ¼ H0*b; % HT (H v) is of length M

% FT F v ¼ GT G vþHT H v

y ¼ a2 þ b2;

return (MatLab filterfun)
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Figure 7.7 (A) Synthetic temperature data, yobs(t), constructed from the true temperature

plus the same level of random noise as in Figure 7.6. (B) True heat production, htrue(t).
(C) Estimated heat production, hest(t), calculated with generalized least squares using prior

information of smoothness. MatLab script eda07_02.
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The quantities, g and H, are defined as global variables, in both this function and

the main script, soMatLab recognizes these variables as referring to the same quantities

in both scripts. The required vector,GT(Gv)þHT(Hv), is built up in five steps: (1) The

quantity a ¼ Gv is just the convolution of g and v, and is computed using the conv()

function. (2) The quantity b¼Hv is performed with a simple matrix multiplication and

presumes thatH is a sparse matrix. (3) The quantity a2 ¼ GTa is a convolution, but the

matrixGT differs from the normal convolution matrixG in three respects. First, the or-

dering of g in the columns ofGT is reversed (‘flipped’) with respect to its ordering inG.

Second, GT is upper-triangular, while G is lower-triangular. Third, GT is M � N
whereas G is N � M. Thus, modifications in procedure are required to compute

a2 ¼ GTa using the conv() function. The order of the elements of g must be flipped

before computing its convolution with a. Moreover, the results must be extracted from

the lastM elements of the column vector returned by conv() (not, as withGv, from the

first N elements). (4) The quantity b2 ¼ HTb is computed via normal matrix multipli-

cation, again presuming that H is sparse. (5) The quantity a2 þ b2 is computed by nor-

mal vector addition. In the main script, the quantitiesH, h, and f are created as follows:

clear g H;

global g H;

–––

e¼10*max(abs(g));

K¼M;

L¼N þ K;

H¼spalloc(K,M,3*K);

for j ¼ [2:K]

H(j,j�1)¼e;

end

for j ¼ [1:K]

H(j,j)¼�2*e;

end

for j ¼ [1:K�1]

H(j,jþ1)¼e;

end

h¼zeros(K,1);

f(1:N)¼qobs2;

f(Nþ1:NþK)¼h; (MatLab eda07_03)

The spalloc() function creates a K � M sparse matrix H, capable of holding 3 K
nonzero elements. Its three nonzero diagonals are set by the three for loops. The col-

umn vector h is zero. The column vector f is built up from yest and h. The quantity FTf

is computed using the samemethodology as in filterfun() and then both filterfun()

and FTf are passed to the biconjugate gradient function, bicg():

temp¼conv(flipud(g),qobs2);

FTfa ¼ temp(N:NþM�1);

FTfb ¼ H0*h;
FTf¼FTfaþFTfb;

hest3¼bicg(@filterfun,FTf,1e�10,3*L); (MatLab eda07_03)
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The solution provided by eda07_03 is the same as that provided by eda07_02,

but the memory requirements are much less and the execution speed is much

faster.

7.4 Predicting the future

Suppose we approximate the present value of a time series, d, as a linear function of its

past values:

present value ¼ linear function of past values

or

di ¼ p2di�1 þ p3di�2 þ p4di�3 þ � � � þ pMdi�M�1 ð7:7Þ

where the p’s are coefficients. If we knew these coefficients, then we could predict
the current value di using the past values di�1, di�2, di�3,. . . Equation (7.7) is just

the convolution equation:

p1di þ p2di�1 þ p3di�2 þ p4di�3 þ � � � ¼ 0 with p1 ¼�1 so p � d¼ 0 ð7:8Þ

Here, the prediction error filter p is the unknown. The convolution equation,

p * d ¼ 0, has the same form as the heat production equation, g * h ¼ u, that we
encountered in the previous section, and the same generalized least squared meth-

odology can be used to solve it. The prior information, p1 ¼ (�1), is assumed to be

extremely certain and given much smaller variance than p * d¼ 0. In most practical

cases, the future, insofar as it can be predicted, is a function primarily of the recent
past. Thus, the prediction error filter is short and MatLab’s standard matrix algebra

can be used in the computation of p (although the bicongugate gradient method

remains a good alternative).

As an example, we compute the prediction error filter of the Neuse River Hydro-

graph (Figure 7.8) using both methods, obtaining, as expected, identical results in the

two cases. We choose M ¼ 100 as the length of p. The filter has most of its high am-

plitude in the first 3 of 4 days, suggesting that a shorter filter might produce a similar

prediction. The small feature at a time of 42 days is surprising, because it indicates

some dependence of the present on times more than a month in the past. However,

degree to which this feature actually improves the prediction needs to be investigated
before its significance can be understood.

The prediction error, e ¼ p * d, is an extremely interesting quantity (Figure 7.9),

because it contains the part of the present that cannot be predicted from the past; that

is, the new information. In this case, we expect that the unpredictable part of the Neuse

hydrograph is the pattern of storms, while the predictable part is response of the river

to those storms. The narrow spikes in the error, e, which correlate to peaks in the dis-

charge, seem to bear this out.
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7.5 A parallel between filters and polynomials

Being able to perform convolutions of short time series by hand is very useful, so

we describe here a simple method of organizing the calculation in the convolution

formula (Equation 7.1). Suppose we want to calculate c ¼ a * b, where both a

and b are of length 3. We start by writing down a and b as row vectors, with a written

backward and time and b written forward in time, with one sample of overlap.

We obtain c1 by multiplying column-wise, treating blanks as zeros:

a3 a2 a1
b1 b2 b3

�
a1b1

���!yields
c1 ¼ a1b1 ð7:9Þ

To obtain c2, we shift the top time series one sample to the right, multiply column-

wise, and add the results:
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Figure 7.8 Prediction error filter for the Neuse River Hydrograph data, with length ofM¼ 100.

(A) Filter computed by standard matrix algebra [FTF]\[FTf]. (B) Filter computed with the

bicongugate gradient function, bicg(). MatLab script eda07_04.

140 Environmental Data Analysis with MatLab



a3 a2 a1
b1 b2 b3

�
a2b1 a1b2

���!yields
c2 ¼ a2b1 þ a1b2 ð7:10Þ

To obtain c3, we shift, multiply, and add again.

a3 a2 a1
b1 b2 b3
�

a3b1 a2b2 a1b3

���!yields
c3 ¼ a3b1 þ a2b2 þ a1b3 ð7:11Þ

And so forth. The last nonzero element is c5:

a3 a2 a1
b1 b2 b3
�

a3b3

���!yields
c5 ¼ a3b3 ð7:12Þ
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Figure 7.9 (A) One year of discharge data, d(t), from the Neuse River Hydrograph dataset.

The prediction error, e(t), based on the M ¼ 100 length prediction error filter shown in

Figure 7.8. The filter is computed for the whole dataset. A shorter time segment is shown

here for visual clarity. MatLab script eda07_04.
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An astute reader might have noticed that this is exactly the same pattern of coefficients

that one would obtain if one multiplied the polynomials:

aðzÞ ¼ a1 þ a2zþ a3z
2 and bðzÞ ¼ b1 þ b2zþ b3z

2

so

cðzÞ ¼ aðzÞbðzÞ ¼ a1b1 þ ða2b1 þ a1b2Þzþ � � � þ a3b3z
4 ð7:13Þ

We can perform a convolution by converting the time series to polynomials, as above,

multiplying the polynomials, and forming a time series from the coefficients of the

product. The process of forming the polynomial from a time series is trivial: multiply

the first element by z0, the secondby z1, the thirdby z2, and so forth, and add.Theprocess
of forming a time series from a polynomial is equally trivial: the first element is the

coefficient of the z0 term, the second of the z1 term, the third of the z2 term, and so forth.

Yet, while it is trivial to perform, this process turns out to be extremely important,

because it allowsus to apply avery largebodyofknowledgeabout polynomials to issues

associated with filters and convolutions. Because of its importance, the process of

forming a polynomial from a time series is given a special name, the z-transform.

7.6 Filter cascades and inverse filters

Consider a polynomial g(z) of order N � 1 that represents a filter, g, of length, N.
According to the Fundamental Theorem of Algebra, the polynomial can be written

as the product of its N � 1 factors:

gðzÞ ¼ g1 þ g2zþ � � � gNzN�1 ¼ gNðz� r1Þðz� r2Þ � � � ðz� rN�1Þ ð7:14Þ

where the rs are the roots of the polynomial (that is, the zs for which the polynomial is

zero) and the factor of gN acts as an overall normalization. Thus the filter, g, can be

written as a cascade of convolutions of N � 1 length-two filters:

g ¼ gNg1 � g2 � � � � gN�1 ¼ gN
�r1
1

� �
� �r2

1

� �
� � � � � �rN�1

1

� �
ð7:15Þ

Thus, any long filtering operation can be broken down into a sequence of many small

ones. (Note, however, that some of the length � 2 time series may be complex, as the

roots of a polynomial are, in general, complex).

The goal of the temperature scenario in Section 7.2 was to solve an equation of the

form g *m¼ dobs form. In that section, we used generalized least squares to solve the

equivalent matrix equationGm¼ d. Another way to solve the problem is to construct

an inverse filter ginv such that ginv * g ¼ [1, 0, 0, . . . , 0]T. Then g * m ¼ dobs can be

solved by convolving each side of the equation by the inverse filter:mest¼ ginv * dobs.

The z-transform of the inverse filter is evidently ginv(z) ¼ 1/g(z), because then

g(z)ginv(z) ¼ 1. Note, however, that the function 1/g(z) is not a polynomial, so the
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method of inverting the z-transform and thereby converting the function, 1/g(z), back
to the time series, ginv, is unclear. Suppose, however, that g(z) was written as a product
of its factors (z� ri), as in Equation (7.14). Then, the inverse filter is the product of the
reciprocal of each of these binomials:

ginvðzÞ ¼ 1

gN
ðz� r1Þ�1ðz� r2Þ�1 � � � ðz� rN�1Þ�1 ð7:16Þ

Each of these reciprocals can now be expanded using the binomial theorem:

ðz� riÞ�1 ¼ ð�r�1
i Þ 1� z

ri

� ��1

¼ ð�r�1
i Þð1þ r�1

i zþ r�2
i z2 þ r�3

i z3 � � �Þ

ð7:17Þ

Writing the same result in terms of time series

�ri
1

� �inv
¼ ð�r�1

i Þ
1

r�1
i

r�2
i

� � �

2
664

3
775 ð7:18Þ

Thus, the inverse of a length-two filter is infinite in length. This is not a problem, as

long as the elements of the inverse filter die away quickly, which happens when

r�1
i

�� �� < 1 or, equivalently, rij j > 1.

Each length-two filter in the cascade for g turns into an infinite length filter in the

cascade for the inverse filter, ginv. Therefore, while g is a length-N filter, ginv is an in-

finite length filter. Any attempt (as in Section 7.2) to find a finite-length version of ginv

is at best approximate, and can really succeed only when all the roots of g(z) satisfy
rij j > 1. Nevertheless, the approximation is quite good in some cases. In the lingo

of filter theory, the roots, ri, must all lie outside the unit circle, ri
2 ¼ 1, for the inverse

filter to exist. In this case, the filter, g, is said to be minimum phase.
This method can be used to construct inverse filters of short filters (Figure 7.10).

The first step is to find the roots of the polynomial associated with the filter, g:

% find roots of g

r ¼ roots(flipud(g)); (MatLab eda07_05)

Here, the filter, g, is of length N. Note that the order of elements in g are flipped, be-

cause MatLab’s root() function expects the highest order coefficient first. Then a

length, Ni, approximation of the inverse filter is computed:

% construct inverse filter, gi, of length Ni

Ni ¼ 50;

gi ¼ zeros(Ni,1);

gi(1)¼1/gN;

% filter cascade, one filter per loop
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for j ¼ [1:N�1]

% construct inverse filter of a length�2 filter

tmp ¼ zeros(Ni,1);

tmp(1) ¼ 1;

for k ¼ [2:Ni]

tmp(k) ¼ tmp(k�1)/r(j);

end

tmp ¼ �tmp/r(j);

gi ¼ conv(gi,tmp);

gi¼gi(1:Ni);

end

% delete imaginary part (which should be zero)

gi ¼ real(gi); (MatLab eda07_05)

First, the inverse filter is initialized to a spike of amplitude 1/gN. Then, each compo-

nent filter (Equation 7.17) of the cascade (Equation 7.16) is constructed and convolved

into gi. After each convolution, the results are truncated to length Ni. Finally, the

imaginary part of the inverse filter, which is zero up to round-off error, is deleted.

As an aside, we mention that Fourier transforms can also be used to solve the equa-

tion g *m¼ d and to understand the inverse filter. As the Fourier transform of a con-

volution is the product of the Fourier transforms, we have

gðtÞ � mðtÞ ¼ dobsðtÞ ! ~gðoÞ ~mðoÞ ¼ ~d
obsðoÞ so ~mestðoÞ ¼ 1

~gðoÞ
~d
obsðoÞ

ð7:19Þ
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Figure 7.10 A filter, g, its inverse filter, ginv, and the convolution of the two, ginv*g. MatLab
script eda07_05.
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This equation elucidates the problem of the nonuniqueness of the solution, mest(t).
If the Fourier transform of the impulse response, ~gðo0Þ, is zero for any value of

frequency, o0, then this spectral hole hides the corresponding value of ~mðo0Þ, in
the sense that the data, ~dðo0Þ, does not depend on it. Thus, ~mestðoÞ is nonunique;
its value at frequency o0 is arbitrary. In practice, even nonzero but small values of

~gðoÞ are problematical, as corresponding large values of ~ginvðoÞ amplify noise in

the data, ~d
obsðoÞ, and lead to a noisy solution, mest(t). We encountered this problem

in the heat production scenario of Section 7.2. As the impulse response (Figure 7.4A)

is a very smooth function, its Fourier transform has low amplitude at high frequencies.

This leads to high-frequency noise present in the data being amplified during the

solution process.

Equation (7.16) also implies that the Fourier transform of the inverse filter

is ~ginvðoÞ ¼ 1=~gðoÞ; that is, the Fourier transform of the inverse filter is the recip-

rocal of the Fourier transform of the filter. A problem arises, however, with spec-

tral holes, as ~ginvðoÞ is singular at those frequencies. Because of problems

associated with spectral holes, the spectral division method defined by

Equation (7.16) is not usually a satisfactory method for computing the solution

to g * m ¼ d or for constructing the inverse filter. The generalized least squares

method, based on solving the matrix form of the equation g * ginv ¼ [1, 0, 0, . . ., 0]T,
usually performs much better, as prior information can be used to select a well-behaved

solution.

7.7 Making use of what you know

In the standard way of evaluating a convolution equation (e.g., u ¼ g * h, as in

Equation 7.1), we compute the elements of u in sequence, y1, y2, y3, . . . but inde-
pendently of one another, even though we know the value of y1 before we start to

calculate y2, know the values of y1 and y2 before we start to calculate y3, and so forth.
The known but unused values of u are a source of information that can be put

to work.

Suppose that the convolution equation (Equation 7.1) is modified by adding a

second summation:

yi ¼
X1
j¼ 1

gj hi�jþ1 ¼
XN
j¼ 1

uj hi�jþ1 �
XM
j¼ 2

vj yi�jþ1 ð7:20Þ

Here, u and v are filters of length N and M, respectively, whose relationships to

g are yet to be determined. Note that the last summation starts at j ¼ 2, so that only

previously calculated elements of u are employed. The introduction of past values of

u into the convolution equation is called recursion and filters that include recursion

(i.e., include the last term in Equation 7.20) are called Infinite Impulse Response (IIR)
filters. Filters that omit recursion (i.e., omit the last term in Equation 7.20) are called
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Finite Impulse Response (FIR) filters. If we define v1 ¼ 1, then we can rewrite

Equation (7.20) as:

XN
j¼ 1

uj hi�jþ 1 ¼
XM
j¼ 1

vj yi�jþ 1 or u � h ¼ v � u ð7:21Þ

Recall that we began this discussion by seeking an efficient way to evaluate u¼ g * h.

Equation (7.21) implies u¼ vinv * u * h and so, if we could find filters u and v so that

g ¼ vinv * u, then Equation (7.20) would be equivalent to u ¼ g * h. However, it will

only improve efficiency if the two filters, u and v, are shorter than g. What makes

this possible is the fact that even a very short filter, v, has an infinitely long inverse

filter, vinv.

In order to illustrate how an IIR filter can be designed, we examine the following

simple case:

g ¼ 1
�
2 1,

1

2
,
1

4
,
1

8
, � � �

� �T
ð7:22Þ

Here, g is a causal smoothing filter. It has only positive coefficients that rapidly de-

crease with time and the sum of its elements is unity. Each element of u is dependent

on just the current value and recent past of h. The choices

u ¼ ½1�2, 0�T and v ¼ ½1, � v2�T with v2 ¼ 1
�
2 ð7:23Þ

work in this case, as vinv ¼ [1, v2, v2
2, . . .]T ¼ [1, ½, ¼, . . .]T (see Equation 7.18). The

generalized convolution equation (Equation 7.20) then reduces to

yi ¼ 1
�
2 hi þ 1

�
2 yi�1 ð7:24Þ

which involves very little computation, indeed! This filter is implemented inMatLab
as follows Figure 7.10):

q1¼zeros(N,1);

q1(1)¼0.5*h1(1);

for j¼[2:N]

q1(j)¼0.5*(h1(j) þ q1(j�1));

end (MatLab eda07_06)

Here, h1 is the original time series and q1 is the smoothed version. Both are of length

N.MatLab provides a function, filter(), that implements Equation (7.20) and can be

used as an alternative to the for loop (Figure 7.11):

u¼[0.5,0]0;
v¼[1.0,�0.5];

q1 ¼ filter(u, v, h1); (MatLab eda07_07)

We will return to the issue of IIT filter design in Chapter 9.
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Problems

7.1 Calculate by hand the convolution of a¼ [1, 1, 1, 1]T and b¼ [1, 1, 1, 1]T. Comment on the

shape of the function c ¼ a * b.

7.2 Plot the prediction error, E, of the prediction of the Neuse River hydrograph as a function of
the length, N, of the prediction error filter. Is a point of diminishing returns reached?

7.3 What is the z-transform of a filter that delays a time series by one sample?

7.4 Note that any filter, g, with g1 ¼ 0 is a nonstationary phase, as its z-transform is exactly

divisible by z and so has a root at z ¼ 0 that is not outside the unit circle. A simple way

to change a stationary phase filter into one that is nonstationary phase filter is to decrease

the size of its first element towards zero. Modify script eda07_05 to examine what happens

to the inverse filter when you decrease the size of g1 towards zero in a series of steps. In-

creasing Ni might make the behavior clearer.

7.5 Generalize the recursive filter developed at the end of Section 7.5 for the case g(t) / exp

(�t/t), that is, a smoothing filter of unit area and arbitrary width, t. Start by writing gj /
[1, c, c2, . . .]T with c ¼ exp(�△t/t).

7.6 Use you result from the previous problem to smooth the Neuse River hydrograph by with a

sequence of filters, g(t) / exp(�t/t), with t ¼ 5, 15 and 40 days. Plot your results and

comment on the effect of filtering on the appearance of the hydrograph.
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8.1 Samples as mixtures

We previously examined an Atlantic Rock data set that consisted of chemical analyses

of rock samples. The data are organized in an N � M matrix, S, of the form given

below:

S¼
element 1 in sample 1 element 2 in sample 1 � � � elementM in sample 1

� � � � � � � � � � � �
element 1 in sample N element 2 in sample N � � � elementM in sample N

2
4

3
5

ð8:1Þ

In the Atlantic Rock dataset case, N>M; that is, the number of rock samples is larger

than the number of chemical elements that were measured in each. In other cases, the

situation might be reversed.

Rocks are composed of minerals, crystalline substances with distinct chemical

compositions. Some advantage might be gained in viewing a rock as a mixture of min-

erals and then associating a chemical composition with each of the minerals, espe-

cially if the number, say P, of minerals is less than the number, M, of chemical

elements in the analysis.

In the special case ofM ¼ 3 chemical elements, we can plot the compositions on a

ternary diagram (Figure 8.1). For rocks containing just P¼ 2, the samples lie on a line

connecting the twominerals. In this case, viewing the samples as a mixture of minerals

provides a significant simplification, as two minerals are simpler than three elements.

The condition, P<M, can be recognized by graphing the data in this low-dimensional

case. In higher dimensional cases, more analysis is required.
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In the generic case, we will continue to use the term elements to refer to parameters

that are measured for each sample, with the understanding that this word is used

abstractly and may not refer to chemical elements. However, we will use the term fac-
tors in place of the term minerals. The notion that samples contain factors and factors

contain elements is equivalent to the following equation:

samples ¼ a linear mixture of factors

or

S ¼ CF ð8:2Þ

The N � P matrix, C, called the factor loadings, quantifies the amount of factors in

each sample:

C ¼
factor 1 in sample 1 factor 2 in sample 1 � � � factor P in sample 1

� � � � � � � � � � � �
factor 1 in sample N factor 2 in sample N � � � factor P in sample N

2
4

3
5

ð8:3Þ

The P � M matrix, F, quantifies the amount of elements in each factor:

F ¼
element 1 in factor 1 element 2 in factor 1 � � � elementM in factor 1

� � � � � � � � � � � �
element 1 in factor P element 2 in factor P � � � elementM in factor P

2
4

3
5

ð8:4Þ

Factors

f1

f2

A B

C

Samples

Figure 8.1 Ternary diagram for elements A, B, C. The three vertices correspond to materials

composed of pure A, B, and C, respectively. A suite of samples (circles) are composed of

a mixture of two factors, f1 and f2 (stars), and therefore lie on a line connecting the elemental

composition two factors. MatLab script eda08_01.
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Note that individual samples are rows of the samplematrix,S, and individual factors are

rows of the factor matrix, F. This arrangement, while commonplace in the literature,

departs from the convention of this book of exclusively using column vectors (compare

with Equation 4.13). We will handle this notational inconsistency by continuing to use

column vector notation for individual samples and factors, s(i) and f(i), respectively, and

then viewing S and F as being composed of rows of s(i)T and f(i)T, respectively.

Note that we have turned a problem with N � M quantities into a problem with

N � P þ P � M quantities. Whether or not this change constitutes a simplification

will depend on P (that is, whether N � P þ P � M is larger or smaller than N � M)

and on the physical interpretation of the factors. In cases where they have an especially

meaningful interpretation, as in the case of minerals, we might be willing to tolerate an

increase in the number of parameters.

When the matrix of factor, F, is known, least squares can be used to determine the

coefficients, C. Equation (8.2) can be put into standard form, Gm ¼ d, by first trans-

posing it, FTCT ¼ ST, and then recognizing that each column of CT can be computed

independently of the others; that is, with d a given column of ST, and withm the cor-

responding column of CT, andG¼ FT. However, in many instances both the number,

P, of factors and the factors, F, themselves, are unknown.

The number of factors, P, has no upper bound. However, in general, at most P¼M
factors are needed to exactly represent any set of samples (that is, one factor per

element). Furthermore, as we shall describe below, methods are available for detect-

ing the case where the data can be represented with fewer than M factors. However,

in practice, the determination of this minimum value of P is always somewhat fuzzy

because of measurement noise. Furthermore, we might choose to use a value of P less
than the minimum value required to represent the data exactly, if the approximation,

S � CF, is an adequate one.

Even after specifying P, the process of determining C and F is still nonunique.

Given one solution, S¼ C1F1, another solution, S¼ C2F2, can always be constructed

with C2 ¼ C1M and F2 ¼ M�1F1, where M is any P � P matrix that possesses an

inverse. Prior information must be introduced to select the most desirable solution.
Two possible choices of factors in the two-factor example are illustrated in

Figure 8.2. Factors f1 and f2 bound the group of samples, so that all samples can

be represented by mixtures of positive amounts of each factor (Figure 8.2A).

This choice is appropriate when the factors represent actual minerals, because min-

erals occur only in positive amounts. More abstract choices are also possible

(Figure 8.2B), such as factor f1 representing the composition of the typical sample

and factor f2 representing deviation of samples from the typical value. In this case,

some samples will contain a negative amount of factor, f2.

8.2 Determining the minimum number of factors

A surprising amount of information on the structure of a matrix can be gained by

studying how it affects a column vector that it multiplies. Suppose that M is an

N � N square matrix and that it multiplies an input column vector, v, producing an
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output column vector, w ¼ Mv. We can examine how the output, w, compares to the

input, v, as v is varied. The following is one question of particular importance:

When is the output parallel to the input? ð8:5Þ

Ifw is parallel to v, thenw¼ lv, where l is a scalar proportionality factor. The parallel
vectors satisfy the equation:

Mv ¼ lv or M� lIð Þv ¼ 0 ð8:6Þ

Notice that only the direction of v, and not its length, is meaningful, because if v solves

the equation, so does cv, where c is an arbitrary scalar constant. We will find it

convenient to use vs that are unit vectors satisfying vTv ¼ 1 (or if v is complex, then

vT*v ¼ 1, where * means complex conjugation).

The obvious solution to Equation (8.6), v ¼ M� lIð Þ�1
0 ¼ 0, is not very interest-

ing. A nontrivial solution is possible only when the matrix inverse, M� lIð Þ�1
, does

not exist. This is the case where the parameter l is specifically chosen to make the

determinant, det ðM� lIÞ, vanish (as a matrix with zero determinant has no inverse).

Every determinant is calculated by adding together terms, each of which contains the

product of N elements of the matrix. As each element of the matrix contains, at most,

one instance of l, the product will contain powers of l up to lN. Thus, the equation,
det ðM� lIÞ ¼ 0, is an N-th order polynomial equation for l. An N-th order poly-

nomial equation has N roots, so we conclude that there must be N different propor-

tionality factors, say li, and N corresponding column vectors, say v(i), that solve

Mv(i)¼ liv
(i). The column vectors, v(i), are called the characteristic vectors (or eigen-

vectors) of the matrix,M, and the proportionality factors, li, are called the character-
istic values (or eigenvalues). Equation (8.6) is called the algebraic eigenvalue
problem. As we will show below, a matrix is completely specified by its eigenvectors

and eigenvalues.

(A) (B)

factor, f�2

factor, f�1

factor, f1

C

A B

C

A B

factor, f2

Figure 8.2 Two choice of factors (stars). (A) Factors, f1 and f2, bind the samples (circles) so that

the samples are a mixture of a positive amount of each factor. (B) Factor, f ¢1, is the typical
sample and factor, f ¢2, represents deviations of samples from the typical value. MatLab scripts

eda08_02 and eda08_03.
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In the special case where M is symmetric, the eigenvalues, li, are real, as can be

seen by calculating the imaginary part of li and showing that it is zero. The imaginary

part is found using the rule that, given a complex number, z, its imaginary part satisfies

2izimag ¼ z � z*, where z* is the complex conjugate of z. We first premultiply

Equation (8.6) by v(i)T*:

v ið ÞT�Mv ið Þ ¼ liv ið ÞT�v ið Þ ¼ li ð8:7Þ

We then take its complex conjugate

v ið ÞTMv ið Þ� ¼ l�i ð8:8Þ

using the rule, (ab)* ¼ a*b*, and subtract

2ilimag
i ¼ li � l�i ¼ v ið ÞT�Mv ið Þ � v ið ÞTMv ið Þ� ¼ 0 ð8:9Þ

Here, we rely on the rule that for any two vectors, a and b, the quantities, aTMb and

bTMa are equal when M is symmetric. Equation (8.6) will yield real eigenvectors

when the eigenvalues are real.

In the special case where M is symmetric, the eigenvectors are mutually perpen-

dicular, v(i)Tv( j) ¼ 0 for i 6¼ j (this rule is subject to a caveat, discussed below).

This orthogonality can be seen by premultiplying the equation, Mv(i) ¼ liv
(i),

by v( j)T, and the equation, M(j) ¼ ljv
(j), by v(i)T and subtracting:

v jð ÞTMv ið Þ � v ið ÞTMv jð Þ ¼ 0 ¼ li � lj
� �

v ið ÞTv jð Þ ð8:10Þ

Thus, the eigenvectors are orthogonal, v(i)Tv(j) ¼ 0, as long as the eigenvalues are

distinct (numerically different, li 6¼ lj). This exception is the caveat alluded to above.
We do not discuss it further here, except to mention that while such pairs of eigenvec-

tors are not required to be mutually perpendicular, they can be chosen to be so.

Thus, the rule v(i)Tv(j) ¼ 0 for i 6¼ j can be extended to all the eigenvectors of M.

We can also choose them to be of unit length so that v(i)Tv(j) ¼ 1 for i ¼ j.
Thus, v(i)Tv(j) ¼ dij, where dij is the Kronecker delta symbol (see Section 4.7).

Customarily, the N eigenvalues are sorted into descending order. They can be

arranged into a diagonal matrix, L, whose elements are [L]ij ¼ lidij, where dij is
the Kronecker Delta. The corresponding N eigenvectors, v(i), can be arranged as

the columns of an N � N matrix, V, which satisfies VTV ¼ I. Equation (8.6) can then

be succinctly written:

MV ¼ VL or M ¼ VLVT ð8:11Þ

Thus, the matrix, M, can be reconstructed from its eigenvalues and eigenvectors.

Furthermore, if any of the eigenvalues are zero, the corresponding vs can be thrown

out of the representation of M:

Patterns suggested by data 153



M¼VLVT ¼ v1 v1 . . . vP vPþ1 . . . vN½ �

l1
l2

� � �
lP

0

� � �
0

2
666666664

3
777777775

vT1
vT2
. . .
vTP
vTPþ1

. . .
vTN

2
666666664

3
777777775

¼ v1 v2 . . . vP½ �
l1

l2
� � �

lP

2
664

3
775

vT1
vT2
. . .
vTP

2
664

3
775¼VPLPV

T
P

ð8:12Þ

Returning now to the sample factorization problem, S ¼ CF, we find that it could be

solved if S were a square, symmetric matrix. In this special case, after computing its

eigenvalues, L, and eigenvectors, V, we could write

S ¼ VPLPð Þ VT
P

� � ¼ CF with C ¼ VPLP and F ¼ VT
P ð8:13Þ

Thus, we would have both determined the minimum number, P, of factors and divided
S into two parts, C and F. The factors, f(i) ¼ v

(i) (the rows of FT), are all mutually

perpendicular. Unfortunately, S is usually neither a square nor symmetric matrix.

The solution is to first consider the matrix STS, which is a square,M�M symmet-

ric matrix. Calling its eigenvalue and eigenvector matrices, L and V, respectively,

we can write

STS ¼ VPLPV
T
P ¼ VPL

1=2
P L

1=2
P VT

P ¼ VPL
1=2
P IL

1=2
P VT

P ¼ VPL
1=2
P UT

PUPL
1=2
P VT

P

¼ UPL
1=2
P VT

P

� �T
UPL

1=2
P VT

P

� �
ð8:14Þ

Here, L
1=2
P is a diagonal matrix whose elements are the square root of the elements of

the eigenvalue matrix, LP (see Note 8.1). Note that we have replaced the identity ma-

trix, I, with UP
TUP, where UP is an as yet to be determined N � P matrix which must

satisfy UP
TUP ¼ I. Comparing the first and last terms, we find that

S ¼ UPSPV
T
P with SP ¼ L

1=2
P and UP ¼ SVPL

�1=2
P ð8:15Þ

Note that the N � P matrix, UP, satisfies UP
TUP ¼ I and the P � M matrix, VP, sat-

isfies VP
TVP ¼ I. The P � P diagonal matrix, SP, is called the matrix of singular

values and Equation (8.15) is called the singular value decomposition of the matrix, S.

The sample factorization is then
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S ¼ CF ¼ UPSPð Þ VT
P

� �
with C ¼ UPSP and F ¼ VT

P ð8:16Þ

Note that the factors are mutually perpendicular unit vectors. The singular values (and

corresponding columns of UP and VP) are usually sorted according to size, with the

largest first. As the singular values appear in the expression for the factor loading ma-

trix, C, the factors are sorted into the order of contribution to the samples, with those

making the largest contribution first. The first factor, f1, makes the largest contribution

of all and usually similar in shape to the average sample.

Because of observational noise, the eigenvalues of STS can rarely be divided

into two clear-cut groups of P nonzero eigenvalues (the square roots of which are

the singular values of S) and M � P exactly zero eigenvalues (which are dropped

from the representation of S). Much more common is the case where no eigenvalue

is exactly zero, but where many are exceedingly small. In this case, the singular value

decomposition has P ¼ M. It is still possible to throw out eigenvectors, v(i), corre-

sponding to small eigenvalues, li, but then the representation is only approximate; that

is, S� CF. However, because S is noisy, the distinction between S¼ CF and S� CF

may not be important. Judgment is required in choosing P, for too small a value will

lead to an unnecessarily poor representation of the samples, and too large will result

in retaining factors whose only purpose is to fit the noise. In the case of the Atlantic

Rock dataset, these noise factors correspond to fictitious minerals not actually present

in the rocks.

8.3 Application to the Atlantic Rocks dataset

The MatLab code for computing the singular value decomposition is

[U, SIGMA, V] ¼ svd(S,0);

sigma ¼ diag(SIGMA);

Ns ¼ length(sigma);

F ¼ V0;
C ¼ U*SIGMA; (MatLab eda08_04)

The svd() function does not throw out any of the zero (or near-zero) eigenvalues; this

is left to the user. Here, U is an N � M matrix, SIGMA is an M � M diagonal matrix of

singular values, and V is anM�Mmatrix. The diagonal of SIGMA has been copied into

the column-vector, sigma, for convenience. A plot of the singular values of the Atlan-

tic Rock data set reveals that the first value is by far the largest, values 2 through 5 are

intermediate in size and values 6 through 8 are near-zero. The fact that the first sin-

gular value, S11, is much larger than all the others reflects the composition of the rock

samples having only a small range of variability. Thus, all rock samples contain a large

amount of the first factor, f1—the typical sample. Only five factors, f1, f2, f3, f4, and f5,
out of a total of eight are needed to describe the samples and their variability about the

typical sample requires only four (factors 2 through 5) (Figure 8.3):
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Element f1 f2 f3 f4 f5

SiO2 þ0.908 þ0.007 �0.161 þ0.209 þ0.309

TiO2 þ0.024 �0.037 �0.126 þ0.151 �0.100

Al2O3 þ0.275 �0.301 þ0.567 þ0.176 �0.670

FeO-total þ0.177 �0.018 �0.659 �0.427 �0.585

MgO þ0.141 þ0.923 þ0.255 �0.118 �0.195

CaO þ0.209 �0.226 þ0.365 �0.780 þ0.207

Na2O þ0.044 �0.058 �0.0417 þ0.302 �0.145

K2O þ0.003 �0.007 �0.006 þ0.073 þ0.015

The role of each of the factors can be understood by examining its elements. Factor 2,

for instance, increases the amount of MgO while decreasing mostly Al2O3 and CaO,

with respect to the typical sample.

The factor analysis has reduced the dimensions of variability of the rock dataset

from 8 elements to 4 factors, improving the effectiveness of scatter plots. MatLab’s
three-dimensional plotting capabilities are useful in this case, as any three of the four

factors can be used as axes and the resulting three-dimensional scatter plot viewed

from a variety of perspectives. The followingMatLab command plots the coefficients

of factors 2 through 4 for each sample:

plot3(C(:,2), C(:,3), C(:,4), ‘k.’); (MatLab eda08_04)

The plot can then be viewed from different perspectives by using the rotation controls

of the figure window (Figure 8.4). Note that the samples appear to form two popula-

tions, one in which the variability is due to f2 and another due to f3.

8.4 Spiky factors

As mentioned earlier, the factors, F, of a set of samples, S, are nonunique. The equa-

tion, S¼CF, can always be modified to S¼CM�1MF, whereM is an arbitrary P� P
matrix, defining a new set of factors, F ¢¼MF. Singular value decomposition is useful
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Figure 8.3 Singular values, Sii, of the Atlantic Ocean rock dataset. MatLab script eda08_04.
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because it allows the determination of a set of P �M factors that adequately approx-

imate S. However, it does not always provide the most desirable set of factors. Mod-

ifying the set of P factor by using the matrix,M, does not change the value of P or the

quality of the fit, but can be used to produce factors with more desirable properties

than those produced by singular value decomposition.

One possible guiding principle is the prior information that the factors should be

spiky; that is, they should have just a few large elements, with the other elements being

near-zero. Minerals, for example, obey this principle. While a rock can contain

upward of twenty chemical elements, typically it will be composed of minerals such

as fosterite (Mg2SiO4), anorthite (CaAl2Si2O8), rutile (TiO2), etc., each of which

contains just a few elements. Spikiness is more or less equivalent to the idea that

the elements of the factors should have high variance. The usual formula for the

variance, sd
2, of a data set, d, is

s2d ¼
1

N

XN
i¼1

di � �dð Þ2
 !

¼ 1

N2
N
XN
i¼1

d2i �
XN
i¼1

di

 !2
0
@

1
A ð8:17Þ

Its generalization to a factor, fi, is

s2f ¼
1

M2
M
XM
i¼1

f 4i �
XM
i¼1

f 2i

 !2
0
@

1
A ð8:18Þ

Note that this is the variance of the squares of the elements of the factors. Thus,

a factor, f, has a large variance, sf
2, if the absolute values of its elements have high

variation. The signs of the elements are irrelevant.

The varimax procedure is a way of constructing a matrix,M, that increases the var-

iance of the factors while preserving their orthogonality. It is an iterative procedure,

with each iteration operating on only one pair of factors, with other pairs being

50
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0
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Figure 8.4 Three-dimensional perspective view of the coefficients, Ci, of factors 2, 3, and 4 in

each of the rock samples (dots) of the Atlantic Ocean Rock dataset. MatLab script eda08_04.
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operated upon in subsequent iterations. The idea is to view the factors as vectors, and

to rotate them in their plane (Figure 8.5) by an angle, y, chosen to maximize the sum of

their variances. The rotation changes only the two factors, leaving the other P � 2

factors unchanged, as in the following example:

fT1

fT2

cos yð ÞfT3 þ sin yð ÞfT5
fT4

� sin yð ÞfT3 þ cos yð ÞfT5
fT6

2
6666666664

3
7777777775

¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 cos yð Þ 0 sin yð Þ 0

0 0 0 1 0 0

0 0 � sin yð Þ 0 cos yð Þ 0

0 0 0 0 0 1

2
6666666664

3
7777777775

fT1

fT2

fT3

fT4

fT5

fT6

2
6666666664

3
7777777775

or F ¢¼MF

ð8:19Þ
Here, only the pair, f3 and f5, are changed.

In Equation (8.19), the matrix, M, represents a rotation of one pair of vectors.

The rotation matrix for many such rotations is just the product of a series of pair-wise

rotations. Note that the matrix, M, obeys the rule, M�1 ¼ MT (that is, M is a unary
matrix). For a given pair of factors, fA and fB, the rotation angle, y, is determined by

minimizing F(y) ¼ M2(sfA
2 þ sfB

2) with respect to y (i.e., by solving dF/dy ¼ 0).

The minimization requires a substantial amount of algebraic and trigonometric ma-

nipulation, so we omit it here. The result is (Kaiser, 1958) as follows:

y ¼ 1=4 tan
�1 2M

P
i uivi �

P
i ui
P

i vi

M
P

i u2i � v2i
� �� P

i ui
� �2 � P

i vi
� �2� �

with

ui ¼ f Ai
� �2 � f Bi

� �2
and vi ¼ 2f Ai f

B
i ð8:20Þ

By way of example, we note that the two vectors fA ¼ 1=2½1, 1, 1, 1�T and

fB ¼ 1=2½1, �1, 1, �1�T are extreme examples of two nonspiky orthogonal vectors,

f2 f1

q
f�2

f�1

Figure 8.5 Two mutually perpendicular factors, f1 and f2, are rotated in their plane by an angle,

y, creating two new mutually orthogonal vectors, f ¢1 and f ¢2.
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because all their elements have the same absolute value. When applied to them, the

varimax procedure returns fA
0 ¼ (1/√2)[1, 0, 1, 0]T and f

B0 ¼ (1/√2) [0, �1, 0, �1]T,

which are significantly spikier than the originals (see MatLab script eda08_05). The

MatLab code is as follows:

u ¼ fA.^2 � fB.^2;

v ¼ 2* fA.* fB;

A ¼ 2*M*u’*v;

B ¼ sum(u)*sum(v);

top ¼ A � B;

C ¼ M*(u‘*u�v’*v);

D ¼ (sum(u)^2) � (sum(v)^2);

bot ¼ C � D;

q ¼ 0.25 * atan2(top,bot);

cq ¼ cos(q);

sq ¼ sin(q);

fAp ¼ cq*fA þ sq*fB;

fBp ¼ � sq*fA þ cq*fB; (MatLab eda08_05)

See Note 6.1 for a discussion of the atan2() function. Here, the original pair of factors

fA and fB, and the rotated pair are fAp and fBp.

We apply this procedure to factors f2 through f5 of the Atlantic Rock dataset (that

is, the factors related to deviations about the typical rock). The varimax procedure

is applied to all pairs of these factors and achieves convergence after several such

iterations. The MatLab code for the loops is as follows:

FP ¼ F;

% spike these factors using the varimax procedure

k ¼ [2, 3, 4, 5]0;
Nk ¼ length(k);

for iter ¼ [1:3]

for ii ¼ [1:Nk]

for jj ¼ [iiþ1:Nk]

% spike factors i and j

i¼k(ii);

j¼k(jj);

% copy factors from matrix to vectors

fA ¼ FP(i,:)0;
fB ¼ FP(j,:)0;

% standard varimax procedure to determine rotation angle q

–––
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% copy rotated factors back to matrix

FP(i,:) ¼ fAp0;
FP(j,:) ¼ fBp0;

end

end

end (MatLab eda08_06)

Here the rotated matrix of factors, FP, is initialized to the original matrix of factors, F,

and then modified by the varimax procedure (omitted and replaced with a “–––”), with

each pass through the inner loop rotating one pair of factors. The procedure converges

very rapidly, with three iterations of the outside loop being sufficient.

The resulting factors (Figure 8.6) are much spikier than the original ones. Each now

involves mainly variations in one chemical element. For example, f 02 mostly repre-

sents variations in MgO and f 05 mostly represents variations in Al2O3.

8.5 Time-Variable functions

The samples in the Atlantic Rock dataset do not appear to have an intrinsically-

meaningful order.As far asweknow, their order in the file couldmerely reflect theorder

that the samples were entered into the database by the personnel who compiled the

data set. However, one might imagine a similar dataset in which sample order is sig-

nificant. One example would be a set of chemical analyses made in the same place as

a sequence of times. The time sequence could be used to characterize the chemical

evolution of the system. Sample, s(i), quantifies the chemical composition at time, ti.
The ordering of the elements in the Atlantic Rock dataset does not appear to have

any special significance either. It does not reflect their abundance in a typical rock.

It is not even alphabetical. However, one might imagine a similar dataset in which

the order of chemical constituents is significant. One example would be a set of

(B)(A)

SiO2

TiO2

Al2O3

FeOtotal

MgO

CaO

Na2O

K2O

f5f3 f4 f�5f�2 f�3 f�4f2

Figure 8.6 (A) Factors, f2 through f5,

of the Atlantic Rock data set, as

calculated by singular value

decomposition. (B) Factors, f ¢2
through f ¢5, after application of the

varimax procedure. MatLab script

eda08_06.
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analyses of the concentration of alkanes (methane (CH4), ethane (C2H8), propane

(C3H8), etc.) in a hydrocarbon mixture, as the chemical properties of these carbon-

chain molecules are critically dependent on the number of carbon atoms in the chain.

In this case, ordering the elements by the increasing length, x, of the carbon chain

would be appropriate. The standard equation for factors (Equation 8.2) could then

be interpreted in terms of variation in x and t:

s ið Þ ¼
XP
k¼1

Ckif
kð Þ or s xj, ti

� � ¼XP
k¼1

Ck tið Þfk xj
� � ð8:21Þ

Note that the analysis has broken out the (x, t) dependence into dependence on, x and t,
separately. The factors, fk(xj), each describe a pattern in x and the factor loadings,

Ck(ti), describe the temporal, t, variation of those patterns. When used in this context,

the factors are called empirical orthogonal functions, or EOFs. In the hydrocarbon

example, above, a plot of the elements of a factor, fk(x), against x would display

the distribution of alkane chain length within the k-th factor. A plot of Ck(t) against
time, t, would display the time-dependent amplitude the k-th factor. One might ima-

gine a chemical evolution process in which chain length of alkanes decreased system-

atically with time. This behavior would be manifested in a temporal evolution of the

factor loadings, with the mix becoming increasingly rich in those factors that con-

tained larger fractions of short-length alkanes.

A sample is just a collection of numbers arranged in column vector format. While

the alkane data set has a one-dimensional organization that makes the use of vectors

natural, a one-dimensional organization is not required by the factor analysis method.

Samples could, for instance, have the natural organization of a two-dimensional or

three-dimensional grid. The grid merely would need to be rearranged into a vector

for the method to be applied (see Section 5.9).

The Climate Analysis Center (CAC) Equatorial Pacific Ocean Sea Surface Tem-

perature data set is one such example. It is a time sequence of two-dimensional grids of

the surface temperature of a patch of the equatorial Pacific Ocean, a part of the world

important to the study of the El Niño/La Niña climate oscillation. Bill Menke, who

retrieved the data, provides the following report:

I downloaded this data set from the web site of the International Research Institute
(IRI) for Climate and Society at Lamont-Doherty Earth Observatory. They call it CAC
(for Climate Analysis Center) and describe it as containing “climatological,
smoothed and raw sea surface temperature of the tropical Pacific Ocean”. I retrieved
a text file, cac_sst.txt, of the entire “smoothed sea-surface temperature anom-
aly”. It contains deviations of sea surface temperature, in K, from the average value
for a region of the Pacific Ocean (29	S to 29	N, 124	E to 70	W, 2	 grid spacing) for
each month from January 1970 throughMarch 2003. I made one set of minor changes
to the file using a text editor, replacing the words for months, “Jan”, “Feb”. . . with
the numbers, 1, 2 . . ., to make it easier to read in MatLab. You have to skip past a
monthly header line when you read the file – I wrote a MatLab script that does this.
The data center gave two references for the data set, Reynolds and Smith (1994) and
Woodruff et al. (1993).
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A 6-year portion of the CAC dataset is shown (Figure 8.7). Many of the monthly

images show an east-west band of cold (white) temperatures that is characteristic

of the La Niña phase of the oscillation. A few (e.g., late 1972) show a warm (black)

band, most prominent in the eastern Pacific that is characteristic of the El Niño phase.

The CAC data set comprises N ¼ 399 monthly images, each with M ¼ 2520 grid

points (30 in latitude, 84 in longitude). Each factor (or empirical orthogonal function,

EOF) is a 2520-length vector that folds into a 30 � 84 spatial grid of temperature

values. The total number of EOFs is M ¼ 399, but as is shown in Figure 8.8, many

have exceedingly small singular values and can be discarded. As the data represent
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Figure 8.7 Sea surface

temperature anomaly for the

equatorial Pacific Ocean.

(A) Index map. (B) Maps for

each month of the year for

the 1970–1975 time period

are shown, but the dataset

continues through March

2003. Darker shades
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temperatures.

Source: CAC smoothes sea

surface temperature anomaly

dataset, IRI Data Library.
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Figure 8.8 Singular values, Sii, of the CAC sea surface temperature dataset. MatLab script
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a temperature anomaly (that is, temperature minus its mean value), the first EOF will

not resemble the mean temperature, but rather will characterize the maximum ampli-

tude spatial variation. A visual inspection (Figure 8.9) reveals that it consists of an east-

west cold (white) band crossing the equatorial region and is thus a La Niña pattern.

Plots of the factor loadings, the time-dependent amplitude of the EOFs, indicate

that the first five factors have time-variation with significant power at periods greater

than 1 year (Figure 8.10). The coefficient of the first EOF is essentially a La Niña

index, as the shape of the first EOF is diagnostic of La Niña conditions. Peaks in it

indicate times when the La Niña pattern is particularly strong, and troughs indicate

when it is particularly weak. The El Niño years of 1972, 1983, and 1997 show up

as prominent troughs in this time series.

The EOFs can be used as a method of smoothing the temperature data in a way that

preserves the most important spatial and temporal variations. A reconstruction using

just the first five EOFs is shown in Figure 8.11.

Problems

8.1. Write the matrix, SST, in terms of U, V, and S and show that the columns of U are eigen-

vectors of SST.

8.2. The varimax procedure uses one type of prior information, spikiness, to build a set of P
“improved” factors, f ¢i, out of the set of P significant factors, fi, computed using singular

value decomposition. Another, different type of prior information is that the factors, f ¢i,
are close in shape to some other set of P factors, fi

s, that are specified. Find linear mixtures

of the factors, fi, computed using singular value decomposition that comes as close as

possible to fi
s, in the sense of minimizing, Si (f ¢i � fi

s) (f ¢i � fi
s)T.

8.3. Compute the power spectra of each of the EOF amplitude (factor loading) time series for

the CAC dataset. Which one has the most power at a period of exactly 1 year? Describe and

interpret the spatial pattern of the corresponding EOF.

EOF 1 EOF 2 EOF 3 EOF 4

EOF 8EOF 7EOF 6EOF 5

EOF 9 EOF 10 EOF 11 EOF 12

Figure 8.9 First 12 empirical orthoginal functions (EOFs) of the CAC sea surface temperature

dataset. MatLab Script eda08_09.
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Figure 8.10 Amplitude time series, Ci(t), of the First 12 EOFs of the CAC sea surface temperature dataset for the time period January 1970

to March 2003. MatLab script eda08_09.
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8.4. Cut the Black Rock Forest temperature dataset up into a series of one-day segments.

Discard any segments that contain hot or cold spikes or data dropouts. Subtract out the

mean of each segment so that they reflect only the temperature changes through the course

of the day, and not the seasonal cycle of temperatures. Consider each segment a sample and

analyze the dataset with empirical orthogonal function analysis, making and interpreting

plots that are analogous to Figure 8.7-8.11.

8.5. Invent a scenario in which the factor loadings (amplitudes of EOF’s) are a function of two

spatial coordinates, (x, y) instead of time, t, and in which they could be used to solve a

nontrivial problem.
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Figure 8.11 (A) First 3 years of the CAC sea surface temperature dataset. (B) Reconstruction

using first five empirical orthogonal functions. MatLab script eda08_10.
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9 Detecting correlations among data
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9.1 Correlation is covariance

When we create a scatter plot of observations, we are treating the data as random

variables. The underlying idea is that two data types (or elements), say di and dj,
are scattering about their typical values. Sometimes the scatter is due to measurement

noise. Sometimes it is due to an unmodeled natural process that we can only treat prob-

abilistically. But in either case, we are viewing the cloud of data points as being drawn

from a joint probability density function, p(di, dj). The data are correlated if the

covariance of this function is nonzero. Thus, the covariance matrix, C, is extremely

useful in quantifying the degree to which different elements correlate. Recall that the

covariance matrix associated with p(di, dj) are defined as:

Cij ¼
ðþ1

�1

ðþ1

�1
ðdi � �diÞðdj � �djÞ pðdi, djÞ ddi ddj ð9:1Þ

Here �di and �dj are the means of di and dj, respectively. We can estimate Cij from a data

set by approximating the probability density function with a histogram constructed

from the observed data. We first divide the (di, dj) plane into many small bins, num-

bered by the index s. Each bin has area DdiDdj and is centered at (di
(s), dj

(s))

(Figure 9.1). We now denote the number of data pairs in bin s by Ns. The probability,

p(di, dj) DdiDdj � Ns/N, where N is the total number of data pairs, so
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Cij � 1

N

X
s

½dðsÞi � �di�½dðsÞj � �dj�Ns ð9:2Þ

We now shrink the size of the patches so that at most one data pair is in each bin.

Then, Ns equals either zero or unity. Summation over the patches is equal to summa-

tion over the (di, dj) pairs themselves:

Cij � 1

N

XN
k¼1

½dðkÞi � �di�½dðkÞj � �dj� ð9:3Þ

The covariance is nonzero when the data exhibit some degree of correlation, but its

actual numerical value depends on the overall range of the data. The range can be

normalized to �1 by scaling by the square root of the product of variances:

Rij ¼ Cijffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p ð9:4Þ

The quantity R is called the matrix of correlation coefficients, and its elements are

called correlation coefficients and are denoted by the lower-case letter, r. When,

as above, they are estimated from the data (as contrasted to being computed from

the probability density function), they are referred to as sample correlation coeffi-

cients. See Table 9.1 for a list of important quantities, such as R, that are introduced

in this chapter. The covariance, C, and correlation coefficient matrix, R, can be

estimated from a set of data, D, as follows:

C ¼ cov(D); % covariance

R ¼ corrcoef(D); % correlation coefficient (MatLab eda09_01)

bin, s
dj

di
Ddi

Ddj

Figure 9.1 Scatter plot pairs of data (circles) are converted into an estimate of the covariance by

binning the data in small patches of the (di, dj) plane, and counting up the number of points

in each bin. The bins are numbered with an index, s.
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Here, D, is an N�Mmatrix organized so thatDij is the amount of element, j, in sample

i (the same arrangement as in Equation 8.1). The matrix, R, is M � M, so that Rij

expresses the degree of correlation of elements i and j. Figure 9.2A depicts the matrix

of correlation coefficients for the Atlantic rock dataset, in which the elements are

literal chemical elements. The diagonal elements are all unity, as a data type correlates

perfectly with itself. Some pairs of chemical components, such as TiO2 and NaO2,

strongly correlate with each other (Figure 9.2B). Other pairs, such as TiO2 and

Al2O3, are nearly uncorrelated.

The idea of correlation can also be applied to the elements of a time series. Neigh-

boring samples in a time series are often highly correlated (and hence predictable), even

though the time series as awholemay be random.Consider, for example, the stream flow

of the Neuse River. On the one hand, a hydrologist, working a year ago, would not have

been able to predict whether today’s discharge is unusually high or low. It is just not

possible to predict individual storms—the source of the river’s water—a year in

advance; they are best considered random phenomena. On the other hand, if today’s dis-

charge is high, the chances are excellent that tomorrow’s discharge will be high as well.

Stream flow persists for a few days, because the rain water takes time to drain away.

Table 9.1 Important Quantities Used in Chapter 9.

Symbol Name Created from Significance

Cd Covariance

matrix of the

data, d

Probability

density function

of the data, p(d)

Diagonal elements, [Cd]ij with i ¼ j:
variance of the data, di; squared
width of the univariate probability

density function, p(di) off-diagonal
elements, [Cd]ij with i 6¼ j: degree of
correlation between the pair of

observations, di and dj

R Matrix of

correlation

coefficients

Probability

density function

of the data, p(d)

Normalized version of Cd with

elements that vary between �1

elements of R given the symbol, r

a ¼ d ?d Autocorrelaton

function

Time series, d Element ak: degree of correlation

between two elements of d separated

by a time lag, t ¼ (k � 1)Dt

c ¼ dð1Þ ?dð2Þ Cross-

correlation

function

Two time series,

d(1) and d(2)
Element ck: degree of correlation

between an element of d(1) and an

element of d(2) separated by a time

lag, t ¼ (k � 1)Dt

f � d Convolution Filter, f, and time

series, d

Filters the times series, d, with the

filter, f

~dðoÞ Fourier

transform

Time series, d(t) Amplitude of sines and cosines of

frequency, o, in the time series

C2(o0, Do) Coherence Two time series,

d(1) and d(2)
Similarity between d

(1) and d
(2) at

frequencies in the range, o0 � Do
varies between 0 and 1
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The notion of short term correlation within the stream flow time series can also be

described by a joint probability density function. If we denote the river’s discharge at

time ti as di, and discharge at time tj as dj, then we can speak of the joint probability

density function p(di, dj). In the case of stream flow, we expect that di and djwill have a
strong positive correlation when the time difference or lag, t ¼ ti � tj, is small

(Figure 9.3A). When the measurements are more widely separated in time, then we

expect the correlation to be weaker (Figure 9.3B). We expect discharge to be uncor-

related at separations of, say, a month or so (Figure 9.3C). On the other hand, dis-

charge will again be positively correlated, although maybe only weakly so, at

separations of about a year, because patterns of stream flow have an annual cycle.

Note that we must assume that the time series is stationary, meaning that its statistical

properties do not change with time, or else the degree of correlation would depend on

the measurement times, as well as the time difference between them.

We already have the methodology to quantify the degree of correlation of a joint

probability density function: its covariance matrix, Cij. In this case, we manipulate the

formula to bring out the means, because in many cases we will be dealing with time

series that fluctuate around zero:

Cij ¼
ðþ1

�1

ðþ1

�1
ðdi � �dÞðdj � �dÞ pðdi, djÞ ddi ddj

¼
ðþ1

�1

ðþ1

�1
didj pðdi, djÞ ddi ddj � 2�d

2 þ �d
2 ¼ Aij � �d

2

with Aij ¼
ðþ1

�1

ðþ1

�1
didj pðdi, djÞ ddi ddj ð9:5Þ

Figure 9.2 (A) Matrix of absolute values of correlation coefficients of chemical elements in

the Atlantic rock dataset. (B) Scatter plot of TiO2 and Na2O, the most highly correlated

elements (r ¼ 0.73). MatLab script eda09_01.
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Here, the mean, �d, of the time series is assumed to be independent of time (so it has no

index). Thematrix,A, is called the autocorrelation matrix of the time series. It is equal

to the covariance matrix when the mean of the time series is zero.

Just as in the case of the covariance, the autocorrelation can be estimated from ob-

servations. The data are pairs of samples drawn from the time series, where one mem-

ber of the pair is lagged by a fixed time interval, t¼ (k� 1)Dt, with respect to the other
(with k an integer; note that k¼ 1 corresponds to t¼ 0). A time series of length N has

N� jk� 1j such pairs. We then form a histogram of the pairs, as we did in the case of

covariance, so that the integral in Equation (9.5) can be approximated by a summation:

Ai, j ¼
ðþ1

�1

ðþ1

�1
didj pðdi, djÞ ddi ddj � 1

N � k � 1j j
X
s

d
ðsÞ
i d

ðsÞ
j Ns: ð9:6Þ
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Figure 9.3 Scatter plots of the lagged Neuse River discharge. (A) Lag ¼ 1 day, (B) 3 days,

(C) 30 days. Note that the strength of the correlation decreases as lag is increased. MatLab
script eda09_02.
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Once again, we shrink the size of the bins so that at most one pair is in each bin and Ns

equals either zero or unity, so summation over the bin is equal to summation over the

data pairs themselves. For the k > 0 case, we have

Ai,kþi�1 � 1

N� k� 1j j
X
s

d
ðsÞ
i d

ðsÞ
kþi�1Ns ¼ 1

N� k� 1j j
XN�kþ1

i¼1

didkþi�1 ¼ ak
N� k� 1j j

with ak ¼
XN�kþ1

i¼1

didkþi�1 and k> 0 ð9:7Þ

The column vector, a, is called the autocorrelation of the time series. An element,

ak, is called the autocorrelation at time lag, t¼ k� 1. The autocorrelation at negative

lags equals the autocorrelation at positive lags, as A is a symmetric matrix, that is,

Aij ¼ ak, with k ¼ ji � jj þ 1. As we have defined it above, ak is unnormalized, in
the sense that it omits the factor of 1/(N � jk � 1j).

In MatLab, the autocorrelation is calculated as follows:

a ¼ xcorr(d); (MatLab Script eda09_02)

Here,d is a time series of lengthN.Thexcorr() function returnsa vector of length2N� 1

that includes both negative and positive lags so that the zero lag element is a(N).

The autocorrelation of the Neuse River hydrograph is shown in Figure 9.4.

For small lags, say of less than a month, the autocorrelation falls off rapidly with

lag, with a time scale that reflects the time that rain water needs to drain away after

a storm. For larger lags, say of a few years, the autocorrelation oscillates around zero

with a period of one year. This behavior reflects the seasonal cycle. Summer and win-

ter discharges are negatively correlated, as one tends to be high when the other is low.
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Figure 9.4 Autocorrelation function of the Neuse River hydrograph. (A) Lags up to 1 month.

Note that the autocorrelation decreases with lag. (B) Lags up to 10 years. Note that the

autocorrelation oscillates with a period of 1 year, reflecting the seasonal cycle. The

autocorrelation function has been adjusted for the decrease in overlap at the larger lags.MatLab
script eda09_03.
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9.2 Computing autocorrelation by hand

The autocorrelation at zero lag (k ¼ 1) can be calculated by hand by writing down

two copies of the time series, one above the other, multiplying adjacent terms,

and adding:

d1 d2 d3 � � � dN

d1 d2 d3 � � � dN

�
d21 d22 d23 d2N d2N

���!yields
a1 ¼ d21 þ d22 þ d23 þ � � � þ d2N ð9:8Þ

Note that a1 is proportional to the power in the time series. Subsequent elements of ak
are calculated by progressively offsetting one copy of the time series with respect to

the other, prior to multiplying and adding (and ignoring the elements with no overlap).

The lag Dt (k ¼ 2) element is as follows:

d1 d2 d3 � � � dN

d1 d2 � � � dN�1 dN

�
d2d1 d3d2 � � � dNdN�1 ð9:9Þ

���!yields
a2 ¼ d2d1 þ d3d2 þ d4d3 þ � � � þ dNdN�1

and the lag 2Dt (k ¼ 3) element is as follows:

d1 d2 d3 d4 � � � dN

d1 d2 � � � dN�2 dN�1 dN

�
d1d3 d2d4 � � � dN�2dN ð9:10Þ

���!yields
a3 ¼ d1d3þ d2d4þ �� �þ dN�2dN

9.3 Relationship to convolution and power spectral density

The formula for the autocorrelation is very similar to the formula for the convolution

(Equation 7.1):

autocorrelation convolution

ak ¼
X
i

didkþi�1 yk ¼
X
i

gi hk�iþ1

aðtÞ ¼
ðþ1

�1
dðtÞdðtþ tÞdt yðtÞ ¼

ðþ1

�1
gðtÞhðt� tÞdt

a ¼ d ? d y ¼ g � h

ð9:11Þ
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Note that a five pointed star, *, is used to indicate autocorrelation, in the same sense

that an asterisk, *, is used to indicate convolution. The two formulas are very similar,

except that in the case of the convolution, one of the two time series is backward in

time, in contrast to the autocorrelation, where both are forward in time. The relation-

ship between the two can be found by transforming the autocorrelation integral to a

new variable, t0 ¼ �t,

aðtÞ ¼ dðtÞ ? dðtÞ ¼
ðþ1

�1
dðtÞdðtþ tÞ dt ¼

ðþ1

�1
dð�t0Þdðt� tÞ dt0

¼ dð�tÞ � dðtÞ ð9:12Þ

Thus, the autocorrelation is the convolution of a time-reversed time series with the

original time series.

Two neighboring points on a time series will correlate strongly with each other if

the time series varies slowly between them. A time series with an autocorrelation that

declines slowly with lag is necessarily richer in low frequency energy than one that

declines quickly with lag. This relationship can be explored by computing the Fourier

transform of the autocorrelation. The calculation is simplified by recalling that the

Fourier transform of a convolution is the product of the transforms. Thus,

~aðoÞ ¼ F dð�tÞf g ~dðoÞ ð9:13Þ

where F{�d(t)} stands for the Fourier transform of d(�t). We compute it as follows:

F dð�tÞf g ¼
ðþ1

�1
dð�tÞ expðiotÞ dt

ðþ1

�1
dðt0Þ expðið�oÞt0Þ dt0 ¼ ~dð�oÞ ¼ ~d

�ðoÞ
ð9:14Þ

Here, we have used the transformation of variables, t0 ¼ �t, together with the fact that,
for real time series, ~dðoÞ and ~dð�oÞ are complex conjugates of each other. Thus,

~aðoÞ ¼ ~d
�ðoÞ ~dðoÞ ¼ ~dðoÞ�� ��2 ð9:15Þ

The Fourier transform of the autocorrelation is proportional to the power spectral den-

sity of the time series. As we have seen in Section 6.5, functions that are broad in time

have Fourier transforms that are narrow in frequency. Hence, a time series with a

broad autocorrelation function has most of its power at low frequencies.

9.4 Cross-correlation

The underlying idea behind the autocorrelation is that pairs of samples drawn from the

same time series, and separated by a fixed time lag, t, are correlated. This idea can be
generalized to pairs of samples drawn from two different time series. As an example,
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consider time series of precipitation, u, and stream flow, v. At times when precipitation

is high, we expect stream flow to be high, too. However, the time of peak stream

flow will be delayed with respect to the time of maximum precipitation, as water takes

time to drain from the land. Thus, the precipitation and stream flow time series will be

most correlated when the former is lagged by a specific amount of time with respect

to the latter.

We quantify this idea by defining the probability density function, p(ui, vj), the joint
probability for the i-th sample of time series, u, and the j-th sample of time series, v.

The autocorrelation then generalizes to the cross-correlation, ck (written side-by-size
with the convolution, for comparison):

cross-correlation convolution

ck ¼
X
i

ui vkþi�1 yk ¼
X
i

gi hk�iþ1

cðtÞ ¼
ðþ1

�1
uðtÞvðtþ tÞ dt yðtÞ ¼

ðþ1

�1
gðtÞhðt� tÞ dt

c ¼ u ? v y ¼ g � h

ð9:16Þ

Note that the five pointed star is used to indicate cross-correlation, as well as autocor-

relation, as the autocorrelation of a time series is its cross-correlation with itself. Here,

u(ti) and v(ti) are two time series, each of length, N. The cross-correlation is related to
the convolution by

cðtÞ ¼ uðtÞ ? vðtÞ ¼ uð�tÞ � vðtÞ ð9:17Þ

In MatLab, the cross-correlation is calculated with the function

c ¼ xcorr(u,v); (MatLab Script eda09_03)

Here, u and v are time series of length, N. The xcorr() function returns both

negative and positive lags and is of length, 2N�1. The zero-lag element is c(N).

Unlike the autocorrelation, the cross-correlation is not symmetric in lag.

Instead, the cross-correlation of v and u is the time-reversed version of the cross-

correlation of u and v. Mistakes in ordering the arguments of the xcorr() function

will lead to a result that is backwards in time; that is, if u(t) * v(t) ¼ c(t), then
v(t) * u(t) ¼ c(�t).

We note here that the Fourier Transform of the cross-correlation is called the

cross-spectral density:

~cðoÞ ¼ ~u�ðoÞ ~vðoÞ ð9:18Þ

However, we will put off discussion of its uses until Section 9.9.
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9.5 Using the cross-correlation to align time series

The cross-correlation is useful in aligning two time series, one of which is delayed

with respect to the other, as its peak occurs at the lag at which the two time series

are best correlated, that is, the lag at which they best line up. In MatLab,

c ¼ xcorr(u,v);

[cmax, icmax] ¼ max(c);

tlag ¼ �Dt * (icmax�N); (MatLab eda09_04)

Here, Dt is the sampling interval of the time series and tlag is the time lag between

the two time series. The lag is positive when features in v occur at later times than

corresponding features in u. This technique is illustrated in Figure 9.5.

We apply this technique to an air quality dataset, in which the objective is to

understand the diurnal fluctuations of ozone (O3). Ozone is a highly reactive gas that
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Figure 9.5 (A) Two time series, u(t) and v(t), with similar shapes but one shifted in time with

respect to the other. (B) Time series aligned by lag determined through cross-correlation

function. (C) Cross-correlation function. MatLab script eda09_04.
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occurs in small (parts per billion) concentrations in the earth’s atmosphere. Ozone in

the stratosphere plays an important role in shielding the earth’s surface from ultra-

violet (UV) light from the sun, for it is a strong UV absorber. But its presence in

the troposphere at ground level is problematical. It is a major ingredient in smog

and a health risk, increasing susceptibility to respiratory diseases. Tropospheric ozone

has several sources, including chemical reactions between oxides of nitrogen and

volatile organic compounds in the presence of sunlight and high temperatures.

We thus focus on the relationship between ozone concentration and the intensity of

sunlight (that is, of solar radiation). Bill Menke provides the following information

about the dataset:

A colleague gave me a text file of ozone data from the Weather Center at the
United States Military Academy at West Point, NY. It contains tropospheric (ground
level) ozone data for 15 days starting on August 1, 1993. Also included in the file are
solar radiation, air temperature and several other environmental parameters.
The original file is named ozone_orig.txt and has about a dozen columns of data.
I used it to create a file ozone_nohead.txt that contains just 4 columns of data, time
in days after 00:00 08/01/1993, ozone in parts per billion, solar radiation in W/m2, and
air temperature in 	C.

The solar radiation and ozone concentration data are shown in Figure 9.6. Both show

a pronounced diurnal periodicity, but the peaks in ozone are delayed several hours

behind the peaks in sunlight. The lag, determined by cross-correlating the two time

series, is 3 h (Figure 9.7). Notice that excellent results are achieved, even though

the two dataset do not exactly match.
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Figure 9.6 (A) Hourly solar radiation data, in W/m2, from West Point, NY, for 15 days

starting August 1, 1993. (B) Hourly tropospheric ozone data, in parts per billion, from the

same location and time period. Note the strong diurnal periodicity in both time series. Peaks

in the ozone lag peaks in solar radiation (see vertical line). MatLab script eda09_05.
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9.6 Least squares estimation of filters

In Section 7.1, we showed that the convolution equation, g(t)*m(t) ¼ d(t), can be

written as a matrix equation of the form, Gm ¼ d, where m and d are the time series

versions of m(t) and d(t), respectively, and G is the matrix:

G ¼

g1 0 0 � � � 0

g2 g1 0 � � � 0

g3 g2 g1 � � � 0

� � � � � � � � � � � � 0

gN gN�1 gN�2 � � � g1

2
66664

3
77775 ð9:19Þ
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Figure 9.7 (A) Hourly solar radiation data, in W/m2, from West Point, NY, for 5 days starting

August 1, 1993. (B) Hourly tropospheric ozone data, in parts per billion, from the same location

and time period. The solid curve is the original data. Note that it lags solar radiation. The dotted

curve is ozone advanced by 3 h, an amount determined by cross-correlation. Note that only 5 of

the 15 days of data are shown. (C) Cross-correlation function. MatLab script eda09_05.
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The least squares solution involves the matrix products, GTG and GTd:

GTG ¼

g1 g2 g3 � � � gN
0 g1 g2 � � � gN�1

0 0 g1 � � � gN�2

� � � � � � � � � � � � 0

0 0 0 � � � g1

2
66664

3
77775

g1 0 0 � � � 0

g2 g1 0 � � � 0

g3 g2 g1 � � � 0

� � � � � � � � � � � � 0

gN gN�1 gN�2 � � � g1

2
66664

3
77775

�

a1 a2 a3 � � � aN
a2 a1 a2 � � � � � �
a3 a2 a1 � � � � � �
� � � � � � � � � � � � � � �
aN � � � � � � � � � a1

2
66664

3
77775 / A

GTd ¼

g1 g2 g3 � � � gN
0 g1 g2 � � � gN�1

0 0 g1 � � � gN�2

� � � � � � � � � � � � 0

0 0 0 � � � g1

2
66664

3
77775

d1
d2
d3
� � �
dN

2
66664

3
77775 ¼

c1
c2
c3
� � �
cN

2
66664

3
77775 ¼ c

ð9:20Þ

Thus, the elements of GTd are the cross-correlation, c, of the time series d and g and

the elements of GT
G are approximately the autocorrelation matrix, A, of the time se-

ries, g. The matrix, GTG, is approximately Toeplitz, with elements [GTG]ij ¼ ak,
where k ¼ ji � jj þ 1. This result is only approximate, because on close examination,

elements that appear to refer to the same autocorrelation are actually different from

one another. Thus, for example, [GTG]11 is exactly a1, but [G
TG]22 is not, as it is

the autocorrelation of the first N � 1 elements of g, not of all of g. The difference

grows towards the bottom-right of the matrix.

This technique is sometimes used to solve the filter estimation problem, that is, solve

u ¼ g * h for an estimate of h. We examined this problem previously in Section 7.3,

using MatLab script eda07_03. We provide here an alternate version of this script.

A major modification is made to the function called by the biconjugate gradient

solver, bicg(). It now uses the autocorrelation to perform the multiplication FTFv.

The function was previously called filterfun() but is renamed here to autofun():

function y ¼ autofun(v,transp_flag)

global a H;

N ¼ length(v);

% FT F v ¼ GT G v þ HT H v

GTGv¼zeros(N,1);

for i ¼ [1:N]

GTGv(i) ¼ [fliplr(a(1:i)0), a(2:N�iþ1)0] * v;

end

Hv ¼ H*v;

HTHv ¼ H0*Hv;
y ¼ GTGv þ HTHv;

return (MatLab autofun)
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The global variable, a, contains the autocorrelation of g. It is computed only once, in the

main script. Themain script alsoperforms the cross-correlation prior to the call tobicg():

clear a H;

global a H;

–––

al ¼ xcorr(g);

Na ¼ length(al);

a ¼ al((Naþ1)/2: Na);

–––

cl ¼ xcorr(qobs2, g);

Nc ¼ length(cl);

c ¼ cl((Ncþ1)/2: Nc);

–––

% set up F0f ¼ GT qobs þ HT h

% GT qobs is c¼qobs2*g

HTh ¼ H0* h;

FTf ¼ c þ HTh;

% solve

hest3 ¼ bicg(@autofun, FTf, 1e�10, 3*L); (MatLab eda09_06)

The results, shown in Figure 9.8, can be compared to those in Figure 7.7. The method

does a good job recovering the two peaks in h, but suffers from “edge effects,” that is,

putting spurious oscillations at the beginning and end of the time series.

9.7 The effect of smoothing on time series

As was discussed in Section 4.5, the smoothing of data is a linear process of the form,

dsmooth¼Gdobs. Smoothing is also a type of filtering, as can be seen by examining the

form of data kernel, G (Equation 4.16), which is Toeplitz. The columns of G define

a smoothing filter, s. Usually, we will want the smoothing to be symmetric, so that

the smoothed data, di
smooth, is calculated through a weighted average of the observed

data, dj
obs, both to its left and right of i (where j > i corresponds to the future and

j < i corresponds to the past). The filter, si, is, therefore, noncausal with coefficients

that are symmetric about the present value (i ¼ 1). The coefficients need to sum to

unity, to preserve the overall amplitude of the data. These traits are exemplified in

the three-point smoothing filter (see Equation 4.15):

s ¼ ½s0, s1, s2�T ¼ ½�/� , �/� , �/� �T ð9:21Þ
It uses the present (element, i), the past (element, i� 1) and the future (element, iþ 1)

of dobs to calculate di
smooth:

smoothed data ¼ weighted average of observed data

or

dsmooth
i ¼ �/�dobsi�1 þ �/�dobsi þ �/�dobsiþ1 ð9:22Þ
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As long as the filter is of finite length, L, we can view the output as delayed with

respect to the input, and the filtering operation itself to be causal:

dsmoothed and delayed
i ¼ �/�dobsi þ �/�dobsi�1 þ �/�dobsi�2 ð9:23Þ

In this case, the delay is one sample. In general, the delay is (L � 1)/2 samples. The

length, L, controls the smoothness of the filter, with large Ls corresponding to large

degrees of smoothing (Figure 9.9).

The above filter is triangular in shape, as it ramps up linearly to its central value

and then linearly ramps down. It weights the central datum more than its neighbors.

This is in contrast to the uniform filter, which has L constant coefficients, each of

amplitude, L�1. It weights all L data equally. Many other shapes are possible, too.

An important issue is the best shape for the smoothing filter, s.

One way of understanding the choice of the filter is to examine its effect on the

autocorrelation function of the smoothed time series. Intuitively, we expect that

smoothing broadens the autocorrelation, because it makes the time series vary less

between samples. This behavior can be verified by computing the autocorrelation

of the smoothed time series

fsðtÞ � dðtÞg ?fsðtÞ � dðtÞg ¼ sð�tÞ � dð�tÞ � sðtÞ � dðtÞ ¼ fsðtÞ? sðtÞg � fdðtÞ? dðtÞg
ð9:24Þ
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Figure 9.8 (A) Synthetic temperature data, yobs(t), constructed from the true temperature plus

the same level of random noise as in Figure 7.6. (B) True heat production, htrue(t). (C) Estimated

heat production, hest(t), calculated with generalized least squares using prior information of

smoothness. Note edge effects. MatLab script eda09_06.
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Thus, the autocorrelation of the smoothed time series is the autocorrelation of the orig-

inal time series convolved with the autocorrelation of the smoothing filter. The auto-

correlation function of the smoothing filter is a broad function. When convolved with

the autocorrelation function of the data, it smoothes and broadens it. Filters of different

shapes have autocorrelation functionswith different degrees of broadness. Each results

in the smoothed data having a somewhat differently shaped autocorrelation function.

Another way of understanding the effect of the filter is to examine its effect on the

power spectral density of the smoothed time series. The idea behind smoothing is to

suppress high frequency fluctuations in the data while leaving the low frequencies

unchanged. One measure of the quality of a filter is the evenness by which the sup-

pression occurs. From this perspective, filters that evenly damp out high frequencies

are better than filters that suppress them unevenly.

The behavior of the filter can be understood via the convolution theorem

(Section 6.11), which states that the Fourier transform of a convolution is the product

of the transforms. Thus, the Fourier transform of the smoothed data is just

~d
smoothedðoÞ ¼ ~sðoÞ~dobsðoÞ ð9:25Þ
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Figure 9.9 Smoothing of Neuse River hydrograph. (A) Observed data. (B) Observed data

smoothed with symmetric three-point triangular filter. (C) Observed smoothed data with

symmetric 21-point triangular filter. For clarity, only the first 500 days are plotted. MatLab
script eda09_07.
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That is, the transform of the smoothed data is the transform of the observed data

multiplied by the transform of the filter. Thus, the effect of the filter can be understood

by examining its amplitude spectral density, ~sðoÞj j.
The uniform, or boxcar, filter with width, T, and amplitude, T�1 is the easiest to

analyze:

~s oð Þ ¼ 1

T

ðT=2
�T=2

expð�iotÞ dt¼ 2

T

ðT=2
0

cosðotÞ dt¼ 2

T

sin ðotÞ
o

����
T=2

0

¼ sinc
oT
2p

� �

ð9:26Þ

Here, we have used the rule, exp(�iot) ¼ cos(ot) þ isin(ot) and the definition,

sinc(x) ¼ sin(px)/(px). The cosine function is symmetric about the origin, so its

integral on the (��/�T,þ�/�T) interval is twice that on (0,þ�/�T) interval. The sine func-
tion is anti-symmetric, so its integral on the (��/�T, 0) interval cancels its integral on
the (0, þ�/�T) interval. While the sinc function (Figure 9.10) declines with frequency,

it does so unevenly, with many sidelobes along the frequency axis. It does not

smoothly damp out high frequencies and so is a poor filter, from this perspective.

A filter based on a Normal curve will have no sidelobes (Figure 9.11), as the

Fourier transform of a Normal curve with variance, st
2, in time is a Normal curve with

variance, so
2 ¼ st

�2, in frequency (Equation 6.31). It is a better filter, from the
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Figure 9.10 Amplitude spectral density of uniform smoothing filters (A) Filter of length, L¼ 3.

(B) Filter of length, L ¼ 21. MatLab script eda09_10.
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perspective of evenly damping high frequencies. However, a Normal filter is infinite

in length and must, in practice, be truncated, a process which introduces small side-

lobes. Note that the effective width of a filter depends not only on its length, L, but also
on its shape. The quantity, 2st, is a good measure of its effective width, where st

2 is

its variance in time. Thus, for example, a Normal filter with st ¼ 6.05 samples has

approximately the same effective width as a uniform filter with L ¼ 21, which has

a variance of about 62 (compare Figures 9.10 and 9.11).

9.8 Band-pass filters

A smoothing filter passes low frequencies and attenuates high frequencies. A natural

extension of this idea is a filter that passes frequencies in a specified range, or pass-
band, and that attenuates frequencies outside of this range. A filter that passes low

frequencies is called a low-pass filter, high frequencies, a high-pass filter, and an

intermediate band, a band-pass filter. A filter that passes all frequencies except a given
range is called a notch filter.

In order to design such filters, we need to know how to assess the effect of a given

set of filter coefficients on the power spectral density of the filter. We start with the

definition of an Infinite Impulse Response (IIR) filter (Equation 7.21), f ¼ vinv*u,
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Figure 9.11 Amplitude spectral density of Normal smoothing filters. (A) Filter with

variance equal to that of a uniform filter with, length, L ¼ 3. (B) Filter with variance equal

to that of a uniform filter with length, L ¼ 21. MatLab script eda09_09.
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where u and v are short filters of lengths, Nu and Nv, respectively, and vinv is the

inverse filter of v. The z-transform of the filter, f, is

f ¼ vinvu ! f zð Þ ¼ uðzÞ
vðzÞ ¼ c

YNu�1

j¼1

ðz� zuj Þ

YNv�1

k¼1

ðz� zvkÞ
ð9:27Þ

Here, z j
u and zk

v are the roots of u(z) and v(z), respectively and c is a normalization

constant. As our goal involves spectral properties, we need to understand the con-

nection between the z-transform and the Fourier transform. The Discrete Fourier

Transform is defined as

~f k ¼
XN
n¼1

fk expð�ioktnÞ ¼
XN
n¼1

fk expð�iðk � 1ÞDoðn� 1ÞDtÞ ð9:28Þ

as ok¼(k � 1)Do and tn¼(n � 1)Dt. Note that the factor of (n � 1) within the expo-

nential can be interpreted as raising the exponential to the (n � 1) power. Thus,

~f k ¼
XN
n¼1

fkz
n�1 with z ¼ expð�iðk� 1ÞDoDtÞ ¼ exp � 2piðk� 1Þ

N

� �
ð9:29Þ

Here, we have used the relationship, DoDt¼ 2p/N. Thus, the Fourier transform is just

the z-transform evaluated at a specific set of z’s. There are N of these z’s and they are
equally spaced on the unit circle (that is, the circle jzj2 ¼ 1 in the complex z-plane,
Figure 9.12). A point on the unit circle can be represented as, z ¼ exp(�iy),

Unit circle, |z|2= 1 

Real z
θ

Imag z

Figure 9.12 Complex

z-plane. showing the unit

circle, jzj2¼ 1. A point

(þ sign) on the unit circle

makes an angle, y, with
respect to the positive

z-axis. It corresponds to a
frequency, o ¼ y/Dt, in
the Fourier transform.
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where y is angle with respect to the real axis. Frequency,o, is proportional to angle, y,
via y ¼ oDt ¼ (k � 1)DoDt ¼ 2p(k � 1)/N. As the points in a Fourier transform are

evenly spaced in frequency, they are evenly spaced in angle around the unit circle.

Zero frequency corresponds to y ¼ 0 and the Nyquist frequency corresponds to

y ¼ p; that is, 180	).
Now we are in a position to analyze the effect of the filters, u and v on the spectrum

of the composite filter, f¼ vinv*u. The polynomial, u(z), has Nu� 1 roots (or “zeros”),
each of which creates a region of low amplitude in a patch of the z-plane near that zero.
If the unit circle intersects this patch, then frequencies on that segment of the unit

circle are attenuated. Thus, for example, zeros near y ¼ 0 attenuate low frequencies

(Figure 9.13A) and zeros near y ¼ p (the Nyquist frequency) attenuate high frequen-

cies (Figure 9.13B).
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Figure 9.13 (A) Complex z-plane representation of the high-pass filter, u ¼ [1, �1.1]T

along with power spectral density of the filter. (B) Corresponding plots for the low-pass filter,

u ¼ [1, 1.1]T. Origin (circle), Fourier transform points on the unit circle (black þ), and

zero (white *) are shown. MatLab script eda09_10 and eda09_11.

186 Environmental Data Analysis with MatLab



The polynomial, v(z), has Nu � 1 roots, so that its reciprocal, 1/v(z), has Nu � 1

singularities (or poles), each of which creates a region of high amplitude in a patch

of the z-plane near that pole. If the unit circle intersects this patch, then frequencies

on that segment of the unit circle are amplified (Figure 9.14A). Thus, for example,

poles near y¼ 0 amplify low frequencies and zeros near y¼ p (the Nyquist frequency)
amplify high frequencies. As was discussed in Section 7.6, the poles must lie outside

the unit circle for the inverse filter, vinv, to exist. In order for the filter to be real, the

poles and zeros either must be on the real z-axis or occur in complex-conjugate pairs

(that is, at angles, y and �y).
Filter design then becomes a problem of cleverly placing poles and zeros in the

complex z-plane to achieve whatever attenuation or amplification of frequencies is

desired. Often, just a few poles and zeros are needed to achieve the desired effect.
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Corresponding plots for the notch filter, u ¼ [1, 0.9i]T * [1, � 0.9i]T and v ¼ [1, 0.8i]T *
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Detecting correlations among data 187



For instance, two poles nearly collocated with two zeros suffice to create a notch filter

(Figure 9.14B), that is, one that attenuates just a narrow range of frequencies.With just

a handful of poles and zeros—corresponding to filters u and v with just a handful of

coefficients—one can create extremely effective and efficient filters.

As an example, we provide a MatLab function for a Chebyshev band-pass filter,

chebyshevfilt.m. It passes frequencies in a specific frequency interval and attenu-

ates frequencies outside that interval. It uses u and v each of length 5, corresponding to

four zeros and four poles. The zeros are paired up, two at y¼ 0 and two at y¼ p, so that
frequencies near zero and near the Nyquist frequency are strongly attenuated. The two

conjugate pairs of poles are near ys corresponding to the ends of the pass-band interval
(Figure 9.15). The function is called as follows:

[dout, u, v] ¼ chebyshevfilt(din, Dt, flow, fhigh); (MatLab eda09_14)

Here,din is the input time series,Dt is the sampling interval andflow, andfhigh thepass-

band.The function returns the filtered timeseries,dout, alongwith the filters,u andv. The

input response of the filter (that is, its influence on a spike) is illustrated in Figure 9.16.

9.9 Frequency-dependent coherence

Time series that track one another, that is, exhibit coherence, need not do so at every

period. Consider, for instance, a geographic location where air temperature and wind

speed both have annual cycles. Summer days are, on average, both hotter and windier

than winter days. But this correlation, which is due to large scale processes in the

climate system, does not hold for shorter periods of a few days. A summer heat wave

is not, on average, any windier than in times of moderate summer weather. In this case,
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temperature and wind are correlated at long periods, but not at short ones. In another

example, plant growth in a given biomemight correlate with precipitation over periods

of a few weeks, but this does not necessarily imply that plant growth is faster in winter

than in summer, even when winter tends to be wetter, on average, than summer. In this

case, growth and precipitation are correlated at short periods, but not at long ones.

We introduce here a new dataset that illustrates this behavior, water quality data

from the Reynolds Channel, part of the Middle Bay estuary on the south shore of Long

Island, NY. Bill Menke, who provided the data, says the following about it:

I downloaded thisReynoldsChannelWaterQuality dataset from theUSGeological Sur-
vey’s NationalWater Information System. It consists of daily average values of a variety
of environmental parameters for a period of about five years, starting on January 1,
2006. The original datawas in one long text file, but I broke it into two pieces, the header
(reynolds_header.txt) and the data (reynolds_data.txt). The data file has
very many columns, and has time in a year-month-day format. In order to make the data
moremanageable, I created another file, reynolds_uninterpolated.txt, that has
time reformatted into days starting on January 1, 2006 and that retains only six of the
original data columns: precipitation in inches, air temperature in 	C,water temperature
in	C, salinity in practical salinity units, turbidity in formazin nephelometric units and
chlorophyll in micrograms per liter. Not every parameter had a data value for every
time, so I set the missing values to the placeholder, �999. Finally I created a file,
reynolds_interpolated.txt, in which missing data are filled in using linear
interpolation. The MatLab script that I used is called interpolate_reynolds.m.
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Note that the original data had missing data that were filled in using interpolation.

Wewill discuss this process in the next chapter. A plot of the data (Figure 9.17) reveals

that the general appearance of the different data types is quite variable. Precipi-

tation is very spiky, reflecting individual storms. Air and water temperature, and to
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Figure 9.17 Daily water quality measurements from Reynolds Channel (New York)

for several years starting January 1, 2006. Six environmental parameters are shown:
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a lesser degree, salinity, are dominated by the annual cycle. Moreover, turbidity

(cloudiness of the water) and chlorophyll (a proxy for the concentration of algae

and other photosynthetic plankton) have both long period oscillations and short

intense spikes.

We can look for correlations at different periods by band-pass filtering the

data using different pass bands, for example periods of about 1 year and periods

of about 5 days (Figure 9.18). All six time series appear to have some coherence

at periods of 1 year, with air and water temperature tracking each other the best

and turbidity tracking nothing very well. The situation at periods of about 5 days

is more complicated. The most coherent pair seems to be salinity and precipitation,

which are anti-correlated (as one might expect, as rain dilutes the salt in the bay).

Air and water temperature do not track each other nearly as well in this period

band than at periods of 1 year, but they do seem to show some coherence.

Chlorophyll does not seem correlated with any of the other parameters at these

shorter periods.

Our goal is to quantify the degree of similarity between two time series, u(t) and
v(t), at frequencies near a specified frequency, o0. We start by band-pass filtering

the time series to produce filtered versions, f(t) * u(t) and f(t) * v(t). The band-pass

filter, f(t, o0, Do), is chosen to have a center frequency, o0, and a bandwidth,

2Do (meaning that it passes frequencies in the range o0 � Do). We now compare

these two filtered time series by cross-correlating them:

cðt,o0,DoÞ ¼ ff ðt,o0,DoÞ � uðtÞg ? ff ðt,o0,DoÞ � vðtÞg

¼ f ð�t,o0,DoÞ � f ðt,o0,DoÞ � uð�tÞ � vðtÞ
ð9:30Þ

If the two time series are similar in shape (and if they are aligned in time), then the

zero-lag value of the cross-correlation, cðt ¼ 0,o0,DoÞ will have a large absolute

value. Its value will be large and positive when the time series are nearly the

same, and large and negative if they have nearly the same shape but are flipped in

sign with respect to each other. It will be near-zero when the two time series are

dissimilar.

Two undesirable aspects of Equation (9.30) are that a different band-pass filtered

version of the time series is required for every frequency at which we want to

evaluate similarity and the whole cross-correlation is calculated, whereas only its

zero-lag value is needed. As we show below, these time-consuming calculations

are unnecessary. We can substantially improve on Equation (9.30) by utilizing the

fact that the value of a function, c(t), at time, t ¼ 0, is proportional to the integral

of its inverse Fourier transform over frequency:

cðt ¼ 0Þ ¼ 1

2p

ðþ1

�1
cðoÞ expð0Þ do ¼ 1

2p

ðþ1

�1
cðoÞ do ð9:31Þ
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Figure 9.18 Band-pass filtered water quality measurements from Reynolds Channel (New York) for several years starting January 1, 2006.

(A) Periods near 1 year; and (B) periods near 5 days. MatLab script eda09_16.

1
9
2

E
n
v
iro

n
m
en
tal

D
ata

A
n
aly

sis
w
ith

M
atL

ab



Applying this relationship to the cross-correlation at zero lag, c(t ¼ 0), and using the

rule that the Fourier transform of a convolution is the product of the transforms, yields

cðt ¼ 0,o0,DoÞ ¼ 1

2p

ðþ1

�1
~f
�ðo,o0,DoÞ ~f ðo,o0,DoÞ ~u�ðoÞ~vðoÞ do

� 1

2p

ð�o0þDo

�o0�Do
~u�ðoÞ~vðoÞ doþ 1

2p

ðþo0þDo

þo0�Do
~u�ðoÞ~vðoÞ do

¼ 1

p

ðo0þDo

o0�Do
Ref~u�ðoÞ~vðoÞg do ¼ 2Do

p
Re ~u�ðo0Þ~v o0ð Þf g ð9:32Þ

Note that this formula involves the cross-spectral density, ~u�ðoÞ~vðoÞ. Here, we assume

that the band-pass filter can be approximated by two boxcar functions, one centered at

þo0 and the other at �o0, so the integration limits, �1, can be replaced with inte-

gration over the positive and negative pass-bands. The cross-correlation is a real func-

tion, so the real part of its Fourier transform is symmetric in frequency and the

imaginary part is anti-symmetric. Thus, only the real part of the integrand contributes.

Except for a scaling factor of 1/(2Do), the integral is just the average value of the in-
tegrand within the pass band, so we replace it with the average, defined as

~zðo0Þ ¼ 1

2Do

ðo0þDo

o0�Do
~zðoÞ do ð9:33Þ

The zero-lag cross-correlation can be normalized into a quantity that varies between

�1 by dividing each time series by the square root of its power. Power is just the

autocorrelation, a(t), of the time series at zero lag, and the autocorrelation is just

the cross-correlation of a time series with itself, so power satisfies an equation similar

to the one above:

Pu ¼ au t ¼ 0,o0,Doð Þ ¼ 2Do
p

~u�ðo0Þ~uðo0Þ ¼ 2Do
p

j~uðo0Þj2

Pv ¼ av t ¼ 0,o0,Doð Þ ¼ 2Do
p

~v�ðo0Þ~vðo0Þ ¼ 2Do
p

j~vðo0Þj2
ð9:34Þ

Here, Pu and Pv, are the power in the band-passed versions of u(t) and v(t), respec-
tively. Note that we can omit taking the real parts, for they are purely real. The quantity

C ¼ cðt ¼ 0,o0,DoÞ
P�/�
u P

�/�
v

¼ Re ~u�ðo0Þ~vðo0Þf g
j~uðo0Þj2 j~vðo0Þj2

n o�/�
ð9:35Þ

which varies between þ1 and –1, is a measure of the degree of similarity of the time

series, u(t) and v(t). However, the quantity

C2
uv o0,Doð Þ ¼ j~u�ðo0Þ~v o0ð Þj2

j~uðo0Þj2 j~vðo0Þj2
ð9:36Þ
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is more commonly encountered in the literature. It is called the coherence of time se-

ries u(t) and v(t). It is nearly the square of C, except that it omits the taking of the real

part, so that it does not have exactly the interpretation of the normalized zero-lag

cross-correlation of the band-passed time series. It does, however, behave similarly

(see Note 9.1). It varies between zero and unity, being small when the time series

are very dissimilar and large when they are nearly identical. These formulas are

demonstrated in MatLab script eda09_17.

We return now to the Reynolds Channel water quality dataset, and compute the

coherence of each pair of time series (several of which are shown in Figure 9.19).

Air temperature and water temperature are the most highly coherent time series. They

are coherent both at low frequencies (periods of a year or more) and high frequencies

(periods of a few days). Precipitation and salinity are also coherent over most of

frequency range, although less strongly than air and water temperature. Chlorophyll

correlates with the other time series only at the longest periods, indicating that, while

it is sensitive to the seasonal cycle, it is not sensitive to short time scale fluctuations

in these parameters.
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Figure 9.19 Coherence of water quality measurements from Reynolds Channel (New York).

(A) Air temperature and water temperature; (B) precipitation and salinity; and (C) water

temperature and chlorophyll. MatLab script eda09_18.
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9.10 Windowing before computing Fourier transforms

When computing the power spectral density of continuous time series, we are faced

with a decision of how long a segment of the time series to use. Longer is better, of

course, both because a long segment is more likely to have properties representative

of the time series as a whole, and because long segments provide greater resolution

(recall that frequency sampling, Do, scales with N�1). Actually, as data are often

scarce, more often the question is how to make do with a short segment.

A short segment of a time series can be created by multiplying an indefinitely long

time series, d(t), by a window function, W(t); that is, a function that is zero everywhere
outside the segment. The simplest window function is the boxcar function, which is

unity within the interval and zero outside it. The key question is what effect window-

ing has on the Fourier transform of a time series; that is, how the Fourier transform of

W(t)d(t) differs from the Fourier transform of d(t). This question can be analyzed using
the convolution theorem. As discussed in Section 6.11, the convolution of two time

series has a Fourier transform that is the product of the two individual Fourier

transforms. But time and frequency play symmetric roles in the Fourier transform.

Thus, the product of two time series has a Fourier transform that is the convolution

of the two individual transforms. Windowing has the effect of convolving the Fourier

transform of the time series with the Fourier transform of the window function.

From this perspective, a window function with a spiky Fourier transform is the best,

because convolving a function with a spike leaves the function unchanged. As we have

seen in Section 9.7, the Fourier transform of a boxcar is a sinc function. It has a central

spike, which is good, but it also has sidelobes, which are bad. The sidelobes create

peaks in the spectrum of the windowed time series, W(t)d(t), that are not present in

the spectrum of the original time series, d(t) (Figure 9.20). These artifacts can easily

be mistaken for real periodicities in the data.

The solution is a better window function, one that does not have a Fourier transform

with such strong sidelobes. It must be zero outside the interval, but we have complete

flexibility in choosing its shapewithin the interval.Many such functions (or tapers) have
been proposed. A popular one is the Hamming window function (or Hamming taper)

WðtkÞ ¼ 0:54� 0:46 cos
2pðk � 1Þ
Nw � 1

� �
ð9:37Þ

where Nw is the length of the window. Its Fourier transform (Figure 9.21) has

significantly lower-amplitude sidelobes than the boxcar window function. Its central

spike is wider, however (compare Figure 9.20E with Figure 9.21E), implying that it

smoothes the spectrum of d(t) more than does a boxcar. Smoothing is bad in this

context, because it blurs features in the spectrum that might be important. Two narrow

and closely-spaced spectral peaks, for instance, will appear as a single broad peak.

Unfortunately, the width of the central peak and the amplitude of sidelobes trade

off in window functions. The end result is always a compromise between the two.

Notwithstanding this fact, one can nevertheless do substantially better than the

Hamming taper, as we will see in the next section.
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9.11 Optimal window functions

A good window function is one that has a spiky power spectral density. It should

have large amplitudes in a narrow range of frequencies, say�o0, straddling the origin

and have small amplitudes at higher frequencies. One way to quantify spikiness is

through the ratio

R ¼

ðþo0

�o0

���� ~WðoÞ
����
2

do

ðþony

�ony

���� ~WðoÞ
����
2

do

ð9:38Þ

Here, ~WðoÞ is the Fourier transform of the window function and ony is the Nyquist

frequency. From this point of view, the best window function is the one that

maximizes the ratio, R.
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of d(t), W(t) and d(t)W(t). MatLab script eda09_19.

196 Environmental Data Analysis with MatLab



The denominator of Equation (9.38) is proportional to the power in the window

function (see Equation 6.42). If we restrict ourselves to window functions that all have

unit power, then the maximization becomes as follows:

maximize F ¼
ðþo0

�o0

���� ~WðoÞ
����
2

do with the constraint

ð ����WðtÞ
����
2

dt ¼ 1 ð9:39Þ

The discrete Fourier transform, ~WðoÞ, of the window function and its complex

conjugate, ~W�ðoÞ, are

~WðoÞ ¼
XN
n¼1

wn expð�iðn� 1ÞoDtÞ and

~W
�ðoÞ ¼

XN
m¼1

wm expðþiðm� 1ÞoDtÞ ð9:40Þ
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Inserting ~WðoÞ�� ��2 ¼ ~W
�ðoÞ ~WðoÞ into F in Equation (9.39) yields

F ¼
XN
m¼1

XN
n¼1

wnwmMnm with Mnm ¼
ðþo0

�o0

expðiðm� nÞoDtÞ do ð9:41Þ

The integration can be performed analytically:

Mnm ¼
ðþo0

�o0

exp iðm� nÞoDtð Þ do ¼ 2

ðþo0

0

cosððm� nÞoDtÞ do

¼ 2sinððm� nÞo0DtÞ
ðm� nÞDt ¼ 2o0 sincððm� nÞo0Dt=pÞ ð9:42Þ

Note that M is a symmetric N � N matrix. The window function, w, satisfies

maximize F ¼
XN
m¼1

XN
n¼1

wnwmMnm with the constraint C ¼
XN
n¼1

w2
n � 1 ¼ 0

or, equivalently

maximize F ¼ wTMw with the constraint C ¼ wTw� 1 ¼ 0 ð9:43Þ

The Method of Lagrange Multipliers (see Note 9.2) says that maximizing a function,

F, with a constraint, C ¼ 0, is equivalent to maximizing F � lC without a con-

straint, where l is a new parameter that needs to be determined. Differentiating

wTMw� l(wTw� 1)with respect tow and setting the result to zero leads to the equation

Mw ¼ lw ð9:44Þ

This is just the algebraic eigenvalue problem (see Equation 8.6). Recall that this equa-

tion has N solutions, each with an eigenvalue, li, and a corresponding eigenvector,

w(i). The eigenvalues, li, satisfy li ¼ w(i)TMw(i), as can be seen by pre-multiplying

Equation (9.44) by wT and recalling that the eigenvectors have unit length,

wTw ¼ 1. But wTMw is the quantity, F, being maximized in Equation (9.43). Thus,

the eigenvalues are a direct measure of the spikiness of the window functions. The best

window function is equal to the eigenvector with the largest eigenvalue.

We illustrate the case of a 64-point window function with a width of o0 ¼ 2Do
(Figures 9.22, 9.23 and 9.24). The six largest eigenvalues are 6.28, 6.27, 6.03,

4.54, 1.72, and 0.2. The first three eigenvalues are approximately equal in size, indi-

cating that three different tapers come close to achieving the design goal of maximiz-

ing the spectral power in the�o0 frequency range. The first of these,W1(t), is similar

in shape to a Normal curve, with high amplitudes in the center of the interval that taper

off towards its ends. One possibility is to considerW1(t) the best window function and

to use it to compute power spectral density.
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However, W2(t) and W3(t) are potentially useful, because they weight the data

differently than does W1(t). In particular, they leave intact data near the ends of the

interval that W1(t) strongly attenuates. Instead of using just the single window,

W1(t), in the computation of power spectral density, alternatively we could use several

to compute several different estimates of power spectral density, and then average the

results (Figure 9.24). This idea was put forward by Thomson (1982) and is called the

multitaper method.

Problems

9.1 The ozone dataset also contains atmospheric temperature, a parameter, which like ozone,

might be expected to lag solar radiation. Modify the eda09_05 script to estimate its lag.

Does it have the same lag as ozone?

9.2 Suppose that the time series f and h are related by the convolution with the filter, s; that is,

f ¼ s*h. As the autocorrelation represents the covariance of a probability density function,

the autocorrelation of f should be related to the autocorrelation of h by the normal rules

of error propagation. Verify that this is the case by writing the convolution in matrix form,

f ¼ Sh, and using the rule Cf ¼ SChS
T, where the Cs are covariance matrices.

9.3 Modify MatLab script eda09_03 to estimate the autocorrelation of the Reynolds Channel

chlorophyll dataset. How quickly does the autocorrelation fall off with lag (for small lags)?

9.4 Taper the Neuse River Hydrograph data using a Hamming window function before com-

puting its power spectral density. Compare your results to the untapered results, comment-

ing on whether any conclusions about periodicities might change. (Note: before tapering,

you should subtract the mean from the time series, so that it oscillates around zero).

9.5 Band-pass filter the Black Rock Forest temperature dataset to highlight diurnal variations

of temperature. Provide a new answer to Question 2.3 that uses these results.
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10.1 Interpolation requires prior information

Two situations in which data points need to be filled in are common:

The data are collected at irregularly spaced times or positions, but the data analysis
method requires that they be evenly spaced. Spectral analysis is one such example,
because it requires time to increase with constant increments, Dt.
Two sets of data need to be compared with each other, but they have not been

observed at common values of time or position. The making of scatter plots is one such
example, because the pairs of data that are plotted need to have been made at the
same time or position.

In both cases, the times or positions at which the data have been observed are

inconvenient. A solution to this dilemma is to interpolate the data; that is, to use

the available data to estimate the data values at a more useful set of times or positions.

We encountered the interpolation problem previously, in Chapter 5 (see Figure 10.1).

Prior information about how the data behaved between the data points was a key factor
in achieving the result.

The generalized least-squares methodology that we developed in Chapter 5 utilized

both observations and the prior information to create an estimate of the data at all

times or positions. Observations and prior information are both treated probabilisti-

cally. The solution is dependent on the observations and prior information, but does

not satisfy either, anywhere. This is not seen as a problem, because both observations

and prior information are viewed as subject to uncertainty. There is really no need to

satisfy either of them exactly; we only need to find a solution for which the level of

error is acceptable.

Environmental Data Analysis with MatLab. DOI: 10.1016/B978-0-12-391886-4.00010-6
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An alternative, deterministic approach is to find a solution that passes exactly

through the observations and that exactly satisfies the prior information between them.

Superficially, this approach seems superior—both observations and prior information

are being satisfied exactly. However, this approach singles out the observation points

as special. The solution will inevitably behave somewhat differently at the observation

points than between them, which is not a desirable property.
Whether or not this approach is tractable—or even possible—depends on the type

of prior information involved. Information about smoothness turns out to be espe-

cially easy to implement and leads to a set of techniques that might be called

the traditional approach to interpolation. As we will see, these techniques are a

straightforward extension of the linear model techniques that we have been devel-

oping in this book.

A purist might argue that interpolation of any kind is never the best approach to

data analysis, because it will invariably introduce features not present in the original

data, leading to wrong conclusions. A better approach is to generalize the analysis

technique so that it can handle irregularly spaced data. This argument has merit,

because interpolation adds additional—and often unquantifiable—error to the data.

Nevertheless, if used sensibly, it is a valid data analysis tool that can simplify many

data processing projects.

The basic idea behind interpolation is to construct an interpolant, a function, d(t),
that goes through all the data points, di, and does something sensible in between

them. We can then evaluate the interpolant, d(t), at whatever values of time, t, that
we want—evenly spaced times, or times that match those of another dataset, to name

two examples. Finding functions that go through a set of data points is easy. Finding

functions that do something sensible in between the data points is more difficult

as well as more problematical, because our notion of what is sensible will depend

on prior knowledge, which varies from dataset to dataset.

Some obvious ideas do not work at all. A polynomial or degree N� 1, for instance,

can easily be constructed to go through N data points (Figure 10.2). Unfortunately,

d(x,y)
d(

t)
(A) (B)

Time (t)
x

y

100

Figure 10.1 Examples of filling in data gaps drawn from Chapter 5. (A) One-dimensional

data, d(t); (B) Two-dimensional data, d(x, y). In these examples, generalized least squares is used

to find a solution that approximately fits the data and that approximately obeys prior information.
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the polynomial usually takes wilds swings between the points. A high-degree polyno-

mial does not embody the prior information that the function, d(t), does not stray too

far above or below the values of nearby data points.

10.2 Linear interpolation

Alow-orderpolynomial is lesswiggly thanahigh-orderoneandisbetterable tocapture the

prior information of smoothness. Unfortunately, a low-order polynomial can pass exactly

through only a few data. The solution is to construct the function, d(t), out of a sequence
of polynomials, each valid for a short time interval. Such functions are called splines.

The simplest splines are line segments connecting the data points. The second

derivative of a line is zero, so it embodies the prior information that the function is

very smooth between the data points. The estimated datum at time, t, depends only
on the values of the two bracketing observations, the one made immediately before

time, t, and the one immediately after time, t. The interpolation formula is as follows:

estimated datum ¼ weighted average of bracketing observations

or

dðtÞ ¼ ðtiþ1 � tÞdi
hi

þ ðt� tiÞdiþ1

hi
with hi ¼ tiþ1 � ti ð10:1Þ

Here, the time, t, is bracketed by the two observation times, ti and tiþ1. Note the use of

the local quantities, tiþ1 � t and t � ti; that is, time measured with respect to a nearby

sample. In MatLab, linear interpolation is performed as follows:

dp¼interp1(t,d,tp); (MatLab eda10_02)

Here, d is a column vector of the original data, measured at time, t, and dp is the

interpolated data at time, tp.

Linear interpolation has the virtue of being simple. The interpolated data always lie

between the observed data; they never deviate above or below them (Figure 10.3).

Its major defect is that the function, d(t), has kinks (discontinuities in slope) at the

data points. The kinks are undesirable because they are an artifact not present in
the original data; they arise from the prior information. Kinks will, for instance,

add high frequencies to the power spectral density of the time series.
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10.3 Cubic interpolation

A relatively simple modification is to use cubic polynomials in each of the intervals

between the data points, instead of linear ones. A cubic polynomial has four coeffi-

cients and can satisfy four constraints. The requirement that the function must pass

through the observed data at the ends of the interval places two constraints on these

coefficients, leaving two constraints that can represent prior information. We can

require that the first and second derivatives are continuous across intervals, creating

a smooth function, d(t), that has no kinks across intervals. (Its first derivative has no

kinks either, but its second derivative does).

The trick behind working out simple formula for cubic splines is properly organi-

zing the knowns and the unknowns. We start by defining the i-th interval as the one

between time, ti, and time, tiþ1. Within this interval, the spline function is a cubic

polynomial, Si(t). As the second derivative of a cubic is linear, it can be specified

by its values, yi and yiþ1, at the ends of the interval:

second derivative ¼ weighted average of bracketing values

or

d2

dt2
SiðtÞ ¼ yiðtiþ1 � tÞ

hi
þ yiþ1ðt� tiÞ

hi
with hi ¼ tiþ1 � ti ð10:2Þ

(Compare with Equation 10.1). We can make the second derivative continuous across

adjacent intervals if we equate yi of interval i þ 1 with yiþ1 of interval i. Thus, only
one second derivative, yi, is defined for each time, ti, even though two cubic poly-

nomials touch this point. These ys are the primary unknowns in this problem. The

formula for Si(t) can now be found by integrating Equation 10.2 twice:

SiðtÞ ¼ yiðtiþ1 � tÞ3
6hi

þ yiþ1ðt� tiÞ3
6hi

þ aiðtiþ1 � tÞ þ biðt� tiÞ ð10:3Þ

Here ai and bi are integration constants. We now choose these constants so that

the cubic goes through the data points, that is Si(ti) ¼ di and Si(tiþ1) ¼ diþ1.

This requirement leads to

5

0d(
t)

−5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (t)

Figure 10.3 The same N
irregularly spaced data, di,
(circles) as in Figure 10.2,

interpolated with linear splines.

MatLab script eda10_02.
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SiðtiÞ ¼ di ¼ yi hi
2

6
þ aihi or ai ¼ di

hi
� yi hi

6

Siðtiþ1Þ ¼ diþ1 ¼ yiþ1 hi
2

6
þ bihi or bi ¼ diþ1

hi
� yiþ1 hi

6

ð10:4Þ

The cubic spline is then

SiðtÞ ¼ yiðtiþ1 � tÞ3
6hi

þ yiþ1ðt� tiÞ3
6hi

þ di
hi
� yi hi

6

� �
ðtiþ1 � tÞ þ diþ1

hi
� yiþ1 hi

6

� �
ðt� tiÞ

ð10:5Þ

and its first derivative is

d

dt
SiðtÞ ¼ � yiðtiþ1 � tÞ2

2hi
þ yiþ1ðt� tiÞ2

2hi
� di

hi
� yi hi

6

0
@

1
Aþ diþ1

hi
� yiþ1 hi

6

0
@

1
A

¼ � yiðtiþ1 � tÞ2
2hi

þ yiþ1ðt� tiÞ2
2hi

þ ðdiþ1 � diÞ
hi

� ðyiþ1 � yiÞhi
6

ð10:6Þ

Finally, we determine the ys by requiring that two neighboring splines have first

derivatives that are continuous across the interval:

d

dt
Si�1ðtiÞ ¼ d

dt
SiðtiÞ

or

yihi�1

2
þðdi� di�1Þ

hi�1

�ðyi� yi�1Þhi�1

6
¼�yihi

2
þðdiþ1� diÞ

hi
�ðyiþ1� yiÞhi

6

or

hi�1yi�1þ 2ðhi�1þ hiÞyiþ hiyiþ1 ¼ 6ðdiþ1� diÞ
hi

� 6ðdi� di�1Þ
hi�1

ð10:7Þ

The y’s satisfy a linear equation that can be solved by standard matrix methods,

which we have discussed in Chapter 1. Note that the i ¼ 1 and i ¼ N equations

involve the quantities, y0 and yNþ1, which represent the second derivatives

at two undefined points, one to the left of the first data point and the other to the

right of the last data point. They can be set to any value and moved to the right

hand side of the equation. The choice y0 ¼ yNþ1 ¼ 0 leads to a solution called natural
cubic splines.
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Because of its smoothness (Figure 10.4), cubic spline interpolation is usually

preferable to linear interpolation.

In MatLab, cubic spline interpolation is performed as follows:

dp¼spline(t,d,tp); (MatLab eda10_03)

Here, d is a column vector of the original data, measured at time, t, and dp is the

interpolated data at time, tp.

10.4 Kriging

The generalized least-squaredmethodology that we developed inChapter 5 to fill in data

gaps was based on prior information, represented by the linear equation, Hm ¼ �h.
We quantified roughness, say R, of a vector,m, by choosingH to be a matrix of second

derivatives and by setting �h to zero. The minimization of the total roughness,

R ¼ ðHmÞTðHmÞ ð10:8Þ

in Equation (5.8) leads to a solution that is smooth. Note that we can rewrite

Equation (10.8) as

R ¼ ðHmÞTðHmÞ ¼ mT HTHm ¼ mT½Cm��1
m with Cm ¼ ½HTH��1 ð10:9Þ

We have encountered the quantity, mT½Cm��1
m, before in Equation (5.1), where

we interpreted it as the error, Ep(m), in the prior information. The quantity,

Cm ¼ ½HTH��1
, can be interpreted as the covariance, Cm, of the prior information.

In the case of smoothness, the prior covariance matrix, Cm, has nonzero off-diagonal

elements. Neighboring model parameters are highly correlated, as a smooth curve is

one for which neighboring points have similar values. Thus, the prior covariance, Cm,

of the model is intrinsically linked to the measure of smoothness. Actually we have

already encountered this link in the context of time series. The autocorrelation

function of a time series is closely related to both its covariance and its smoothness

(see Section 9.1). This analysis suggests that prior information about a function’s

autocorrelation function can be usefully applied to the interpolation problem.

Time (t )
0

0

5

-5
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d(
t)

Figure 10.4 The same N
irregularly spaced data, di,
(circles) as in Figure 10.2,

interpolated with cubic splines.

MatLab script eda09_03.
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Kriging (named after its inventor, Danie G. Krige) is an interpolation method based on

this idea. It provides an estimate of a datum, dest0 , at an arbitrary time, test0 , based on a set

of N observations, say ðtobsi , dobsi Þ, when prior information about its autocorrelation

function, a(t), is available. The method assumes a linear model in which dest0 is a

weighted average of all the observed data (as contrasted to just the two bracketing

data) (Krige, 1951):

estimated datum ¼ weighted average of all observations

dest0 ¼ PN
i¼1wid

obs
i ¼ ðdobsÞTw

ð10:10Þ

Here, dobs is a column vector of the observed data andw is an unknown column-vector

of weights. As we shall see, the weights can be determined using prior knowledge of

the autocorrelation function. The approach is to minimize the variance of dest0 � dtrue0 ,

the difference between the estimated and true value of the time series. As we will see,

we will not actually need to know the true value of the time series, but only its true

autocorrelation function. The formula for variance is

s2Dd ¼
ð
½ðdest0 � dtrue0 Þ � ð �d est

0 � �d
true

0 Þ�2pðdÞdNd ¼
ð
ðdest0 � dtrue0 Þ2pðdÞdNd

¼
ð
ðdest0 Þ2pðdÞdNdþ

ð
ðdtrue0 Þ2pðdÞdNd� 2

ð
dest0 dtrue0 pðdÞdNd

¼
XN
i¼1

XN
j¼1

wiwj

ð
dobsi dobsi pðdÞdNdþ

ð
ðdtrue0 Þ2pðdÞdNd� 2

XN
i¼1

wi

ð
dest0 dtruej pðdÞdNd

ð10:11Þ
Here, p(d) is the probability density function of the data. We have assumed that

the estimated and true data have the same mean, that is, �d
est

0 ¼ �d
true

0 . We now set

dobsi � dtruei so that

s2Dd /
XN
i¼1

XN
j¼1

wiwjaðjtobsj � tobsi jÞ þ að0Þ � 2
XN
i¼1

wiaðjtobsi � t0jÞ ð10:12Þ

Note that we have used the definition of the autocorrelation function, a(t) (see

Equation 9.6) and that we have ignored a normalization factor (hence the / sign),

which appears in all three terms of the equation. Finally, we differentiate the variance

with respect to wk and set the result to zero:

ds2Dd
dwk

¼ 0 / 2
XN
j¼1

wiaðjtobsk � tobsi jÞ � 2aðjtobsk � t0jÞ ð10:13Þ

which yields the matrix equation

Mw ¼ v where Mij ¼ aðjtobsi � tobsj jÞ and vi ¼ aðjtobsi � test0 jÞ ð10:14Þ
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Thus,

w ¼ M�1v and dest0 ¼ ðdobsÞTw ¼ ðdobsÞTM�1v ð10:15Þ

Note that the matrix,M, and the column-vector, v, depend only on the autocorrelation

of the data. Normally, data needs to be interpolated at many different times, not just

one as in the equation above. In such case, we define a column vector, t0
est, of all the

times at which it needs to be evaluated, along with a corresponding vector of interpo-

lated data, d0
est. The solution becomes

dest0 ¼ ðdobsÞTM�1V with ½V�ij ¼ aðjtobsi � ½test0 �jjÞ ð10:16Þ

Note that the results are insensitive to the overall amplitude of the autocorrelation

function, which cancels from the equation; only its shape matters. Prior notions of

smoothness are implemented by specifying a particular autocorrelation function.

A wide autocorrelation function will lead to a smooth estimate of d(t) and a narrow

function to a rough one. For instance, if we use a Normal function,

a jti � tjj
� � ¼ exp �ðti � tjÞ2

2L2

( )
ð10:17Þ

then its variance, L, will control the degree of smoothness of the estimate.

In MatLab, this approach is very simply implemented:

A ¼ exp(�abs(tobs*ones(N,1)0�ones(N,1)*tobs0).^2 /(2*L2));

V ¼ exp(�abs(tobs*ones(M,1)0�ones(N,1)* test0).^2 /(2*L2));

dest¼dobs0*((Aþ1e�6*eye(N))\V); (MatLab eda10_04)

Note that we have damped the matrix, A, by addition of a small amount of the identity

matrix. This modification guards against the possibility that the matrix, A, is near-

singular. It has little effect on the solution when it is not near-singular, but drives

the solution towards zero when it is. An example is shown in Figure 10.5.

Finally, we note that the power spectral density of a time series is uniquely

determined by its autocorrelation function, as the former is the Fourier transform

of the latter (see Section 9.3). Thus, while we have focused here on prior information

in the form of the autocorrelation function of the time series, we could alternatively

have used prior information about its power spectral density.

10.5 Interpolation in two-dimensions

Interpolation is not limited to one dimension. Equally common is the case where data

are collected on an irregular two-dimensional grid but need to be interpolated onto a

regular, two-dimensional grid. The basic idea behind two-dimensional interpolation is
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the same as in one dimension: construct a function, d(x1, x2), that goes through all the
data points and does something sensible in between them, and use it to estimate

the data at whatever points, (x1, x2), are of interest.

A key part of spline interpolation is defining intervals over which the spline func-

tions are valid. In one-dimensional interpolation, the intervals are both conceptually

and computationally simple. They are just the segments of the time axis bracketed by

neighboring observations. As long as the data are in the order of increasing time, each

interval is between a data point and its successor. In two dimensions, intervals become

two-dimensional patches (or tiles) in (x1, x2). Creating and manipulating these tiles is

complicated.

One commonly used tiling is based on connecting the observation points together

with straight lines, to form a mesh of triangles. The idea is to ensure that the vertices of

every triangle coincide with the data points and that the (x1, x2) plane is completely

covered by triangles with no holes or overlap. A spline function is then defined within

each triangle. Such triangular meshes are nonunique as the data points can be con-

nected in many alternative ways. Delaunay triangulation is a method for constructing

a mesh that favors equilateral triangles over elongated ones. This is a desirable prop-

erty as then the maximum distance over which a spline function acts is small.MatLab
provides two-dimensional spline functions that rely on Delaunay triangulation, but

perform it behind-the-scenes, so that normally you do not need to be concerned with

it. Linear interpolation is performed using

dp¼griddata(xobs,yobs,dobs,xp,yp,‘linear’); (MatLab eda09_05)

and cubic spline interpolation by

dp¼griddata(xobs,yobs,dobs,xp,yp,‘cubic’); (MatLab eda10_05)

In both cases, xobs and yobs are column vectors of the (x1, x2) coordinates of the data,
dobs is a column vector of the data, xp and yp are column vectors of the (x1, x2)
coordinates at which interpolated data are desired, and dp is a column vector of the

corresponding interpolated data. An example is given in Figure 10.6.

Time (t)Time (t)

(A) (B)

d(
t)

d(
t)

Figure 10.5 Example of filling in data gaps using Kriging. (A) Kriging using prescribed

normal autocorrelation function. (B) Generalized least-squares result from Chapter 5.

MatLab script eda10_04.
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The MatLab documentation indicates that the griddata() function is being

depreciated in favor of another, similar function, TriScatteredInterp(), meaning

that it may not be supported in future releases of the software. The use of this

new function is illustrated in MatLab script eda10_06. As of the time of publication,

TriScatteredInterp() does not perform cubic interpolation.

Occasionally, the need arises to examine the triangular mesh that underpins the

interpolation (Figure 10.6B). Furthermore, triangular meshes have many useful appli-

cations in addition to interpolation. InMatLab, a triangular grid is created as follows:

mytri ¼ DelaunayTri(xobs,yobs);

XY¼mytri.X;

[NXY, i] ¼ size(XY);

TRI ¼ mytri.Triangulation;

[NTRI, i] ¼ size(TRI); (MatLab eda10_05)

The DelaunayTri() function takes column-vectors of the (x1, x2) coordinates of the
data (called xobs and yobs in the script) and returns information about the triangles

in the object, mytri. Until now, we have not encounteredMatLab objects. They are a
type of variable that shares some similarity with a vector, as can be understood by the

following comparison:

A vector, v, contains elements, that are referred to using a numerical index,

for example, v(1), v(2), and so forth. The parentheses are used to separate the index

from the name of the vector, so that there is no confusion between the two. Each

element is a variable that can hold a scalar value. Thus, for example, v(1)¼10.5.

An object, o, contains properties, that are referred to using symbolic names,

for example, o.a, o.b, and so forth.The period is used to separate the name of theproperty
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Figure 10.6 The pressure data,

di (squares), are a function of

two spatial variables, (x, y).
(B) A Delaunay triangular mesh

with vertices at the locations of

the data. The triangle containing

the point, (20, 30) (circle), is

highlighted. (C) Linear

interpolation of the pressure

data. (D) Cubic spline

interpolation of the pressure

data. MatLab script eda10_05.
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from the name of the object so that there is no confusionbetween the two. Each property is

a variable that can hold anything. Thus, for instance, the o.a property could hold a scalar

value, o.a¼10.5, but the o.b property could hold a 3000 � 100 matrix, o.b¼zeros

(3000,100).

The DelaunayTri() function returns an object, mytri, with two properties,

mytri.X and mytri.Triangulation. The property, mytri.X, is a two-column wide

array of the (x1, x2) coordinates of the vertices of the triangles. The property,

mytri.Triangulation, is a three-column wide array of the indices, (t1, t2, t3),

in the mytri.X vertex array, of the three vertices of each triangle.

In the script above, the mytri.X property is copied to a normal array, XY, of size

NXY�2, and the mytri.Triangulation property is copied to a normal array, TRI,

of size NTRI�3. Thus, the i-th triangle has one vertex at XY(v1,1),XY(v1,2), another

at XY(v2,1), XY(v2,2), and a third at XY(v3,1), XY(v3,2), where

v1¼TRI(i,1); v2¼TRI(i,2); v3¼TRI(i,3); (MatLab eda10_05)

A commonly encountered problem is to determine within which triangle a given point,

x0, is. MatLab provides a function that performs this calculation (see Figure 10.7 for

a description of the theory behind this calculation):

tri0 ¼ pointLocation(mytri, x0); (MatLab eda10_05)

Here, x0 is a two-columnwide array of (x1, x2) coordinates and tri0 is a column vector

of indices to triangles enclosing these points (i.e., indices into the TRI array).

10.6 Fourier transforms in two dimensions

Periodicities can occur in two dimensions, as for instance in an aerial photograph of

storm waves on the surface of the ocean. In order to analyze for these periodicities, we

must Fourier transform over both spatial dimensions. A function, f(x, y), of two spatial

x0-v1

v2-v1

v3-v1

v3

v2

X0

v1

Figure 10.7 A triangle is defined by its three vertices, v1, v2, and v3. Each side of the triangle

consists of a line connecting two vertices (e.g., v1 and v2) with the third vertex excluded

(e.g., v3). A point, x0, is on the same side of the line as the excluded vertex if the cross product

(v3� v1)� (v2� v1) has the same sign as (x0� v1)� (v2� v1). A point is within the triangle if,

for each side, it is on the same side as the excluded vertex.
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variables, x and y, becomes a function of two spatial frequencies, or wavenumbers,
kx and ky. The integral transform and its inverse are

~~f ðkx, kyÞ ¼
ðþ1

�1

ðþ1

�1
f ðx, yÞ expð�ikxx� ikyyÞdydx

and

f ðx, yÞ ¼ 1

ð2pÞ2
ðþ1

�1

ðþ1

�1
~~f ðkx, kyÞ expðþikxxþ ikyyÞdkydkx ð10:18Þ

The two-dimensional transform can be thought of as two transforms applied succes-

sively. The first one transforms f(x, y) to ~f ðx, kyÞ and the second transforms ~f ðx, kyÞ to
~~f ðkx, kyÞ. MatLab provides a function, fft2(), that computed the two-dimensional

discrete Fourier transform.

In analyzing the discrete case, we will assume that x increases with row number and

y increases with column number, so that the data are in a matrix, F, with Fij ¼ f(xi, yj).
The transforms are first performed on each row of, F, producing a new matrix,
~F. As with the one-dimensional transform, the positive kys are in the left-hand side

of ~F and the negative kys are in its right-hand side. The transform is then performed

on each column of ~F to produce ~~F. The positive kxs are in the top of
~~F and the negative

kxs are in the bottom of ~~F. The output of the MatLab function, Ftt¼fft2(F), in the

Nx � Ny ¼ 8 � 8 case, looks like

~~F ¼

~~f ð0, 0Þ ~~f ð0, 1Þ ~~f ð0, 2Þ ~~f ð0, 3Þ ~~f ð0, 4Þ ~~f ð0, 5Þ ~~f ð0,�3Þ ~~f ð0,�2Þ ~~f ð0,�1Þ
~~f ð1, 0Þ ~~f ð1, 1Þ ~~f ð1, 2Þ ~~f ð1, 3Þ ~~f ð1, 4Þ ~~f ð1, 5Þ ~~f ð1,�3Þ ~~f ð1,�2Þ ~~f ð1,�1Þ
~~f ð2, 0Þ ~~f ð2, 1Þ ~~f ð2, 2Þ ~~f ð2, 3Þ ~~f ð2, 4Þ ~~f ð2, 5Þ ~~f ð2,�3Þ ~~f ð2,�2Þ ~~f ð2,�1Þ
~~f ð3, 0Þ ~~f ð3, 1Þ ~~f ð3, 2Þ ~~f ð3, 3Þ ~~f ð3, 4Þ ~~f ð3, 5Þ ~~f ð3,�3Þ ~~f ð3,�2Þ ~~f ð3,�1Þ
~~f ð4, 0Þ ~~f ð4, 1Þ ~~f ð4, 2Þ ~~f ð4, 3Þ ~~f ð4, 4Þ ~~f ð4, 5Þ ~~f ð4,�3Þ ~~f ð4,�2Þ ~~f ð4,�1Þ
~~f ð5, 0Þ ~~f ð5, 1Þ ~~f ð5, 2Þ ~~f ð5, 3Þ ~~f ð5, 4Þ ~~f ð5, 5Þ ~~f ð5,�3Þ ~~f ð5,�2Þ ~~f ð5,�1Þ
~~f ð�3, 0Þ ~~f ð�3, 1Þ ~~f ð�3, 2Þ ~~f ð�3, 3Þ ~~f ð�3, 4Þ ~~f ð�3, 5Þ ~~f ð�3,�3Þ ~~f ð�3,�2Þ ~~f ð�3,�1Þ
~~f ð�2, 0Þ ~~f ð�2, 1Þ ~~f ð�2, 2Þ ~~f ð�2, 3Þ ~~f ð�2, 4Þ ~~f ð�2, 5Þ ~~f ð�2,�3Þ ~~f ð�2,�2Þ ~~f ð�2,�1Þ
~~f ð�1, 0Þ ~~f ð�1, 1Þ ~~f ð�1, 2Þ ~~f ð�1, 3Þ ~~f ð�1, 4Þ ~~f ð�1, 5Þ ~~f ð�1,�3Þ ~~f ð�1,�2Þ ~~f ð�1,�1Þ

2
666666666666666666664

3
777777777777777777775

ð10:19Þ

For real data, ~~f ðkx, kyÞ ¼ ~~f �ð�kx, � kyÞ, so that only the left-most Ny/2 þ 1 columns

are independent. Note, however, that reconstructing a right-hand column from the

corresponding left-hand column requires reordering its elements, in addition to

complex conjugation:

for m ¼ [2:Ny/2]

mp¼Ny�mþ2;

Ftt2(1,mp) ¼ conj(Ftt(1,m));

Ftt2(2:Nx,mp) ¼ flipud(conj(Ftt(2:Nx,m)));

end (MatLab eda10_07)
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Here, Ftt2 is reconstructed from the left-size of Ftt, the two-dimensional Fourier

transform of the Nx by Ny matrix, F (calculated, for example, as Ftt¼fft2(F)).

We illustrate the two-dimensional Fourier transform with a cosine wave with

wavenumber, kr, oriented so that a line perpendicular to its wavefronts makes an angle,

y, with the x-axis (Figure 10.8):

f ðx, yÞ ¼ cosðnxkrxþ nykryÞ with ½nx, ny�T ¼ ½ sinðyÞ, cosðyÞ�T ð10:20Þ

The Fourier transform, ~~f ðkx, kyÞ, has two spectral peaks, one at (kx, ky) ¼ (krcosy,
krsiny) and the other at (kx, ky) ¼ (�krcosy, �krsiny). As can be seen from

Figure 10.8, which was computed from untapered data, sidelobes are as much of a

problem in two dimensions as they are in one.

Problems

10.1 What is the covariance matrix of the estimated data in linear interpolation? Assume that

the observed data have uniform variance, sd
2. Do the interpolated data have constant

variance? Are they uncorrelated?

10.2 Modify the interpolate_reynolds script of Chapter 9 to interpolate the Reynolds

Water Quality dataset with cubic splines. Compare your results to the original linear

interpolation.

10.3 Modify the eda10_04 script to computing the kriging estimate for a variety of different

widths, L2, of the autocorrelation function. Comment on the results.

10.4 Modify the eda10_07 script to taper the data in both the x and y directions before com-

puting the Fourier transform. Use a two-dimensional taper that is the product of a Ham-

ming window function in x and a Hamming window function in y.

y

y

θ

x

x

ky

ky

ky

kxkx

kx kx

Figure 10.8 Amplitude

spectral density of a two-

dimensional function, d(x, t).
(Top row) (Left) Cosine wave,

d(x, t), inclined y ¼ 30� from
x-axis. (Middle) Amplitude

spectral density, as a function of

wavenumbers, kx and ky, in
order returned by MatLab
function, fft2(). (Right)

Amplitude spectral density

after rearranging the order to

put the origin in the middle of

the plot. (Bottom row) Same as

for 60� cosine wave. MatLab
script eda10_07
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10.5 Estimate the power spectral density in selected monthly images of the CAC Sea Surface

Temperature dataset (Chapter 8). Which direction has the longer-wavelength features, lat-

itude or longitude? Explain your results.
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11.1 The difference is due to random variation!

This is a dreadful phrase to hear after spending hours or days distilling a huge data set

down to a few meaningful numbers. You think that you have discovered a meaningful

difference. Perhaps an important parameter is different in two geographical regions

that you are studying. You begin to construct a narrative that explains why it is dif-

ferent and what the difference implies. And then you discover that the difference is

caused by noise in your data. What a disappointment! Nonetheless, you are better

off having found out earlier than later. Better to uncover the unpleasant reality by

yourself in private than be criticized by other scientists, publicly.

On the other hand, if you can show that the difference is not due to observational

noise, your colleagues will be more inclined to believe your results.

As noise is a random process, you can never be completely sure that any given pat-

tern in your data is not due to observational noise. If the noise can really be anything,

then there is a finite probability that it will mimic any difference, regardless of its

magnitude. The best that one can do is assess the probability of a difference having

been caused by noise. If the probability that the difference is caused by noise is small,

then the probability of the difference being “real” is high.

This thinking leads to a formal strategy for testing significance. We state a Null
Hypothesis, which is some variation on the following theme:

The difference is due to random processes: ð11:1Þ

The difference is taken to be significant if the Null Hypothesis can be rejectedwith
high probability. How high is high will depend on the circumstances, but an exclusion

probability of 95% is the minimum standard. While 95% may sound like a high
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number, it implies that a wrong conclusion about the significance of a result is made

once in twenty times, which arguably does not sound all that low. A higher rejection

probability is warranted in high-stakes situations.

We have encountered this kind of analysis before, in the discussion of a long-term

trend in cooling of the Black Rock Forest temperature data set (Section 4.8).

The estimated rate of change in temperature was �0.03 �C/year, with a 2s error of

�10�5 �C/year. In this case, a reasonable Null Hypothesis is that the rate differs from
zero only because of observational noise. The Null Hypothesis can be rejected with

better than 95% confidence because �0.03 is more than 2s from zero. This analysis

relies on the parameter being tested (distance from the mean) being Normally distrib-

uted and on our understanding of the Normal probability density function (that 95% of

its probability is within �2s of its mean).

Generically, a parameter computed from data is called a statistic. In the above

example, the statistic being tested is the difference of a mean from zero, which,

in this case, is Normally distributed. In order to be able to assess other kinds of

Null Hypotheses, we will need to examine cases that involve statistics whose corre-

sponding probability density functions are less familiar than the Normal probability

density function.

11.2 The distribution of the total error

One important statistic is the total error, E. It is defined (see Section 5.6) as the sum

of squares of the individual errors, weighted by their variance; that is, E ¼ Siei
2 with

ei¼ (di
obs� di

pre)/sdi. Each of the es are assumed to be Normally distributed with zero

mean and, owing to being weighted by1/sdi, unit variance. As the error, E, is derived
from noisy data, it is a random variable with its own probability density function, p(E).
This probability density function is not Normal as the relationship between the es and
E is nonlinear. We now turn to working out this probability density function.

We start on a simple basis and consider the special case of only one individual

error, that is, E ¼ e2. We also use only the nonnegative values of the Normal prob-

ability density function of e, because the sign of e is irrelevant when we form its

square. The Normal probability density function for a nonnegative e is

pðeÞ ¼ ð2=pÞ1=2expð��/�e2Þ ð11:2Þ

Note that this function is a factor of two larger-than-usual Normal probability density

functions, defined for both negative and positive values of e. This probability density
function can be transformed into p(E) using the rule p(d) ¼ p[d(E)]jde/dEj
(Equation 3.8), where e ¼ E�/� and de=dE ¼ �/�E��/� :

pðEÞ ¼ ð2pEÞ��/�
expð��/�EÞ ð11:3Þ

This formula is reminiscent of the formula for a uniformly distributed random variable

(Section 3.5). Both have a square-root singularity at the origin (Figure 11.1).
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Now let us consider the slightly more complicated case, E¼ e1
2þe2

2, where the es
are uncorrelated so that their joint probability density function is

pðe1, e2Þ ¼ pðe1Þpðe2Þ ¼ 2

p

� �
exp ð��/�ðe21 þ e22ÞÞ ð11:4Þ

We compute the probability density function, p(E), by first pairing E with another

variable, say y, to define a joint probability density function, p(E,y), and then integrat-
ing over y to reduce the joint probability density function to the univariate probability
density function, p(E). We have considerable flexibility in choosing the functional

form of y. Because of the similarity of the formula, E ¼ e1
2 þ e2

2, to the formula,

r2 ¼ x2 þ y2, of polar coordinates, we use y ¼ tan�1(e1/e2), which is analogous to

the polar angle. Inverting these formulas for e1(E,y) and e2(E,y) yields

e1 ¼ E�/� sin y and e2 ¼ E�/� cos y ð11:5Þ

The Jacobian determinant, J(E,y), is (see Equation 3.21)

JðE,yÞ ¼

@d1
@E

@d2
@E

@d1
@y

@d2
@y

���������

���������
¼ ��/�E�/� sin y ��/�E�/� sin y

E�/� cos y �E�/� sin y

����
���� ¼ �/�ðsin2 yþ cos2 yÞ ¼ �/�

ð11:6Þ

The joint probability density function is therefore

pðE, yÞ ¼ pðe1ðE, yÞ, e2ðE, yÞÞJðE, yÞ ¼ 1

p

� �
expð��/�EÞ ð11:7Þ

(A) (B)

p(e) p(E )

Figure 11.1 (A) Probability density function, p(e), of a Normally distributed variable, e,
with zero mean and unit variance. (B) Probability density function of E ¼ e2. MatLab
script eda11_01.
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Note that the probability density function is uniform in the polar angle, y. Finally, the
univariate probability density function, P(E), is determined by integrating over polar

angle, y.

pðEÞ ¼
ðp=2
0

pðE, yÞdy ¼ �/� expð��/�EÞ ð11:8Þ

The polar integration is performed over only one quadrant of the (e1, e2) plane as all
the es are nonnegative. As you can see, the calculation is tedious, but it is neither

difficult nor mysterious. The general case corresponds to summing up N squares:

EN ¼ Si¼1
Nei

2. In the literature, the symbol w2N is commonly used in place of

EN and the probability density function is called the chi-squared probability density

function withN degrees of freedom (Figure 11.2). The general formula, valid for allN,
can be shown to be

pðw2NÞ ¼
1

2N=2ððN=2Þ � 1Þ! ½w
2
N�

N
2
�1

expð��/�w2NÞ ð11:9Þ

This probability density function can be shown to have mean, N, and variance 2N.
In MatLab, the probability density function is computed as

pX2 ¼ chi2pdf(X2,N); (MatLab eda11_02)

where X2 is a vector of w2N values. We will put off discussion of its applications until

after we have examined several other probability density functions.

11.3 Four important probability density functions

A great deal (but not all) of hypothesis testing can be performed using just four prob-

ability density functions. Each corresponds to a different function of the error,

e, which is presumed to be uncorrelated and Normally distributed with zero mean

and unit variance:

N = 1

2

1

0.8

0.6

0.4

0.2

0
1 2 3 4 5 6 7 8 9 10

3
4
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c 2

p(
c N

)2

Figure 11.2 Chi-squared probability density function for N ¼ 1, 2, 3, 4, and 5. MatLab script

eda11_02.
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ð1Þ pðZÞ with Z ¼ e

ð2Þ pðw2NÞ with w2N ¼
XN
i¼1

e2i

ð3Þ pðtNÞ with tN ¼ e�
1=N

�XN
i¼1

e2i

 !�/�

ð4Þ pðFN,MÞ with FN,M ¼
N�1

XN
i¼1

e2i

M�1
XM
i¼1

e2i

ð11:10Þ

Probability density function 1 is just the Normal probability density function with zero

mean and unit variance. Note that any Normally distributed variable, d, with mean,
�d, and variance, sd

2, can be transformed into one with zero mean and unit variance

with the transformation, Z ¼ ðd � �dÞ=sd.
Probability density function 2 is the chi-squared probability density function,

which we discussed in detail in the previous section.

Probability density function 3 is new and is called Student’s t-probability density
function. It is the ratio of a Normally distributed variable and the square root of the

sum of squares of N Normally distributed variables (the e in the numerator is assumed

to be different from the es in the denominator). It can be shown to have the

functional form

pðtNÞ ¼
N þ 1

2
� 1

� �
!

ðNpÞ�/� N

2
� 1

� �
!

1þ t2N
N

� ���ðNþ1Þ=2
�

ð11:11Þ

The t-probability density function (Figure 11.3) has a mean of zero and, for N > 2, a

variance of N/(N� 2) (its variance is undefined for N� 2). Superficially, it looks like

a Normal probability density function, except that it is longer-tailed (i.e., it falls off

with distance from its mean much more slowly than does a Normal probability density

function. In MatLab, the t-probability density function is computed as

pt ¼ tpdf(t,N); (MatLab eda11_03)

where t is a vector of t values.
Probability density function 4 is also new and is called the Fisher-Snedecor

F-probability density function. It is the ratio of the sum of squares of two different

sets of random variables. Its functional form cannot be written in terms of elementary

functions and is omitted here. Its mean and variance are

�F ¼ M

M � 2
and s2F ¼ 2M2ðM þ N � 2Þ

NðM � 2Þ2ðM � 4Þ ð11:12Þ
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Note that the mean of the F-probability density function approaches �F ¼ 1 asM!1.

For small values ofM and N, the F-probability density function is skewed towards low
values of F. At large values ofM andN, it is more symmetric aroundF¼ 1. InMatLab,
the F-probability density function is computed as

pF ¼ fpdf(F,N,M); (MatLab eda11_04)

where F is a vector of F values.

11.4 A hypothesis testing scenario

Thegeneral procedure for determiningwhether a result is significant is to first state aNull

Hypothesis, and then identify and compute a statistic whose valuewill probably be small
if the Null Hypothesis is true. If the value is large, then the Null Hypothesis is unlikely to
be true and can be rejected. The probability density function of the statistic is used to

assess just how unlikely, given any particular value. Four Null Hypotheses are common:

(1) Null Hypothesis: The mean of a random variable differs from a prescribed value
only because of random fluctuation.This hypothesis is testedwith the statistic, Z or
t, depending on whether the variance of the data is known beforehand or estimated

from the data. The tests of significance use the Z-probability density function or

t-probability density function, and are called the Z-test and the t-test, respectively.
(2) Null Hypothesis: The variance of a random variable differs from a prescribed

value only because of random fluctuation. This hypothesis is tested with the sta-

tistic, wN
2, and the corresponding test is called the chi-squared test.

(3) Null Hypothesis: The means of two random variables differ from each other only
because of random fluctuation. The Z-test or t-test is used, depending on whether
the variances are known beforehand or computed from the data.

(4) Null Hypothesis: The variances of two random variables differ from each other
only because of random fluctuation. The F-test is used.

As an example of the use of these tests, consider the following scenario. Suppose that

you are conducting research that requires measuring the sizes of particles (e.g.,

0.5
N = 5

0.4

0.3

p(
t N

)

0.2
N = 1

0.1

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

t

Figure 11.3 Student’s t-probability density function for N ¼ 1, 2, 3, 4, and 5. MatLab script

eda11_03.
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aerosols) in the 10-1000 nm range. You purchase a laboratory instrument capable of

measuring particle diameters. Its manufacturer states that (1) the device is extremely

well-calibrated, in the sense that particles diameters will exactly scatter about their

true means, and (2) that the variance of any single measurement is sd
2 ¼ 1 nm2.

You test the machine by measuring the diameter, di, of N ¼ 25 specially purchased

calibration particles, each exactly 100 nm in diameter. You then use these data to

calculate a variety of useful statistics (Table 11.1) that you hope will give you a sense

about how well the instrument performs. A few weeks later, you repeat the test, using

another set of calibration particles.

The synthetic data for these tests that we analyze below were drawn from a Normal

probability density function with a mean of 100 nm and a variance of 1 nm2 (MatLab
script eda11_06). Thus, the data do not violate the manufacturer’s specifications and

(hopefully) the statistical tests should corroborate this.

Question 1: Is the calibration correct? Because of measurement noise, the esti-

mated mean diameter, �d
est
, of the calibration particles will always depart slightly from

the true value, �d
true

, even if the calibration of the instrument is perfect. Thus, the Null

Hypothesis is that the observed deviation of the average particle size from its true

value is due to observational error (as contrasted to a bias in the calibration). If the

data are Normally distributed, so is their mean, with the variance being smaller by

a factor of 1/
p
N. The quantity, Z est (Table 11.1, row 7), which quantifies how different

the observedmean is from the truemean, isNormally distributedwith zeromean and unit

variance. It has the value Z est ¼ 0.278 for the first test and Z est ¼ 0.243 for the second.
The critical question is how frequently Zs of this size or larger occur. Only if they occur
extremely infrequently can the Null Hypothesis be rejected. Note that a small Z is one

that is close to zero, regardless of its sign, so the absolute value of Z is the quantity that is
tested—a two-sided test. The Null Hypothesis can be rejected only when values greater
than or equal to the observed Z are very uncommon; that is, when P(jZj � Z est) is small,

say less than 0.05 (or 5%).We find (Table 11.1, row 8) thatP(jZj � Z est)¼ 0.78 for test 1
and 0.81 for test 2, so the Null Hypothesis cannot be rejected in either case.

MatLab provides a function, normcdf(), that computes the cumulative probability

of the Normal probability density function:

PðZ0Þ ¼
ðZ0

�1
pðZÞdZ ¼

ðZ0

�1

1ffiffiffiffiffiffi
2p

p expð��/�Z2ÞdZ ð11:13Þ

The probability that Z is between �Z est and þZ est is P(jZ estj) � P(�jZ estj). Thus, the
probability that Z is outside this interval isP(jZj � Z est)¼ 1� [P(jZ estj)� P(�jZ estj)].
In MatLab, this probability is computed as

PZA ¼ 1 � (normcdf(ZA,0,1)�normcdf(�ZA,0,1)); (MatLab eda11_07)

where ZA is the absolute value of Z est. The function, normcdf(), computes the cumu-

lative Z-probability distribution (i.e., the cumulative Normal probability distribution).

Question 2: Is the variance within specs? Because of measurement noise, the

estimated variance, ðsestd Þ2, of the diameters of the calibration particles will always de-

part slightly from the true value, ðstrued Þ2, even if the instrument is functioning correctly.
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Table 11.1 Statistics arising from two calibration tests.

Calibration Test 1 Calibration Test 2 Inter-Test Comparison

1 N 25 25

2 d
true

100 100

3 d
est ¼ 1

N

PN
i¼1

di 100.055 99.951

4 ðstrued Þ2 1 1

5 ðsestd Þ2 ¼ 1
N

PN
i¼1

ðdobsi � d
trueÞ2 0.876 0.974

6 ðsest0d Þ2 ¼ 1
N�1

PN
i¼1

ðdobsi � d
estÞ2 0.910 1.012

7 Zest ¼ ðdest � d
trueÞ

strued =
ffiffiffiffi
N

p 0.278 0.243

8 PðjZj � ZestÞ 0.780 0.807

9 w2est ¼
PN
i¼1

ðdobsi � d
trueÞ2

ðstrued Þ2 21.921 24.353

10 Pðw2 � w2estÞ 0.640 0.499

11 test ¼ ðdest � d
trueÞ

sestd =
ffiffiffiffi
N

p 0.297 0.247

12 Pðjt25j � testÞ 0.768 0.806

13 Zest ¼ ðdest1 � d
est2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððstrued1 Þ2=N1Þ þ ððstrued2 Þ2=N2Þ
q 0.368
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14 PðjZj � ZestÞ 0.712

15 test ¼ ðdest1 � d
est2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððsest0d1 Þ2=N1Þ þ ððsest0d2 Þ2=N2Þ
q 0.376

16 M ¼ ½ðsest0d1 Þ2=N1 þ ðsest0d1 Þ2=N2�2
ððsest0d1 Þ2=N1Þ2=ðN1 � 1ÞÞ þ ððsest0d2 Þ2=N2Þ2=ðN2 � 1Þ 48

17 PðjtMj � testÞ 0.707

18 Fest ¼ ðw21=N1Þ
ðw22=N2Þ 1.110

19 PðF � 1=Fest or F � FestÞ 0.794
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Thus, the Null Hypothesis is that the observed deviation is due to random fluctuation (as

contrasted to the instrument really being noisier than specified). The quantity, w2est
(Table 11.1, row 9) is chi-squared distributed with 25 degrees of freedom. It has a value

of, w2est ¼ 21:9 for the first test and 24.4 for the second. The critical question is whether
these values occur with high probability; if so, theNull Hypothesis cannot be rejected. In

this case, we really care only if the variance is worse than what the manufacturer stated,

so a one-sided test is appropriate. That is, we want to know the probability that a value is

greater than w2est. We find that Pðw2 � w2estÞ ¼ 0:64 for test 1 and 0.50 for test 2. Both of
these numbers are much larger than 0.05, so the Null Hypothesis cannot be rejected in

either case. In MatLab, the probability, Pðw2 � w2estÞ is calculated as follows:

Pchi2A ¼ 1 � chi2cdf(chi2A,NA); (MatLab eda11_07)

Here, chi2A is w2est and NA stands for the degrees of freedom (25, in this case). The

function, chi2cdf(), computes the cumulative chi-squared probability distribution.

Question 1, Revisited: Is the calibration correct? Suppose that the manufacturer

had not stated a variance. We cannot form the quantity, Z, as it depends on the var-

iance, strued , which is unknown. However, we can estimate the variance from the data,

ðsestd Þ2 ¼ N�1
PN

i¼1 ðdi � �d
trueÞ2. But because this estimate is a random variable, we

cannot use it in the formula for Z, for Z would not be Normally distributed. Such a

quantity would instead be t-distributed, as can be seen from the following:

t¼ ð�d est� �d
trueÞ

N��/� 1

N

XN
i¼1

ðdi� �d
trueÞ2

 !�/� ¼
ð�d est� �d

trueÞ
struedffiffiffiffi
N

p
� �

1

N

XN
i¼1

ðdi� �d
trueÞ2

ðstrued Þ2
 !�/� ¼

e

1

N

XN
i¼1

e2i

 !�/�

ð11:14Þ
Note that we have inserted sd

true/sd
true into the denominator of the third term in order

to normalize di and �d into random variables, ei and e, that have unit variance. In our

case, t est ¼ 0.294 for test 1 and 0.247 for test 2.

The Null Hypothesis is the same as before; that the observed deviation of the

average particle size is due to observational error (as contrasted to a bias in the cal-

ibration). We again use a two-sided test and find that P(jtj � t est)¼ 0.77 for test 1 and
0.81 for test 2. These probabilities are much higher than 0.05, so the Null Hypothesis

cannot be rejected in either case. In MatLab we compute the probability as

PtA ¼ 1 � (tcdf(tA,NA)�tcdf(�tA,NA)); (MatLab eda11_07)

Here, tA is jt estj and NA ¼ 25 denotes the degrees of freedom (25 in this case). The

function, tcdf(), computes the cumulative t-probability distribution.

Question 3: Has the calibration changed between the two tests?The Null Hypothesis
is that any difference between the two means is due to random variation. The quantity,

ð�d est1 � �d
est2Þ, is Normally distributed, as it is a linear function of two

Normally distributed random variables. Its variance is just the sum of the variances

of the two terms (see Table 11.1, row 13). We find Z est ¼ 0.368 and P(jZj � Z est) ¼
0.712. Once again, the probability is much larger than 0.05, so the Null Hypothesis can-
not be excluded.
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Question 3, Revisited. Note that in the true variances, (sd1
true)2 and (sd2

true)2 are

needed to form the quantity,Z (Table 11.1, row13). If they are unavailable, thenonemust

estimate variances from the data, itself. This estimate can be made in either of two ways

ðsestd Þ2 ¼

1

N

XN
i¼1

ðdobsi � �d
trueÞ2 if �d

true
is known

1

N � 1

XN
i¼1

ðdobsi � �d
estÞ2 otherwise

8>>>><
>>>>:

ð11:15Þ

depending on whether the true mean of the data is known. Both are random variables

and so cannot be used to form Z, as it would not be Normally distributed. An estimated

variance can be used to create the analogous quantity, t (Table 11.1, row 15), but such

a quantity is only approximately t-distributed, because the difference between two

t-distributed variables is not exactly t-distributed. The approximation is improved

by defining effective degrees of freedom, M (as in Table 11.1, row 16). We find in

this case that test ¼ 0.376 and M ¼ 48. The probability P(jtj � test) ¼ 0.71, which
is much larger than the 0.05 needed to reject the Null Hypothesis.

Question 4. Did the variance change between tests? The estimated variance is

0.876 in the first test and 0.974 in the second. Is it possible that it is getting worse?

The Null Hypothesis is that the difference between these estimates is due to random

variation. The quantity, F (Table 11.1, row 18), is defined as the ratio of the sum of

squares of the two sets of measurements, and is thus proportional to the ratio of their

estimated variances. In this case, Fest ¼ 1.11 (Table 11.1, row18). An F that is greater

than unity implies that the variance appears to get larger (worse). An F less than unity

would mean that the variance appeared to get smaller (better). As F is defined in terms

of a ratio, 1/Fest is as better as Fest is worse. Thus, a two-sided test is needed to assess

whether the variance is unchanged (neither better nor worse); that is, one based on the

probability, P(F � 1/Fest or F � Fest), which in this case is 0.79. Once again, the Null

Hypothesis cannot be rejected.

The MatLab code for computing P(F � 1/Fest or F � Fest) is

if(F<1)

F¼1/F;

end

PF ¼ 1 � (fcdf(F,NA,NB)�fcdf(1/F,NA,NB)); (MatLab eda11_07)

The function, fcdf(), computes the cumulative F-probability distribution. Note that F
is replaced with its reciprocal if it is less than unity. Here NA and NB are the degrees of

freedom of tests 1 and 2, respectively (both 25, in this case).

We summarize below what we have learned about the instrument:

Question 1: Is the calibration correct? Answer: We cannot reject the Null Hypothesis
that the difference between the estimated and manufacturer-stated calibration is
caused by random variation.
Question 2: Is the variance within specs? Answer: We cannot reject the Null

Hypothesis that the difference between the estimated and manufacturer-stated vari-
ance is caused by random variation.
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Question 3: Has the calibration changed between the two tests? Answer: We cannot
reject the Null Hypothesis that difference between the two calibrations is caused by
random variation.
Question 4. Did the variance change between tests? Answer: We cannot reject

the Null Hypothesis that difference between the two estimated variances is caused
by random variation.

Note that in each case, the results are stated with respect to a particular Null

Hypothesis.

11.5 Testing improvement in fit

Very common is the situation where two alternative models are proposed for a single

dataset. Neither fits the data exactly, but one has a smaller total error, E, than the other.
Calling the model with the smaller corresponding error the better-fittingmodel is nat-

ural. Recall, however, that the error,E, is a random variable. Different realizations of it

will vary in size, even when drawn from probability density functions with the exactly

the same mean. Thus, when the two errors are similar in size, their difference may be

due to random variation and not to one model “really” being better than the other.

The F-test is used to assess the significance in the ratio of the estimated variance of

the two fits (Figure 11.4):

FK1,K1
¼ ðs2dÞestmodel1

ðs2dÞestmodel2

¼ E1=K1

E2=K2

with K1 ¼ N1 �M1 and K2 ¼ N2 �M2

ð11:16Þ
Here, the first model has M1 model parameters, N1 data, and a total error, E1 and the

second model has M2 model parameters, N2 data, and a total error, E2. Note that a
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Figure 11.4 F-probability density function, p(FN, M), for selected values of M and N. MatLab
script eda11_04.
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model withM parameters ought to be able to fit a dataset with N ¼M data exactly, so

the degrees of freedom are K¼ N�M. If the variances of individual errors, ei, used to
compute the Es are all equal, then they cancel out of the fraction, E1/E2. Thus, the

statistic, F, does not depend on the variance of the data and one is free to use the

unweighted error, E ¼ Si (di
obs � di

pre)2.

As an example, we consider the rising temperatures during the first 60 h of the

Black Rock Forest dataset (Figure 11.5). A straight line (Figure 11.5A) fits the data

fairly well, but a cubic function fits it better, with F ¼ 1.112. The Null Hypothesis is
that both functions fit the data equally well, and that the difference in error is due to

random variation. A two-sided test gives

P(F � 1/Fest or F � Fest) ¼ 0.71, which is much larger than 0.05, so the Null

Hypothesis that the fits are equally good cannot be rejected.

11.6 Testing the significance of a spectral peak

A complicated time series, meaning one with many short-period fluctuations, usually

has a complicated spectrum, with many peaks and troughs. Some peaks may be par-

ticularly high-amplitude and stand above other lower-amplitude ones. We would like

to know whether the high-amplitude peaks are significant. Pinning down just what we
mean by significant requires some careful thinking.

Suppose that the data consists of a cosine wave of amplitude, A, with just a little

random observational noise superimposed on it. We could employ the rules of error

propagation to compute how the variance, sd
2, of the observations leads to variance,

sA
2, in our estimate of the amplitude, A, and then state the confidence intervals for the

amplitude as A � 2sA. We could then test whether a peak has an amplitude
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Figure 11.5 Comparison of two fits to a fragment of the Black Rock Forest temperature dataset.

(A) Observed data (circles), linear fit (solid line), (B) Observed data (circles), cubic fit.

(solid line) The cubic reduces the error by 14% compared to the linear fit. MatLab Script

eda11_08.
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significantly different from a prescribed value, or test whether two peaks have ampli-

tudes that are significantly different from each other, or so forth.

The problem is that this is almost neverwhat wemean by the significance of a spec-

tral peak. The much more common scenario is one in which a long and possibly con-

tinuous time series is dominated by “noise” that has no obvious sinusoidal patterns at

all. Furthermore, the noise is usually some complicated and unmodeled part of the

time series itself, and not observational error in the strict sense. We take the spectrum

of a portion of the time series—the first hour, say—and detect a spectral peak at fre-

quency, f0. We want to know if this peak is significant in the sense that, if we were to

take the spectra of subsequent hourly segments, they would also have peaks at fre-

quency, f0. The alternative is that the observed peak arises from some “accident”

of the noise pattern in that particular hour of data that is not shared by the other hourly

segments.

The Null Hypothesis that corresponds to this case is that the spectral peak can

be explained by random variation within a time series that consists of nothing but

random noise. The easiest case to analyze is a time series that consists of nothing

but uncorrelated, Normally distributed random noise with constant variance. The

power spectral density of such a time series will have peaks, and the height of

these peaks has a probability density function that will allow us to quantify the

likelihood that the height of a peak will exceed a specified value. If the likelihood

of an observed peak is low, then we have reason to reject the Null Hypothesis and

claim that the peak is significant, in the sense of being unlikely to have arisen

from random fluctuations.

Before starting the analysis, we need to carefully specify whether Fourier coeffi-

cients are defined in the frequency range, (0, fny) or (�fny, fny), because the former

have twice the amplitude of the latter. We choose the former, for then plotting power

spectral density on the (0, fny) interval, which is the shorter of the two, seems more

natural.

Suppose that time series, di, of length, N, consists of uncorrelated random noise

with zero mean and variance, sd
2. Before computing the Fourier transform, the time

series is modified by multiplication with a taper, wi, so that it has elements, widi. The
variance of the tapered time series is N�1Si¼1

Nwi
2di

2, but this is approximately ffsd
2,

where ff ¼ N�1Si¼1
Nwi

2 is the variance of the taper. This can be seen from the N ¼ 3

example:

Nffs2d ! ðw2
1 þ w2

2 þ w2
3Þðd21 þ d22 þ d23Þ

¼ ðw2
1d

2
1 þ w2

2d
2
2 þ w2

3d
2
3Þ þ ðw2

1d
2
2 þ w2

2d
2
3 þ w2

3d
2
1Þ þ ðw2

1d
2
3 þ w2

2d
2
1 þ w2

3d
2
2Þ

� 3ðw2
1d

2
1 þ w2

2d
2
2 þ w2

3d
2
3Þ ! N

XN
i¼1

w2
i d

2
i ð11:17Þ

The approximation holds because all the ds have the same statistical properties, so

their order has little influence on the sums. This behavior suggests that we normalize

the taper to unit variance, ff ¼ 1, so that it has the least effect on the variance of the
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data (and hence on the overall power in the power spectral density). However, in

the discussion, below, we allow ff to have an arbitrary value.

When the data are uncorrelated and Normally distributed, with uniform variance

and zero mean, the coefficients of their Fourier series are also uncorrelated and Nor-

mally distributed, with uniform variance and zero mean. This follows from the fact

that the Fourier transform is a linear function of the data of the form, Gm ¼ d, where

m is a vector of the Fourier coefficients, together with the relationship, [GTG]�1 / I

(Equation 6.14) (except for the first and last frequencies, which we will ignore in this

analysis). Each element of the power spectral density, s2(t), is proportional to the sum
of squares of two Fourier coefficients. If we normalize the Fourier coefficients to unit

variance, then the power spectral density is chi-squared distributed with p¼ 2 degrees

of freedom. The normalization factor, c, is calculated using the relationship between

the variance of the time series and the frequency integral of the power spectral density

(Equation 6.42), together with the fact that a chi-squared probability density function

with two degrees of freedom has mean, 2, and variance, 4:

ffs2d ¼
ðfny
0

s2ðf Þdf � Df
XNf

i¼1

s2i ¼
2NfDf

2
s2 or

s2

c
¼ 2 with c ¼ ffs2d

2NfDf

ð11:18Þ

Here,Nf¼N/2þ 1. Hence, the power spectral density has mean, s2 , and variance, s2s2 ,
given by

s2 ¼ 2c and s2s2 ¼ 4c2 ð11:19Þ

Thus, we need know only the basic parameters that define a random time series—the

ones that make up the constant, c—in order to predict the statistical properties of

its power spectral density (Figures 11.6 and 11.7). The probability that an element

of the power spectral density will exceed a given value, say s0
2, is 1� P(s0

2/c), where
P is the cumulative chi-squared distribution with two degrees of freedom.

As an example, we consider a length N ¼ 1024 time series built up from a 5 Hz

cosine wave plus uncorrelated noise, drawn from a Normal probability density func-

tion with zero mean and variance, sd
2. The amplitude of the cosine is chosen to be

small, only 0.25sd, so that its presence cannot be detected readily though visual in-

spection of the time series (Figure 11.8A). Nevertheless, the power spectral density

(Figure 11.8B) has a prominent peak at 5 Hz, with height, s0
2, approximately 10 times

the mean level (Figure 11.9). The probability that an element of the power spectral

density will have a probability at or below this level can be calculated usingMatLab’s
inverse chi-squared probability distribution:

ppeak ¼ chi2cdf(speak/c,p); (MatLab eda11_11)

Here, speak is s0
2, c is the constant defined in Equation 11.18, and p¼2 denotes

the degrees of freedom. We find that ppeak¼0.99994, which is to say that the power

spectral density is predicted to be less than the level, s0
2, 99.994% of the time.
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Figure 11.6 (A) Random time series, d(t), after multiplication by Hamming taper. (B) power
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Figure 11.7 Actual (jagged curve) and theoretical (smooth curve) histogram of power spectral

density, s2(f), of the time series shown in Figure 11.6. MatLab scripts eda11_09 and eda11_10.
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Figure 11.9 Actual (jagged curve) and theoretical (smooth curve) histogram of power spectral

density, s2(f), of the time series shown in Figure 11.8. MatLab script eda11_11.

Are my results significant? 233



At this point, we must be exceedingly careful in stating the Null Hypothesis. If we

are specifically looking for a 5-Hz oscillation, then the Null Hypothesis would be that

a peak at 5-Hz arose solely by random variation. In this case, the probability is

1 � 0.99994 ¼ 0.00006 or 0.006%, which is very small, indeed. Thus, we can reject

the Null Hypothesis with very high confidence. However, this analysis relies on prior

knowledge that 5 Hz is special—that a peak occurs there.

Instanceswill indeed arise whenwe suspect spectral peaks at specific frequencies—

the annual and diurnal periodicities that we discussed in the context of the Black Rock

Forest temperature dataset are examples. But another common scenario is one where

we have no special knowledge about what frequencies might be associated with peaks.

We see a peak somewhere in the power spectral density and want to know whether or

not it is significant. In this case, theNull Hypothesis is that any peak at any frequency in
the record arose solely by random variation.

In this example, the power spectral density hasN/2þ 1¼ 513 elements. Thus, there

are 513 independent chances for a peak to occur. The probability that a peak of am-

plitude, s0
2, occurs somewhere among those 513 possibilities is (0.99994)513 ¼ 0.97.

Thus, there is a 3% chance that a peak arose from random variation—still a small

probability, but much larger than the 0.006% that we calculated previously We can

still reject the Null Hypothesis at greater than 95% confidence, but with much less

confidence than before.

11.7 Bootstrap confidence intervals

Many special-purpose statistical tests have been put forward in the literature. Each

proposes a statistic appropriate for a specific data analysis scenario and provides a

means for testing its significance. However, data analysis scenarios are extremely var-

ied andmany have no well-understood tests. Sometimes, model parameters will have a

sufficiently complicated relationship to the data that error propagation by normal

means will be impractical, making the determination of confidence intervals difficult.

Consider a scenario in which a model parameter, m, is determined through a com-

plicated data analysis procedure. If a large number of repeated datasets are avail-

able—repeated in the sense of having made all the measurements again at another

time—then the problem of determining confidence intervals for the parameter, m,
could be approached empirically. The same analysis could be performed on each data-

set and a histogram for parameter, m, constructed. With enough repeat datasets, the

histogram will approximate the probability density function, p(m). Confidence inter-
vals could then be derived from p(m). While true repeat datasets are seldom available,

this method will also work if approximate repeat datasets could somehow be con-

structed from the single, available dataset.

A dataset, d, can be viewed as consisting ofN realizations of the probability density

function, p(d). The probability density function, p(d), itself can be viewed—loosely—

as containing an infinite number of realizations. Suppose that we construct another

probability density function, p0(d), by duplicating the N realizations an indefinite
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number of times and mixing them together (Figure 11.10). As N ! 1, p0(d)! p(d).
As long as N is large enough, p0(d) will be an adequate approximation to p(d).

This scenario suggests that an approximate repeat dataset can be created by ran-

domly resampling the original dataset with duplications. If the original data are in

a column-vector, dorig, then a new dataset, d, is constructed by randomly choosing

an element from dorig each of N times. The two datasets will not be the same, because

duplicates from dorig are allowed in d. Furthermore, many such resampled datasets can

be constructed, all distinct from one another. Identical analyses can then be performed

on each resampled dataset, and a histogram of the estimated model parameters assem-

bled. This procedure is called the bootstrap method.

We start with a simple case—determining confidence intervals for the slope, b, of a
straight line fit to data. We already know how to determine confidence intervals for

this linear problem, so it provides a good way to verify the bootstrap results. The prob-

ability density function, p(b), of the slope is Normal with variance, s2b, given by a

simple formula (Equation 4.29), so 95% confidence is within �2sb of the mean.

The bootstrap method contains two steps, both within a loop over the number, Nr,

of times that the original data are resampled. In the first step, the data, dorig, and cor-

responding times, torig, are resampled into d and t. In the second step, standard meth-

odology (least-squares, in this case) is used to estimate the parameter of interest

(slope, b, in this case) from d and t.

for p ¼ [1:Nr]

% resample

rowindex¼unidrnd(N,N,1);

t ¼ torig(rowindex);

d ¼ dorig(rowindex);

p(d ) p�(d )

Sampling

Duplication

Mixing

Figure 11.10 A probability density function, p(d), is represented by the large urn at the left

and a few of realizations of this function are represented by the small goblet. The contents

of the goblet are duplicated indefinitely many times, mixed together, and poured into the

large urn at the right, creating a new probability density function, p0(d). Under some

circumstances, p0(d)�p(d).
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% straight line fit

M¼2;

G¼zeros(N,M);

G(:,1)¼1;

G(:,2)¼t;

mest¼(G’*G)\(G’*d);

slope(p)¼mest(2);

end (MatLab eda11_12)

The rowindex array specifies how the original data are resampled. It is created with

the unidrnd() function, which returns a column-vector of random integers between

1 and N. The end result is a length-Nr column-vector of slopes. A histogram can

then be formed from these slopes and converted into an estimate of the probability

density, p(b):

Nbins ¼ 100;

[shist, bins]¼hist(slope, Nbins);

Db ¼ bins(2)�bins(1);

pbootstrap ¼ shist / (Db*sum(shist)); (MatLab eda11_12)

The last line turns the histogram into a properly normalized probability density

function, pbootstrap, with unit area (Figure 11.11). As expected in this case, the

probability density function, p(b), is a good approximation to the Normal probability

density function predicted by the standard error propagation formulas. We can use this
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Figure 11.11 Bootstrap method applied to estimating the probability density function,

p(b), of slope, b, when a straight line is fit to a fragment of the Black Rock Forest

temperature dataset. (Smooth curve) Normal probability density function, with parameters

determined by standard error propagation. (Rough curve) Bootstrap estimate. MatLab
script eda11_12.
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probability density function to derive estimates of the mean and variance of the slope

(see Equations 3.3 and 3.4):

mb ¼ Db*sum(bins.*pbootstrap);

vb ¼ Db*sum(((bins�mb).^2).*pbootstrap); (MatLab eda11_12)

Here, mb is the mean and vb is the variance of the slope, b. As the probability density

function is approximately Normal, we can state the 95% confidence interval as

mb�2
p
vb. However, in other cases, the probability density function may be non-

Normal, in which case an explicit calculation of confidence is more accurate:

Pbootstrap ¼ Db*cumsum(pbootstrap);

ilo ¼ find(Pbootstrap >¼ 0.025,1);

ihi ¼ find(Pbootstrap >¼ 0.975,1);

blo ¼ bins(ilo);

bhi ¼ bins(ihi); (MatLab eda11_12)

Here, the cumsum() function is used to integrate the probability density function into a

probability distribution, Pbootstrap, and the find() function is used to find the

values of slope, b, that enclose 95% of the total probability. The 95% confidence

interval is then, blo < b < bhi.
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Figure 11.12 Bootstrap method applied to estimating the probability density function, p(r),
of a parameter, r, that has a very complicated relationship to the data. Here, the parameter, r,
represents the CaO to Na2O ratio of the second varimax factor of the Atlantic Rock dataset

(see Figure 8.6). The mean of the parameter, r, and its 95% confidence intervals are then

estimated from p(r). MatLab script eda11_13.
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In a more realistic example, we return to the varimax factor analysis that we

performed on the Atlantic Rock dataset (Figure 8.6). Suppose that the CaO to

Na2O ratio, r, of factor 2 is of importance to the conclusions drawn from the analysis.

The relationship between the data and r is very complex, involving both singular-

value decomposition and varimax rotation, so deriving confidence intervals by

standard means is impractical. In contrast, bootstrap estimation of p(r), and hence

the confidence intervals of r, is completely straightforward (Figure 11.12).

Problems

11.1 The first and twelfth year of the Black Rock Forest temperature dataset are more-

or-less complete. After removing hot and cold spikes, calculate the mean of the

10 hottest days of each of these years. Test whether the means are significantly

different from one another by following these steps: (A) State the Null Hypoth-

esis. (B) Calculate the t-statistic for this case. (C) Can the Null Hypothesis be

rejected?
11.2 Revisit Neuse River prediction error filters that you calculated in Problem 7.2

and analyze the significance of the error reduction for pairs of filters of different

length.
11.3 Formally show that the quantity, Z ¼ ðd � �dÞ=sd, has zero mean and unit var-

iance, assuming that d is Normally distributed with mean, �d, and variance, sd
2, by

transforming the probability density function, p(d) to p(Z).
11.4 Figure 11.6B shows the power spectral density of a random time series. A) Count

up the number of peaks that are significant to the 95% level or greater and com-

pare with the expected number. B) What is the significance level of the highest

peak? (Note that N ¼ 1024 and c ¼ 0.634 for this dataset).
11.5 Analyze the significance of the major peaks in the power spectral density of the

Neuse River Hydrograph (see Figure 6.10 and MatLab script eda06_13).
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Note 1.1 On the persistence of MatLab variables

MatLabvariables accumulate in itsWorkspace and can be accessed not only by the script
that created thembut also through both the CommandWindow and theWorkspaceWin-

dow (which has a nice spreadsheet-like matrix viewing tool). This behavior is mostly an

asset: You can create a variable in one script and use it in a subsequent script. Further,

you can check the values of variables after a script has finished, making sure that they

have sensible values. However, this behavior also leads to the following common errors:

(1) you forget to define a variable in one script and the script, instead of reporting an

error, uses the value of an identically named variable already in the Workspace;
(2) you accidentally delete a line of code from a script that defines a variable, but the

script continues to work because the variable was defined when you ran an earlier

version of the script; and
(3) you use a predefined constant such as pi, or a built-in function such as max(), but

its value was reset to an unexpected value by a previous script. (Note that nothing

prevents you from defining pi¼2 and max¼4).

Such problems can be detected by deleting all variables from the workspace with a

clear all command and then running the script. (You can also delete particular
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variables with a clear followed by the variable’s name, e.g., clearpi). A really com-

mon mistake is to overwrite the value of the imaginary unit, i, by using that variable’s

name for an index counter. Our suggestion is that a clear i be routinely included

at the top of any script that expects i to be the imaginary unit.

Note 2.1 On time

Datasets often contain time expressed in calendar (year, month, day) and clock (hour,

minute, second) format. This format is not suitable for data analysis and needs to be

converted into a format in which time is represented by a single, uniformly increasing

variable, say t. The choice of units of the time variable, t, and the definition of the start
time, t¼ 0, will depend on the needs of the data analysis. In the case of the Black Rock

Forest, which consisted of 12.6 years of hourly samples, a time variable that expresses

days, starting on January 1 of the first year of the dataset, is a reasonable choice,

especially because the diurnal cycle is so strong. However, time in years starting

on January 1 of the first year of the dataset might be preferred when examining annual

periodicities. In this case, having a start time that allows us to easily recognize the

season of a particular time is important.

The conversion of calendar/clock time to a single variable, t, is complicated,

because of the different lengths of the months and special cases such as leap years.

MatLab provides a time arithmetic function, datenum() that expedites this conver-

sion. It takes the calendar date (year, month, day) and time (hour, minute, second)

and returns date number; that is, the number of days (including fractions of a day) that

have elapsed since midnight on January 1, 0000. The time interval between two date

numbers can be computed by subtraction. For example, the number of seconds

between Feb 11, 2008 03:04:00 and Feb 11, 2008 03:04:01 is

86400*(datenum(2008,2,11,4,4,1)–datenum(2008,2,11,4,4,0))

which evaluates to 1.0000 s.

Finally, we note a complication, relevant to cases where time accuracy of seconds

or better is required, which is related to the existence of leap seconds. Leap seconds

are analogous to leap years. They are integral-second clock corrections, applied on

June 30 and December 31 of each year, that account for small irregularities in the ro-

tation of the earth. However, unlike leap years, which are completely predictable, leap

seconds are determined semiannually by the International Earth Rotation and Refer-

ence Systems Service (IERS). Hence, time intervals cannot be calculated accurately

without an up-to-date table of leap seconds. To make matters worse, while the most

widely used time standard, Coordinated Universal Time (UTC), uses leap seconds,

several other standards, including the equally widely used Global Positioning System

(GPS), do not. Thus, the determination of long time intervals to second-level accuracy

is tricky. The time standard used in the dataset must be known and, if that standard

uses leap seconds, then they must be properly accounted for by the time arithmetic

software. As of the end of 2010, a total of 34 leap seconds have been declared since
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they were first implemented in 1972. Thus, very long (decade) time intervals can be in

error by tens of seconds, if leap seconds are not properly accounted for. The MatLab
function, datenum(), does not account for leap seconds and hence does not provide

second-level accuracy for UTC times.

Note 2.2 On reading complicated text files

MatLab’s load() function can read only text files containing a table of numerical

values. Some publicly accessible databases, including many sponsored by govern-

ment agencies, provide data as more complicated text files that are a mixture of

numeric and alphabetic values. For instance, the Black Rock Forest temperature

dataset, which contains time and temperature, contains lines of text such as:

2100�2159 31 Jan 1997 �1.34

2200�2259 31 Jan 1997 �0.958

2300�2400 31 Jan 1997 �0.601

0000�0059 1 Feb 1997 �0.245

0100�0159 1 Feb 1997 �0.217 (file brf_raw.txt)

In the first line above, the date of the observation is 31Jan1997, the start and end times

are 2100�2159, and the observed temperature is �1.34. This data file is one of the

simpler ones, as each line has the same format and most of the fields are delimited

by tabs or spaces. We occasionally encounter much more complicated cases, in which

the number of fields varies from line to line and where adjacent fields are run together

without delimiters.

Some of the simpler cases, including the one above, can be reformatted using the

Text Import Wizard module of Microsoft’s Excel spreadsheet software. But we know
of no universal and easy-to-use software that can reliably handle complicated cases.

We resort to writing a custom MatLab script for each file. Such a script sequentially

processes each line in the file, according to what we perceive to be the rules under

which it was written (which are sometimes difficult to discern). The heart of such

a script is a for loop that sequentially reads lines from the file:

fid ¼ fopen(filename);

for i ¼ [1:N]

tline ¼ fgetl(fid);

% now process the line

–––

end

fclose(fid); (MatLab brf_convert)

Here, the function, fopen(), opens a file so that it can be read. It returns an integer,

fid, which is subsequently used to refer to the file. The function, fgetl(), reads one

line of characters from the file and puts them into the character string, tline. These

characters are then processed in a portion of the script, omitted here, whose purpose

is to convert all the data fields into numerical values stored in one of more arrays.

Finally, after every line has been read and processed, the file is closed with the
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fclose() function. The processing section of the script can be quite complicated. One

MatLab function that is extremely useful in this section is sscanf(), which can con-

vert a character string into a numerical variable. It is the inverse of the previously dis-

cussed sprintf() function, and has similar arguments (see Section 2.4 and the

MatLab Help files). Typically, one first determines the portion of the character string,

tline, that contains a particular data field (for instance, tline(6:9) for the second

field, above) and then converts that portion to a numerical value using sscanf().

Data format conversion scripts are tedious to write. They should always be tested

very carefully, including by spot-checking data values against the originals. Spot

checks should always include data drawn from near the end of the file.

Note 3.1 On the rule for error propagation

Suppose that we formMA model parameters,mA, from N data, d, using the linear rule

mA ¼ MAd. We have already shown that when MA ¼ N, the covariance matrices are

related by the rule, CMA ¼ MACdMA
T. To verify this rule for the MA < N case, first

devise MB ¼ N � MA complementary model parameters, mB, such that mB ¼ MBd.

Now concatenate the two sets of model parameters so that their joint matrix equation

is square:

mA

mB

� �
¼ MA

MB

� �
d

The normal rule for error propagation now gives

Cm ¼ MA

MB

� �
Cd MT

A MT
B

� � ¼ MACdM
T
A MACdM

T
B

MBCdM
T
A MBCdM

T
B

" #
¼ CmA

CmA,B

CmB:A
CmB

� �

The upper left part of Cm,CmA
¼ MACdM

T
A, which comprises all the variances and

covariances of themAmodel parameters, satisfies the normal rule of error proposition

and is independent of the choice ofMB. Hence, the rule can be applied to theMA < N
case in which MA is rectangular, without concern for the particular choice of

complementary model parameters.

Note 3.2 On the eda_draw() function

We provide a simple function, eda_draw(), for plotting a sequence of square matrices

and vectors as grey-shaded images. The function can also place a caption beneath the

matrices and vectors and plot a symbol between them. For instance, the command

eda_draw(d, ‘caption d’, ‘¼’, G, ‘caption G’, m, ‘caption m’);

MatLab eda12_01
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creates a graphical representation of the equation, d¼Gm (Figure 12.1). The function

accepts vectors, square matrices, and character strings, in any order. A character string

starting with the word “caption”, as in ‘caption d’, is plotted beneath the previous

vector or matrix (but with the word “caption” removed). Other character strings are

plotted to the right of the previous matrix or vector.

Note 4.1 On complex least squares

Least-squares problems with complex quantities occasionally arise (e.g., when the

model parameters are the Fourier transform of a function). In this case, all the quan-

tities in Gm ¼ d are complex. The correct definition of the total error is

EðmÞ ¼ e�Te ¼ ðd�GmÞ�Tðd�GmÞ

where * signifies complex conjugation. This combination of complex conjugate and

matrix transpose is called the Hermitian transpose and is denoted eH ¼ e*T. Note that
the total error, E, is a nonnegative real number. The least-squares solution is obtained

by minimizing E with respect to the real and imaginary parts of m, treating them as

independent variables. Writing m ¼ mR þ imI, we have

EðmÞ ¼
XN
i¼1

d�i �
XM
j¼1

G�
ijm

�
j

 !
di�

XM
k¼1

Gikmk

 !
¼
XN
i¼1

d�i di�
XM
j¼1

XN
i¼1

d�i GijðmR
j þ imI

jÞ

�
XM
k¼1

XN
i¼1

diG
�
ikðmR

j � imI
jÞþ

XM
j¼1

XM
k¼1

XN
i¼1

G�
ijGikðmR

j � imI
jÞðmR

k þ imI
kÞ

=

d G m

Figure 12.1 Results of call to eda_draw() function. MatLab script note03_02.
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Differentiating with respect to the real part of m yields

@EðmÞ
@mR

p

¼ 0¼�
XM
j¼1

XN
i¼1

d�i Gij

@mR
j

@mR
p

�
XM
k¼1

XN
i¼1

diG
�
ik

@mR
j

@mR
p

þ
XM
j¼1

XM
k¼1

XN
i¼1

G�
ijGik

@mR
j

@mR
p

ðmR
k þ imI

kÞþ
XM
j¼1

XM
k¼1

XN
i¼1

G�
ijGikðmR

j � imI
jÞ
@mR

k

@mR
p

¼�
XN
i¼1

d�i Gip�
XN
i¼1

diG
�
ipþ
XM
k¼1

XN
i¼1

G�
ipGikðmR

k þ imI
kÞþ

XM
j¼1

XN
i¼1

G�
ijGipðmR

j � imI
jÞ

Note that @mk
R/@mp

R¼ dkp, asmk
R andmp

R are independent variables. Differentiating

with respect to the imaginary part of m yields

@EðmÞ
@mI

p

¼ 0

¼�i
XN
i¼1

d�i Gipþ i
XN
i¼1

diG
�
ip� i

XM
k¼1

XN
i¼1

G�
ipGikðmR

k þ imI
kÞþ i

XM
j¼1

XN
i¼1

G�
ijGipðmR

j � imI
jÞ

¼
XN
i¼1

d�i Gip�
XN
i¼1

diG
�
ipþ

XM
k¼1

XN
i¼1

G�
ipGikðmR

k þ imI
kÞ�

XM
j¼1

XN
i¼1

G�
ijGipðmR

j � imI
jÞ

Finally, adding the two derivative equations yields

�2
XN
i¼1

diG
�
ip þ

XM
k¼1

XN
i¼1

G�
ipGikðmR

k þ imI
kÞ ¼ 0

or

�2GHdþ 2½GHG� m ¼ 0

The least-squares solution and its covariance are

mest ¼ ½GHG��1
GHd and Cm ¼ s2d½GHG��1

InMatLab, the Hermitian transpose of a complex matrix, G, is denoted with the same

symbol as transposition, as in G0, and transposition without complex conjugation is

denoted G.0. Thus, no changes need to be made to theMatLab formulas to implement

complex least squares.
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Note 5.1 On the derivation of generalized least squares

Strictly speaking, in Equation (5.4), the probability density function, p(h), can only be
said to be proportional to p(m) when the K �M matrix, H, in the equation, Hm ¼ h,

is square so that H�1 exists. In other cases, the Jacobian determinant is undefined.

Nonsquare cases arise whenever only a few pieces of prior information are available.

The derivation can be patched by imagining that H is made square by adding M � K
rows of complementary information and then assigning them negligible certainty so

that they have no effect on the generalized least-squares solution. This patch does not

affect the results of the derivation; all the formulas for the generalized least-squares

solution and its covariance are unchanged. The underlying issue is that the uniform

probability density function, which represents a state of no information, does not exist

on an unbounded domain. The best that one can do is a very wide normal probability

density function.

Note 5.2 On MatLab functions

MatLab provides a way to define functions that perform in exactly the samemanner as

built-in functions such as sin() and cos(). As an example, let us define a function,

areaofcircle(), that computes the area of a circle of radius, r:

function a ¼ areaofcircle(r)

% computes area, a, of circle of radius, r.

a ¼ pi * (r^2);

return MatLab areaofcircle

We place this script in a separate m-file, areaofcircle.m. The first line declares the

name of the function to be areaofcircle, its input to be r, and its output to be a.

The last line, return, denotes the end of the function. The interior lines perform

the actual calculation. One of them must set the value of the output variable. The

function is called in from the main script as follows:

radius¼2;

area ¼ areaofcircle(radius); MatLab eda12_02

Note that the variable names in the main script need not agree with the names in the

function; the latter act only as placeholders.
MatLab functions can take several input variables and return several output

variables, as is illustrated in the following example that computes the circumference

and area of a rectangle:

function [c,a] ¼ CandAofrectangle(l, w)

% computes circumference, c, and area, a, of

% a rectangle of length, l, and width, w.

c ¼ 2*(lþw);

a ¼ l*w;

return MatLab CandAofrectangle
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The function is placed in the m-file, CandAofrectangle.m. It is called in from the main

script as follows:

a¼2;

b¼4;

[circ, area] ¼ CandAofrectangle(a,b); MatLab eda12_02

Note 5.3 On reorganizing matrices

Owing to the introductory nature of this book, we have intentionally omitted discus-

sion of a group of advanced MatLab functions that allow one to reorganize matrices.

Nevertheless, we briefly describe some of the key functions here. In MatLab, a key

feature of a matrix is that its elements can be accessed with a single index, instead

of the normal two indices. In this case, the matrix, say A, acts a column-vector contain-

ing the elements of A arranged column-wise. Thus, for a 3� 3 matrix, A(4) is equiv-

alent to A(1,2). The MatLab functions, sub2ind() and ind2sub(), translate between

two “subscripts”, i and j, and a vector “index”, k, such that A(i,j)¼A(k). The

reshape() function can reorganize any N � M matrix into a K � L matrix, as long

asNM¼KL. Thus, for example, a 4� 4matrix can be easily converted into equivalent

1� 16, 2� 8, 8� 2, and 16� 1 matrices. These functions often work to eliminate for

loops from the matrix-reorganization sections of the scripts. They are demonstrated in

MatLab script eda12_03.

Note 6.1 On the MatLab atan2() function

The phase of the Discrete Fourier Transform, f ¼ tan�1ðB=AÞ, is defined on the

interval, (�p, þp). In MatLab, one should use the function, atan2(B,A), and not

the function atan(B/A). The latter version is defined on the wrong interval,

(�p/2, þp/2), and will also fail when A ¼ 0.

Note 6.2 On the orthonormality of the discrete Fourier
data kernel

The rule, [G*TG]¼ N I, for the complex version of the Fourier data kernel,G, can be

derived as follows. First write down the definition of un-normalized version of the

data kernel for the Fourier series:

Gkp ¼ expð2piðk � 1Þðp� 1Þ=NÞ

Now compute [G*TG]

½G�TG�pq ¼
XN
k¼1

G�
kpGkq ¼

XN�1

k¼0

expð2pikðp� qÞ=NÞ ¼
XN�1

k¼0

zk ¼ f ðzÞ
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with

z ¼ expð2piðp� qÞ=NÞ

Now consider the series

f ðzÞ ¼
XN�1

k¼0

zk ¼ 1þ zþ z2 þ � � � þ zN�1

Multiply by z

zf ðzÞ ¼
XN�1

k¼0

zkþ1 ¼ zþ z2 þ � � � þ zN

and subtract, noting that all but the first and last terms cancel:

f ðzÞ � zf ðzÞ ¼ 1� zN or f ðzÞ ¼ 1� zN

1� z

Now substitute in z ¼ expð2piðp� qÞ=NÞ:

f ðzÞ ¼ 1� expð2piðp� qÞÞ
1� expð2piðp� qÞ=NÞ

The numerator is zero, as exp(2pis) ¼ 1 for any integer, s¼ p � q. In the case, p 6¼ q,
the denominator is nonzero, so f(z) ¼ 0. Thus, the off-diagonal elements of G*TG
are zero. In the case, p ¼ q, the denominator is also zero, and we must use l’Hopital’s

rule to take the limit, s ! 0. This rule requires us to take the derivative of both

numerator and denominator before taking the limit:

f ðzÞ ¼ lim
s!0

2pi expð2pisÞ
2pi
N

� �
expð2pis=NÞ ¼ N

The diagonal elements of G*TG are all equal to N.

Note 8.1 On singular value decomposition

The derivation of the singular value decomposition is not quite complete, as we need

to demonstrate that the eigenvalues, li, of S
TS are all nonnegative so that the singular

values of S, which are the square roots of the eigenvalues, are all real. This result can

be demonstrated as follows. Consider the minimization problem

EðmÞ ¼ ðd� SmÞTðd� SmÞ

Notes 247



This is just the least-squares problem with G ¼ S. Note that E(m) is a nonnegative

quantity, irrespective of the value ofm; therefore, a point (or points),m0, of minimum

exists, irrespective of the choice of S. In Section 4.9, we showed that in the neighbor-

hood of m0 the error behaves as

EðmÞ ¼ Eðm0Þ þ DmTSTSDm where Dm ¼ m�m0

Now let Dm be proportional to an eigenvector, v(i), of STS; that is, Dm ¼ cv(i).
Then,

EðmÞ ¼ Eðm0Þ þ c2vðiÞTSTSvðiÞ ¼ Eðm0Þ þ c2li

Here, we have used the relationship, STSv(i)¼ liv
(i). As we increase the constant, c, we

move away from the point, m0, in the direction of the eigenvector. By hypothesis,

the error must increase, as E(m0) is the point of minimum error. The eigenvalue, li,
must be positive or else the error would decrease and m0 could not be a point of

minimum error.

As an aside, we also mention that this derivation demonstrated that the point,m0, is

nonunique if any of the eigenvalues are zero, as the error is unchanged when one

moves in the direction of the corresponding eigenvector.

Note 9.1 On coherence

The coherence can be interpreted as the zero lag cross-correlation of the band-passed
versions of the two time series, uðtÞ and vðtÞ. However, the band-pass filter, f ðtÞ, must

have a spectrum, ~f ðoÞ, that is one-sided; that is, it must be zero for all negative

frequencies. This is in contrast to a normal filter, which has a two-sided spectrum.

Then, the first of the two integrals in Equation (9.32) is zero and no cancelation of

imaginary parts occurs. Such a filter, f ðtÞ, is necessarily complex, implying that

the band-passed time series, f ðtÞ � uðtÞ and f ðtÞ � vðtÞ, are complex, too. Thus, the

interpretation of coherence in terms of the zero-lag cross-correlation still holds, but

becomes rather abstract.

Note that the coherence must be calculated with respect to a finite bandwidth. If we

were to omit the frequency averaging, then the coherence is unity for all frequencies,

regardless of the shapes of the two time series, uðtÞ and vðtÞ:

C2
uvðo0,DoÞ ¼

~u�ðo0Þ~vðo0Þ
��� ���2
j~uðo0Þj2 j~vðo0Þj2

! ~u�ðo0Þ~uðo0Þ~v�ðo0Þ~vðo0Þ
~u�ðo0Þ~uðo0Þ~v�ðo0Þ~vðo0Þ ¼ 1 as Do ! 0

This rule implies that C2
uvðo0 ¼ o0Þ ¼ 1 when the two time series are pure sinusoids,

regardless of their relative phase. The coherence of uðtÞ ¼ cosðo0tÞ and ðtÞ ¼ sinðo0tÞ,
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where o0 is an arbitrary frequency of oscillation, is unity. In contrast,

C2
uvðo0 ¼ o0Þ ¼ 0, as the zero lag cross-correlation of, uðtÞ and vðtÞ is
ðþ1

�1
sinðo0tÞ cosðo0tÞdt ¼ �/�

ðþ1

�1
sinð2o0tÞdt ¼ 0

This is the main difference between the two quantities, C2
uvðo0,DoÞ and

C2
uvðo0,DoÞ.

Note 9.2 On Lagrange multipliers

The method of Lagrange multipliers is used to solve constrained minimization prob-

lems of the following form: minimize F(x) subject to the constraint C(x) ¼ 0. It can

be derived as follows: The constraint equation defines a surface. The solution, say

x0, must lie on this surface. In an unconstrained minimization problem, the gradient

vector, @F/@xi, must be zero at x0, as Fmust not decrease in any direction away from

x0. In contrast, in the constrained minimization, only the components of the gradient

tangent to the surface need be zero, as the solution cannot be moved off the surface to

further minimize F (Figure 12.2). Thus, the gradient is allowed to have a nonzero

component parallel to the surface’s normal vector, @C/@xi. As @F/@xi is parallel

to @C/@xi, we can find a linear combination of the two, @F/@xi þ l@C/@xi, where
l is a constant, which is zero at x0. The constrained inversion satisfies the equation,

(@/@xi)(F þ lC) ¼ 0, at x0. Thus, the constrained minimization is equivalent to the

unconstrained minimization of F þ lC, except that the constant, l, is unknown

and needs to be determined as part of the solution process.

(x0,y0)

y

C(x,y) = 0

∇Φ (x,y)

x

Figure 12.2 Graphical

interpretation of the method of

Lagrange multipliers, in which the

function F(x, y) is minimized

subject to the constraint that

C(x, y) ¼ 0. The solution (bold

dot) occurs at the point, (x0, y0), on
the surface, C(x, y) ¼ 0, where the

surface normal (black arrows) is

parallel to the gradient,

D

F(x, y)
(white arrows). At this point, F
can only be further minimized by

moving it off the surface, which is

disallowed by the constraint.

MatLab script eda12_04.
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DelaunayTri( ) function, 212, 213

Derivation of generalized least

squares, 245

Derivative of a function, 120, 120f
Derived quantities, 37

Determinant

calculating, 152

Jacobian, 55

Deuterium, 35–36

Deviatoric quantities, 92

DFT. See Discrete Fourier transform

diag( ) function, 10

Difference due to random variation, 217–218

Dirac delta function, 116–117, 132

Directories. See Folders
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Discharge rate, 28

datasets segregated by, 29

scatter plot of discharge against, 29, 30f
Discrete convolution, 132

Discrete Fourier data kernel, 246–247

Discrete Fourier transform (DFT), 105, 185

Diurnal oscillations, 21

Division-by-zero error, 66

Drop-outs, data, 19, 21f

E
eda_draw( ) function, 242, 243f
Edge effects, 180

Effective degrees of freedom, 227

Eigenvalues, 152

algebraic eigenvalue problem, 152

distinct, 153

Eigenvectors, 152

perpendicular, 153

Elements

Atlantic Rock dataset order of, 160–161

counts, 21–22

in factors, 150–151

high variance in, 157

squares of, 157

terminology of, 150

of time series datasets, correlation in, 169,

170, 171f
of vectors and matrices, 8–9

loop for, 9–10

Empiricalorthogonalfunctions(EOFs),161,163f
Error vector, 71

Errors

covariance and behavior of, 79–81

cut and paste avoiding, 14

division-by-zero, 66

examining, 71–73

generalized, 87–88, 90

observational, 78

plots of, 71, 72f
for outliers, 71

prediction error filter, 139, 140f, 141f
in prior information, 85

rule for propagation of, 57, 242

shape of, 73, 74f
total, 71, 87

distribution of, 218–220, 219f, 220f
logarithm of, 73f, 74f
shape of, 79–80

Euler’s formulas, 112

eye( ) function, 135

F
F-probability density function, 221–222

F-test, 228

Factor analysis, 33

Factor loadings, 150

Factor matrix, rows of, 151

Factors

elements in, 150–151

high variance in, 157

squares of, 157

minimum number of, 151–155

samples as mixtures with two possible,

151, 152f
spiky, 156–160

minerals and, 157

terminology of, 150

Fast Fourier transform (FFT), 111

fclose( ) function, 241–242

FFT. See Fast Fourier transform
fft( ) function, 114

fgetl( ) function, 241–242

Figure Window zoom feature, 20

filterfun( ) function, 136–137, 138

Filters

band-pass, 184–188, 187f
Chebychev, 188, 188f

boxcar, 183

cascades, 142–145

casual, 70, 131

coefficients, 70

time series datasets and, 129

as convolution, 131–132

design of, 187–188

high-pass, 184, 186f
inefficiency and, 136–137

Infinite Impulse Response (IIR), 184–185

inverse, 142–145

Fourier transform and, 144–145

of short filters, 143, 144f
z-transform of, 142–143

length-two, 143

low-pass, 184, 186f
minimum phase, 143

notch, 184, 187f
polynomials and, 140–142

prediction error, 139, 140f, 141f
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principle of least squares estimation of,

178–180

problems solved with, 132–139

recursion and, 145–146

short, inverse filters of, 143, 144f
smoothing, 146, 147f
three-point, 180

on time series datasets, 180–184, 181f,
182f, 183f, 184f

on time series datasets, autocorrelation

function of, 181–182

on time series datasets, power spectral

density of, 182

uniform, 181, 183

find( ) function, 10, 20–21, 79

Finite Impulse Response (FIR), 145–146

Fisher-Snedecor F-probability density

function, 221, 222

fliplr( ) function, 10

Floating-point placeholders, 32

floor ( ) function, 23, 98

Folders (directories), 4, 4f
navigating, 4–5

fopen( ) function, 241–242

For loops, 9–10

nested, 31

omitting, 10

Format string placeholders, 31–32

Forward in time, 131

Fourier analysis, 66

grey-shaded plot of, 67f
Fourier data kernel, discrete, 246–247

Fourier series, 105

complex exponentials with, 113

Fourier transform compared to, 114, 115

linear equation form of, 109

Fourier transform, 169t. See also Discrete

Fourier transform

area under a function and, 118, 118f
of autocorrelation, power spectral density

and, 174

of convolution, 121–122, 193

of cross-correlation function, 175

derivative of a function and, 120, 120f
fast, 111

Fourier series compared to, 114, 115

integral of a function and, 120–121, 121f
inverse filters and, 144–145

lessons learned from, 114–115

manipulation of, 115

Normal curve and, 115, 116f
phase ramp and, 119

power spectral density and, 123–124

of spikes, 116–117, 117f
time-delayed function and, 118–119, 119f
in two-dimensions, 213–215, 215f
window function before, 195

Frequency, 103–104

coherence dependent on, 188–194, 190f,
192f, 194f

complex exponentials with positive and

negative, 112

ordering, 113

equivalent, 108, 108f
Nyquist, 105–106, 123, 186, 187

frequencies higher than, 107, 109

F-test, 222, 228

Functions. See also Probability density

function

area under a, 118, 118f
autocorrelation, 169t
interpolation and prior information of,

208

of Neuse River hydrograph, 172, 172f
of smoothing filters on time series

datasets, 181–182

boxcar, 195

cross-correlation, 169t, 174–175
autocorrelation generalizing to, 175

convolution compared to, 175

Fourier transform of, 175

time series datasets aligned by, 176–177,

176f, 177f, 178f
zero-lag, 193

derivative of a, 120, 120f
Dirac delta, 116–117, 132

empirical orthogonal, 161, 163f
generalized, 116

integral of a function, 120–121, 121f
MatLab defining, 245–246

notes on, 242–243, 245–246

time arithmetic, 240

time-delayed, 118–119, 119f
time-variable, 160–163

window

before Fourier transforms, 195

Hamming, 195, 197f
optimal, 188–194
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Function command, 97

Function handle, 98

Fundamental Theorem of Algebra, 142

Future, predicting, 139

G
Gaps in information

modified principle of least squares and, 84

filling in, 85

smoothness information for, 94–95

Generalized error, 87–88, 90

Generalized function, 116

Generalized least squares, 90–92

derivation of, 245

for estimation, 203

ginput( ) function, 20–21

Global Positioning System (GPS), 240–241

Global variables, 138

GPS. See Global Positioning System

Graphics, MatLab, 24–28
Grey-shaded column vector, histogram as, 22,

23f
Grey-shaded matrix, 28

Grid search

in MatLab, 72–73
for model parameter estimation, 71–72, 73f

griddata( ) function, 212

H
Hamming window function, 195, 197f
Hermitian transpose, 243, 244

Hertz, 103–104

High-pass filters, 184, 186f
hist( ) function, 21–22

Histogram, 22f
computing, 21–22

as grey-shaded column vector, 22, 23f
moving-window, 22–23, 24f
probability as, 36, 36f
rate information and, 28–30

Hypothesis testing

one-sided, 223–226

with probability density function, 220–222

scenario for, 222–228

two-sided, 223

I
IERS. See International Earth Rotation and

Reference Systems Service

ifft( ) function, 114

IIR. See Infinite Impulse Response

Ill-conditioned matrix, 84

imagesc( ) function, 28

Impulse response

of heat flow, 133f
Normal curve proportional to, 133

problematic, 134

time series datasets as, 129, 130f
Infinite Impulse Response (IIR), 145–146

filter, 184–185

Information. See Prior information

Input column vectors, 151–152

Installing MatLab, 3
Integral convolution, 131

alternative form of, 132

Integral of a function, 120–121, 121f
International Earth Rotation and Reference

Systems Service (IERS), 240–241

Interpolant, 204

Interpolation

cubic, 206–208, 208f
data analysis problems of, 204

Kriging, 208–210

linear, 205, 206f
prior information for, 203–205, 204f
prior information of autocorrelation

function for, 208

spline, 211

traditional approach to, 204

triangular meshes used in, 212

in two-dimensions, 210–213, 212f, 213f
Inverse discrete Fourier transform, 105

Inverse filters, 142–145

Fourier transform and, 144–145

of short filters, 143, 144f
z-transform of, 142–143

J
Jacobian determinant, 55, 219

Joint probability, 46–48, 46f, 47f
Joint probability density function, 49–52

correlation of, 170–171

in MatLab, 50
univariate probability density function

from, 50f

K
Kernel. See Data kernel
Krige, D. G, 209–210

256 Index



Kriging, 208–210

Kronecker delta symbol, 75, 153

L
Lagrange Multipliers, Method of, 198, 249,

249f
Laplace’s equation, 100

Latin names for MatLab, 134
Leap seconds, 240–241

Least squares. See Principle of least squares

Length-two filter, 143

Linear algebra, 7

Linear interpolation, 205, 206f
Linear models. See also Model parameters;

Quantitative models

auxiliary parameters in, 64

examples of, 76–79

simplest, 63

weighted averages and, 68–71

load( ) function, 12, 18, 241

Local quantities, 205

Loops

for elements of vectors and matrices, 9–10

for loops, 9–10

omitting, 10

nested, 9

scatter plots and, 31

Low-pass filters, 184, 186f

M
Mathematical constants, MatLab, 6
The MathWorks MatLab. See MatLab
MatLab
data analysis in, 2

functions defined in, 245–246

graphics, 24–28

grid search in, 72–73

installing, 3

joint probability density function in, 50

Latin names for, 134

mathematical constants in, 6

organizing, 3–4

practical considerations of, 3

purpose of, 1–3

syntax of, 10

Matrices

autocorrelation, 171

of correlation coefficients, 168, 169t
covariance, 85

of datasets, 169t
posterior, 85

prior, 85

data analysis and, 7

elements of, 8–9

loop for, 9–10

factor, rows of, 151

grey-shaded, 28

ill-conditioned, 84

multiplication of, 7–8

reorganizing, 246

rotation, 158

sample, rows of, 151

singular value decomposition of, 154–155,

247–248

of singular values, 154–155

sparse, 95–98

biconjugate gradient method solving,

96–97

square, 11

Toeplitz, 70

unary, 158

unwrap, 98

varimax procedure for, 157–158, 158f
Matrix inverse, 11

max( ) function, 21–22

Maximum likelihood point, 38.

See also Mode

Maximum number of iterations, 97

Mean, 37–40

confidence intervals of, 76

formula for, 39–40

probability density function and, 40, 40f
random variables and, 40

sample, 40

of model parameter, 63–64

variance of, 76

univariate probability density function

computing, 49–50

Median, 37–40

calculating, 39

probability and, 39, 39f
Method of Lagrange Multipliers, 198, 249,

249f
Microsoft Excel, 241

dataset in, 2

min( ) function, 21–22

Minimum phase filters, 143

Mistakes. See Bugs
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Mixtures

of datasets, 67–68

model parameters in, 68

quantitative models and, 68

samples as, 149–151

two-factor example of, 151, 152f
Mode, 37–40

calculating, 38

deceptiveness of, 38

probability density function and, 38, 38f
Model parameters, 44, 61–63

datasets as function of, 61–62

estimating, 63

grid search for, 71–72, 73f
observed data compared with, 71

grids of, reorganizing, 98–101, 99f, 101f
in mixtures, 68

poorly determined, 84

principle of least squares and, 74–76

failure of, 84

prior information on, 84–86

covariance and, 92–93

generalized least squares and, 90–92

roughness and, 93–94

smoothness as, 93–95

as random variable function, 44–45

sample mean of, 63–64

weighted averages of, 69

Moving-window histogram, 22–23, 24f
m-script, 6

Multiplication of vectors and matrices, 7–8

Multitaper method, 201

Multivariate Normal probability density

function, 55–56

Multivariate probability density function,

54

linear functions of, 57–59

Normal distributions of, 54–56

N
Named variables, 2

Natural cubic splines, 207

N-dimensional Normal probability density

function, 54–55

Nested loops, 9

scatter plots and, 31

Neuse River hydrograph, 11

autocorrelation function of, 172, 172f
derivative of, 28

plot of, 12f
prediction error filter for, 140

Noise

datasets and, 35, 37

Normal probability density function

measuring, 43

as random variable, 217

Nonspiky orthogonal vectors, 158–159

Nontransient signals, 122–124

power of, 122

power spectral density of, 123

Normal curve

Fourier transform and, 115, 116f
impulse response proportional to, 133

Normal probability density function, 43,

43f
Central Limit Theorem and, 44

limitations of, 44

multivariate, 55–56

N-dimensional, 54–55

noisy data measured with, 43

outliers and, 44

product of, 88–90, 89f
Normalization factor, 87, 89–90

normcdf( ) function, 223

Notch filter, 184, 187f
Null Hypothesis, 217

rejection of, 217–218

scenario for testing, 222–228

Nyquist frequency, 105–106, 123, 186, 187

frequencies higher than, 107, 109

Nyquist’s Sampling Theorem, 105–106

O
Objects, vectors compared to, 212–213

Observational error, 78

Observed periodicities, 124

One-sided test, 223–226

Orthogonal vectors, nonspiky, 158–159

Orthonormality of discrete Fourier data

kernel, 246–247

Oscillatory behavior, 103. See also Sinusoidal
oscillations

start times in, 104

Outliers. See also Errors

error plots for, 71

Normal probability density function

and, 44

Output column vectors, 151–152
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Overlay, 25

Ozone

solar radiation and, 177, 178f
in stratosphere, 176–177

tropospheric, 176–177

P
Parseval’s Theorem, 123

Past conditions

behavior sensitive to, 127–131

recent, 128–129, 139

Period, 103–104

Periodicities

nomenclature for, 103–104

observed, 124

in two-dimensions, 213–214

Phase, 104

minimum, 143

ramp, 119

Placeholders, 31

floating-point, 32

in format string, 31–32

Plotting data, 12–13. See also Histogram;

Scatter plots

overlay for, 25

scale enlargements for, 20, 21f
side-by-side, 25

Polynomials

cubic, 206

curve fitting and, 64–65

filters and, 140–142

from time series datasets, 142

Populations of data, 33

Posterior covariance matrix, 85

Posterior estimate of variance, 78

Power

of nontransient signals, 122

spectral density, 110

Fourier transform and, 123–124

Fourier transform of autocorrelation and,

174

of nontransient signal, 123

of smoothing filters on time series

datasets, 182

in time series datasets, 123

Preconceptions, in world, 84–85.

See also Prior information

Prediction

of datasets, 62–63

error filter, 139, 140f, 141f
future, 139

Principle of least squares, 71

complex, 243–244

damped, 91

prior information and, 134–135

prior information of smoothness and,

135–136

failure of, 83–84

model parameters and, 84

for filter estimation, 178–180

gaps in information and modified, 84

filling in, 85

generalized, 90–92

derivation of, 245

for estimation, 203

model parameters and, 74–76

simple, 90–91

weighted, 93

Prior covariance matrix, 85

Prior estimate of variance, 78

Prior information

of autocorrelation function for

interpolation, 208

Bayesian inference and, 86–88, 88f
damped least squares and, 134–135

of smoothness, 135–136

error in, 85

for interpolation, 203–205, 204f
of model parameters, 84–86

covariance and, 92–93

generalized least squares and,

90–92

roughness and, 93–94

smoothness as, 93–95

probability density function and, 85

smallness, 135–136

Probability

Bayesian inference and, 48–49

conditional, 47–48, 47f
confusion with, 48

covariance and, 52–54

data analysis and, 35

as histogram, 36, 36f
joint, 46–48, 46f, 47f
median and, 39, 39f
methods for representing, 36f
upper-case and lower-case letters

for, 37
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Probability density function, 36–37, 221

behavior of, 37

chi-squared, 220, 220f, 221
conditional, 87

Bayes Theorem and, 51, 52f
computing, 52

Fisher-Snedecor F-, 221, 222

of function of random variable, 45,

46f
hypothesis testing with, 220–222

joint, 49–52

correlation of, 170–171

in MatLab, 50
univariate probability density function

from, 50f
mean and, 40, 40f
measuring width of, 41, 41f
mode and, 38, 38f
multivariate, 54

linear functions of, 57–59

normal distributions of, 54–56

negatively correlated, 53–54, 53f
Normal, 43, 43f
Central Limit Theorem and, 44

limitations of, 44

multivariate, 55–56

N-dimensional, 54–55

noisy data measured with, 43

outliers and, 44

product of, 88–90, 89f
positively correlated, 53–54, 53f
prior information and, 85

spatially variable, 51

Student’s t-, 221, 222f
uncorrelated, 53–54, 53f
uniform, 42–43, 45, 220

computing, 50

univariate

from joint probability density function,

50f
mean and variance computed to,

49–50

Properties, 212–213

Q
Quantitative models, 61–63

abstract understanding of, 62

mixtures and, 68

simplest, 63

R
Radians per unit distance, 103–104

Random time series, 231, 232f
Random variables, 35–37

algebra of, 37

difference due to, 217–218

functions of, 44–46

mean and, 40

model parameters as function of, 44–45

noise as, 217

probability density function of function of,

45, 46f
in scatter plots, 167

random( ) function, 101

Rate curve, 28–29, 29f
Rate information, histograms and, 28–30

Reality checks, 19

Recursion, 145–146

Relative time, 127

Repeated datasets, 234

Response time, 128–129

Reynolds Channel water quality dataset,

188–194

Riemann sum, 114–115

Rotation matrix, 158

Roughness information, 93–94

Rows

of factor matrix, 151

of sample matrix, 151

Row vectors, 7

data kernel as column vector of its, 68–69

Rule for error propagation, 57, 242

Running sum, 39

S
Sample matrix, 151

Sample mean, 40

of model parameter, 63–64

variance of, 76

Samples

Atlantic Rock dataset order of, 160

as mixtures, 149–151

two-factor example of, 151, 152f
Saving

dataset to text file, 13

old scripts, 14

Scatter plots

as covariance estimate, 168f
of discharge rate against discharge, 29, 30f
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effectiveness of, 31, 32f, 33
limitations of, 30–33

nested for loops and, 31

random variables in, 167

Scripting language software environment, 2.

See also MatLab

advice for

comments, 14, 15f
cut and paste used sparingly in, 14

naming variables, 14

saving old script, 14

start small, 14

testing, 14

think before you type, 13

syntax of, 10

Side-by-side plots, 25

Sidelobes, 183

Simple least squares, 90–91

Singular value decomposition of matrix,

154–155, 247–248

Singular values

of Atlantic Rock dataset, 155–156

factor analysis and, 156

of CAC dataset, 162

matrix of, 154–155

Sinusoidal oscillations, 103–105

aliasing and, 108, 108f
models composed of, 105–111

Smallness information, 135–136

Smoothing filter, 146, 147f
three-point, 180

on time series datasets, 180–184, 181f,
182f, 183f, 184f

autocorrelation function of, 181–182

power spectral density of, 182

Smoothness information

damped least squares and prior, 135–136

for gaps in information, 94–95

as prior information on model parameters,

93–95

Software environment

data analysis in single, 1–2

scripting language, 2

spreadsheet, 2

Solar radiation, 177, 178f
spalloc( ) function, 138

Sparse matrices, 95–98

biconjugate gradient method solving,

96–97

Spatial cycles, 103–104

Spatially variable probability density

function, 51

Spectral density

amplitude, 110, 111f, 114
cross-, 175

power, 110

Fourier transform of autocorrelation and,

174

of smoothing filters on time series

datasets, 182

Spectral division, 145

Spectral hole, 145

Spectral peak significance testing, 229–234,

232f, 233f
Spikes, 129

Fourier transform of, 116–117, 117f
time-delayed, 119

Spiky factors, 156–160

minerals and, 157

Splines

cubic, 206, 207, 208f
natural, 207

interpolation, 211

triangular meshes and, 211, 212f
types of, 205

Spreadsheet software environment, 2

sprintf( ) function, 31, 241–242

Square matrices, 11

sscanf( ) function, 241–242

Start time, 240

Statistics, 218

for calibration test, 224t
Storm events, 28

Straight line, fit to many points, 83–84, 84f
Stratosphere, ozone in, 176–177

String print formatted, 31

Student’s t-probability density function, 221,

222f
Subfolders (sub-directories), 4, 4f
sum() function, 40

svd( ) function, 155–156

Swayze, Patrick, 48

Synthetic data, 100

T
t-probability density function, 221, 222f
t-test, 222, 226

Tapering process, 124
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Tapers, 195

Taylor series, 80

tcdf( ) function, 226

Temperature

anomaly, 162–163

plotting data for time against, 19f, 20f
Temporal cycles, 103–104

Ternary diagram, 149, 150f
Testing

calibration

questions for, 223–226, 227

statistics for, 224t
Chi-squared test, 222

F-test, 222, 228

hypothesis

one-sided, 223–226

withprobability density function, 220–222

scenario for, 222–228

two-sided, 223

improvement in fit, 228–229, 228f, 229f
scripting language software environment,

14

scripts, 14

spectral peak significance, 229–234,

232f, 233f
t-test, 222

Z-test, 222

Text file

complicated, reading, 241–242

dataset

loading from, 11–12, 12f
saving to, 13

Text Import Wizard, 241

Time

backward in, 131

forward in, 131

notes on, 240–241

relative, 127

response, 128–129

Time arithmetic function, 240

Time series datasets, 30–31, 105

autocorrelation, 172

coherence in, 188–189, 194

correlation in elements of, 169, 170, 171f
cross-correlation function aligning,

176–177, 176f, 177f, 178f
filter coefficients and, 129

as impulse response, 129, 130f
polynomials from, 142

power in, 123

random, 231, 232f
similarity in, 191

smoothing filters on, 180–184, 181f, 182f,
183f, 184f

autocorrelation function of, 181–182

power spectral density of, 182

Time-delayed function, 118–119, 119f
Time-delayed spikes, 119

Time-shift invariance, 128

Time-variable functions, 160–163

Toeplitz matrix, 70

Tolerance, 97

Total error, 71, 87

distribution of, 218–220, 219f, 220f
logarithm of, 73f, 74f
shape of, 79–80

Transient signals, 122

Triangular meshes

interpolation uses of, 212

splines and, 211, 212f
TriScatteredInterp( ) function, 212

Tropospheric ozone, 176–177

t-test, 222

Two-dimensional Fourier transform,

213–215, 215f
Two-dimensional interpolation, 210–213,

212f, 213f
Two-sided test, 223

U
Ultraviolet light (UV), 176–177

Unary matrix, 158

unidrnd( ) function, 236

Uniform filter, 181, 183

Uniform probability density function,

42–43, 45, 220

computing, 50

Unit impulse, 129

Univariate probability density function

from joint probability density function, 50f
mean and variance computed to, 49–50

Unwrap matrices, 98

UTC. See Coordinated Universal Time

UV. See Ultraviolet light

V
Variables, 6

naming, 14

persistence of, 239–240
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random, 35–37

algebra of, 37

difference due to, 217–218

noise as, 217

in scatter plots, 167

Variance, 41–42

calculation of, 41, 42, 42f
disadvantage of, 41–42

high, elements of factors having, 157

posterior estimate of, 78

prior estimate of, 78

of sample mean, 76

univariate probability density function

computing, 49–50

Varimax procedure, 157–158, 158f, 238
Vectors

characteristic, 152

clipping, 10

column, 7

input, 151–152

output, 151–152

data analysis and, 7

eigenvectors, 152

perpendicular, 153

elements of, 8–9

loop for, 9–10

grey-shaded column, histogram as,

22, 23f
multiplication of, 7–8

natural organization of, 161

nonspiky orthogonal, 158–159

objects compared to, 212–213

row, 7

W
Wavelength, 103–104

Wavenumber, 103–104

Weighted averages

casual filter as, 70

data kernel corresponding to, 69, 70, 70f
linear models and, 68–71

of model parameters, 69

three-point, 69

Weighted least squares, 93

Window function

before Fourier transforms, 195

Hamming, 195, 197f
optimal, 188–194

X
xcorr( ) function, 172, 175

Z
Zero-lag cross-correlation function, 193

zeros ( ) function, 23

Z-test, 222

z-transform, 142

of inverse filter, 142–143
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