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xi

 We have collaborated for almost a quarter of a century, meeting every 
week, usually on Tuesday, for two or three hours during the academic 
year, in a small, windowless seminar room on the fourth fl oor of Gutman 
Library at the Harvard Graduate School of Education. During the sum-
mers, we harass each other mercilessly by telephone and e-mail, as we live 
at opposite ends of Massachusetts. When we meet on Tuesdays, some-
times we are alone; sometimes we invite others to join us. Sometimes we 
agree, mostly we don’t. Sometimes one of us teaches the other, some-
times the reverse. Our arguments do not always conclude in shared 
understanding, but they usually do. Some topics have taken us many years 
to resolve. However, two things that have always been present in our meet-
ings, and in our larger collaboration, are a sense of overwhelming personal 
friendship and an excitement born out of the many “Eureka” moments 
we have shared. We have really enjoyed taking this journey of discovery 
together, learning new things at every step. 

 Our collaboration has not only been immensely satisfying from a per-
sonal perspective, it has also been highly productive professionally. You 
are holding in your hand only the second book that we have written 
together. But, in the many years between the fi rst book and this one, we 
have also published more than 30 jointly authored scholarly papers 
in peer-reviewed journals. The majority of these papers have also been 
collaborations with generations of enthusiastic and smart doctoral 
“apprentices,” who have worked with us before embarking on their own 
distinct and successful scholarly paths. There are two great lessons that 
we have learned. One is that if you challenge yourself constantly with 
diffi cult problems that fall outside your comfort zone, you will continue 
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to learn something new. The second is that there is nothing better in 
one’s professional life than sharing such experiences with close friends 
and future colleagues. We thank a long line of inner-circle apprentices for 
their hard work and the diffi cult questions they asked us. Listed in the 
chronological order with which we worked with them, they include Jim 
Kemple, Kathryn Boudett, Brian Jacob, Emiliana Vegas, John Tyler, 
Marie-Andrée Somers, Michal Kurlaender, Kristen Bub, Raegen Miller, 
Jennifer Steele, Lindsay Page, and John Papay. 

 We have often wondered out loud to each other: What makes for a 
successful scholarly collaboration? In our case, it is certainly  not  because 
we agree. In fact, we have often found that it is our disagreements that 
spur the most productive and insightful advances of our collaboration. 
The critical thing, we think, is to not let scholarly and professional dis-
agreements drive you apart personally. There has to be a deep and abiding 
friendship at the core of any collaboration that feels worth preserving, 
whatever the nature of the current disagreement over form or function or 
method. 

 But, there is more. We have a sense that our collaboration has been 
successful because we are so different, come from such different places, 
and have received such different training. Although we were both, at one 
time in our early careers, teachers of high school math and science, our 
subsequent experiences diverged. One of us (Murnane) was trained as an 
economist, the other (Willett) as a statistician. While, to many, these 
disciplines seem very close both intellectually and methodologically, we 
ourselves have found that there is suffi cient divergence in our back-
grounds, skills, and training to surprise us constantly. Sometimes we fi nd 
that we have learned the same thing in different ways, or that something 
we think is different is really the same. Clearly, though, it has been a 
mutual and tireless (perhaps “head-butting” would be a better descrip-
tion) re-examination of all these beliefs and practices—the “stylized” 
concepts and facts that lie at the center of each of our scholarly domains—
that has generated our most productive intellectual activity. 

 There is another factor as well. We work together at an excellent and 
supportive professional school, the Harvard Graduate School of Education 
(HGSE), with wonderful colleagues and students, and we are embedded 
in a network of superb intellectual and physical resources. More than 
that, though, neither of us can forget our roots as high school teachers. 
Most of all, we both want to make education better for the world’s chil-
dren, and believe that improving research on the causal consequences 
of educational policies and interventions can contribute to improved 
policymaking. We feel that the development of new research designs and 
analytic methods would be sterile if it did not address directly the very real 
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and diffi cult questions that lie at the center of the educational enterprise. 
Because of this, we have always sought to motivate—and embed—our work 
in  substance , in the important questions that educational policymakers 
ask. We believe that substantive needs are a powerful catalyst to the devel-
opment of new research designs and data-analytic methods. It is the 
interplay between substance and method that has always provided us with 
our most fertile ground and that we seek to preserve in our work together. 
Once you have a substantive question, then it is clear that  methods matter ! 

 So, that explains why we work together. But why did we write this book? 
It is not a decision that we reached either quickly or lightly; in fact, it was 
more like a decision that evolved, rather than being made. Over the last 
15 years, it became clear to us that innovative research designs and ana-
lytic practices were being developed constantly, and applied in the social 
sciences and statistics. We thought that these new methods of  causal infer-
ence  had enormous potential for resolving critical problems that plagued 
education research. After all, don’t we want compelling evidence of what 
works to infl uence educational policymaking? 

 Yet, when we examined the scholarly literature that was supposed to 
inform educational policymaking, we found that most of the quantitative 
research could not even support credible statements of cause and effect. 
Consequently, it seemed sensible to facilitate the implementation of the 
new methods of causal inference in the fi elds of educational and social 
science research. We wanted to persuade scholars, policymakers, and 
practitioners that there were substantial and powerful methods that could 
improve causal research in education and the social sciences. In our expe-
riences as teachers, the successful migration of innovative ideas across 
domain boundaries has always demanded that they not only be expressed 
 understandably , but  in context . Those working in education and the social 
sciences had to be persuaded that there was something worthwhile that 
would work for them. Consequently, over the last decade and a half, as 
our own ideas began to crystallize, we tried to draw an adept group of up-
and-coming young scholars at our school into an advanced doctoral 
seminar on causal inference, to worry about the issues with us. From out 
of that seminar has grown this book. 

 In our seminar and in this book, our pedagogic approach has been to 
embed the learning of innovative methods for causal inference in sub-
stantive contexts. To do this, we have drawn on exemplary empirical 
research papers from other fi elds, mainly economics (because that’s a 
fi eld that at least one of us knows well!), to introduce, explain, and illus-
trate the application of the new methods. We have asked our students to 
study these papers with us carefully. At the same time, we have tried to 
provide them with clear and sensible intellectual frameworks within which 
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the technical bases of the new methods for causal inference made sense. 
In creating these frameworks, we have opted for conceptual, graphical, 
and data-based explanations rather than those that are intensively math-
ematical and statistical. Our objective is to widen the reach and appeal of 
the methods to scholars who do not possess the same deep technical 
backgrounds as the developers and early implementers of the methods. 
We have experienced some success in this effort, and have now brought 
the same approach to this book. Throughout the book, we have sought to 
present new methods for causal inference in a way that is sensitive to the 
practical realities of the educational and social context. We hope not only 
to make you receptive to incorporating these methods in your own 
research, but also to see the value of the guidelines provided in the book 
for judging the quality of the research studies you read. 

 Many colleagues have helped us as we worked on this book, answering 
our many questions, providing data from their studies, providing feed-
back on draft chapters. At the distinct risk of leaving out the names of 
colleagues to whom we are indebted, we would like to thank Joshua 
Angrist, David Autor, Felipe Barrera-Osorio, Howard Bloom, Geoffrey 
Borman, Kathryn Boudett, Sarah Cohodes, Tom Dee, Susan Dynarski, 
Patricia Graham, Rema Hanna, Caroline Hoxby, Guido Imbens, Brian 
Jacob, Larry Katz, Jim Kemple, Jeff Kling, Peter Kemper, Daniel Koretz, 
Victor Lavy, Frank Levy, Leigh Linden, Jens Ludwig, Douglas Miller, 
Richard Nelson, Edward Pauly, Stephen Raudenbush, Jonah Rockoff, 
Juan Saavedra, Judy Singer, Miguel Urquiola, Emiliana Vegas, and partici-
pants in our causal inference doctoral course. We would especially like to 
thank Lindsay Page and John Papay, who read the entire manuscript and 
provided innumerable suggestions for improving it. 

 The staff members of our Learning Technology Center at HGSE have 
always gone out of their way to support our computing needs, and have 
responded to our questions and diffi culties with immediate and thought-
ful help. We also want to thank our wonderful and extraordinarily effi cient 
assistant at HGSE, Wendy Angus. Wendy has solved numerous logistical 
problems for us, formatted tables, fi xed idiosyncratic problems in our 
word processing, and been immensely helpful in getting this manuscript 
out the door. Finally, we very much appreciate the fi nancial support that 
the Spencer Foundation provided for the research that contributed to 
this book. 

 It goes without saying that we are also indebted to the members of our 
production team at Oxford University Press in New York City. We are 
particularly grateful to Joan Bossert, Editorial Director, who was receptive 
to our proposal and directed us to our editor, Abby Gross. We have also 
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enjoyed the constantly responsive support of Jodi Narde, our assistant 
editor; Mark O’Malley, our production editor; and Viswanath Prasanna, 
our project manager at Glyph International Production Services, in 
Bangalore. 

 Finally, we want to recognize the love we receive constantly from our 
spouses Mary Jo and Jerri, and from our now grown children, Dan, John, 
and Kara, who continue to bring much joy to our lives, as well as the occa-
sional challenge. 

 As co-authors, we have listed our names alphabetically. 
 Richard J. Murnane 

 John B. Willett     
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3

                                             1  

 The Challenge for Educational 
Research        

       Throughout the world, education is viewed as a mechanism for expand-
ing economic opportunity, enhancing social mobility, developing a skilled 
workforce, and preparing young people to participate in civic life. Thus, 
it is no surprise that almost every government wants to improve the qual-
ity of its country’s educational system. Public resources are scarce, 
however, and education must compete with demands for improved health 
care, housing, and nutrition. When resources devoted to educational 
activities do not improve student achievement, it is diffi cult for educa-
tional policymakers to lay claim to additional resources. For this reason, 
policymakers need to use available resources wisely and be able to demon-
strate that they have done so. To accomplish these objectives, governments 
need good information about the impacts that particular policy decisions 
are likely to have on student achievement. Unfortunately, in the past, this 
kind of information has not been available.     

   The Long Quest   

 The call for better empirical evidence upon which to base sound educa-
tional policy decisions has a long history, one that is particularly well 
documented in the United States. In a speech given to the National 
Education Association (NEA) in 1913, Paul Hanus — a Harvard professor, 
and later the fi rst dean of the Harvard Graduate School of Education —
 argued that “the only way to combat successfully mistaken common-sense 
as applied to educational affairs is to meet it with uncommon-sense in the 
same fi eld — with technical information the validity of which is indisputable” 
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(Hanus,   1920  , p. 12). For Hanus, this meant that systematic research must 
be conducted and its fi ndings applied. In his words, “We are no longer 
disputing whether education has a scientifi c basis; we are trying to fi nd 
that basis.” In his lengthy speech to the NEA, Hanus identifi ed a number 
of school policy decisions that he believed should be based on scientifi c 
evidence. These included fi nding an “adequate and appropriate means of 
determining the qualifi cations of well-trained and otherwise satisfactory 
workers for the educational staff  . . . ,” and formulating “courses of study 
 . . .  together with suggestions as to methods of teaching.” Although edu-
cational policymakers today would use somewhat different terms in 
framing such questions, these same substantive concerns remain pressing 
in countries around the world: How do we attract and retain skilled teach-
ers? What are the most important skills for students to acquire? What are 
the most effective pedagogies for teaching these skills? 

 For educational researchers in Hanus’s time, and for many years there-
after, “carrying out scientifi c research” meant implementing the ideas of 
scientifi c management that had been developed by Frederick W. Taylor 
and laid out in his   1911   book  Principles of Scientifi c Management . Taylor’s 
central thesis was that experts could uncover the single “best” way to do a 
particular job by conducting “time and motion” studies. Then, the task of 
management was to provide the appropriate tools, and create training, 
incentives, and monitoring systems to ensure that workers adopted and 
followed the prescribed methods. 

 Although Taylor was careful not to apply his methods to any process as 
complicated as education, many educational researchers were less cau-
tious. One of the most infl uential proponents of applying Taylor’s system 
of scientifi c management to education was Frank Spaulding, who earned 
a doctorate from the University of Leipzig, Germany, in 1894, served as 
superintendent of several U.S. school districts during the fi rst two decades 
of the twentieth century, and, in 1920, became head of Yale University’s 
newly formed Department of Education. Speaking at the same meeting 
of the NEA at which Hanus gave his address, Spaulding described three 
essentials for applying scientifi c management to education. He stipulated 
that we must: (a) measure results, (b) compare the conditions and meth-
ods under which results are secured, and (c) adopt consistently the 
conditions and methods that produce the best results (Callahan,   1962  , 
pp. 65–68). 

 Most educators today would agree with these essentials, even though 
many would object to the “Taylorist” ideas that underlie them. However, 
it was in applying these essentials to education that controversy arose. 
The “results” that Spaulding used in his research included “the percent-
age of children of each year of age in the school district that the school 
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enrolls; the average number of day’s attendance secured annually from 
each child; [and] the average length of time required for each child to do 
a given defi nite unit of work” (Callahan,   1962  , p. 69). The attraction of 
these indicators for Spaulding was that they could be measured relatively 
easily and precisely. However, they were not very good indicators of the 
quality of education that schools provided to children. As a result, despite 
its popularity among educators anxious to build support in the business 
community, many thoughtful educators found Spaulding’s research to 
be of dubious value for improving the quality of the education actually 
provided to children. 

 In the decades following Spaulding’s speech, the creation of standard-
ized multiple-choice tests and the development of item-response theory 
made it possible increasingly to measure students’ skills and knowledge in 
academic domains like reading and mathematics at relatively low cost. 
Advances in information technology that included the creation and devel-
opment of digital computers and user-friendly data-processing software 
made it possible to manipulate large amounts of quantitative informa-
tion. Advances in statistical methods, including the development of 
multiple-regression techniques, made it possible to better identify and 
summarize important patterns in data and to test specifi c hypotheses. 

 All of these advances contributed to a major milestone in educational 
research in the United States, the publication of a study entitled  Equality 
of Educational Opportunity , in 1966. The study that led to this report was 
commissioned by the U.S. Congress as part of the Civil Rights Act of 1964. 
This legislation ordered the U.S. Commissioner of Education to conduct 
a study of “the lack of availability of equal educational opportunities for 
individuals by reason of race, color, religion, or natural origin in public 
educational institutions at all levels” (Coleman et al.,   1966  , p. iii). The 
order of the wording in this quotation — race, color, religion, national 
origin — suggests that the Congress had little doubt that children who were 
disadvantaged minorities received fewer and lower-quality educational 
resources than did white children, and that differences in educational 
resources were the probable cause of differences in academic achievement. 

 The task of organizing and conducting the congressionally mandated 
study fell to the eminent sociologist James Coleman. Coleman and his 
team went well beyond their charge and conducted a quantitative study 
that sought to account for variation in academic achievement among 
American children, incorporating information on both their schooling 
and their family backgrounds. Coleman’s research design borrowed heav-
ily from research that had been conducted previously in agriculture to 
estimate the impact of different resource combinations on output levels. 
Coleman applied this so-called production function methodology to 
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investigate what combinations of educational inputs “produced” particular 
levels of educational output. 

 Despite being released on the Friday before the July 4 Independence 
Day holiday in 1966, the Coleman Report (as it came to be known) did not 
go unnoticed. As anticipated, it documented that black children had 
much lower academic achievement, on average, than white children. The 
surprise was that differences in school resources, such as class size and 
the educational credentials of their teachers, accounted for almost none 
of this achievement gap. U.S. Commissioner of Education Harold Howe 
summarized the main fi nding of the Report as “family background is more 
important than schools.”   1  Since this interpretation seemed to undercut 
the initiatives of President Lyndon Johnson’s Great Society, which were 
aimed at reducing race-based economic inequality by improving the 
schools that served children of color, some policymakers called for an 
additional, harder look at the data. 

 This led two prominent Harvard professors, eminent statistician 
Frederick Mosteller and then political-science professor and later U.S. 
Senator Daniel Patrick Moynihan, to organize a working group to reana-
lyze Coleman’s data. Their resulting volume,  On Equality of Educational 
Opportunity , contained a compendium of papers that revealed a great deal 
about the academic achievement of American children and the schools 
they attended (Mosteller & Moynihan,   1972  ). However, the researchers 
concluded that the intrinsic limitations of the cross-sectional observa-
tional data collected by the investigators in the Equality of Educational 
Opportunity Survey made it impossible to answer critical questions about 
whether school resources had  causal  impacts on children’s achievement. 
Consequently, the working group called for better research designs and 
the collection of representative prospective longitudinal data in order to 
understand more comprehensively the impacts on children of investments 
in schooling. 

 Economist Eric Hanushek was one of the fi rst social scientists to 
respond to this call. A member of the Moynihan and Mosteller seminar 
group, Hanushek was well aware of the limitations of the Coleman Report 
and of the need for the collection of longitudinal data on the achieve-
ment of individual children. He collected such data for several hundred 
children who were attending elementary schools in one California school 
district. He also collected data describing important attributes of the 
teacher of each student’s class and of the classroom setting, such as the 
number of students present in the class. Using the same multiple-regression 

1.  As reported in Herbers (    1966  ). 
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methods that Coleman had employed, Hanushek sought to answer two 
questions. The fi rst was whether children in some third-grade classrooms 
ended the school year with higher achievement than children in other 
third-grade classrooms, on average, after taking into account the achieve-
ment levels with which they started the school year. Hanushek (  1971  ) 
confi rmed that this was indeed the case, and that the differences were 
large enough to be educationally meaningful. This fi nding was important 
in the wake of the Coleman Report because it verifi ed what parents and 
educators already knew, but that the limited nature of the Coleman 
Report data could not verify — namely, that school quality did indeed 
matter. 

 The second question that Hanushek addressed was whether the bud-
geted resources that school districts used to purchase actually accounted 
for why children in some classrooms had higher average achievement at 
the end of the school year than did children in other classrooms. He 
focused his attention particularly on the roles of teacher experience and 
teacher qualifi cations, because these teacher characteristics are rewarded 
in almost all public-school salary scales in the United States and other 
countries. Hanushek found that neither the number of years that a teacher 
had taught nor whether the teacher had earned a master’s degree 
accounted for much of the classroom-to-classroom variation in children’s 
achievement. Neither did class size, the other large source of difference 
in cost among classrooms. Hanushek’s conclusion was that schools were 
spending money on things such as teaching experience, higher degrees 
for teachers, and smaller class sizes that did not result in improved stu-
dent achievement. 

 Although researchers applauded Hanushek for confi rming that school 
quality did indeed matter, many questioned his conclusions about the 
ineffi ciency of schools (Hedges et al.,   1994  ). They pointed out, for exam-
ple, that in many schools, children with the greatest learning needs were 
actually being assigned to the smallest classes. Consequently, the low aca-
demic achievement of students in small classes may not have meant that 
class size did not matter. On the contrary, if schools were attempting to 
equalize student outcomes by providing additional resources to children 
with the greatest learning needs, then Hanushek’s research strategy could 
not provide unbiased answers to causal questions such as whether there 
was an academic payoff to reducing class sizes or to paying teachers with 
greater professional experience more than novices. Progress in answer-
ing such questions would await the development of the research designs 
and analytic methods that are described in this book. 

 Another impetus to educational research in the 1960s was the increas-
ing involvement of the federal government in American K-12 education. 
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The passage of the Elementary and Secondary Education Act (ESEA), in 
1965, marked the fi rst time that the federal government had provided 
signifi cant funding for public K-12 education in the United States. Title I 
of the Act committed federal funds to improving the schooling of eco-
nomically disadvantaged children. Fearful that the money would not 
make a difference to poor children, Senator Robert Kennedy insisted that 
the ESEA require periodic evaluations of whether the program was pro-
ducing requisite gains in student achievement (McLaughlin,   1975  , p. 3). 
In essence, Senator Kennedy wanted evidence of a causal impact. 

 Partly in response to the demands for the implementation of more 
systematic educational research expressed by Daniel Moynihan, who was 
by now head of President Richard Nixon’s Domestic Council, President 
Nixon announced, in 1970, that the federal government would create the 
National Institute of Education (NIE). Touted as the vehicle for fostering 
systematic scholarship that would solve the nation’s educational prob-
lems, NIE began operation in 1972, with an annual budget of $110 million. 
Secretary of Health, Education, and Welfare (HEW) Elliott Richardson 
informed Congress that the administration would request a $400 million 
budget for NIE within fi ve years (Sproull, Wolf, & Weiner,   1978  , p. 65). 

 By the end of the 1970s, optimism about the ability of empirical research 
to resolve the important arguments in education that had marked the 
inauguration of the NIE had turned to pessimism. Soon after the inaugu-
ration of Ronald Reagan in 1980, the NIE was dissolved. In part, the 
demise of the NIE stemmed from a change in the mood of the country. 
The rapid economic growth of the mid-1960s, which had increased fed-
eral tax revenues and fueled the Great Society programs, ended in 1973, 
and was followed by a decade of very slow growth. Optimism had initially 
accompanied the sending of U.S. troops to Vietnam in the early 1960s. 
By the early 1970s, more than 50,000 American deaths and the accompa-
nying failed foreign-policy objectives had changed the country’s mood. 
As Henry Aaron described in his book,  Politics and the Professors  (1978), 
many citizens stopped believing that government itself could be instru-
mental in improving the lives of Americans and came to believe that 
government was a principal cause of the economic malaise in which the 
country found itself. 

 The demise of the NIE was not completely the result of the change in 
the country’s mood, however. Another part of the problem had been the 
unrealistic expectations that had accompanied its birth. Many of the orig-
inal proponents of the creation of the NIE had invoked comparisons 
with research conducted by the National Institutes of Health, which 
had provided radical new medicines such as the Salk vaccine for polio, 
and the agricultural research that had resulted in the green revolution. 
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When the NIE’s research programs did not produce analogous visible 
successes for education, it was deemed a failure. Few of its advocates had 
appreciated how diffi cult it would be to answer questions posed by policy-
makers and parents about the effective use of educational resources. 

 Yet another part of the explanation for the demise of the NIE, and the 
low funding levels of its successor, the U.S. Department of Education’s 
Offi ce of Educational Research and Improvement (OERI), was the wide-
spread perception that educational research was of relatively low quality. 
A common indictment was that educational researchers did not take 
advantage of new methodological advances in the social sciences, particu-
larly in the application of innovative strategies for making causal inferences. 

 In an attempt to respond to the concern about the low quality of 
educational research, the U.S. Congress established the Institute of 
Education Sciences (IES) in 2002, with a mandate to pursue rigorous 
“scientifi c research” in education. One indication of the energy with 
which the IES has pursued this mandate is that, in its fi rst six years of 
operation, it funded more than 100 randomized fi eld trials of the effec-
tiveness of educational interventions.   2  As we explain in Chapter 4, the 
randomized experiment is the “gold-standard” design for research that 
aims to make unbiased causal inferences.     

   The Quest Is Worldwide   

 Although the quest for causal evidence about the consequences of par-
ticular educational policies is particularly well documented in the United 
States, researchers in many countries have conducted important studies 
that have both broken new ground methodologically and raised new sub-
stantive questions. We illustrate with two examples. Ernesto Schiefelbein 
and Joseph Farrell (  1982  ) conducted a remarkable longitudinal study 
during the 1970s of the transition of Chilean adolescents through school 
and into early adulthood. The authors collected data periodically on a 
cohort of students as they moved from grade 8 (the end of primary school) 
through their subsequent schooling (which, of course, differed among 
individuals) and into the labor market or into the university. This study, 
 Eight Years of Their Lives , was a remarkable tour de force for its time. It 
demonstrated that it was possible, even in a developing country that was 
experiencing extraordinary political turmoil, to collect data on the same 

2.  See Whitehurst (    2008a  ; 2008b). We would like to thank Russ Whitehurst for explaining 
to us which IES-funded research projects were designed as randomized fi eld trials. 
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individuals over an extended period of time, and that these data could pro-
vide insights not possible from analyses of cross-sectional data. Substantively, 
the study documented the important role that the formal education system 
in Chile played in sorting students on the basis of their socioeconomic 
status. This evidence provided the basis for considerable debate in Chile 
about the design of publicly funded education in the years after democracy 
returned to the country in 1989 (McEwan, Urquiola, & Vegas,   2008  ). 

 The book  Fifteen Thousand Hours , by Michael Rutter (  1979  ), describes 
another pioneering longitudinal study. The research team followed stu-
dents in 12 secondary schools in inner-city London over a three-year 
period from 1971 through 1974, and documented that students attending 
some secondary schools achieved better outcomes, on average, than those 
attending other schools. One methodological contribution of the study 
was that it measured several different types of student outcomes, includ-
ing delinquency, performance on curriculum-based examinations, and 
employment one year after leaving school. A second was the attention 
paid to collecting information on variables other than resource levels. In 
particular, the researchers documented that characteristics of schools as 
social organizations — including the use of rewards and penalties, the ways 
teachers taught particular material, and expectations that faculty had of 
students for active participation — were associated with differences in aver-
age student outcomes. 

 A close reading of the studies by Schiefelbein and Farrell, and by Rutter 
and his colleagues, shows that both sets of researchers were aware acutely 
of the diffi culty of making causal inferences, even with the rich, longitudi-
nal data they had collected. For example, Schiefelbein and Farrell wrote: 
“It is important to reemphasize that this study has not been designed as a 
hypothesis-testing exercise. Our approach has consistently been explor-
atory and heuristic. And necessarily so” (p. 35). In their concluding 
chapter, Rutter and his colleagues wrote: “The total pattern of fi ndings 
indicates the strong probability that the associations between school pro-
cesses and outcome refl ect in part a causal process” (p. 179). Why were 
these talented researchers, working with such rich data, not able to make 
defi nitive causal statements about the answers to critical questions of edu-
cational policy? What does it take to make defensible causal inferences? 
We address these questions in the chapters that follow.     

   What This Book Is About   

 In recent decades, tremendous advances have been made in data avail-
ability, empirical research design, and statistical methods for making 
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 causal inferences . This has created new opportunities for investigators to 
conduct research that addresses policymakers’ concerns about the conse-
quences of actions aimed at improving educational outcomes for students. 
But how can these new methods and data be applied most effectively in 
educational and social-science research? What kinds of research designs 
are most appropriate? What kinds of data are needed? What statistical 
methods are best used to process these data, and how can their results be 
interpreted so that policymakers are best informed? These are the ques-
tions that we address in this book. 

 The particular designs and methods that we have chosen to describe 
are sophisticated and innovative, often relatively new, and most have their 
origins in disciplines other than education. We have sought to present 
them in a way that is sensitive to the practical realities of the educational 
context, hoping not only to make you receptive to their incorporation 
into educational research, but also to persuade you to incorporate them 
into your own work. 

 An innovative aspect of our book is that we illustrate all of our techni-
cal discussions of new research design and innovative statistical methods 
with examples from recent, exemplary research studies that address ques-
tions that educational policymakers around the world have asked. We 
explain how these studies were designed and conducted and, where 
appropriate, we use data from them to illustrate the application of new 
methods. We also use these same studies to illustrate the challenges of 
interpreting fi ndings even from exemplary studies and to demonstrate 
why care in interpretation is critical to informing the policy process. 

 The studies that we highlight examine a variety of causal questions, 
examples of which include:  

      Does fi nancial aid affect students’ and families’ educational decisions?   •
      Does providing students with subsidized access to private schools  •
result in improved educational outcomes?  
      Do early childhood programs have long-term benefi ts?   •
      Does class size infl uence students’ achievement?   •
      Are some instructional programs more effective than others?      •

 All of these questions have been the subject of high-quality studies 
that have implemented cutting-edge designs and applied innovative 
methods of data analysis. We refer to these high-quality studies through-
out our book as we explain a variety of innovative approaches for 
making  causal inferences from empirical data. In fact, by the end of our 
book, you will fi nd that the phrase “high-quality” itself eventually becomes 
code for referring to studies that effectively employ the approaches we 
describe. 
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 Notice that all of the educational policy questions listed here concern 
the impact of a particular action on one or more outcomes. For example, 
does the provision of fi nancial aid affect families’ decisions to send a 
child to secondary school? This is a distinctive characteristic of causal 
questions, and learning to answer such questions is the topic of this book. 
In our work, we distinguish such causal questions from descriptive ques-
tions, such as whether the gap between the average reading achievement 
of black students and that of white students closed during the 1980s. 
Although there are often signifi cant challenges to answering descriptive 
questions well, these challenges are typically less diffi cult than the chal-
lenges you will face when addressing causal questions. 

 We have written this book not only for those who would like to conduct 
causal research in education and the social sciences, but also for those 
who want to interpret the results of such causal research appropriately 
and understand how the results can inform policy decisions. In present-
ing these new designs and methods, we assume that you have a solid 
background in quantitative methods, that you are familiar with the notion 
of statistical inference, and that you are comfortable with statistical tech-
niques up to, and including, ordinary least-squares (OLS) regression 
analysis. However, as an interested reader can see by skimming ahead in 
the text, ours is not a highly technical book. To the contrary, our empha-
sis is not on mathematics, but on providing  intuitive explanations  of key 
ideas and procedures. We believe that illustrating our technical explana-
tions with data from exemplary research studies makes the book widely 
accessible. 

 We anticipate that you will obtain several immediate benefi ts from 
reading our book carefully. First, you will learn how alternative research 
designs for making causal inferences function, and you will come to 
understand the strengths and limitations of each innovative approach. 
In addition, you will learn how to interpret the results of studies that use 
these research designs and analytic methods, and will come to understand 
that careful interpretation of their fi ndings, although often not obvious, 
is critical to making the research useful in the policy process.     

   What to Read Next   

 We conclude every chapter with a brief list of additional resources you 
may want to consult, to learn more about the topics that were discussed 
in the chapter. In this introductory chapter, the extra readings that 
we suggest deal primarily with the history of educational research. In sub-
sequent chapters, many of our suggestions are to scholarly papers that 
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provide specialized treatments of the particular technical issues raised in 
the chapters they accompany. 

 To learn more about the reasons why the NIE failed to fulfi ll its much-
publicized promise, we suggest reading the 1978 book by Lee Sproull and 
her colleagues entitled  Organizing an Anarchy . Jonah Rockoff’s (2009) 
paper “Field Experiments in Class Size from the Early Twentieth Century” 
provides an interesting and brief history of attempts to estimate the causal 
impact of class size on student achievement. Grover “Russ” Whitehurst’s 
thoughtful reports (Whitehurst,   2008a ,  2008  b) on the research agenda 
that the Institute of Education Sciences developed and supported during 
the period 2003–2008 describe the challenges of supporting research that 
is both rigorous and relevant to improving the quality of the education 
that children receive.   
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                                             2  

 The Importance of Theory        

       A question that governments around the world ask repeatedly is whether 
using scarce public resources to educate children is a good social invest-
ment. Beginning in the late 1950s, and sparked by the pioneering work of 
Nobel Prize winners Theodore Schultz and Gary Becker, economists 
developed a theoretical framework within which to address this question. 
The resulting framework, which became known as  human capital theory , 
provided the foundation for a vast amount of quantitative research in the 
ensuing years. Among the many insights from human capital theory and 
the empirical work that it generated are the important role education 
plays in fostering a nation’s economic growth, the reason education has 
its biggest labor market payoffs in economies that are experiencing rapid 
technological change, and why employers are often willing to pay to train 
workers to do specifi c tasks, such as use a new technology, but are typi-
cally unwilling to pay for training that improves workers’ reasoning skills 
and writing ability.   1  

 Over subsequent decades, social scientists refi ned the theory of human 
capital in a variety of ways. These refi nements led to new hypotheses and 
to important new evidence about the payoffs to investments in education, 
some of which are described in later chapters. The salient point for the 

1.  For many references to the evidence of the role of education in fostering economic 
growth, see Hanushek and Woessman (    2008  ). For evidence on the especially valuable 
role of education in increasing productivity in environments experiencing technologi-
cal change, see Jamison & Lau (    1982  ). The classic reference on the reasons why 
employers are typically willing to pay for specifi c training, but not general training, is 
Becker (    1964  ). 
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moment is that human capital theory provides a powerful illustration of 
the role that theory plays in guiding research, especially research into 
cause and effect. We will return to human capital theory later in this chap-
ter. First, however, we explain what we mean by the term  theory  and the 
roles that it plays in guiding research in the social sciences and education.     

   What Is Theory?   

 According to the  Oxford English Dictionary  (OED,   1989  ), a theory is “a scheme 
or system of ideas or statements held as an explanation or account of a 
group of facts or phenomena; a hypothesis that has been confi rmed or 
established by observation or experiment, and is propounded or accepted 
as accounting for the known facts; a statement of what are held to be the 
general laws, principles, or causes of something known or observed.”   2  All 
three parts of this defi nition contain the notion that, within a theory, a 
general principle of some kind — the OED calls it a “scheme,” a “system,” 
“general laws,” — is intended to “explain” or “account for” particular instances 
of what we observe on a day-to-day basis. 

 Theory plays important roles in guiding empirical research in the social 
sciences and education by providing guidance about the questions to ask, 
the key constructs to measure, and the hypothesized relationships among 
these constructs. For example, at the core of human capital theory is the 
idea that individuals compare benefi ts and costs in making decisions 
about whether to undertake additional education. This framework leads 
researchers to ask what factors should be included among the benefi ts 
and costs of acquiring additional education, and how to measure differ-
ences among individuals in these benefi ts and costs or changes in their 
values over time. Theory also suggests the direction of hypothesized rela-
tionships. For example, theory suggests that a decline in the earnings of 
college graduates relative to those of high school graduates would lead to 
a decline in the percentage of high school graduates who decide to enroll 
in college. 

 Of course, theory is never static. For example, in the fi rst round of an 
investigation, research questions are often broad and undifferentiated, 
and any hypothesized intervention is treated simply as a “black box.” 
However, in answering the fi rst-round research question, investigators 

2.  Accessed at the following webpage:         http://dictionary.oed.com.ezp-prod1.hul.harvard.
edu/cgi/entry/50250688?query_type=word&queryword=theory&fi rst=1&max_to_
show=10&sort_type=alpha&result_place=1&search_id=wpON-NKMyN3-6203-
&hilite=50250688   
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can refi ne their theory and propose more sophisticated, fi ner-grained 
questions that sometimes shed light on the causal machinery within 
the box. 

 The development of human capital theory illustrates this. One pattern 
common across many countries that the theory sought to explain was 
that, on average, the more formal education that workers had completed, 
the higher were their labor market earnings. In its initial formulation 
in the late 1950s, economists treated “formal schooling” as a black box —
 increases in formal schooling were theorized to improve subsequent 
wages because they led to increases in the productivity of workers. In a 
1966 paper, Richard Nelson and Edmund Phelps unpacked this straight-
forward idea, and thereby refi ned human capital theory, by suggesting 
that additional education increased productivity because it increased 
workers’ ability to understand and make use of new information. This led 
them to hypothesize that education would have a greater impact on 
worker productivity in settings in which technologies were changing than 
in settings in which technology was static. 

 Subsequent quantitative research tested this new hypothesis and found 
support for it. For example, Jamison and Lau (  1982  ) found that education 
had a larger impact on productivity in agriculture in settings in which 
green revolution seeds and fertilizers were changing agricultural meth-
ods than it did in settings in which techniques were stable and had been 
passed down orally from one generation to the next. Later contributions 
to human capital theory developed the idea that if additional education 
did improve individuals’ skills at processing and making use of new infor-
mation, it would not only increase their productivity at work, it would also 
result in improved health and better parenting.   3  These subsequent theo-
retical refi nements catalyzed a still growing body of quantitative research 
on the payoffs of education. 

 Good theory often leads researchers to new ideas that raise questions 
about the tenets of existing theory. For example, building on the work of 
Kenneth Arrow and others, Michael Spence (  1974  ) developed a challenge 
to human capital theory. Spence proposed an alternative theory, which 
he called  market signaling . In a simple market-signaling model, high-
productivity individuals obtain additional schooling not because it 
enhances their skills, but because it is a way to signal to potential employ-
ers that they possess exceptional qualities, and consequently should be 
paid higher salaries than other applicants. Thus, a market-signaling model 

3.  In Chapter 10, we describe one important paper in this line of research, written by 
Janet Currie and Enrico Moretti (    2003  ). 
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could explain the positive relationship between educational attainments 
and labor market wages even if education did not enhance students’ 
skills. Market signaling continues to pose an alternative to human capital 
theory in explaining education–earnings relationships in some settings. 
Unfortunately, it has proven very diffi cult to design quantitative research 
to test the two theories unequivocally, head to head. In fact, many social 
scientists would argue that both human capital theory and market signal-
ing theory play roles in explaining wage patterns in many societies. For 
example, the earnings premium that graduates of elite universities enjoy 
stems in part from the skills they acquired at the university and partly 
from the signal of high ability that admission to, and graduation from, an 
elite university conveys.   4  

 The French sociologist Pierre Bourdieu posed another alternative to 
human capital theory to explain the role that education plays in Western 
societies. In Bourdieu’s theoretical framework, education sorts students 
in ways that contribute to the reproduction of existing social hierarchies. 
Children in elite families graduate from the best universities and obtain 
access to prestigious, well-paying careers. Children from lower-class fami-
lies obtain education that only provides access to low-prestige, lower-paying 
jobs. In Bourdieu’s theory, many sorting mechanisms contribute to this 
pattern. One is the allocation of educational opportunities by scores on 
standardized tests that favor the types of knowledge that children from 
well-to-do families acquire at home. Another is an educational-fi nance 
system that favors students from families that already have fi nancial 
resources. Most objective social scientists recognize that Bourdieu’s 
theory of  social reproduction  sheds light on the role that education plays in 
many societies.   5  However, as with market signaling, it has proven diffi cult 
to compare Bourdieu’s theory with human capital theory head to head. 
In fact, the two theories provide complementary insights into explaining 
the role that education plays in many settings. 

 Philosophers of science distinguish between two modes of inquiry, one 
based on  deductive logic  and the other based on  inductive logic.  Deductive 
reasoning involves the development of specifi c hypotheses from general 
theoretical principles. In the exercise of inductive reasoning, you engage 
in the reverse of deduction. You begin by observing an unexpected pat-
tern, and you try to explain what you have observed by generalizing it. 
In other words, with inductive reasoning, you go from particular observa-
tions to general principles. The origins of most important theories involve 

4.  For an accessible discussion of human capital and market signaling models, see Weiss 
(    1995  ). 

5.  For an introduction to Bourdieu’s theory, see Lane (    2000  ). 
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a mixture of the two types of reasoning. Induction is critical because the 
theorist is trying to make sense of a pattern he or she has observed or 
learned about. At the same time, having a rudimentary theory in mind 
directed the theorist’s attention to the pattern. Once theories are formu-
lated, deduction typically becomes preeminent in the formal design 
and execution of new theory-based research. However, induction often 
provides the post-hoc insight that is instrumental in refi ning existing 
theory. 

 Both deductive and inductive reasoning have played roles in the devel-
opment of human capital theory. For example, economists used deductive 
reasoning to formulate a variety of specifi c hypotheses based on the gen-
eral statement of human capital theory. One was that the lower the 
interest rate high school graduates had to pay on loans for college tuition, 
the more probable it was that they went to college. Economists also used 
insights from human capital theory to inform the design of research 
aimed at estimating the rate of return to a society of investing in educa-
tion. A consistent result was that the social benefi ts from universal primary 
education far exceeded the social costs in most developing countries. 
Indeed, in most countries, the estimated social rate of return on invest-
ments in primary education far exceeded the social rate of return to 
other possible governmental use of resources, such as investing in physi-
cal infrastructure (Psacharopoulos,   2006  ). 

 Despite the compelling evidence that primary education was a good 
social investment in most countries, social scientists observed that many 
families in developing countries choose not to send their children to 
school. This observation led researchers to engage in inductive reason-
ing, in order to formulate possible explanations. One alternative was that 
families did not have access to primary schools — a supply problem. 
A second was that families were unaware of the payoffs to education — an 
information problem. A third was that families could not borrow the 
money at reasonable interest rates to pay the cost of schooling, costs that 
might include replacing the labor that the child provided at home — a 
problem of capital market failure. Yet another hypothesis was that paying 
for children’s schooling was not a good personal investment for parents 
in cultures in which children did not feel a strong moral obligation to sup-
port their parents later in life — a cultural explanation. These hypotheses, 
all stemming from the observation that the educational investment deci-
sions of many families seemed inconsistent with insights from human 
capital theory, led to increased attention in human capital theory to the 
supply of schools, the information available to parents, their ability to 
borrow at reasonable interest rates, and cultural norms about children’s 
responsibilities to parents. In turn, these hypotheses led to studies that 
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examined the relative importance of these different possible explanations 
for the educational investment decisions of parents.     

   Theory in Education   

 Every educational system involves a large and diverse array of actors 
whose decisions interact in a great many ways. Governments make deci-
sions about the types of organizations that may offer schooling services 
and that are eligible to receive partial or full payment for their services 
from tax revenues. Parents make decisions about the schools their chil-
dren will attend and the amount of time and energy they will devote to 
shaping their children’s skills and values at home. Children make deci-
sions about how much attention they will pay to school-related work and 
to the types of interactions in which they will engage with peers. Educators 
decide where they will work, how they will teach, and how much attention 
they will pay to individual children. The decisions of these many actors 
interact in important ways. For example, parents’ choices are infl uenced 
by their children’s efforts in school and by the quality and resources of 
their local schools. The actions of policymakers regarding licensing 
requirements and compensation structures infl uence the career decisions 
of potential teachers.   6  

 The number of different players who contribute to education, and the 
complexity of their interactions, make it diffi cult to formulate parsimonious, 
compelling theories about the consequences of particular educational poli-
cies. In contrast, physics is a fi eld with very strong theory — well-developed 
general principles expressed in mathematical terms from which stem 
many clearly defi ned hypotheses that can be tested empirically. In think-
ing about the role of theory in the social sciences and education, it is 
important to remember that physics is the exception rather than the rule. 
In most other fi elds of scientifi c endeavor, theory is commonly expressed 
in words rather than in mathematics, and the general principles are less 
clearly defi ned than they are in physics. The reason we mention this is to 
encourage researchers to defi ne theory broadly, so that it includes a clear 
description of the policy intervention to be evaluated, the outcomes it 
may infl uence, and conjectures about the mechanisms through which the 
intervention may infl uence outcomes. (Some writers use the term  theory 
of action  to refer to these steps.) Rarely will such a description be expressed 

6.  The ideas we describe in this paragraph are taken from Shavelson and Towne (eds., 
2002). 
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in mathematical terms, and it does not need to be. What is important is 
clear thinking, which is typically informed by a deep knowledge of previ-
ous research in the relevant area and a solid grounding in a social science. 

 One vital part of the work of using theory to inform the design of 
empirical work investigating causal relationships in education and the 
social sciences concerns the measurement of key concepts. For example, 
a hypothesis of great interest in many countries is that reducing class sizes 
in elementary schools will result in improved student achievement. 
A little thinking brings the realization that the key conceptual variables 
relevant to this hypothesis — class size and student achievement — could be 
measured in many different ways, and the choices could affect the results 
of the research. For example, in schools in which the student population 
is mobile, counting the number of students who appear on a class roster 
would provide a very different measure of class size than would counting 
the number of students in attendance on any single day. Developing a 
measure of student achievement raises even more questions. Do scores 
on standardized reading tests measure literacy skills effectively? Would 
the research results differ if other measures of student achievement were 
chosen, such as success at the next level of schooling? We see the process 
of thinking hard about these measurement issues as part of the task of 
applying theory to the design of empirical work. 

 It is often useful to distinguish between two kinds of theories that can 
inform the design of causal research in education and the social sciences. 
 Partial equilibrium theories  can shed light on the likely consequences of 
policy interventions of modest scale undertaken in a particular setting. 
An example would be the application of human capital theory to predict 
the consequences of a policy initiative that would offer zero-interest loans 
for college expenses to high school graduates from low-income families in 
a particular community. Since only a modest number of students would 
be affected by the proposed policy, it would be reasonable to assume that 
the loan program would have no impact on the relative earnings of high 
school graduates and college graduates. 

 In contrast, in considering the consequences of a policy initiative that 
would offer zero-interest college loans to all low-income students in the 
United States, it would be important to take into consideration that an 
increase in the supply of college graduates would lower the earnings of 
this group relative to the earnings of high school graduates. Theories 
that take into account such indirect effects of policy initiatives are called 
 general equilibrium theories . 

 An important question when choosing a particular theoretical frame-
work to guide the design of causal research in education is whether a 
partial equilibrium approach will suffi ce, or whether a general equilibrium 
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approach is necessary. The advantage of a partial equilibrium framework 
is usually its relative simplicity. However, the simplicity is achieved by the 
assumption that the intervention is of suffi ciently small scale that second-
ary effects can be ignored. The advantage of a general equilibrium 
framework is that it provides tools to examine those secondary effects, 
which are likely to be more important the larger the scale of the policy 
initiative. One accompanying cost, however, is greater complexity. An 
even greater cost of adopting a general equilibrium framework as the 
basis for a social science experiment is that if an intervention has broadly 
distributed secondary effects, it is very diffi cult for the investigator to 
defi ne an appropriate comparison or control group that would not be 
infl uenced indirectly by the intervention. For that reason, we share the 
view of many methodologists that random-assignment experiments and 
the other analytic techniques that we promote in this book cannot cap-
ture the full general equilibrium effects of large-scale policy interventions 
(Dufl o, Glennerster, & Kremer,   2008  ). 

 In the next section, we provide an example of how a prominent theory 
regarding the consequences of  educational vouchers  became more refi ned 
over time. We also show the ways that researchers used both partial equi-
librium and general equilibrium versions of the theory to shed light on 
the consequences of particular educational voucher policies.     

   Voucher Theory   

 Perhaps the most vigorously contested educational policy issue in the 
world in recent years has concerned the consequences of using public tax 
revenues to pay for children’s education at private schools. Writing in the 
early 1960s (Friedman,   1962  ), the American economist — and later Nobel 
Prize winner — Milton Friedman argued that the prevailing system of 
public schools in the United States restricted the freedom of parents to 
choose the schools that would best serve their children. He advocated the 
introduction of an “educational voucher” system, which would, in his 
view, both expand freedom of choice and improve the quality of American 
education. Friedman’s initial statement of voucher theory was elegant. 
The key policy recommendation was that government should provide 
educational vouchers of equal value to all parents of school-age children. 
Parents could then use the vouchers to pay for the education of their 
children at a public school of their choice or use them to pay part or all of 
the tuitions at a private school of their choice. 

 Friedman envisioned several desirable outcomes from a universal 
voucher system, some easier to measure (increased student achievement 
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and lower schooling costs) than others (enhancement of freedom). The 
mechanism through which a voucher system would achieve these out-
comes was the force of market competition. Part of Friedman’s argument 
was that the introduction of a system of educational vouchers would have 
its greatest positive impact on the quality of education available to chil-
dren from low-income families because they have the fewest schooling 
choices under the prevailing educational system. 

 Implicit in Friedman’s voucher theory were two critical assumptions, 
both of which came from the application to education of the economic 
theory of  competitive markets . The fi rst assumption was that consumers 
would be free to choose any school for which they could pay the tuition. 
The second was that the schooling choices that parents made for their 
children would be independent of the schooling choices that other par-
ents made for their children. These assumptions made sense in competitive 
markets for consumer goods such as bread. Typically, shoppers can buy 
any brand of bread that they feel is worth the market price, and their deci-
sions are not directly infl uenced by the choices made by other consumers. 
These assumptions simplify enormously the development of theories that 
predict how competitive markets function. 

 In the decades following publication of Friedman’s voucher theory, 
however, a growing number of studies documented that the two critical 
assumptions implicit in Friedman’s voucher theory did not hold. One 
reason is that some children are more expensive to educate than others. 
For example, children with disabilities, such as dyslexia or hearing prob-
lems, require additional resources to help them to master critical skills 
(Duncombe & Yinger,   1999  ). If schools are constrained to charge the 
same tuition to all students, and if the value of the education voucher 
provided by government is the same for all children, then school adminis-
trators have incentives to avoid accepting children who would be expensive 
to educate. 

 A second challenge to the assumptions underlying Friedman’s voucher 
theory is that parents recognize that the quality of the education their 
child receives in a particular school depends on the skills and behaviors of 
other children attending the same school (Graham,   2008  ; Hoxby,   2000  ). 
These infl uences, which sociologists call “peer-group effects” and econo-
mists call “externalities,” complicate the way that educational voucher 
systems would operate in practice. In particular, schools that attempted to 
attract students from particular types of families (such as those with well-
educated, affl uent parents) would seek to refuse admission to children 
whom their desired clientele would not like to have as classmates. 

 Taking advantage of advances in computer-based simulation, a number 
of social scientists developed theoretical models that incorporated cost 



The Importance of Theory 23

differentials and peer-group effects. Many of the models also incorporated 
details of public school fi nance systems. These are complex general-
equilibrium models that treat the school-choice decisions of families as 
interdependent. Researchers used these theoretical models not only to 
explore how the introduction of voucher plans with particular designs 
would affect families’ schooling choices, but also how they would infl u-
ence things like housing prices and families’ decisions about where to 
live.   7  A hypothesis stemming from many of these theoretical models and 
policy simulations is that a universal educational-voucher system in which 
the value of the voucher was the same for all children would lead to sig-
nifi cant sorting of students from specifi c backgrounds into particular 
schools. Subsequent studies of universal voucher systems in Chile (Hsieh 
& Urquiola,   2006  ) and in New Zealand (Fiske & Ladd,   2000  ), in which the 
vouchers did have the same value for all children, provided evidence sup-
porting this hypothesis. For example, Hsieh and Urquiola (  2006  ) showed 
that children from the poorest families in Chile tended to be concen-
trated in low-performing public schools, whereas children from relatively 
affl uent families were concentrated in particular private schools.   8  

 Evidence of the importance of cost differentials and peer-group effects 
has resulted in two subsequent refi nements to voucher theory. The fi rst 
has been the creation of theoretical models predicting the consequences 
of voucher systems in which the value of the voucher that individual chil-
dren receive depends on their characteristics.   9  The logic is that a system 
with appropriately differentiated voucher values might prevent the sort-
ing by socioeconomic status that took place under the single-valued 
voucher systems in Chile and New Zealand. The second development has 
been the formulation (and testing) of relatively simple partial-equilibrium 
models in which only children from low-income families are eligible to 
receive vouchers. The logic underlying these models is that the family-
income limits for participation would reduce the threat of sorting by 

7.  See Hoxby (    2003  ), and Nechyba (    2003  ) for discussions of the importance of general 
equilibrium models for understanding the consequences of particular voucher 
plans. For examples of such equilibrium models, see Nechyba (    2003  , pp. 387–414); 
Epple and Romano (    1998  , pp. 33–62); Hoxby (    2001  ); Fernandez and Rogerson (    2003  , 
pp. 195–226). 

8.  Concerned with the sorting by socioeconomic status that took place under its equal-
value voucher system, the Chilean government modifi ed its national voucher system in 
2008. Under the new system, the vouchers distributed to children from the one-third 
poorest families in the country (called Priority students) are worth 50 %  more than 
those distributed to more affl uent families. Private schools that receive higher-valued 
vouchers are prohibited from charging Priority students any tuition or fees in excess of 
the value of their voucher. 

9.  See, for example, Hoxby (    2001  ); Fernandez and Rogerson (    2003  ). 
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socioeconomic status. We discuss the evaluation of a trial of one such 
voucher program in Chapter 4. 

 The consequences of educational vouchers continue to be debated as 
heatedly today as in the years following Friedman’s publication of 
 Capitalism and Freedom  (  1962  ). However, the debate has become vastly 
more sophisticated, primarily because of advances in understanding that 
have stemmed from the interplay of theoretical developments and new 
evidence. For example, there is widespread recognition today that some 
children are more expensive to educate than others, that peer-group 
effects infl uence student achievement, and that many parents need help 
in collecting the information that is necessary to make good school 
choices. These patterns all have implications for the design of future 
voucher systems and for evaluations of their impacts. The wheel of 
science continues to turn, and our theories evolve!     

   What Kind of Theories?   

 In this chapter, we have chosen our examples primarily from the fi eld of 
economics because it is the social science discipline we know best. However, 
theories drawn from other social-science disciplines can also inform the 
design of causal educational research. Examples include theories of social 
capital drawn from sociology and theories of child development from psy-
chology. The choice of a theoretical framework within which to embed 
the design of quantitative research depends on the nature of the causal 
question being asked and the knowledge base of the investigators. 

 We do want to emphasize, however, the distinction between social-
science theory and statistical theory. In recent decades, important 
advances have been made in statistical theory that have led to new research 
designs and analytic methods, many of which are presented in later chap-
ters of this book. New resampling methods for conducting hypothesis 
tests and methods for estimating statistical power when individuals are 
clustered in classrooms and/or schools provide two examples. The point 
we want to emphasize here is that statistical theory, and the methods 
stemming from advances in statistical theory, are methodological comple-
ments to substantive social-science theory, not substitutes.     

   What to Read Next   

 For readers interested in learning more about the role of theory in inform-
ing causal research in general, and causal research in education in 
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particular, there is much to read. One place to start, which provides an 
entrée into the relevant literature, is the brief volume  Scientifi c Research 
in Education  (Shavelson & Towne,   2002  ), which is the thoughtful report 
of a National Research Council Committee in the United States. The 
2003 paper by David Cohen, Stephen Raudenbush, and Deborah 
Loewenberg-Ball entitled “Resources, Instruction, and Research” pro-
vides an insightful theory about the conditions under which school 
resources infl uence student learning. For a provocative view of the role 
of theory written by a major fi gure in 20th-century educational research, 
see John Dewey’s   1929   book,  The Sources of a Science of Education.    
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                                             3  

 Designing Research to Address 
Causal Questions        

       One of the fi rst actions that Grover “Russ” Whitehurst, the fi rst director 
of the Institute of Education Sciences, took after assuming offi ce in 2002 
was to commission a survey of educational practitioners and policymak-
ers in order to learn what they wanted from educational research.   1  Not 
surprisingly, the survey results showed that the priorities of educators 
depended on their responsibilities. Superintendents and other local edu-
cation offi cials were most interested in evidence about particular curricula 
and instructional techniques that were effective in increasing student 
achievement. State-level policymakers wanted to learn about the conse-
quences of standards-based educational reforms and the impact of 
particular school intervention strategies. Congressional staff wanted to 
know about the effectiveness of different strategies for enhancing teacher 
quality. Educators at all levels wanted to know about the effect of differ-
ences in resource levels, such as class sizes, in determining students’ 
achievement. 

 Whereas the priorities of educators depended on their responsibilities, 
the striking commonality in their responses was that practitioners and 
policymakers — at all levels — wanted to know the answers to  questions about 
cause and effect . They wanted to know  if A caused B , and wanted IES to com-
mission research that would provide them with answers. In this chapter, 
we discuss the conditions that must be satisfi ed for such causal questions 
to be addressed effectively in education, and we introduce some of the 
major concepts and terms that we use throughout the rest of the book.     

1.  See Huang et al. (    2003  ). 
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   Conditions to Strive for in All Research   

 Before we begin our discussion of how best to address the causal questions 
that are so central to educators, we begin with a brief description of the 
classical elements of good research design in the social sciences and edu-
cation. We do this because designing  causal  research requires us to pay 
attention to the central tenets of all good research. Then, within this larger 
domain, causal research must satisfy an additional set of constraints, and 
it is these that form the central topic for the rest of our book. We used the 
expression “strive for” in the title of this section because it is typically dif-
fi cult to satisfy all of the conditions we describe. We use examples throughout 
the book to clarify the consequences of not satisfying particular elements 
of the classical description of effective research design. As you will learn, 
violation of some of the tenets of appropriate design makes it impossible 
to make a defensible causal inference about the consequences of an edu-
cational policy or intervention. Violation of other tenets does not threaten 
the ability to make a causal inference, but does limit the ability to deter-
mine to whom the results of the study apply. We will return to these issues. 
However, we begin by stating these elements of good research design. 

 First, in any high-quality research, whether it be purely descriptive or 
able to support causal inference, it is critically important that it begin with 
a clear statement of the research question that will drive the project and 
the theory that will frame the effort. These two key elements ultimately 
drive every aspect of the research design, as they provide the motivation 
and the rationale for every design decision that you ultimately make. They 
have also been the topics of our fi rst two chapters and, as we have argued, 
they are completely intertwined. As theories are refi ned, it becomes pos-
sible to pose more complex questions, and these, in their turn, inform 
refi nements of the theory. Light, Singer, and Willett (  1990  ) referred to 
this as the “wheel of science.” 

 An explicit statement of the research question makes it possible to 
defi ne the  population of interest  clearly and unambiguously. This is critical 
in any research. If we do not do it, we cannot build a suitable sampling 
frame, nor can we know to whom we can generalize the fi ndings of our 
research. In addition, it pays to be explicit, rather than vague, about the 
nature of the population of interest. For example, in studying the impact 
of class size on children’s reading skills, it might make sense to defi ne the 
population of interest to be “all children without special needs in fi rst-
grade classrooms in urban public schools in the United States,” rather 
than just “children.” Defi ning the population clearly enables readers who 
have a particular concern, such as the impact of class size on the learning 
of autistic children, to judge the relevance of our results to their concern. 
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 Once we have defi ned the population of interest clearly, we must work 
hard to sample representatively from that population. Thus, in an investi-
gation of the impact of class size on student achievement in the population 
defi ned earlier, we need to decide whether it is feasible to obtain a simple 
random sample of students from the population of fi rst graders without 
special needs attending urban public schools in the United States. 
Alternatively, we might decide that we want to use a more complex sam-
pling plan, such as a multistage cluster sample of school districts, schools, 
and grades. However we go about sampling, it is critical that the analytic 
sample that we use in our research be fully representative of the popula-
tion. This ensures what methodologists call the  external validity  of the 
research. This refers to the ability to generalize our fi ndings credibly to a 
known population of interest. 

 The next important step in any research project is to choose appropriate 
measures of the key variables that are central to the research, and to 
ensure their construct validity and reliability for the population under 
investigation. We should use our knowledge of the research question and 
its supporting theory to distinguish three important classes of variables: 
(a) the outcome variable; (b) the principal question predictor, defi ned as 
the variable that provides our research question; and (c) the covariates or 
control predictors. These distinctions will recur consistently throughout 
our account of causal research, as they do through the account of any 
high-quality descriptive research project. In our hypothetical investiga-
tion of class size and academic achievement, for instance, we might decide 
to focus on two specifi c academic outcomes, such as children’s reading 
and mathematics achievement. Our principal question predictor would 
be a measure of class size. Covariates or control variables might include 
student demographic characteristics and measures of teacher experience. 
We would need to exercise care in determining just how we would mea-
sure each of these variables. For example, we would need to decide 
whether we want to measure class size by the number of students enrolled 
in a class on a particular day, or perhaps by the average of the number of 
students enrolled on several prespecifi ed dates. We would also want to be 
sure to measure each student’s reading and mathematics achievement 
using age-appropriate normed and suitably scaled tests. Our decisions 
should be guided by our research question, our theoretical framework, 
and the background literature in which they are embedded. 

 At this point, we want to point out explicitly the one and only distinc-
tion between descriptive and causal research. It concerns the principal 
question predictor that forms the centerpiece of the research design. 
The critical question for causal research is how the values of the question 
predictor are determined for each of the participants in the sample. 



Designing Research to Address Causal Questions 29

In our class-size example, if the actions of children, teachers, parents, or 
school administrators determine the size of the class into which each child 
is placed, all manner of unobserved forces and choices would undermine 
our ability to make inferences about the causal impact of class size on 
children’s achievement. On the other hand, if we were to randomly assign 
children and teachers to classes of different sizes, thereby determining 
their values on the principal question predictor, we may be able to credi-
bly estimate the causal impact of class size on the achievement of children 
in the population from which the analytic sample was drawn. The differ-
ence is simply in the way that the values of the question predictor, class 
size, have been determined for each child in the analytic sample and for 
their teachers. This single issue and its consequences for design, data 
analysis, and interpretation distinguish credible causal research from all 
other research. It is the central concern of the rest of our book. 

 One fi nal step is to ensure that the research is replicated in other samples 
drawn from the same population. This is important because of the uncer-
tainty that exists in measurement and is built into the probabilistic nature 
of statistical inference. We will devote considerable attention in this book 
to describing how different kinds of statistical errors can infl uence the 
fi ndings from statistical analysis.     

   Making Causal Inferences   

 In their excellent book on the design of social science research, Shadish, 
Campbell, and Cook (  2002  , p. 6) cite 19th-century philosopher John Stuart 
Mill’s description of three critical conditions that must be met in order to 
claim that one thing  causes  another. The fi rst condition is that the hypoth-
esized  cause  must  precede  its anticipated  effect  in time. For example, in 
investigating whether student achievement depends upon the number of 
students in the class, it is important to ensure that students had been taught 
in class settings of a particular size  before  their achievement was measured. 

 The second of Mill’s conditions is that if the levels of the cause differ in 
some systematic way, then there must be corresponding variation in the 
effect. For example, if our theory suggests that children taught in classes 
with fewer students achieved at higher levels, we would anticipate that as 
the number of students in classes got smaller, the students’ achievement 
would be higher, on average. 

 The third of Mill’s conditions is by far the most important and the most 
diffi cult to satisfy in practice. It stipulates that the researcher must be able 
to discount all other plausible explanations — other than the anticipated 
causal one — for the link observed between the hypothetical cause and effect. 
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In the case of an investigation of the impact of class size on student 
achievement, we must be able to argue compellingly that any observed 
association between class sizes and subsequent student achievement is 
not a consequence, for example, of choices that parents may have made 
about where to send their children to school or decisions by school admin-
istrators to assign students with particular characteristics to classes of 
particular sizes. 

 The most persuasive way to conduct research that satisfi es Mills’ three 
conditions — and thereby successfully address causal questions — is for the 
researcher to conduct an  experiment . Following Shadish, Campbell, and 
Cook (  2002  , p. 511), we defi ne an experiment as an empirical investiga-
tion in which the levels of a potential cause are manipulated by an outside 
agent functioning independently of the participants in the research, and 
after which the consequences for an important outcome are measured. 

 Furthermore, as illustrated in Figure   3.1  , we distinguish between two 
kinds of experiments: randomized experiments and quasi-experiments. 
The most compelling evidence for making causal attributions typically 
comes from randomized experiments, defi ned as experiments in which 
units are assigned to experimental conditions by a random process, such 
as the toss of a fair coin (Shadish, Campbell, & Cook,   2002  , p. 12). Notice 
that well-executed  randomized experiments  satisfy Mills’s three conditions 
for making causal inferences: (a) cause precedes effect, (b) different levels 
of cause can lead to different levels of effect, and (c) random assignment 
obviates all other plausible explanations for any differences in effect 
detected. In fact, the random assignment of students and teachers to 
classes of different sizes by an independent investigator ensures that the 
children and teachers who were in the different class-size “treatments” are 
equal on all characteristics — on average — before the experiment begins. 
Because of randomization, any small and idiosyncratic differences that 
exist among the groups prior to treatment will fall within the noise that is 

All
experiments

Randomized
experiments

Quasi-
experiments

     Figure 3.1  Two kinds of experiments.    
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accounted for naturally by statistical methods used to analyze the resulting 
outcome data. As we describe more fully in Chapter 4, when individuals 
are assigned by randomization to different experimental conditions, we 
say that the groups so-formed are  equal in expectation.   

  Quasi-experiments  are experiments in which units are not assigned to 
conditions randomly (Shadish, Campbell, & Cook,   2002  , p. 12). It is some-
times possible to make legitimate causal inferences using data from 
quasi-experiments. Indeed, we devote several chapters of this book to 
methods for doing so. However, as we illustrate with many examples, 
researchers need to be prepared to deal with a variety of  threats to the inter-
nal validity  of research based on data from quasi-experiments. As we 
discuss in more detail in Chapter 4, this term refers to threats to the validity 
of a statement that the relationship between two variables is causal 
(Shadish, Campbell, & Cook,   2002  , pp. 53–61). 

 Although the interpretation of the evidence from any experiment will 
depend on the details of the particular case, we want to emphasize one 
general point. Randomized experiments and quasi-experiments typically 
provide estimates of the total effect of a policy intervention on one or 
more outcomes, not the effects of the intervention holding constant the 
levels of other inputs (Todd & Wolpin,   2003  ). This matters, because fami-
lies often respond to a policy intervention in a variety of ways, and the 
experiment provides evidence about the net impact of all of the responses 
on measured outcomes. For example, we will describe several experiments 
in which parents were offered scholarships to help pay for the education 
of a particular child at a private school. A common outcome in such 
experiments is a measure of the cognitive skills of children at a later point 
in time. One response to the policy is to increase the probability that par-
ents send to a private school the child offered a scholarship. However, 
another response may be that the parents reduce the amount of money 
that they spend on providing tutoring and enrichment activities for that 
child in order to free up resources to devote to other children. The exper-
iment provides evidence about the net impact of these two responses (as 
well as any others). It does not provide an estimate of the impact of the 
scholarship offer on children’s subsequent achievement, holding constant 
the level of parental resources devoted to tutoring and enrichment.     

   Past Approaches to Answering Causal Questions 
in Education   

 Unfortunately, until fairly recently, most educational researchers did not 
address their causal questions by conducting randomized experiments or 
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by adopting creative approaches to analyzing data from quasi-experiments. 
Instead, they typically conducted  observational studies , defi ned as analyz-
ing data from settings in which the values of all variables — including those 
describing participation in different potential “treatments” — are observed 
rather than assigned by an external agent (Shadish, Campbell & Cook, 
  2002  , p. 510). For instance, hundreds of observational studies have been 
conducted on the association between class size and academic achieve-
ment using achievement data collected from students during the normal 
operation of a school district. In these settings, the number of students in 
various classes differs as a result of demographic patterns, the decisions 
of parents about where to live, and the decisions of school administrators 
about placement of students into classes. 

 In observational studies, the skills and motivations of students in small 
classes may differ from those in larger classes, irrespective of any impact 
that class size itself may have had ultimately on their achievement. This 
could be the result of a variety of mechanisms. For example, families with 
the resources to invest in their children’s education may purchase or rent 
homes in the attendance zones of schools with reputations for having 
small classes. As a result, the average achievement of students in the 
schools with relatively small classes may be higher than that in schools 
with larger classes, even if class size did not have a causal effect on student 
achievement. The reason could be that those parents who chose to live 
near schools with small classes used their resources to provide their 
children with educationally enriched environment at home. This is an 
example of what methodologists would call an  endogenous  assignment of 
participants to treatments. By this we mean that assignment to levels of 
the treatment is a result of actions by participants within the system being 
investigated — in this case, the decisions of parents with resources to take 
advantage of the relatively small classes offered in particular schools. 

 Of course, well-trained quantitative researchers recognized that, as a 
result of the decisions of parents and school administrators, students 
placed endogenously in classes of different sizes may differ from each 
other in respects that are diffi cult to observe and measure. For many 
years, researchers responded to this dilemma in one of two ways. One 
common response was to include increasingly larger and richer sets of 
covariates describing the students and their families in the statistical 
models that were used to estimate the effect of treatment on outcome. 
The hope was that the presence of these control predictors would account 
for differences in the outcome that were due to all of the unobserved —
 and endogenously generated — differences among students in classes of 
different size. Sociologists Stephen Morgan and Christopher Winship (  2007  , 
p. 10) refer to the period in which researchers relied on this strategy as 
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“the age of regression.” Seminal studies published in the 1980s threw cold 
water on this “control for everything” strategy by demonstrating that 
regression analyses that contained a very rich set of covariates did  not  
reproduce consistently the results of experiments in which individuals 
were assigned randomly to different experimental conditions.   2  

 A second response, especially common among developmental psychol-
ogists, was to accept that analysis of observational data could not support 
causal inference and to simply avoid using causal language in both the 
framing of research questions and in the interpretation of research results. 
For example, researchers would investigate whether children placed in 
center-based child care had better subsequent performance on cognitive 
tests than did observationally similar children in family-based child care, 
and would simply caution that causal attribution was not justifi ed on the 
basis of their fi ndings. In our view, there are at least two problems with 
this approach. First, the cautions presented in the “Methods” and “Results” 
sections of research papers were often forgotten in the “Discussion” sec-
tion, where researchers would suggest policy implications that depended 
on an unsupported causal interpretation of their fi ndings. Second, their 
use of noncausal language meant that these researchers were not accus-
tomed to considering explicitly alternative explanations for the statistical 
relationships they observed. 

 Fortunately, in more recent years, social scientists have developed a 
variety of new research designs and analytic strategies that offer greater 
promise for addressing causal questions about the impact of educational 
policies. Many of these new approaches also make use of standard tech-
niques of multiple regression analysis, but apply them in new ways. 
Explaining these strategies, and illustrating their use, is a central goal of 
this book.     

   The Key Challenge of Causal Research   

 In conducting causal research in education and the social sciences, our 
central objective is to determine how the outcomes for individuals who 
receive a treatment differ from what the outcomes would have been in the 
absence of the treatment. The condition to which the research subjects 
would have been exposed in the absence of the experimental treatment is 
called the  counterfactual . From a theoretical standpoint, the way to obtain 
an ideal counterfactual would be to use the same participants under both 

2.  See Angrist & Pischke (    2009  , pp. 86–91) for a discussion of this evidence. 
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a treatment (e.g., “small” class size) and a “control” (e.g., “normal” class 
size) condition, resetting all internal and external conditions to their 
identical initial values before participants experienced either condition. 
So, you might draw a representative sample of participants from the pop-
ulation, administer the treatment to them, and measure their outcome 
values afterward. Then, to learn what the outcomes would be under the 
counterfactual condition, you would need to transport these same par-
ticipants back to a time before your research was conducted, erase 
all their experiences of the treatment and the outcome measurement 
from their memories, and measure their values of the outcome again, 
after their lives had transpired under the control condition. If this were 
possible, you could argue convincingly that any difference in each partici-
pant’s outcome values between the two conditions must be due  only  to 
their experiences of the treatment. 

 Then, because you possessed values of the outcome for each individual 
obtained under both “factual” and ‘counterfactual” conditions, you would 
be able to estimate the effect of the treatment for each participant. We 
call this the  individual treatment effect  (ITE). You would do this simply by 
subtracting the value of the outcome obtained under the counterfactual 
condition from the value obtained under the treated condition. In this 
imaginary world, you could then average these estimated ITEs across all 
members of the sample to obtain the estimated  average treatment effect  
(ATE) for the entire group. Finally, with a statistical technique like a simple 
paired  t -test, you could seek to reject the null hypothesis that the popula-
tion mean difference in participants’ outcomes between the treated and 
counterfactual conditions was zero. On its rejection, you could use your 
estimate of the ATE as an  unbiased  estimate of the  causal  effect of the 
treatment in the population from which you had sampled the participants. 

 Since time travel and selective memory erasure lie in the realm of imag-
ination rather than research, in practice you always have a “missing data” 
problem. As we illustrate in Figure   3.2  , you never actually know the value 
of the outcome for any individual under both the treatment and control 
conditions. Instead, for members of the treatment group, you are missing 
the value of the outcome under the control condition, and for members 
of the control group, you are missing the value of the outcome under the 
treatment condition. Consequently, you can no longer estimate the indi-
vidual treatment effects and average them up to obtain an estimate of the 
average treatment effect.  

 So, you must devise an alternative, practical strategy for estimating the 
average treatment effect. The reason that this is so diffi cult to do in prac-
tice is that actors in the educational system typically care a lot about which 
experimental units (whether they be  students  or  teachers  or  schools ) are 
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assigned to particular educational treatments, and they take actions to 
try to infl uence these assignments. In other words, the assignment of 
participants to treatments is typically  endogenous  in educational research. 
A consequence of this is that, in an investigation of the impact of class size 
on academic achievement, students assigned endogenously to differently 
sized classes are likely to differ from each other, and not only on dimen-
sions that can be  observed  (such as gender, age, and socioeconomic status), 
but also on dimensions that remain unobserved (such as intrinsic motiva-
tion and parental commitment, both of which are likely to be associated 
with achievement outcomes). 

 One positive way to restate this point — and to satisfy Mills’s third condi-
tion for making compelling causal inferences — is to insist that the 
assignment of participants to treatments be  exogenous  rather than  endoge-
nous.  According to the  Oxford English Dictionary ,  exogenous  means “relating 
to  external  causes,” and is the natural opposite of  endogenous , which means 
“relating to an  internal  cause or origin.” In the context of our book, these 
words have similar, though more refi ned and specifi c meanings. When we 
say that there is “exogenous variation” in the educational treatments that 
students receive, we mean that the assignment of students to treatments 
has  not  been determined by participants  within  the educational system —
 that is, by the students, parents, teachers, or administrators — themselves. 
Instead, their placement in a particular treatment condition has been 
determined “externally” by the investigator or some other independent 
agency. 

 Of course, you might argue that it is not good enough for assignment 
to treatment condition to be simply  exogenous . It is possible, for instance, 
that even external agents may be biased or corrupt in their assignment of 
participants to treatment conditions. Typically, though, when we say that 
assignment to experimental conditions is exogenous, we are assuming 

… the value of
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Group is …

… the value of
the outcome in
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Group is …
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the Treatment
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Known Missing

For members of
the Control
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Missing Known

     Figure 3.2  The challenge of the 
counterfactual.    
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that the external agent has exercised his or her opportunity to assign par-
ticipants in a way that supports causal inference directly. One very simple 
and useful way that such exogenous variation in experimental conditions 
can be created is for the investigator to assign participants randomly to 
treatments. Such an approach was taken in the Tennessee Student/
Teacher Achievement Ratio (STAR) experiment (Krueger,   1999  ). 

 In the mid-1980s, the Tennessee state legislature appropriated funding 
for a randomized experiment to evaluate the causal impact of class-size 
reduction on the reading and mathematics achievement of children in 
the primary grades. More than 11,000 students and 1,300 teachers in 
79 public schools throughout the state participated in the experiment, 
which became known as Project STAR .  In each participating school, 
children entering kindergarten in the fall of 1985 were assigned randomly 
by investigators to one of three types of classes: (a) a small class with 13 to 
17 children, (b) a class of regular size with 22 to 25 students, or (c) a class 
of regular size staffed by both a teacher and a full-time teacher’s aide. 
Teachers in each school were also assigned randomly to classrooms. 
Finally, the research design called for students to remain in their origi-
nally designated class type through third grade. 

 A major theme of our book is that some element of exogeneity in the 
assignment of units to a treatment is necessary in order to make causal 
inferences about the effects of that treatment. Expressed in the formal 
terms used by statisticians and quantitative social scientists, a source of 
exogenous assignment of units to treatments is necessary to  identify  the 
causal impact of the treatment. So, when a social scientist asks what 
 identifi cation strategy  was used in a particular study, the question is about 
the source of the exogeneity in the assignment of units to treatments. 
In subsequent chapters, we show that randomization is not the only way 
of obtaining useful exogenous variation in treatment status and conse-
quently of identifying the causal impact of a treatment. Sometimes, it is 
possible to do so with data from a quasi-experiment. Sometimes, it is even 
possible to do so with data from an observational study, using a statistical 
method known as  instrumental-variables estimation  that we introduce in 
Chapter 10. 

 The Tennessee STAR experiment, which the eminent Harvard statisti-
cian Frederick Mosteller called “one of the most important educational 
investigations ever carried out” (Mosteller   1995  , p. 113), illustrates the 
diffi culties in satisfying all of the conditions for good research that we 
described earlier in this chapter. After the Tennessee legislature autho-
rized the experiment in 1985, the State Commissioner of Education 
invited all public school systems and elementary schools in the state to 
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apply to participate. Approximately 180 schools did so, 100 of which were 
suffi ciently large to satisfy the design criterion of having three classes at 
each grade level from kindergarten through grade 3. The research team 
then chose 79 schools to participate. 

 The process of selecting schools to participate in the STAR experiment 
illustrates some of the compromises with best research practice that are 
sometimes necessary in even extremely well-planned experiments. First, 
the research sample of schools was chosen from the set of schools that 
volunteered to participate. It is possible that the schools that volunteered 
differed from those that did not in dimensions such as the quality of lead-
ership. Second, only quite large schools met the design requirements and 
consequently the STAR experiment provided no evidence about the 
impact of class size on student achievement in small schools. Third, 
although the research team was careful to include in the research sample 
urban, suburban, and rural schools, as the enabling legislation mandated, 
it did not randomly select 79 schools from the population of 100 schools 
that volunteered and met the size criteria (Folger,   1989  ). A consequence 
of the sample selection process is that the defi nition of the population of 
schools to which the results of the experiment could be generalized is not 
completely clear. The most that can be said is that the results pertain to 
large elementary schools in Tennessee that volunteered to participate in 
the class-size experiment. It is important to understand that the lack of 
clarity about the population from which the sample is taken is a matter of 
 external validity . The sampling strategy did not threaten the  internal valid-
ity  of the experiment because students and teachers within participating 
schools were randomized to treatment conditions. 

 The STAR experiment also encountered challenges to  internal validity.  
Even though children in participating schools had originally been ran-
domly and exogenously assigned to classes of different sizes, some parents 
were successful in switching their children from a regular-size class to 
a small class at the start of the second school year. This endogenous 
manipulation had the potential to violate the principal assumption that 
underpinned the randomized experiment, namely, that the average 
achievement of the students in regular-size classes provided a compelling 
estimate of what the average achievement of the students placed in the 
small classes would have been in the absence of the intervention. The 
actions of these parents therefore posed a threat to the internal validity of 
the causal inferences made from data collected in the STAR experiment 
about the impact of a second year of placement in a small class. 

 This term,  threat to internal validity , is important in the annals of causal 
research and was one of four types of validity threats that Donald Campbell 
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(  1957  ), a pioneer in developing methods for making causal inferences, 
described more than a half century ago. As mentioned earlier, it refers to 
rival explanations for the statistical relationships observed between 
educational treatments and outcomes. If we can remove all threats to 
internal validity, we have eliminated all alternative explanations for the 
link between cause and effect, and satisfi ed Mills’s third condition. 
Devising strategies to respond to threats to internal validity is a critical 
part of good social science. Of course, in quasi-experimental and observa-
tional research, ruling out  all  potential rival explanations for the 
hypothesized link between “cause” and “effect” is extraordinarily diffi cult 
to do. How do you know when you have enumerated and dismissed all 
potential rival explanations? The short answer is that you  never  do know 
with certainty (although, of course, with each rival explanation that you 
do succeed in ruling out explicitly, the stronger is your case for claiming 
a causal link between treatment and outcome, even in quasi-experimental 
and observational research). As we explain in the next chapter, one of the 
great advantages of the classic randomized experimental design, in which 
a sample of participants is assigned randomly to different treatments, is 
that this process eliminates all alternative explanations for any relation-
ship between class size and student achievement. But, even in randomized 
experiments, things can go wrong, and you may have to provide evidence 
for the internal validity of your work. In Chapter 5, we describe some of 
the problems that can crop up in randomized experiments and how 
skilled researchers have dealt with them. 

 Perhaps the most important lesson to take away from this chapter is 
that the active behaviors of the participants in the educational system —
 teachers, administrators, parents, and students — have enormous impacts 
on the quality of the education provided in particular schools and class-
rooms. These active behaviors often make it very diffi cult to conduct 
internally valid evaluations of the impacts of educational initiatives, 
whether they involve the placement of students in smaller classes, the use 
of new curricula and instructional methods, the installation of new ways 
to prepare teachers, or the creation of new governance structures. In the 
chapters that follow, we show how new sources of data, new approaches 
to research design, and new data-analytic methods have improved our 
ability to conduct internally valid studies of the causal impact of educa-
tional initiatives on student outcomes. We will make use of the terms 
introduced in this chapter, including  randomized experiment ,  quasi-experiment , 
 observational study ,  exogenous ,  endogenous , and  threats to internal and external 
validity . By the time you have fi nished reading our book, these terms will 
be old friends.     
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   What to Read Next   

 For readers who wish to follow up on the ideas we have raised in this chapter, 
we recommend Shadish, Campbell, and Cook’s comprehensive book (  2002  ) 
on the design of research,  Experimental and Quasi-Experimental Designs , 
and Morgan and Winship’s insightful book (  2007  ),  Counterfactuals and 
Causal Inference .   
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                                             4  

 Investigator-Designed Randomized 
Experiments        

       In February 1997, the School Choice Scholarships Foundation (SCSF), 
a privately funded organization, announced that it would provide scholar-
ships of up to $1,400 to 1,300 children from low-income families who 
were currently attending public elementary schools in New York City. 
The scholarships, renewable for at least three years, could be used to pay 
tuition at either religious or secular private elementary schools. This ini-
tiative provided an opportunity for a signifi cant number of low-income 
parents to do what more affl uent parents in a great many countries do —
 send their children to private school if they are unhappy with their child’s 
neighborhood public school. One indication of the attractiveness of this 
offer in New York City was that the Foundation received more than 10,000 
scholarship applications during a three-month period. 

 In May 1997, the SCSF held a lottery to determine which applicants 
were to be offered scholarships. One advantage of using a lottery to allo-
cate offers of the scholarship was that applicants could understand how 
the opportunity would be allocated and most would perceive the process 
as fair. A second advantage was that it provided researchers with an oppor-
tunity to draw causal conclusions about the consequences for children’s 
academic achievement of receiving an  offer  of a scholarship. In effect, the 
lottery provided a randomized experiment that researchers could use to 
investigate the impact on children’s subsequent achievement of receiving 
a tuition “voucher,” which parents could then choose to use or not.   1  

1.  Notice that the treatment in this randomized experiment is “receipt of a private-school 
tuition voucher,” not “attendance at private school,” because it was the offer of a 
voucher that was randomized. 
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We use data from the SCSF initiative — which we refer to as the New York 
Scholarship Program (NYSP) — to illustrate ways of working with data from 
randomized experiments. 

 In the next section, we present a framework for the design of experi-
mental research, often referred to as the  potential outcomes framework . 
Then, in the following section, we describe some simple statistical meth-
ods for analyzing the data that are generated in a randomized experiment, 
and we illustrate these methods using the NYSP example. We draw your 
attention on two key statistical properties of an estimator of experimental 
effect — the properties of  bias  and  precision —  that have great relevance for 
the design of research and subsequent data analysis. Our presentation of 
basic experimental research in this chapter sets the stage for more com-
plex methodological developments that we describe later in the book.     

   Conducting Randomized Experiments      

   The Potential Outcomes Framework   

 In recent decades, social scientists have based their discussions of research 
designs for addressing causal questions increasingly on the  potential out-
comes framework , also often referred to as  Rubin’s Causal Model  (Holland, 
  1986  ). We alluded to this framework in our previous chapter, but we take 
the opportunity here to formalize our presentation briefl y. In the context 
of the NYSP, Rubin’s framework describes the effect of a well-defi ned 
treatment — the  receipt  of a tuition voucher representing the offer of a 
private-school scholarship — on the reading achievement one year later of 
a sample of children. As described in Chapter 3, what we would really like 
to do to make a causal inference is not physically possible! This is to 
observe and compare the subsequent reading achievement of each child 
under two different yet concurrent experimental conditions: (a) the treat-
ment condition (voucher receipt), and (b) the counterfactual or “control” 
condition (no voucher receipt). Fortunately, Rubin’s Causal Model provides 
an alternative. 

 Prior to randomization to experimental condition, there are essentially 
two “potential” values of each child’s subsequent reading achievement 
outcome. We use  Y i  (1) to represent what the value of the  i  th  child’s out-
come  Y  would be if the child were assigned to the  treatment  (“1”) condition, 
and  Y i  (0) to represent what the value of the outcome would be for the same 
child if assigned to the  counterfactual  or control (“0”) condition. Although 
 each  of these outcomes is  potentially  observable prior to voucher assign-
ment (which is why Rubin referred to them as “potential” outcomes), 
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ultimately we can only observe one of them, depending on the condition 
to which the  i th   child is actually assigned. Nevertheless, if we had access to 
the values of the two potential outcomes for each child in the population —
 if we knew both  Y i   (1) and  Y i   (0) for each child — we could write down the 
 individual treatment effect  ( ITE i  ) for each child as the difference between 
the potential outcomes, as follows:

  ( )1 (0)i i iITE Y Y= −    
 Then, building on this hypothetical situation, the corresponding  average 
treatment effect  ( ATE ) across all the children in the population would simply 
be the population average or  expectation  of the individual treatment effects, 
as follows: 

  ( ) ( )1 0i iATE E Y Y= −⎡ ⎤⎣ ⎦    
 Of course, once a decision has been made about which children will actually 
receive a voucher, half of the data required by these statistical models 
will be missing. For instance, we will not know the value of Y i  (0) for any 
child receiving a voucher, and we will not know the value of  Y i   (1) for any 
child not receiving a voucher. Nevertheless, Rubin has shown that it is still 
possible to estimate the ATE from experimental data provided that par-
ticipants have been randomly assigned to the treatment conditions and 
that a critical assumption that he refers to as the  stable-unit-treatment-value-
assumption,  or SUTVA, holds .  When these conditions are met, we can 
estimate the population ATE (but not the corresponding  individual 
treatment effects [ITEs]) by simply differencing the average values of the out-
comes in the sample treatment and control groups, as follows: 
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 where  n  1  and  n  0  are the numbers of participants assigned to the treatment 
and control conditions, respectively, and  Y  is now the value of the outcome 
that has actually been observed for each child.   2   

 SUTVA is most easily understood by reading through the acronym 
backward. It is an  assumption  (A), which stipulates that the  treatment-value  
(TV) — in other words, the treatment effect — is  stable  (S) for all  units  (U), or 
participants. One way of thinking about this, in the context of our SCSF 
initiative, is that the potential outcomes for each child,  Y i   (1) and  Y i   (0), 

2.  Our brief introduction to Rubin’s  Potential Outcomes Framework  is drawn from the 
excellent review article by Imbens and Wooldridge (2009). 
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cannot depend on the group to which particular other children have been 
assigned. Peer-group effects constitute one possible violation of SUTVA 
in the evaluation of educational interventions. For example, if the impact 
of voucher receipt on the reading achievement of child  i  depended on 
whether the child’s next-door neighbor and closest friend also received a 
voucher (and could then choose to move with him or her from a public to 
a private school), then this would violate SUTVA. In Chapter 7, we discuss 
strategies for dealing with the peer-group problem in evaluating the 
impacts of educational interventions. 

 We turn now to the practical steps involved in implementing a two-
group randomized experiment. Figure   4.1   illustrates these steps. First, a 
sensible number of participants are  randomly sampled  from a  well-defi ned 
population .   3  Second, the sampled participants are  randomly assigned  to 
experimental conditions. Here, in the case of a two-group experiment, 
each is assigned to either the treatment or control condition. Third, a 
well-defi ned intervention is implemented faithfully among participants in 
the treatment group, but not among participants in the control group, 
and all other conditions remain identical. Fourth, the value of an out-
come is measured for every participant, and its sample average estimated 
separately for participants in the treatment and control groups. Fifth, the 
sample difference between the outcome averages in the treatment and 
control groups is computed, providing an estimate of the ATE .  Standard 
statistical methods — for instance, a two-group  t -test — are then used to test 
the null hypothesis of “no treatment/control group differences, in the 
population.” If we reject the null hypothesis, then we can conclude that 
the treatment has had a causal impact on the outcome. Irrespective of the 
outcome of the hypothesis test, the ATE is an unbiased estimate of the 
impact of the treatment in the population from which the sample was 
drawn.  

 The reason this process leads to an unbiased estimate of the treatment 
effect is that, when the assignment of participants to experimental condi-
tions is faithfully random, all factors other than treatment status will tend 
to be distributed equally between participants in the treatment and con-
trol groups. This will be true not only for observed characteristics of 
individuals in the two groups, such as gender, race, and age, but also for 
any unobserved characteristics, such as motivation. As a consequence, all 
rival explanations for any treatment/control differences in the outcome 

3.  As we explain in Chapters 6 and 7, choosing a suitable sample size requires a statistical 
power analysis. 
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can be disavowed, and the ATE regarded as a credible estimate of the 
causal impact of the treatment. 

 This argument is more complex than it appears on the surface because 
what is really important is not that the distributions of all characteristics 
of the individuals in the treatment and control  samples  are identical. In 
fact, due to the idiosyncrasies of sampling, this may not actually be the 
case  in the sample , especially if the experiment includes only a small 
number of participants. Instead, due to random sampling and random 
assignment, we anticipate that  potential  members of the treatment and 
control groups would be identical on all observed and unobserved char-
acteristics  on average, in the population.  A methodologist would say that the 
treatment and control groups are  equal in expectation . This means that any 
differences that may have occurred in observed (and unobserved) charac-
teristics between the treatment and control samples can be regarded as 
being due to sampling idiosyncrasy. And, of course, such idiosyncratic 
sampling differences are accommodated automatically by the margin of 
error that is built into statistical analysis by its probabilistic nature. 

 Notice that randomization plays two distinct and important roles in the 
logic of experimental design. Participants are randomly sampled from a 
defi ned population and are then randomly assigned to an experimental 
condition.   4  Each is critical to the success of the experiment. The random 
selection of participants into the research from the population ensures 
that participants are truly representative of the population under study, 
and it is a generic requirement of all good research whether experimental 
or descriptive. Random selection of participants from a defi ned popula-
tion permits you to generalize your fi ndings validly back to that population, 
and therefore provides  external validity  for the experiment. The second 
process of randomization, during which participants are assigned to their 
requisite experimental conditions, provides  internal validity  for your 
research, meaning that the average difference between the treatment and 
control groups in the value of the outcome is truly a credible estimate of 
the causal impact of the treatment. 

4.  From a purely  technical  perspective, it does not matter in which order these two ran-
domizations occur. For instance, for the purposes of this argument, it would be equally 
effective to label each population member at random as a potential “treatment” or 
“control” group member and then sample randomly from each of these newly labeled 
subpopulations into the treatment and control groups. The results would be identical. 
Of course, this “labeling the population” approach is considerably more impractical. 
However, conceiving of the process of random selection and assignment in this way 
does provide a better sense of how members of the treatment and control groups can 
be equal in expectation — that is,  equal, on average, in the population . 
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 As explained in Chapter 3, a necessary condition for making a causal 
inference about the impact of an educational treatment is that assign-
ment of students to their treatment or control status be exogenous. In the 
experiment depicted in Figure   4.1  , we ensure the required exogeneity by 
the faithful implementation of the random assignment of participants to 
experimental conditions. Under the random assignment process, each 
sampled participant is destined with known probability to a particular 
experimental condition in a process that is completely independent of 
the participant’s personal attributes, backgrounds, choices, and motiva-
tions. Participants cannot choose the experimental condition to which 
they are assigned, nor can they manipulate their assignment once received. 
Without the  random  — and, therefore,  exogenous  — assignment of participants 
to experimental conditions, you could not claim that participants in the 
treatment and control groups were equal in expectation before the start 
of the experiment. Consequently, your ability to draw unbiased causal 
conclusions from your fi ndings would be challenged, and the internal 
validity of your experiment impaired.     

   An Example of a Two-Group Experiment   

 To illustrate the design and implementation of a randomized experiment, 
we turn to the evaluation of the consequences for student achievement of 
the scholarship offer that the SCSF provided to a random sample of low-
income families in New York City. Recognizing that funding constraints 
would limit participation in the NYSP, a research group led by William 
Howell and Paul Peterson suggested that a lottery be used to decide 
which volunteer families would receive the offer of a scholarship to help 
pay a child’s tuition at a private elementary school. Howell and Peterson 
then commissioned Mathematica Policy Research, an organization with 
experience in conducting high-quality random-assignment evaluations, to 
conduct the lottery, follow participating families for three years, and col-
lect the data that would be used to evaluate how voucher receipt impacted 
children’s subsequent academic achievement.   5  Mathematica investigators 
randomly assigned 1,300 families to a treatment group that received vouch-
ers, and 960 families to a control (or comparison) group that did not.   6 ,   7  

5.  Using the term made popular by Milton Friedman (and discussed in Chapter 2), the 
“offer of a scholarship” is often referred to as the “receipt of a voucher.” 

6.  Notice that the sizes of the treatment and control groups do not have to be identical. 
7.  To reduce attrition of participants from the study, control group families were offered 

modest payments to induce them to complete the same tests and surveys that voucher 
recipients completed. 
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     Figure 4.1    Conducting a two-group randomized experiment.    
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 To interpret the results of this experimental evaluation of the NYSP, it 
is important to understand what it means for a family to be a member of 
either the treatment or the control group. Assignment to the treatment 
group meant that the family received a voucher worth as much as $1,400 
toward the cost of private-school tuition. It did not mean that the relevant 
child of every family assigned to the treatment group actually  attended  a 
private school. Parents who received vouchers had to locate a private school 
for their child that was to their liking, enroll their child in the school, pay 
the difference between the value of the voucher and the school’s tuition, 
and deal with any ensuing logistical details, such as arranging transporta-
tion to the school for their child. Not surprisingly, about one in fi ve 
families that received vouchers ended up not sending their child to a pri-
vate school. Similarly, it is also important to keep in mind that assignment 
to the control group meant that the family did not receive a tuition 
voucher. The family still had all of the educational choices available to it 
that it had before volunteering to participate in the experiment. In par-
ticular, families in the control group could still send their children to a 
private school. In fact, 5 %  of control group families did so.   8  

 On its face, the NYSP evaluation has all the attributes of a “classic” two-
group randomized experiment. However, it is important to be clear about 
the question that the experiment addressed, and the population to which 
the results apply. The “defi ned population” from which students who 
participated in the NYSP experiment were sampled does  not  include all 
children from low-income families who were enrolled in the relevant 
grades of the New York City school system in 1997. Instead, it is defi ned 
as the population of 11,105 children from low-income families in the 
New York City public school system whose parents submitted applica-
tions for participation in the scholarship program. These  volunteers  
constituted the  frame  from which the 2,260 students who actually partici-
pated in the experiment were randomly and representatively sampled, 
and who were subsequently randomly assigned by investigators to the 
treatment (receipt of voucher) or control (no receipt of voucher) group. 
Consequently, the external validity of the research fi ndings is limited to 
generalizations to this defi ned population and not to the broader popula-
tion of children from low-income families in the New York City public 
schools. The reason is that the population of volunteer applicants may differ 
in critical unobserved ways from eligible families that did not volunteer. For 
example, applicant families may have hidden reservoirs of entrepreneur-
ship, motivation, and commitment that potentially distinguished them 

8.  Howell & Peterson (2006), p. 204. 
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from the eligible families that did not apply for private-school tuition 
vouchers. 

 It is also critical to understand that the primary question that the NYSP 
evaluation addressed concerned the impact of the family’s receipt of a 
tuition voucher on the student’s ultimate academic achievement. This is 
an important topic because, as we discussed in Chapter 2, many govern-
ments provide families with vouchers to help pay their children’s tuitions 
at private schools. However, it is important to distinguish the question of 
whether voucher receipt impacts student achievement from the question 
of whether attendance at a private school instead of a public school 
impacts student achievement. In Chapter 11, we explain how instrumental-
variables estimation can provide a method of using the lottery-outcome 
information from random-assignment experiments to address this second 
research question. However, the analysis described in this chapter 
addresses the fi rst question, whether the randomized  receipt  of a voucher 
had a causal impact on children’s subsequent educational achievement.      

   Analyzing Data from Randomized Experiments      

   The Better Your Research Design, the Simpler Your 
Data Analysis   

 One advantage of designing your research as a randomized experiment is 
that subsequent data analysis can be very straightforward. The reason is 
that random assignment renders the treatment and control groups equal 
in expectation on all observed and unobserved dimensions. As a result, 
you do not need to employ complex data-analytic strategies to adjust your 
fi ndings for inadvertent unobserved background differences between the 
treatment and control groups. 

 For example, in the NYSP evaluation, its causal impact on students’ 
subsequent academic achievement can be estimated easily by contrasting 
the sample average values of academic achievement between students in 
the “voucher” and “no voucher” groups. We illustrate this in the upper 
panel of Table   4.1  , for a subsample of African-American children that we 
have purposefully selected from the NYSP study, using the defi nitions of 
race/ethnicity applied by the original authors.   9  For presentational sim-
plicity, we focus on the 521 African-American children who completed 

9.  We thank Don Lara, the director of administration at Mathematica Policy Research ,  for 
providing the NYSP data. 
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achievement tests prior to entering the NYSP experiment and at the end 
of their third year of participation. Of these, 291 were participants in the 
“voucher receipt” group and 230 in the “no voucher” group. Following 
the procedure adopted by Howell et al. (  2002  ), we have averaged each 
child’s national percentile scores on the reading and mathematics tests to 
obtain variables measuring composite academic achievement on entry 
into the study (which we refer to subsequently as covariate  PRE_ACH ) 
and after the third year of the experiment (which we refer to subsequently 
as outcome  POST_ACH ).  

      Table 4.1  Alternative analyses of the impact of voucher receipt ( VOUCHER ) on the 
third-grade academic achievement ( POST_ACH ) for a subsample of 521 African-
American children randomly assigned to either a “voucher” treatment or a “no voucher” 
control group ( n  = 521)  

   Strategy #1: Two-Group t-Test   

 Number of 
Observations 

 Sample Mean  Sample Standard 
Deviation 

 Standard 
Error  

  VOUCHER  = 1  291  26.029  19.754  1.158  
  VOUCHER  = 0  230  21.130  18.172  1.198  
 Difference  4.899  1.683  
  t -statistic  2.911  
 df  519  
  p -value  0.004  

  Strategy #2: Linear Regression Analysis of POST_ACH on VOUCHER   

 Predictor  Parameter  Parameter 
Estimate 

 Standard 
Error 

  t -Statistic   p -value  

  INTERCEPT     β  0    21.130  1.258  16.80  0.000  
  VOUCHER     β  1    4.899  1.683  2.911  0.004  
  R 2   Statistic  0.016  
 Residual Variance  19.072  

  Strategy #3: Linear Regression Analysis of POST_ACH on VOUCHER, with PRE_ACH as 
Covariate   

 Predictor  Parameter  Parameter 
Estimate 

 Standard 
Error 

  t -Statistic   p -value  

  INTERCEPT     β  0    7.719  1.163  6.64  0.000  
  VOUCHER     β  1    4.098  1.269  3.23  0.001  
  PRE_ACH     γ    0.687  0.035  19.90  0.000  
  R 2   Statistic  0.442  
 Residual Variance  14.373  
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 In the top panel of Table   4.1  , we present the results of a two-sample 
t -test conducted on the third-year academic outcome, by experimental 
condition.   10  Notice that the sample average achievement of African-
American children in the “voucher” and “no voucher” groups at the end 
of the third year — 26.03 and 21.13, respectively — differs by almost 5 points, 
in favor of the treatment group. This ATE is statistically signifi cant at the 
0.05 level ( t  = 2.911,  df  = 519,  p -value = 0.004, two-sided test), and we con-
clude that receipt of a private-school tuition voucher did indeed cause 
African-American children in this population to achieve at higher levels. 

 Of course, testing the equality of outcome means between the 
treatment and control groups can also be completed using ordinary least-
squares (OLS) regression analysis, with identical results. In our NYSP 
subsample of African-American children, for instance, we can regress 
third-year academic achievement on dichotomous “question” predictor, 
VOUCHER , which we have defi ned to indicate whether a participant 
received a private-school tuition voucher (= 1), or not (= 0). Our hypothe-
sized regression model is

   0_ i i i0 1POST ACHi b b eii0 1 i0 1 VOUCHERiVOUCHER0 1 ii0 1     (4.1)

  where  POST_ACH i   is the academic achievement of the  i  th  student,   β  0   and 
β  1   are the regression intercept and slope parameters, respectively, and the 
ε  i   are residuals, subject to the usual OLS distributional assumptions.   11

Because our single question predictor —  VOUCHER  — is dichotomous (and 
coded 0/1), the intercept parameter represents the average academic 
achievement of control group ( no voucher ) participants, in the population. 
The slope parameter   β  1   represents the average treatment effect — the pop-
ulation average difference in academic achievement between children 
who received a voucher and those who did not — and is therefore the 
parameter of central interest in the regression analysis.   12  We have fi tted 

10.  Note that this is a pooled  t -test, in which we assume that the population variance of 
the outcome is identical in the treatment and control groups. 

11.  As usual, each person is assumed to draw their residual randomly and independently 
from an identical normal distribution with mean zero and homoscedastic variance,  

2
es   . 

12.  Although we distinguish  two  experimental conditions — “voucher” versus “no voucher” —
 as usual, we need only a single dichotomous predictor to separate these groups. We 
could have created two dummy predictors to represent them — for instance, (a)  VOUCHER , 
coded 1 when a participant was in the treatment group, and (b)  NOVOUCHER , coded 
1 when a participant was in the control group. However, as is well known, it is unnec-
essary to include both of these question predictors in the regression model, because 
membership in the treatment and control groups is mutually exclusive, which implies 
that predictors  VOUCHER  and  NOVOUCHER  are perfectly collinear. Therefore, one 
can be omitted from the model, thereby defi ning a “reference category.” In the model 
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this model in our subsample of African-American children and present 
the obtained OLS parameter estimates and goodness-of-fi t statistics in the 
middle panel of Table   4.1  .  

 Notice that the summary statistics generated in the regression and  t -test 
analyses are identical. In the regression analysis, the estimated value of 
slope parameter   β  1   is 4.899, replicating the estimated value of the average 
treatment effect obtained in the prior  t -test analysis. Notice, in addition, 
that the inferential statistics accompanying the estimated slope parameter, 
including the standard error of 1.683 associated with the average treatment 
effect, the  t -statistic on   β  1   of 2.91, and the  p -value of 0.004, are identical to 
those obtained in the earlier  t -test. So, either analysis confi rms that the 
“voucher”/“no voucher” outcome difference is different from 0, in the 
population ( α  = 0.05). 

 Of course, you can easily extend the use of such simple statistical tech-
niques for analyzing two-group experimental data to accommodate more 
complex research designs. For instance, you can extend both the  t -test 
and the regression approaches to handle comparisons among multiple 
experimental groups, in addition to a control group. Let’s suppose, for 
instance, that investigators in the NYSP experiment had implemented 
two concurrent voucher treatments, each providing a private-school 
tuition voucher, but of different monetary value — for example, $1,400 and 
$4,200 per annum. Families and their children could still have been 
assigned by lottery to either of these treatment conditions or to the 
control group. In order to address more complex research questions, sub-
sequent data analyses would have contrasted academic outcomes across 
the three groups thus defi ned. For instance, investigators could have used 
 multiple  regression analysis with the two voucher treatments represented 
by a pair of dichotomous predictors,  VOUCHER1  and  VOUCHER2 , each 
coded 0/1 to distinguish each of the voucher conditions from the control 
group condition. They could then ask the “global” question of whether 
provision of a voucher (irrespective of its value) affected student out-
comes by testing the hypothesis that both the  VOUCHER1  and  VOUCHER2  
predictors simultaneously had no impact. It would also be possible to 
investigate subsequently whether the more valuable voucher had a greater 
impact on children’s academic achievement than did the less valuable 
one by testing the null hypothesis that the coeffi cients associated with the 
two predictors were identical, in the population. Standard data-analytic 
texts provide detailed guidance for these kinds of statistical analyses. 

in Equation 4.1, we have omitted the predictor that identifi es members of the control 
group. 
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 Finally, if some children in the treatment or control groups attended 
the same school subsequently, we would need to modify the analyses to 
accommodate the more complex error covariance structure that would 
be present under such clustering. Random effects analyses, multilevel 
modeling, and generalized least-squares (GLS) regression analysis all pro-
vide the required extensions, each appropriate under different restrictions 
and assumptions. We mention these methods here only in passing, because 
we return to the issue of participants being clustered in hierarchies — in 
classrooms, schools, and districts — in Chapter 7, where we grapple more 
intimately with the idiosyncrasies of the educational setting. For now, we 
seek only to establish that OLS regression analysis is an acceptable start-
ing point for the analysis of experimental data.     

   Bias and Precision in the Estimation of 
Experimental Effects   

 When we used linear regression analysis to estimate the causal effect of 
voucher receipt on the academic achievement of our subsample of 
African-American children (in the middle panel of Table   4.1  ), the OLS-
estimated coeffi cient on the  VOUCHER  question predictor was our focus 
of attention. Since the estimated coeffi cient was positive, statistically sig-
nifi cant, and had a magnitude of about 5 points, we concluded that 
voucher receipt was indeed responsible for increasing the achievement of 
these students by that amount. 

 Since we always rely on the estimate of a parameter like this to make a 
causal inference, it is important that the estimators we employ — like the 
OLS estimator of regression slope in our NYSP example — have  optimal  
statistical properties. Two such properties that are of immense impor-
tance in all statistical analyses, including analyses of experimental data, 
are the  bias  and  precision  of an estimator. In using statistical analyses to 
support statements about the causal effect of voucher receipt on the aca-
demic achievement of African-American children at the end of the third 
grade, we would like the OLS estimate of the  VOUCHER  impact to be 
both  unbiased  and as  precise  as possible given the data. 

 Technical defi nitions of an estimator’s bias and precision are deeply 
rooted in the central principles of statistical analysis. To understand them 
conceptually, you must fi rst recall the process of statistical inference itself, 
which consists of a series of well-defi ned steps. The process begins when 
you draw a representative sample of participants from a defi ned popula-
tion, assign sample members to different treatments, measure their 
outcomes, and use these data to estimate the central parameter of interest. 
Finally, you conduct statistical tests to confi rm that your inferences can be 
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generalized validly to the underlying population from which you originally 
drew the sample. 

 With this standard inferential machinery in place, let us engage in a 
“thought experiment.” Imagine that we could replicate this entire process 
of sampling, estimation, and inference many thousands of times, return-
ing sampled members to the population each time with their memories 
erased and their original condition restored. A process of replication like 
this would provide many thousands of legitimate estimates of the param-
eter that is the focus of our research question — in our case, thousands of 
OLS estimates of the regression slope associated with question predictor 
 VOUCHER . For each replication, we would draw a new and different 
sample randomly from the population and repeat the entire process of 
experimentation, data collection, and parameter estimation. The many 
replicate OLS estimates of the impact of voucher receipt would differ, 
of course, as a result of the natural idiosyncrasies of random sampling. 
In one replication, for instance, we might obtain an OLS estimate of the 
 VOUCHER  regression slope of 4.899, as in our current study. In the next 
replication, the estimate might have a value of 2.7. In a third replication, 
it might be 6.2. 

 If you could actually engage in this tedious process of replication, you 
could also produce a histogram of all the burgeoning pool of replicated 
estimates. Imagine what this hypothetical histogram would look like. If the 
estimator had been adequately designed to summarize the data appropri-
ately each time, where would you want the center of the histogram of all 
these replicated values to lie? What kind of spread would you want it to 
have? Questions like these are relatively easy to answer. To feel secure that 
an estimator had been well designed as a credible summary of the popula-
tion average treatment effect, you would want the hypothetical distribution 
of all these many replicated values to have two important properties. 

 First, even though the replicated values would be scattered as a result 
of the idiosyncrasies of random sampling, you want them to be scattered 
in some reasonable way around the “correct” answer. That is, you would 
hope that their replicated values would be centered on the actual value of 
the population parameter that you were trying to estimate. Suppose, for 
instance, that the population effect of voucher receipt is actually to add 
4.5 points to a student’s academic achievement. On average then, the 
many OLS estimates of this parameter that you obtained in your replica-
tions should be scattered around a value of 4.5. In fact, you would 
probably hope that your many OLS estimates of the  VOUCHER  regres-
sion slope — if you had the time and money to obtain them — would 
ultimately average out to the actual population value of 4.5. If this were 
the case, then you would be able to say that the OLS estimator was an 
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unbiased estimator of the  VOUCHER  regression slope. This means that 
although an estimate may not actually equal the underlying population 
parameter value on any particular occasion of sampling, over many repli-
cations the estimates would average to that value. Returning to the world 
of actual research practice,  unbiasedness  refers to the condition in which, 
if you were to carry out only a single experiment and analysis, the obtained 
OLS regression slope would provide an estimated value of the critical 
parameter that was, on average, “on target.” 

 A second important statistical property that you would like for any esti-
mator is  precision . In our preceding thought experiment, one estimator 
would be more precise than another if the scatter that was induced in the 
estimated values during the hypothetical process of endless replication 
were smaller. For instance, in our NYSP example, you would undoubtedly 
fi nd it quite reassuring if the multiple OLS estimates that you obtained 
over the many replications were grouped very tightly together, rather 
than being scattered far and wide. The notion of “precision” is a statistical 
statement about the possible scatter of the many replicated values. 
Estimators that tend to provide widely scattered estimates on multiple 
replications are regarded as being  less precise  than those that provide 
tightly clustered values. 

 A reasonable summary of an estimator’s precision is the  standard deviation  
of the many replicated estimates. This is, in fact, the rationale that under-
lies the  standard error  statistic, which is  the standard deviation of the many 
estimates  that would be provided in a hypothetical process of replication 
like the one we have described.   13  If you knew the value of such a standard 
error statistic for the OLS-estimated  VOUCHER  regression slope, and it 
were small, then you would anticipate that the many values of the 
 VOUCHER  regression slope that could be obtained in endless replication 
would be tightly clustered together. In other words, you could regard the 
OLS-estimated  VOUCHER  regression slope as being a more precise esti-
mate of the population slope than some other statistic that had a large 
standard error. 

 Of course, we are not typically inclined to replicate the entire research 
process many times simply for the purpose of estimating the standard 
error of the critical parameter. Fortunately, you do not need to engage in 
such tedium, providing you are willing to make a set of very particular 
assumptions. The assumptions, which are described in more detail later, 
concern a judgment that the scatter of the data in our sample provides a 

13.  Technically, it is the standard deviation of the estimates obtained in infi nite re-sampling 
from a population in which the null hypothesis (that the target parameter is zero) 
is true. 
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good estimate of what the data scatter in the underlying population is 
like. If these assumptions hold, you can obtain not only an estimate of the 
parameter of interest itself (such as the OLS-estimated  VOUCHER  regres-
sion slope) from a single replication of the research, but also an estimate 
of its standard error.   14  

 In the middle panel of Table   4.1  , where we display the results of using 
OLS regression analysis to estimate the average treatment effect in our 
single subsample of African-American children from the NYSP experi-
ment, we estimate the standard error of the estimated  VOUCHER  
regression slope to be 1.683 (about one-third of the size of the slope esti-
mate itself, 4.90). Providing that the assumptions underpinning the OLS 
estimation process are met in our regression analysis, this estimated stan-
dard error gives us great confi dence that we likely could not have gotten 
our particular value of the slope estimate (4.90) accidentally, as a result 
of the idiosyncrasies of sampling from a population in which there was 
actually no relationship between voucher receipt and student academic 
achievement. 

 Clearly, it makes sense to use estimators that are both  unbiased  and as 
 precise  as possible. Fortunately, after much technical work in statistical 
theory, stretching back over a century, methodologists have proven that, 
 providing its underlying assumptions are met , an OLS estimator of a regres-
sion slope is the best linear unbiased estimator of a linear relationship 
that can be devised for a given dataset.   15  This means that not only is an 
OLS estimate an unbiased estimate of the underlying population linear 
regression slope, it also has the smallest standard error — that is, it is the 
most precise — among all possible estimators that might be devised from 
the same data. Consequently, in empirical research that requires the 
estimation of regression slopes, it makes sense not only to choose OLS 

14.  Today, using high-speed computing, there are ways of estimating standard errors, 
such as the  jackknife      (Miller, 1974)   and the  bootstrap,      (Efron & Tibshirani, 1998)  , which 
are “nonparametric” and do not make strong distributional assumptions. Instead, 
they use a process of “resampling from the sample,” which matches our hypothetical 
“thought experiment,” to obtain many estimates of the parameter of interest and then 
estimate the standard deviation of these multiple estimates to estimate the standard 
error. When you apply these techniques, you replace the standard OLS parametric 
assumptions with the raw power of computers and use that power to re-sample, not 
from the population itself, but from the sample you have already drawn from that 
population! This idea is founded on the notion that a random sample drawn from a 
random sample of a population is also a random sample from the population itself. 

15.  There are other well-known estimators of the regression slope, including those that 
minimize the  mean absolute deviation  of the data points from the trend line, which has 
been generalized to provide the methods of quantile regression, and regression based 
on ranks. 
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methods as the technique for addressing the research questions but, more 
importantly, to make sure that all its assumptions are met. It is this last 
point that is critical for the development in the rest of our book. 

 But, what are these critical assumptions and how do they impact the 
bias and precision of the OLS estimator? In specifying a regression 
model — like the one in Equation 4.1 — you make assumptions about both 
the  structural  and  stochastic  parts of the model. In the structural compo-
nent of the model (which contains the intercept, the predictors, and the 
slope parameters), you assume that the hypothesized relationship between 
outcome and predictor is linear — that unit differences in the predictor 
correspond to equal differences in the outcome at every level of the pre-
dictor. If you suspect that this assumption may not be valid, then you can 
usually seek transformations of the outcome or the predictor to achieve 
linearity. In our NYSP example, we are not concerned about the linearity 
assumption as our principal predictor is a dichotomy that describes 
voucher receipt. This means that there is only a single unit difference in 
the predictor with which we are concerned, and that is the difference 
between assigning a child to the control or the treatment group. In cases 
in which continuous predictors are included in the regression model, it is 
more pressing to make sure that the linearity assumption is met. 

 Notice the presence of the residual in the hypothesized regression 
model in Equation 4.1. These residuals, by their presence in the model, 
are also statements about the population, but the statements are about 
stochastic — not structural — properties. They stipulate that we are willing 
to believe, in the population, that some unknown part of the value of the 
outcome for each individual is not directly attributable to the effects of 
predictors that we have included in the model — in our case, the single 
predictor,  VOUCHER . Then, as discussed earlier, to proceed with statisti-
cal inference in the context of a single sample of data, we must adopt a set 
of viable assumptions about the population distribution of the residuals. 
Under the OLS fi tting method, for instance, we assume that residuals are 
randomly and independently drawn from a distribution that has a zero 
mean value and an unknown but homoscedastic (that is, constant) variance 
in the population.   16  Each part of this statement affects a different facet of 

16.  Notice that we have not stipulated that the population residuals are drawn from a 
 normal  distribution, despite the common practice of assuming that they are normally 
distributed when standard regression analysis is conducted. We have taken this subtle 
step because the actual algebraic formulation of the OLS estimate of the regression 
slope, and its unbiasedness property, derive only from a fi tting algorithm that mini-
mizes the sum-of-squared residuals, regardless of their distribution. It is the subsequent 
provision of ancillary inferential statistics—the critical values and  p -values of the asso-
ciated small-sample statistical tests—that depend upon the normal theory assumption. 
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the OLS estimation process. For instance, that the residuals are “randomly 
and independently drawn” is the make-or-break assumption for the 
 unbiasedness  property of the OLS estimator of regression slope. In par-
ticular, for this assumption to be true, the regression residuals must be 
 completely unrelated to any predictors  that are included in the regression 
model. If you violate this “randomness” assumption — for instance, if the 
values of the residuals in Equation 4.1 are correlated with the values of 
predictor,  VOUCHER , for some reason — then the OLS estimate of regres-
sion parameter,   β  1  , will be a biased estimate of the population average 
treatment effect. 

 Let us return to the second property of an OLS estimator that we have 
deemed important — the property of precision. We have stated earlier that, 
providing its underlying assumptions are met, an OLS estimate is the 
most precise estimate of a regression slope that can be devised from a 
given set of data, and we have introduced the concept of the standard 
error of the estimated slope to summarize that precision. In our presenta-
tion, we have argued that the value of the standard error of the slope 
estimate depends not only on the data but also on the distributional 
assumptions made about the population residuals — that they are  homosce-
dastic  and, ultimately, normally distributed. In fact, adopting these 
assumptions and provided that the residual homoscedasticity assumption 
holds, standard regression texts tell us that the estimated standard error 
of the OLS-estimated  VOUCHER  regression slope in Equation 4.1 is
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 where, on the right-hand side of the equation and within the square root 
sign, the numerator contains the estimated variance of the residuals, 2ˆes   , 
and the denominator contains the sum of squared deviations of the values 
of predictor  VOUCHER  around their sample mean,  VOUCHER•   . A simi-
lar expression for standard error could be crafted if there were multiple 
predictors present in the model. For our purposes, however, it is suffi cient 
to focus on the single predictor case and the expression in Equation 4.2.  

Finally, it is also worth noting that, under the normal theory assumption, an OLS 
estimate of a regression slope is identical to the maximum-likelihood estimate (MLE). 
Typically, in standard regression analysis, such hairs are not split and the assumption 
that population residuals are normally distributed is often bundled immediately into 
the standard expression of the assumptions. 
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 Inspection of this expression for standard error provides insight into 
the precision of the OLS estimator of regression slope that has critical 
implications for data analysis. It is clear from Equation 4.2 that the preci-
sion of an OLS slope estimator depends on the variance of the residuals 
in the particular analysis. Datasets that generate extensive scatter in the 
residuals lead to OLS estimates of slope that are not very precise. This 
suggests that if you could design your research so that the residual vari-
ance was smaller, then the standard error of your OLS slope estimate 
would be reduced. Increased precision thus leads to an increase in the 
magnitude of the  t -statistic associated with the regression slope,   17  and a 
corresponding improvement in your ability to reject the null hypothesis 
that the regression slope is 0, in the population. As we describe in Chapter 6, 
we can interpret an improvement in our ability to reject a null hypothesis, 
all else being equal, as an improvement in the  statistical power  of the analyses. 
Thus, the lesson we learn here is that, if we use OLS methods and the 
NYSP data to estimate the average treatment effect of voucher assign-
ment, fi nding ways to reduce the residual variance present in the regression 
analysis leads to greater precision for the estimated treatment effect and 
greater power in determining whether voucher assignment has made a 
difference to children’s subsequent academic achievement. 

 It is the desire to reduce the magnitude of the residual variation that 
motivates the inclusion of covariates as predictors in the analysis of exper-
imental data. If you return to Table   4.1   and compare the results of the two 
regression analyses reported in its middle and bottom panels, you will 
notice some interesting differences between them. In the middle panel, 
we have regressed academic achievement on the  VOUCHER  question pre-
dictor. The randomization of voucher assignment to participants ensures 
that the  VOUCHER  predictor is uncorrelated with the residuals in the 
hypothesized regression model, ensures that our estimate of the treatment 
effect is unbiased, and permits us to declare that receipt of a private-school 
tuition voucher  caused  these children’s academic achievement to rise by 
almost 5 points, a statistically signifi cant effect ( p  <0.004; two-sided test). In 
the bottom panel of the table, we have added a control predictor to the 
analysis,  PRE_ACH , the student’s academic achievement prior to enroll-
ment in the NYSP experiment. In this second regression analysis, voucher 
receipt also has a statistically signifi cant and positive causal impact on chil-
dren’s academic achievement ( p  <0.001; two-sided test). Our estimate of its 
effect, although a little smaller than the estimate obtained in the middle 
panel, has about the same magnitude, just over 4 points. 

17.  The  t -statistic is the ratio of the slope estimate to its standard error. 
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 We are not concerned here with the differences between these two 
estimates of the causal effect. Because the assignment of vouchers to fam-
ilies and children was random and exogenous, both are unbiased estimates 
of the average treatment effect in the population.   18  The question we are 
asking, instead, is: What advantage was there to including the covariate in 
the regression analysis in the bottom panel, if we could already make an 
unbiased causal interpretation on the basis of the middle panel? The 
answer concerns  precision . Notice that the inclusion of the covariate in 
the regression analysis in the bottom panel has reduced the magnitude of 
the residual variance by 25 % , from a value of 19.072 in the middle panel 
to 14.373 in the bottom panel.   19  This has occurred because the prior test 
score is an important predictor of third-grade academic achievement, 
and so its inclusion has predicted additional variation in the outcome, 
with a consequent reduction in the unexplained variation that is repre-
sented by the residuals. 

 This reduction in residual variance is refl ected in a substantial reduction 
in the standard error of the estimated  VOUCHER  regression slope (from 
1.683 in the middle panel to 1.269 in the bottom panel). As a consequence, 
the  t -statistic associated with the  VOUCHER  slope rises from 2.911 to 3.23, 
and we obtain a  p -value indicating an even smaller probability that our 
data derive from a population in which the average treatment effect is 0.   20  
Thus, by including the covariate — even though we did not need it to obtain 
an unbiased estimate of the treatment effect — we enjoy an improvement 
in statistical power, at the same sample size. This gain in power is refl ected 
in the reduction of the associated  p -value from 0.004 to 0.001. 

 It is important to keep in mind why appropriate covariates are often 
included in analyses of experimental data. It is certainly not to reduce 
bias. If you have randomly assigned participants to experimental condi-
tions, then your estimate of the average treatment effect will be unbiased. 
If your treatment assignment was fl awed and not random, then there is 
little you can do to avoid bias. Regardless of how many covariates you 

18.  Different unbiased estimators of the same population parameter often provide 
differently valued estimates of the same effect, in the same sample. This is neither 
unusual, nor problematic, because each estimator is using the data to offer its own 
“best guess” as to the value of the underlying population parameter. For instance, in 
a symmetric distribution, the  mean, median,  and  mode  are all unbiased estimators of 
the “center” of a normally distributed variable in the population. But, each weights 
the elements of the sample data differently and so the values of the three estimators 
are unlikely to be identical, even in the same sample of data. 

19.  Notice that the  R 2   statistic has risen correspondingly, from 0.016 to 0.442. 
20.  Notice that this increase in the  t -statistic occurs despite a reduction in the parameter 

estimate itself from 4.899 to 4.098. 
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include and whatever stories you tell to motivate their inclusion, you will 
fi nd it hard to convince your audience that you have removed all the 
potential bias by “controlling” for these features. Rarely can you fi x 
 by analysis  what you bungled  by design  (Light, Singer, & Willett,   1990  ). The 
purpose of incorporating relevant covariates into an analysis of experi-
mental data is to reduce residual variation, decrease standard errors, and 
increase statistical power. 

 Covariates appropriate for inclusion in an analysis of experimental 
data include important exogenous characteristics of individuals that 
do not vary over time, such as gender and race, and variables whose values 
are measured  prior  to random assignment. The baseline test scores 
included in Howell and Peterson’s regression model fall into this second 
category. It is important to keep in mind that it is inappropriate to include 
as covariates variables whose values are measured after random assign-
ment has been completed because they may be endogenous. An example 
of the latter would be scores on tests that students took at the  end  of their 
fi rst year in the NYSP experiment. These latter scores are not candidates 
for inclusion as covariates in the regression model because their values 
may have been affected by students’ participation in the experiment. 
Their inclusion would lead to bias in the estimate of the impact of voucher 
receipt on student achievement measured at the end of three years of 
participation. We return to these issues throughout the rest of the book, 
as they are central to our ability to employ a variety of research designs to 
obtain unbiased estimates of causal effects.      

   What to Read Next   

 Larry Orr’s   1999   book,  Social Experiments , describes many challenges in 
using randomized experiments to evaluate public programs. The book 
also provides interesting examples from many randomized experiments 
conducted in the United States.  Learning More from Social Experiments , 
edited by Howard Bloom (  2005  ), provides insightful explanations of ways 
to use data from randomized experiments to explain why the effective-
ness of many programs varies from site to site, and the mechanisms 
through which public programs have their impacts.   
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 Challenges in Designing, 
Implementing, and Learning from 
Randomized Experiments        

       In 2002, the U.S. federal government’s Institute of Education Sciences 
created the What Works Clearinghouse (WWC), the mission of which is 
to evaluate evidence on the effectiveness of education programs, practices, 
and policies, and to make its conclusions available publicly through 
its website,  http://www.whatworks.ed.gov .   1  As of May 2009, WWC had 
reviewed more than 2,100 studies to evaluate the effectiveness of interven-
tions in seven topical areas, one of which was elementary-school 
mathematics. The analysts at WWC examined 301 studies evaluating the 
effectiveness of 73 different interventions for improving elementary-
school students’ mathematical skills. They concluded that 97 %  of the 
evaluations (292 out of 301) did not meet the WWC’s predefi ned stan-
dards for supporting causal inferences, and consequently, did not provide 
a basis for judging the effectiveness of these interventions.   2  Thus, while 
the WWC has great promise as a resource for educational decision makers, 
its value is constrained markedly by the lack of reliable evidence about the 
effectiveness of education programs and practices. 

 Random-assignment experiments have enormous potential to fi ll this 
void in the evidence. Their strengths include conceptual transparency and 
the compelling nature of the evidence they can provide. However, carrying 

1.  National Board for Education Sciences (    2008  , pp. 25–27). 
2.    http://ies.ed.gov/ncee/wwc/reports/elementary_math/eday_math/  , accessed May 

29, 2009. We are indebted to Roberto Agodini of Mathematica Policy Research, the 
principal investigator for What Works Clearinghouse reviews of elementary school 
math interventions, for providing us with up-to-date information on the number of 
studies his team had reviewed. 
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out random-assignment experiments successfully requires great skill and 
judgment. One reason for this is that there are many critical decisions 
involved in their design and implementation. A second is that there are 
many threats to the internal and external validity of randomized experi-
ments, most involving unanticipated actions and responses by participants. 
A third reason is that implementing random-assignment experiments 
successfully typically requires an especially high level of cooperation from 
many groups. Obtaining and retaining the requisite cooperation often 
require communication skills, negotiating skills, and the ability to respond 
creatively to unexpected challenges. Fortunately, the body of knowledge 
about how to design and implement random-assignment experiments 
successfully in different settings is growing steadily, as is the number of 
researchers who possess and utilize this knowledge. 

 In this chapter, we describe some of the decisions involved in designing 
randomized experiments, some of the threats to the validity of their 
results, and some promising strategies for obtaining support for random-
ized experiments from stakeholders. We illustrate these decisions and 
challenges with examples from several high-quality random-assignment 
studies. Some of these studies we have already introduced, such as the 
New York Scholarship Program (NYSP) evaluation and the evaluation of 
the Tennessee Student/Teacher Achievement Ratio (STAR) experiment. 
We also introduce and draw on several new randomized experiments. One 
concerns career academies, an innovative approach to secondary-school 
education in the United States. Two others concern educational policy 
initiatives in India. We begin by describing the career academies study.     

   Critical Decisions in the Design of Experiments   

 Countries around the world have struggled with the design of secondary-
school education programs. In many countries, students are given the 
option of enrolling in an academic track to prepare for post-secondary 
education or in a vocational track to prepare for work in a specifi c occupa-
tion. Critics of vocational education argue that it does not prepare 
students to cope with changing labor markets and that participating in 
vocational training closes off access to post-secondary education. While 
conceding these limitations of conventional vocational education pro-
grams, advocates argue that the solution lies in improving vocational 
programs rather than in abandoning the concept and requiring all ado-
lescents to enroll in a traditional academic track. 

 One response to the call for a different kind of education, especially for 
students who do not thrive in conventional academic tracks, has been the 
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creation of the  career academy . The model was developed initially in 
Philadelphia, in the late 1960s, by Charles Bowser, executive director of 
the Urban Coalition, in collaboration with two private-sector employers. 
The fi rst career academy, the Academy of Applied Electrical Science, 
opened at Edison High School in Philadelphia in 1969, and enrolled 
30 tenth-grade students. From there, the concept spread quickly, espe-
cially in California. Today, there are more than 2,500 career academies in 
the United States, more than 750 of which are located in California.   3  

 Several common principles motivate the structure and functioning of 
career academies. First, they are usually small learning communities 
embedded within larger high schools. Students in career academies take 
classes together for at least three years, taught by a team of teachers drawn 
from different disciplines. Second, they offer a college-preparatory cur-
riculum with a career theme that integrates academic and career technical 
education. Third, generally they include partnerships with local employ-
ers who provide work-based learning opportunities, mentoring, and 
internships to career-academy students. 

 One reason that the number of career academies has grown so rapidly 
is that early research using observational designs found that students who 
enrolled in career academies had better academic outcomes — including 
higher test scores and grades, and better school-graduation and college-
enrollment rates — than observationally similar students who were not 
enrolled in career academies. In this observational research, the treat-
ment groups consisted of students who chose to enroll in a career academy, 
and the comparison groups consisted of students who enrolled in more 
conventional high-school programs and who, on average, had the same 
observed characteristics as the students in the career academies. Of 
course, an important criticism of such studies is that students who  chose  to 
enroll in a career academy may have differed in unobserved ways, such as 
in their educational motivation, from students in the comparison group .  
As a result, the results of these observational studies may be biased 
because differences in outcomes may have stemmed from the unobserved 
differences between the groups, rather than from differences in the edu-
cational treatments that the two groups received. 

 In 1993, one of the leading contract research fi rms in the United States, 
MDRC, undertook an experimental study to assess the educational impact 
of career academies (Kemple,   2008  ). Because MDRC conducted a ran-
domized experimental study, the results of its research have received 

3.  The following website, accessed September 10, 2009, provides a description of the his-
tory of career academies:   http://www.ncacinc.com/index.php?option=com_content&
task=view&id=17&Itemid=28  . 
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great attention in education-policy circles and have infl uenced the design 
of high-school programs for students who do not thrive in traditional 
college-track curricula. In designing their study, the MDRC research team 
made several important decisions that affected what would be learned 
ultimately from the experiment. All investigators face the same kinds 
of decisions in planning and executing experimental research. These 
decisions include: (a) how to defi ne the treatment that is to be evaluated, 
(b) how to defi ne the population from which study participants will be 
drawn, (c) what outcomes to measure for each participant, and (d) how 
long to track those participants over time. Below, we comment on each of 
these decisions, and their consequences, in the context of our career-
academies example.    

   Defi ning the Treatment   

 Clearly, it makes sense to defi ne carefully what the treatment is! Early in 
their effort to design the career-academies study, MDRC researchers had 
to face the heterogeneity that existed among the academies that were 
then in operation in the United States. They had to decide which particu-
lar academies would be the research sites in their study and, thereby, 
become potential exemplars for future academies. At the time, more than 
1,000 academies were in operation in public high schools throughout the 
United States, and they differed in structure, practices, and the length of 
time they had been in operation. Some had been operating for longer 
than a decade; others were in their fi rst or second year of operation. Some 
had embraced all three of the originator’s design principles; others had 
only embraced one or two. Some academies were extremely popular and 
had many more applicants than their available places; others were still 
working to attract students. 

 After visiting many possible sites, the MDRC research team decided to 
include only academies that had been in operation for at least two years 
and that embraced all three of the original academy design principles. 
A consequence of this choice was that their evaluation would then address 
the impact of a  mature  academy and provide no guidance about the effec-
tiveness of newly created academies. In addition, the randomization 
requirement of the research design necessitated that participating acad-
emies have excess enrollment demand and be willing to use a fair lottery 
to determine which students would be offered enrollment. In the end, 
MDRC identifi ed ten career academies distributed across six states that fi t 
the design criteria and were willing to participate in the study. All were 
located in urban school districts that had above-average school-dropout 
rates and served substantial percentages of African-American students, 
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Hispanic students, and students from low-income families. Three of the 
academies focused on electronics; other areas of focus included health 
occupations, business and fi nance, public service, travel and tourism, and 
video technology. Two of the academies served students in ninth through 
twelfth grades, and the others enrolled students in grades 10 through 12. 

 It is important to understand that the “treatment” to be evaluated in 
the MDRC experiment was actually an  offer  of a place in a career academy, 
in exactly the same way that the treatment of interest in the NYSP experi-
ment that we described in Chapter 4 was an “offer” of a scholarship to 
help pay private-school tuition. Students who had good luck in the lottery 
and were assigned to the treatment group were not required to accept the 
offer of enrollment. Applicants who had bad luck in the lottery became 
part of the control group and could choose any other educational pro-
gram except the career academy offered by their high school. This research 
design makes sense because career academies are voluntary programs. 

 However, it is important to understand the implications of the design. If 
all of the students assigned to the treatment accepted the enrollment offer 
and none of the students assigned to the control group managed to enroll 
in a career academy, then a study of the consequences of receiving an 
enrollment offer would be equivalent to a study of the consequences of 
actual enrollment in a career academy. However, 16 %  of the students in 
the MDRC treatment group decided not to accept the enrollment offer 
and instead enrolled in other academic programs. Yet, they remain part of 
the treatment group in MDRC analyses to evaluate the causal impact of the 
 offer  of treatment. This means that their educational and labor-market out-
comes were averaged along with those of students who received an offer 
and did enroll in career academies, and this average was then compared to 
the educational outcomes for students in the control group, who did not 
receive a career-academy enrollment offer. In the language of experimen-
tal design, the MDRC experiment was an evaluation of the impact on 
student outcomes of an  intent  to provide the career-academy treatment, 
not the impact of the career-academy treatment itself on the student out-
comes. This is important to keep in mind when evaluating the results. 

 To summarize, defi ning carefully the treatment that will be imple-
mented in an experiment clearly involves tradeoffs, and the decision has 
great consequences. As a result of the MDRC decision-making process, 
the research could not answer the broad question: Is it a good investment 
for an urban school district to initiate career academies? Instead, it could 
only address the more specifi c question: Will an offer of enrollment in a 
mature career academy that embraces the original design principles and 
has excess demand result in better educational and labor-market out-
comes for a particular population of students in urban school districts?     
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   Defi ning the Population from Which Participants 
Will Be Sampled   

 Your choice of the population from which to sample participants for your 
study will, of course, determine the population to which the results of 
your experiment can be generalized. In practice, defi ning the population 
of potential participants can involve especially diffi cult tradeoffs when 
the experimental treatment is the  offer  of enrollment in a particular pro-
gram, as was the case in the career-academies study. To illustrate these 
tradeoffs, consider two of the possible options that the MDRC investiga-
tors faced. The fi rst option was to defi ne the population of participating 
students as all ninth graders in a high school that contained a career 
academy participating in the study. The second option was to defi ne the 
population of participants as all ninth graders in the school who, after 
being informed of the opportunities and obligations associated with 
enrolling in a career academy, expressed an active interest in enrolling. 

 Under the fi rst option, a random sample of students would be chosen 
from the population of ninth graders in a school that housed a participat-
ing career academy. Then, a fair lottery would be used to assign members 
of the sample randomly to the treatment and the control group. Members 
of the treatment group would be offered enrollment in the career acad-
emy. If members of the control group asked about admission to the career 
academy, they would be told that admission was by lottery only and that 
they had not been chosen. They would be free to choose among the other 
academic programs offered by their school or any other high school. 

 Consider the practical consequences of this defi nition of the popula-
tion. The assigned treatment group would include many students who 
actually wanted to enroll in the school’s traditional college-preparatory 
curriculum and who were not interested in the occupational focus of the 
career academy. Consequently, the percentage of students in the treat-
ment group who accepted the invitation to enroll in the career academy 
(the so-called take-up rate) would be very low (perhaps as low as 10 % ). 
The educational and labor-market outcomes for the other 90 %  of the stu-
dents in the treatment group who declined the offer to enroll in a career 
academy would probably be the same, on average, as the outcomes for 
members of the control group. In subsequent analyses of the data, since 
the average outcomes for the treatment group (including those students 
who did not take up the offer) are to be compared with the average out-
comes of those in the control group, one result of the low take-up rate 
may be an inability to reject the null hypothesis even if participation in a 
career academy improved outcomes for the 10 %  of students in the treat-
ment group who accepted the offer. The only way to avoid this conclusion 
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would be to include in the study students from a great many high schools 
containing career academies. This would make the research extremely 
expensive to conduct. 

 Now, consider the second option for defi ning the population of inter-
est. The school would conduct information sessions in which they describe 
the career academy option to all ninth graders and explain that the selec-
tion of students to receive enrollment offers would be determined by 
lottery from among those students who demonstrate an active interest in 
enrolling by participating in an interview and completing an application. 
Among students randomly assigned to the treatment group from this 
population, the take-up rate would probably be much higher, perhaps as 
high as 80 % . Again, assuming that participation in a career academy did 
result in improved outcomes, the higher take-up rate would increase 
dramatically the probability of rejecting the null hypothesis. 

 In summary, holding constant the size of the research budget, drawing 
the research sample from a population of students who express an active 
interest in career-academy enrollment increases the chances of demon-
strating — by statistical analysis — that the offer of enrollment in a career 
academy improves outcomes. A cost of this choice is that the results pro-
vide conclusions that can be generalized only to the population of students 
who expressed an interest in participating in a career academy, not to the 
wider population of all students entering the relevant high-school grades. 
In contrast, drawing the research sample from the population of all stu-
dents enrolled in the relevant grade in participating schools means that 
the results can be generalized to this latter population. The disadvantage 
is that you risk a low take-up rate for the offer, which, in turn, affects the 
statistical power you have to reject the null hypothesis that the treatment 
is no more effective than alternatives. Combating this problem would 
require increasing the sample size massively to improve statistical power 
and precision. Given the expense of conducting randomized experi-
ments, it is not surprising MDRC investigators chose to draw their research 
samples from the population of students at each participating school who 
expressed an active interest in enrolling in their school’s career academy.     

   Deciding Which Outcomes to Measure   

 From the outset, it was clear that the MDRC study would measure stu-
dents’ test scores, high-school graduation rates, and college-enrollment 
rates, outcomes that prior observational studies had found to be infl uenced 
by career-academy participation. The more diffi cult question was whether 
to measure other, nonacademic outcomes. After visiting several career 
academies and talking with their staffs about the interactive skills that 
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career-academy students acquired during their internships, the MDRC 
research team decided to measure two quite different sets of additional 
outcomes. One set consisted of labor-market outcomes, such as employ-
ment rates and earnings. The second consisted of family-related outcomes, 
such as rates of marriage and child support. The logic was that improved 
labor-market earnings might lead to better marriage prospects for partici-
pants and provide more resources for child support. 

 Of course, as with all aspects of research design, the decision to 
measure a wide variety of outcomes involves costs. One type of cost is 
fi nancial — it takes resources to collect, code, and process information on 
many outcomes. A second type of cost is the possibility that asking par-
ticipants to provide a great deal of information on follow-up surveys 
increases the probability that they will drop out of the study, thereby mag-
nifying the problem of attrition from the sample over time. Such attrition 
poses a signifi cant threat to both the internal and external validity of the 
study. For these reasons, you must be judicious in deciding which out-
comes to measure and how to collect that information in a manner that 
minimizes the burden on program participants.     

   Deciding How Long to Track Participants   

 Learning that a particular intervention has a long-term impact on student 
outcomes is valuable, and this is the argument for following the partici-
pants in an experiment for an extended period of time. From the outset, 
it was clear that the MDRC study would follow sampled participants for at 
least four years, the length of time needed for many program participants 
to graduate from high school and enroll in college. However, this pro-
posed four-year follow-up would provide limited information, at best, on 
labor-market and family outcomes. For this reason, the research team 
decided to follow members of the sample for a total of 11 years. 

 Ultimately, this lengthy follow-up period proved critical to the research 
fi ndings because results obtained after only four years of sample tracking 
demonstrated no statistically signifi cant differences between the average 
academic skills, high-school graduation rates, and college-enrollment 
rates of students in the treatment and control groups. However, the results 
after 11 years (eight years after prospective high-school graduation) were 
quite different. On average, 11 years after the offer of career-academy 
enrollment, members of the treatment group were earning $2,000 (11 % ) 
more per year, on average, than members of the control group (Kemple, 
  2008  ). Moreover, the males in the treatment group had higher rates of 
marriage and of being custodial parents than did those in the control 
group. Thus, the disparity between the 11-year and the 4-year results 
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provided compelling justifi cation for the expense involved in electing the 
lengthy follow-up period. 

 As mentioned earlier, a second type of cost associated with lengthy 
research studies is the attrition of participants from the research sample. 
Attrition is a problem in all studies. Students move from one town to 
another, and do not leave forwarding addresses. Others become annoyed 
by researchers’ questions and refuse further participation, even when 
they are compensated for completing the interviews. The major problem 
created by sample attrition is that it undermines the original random 
assignment of students to the treatment and control groups and, thereby, 
threatens both the internal and external validity of the experiment. The 
threat to internal validity is that students who abandon the treatment 
group may be different in unobserved ways, on average, from those who 
withdraw from the control group. This destroys the equality in expectation 
on which causal conclusions rely. The threat to external validity is that 
selective withdrawal of students from the research sample means that the 
investigators can no longer be sure to what population the results of the 
experiment can be generalized. 

 Of course, attrition from the research sample is more severe the longer 
the experiment runs. One implication is that it only makes sense to con-
duct a long-term experiment if the research budget is large enough to 
locate students who move, and to employ interviewers who are skilled in 
maintaining the cooperation of participants. The MDRC investigators 
were able to do this — a remarkably high 81 %  of the original research 
sample continued to provide information on their labor-market earnings 
11 years after the experiment began! Of course, conducting a high-quality 
long-term randomized experiment is expensive. The MDRC career acad-
emy study cost approximately $12 million. This cost is modest, however, 
in comparison to the amount of money spent annually on high-school 
education programs and the importance of providing policymakers with 
accurate and credible advice on the effectiveness of a popular educational-
program design.      

   Threats to the Validity of Randomized Experiments   

 In this section, we explain and illustrate some threats to the internal and 
external validity of randomized experiments. The list of threats to validity 
that we describe here is by no means exhaustive. We describe others in 
chapters to come. The purpose of this section is to emphasize that, 
although randomized experiments are the most effective way to learn 
about the causal impact of many educational interventions, they are by no 
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means free of threats to their validity. In considering whether to conduct 
a randomized trial of a particular educational intervention, it is always 
important to make a list of the signifi cant threats to both internal and 
external validity and to explore whether it is possible to design the exper-
iment in a way that minimizes these threats.    

   Contamination of the Treatment–Control Contrast   

 One threat to the internal validity of a randomized experiment is that the 
behaviors of participants in the control group may be infl uenced by inter-
actions with participants in the treatment group, and this can dilute the 
treatment–control contrast. For example, the ten career academies that 
were part of the MDRC random-assignment evaluation were all situated 
within large comprehensive high schools. Consequently, teachers in the 
career academies undoubtedly interacted with non–academy teachers in 
their schools. Similarly, students offered places in career academies (the 
treatment group) interacted with students who applied to their school’s 
academy, but lost out in the lottery (the control group). It is possible 
that these interactions resulted in changes in the education received by 
control-group students. For example, non–academy teachers may have 
introduced some project-based learning activities after hearing from 
career academy teachers that they worked well. Similarly, students in the 
control group may have increased their efforts to obtain summer intern-
ships in local businesses after hearing about their value from students 
enrolled in career academies. The MDRC research team conducted sur-
veys of students in the treatment and control groups in order to learn 
how different the educational experiences of the two groups were. They 
found that a larger percentage of treatment-group members than control-
group members had been exposed to project-based learning and had 
summer internships. At the same time, some control-group members had 
participated in these activities. The researchers could not determine the 
extent to which these activities of the control-group members were infl u-
enced by the presence of career academies in their schools (Kemple, 
  2008  ).     

   Cross-overs   

 One common threat to the internal validity of a two-group randomized 
experiment occurs when participants “cross over” from the control group 
to the treatment group, or vice versa, after random assignment has taken 
place. In Project STAR, for instance, approximately 10 %  of students 
switched between the small- and regular-size classes between one grade 
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and the next. These cross-overs jeopardized the internal validity of the 
experiment because they challenged the original exogeneity of the assign-
ment to experimental conditions, and the consequent equality in 
expectation between the treatment and control groups that was required 
for drawing causal inferences. The cross-overs create the possibility that 
any higher-than-average academic achievement detected among children 
in small classes may have stemmed at least in part from the uncontrolled 
sorting of children with unobserved differences between the two experi-
mental conditions. In fact, Krueger (  1999  ) argued that cross-overs did not 
have a dramatic impact on the results of the Project STAR experiment. 
The strongest evidence that he cited in support of this conclusion was 
that the class-size effects that were detected were the largest in the fi rst 
year of the experiment, before any cross-overs occurred. In Chapter 11, 
we describe how instrumental-variables estimation can be used to deal 
with the internal threat to validity created by such cross-overs.     

   Attrition from the Sample   

 In a similar fashion, the attrition of participants from the research sample 
poses an important threat to the validity of a random-assignment experi-
ment. This is because the participants who choose to depart the study 
may differ from those who remain, in unobserved ways that affect the 
value of the outcome. Attrition is a particularly serious problem in all 
experiments that attempt to follow participants for a lengthy period of 
time. All three of the experiments conducted in the United States that we 
described earlier fi t into this category: the MDRC career-academy experi-
ment followed participants for 11 years, Project STAR for four years,   4  and 
the NYSP for three years. With such long periods of follow-up, attrition 
from the research sample was almost inevitable. Half of the students who 
were present in the Project-STAR kindergarten classes were missing from 
at least one class over the next three years of the experiment. Thirty-three 
percent of the students who were part of the initial analytic sample in the 
NYSP experiment did not take the achievement tests that provided the 
outcome measures at the end of the third year of the experiment (Howell 
& Peterson,   2006  ). Nineteen percent of the students in the MDRC evalu-
ation of career academies did not complete the year 11 survey (Kemple, 
  2008  ; Kemple & Willner,   2008  ). 

4.  After the scheduled completion of the Project STAR experiment, Alan Krueger and 
Diane Whitmore Schanzenbach raised the funds to follow participants in Project STAR 
through elementary school and into high school (Krueger & Whitmore, 2000). 
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 In what ways does such attrition affect validity? Attrition from the 
sample itself, regardless of whether it was from the treatment or control 
group, may simply make the sample less representative of the underlying 
population from which it was drawn, thereby undermining  external validity.  
Attrition also threatens the  internal validity  of the experiment. The reason 
is that members who remain in the treatment group may no longer be 
equal in expectation to members remaining in the control group. 
Consequently, at least some part of any subsequent between-group differ-
ences in outcome could be due to unobserved differences that exist 
between the members who remain in the treatment and control groups 
after attrition, instead of being due to a causal effect of the experimental 
treatment. 

 One sensible step in evaluating the extent to which sample attrition 
poses a threat to the internal validity of a study is to examine whether the 
attrition rate is higher in the control group than in the treatment group, 
or vice versa. In Project STAR, for instance, 49 %  of the children assigned 
initially to small classes in kindergarten had left the experiment by its 
fourth year. The comparable fi gure for children assigned initially to regular-
size classes was 52 %  (Krueger,   1999  ). The percentage of students in the 
control group of the NYSP who took the relevant achievement tests at 
the end of the second year of the experiment was 7 points lower than the 
percentage of students in the treatment group who did so. However, the 
percentages of the treatment and control groups in the original sample 
that took the tests at the end of year three of the experiment were similar 
(Howell & Peterson,   2006  ). In the career-academy experiment, 82 %  of the 
students offered a place in a career academy and 80 %  of those in the 
control group did not complete the survey administered in the study’s 
eleventh year (Kemple & Willner,   2008  ). 

 Of course, although evidence that the attrition rates in the treatment 
and control groups of a randomized experiment are approximately equal 
is comforting, the patterns of attrition in the two groups could still be 
quite different. One way to examine this possibility is to capitalize on 
information from a baseline survey administered prior to random assign-
ment to compare the sample distributions of the observed characteristics 
in the key groups. These include individuals who left the treatment group, 
those who left the control group, and those who remained in each of 
these groups. Evidence that the sample distributions of observed baseline 
characteristics in the four groups are very similar would support the case 
that attrition from the research sample did not jeopardize the internal 
validity of the experiment seriously, although such evidence is hardly 
defi nitive as it pertains only to the characteristics that were actually mea-
sured in the baseline survey. The evaluators of all three of the interventions 
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described in this chapter (STAR, NYSP, and Career Academies) presented 
this kind of evidence to support the credibility of their causal fi ndings.     

   Participation in an Experiment Itself Affects 
Participants’ Behavior   

 We conduct randomized experiments in education and the social sciences 
in order to learn whether particular interventions have causal impacts on 
outcomes for well-defi ned populations, typically consisting of students, 
but in some cases, consisting of teachers, administrators, or parents. 
Implicit in the research design of an experiment is the assumption that 
simple  participation  in the research project does not, by itself, infl uence 
participant behaviors and outcomes.  Hawthorne  and  John Henry effects  are 
terms used to describe violations of this assumption. Hawthorne effects 
refer to changes in behavior among participants in an experiment that 
stem from their simply being subjects of study. John Henry effects occur 
when control-group members work harder to compete with their peers in 
the treatment group because they are unhappy about having been assigned 
to the control group. 

 Some critics of the Project STAR class-size experiment argue that the 
results of this experiment might have been contaminated by Hawthorne 
effects.   5  The hypothesis is that teachers who participated in the experi-
ment may have worked extra hard as a result of knowing that they were 
being observed. Hawthorne effects would have posed an especially seri-
ous threat to the internal validity of the experiment if teachers in the 
treatment groups responded differently to simply being part of a study 
than did teachers in the control group. A different, but related, problem 
is that teachers of small classes may have surmised correctly that any 
evidence from the experiment which showed that smaller classes caused 
higher student achievement would lead the state government to autho-
rize additional money for further class-size reductions in Tennessee. This 
potential response to possible use of the experimental results could also 
have led teachers to work particularly hard to improve their students’ test 
scores during the years of the experiment, in order to improve their own 
working conditions after the experiment was over. 

 In his analysis of the data from the STAR experiment, Krueger (  1999  ) 
argued that Hawthorne effects and responses to the surmised applica-
tion of experimental fi ndings were not important causes of differences 
in average student outcomes between treatment and control groups. 

5.  See, for example, Hoxby (    2000  , p. 1241). 
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He supported this position by noting that student achievement was 
inversely related to class size among students in the regular-size classes 
that made up the control group. Indeed, the magnitude of the estimated 
effect size for students in these classes was similar to that estimated in the 
treatment/control comparison. Since teachers and students in these 
control-group classes would not have been subject to differential 
Hawthorne effects, and would not have worked harder to make the case 
for small classes, Krueger sees this pattern in the non-experimental data 
as bolstering his claim that Hawthorne effects were of no importance in 
the outcomes of the STAR experiment. 

 An example of a John Henry effect, on the other hand, would involve 
students who lost out in the career-academy lottery being so annoyed by 
their bad luck that they worked harder in school than they would have 
had they not participated in the lottery. Such a John Henry effect would 
have resulted in a downward bias in the estimate of the value to students 
of being offered a place in a career academy. While it is rarely possible to 
discount totally the possibility that a John Henry effect has occurred, the 
length of the career-academy program makes it unlikely that this was a 
signifi cant source of contamination. Annoyance at your bad luck in a lot-
tery seems more likely to elicit a burst of energy for a short period than to 
result in a sustained increase in effort over a several-year period.      

   Gaining Support for Conducting Randomized 
Experiments: Examples from India   

 Although well-designed randomized experiments provide the most 
convincing evidence for the causal impact of a variety of educational 
interventions on student outcomes, they are often not popular among 
educators. Some are troubled by the practice of inviting families to apply 
for a particular educational opportunity for their child, such as enroll-
ment in a career academy or a scholarship to attend a private school, but 
then denying access to those families that lose out in the randomization 
“lottery” and are then assigned to the control group. Many educators 
would prefer to recruit only as many applicants for an opportunity as 
there are positions available, or if excess demand exists, to choose only 
those students whom they see as most likely to benefi t from that opportu-
nity to participate in the treatment. Some educators are also uncomfortable 
with the requirement that participants who are assigned randomly to a 
control group cannot then gain access to an important opportunity, like 
a career academy or a tuition voucher, even if a space becomes available 
at a later date. In the next two sections, we describe two random-assignment 
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experiments that researchers from the Abdul Latif Jameel Poverty Action 
Lab (J-PAL) conducted in order to learn about the benefi ts of two inter-
ventions to improve student achievement in cities in India. The fi rst, 
which took place in two large cities, examines the consequences of a novel 
input strategy. The second, which took place in a rural area of India, 
examines the consequences of a change in incentives for primary-school 
teachers. The descriptions illustrate some of the practical challenges in 
conducting random-assignment experiments and some strategies for 
overcoming these challenges.    

   Evaluating an Innovative Input Approach   

 In 2005, 44 %  of Indian children aged between seven and 12 years could 
not read a basic paragraph, and 50 %  of them could not do simple subtrac-
tion, although most were enrolled in school.   6  The dominant strategy for 
improving the quality of education in schools serving low-income chil-
dren in India and in other developing countries has been to provide more 
and better resources — such as additional books, blackboards, fl ip charts; 
smaller class sizes; and better educated teachers. One obstacle to this 
school-improvement strategy has been a shortage of funds. A second 
obstacle has been the diffi culty in identifying those inputs that result con-
sistently in greater student achievement. Of course, these two obstacles 
are related because fi nance ministers view skeptically requests from 
education ministers for additional funds to improve school quality when 
there is no fi rm evidence that past expenditures have improved student 
achievement. 

 In an attempt to improve education for the poor in India, the United 
Nations Children’s Fund (UNICEF), in 1994, provided initial funding for 
the creation of a nongovernmental organization called  Pratham , which 
would work with governmental agencies in India to improve school quality. 
One of Pratham’s fi rst initiatives was a remedial-education program in 
urban elementary schools, called the Balsakhi Program (the term means 
“the child’s friend”). The program provided urban government schools 
with an additional teacher, a Balsakhi, who was recruited from the com-
munity. Most Balsakhis were young women who had fi nished secondary 
school. They received two weeks of training at the beginning of the school 
year. They also participated in monthly focus groups during the school 
year, at which they discussed classroom-management issues and new 
teaching aids designed by Pratham staff. The Balsakhis worked for two 

6.  Banerjee et al. (    2007  ). 
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hours per day during the regular school day, with groups of 15 to 20 chil-
dren in the third or fourth grade who had fallen behind academically. 
They taught a standardized curriculum that focused on the basic literacy 
and numeracy skills that were part of the regular fi rst- and second-grade 
school curricula, but that the children in their care had not yet mastered. 

 The Balsakhi program proved popular in many Indian cities and grew 
rapidly. Regular teachers liked the program because it removed the least 
academically able students from their classes for part of the school day. 
Participating children liked it because the Balsakhi came from their home 
communities and tended to be more attuned to their problems than were 
regular teachers. Additional factors contributing to its popularity were 
the program’s low cost and the ease with which it could be maintained 
and expanded. Indian cities typically have a large supply of young female 
secondary-school graduates looking for work — all potential Balsakhis. The 
rate of pay for Balsakhis, between $10 and $15 per month, was about one-
tenth the cost of a regular teacher. Moreover, since their training took 
only two weeks, a high annual turnover rate among Balsakhis did not 
inhibit program expansion. Nor did a lack of classrooms, because the 
Balsakhi worked with students wherever space was available, often in 
corridors or on playgrounds. 

 The Pratham staff that designed the Balsakhi program had reason to 
believe that it would enhance children’s skills. One reason is that the pro-
gram concentrated its instruction on fundamental literacy and numeracy 
skills that lagging students needed in order to comprehend the curricula in 
the third and fourth grades. A second reason is that the third- and fourth-
grade teachers in the regular government schools tended to focus on 
covering the curriculum by the end of the school year and paid little or no 
attention to the needs of students whose skills were lagging. Consequently, 
the Pratham staff reasoned that little would be lost from pulling lagging 
students out of their regular classroom to work with a Balsakhi. Although 
this reasoning was persuasive to many school directors and government 
offi cials, it did not constitute evidence of program effectiveness.   7  

 In the late 1990s, Pratham requested that researchers from J-PAL evaluate 
how effective the Balsakhi program was in enhancing children’s academic 
achievement. The research team, which included Abhijit Banerjee, Shawn 
Cole, Esther Dufl o, and Leigh Linden, concluded that the best way to 
answer this question was to conduct a random-assignment experiment. 
Pratham staff supported the J-PAL researchers’ recommendation, and 

7.  We thank Leigh Linden, a member of the J-PAL team that evaluated the Balsakhi pro-
gram, for providing clarifying comments about the details of the J-PAL team’s work on 
this project. 



Designing and Implementing Randomized Experiments 77

the research team began the work to design an experiment that would 
take place during the 2001–2002 and 2002–2003 school years. 

 Since the program assigned Balsakhis to schools serving low-income 
children, a logical way to design the experiment would have been to select 
a sample of schools eligible to participate in the program, and then assign 
Balsakhis randomly to half of the schools, treating the other half of the 
schools as a control group. The research team anticipated, however, that 
school directors in Vadodara and Mumbai, the two cities in western India 
selected for the evaluation, would have reservations about participating 
in an experiment with this kind of design. The reason was that schools in 
the control group would not receive the assistance of a Balsakhi, but 
would need to subject their students to the extra testing that was to be 
part of the evaluation. 

 Recognizing the diffi culty in obtaining cooperation for conducting an 
experiment in which control schools obtained no additional resources, 
the J-PAL researchers adopted a different design. The alternative that 
they chose, after consultation with school directors, was to provide one 
Balsakhi to each school that volunteered to participate in the experiment, 
and then assign the Balsakhi randomly to either grade 3 or grade 4. Thus, 
in 2001–2002, the fi rst year of the experiment, half of the government 
primary schools in Vadodara that participated in the experiment were 
given a Balsakhi to work with children in grade 3; the other half were 
given a Balsakhi to work with students in grade 4. In the second year of 
the experiment, the assignments of Balsakhis to grade levels were switched. 
Those participating schools that had a Balsakhi in grade 3 in year 1 were 
given a Balsakhi for grade 4, and vice versa. 

 In Table   5.1  , which is adapted from Banerjee et al. (  2007  ), we illustrate 
this design. In evaluating the fi rst-year impact on student achievement of 
having a Balsakhi work with grade 3 children, Group A schools would 
make up the treatment group and Group B schools the control group. 
Conversely, in evaluating the fi rst-year impact of having a Balsakhi to work 

      Table 5.1  Illustration of the research design of the Balsakhi experiment  

  Year 1
(2001–2002) 

 Year 2
(2002–2003)  

 Group A  5,264 students in 49 schools  6,344 students in 61 schools  
 Grade 3  Grade 4  Grade 3  Grade 4  
 Balsakhi  No Balsakhi  No Balsakhi  Balsakhi  

 Group B  4,934 students in 49 schools  6,071 students in 61 schools  
 Grade 3  Grade 4  Grade 3  Grade 4  
 NoBalsakhi  Balsakhi  Balsakhi  No Balsakhi  
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with grade 4 children, Group A schools were the control group and 
Group B schools the treatment group. A similar design was used in assign-
ing Balsakhi to schools in Mumbai that volunteered to participate in the 
experiment.  

 An advantage of the research design chosen by the J-PAL researchers 
was that it allowed them to examine whether the causal impact on student 
achievement of having access to a Balsakhi for two years was greater than 
the impact of one year of access. The reason is that children who were in 
the third grade in Group A schools in the fi rst year of the experiment also 
received access to a Balsakhi in the second year of the experiment, when 
the children were in fourth grade. Their achievement at the end of the 
second year of the experiment (when they had completed grade 4) could 
be compared to the achievement, at the end of the fi rst year of the exper-
iment, of those children who were in fourth grade in Group B schools in 
that year. 

 The results of the evaluation of the Balsakhi experiment were encour-
aging. In the fi rst year of the evaluation, the Balsakhi program increased 
student test scores by an average of 0.14 of a standard deviation. In the 
second year of the evaluation, the average effect of one year’s access to a 
Balsakhi was 0.28 of a standard deviation, and the impacts were quite 
similar across grades, subject areas, and research sites. The explanation 
for the larger effect in the second year of the program was that implemen-
tation improved. 

 On the important question of whether access to two years of support 
from a Balsakhi improved achievement more than one year of access, the 
results were cautiously optimistic. The evidence from Mumbai indicated 
that two years of access to a Balsakhi increased student performance on 
the mathematics examination by 0.60 standard deviations, an impact 
twice as large as the impact of one year of access.   8  

 The research team also examined the persistence of the impact of the 
Balsakhi program. One year after receiving the support of a Balsakhi, the 
impact for low-achieving students had declined to approximately 0.10 of 
a standard deviation. This suggests that the Balsakhi program is better 
viewed as a vitamin, an intervention that struggling students need con-
tinually, than as a vaccination that, once received, protects students from 
future struggles. However, of greater importance is the message from the 
evaluation that a remarkably low-cost intervention made an important 
difference in the achievement of struggling primary school students in 

8.  As explained in Banerjee et al. (    2007  ), riots in Vadodara made it impossible to assess 
the impact of two years of Balsakhi support in that research site. 
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Indian cities. This evidence proved important in building support for the 
Balsakhi program, which now serves hundreds of thousands of children 
in India.     

   Evaluating an Innovative Incentive Policy   

 The second experiment conducted by J-PAL researchers that we describe 
in this chapter took place in rural India, where high rates of teacher 
absenteeism are a major problem. For example, teachers in some rural 
schools in India are absent as many as half of the days that schools are 
scheduled to be in session. Addressing this teacher-absence problem 
in government-run schools is diffi cult politically because public-sector 
teacher unions in many countries, including India, are powerful. However, 
in rural India, nongovernmental organizations (NGOs) run many infor-
mal education centers that are staffed by adults from local communities. 
The adults, who typically have only a high-school education, receive train-
ing from the NGO and are paid on short-term contracts, at quite low rates 
of pay. While the teachers’ contracts specify that they can be dismissed 
for excessive absence, their pay does not depend on the number of their 
absences. Teacher absence from the informal education centers run by 
NGOs (which we subsequently call schools) has been as great a problem 
as it is among teachers employed by the government. One difference, 
however, is that the rural teachers employed by the NGOs lack the political 
power of the unionized public-sector teachers. Consequently, the options 
available for administrators to tackle the teacher-absence problem are 
greater. 

 In 2001, Seva Mandir, an NGO that runs many one-room informal 
schools in rural Rajasthan, Western India, approached J-PAL researchers 
Esther Dufl o, Rema Hanna, and Stephen Ryan for help in solving the 
teacher-absence problem. These economists suggested designing a ran-
domized experiment to assess whether teacher-absence behavior could 
be modifi ed by restructuring teacher pay. Instead of paying teachers a fl at 
monthly salary, teachers’ pay would be based on the number of days that 
they actually taught. Seva Mandir staff decided to try the approach 
recommended by the J-PAL researchers, and asked them to design an 
experiment and evaluate the consequences of the incentive program. 

 The research team faced two critical challenges in carrying out the 
experiment. The fi rst was gaining the cooperation of teachers. After con-
sultation with the research team, Seva Mandir explained to teachers that 
it was trying out a new policy and needed to learn about the consequences. 
It explained that there were benefi ts and costs to being in each of the two 
groups. The control group teachers would be paid 1,000 rupees per 
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month (approximately $23) as in the past, an amount that did not depend 
on their attendance. Teachers in the experimental group would be paid 
50 rupees for every day that they actually taught each month, with a min-
imum of 500 rupees per month. Consequently, teachers in the treatment 
group could earn as much as 1,300 rupees per month, but they could also 
earn only half of their prior pay. Participants were told that a lottery would 
be used to determine whether they would be placed in the treatment 
group or the control group. 

 Once potential participants understood the incentive pay system and 
how the lottery would work, the process for determining which teachers 
would be in the treatment group appealed to their sense of fair play. One 
question that some teachers asked J-PAL researchers during the partici-
pant focus-group sessions was why all teachers could not work under the 
new pay-incentive system. The researchers explained that the Seva Mandir 
had only suffi cient resources to try the new approach with 60 teachers, 
and that it had concluded that assignment by a fair lottery was the best 
way to allocate the opportunity. 

 A second critical challenge was how to measure teacher attendance in 
far-fl ung rural schools. The cost of having Seva Mandir staff visit widely 
dispersed rural schools to monitor teacher attendance frequently would 
have been prohibitive. In addition, participating teachers would have 
resented unannounced monitoring visits, and the resentment might have 
affected their teaching performance. The research team’s response to the 
measurement challenge was to give each teacher a tamper-proof camera 
that recorded on fi lm the date and time that any picture was taken. 
Teachers were instructed to have a student take a picture of the teacher 
accompanied by at least eight students at the beginning of each school 
day and then, again, at least fi ve hours later, near the end of the school 
day. The fi lms were collected and developed each month, and the photo-
graphic record used to determine each teacher’s attendance rate and 
their pay for the month.   9  Once this data-collection process was explained 
to teachers, they supported it because it was deemed fair and not subject 
to the stresses from unannounced visits by Seva Mandir staff. 

 The results of the 27-month-long experiment showed that basing teach-
ers’ pay on the number of days that they actually taught reduced teacher 
absences markedly, from 42 %  to 21 %  of the available working days, on 
average. Even more important, it resulted in an increase of almost a fi fth 
of a standard deviation in their students’ achievement, as measured by 

9.  We thank Rema Hanna for reading a draft of this section and providing clarifying com-
ments about the details of the J-PAL team’s work on this project. 
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tests of mathematics and reading. This impact is only slightly smaller than 
that of the very expensive small class-size intervention tested in the 
Tennessee STAR Experiment (Dufl o, Hanna, & Ryan,   2008  ).      

   What to Read Next   

 To learn more about the challenges you may face in carrying out random-
ized fi eld trials, we recommend two additional readings. The fi rst is the 
insight-fi lled chapter entitled “Using Randomization in Development 
Economics Research: A Toolkit,” by Esther Dufl o, Rachel Glennerster, 
and Michael Kremer (  2008  ). The second is the NBER working paper by 
John List, Sally Sadoff, and Mathis Wagner entitled “So You Want to Run 
an Experiment, Now What? Some Simple Rules of Thumb for Optimal 
Experimental Design” (2010).   
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 Statistical Power and Sample Size        

       We began the previous chapter by citing statistics from the What Works 
Clearinghouse (WWC) about the enormous number of completed empiri-
cal evaluations of educational interventions that were unable to support 
causal inference. For example, we noted that among 301 evaluations of the 
effectiveness of interventions in elementary mathematics, 97 %  of the stud-
ies reviewed could not support a causal conclusion. The most common 
reason was that the authors of the studies were unable to defend the 
assumption that participants who had been assigned to the treatment and 
control conditions were  equal in expectation  before the intervention began. 

 However, even in studies that meet this condition — for example, because 
the investigator has assigned members of the analytic sample randomly to 
treatment and control groups — the effort can be stymied by a sample of 
inadequate size. If you conduct otherwise well-designed experimental 
research in a too-small sample of participants, you may estimate a positive 
impact for your intervention, but be unable to reject the null hypothesis 
that its effect is zero, in the population. For example, the 3 %  of studies of 
elementary-mathematics interventions that met the WWC standards for 
supporting causal inferences included one evaluation of the causal impact 
of a curriculum entitled Progress in Mathematics 2006.   1  Had the sample 
size of this study been larger and all else remained the same, the modest 
positive results of the evaluation would have been statistically signifi cant. 

1.    http://ies.ed.gov/ncee/wwc/reports/elementary_math/promath_06/  , accessed May 29, 
2009. 
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 Thus, early in the process of planning research, it makes good sense to 
decide how many participants you need to include in your sample in order 
to have a decent chance of detecting any effect that may indeed be pres-
ent in the population. To make this sample size decision sensibly, you 
need to conduct what is known as a  statistical power analysis  as part of your 
research planning process. In this chapter, we explain how to do this. 
As you will see, an important guiding principle is that you can always 
manipulate the important facets of your research design, such as sample 
size, to create a stronger empirical “magnifying glass” for your work. With 
a more powerful magnifying glass, you can always see fi ner detail. 

 We devote this chapter and the next to explaining how to conduct 
statistical power analyses because we believe that many social-science 
investigators have been unaware of the true requirements for sample size 
in effective research design. As a result, much empirical research in edu-
cation and the social sciences in the past has been underpowered. In this 
chapter, we describe the link between statistical power and sample size, 
and establish basic guidelines for fi guring out the values that both should 
take on in high-quality research. We begin by defi ning the concept of 
 statistical power , connecting it to the process of statistical inference with 
which you are already familiar. Then, we describe the link between power 
and sample size, and between power and other critical features of the 
research design. We do this all in the context of the “gold standard” 
research design for causal research — an experiment in which participants 
have been randomized individually to either a treatment or a control con-
dition. Then, in the following chapter, we extend our presentation to 
include the more complex case in which groups of individuals — such as 
classrooms or schools — are sampled and randomly assigned to experimental 
conditions.     

   Statistical Power      

   Reviewing the Process of Statistical Inference   

 In introducing the concept of statistical power, we rely again on the example 
of the New York Scholarship Program (NYSP), which we introduced in 
Chapter 4. As we described earlier, the NYSP is an example of a two-
group experiment in which individual participants were randomly 
assigned to either a treatment or a control group. Members of the exper-
imental group received a private-school tuition voucher and members of 
the control groups did not. To facilitate our explanation of the critical 
statistical concepts in this chapter, we begin by narrowing our focus and 
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addressing the implicit NYSP research question using the simplest appro-
priate analytic technique available to the empirical researcher. This is a 
two-group  t -test of the null hypothesis that there is no difference, in 
the population, between the average academic achievement of African-
American children in the experimental (voucher) and control (no voucher) 
conditions. 

 To simplify our explanation of the new statistical concepts in this chapter, 
we base our presentation on the application of a  one-sided t -test. This 
means that — in our introduction of the concept of statistical power — we 
test the null hypothesis that the average academic achievement of treated 
children is equal to the average achievement of untreated children versus 
an  alternative  hypothesis that their achievement is  greater  than that of con-
trol children, in the population. This is a strictly  pedagogic  decision on our 
part and was made to simplify our technical presentation. It contrasts 
with our earlier  substantive  decision to rely on a two-sided  t -test in our 
detailed presentation of the actual analyses and fi ndings from the NYSP 
project in Chapter 4. There, we assumed that, if the null hypothesis were 
rejected, the average achievement of children in the population who were 
offered vouchers could be either greater than, or less than, the average 
achievement of children not offered vouchers. Generally, in conducting 
research, a one-sided test should only be used in circumstances in which 
you can defend a strong prior belief that, if the treatment did have an 
effect on the outcome of interest, you would know with certainty what the 
direction of the difference in outcomes would be. This is rarely true in 
practice, and we do not believe it would be true in the case of empirical 
analyses of the NYSP data. On the other hand, as we discuss in Chapter 8, 
an example in which we believe a one-sided test would be appropriate 
concerns the impact of college scholarship aid on the decisions of high-
school seniors to enroll in college. Since scholarship aid reduces the cost 
of college enrollment, it seems compelling to assume that, if scholarships 
did have an impact on the percentage of high-school seniors who enrolled 
in college, that effect would indeed be positive. 

 Fortunately, whether you choose a directional or a nondirectional alter-
native for your hypothesis testing, the technical concepts and connections 
that we introduce in this chapter — and, in particular, the concept of statis-
tical power itself — remain unchanged. Later in the chapter, we describe 
how critical features of the research design, the measurement of the vari-
ables, and the choice of a particular data-analytic approach affect the 
statistical power in any particular experiment. At that point, we recon-
sider the decision to adopt a directional versus a nondirectional alternative 
hypothesis and comment on how it impacts the magnitude of the statistical 
power. 
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 First, it is useful to recall the steps in the process of statistical inference 
that we made use of in the top panel of Table 4.1. There, to test the null 
hypothesis that students who were offered a NYSP voucher had academic 
achievement three years later that was no different from students who 
lost out in the voucher lottery, we fi rst adopted a suitable   α -level  (of 0.05) 
to fi x the Type I error of our test at 5 % . Second, we computed the value 
of an observed  t -statistic, obtaining a value of 2.911, using the following 
formula:
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 where subscripts  V  and  NV  are intended to distinguish the voucher and 
no-voucher groups, and  s 2   and  n  refer to the pooled variance of post-test 
academic achievement and the number of African-American children in 
the respective groups. Third, based on our adopted  α -level, we deter-
mined a critical value of the  t -statistic under the null hypothesis at the 
appropriate degrees of freedom (here, 519).   2  This critical value, in the 
case of a one-sided test favoring the experimental voucher group, is 1.648. 
Fourth, because the magnitude of the observed  t -statistic (2.911) exceeded 
the critical value (1.648), we rejected the null hypothesis that African-
American children with, and without, vouchers performed identically in 
academic achievement, on average, in the population. Hence, we con-
cluded — because our research design was a randomized experiment — that 
voucher receipt caused the observed difference of about 5 points in 
academic achievement between members of the treatment and control 
groups.   3   

2.  There were a total of 521 children in the sample. 
3.  You can also proceed by referring to the  p -value associated with the statistic of interest.  

This estimates the probability that you could have obtained your single empirically 
obtained estimate of the parameter of interest, or something more extreme than it, by 
an accident of sampling from a population in which the value of the parameter was 
0 — that is, from a population in which the null hypothesis was true. In the  t -test con-
ducted here, for instance, the  p -value was 0.004 (Table 4.1, upper panel), meaning it 
was unlikely that we could have obtained our single empirically obtained average treat-
ment/control difference of 4.899 and its companion  t -statistic of 2.911, or something 
larger, by an accident of sampling from a “null” population. So, we conclude that, in 
the reality of the actual experiment, we were probably not sampling from a null popula-
tion, but from an alternative population in which there was indeed a relationship 
between academic achievement and voucher receipt. 
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 Notice how the construction of the observed  t -statistic, which we defi ned 
in Equation 6.1, is conceptually appealing. Its numerator is equal to the 
sample mean difference in academic achievement between the voucher 
and no-voucher groups. Its denominator is simply the standard error of 
the difference in means between the groups — that is, the standard error 
of the quantity that sits in the numerator.   4  So, the observed  t -statistic is 
just the sample mean difference between the voucher and no-voucher 
groups expressed in appropriate standard error units. More compellingly, 
provided that the original achievement scores are normally distributed, 
theoretical work in statistics shows that all such statistics formed in this 
way have  t -distributions. So, we were able to use our existing knowledge of 
the  t -distribution to determine a critical value for comparison with the 
observed test statistic, in order to carry through on the test .

 As you know, through a process of sampling from the underlying popu-
lation, the observed  t -statistic in which we are interested — that is, the 
“2.911” obtained in our NYSP analyses — derives its value implicitly from 
an underlying and critically important parameter representing the aver-
age difference in academic achievement between African-American 
children with, and without, vouchers in the population. We write this 
important population difference in means as ( µ V  – µ NV  ), where subscripts 
 V  and  NV  refer to the experimental “voucher” and control “no-voucher” 
groups, respectively and, in what follows, for convenience, we refer to it as 
  ∆ µ.  If the mean difference in the population   ∆ µ  were large, the corre-
sponding difference in mean academic achievement that we would obtain 
by drawing samples from that population — and the corresponding value 
of the accompanying observed  t -statistic — would also tend to be large, 
except that the idiosyncrasies of random sampling might occasionally toss 
up some radically different value than we had anticipated. Conversely, if 
the important population mean difference   ∆ µ  were actually equal to zero 
in the population, then any corresponding sample mean difference 
observed in the sample — and, consequently, the value of the correspond-
ing observed  t -statistic — would tend to be close to zero, except for the 
idiosyncrasies of sampling. 

 The complete formal logic of hypothesis testing is actually a little more 
complex than intimated up to this point, and it is from this added com-
plexity that the notion of statistical power derives. When we conduct a 
hypothesis test, we actually contrast what we have learned from the empir-
ical data with what we might anticipate under a  pair  of hypothetical 
settings. The fi rst of these settings we have commented upon earlier. It is 

4.  Under the assumption of homoscedasticity for the population residual variance. 
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described by the null hypothesis  H 0  , and under it we imagine there exists 
a hypothetical “null” population in which the important population mean-
difference parameter   ∆ µ  is actually equal to zero (i.e., we stipulate that  H 0  : 
  ∆ µ  = 0). The second, and equally important, setting is provided by an 
alternative hypothesis  H A  , in which we establish a second hypothetical 
population where the value of the important population mean-difference 
parameter is  not 0 , but equal to some non-0 value of magnitude   δ   (i.e., we 
will stipulate that   ∆ µ  =   δ ,  under the alternative hypothesis  H A  ). In quanti-
tative research, we are usually interested in rejecting the null hypothesis 
in favor of the alternative, and then interpreting   δ   substantively. 

 Classical hypothesis testing simply contrasts the vicissitudes of the 
empirical setting, as encapsulated in the single empirically obtained value 
of the  t observed   statistic, with the set of values that the test statistic could 
potentially take on if we were to sample repeatedly and independently 
from populations in which these null and alternative hypotheses are true, 
respectively. Of course, we expect that values of  t observed   obtained in repeated 
resamplings would be scattered randomly and naturally by the idiosyncra-
sies of sampling. But, we anticipate that they would be scattered around 
the value  zero  if we were sampling from the null population, and around 
some non-zero value that depends on   δ   if we were sampling from the 
alternative population.   5  Then, if we found that the actual value of  t observed   
obtained in our actual experiment was close to zero, and fell within a 
range of values that we might naturally anticipate in the “idiosyncratic 
scattering from the null” case, we would prefer the “ It came from H 0  ” expla-
nation and consequently accept that   ∆ µ  =  0 . If our single empirically 
obtained value of  t observed   was large, on the other hand, and looked more 
like a value that we might have gotten in an “idiosyncratic scattering from 
the alternative” case, then we will prefer the “ It came from H A  ” explanation 
and accept that   ∆ µ  =   δ  . Picking a sensible   α  -level for our test is how we 
choose between these two potential explanations. 

 We summarize these aspects of the hypothesis-testing process in 
Figure   6.1  . In the top panel, under the symmetric hill-shaped “envelope,” 
we represent the distribution of the values that a  t -statistic could poten-
tially take on, in random resampling from a “null” population in which 

5.  Unfortunately for the pedagogy of our example, the “some non-0 value” to which we 
refer in this sentence is not   δ   itself, but a linear function of it. This is because, under the 
alternative hypothesis, the observed  t -statistic has a non-central  t -distribution whose 

 population mean is equal to   δ  multiplied by a constant whose value is  
 

(( 1) / 2
2 (( ) / 2
u u

u
⎛ ⎞Γ −
⎜ ⎟Γ⎝ ⎠

  ,

 where  υ  represents the degrees of freedom of the distribution and  ( )Γ    is the gamma 
function. 
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the population mean-difference parameter   ∆ µ  was equal to zero. Although 
 zero  may not be the magnitude that we ultimately hope population out-
come mean difference   ∆ µ  will have in our actual experiment (in fact, we 
usually hope that it is not zero), this idea of sampling repeatedly from a 
“null population” provides us with a useful baseline for subsequent com-
parison. Conceptually, the curve in the top panel represents something 
akin to a histogram of all the idiosyncratic values that  t observed   could possi-
bly take on if we were to resample an infi nite number of times from a 
population in which the population outcome mean difference between 
treatment and control conditions,   ∆ µ , was zero. As in any histogram, the 
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     Figure 6.1    Distributions of the observed  t -statistic ( t observed  ) under competing null ( H 0  ) 
and alternative ( H A  ) hypotheses, showing the Type I error (  α  ), Type II error (  β  ), and 
placement of the critical value of the  t -statistic ( t critical  ), for a one-tailed test of population 
outcome mean differences between a treatment and a control group.    
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horizontal axis represents the possible values that  t observed   could attain — 
actually, these values range from − ∞  to  +  ∞ . The vertical axis represents the 
“frequency” with which each value has occurred during the resampling 
process. However, we are dealing with infi nite resampling and a statistic 
that can take on values ranging continuously between plus and minus 
infi nity. Consequently, we have drawn the exhibit as the envelope of a 
 probability density function  (or pdf) in which the histogram has been re scaled 
so that the total area under the envelope is equal to 1. Areas beneath the 
envelope represent the  probabilities  with which particular  ranges  of values 
of  t observed   would occur in infi nite resampling from a null population. For 
instance, the probability that  t observed   will take on  any  value at all is obviously 
1, a value equal to the total area beneath the pdf.   6  Similarly, because the 
pdf is symmetric and centered on zero, there is a probability of exactly 
one half — a 50 %  chance — that a value of  t observed   sampled at random from 
the null population will be larger than zero, or smaller than zero.   7   

 In the bottom panel in Figure   6.1  , we display the situation that would 
occur under the competing alternative hypothesis,  H A :  ∆ µ  =   δ  . The graphic 
is essentially identical to that displayed under  H 0  , but we have shifted the 
pdf of  t observed   to the right by an amount that depends on   δ   — the value we 
would anticipate for the population outcome mean difference between 
treatment and control groups if  H A   were true.   8  Again, the displaced pdf 
represents the distribution of all the possible values of  t observed   that could 
be obtained if samples were drawn repeatedly and randomly from the 
alternative population. 

 To complete our test, we rely on a decision rule that derives from our 
decision to set the Type I error of our test at 5 % . From this decision, we 
can derive a  critical value  against which to compare the value of the 
observed test statistic. We do this by determining the value that  t observed   
would have to take on in order to split the null distribution of  t observed   in the 
top panel of Figure   6.1   vertically into two parts, with 5 %  percent of the 
area beneath its envelope falling to the right of the split and 95 %  falling 
to the left.   9  In the fi gure, we indicate the place at which this split occurs 

6.  The area beneath the  t -distribution is fi nite, and equal to 1, because its tails asymptote 
to zero. 

7.  Not all distributions of test statistics are symmetric and zero at the center. However, the 
logic of our argument does not depend for its veracity on the particular shape of the 
pdf we have chosen to display. All that is required is that the pdf of the test statistic, 
under  H 0  , be known. Consequently, our argument applies equally well to cases in which 
distributions are asymmetric (as with the F and  χ 2 distributions). 

8.  Again, under the alternative hypothesis, the pdf of the observed  t -statistic is not 
centered on the value of   δ   itself, but on a value proportional to it. See footnote 5. 

9.  Recall that this is a one-sided test. 



90 Methods Matter

by drawing a dashed vertical line. The place at which the vertical dashed 
line intersects the horizontal axis provides the required critical value of 
the test statistic  t critical   that we will use in our hypothesis test. Our decision 
is then straightforward. If  t observed   is greater than  t critical  , then we conclude 
that it is probably too extreme to have come legitimately from the null 
distribution. Consequently, we reject  H 0   in favor of  H A  , and conclude that 
parameter   ∆ µ  is equal to   δ  , not zero, in the population from which we 
have sampled. On the other hand, if  t observed   is less than  t critical  , we conclude 
that our single empirical value of  t observed   was probably sampled from a null 
population Consequently, we would not reject  H 0   in favor of  H A  . In other 
words, by choosing a particular   α  -level (5 % , say) to fi x the level of the 
Type I error, and combining this with our theoretical knowledge of the 
shape of the pdf of the  t -statistic under the null hypothesis, we can carry 
out the desired test. It is the choice of the Type I error that provides us 
with the criterion that we need to make the testing decision. 

 Now focus on the lower second panel in Figure   6.1  , which is aligned 
beneath the fi rst. As we have noted, this lower panel illustrates the “alter-
native” side of the hypothesis testing situation. In it, we display the pdf of 
all possible values that an observed  t -statistic could take on in repeated 
resampling from a population in which the alternative hypothesis was 
true, and parameter   ∆ µ  had a non-zero value of   δ   . Of course, because of 
sampling variation, it is entirely possible that, in some proportion of resa-
mplings,  t observed   will take on very small values, perhaps even values less 
than  t critical   — values that we typically associate with sampling from a null 
population — even though the alternative hypothesis is actually true. If 
this were to happen in practice, and we were to base our decision on 
an artifi cially small empirically obtained value, we would declare the null 
hypothesis true. In this case, we would have committed another kind of 
mistake — called a  Type II error . Now, we would end up falsely accepting the 
null hypothesis even though the alternative was, in fact, true. The proba-
bility that  t observed   may be idiosyncratically less than  t critical  , even when the 
alternative hypothesis is true, is represented by the shaded area under the 
“alternative” probability density function to the left of  t critical  . Just as symbol 
  α   is used to represent the magnitude of Type I error,   β   is the symbol used 
to represent the probability of a Type II error. 

 Finally, notice the horizontal separation of the centers of the pdfs, 
under the competing null and alternative hypotheses,  H 0   and  H A  , in 
Figure   6.1  . This separation refl ects the difference in the potential 
values of   ∆  µ  , under the alternative (  ∆  µ = δ  ) and null hypotheses (  ∆  µ = 0).   10  

10.  Again, the horizontal distance between the centers of the  H 0   and  H A   pdfs is not equal 
to   δ  , but is proportional to it. See footnote 5. 
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Methodologists refer to the difference between the values of   ∆ µ  under  H 0   
and  H A   — that is,   δ   or a sensible rescaling of it — as the  effect size.  If you con-
duct a statistical test and reject  H 0   in favor of  H A  , you can conclude that 
the important population outcome mean-difference parameter has mag-
nitude   δ  , rather than zero. In other words, you will be ready to declare 
that you have detected an effect of the treatment. In analyses for our 
NYSP experiment, for instance, after rejecting  H 0   in favor of  H A  , we 
conclude that   ∆  µ   is certainly not zero, and we estimate its value under the 
alternative hypothesis — that is,   δ   — by the sample mean difference in the 
outcome between members of the treatment and control groups. 

 Under this defi nition, we could regard the effect size of the voucher 
treatment as simply equaling our best estimate of   δ  , and it would be mea-
sured in the same units as the outcome — student achievement, in the 
NYSP experiment. Of course, this scaling is arbitrary, because it is deter-
mined by the metric in which the outcome was measured. Two investigators 
could then end up with different values for the effect size if they chose to 
measure the same outcome on the same children using one achievement 
test rather than another. So, for greater uniformity and generality, effect 
size is usually redefi ned so that it can be communicated in standard devia-
tion units. Thus, for each different test and test statistic, the mathematical 
features of the rescaling differ, but the consequences are the same. Once 
the rescaling is complete, investigators can refer to the effects of their 
experiments using statements like “a difference of a half standard devia-
tion,” “a quarter standard deviation difference,” and so on. These kinds 
of statements can be understood by their colleagues and by remote audi-
ences, regardless of the specifi c metric of the outcome measurement itself. 

 Based on these ideas, to facilitate communication, researchers have 
tended to adopt the set of loose standards that Jacob Cohen (1988) pro-
posed for describing the magnitudes of effect sizes. Cohen proposed that 
in comparing an average difference in outcome between members of a 
treatment and a control group, we should regard a difference of eight-
tenths (0.8) of a standard deviation a “large” effect, a difference of one-half 
(0.5) of a standard deviation a “moderate” effect, and two-tenths (0.2) of 
a standard deviation a “small” effect size.   11  For instance, in the case of the 
NYSP evaluation, recall that the difference in academic achievement 

11.  Effect size can also be defi ned in terms of the  correlation  between outcome and predictor. 
In the NYSP evaluation, an effect size defi ned in this way would be the sample correla-
tion between the academic achievement outcome and the dichotomous  VOUCHER  
predictor, for the sample of African-American children. This correlation has a value 
of 0.127. When effect sizes are defi ned as correlations, a coeffi cient of magnitude 0.10 
is regarded as a “small” effect size, 0.25 as a “medium” effect size, and 0.37 as a “large” 
effect size (Cohen, 1988, Table 2.2.1, p. 22). 
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between African-American children in the voucher and no-voucher 
conditions at the end of third grade was 4.899 points (Table 4.1, top 
panel). The standard deviation of academic achievement for these chil-
dren was 19.209, and so we would say that effect size in the NYSP 
evaluation — which is then about a quarter of a standard deviation — was 
“small.”   12  In our experiences, effect sizes of even the most successful 
interventions in education and the social sciences tend to be “small,” 
when calibrated in Cohen’s metric.     

   Defi ning Statistical Power   

 When conducting any hypothesis test, you have only two decisions to 
make. You can either reject  H 0   because your obtained value of  t observed   is 
larger than the value of  t critical  , or you can fail to reject it because  t observed   is 
smaller than  t critical  . However, whichever of these two decisions you make, 
you can either be correct or you could have made a mistake. So, there is a 
“two-by-two” alignment of the testing decision with its consequences that 
leads to four possible decision scenarios. To two of these, by virtue of our 
defi nitions of Type I and Type II error, we can attach probabilities of 
occurrence. We summarize these four possible decision scenarios, and 
their associated decision probabilities, in the simplifi ed graphical cross-
tabulation in Figure   6.2  .  

 In the fi gure, we have redisplayed the critical features of the  H 0   and  H A   
pdfs that we displayed in Figure   6.1  , along with the probabilities associ-
ated with their splitting vertically into parts by the placement of  t critical   
(again represented by the vertical dashed line). The fi rst row of the graph-
ical cross-tabulation summarizes the distribution of  t observed   when  H 0   is true; 
the second row summarizes its distribution when  H A   is true. We comment 
briefl y on each decision scenario below, beginning in the fi rst row.    

   When H 0  Is True and  ∆  µ  Is Equal to Zero (First Row)   

         • Right-hand cell.  Even though the null hypothesis is actually true in 
this row and there are no differences between the treatment and 
control group outcome means, in the population, you may fi nd 
that your single empirically obtained value of  t observed   is idiosyncrati-
cally larger than the value of  t critical   simply by virtue of an accident 
of sampling. Then, you will reject  H 0   by mistake and declare that 

12.  Some argue that effect size is best scaled in terms of the standard deviation of the 
outcome for participants in the control condition only. In the NYSP evaluation, this 
would have led to an effect size of (4.899/17.172), or 0.285. 
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  ∆  µ   is equal to   δ   incorrectly. In this case, you have made a Type I 
error, because you have falsely rejected your null hypothesis when 
it was correct. Such a decision scenario would occur if your actual 
experiment was one of those unfortunate occurrences in which a 
sample drawn from a truly null population generated a large value 
of  t observed   by an idiosyncratic accident of random sampling. However, 
because under this scenario  H 0   is actually correct, the probability 
that you will make such a decision is equal to the area under  H 0  ’s 
pdf to the right of  t critical  , which is of course the level of Type I error 
  α   that you yourself have picked in advance of the test. Thus, you 
have direct control over the Type I error probability, and you have 
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     Figure 6.2    Four-way decision scenario, summarizing the probabilities of not rejecting  H 0   
(1st column) or rejecting  H 0   (2nd column) when it is either True (1st row) or False (2nd 
row), showing the Type I error (  α  ), Type II error (  β  ), and placement of the critical value 
of the  t -statistic ( t critical  ), for a one-tailed test of population outcome mean differences 
between a treatment and a control group.    
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an incentive to limit it by choosing a suitably small   α  -level, such as 
0.05, for your test.  
      • Left-hand cell . On the other hand, you may fi nd that your single 
empirically obtained value of  t observed   is appropriately smaller than 
your tabled value of  t critical  , you will correctly fail to reject  H 0   ,  and 
you will be right when you declare that   ∆  µ   is equal to zero .  In this 
decision scenario, you have drawn a well-behaved small value of 
 t observed   from the null distribution, and it is appropriately less 
than  t critical  . The probability that this decision scenario will occur 
is simply the area under  H 0  ’s pdf to the left of  t critical  , or the  comple-
ment  of your self-selected Type I error, and is therefore equal to 
(1 –   α  ).         

   When H A  Is True and  ∆  µ  Is Equal to  δ  (Second Row)   

         • Left-hand cell . In this scenario, even though the alternative hypoth-
esis is true and there are indeed differences between the treatment 
and control group outcome means, in the population, you may 
fi nd that your single empirically obtained value of  t observed   is idiosyn-
cratically smaller than the value of  t critical  , again by an accident of 
sampling, and you will fail to reject  H 0   even though it is false. Thus, 
you would incorrectly declare that   ∆  µ   is equal to zero. This would 
occur if your experiment was one of those occasions when a 
random sample from the alternative population happens to toss 
up an idiosyncratically small value of  t observed  . Consequently, 
although  H A   is actually true, your idiosyncratically small obtained 
value of  t observed   leads you to conclude that the sample was drawn 
from the null population. You have now made a Type II error. The 
probability that this decision scenario will occur is given by the 
area under  H A  ’s pdf to the left of the value of  t critical  . It is called the 
Type II error of the decision-making process, and we represent it 
by the symbol   β  . It is again a probability, just like   α  .  
      • Right-hand cell . Finally, you may fi nd that your single empirically 
obtained value of  t observed   is appropriately larger than the tabled 
value of  t critical  , and you will correctly reject  H 0  . In this scenario, 
your alternative hypothesis is true and you will be right when you 
declare that   ∆  µ   is equal to   δ  . The probability that this decision 
scenario will occur is equal to the area under  H A  ’s pdf to the right 
of  t critical   — it is the complement of Type II error, or (1 –   β  ).     

 This two-way cross-tabulation of the decision scenarios illustrates 
that the magnitudes of the several decision probabilities are interrelated. 
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To appreciate this fully, recall that, once the pdf of the test statistic has 
been specifi ed under  H 0  , the value of  t critical   depends only on your selec-
tion of the   α  -level. So, if you were willing to entertain a larger Type I 
error, perhaps as high as 0.10, then your corresponding value of  t critical   
would shrink, so that 10 %  of the area beneath  H 0  ’s pdf can now become 
entrapped to its right. With your new willingness to entertain this larger 
Type I error, you would fi nd it easier to reject  H 0   because the single empir-
ically obtained value of your observed test statistic would be more likely to 
exceed the now smaller value of  t critical  . This means that, if you can tolerate 
increased Type I error, you can more easily reject  H 0   and more easily 
claim detection of a non-zero effect in the population. Of course, in 
enhancing your chances of claiming such a non-zero effect, you have 
increased the probability of Type I error — that is, you are now more likely 
to reject  H 0   even when it is true! At the same time, shifting  t critical   to a 
smaller value has implicitly moved the vertical splitting of  H A  ’s pdf to the 
left in Figure   6.2  , and thereby reduced the value of the Type II error   β  . 
So, you are now more likely to accept  H A   when it is true. This intimate —
 and inverse — connection between the magnitudes of the Type I and II 
errors is a central fact of statistical life. As you decide to make one type of 
error  less  likely, you force the other one to become  more  likely, and vice 
versa. So, you can correctly regard hypothesis testing as a trade-off between 
the probabilities of two competing types of error. 

 More importantly, the decision probability featured in the right-hand 
cell of the lower second row in Figure   6.2  , which is of magnitude (1 –   β  ), 
is a central and important commodity in our empirical work. It is the  prob-
ability of rejecting H 0  when it is false . Or, alternatively, it is the probability of 
accepting the alternative hypothesis when it is true. This is a highly pre-
ferred end result for most research — the rejection of the null hypothesis in 
favor of the alternative, when the alternative is true. For example, in 
designing the NYSP experiment, investigators were hoping to reject the 
null hypothesis of no causal connection between voucher receipt and stu-
dent achievement in favor of an alternative hypothesis that stipulated 
voucher receipt had a causal effect on student achievement. This impor-
tant quantity is defi ned as the  statistical power  of the study and, as you can 
see from Figure   6.2  , it is simply the complement of the Type II error. This 
means that, knowing the pdfs of our test statistics — such as the  t -statistic —
 under the null and alternative hypotheses, and being willing to set the 
Type I error level to some sensible value, means that we can actually esti-
mate a value for the statistical power. This can be very useful both during 
the design of the research and also after the research has been completed. 
We follow up on these ideas in the section that follows.       
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   Factors Affecting Statistical Power   

 Given this explanation, statistical power can be estimated prospectively 
for any research design, provided that you are willing to stipulate four 
things. First, you must be willing to anticipate the effect size that you hope 
to detect (e.g., Do you expect to be detecting a small, medium, or large 
effect?). Second, you must pick the type of statistical analysis you will 
eventually conduct (e.g., Will you use a  t -test of differences in means, or 
more sophisticated methods of data analysis?). Third, you must pick an 
  α  -level for your future statistical inference (Are you happy with the 
0.05 level?). Fourth, you must decide on the number of participants you 
want to include in your sample (Can you afford to recruit 200, 300, 400, 
or more participants?). The reason that these four decisions determine 
the statistical power of your prospective analysis is as follows. By choosing 
the method of statistical analysis, you identify the statistic that will be 
used to test your hypotheses. Knowing the test statistic and the prospec-
tive sample size determines the shape of the test statistic’s pdf under  H 0  . 
Choice of the effect size then determines the pdf of the test statistic under 
 H A   (typically, by displacing the pdf to the right).   13  Finally, overlaying the 
  α  -level on the test statistic’s pdf under  H 0   then fi xes the critical value 
of the test statistic, which consequently determines the statistical power. 
We call this a  statistical power analysis . 

 Often of greater interest, if you are willing to anticipate the effect size, 
specify a type of analysis, pick an   α  -level, and decide on the statistical 
power you want, you can fi gure out the sample size that will permit you to 
reach your analytic objectives. The actual computations underlying such 
statistical power analyses are complex, and they make use of theoretical 
knowledge of the mathematical shapes of the pdfs of the different test 
statistics under the null and alternative hypotheses, and of integral calcu-
lus. Consequently, we do not describe them here. But they are available 
for reference in standard statistical texts, and are most easily carried out 
by dedicated computer software, much of which is now available free on 
the Internet.   14  Instead, our purpose here is to give you a ballpark sense of 
the kinds of sample sizes that are needed for successful experimental 
research design in education and the social sciences, and the levels of 

13.  Depending on the type of analysis, the test statistic’s pdf under  H A   may also have a 
different shape from its pdf under  H 0  . 

14.  All the power analyses in this chapter were conducted using the G ∗ Power freeware, 
v2.0,  GPOWER: A-Priori ,  Post-Hoc and Compromise Power Analyses for MS-DOS , Dept. of 
Psychology, Bonn University, Germany,   http://www.psycho.uni-duesseldorf.de/aap/
projects/gpower/  . 
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statistical power that they typically provide. In addition, we hope to guide 
you toward the kinds of design decisions that will enable you to achieve 
your objectives as an investigator of cause and effect. 

 To provide you with some intuition about the sizes of sample that are 
required typically in a successful two-group experiment, we now present 
estimates of statistical power for an experiment in which we assign a 
sample of participants randomly and individually to either a treatment or 
a control condition, so that groups of equal size are formed. We again 
assume that a one-sided  t -test will eventually be used to test a null hypoth-
esis of no group differences in the outcome mean, in the population. 
For this empirical set-up, in Figure   6.3  , we plot the obtained values of 
statistical power (vertical axis) at different values of the total sample size 
(the total number of participants in the treatment and control groups 
combined, on the horizontal axis). We do this for both small effect sizes 
( ES  = 0.2, lower pair of curves) and medium effect sizes ( ES  = 0.5, upper 
pair of curves), at   α  -levels of 0.05 (solid lines) and 0.10 (dashed lines), 
respectively. We have not provided plots for the large effect size ( ES  = 0.8) 
condition because such effect sizes occur rarely in experimental research 
in education and the social sciences. You can replicate these plots by 
downloading standard statistical power analysis software from the Internet 
and inserting these values we have provided for effect size and Type I 
error (see footnote 14).  

 Inspecting the fi gure, you can discern three important relationships 
between statistical power and the other quantities involved. First, notice 
that statistical power is always greater when you adopt a more liberal 
  α  -level in your statistical testing. In Figure   6.3  , at any pairing of effect and 
sample size, power is always greater when the   α  -level is 0.10 rather than 
0.05. For instance, if you want to detect a small effect size ( ES  = 0.2) with 
a total sample size of 300, then choosing an   α  -level of 0.10 rather than 
0.05 increases your statistical power from approximately 0.53 to 0.67, an 
improvement of more than 25 % . Our earlier description of the nature of 
statistical power provides an explanation for why this occurs. Returning 
to Figure   6.2   and focusing on the fi rst row, you will see that it is the choice 
of   α  -level that splits the area beneath the test statistic’s pdf under  H 0   and 
determines the test statistic’s critical value  t critical  . So, if you deliberately 
increase the value of   α  , from 0.05 to 0.10. say, the value of  t critical   must 
“shift to the left,” so that a larger area (10 % ) can be entrapped under the 
 H 0   pdf to its right. But, if  t critical   is shifted, any areas entrapped beneath the 
alternative probability density function in the second row of the fi gure 
must be affected. Specifi cally, the area to the left of  t critical   under the  H A   pdf 
will be reduced, decreasing the value of the Type II error   β  , and increas-
ing its complement, the statistical power. 
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     Figure 6.3    Statistical power as a function of total sample size, effect size (0.2 versus 0.5), 
and   α  -level (0.05 versus 0.10), for a one-tailed test of population outcome mean 
differences between a treatment and a control group.    
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 The second important relationship evident in our fi gure is that, all else 
remaining equal, you will always have more power to detect a larger effect. 
In Figure   6.3  , with a total sample size of 100 participants randomized to 
treatment conditions, say, and an   α  -level of 0.05, you have a power of just 
over 0.25 to detect a small effect ( ES  = 0.2) and a power of almost 0.80 to 
detect a medium effect ( ES  = 0.5). Again, the reason for this link between 
effect size and power can be deduced from our decision-scenario descrip-
tion in Figure   6.2  . As we have noted already, the effect size determines the 
horizontal separation of the test statistic’s pdfs under  H 0   and  H A  . So, if a 
larger effect size is accommodated, the  H 0   and  H A   pdfs must be more 
widely separated along the horizontal axis. But, in the fi rst row of the 
fi gure, the center of  H 0  ’s pdf is fi xed at zero (because it represents the 
“null” condition). So, as effect size is increased, the pdf of the test statistic 
under  H A   shifts to the right, in the second row of the fi gure, sliding past 
the location of  t critical  , the placement of which has been fi xed by the earlier 
choice of   α  -level under the  H 0   pdf. Consequently, the area beneath the 
alternative distribution to the right of  t critical   must rise, and statistical power 
is again increased. 

 Third, and most important, statistical power is always greater when the 
total number of participants included in the experiment is larger, all else 
being equal. This is quite a dramatic effect, as evidenced by the slopes of 
the power/sample size relationships in Figure   6.3  . Notice, for instance, in 
research to detect a medium effect size ( ES  = 0.5) at an   α  -level of 0.05, 
statistical power can be increased from about 0.55 to more than 0.80 by 
increasing the total sample size from 50 to 100 participants! Although it is 
more diffi cult to understand, the reason for this dependency can again be 
deduced from Figure   6.2  . As sample size increases, the pdf associated 
with any test statistic always becomes slimmer and taller because its values 
enjoy greater precision — and less scatter on repeated sampling — at larger 
sample sizes. However, the location of the center of the distribution 
remains unchanged.   15  So, as the  H 0   and  H A   pdfs in Figure   6.2   slim down 
and become more pointy, there are two important consequences, one for 
each featured pdf. First, in the  H 0   pdf in the fi rst row of the fi gure, the 
location of  t critical   must move to the left — that is, the critical value must get 
smaller — in order to accommodate the fi xed choice of   α  -level adopted for 
the test. (Recall that choice of   α  -level splits the pdf under the null distri-
bution vertically, so that an area equal to the Type I error must fall to the 
right of  t critical  . In a rapidly narrowing distribution, this can only continue 

15.  You can check out this claim using one of the simulations of the distribution of the 
sample mean as a function of sample size available on the Internet. 



100 Methods Matter

to occur if  t critical   shifts to the left, thereby becoming smaller.) Second, in 
the second row of the fi gure, the corresponding narrowing of the  H A   pdf 
causes the area beneath it to be reapportioned on either side of the now 
fi xed value of  t critical  , with less of the area falling to the left and more falling 
to the right. The shift of the value of  t critical   to the left in the  H 0   pdf in the 
fi rst row and the reapportioning of the area beneath the  H A   pdf in the 
second row both lead to a reduction in the area beneath the  H A   distribu-
tion to the left of  t critical  . Consequently, Type II error   β   is reduced and 
statistical power (1 –   β  ) is increased. We suggest that you download soft-
ware for computing statistical power from the Internet, and try out some 
of these computations for yourself, based on experiments that you think 
you may want to conduct in your own area of substantive interest. 

 One of our own great concerns as social scientists and methodologists 
has always been that many empirical investigators do not have a realistic 
vision of the actual sample sizes that are required to conduct powerful and 
effective research. It is common that researchers underestimate the num-
bers of participants required for empirical success. For instance, if you were 
designing research to estimate the impact of private-school tuition voucher 
receipt on academic achievement, and you suspected that the effect size 
you might detect was small (as in the NYSP experiment), you could set 
your   α  -level to the “usual” 0.05 level of statistical signifi cance and strive 
for moderate power in the region of 0.80. From the plot in Figure   6.3  , 
with these values set, you can see that you require a total sample size of 
about  620 participants  — distributed randomly into equally sized treatment 
and control groups — to have a reasonable hope of successfully detecting 
an effect size of 0.20. If you are unhappy with the idea that there is a 20 %  
chance that you would declare the null hypothesis to be true when in fact 
this is not the case (a Type II error of 0.20), you might want to shoot for a 
power of 0.90. Then, you would need a total of 860 participants in your 
sample. This makes even the NYSP experiment a little underpowered for 
investigating the causal impact of tuition vouchers on African-American 
children, as there are only 521 of these children in the sample. 

 If you need more power for your experiment, or if the predicted effect 
size is smaller than 0.20, or if you want to detect the same treatment 
effect in multiple subgroups (e.g., among different race/ethnicities), then 
your sample must be considerably larger than these targets. Do not 
underestimate the sample size that you will require for your research. 
In underpowered research, you will never know whether you have failed 
to reject the null hypothesis because it is true, or because you simply did 
not have suffi cient power to confi rm the alternative. This problem plagued 
many of the studies of elementary-school mathematics interventions that 
the WWC reviewed.    
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   The Strengths and Limitations of Parametric Tests   

 Keep in mind that the magnitude of the statistical power available in a 
particular investigation also depends on the type of statistical technique 
selected for data analysis. In our earlier examples, to underpin our techni-
cal presentation and form a basis of our “ball-park” estimates of power 
and sample size, we have focused on the simplest possible kind of statisti-
cal analysis that you can conduct in data drawn from a two-group 
experiment — the two-group  t -test. In focusing on the use of this simple 
technique, we intended to provide a “baseline” set of recommendations 
about sample size and statistical power in research design. 

 However, many other statistical techniques are available for analyzing 
data, even for analyzing data from a simple two-group experiment, and 
some of them are more powerful than others. As a guiding principle, 
statistical techniques are more powerful when they incorporate more 
information into the analysis. Other than simply collecting data on more 
participants, there are two straightforward ways to achieve this — you can 
either make stronger assumptions about the data and the statistical model 
upon which the analysis is based, or you can add covariates to the analysis. 
Generally, analytic techniques that make more stringent assumptions are 
more powerful than those with weaker assumptions. The reason is that 
the assumptions themselves constitute a kind of information that is incor-
porated in the analysis. For example, among techniques for comparing 
the average outcomes of a treatment and a control group, the  t -test is 
intrinsically more powerful than the nonparametric Wilcoxon rank test. 
In fact, as a general principle, parametric statistical tests are always more 
powerful than the corresponding nonparametric tests. This is because 
the  t -test, and other traditional parametric tests like those that automati-
cally accompany ordinary least-squares (OLS) regression analysis and the 
analysis of variance, make stronger assumptions about the distribution of 
the outcome in the analyses. The  t -test, for instance, assumes that partici-
pants’ values of the outcome are independently and normally distributed 
with homoscedastic variance in the treatment and control groups.   16  These 
stringent assumptions provide additional information that contributes 
greatly to the power of the analysis. Of course, you don’t get anything for 
nothing. In choosing to use a test like the  t -test over the Wilcoxon rank 
test, you are relying heavily on the validity of these additional parametric 
assumptions. This means that the added assumptions must be valid in 
order for the results of your analysis to be correct. If the assumptions are 

16.  Some versions of the  t -test relax the population homoscedasticity assumption. 
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violated, then your answer may be wrong no matter how powerful the 
technique!     

   The Benefi ts of Covariates   

 A second direct way to bolster the statistical power of your analysis is to add 
covariates to your statistical models. Techniques like multiple-regression 
analysis, for instance, are more powerful than simpler techniques like a 
 t -test of differences in means, for this reason. As we described in Chapter 4, 
a research question about the equality of average academic achievement 
between a voucher and a no-voucher group can be addressed in data 
either by a  t -test of differences in sample means or by regressing the 
achievement outcome on a dichotomous “question” predictor that distin-
guishes participants’ membership in the treatment or control group. 
If no covariates were included in the regression model, both approaches 
would provide identical answers and have identical power. 

 However, the regression analysis approach lets you include judiciously 
selected additional variables — exogenous measures of the children’s 
demographic background, home life, and prior achievement — as covari-
ates or control predictors to the analysis, without increasing the sample 
size. Providing the new covariates are well behaved — that is, reliably mea-
sured, linearly related to the outcome, uncorrelated with the “treatment” 
predictor,   17  and independent of the existing residuals in the model 
(exogenous) — their inclusion will tend to increase the proportion of the 
outcome variation that is predicted when the model is fi tted (i.e., increase 
the value of the  R 2   statistic) and thereby reduce residual variance. A reduc-
tion in residual variance necessarily implies a shrinking of the standard 
errors associated with the estimation of regression parameters, and an 
(inversely proportional) increase in the magnitude of  t -statistics associ-
ated with the predictors. A larger  t -statistic means that you are more likely 
to reject the null hypothesis and therefore your analysis has greater power 
at the same sample size. This is evident in the third panel of Table 4.1, 
where the standard error associated with the  VOUCHER  predictor has 
declined from 1.683 to 1.269 on inclusion of student pre-test scores as a 
covariate, and the  t -statistic associated with the impact of the voucher 
treatment increased correspondingly from 2.911 to 3.23. In general, the 
impact of covariates on power can be dramatic. For instance, Light, Singer, 
and Willett (  1990  ) comment that, if you include in your regression analyses 

17.  If treatment status is assigned randomly by the investigator, then the treatment 
predictor will necessarily be uncorrelated with  all other  exogenous covariates. 
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a set of covariates that predict about half the variation in the outcome 
jointly, then you can maintain the same statistical power for your analyses 
at half the sample size. 

 The message is clear. There is always an analytic advantage to prefer-
ring a more complex statistical analysis over a less complex one because it 
provides you with an opportunity to increase precision by including cova-
riates. Greater precision brings increased statistical power, and the ability 
to detect a smaller effect at the same sample size. However, signifi cant 
knowledge is needed to use complex statistical analyses appropriately. 
In doing so, you are relying more heavily on the hypothesized structure of 
the statistical model. You have to ensure that additional assumptions are 
met. You have to do a good job, analytically speaking, with the new terms 
in the model. You need to worry about whether the new covariates meet 
the underlying requirements of the analysis in terms of the quality of their 
measurement, the functional form of their relationship with the outcome, 
whether they interact with other predictors in the model, and whether 
they are truly independent of the existing residuals, as required. Clearly, 
everything has its price! However, if it is a price that you can pay, the 
rewards are great.     

   The Reliability of the Outcome Measure Matters   

 An additional factor to consider when fi guring out how large a sample 
you will need for your research is the  reliability  of your outcome measure. 
To this point, we have assumed that the measurement of the outcome 
variable has been perfectly reliable. Of course, this is rarely the case in 
practice. All measures of observed quantities suffer from some level of 
unreliability as a result of the presence of random measurement error. 
Standardized measures of student achievement, such as those adminis-
tered in the NYSP experiment, may have reliabilities above 0.90. Measures 
of many other constructs, particularly those with less precise defi nitions, 
or those that seek to document participants’ self-reported beliefs and 
opinions, may have reliabilities that fall as low as 0.60. 

 Although psychometricians defi ne the reliability parameter formally as 
a ratio of the population variances of the true and observed scores (Koretz, 
  2008  ), you can regard measurement error as being the random “noise” 
that obscures the true “signal” in an outcome variable. Measures that are 
less reliable obscure the true signal to a greater extent and therefore make 
it more diffi cult to detect treatment effects. This means that one simple 
approach for assessing the impact of outcome unreliability on statistical 
power computations is to view it from the context of effect size. Ultimately, 
we are conducting research so that we can detect the presence of true 
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effects, and so we must account for measurement unreliability in our 
designation of observed effect size for the purposes of statistical power 
computation. In other words, because measurement fallibility under-
mines our ability to detect effects, we must plan our research in anticipation 
of even smaller effects than we would hope to detect in a world of perfect 
measurement. 

 Specifi cally, if you want to detect a true effect of a particular size, then 
you must design your research to seek an observed effect size that is equal 
to the anticipated true effect size,  multiplied by the square root of the reliabil-
ity of the outcome variable . The newly attenuated effect size thus obtained 
can then be incorporated into your power computations in the usual way. 
To give you some sense of the magnitude of the correction, imagine that 
you set your   α  -level at the 0.05 level of statistical signifi cance and are plan-
ning to design a two-group randomized experiment that will have a 
statistical power of 0.80 to detect a small effect ( ES  = 0.2). We noted ear-
lier that you should anticipate requiring a total sample size of 620 
participants. If your outcome reliability were less than perfect, but at the 
level of most published achievement tests — around 0.95, say — then you 
would need to conduct power analyses in anticipating the detection of a 
new effect size of 0.195 — that is, 0.2 multiplied by the square root of 0.95. 
To compensate for this small decline in effective effect size, total sample 
size would have to increase by 32 participants to 652. However, if your 
outcome reliability fell as low as 0.85, then your sample size would need 
to rise by 112 participants to 732. Notice that, because we take the square 
root of the outcome reliability (an estimate that always falls between 0 and 
1) before conducting the new power analysis, the impact of measurement 
reliability — in its typical ranges (0.85 to 0.95) — is mitigated and the impact 
on sample size is of the order of a few percent. Outcome reliability would 
have to fall to 0.16, for instance, before measurement unreliability would 
force you to reclassify a “medium” effect as “small.” 

 Although the impacts on power and sample size are not enormous 
when the reliability of measurement is reasonably high, it is worth paying 
attention to the potential impact of measurement reliability on your 
power analyses. Specifi cally, we suggest that you incorporate two steps in 
your research planning in order to deal with reliability of measurement. 
First, you should always make sure — by pre-research piloting, detailed item 
analysis, and prior editing and refi nement of your instruments — that you 
administer measures of the highest reliability possible for the construct, 
audience, and context in your research. Second, you should always antici-
pate the presence of measurement error in your assessment of effect size 
and conduct your power analyses at that smaller effect size. Fortunately, 
with any decently constructed and reasonably reliable measure, this will 
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probably mean that you will only have to increase your anticipated total 
sample size by a few percent.     

   The Choice Between One-Tailed and Two-Tailed Tests   

 Finally, we return to the question of whether it makes sense to adopt a 
one-tailed (directional) or a two-tailed (nondirectional) test when con-
ducting data analyses. Earlier, in our replication of the original analyses 
of the NYSP data in Chapter 4, we made use of a two-tailed test. The 
reason was that we wanted to retain an open mind and proceed as though 
the jury were still out on the effectiveness of educational vouchers. If we 
were ultimately to reject a null hypothesis of no group difference in out-
come between those randomly assigned vouchers and those not, we did 
not want to prejudge whether any detected effect favored the voucher 
recipients or control-group members. 

 In contrast, when we reviewed the concept of hypothesis testing and 
introduced the notion of statistical power in this chapter, we made use of 
a one-tailed test. We did this to make our pedagogic explanations of Type I 
and Type II error simpler. In particular, this decision allowed us to focus 
only on the single  upper  tail of the pdf of the test statistic, under  H 0  , and 
the area trapped beneath it, in  Figures  6.1   and   6.2  . Now that these con-
cepts have been established, it makes sense to consider the consequences 
for statistical power analysis of the choice between a non-directional (two-
tailed) and a directional (one-tailed) test. The answer is straightforward. 

 When you adopt a one-tailed test, essentially you place your entire 
reservoir of Type I error — typically, 5 %  — into the area trapped beneath the 
upper tail of the pdf of the test statistic under  H 0   and the critical value. 
This is what we are illustrating in the fi rst row of Figure   6.2  . By adopting 
an  α -level of 5 % , say, and insisting on a one-tailed test, we fi x the critical 
value of the  t -statistic at the place already displayed in the fi gure. 

 If we were to now change our minds and opt for a two-tailed test, we 
would need to adopt a new critical value for the  t -statistic, and this would 
affect both our Type II error and statistical power. For instance, under 
the non-directional testing option, we would need to accept that Type I 
error could potentially occur at either end of the pdf of the test statistic 
under  H 0  . We could falsely reject the null hypothesis because the value of 
 t observed   was driven to be either too large or too small as a result of the idio-
syncrasies of sampling. Either way, we would reject  H 0   incorrectly, and 
commit a Type I error. As a result, we need to split our adopted Type I 
error level — usually, 5 %  — into two halves, each of 2.5 % . We would then 
choose a new critical value of the  t -statistic, so that 2.5 %  of the area 
beneath the pdf of the test statistic (under  H 0  ) was entrapped to the right 
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of its positive value at the upper end and 2.5 %  of the area was entrapped 
to the left of its negative value at the lower end.   18  As a consequence, the 
magnitude of the new  t critical   must be larger than that currently displayed. 

 In going from the existing critical value of the  t -statistic obtained under 
the one-tailed test of our initial explanation to the new larger critical value, 
we have effectively moved the vertical dashed reference line in Figure   6.2   —
 the line that also splits the pdf of the  t -statistic under  H A  , in the second 
row of the fi gure — to the right. Thus, the Type II error (  β  ) — represented by 
the area entrapped beneath the pdf of the test statistic (under  H A  ) to the 
left of the dashed vertical line — will have increased. Concurrently, the sta-
tistical power — the complement of that area, to the right of the vertical 
dashed line — must be reduced. Thus, switching from a one-tailed to a two-
tailed test implicitly reduces the power of a statistical test. 

 We conclude by reminding you then that, in most research, two-tailed 
tests are the order of the day, even though they are implicitly less power-
ful than one-tailed tests. Only when you can mount a compelling defense 
of the argument that a particular policy or intervention can have only a 
directed impact (positive or negative) on the outcomes of interest, in the 
population, is the use of one-tailed tests justifi ed.      

   What to Read Next   

 If you want to learn more about statistical power, we suggest that you 
consult the classic text by Jacob Cohen entitled  Statistical Power Analysis 
for the Behavioral Sciences  (1988, 2nd edition).   
                                                   

18.  Implicitly, in the two-tailed case, because the pdf of the  t- statistic (under  H 0  ) is sym-
metric,  t critical   will take on two values of the same magnitude — one positive and the 
other negative — which are equally spaced on either side of the center of the pdf. 
During the subsequent test, if the value of the observed  t -statistic is positive, it will be 
compared to the upper positive value of  t critical  ; if it is negative, it will be compared to 
the lower negative value. 
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                                             7  

 Experimental Research When 
Participants Are Clustered 
Within Intact Groups        

       A pressing worldwide educational problem is that large numbers of 
economically disadvantaged children do not learn to read well in elemen-
tary school. As a result, they enter secondary school without the ability to 
comprehend textbooks in the core subjects, and this leads to poor grades, 
discouragement, and high dropout rates. In response to this widespread 
problem, Robert Slavin and his colleagues at Johns Hopkins University 
designed  Success for All  (SFA), a comprehensive school-wide intervention 
aimed at ensuring that every student in a school performs at grade level 
in reading by the end of the third grade and subsequently develops the 
advanced reading skills necessary for academic success. 

 SFA has many features that differentiate it from most other elementary 
school reading curricula. It has a highly structured school-wide curricu-
lum that emphasizes “language and comprehension skills, phonics, sound 
blending, and use of shared stories” in grades K–1 and the use of novels 
and basal readers in “cooperative learning activities built around partner 
reading” in grades 2–6 (Borman et al.,   2005a  , p. 19). In contrast to the 
typical age cohort-based structure of the traditional elementary school, 
children participating in SFA are regrouped frequently across age and 
grade boundaries, so that they can be taught in cooperative learning 
groups in which all participants share similar reading skills. In addition, 
students must engage in free-choice reading at home for 20 minutes each 
evening, and teachers help parents learn how to provide appropriate 
supervision. When SFA is fi rst introduced into a school, staff from the 
Success for All Foundation provides training to the school principal, the 
program facilitator, and the teachers who will implement the program. 
Finally, the reading achievement of participating children is assessed 
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formally and systematically in every quarter in grades 1 through 6, and 
the assessments guide children’s subsequent placement and remediation. 

 The SFA program was fi rst introduced into public schools in Baltimore, 
Maryland, in 1987. During the next two decades, its use spread rapidly. 
Today more than 1,200 schools, most with economically disadvantaged 
student bodies, use this school-wide approach to developing students’ 
reading skills. Sparking the rapid early expansion of SFA were the fi nd-
ings of several dozen non-experimental evaluations of the intervention 
conducted during the 1990s, which showed that the reading skills of 
children in schools that adopted SFA were better than those of children 
in “comparison” schools that implemented other reading curricula. 
However, these were not randomized experiments. Instead, the research-
ers who conducted the evaluations sought out and selected non-randomly 
several “comparison” schools that they believed served student popula-
tions that were demographically similar to those of the SFA schools and 
had a history of similarly low reading achievement. 

 As you know from Chapters 3 and 4, a necessary condition for such eval-
uations to provide unbiased estimates of the causal impact of SFA is that 
treatment and comparison groups must be  equal in expectation  on all unob-
served dimensions that are correlated with student reading outcomes, prior 
to treatment. There are two reasons to question whether this condition was 
satisfi ed in the early non-experimental evaluations of SFA. First, schools 
that adopted SFA were required to spend about $75,000 in the fi rst year of 
program implementation, $35,000 in the second year, and $25,000 in the 
third year, to pay for the materials and training that the SFA Foundation 
provided (Borman,   2007  , p. 709). Schools that were able to obtain agree-
ment from stakeholders to devote such substantial resources to a single 
program may have differed from other schools along other important 
dimensions, such as the quality of their leadership. Second, before a school 
introduces SFA, the Success for All Foundation requires that four-fi fths of 
the faculty members in the school vote to adopt the school-wide interven-
tion. A result of this requirement may have been that schools that voted to 
adopt SFA possessed a greater sense of common purpose, on average, than 
those that adopted more conventional curricular approaches to teaching 
reading. This difference in commitment to improving children’s reading 
skills could itself have infl uenced student outcomes positively even if the 
SFA approach itself was no better than the alternatives. 

 Given the importance of developing the reading skills of disadvantaged 
students, the large number of schools using SFA to pursue this goal, and 
the limitations of available evidence to support its relative effectiveness, 
in 2000 the U.S. Department of Education provided the funds for a 
randomized-experimental evaluation of the impact of SFA. As you know 
from Chapter 4, the strength of this research design is that,  after  random 
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assignment of participants to experimental conditions has taken place but 
 before  the intervention has begun, treatment and control groups will be 
equal in expectation on all dimensions, including those that are unobserved. 
This condition is central to the argument that any subsequent differences in 
student outcomes between members of the treatment and control groups 
are due to the differences in the treatments that the groups received. 

 However, one important respect in which the new randomized-
experimental evaluation of SFA differed from that of the New York 
Scholarship Program (NYSP), which we described in Chapter 4, is that it 
was  intact  schools — rather than the individual students within them — that 
were randomized to experimental conditions. There are several reasons 
why such  cluster-randomized  experimental research designs are more 
common in education than designs that simply randomize  individuals  to 
experimental conditions. First, the mix of students enrolled in particular 
schools is predetermined by social forces that are diffi cult to change. 
Second, it is often much easier to overcome parents’ and educational lead-
ers’ objections to the random assignment of children to treatment 
conditions if it is done at the school -  rather than at the student level. Third, 
educational interventions themselves — that is, innovative educational 
treatments — tend to be implemented as policy changes at the classroom, 
teacher, school, or district level, rather than at the student level. Fourth, 
recall from Chapter 4 that peer effects are one of the major threats to the 
internal validity of random-assignment experiments. These are situations 
in which the impact of a treatment on  one  student may depend on whether 
particular other students are assigned to the same group. Such interac-
tion effects violate SUTVA. However, as Imbens and Wooldridge (  2009  ) 
explain, if all of the potential interaction effects are solely among students 
attending the same school, and if intact schools are randomized to treat-
ment or control groups, the offending interactions are “internalized” into 
the conception of the treatment itself and no longer pose a problem. 
Consequently, it remains possible to obtain unbiased estimates of the 
causal impact of the intervention on the average achievement of students 
in the school, where our conception of the intervention includes the spe-
cifi c within-school student-to-student interactions it engenders.   1  

 In this chapter, we discuss the consequences of randomizing intact 
groups to experimental conditions in evaluation research. In the next 
section of the chapter, we describe how the clustering of participants into 
intact groups affects subsequent analyses of experimental data. Essentially, 
we argue that if the results of these analyses — particularly the  statistical 

1.  Imbens and Wooldridge (2009) also explain that it is usually not possible to separate 
out the direct effects of the intervention on the individual from the indirect effects on 
that individual that take place via their interactions with other students in their school. 
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inference  — are to be credible, the statistical models on which they are based 
must sensibly incorporate information on the social hierarchies present 
naturally in the data. Here, we introduce a  multilevel  ( random-intercepts ) 
 regression model  that includes the  random effects of the intact groups  in its 
specifi cation, and we explain why it is one appropriate way of dealing with 
the issues that arise. Then, in the following section, we explain how the 
presence of intact groups of participants in the evaluation and the accom-
panying modifi cations to the statistical models affect the statistical power 
of the experimental comparisons. In both of these sections, we use data 
from the random-assignment evaluation of SFA conducted by Geoffrey 
Borman and his colleagues to illustrate the technical lessons. In the fi nal 
section of the chapter, we introduce an additional statistical model — the 
 fi xed-effects of groups  multilevel regression model  —  that is also popular for 
dealing with the presence of intact groups of participants in experimental 
research designs. We contrast this model with the random-intercepts 
specifi cation, briefl y describing the pros and cons of each.     

   Random-Intercepts Multilevel Model to Estimate 
Effect Size When Intact Groups Are Randomized to 
Experimental Conditions   

 Statistical analyses become more complex when participants are grouped 
naturally into intact groups, and the intact groups are randomized to the 
treatment and control conditions. This was the case in the evaluation of 
SFA that Geoffrey Borman and his colleagues conducted (  2005a  ) .  They 
began by identifying a set of elementary schools that wanted to adopt 
SFA .  Their initial plan was to randomize these schools to either the SFA 
treatment or to a control condition (the latter being the continuation of 
the reading program the school had been using). However, the research-
ers were only able to locate six schools that would volunteer to take part 
in the experiment on these terms. Three of these schools were randomly 
assigned to implement SFA across all their grades, starting at the begin-
ning of the 2001–2002 school year, and the other three retained their 
existing reading program and served as control schools. We will see later 
in this chapter that the random assignment of six intact schools to treat-
ment and control conditions provides very little statistical power for 
subsequent analytic comparisons, regardless of effect size and the number 
of students present within each school. 

 So, to induce more schools to participate in the evaluation the following 
year, the evaluation team altered the incentives. All schools that agreed to 
join the evaluation at the start of the 2002–2003 school year were permit-
ted to use the SFA program in some of their grades. Randomization was 
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then used to determine whether each of the additional 35 schools that 
agreed to participate in the evaluation on these terms would implement 
SFA in grades K through 2 or in grades 3 through 5. Then, the children 
who attended kindergarten through second grade in the schools that 
were assigned to the “grades 3 through 5” SFA implementation served as 
control-group members for the randomly equivalent children who par-
ticipated in the “K through 2” implementation of SFA in the other schools, 
and vice versa. In the experimental evaluation of the K through 2 SFA 
implementation, the “treatment” group included a total of 21 schools 
(three that implemented the SFA program in all grades, K through 5, and 
18 that implemented it in grades K through 2). The “control” group 
included 20 schools (three of which did not use SFA at any grade level, 
and 17 that implemented SFA in grades 3 through 5). After the list-wise 
deletion of 699 children with missing data, the fi nal analytic sample 
for the K through 2 evaluation consisted of 2,593 children in the SFA 
treatment group and 2,444 children in the control group, grouped into 
41 schools (Borman et al.,   2005a  ). We have included data on children in 
all of these schools in the analyses that we feature here. However, for ped-
agogic simplicity, we have limited our attention to children who were in 
the fi rst grade in the fi rst year in which their school participated in the 
evaluation.   2  We also focus our attention on a single reading outcome — 
the child’s score on a “Word-Attack” test — that was measured at the end of 
the fi rst year in which each school participated in the study.   3  

 Of course, one cannot get something for nothing. If you adopt a cluster-
randomized design for your experiment and thereby benefi t from the 
relative ease with which you can randomize schools rather than students 
to experimental conditions, you must be prepared to accept increased 
analytic complexity and, ultimately, a reduction in statistical power. The 
extent of the penalty depends on the degree to which there is homogene-
ity among the outcome behaviors of children within the intact groupings. 
Children in the SFA evaluation shared unobserved experiences with their 
peers who attended the same school during each school year. These common, 
unobserved experiences make it diffi cult to assert that the responses of 
children within the same school were independent, even discounting the 

2.  We thank Geoffrey Borman for providing the data. Although our fi ndings do not differ 
substantively from those of the original research, we recommend that readers inter-
ested in the evaluation of SFA consult the published papers by Borman and his 
colleagues. One paper (Borman et al., 2005a), which provides the basis for our presen-
tation, describes the fi rst-year results of the evaluation. A second (Borman, Slavin, & 
Cheung, 2005b) describes the second-year results, and a third (Borman et al., 2007) 
describes the results from the third and fi nal year of the evaluation. 

3.  This was the outcome for which the original authors had the strongest fi ndings in the 
fi rst year of the evaluation. 
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common effect of the treatment. Consequently, since schools participated 
in the design as intact units, it is hard to argue that we have acquired a 
random sample of participating children within the school or that the 
corresponding student-level residuals in a standard statistical model are 
independent within a school. On the contrary, we would anticipate that 
the residuals of children attending the same school will be correlated, as a 
result of the common unobserved experiences that they shared over the 
course of an academic year or longer. The challenge for subsequent statisti-
cal analyses — and for any statistical power analyses carried out during the 
design of the study — is to account sensibly for this potential lack of residual 
independence among students within each school. 

 One straightforward and simple analytic approach for estimating the 
impact of the treatment while dealing with the potential lack of indepen-
dence among the responses of participants within intact groups is to specify 
a  random-intercepts multilevel model  to describe the relationship between an 
outcome and its predictors. This is just a direct and simple extension of the 
standard ordinary least-squares (OLS) regression approach that we have 
described earlier in the book. In the case of the SFA evaluation, for instance, 
we can specify such a multilevel model to represent the causal relationship 
between a child’s word-attack score, represented by continuous variable 
 WATTACK , and a dichotomous predictor that distinguishes between 
children whose schools were assigned randomly to the SFA “treatment” 
(SFA = 1) or to the control treatment (SFA = 0), as follows:   4 

   ( )0 1ij j ij jWATTACK SFA ug g e= + + +
    (7.1)  

4.  Borman et al. (2005a) state their random-intercepts multilevel models using what has 
become known as a “level-1/level-2” specifi cation of the multilevel model. Under this 
approach, they specify both a  within-school  (“level-1”) and a  between-school  (“level-2”) 
component of the model. For instance, a simplifi ed version of their  within-school  model, 
without added control predictors, is

   = +0 Level 1 : ij j ijWATTACK b e     
  And the corresponding between-school model, again without additional covariates, is
   = + +0 00 01 0 Level 2 : j j jSFA ub g g     
  The level-1 intercept parameter   β  0j   represents the  within-school  average of the outcome 

in the school  j  and differs from school to school. In the level-2 model, the school-level 
residuals  u  0   j   provide random shocks to the grand intercept  γ  0   0   and lead to the 
random intercepts of the schools. The level-1/level-2 specifi cation can be collapsed 
into a single “composite” model by substituting for parameter   β  0j   from the level-2 into 
the level-1 model, as follows:

   00 01 0( )IJ j j ijWATTACK SFA ug g e= + + +      
 Note that the level-1/level-2 specifi cation of the multilevel model is identical algebra-

ically to the random-intercepts regression model in Equation 7.1, with only cosmetic 
differences in notation. In multilevel modeling, all level-1/level-2 specifi cations can be 
collapsed into a single composite model. It is the composite specifi cations that we 
choose to present in Equation 7.1. 
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 for the  i th   child in the  j th   school. To simplify our presentation, we have 
omitted from this model a pair of important control predictors that 
Borman and his colleagues included in their statistical models. One of 
the omitted covariates represented the child’s grade level in school. This 
is not relevant here because we have limited our analytic sample to chil-
dren in fi rst grade. The other covariate was the school-level average 
student pretest score on the Peabody Picture Vocabulary Test (PPVT). 
We reserve this covariate for inclusion later in our presentation.  

 Notice that, unlike a standard OLS regression model, our random-
intercepts multilevel model in Equation   7.1   contains a  composite  residual 
that sums two distinct error terms. We have specifi ed the model in this 
way deliberately to provide a mechanism, within the model, that accounts 
for the hypothesized lack of independence that may exist among the 
unpredicted portion of the responses of children within a school. The 
fi rst term is a  child-level  residual,   ε  ij  , and the second a  school-level  residual  u j  . 
In our hypothesized random-intercepts multilevel model, all children in 
the same school share the same value of the school-level residual  u j  , and 
this serves to tie together — or correlate — their composite residuals. 
Consequently, the model does not constrain their composite residuals to 
be independent of each other, as standard OLS models require. In fi tting 
a random-intercepts multilevel model to data, we assume that each of the 
constituent error terms,   ε  ij   and  u j  , satisfi es the usual residual normal-
theory assumptions. Thus, we assume that the child- and school-level 
residuals are distributed independently of each other in the population, 
that the child-level residuals have a population mean of zero and a vari-
ance of  2

es   , and that the school-level residuals have a population mean of 
zero and a variance of  2

us   . 
 It is worth pausing at this point to understand why this new multilevel 

model is referred to as a  random-intercepts  model. The reason becomes evi-
dent with a simple reordering of the terms in the model itself, to become:

   ( )0 1ij j j ijWATTACK u SFAg g e= + + +
    (7.2)   

 This tells us that, by including school-level residuals in the model — to 
capture the hierarchical nature of the data — we have essentially provided 
each school with its own “random” intercept, represented by   γ   0   +   u j  ). When 
we fi t this multilevel model to data, we do not estimate each of the school-
specifi c intercepts. Instead, we estimate their mean  γ  0  and their variance  2

us    
(under the assumption that the school-level residuals are drawn randomly 
from a distribution with mean zero and homoscedastic variance  2

us   ). 
 We have fi tted the random-intercepts multilevel model specifi ed in 

Equation   7.1   to our subsample of data from the SFA evaluation. It appears 
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as Model #2 in the third column of Table   7.1  .   5  In the table, we include 
estimates of each of the regression parameters in the model, along with 
their standard errors and approximate  p -values. In addition, at the bottom 
of the column, we list estimates of the child- and school-level residual 
variances, the overall  R  2  statistic for the fi tted model, and an estimate of a 
new parameter — the intraclass correlation,   ρ .  Later in this chapter, we 
defi ne this parameter and explain the important role that it plays in statis-
tical power analyses for this kind of research design. In addition to this 

5.  The random-intercepts multilevel model is easily fi tted by standard procedures in 
widely available statistical software packages, such as PROC MIXED in SAS and XTREG 
in STATA. It can also be fi tted using dedicated software, such as HLM (Raudenbush & 
Bryk, 2002) and MLWIN (Rasbash, Steele, Browne, & Goldstein, 2009). Although 
some of these procedures use different estimation algorithms, their results remain 
essentially identical, within rounding error. Borman and his colleagues (2005a) used 
the HLM package in their analyses. 

      Table 7.1  Parameter estimates, approximate  p -values, standard errors, and selected 
goodness-of-fi t statistics for three random-effects multilevel models describing the fi tted 
relationship between the word-attack scores of fi rst-graders, at the end of their fi rst year 
in the study, and the assignment of their school to either the SFA intervention or the 
control condition ( n  schools  = 41;  n  students  = 2,334)  

  Fitted Random-Effects Multilevel Models  

  Model #1: 
  The 
unconditional 
model 

  Model #2:  
 Conditional 
model that 
contains the main 
effect of  SFA  

  Model #3:  
 Conditional model that 
adds the main effect of 
covariate  SCH_PPVT  to 
Model #2  

  INTERCEPT   477.54  ∗  ∗  ∗   

 (1.447) 
 475.30  ∗  ∗  ∗   
 (2.046) 

 419.82  ∗  ∗  ∗   
 (12.558)  

 SFA  4.363 
 (2.859) 

 3.572 
 (2.340)  

  SCH_PPVT   0.623  ∗  ∗  ∗   
 (0.140)  

  
2ˆ es

   
 314.20  314.20  314.20  

  
2ˆ
us

   
 78.69  76.61  48.57  

  
2
totalR

   
 0.000  0.032  0.091  

  Intraclass correlation ,  ̂r     0.200  0.196  0.134  

   ∼  p  <0.10;   ∗   p  <0.05;   ∗  ∗   p  <0.01;   ∗  ∗  ∗   p  <0.001.  
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fi tted model, our table contains two other fi tted models: (a) an  uncondi-
tional  model that contains no predictors at all, and (b) a second  conditional  
model in which we have added the main effect of an interesting school-
level covariate, the within-school average value of a prior PPVT student 
test score, measured before the intervention began.  

 Before turning to the results of the evaluation itself (as summarized in 
fi tted Models #2 and #3), we focus on the consequences of fi tting Model 
#1 — the “unconditional” multilevel model. Parameter estimates from this 
fi tted model are easy to interpret because the model contains no explicit 
predictors. The estimated intercept in the unconditional model, for 
instance, tells us that — over all children and schools in our subsample of 
fi rst-graders — the average word-attack score is 477.54 points ( p < 0.001). 
More interesting are the estimates of the child- and school-level residual 
variances, which are 314.20 and 78.69, respectively. What do we make of 
these two components of residual variance? 

 First, it is important to realize — as in a regular OLS-fi tted regression 
model — that when no predictors are present in the model, residual vari-
ability and outcome variability are synonymous. If no part of the outcome 
is being predicted, then outcome variability must equal residual variabil-
ity. Here, because we have articulated our multilevel residual as a sum of 
two independent contributions, we have partitioned the outcome varia-
tion effectively into its child- and school-level components. In the 
unconditional multilevel model, the  school-level residual variance  is a sum-
mary of the variability in the  school-mean value of the outcome  from school 
to school. It is often referred to as  between-school  variance. It summarizes 
the scatter in the outcome among schools. The  child-level residual variance  
is what is left over after school-level variance has been removed from the 
outcome variability. In the unconditional multilevel model, it is the out-
come variance among children  within  each school, pooled over the 
schools. It is often referred to as the  within-school  variance. It describes the 
scatter in the outcome from student to student within each school. 

 What we learn from the fi tted unconditional model in Table   7.1   is that 
the  total  sample variance in the word-attack score outcome (392.89) is the 
sum of a within-school contribution of 314.2 and a between-school contri-
bution of 78.69. Comparing the magnitudes of these two contributions, 
we notice that the sample outcome variability is made up disproportion-
ately of child-level rather than of school-level variation. We can summarize 
the proportion of the total sample variance in the outcome at the school 
level by expressing it as a fraction of the total variance — this fraction is 
equal to 78.69/392.89, or 0.20. You will fi nd this latter statistic, 0.20, listed 
under the fi tted unconditional model in the bottom row of Table   7.1   and 
labeled “Intraclass Correlation.” It is an important summary statistic that 
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will feature in the analyses that follow, including our subsequent statistical 
power analyses. It summarizes the fact that, in our current sample of fi rst-
graders clustered within schools, 20 %  of the variation in our outcome can 
be attributed to differences in the average value of the outcome among 
schools and that the rest is due to heterogeneity among children within a 
school. Correspondingly, we defi ne the population intraclass correlation 
in terms of the  population residual variances  present in our hypothesized 
random-intercepts multilevel model, as follows   6 
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 Because it is a proportion, the intraclass-correlation parameter can 
only take on values that range between 0 and 1. By fi tting unconditional 
Model #1, we have obtained an estimate of it, in our subsample, uncon-
trolled for any other predictors or covariates, as follows:
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 You can articulate potential problems that can be caused by the non-
independence of participants within intact groups by thinking in terms of 
the within- and between-group variability in the outcome. First, consider 
the  clusters  of children — that is, the  schools  — that were enrolled ultimately 
in the SFA evaluation. Imagine a fi ctitious scenario in which every child was 
actually assigned randomly to his or her school at the beginning of the 
school year. In this scenario, there would be considerable natural varia-
tion in reading achievement across all of the children. However, as a result 
of their initial random assignment to schools, the average reading perfor-
mance of the children in each school would not differ across schools. 
In other words, at the beginning of the year, when children were initially 

6.  Another version of this index could just as easily have been defi ned as the proportion 
of the sum of the constituent variances that lies within school, or as the ratio of the two 
constituent variances. By convention, however, Equation 7.3 is the defi nition that is 
adopted because of its mapping onto other important parameters defi ned in tradi-
tional analyses of variance and regression analysis. 
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independent of each other, there would be no variation in average reading 
performance from school to school — and consequently no “between-
school” variation. Instead, all observed variation in reading performance 
would simply be among children within schools, and the intraclass corre-
lation would be zero.   7  

 Of course, things would not remain that way for long, once children 
began to interact with each other within the school. Over the course of a 
school year, unobserved, shared school-based experiences would act to 
homogenize the unobserved responses of children within the school. For 
example, the infl uences of strong school directors or constructive peer 
groups may raise the achievement of all children in some schools, while 
the infl uence of weak school directors or destructive peer groups may 
lower the achievement of all children in other schools. Under this sce-
nario, total variation in reading performance across all of the children in 
the sample will become partitioned differently by the end of the year. 
In particular, considerable school-to-school variation in average reading 
performance may arise, and the intraclass correlation would then no 
longer be zero. In fact, under the most extreme hypothetical scenario, 
school-specifi c infl uences would become so powerful that all children 
within a school might end up performing identically on the end-of-year 
reading achievement test. In this case, all of the variation in reading 
performance would be “between school” and none “within school,” and 
the intraclass correlation would take on a value of 1. 

 Thinking through these two extreme scenarios, it becomes clear that 
the way in which net variation in reading achievement is partitioned —
 within a school or between schools — is a good indicator of the relative 
homogeneity of children’s responses on the outcome. The reason is that, 
if all of the outcome variation is situated within school, we can regard 
children as behaving essentially independently of one another, despite 
their school affi liations. On the other hand, when all of the outcome 

7.  Of course, this situation never occurs in practice because children are clustered natu-
rally in neighborhoods before they are assigned to schools. And, even then, they are 
not assigned randomly to neighborhoods. In fact, unobserved forces in the neighbor-
hood act to render children’s responses interdependent long before they even get to 
school, because schools draw from catchment areas within which children share many 
unobserved opportunities and experiences. Typically, students will arrive in a school 
already interdependent (that is, with a non-zero intraclass correlation), but it is likely 
that their interdependence is enhanced by the unobserved common experiences that 
they share subsequently at the school, over the academic year. In designing effective 
research, it is critical to take both of these into account and focus on what the intraclass 
correlation may potentially become, at that point in time at which the fi nal value of the 
outcome of the evaluation has been measured. In this case, that would be at the end of 
the school year. 
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variation is situated between school, then children within a school will 
have become entirely interdependent and will now be behaving as clones 
of one another. In the world of real children and real schools, of course, 
the partition of the variation in the outcome variable usually falls some-
where between these extremes. To estimate the statistical power of 
research designs that randomize intact clusters of participants to experi-
mental conditions, we must come to understand the relative importance of 
within-group and between-group contributions to the outcome variation. 
The magnitude of the intraclass correlation provides us with an impor-
tant summary of this partition. It features prominently in our subsequent 
estimation of statistical power for research designs that assign intact 
groups of participants randomly to experimental conditions. 

 As we have noted, when between-school variability in the outcome is 
zero, the magnitude of the intraclass correlation is zero (because its 
numerator is zero). In this situation, there are no differences among 
schools, and all variability in the outcome is attributable to differences 
among children within schools. In this case, we can regard children within 
a school as behaving completely independently of each other, and there 
would be no effect of their clustering into intact schools on any of the 
products of the data analysis, including our estimation of statistical power. 
In fact, when the intraclass correlation is zero, the total sample of chil-
dren can be treated as though it were a simple random sample, not a 
cluster-randomized sample, and the effective sample size in the statistical 
analysis will equal the total number of children in the sample across all 
schools. 

 On the other hand, when between-school variability in the outcome is 
large (compared to within-school variability), the magnitude of the intra-
class correlation will be closer to 1. Under this condition, children within 
a school will be behaving very similarly, and the clustering of the children 
within schools will come to dominate any products of the data analysis or 
statistical power calculation. In fact, as the magnitude of the intraclass 
correlation approaches 1, the effective sample size in any statistical analy-
sis approaches the total number of schools in the sample, rather than the 
total number of children. As you can imagine, this has enormous impact 
on the statistical power of the analysis. 

 At this point, it seems natural to review the sorts of values of the intra-
class correlation obtained typically in empirical settings. It turns out that 
the specifi c estimated value that we have obtained here — which was 0.20, 
in Model #1 — is relatively large. In most empirical research in which 
students are clustered within intact schools, the estimated magnitudes of 
the intraclass correlations are typically quite small numerically, usually 
with values of no more than 0.20, and often of less than 0.05. In fact, as a 
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yardstick, methodologists tend to regard values of the intraclass correla-
tion of around 0.01 as “small,” those around 0.09 as “medium,” and those 
around 0.25 as “large.”   8  

 We now turn to the evaluation of the effectiveness of the SFA interven-
tion. In Model #2 of Table   7.1  , we present the results of fi tting our fi rst 
“conditional” model, which now includes the critical question predictor, 
SFA. Notice that the estimated within-child residual variance  

2ˆes    in this 
model (which has a value of 314.20) is no smaller than the corresponding 
value obtained in the fi tted unconditional model. This makes sense 
because the critical SFA question predictor that we have introduced into 
the model at this juncture is a school-level predictor, as intact schools 
were randomized to treatment and control conditions in the SFA evalua-
tion. In multilevel modeling, school-level predictors tend to predict 
school-level variation, and child-level predictors tend to predict child-level 
variation, although the separation is not always exclusive.   9  Notice that the 
estimated school-level residual variance  2ˆ

us    is about two points lower in 
Model #2 than in the fi tted unconditional model. A result of this decline 
in the fi tted between-school residual variance is that the estimated intrac-
lass correlation — now estimated while controlling for the assignment of 
children to experimental conditions — is 0.196 in Model #2, slightly less 
than its value in fi tted unconditional Model #1. Essentially, the introduc-
tion of the school-level SFA predictor has accounted for a small amount 
of the between-school variability in outcome, reducing the unpredicted 
school-level variability that remains in the corresponding residual. This, 
in its turn, has led to a small decline in the magnitude of the estimated 
intraclass correlation. In other words, the intraclass correlation now 
describes the within-school interdependence of children that is attribut-
able to all unobserved forces and effects,  except  for the impact of assignment 
to experimental condition. 

 Consistent with this prediction of school-level outcome variability, the 
estimated regression coeffi cient associated with the SFA question predictor 
is positive and of magnitude 4.363.   10  As in regular regression analyses of 

 8.  Notice that these are approximately the squares of the corresponding standard 
“small,” “medium,” and “large” values of the Pearson correlation coeffi cient. 

 9.  Potentially, the deviation of an individual-level variable from the grand mean can be 
written as a sum of: (a) the deviation of the individual-level score from the group-level 
mean, and (b) the deviation of the group-level mean from the grand mean. Unless this 
latter contribution is zero, any individual-level variable may contain both individual-
level and group-level variation, and thus adding an individual-level predictor to a 
multilevel model could predict both individual-level and group-level variation in the 
outcome. 

10.  Notice also that the overall model  R  2  statistic has risen from zero to 0.03. 
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experimental data, this coeffi cient estimates the treatment effect. It tells 
us that children who experienced the SFA intervention scored about 
4.4 points higher on the word-attack outcome, on average, than did chil-
dren in the control condition, at the end of the fi rst year of the experiment. 
This is just over one-fi fth of a standard deviation in the outcome, a respect-
able effect size.   11  

 Unfortunately, because of our pedagogic focus on the fi rst-grade 
subsample of the data, our estimate of the treatment effect does not quite 
achieve the standard level of statistical signifi cance. Borman and his 
colleagues (  2005a  ), working in the larger dataset, were able to reject the 
corresponding null hypothesis and conclude that the SFA intervention 
was indeed successful in causing children’s work-attack scores to be higher, 
on average, at the end of the fi rst year of the experiment than those of 
children in the control group, who did not have access to the SFA reading 
program. We discuss fi tted Model #3 later in this chapter, in the context 
of our statistical power analysis.     

   Statistical Power When Intact Groups of Participants Are 
Randomized to Experimental Conditions   

 As you no doubt suspect from the previous section, the within-cluster 
homogeneity of participants, as described by the intraclass correlation, 
has a direct and important impact on the statistical power of any research 
design that randomizes intact clusters of participants to experimental 
conditions. Consequently, to determine an appropriate sample size for 
such designs, in addition to specifying the usual triumvirate of the   α  -level, 
anticipated effect size, and required statistical power, you must also specify 
the magnitude of the intraclass correlation that you anticipate fi nding 
across individuals within the intact units you will randomly assign to 
experimental conditions. Importantly, you need to obtain an estimate of 
the value of the intraclass correlation  at the point in time in which you mea-
sure the value of your outcome . We investigate and illustrate this dependence 
in this section, algebraically and graphically, for prototypical experiments 
similar in all other respects to those that we described in the previous 
chapter. For instance, imagine that we have been asked to design an evalu-
ation of the fi rst-year impact of SFA .  Given that we intend to assign intact 
schools randomly to the experimental conditions, it would be useful, in 

11.  The outcome standard deviation in our subsample is 19.88. 
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advance, to fi gure out how the number of intact clusters (that is, schools), 
the number of children within each cluster, and the magnitude of the 
intraclass correlation will affect the statistical power of our design. 

 You can gain insight into the dependence of statistical power on the 
clustering of participants within intact groups by examining an expres-
sion for the population sampling variance of the estimate of regression 
parameter   γ  1  , which in its turn represents the effect of the SFA treatment 
in Equation   7.1  . Under the simplifying assumptions that there are an 
identical number of  n  participants (students) present in each of an even 
number of  J  intact groups (schools) that have been randomized with an 
equal number of schools assigned to treatment and control conditions, 
we can write this population sampling variance as the sum of two parts, as 
follows:
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 Examining how the population sampling variance of 1̂g  depends on the 
values of  n ,  J , and   ρ   is a reasonable approach for gaining insight into 
the links between these quantities and statistical power because, when the 
population sampling variance in Equation   7.4   is estimated from sample 
data and square-rooted, it gives us the standard error of 1̂g  for the cluster-
randomized evaluation design. And, of course, it is this standard error 
that serves as the denominator of the  t -statistic used for testing the all-
important null hypothesis that regression parameter   γ  1   is zero, in the 
population. In other words, it is the standard error that is used in the 
critical assessment of the causal impact of the SFA treatment on children’s 
reading achievement, at the end of the fi rst year. The larger this standard 
error, the smaller the magnitude of the corresponding  t -statistic, and the 
harder it will be for us to reject  H 0  , all else being equal. In other words, 
when the standard error of the estimated treatment effect is larger, we 
have less statistical power for detecting an effect of treatment in the 
cluster-randomized research design. Therefore, although the expression 
for the population sampling variance in Equation   7.4   does not describe 
the actual statistical power of the cluster-randomized design, inspection 
of its functioning does tell us how the statistical power of the cluster-
randomized design depends on the magnitude of the intraclass correlation, 
the number of intact units (schools), and the number of participants 
(students) per intact unit in the design. We comment on, and illustrate, 
these important dependencies below.    
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   Statistical Power of the Cluster-Randomized Design and 
Intraclass Correlation   

 First, it is worth noting that when the intraclass correlation is zero (  ρ   = 0), 
for instance, the second term in Equation   7.4   is also zero. In this case, the 
population sampling variance (and the standard error) of the estimated 
treatment effect is identical to the corresponding sampling variance (and 
standard error) that would be obtained under a research design in which 
the same total number ( nJ ) of students were randomized individually to 
the control or treatment groups.   12  In other words, when the intraclass 
correlation is zero and therefore children are acting independently within 
schools, the cluster-randomized design converges on the simple individu-
ally randomized design and has the same statistical power. However, as 
the unobserved responses of children within a cluster become more inter-
dependent, the magnitude of the intraclass correlation rises. When this 
happens, the second term on the right in Equation   7.4   becomes increas-
ingly important in the expression for the population sampling variance in 
Equation   7.4  , and consequently in the determination of the standard 
error of the estimated treatment effect in the cluster-randomized design. 
Non-zero values of the intraclass correlation infl ate the population sam-
pling variance, and corresponding standard error of the treatment effect, 
above the value that would be obtained in a simple individually random-
ized design with the same total number of independent individuals. For 
instance, when   ρ   is 0.1, the term   ρ  /(1 −   ρ  ) in the numerator of Equation 
  7.4   takes on a value of 0.1 divided by 0.9, or 0.1111. Now, the standard 
error of the estimated treatment effect under the cluster-randomized 
design is somewhat larger than under an individually randomized design, 
but the difference is modest. However, if the intraclass correlation were 
to rise all the way to 0.75, say, implying that the behaviors of children 
within a school were highly interdependent, then the expression   ρ  /(1 −   ρ  ) 
would take on a value of 3, and the standard error of the estimated treat-
ment effect in the cluster-randomized design would be substantially larger 
than that obtained in the simple individually randomized design. Thus, as 
the magnitude of the intraclass correlation increases, representing 
increasing interdependence among children within schools, the statistical 
power of the cluster-randomized design falls dramatically relative to the 
power of the simple individually randomized design. Fortunately, the 

12.  The requisite OLS population sampling variance is given by the fi rst term to the right 
of the equals sign in Equation 7.4, or 
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magnitude of the intraclass correlation in educational settings is usually 
quite small, rarely rising above 0.2, or 0.25 as we noted earlier. 

 Nevertheless, the impact of the clustering on statistical power is conse-
quential. To illustrate the dependency more concretely, we present 
“ballpark estimates” of the statistical power for a cluster-randomized 
research design similar to that used in the SFA evaluation. In Figure   7.1  , 
we display the anticipated relationship between the statistical power of a 
cluster-randomized research design (on the vertical axis) versus the 
number of clusters (intact schools) in the study (on the horizontal axis), 
for detecting a small effect size (0.2) at three typical values of the intrac-
lass correlation (0, 0.05, and 0.1) with an   α  -level of 0.05, on a one-sided 
test. We repeat the display for cluster-randomized designs in which each 
of the hypothetical schools contains: (a) 50 children ( top panel ) and 
(b) 100 children ( bottom panel ).   13  We have included the case in which the 
magnitude of the intraclass correlation is zero in order to establish a point 
of reference with the power analyses that we presented in the preceding 
chapter (where we offered similar ballpark estimates of statistical power 
and sample size for a simple individually randomized design).  

 Inspection of the top panel of the fi gure confi rms our algebraic analysis 
of the impact of intraclass correlation on statistical power, at a fi xed 
number of clusters and a fi xed cluster size. For instance, when the intra-
class correlation is zero, we need around 13 schools — with a total of 
approximately 650 students — to reach a moderate statistical power of 0.80. 
A zero intraclass correlation implies that participants are behaving inde-
pendently, even though they are grouped within intact clusters, and these 
sample sizes are consistent with our power analyses in the previous 
chapter, in which we concluded that about 620 children were required for 
an experiment in which participants were randomly and individually 
assigned.   14  

 However, notice what happens when we raise the hypothetical value of 
the intraclass correlation to 0.05. Now, we need approximately 45 schools, 
each containing 50 students — for a grand total of almost  four times as many 
participants  — to achieve the same statistical power of 0.80! When the value 

13.  The power computations were carried out using Optimal Design for Multi-Level and 
Longitudinal Research, Version 0.35 (Liu et al., 2005). The accompanying manual is 
a good source for further details of statistical power computation in the cluster-
randomized design. 

14.  Two factors contribute to the small difference between the estimated requisite sample 
size, 650, reported here and the estimate of 620 described in the previous chapter. 
The fi rst is the impact of rounding error in the power computation algorithms of the 
different software we have used. The second is that that you cannot make up a sample 
of exactly 620 out of intact groups of 50. 
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     Figure 7.1    Anticipated relationship between statistical power of a cluster-randomized 
research design versus number of clusters (schools), for a small effect size (0.2), at three 
values of intraclass correlation (0, 0.05, and 0.1),   α  -level of 0.05, on a one-sided test. 
 Top panel : 50 children/school.  Bottom panel : 100 children/school.    
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of the intraclass correlation rises to 0.1, the impact is even more dramatic. 
Moderate power is not achieved until around 75 schools have been 
included in the sampling plan, for a total sample size of 3,750 students. 
The patterns displayed in Figure   7.1   illustrate that the statistical power of 
a cluster-randomized design is indeed very sensitive to the value of the 
intraclass correlation. 

 Consider now the impact on the statistical power of a cluster-randomized 
design of the number of participants within a cluster (in the SFA evalua-
tion, the total number of children in grades K-2 within a school). In the 
expression for the population sampling variance in Equation   7.4   (and the 
corresponding standard error of the treatment effect), the number of 
participants within a cluster  n  appears only in conjunction with the 
number of clusters  J  as a product, to represent total sample size  nJ . In 
addition, it is present only in the denominator of the fi rst term that 
follows the equal sign. Thus, it plays the same role in the determination 
of the statistical power of the cluster-randomized design as it does in 
an individually randomized design in which the same total number of 
“unclustered” participants were randomized to experimental conditions. 
Thus, as the number of participants within a cluster is increased (for a 
fi xed number of clusters), the total sample size must increase, the popula-
tion sampling variance (and the corresponding standard error of the 
treatment effect) must decrease, and the statistical power improve, as 
we expect from our arguments in the previous chapter. However, in 
Equation   7.4  , we note that it is only the magnitude of the fi rst term to the 
right of the equal sign that is diminished by this increase in the total 
sample size, regardless of the contribution of the second term. Thus, we 
anticipate that any control over statistical power that is provided in the 
cluster-randomized design by manipulating the number of participants 
within a cluster must offer benefi ts no different than we would expect for 
the same sample size increase in the simpler individually randomized 
design. But, in a cluster-randomized design, its contribution is rapidly 
dominated by the impact of any increase in the magnitude of the intra-
class correlation and in the number of clusters, both of which appear in 
the second term to the right of the equal sign in Equation   7.4  . 

 You can see the dependence of the statistical power of a cluster-
randomized design on the number of participants within a cluster in 
Figure   7.1   by comparing the corresponding prototypical power values in 
the top and bottom panels, at the same number of clusters and the same 
intraclass correlation. Notice, for instance, that increasing the number of 
participants present at each school from 50 to 100 students has only a 
marginal impact on the power of the prospective analysis. With 50 stu-
dents at each school and an intraclass correlation of 0.05, about 45 schools 
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are required to achieve a power of 0.80, for a total of 2,250 students. 
With 100 participants at each school and 45 schools, the statistical power 
provided by the design rises only to around 0.85 — an increase of just over 
6 % , obtained by doubling the total number of students in the sample! 

 The most important mechanism for increasing the statistical power of 
a cluster-randomized design is the investigator’s ability to manipulate the 
number of intact clusters that are randomized. This is evident in the 
expression for population sampling variance in Equation   7.4  . Here, 
the number of clusters in the design appears in the denominator of the 
second term to the right of the equal sign. As the number of clusters in 
the design is increased, the contribution of the second term to the infl a-
tion of the standard error is rapidly diminished, and the standard error 
will approach that of a corresponding simple and individually random-
ized design. These effects occur in addition to the impact of the intraclass 
correlation, but are mediated by its magnitude. In Figure   7.1  , we see these 
dependencies in the shapes of the trend lines that represent the relation-
ships between statistical power and the number of clusters that appear in 
both panels. In all cases (except when the intraclass correlation is zero), 
regardless of the intraclass correlation and the number of participants 
within a cluster, statistical power increases rapidly when clusters of par-
ticipants are added to the design. In fact, although the relationships are 
curvilinear, it is clear that — if you have 50 students per school and an intra-
class correlation of 0.05 — you can easily double your power from around 
0.40 to 0.80, say, by increasing the number of schools you sample from 
15 to 45. Statistical power in a cluster-randomized design lies much more 
in the number of clusters than in the number of participants per cluster. 

 Our fi nal comment in this section returns us to a topic that we have 
discussed in the previous chapter. It concerns the benefi t of including 
covariates in analyses of experimental data. Our previous message has 
been that, once participants have been randomized to experimental 
conditions, the inclusion of covariates in an analysis is always a good idea 
because it tends to reduce residual variance and thereby reduces the stan-
dard errors of the parameter estimates. This, in turn, tends to enlarge the 
associated  t -statistic and diminish the corresponding  p -values, leading to 
improved statistical power. 

 The key theme, then, is  reduction of residual variance . If the inclusion of 
a covariate acts to reduce residual variance in an analysis of any kind, 
statistical power will increase. Of course, when participants are clustered 
into intact groups, we have learned that it is appropriate to model their 
behavior in a random-intercepts multilevel model that contains a  pair  
of residuals. Fortunately, reductions in residual variance at either the 
individual or group level will reduce the standard errors of parameter 
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estimates and improve statistical power. More often than not, however, in 
settings in which the intraclass correlation is non-zero — that is, when the 
intact grouping of participants has indeed infl uenced their unobserved 
behaviors — one approach will be superior. It will typically be more effec-
tive, from the perspective of increasing statistical power, to reduce 
group-level residual variance by including group-level covariates than to 
reduce individual-level residual variance. This conclusion echoes a similar 
conclusion that we reported in the previous section, where we noted that 
the statistical power of a cluster-randomized design tends to be more sen-
sitive to the number of intact groups than to the number of participants 
within those groups. 

 Essentially, the magnitude of the intraclass correlation is more sensitive 
to changes in between-group residual variance than to changes in within-
group residual variance. This matters because statistical power is very 
sensitive to the magnitude of the intraclass correlation. In fact, a reduction 
in between-group residual variance will always lead to a greater increase 
in statistical power than a corresponding reduction in the within-group 
residual variance. This means, of course, that when you seek covariates to 
include in analyses of clustered data, you would be well advised to fi rst 
seek out effective group-level covariates. 

 Following Borman and his colleagues (  2005a  ), the only difference 
between our fi tted Models #2 and #3, in Table   7.1  , is that the latter includes 
the covariate,  SCH_PPVT , which is the school-specifi c average value of 
children’s scores on the PPVT prior to the start of the evaluation.   15  Notice 
that the addition of this school-level covariate to the model results in a 
dramatic reduction in the estimated between-school residual variance, 
from 76.61 to 48.57, while the within-school residual variance remains 
unchanged. As a result, the estimated intraclass correlation falls from its 
“large” value of 0.196 in Model #2 to an almost “medium” value of 0.134 
in Model #3. There is a concomitant reduction in the standard error 
of the estimated effect of the SFA treatment from 2.859 to 2.340. 
Unfortunately, in this particular example, these changes were offset by a 
reduction in the size of the parameter estimate itself, from 4.353 to 3.572. 
Consequently, the value of the  t -statistic does not differ very much. 
This example is atypical, and the take-away remains that the addition of 

15.  Rather than estimate the average score of children in our subsample on this pretest 
and use it as the covariate, we took advantage of the school-average pretest PPVT 
score that was provided by Borman et al. (2005a), in their larger dataset. Repeating 
our analyses with this latter average replaced by a within-school average obtained in 
our subsample provided similar, if slightly weaker, results. 



128 Methods Matter

cluster-level covariates is often an extremely effective way to increase the 
statistical power of a cluster-randomized design.      

   Fixed-Effects Multilevel Models to Estimate Effect Size 
When Intact Groups of Participants Are Randomized to 
Experimental Conditions   

 The random-intercepts multilevel model specifi ed in Equation   7.1   is a 
common, effective way of estimating treatment effects while accounting 
for the clustering of participants within intact groups. However, the fi eld 
of multilevel modeling itself is large and complex, and there are other 
ways of specifying a statistical model in order to account for the impact of 
participant clustering. In this section, we describe one common alternative 
to the random-intercepts multilevel model.    

   Specifying a Fixed-Effects Multilevel Model   

 Before leaving the topic of multilevel models, we describe one simple 
alternative strategy for taking into account the impact of intact clusters of 
participants in the statistical analysis. This fl exible and robust strategy, 
called the method of  fi xed-effects , has great utility in a wide variety of ana-
lytic settings. Its origins are easy to grasp through further inspection of 
the alternative specifi cation of our random-intercepts model in Equation 
  7.2  , which we repeat here:

   ( )0 1ij j j ijWATTACK u SFAg g e= + + +
    (7.5)   

 Recall that we used this alternative specifi cation to motivate our argu-
ment that this multilevel model could be referred to appropriately as a 
“random-intercepts” model. The reason was that introducing a school-
specifi c residual  u j   into the model was tantamount to providing each 
school in our SFA universe with its own intercept, (  γ   0   +   u j  ). And, of course, 
because the school-level residuals  u j   were assumed to be drawn from an 
underlying random distribution, we had then effectively specifi ed a mul-
tilevel model with a set of school-specifi c “random intercepts.” Hence, the 
name we adopted for the model. 

 We can press this argument even further, however, and rewrite 
Equation   7.5  , so that each school is presented as having its own actual 
intercept   α  j   as follows:

   1ij j j ijWATTACK SFAa g e= + +
    (7.6)  
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 where   α  j   =   γ   0   +   u j  . There is no difference between the two specifi cations. 
However, the latter specifi cation leads one to ask the obvious question: 
Why do these school-specifi c intercepts, which are needed to resolve the 
problem of intact groups, need to be random? Why can’t they be fi xed? 
That is, why can’t we specify a multilevel model that contains an intercept 
parameter for each school? In fi tting the model to the data from the 
SFA evaluation, there would be 41 such intercepts, one for each of the 
41 schools in the sample.  

 In practice, you can easily introduce such a set of intercepts into any 
regression model by creating a set of dichotomous predictors to distin-
guish the school membership of each child, and then including these 
dichotomous variables as predictors in the statistical model. For instance, 
we could create new dichotomous variables  S  1  through  S  41  to represent 
the 41 schools in our SFA subsample, setting each of these dummies equal 
to 1 when the child was a member of that school, 0 otherwise. Thus, all of 
the students in the fi rst school would have a value of 1 for dichotomous 
predictor  S  1 , and a value of 0 for all the other school dummies. Children 
in the second school would have a value of 1 for dichotomous predictor 
 S  2 , and a value of 0 on all the others, and so on. Then, to resolve the prob-
lem of the clustering of participants within schools, instead of fi tting the 
model in Equation   7.1   to the SFA data by the method of random effects, 
we could fi t the following model:

   ( )= + + + … + + +0 2 2 3 3 41 41 1   ij j j j j ijWATTACK S S S SFAa a a a g e
    
(7.7)

   

 Notice, as usual, when a vector of dummy predictors represents a global 
effect like that of “school,” we have dropped one of the dummy predictors 
from the model and nominated its associated school — here, the fi rst 
school — arbitrarily as our “reference” category. Then, the included overall 
intercept, here   α   0 , represents the population average value of word-attack 
score in the reference school, and the remaining   α  -coeffi cients represent 
the difference between the population means of each school and the 
omitted school.   16  Finally, notice that the only residual now remaining 
in the model is the child-level residual   ε  ij  . Because this latter residual 
satisfi es regular OLS assumptions implicitly, we can use OLS regression 
methods to fi t the model. 

16.  We could have achieved the same ends by eliminating the standard intercept   α   0  and 
retaining all of the school dummy predictors and their corresponding slope parame-
ters. Then, each parameter would represent the population average word-attack score 
in its associated school, without the necessity to declare one as a “reference” school. 
The results from the two alternative methods would be substantively identical. 
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 A model such as Equation   7.7  , in which each intact school has its own 
intercept, is referred to as a  fi xed-effects of schools  model, and the coeffi -
cients associated with the dummy predictors represent those fi xed effects. 
Unfortunately, there is a problem in using this model to examine the rela-
tive effectiveness of SFA, which you will recall was a school-wide approach 
to teaching reading. If you try to fi t the fi xed-effects of schools model in 
Equation   7.7   in our SFA data, the statistical software will typically balk. 
Depending on how the software is written, the program will either cease 
to function or will respond by dropping one term — probably the predictor 
SFA, and its associated slope parameter — from the model. In either case, 
the analysis may fail, and the effect of the SFA intervention on the out-
come will certainly not be estimated. The reason is that perfect collinearity 
exists between the SFA predictor and the full collection of school dum-
mies. Recall that the SFA treatment was randomized to intact schools, 
and so predictor SFA is a dichotomous school-level predictor that pos-
sesses no variation within school. In other words, all the children in grades 
K-2 in any school have the same value as the SFA predictor. So, SFA is a 
predictor that essentially distinguishes between two types of school. Of 
course, the dichotomous school predictors already in the model are also 
doing the same job. For instance, let’s suppose that schools 21 through 41 
were the control schools. Then, if we knew that a schoolgirl had a value of 
1 for any of the corresponding dummy predictors,  S  21  through  S  41 , we 
would know that she attended a control school, and we would not need to 
know her value on variable SFA. Alternatively, if she had a value of zero 
on this same set of school indicators, we would know for sure that she had 
been assigned to the treatment condition.   17  In fact, once the vectors of 
school dummies are included as predictors in the model, they absorb all 
of the school-level variation in the outcome, and you can no longer add 
any other school-level predictors to the model. Consequently, you cannot 
include the critical school-level question predictor SFA, whose associated 
regression parameter addresses the all-important research question at the 
heart of the evaluation! 

 Given that you cannot include a school-level question predictor, such 
as SFA, in a model that contains the fi xed effects for schools, you may be 
tempted to ask: What use then are such fi xed-effects models? The answer 

17.  This explanation suggests a strategy that could be used effectively to estimate the 
impact of the SFA treatment even in a fi xed-effects-of-schools model from which 
the SFA predictor had been omitted because of its complete redundancy. After fi tting 
the model containing all the school dummies and no SFA predictor, you can then 
compare the average of the population intercepts of all the SFA-designated schools 
with the average of the population intercepts of all non-SFA-designated schools using 
a post-hoc general linear hypothesis (GLH) test, or linear-contrast analysis. 
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is that they are very useful if you want to control all variation in the 
outcome  at one level  and pose an important research question  at another . 
This is a situation that occurs frequently in educational research, where 
children are not just nested within a two-level hierarchy, but within hierar-
chies that are many levels deep. Thus, children may be nested within 
intact classes, which are then nested within schools, which are nested 
within districts, and so on. For instance, although we cannot retain the 
SFA predictor in a multilevel model that contains the fi xed effects of 
schools, we could include the fi xed effects of a school district, thereby 
controlling all variation in the outcome at this higher level of clustering. 
In addition, we could continue to account for the nesting of children 
within school by using the standard random-effects strategy of including 
a school-level residual. Such combining of the methods of fi xed and 
random effects proves to be a fl exible analytic strategy for handling the 
grouping of participants at multiple levels. 

 For instance, in the Tennessee Student/Teacher Achievement Ratio 
(STAR) experiment, kindergarten students in each of 79 large elementary 
schools were assigned randomly to either a small class (13–17 students), a 
regular-size class (22–25) students, or to a regular-size class with a full-time 
teacher’s aide. Kindergarten teachers in participating schools were then 
randomly assigned to classes. Over the year, of course, even though 
students were originally assigned randomly to classes, their shared unob-
served experiences over the academic year could “build up” an intraclass 
correlation of substantial magnitude. In evaluating the impact of the 
experimental treatments on children’s academic achievement, it then 
becomes important to take into account that kindergarten students and 
teachers were randomized to experimental conditions in intact classes 
within each participating school, so that they were nested within both 
classrooms and schools. The corresponding analyses can accommodate 
this complexity by estimating the treatment effects in a statistical model 
that contains the random effects of a classroom and the fi xed effects of 
schools. In other words, you can fi t a random-intercepts model with a 
class-level residual, but include a set of dichotomous control predictors to 
distinguish among the schools.     

   Choosing Between Random- and Fixed-Effects 
Specifi cations   

 As we have described, if you are in a situation in which the level at which 
you want to assign participants to experimental conditions is not com-
pletely collinear with the nesting of the participants in their intact groups, 
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you have deliberate choices that you can make about your multilevel-
model specifi cations. In analyzing data from the STAR experiment, for 
instance, one option is simply to include random effects for children (  ε  ), 
classes ( u ), and schools ( v ), as follows:

   ( )0 1 2 3ics cs cs ics ics cs sY SMALL REGULAR X ub b b b e u= + + + + + +     (7.8)  

 where  Y ics   represents the end-of-the-school-year academic achievement of 
the  i  th  child in the  c  th  class in school  s , question predictor  SMALL cs   is set 
equal to 1 for all children in the  c  th  class in school  s  if it is a “small” class 
(and 0, otherwise), and question predictor  REGULAR cs   is set equal to 
1 for all children in the  c  th  class in school  s  if it is a regular-size class with 
a teacher’s aide (and 0, otherwise). Children in the control group of 
“regular” classes, without a teacher’s aide, would have zero values on both 
question predictors. Variables  X ics   represent a vector of control predic-
tors. Such models can be fi tted by most multilevel modeling software, and 
the population variances of the random effects at the student, class, and 
school levels estimated. Alternatively, you could do as Krueger (  1999  ) did, 
and capture the clustering of classes within schools by including the fi xed 
effects of school, as follows: 

   ( )0 1 2 3ics s cs cs ics ics csY SMALL REGULAR X ub b b b e= + + + + +     (7.9)  

 where we have eliminated the school-level residual and, instead, permitted 
each school to have its own intercept,   β   0   s  . The model is then fi tted with a 
vector of school dichotomies included as predictors to permit the sepa-
rate school-level intercepts to be estimated.  

 Of course, faced with the decision of whether to analyze the STAR data 
with a multilevel model that includes the fi xed effects of schools or a mul-
tilevel model that includes the random effects of schools, how should you 
decide which to adopt? The decision is not trivial, as each approach has its 
own advantages and disadvantages. 

 One disadvantage of the fi xed-effects approach is that the inclusion in 
the statistical model of a dichotomous predictor to distinguish each intact 
group of participants in the design may increase the number of regres-
sion parameters that must be estimated vastly, with a corresponding 
sacrifi ce of degrees of freedom. For example, Krueger (  1999  ) needed to 
include 78 school-specifi c parameters in addition to the overall intercept 
to account for the 79 schools included in the STAR study. The random-
effects approach, on the other hand, handles the clustering of participants 
within groups, and in the process only adds a single extra residual-
variance parameter to the model (at each additional level of clustering). 
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In our SFA example, it is the population between-school residual variance, 
 2 us   , that must then be estimated. Thus, an advantage of the random-
effects approach over the fi xed-effects approach is the smaller number of 
parameters to be estimated. 

 On the other hand, the fi xed-effects approach is clearly superior to the 
random-effects approach in one important way. By including a vector of 
unique dummy predictors to distinguish the intact groups present in the 
analysis, the fi xed-effects approach accounts for the main effects of all 
possible observed  and  unobserved time-invariant differences among the 
groups. It does not matter if the fi xed effects that represent the intact 
grouping are correlated with other predictors in the model at any level, 
because regression analysis is designed to permit predictors to be corre-
lated. In contrast, if you choose to represent the impact of the intact 
groupings as random effects, you assume implicitly that the group-level 
residuals are uncorrelated with other predictors that may be present in 
the model. If this assumption fails, then the results of your analysis may 
be biased. The reason is that when residuals and predictors are correlated 
in any regression model, bias accrues. 

 Borman and his colleagues were justifi ed in choosing a random-effects 
of schools specifi cation for their evaluation of the SFA intervention 
because the random assignment of schools to experimental conditions 
assured that the school-specifi c component of the residuals could not be 
correlated with the critical question predictor that distinguished mem-
bers of the treatment and control groups. Krueger, on the other hand, 
chose a model specifi cation that included the fi xed effects of schools in 
his evaluation of the STAR experiment because randomization of partici-
pants to experimental conditions was carried out at the class level (that is, 
within schools). Consequently, unmeasured differences among schools 
(for example, in the quality of the school directors) could have been cor-
related with other control predictors included in the multilevel model, 
such as the number of years each teacher had taught. In that situation, 
the random-effects specifi cation may have produced biased estimates of 
parameters of the model. 

 The key question to answer in deciding whether to adopt a random-
effects or a fi xed-effects specifi cation of the statistical model in those cases 
in which you have a choice has to do with whether you can defend the 
assumption that unobserved differences among the intact groups are 
uncorrelated with other predictors present in the model. If so, you should 
prefer the random-effects specifi cation because it preserves your degrees 
of freedom. However, this is a strong assumption. Typically, it is only in 
situations in which intact groups have been assigned randomly to treat-
ment or control group status that this assumption is justifi ed. 
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 Fortunately, a test developed by Hausman (  1978  ) can provide guidance 
in making the decision of whether to adopt a random-effects or fi xed-
effects specifi cation in situations in which it is possible to fi t both types 
of models. This test is based on the logic that, if unobserved differences 
among groups are uncorrelated with other predictors in the model, then 
estimates of the model parameters obtained under the random-effects 
specifi cation will be very similar to those obtained under the fi xed-effects 
specifi cation (although, of course, the standard errors will differ because 
of the difference in degrees of freedom). Many statistical software pack-
ages (including Stata) provide this test.      

   What to Read Next   

 If you want to follow up on the topics of multilevel data analysis and 
statistical power estimation in cluster-randomized designs, a good place 
to start is with the insight-fi lled paper by Stephen Raudenbush and his 
colleagues entitled “Strategies for Improving Precision in Group-
Randomized Experiments” (2007). You might then turn to Raudenbush 
and Anthony Bryk’s   2002   book,  Hierarchical Linear Models: Applications 
and Data Analysis Methods . Finally, Larry Orr’s   1999   book,  Social Experiments , 
provides a thoughtful exposition of a variety of issues that researchers 
face in designing fi eld experiments with randomization at different 
levels.   
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 Using Natural Experiments to 
Provide “Arguably Exogenous” 
Treatment Variability        

       The cost to families of investing in their children’s education is of 
concern the world over. In some developing countries, the question is 
whether charging fees for enrollment in secondary school reduces access 
to education markedly for low-income families. Recently, some countries, 
beginning with Brazil and Mexico, have turned this question on its head 
and examined whether charging negative prices (that is, making cash pay-
ments to low-income families that enroll their children in secondary 
school) will increase enrollment (Fiszbein, Schady, & Ferreira,   2009  ). 
In the United States and other industrialized countries, the focus is on 
the impact of college cost on decisions to enroll in post-secondary educa-
tion. In every country, knowledge of the sensitivity of families’ educational 
decisions to the cost of education is critical to sound educational policy-
making. A challenge, then, is to provide compelling evidence about the 
causal impact of a change in cost on families’ educational decisions. 

 As we have argued in Chapter 4, a randomized experiment provides 
the most persuasive strategy for answering educational policy questions 
about the causal impact of school fees or scholarships on families’ educa-
tional enrollment decisions. Indeed, as we explain in Chapter 14, a 
number of recent randomized experiments have shed new light on the 
impact of costs on school-enrollment decisions. Researcher-designed ran-
domized experiments on this topic are often diffi cult to carry out, however, 
due to cost and diffi culty in obtaining the requisite cooperation of par-
ticipants and educational institutions. As a result, researchers often try to 
learn from experiments that occur naturally. 

 These “natural” experiments are situations in which some external 
agency, perhaps a natural disaster, or an idiosyncrasy of geography or 
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birth date, or a sudden unexpected change in a longstanding educational 
policy “assigns” participants randomly to potential “treatment” and “control” 
groups. The challenge for the researcher is to recognize such natural 
experiments when they occur and to be prepared to deal with the oppor-
tunities and challenges they present. 

 In the next section of this chapter, we explain the respects in which 
investigator-designed experiments and natural experiments are similar 
and the respects in which they are different. We then use data from two 
excellent studies to illustrate how researchers have taken advantage 
of natural experiments to address important policy questions about 
cause and effect. In the subsequent section, we point out sources of 
natural experiments that have proven productive in the past, and we sum-
marize their common features. Then, we describe two important threats 
to internal validity that are an integral part of working with data from 
a special kind of natural experiment that has what we will refer to as a 
 discontinuity design . We then explain how a novel analytic approach known 
as  difference-in-differences estimation  responds sensibly to one of these valid-
ity threats.     

   Natural- and Investigator-Designed Experiments: 
Similarities and Differences   

 Central to the internal validity of an experiment is the assignment of par-
ticipants to the experimental conditions. When we say that experimental 
assignment is exogenous, we mean that it is beyond any possible manipu-
lation by the participants themselves, so that membership in either a 
treatment or a control group is totally independent of the participants’ 
own motivations and decisions. So, when investigators assign participants 
in an experiment randomly to experimental conditions, the assignment is 
exogenous because, by defi nition, participants in a fair lottery cannot 
infl uence the outcome. Randomized assignment, in turn, renders mem-
bers of the treatment and control groups equal in expectation prior to 
the intervention. Consequently, any between-group difference detected 
in the average value of the outcome, post-treatment, must be a causal 
consequence of the intervention itself. 

 Participants are sometimes randomized to different program options, 
to innovative practices, or to different incentives by exogenous mecha-
nisms that are not under the direct control of an investigator, but still 
provide the equality in expectation prior to treatment that supports causal 
inference. Provided that we can argue persuasively that those partici-
pants who are then subject to the contrasting and naturally occurring 
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“experimental” conditions are indeed equal in expectation prior to treat-
ment, we have a logical basis for making unbiased inferences about the 
causal impact of the treatment. However, although data from natural 
experiments can sometimes be analyzed in the same way as data from 
investigator-designed experiments, you may need to modify your analytic 
strategy to respond to additional threats to internal validity that may occur 
when an experiment arises naturally.     

   Two Examples of Natural Experiments   

 We begin by describing examples of two prototypical natural experiments. 
The fi rst occurred when the U.S .  Department of Defense introduced mil-
itary draft lotteries during the Vietnam War era. Each lottery created two 
experimental groups of young males who were arguably equal in expecta-
tion and differed only in that one group was offered — that is, could be 
drafted into — military service, whereas the second could not. Our second 
example occurred when the federal government ended, in 1982, a pro-
gram that had previously provided college fi nancial aid to children who 
were the survivors of Social Security benefi ciaries. This abrupt policy 
shift meant that high-school seniors in and before 1981, whose fathers 
were deceased Social Security recipients, were “assigned” effectively to a 
treatment group that received an offer of college fi nancial aid. High-
school seniors immediately after 1981, whose fathers were deceased Social 
Security recipients, were not made this aid offer. So long as these groups 
of high-school seniors were otherwise equal in expectation, we are pre-
sented with naturally formed experimental groups that differed only in 
the offer of aid.    

   The Vietnam-Era Draft Lottery   

 The question of whether military service affects long-term labor-market 
outcomes for participants is a question many governments ask in the pro-
cess of designing manpower policies. As Joshua Angrist (  1990  ) pointed 
out, this question cannot be answered by using census data to compare 
the long-term earnings of men who served in the military and those who 
did not serve. The reason is that men are not usually assigned randomly 
to military service. Instead, men who have relatively unattractive employ-
ment opportunities in the civilian sphere may tend to enter the military. 
Unobserved differences between those who volunteer to serve and those 
who do not may therefore create bias in the estimation of the long-term 
labor market consequences of military service. 
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 A natural experiment that took place during the Vietnam War era 
provided Angrist with an opportunity to obtain unbiased estimates of the 
impact of military draft eligibility on long-term labor market outcomes. 
Between 1970 and 1975, the U.S. Department of Defense conducted fi ve 
draft lotteries that determined which American males in a particular age 
group were eligible to be drafted into military service. The 1970 lottery 
included men aged 19 through 26, and the lotteries in the four subse-
quent years included men aged 19 to 20. In each lottery, a  random-sequence 
number  (RSN), ranging from 1 through 365, was assigned to each birth 
date. Then, only men in the relevant age cohorts whose birthdays had 
RSNs less than an exogenously determined ceiling, which was specifi ed 
by the Department of Defense each year, were subject to induction. 
Angrist called such men “draft-eligible.” A simple comparison of the 
annual earnings in the early 1980s for the group of men in a particular 
cohort who were draft-eligible with those who were not provides an unbi-
ased estimate of the impact on earnings of being draft-eligible. 

 Note that the treatment being administered in this natural experiment 
is “eligibility for the draft,” not the actual experience of military service. 
This is because it is only the assignment of young men to draft eligibility 
that was randomized, not military service itself. Indeed, some of those in 
the draft-eligible “treatment group” avoided military service by enrolling 
in college, by being declared unfi t for military service due to physical lim-
itations, or by having been arrested prior to the draft. Among white males 
born in 1950, 35 %  of those declared draft-eligible as a result of having a 
low draft number actually served in the military, compared to 19 %  of 
those declared draft-ineligible (Angrist,   1990  ; Table 2, p. 321). Of course, 
the fact that many draft-eligible men did not serve in the military, and 
some men who were not draft-eligible did serve, does not threaten the 
unbiased estimation of the impact of being “draft-eligible” on later labor-
market outcomes. In fact, this natural experiment resembles the New York 
Scholarship Program (NYSP), the investigator-designed experiment in 
which the treatment was the randomized offer of a scholarship to help 
pay private-school tuition. As explained in Chapter 4, not all families that 
received the scholarship offer sent their child to a private school. As we 
will see in Chapter 11, it is possible to use a more sophisticated technique, 
called  instrumental-variables estimation , to tease out the causal impact of 
actual military service (or actual private-school attendance), using the 
original randomly assigned offer as an “instrument.” In this chapter, how-
ever, we focus only on estimating the impact of draft eligibility on later 
labor-market earnings. 

 Combining information from the draft lotteries with information on 
subsequent earnings from the Social Security Administration, Angrist 
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estimated the impact of draft-eligibility status on future annual earnings, 
separately for white and non-white men, in the several birth cohorts in 
which the draft lotteries were conducted. He found, for instance, that 
white men in the 1950 birth cohort who were draft-eligible in the 1970 
lottery earned approximately $1,100 less in 1984 (when they were 34 years 
of age) than did men in the same birth cohort who were not draft-eligible 
(Angrist,   1990  ; Table 1, p. 318).   1  

 As with an investigator-designed experiment, statistical analyses of 
these data are straightforward. The hypothesis that there is no difference 
in population-average annual earnings at age 34 between the two groups 
can be tested in several ways. For instance, we could apply standard ordi-
nary least-squares (OLS) methods, regressing annual earnings at age 34 
( EARN34 ) on a dummy predictor that represents whether the man was 
draft-eligible. Alternatively, we could carry out a two-group  t -test to com-
pare the average annual earnings at age 34 of men who were draft-eligible 
with those who were not. In fact, this test can be carried out directly using 
statistics provided in Angrist’s paper (  1990  ; Table 1), which lists sample 
estimates of the difference in average annual earnings and also the stan-
dard error of the difference, as follows:

   

( )
• •

• •

−=
−

−=

= −

1 0

1 0

1950 Birth Cohort :

34 34

. . 34 34

1143.30
492.2

2.323

EARN EARN
t

s e EARN EARN

    

(8.1)

  

 where  134EARN •   represents the average annual earnings at age 34 of 
white males who were draft-eligible (the treatment group) and  034EARN •   
represents the comparable average annual earnings of white males who 
were not draft-eligible (the control group).   2  Although Angrist did not 
report explicit sample sizes for this particular comparison, the difference 
in annual earnings is clearly statistically signifi cant ( p < 0.03, using a normal 

1.  Angrist reports all dollar amounts in 1978 dollar values. 
2.  In Equation 8.1, we employ the standard statistical practice of indicating that an aver-

age has been formed from the values of a variable over members of a group by using a 
“dot” to replace the  index —  or subscript — that distinguishes the members of the group. 
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approximation, two-tailed test), suggesting a considerable negative impact 
of draft eligibility on future earnings, on average.   3   

 Notice that this natural experiment possesses almost all of the attri-
butes of an investigator-designed experiment. Participants were members 
of a defi ned population — all the young males in particular age ranges, in 
specifi c birth cohorts. There were explicit and well-defi ned experimental 
conditions — in our version of Angrist’s example, these are framed in terms 
of draft eligibility. Young men assigned to the “draft-eligible” and “not 
draft-eligible” conditions were arguably equal in expectation initially 
because a lottery was used to pick the RSNs. An appropriate outcome —
 annual earnings later in life — that was hypothesized to be sensitive to the 
impact of the treatment was measured. It seems like the key difference 
between an investigator-designed experiment and Angrist’s draft lottery 
research is that the assignment of participants to experimental conditions 
in the latter was carried out by an external agency, in this case, offi cials in 
the U.S. Department of Defense. 

 Of course, it makes good sense to capitalize on any experiment, natural 
or investigator-designed, that permits us to address our research ques-
tions. If we can fi nd appropriate data from a viable natural experiment, 
then we should capitalize on it. However, using data from a natural exper-
iment often adds an element of complexity to the research. First and 
foremost, we must be able to argue convincingly that the “natural” assign-
ment of individuals was indeed exogenous — in other words, that being 
declared draft-eligible by virtue of one’s birth date and the lottery out-
come was utterly beyond the infl uence of the participants themselves. 
This is an easy case to make, given that the RSNs were assigned to birth 
dates by fair lotteries under the control of government agents who were 
remote from participants. We must also be able to argue persuasively that 
participants assigned to the different experimental conditions were 
initially equal in expectation. This condition was also satisfi ed in the draft-
lottery case. The reason is that even though men with particular birth 
dates (those born in the winter, say) may differ in unobserved ways from 
those born on other dates (in the summer), these unobserved differences 
were distributed randomly across the experimental conditions by the 
lottery that assigned RSNs to birth dates. 

 In recent years, lotteries have been often used to allocate places in 
public schools in the United States for which demand exceeds supply. 

3.  We argue that a two-sided test makes sense for this example because it represents the 
theoretical position that the treatment group could have either better or worse average 
labor-market outcomes than the control group. We discuss the choice between one- 
and two-tailed hypothesis testing in Chapter 6. 
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These lotteries have provided many additional natural experiments 
with designs similar to those of the military service lotteries we describe 
above. In their turn, researchers have used these lotteries to evaluate the 
causal impacts on subsequent student outcomes of the offer of a place in 
a variety of different types of schools. These include charter schools 
(Abdulkadiroglu et al.,   2009  ; Angrist et al.,   2010  ; Dobbie & Fryer,   2009  ; 
Hoxby & Murarka,   2009  ), small secondary schools (Bloom et al.,   2010  ), 
and selected “effective” public schools in comparison to regular neigh-
borhood schools (Deming,   2009  ; Deming et al.,   2009  ). We describe the 
evidence from some of these studies in Chapter 14.     

   The Impact of an Offer of Financial Aid for College   

 Although school-choice lotteries expand the list of potential natural 
experiments with random-assignment designs, the number of experi-
ments with this kind of design that occur naturally is modest. Natural 
experiments occur more frequently when a natural disaster or an exoge-
nous change in a policy or practice leaves temporally contiguous groups 
of individuals exposed to different treatments. Susan Dynarski (  2003  ) 
makes use of an interesting natural experiment with this kind of “discon-
tinuity” design. She used a sudden change in federal policy to estimate 
the causal impact of an offer of fi nancial aid for post-secondary education 
on the decisions of high-school seniors about whether to go to college, 
and their subsequent success if they did attend. 

 Between 1965 and 1982, the Social Security Survivor Benefi ts (SSSB) 
Program in the United States offered $6,700 (expressed in year 2000 dol-
lars) in college fi nancial aid to the 18- to 22-year-old children of deceased, 
disabled, or retired Social Security recipients. In 1981, the U.S. Congress 
eliminated the SSSB program, mandating that otherwise eligible children 
who were not enrolled in college as of May 1982 would not receive the 
SSSB college-aid offer. Using the National Longitudinal Survey of Youth, 
Dynarski identifi ed students in cohorts of high-school seniors, just before 
and just after the policy change, who would have been eligible for the aid 
offer because their fathers were Social Security recipients who had died. 
She argued that, other than differing in receipt of the offer of college aid, 
these two groups of students were equal in expectation initially. However, 
the 137 high-school seniors who satisfi ed SSSB eligibility requirements 
immediately before the policy change (in the years 1979 through 1981) 
received the college fi nancial-aid offer and therefore constituted the treat-
ment group. The 54 high-school seniors who satisfi ed SSSB eligibility 
requirements immediately after the policy change (1982 and 1983) received 
no SSSB-related fi nancial-aid offer and made up the control group. 
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All else being equal, subtracting the average value of the outcome for the 
control group from the average value of the outcome for the treatment 
group provides an unbiased estimate of the causal impact of the fi nancial-
aid offer on the subsequent college-going behavior of students whose 
fathers were deceased. This is often called a “fi rst-difference” estimate of 
the treatment effect. Notice that the action by the Congress to eliminate 
the SSSB program allowed Dynarski to study the causal impact of fi nan-
cial aid on the college-enrollment decisions of students without facing the 
ethical questions that an investigator-designed randomized experiment 
might have elicited. 

 We focus here on the fi rst of several outcomes that Dynarski studied —
 whether the student attended college by age 23. We defi ne  COLL i   as a 
dichotomous outcome variable that we code 1 if the  i  th  high-school senior 
attended college by age 23 and 0 otherwise. We present summary statis-
tics on outcome  COLL  in the upper panel of Table   8.1  , in rows that 
distinguish the treatment and control groups of students whose fathers 
were deceased.   4  The fi rst row in the upper panel contains summary infor-
mation on the 137 high-school seniors who received the SSSB aid offer in 
the years 1979 through 1981 (our “treatment” group). The second row 
contains parallel information on the 54 high-school seniors who would 
have been eligible for SSSB aid in 1982 through 1983, but did not receive 
an SSSB aid offer because the program was cancelled (our “control” 
group). The sample averages of  COLL  in the treatment and control groups 
are 0.560 and 0.352, respectively, which means that 56 %  of students who 
received an offer of tuition aid attended college by age 23, whereas only 
35 %  of those who did not receive the offer did so.   

 Provided that this “natural” assignment of high-school seniors whose 
fathers were deceased to the treatment and control conditions rendered the 
two groups equal in expectation initially, we can obtain an unbiased esti-
mate of the population impact of a fi nancial-aid offer on college attendance 
by age 23 among students with deceased fathers. One method is to simply 
estimate the sample between-group difference in outcome means  D  1 :
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4.  We thank Susan Dynarski for providing her dataset. All our analyses of these data account 
for the cluster sampling and weighting in the complex survey design of the NLSY. 
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 In Equation 8.2, we have used superscripts to distinguish students in the 
1979, 1980, and 1981 cohorts whose fathers were deceased (and who 
received the aid offer) from those in the 1982 and 1983 cohorts whose 
fathers were deceased (and who did not receive an offer of fi nancial aid). 
We learn that the percentage of the fi rst group that enrolled in college by 
age 23 was almost 21 percentage points larger than the percentage of the 
second group that did so. From the standard errors listed in Table   8.1  , we 
can also estimate a  t -statistic for testing the null hypothesis that an offer of 

      Table 8.1  “First difference” estimate of the causal impact of an offer of $6,700 in 
fi nancial aid (in 2000 dollars) on whether high-school seniors whose fathers were 
deceased attended college by age 23 in the United States  

  (a)  Direct Estimate   

 H.S. 
Senior 
Cohort 

 Number 
of 
Students 

 Was 
Student’s 
Father 
Deceased 

 Did H.S. 
Seniors 
Receive an 
Offer of 
SSSB Aid? 

 Avg Value 
of  COLL  
(standard 
error) 

 Between-
Group 
Difference 
in Avg 
Value of 
 COLL  

 H 0 :  µ   OFFER   = 
 µ   NO OFFER    

  t -statistic   p -value  

 1979–81  137  Yes  Yes 
 ( Treatment 
Group ) 

 0.560 
 (0.053) 

  0.208 ∗      2.14  0.017   †     
 1982–83  54  Yes  No 

 ( Control 
Group ) 

 0.352 
 (0.081)  

  ∼ p  <0.10;  ∗   p  <0.05;  ∗  ∗   p  <0.01;  ∗  ∗  ∗   p  <0.001.  
  †One-tailed test.  
       

  (b)  Linear-Probability Model (OLS) Estimate   

 Predictor  Estimate  Standard Error   H  0 :  β  = 0;  

  t -statistic   p -value  

  Intercept   0.352  ∗  ∗  ∗    0.081  4.32  0.000  
  OFFER   0.208  ∗    0.094  2.23  0.013   †     
  R 2    0.036  

  ∼ p  <0.10;  ∗   p  <0.05;  ∗  ∗   p  <0.01;  ∗  ∗  ∗   p  <0.001.  
   † One-tailed test.  
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fi nancial aid did not affect college attendance among students whose 
fathers were deceased by age 23, in the population, as follows:   5  
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 We could also have summarized and tested the impact of the receipt 
of the higher-education fi nancial-aid offer in the same dataset by using 
OLS methods to fi t a linear-probability model or we could have used 
logistic regression analysis to regress our outcome  COLL  on a dichoto-
mous question predictor  OFFER , defi ned to distinguish students in 
the treatment and control groups (coded 1 if relevant students became 
high-school seniors in 1979, 1980, or 1981, and therefore received an 
offer of post-secondary tuition support; 0 otherwise), as in the case of an 
investigator-designed experiment. We present the corresponding fi tted 
linear-probability model in the lower panel of Table   8.1  . Notice that the 
parameter estimate associated with the treatment predictor has a magni-
tude identical to our “difference estimate” in Equation 8.2.   6  Using either 
of these strategies, we can reject the standard null hypothesis associated 
with the treatment effect, and conclude that the offer of fi nancial aid did 

5.  The results of this  t -test are approximate, as the outcome  COLL  is a dichotomous, not 
continuous, variable. 

6.  Notice that the standard error associated with the main effect of  OFFER , at 0.094, is 
slightly different from the estimate provided in Equation 8.3, which had a value of 
0.097. This occurs because, although both statistics are estimates of the standard error 
of the same treatment effect, they are based on different assumptions. The OLS-based 
estimate makes the more stringent assumption that residuals are  homoscedastic  at each 
value of predictor  OFFER —  that is, essentially, that the within-group variances of the 
outcome are the same in both the treatment and control groups, although the hand-
computed estimate permits these within-group variances to differ. 
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indeed induce a substantial percentage of students whose fathers were 
deceased to enter college before age 23 ( p  <0.02).   7  

 Notice that the abrupt change in federal SSSB policy in 1981 is a key 
characteristic of this natural experiment, and is responsible for defi ning 
who was in the treatment and who was in the control group. It is as though 
students whose fathers had died were arrayed along an underlying dimen-
sion defi ned by the year in which they became a high-school senior and an 
arbitrary cut-off year was picked independently by an external agency at 
the end of 1981. Because of this, high-school seniors immediately to the 
left of the discontinuity were arbitrarily assigned to the treatment group, 
although those immediately to the right became the control group. In 
interpreting the implications of our fi ndings causally, not only do we rely 
on the assumption that the timing of the policy disruption was deter-
mined exogenously, we must also make sure that we generalize our 
fi ndings only to the subpopulation of high-school seniors from whom we 
sampled implicitly  — that is, those whose fathers were deceased and who 
graduated from high school immediately before, or immediately after, the 
policy change. Such highly specifi c limits on interpretation are an impor-
tant facet of any causal research that makes use of a discontinuity design.      

   Sources of Natural Experiments   

 Since natural experiments with discontinuity designs provide frequent 
opportunities for estimating the causal impacts of educational interven-
tions or policies, it is valuable to learn to spot them when they occur. 
Understanding the common components of a standard discontinuity 
design can help you to do so. All natural experiments with discontinuity 
designs incorporate:  

      an underlying continuum along which participants are arrayed.  •
We refer to this continuum as the “assignment” or “forcing” variable,  
      an exogenously determined cut-point on the forcing variable that  •
divides participants explicitly into groups that experience differ-
ent treatments or conditions, and  
      a clearly defi ned and well-measured outcome of interest.      •

 As should be clear from our description of Dynarski’s (  2003  ) work on 
the impact of an offer of fi nancial aid on the college-going behavior of 

7.  Note that we used a one-tailed test because we had a strong prior belief that the offer of 
scholarship aid would increase the probability of college attendance, not decrease it. 
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high-school seniors whose fathers had died, abrupt changes in policy 
provide one important source of potential natural experiments. In such 
cases, the forcing variable represents the passage of time, and the exoge-
nous cut-off point is provided by the date on which the policy change 
took hold. 

 Disasters that change unexpectedly the circumstances under which 
education and labor markets operate provide another useful source of 
natural experiments. For example, in 2005, the devastation caused by 
Hurricanes Katrina and Rita led Louisiana public-school offi cials to reas-
sign a large number of students from lower-quality schools in Orleans 
Parish, Louisiana, to higher-quality suburban schools. Bruce Sacerdote 
(  2008  ) showed that this exogenous shift in the quality of the schools these 
children attended led to improvements in the average long-term achieve-
ment of affected students, even though they and their families experienced 
the disruptions associated with unanticipated residential moves. In 1986, 
the Chernobyl nuclear accident resulted in the in utero exposure to radia-
tion of large numbers of children living in a particular part of Sweden. 
Douglas Almond, Lena Edlund, and Marten Palme used data from before 
and after this tragic accident to show that in utero exposure to radiation 
reduced the average educational attainment of the affected children 
(Almond, Edlund, & Palme,   2007  ). 

 It is not only the passage of time that can provide a credible forcing 
variable. Differences in policies, practices, or incentives that occur natu-
rally across adjacent geographical jurisdictions (for example, across school 
attendance zones, school districts, or provinces) provide another useful 
source of natural experiments. In such cases, the forcing variable — the 
continuum along which participants are arrayed in the discontinuity 
design — is spatial. Sandra Black (  1999  ) used a natural experiment of this 
type to study the causal impact of school quality on housing prices. She 
did this by comparing the average prices of houses located just on either 
side of elementary school attendance boundaries in particular school dis-
tricts in Massachusetts. Her basic assumption was that, after controlling 
for the physical characteristics of houses and the attributes of neighbor-
hoods, the only reason that houses close to, but on opposite sides of, 
school-attendance boundaries would differ in selling price is that they 
were located in the attendance zones of different elementary schools. 
Black found that parents were willing to pay 2.5 %  more for a house that 
allowed their children to attend an elementary school whose average test 
scores were 5 %  higher. Ian Davidoff and Andrew Leigh (  2008  ) conducted a 
similar analysis using data from Australia and reached a similar conclusion. 

 Research by John Tyler, Richard Murnane, and John Willett (  2000  ) 
provides another example of a study that took advantage of a natural 
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experiment involving spatial differences to study an important educational-
policy question. These researchers wanted to know whether receipt of the 
General Educational Development (GED) credential improved subse-
quent average earnings for high-school dropouts with low academic skills. 
Their critical natural experiment stemmed from exogenous differences 
among adjacent states in the United States in the minimum passing score 
that individuals must attain on the seven-hour battery of examinations to 
obtain the GED credential. Tyler and his colleagues compared the subse-
quent earnings of GED test takers who scored just high enough to earn 
the credential in a state with a low passing score with the earnings of GED 
test takers who achieved the same score, but did not receive the credential 
because they lived in a state with a relatively high minimum passing score. 
These comparisons led the researchers to conclude that receipt of the 
GED credential increased the earnings of white school dropouts with 
weak academic skills by 14 % . 

 A third source of natural experiments arises when policies that, having 
arrayed individuals along an academic or social dimension such as a score 
on a standardized test, then administer different educational treatments 
to students who fall on different sides of an exogenously specifi ed cut-
point on this forcing variable. A policy implemented by Chicago public 
schools provides an interesting example of this type of natural experi-
ment. As part of a district-wide accountability initiative, the district 
mandated that, beginning in the 1996–1997 school year, third-graders 
who did not achieve scores of at least 2.8 grade equivalents on the Iowa 
Test of Basic Skills (ITBS) reading and mathematics examinations taken 
at the end of the school year must participate in a six-week summer-school 
program. At the end of the mandatory program, participating children 
would retake the ITBS tests. Those who failed to achieve scores of at least 
2.8 grade equivalents were compelled to spend another school year in the 
third grade. 

 Brian Jacob and Lars Lefgren (  2004  ) recognized that the Chicago 
initiative provided a natural experiment that they could use to study the 
causal impact of the mandatory summer school and its associated school 
promotion policy on students’ subsequent achievement. Third-grade stu-
dents were arrayed on a forcing variable defi ned by their end-of-school-year 
score on the ITBS mathematics test. There was a clearly defi ned exoge-
nous cut-point on this forcing variable: a minimum score of 2.8 grade 
equivalents. Students whose scores fell below the cut-point received an 
educational treatment — mandatory summer school — which students with 
scores at, or above, the cut-point did not receive. There was a clearly 
defi ned outcome, the students’ scores on the ITBS mathematics test at 
the end of the subsequent school year. Jacob and Lefgren found that 
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there were a great many Chicago students who scored just below, or just 
above, the 2.8 cut-off point on the end-of-third-grade mathematics exami-
nation. By comparing the average mathematics scores of these two groups 
one year and two years later, they estimated the causal impact of the man-
datory summer school and associated promotion policy. They found that 
the treatments increased average student achievement by an amount 
equal to 20 %  of the average amount of mathematics learning that typical 
Chicago public school third-graders exhibited during the school year, an 
effect that faded by 25 % –40 %  over a second year.   8  

 John Papay, Richard Murnane, and John Willett (  2010  ) took advantage 
of a structurally similar natural experiment in Massachusetts. Beginning 
with the high-school class of 2003, Massachusetts public school students 
have had to pass state-wide examinations in mathematics and English lan-
guage arts in order to obtain a high-school diploma. Students take the 
examinations at the end of the tenth grade, and those who fail to score 
above the exogenously defi ned minimum passing score may retake the 
examinations in subsequent years. The research team found that being 
classifi ed as just failing on the mandatory mathematics test (when com-
pared to those students who just passed) lowered by 8 percentage points 
the probability that low-income students attending urban high schools 
graduated on time. Since the research had a discontinuity design, the 
comparison was between low-income urban students whose scores fell 
just below the minimum passing score on the forcing variable and those 
whose scores fell just above the minimum passing score. 

 Other examples of natural experiments of this type originate in the 
rules that schools and school districts adopt to set maximum class size. In 
settings with maximum class-size rules, students are arrayed on a forcing 
variable defi ned by the number of students enrolled in a school at their 
grade level. If the number of enrolled students is less than the maximum 
class size, say, 40 students, then the students’ class size will be equal to the 
number of students enrolled in that grade level. However, if the number 
of enrolled students is slightly greater than the maximum class size, say, 
42 students, then the expected class size would be 21 students because a 
second class must be added to the grade in order to comply with the 
maximum class-size policy. As with other natural experiments, students in 
schools with class-size maximums have then been arrayed implicitly on a 
forcing variable (enrollment at that grade level), an exogenous cut-point 

8.  Jacob and Lefgren (    2004  , p. 235). The policy also applied to sixth-graders, and the 
results of the intervention were different for this group than for third-graders. 
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(the class-size maximum) has been defi ned, and students who fall just to 
one side of the cut-point experience different educational treatments 
(class sizes) than do students who fall just to the other side of the 
cut-point. Discontinuity studies of the impact of class size on average 
student achievement that were based on maximum class-size rules have 
been conducted using data from many countries, including Bolivia, 
Denmark, France, Israel, the Netherlands, Norway, South Africa, and the 
United States.   9  

 In summary, natural experiments occur most frequently with disconti-
nuity designs, and are derived usually from three common sources of 
discontinuity. First, a natural disaster or an abrupt change in a policy can 
assign individuals or organizations that are in the same geographical juris-
diction randomly to different educational treatments at temporally 
adjacent points in time. Dynarski (  2003  ) analyzed data from a natural 
experiment of this type. Second, exogenous differences in policies across 
geographical jurisdictions at the same point in time can assign individuals 
or organizations randomly to different policies based on their location. 
Tyler and his colleagues (  2000  ) made use of a natural experiment of this 
type. Third, policies in a particular jurisdiction at a particular point in 
time can assign individuals randomly to different educational treatments 
based on their values on a forcing variable such as a test score, a measure 
of socioeconomic status, or the number of students enrolled in a grade in 
a particular school. As we explain in the next chapter, Angrist and Lavy 
(  1999  ) studied a natural experiment of this type. 

 Some natural experiments fall into more than one category. For example, 
the natural experiment created by the Chicago mandatory summer-school 
policy that Jacob and Lefgren (  2004  ) studied falls into both our fi rst and 
third categories. We have already described how that study fell into the 
third category — with end-of-school-year scores on the third-grade ITBS 
mathematics achievement test as the forcing variable. However, it also 
falls into the fi rst category — with a temporal forcing variable — because 
Chicago students who were in the third grade in the 1996–1997 school 
year were subject to the policy, whereas those who were in the third grade 
in the 1995–1996 school year were not. In fact, Jacob and Lefgren took 
advantage of both of these attributes of the natural experiment cleverly in 
their analytic strategy.     

9.  Relevant studies include: Browning and Heinesen (    2003  ); Leuven, Oosterbeek, and 
R ø nning (    2008  ); Case and Deaton (    1999  ); Dobbelsteen, Levin, and Oosterbeek (    2002  ); 
Boozer and Rouse (    2001  ); Angrist and Lavy (    1999  ); Urquiola (    2006  ), and Hoxby (    2000  ). 
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   Choosing the Width of the Analytic Window   

 In the investigator-designed NYSP randomized experiment and in the 
natural randomized experiment created by the Vietnam era military lot-
teries, participants were simply assigned randomly to treatment or control 
status in a given year or at a given point in time. As a result, the groups 
assigned to the different experimental conditions were unequivocally 
equal in expectation prior to treatment.   10  More serious concerns can be 
raised about the equality of expectation assumption, however, when we 
rely on experiments with a discontinuity design to make our causal com-
parisons. In making use of this latter design and using a simple  t -test 
to compare groups, we fi nd ourselves having to argue that the analytic 
samples of participants who fall within a narrow analytic window or “band-
width” on either side of the cut-off on the forcing variable constitute 
treatment and control groups that are also equal in expectation prior to 
treatment. 

 This raises the question of how narrow the analytic window must be in 
order for this assumption to be credible? Certainly, the narrower the ana-
lytic window around the cut-point, the more confi dent we can be in the 
“equality in expectation” assumption for the groups thus defi ned, and 
therefore in the  internal validity  of the experimental comparison. By nar-
rowing the bandwidth on either side of the cut-off score, we can make it 
more likely that the equality in expectation assumption will be met. But as 
we do this, the sample sizes in the “treatment” and “control” groups thus 
defi ned must necessarily decline, along with the statistical power of the 
experimental comparison. So, to capitalize effectively on a natural exper-
iment with a discontinuity design, we must strike a sensible balance 
between internal validity and power by manipulating the bandwidth on 
either side of the cut-point. We return to the Dynarski (  2003  ) study to 
illustrate the tradeoff. 

 Recall that Dynarski pooled high-school seniors whose fathers had 
been deceased from both 1979 and 1980 into her discontinuity-defi ned 
treatment group, along with those from 1981 (the last group to enjoy 
SSSB benefi ts before the policy change). She included in her control 
group not only students with deceased fathers who were high-school 
seniors in 1982, the fi rst year in which SSSB college benefi ts were not 
available, but also those who were high-school seniors in 1983. Alterna-
tively, Dynarski could have defi ned her treatment group as containing 

10.  An exception would be the case in which participants succeed in subverting their 
assignment and “cross-over” to the condition to which they were not assigned. In 
Chapter 11, we describe a solution to this problem. 
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only 1981 high-school seniors with deceased fathers and her control group 
as including only 1982 high-school seniors with deceased fathers. 
Tightening her focus on the students with deceased fathers who were 
most immediately adjacent to the cut-off year would have strengthened 
Dynarski’s claim that the treatment and control groups were likely to be 
equal in expectation, prior to treatment. The reason is that this decision 
would have provided little time for anything else to have occurred that 
could have affected college enrollment decisions for the relevant high-
school seniors. However, this would also have reduced the sample sizes of 
her treatment and control groups dramatically, thereby reducing the sta-
tistical power of her research. Even with the slightly broader criteria that 
Dynarski did use, there were only 137 high-school seniors in the treat-
ment group and 54 in the control group — a comparison that provides very 
limited statistical power. 

 On the other hand, Dynarski could have expanded her defi nitions of 
the treatment and control groups. For example, she might have included 
in her treatment group all students with deceased fathers who graduated 
from high school in any year from 1972 through 1981. Similarly, she could 
have included in her control group students with deceased fathers who 
graduated from high school in any year from 1982 through 1991. Using 
such a ten-year window on either side of the discontinuity certainly would 
have increased her sample size and statistical power dramatically. However, 
had Dynarski widened the analytic window around the cut-point, she 
would have found it more diffi cult to argue that seniors in the treatment 
and control groups were equal in expectation initially. The reason is that 
unanticipated events and longer-term trends might have had a substantial 
infl uence on high-school seniors’ college-enrollment decisions. For exam-
ple, the differential between the average earnings of college graduates 
and high-school graduates fell dramatically during the 1970s and then 
rose rapidly during the 1980s.   11  As a result, the incentives for high-school 
seniors to attend college in the early 1970s were quite different from the 
incentives facing high-school seniors in the late 1980s. Thus, widening the 
analytic window would have cast into doubt the claim that any observed 
difference between the treatment and control groups in college-going by 
age 23 was solely a causal consequence of the elimination of the SSSB 
fi nancial-aid offer. 

 Taking these limiting cases into account, it may seem reasonable to 
assume that high-school seniors with deceased fathers in the years within 

11.  For a discussion of the causes and consequences of trends in the college/high-school 
wage differential, see Freeman (    1976  ), Goldin and Katz (    2008  ), and Murnane and 
Levy (    1996  ). 
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a very narrow band immediately on either side of the policy disruption — -
for example, within the bandwidths chosen by Dynarski — were indeed 
equal in expectation on all observed and unobserved dimensions (other 
than their exposure to the offer of fi nancial aid). If this is true, then we 
can regard those with deceased fathers who became high-school seniors 
in 1979 through 1981 as having been randomized to the treatment group 
and those with deceased fathers who became seniors in 1982 and 1983 as 
having been randomized to the control group. Coupling this assumption 
with plausibly exogenous treatment variation in a suitable outcome, we 
can obtain an unbiased estimate of the causal impact of an offer of fi nan-
cial aid on the college-enrollment decisions of the subpopulation of 
high-school seniors with deceased fathers who graduated just before and 
just after the policy change that occurred at the end of 1981. 

 This tension between internal validity and statistical power in the appli-
cation of discontinuity research designs is a diffi cult and important 
problem. Typically, there is no single correct answer to the question of 
how narrow the analytic window needs to be in order to analyze credibly 
data from experiments with a discontinuity design. In fact, rather than 
picking a single fi xed width for this analytic window, investigators often 
conduct a sequence of analyses with ever-widening bandwidths, and assess 
whether their substantive fi ndings are sensitive to the bandwidth. We 
return to this issue in the next chapter, where we discuss an extension of 
the discontinuity approach called the  regression-discontinuity  design.     

   Threats to Validity in Natural Experiments with a 
Discontinuity Design   

 As stated earlier, a critical assumption underlying causal research with a 
discontinuity design is that the group of participants just to the “left” of 
any cut-off are equal in expectation on all dimensions, other than their 
exposure to the treatment, to those just to the “right” of the cut-off. There 
are two critical threats to the validity of this assumption. The fi rst con-
cerns the impact of any underlying “secular” relationship between the 
outcome and the forcing variable on estimated treatment effects. If such 
a relationship exists, then there may be a difference between the treat-
ment and control groups in the mean value of the outcome that stems 
from their (small) separation on the forcing variable rather than from 
the impact of the treatment that was available on one side of the 
cut-off and not on the other. The second threat concerns actions by 
participants themselves. If participants are aware of the nature of the 
forcing variable and the location of the cut-off, they may be able to act to 
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transfer themselves knowingly from one side of the cut-off to the other. 
This jeopardizes the exogeneity of the assignment process and under-
mines the assumption of equality of expectation for those in the treatment 
and control groups. We discuss each of these threats in turn.    

   Accounting for the Relationship Between the Outcome 
and the Forcing Variable in a Discontinuity Design   

 In a previous section, we estimated the impact of the offer of fi nancial aid 
on college-enrollment rates by comparing the enrollment rates of eligible 
high-school seniors with deceased fathers in the 1979–1981 (treatment) 
and 1982–1983 (control) cohorts of such students. A critical assumption 
underlying this approach was that the only respect in which the treatment 
and control group differed was that the former received an offer of SSSB 
fi nancial aid for college and the latter did not. If this assumption is defen-
sible, then any difference between the treatment and control groups in 
the rate of college enrollment can be attributed causally to the aid offer. 

 There are reasons to question the critical assumption, however, because 
events other than the termination of the SSSB fi nancial-aid program that 
took place during the years 1979–1983 may have also affected college-
enrollment rates. For example, in 1978, President Jimmy Carter signed 
the  Middle-Income Student-Assistance Act  (MISAA). This legislation made 
almost all students eligible for a subsidized federal loan under the 
Guaranteed Student Loan (GSL) program. In 1981, the same year in 
which the Reagan administration eliminated the SSSB program, it also 
repealed MISAA. Thus, the attractiveness of enrolling in college for stu-
dents with deceased fathers (those students who make up our treatment 
and control populations) may not only have been infl uenced by the termi-
nation of the SSSB program, but by other factors as well.   12  

 Notice that it is the very use of the discontinuity design itself that has 
led to this problem, because individuals have been assigned to a treat-
ment or control group depending on whether their value on the forcing 
variable (in this case, chronological year) fell above or below an arguably 
exogenous cut-off point. We do not face this problem in standard 
investigator-designed randomized experiments nor in natural experi-
ments with simple random-assignment designs, such as the Vietnam era 
military draft lotteries. The reason is that random assignment of young 

12.  See Dynarski (    2003  , p. 283, fn. 14). As our colleague Bridget Long pointed out, 
another factor that infl uenced college-enrollment rates during the period 1978–1983 
was an increase in college tuition prices. 
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men within each yearly cohort to either the treatment or control group 
allayed the problem. With a random-assignment design, chronological 
year would simply function as a stratifi er, and the equality of expectation 
assumption would be met by the randomization of participants to the dif-
ferent experimental conditions within each yearly stratum, and, hence, 
overall. In a discontinuity design, on the other hand, participants in the 
treatment and control conditions are, by defi nition, drawn from groups 
at immediately adjacent values of the forcing variable (adjacent by year, by 
geography, by test score, or by whatever defi nes the forcing variable on 
which the exogenous cut-off has been imposed). Then, if an underlying 
relationship exists between outcome and forcing variable (as it often 
does!), the resulting small differences between participants in the treat-
ment and control groups on their values of the forcing variable may also 
result in differences in the outcome between the groups.   13  

 When faced with this kind of threat to the internal validity of a natural 
experiment with a discontinuity design, investigators often respond by 
correcting their estimate of the treatment effect using what is known as a 
 difference-in-differences  strategy. Recall that we construed our estimate of 
the impact of a fi nancial-aid offer in the Dynarski example as simply the 
difference in the sample average value of the binary outcome  COLL  
between seniors with deceased fathers assigned to the fi nancial–aid-offer 
treatment group and those assigned to the no fi nancial-aid-offer control 
group. As shown earlier, we can estimate and test this difference easily, 
once we have chosen an appropriate bandwidth on either side of the cut-
off score within which to estimate the respective average values of the 
outcome. In what follows, we refer to this as the  fi rst difference ,  D  1 , and we 
presented it earlier in Equation 8.2 and Table   8.1  . 

 Now let’s correct our fi rst difference for the anticipated threat to validity 
due to the small chronological difference in years of assignment between 
the treatment and control groups. We can do this by subtracting, from 
the fi rst difference, a  second difference  that estimates the consequences of 
any “secular” trend in college-going by age 23 that might have affected all 
high-school seniors over the same period, including those eligible for 
SSSB benefi ts. To do this, we need to estimate this latter secular trend 
over time, so that it can be “subtracted out.” In the case of Dynarski’s 

13.  One can also argue that this “secular trend” problem is exacerbated when the forcing 
variable is not continuous, but is coarsely discrete (as were the “years” in the Dynarski 
example). If the assignment variable were continuous and the cut-off selected exoge-
nously, then — in the limit — participants in the vanishingly small regions to either side 
of the cut-off would be mathematically equal in expectation, by defi nition. However, 
the number of participants — and hence the sample size in the ensuing natural experi-
ment — in these infi nitesimal regions would also be disappearingly small. 
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fi nancial-aid example, the data themselves provided an appropriate 
second difference. If there was a secular trend in college-going by age 23 
over these years, it might be reasonable to assume that it would affect in 
the same way high-school seniors whose fathers had died and those whose 
fathers had not died. If this assumption is true, then we can estimate the 
secular trend over the relevant years in the college-going behavior of 
seniors whose fathers had not died, and subtract this second difference 
from our earlier estimated fi rst difference to obtain a corrected estimate 
of the treatment effect. 

 We present the relevant statistics in Table   8.2  , and illustrate them in 
Figure   8.1  . In the fi rst two rows of the table, we replicate the estimation of 
the original fi rst difference from Table   8.1  , and display it graphically 
in the left-hand panel of Figure   8.1  . Notice that the line segment joining 
the sample average values of outcome  COLL , before and after the cancel-
lation of the SSSB program, has a decidedly negative slope, and declines 
from 0.560 to 0.352 between the before and after periods, an almost 21 
point decline in the percentage of high-school seniors with deceased 
fathers who attended college by age 23. In the third and fourth rows of 
Table   8.2  , we present parallel information on the trend in college-going 
among those high-school seniors whose fathers had not died. For these 
students, notice that there is also a decline in the sample average values of 
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     Figure 8.1    Sample probability of attending college by age 23 among high-school seniors, 
in the United States, immediately before and after the elimination of the SSSB program, 
by whether their fathers were deceased or not.    
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 COLL , but that its magnitude (0.026) is considerably smaller than that of 
the fi rst difference. We display this second difference in the right-hand 
panel of Figure   8.1  , where the line segment joining the sample average 
values of  COLL , before and after the cancellation of the SSSB program, 
has a smaller negative slope.   

 Now, we have two estimated differences. We could argue that our fi rst 
difference  D 1   estimates the  population  impact (call this  ∆  1 ) on college-
going by age 23 of  both  the elimination of fi nancial aid  and  any impact 
of a secular decline in college-going over the same period. Our second 
difference  D 2   provides an estimate of just the population secular decline 
in college-going over this same period (call this  ∆  2 ). We can now remove 
the impact of the secular time trend from our estimate of the causal 
effect of fi nancial aid by subtracting the second difference from the fi rst, 
as follows:
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 This provides a difference-in-differences estimate of 0.182 for the effect of 
the fi nancial-aid offer on college-going by age 23 for high-school seniors 
with deceased fathers in the years around 1981. This is the fi rst difference 
of 0.208 minus the second difference of 0.026. Thus, the difference-in-
differences estimate of the causal impact of fi nancial aid is a little smaller 
in magnitude than the fi rst-difference estimate obtained earlier, but its 
sign is the same and it continues to support the notion that the elimina-
tion of SSSB fi nancial aid made it less probable that high-school seniors 
would go to college by age 23. We have more confi dence in the difference-
in-differences estimate than in the fi rst-difference estimate because it 
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contains a (linear) adjustment for any potential underlying secular 
relationship between college-going by age 23 and chronological year.  

 Now that we have constructed an estimate of the treatment effect by 
differencing these two differences, we can no longer use a standard two-
group  t -test to evaluate the null hypothesis of no difference in the 
population-average college-going between students who received an offer 
of fi nancial aid and those who did not. Instead, we need to test a new null 
hypothesis, as follows:

   0 1 2: 0H ∆ = ∆ − ∆ =     (8.5)  

 This hypothesis can be tested by comparing the sample difference-
in-differences estimate to its own standard error, to provide a  t -statistic of 
the following form:   14  

14.  This test is approximate because outcome,  COLL , is dichotomous. 

      Table 8.2  Direct “difference-in-differences” estimate of the impact of an offer of $6,700 
in fi nancial aid (in 2000 dollars) on whether high-school seniors whose fathers were 
deceased attended college by age 23, in the United States  

  H.S. 
Senior 
Cohort 

 Number 
of 
Students 

 Was 
Student’s 
Father 
Deceased? 

 Did H.S. 
Seniors 
Receive an 
Offer of 
SSSB Aid? 

 Avg Value 
of  COLL  
(standard 
error) 

 Between-
Group 
Difference 
in Avg 
Value of 
  COLL 

 “Difference in 
Differences”  

 Estimate 
(standard 
error) 

  p -value  

 1979–81  137  Yes  Yes 
  (Treatment 
Group)  

 0.560 
 (0.053)  0.208 

  (First Diff)  

 0.182  ∗   
 (0.099) 

 0.033   †     

 1982–83  54  Yes  No 
  (Control 
Group)  

 0.352 
 (0.081)  

 1979–81  2,745  No  No  0.502 
 (0.012)  0.026  

 (Second     Diff)    1982–83  1,050  No  No  0.476 
 (0.019)  

  ∼  p  <0.10;  ∗   p  <0.05;  ∗  ∗   p  <0.01;  ∗  ∗  ∗   p  <0.001.  
   † One-tailed test.  
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 This  t -statistic is large enough to reject the null hypothesis using a one-
tailed test with Type I error = 0.05 ( p  <0.03).   15  Consequently, we again 
conclude that fi nancial aid matters in the decision to go to college by 
age 23 in the population of high-school seniors whose fathers were 
deceased in 1981.  

 We noted earlier that we did not necessarily need to use a  t -test to 
test the size of the population fi rst difference. Instead, we could regress 

15.  This is based on a normal approximation because of the large total sample size (n = 3,986) 
across the four groups. 
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outcome  COLL  on the dichotomous question predictor,  OFFER , which 
distinguished between the treatment group (cohorts 1979, 1980, and 
1981) and the control group (cohorts 1982 and 1983). We can use a simi-
lar regression approach to obtain the difference-in-differences estimate 
(Equation 8.4), along with its associated standard error and ancillary test 
statistics. It is a direct extension of the method we introduced in Chapter 4 
for using regression analysis to estimate a treatment effect in a regular 
random-assignment experiment. In that case, we regressed the outcome 
variable on the main effect of a single dichotomous question predictor, 
which had been defi ned to distinguish participants in the treatment and 
control groups. The coeffi cient associated with this predictor provided 
the required estimate of the treatment effect, essentially an estimate of 
the fi rst difference we have described above. Here, our modeling must be 
a little more subtle in order to incorporate the impact of the hypothesized 
second difference appropriately into the regression model and thereby 
remove it from the estimate of the treatment effect. 

 We proceed by defi ning one additional predictor and forming its statis-
tical interaction with the “old” question predictor. We illustrate the 
structure of the ensuing dataset in Table   8.3  , where we present a handful 
of cases from the Dynarski dataset. Columns one through three of the 
table list the student  ID , the high-school senior cohort to which the stu-
dent belongs, and his or her value of  COLL  (our outcome). Then, we list 
the value of the original question predictor  OFFER , which denotes 
whether the high-school senior is a member of one of the three cohorts 
prior to the cancellation of the SSSB policy (its value is set to 1 for the 
1979, 1980, and 1981 cohorts; and to 0 for the 1982 and 1983 cohorts). 
Finally, we add a new predictor,  FATHERDEC , to distinguish high-school 
seniors whose fathers were deceased (and will therefore contribute to 
the estimation of the fi rst difference) or not (and will therefore contrib-
ute to the estimation of the second difference).  FATHERDEC  is set equal 
to 1 for students whose father was deceased, 0 otherwise.  

 To obtain the difference-in-differences estimate of the impact of offer 
of SSSB fi nancial aid to students with deceased fathers, and its associated 
test statistics, as shown in Equations 8.4 through 8.6, we simply regress 
outcome  COLL  on the main effects of predictors  OFFER  and  FATHER-
DEC , and on their two-way interaction, in the new dataset. The hypothesized 
regression model is

   ( )
= + +

+ × +
0 1 2

3 
i i i

i i i

COLL OFFER FATHERDEC

OFFER FATHERDEC

b b b

b e     
(8.7)
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 where regression parameters   β   and residual   ε   have their usual meanings, 
and subscript  i  distinguishes among high-school seniors in the dataset. The 
estimated value of parameter   β   3  — the coeffi cient associated with the two-
way interaction of predictors  OFFER  and  FATHERDEC —  turns out to be 
identical to the difference-in-differences estimate of the treatment effect.   16   

16.  The reason why the regression model in Equation 8.7 embodies the difference-in-
differences approach is easily understood by taking conditional expectations 
throughout, at all possible pairs of values of predictors  OFFER  and  FATHERDEC . 
This provides population expressions for the average value of the outcome in each of 
the four groups present in the difference-in-differences estimate, which can then be 
subtracted to provide the required proof. 

      Table 8.3  Information on cohort membership and college attendance by age 23 in the 
United States for selected high-school seniors in the 1979, 1980, 1981, 1982, and 1983 
cohorts, with accompanying information on whether they were offered fi nancial aid 
(those in cohorts 1979–1981) and whether their father was deceased  

  ID  High-school 
Senior Cohort 

 Attended College 
by Age 23, (  COLL )

 Offered Financial 
Aid? ( OFFER ) 

 Father Deceased? 
( FATHERDEC )  

 7901  1979  1  1  1  
 7902  1979  0  1  1  
 7903  1979  1  1  0  
 7904  1979  1  1  1  
  …   
 8001  1980  1  1  0  
 8002  1980  1  1  1  
 8003  1980  0  1  1  
 8004  1980  0  1  0  
  …   
 8101  1981  0  1  1  
 8102  1981  1  1  0  
 8103  1981  1  1  0  
 8104  1981  1  1  0  
  …   
 8201  1982  1  0  1  
 8202  1982  0  0  0  
 8203  1982  0  0  0  
 8204  1982  0  0  1  
  …   
 8301  1983  0  0  1  
 8302  1983  1  0  1  
 8303  1983  0  0  1  
 8304  1983  1  0  0  
  …   
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 In Table   8.4  , we present parameter estimates, standard errors, and 
associated test statistics from the fi tted model. Notice that 3̂b    has a value 
of 0.182, identical to our earlier hand-computed difference-in-differences 
estimate in Equation 8.3. As expected, we can reject the single-parameter 
null hypothesis test associated with it ( p  <0.03).   17  Although it provides the 
same answer, the regression-based approach to difference-in-differences 
estimation is clearly superior to the direct computation approach illus-
trated earlier. This is because, once you have laid out the difference-
in-differences analysis in its regression-analysis format, you can easily 
increase your statistical power by adding further exogenous covariates 
such as gender, race, and family size to the fi tted model to reduce the 
residual variance, as Dynarski did.  

 Notice that, in this presentation, we have used a linear-probability 
model and OLS regression analysis to estimate the treatment effect, even 
though our outcome,  COLL , was dichotomous. We did this to illustrate 
the conceptual basis of the difference-in-differences regression strategy 

17.  Notice that the standard error associated with the two-way interaction of  OFFER  and 
 FATHERDEC , at 0.096, is marginally different from the estimate provided in Equa-
tion 8.6, which had a value of 0.099. This small difference occurs because, although 
both are estimates of the standard error of the corresponding statistic, they are based 
on slightly different assumptions. As usual, the OLS-based estimate makes the more 
stringent assumption that residuals are  homoscedastic  at each level of predictors  OFFER  
and  FATHERDEC  — that is, that the within-group variances of the outcome are the 
same in all four groups, although the hand-computed estimate permits the within-
group variances to differ, in the population. If the more stringent assumption of 
homoscedasticity had been applied in both cases, then the standard-error estimates 
would have been identical and equal to the regression-based estimate. 

      Table 8.4  Regression-based (linear-probability model) “difference-in-differences” 
estimate of the impact, on high-school seniors, of an offer of SSSB fi nancial aid on the 
college attendance by age 23 in the United States ( n  = 3,986)  

  Predictor  Estimate  Standard Error   H0   :  β  = 0  

  t -statistic   p -value  

  Intercept   0.476  ∗  ∗  ∗    0.019  25.22  0.000  
  OFFER   0.026  0.021  1.22  0.111  
  FATHERDEC   −0.123  0.083  −1.48  0.070  
  OFFER   ×   FATHERDEC   0.182  ∗    0.096  1.90  0.029   †     
  R 2    0.002  

  ∼ p  <0.10;  ∗   p  <0.05;  ∗  ∗   p  <0.01;  ∗  ∗  ∗   p  <0.001.  
   † One-tailed test.  
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more readily and also to match the fi ndings in Dynarski’s paper. However, 
even if we had specifi ed a more appropriate nonlinear logit (or probit) 
model, the predictor specifi cation would have been identical and the 
results congruent. 

 Finally, note that we have made two additional assumptions in obtain-
ing our difference-in-differences estimate of the treatment effect. Both 
these assumptions concern whether it is reasonable to use this particular 
“second” difference in average outcome to adjust for any secular trend in 
the college-going decisions of high-school seniors whose fathers were 
deceased. One of the assumptions is mathematical, the other conceptual. 

 First, in computing both the fi rst and second differences, we are making 
the “mathematical” assumption that it is reasonable to use a simple differ-
ence in average values to summarize trends in the outcome as a function 
of the forcing variable, and that the mere subtraction of these differences 
from one another does indeed adjust the experimental effect-size esti-
mate for the secular trend adequately. For instance, in our current 
example, we obtained the fi rst difference by subtracting the average value 
of  COLL  in a pair of groups formed immediately before and after the 
1981 cut-point, for both the high-school seniors whose fathers had died 
and for those whose fathers had not died. Both these differences are 
therefore rudimentary estimates of the slope of a hypothesized linear 
trend that links average college-going and chronological year (grouped as 
stipulated in our estimation), in the presence and absence of any experi-
mental treatment, respectively. Our confi dence in the appropriateness of 
these differences — and the value of the difference-in-differences estimate 
derived from them — rests heavily on an assumption that the underlying 
trends are indeed linear and can be estimated adequately by differencing 
average outcome values at pairs of adjacent points on the horizontal axis. 
These assumptions will not be correct if the true trend linking average 
college-going to year is nonlinear. We have no way of checking this 
assumption without introducing more data into the analysis and without 
conducting explicit analyses to test the assumption. However, as we will 
see in the following chapter, in which we describe what is known as the 
regression-discontinuity design, if more data are available, there are not 
only ways of testing the implicit linearity assumption, but also of obtaining 
better estimates of the conceptual “second difference.” 

 Our second assumption is substantive, rather than mathematical, and 
concerns the credibility of using the sample of students whose fathers 
had not died to estimate an appropriate second difference. In our presen-
tation, we followed Dynarski in making the hopefully credible argument 
that the trend in the average college-going rate for students whose fathers 
were  not  deceased provided a valid estimate of the trend in the college-going 
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rate for students whose fathers  were  deceased. Of course, this may not be 
true. Regardless, our point is that you must be cautious in applying the 
difference-in-differences strategy. As the Dynarski (  2003  ) paper illustrates, 
it can be an effective strategy for analyzing data from a natural experi-
ment with a discontinuity design and for addressing an important 
educational policy question. However, as we have explained, there are 
additional assumptions underlying its use, and the researcher’s obliga-
tion is to defend the validity of these assumptions, as Dynarski did so 
successfully in her paper.     

   Actions by Participants Can Undermine Exogenous 
Assignment to Experimental Conditions in a Natural 
Experiment with a Discontinuity Design   

 A second, quite different threat to the internal validity of causal inference 
in discontinuity designs stems from the potential voluntary choices and 
actions of individual research subjects. It is often the case that individuals 
would prefer to be in the treatment group than in either the control group 
or outside the research sample entirely.   18  For example, most high-school 
seniors would like to have an offer of SSSB fi nancial aid for college. When 
individuals can infl uence whether they are assigned to the research sample 
or can infl uence the probability that they are assigned to the treatment or 
the control group, our causal inference is challenged. The reason is that 
allocation to experimental conditions then only  appears  to be exogenous 
but, in fact, is not. As a result, the critical assumption that members of the 
treatment and control groups are equal in expectation prior to treatment 
is violated. 

 Consider the case of the natural experiment that Dynarski utilized. 
Her treatment and control groups both consisted of students whose 
fathers had died, but constituted before and after the cut-point on the 
forcing variable, chronological year. To justify this, she needed to make 
the potentially credible assumption that during the treatment group years 
(1979–1981), no father ended his life in order to provide SSSB eligibility 
for his child. Recall, however, that during the years from 1965 to 1981, it 
was not only high-school seniors with deceased fathers who were eligible 
for SSSB benefi ts, but also those whose fathers were disabled or retired 
Social Security benefi ciaries. Thus, Dynarski could have increased her 
sample size by including students with retired or disabled fathers in her 

18.  Of course, there are also circumstances in which individuals would prefer  not  to be in 
the treatment group. For example, most third-graders in the Chicago public schools 
hoped not to be assigned to mandatory summer school. 
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research sample. She chose not to do this for good reason. During the 
years in which the SSSB program was in effect, some fathers of college-
bound high-school seniors could have chosen to retire or to press a disability 
claim in order to acquire SSSB benefi ts for their child. Demographically 
similar parents of students who were high-school seniors in 1982–1983 
would not have had this incentive. Such actions could have led to unob-
served differences between participants in the treatment and control 
groups thus defi ned, including perhaps differences in their interest in 
enrolling in college. Thus, including students with disabled or retired 
fathers in the research sample would probably have introduced bias into 
the estimation of the treatment effect, and undermined the internal valid-
ity of the research. In subsequent chapters, we return to these threats to 
the exogeneity of the assignment of individuals to treatment and control 
groups in natural experiments with a discontinuity design.      

   What to Read Next   

 Joshua Angrist and Jorn-Steffen Pischke provide an accessible explanation 
of the difference-in-differences approach on pages 227–243 of their book 
 Mostly Harmless Econometrics  (2009). In a paper entitled “Semiparametric 
Difference-in-Differences Estimators,” Alberto Abadie (  2005  ) describes a 
strategy for dealing with situations in which the researcher may want to 
question the appropriateness of available estimates of the second differ-
ence. In a paper entitled “Natural ‘Natural Experiments’ in Economics,” 
Mark Rosenzweig and Kenneth Wolpin (  2000  ) use illustrations from sev-
eral studies to point out additional threats to the validity of research based 
on data from natural experiments.   
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 Estimating Causal Effects Using a 
Regression-Discontinuity Approach        

       Reducing class size has become a popular educational policy initiative in 
many countries. One reason is that it is popular among both teachers and 
parents. A second is that it is an easy policy to implement. On the other 
side of the ledger, reducing class sizes is extremely expensive. First, there 
is the cost of additional classrooms. Then, there is the cost of additional 
teachers. For example, in a school with 480 students, 12 teachers are 
needed to staff classes containing 40 students each. However, 16 teachers —
 one-third more — are required to staff classes of 30 students. In most 
countries, teacher salaries absorb more than half of the national educa-
tion budget. As a result, reducing class sizes from 40 to 30 students 
increases total educational expenditures by at least one-sixth. 

 The popularity of class-size reductions and their cost make important 
the question of whether they result in improved student outcomes. 
Hundreds of studies have attempted to address this question. Unfortu-
nately, almost all were fundamentally fl awed because they were based on 
observational data from research designs in which the variation in class 
size was the result of the endogenous actions of school administrators 
and parents. As we explained in Chapter 3, when the levels of the ques-
tion predictor — such as class size — are set endogenously, it is not possible 
to obtain unbiased estimates of the causal impact of class size on student 
outcomes. 

 Of course, one approach to solving this problem is to conduct a ran-
domized experiment in which both students and teachers are assigned 
randomly to classes of different sizes by the researcher. The Tennessee 
Student/Teacher Achievement Ratio (STAR) experiment provides a 
compelling illustration of this approach. As we described in Chapter 3, 
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research based on the STAR experiment showed that children placed in 
kindergarten and fi rst-grade classes of 13–17 students exhibited greater 
reading and mathematics skills at the end of the school year than did chil-
dren placed in classes of 21–25 students. 

 Unfortunately, researcher-designed randomized experiments of class 
size are extremely rare. So, researchers who want to estimate the causal 
impact of class size on student achievement often seek out natural 
experiments in which class sizes have been determined exogenously by 
educational policies that are beyond the control of the participating teach-
ers and students. Educational policies that dictate the maximum number 
of students that may be taught in a single class sometimes provide such 
natural experiments. In this chapter, we describe how Joshua Angrist and 
Victor Lavy estimated the causal impact of class size on the reading 
achievement of elementary-school children in Israel by taking advantage 
of a maximum class-size policy called Maimonides’ rule. In the process, 
we extend the difference-in-differences strategy of the previous chapter to 
what has become known as the  regression-discontinuity  design.     

   Maimonides’ Rule and the Impact of Class Size 
on Student Achievement   

 Joshua Angrist and Victor Lavy (  1999  ) used data from an interesting natu-
ral experiment in Israel to examine whether class size had a causal impact 
on the achievement of third-, fourth-, and fi fth-grade students. The source 
of their natural experiment was an interpretation by a 12th-century rab-
binic scholar, Maimonides, of a discussion in the 6th century Babylonian 
Talmud about the most appropriate class size for bible study. Maimonides 
ruled that class size should be limited to 40 students. If enrollment 
exceeded that number, he stipulated that another teacher must be 
appointed and the class split, generating two classes of smaller size.   1  Of 
critical importance to the work of Angrist and Lavy is that, since 1969, the 
Education Ministry in Israel has used Maimonides’ rule to determine the 
number of classes each elementary school in Israel would need, each year, 
at each grade-level. Children entering a grade in a school with an enroll-
ment cohort of 40 students or fewer, for instance, would be assigned to 
a single class containing that number of students. In another school 
with an enrollment cohort of size 41 at the same grade level, an extra 
teacher would be hired and two classes established, each containing 20 or 

1.  As reported in Angrist and Lavy (1999, p. 534). 
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21 students. If the size of the enrollment cohort was 44 students, each 
would be assigned to a class of 22 students, and so on. 

 Thus, Maimonides’ rule is a mechanism for assigning class size. To use 
it, children are arrayed by their values on a forcing variable that describes 
the total enrollment in the grade-level cohort in their school. Children 
are then assigned to “treatment” and “control” groups with “small” and 
“large” class sizes, depending on whether their grade-level cohort size falls 
just above, or just below, the exogenously (in this case, biblically) deter-
mined cut-off of 40. In fact, under rabbinical rules, similar disjunctions 
also occur at cohort enrollments that are subsequent multiples of 40. For 
example, at grade-level cohort sizes of 80 and 120, cohorts are split into 
three and four classes, respectively. Angrist and Lavy argued that the 
operation of Maimonides’ rule provided a natural experiment for estimat-
ing the causal impact of class size on students’ academic achievement. 

 Before presenting our re-analyses of a subset of Angrist and Lavy’s 
(  1999  ) data, we need to clarify one critical attribute of their dataset. Most 
of their data were collected at the class-aggregate level, so their unit of 
analysis is the classroom, not the individual student within the class. From 
the perspective of statistical power, this is not a major concern because, as 
we explained in Chapter 7, when data on intact groups are analyzed, the 
statistical power of the analyses depends more strongly on the  number of 
classrooms  present than on the  number of students  within each classroom, 
even when the magnitude of the intraclass correlation is quite small. 
Because Angrist and Lavy analyzed data on more than 2,000 classrooms 
at each grade level, their statistical power remained high even in analyses 
of subgroups of classrooms formed from those grade-specifi c cohorts 
whose enrollments fell close to the Maimonides-inspired cut-off. 

 In Table   9.1  , we present summary statistics and related information on 
the average fi fth-grade reading achievement in schools in which the values 
of the forcing variable — the size of the grade-level enrollment cohort —
 ranged from 36 to 46 students.   2  In the fi fth and sixth rows, for instance, 
which are shaded, we present the cohort means of the class-average read-
ing achievement (column 6) in schools in which the fi fth-grade enrollments 
(column 1) were either 40 or 41 students. We restrict our attention to 
these two specifi c enrollment cohorts initially because you will notice that 
they fall immediately on either side of the fi rst Maimonides cut-off at 40. 

2.  We thank Joshua Angrist for providing these data. The complete dataset contains 
grade-level, school-specifi c enrollment cohorts that range in size from 8 through 226, 
all of which are used in the research described in Angrist and Lavy (1999). For peda-
gogical simplicity, we focus on a subset of the data in which grade-level cohort enrollment 
sizes fall close to the fi rst Maimonides-inspired class-size cut-off of 40 students. 
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In each row in the table, we also list the number of classrooms of that 
cohort size in the sample (column 2), the intended and observed average 
class sizes in those classrooms (columns 3 and 4), and the standard devia-
tions of the class-average reading achievement across the classes in the 
cohort (column 7). We also label the cohort by whether it provides a nom-
inally “large” or “small” class-size treatment to the students it contains 
(column 5). Notice that average reading achievement does indeed appear 
to differ by class size. Children entering fi fth grade in enrollment cohorts 
of size 36 through 40, who would be assigned to “large” classes by 
Maimonides’ rule, tend to have average achievement in the high 60s. 
On the other hand (except in cohorts containing 42 children), children 
entering the fi fth grade in enrollment cohorts of sizes 41 through 46, and 
who are therefore assigned to smaller classes by Maimonides’ rule, tend 
to have average achievement in the mid-70s.    

 If the schools contributing the 37 classrooms that are listed in the fi fth 
and sixth rows of Table   9.1   had obeyed Maimonides’ rule to the letter, we 
would anticipate a “large” average class size of 40 in the nine schools that 
had an entering cohort with an enrollment of 40 and a small average class 
size of 20.5 (that is, half of 41) in the 28 classrooms in schools in which 
41 students started the school year in the fi fth-grade cohort. However, for 
reasons not yet apparent, among those large classes that were intended to 

      Table 9.1  Fifth-grade average reading achievement and average class size ( intended  and 
 observed ) in Israeli Jewish public schools, by fi fth-grade enrollment-cohort size, around 
the Maimonides-inspired cut-off of 40 students  

  Fifth-Grade 
Cohort Size 

 Number of 
Classrooms 
in Cohort 

 Class Size in Cohort  Nominal 
Class Size 
“Treatment” 

 Average Reading 
Achievement in 
Cohort  

 Intended 
Size 

 Observed 
Average Size 

 Mean  Std. Dev.  

 36  9  36  27.4  Large  67.30  12.36  
 37  9  37  26.2  Large  68.94  8.50  
 38  10  38  33.1  Large  67.85  14.04  
 39  10  39  31.2  Large  68.87  12.07  
  40    9    40    29.9    Large    67.93    7.87   
  41    28    20.5    22.7    Small    73.68    8.77   
 42  25  21  23.4  Small  67.60  9.30  
 43  24  21.5  22.1  Small  77.18  7.47  
 44  17  22  24.4  Small  72.16  7.71  
 45  19  22.5  22.7  Small  76.92  8.71  
 46  20  23  22.7  Small  70.31  9.78  
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contain 40 students, the observed average class size is actually less than 
30. In the small classes that were intended to have an average size of 20.5, 
the observed average class size is closer to the intended class size. However, 
at 22.7, it is still two students larger than the Maimonides’ rule-intended 
class size. Inspecting the data on these classrooms, on a school-by-school 
basis, provides a clue as to why these anomalies are observed “on the 
ground.” Among the schools with 40 children in their fi fth-grade enter-
ing cohort, only four of the nine classrooms actually have class sizes of 
exactly 40. One of the remaining classrooms contains 29 students, and 
the other four have class sizes around 20.   3  Thus, actual class sizes were 
smaller than the class sizes intended by application of Maimonides’ rule. 
One possible explanation for this difference hinges on the timing of the 
enrollment measure. Cohort enrollments in this dataset were measured 
in September, at the beginning of the academic year. It is possible for a 
student to be added after the start of a school year to a fi fth-grade cohort 
with an initial size of 40 students, and then for the class to be divided 
subsequently into two. 

 Is the discordance between actual class sizes and those anticipated by 
application of Maimonides’ rule problematic for our evaluation? The 
answer is “not necessarily,” providing we keep the specifi c wording of our 
research question in mind. Recall the important distinction that we made 
between “intent-to-treat” and “treated” in our discussion of the New York 
Scholarship Program (NYSP) in Chapter 4. In the NYSP, it was receipt of 
a private-school tuition voucher — which we regarded as an expression of 
intent to send a child to private school — that was assigned randomly to 
participating families. It was the causal impact of this offer of a private-
school education that could then be estimated without bias. Of course, 
subsequently, some of the families that received vouchers chose not to 
use them, and so the act of actually going to private school involved con-
siderable personal choice. This means that variation in a private-school 
treatment, across children, was potentially endogenous. Consequently, a 
comparison of the average achievement of children attending private 
schools and those attending public schools could not provide an unbiased 
estimate of the causal impact of a private-school treatment. Nonetheless, 
it remained valuable to obtain an unbiased estimate of the causal impact 
of the expressed intent to treat — that is, of the offer of a subsidy for pri-
vate-school tuition through the randomized receipt of a voucher — because 
it is such offers that public policies typically provide. 

3.  The actual sizes of these four classes were 18, 20, 20, and 22. 
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 The natural experiment linking class size and aggregate student reading 
achievement among Israeli fi fth-graders provides an analogous situation. 
The Maimonides’ rule-inspired class sizes are the intended treatment, 
and we can estimate the causal effect on student achievement of this 
intent to place each student into either a large or small class. It is certainly 
useful to know the impact of such an offer, because it provides informa-
tion about the consequences of a policy decision to use Maimonides’ rule 
to determine class sizes. However, it does not tell us how an actual reduc-
tion in observed class size would affect student achievement.   4     

   A Simple First-Difference Analysis   

 Providing the application of Maimonides’ rule led to exogenous offers of 
large and small classes to groups of students who were equal in expecta-
tion at the start of the fi fth grade, we can compare their average reading 
achievement at the end of the academic year and obtain an unbiased esti-
mate of the causal effect of the difference in intended class sizes. As we 
explained in Chapter 8, one simple way to proceed with such an analysis 
is to estimate and test a fi rst difference in student achievement between 
classes that were intended to be large and those intended to be small. 
In Angrist and Lavy’s data, there are nine schools with fi fth-grade age-
enrollment cohorts of 40 students, and 28 schools with age-enrollment 
cohorts of 41 students. So, according to Maimonides, fi fth-grade classes 
in the former schools were intended to be large and those in the latter 
schools small, at the beginning of the academic year. At the end of the 
year, the overall average achievement score was 73.68 in the classes 
intended to be small and 67.93 in the classes intended to be large — a fi rst 
difference of 5.75 points in favor of the classes that were intended to 
be small. We can reject the corresponding two-group null hypothesis 
( t  = 1.75,  p  = 0.044; one-sided test), and conclude that, in the population 
of fi fth-grade classes in age cohorts of size 40 and 41, in Israel, being 
offered enrollment in smaller classes caused higher achievement.   5  

 On its surface, this difference of almost 6 points seems very large — after 
all, the standard deviation of average achievement across all 37 classrooms 

4.  In Chapter 11, we explain how exogenous variation in the  offer  of a treatment can be 
used to tease out the causal impact of the actual treatment, using  instrumental-variables 
estimation . 

5.  This test treats classroom as the unit of analysis, and the degrees of freedom refl ect a 
count of those classes. 
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in this comparison appears to be 8.81, and so the almost 6-point differ-
ence is about three-quarters of a standard deviation. However, remember 
that our unit of analysis is the classroom, and so the standard deviation of 
8.81 summarizes the scatter of average reading achievement from class-
room to classroom, not from student to student within class. We know 
from other research that there is usually much greater variation in achieve-
ment among students within classrooms than between, and the former 
has been ignored in these aggregate analyses. In fact, when students are 
nested within classes, an intraclass correlation of around 0.10 is typical. 
Given this, we can guess that the total standard deviation of reading 
achievement across both classrooms and students would be approximately 
28 points.   6  This means that the 5.75-point difference we have estimated 
here is actually less than a quarter of a standard deviation, an effect size 
similar in magnitude to the effect of class size on achievement that 
Krueger (  1999  ) reported among kindergarten and fi rst-grade students in 
the Tennessee STAR experiment.   7      

   A Difference-in-Differences Analysis   

 Recall the logic underlying the assumption of equality in expectation 
across the cut-off on the forcing variable in a natural experiment with a 
discontinuity design. We argued that, if the cut-off were determined exog-
enously, then only idiosyncratic events — such as the haphazard timing of 
birth — will determine whether a particular student fell to the left or right 
of the cut-off on the forcing variable, at least within a reasonably narrow 
“window” on either side of the cut-off. If this argument is defensible, then 
any unobserved differences between the students who were offered large 
classes and those offered small classrooms at the beginning of the aca-
demic year will be inconsequential. On the other hand, we cannot ignore 
the possible presence of a sizeable “second difference.” Even though stu-
dents who received large-class offers and those who received small-class 
offers are separated nominally by only one child on the underlying forc-
ing variable (the enrollment-size continuum), it is possible that there may 

6.  A between-class standard deviation of 8.81 in reading achievement corresponds to a 
variance of 77.62, which is 10 %  of the total variation, if the intraclass correlation coef-
fi cient is 0.1. Thus, the total variation in reading achievement is ten times this, or 776.2, 
and the standard deviation 27.9. 

7.  Remember that the intended difference between “large-offer” and “small-offer” classes 
in the Israeli setting was slightly less than 20 students, whereas the corresponding differ-
ence in the STAR experiment was eight students. 



172 Methods Matter

be a non-trivial “secular” trend that links aggregate student achievement 
and overall enrollment-cohort size, independent of any impact of the 
class-size offer. This would bias our fi rst-difference estimate of the effect 
of the class-size offer on achievement. 

 Angrist and Lavy (  1999  ) report a link between family socioeconomic 
status and school size in Israel. They comment that schools with larger 
grade-level enrollments tend to be located in big cities and to serve 
relatively prosperous families, whereas schools with smaller enrollments 
tend to be located in rural areas and serve relatively poor families. This 
means that we can anticipate a positive relationship between neighbor-
hood socioeconomic status and grade-level enrollment that poses a threat 
to the internal validity of our natural experiment. The reason is that the 
achievement of students in the class-size control and treatment groups 
defi ned discontinuously on either side of the cut-off will differ not only 
in terms of the offer of class size, but perhaps also because of a small 
underlying difference in their socioeconomic status. And, since aca-
demic achievement and socioeconomic status are usually linked, even a 
small difference in the latter may lead to a consequential impact on the 
former. 

 When faced with such threats to the internal validity of a natural exper-
iment with a discontinuity design, we can respond by adopting a 
 difference-in-differences  strategy, as we described in the last chapter. In the 
current example, for instance, we could choose to correct the estimated 
fi rst difference of 5.75 points by subtracting a second difference  D  2 , 
formed from the difference in average academic achievement between a 
pair of adjacent grade-enrollment cohorts, such as those of size 38 and 
39, that also differ in enrollment by one child but do not differ in experi-
mental condition (i.e., in both cohorts, children were offered large 
classes). From rows three and four of Table   9.1  , for example, this esti-
mated second difference would be 68.87 minus 67.85, or 1.02 scale points. 
Then, providing we are confi dent that this second difference captures the 
natural impact on achievement of a cohort-enrollment difference of one 
child (whether falling between cohorts 38 and 39, or between cohorts 
40 and 41), we can adjust the fi rst difference for the impact of the secular 
trend in achievement by cohort-enrollment size by subtracting the second 
difference from the fi rst. This provides a difference-in-differences esti-
mate of 4.73 (= 5.75 – 1.02) for the average increase in achievement among 
fi fth-graders who received the offer of a smaller class. Unfortunately, 
although this estimate is only about 20 %  smaller than our fi rst-difference 
estimate (5.75), we can no longer reject the associated null hypothesis 
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( t  = 0.71;  df  = 53;  p  = 0.24).   8  Nevertheless, the direction of the effect of 
class size remains positive and is of only slightly smaller magnitude. 

 Of course, the modest power of this comparison stems predominantly 
from our decision to restrict ourselves to analyzing data on only the 
57 (= 10  +  10  +  9  +  28) schools in the enrollment cohorts of size 38, 39, 40, 
and 41 that formed the sub samples for the difference-in-differences esti-
mate. We could easily increase the number of classrooms that participate 
in the test by widening our window around the cut-off — that is, by redefi n-
ing the groups that we choose to participate in the estimation of the fi rst 
and second differences. For instance, we could increase the number of 
cohorts to be included in the fi rst difference by pooling enrollment 
cohorts of size 39 and 40 (into a new “control” group) and by pooling 
enrollment cohorts of size 41 and 42 (into a new “treatment” group). The 
second difference could then be formed by contrasting the average out-
come of pooled cohorts of sizes 37 and 38 with the average outcome of 
pooled cohorts of sizes 35 and 36. Under this redefi nition of window width, 
a total of 111 schools would contribute to the difference-in-differences esti-
mate, with a concomitant increase in statistical power. Of course, as we 
explained in Chapter 8, widening the bandwidth within which we form 
sample averages and differences not only alters the magnitude of the 
difference-in-differences estimate, it also puts greater pressure on the 
equality- in-expectation assumption and the experiment’s internal validity. 

8.  One-sided test, with  t -statistic computed from the summary statistics presented in 
Table 9.1, as follows:
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 where superscripts and subscripts listed in brackets, in the numerator and denomina-
tor, distinguish enrollment cohorts of sizes 38, 39, 40, and 41, respectively.
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We return to this issue next, where we illustrate how you can use the 
regression-discontinuity approach to be more systematic about these choices 
and can examine the sensitivity of fi ndings to alternative bandwidths.     

   A Basic Regression-Discontinuity Analysis   

 Initially, we estimated our fi rst difference from the average reading 
achievements of classes in enrollment cohorts of size 40 and 41 and our 
second difference from the average reading achievements of classes in 
the enrollment cohorts of size 38 and 39. This leads to overall average 
differences in reading achievement of 5.75 and 1.02, respectively. 
We argued that the fi rst difference was attributable to the sum of two 
effects: a difference of one child in the size of the enrollment cohort 
plus a difference in the class-size offer. We also argued that the second 
difference was due only to the former (a difference of one child in cohort-
enrollment size). Consequently, differencing these differences leads to an 
unbiased estimate of the treatment effect — that is, the impact on achieve-
ment of students being offered, by Maimonides’ rule, either a small class 
or a large class. 

 Notice that, conceptually, the second difference is simply a rudimen-
tary estimate of the slope of a  linear  trend in average reading achievement 
as a function of cohort-enrollment size for cohorts containing fewer than 
41 students. Our confi dence that subtracting this second difference from 
the fi rst difference will produce an unbiased estimate of the treatment 
effect rests on three assumptions. The fi rst is that the trend which relates 
student achievement to the enrollment-cohort size to the left of the dis-
continuity is linear. The second is that this linear slope can be estimated 
well by differencing the average reading achievement values (67.85 and 
68.87) at two adjacent points (in this case, in cohorts with enrollments of 
38 and 39 students) along the enrollment continuum to the left of the 
discontinuity imposed by Maimonides’ rule. The third assumption is that 
the linear trend established to the left of the discontinuity would simply 
extend through the discontinuity if there were no exogenous disruption 
in class size. In other words, we assume that the second difference pro-
vides an unbiased estimate of what the difference in average student 
achievement would have been between classes of size 40 and 41, in the 
absence of an offer of an exogenous reduction in class size, from large to 
small, in the two adjacent enrollment cohorts. 

 These are not trivial assumptions. The fi rst and third may not be correct 
if any underlying trend linking average achievement to the forcing vari-
able is nonlinear. The second may not be correct if there is large stochastic 
variation (scatter) in the average achievement of the students in adjacent 
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cohorts. If that is the case, then a slope estimate based on only two data 
points could be very imprecise. Clearly, the difference-in-differences 
method of estimating the magnitude of the treatment effect relies heavily 
on sample average achievement values at just four values of cohort-
enrollment size. Fortunately, in situations where more data are available, 
as is the case here, a regression-discontinuity (RD) approach allows us to 
test and relax these assumptions. 

 It is clear from Table   9.1   that we know a lot more about the potential 
relationship between average student achievement and cohort-enrollment 
size than we have exploited so far. For example, based on these data, we 
could obtain estimates of the crucial second difference in several differ-
ent ways. For instance, we could use the average achievement information 
for the students in cohorts with enrollments of size 37 and 38 to estimate 
a second difference of –1.09 (= 67.85 – 68.94). Similarly, the achievement 
information for enrollment cohorts of size 36 and 37 provides another 
second difference estimate of  + 1.64 (= 68.94 – 67.30). Recall though, that 
the original estimate of the second difference, based on cohorts of size 38 
and 39, was  + 1.02 points. Averaging these multiple estimates of the second 
difference together leads to an overall average second difference of 0.52, 
which is perhaps a more precise estimate of the underlying achievement 
versus the cohort-enrollment linear trend than any estimate derived from 
a particular pair of adjacent data points to the left of the cut-off. When we 
can estimate many second differences like this, how do we fi gure out what 
to do and where to stop? In fact, we are not even limited to estimating 
second differences that are only “one child apart” on the cohort-enrollment 
size forcing variable. For example, we could use the average achievement 
information for enrollment cohorts of sizes 36 and 39 to provide a sec-
ond-difference estimate of  + 0.52 (= [(68.87 – 67.30)/3]. Finally, although 
averaging together multiple second-difference estimates does draw addi-
tional relevant information into the estimation process, it does so in a 
completely ad hoc fashion. The RD approach that we describe next pro-
vides a more systematic strategy for incorporating all the additional 
information into the estimation process. 

 To facilitate understanding of the RD approach, examine Figure   9.1  . 
This fi gure displays selected sample information from Table   9.1   describ-
ing the overall class-average reading achievement of Israeli fi fth-grade 
children plotted against the sizes of grade-level enrollment cohorts of size 
36 through 41. Notice that there is moderate vertical scatter — of about 
one scale point, up or down — in the class-average reading achievement of 
children in enrollment cohorts of size 36 through 40 (all of whom were 
offered large classes by Maimonides’ rule). Notice also that this vertical 
scatter is quite small in contrast to the approximately 6-point difference 
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between the class-average achievement of children in grade-level cohorts 
of size 40 and 41 (the latter being offered small classes by Maimonides’ 
rule).    

 Inspection of the fi gure also provides visual support for the notion that 
class-average reading achievement depends on the value of the cohort-
enrollment-size forcing variable. Indeed, despite the intrinsic scatter of 
the averages around the trend, the fi gure suggests that this underlying 
relationship may be linear, over this narrow range of enrollment cohorts. 
Seizing on this, we have superimposed an arrow-tipped linear trend line on 
the plot to summarize the “pre-Maimonides” relationship between class-
average reading achievement and the forcing variable, cohort-enrollment 
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     Figure 9.1    Fifth-grade class-average reading achievement in Jewish public schools in 
Israel, averaged across classes within cohort versus the size of the enrollment cohort, 
with an exploratory pre–cut-off trend line superimposed ( dashed arrow ).    
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size, over these pre–cut-off cohorts.   9  We have then projected this line 
forward until it intersects the vertical dotted line drawn above the point 
on the  x -axis that corresponds to a cohort enrollment size of 41 students. 
The vertical elevation of the tip of this arrow at this dotted line indicates 
our “best projection” for what class-average reading achievement would 
be in a cohort with an enrollment of 41, if Maimonides’ rule had not inter-
vened. If the projection is credible, then the “adjusted vertical difference” 
between the tip of the arrow and the “observed” class-average achieve-
ment in this cohort will be a better estimate of the causal impact of the 
exogenous offer of a class-size reduction than any of the separate piece-
wise difference-in-differences estimates. This is because the new adjusted 
difference incorporates evidence on the achievement/enrollment trend 
from all the enrollment cohorts from size 36 through 40 systematically, 
and then uses it to adjust the estimated fi rst-difference estimate for this 
trend. We label the “fi rst-difference” and “adjusted” estimates of treat-
ment impact on the plot in Figure   9.1  . These are the basic ideas that 
underpin RD analysis. 

 Of course, projections like that which we imposed on Figure   9.1   can be 
constructed less arbitrarily by specifying and fi tting an appropriate regres-
sion model to the original data, rather than by working with within-cohort 
size averages and sketching plots, as we have done in our illustration. For 
instance, we can extract from Angrist and Lavy’s original dataset all the 
information on the 75 classrooms pertaining to fi fth-grade enrollment 
cohorts of sizes 36 through 41. We can then specify a regression model to 
summarize the pre–cut-off achievement/enrollment trend credibly and 
project it forward to the cohort of enrollment size 41, while including in 
the model a dedicated regression parameter to capture the vertical “jig” 
that we hypothesize occurs between the projected and observed class-
average reading achievement for classes offered to members of the 
enrollment cohort of size 41. Estimation of this latter “jig” parameter, 
obtained by standard regression methods, would provide an adjusted RD 
estimate of the differential effect on student class-average reading achieve-
ment of an offer of “small” versus “large” classes generated by the 
exogenous application of Maimonides’ rule. 

 To complete these analyses, we create two additional predictors in the 
Angrist and Lavy dataset. We illustrate their creation in Table   9.2  , where 
we list selected cases (classrooms) from enrollment cohorts of size 36 
through 41 students (we have omitted data on some cohorts in Table   9.2   

9.  We obtained this exploratory trend line by regressing cohort-average reading achieve-
ment on cohort enrollment size in cohorts of size 36 through 40, using ordinary 
least-squares (OLS) regression analysis. 
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to save space, but these data were included in our computations). In the 
second and third columns, we list values of class-average reading achieve-
ment,  READ , and the corresponding enrollment-cohort size,  SIZE , for 
the fi rst three classrooms in each cohort. We also list two new variables to 
act as predictors in our RD analyses. First, we have created the new dichot-
omous predictor  SMALL  to indicate classrooms in those cohorts in which, 
as a result of Maimonides’ rule, the offered class size is small. In this 
reduced dataset, this is only for classrooms formed from enrollment 
cohorts that contain 41 students. Second, we have “recentered” the forc-
ing variable — that is, the original enrollment-cohort  SIZE  predictor — by 
subtracting a constant value of 41 from all values to form a new predictor 
labeled  CSIZE . This new predictor takes on a value of zero for classes in 
the cohort of enrollment 41, and its non-zero values measure the horizon-
tal distance in the size of each cohort from the cohort of 41 students. 
Thus, for instance,  CSIZE  has a value of “−1” for classrooms in enrollment 
cohorts of 40 students.    

      Table 9.2  Class-average reading achievement and intended class size for the fi rst three 
fi fth-grade classes in enrollment cohorts of size 36 to 41 (enrollment cohorts of size 37 
and 38 omitted to save space) in Israeli Jewish public schools  

  Class  ID   READ   Class-
Average Reading 
Achievement 

 SIZE   Cohort 
Enrollment 
Size 

 CSIZE   Centered 
Cohort Enrollment 
Size (=  SIZE −41) 

 SMALL   (0 = large 
class; 1 = small class)  

 3601  51.00  36  −5  0  
 3602  83.32  36  −5  0  
 3603  64.57  36  −5  0  
  …   
  …   
 3901  46.67  39  −2  0  
 3902  68.94  39  −2  0  
 3903  74.08  39  −2  0  
  …   
 4001  73.15  40  −1  0  
 4002  60.18  40  −1  0  
 4003  52.77  40  −1  0  
  …   
 4101  69.41  41  0  1  
 4102  80.53  41  0  1  
 4103  55.32  41  0  1  
  …   
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 To conduct an RD analysis in these data, using cohorts of enrollment 
36 through 41, we regress outcome  READ  on the main effects of new 
predictors  CSIZE  and  SMALL , as follows:

   0 1 2i i i iREAD CSIZE SMALLb b b e= + + +     (9.1)  

 In this regression model, parameters   β  1   and   β  2   represent the main effects 
of predictors  CSIZE  and  SMALL.  However,   β  2   addresses our research 
question directly by providing an RD estimate of the treatment effect. 
You can gain insight into how parameters in this model function by rewrit-
ing Equation 9.1 with predictor  CSIZE  replaced by the original cohort 
 SIZE  predictor, minus 41, and by taking expectations throughout to 
eliminate the residuals and obtain an expression in population means, 
as follows: 

   { } ( )0 1 241i i iE READ SIZE SMALLb b b= + − +     (9.2)  

 Then, by substituting predictor values for prototypical children, we can 
see that the hypothesized population-average value of  READ  among the 
children who were offered a small class ( SMALL  = 1) because their cohort 
size was 41 is 
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 We can also obtain an expression for the hypothesized population-
average value of  READ  among children who were offered a large class 
( SMALL  = 0), but then project their achievement to the 41st cohort ( SIZE  = 
41), as follows: 
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(9.4)

  

 Then, subtracting Equation 9.4 from Equation 9.3, you can see that 
regression parameter   β   2  — the parameter associated with the predictor 
 SMALL  in Equation 9.1 — represents the population difference in average 
reading achievement that we hypothesize to occur between children 
offered prototypical small-class sizes and large-class sizes, at an enrollment 
cohort size of 41. This is exactly the parameter that we wanted to estimate.  

 Notice the critical role played by the recentering of the original 
forcing variable — enrollment-cohort size — to provide new predictor  CSIZE . 
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This recentering relocates the origin of the enrollment-cohort size axis to 
the cohort of size 41, and thereby redefi nes the role of the intercept 
parameter  β  0 . The intercept now represents the population class-average 
reading score that we would expect “untreated” children (i.e., those 
offered large classes) to achieve if they had been members of an enroll-
ment cohort of 41 students, but were offered education in a large 
class rather than a small class. This projection forward from the pre-
Maimonides secular trend provides an appropriate counterfactual in our 
comparison. Parameter  β  2  — representing the “vertical jig” in population 
class-average achievement that we hypothesize will occur at the enrollment-
cohort size of 41 — captures the size of the treatment effect, and is the 
focus of our data analyses. 

 In summary, these features that we have described apply to all RD 
models. In RD models, we regress the outcome on two important predic-
tors. One is a continuous predictor — the forcing variable — that arrays 
observations (here, classrooms) along a continuum that includes an exog-
enously defi ned cut-point. The forcing predictor is usually recentered so 
it has a value of zero at, or just beyond, the cut-point. The second is a 
dichotomous predictor that specifi es on which side of the exogenously 
defi ned cut-off a particular observation lies, and consequently to which 
experimental condition it has been assigned implicitly. In Table   9.3  , we 
provide ordinary least-squares (OLS) estimates and ancillary statistics 
obtained by fi tting the regression model specifi ed in Equation 9.1 in 
the subsample of 75 classrooms that make up the enrollment cohorts of 
size 36 to 41 in the Angrist and Lavy dataset. The estimated coeffi cient, 
 + 5.12, on the dichotomous regressor,  SMALL , is an RD estimate of   β   2 , the 
impact on average reading achievement of an offer of a class-size reduc-
tion from large to small, at a cohort size of 41, the cut-off determined 
exogenously by Maimonides’ rule. Unfortunately, in our analyses, this 

      Table 9.3  Regression-discontinuity estimate of the impact of an offer of small versus 
large classes on class-average reading achievement, using data from classes in the 
fi fth-grade enrollment cohorts of size 36 through 41 in Israeli Jewish public schools  

  Predictor  Estimate  Standard Error   t -statistic   p -value  

  INTERCEPT   68.6    ∗  ∗      3.51  19.5  0.00  
  CSIZE   0.124  1.07  0.116  0.91  
  SMALL   5.12   ∼     4.00  1.28  0.10   †     
  R 2    0.066  

   ∼  p  <0.10;       ∗   p  <0.05;       ∗  ∗   p  <0.01  
   † One-sided test  .
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RD-estimated causal impact of offered class size is not statistically signifi cant 
( p  = 0.10; one-sided test), even though there are now 75 classrooms in the 
analytic sample. Finally, note that the regression coeffi cient associated 
with the forcing predictor  CSIZE  has a positive value (0.124), indicating 
the positive relationship between classroom-average reading achievement 
and cohort enrollment size. However, we cannot reject the null hypothe-
sis that it is actually zero in the population. We turn next to ways to extend 
the basic RD methodology in order to refi ne these estimates and increase 
statistical power.        

   Choosing an Appropriate Bandwidth   

 Now that we have established the basic principles of the RD approach, 
many sensible extensions are possible. For instance, why should we restrict 
our analytic sample only to enrollment cohorts to the left of the exoge-
nously imposed class-size maximum and to the single enrollment cohort 
of size 41 to the right of the cut-off? Why not widen the analytic window 
on the right to include information on enrollment cohorts of size 42 
through 46 to supplement the analysis? We could easily model the secular 
achievement/enrollment trend to the right of the cut-off too, and project 
it back to obtain an improved estimate of class-average achievement in 
small-offer classes, for comparison with the projection from the pre–
cut-off trend from large-offer classes. After all, once the exogenous 
disruption to the enrollment/class-size offer relationship has occurred at 
the Maimonides-inspired maximum class size of 40, shouldn’t the under-
lying trend linking class-average achievement and enrollment-cohort size 
“pick up” again, as before? In fact, with this expanded mandate, the statis-
tical model in Equation 9.1 would not even have to change. Parameter  β  2  
would continue to represent the hypothesized population difference in 
class-average reading achievement between children offered their educa-
tion in small and large classrooms, at an enrollment cohort size of 41. 
We would simply be strengthening our estimation of this same parameter, 
by widening the analytic window on the right and thereby increasing our 
sample size. In the same spirit, why include only enrollment cohorts that 
contain 36 students and more on the left, and the cohorts containing only 
up to and including 46 students on the right? Why not include informa-
tion from enrollment cohorts of size 30 through 50, or size 20 through 
60? We consider these issues in more detail in what remains of this sec-
tion, as we illustrate some of the consequences of increasing bandwidth. 

 Of course, increasing the bandwidth will usually draw more classes into 
the analysis. This will tend to increase the statistical power and precision 
of our estimation of the all-important vertical “jig” — the coeffi cient on 
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question predictor  SMALL  — that addresses our research question at the 
Maimonides-inspired cut-off. However, increasing the bandwidth on 
either side of the cut-off also raises important questions about the poten-
tial functional form of the secular achievement/enrollment trend that we 
are modeling by including “forcing” predictor  CSIZE  in the RD model. 
We return to these questions in the next section, which we illustrate with 
evidence from an important paper by Ludwig and Miller (  2007  ). However, 
for the moment, we continue with our Angrist and Lavy example in order 
to gain more insight into how we might choose an appropriate analytic 
bandwidth in an RD analysis. 

 First, let’s consider expanding the analytic sample to include all class-
rooms in the Angrist and Lavy dataset that pertain to grade-level 
enrollment cohorts of size 36 through 46. The addition of classes from 
enrollment cohorts of size 42 through 46 increases the number of cases 
with positive values of the recentered forcing predictor  CSIZE . Even 
though we have expanded our analytic sample by adding 105 classrooms 
in enrollment cohorts of size 42 through 46, we can continue to address 
our research question by fi tting the same “standard” RD model that we 
specifi ed in Equation 9.1. In addition, we can continue to interpret its 
parameters in almost the same way. Predictor  CSIZE  continues to account 
for the hypothesized linear trend linking cohort-enrollment size and class-
average achievement. Note that the model now stipulates that — apart from 
the impact of the exogenous disruption in the offer of class size — the 
linear trend continues on both sides of the cut-off with the same slope, as 
represented by parameter   β   1 . Predictor  SMALL  continues to provide for 
a vertical “jig” in class-level achievement at the 41st cohort, a result of the 
Maimonides-inspired exogenous disruption in the offer of class size at 
that point. Its associated parameter   β   2  continues to summarize the impact 
of that disruption on class-average reading achievement there. Notice 
that information from enrollment cohorts of size 36 through 40 is used to 
project the secular trend forward to the cohort of size 41, as before. 
However, now information from the cohorts of size 41 through 46 is also 
used to predict the trend backward, again to the 41st cohort. As a result, 
we no longer need to rely solely on the observed values at the single 41st 
cohort to provide the upper end of our estimate of average achievement 
(as in our initial RD analysis). Then, provided we are modeling the achieve-
ment/enrollment trend appropriately on both sides of the cut-off (by the 
hypothesized linear relationship between achievement and  CSIZE ), we 
obtain both an improved estimate of the slope of that relationship and of 
the average treatment effect itself, now articulated as the vertical separa-
tion between a pair of population-average achievement values at the 
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cut-off. Finally, we benefi t from the increased statistical power that comes 
with the anticipated increase in the sample size. 

 We present estimates of all parameters and ancillary statistics from this 
analysis in Table   9.4   .  The results support and strengthen our earlier con-
clusions. Although our estimate of the average treatment effect of  + 3.85 
is almost 25 %  smaller than the comparable estimate of 5.12 in Table   9.3  , 
its standard error is much smaller (at 2.81 instead of 4.00), a result of the 
addition of 105 classrooms to the sample. Consequently, the  p -value asso-
ciated with the corresponding one-sided test of average treatment impact 
has fallen from .10 to .09.    

 Now it becomes tempting to widen the analytic window even more, in 
the hope of further increasing statistical power. We present a summary 
of the results of doing so in Table   9.5  , where we have incorporated 
additional enrollment cohorts into the analysis. In the fi rst and second 
row, we repeat the fi ndings from the two RD analyses that we have already 
completed: (a) the fi rst analysis with all classrooms in schools with 
September enrollments of 36 through 41, and (b) the second analysis that 
added the enrollment cohorts of size 42 to 46. Recall that, in the process, 
our sample of classes has more than doubled to 180 and, while the esti-
mate of the average treatment effect shrank in magnitude from 5.12 to 
3.85, it remained positive and its precision increased. As we increase the 
bandwidth still further, these trends continue. Consider the last row of 
the table, where the comparison now includes 423 classrooms. Here, the 
fundamental fi nding remains that there is a benefi t to being offered edu-
cation in a smaller class, and the estimated effect size — which measures the 
“vertical jig” in average achievement between students offered education 
in “Large” and “Small”classes — has remained stable. Note that the addi-
tion of more classrooms has also increased statistical power dramatically 

      Table 9.4  Regression-discontinuity estimate of the impact of an offer of  Small  versus 
 Large  classes on class-average reading achievement, using data from classes in the 
fi fth-grade enrollment cohorts of size 36 through 46 in Israeli Jewish public schools  

  Predictor  Estimate  Standard Error   t -statistic   p -value  

  INTERCEPT   68.7    ∗  ∗      1.92  35.82  0.00  
  CSIZE   0.171  0.436  0.39  0.70  
  SMALL   3.85   ∼     2.81  1.37  0.09   †     
  R 2    0.046  

   ∼  p  <0.10;       ∗   p  <0.05;       ∗  ∗   p  <0.01  
   † One-sided test  
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and reduced the size of the  p -values associated with the effect of question-
predictor  SMALL . In fact, when the RD regression model is fi tted to the 
data from the 423 classrooms that make up the enrollment cohorts 
between 29 and 53 students in size, we can readily reject the associated 
null hypothesis of no treatment effect ( p  = .02, one-sided test).    

 But, how wide can we increase the bandwidth and continue to believe 
in the credibility of our results? Certainly, when we were using a fi rst-
difference or a difference-in-differences approach, it is clear that the 
narrower our focus around the Maimonides’ cut-off, the more confi dent 
we could be in the equality-in-expectation assumption for children thus 
pooled into large-offer and small-offer classrooms, and therefore in the 
internal validity of any comparison between these groups. But, as we nar-
rowed the window of analytic attention to those cohorts with enrollments 
successively closer to, and on either side of, the cut-off, the number of 
classes included in the comparison decreased and the statistical power for 
detecting an effect declined. Increasing the bandwidth, on the other 
hand, certainly increased sample size and statistical power, but may have 
also increased the challenge to the internal validity of the comparison. 
In particular, when we make use of either a fi rst-difference or a difference-
in-differences approach in our Angrist and Lavy example, the further we 

      Table 9.5  Regression-discontinuity estimates of the causal impact of an offer of  small  
versus  large  classes on the class-average reading achievement of fi fth-grade students 
in Israeli Jewish public schools, for several analytic window widths around the 
Maimonides-inspired cut-off in class size of 40 students.  

  Window 
Width 

 Number of 
Classrooms in 
Each Comparison 

 Predictor:   SMALL  Predictor:   CSIZE   R  2  
Statistic  

 Estimate  Standard 
Error 

  p -value  Estimate   p -value  

 {36,41}  75  5.12   ∼     4.00  0.10   †     0.12  0.46  0.066  
 {36,46}  180  3.85   ∼     2.81  0.09   †     0.17  0.35  0.046  
 {35,47}  221  4.12   *     2.50  0.05   †     0.02  0.48  0.038  
 {34,48}  259  4.01   *     2.31  0.04   †     0.00  0.50  0.036  
 {33,49}  288  3.67   *     2.16  0.05   †     -0.01  0.48  0.030  
 {32,50}  315  2.97   ∼     2.04  0.08   †     0.03  0.44  0.026  
 {31,51}  352  2.93   ∼     1.94  0.07   †     0.04  0.41  0.026  
 {30,52}  385  3.36   *     1.84  0.04   †     -0.04  0.37  0.020  
 {29,53}  423  3.95   **     1.80  0.02   †     -0.14  0.12  0.015  

   ∼  p  <0.10;       ∗   p  <0.05;       ∗  ∗   p  <0.01  
   † One-sided test  .
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expand our bandwidth to include enrollment cohorts far from those with 
grade-level enrollment of 40 or 41 students, the less plausible is our 
assumption that students in the groups being compared are equal in 
expectation on all unobserved dimensions. Indeed, as Angrist and Lavy 
point out, socioeconomic status and population density are positively 
related in Israel. As a result, children in enrollment cohorts of vastly dif-
ferent sizes are likely to differ dramatically in family socioeconomic status 
and in other unobserved respects that may be related to academic achieve-
ment. This would be an especially serious problem if we were relying only 
on a fi rst difference as our estimate of the treatment effect, as we would 
be successively pooling into our treatment and control groups cohorts 
that were progressively less equal in expectation prior to treatment. 

 However, the situation with regression-discontinuity analyses is thank-
fully less stark. The reason is that we are not pooling the more remote 
cohorts into our nominal treatment and control groups. Instead, we are 
using the more remote cohorts in conjunction with the nearer ones — and 
their relationship with the forcing variable — to  project  the estimated treat-
ment effect  at the cut-off , where the assumption of equality in expectation 
is indeed met. In other words, because our estimate of the treatment 
effect pertains only at the cut-off, it may remain internally valid there, 
regardless of how many additional data points are added into the analy-
ses, and from how far afi eld they are drawn. It does not matter if cohorts 
remote from the cut-off are not equal in expectation with other cohorts 
as remote on the other side, provided we can be confi dent that we are 
using the information they offer to better project our expectations for 
any difference in average outcome at the cut-off. Of course, doing so 
requires the correct modeling of the relationship between the outcome 
and the forcing variable. 

 To capitalize effectively on natural experiments with an RD design, we 
must therefore strike a sensible balance between adequate statistical 
power and defensible modeling of the trend that links the outcome to the 
forcing variable along which the exogenous cut-off is specifi ed. From a 
mathematical perspective, over a suffi ciently short range, all such trends 
are locally linear. In the Angrist and Lavy dataset, the requirements of 
local linearity may support inclusion of enrollment cohorts of size 36 
through 41, or even the cohorts of size 29 through 35. However, if there 
is evidence of curvilinearity in the underlying outcome/forcing-variable 
trend, then we must either limit our bandwidth, so that the local linearity 
assumption is met, or we must model the trend with a functional form 
that has more credibility than the linear. We illustrate this point with 
evidence from another important study.      



186 Methods Matter

   Generalizing the Relationship Between the Outcome and 
the Forcing Variable   

 In 1965, the federal government in the United States established  Head 
Start , a program designed to improve the life chances of young children 
from low-income families. The program had several components, includ-
ing the provision of preschool education, nutritious meals, and health-
care services such as immunizations, screening for physical and mental 
ailments, and referrals to community health services. Since its inception, 
Head Start has grown enormously and currently serves more than 900,000 
children at an annual cost of more than $7 billion. The size and cost of 
Head Start have led to concern about the program’s benefi ts. Of particu-
lar interest is the question of whether participation in Head Start provides 
children with  long-term  benefi ts. In 2007, Jens Ludwig and Douglas Miller 
published a paper that sheds important light on the answer to this question. 

 Ludwig and Miller’s identifi cation strategy capitalized on a particular 
aspect of the way that Head Start was administered in its fi rst year. The 
basic method of implementation was that community-based organiza-
tions that wanted Head Start programs had to submit applications to the 
Offi ce of Economic Opportunity (OEO), the federal agency that adminis-
tered the program. OEO offi cials feared that this application process 
would leave the poorest communities in the nation underserved because 
these communities tended to lack the organizational capacity to develop 
strong applications. So, the OEO used data from the 1960 Census to 
locate the 300 counties in the nation with the highest poverty rates (those 
with poverty rates of 59.2 %  and above). The OEO then sent young staff-
ers into these 300 counties with a mandate to help local community-
based organizations develop strong applications for Head Start funding. 
Counties with poverty rates just below the 59.2 %  cut-off did not receive 
any special aid in applying for these grants. 

 Ludwig and Miller recognized that the OEO decision to supply grant-
writing assistance to the poorest 300 counties in the United States provided 
a natural experiment with an RD design that they could exploit to explore 
the impacts of an offer of Head Start on children’s long-term outcomes. 
In essence, the OEO had arrayed counties along a forcing variable that 
displayed the county-level poverty rate. It then specifi ed a cut-off (at a 
poverty rate of 59.2 % ) to divide counties exogenously into two groups. 
Counties with poverty rates at or above (to the “right” of) the cut-off 
received grant-writing assistance. Counties just to the “left” of the cut-
off — with poverty rates of less than 59.2 %  — did not receive grant-writing 
assistance. We use evidence from Ludwig and Miller’s innovative study to 
illustrate extensions of the basic RD approach, especially ways of modeling 
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the all-important relationship between the outcome and the forcing 
variable. 

 Ludwig and Miller actually carried out two sets of analyses using the 
same RD approach. Although the two sets of analyses differ only in the 
defi nitions of the outcome, their conceptual underpinnings are subtly 
different, and the distinction has pedagogic value here. In the fi rst set 
of analyses, Ludwig and Miller use their RD approach to examine differ-
ences in counties’ funding for, and participation in, the Head Start 
program as a consequence of receipt of grant-writing assistance, or the 
lack of it. In these analyses, poverty rate is the forcing variable, exogenous 
assignment to grant-writing assistance is the treatment, and Head Start 
funding and participation are the outcomes. The results of these analyses 
showed that grant-writing assistance did indeed lead to differences in 
Head Start funding and participation immediately following receipt of 
the assistance. 

 Ludwig and Miller’s second set of analyses focused on a more remote 
set of outcomes, the longer-term child health and schooling outcomes 
that had motivated the research initially. Here, poverty rate was again the 
forcing variable and exogenous assignment to grant-writing assistance 
again defi ned the experimental conditions. However, now, the impact of 
 participating  in Head Start on future child outcomes is the substantive 
focus, and so grant-writing assistance — which remains the principal ques-
tion predictor — has become an exogenously assigned expression of  intent 
to treat  by Head Start. We will refer to this as an offer to participate in 
Head Start. So, essentially, the authors have addressed two different sets 
of causal questions. The fi rst is: Did receipt of grant-writing assistance 
lead to increases in a county’s participation in, and funding for, Head 
Start? The second is: Did grant-writing assistance (which constitutes an 
intent to treat with Head Start) lead to improvement in future child out-
comes? In both cases, because receipt of grant-writing assistance was 
exogenously assigned around the RD cut-off, causal inferences could be 
made. All that differed between the two analyses is the set of outcomes. 
We now turn to an overview of Ludwig and Miller’s innovative RD strategy, 
and offer a brief summary of their fi ndings. 

 The researchers used data from two sources. The fi rst consisted of 
aggregate data from the National Archives and Records Administration 
(NARA) on county-level poverty rates and Head Start funding and par-
ticipation in the 1960s. The second consisted of individual-level data from 
the National Educational Longitudinal Study (NELS), which provided 
information on a nationally representative sample of children who were 
fi rst interviewed as eighth-graders in 1988, and who completed follow-up 
interviews through 2000. Ludwig and Miller found that the NELS sample 
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contained 649 children who had lived in counties with 1960 poverty rates 
among the 300 poorest, and 674 who had lived in the one of the next 300 
poorest counties. In all of their analyses, they treated the county as their 
unit of analysis.   10  

 In their fi rst set of analyses, Ludwig and Miller examined whether the 
exogenously defi ned poverty-rate cut-off for grant-writing assistance did 
indeed result in a discontinuous jump in the availability of Head Start 
programs in poor counties, as measured by funding levels per child in the 
appropriate age group. They did this by comparing Head Start spending 
per four-year-old in 1968 for two groups of counties, just on either side of 
the exogenously defi ned cut-off. The treatment group consisted of coun-
tries with poverty rates between 59.2 %  (the minimum for receiving the 
OEO application aid) and 69.2 %  (10 percentage points above the cut-off), 
and the control group consisted of those with poverty rates from just 
below 59.2 %  (the 301st poorest counties in the U.S.) to 49.2 %  (10 percent-
age points below the cut-off). They found that Head Start spending per 
student in the fi rst group (which contained 228 counties) was $288 per 
four-year-old, whereas the comparable fi gure for the second group was 
$134. They found similar results when they compared the spending levels 
for groups defi ned within different bandwidths (for example, in analytic 
windows that contained only those counties that fell within 5 percentage 
points of the poverty cut-off). This gave the researchers confi dence that 
the OEO intervention did infl uence the availability of Head Start in these 
counties markedly. Ludwig and Miller also verifi ed that the difference in 
Head Start participation rates between counties with poverty rates just 
above the OEO poverty cut-off for support and those with poverty rates 
just below this cut-off continued through the 1970s. This proved impor-
tant in locating data that would permit them to examine the long-term 
effects of Head Start availability on children’s outcomes. 

 As Ludwig and Miller explain, the principal statistical model that they 
fi tted in their study is a generalization of the simple linear RD model that 
we specifi ed in Equation 9.1. They wrote it as

   ( )c c c cY m P Ga u= + +     (9.5)  

 Although the similarity between this model and our standard RD model 
in Equation 9.1 is not immediately apparent, due to differences in nota-
tion, the two are essentially the same. In Equation 9.5,  Y c   is the value of an 

10.  Thus, they aggregated child-level outcome measures from the NELS to the county 
level. 
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outcome for the  c  th  county, and could represent the average value of the 
Head Start participation rate, say, in that county in a chosen year. The 
forcing variable  P c   is the poverty rate in the  c  th  county 1960, recentered so 
that it has a value of zero at the poverty rate cut-off of 59.2 % . Dichotomous 
question predictor  G  c  is the principal question predictor and indicates 
whether the  c  th  county received grant-writing assistance from the OEO (1 = 
received assistance; 0 = otherwise). Thus, its associated regression param-
eter  α  (which corresponds to regression parameter   β   2  in Equation 9.1), 
represents the causal impact of the grant-writing assistance on the out-
come, estimated at the poverty-rate cut-off of 59.2 % . The stochastic 
element in the model,   υ   c , is a county-level residual.  

 The principal difference in appearance between the hypothesized 
models in Equations 9.1 and 9.5 revolves around the term  m ( P c  ), which is 
intended as a generic representation of the functional form of the hypoth-
esized relationship between the outcome and the forcing variable,  P.  
Ludwig and Miller fi rst modeled the outcome as a linear function of 
the forcing variable, as we did in our earlier example, but they allowed the 
population slopes of the relationship to differ on opposite sides of the 
discontinuity. They achieved this by replacing function  m ( P c  ) by a stan-
dard linear function of  P  and then adding the two-way interaction between 
it and question predictor  G  as follows:

   ( )0 1 2 c c c c c cY P G P Gb b a b u= + + + × +     (9.6)  

 With this specifi cation, the fi tted linear relationship between centered 
poverty rate  P  and the county-level Head Start participation rate for coun-
ties to the left of the cut-off (for which  G  = 0) is 

   
� � �

0 1c cY Pb b= +     (9.7)  

 and the fi tted relationship for counties to the right of the cut-off is: 

   
� � �( ) � �( )0 1 2c cY Pb a b b= + + +

    (9.8)  

 But, since forcing variable  P  is centered at the cut-off, and despite the 
permitted difference in its hypothesized slope on the two sides of the cut-
off, you can demonstrate by subtraction that parameter  α  continues to 
capture the average causal impact of grant-writing assistance on the Head 
Start participation rate (don’t forget to set the value of  P c   to zero before 
you subtract!).  

 Ludwig and Miller initially fi t Equation 9.6 with a bandwidth of 
8 percentage points in the poverty index on either side of the cut-off. 
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This resulted in a sample size of only 43 counties. Their estimate of the 
impact of the grant-writing assistance on the Head Start participation rate 
was 0.238, with a standard error of 0.156. Thus, although the point esti-
mate indicated that grant-writing assistance increased by 23.8 percentage 
points the probability that a child participated in Head Start, across the 
cut-off, the associated null hypothesis of no effect could not be rejected. 

 This led Ludwig and Miller to expand their analytic window to include 
counties with poverty rates that fell within a bandwidth of 16 percentage 
points on either side of the discontinuity. Doing so increased their sample 
size to 82 counties. However, inspection of their data led them to suspect 
that, within this wider range of data, the relationship between the Head 
Start participation rate and the poverty-rate forcing variable was curvilin-
ear. It also appeared to differ on either side of the cut-off. They recognized 
that one solution to this problem was to specify a polynomial relationship 
between outcome and forcing variable. So, they fi tted RD models with 
fl exible quadratic specifi cations, allowing the curvilinearity to differ on 
either side of the cut-off. In Equation 9.9, we present their fl exible qua-
dratic specifi cation:

   ( ) ( )2 2
0 1 3 2 4c c c c c c c c cY P P G P G P Gb b b a b b u= + + + + × + × +

    (9.9)  

 With this specifi cation, they estimated that treatment effect   α   was 0.316, 
with a standard error of 0.151. Thus, with this specifi cation and band-
width, they could reject the null hypothesis that grant-writing assistance 
had no impact on the rate of children’s participation in Head Start.  

 In Figure   9.2  ,   11  with smooth dashed curves on either side of the cut-off, 
we display the fi tted quadratic relationships between Head-Start partici-
pation rate and the county poverty-rate forcing variable that were obtained 
in Ludwig and Miller’s analyses. Notice, fi rst, that the shape of the fi tted 
relationship is very different to the left of the cut-off point than to the 
right. In addition, one dramatic limitation of the quadratic specifi cations 
on either side of the cut-off is that the shapes of the fi tted curves are 
constrained to be symmetric around their maximum or minimum. Given 
that these curves are fi tted to a modest number of cases, it seems quite 
plausible that the fi tted curvilinear relationships between outcome and 
forcing variable could be highly sensitive to atypical outcome values and 
the leverage exercised by a very small number of atypical data points. 
Moreover, since the estimate of the average treatment effect  �a    comes 

11.  Figure 9.2 is a reproduction of Figure I, Panel B, from page 175 of Ludwig and Miller’s 
2007 paper. 
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from a comparison of the projections of the quadratic relationships onto 
a vertical line through the cut-off, from the respective sides, small differ-
ences in the fi tted quadratic relationship on either side of the cut-off 
could have a large impact on the magnitude of the estimated average 
treatment effect. This realization led Ludwig and Miller to revise their 
analytic strategy in two ways. First, they explored the sensitivity of their 
results to the choice of outcome/forcing-variable functional form and of 
bandwidth, an approach that we suggest should always be used with RD 
designs. Second, they re-estimated their treatment effects using a non-
parametric smoothing approach, known as  local linear-regression analysis , 
to obtain the fi tted relationships on either side of the cut-off. The fi tted 
curves from this latter approach can also be seen as the solid and slightly 
more jagged trend lines in Figure   9.2  .   12     

12.  To learn more about local linear regression analysis, see Imbens and Lemieux (2008) 
or Bloom (forthcoming). 
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     Figure 9.2    Estimated discontinuity in Head Start participation at the Offi ce of Economic 
Opportunity cut-off for grant-writing support, using data from the National Educational 
Longitudinal Study (NELS) fi rst follow-up sample. Reproduced with permission from 
Ludwig and Miller (  2007  ), Figure I, Panel B, p. 175.    
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 In their second set of analyses, Ludwig and Miller used an identical RD 
strategy to estimate the impact of an  offer  of Head Start support — again 
represented by the cut-off–assigned receipt of grant-writing assistance —
 on longer-term child health- and school-related outcomes. One question 
concerned whether an offer of Head Start participation reduced the inci-
dence of mortality among children. To examine this, Ludwig and Miller 
turned to county-level data from the Vital Statistics Compressed Mortality 
Files (CMF). They constructed an outcome measure that summarized the 
one-year mortality rate in each county for children aged fi ve to nine, due 
to causes that participation in Head Start might have prevented, given the 
health-care components included in the program. They formed this out-
come measure for each year from 1973 through 1983, these being the 
years through which they expected that the gaps in Head Start participa-
tion that were caused by the receipt of grant-writing assistance persisted. 
Relevant causes of death included tuberculosis, diabetes, anemias, men-
ingitis, and respiratory causes. The outcome measure excluded deaths 
due to injuries and cancer among the children because the authors 
reasoned that these causes of death would not have been affected by Head 
Start participation between the ages of three and four. 

 The results of adopting the fl exible-quadratic and local linear specifi ca-
tions in their RD regression model, and of using a bandwidth of 16 
percentage points on either side of the cut-off on the poverty-rate forcing 
variable, are displayed in Figure   9.3  .   13  The estimated causal effect of the 
offer of Head Start services is –2.201 from the local linear specifi cation, 
with a standard error of 1.004. As Ludwig and Miller explain (p. 179), this 
estimate implies that any increased participation in Head Start that 
stemmed from receipt of the grant-writing assistance reduced the annual 
mortality rate among children aged fi ve to nine by more than one-third. 
This result and those from similar RD models fi tted with other health and 
educational outcomes show that an offer of Head Start, as initially imple-
mented in poor counties with poverty rates close to 59 % , had dramatic 
long-term benefi ts for participating children.       

   Specifi cation Checks Using Pseudo-Outcomes and 
Pseudo–Cut-offs   

 Ludwig and Miller reasoned that one way to strengthen the claim that 
their RD methodology provided an unbiased estimate of the causal impact 

13.  Figure 9.3 is a reproduction of Figure IV, Panel A, from page 182 of Ludwig and 
Miller’s 2007 paper. 
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of an offer of Head Start on subsequent outcomes was to show that their 
approach revealed no effects for outcomes that they hypothesized should 
 not  have been infl uenced by the OEO grant-writing assistance program. 
One such outcome was county-level per capita spending in 1972 on social 
programs other than Head Start. This check was important to perform 
because, if a discontinuity in per capita social spending for programs 
other than Head Start were detected, it would jeopardize their claim that 
Head Start participation was the cause of the improved health and educa-
tion outcomes for children in the treatment-group counties. Ludwig and 
Miller were able to demonstrate that when they fi tted their hypothesized 
RD regression models that incorporated this new “pseudo-outcome,” 
their estimate of any treatment effect was so small that they could not 
reject the null hypothesis that it was zero. 

 Ludwig and Miller used similar reasoning in estimating the impact on 
health-related pseudo-outcomes that they hypothesized should not have 
been infl uenced by Head Start participation. One such outcome con-
sisted of county-specifi c death rates among fi ve- to nine-year-olds in the 
years 1959 through 1964, from deaths due to causes that participation in 
Head Start might have prevented. Since these years were prior to the 
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     Figure 9.3    Estimated discontinuity in county-level mortality rate for children aged fi ve 
to nine, 1973 through 1983, from causes that could be affected by Head Start, at the 
Offi ce of Economic Opportunity cut-off for grant-writing support. Reproduced with 
permission from Ludwig and Miller (  2007  ), Figure IV, Panel A, p. 182.    
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introduction of Head Start, a positive treatment effect would have undercut 
the causal interpretation of their main results. By refi tting their main RD 
models with this new “prior” outcome measure, they were again able to 
demonstrate that there was no effect. 

 Finally, another useful specifi cation check that Ludwig and Miller 
employed was to examine whether there were differences in the out-
come at points along the poverty-rate forcing variable other than at the 
legitimate 59.2 %  cut-off. The logic underlying this check is that a key 
assumption underlying the RD approach is that the relationship between 
the outcome and the forcing variable should be  smooth  at points other 
than the cut-off. Before examining their data in detail, Ludwig and Miller 
arbitrarily chose a pseudo–cut-off at the 40 %  poverty rate, and refi tted 
their RD models, this time with the forcing variable centered at the new 
pseudo–cut-off. They did not fi nd any statistically signifi cant differences 
in outcomes at this pseudo–cut-off.   14  Their visual inspection of a bivariate 
plot of outcome versus forcing variable also did not reveal the presence of 
discontinuities at poverty rates other than at the value of 59.2 %  that had 
been exogenously determined. 

 In summary, Ludwig and Miller’s detailed knowledge of the Head Start 
program and their collection of a wide variety of outcome measures 
enabled them to conduct additional tests and sensitivity analyses that lent 
credibility to their results. For example, their knowledge of the details of 
the process that the OEO used to encourage Head Start applications 
from low-income counties enabled them to defi ne a sharp cut-off on their 
forcing variable, county-level poverty rate. Their knowledge of the timing 
of the introduction of Head Start and the timing of the grant-writing 
assistance allowed them to demonstrate that this assistance affected coun-
ties’ participation in Head Start, but not their participation in other 
federally funded social programs. Their knowledge of the types of health-
care screening and immunizations provided by Head Start allowed them 
to distinguish between subsequent causes of death that could have been 
infl uenced plausibly by Head Start participation and those that could not 
have been. This is another example of a theme we emphasized as early as 
Chapter 3: detailed knowledge of the operation of programs and a 
thoughtful theory of action about how they might infl uence the outcomes 
are central to conducting high-quality impact evaluations.     

14.  Ludwig and Miller’s examination of pseudo–cut-points is described in their 2005 
NBER Working Paper, but not in their 2007 published paper. 
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   Regression-Discontinuity Designs and Statistical Power   

 The RD approach can be used not only to analyze data from many natural 
experiments, but also as the basis for researcher-designed experiments. 
Ludwig and Miller’s description of the OEO initiative illustrates this 
point. Since OEO — not the investigators — ranked all counties in the 
United States in terms of their 1960 poverty rate and provided the treat-
ment of grant-writing support to the 300 poorest counties, we regard this 
as a natural experiment. However, if researchers had been asked in 1965 
to design a strategy for evaluating the consequences of an offer of Head 
Start on children’s long-term outcomes, they could have implemented 
the same research design themselves. One reason that an investigator 
might be tempted to adopt an RD design in this example, rather than a 
randomized-assignment design, is that providing assistance to the 300 
poorest counties, with the slightly less needy serving as controls, would be 
easier to defend ethically to members of Congress who were concerned 
about equity than would the assignment of poor counties randomly to 
treatment and control groups. 

 A recent evaluation of the federal government’s Reading First initiative 
provides another example. Reading First was the $1 billion per year 
centerpiece of the No Child Left Behind Act of 2001, the U.S. federal 
government’s main legislative program aimed at improving the education 
of low-achieving students from low-income families. The Reading First 
initiative provided substantial grants to local school districts (through 
their states) for use in implementing a set of instructional practices that 
research had shown to be effective in teaching children to read. The goal 
of the program was to assure that all children read at, or above, grade 
level by the end of third grade. The legislation also mandated that the 
U.S. Department of Education’s Institute of Education Sciences (IES) 
commission a study of the impact of Reading First on teachers’ instruc-
tional practices and on children’s reading achievement. 

 The original intent of the IES was that the mandated impact evaluation 
would be designed as an experiment with the random assignment of 
eligible schools to the treatment and control conditions. However, this 
proved impossible because, by the time the IES had awarded a contract 
for the design and conduct of the impact evaluation to two contract 
research organizations, Abt Associates and MDRC, local school districts 
had already received their Reading First grants and had implemented 
their own processes for assigning schools to participate in the grant 
program. 

 Fortunately, many school districts had made use of assignment pro-
cesses that facilitated the estimation of causal impacts via an RD design. 
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Each district had done so by creating a needs-based index across all 
elementary schools in the district and then had provided Reading First 
grants to the schools with the highest needs-based rank. Such an index 
could then serve as the forcing variable in an RD evaluation. In some dis-
tricts, the index was formed from only a single variable, such as the 
percentage of third-graders reading below grade level. Other districts had 
formed a composite index based on multiple measures, such as the aver-
age reading score at each grade level, and the percentage of children in 
each school eligible for free or reduced-price lunches. The number of 
variables that contributed to the needs-based ranking did not matter. 
What was important was that districts created a quantitative rating of all 
elementary schools, their district-specifi c forcing variable, then chose a 
cut-point on that ranking exogenously to separate schools that received 
Reading First grants from those that did not, and did not deviate from its 
decision rule. If these conditions were met, and if the research team could 
model the relationship between Reading First outcomes and the schools’ 
rankings credibly, then data from these sites could be used to obtain an 
unbiased estimate of the impact of Reading First at the cut-off. 

 Careful investigation of the school-assignment processes in different 
school districts and states convinced the research team that 16 districts 
had indeed used quantitative needs-based ranking systems to determine 
which elementary schools had received Reading First grants. In addition, 
one state had employed this approach to allocate Reading First funds to 
schools. Each of these 16 districts and the one state provided natural 
experiments that the research team could use to evaluate the impacts of 
the intervention. In total, 238 elementary schools from the 16 districts 
and one state were included in the evaluation. Half of the 238 schools had 
received grants because the value of their needs-based ranking fell just 
above the exogenously determined cut-off in their districts. The other 
half did not receive grants because their needs-based ranking fell just 
below the respective cut-off value.   15  

 The decision to base the research design on the assignment processes 
that the districts themselves had devised was advantageous in terms of 
obtaining participant cooperation. It is likely that cooperation would have 
been less forthcoming at many sites if the research team had insisted that 
the districts choose a sample of schools that could benefi t from Reading 
First, and then had required that schools in this sample be assigned 

15.  As explained in the fi nal report of the evaluation (Gamse et al., 2008), the evaluation 
of Reading First included one group of schools in addition to those in the 16 school 
districts and one state that employed an RD design in allocating funds. This one 
district assigned ten schools randomly to treatment or control status. 
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randomly to treatment or control groups. This is an important lesson in 
designing research. Creating quantitative indices of need to serve as a 
forcing variable, and then specifying an exogenous cut-off to determine 
which individuals or schools receive the treatment, can both satisfy ethical 
concerns about providing resources to the most needy and provide a basis 
for a sound impact evaluation using an RD design. 

 Of course, there are tradeoffs. In particular, there are two substantial 
and related costs in specifying treatment and control groups according to 
which side of an exogenous cut-point on a forcing variable that individu-
als or schools fall, instead of using random assignment to specify the 
groups. The fi rst is that the evaluation results pertain only to schools that 
fall close to the cut-point. The second cost concerns statistical power. 
When you employ an RD design, you are essentially projecting to the right 
and left extremes of two point-clouds, one on either side of the cut-off. 
In such predictions, at the end or just beyond the end of the respective 
point-cloud, statistical precision is always disproportionately low and the 
standard error of the difference in projections — that is, of the estimated 
average treatment effect — will be large. Consequently, the sample size 
required in an impact evaluation with an RD design typically must be 
almost three times the size of the sample that would be required in an 
equivalent random-assignment experiment of the same statistical power 
(Bloom, forthcoming).      

   Additional Threats to Validity in a Regression-
Discontinuity Design   

 As we mentioned in Chapter 8, many countries, states, provinces, and local 
school systems operate under stringent rules about maximum class sizes. 
The publication of Angrist and Lavy’s (  1999  ) Maimonides’ rule paper cata-
lyzed widespread interest in using the implementation of these rules to 
estimate the causal impact of class size on student achievement. Since the 
publication of their seminal paper, researchers have used RD approaches 
to analyze data from many settings where maximum class size rules have 
been enacted, including Bangladesh, Bolivia, Denmark, France, the 
Netherlands, Norway, and the United States. However, just because a max-
imum class-size rule is in existence in an educational system does not mean 
that it necessarily provides a sound basis for estimating the causal impact 
of class size on student academic outcomes. This is even the case when the 
maximum class-size rule is enforced quite rigidly, and the actual class sizes 
experienced by students in grade-level enrollment cohorts that lie just on 
either side of the class-size maximum are thereby intentionally different. 
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 One threat to the validity of studies that use an RD approach to estimate 
the impact of a treatment such as the rule-based assignment of students 
to a small class is that participants in the educational process may be able 
to manipulate their placement on the forcing variable, so that their alloca-
tion to experimental conditions only appears to be exogenous but, in fact, 
is not. This occurs when participants have both an incentive to alter their 
position on the forcing variable so they are on one side of the treatment 
cut-off, or the other, and an opportunity to do so. Such actions by indi-
viduals, school heads, or other actors in the educational system may 
jeopardize the assumption of equality in expectation across the experi-
mental conditions prior to treatment and result in bias in the estimation 
of the causal impact of interest. 

 Miguel Urquiola and Eric Verhoogen (2009) provide a description of 
how such a situation occurred in Chile, a country with a particularly inter-
esting educational system. Since 1981, Chile has had an educational 
tuition-voucher system in place. Almost half of the elementary- and 
secondary-school students in urban areas of the country attend private 
schools, most of which participate in the tuition-voucher program. The 
majority of the private schools are for-profi t institutions. Private schools 
that participate in the voucher system receive a per student payment 
(the value of the voucher) from the government. Unlike public schools, 
private schools are free to charge tuition and to select students as they see 
fi t, including basing admission decisions on student test scores. 

 One requirement on all public and private schools that participate in 
the voucher system in Chile is that their class size may not exceed 45 stu-
dents. If more than 45 students are enrolled in a school at a particular 
grade level, the school must create two classes at that grade level. Urquiola 
and Verhoogen (2009) show that the operation of the rule creates a rela-
tionship between class size and fourth-grade enrollment in Chile that is 
strikingly similar to the pattern that Angrist and Lavy detected in Israel. 
As illustrated in Figure   9.4  ,   16  class sizes rise linearly with fourth-grade 
enrollments up to 45 students. Then, a sharp discontinuity occurs. In 
schools with fourth-grade enrollments of 46 students, classes tend to have 
22 or 23 students. This pattern suggests that the operation of the class-
size rule provides a natural experiment that could be used to estimate the 
causal impact of class size on student achievement in Chile.    

 However, Urquiola’s discussions with educators in Chile revealed 
that principals of private schools who participated in the voucher system 

16.  Figure 9.4 is a reproduction of Figure 5 from page 198 of Urquiola and Verhoogen’s 
(2009) paper. 
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typically had strong incentives to manipulate their admissions policies in 
order to control their grade-level enrollments (and possibly student back-
ground characteristics). If one of these schools admitted a 46th student 
into a particular grade, its revenue would increase by the amount of the 
per student government payment plus any additional tuition charged. 
However, its costs would increase disproportionally by the salary and ben-
efi ts that the school must then pay to obtain an additional teacher and the 
cost of providing an additional classroom. Thus, most private schools had 
strong incentives to keep grade-level enrollments at, or just below, 45 stu-
dents, or multiples of it like 90 or 135 students. Exceptions were schools 
that sought to attract children whose parents wanted small classes and 
were willing to pay high tuition to get them. In this case, the socioeco-
nomic status of families in private schools with grade-level enrollments of 
46 or 47 students (and respective class sizes of 23 or 24 students) would 
be higher than that of children in private schools with grade-level enroll-
ments of 44 or 45 students. This would violate the assumption that 
students in a narrow window of enrollment sizes around the class-size 
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     Figure 9.4    Fourth-grade enrollment versus class size in urban private-voucher schools in 
Chile, 2002. Based on administrative data for 2002. The solid line describes the relation-
ship between enrollment and class size that would exist if the class-size rule were applied 
mechanically. The circles plot actual enrollment cell means of fourth- grade class size. 
Only data for schools with fourth-grade enrollments below 180 are plotted; this excludes 
less than 2 %  of all schools. Reproduced with permission from Urquiola and Verhoogen 
(  2009  ), Figure 5, p. 198.    
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maximum were equal in expectation, prior to treatment, especially on 
socioeconomic status. 

 Urquiola and Verhoogen investigated whether the responses of private-
school principals and parents to the maximum class-size rules may have 
resulted in such a violation of the exogeneity assumption. They fi rst exam-
ined the distribution of fourth-grade enrollments among private schools 
in the urban areas that participated in the voucher system. As illustrated 
in Figure   9.5  ,   17  they found sharp grade-level enrollment peaks at exactly 
45, 90, and 135 students. In fact, more than fi ve times as many schools 
reported fourth-grade enrollments of 45 students as reported fourth-
grade enrollments of 46 students. The number of schools that reported 
fourth-grade enrollments of 90 was more than seven times the number 
that reported fourth-grade enrollments of 91 students. As the authors 
noted, the explanation is that school leaders simply controlled their 

17.  Figure 9.5 is a reproduction of Figure 7, Panel A, from page 203 of Urquiola and 
Verhoogen’s (2009) paper. 
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     Figure 9.5    Sample histogram of fourth-grade student enrollment in urban private 
subsidized schools in Chile, 2002. Enrollment data are drawn from administrative 
records for 2002. For visual clarity, only schools with fourth-grade enrollment below 
225 are displayed. This excludes less than 1 %  of all schools. Reproduced with permission 
from Urquiola and Verhoogen (  2009  ), Figure 7, Panel A, p. 203.    
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student admissions so as to avoid the burdens associated with providing 
additional classes.    

 The researchers next examined the sample distributions of student 
characteristics close to the enrollment cut-offs. They found evidence that 
students in enrollment cohorts of size just above the class-size maximum 
of 45 were considerably different, on average, from those immediately 
below. As illustrated in Figure   9.6  ,   18  students in schools with fourth-grade 
enrollments just above the cut-off of 45 students tended to come from 
families with higher household incomes than did those in schools with 
fourth-grade enrollments of 45 students. A result of this difference is that 
a simple comparison of the average achievement of students in a narrow 
window of fourth-grade enrollments around the class-size maximum of 45 
would result in an overestimate of the impact of class size on achievement. 

18.  Figure 9.6 is a reproduction of Figure 8, Panel A, from page 204 of Urquiola and 
Verhoogen’s 2009 paper. 
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     Figure 9.6    Household log-income versus fourth-grade student enrollment in urban 
private voucher schools in Chile, 2002. Income comes from 2002 individual-level SIMCE 
data aggregated at the school level. Enrollment is drawn from administrative data for the 
same year. The fi gure presents “raw” enrollment-cell means, along with the predicted 
values from a locally weighted regression model fi tted within each enrollment segment. 
Only data for schools with fourth-grade enrollment below 180 are plotted; this excludes 
less than 2 %  of all schools. Reproduced with permission from Urquiola and Verhoogen 
(  2009  ), Figure 8, Panel A, p. 204.    
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The reason is that the students assigned to the smaller classes came from 
families with more resources than those assigned to larger classes.    

 The Urquiola and Verhoogen study of class-size determination in Chile 
illustrates two lessons about a critical threat to the internal validity of 
studies that attempt to make causal inferences using data drawn from 
natural experiments, especially those with discontinuity designs. The fi rst 
is the importance of learning a great deal about the context from which 
the data derive, including the nature of the educational system, the incen-
tives that the natural experiment creates for educators and parents to 
alter their behavior, and the opportunities that are present for respond-
ing to these incentives. The second lesson is the importance of examining 
the data closely to see if there is any evidence that actions by educators, 
parents, or others resulted in a violation of the critical “equal in expecta-
tion immediately on either side of the cut-off, prior to treatment” 
assumption underlying this research approach to making causal inferences. 
As Urquiola and Verhoogen’s paper illustrates, exploratory graphical 
analyses often prove highly effective in detecting violations of the assump-
tions that underlie the RD identifi cation strategy.     

   What to Read Next   

 To learn about the history of the RD strategy for making causal infer-
ences, read Thomas Cook’s erudite paper, “Waiting for Life to Arrive: 
A History of the Regression-Discontinuity Design in Psychology, Statistics 
and Economics,” which appeared in a 2008 special issue of  The Journal 
of Econometrics  dedicated to RD methodology. Other papers in this volume 
provide a rich set of ideas for determining appropriate bandwidths, for 
estimating the relationship between the outcome and the forcing vari-
able, and for examining threats to the internal validity of particular 
applications. For an especially clear exposition of recent research on the 
RD approach, read Howard Bloom’s forthcoming chapter entitled 
“Regression-Discontinuity Analysis of Treatment Effects.”   
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 Introducing Instrumental-Variables 
Estimation        

       There is little question that formal education provides a variety of bene-
fi ts to recipients. But are there also benefi ts that accrue not just to 
the individual student? Economists use the term  externalities  to refer to 
benefi ts from education that do not accrue to the individual student. The 
U.S. educational reformer, Horace Mann, writing in 1846, expressed 
the value of such externalities to countries with democratic forms of 
government: “The universal and ever-repeated argument in favor of free 
schools has been, that the general intelligence which they are capable of 
diffusing, is indispensable to the continuance of a republican form of 
government.”   1  The importance of externalities to society writ large has 
provided a rationale for using governmental resources to pay for at least 
part of the cost of education. 

 Social scientists have looked for empirical evidence that externalities to 
educational investments do indeed exist. However, compelling evidence 
has been diffi cult to fi nd. Many studies have documented strong positive 
associations between educational attainments and adult civic participa-
tion. For example, observational data confi rm repeatedly that it is more 
probable that citizens who have attended college will vote than will those 
who have not. Of course, the existence of strong positive links between 
the educational attainments of individuals and their subsequent voting 
behavior does not necessarily mean that increasing educational attain-
ments would  cause  increases in civic engagement. The positive associations 
that we fi nd in observational data could easily be the result of unobserved 

1.  Mann (1891, vol. IV, p. 113). 



204 Methods Matter

self-selection. In other words, individuals who are particularly intelligent 
or highly motivated may be especially likely to enroll in, and graduate 
from, college. It also may be more probable that these same particularly 
intelligent or highly motivated individuals will vote than other citizens. 
You will recognize this as yet another example of a theme that we have 
emphasized throughout this book:  statistical patterns detected in observational 
data do not ,  on their own ,  provide evidence of causal relationships . 

 Up to this point in our book, we have relied on investigator-designed 
experiments or natural experiments to provide the required exogenous 
variation in treatment that is necessary for making causal inferences. 
However, it is often diffi cult to gain support for a random-assignment 
experiment or to fi nd a suitable natural experiment. So, it is useful to ask 
whether there are other ways to proceed. For instance, might it be possi-
ble to locate and carve out somehow an “exogenous part” of the variability 
in a potentially endogenous predictor and use only it to estimate the 
impact on a subsequent outcome, claiming for it an interpretation of cau-
sality? In this chapter, we show how, under certain conditions, this can be 
achieved, using an innovative and fl exible statistical technique called 
 instrumental-variables estimation  (IVE). The data example that we use to 
illustrate our application of IVE comes from an observational study by 
Thomas Dee, in which he tested Horace Mann’s hypothesis.     

   Introducing Instrumental-Variables Estimation   

 Dee (  2004  ) used data from a nationally representative longitudinal survey 
to investigate the causal impact of educational attainment on individuals’ 
civic participation. As with earlier observational studies, Dee reports a 
strong positive bivariate correlation between educational attainment and 
subsequent civic engagement. Adults with high levels of schooling are 
more likely to register to vote, to vote more regularly, and to volunteer 
their time to public causes than are adults who have completed relatively 
few years of schooling. However, as Dee notes, this does not necessarily 
mean that schooling  causes  increases in civic awareness and participation. 
The reason is that, in observational data, participants have chosen their 
own levels of educational attainment, rather than those levels being 
assigned exogenously. Consequently, differences among participants in 
both educational attainment and civic participation may be a consequence 
of differences in unobserved traits, such as motivation, or a result of 
unobserved differences among families and communities in which par-
ticipants were raised. In fact, the arrow of causality may not even point 
 from  attainment  to  engagement at all. For instance, Dee (  2004  , p. 1698) 
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suggests that “individuals who grew up in cohesive families and commu-
nities that stressed civic responsibility may also be more likely to remain 
in school.” 

 As Dee’s study illustrates, instrumental-variables estimation sometimes 
provides a method of obtaining an asymptotically unbiased estimate of 
the causal impact of an endogenous variable, such as educational attain-
ment, on an outcome of interest. However, before turning to a description 
of this useful technique, it is important to understand the meaning of the 
term  asymptotic unbiasedness . It means that the bias contained in IV esti-
mates obtained from small samples may be substantial, but that this bias 
disappears as sample sizes grow very large.   2  Statisticians also use the term 
 consistent  when referring to estimators with this property.   3  So, although 
IVE provides a valuable tool for estimating causal effects in particular cir-
cumstances, we pay for this extended reach. To keep the record straight, 
throughout this chapter and the next, we will be careful to stipulate that 
IV estimates are either asymptotically unbiased or consistent, rather than 
simply being “unbiased.” 

 Although the application of IVE to real data can be complex, the key 
idea is straightforward. First, note that observed differences among par-
ticipants in the values of the question predictor (such as educational 
attainment) may conceal an unknown mixture of endogenous and exog-
enous variation. Sometimes it is possible to carve out a part of this 
variation that is  arguably exogenous  and use only it in your estimation of 
causal impacts on an outcome. Success at this task — as you might expect —
 requires information beyond a simple knowledge of the values of the 
outcome and question predictor. In addition to these two variables, you 
must also have data — for each participant — on a special kind of background 
variable that we later call an  instrument  and whose critical properties we 
describe below. By integrating this instrument in a particular way into 
the analysis, you can identify exogenous variation that is present in the 
question predictor and use only it to obtain an asymptotically unbiased 
estimate of the causal impact of the question predictor on an outcome 

2.  There is no agreement among methodologists on the defi nition of a “very large” 
sample. In reality, sample size would have to go to infi nity to satisfy a purist. In addition, 
what is “very large” for one estimator may not be “very large” for another. 

3.  Are the properties of asymptotic unbiasedness and consistency the same? Greene 
(1993, p. 107) actually offers three formal defi nitions of asymptotic unbiasedness, one 
of which is also the formal defi nition of the statistical property of consistency. He states 
that an estimator is asymptotically unbiased when its expected value tends to the 
parameter value as sample size approaches infi nity. An estimator will be consistent if, 
in the limit, it converges in probability on the parameter value. He comments that both 
properties go hand in hand, and that they are usually used interchangeably. 
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like civic engagement. Dee used IVE to analyze data from the  High School 
and Beyond  (HS&B) dataset, which contains rich information on large 
samples of American students who were fi rst surveyed in 1980. Dee 
focused his research on students who were members of the HS&B 
“sophomore cohort,” meaning that they were tenth-graders in American 
high schools in 1980. This sophomore cohort was resurveyed in 1984 
(when respondents were around 20 years old) and again in 1992 (when 
they were around 28 years old).   4  Here, we focus on a subsample drawn 
from Dee’s data, consisting of 9,227 of the original HS&B respondents.   5  

 In panel (a) of Table   10.1  , we present univariate descriptive statistics on 
the two key variables in our analyses. Our outcome variable  REGISTER  
measures active adult civic participation and this information was obtained 
when respondents were about 28 years old. It is dichotomous and indi-
cates whether the respondent was registered to vote in 1992 (1 = registered; 
0 = not registered); about two-thirds (67.1 % ) of the respondents were reg-
istered to vote in that year. Our principal question predictor  COLLEGE  is 
also dichotomous and coarsely summarizes respondents’ educational 
attainment as of the 1984 administration of the HS&B, when respondents 
were about 20 years old (1 = had entered a two- or four-year college by 
1984; 0 = had not entered). Slightly more than half of the respondents 
(54.7 % ) had entered college by this time.       

   Bias in the OLS Estimate of the Causal Effect of 
Education on Civic Engagement   

 In panel (b) of Table   10.1  , we present a sample correlation matrix that 
summarizes the bivariate relationship between later civic engagement 
(our outcome  REGISTER ) and earlier educational attainment (our ques-
tion predictor  COLLEGE ) in the sample. Although the magnitude of the 
sample bivariate correlation between these variables is quite small, it 
is both statistically signifi cant and positive (0.187,  p  <0.001, one-sided), 

4.  We thank Thomas Dee for providing the data on which he based his 2004 paper. 
5.  Because dichotomous outcomes were involved, Dee (2004) relied on a more sophisti-

cated approach based on the simultaneous-equations estimation of a bivariate probit 
model. Here, for pedagogic clarity, we begin by adopting a simpler analytic approach 
that specifi es a linear-probability model (LPM). To better meet the demands of our 
LPM model, we have limited our sample to respondents for whom a two-year college in 
their county was located within 35 miles of their base-year high school when they 
attended tenth grade, and for whom there were ten or fewer such two-year colleges 
within the county. We have also eliminated 329 cases that had missing values on the 
critical variables. Consequently, our estimates differ marginally from Dee’s (2004) pub-
lished estimates, although the thrust of our fi ndings and his remain the same. Readers 
interested in the substantive fi ndings should consult his paper. 
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indicating that respondents who had higher educational attainment in 
1984 tended to be more engaged civically in 1992, as Dee hypothesized. 

 Below the sample correlation matrix in the middle panel of Table   10.1  , 
we provide the corresponding sample covariance matrix. Covariance is a 
useful summary of the bivariate (linear) relationship between two vari-
ables that will feature prominently in the explanations that follow in this 
chapter. It is useful to think of it as an  unstandardized correlation coeffi cient , 
and its value in this case is 0.044.   6  Because covariance is an unstandardized 

6.  Like the correlation coeffi cient, the covariance statistic summarizes the linear 
association between two variables. The sample covariance of  Y  and  X —  represented by 

      Table 10.1  Civic engagement (in 1992) and educational attainment (in 1984) for 9,227 
participants in the sophomore cohort of the HS&B survey. (a) Univariate statistics on the 
outcome  REGISTER  and question predictor  COLLEGE;  (b) sample bivariate statistics for 
the same variables; and (c) OLS regression analysis of  REGISTER  on  COLLEGE   

   (a) Univariate Statistics:   

 Variable  Mean  Standard Deviation  

  REGISTER   0.6709  0.4699  
  COLLEGE   0.5471  0.4978  

  (b) Sample Bivariate Correlations and Covariances:   

 Variable  Sample Relationship with:  

  REGISTER    COLLEGE   

  Correlation:   
  REGISTER   1.0000  
  COLLEGE    0.1874      ∗  ∗  ∗       ,      †      1.0000  
  Covariance:   
  REGISTER   0.2208  
  COLLEGE   0.0438  0.2478  

  (c) OLS Regression Analysis: Outcome=REGISTER   

 Parameter  Estimate  Standard Error  

  INTERCEPT     β  0       0.5741    ∗  ∗  ∗      0.0071  
  COLLEGE     β  1        0.1769      ∗  ∗  ∗       ,      †      0.0097  

  R 2       0.0351  

  ∼ p  <0.10;  ∗   p  <0.05;  ∗  ∗   p  <0.01;  ∗  ∗  ∗   p  <0.001  
   † One-sided test  .
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index, its value is not proscribed to fall between –1 and  + 1 (which are the 
limiting values of the correlation coeffi cient), and so its absolute magni-
tude can be more diffi cult to interpret. However, as we will see later, there 
are advantages to having an index of association that contains the scales 
of the component variables. Also, because the covariance of a variable 
with itself is simply its variance, the elements that fall on the diagonal 
of a covariance matrix contain those variances. You can recover the com-
panion correlation coeffi cient by direct computation from the elements 
of the corresponding covariance matrix. For instance, in panel (b) of 
Table   10.1  , the sample variances of variables  REGISTER  and  COLLEGE  
are 0.221 and 0.248, respectively, meaning that their corresponding stan-
dard deviations are the square roots of these quantities, 0.470 and 0.498. 
The estimated correlation between these two variables is then simply 
their sample covariance divided by the product of their sample standard 
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  and so,  correlation  is the  covariance between two variables , each standardized to mean zero 

and unit standard deviation. 
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deviations, 0.044/(0.470  ×  0.498) or 0.187, as recorded in the top half of 
panel (b). 

 Finally, in panel (c) of Table   10.1  , we present the companion ordinary 
least-squares (OLS) regression fi t, for the same outcome/predictor 
relationship. As you would expect from the statistical test on the corre-
sponding bivariate correlation coeffi cient, question predictor  COLLEGE  
has a positive and statistically signifi cant impact on outcome  REGISTER  
( p  <0.001, one-sided).   7  This tells us that, on average, the fi tted probability 
that a respondent will be registered to vote in 1992 is 17.7 percentage 
points higher for those who were college entrants by 1984 than for those 
who were not.   8  Of course, as Dee explained, there is no reason to believe 
that this regression coeffi cient is an unbiased estimate of the causal effect 
of educational attainment on civic engagement because levels of educa-
tional attainment were not assigned randomly and exogenously to 
participants. Because the students who went to college may have differed 
in unobserved ways from those who did not, the relationship between 
 COLLEGE  and  REGISTER  detected in these data could easily have been 
due to unobserved infl uences on civic engagement that are omitted cur-
rently as predictors and hence reside in the stochastic part of the statistical 
model, the residuals. As we show below, this means that the question pre-
dictor and residuals may be correlated, and the resulting OLS estimate of 
regression slope may be biased. Nevertheless, having this “naïve” OLS-
estimated summary of the observed relationship is a good place for us to 
begin. 

 Actually, we do not need to conduct a full-blown regression analysis 
to obtain the OLS estimate of the  REGISTER  on  COLLEGE  slope in 
panel (c). With a single predictor in the regression model, an OLS-estimate 
of slope can be obtained directly from the elements of the sample covari-
ance matrix in panel (b) by dividing the sample covariance of the outcome 

7.  This hypothesis test is identical to the test on the correlation coeffi cient in panel (b). 
8.  Our naïve OLS regression analysis includes no individual-, county- and state-level cova-

riates and takes no account of the natural clustering of National Longitudinal Survey 
of Youth (NLSY) respondents within their base-year high schools, as does Dee (2004) 
in his more complete analysis. We omitted these features at this point for pedagogic 
clarity. In the following section, “Incorporating Multiple Instruments into the First-
Stage Model,” we illustrate the inclusion of additional covariates into our analyses. 
Finally, in sensitivity analyses not presented here, we have repeated all analyses pre-
sented in this chapter using robust standard errors estimated to account for the 
clustering of participants within their base-year high schools. Although this increases 
the standard errors associated with our central regression parameters by around 15 % , 
our basic results do not differ. 
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and question predictor by the sample variance of the question predictor, 
as follows:
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 Notice that this estimate is identical to that obtained in the OLS regres-
sion analysis in panel (c). The intimate link among the sample covariance 
of outcome and predictor, the sample variance of the predictor, and the 
OLS-estimated slope, in a simple linear regression analysis, emphasizes 
the utility of the sample covariance matrix as a summary of variation and 
covariation in the data. More importantly, we will soon see that it pro-
vides insight into the functioning of the OLS slope estimator itself and 
lights the way for us to instrumental-variables estimation.  

 But fi rst, let’s examine how the presence of endogeneity in the ques-
tion predictor results in bias in the OLS estimator of the causal impact 
of education on civic engagement. We begin by specifying a statistical 
model that describes how we believe educational attainment affects civic 
engagement. To keep notation simple in what follows, we do this in 
generic form:

   0 1i i iY Xb b e= + +     (10.2)  

 for the  i  th  member of the population, with conventional notation and 
assumptions.   9  In our civic-engagement example, generic outcome  Y  would 
be replaced by  REGISTER , generic predictor  X  would be replaced by 

9.  As usual, in specifying this simple model, we hypothesize that a linear relationship 
exists between  Y  and  X  in the population and that the unpredicted part of  Y  — residual 
  ε   — is distributed independently and identically across population members with zero 
mean and homoscedastic variance  2

es   . In our current example, the outcome — 
 REGISTER  — is actually dichotomous and so a more appropriate specifi cation of its 
relationship with predictors would use a nonlinear logit or probit function. However, 
our linear-probability model in Equation 10.1 is a useful fi rst approximation and has 
considerable pedagogic advantage. When predictor values are distributed over a simi-
lar range at both levels of the dichotomous outcome, as is the case in the restricted 
subsample with which we have chosen to work here, the linear slope of the fi tted linear-
probability model is usually close in value — if not identical — to the slope of the tangent 
to the fi tted logit and probit functions at the average value of the predictor. Thus, 
under these conditions, fi tting a linear-probability, logit, or probit model usually leads 
to the same substantive conclusion. 
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 COLLEGE , and slope parameter   β  1     would describe the causal effect of 
education on civic engagement.  

 We can manipulate this statistical model directly using covariance alge-
bra, which leads us to interesting conclusions about slope parameter,   β  1    . 
For instance, if we take covariances with predictor  X  throughout the 
equation in the population, we have:

   

( ) ( )
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1
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(10.3)

   
 Or, in a more parsimonious notation:

   
2

1YX X Xes b s s= +     (10.4)  
 Now, dividing throughout by the population variance of question 
predictor  X , we have: 
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 In Equation 10.5, notice that the population covariance of  Y  with  X ,   σ  YX  , 
divided by the population variance of  X ,  2

Xs   , can only be equal to the 
impact of education on civic engagement,   β  1    , when the second term on 
the right-hand side of the equation is zero. This, in its turn, can only 
happen if the population covariance of the predictor and the residual 
( σ    ε  X ) is zero. In other words, 
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 Consequently, because we are accustomed to forming (implicitly, in our 
OLS regression analyses) the sample ratio of these same covariance and 
variance terms on the left-hand side of this equation to obtain an estimate 
of the population regression slope, we learn from Equation 10.6 that 
an OLS estimator of slope will only be an unbiased estimator of the popu-
lation causal relationship  β  1  when predictor  X  and residual  ε  are 
uncorrelated in the population.   10  It is for this reason that the assumption 
of residual independence, which stipulates that predictors and residuals 
must be uncorrelated in the population, is so critical in OLS regression 
analysis, and it is the reason that we have worried repeatedly about the 
presence of any such potential correlations throughout this book.  

10.  The covariance algebra that we present here only illustrates the  asymptotic unbiasedness  
of the OLS estimator of slope. Using a more detailed application of statistical theory, 
we can also show that it is also unbiased in small samples. 
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 We know from statistical theory that if predictor and residuals are 
uncorrelated, then an OLS estimate of the slope coeffi cient — formed by 
replacing the featured population covariance/variance ratio by its sample 
equivalent,  2

YX Xs s    — will be an unbiased estimate of the population rela-
tionship. On the other hand, if the predictors and residuals are correlated, 
than an OLS estimate of slope will be biased.   11  So, to accept a value of 
0.177 as an unbiased estimate of the impact of college enrollment on civic 
engagement in our data example, we must be convinced that educational 
attainment is truly independent of the residuals in the statistical model. 
This would certainly be the case if levels of educational attainment had 
been assigned randomly to participants. However, it may not be the case 
when participants have chosen their own educational attainment, and the 
question predictor will be arguably endogenous. In summary, when a 
question predictor like educational attainment is potentially endogenous, 
we cannot rely on standard OLS methods of estimation to provide an 
unbiased estimate of its causal impact on an outcome. Instead, we need to 
use a different approach. 

 In the top panel of Figure   10.1  , we present a standard graphical anal-
ogy or  Venn diagram  that is useful for thinking about variation in, and 
covariation between, variables in  either  the sample  or  the population. In 
what follows, we use it to marshal arguments about the variation and cova-
riation of outcome  Y  and question predictor  X  in the population. In the 
top panel, for instance, we display a pair of intersecting ellipses, each 
shaded a different grey. The total area of the upper  light-grey  ellipse repre-
sents the population variability in the outcome  2

Ys    (as labeled in both 
panels of the fi gure). Similarly, the total area of the lower  medium-grey  
ellipse represents the population variability in the question predictor  2

Xs    
(again as labeled in both panels of the fi gure). The overlap between the 
two ellipses — their intersection — symbolizes the population covariance of 
outcome variable and question predictor,  YXs   . In the analogy, when the 
outcome and predictor are strongly related, their covariance  YXs    is large, 
as is the area of intersection of the two ellipses. When the outcome and 
predictor are weakly related or not related at all, their covariance  YXs    will 
be small or zero, and the area of overlap of the two ellipses will be corre-
spondingly small or zero. Conceptually, the ratio of the area of intersection 
to the total area of the upper light-grey ellipse then represents the pro-
portion of the total variability in outcome  Y  that has been successfully 
predicted by question predictor  X . It is estimated, in the sample, by the 
familiar  R  2  statistic. The area of the upper light-grey ellipse that falls 

11.  The magnitude and direction of the bias are given by the second term on the right in 
Equation 10.5, and so the larger the covariance of predictor and residual, the greater 
the magnitude of the bias. 
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beyond the intersection of the two ellipses represents the population vari-
ation in outcome  Y  that is therefore unpredicted by question predictor  X . 
In other words, it represents the population residual variation.    

 Next, remaining in the top panel of the fi gure, examine the area of 
intersection of the outcome and question predictor ellipses in comparison 
to the total area of the lower medium-grey ellipse (which represents  2

Xs   ). 

Variation in
Question Predictor, X

(a) OLS Approach

Variation in
Question Predictor, X

Variation in
Outcome, Y

Variation in
Outcome, Y

Variation in
Instrument, I

(b) IV Approach

     Figure 10.1    Graphical analog for the population variation and covariation among 
outcome  Y , potentially endogenous question predictor  X , and instrument,  I , used for 
distinguishing the OLS and IV approaches (a) OLS Approach: bivariate relationship 
between  Y  and  X , (b) IV Approach: trivariate relationship among  Y ,  X , and  I .    
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From Equation 10.6, we know that population regression slope   β  1     equals 
the population covariance of  Y  and  X  divided by the population variance 
of  X  (provided that predictor and residuals are uncorrelated, in the popu-
lation). Consequently, on the Venn diagram in the upper panel, the 
population regression slope,   β  1    , is represented by the area of intersection 
of the two ellipses (representing  YXs   ) divided by the total area of the lower 
medium-grey ellipse (representing  2

Xs   ). So, when the area of the intersec-
tion is small compared to the total area of the lower medium-grey 
ellipse — that is, when  YXs    is small compared to  2

Xs    — the population regres-
sion slope is small, in magnitude. On the other hand, when the population 
covariance of outcome and predictor is large compared to the variability 
in the predictor, the area of overlap will be large compared to the total 
area of the lower medium-grey ellipse, and the population regression 
slope has a larger magnitude. Working with this visual analogy for varia-
tion and covariation between outcome and predictor provides a useful 
explanatory tool here, and in what follows throughout the chapter. 

 There is an obvious yet important condition embedded in our alge-
braic statements that underpin the OLS estimator that must also hold if 
OLS estimation is to succeed. We mention it here because it is the precur-
sor to an analogous condition that must be satisfi ed for the IVE technique 
to be effective. In Equation 10.5, notice that the population variance of 
the question predictor,  2

Xs   , which appears in the denominators of both 
quotients on either side of the equal sign, cannot be zero. If it were zero, 
and we had divided throughout the equation by it (as we did!), the result-
ing quotients would be infi nite and the value of the population regression 
slope   β  1     indeterminate and inestimable. From a logical perspective, this 
makes sense. Why? Because it is just another way of stating that you can’t 
detect a relationship between an outcome and a question predictor if 
there is no variation in the predictor — in other words, if all observations in 
the sample have the same value for question predictor  X . In our visual 
analogy, of course, a “no variation in  X ” condition would correspond to 
the area of the lower medium-grey ellipse in the top panel shriveling up 
to nothing, rendering meaningless its intersection with the upper  light-
grey  ellipse that represents the population variability in the outcome  2

Ys   . 
 In addition to needing variability in  X  (so that the outcome can be pre-

dicted by it), the presence of the population variance of the question 
predictor  

2
Xs    in the denominator of the second term to the right of the 

equal sign in Equation 10.5 is also important. What does this second term 
represent? As we have implied earlier, this quotient represents the bias 
that will be introduced into an OLS estimate of the population slope if 
the question predictor and the residuals are correlated, in the popula-
tion. Notice that the bias term is again a quotient: the covariance of 
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predictor and residual, divided by the population variance of the predictor. 
This suggests that the magnitude of the bias that could be obtained in an 
OLS estimate of slope is sensitive not only to any covariation that may be 
present between question predictor and residual but also to the amount 
of variation present in the predictor itself. There will be a perfect storm 
when predictor and residuals are correlated (so that the sample estimate 
of numerator   σ    ε  X   is non-zero)  and  there is little variation in the predictor 
(so that the sample estimate of  2

Xs    also approaches zero). In this case, the 
impact of any bias present due to the covariation of predictor and residu-
als in the numerator will be infl ated, in the quotient, by the presence of 
the very small quantity that is present in the denominator. Clearly, this is 
another good reason to design research to ensure that you have substan-
tial variability in the question predictor.     

   Instrumental-Variables Estimation   

 In the current example, we possess observational data on an interesting 
outcome —  REGISTER , a measure of civic engagement — and an important 
question predictor —  COLLEGE , a measure of educational attainment. 
Our theory suggests that there should be a causal relationship between 
the latter and the former. Consequently, we would like to use our obser-
vational data to obtain a credible estimate of the causal impact of 
educational attainment on civic engagement. However, we suspect that 
question predictor  COLLEGE  is potentially endogenous because partici-
pants have been able to choose their own levels of educational attainment. 
As a result, an OLS estimate of the relationship between  REGISTER  and 
 COLLEGE  may provide a biased view of the hypothesized underlying 
population relationship between civic engagement and educational attain-
ment. What can we do to resolve this? How can we use the available 
observational data to estimate the population relationship between these 
two constructs, while avoiding the bias introduced into the results of the 
standard OLS process by the potential endogeneity in  COLLEGE  ?

 In statistics, as in life, it is usually the case that we can always do better 
if we have some way to incorporate additional useful information into our 
decisions. Setting all skepticism aside, let’s imagine for a moment that we 
had information available on an additional and very special kind of vari-
able — mysteriously named  I , for “instrument” — that has also been measured 
for all the participants in the sample. Let’s ask ourselves: What properties 
would such an instrument need to have, to be helpful to us? How could we 
incorporate it into our analysis, if we wanted to end up with an unbiased 
estimate of the critical relationship between civic engagement and educa-
tional attainments, in which we are interested? 
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 Although this seems to be a completely inhospitable analytic situation, 
we can gain insight by again applying covariance algebra to the hypothe-
sized population regression model featured in Equation 10.2. This time, 
though, instead of taking covariances throughout with predictor  X , let’s 
take them with our new instrument  I . This leads to the following result:
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 Or, again, more parsimoniously: 

   1YI XI Ies b s s= +     (10.8)  

 Dividing through by the population covariance of  X  and  I , we have: 
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 Here, surprisingly, notice a second interesting consequence of the speci-
fi cation of the population linear regression model. From Equation 10.9, 
we see that the population covariance of  Y  with  I  (  σ  YI  ) divided by the pop-
ulation covariance of  X  with  I  (  σ  XI  ) is again equal to our critical parameter 
representing the key population relationship of interest (  β  1    ), provided 
that the second term on the right-hand side of the equation is zero. And 
it is zero when our new instrument is uncorrelated with the residuals in 
the population regression model. That is, 
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 In other words, if there were some way to locate an instrument  I  that is 
 incontrovertibly uncorrelated with the population residuals in the “question” 
model , we would be home free. Then, the slope of the causal relationship 
between civic engagement and education in the population would simply 
be equal to the ratio of two important population covariances: (a) the 
covariance of the outcome and instrument, YIs   , and (b) the covariance of 
question predictor and instrument, XIs   . So, if  I  were known and its values 
are measured in the sample, we could simply estimate each of these 
respective covariances by their corresponding sample statistics, and 
replace them in the quotient by their sample equivalents. This would pro-
vide us with an (asymptotically) unbiased estimate of the causal impact of 
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education on civic engagement in the population. We call this alternative 
estimator the instrumental-variables estimator of   β  1    : 
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(10.11)
  

 Because statisticians refer to covariance as one of the “second moments” 
of a bivariate distribution, we refer to the expression on the right-hand 
side of Equation 10.11 as the  method-of-moments  IVE of   β  1    , to distinguish it 
from other instrumental-variables estimates of the same parameter that 
we describe later in this chapter (such as the  two-stage least-squares  and 
 simultaneous equations modeling  IV estimates). It is also sometimes referred 
to as the  Wald estimate , especially when both the question predictor and 
the instrument are dichotomous, to celebrate the intellectual contribu-
tions of the well-known statistician, Abraham Wald.  

 Let’s briefl y summarize what has happened here during our introduc-
tion of this new method-of-moments IV estimate. First, while conducting 
an OLS regression analysis of a theorized causal relationship between an 
outcome  Y  and a question predictor  X , we have developed a concern 
about the potential endogeneity of the question predictor. We have 
become worried that there is perhaps a non-zero correlation between 
question predictor and residuals, in the population, because of choices 
that participants were able to make about their values of the question 
predictor. This has led us to abandon the regular OLS estimator of the 
hypothesized causal relationship of interest. In its place, we have imag-
ined that we can locate another variable — which we have called the 
 instrument   I  — that we are absolutely convinced is uncorrelated with those 
same residuals, in the population. If this is the case, then we now know 
that we can use sample information on the new instrument, along with 
information on the original outcome and question predictor, to form an 
alternative and (asymptotically) unbiased estimator of the population 
relationship of interest. All our problems appear to be solved! 

 Although this is a perfectly fi ne argument from a statistical perspective 
and provides us with an interesting alternative estimator of an important 
relationship, you might readily respond that we have simply swapped one 
strong assumption (that the residuals are uncorrelated with the question 
predictor) for another (that the same residuals are uncorrelated with the 
instrument). In addition, you might reasonably question whether it is pos-
sible to locate such “instruments” in practice, or whether they are simply 
mythical beasts, like unicorns. However, it turns out, in practice, that it is 
indeed sometimes possible to locate such an instrument and to defend 
the critical assumption that it is uncorrelated with the residuals in the 
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regression model that represents the research question being asked. 
When this can be done, we have a perfectly reasonable alternative way of 
obtaining an asymptotically unbiased estimate of the hypothesized causal 
relationship between the outcome and question predictor, even when the 
values of the question predictor itself may have been assigned endoge-
nously. We take up these practical issues in detail later, when we analyze 
our data example further and when we survey different types of instru-
ments that have been used successfully in social science research, having 
withstood the careful scrutiny of experts. 

 For the moment, let’s set aside these diffi culties and focus on the sim-
plicity and conceptual clarity of the notion of IVE itself. In Table   10.2  , we 
have reproduced our previous naïve fi ndings and also introduced the 
variable that we claim works well as an instrument in our investigation of 
the causal impact of educational attainment on civic engagement. This 
variable is  DISTANCE . It is a continuous variable that describes, in miles, 
the distance between the high school that each respondent attended as a 
tenth-grader (in 1980) and the nearest two-year (community or junior) 
college in the respondent’s home county at that time. Notice that, on 
average, high schools were just less than 10 miles from the nearest two-
year college, but that the sample standard deviation of this distance is 
almost as large as the mean, indicating that there is considerable variability 
in the values of the potential instrument.    

 In what follows, following Dee, let’s regard instrument  DISTANCE  as 
a measure of respondents’  potential educational access to higher education  
immediately after high school. We will also argue, with somewhat more 
diffi culty, that this variable is unlikely to be correlated with the residuals 
in the regression of outcome  REGISTER  on the potentially endogenous 
question predictor  COLLEGE . One way to think about this is to imagine 
that the locations of local two-year colleges had been distributed randomly 
around participants’ high schools (and, implicitly, randomly around the 
locations of participants’ homes). Then, we could argue that those whose 
homes were closer to the nearest two-year college would naturally be more 
likely to enter into some kind of higher education. In other words, by 
virtue of their arguably random geographic placement with respect to a 
local two-year college, participants had in some sense received an exoge-
nous “offer” of educational attainment, over and above the impact of any 
personal factors, such as motivation, that may affect the college enrollment 
decision endogenously. If this is true, then the residuals in the regression 
of civic engagement on educational attainment (the latter variable being 
one in which the omitted endogenous causes of the relationship naturally 
reside) will not be correlated with the instrument  DISTANCE , and our 
key assumption is satisfi ed. Thus, although some part of the variation in 
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educational attainment may have been determined endogenously through 
participants’ personal choices and attributes, some other part of it may be 
exogenous and related to  DISTANCE . If this is truly the case, then we can 
employ  DISTANCE  as an instrument to obtain an asymptotically unbiased 
estimate of the causal relationship between civic engagement and educa-
tional attainment using the new methods we have just described.   12  

12.  Of course, there may be reasons why the proximity of participants to their local insti-
tutions of higher education is not determined randomly and exogenously. We discuss 

      Table 10.2  Civic engagement (in 1992) and educational attainment (in 1984) for 9,227 
participants in the sophomore cohort of the HS&B survey. (a) Univariate statistics on the 
outcome  REGISTER , question predictor  COLLEGE , and instrument,  DISTANCE ; 
(b) sample bivariate statistics among the same three variables; and (c) a method-of-
moments instrumental-variables estimate of the  REGISTER  on  COLLEGE  regression slope  

   (a) Univariate Statistics   

 Mean  St. Dev.  

  REGISTER   0.6709  0.4699  
  COLLEGE   0.5471  0.4978  
  DISTANCE   9.7360  8.7022  

  (b) Sample Bivariate Correlations and Covariances:   

 Sample Relationship with:  

  REGISTER    COLLEGE    DISTANCE   

  Correlation:   
   REGISTER   1.0000  
   COLLEGE    0.1874      ∗  ∗  ∗       ,      †      1.0000  
   DISTANCE   –0.0335    ∗  ∗  ∗      –0.1114    ∗  ∗  ∗      1.0000  
  Covariance:   
   REGISTER   0.2208  
   COLLEGE   0.0438  0.2478  
   DISTANCE   –0.1369  –0.4825  75.730  

 (c) Method-of-Moments IVE Estimate  

 Parameter  Estimate  

  Cov(REGISTER ,  DISTANCE)     σ  (REGISTER   ,    DISTANCE)    –0.1369  
  Cov(COLLEGE ,  DISTANCE)     σ  (COLLEGE   ,    DISTANCE)    –0.4825  

 IVE  Estimate     β  1     0.2837   

  ∼ p  <0.10;  ∗   p  <0.05;  ∗  ∗   p  <0.01;  ∗  ∗  ∗   p  <0.001  
   † One-sided test  .
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 First, and perhaps most importantly, notice that the endogenous ques-
tion predictor  COLLEGE  and instrument  DISTANCE  are indeed related. 
The greater the distance between a tenth-grader’s high school and the 
nearest community college (when they were in high school), the lower the 
probability that the student will enroll in college subsequently ( r  = –0.111, 
 p  <0.001, Table   10.2  , panel (b)). In addition, our outcome  REGISTER  has 
a negative and even smaller, but again statistically signifi cant, correlation 
with the instrument  DISTANCE  ( r  = –0.033;  p  <.001, Table   10.2  , panel (b)). 
Thus, the greater the distance between a tenth-grader’s former high 
school and the nearest two-year college, the less probable it is that the 
student registered to vote as an adult. Substituting the corresponding 
sample covariances into Equation 10.11, we obtain an asymptotically unbi-
ased method-of-moments IVE of the impact of college enrollment on the 
probability of registering to vote, as follows:

   

�

( )

( )

1

,

,

0.1369
0.4825

0.284

IVE
YI

XI

REGISTER DISTANCE

COLLEGE DISTANCE

s
s

s

s

b
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

=

−=
−

=     

(10.12)

  
 Notice that this coeffi cient is positive and almost double the magnitude 
of the corresponding OLS estimate (0.177, Table   10.1  ). This suggests that 
the probability that an individual will register to vote, as an adult, is about 
28 percentage points higher among college entrants than among those 
who did not enroll in college. Provided that our instrument — the distance 
of the respondent’s high school from the nearest two-year college in the 
same county — satisfi es the critical assumption we have described earlier, 
then this new value of 0.284 is an asymptotically unbiased estimate of the 
impact of educational attainment on civic engagement.  

 It is useful to explore the logic upon which this new method of estima-
tion is based. Conceptually, during the IVE process, we use our 
instrument — which we regard as exogenous  by assumption  (and therefore 
uncorrelated with the residuals in the main regression model) — to carve 
out part of the variation in the question predictor that is also exogenous 

three common objections — and the strategies that can be used for dealing with them —
 later in this chapter, in the section “Proximity of Educational Institutions,” where we 
describe research conducted by Janet Currie and Enrico Moretti (2003) in which they 
used proximity as an instrument. 
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and then we use only that latter part in the estimation of the regression 
slope. We can illustrate this statement by extending our earlier graphical 
analogy to the lower panel of Figure   10.1  . In the new panel, we have rep-
licated the original Venn diagram in the upper panel, with the same pair 
of overlapping light- and medium-grey ellipses representing the variances 
and covariance of the outcome and question predictor, as before. Then, 
across these two intersecting ellipses, we have carefully overlaid a third 
dark-grey, almost black, ellipse to represent variation in our instrument  I . 
Notice that this latter ellipse has been drawn to overlap both the fi rst two 
ellipses, thereby co-varying uniquely with both. However, it does  not  over-
lap any of the original  residual  variation in  Y , which as we have explained 
is represented by that part of the upper light-grey ellipse that falls beyond 
the reach of variation in the question predictor  X . We have drawn the 
new fi gure like this because, by defi nition, a successful instrument must 
not be correlated with those residuals, and therefore there can be no 
overlap of instrument and residual variation. Finally, in the lower panel, 
we also suggest that there may be some substantial part of the instru-
ment’s variation that is independent of variation in the question predictor; 
this is why we have drawn the dark-grey “instrumental” ellipse sticking out 
to the right of the lower medium-grey “question predictor” ellipse. 

 When we carry out successful IVE, it is as though we have allowed the 
dark-grey ellipse that represents variation in the instrument to  carve out  
the corresponding parts of the original medium-grey “ X ” ellipse and the 
medium-on-light-grey “ Y  on  X ” overlap, for further analytic attention. 
And, because variation in the instrument is exogenous (by an assumption 
that we still need to defend), the parts that we have carved out must also 
be exogenous. Then, in forming our IV estimator, we restrict ourselves 
implicitly to working with only the variation in outcome and question 
predictor that is shared (i.e., that intersects or covaries) with the new 
instrument within the lower dark-grey ellipse. Within this shared region, 
we again form a quotient that is a ratio of a “part” to a “whole” to provide 
our new instrumental-variables estimate of the  Y  on  X  slope. This quo-
tient is the ratio of the covariation shared between outcome and instrument 
to the covariation shared by question predictor and instrument, respec-
tively. Identify the corresponding regions for yourself on the plot. They 
are the regions where the light-, medium-, and dark-grey ellipses overlap, 
and where the medium- and dark-grey ellipses overlap, respectively. 
In a sense, we have used the instrument to carve up the old dubious varia-
tion and covariation in both outcome and question predictor into 
identifi able parts, and have picked out and incorporated into our new 
estimate only those parts that we know are — by assumption, at least —
 unequivocally exogenous. 
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 Careful inspection of the critical regions on the Venn diagram confi rms 
that things are even more subtle and logical than this! From the fi gure, 
we see that, during IV estimation — exactly as was the case during OLS 
estimation — we are again forming a ratio of the covariation between out-
come  Y  and predictor  X  and variation in predictor  X . However, now we 
are doing it  within a new region that has been defi ned by the variation in the 
instrument . You can see, for instance, that our new IV estimate still con-
trasts the areas of an overlapping light- and medium-grey ( Y  and  X ) region 
and a medium-grey region ( X ) but now the entire shebang falls within a 
new and restricted dark-grey region. In other words,  our new IV estimator 
enacts exactly the same principles as the old OLS estimator, but within the region 
defi ned by the exogenous variation of the instrument . 

 In addition to understanding the useful parallels between OLS and 
IVE, it is also important to understand the respect in which interpreta-
tions of the IV estimator are limited by the localization of our analytic 
attention to only the light- and medium-grey variation that  falls within  the 
newly defi ned dark-grey ellipse. This is a region in which variation in 
the question predictor is entirely  contained  or  localized  within the variation 
in the instrument itself.   13  In terms of our example, for instance, by 
using IVE to estimate the relationship between civic engagement and 
educational attainment, we are relying on only that part of the original 
person-to-person variation in educational attainment that covaries with —
 you might say “is sensitive to” — differences in the distance of the 
participants’ high schools from their nearest two-year college. All other 
variation in educational attainment, from person to person, is no longer 
used in forming our estimate. 

 For this reason, IV methods provide an asymptotically unbiased estimate, 
not of the overall  average treatment effect  (ATE), but of what is often referred 
to as the “ local ”  average treatment effect  (LATE). In our example, for 
instance, this means that it is only the variation in college enrollment that 
is affected by the distance to the nearest two-year college upon which we 
have capitalized in estimating the effect of educational attainment on 
civic engagement. The estimate does not provide any information about 
the impact of education on civic engagement for individuals whose 
college-enrollment decision was not infl uenced by the distance between 
their high school and the nearest two-year college. Of course, if the effect 

13.  The IV estimator also capitalizes on that part of the variation in outcome  Y  that is 
localized within the region of instrumental variation. However, in the lower panel of 
Figure 10.2, you can see that this part of the variation in  Y  — as defi ned by the overlap 
of the  Y  and  I  regions — is also a subset of the variation in  X  that falls within the varia-
tion in  I , and so our statement about the latter encompasses the former. 
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of the educational attainment treatment on voter registration is homoge-
neous across all sectors of the population, then the average and the local 
average treatment effects will be identical and both represented by 
the same population slope   β  1    . On the other hand, it is possible that the 
treatment effect may be heterogeneous across different sectors of the 
population. We return to these issues in the next chapter, when we clarify 
further the substantive interpretation of the LATE estimate. 

 Finally, notice that, when we use IVE, we restrict our analytic focus in 
one other important way. By working only within the dark-grey ellipse 
that describes variation in the instrument, we have restricted ourselves to 
a region of variation in both outcome and question predictor that is 
smaller than the original region of variation with which our initial OLS 
regression analysis was conducted. Of course, artifi cially limiting the 
variation in outcome and predictor that is being incorporated into any 
analysis means that the obtained estimate will usually have lower precision —
 that is, its standard error will be larger than the corresponding (but 
biased) OLS estimate. Thus, in using IV methods to provide an asymp-
totically unbiased estimate of the causal relationship of interest, we have 
traded away some of our original precision and statistical power, making 
it harder to reject the corresponding null hypothesis, for the benefi t 
of knowing that we now have an asymptotically unbiased estimate. 
Unfortunately, if we choose an instrument that has very limited variation 
(and whose associated dark-grey ellipse consequently covers a very small 
area), we exacerbate this problem enormously. An instrument of limited 
variation can only “carve out” a small part of the variation in outcome and 
question predictor for incorporation into the IV estimate. So, the stan-
dard error of the IV estimate will be large, and the statistical power of the 
analysis will be low. We expand on these problems below when we discuss 
the issues of working with “weak” instruments.      

   Two Critical Assumptions That Underpin 
Instrumental-Variables Estimation   

 IVE is an approach that offers important advantages to empirical research-
ers who seek to draw unbiased causal conclusions from quasi-experimental 
or observational research settings. However, it is critical to keep in mind 
that any application of IVE depends strongly on additional assumptions 
not required of OLS methods. Aside from the usual functional form 
assumptions that underpin the utility of covariance as a measure of 
linear association and the standard normal-theory assumptions on which 
any associated statistical inference will depend, the algebra that leads to 
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Equations 10.9 and 10.10 shows that there are  two additional assumptions  
that a variable must satisfy if it is to serve as a viable instrument. In practice, 
the veracity of one of these assumptions proves relatively easy to confi rm. 
Unfortunately, this is not the case for the second assumption. 

 The “easy-to-prove” condition for successful IVE is that  the instrument 
must be related to the potentially endogenous question predictor  (in other words, 
the population covariance of question predictor and instrument, XIs   , 
cannot be zero). This condition seems obvious, from both a logical and a 
statistical perspective. If the question predictor and instrument were not 
related, then no corresponding regions of outcome and question predic-
tor variation would be carved out by the dark-grey ellipse in the lower 
panel of Figure   10.1  , and  XIs    would be zero, thus rendering the quotients 
in Equations 10.9 and 10.10 indeterminate (infi nite). In simpler terms, if 
the question predictor and instrument are unrelated, then we cannot use 
the instrument successfully to carve out  any part  of the variation in  X , let 
alone any exogenous variation, and so our IVE will inevitably fail. 
Fortunately, in the case of our civic-engagement example, this is not the 
case. We have confi rmed that the instrument and question predictor are 
indeed related, using the hypothesis test that we conducted on their 
bivariate correlation in panel (b) of Table   10.2  . We can reject the null 
hypothesis that  COLLEGE  and  DISTANCE  are unrelated, in the popula-
tion, at a reassuring  p  <0.001.   14  

 The second important condition that must be satisfi ed for successful 
IVE is that  the instrument cannot be related to the unobserved effects (i.e., the 
original residuals) that rendered the question predictor endogenous in the fi rst 
place . In other words, the covariance of instrument and residuals,  Ies   , 
must be zero. We see this throughout the algebraic development that led 
to the IV estimator in Equations 10.9 and 10.10. The condition is also 
appealing logically. If the instrument were correlated with the residuals in 
the original “question” equation, it would suffer from the same problem 
as the question predictor itself. Thus, it could hardly provide a solution to 
our endogeneity problem. 

14.  The  t -statistic associated with the rejection of the null hypothesis that the instrument 
and question predictor are uncorrelated, in the population, is equal to 10.76. This 
 t -statistic — because only a single degree of freedom is involved in the test — corresponds 
to an  F -statistic of magnitude 115.9 (the square of 10.76). Such  F  statistics are often 
used to gauge the strength of particular sets of instruments. Some methodologists 
have suggested that sets of instruments should be considered “weak” if the associated 
 F -statistic has a magnitude  less than 10  (Stock, Wright, & Yogo, 2002). Although this 
cut-off is arbitrary, it is easily applied in more complex analyses in which multiple instru-
ments are incorporated and the required  F -statistic is obtained in a  global  (GLH) test of 
the hypothesis that all the instruments had no  joint  effect on the question predictor. 
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 Although the population covariance of the instrument and the ques-
tion predictor  XIs    cannot be zero if IVE is to succeed, there are even 
problems if the instrument is only weakly related to the question predic-
tor. By this, we mean that it is still a problem  data-analytically  if the 
population covariance of instrument and question predictor  XIs    is small. 
You can understand this by inspecting Equation 10.9. Notice that the 
population covariance of question predictor and instrument  XIs    appears 
in the denominator of both quotients in this expression for the popula-
tion regression slope  1 b   . It is present in the quotient that ultimately 
becomes the basis for the IV estimator itself  ( )/YI XIs s    and also in the 
quotient that describes the bias  ( )/I XIes s   . Both of these quotients will 
be impacted dramatically if the instrument is weak and the value of  XIs    is 
small. This creates two problems. First, with a weak instrument, the esti-
mate of the population regression slope itself will become increasingly 
sensitive to the presence of any aberrant data points in the point cloud 
that are infl uential in determining the sample covariance of the outcome 
and the instrument  YIs   . Second, suppose that the population covariance 
of instrument and residuals from the question equation   Ies    is not  exactly  
zero (as is required for successful IVE), but close to it. This will not matter 
if the instrument is strong, and its covariance with the question predictor 
 XIs    is large because the ratio of the two will then be very small, as required. 
But, if the instrument is weak, and its covariance with the question pre-
dictor close to zero, then the impact of any covariance between residuals 
and instrument — no matter how small — may still result in a large bias in 
the IV estimate. 

 Unfortunately, the way that we have stated our second condition for 
successful IVE — there must be a zero correlation between instrument and 
the residuals in the question equation — does not provide any practical 
guidance for checking that the condition is true. This is because we have 
framed the condition in terms of  unobserved  quantities — the residuals —
 whose existence we hypothesize in the population, but that we do not 
observe directly. Does this mean that, when using IVE, we must simply 
rely on our personal belief in the credibility of the instrument? Or, is it 
possible to translate the framing of the second condition into something 
that is at least amenable to validation by logical argument, if not observa-
tion? Fortunately, the answer is “Yes!” and a clue to the reframing is 
offered by again inspecting the lower panel of Figure   10.1  , where we dis-
play our visual analogy for IVE. We have drawn this fi gure to ensure that 
the dark-grey ellipse that describes variation in the instrument does not 
overlap with the light-grey ellipse that describes variation in the outcome 
 except within the medium-grey ellipse that describes variation in the question 
predictor.  This illustrates that the only path from the instrument to the 
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ultimate outcome goes through the question predictor. If there had been 
a direct path from the instrument to the outcome, we would have seen an 
overlap between the dark and light-grey ellipses that was  not  contained 
within the medium-grey ellipse. 

 Thus, the second critical assumption of IVE, which we have stated for-
merly above as “instrument and residuals must be uncorrelated,” can be 
reframed as “ there is no direct path from instrument to outcome, except through 
the question predictor .” This means that, in seeking a successful instrument, 
we need to fi nd a variable that is related to the potentially endogenous 
question predictor (we call this “the fi rst path”), and which in turn is 
related to the outcome (“the second path”), but there is  no path linking the 
instrument directly to the outcome  (i.e., there is “no third path”). So, you 
can think of the IVE process as one in which instrument  I  ultimately and 
indirectly predicts outcome  Y , but its infl uence passes only through ques-
tion predictor  X , rather than passing directly to the outcome from the 
instrument itself. If you fi nd yourself able to argue successfully that there 
is no third path in your particular empirical setting, then you have a viable 
instrument! This is often the most diffi cult challenge you face as an empir-
ical researcher who wants to employ IVE. 

 Thomas Dee argued that this condition held in the data that he used in 
his civic-engagement study. In fact, he invoked economic theory to argue 
that his distance instrument would be negatively related to college atten-
dance because the longer a student’s commute, the greater the cost of 
college attendance. Dee argued that, after conditioning on observed cova-
riates, students’ high schools (and implicitly, their homes) were distributed 
randomly around their local two-year college. Consequently,  DISTANCE  
becomes a credible instrument because it predicts some part of the varia-
tion in educational attainment, and it only affects future civic engagement 
 through its relationship with attainment . So, using IV estimation, he could 
tease out an asymptotically unbiased estimate of the causal impact of edu-
cational attainment on civic engagement. As we will see below, there is a 
long tradition in empirical research in economics and the social sciences 
of using such measures of access as instruments for otherwise endoge-
nous question predictors like educational attainment.     

   Alternative Ways of Obtaining the Instrumental-Variables 
Estimate   

 The method-of-moments approach to IVE that we have described works 
well when you have a single outcome, a single question predictor, and a 
single instrument. Usually, however, the IV approach is applied in more 
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complex data-analytic settings. For instance, you may want to obtain an IV 
estimate after controlling for background characteristics of the partici-
pants. This can be useful for either improving the precision of your 
estimate, or for strengthening the argument that your instrument satis-
fi es the “no third path” assumption. Alternatively, you may want to include 
multiple instruments in a single analysis. Or, perhaps your research ques-
tion requires the presence of several potentially endogenous question 
predictors in the principal regression model. Or, you may want to set 
aside the assumption of linear relationships implicit in the covariances of 
Equation 10.10 and entertain nonlinear relationships among instrument, 
question predictor, and outcome.   15  In these settings, it is useful to have 
alternative ways of implementing the IV approach, without directly divid-
ing a pair of sample covariances into each other. Two very useful 
approaches for doing this are the methods of  two-stage least squares  (2SLS) 
and  simultaneous equations modeling  (SEM). These are both alternative ways 
of implementing the same IV strategy that we have described above.    

   Obtaining an Instrumental-Variables Estimate by the 
Two-Stage Least-Squares Method   

 One useful analytic strategy for obtaining an IV estimate is to split up the 
process of IVE into two consecutive steps, or stages, and make use of OLS 
regression analysis at each step. This is referred to as the  Two stage least 
Squares  (2SLS) approach to IV estimation. Historically, 2SLS has been a 
popular and fl exible way of conducting IVE, largely because it applies a 
trusty statistical method (OLS regression analysis) in a novel and accessible 
way to obtain an improved estimate. 

 Conceptually, the 2SLS approach takes the rationale that we have 
already described for IVE and applies it in a  stepwise  fashion. In the previ-
ous section, we argued that the role of the instrument in IVE was to be 
responsible for carving out an exogenous part of the variation in a question 
predictor, so that we could use  only this part  — rather than the remaining 
potentially endogenous variation — in our estimation of the population 
regression slope that provided the research focus. When you implement 
a 2SLS approach, you actually carry out this process explicitly, one step at 
a time. You fi rst “carve out” exogenous variation in the potentially endog-
enous question predictor  X  by actually regressing it on your designated 

15.  This is what Thomas Dee (2004) does in his analysis of the civic engagement data. 
He uses a probit, rather than a linear, functional form in modeling the hypothesized 
relationships between the outcome  REGISTER  and the question predictor  COLLEGE , 
and between the latter variable and the instrument  DISTANCE . 
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instrument,  I , and then estimating and outputting the predicted values, � X   , 
for each person. These predicted values then contain only the exogenous 
part of the question predictor variation because the instrument used to 
predict those values was itself exogenous. 

 This means that, at the fi rst stage of the 2SLS process, we fi t an OLS 
regression model to the hypothesized relationship between the endoge-
nous question predictor and instrument, as follows:

   0 11  :  st
i i iStage X Ia a d= + +     (10.13)  

 where the fi rst-stage parameters   α  0     and   α  1     represent the requisite inter-
cept and slope, and   δ  i   is the fi rst-stage residual that contains that part of 
question predictor  X  that remains unpredicted at the fi rst stage (and, 
hopefully, contains all of the potentially endogenous variation) for the  i th   
student. You can, of course, fi t this fi rst-stage model by OLS methods. 
Since the instrument is exogenous, it is implicitly uncorrelated with resid-
uals   δ   in the fi rst-stage model.  

 In the upper panel of Table   10.3  , we present the results of fi tting 
this fi rst-stage model in our civic-engagement dataset, where we have 
regressed the potentially endogenous question predictor  COLLEGE  on 
the instrument  DISTANCE . The fi rst-stage  COLLEGE  on  DISTANCE  
regression slope is non-zero ( p  <0.001) in the population, and consequently 

      Table 10.3  Civic engagement (in 1992) and educational attainment (in 1984) for 9,227 
participants in the sophomore cohort of the HS&B survey. IV estimation of the  REGIS-
TER  on  COLLEGE  relationship using 2SLS, with  DISTANCE  as the instrument  

  (a) 1st Stage: Outcome = COLLEGE  

 Parameter  Estimate  St. Error  

  INTERCEPT     α  0       0.6091    ∗  ∗  ∗      0.0077  
  DISTANCE     α  1       –0.0064     ∗  ∗  ∗       0.0006  

  R 2       0.0124  

  (b) 2nd Stage: Outcome = REGISTER   

  Parameter    Estimate    Corrected St. Error   

  INTERCEPT     β  0    0.5157    ∗  ∗  ∗      0.0480  

  
�COLLEGE       β  1     0.2837      ∗  ∗  ∗       ,      †      0.0873  

  R 2       0.0223  

  ∼ p  <0.10;  ∗   p  <0.05;  ∗  ∗   p  <0.01;  ∗  ∗  ∗   p  <0.001  
   † One-sided test  .
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instrument and question predictor are indeed related.   16  Although the 
estimated size of the fi rst-stage slope is small, –0.0064, the potential dis-
tances between high school and local two-year college are large. So, for 
instance, if the distances between a high school and the nearest two-year 
college for a pair of prototypical students differed by the sample mean 
distance of 9.74 miles (from panel (a) of Table   10.1  ), we would predict 
that their probabilities of later entry into higher education would differ 
by just over 6 percentage points (with the predicted probability of enroll-
ment lower for the student who attended the high school that was more 
remote from a two-year college).   17     

 Predicted values are easily estimated for participants by substituting 
their values on the instrument  I  into the fi rst-stage fi tted model. All statis-
tical software packages can compute and store such predicted values 
automatically, but they can also be computed by hand. For instance, from 
the fi tted fi rst-stage model in Table   10.3  , the predicted value of  COLLEGE  
for the fi rst participant in the dataset — whose high school was situated 
four miles from the nearest college — is [0.609 – 0.0064(4)] or 0.583. 

 Once you have obtained the required predicted values from the fi rst-
stage fi t, you complete the second stage of the 2SLS process by simply 
regressing the ultimate outcome  Y  on the newly computed “exogenous” 
part of the question predictor, now represented by  � iX    (and  not  on the 
original and potentially endogenous question predictor  X i  ). So, the statis-
tical model for your second - stage OLS regression analysis becomes:

   
�= + +0 12  :  ii

nd
iStage Y Xb b e     (10.14)  

 with the usual notation. Fortuitously, this second-stage estimate of param-
eter   β  1     is identical to the estimate we obtained earlier by the method-
of-moments IVE approach. In the lower half of Table   10.3  , we provide the 
results of the 2SLS analysis for the civic-engagement example. Notice that 
our estimate of 0.284 ( p  <.001) for the  REGISTER  on  COLLEGE  regres-
sion slope is indeed identical to the method-of-moments IV estimate that 
we presented in Table   10.2  .   18   

16.  As noted earlier, the  F -statistic associated with the prediction of  COLLEGE  by  DIS-
TANCE  in the fi rst-stage analysis is 115.9, exceeding the cited “weak” instrument 
cut-off of 10 by a considerable margin (see footnote 14). 

17.  This computation is –.0064  ×  9.74, which equals –.0623. 
18.  We can use covariance algebra to confi rm this claim. In the population, predicted values 

of question predictor  X  are represented by  α  0   +   α  1  I i  , and can replace  �iX    in Equation 
10.14, leading to the “reduced” model:

  
� ( )= + + = + + +0 1 0 1 0 1i i i iiY X Ib b e b b a a e
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 We can also use our earlier graphical analogy for IV methods to illus-
trate the process of 2SLS estimation. In Figure   10.2  , we replicate the 
original light-, medium-, and dark-grey ellipses that represent the varia-
tion and covariation among our outcome,  Y , potentially endogenous 
question predictor,  X , and instrument,  I , from the lower-panel in 
Figure   10.1  . To refl ect the stepwise nature of the 2SLS approach, we have 
replicated the original Venn diagram and presented it twice, illustrating 
the fi rst-stage and second-stage facets of the 2SLS process by “dimming 
out” the unneeded portions of the fi gure at each stage. We present these 
new fi gures, with their respective dimmed-out portions, in the two panels 
of Figure   10.2   . The Venn diagram for the fi rst stage of the 2SLS process 
is at the top; the diagram for the second stage is at the bottom.    

 Recall that, in the fi rst stage of the 2SLS process, question predictor  X  
is regressed on instrument  I . We illustrate this in the upper panel of 
Figure   10.2   by featuring the medium-grey ellipse that represents variation 
in  X  overlapping the dark-grey ellipse that represents variation in  I . Their 
overlap represents not only their covariation and success of the fi rst-stage 
regression analysis, but also the part of the variation in question predictor 
 X  that has been “carved out” as exogenous, and captured in the respective 
predicted values  �iX   . It is this part of the variation in the question predic-
tor that is then carried through to the second stage of the 2SLS process, 
by the data analyst, as fi tted values. So, we have redrawn this part of the 
variation in  X  in the lower panel as an identical truncated partial ellipse, 
relabeled as “Predicted Variation in Question Predictor  X   .” This partial 
ellipse is darkened to acknowledge that it represents a portion of the 
question-predictor variation. Finally, it is the overlap between the com-
plete light-grey ellipse that describes variation in the outcome  Y  and the 

 Reorganizing and taking covariances with  I , throughout the reduced model, we have

  ( ) ( )( )0 1 0 1 1, ,i i i i iCov Y I Cov I Ib b a b a e= + + +    

  Because the covariance of a constant with  I , and that of the residuals with  I , are both 
zero, this reduces to:

  ( ) 2
1 1 1 1,YI i i ICov I Is b a b a s= =     

  Reorganizing and making  β  1  the subject of the formula, we have:
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      We can re-express the fi rst-stage slope parameter,  α  1 , by  ( )2/XI Is s
  , from taking cova-

riances with  I  throughout the fi rst-stage model, to obtain
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  This is identical to the expression in Equation 10.10. 
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newly darkened partial ellipse that denotes now exogenous variation in 
the question predictor that defi nes the second-stage relationship. Notice 
that the eventual areas of variation and covariation defi ned by this pro-
cess are identical to those defi ned in our original presentation of the IV 
approach in Figure   10.1  . Consequently, IV estimates resulting from the 
two estimation methods are identical. 

Variation in
Question Predictor, X

(a) First Stage

Predicted Variation in
Question Predictor, X

Variation in
Outcome, Y

(b) Second Stage

Variation in
Instrument, I

     Figure 10.2    Graphical analog for the population variation and covariation among 
outcome  Y , potentially endogenous question predictor  X , and instrument,  I , used for 
presenting the 2SLS approachs: (a)  First stage : Relationship between  X  and  I , distinguish-
ing predicted values,  �X   , (b)  Second stage : Relationship between  Y  and  �X   .    
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 The 2SLS approach provides concrete insight into one of the problems 
with IVE. When you estimate the all-important “exogenous” predicted 
values of  X  in the fi rst stage of the process, you sacrifi ce variation in the 
question predictor automatically because the predicted values of  X  inevi-
tably shrink from their observed values toward the sample mean, unless 
prediction is perfect. Then, when you fi t the second-stage model, regress-
ing the outcome on the newly predicted values of the question predictor, 
the precision of the estimated regression slope   β  1     is impacted deleteri-
ously by the reduced variation present in the newly diminished version of 
the question predictor. Consequently, the standard error of the new slope 
will be larger than the corresponding standard error obtained in a naïve 
(and biased) OLS regression analysis of the outcome/question predictor 
relationship. The weaker the fi rst-stage relationship, the less successful 
you will be in carving out exogenous variability to load into the predicted 
values of  X . This means that when the fi rst-stage relationship is weak, it 
will be diffi cult to detect a relationship at the second stage unless your 
sample is extremely large. This is the inevitable trade-off involved in 
implementing IVE  —  you must forfeit variation in the question predictor 
(hopefully forfeiting the  endogenous  portion of the variation, and retain-
ing as much of the exogenous as possible), so that you can eliminate bias 
in the estimated value of   β  1    ! But, as a consequence, you sacrifi ce precision 
in that estimate.   19  It seems like a pretty decent trade, to us. 

 This trade-off between bias and precision is evident in our civic engage-
ment example. Notice that the  R  2  statistic in the fi rst stage of the 2SLS 
process is only slightly more than 0.01. Consequently, the standard error 
associated with the all-important  REGISTER  on  COLLEGE  slope in the 
second-stage analysis is quite large. In fact, if you compare the standard 

19.  In presenting this conceptual introduction to 2SLS, we have overlooked deliberately a 
small adjustment to the standard errors of the parameter estimates that must be 
applied in the second-stage fi t. Notice that in panel (b) of Table 10.3, we have indi-
cated in the column heading that the standard errors have been “corrected.” The 
correction involves re-computing the second-stage sum-of-squared residuals (SSE) 
and inserting the corrected value into the standard error computation in the second-
stage model fi t. The “corrected” raw residuals — which are then squared and summed 
to provide the corrected SSE — are obtained by subtracting from the observed value of 
the outcome a corresponding predicted value, for each participant. However, in the 
corrected case, the required predicted value is obtained by substituting the partici-
pant’s  original  value of the question predictor into the second-stage fi tted model 
(rather than his or her  predicted  value). Fortunately, the correction need not be carried 
out by hand, as it is implemented automatically in all standard 2SLS computer algo-
rithms. For a single predictor, the corrected standard error of the 2SLS estimate 
of   β   1  equals the standard error obtained in the OLS fi t of the second-stage model 
multiplied by the square root of the ratio of the corrected SSE and the nominal SSE 
(Wooldridge, 2002, pp. 97–99). 
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errors of the regression coeffi cients associated with the question predic-
tor,  COLLEGE , in the earlier naïve OLS analysis (Table   10.1  ) and the 
more sophisticated 2SLS analyses (Table   10.3  ), you will fi nd that they 
differ almost by a factor of 10! Fortunately, we possess quite a large sample 
of participants, and this offsets the loss of precision. As a result, we retain 
suffi cient statistical power to reject the null hypothesis.     

   Obtaining an Instrumental-Variables Estimate by 
Simultaneous-Equations Estimation   

 Throughout our introduction to the 2SLS approach, you have seen that 
the IV strategy involves the statistical modeling of two hypothesized rela-
tionships: (a) the fi rst-stage relationship between a potentially endogenous 
question predictor and an instrument, and (b) the second-stage relation-
ship between an outcome and an endogenous question predictor. We can 
represent these hypothesized relationships together, by the following pair 
of statistical models:

   

0 1

0 1

i i i

i i i

X I

Y X

a a d
b b e

= + +
= + +     

(10.15)
  

 Under the 2SLS approach, you fi t these two models in a stepwise fashion, 
with a predicted value replacing the measured value of the endogenous 
predictor in the second-stage fi t. However, you can also fi t the two hypoth-
esized models simultaneously, using the methods of  simultaneous-equations 
modeling , or SEM, and again you will obtain identical results.   20   

 As is the usual practice with the SEM approach, we fi rst present our 
hypotheses in Figure   10.3   as a  path model  that specifi es the hypothesized 
fi rst- and second-stage relationships among the several variables simulta-
neously. In the fi gure, outcome  Y , question predictor  X , and instrument  I  
are symbolized by rectangles, and the connections among them are repre-
sented by single-headed arrows, each pointing in the hypothesized 
direction of prediction.   21  The path model contains all our hypotheses and 
assumptions about the IV approach. For instance, the solid single-headed 
arrow linking instrument  I  to question predictor  X  embodies our fi rst 
important assumption that the instrument  I  is related directly to question 
predictor  X , with slope parameter   α   1  (the fi rst path). Then, a second 

20.  This technique is also often called  structural-equations modeling  or  covariance structure 
analysis . It is typically carried out using software such as LISREL and EQS. 

21.  In path models, a single-headed arrow indicates a connection that possesses a hypoth-
esized causal direction, such as that between predictor and outcome, and a 
double-headed arrow indicates simple covariation between a pair of variables with no 
explicit causal direction implied. 
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hypothesized path links question predictor  X  directly to ultimate outcome 
 Y , with slope parameter   β   1  (the second path). Together, these paths 
embody the notion that instrument  I  is related to question predictor  X , 
and indirectly through it, to ultimate outcome  Y . But, the lack of an arrow 
representing a direct path between instrument  I  and outcome  Y  makes 
explicit our critically important “no third path” assumption.    

 Notice that our hypothesized path model also contains two shorter 
solid arrows, each pointing slightly backward into question predictor  X  
and outcome  Y , respectively. These shorter solid arrows represent the 
residuals,   δ   and   ε  , featured in the fi rst- and second-stage models in 
Equation 10.15. As usual, the fi rst residual   δ   is that part of question pre-
dictor  X  that is unpredicted in the fi rst stage; the second residual,   ε  , is that 
part of outcome  Y  that goes unpredicted in the second stage. We have 
also made one subtle addition to the path model that is unannounced in 
the algebraic specifi cation of the fi rst- and second-stage statistical models 
in Equation 10.15. Namely, in our path model, we have permitted the 
fi rst- and second-stage residuals to covary, and have represented their 
covariation by the curved double-headed arrow that links them, at the top 
of the fi gure. 

 Including in the hypothesized path model this connection between the 
fi rst- and second-stage residuals is critical if we want to use SEM to pro-
vide an identical IV estimate of slope parameter   β   1 . It is the presence of 
this link between the two residuals in the hypothesized path model that 
ensures that only variation in  X  that has been predicted by instrument  I  
acts to determine the magnitude and direction of the estimated “ques-
tion” slope parameter   β   1 . Essentially, by having instrument  I  predict 
potentially endogenous predictor  X , we partition the question predictor’s 

α1

di ei

b1
Xi Yi

Ii

     Figure 10.3    Path model presenting hypothesized population relationships among an 
outcome  Y , a potentially endogenous question predictor  X , and an instrument,  I .    
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variation into two parts: (a) the valuable “predicted” part (which is related 
to  I , and is therefore exogenous), and (b) the problematic “unpredicted” 
part or residual, which contains any endogenously determined compo-
nent that was originally part of  X.  Both of these parts of the original 
variation in  X  may be correlated with the ultimate outcome,  Y , but it is 
only the exogenous fi rst part that we want to determine our estimate of 
  β   1 . We make sure that this happens by providing a “back door” route — 
via the covariation of the fi rst- and second-stage residuals — by which 
any potentially endogenous component of  X  can take whatever relation-
ship it wants with outcome  Y . Then, our estimate of regression slope   β   1  
depends only on the components of variation that our IV estimation 
process requires. 

 In Table   10.4  , we present IV estimates for our civic engagement exam-
ple obtained by SEM. As expected, the estimates, their standard errors, 
and the associated statistical inference match those provided by our ear-
lier approaches to IVE, and the associated  R  2  statistics match those that 
we obtained in the fi rst and second stages of the 2SLS analysis. 
Consequently, we offer no further interpretation of them here. One small 
advantage of using SEM estimation to fi t the fi rst- and second-stage models 
simultaneously, however, is that the estimation process yields an estimate 
of the correlation between the residuals in the fi rst- and second-stage 
models. In our example, for instance, the estimated correlation between 
the errors in the two models is –0.1151, which is negative and statistically 
signifi cant. This provides evidence that IVE was indeed required and that 

      Table 10.4  Civic engagement (in 1992) and educational attainment (in 1984) for 9,227 
participants in the sophomore cohort of HS&B survey. IV estimation of the  REGISTER  
on  COLLEGE  relationship, using SEM, with  DISTANCE  as the instrument  

  Parameter  Estimate  St. Error  

  1st Stage: Outcome = COLLEGE   
  INTERCEPT     α  0    0.6091    ∗  ∗  ∗      0.0077  
  DISTANCE     α  1    –0.0064     ∗  ∗  ∗       0.0006  

  R 2       0.0124  

  2nd Stage: Outcome = REGISTER   

  INTERCEPT     β  0    0.5157    ∗  ∗  ∗      0.0480  
   COLLEGE      β  1     0.2837      ∗  ∗  ∗       ,      †      0.0873  
  R 2   statistic   0.0223  

  Error Correlation     ρ    –0.1151  

  ∼ p  <0.10;  ∗   p  <0.05;  ∗  ∗   p  <0.01;  ∗  ∗  ∗   p  <0.001  
   † One-sided test  .
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a path needed to be found by which the endogenous variation in the 
 COLLEGE  question predictor could be linked to the fi nal outcome, 
 REGISTER .    

 The conceptual underpinnings of the SEM approach to IV estimation 
can again be illustrated using our graphical analog for variation and cova-
riation among outcome  Y , potentially endogenous question predictor,  X , 
and instrument  I . Not without some explanatory diffi culty, however, 
so pay attention. In Figure   10.4  , we have again reproduced the trivariate 
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     Figure 10.4    Graphical analog for the population variation and covariation among 
outcome  Y , potentially endogenous question predictor  X , and instrument,  I , used for 
distinguishing the different variance components identifi ed under the SEM approach.    
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distribution of these three variables from the lower panel of Figure   10.1  . 
Although we have left the size and shape of all three original ellipses 
unchanged between fi gures, we have modifi ed the construction and label-
ing of the Venn diagram to refl ect the components of variation that are 
identifi ed by the way that the statistical models have been specifi ed under 
the SEM approach. Recall that this consists of two things: (a) the two 
model specifi cations in Equation 10.15, along with (b) the additional 
assumption that the residuals in the fi rst- and second-stage models can 
covary. In this new version of the graphical analog, we show how the SEM 
model specifi cation maps the two residual variances  2 ds    and  2

es    and the 
residual covariance  eds    onto existing parts of the Venn diagram. First, the 
population variance of the residuals in the fi rst-stage model  2 ds    consists 
of all variation in question predictor  X  that is  not related  to variation in the 
instrument; thus, it corresponds to the area of the medium-grey ellipse 
that does  not  intersect with the dark-grey ellipse. Second, the population 
variance of the residuals in the second-stage model  2

es    consists of all vari-
ation in outcome  Y  that falls  beyond  the reach of that part of the variation 
in the question predictor that covaries with the instrument; thus, it cor-
responds to the area of the light-grey ellipse that does  not  overlap with the 
intersection of the medium- and dark-grey ellipses. Finally, the popula-
tion covariation of the fi rst- and second-stage residuals  eds    is represented 
by the overlap of these latter two regions, in the center of the fi gure, and 
labeled off to the left. By specifying the SEM model as in Equation 10.15, 
 and  permitting their residuals to covary, the areas of variation and cova-
riation among the residuals are partitioned effectively from among the 
joint ellipses, leaving behind the same ratio of smaller areas to contribute 
to the estimation of the population regression slope, as before. We pro-
vide a fi nal conceptual expression for this parameter in the upper right of 
the fi gure, to emphasize the point.    

 Finally, you might reasonably ask, if several methods are available for 
obtaining an identical IV estimate, is one preferable to another? If you are 
in the simplest analytic setting with which we opened this chapter — a 
single outcome, a single potentially endogenous predictor, and a single 
instrument — it doesn’t matter. Whichever analytic approach you use, you 
will get the same answer. However, generally, we recommend using either 
2SLS or SEM because these approaches can be extended more readily to 
more complex analytic settings. (We introduced the simple method-of-
moments IV estimator at the beginning of this chapter solely for its 
pedagogic value in establishing the basic principles and assumptions of 
the IV approach.) We ourselves fi nd the 2SLS approach especially ame-
nable to thoughtful data analysis, as it is simply a doubled-up application 
of traditional OLS methods. So, all of the usual practices of good regression 
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analysis — graphical exploration of the data, standard methods of testing 
and ease of interpretation, the use of residual diagnostics and infl uence 
statistics — can be brought to bear at either stage of the analysis. Moreover, 
both can be extended to incorporate a nonlinear functional specifi cation 
in either the fi rst- or second-stage model or both. We now turn to an illus-
tration of these extensions.      

   Extensions of the Basic Instrumental-Variable 
Estimation Approach   

 Now that we have explained how the standard IVE strategy involves the 
fi tting of a pair of linked statistical models, either sequentially by 2SLS or 
simultaneously by SEM, the way is open to extend the basic approach to 
the more complex analytic situations that we often face in practice. The 
extensions include adding covariates as control predictors to the fi rst- and 
second-stage models, using multiple instruments in the fi rst - stage model, 
estimating models with multiple endogenous predictors in the second-
stage model, and using nonlinear model specifi cations. We consider each 
of these extensions in turn.    

   Incorporating Exogenous Covariates into 
Instrumental-Variable Estimation   

 Just as it was not necessary — but could be benefi cial — to include control 
predictors in the analysis of experimental data, you can also include 
selected covariates into an IV analysis. For example, in the models 
described in his 2004 paper, Dee included many control predictors at the 
individual, family, community, and county levels. At the individual level, 
he controlled for important demographic characteristics of participants 
such as their age, gender, race, and religious affi liation, as well as prior 
academic achievement. At the family level, he included covariates that 
described parental levels of education and family income when the par-
ticipant was a teenager (i.e., at the HS&B baseline survey administration). 
At the community and county level, he included fi xed effects represent-
ing the census division of participants’ base-year high school, and he 
controlled for the average civic attitudes and parental educational attain-
ment in the participants’ communities when they were teenagers. 

 Fundamentally, the motivation for including such covariates in an IV 
analysis is similar to, but broader than, the case for including them in the 
analysis of data from a random-assignment experiment. As usual, you 
always hope that adding a carefully selected set of controls to the analysis 



Instrumental-Variables Estimation 239

will reduce residual variation, make standard errors smaller, and increase 
your statistical power. However, you must exercise caution. You must be 
convinced that any control variables that you add to an IVE — at either 
stage — are themselves exogenous; otherwise, you will be simply introduc-
ing additional biases into your analyses. 

 To illustrate the process of adding covariates into an IVE, we extend 
our 2SLS analysis of the civic-engagement data. Following Dee (  2004  ), we 
continue to treat  DISTANCE  as the critical instrumental variable, but now 
we also include a vector of covariates that describe the participants’ race/
ethnicity in both the fi rst- and second-stage regression models. For this 
purpose, we have used a vector of three dichotomous predictors to distin-
guish whether a respondent was  BLACK ,  HISPANIC , or  OTHERRACE.  
In each case, the relevant predictor takes on a value of 1 if the respondent 
is of that particular race/ethnicity, and 0 otherwise. We have omitted the 
dichotomous predictor,  WHITE , to provide the reference category. 

 In Table   10.5  , we present estimates of the critical regression parame-
ters, obtained with the new covariates incorporated into the analysis. 
They can be compared with the estimates that we obtained in the absence 
of the covariates in Table   10.3  . As you might expect, the inclusion of the 
covariates has increased the explanatory power of the models at both 
stages. The associated  R  2  statistic has almost doubled, at each stage. This 
improvement in prediction is refl ected in a reduction of standard errors 
associated with the second-stage parameter estimates. For instance, the 
standard error associated with question predictor  COLLEGE  in the 
second-stage model has declined by about 8 % , from 0.0873 to 0.0806.    

 Of course, as in any statistical analysis, you need to exercise caution 
when adding covariates. You must weigh the potential improvement in 
predicted outcome sums-of-squares against the forfeiture of degrees of 
freedom. Here, in the second-stage model, for instance, we have paid for 
the improved prediction of  REGISTER  by our sacrifi ce of three degrees 
of freedom, one for each of the new slope parameters introduced in the 
model by our inclusion of the three race/ethnicity covariates. When 
sample size is large, as in this case, this is not a problem. But, if sample 
size were small, the number of additional covariates was large, and there 
was little improvement in fi t, then the standard error associated with the 
question predictor could very well become larger and statistical power 
lower upon the addition of more covariates. These, however, are the same 
trade-offs that we are accustomed to making in all of our statistical analyses. 

 Given that fi tting the fi rst- and second-stage models without covariates 
resulted in a reasonably strong, statistically signifi cant positive impact 
of college enrollment on subsequent civic engagement (see Table   10.3  ), 
it makes sense to ask why Dee included so many additional covariates in 
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his models. He addresses this question explicitly in his paper, and his 
answer is linked to his defense of the credibility of his instruments. For 
instance, one potential threat to the credibility of Dee’s instruments is 
that states might choose to locate two-year colleges near communities in 
which parents were well educated and the public high schools were 
thought to be of especially high quality. Students in these communities 
might not only have short commutes to the nearest community college, 
but also be especially likely to vote as adults because their families valued 
civic participation and because they attended high schools that empha-
sized its importance. As a result, students with short commutes to 
community colleges might have higher probabilities of registering to 
vote as adults, even if college enrollment had no causal impact on their 
interest in civic participation. If this were the case, then  DISTANCE  (and 
other measures of community college accessibility) would fail our “no 
third path” test for a credible instrument, and the results of our IVE would 
be fl awed. 

      Table 10.5  Civic engagement (in 1992) and educational attainment (in 1984) for 9,227 
participants in the sophomore cohort of the HS&B survey. IV estimation of the 
 REGISTER  on  COLLEGE  relationship using 2SLS, with  DISTANCE  as the instrument 
and including participant race as covariates, at both the fi rst and second stages  

  (a) 1st Stage: Outcome = COLLEGE  

 Parameter  Estimate  St. Error  

  INTERCEPT     α  0       0.6431    ∗  ∗  ∗      0.0091  
  DISTANCE     α  1       –0.0069    ∗  ∗  ∗      0.0006  
  BLACK     α  2       –0.0577    ∗  ∗  ∗      0.0160  
  HISPANIC     α  3       –0.1162    ∗  ∗  ∗      0.0133  
  OTHERRACE     α  4       0.0337  0.0240  

  R 2       0.0217  

  (b) 2nd Stage: Outcome = REGISTER   

 Parameter  Estimate  Corrected St. Error  

  INTERCEPT     β  0       0.5266    ∗  ∗  ∗      0.0463  

  �COLLEGE       β  1        0.2489     ∗  ∗  ∗     ,    †     0.0806  
  BLACK     β  2       0.0617    ∗  ∗  ∗      0.0152  
  HISPANIC     β  3       0.0283   ∼     0.0148  
  OTHERRACE     β  4       –0.1067    ∗  ∗  ∗      0.0228  

  R 2       0.0345  

  ∼ p  <0.10;  ∗   p  <0.05;  ∗  ∗   p  <0.01;  ∗  ∗  ∗   p  <0.001  
   † One-sided test  .
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 Dee’s response to this threat to the validity of his instrument was to 
include several classes of covariate in his fi rst- and second-stage models, 
arguing that once these characteristics had been controlled, the critical 
no third-path assumption on the proximity instrument would be satisfi ed. 
Not only did he include the participant demographics that we have incor-
porated here, he also included prior student achievement scores, measures 
of each family’s prior socioeconomic status, characteristics of the high 
school that each student attended, and county-level variables that 
described the civic attitudes of the community in which each student lived 
when he or she was in high school.   22  This allowed Dee to make the case 
that, among students from families with the same observed socioeco-
nomic status, living in communities with the same observed civic attitudes, 
and attending an observationally similar high school, there was no “third 
path” that connected the instruments representing the accessibility of the 
nearest two-year college directly to the probability that the students would 
register to vote as adults. This is clearly a stronger case than simply argu-
ing that the length of the commute to the nearest community college 
(with no covariates in the fi rst-stage model) had no direct infl uence on 
the probability of subsequent voter registration. 

 Notice that we — and Dee — have taken care to include the  same set of exog-
enous covariates  at both the fi rst and second stages of the IVE. This decision 
is also motivated by a desire to preserve the credibility of the “no third 
path” assumption for the fi rst-stage predictor that is being treated as an 
instrument. Of course,  all  of the predictors that anyone chooses to include 
in the fi rst-stage model — both the instruments and the controls — must be 
exogenous. None of them can be correlated with their respective fi rst-
stage residuals, or the fi rst-stage estimation will then be biased, and we 
will be lost from the start. However, in the fi rst-stage model, instruments 
and covariates are only distinguished from each other by their suspected 

22.  Notice that several of Dee’s chosen covariates — student tenth-grade test scores, for 
instance — might be easily considered endogenous if they had been measured concur-
rently with the student’s decision to enroll in college ( COLLEGE ). However, the values 
of these covariates were “predetermined” — their values were measured prior to the 
period in which the value of the question predictor was determined (Kennedy, 1992, 
p. 370).  In contrast, it would not have been appropriate for Dee to include adult 
labor-market earnings as a control variable in his second-stage equation, even though 
this variable may predict the probability of civic engagement. The reason is that this 
covariate is indeed endogenous in the second-stage model as its value was determined 
after the college-enrollment decision had been made. Not only may this covariate be 
correlated with unobserved determinants of civic engagement, such as motivation, it 
may also have been associated with the decision of whether to go to college. Adding 
a predictor that is potentially endogenous — at either stage — would compound your 
analytic problems rather than resolve them. 
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adherence, or lack of it, to the “no third path” assumption. If they are 
truly instruments, then they must  only  be related to the ultimate outcome 
 REGISTER , through their impact on the potentially endogenous ques-
tion predictor  COLLEGE . This is the case, by assumption, for Dee’s 
instrument  DISTANCE . Dee did not need to impose this same restriction 
on the other exogenous covariates he included in the fi rst-stage model; he 
intended these other predictors to serve simply as covariates, not instru-
ments. Although they are also required to be exogenous, they are not 
restricted to act only indirectly on ultimate outcome  REGISTER  through 
the potentially endogenous question predictor. (And if they did meet the 
“no third path” assumption, they would be instruments too!) The exoge-
nous covariates in the fi rst-stage model may therefore act on the ultimate 
outcome both indirectly (through question predictor  COLLEGE ), and 
also directly — that is, by having a direct third path to the outcome of the 
second-stage equation. Of course, if covariates in the fi rst-stage model are 
able to predict the ultimate outcome of the analyses directly, then you 
must include these covariates necessarily in the second-stage model so 
that they can display that path. Their inclusion accounts for their poten-
tial direct impact on the outcome of the second-stage model,  REGISTER . 
Thus, to summarize, any exogenous covariate that you choose to include 
in the fi rst-stage model and that you do not want to defend as an instru-
ment must also be included in the second-stage model. Perhaps to prevent 
the inadvertent violation of this recommendation, statistical software 
packages such as Stata force you to include in the second-stage model all 
the covariates that you have listed for inclusion in the fi rst-stage model 
(except any instruments, of course). 

 There is a parallel and conceptually convergent argument, based on 
the practice of 2SLS estimation that supports this principle that “all cova-
riates in the fi rst-stage model must also be included in the second-stage 
model.” It goes like this: both instrument and covariates are present in 
the fi rst-stage model, then the predicted values of the potentially endogenous 
question predictor obtained during the completed fi rst stage of the 2SLS 
estimation will contain all the variation in the endogenous question pre-
dictor that was predicted by both the instrument and covariates. Then, 
when these predicted values replace the observed values of the poten-
tially endogenous question predictor in the second-stage estimation, the 
estimated value of their associated regression coeffi cient will depend on 
both the earlier instrumental and covariate variation unless we control 
explicitly for covariate variation in the second-stage model too! To be 
unbiased, the estimated value of the regression coeffi cient associated with 
the question predictor must be derived only from the variation that origi-
nates in the instrument itself. Therefore, we must include the fi rst-stage 
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covariates as controls in the second-stage model in order to hold constant 
that extraneous variation. 

 Notice that, by implementing this data-analytic principle, the only pre-
dictor that is included in the fi rst-stage model and excluded from the 
second-stage model is the instrument itself. Sometimes methodologists 
refer to this as the  exclusion principle  or  exclusion restriction . If you have 
conducted an IV analysis, and someone asks you for your exclusion restric-
tion, you are being asked to name your instrument and make a case for its 
credibility. In responding, you need to be ready for the comments of skep-
tics who want to argue that there may be a third path that relates your 
instrument directly to the outcome of the second-stage model. One of 
your arguments, like Dee’s, can refer to the careful choice of covariates 
that you have included in both the fi rst- and second-stage models to con-
trol for other processes that might have otherwise linked the instrument 
directly to the ultimate outcome. 

 Finally, although all fi rst-stage predictors — other than instruments —
 must also be included in the second-stage model, the reverse is not 
necessarily true. You can choose to include selected additional covariates 
in the second-stage model — perhaps based on theory — and you are not 
 required  to include them in the fi rst-stage model. They are simply addi-
tional covariates that you may argue are necessary theoretically or that are 
present to further reduce residual variance and improve power at the 
second stage. However, as Angrist and Pischke (  2009  , p. 189) point out, if 
these additional second-stage covariates are indeed exogenous (as they 
must be!), then you have nothing to lose by including them in the fi rst-
stage model too.     

   Incorporating Multiple Instruments into the 
First-Stage Model   

 If you are fortunate enough to have more than one viable instrument 
available, you can incorporate them all simultaneously in your fi rst-stage 
model, and continue with your IVE, using either 2SLS or SEM (Angrist & 
Pischke,   2009  ). Provided the new instruments each satisfy the conditions 
that we have described earlier, including them in your fi rst-stage model 
will only enhance your analysis and help ensure that your instruments, as 
a group, are strong. Their inclusion will mean that more of the exogenous 
variation present in the potentially endogenous predictor will be carved 
out during fi rst-stage estimation, leading to improved precision for the 
asymptotically unbiased estimation of the critical causal relationship at 
the second stage and to an enhanced avoidance of the problems of weak 
instruments that we have described earlier. 
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 In addition to the instrument  DISTANCE  that we included in our 
pedagogical presentation, Dee (  2004  ) also used a second instrument, 
 NUMBER , which counted the number of two-year colleges within each 
participant’s county when the student was in tenth grade. Dee’s rationale 
for regarding both these variables as viable instruments was that both 
were exogenous indicators of an implicit “offer” of higher education. He 
argued that neither of them was likely to predict subsequent voter regis-
tration directly. In other words, Dee argued that there was unlikely to be 
any credible direct third path between either of his instruments and his 
ultimate outcome variable, voter registration, especially once he had con-
trolled for all his additional covariates. In Table   10.6  , we present a 2SLS 
analysis of our subset of the civic-engagement data, with both of these 
instruments included in the fi rst-stage model. We also retain the race/eth-
nicity covariates described earlier. Notice that the inclusion of the second 
instrument,  NUMBER , has clearly led to improvements in our estimation. 

      Table 10.6  Civic engagement (in 1992) and educational attainment (in 1984) for 9,227 
participants in the sophomore cohort of the HS&B survey. IV estimation of the 
 REGISTER  on  COLLEGE  relationship, using 2SLS, with  DISTANCE  and  NUMBER  as 
instruments and participant race as covariates, at both the fi rst and second stages  

  (a) 1st Stage: Outcome = COLLEGE  

 Parameter  Estimate  St. Error  

  INTERCEPT     α  0       0.5995    ∗  ∗  ∗      0.0110  
  DISTANCE     α  1       –0.0057     ∗  ∗  ∗       0.0006  
  NUMBER     α  2       0.0217     ∗  ∗  ∗       0.0031  
  BLACK     α  3       –0.0568     ∗  ∗  ∗       0.0159  
  HISPANIC     α  4       –0.1160     ∗  ∗  ∗       0.0132  
  OTHERRACE     α  5       0.0304  0.0240  

  R 2       0.0269  

  (b) 2ndStage: Outcome = REGISTER   

 Parameter  Estimate  Corrected St. Error  

  INTERCEPT     β  0       0.5102    ∗  ∗  ∗      0.0399  

  �COLLEGE       β  1        0.2776      ∗  ∗  ∗       ,      †      0.0693  

  BLACK     β  2       0.0628    ∗  ∗  ∗      0.0151  
  HISPANIC     β  3       0.0312    ∗      0.0143  
  OTHERRACE     β  4       –0.1080    ∗  ∗  ∗      0.0228  

  R 2       0.0291  

  ∼ p  <0.10;  ∗   p  <0.05;  ∗  ∗   p  <0.01;  ∗  ∗  ∗   p  <0.001  
   † One-sided test  .
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For instance, we now do a better job of predicting potentially endogenous 
question predictor  COLLEGE  at the fi rst stage — our fi rst-stage  R  2  statistic 
has risen by almost 25 % , from 0.0217 in Table   10.3   to 0.0269 in the new 
analysis. This has resulted in a decline of 14 %  (from 0.0806 to 0.0693) in the 
standard error of the critical  COLLEGE  regression slope at the second-
stage fi tted model. The parameter estimate on the  COLLEGE  question 
predictor itself has also risen slightly, from 0.249 to 0.278. All in all, our statis-
tical inference has benefi tted from the inclusion of the second instrument.    

 The notion that you are not limited to working with a single instrument 
suggests two other obvious analytic opportunities. The fi rst is that, if there 
are two predictors in the fi rst-stage model that have legitimate status as 
instruments, then their interaction can also be a legitimate instrument. 
This leads us to form the cross-product of  DISTANCE  and  NUMBER , and 
to introduce it as an instrument in the fi rst-stage model. Similarly, we note 
that the statistical interactions of instruments and exogenous covariates —
 such as the interaction between  DISTANCE  and the covariates that 
represent participant race/ethnicity — may provide other effective instru-
ments for inclusion in the fi rst-stage model. In Table   10.7  , we have 
implemented these two ideas, the fi rst in analyses that result in  Model A  
and the second in analyses that result in  Model B.  In Model A, we have 
included the original main effects of instruments  DISTANCE  and 
 NUMBER , and their two-way interaction in the fi rst-stage model, along 
with the participant race/ethnicity covariates that were introduced for 
the fi rst time in the section “Incorporating Exogenous Covariates into 
Instrumental-Variable Estimation.” Although there is no problem includ-
ing these terms together as fi rst-stage predictors, unfortunately the newly 
introduced two-way  DISTANCE  by  NUMBER  interaction has no statisti-
cally signifi cant impact on the fi rst-stage outcome. Thus, there is no 
subsequent change — and no improvement — in the estimated causal impact 
of  COLLEGE  on  REGISTER , at the second stage. Comparing parallel esti-
mates in  Tables  10.6   and   10.7  , for instance, we see that the comparable 
fi rst- and second-stage  R  2  statistics are almost identical (0.0269 vs. 0.0270 
and 0.0291 vs. 0.0295, respectively). Also, there has been little or no 
change in the second-stage model in the estimated impact of  COLLEGE  
(0.2776 vs. 0.2757) or in the associated standard error (0.0693 vs. 0.0691).    

 Under Model B of Table   10.7  , we present the results of including the 
main effects of the original instruments,  COLLEGE  and  NUMBER , in 
the fi rst-stage model, along with all possible two-way interactions between the 
instruments and the three exogenous race/ethnicity covariates:  BLACK , 
 HISPANIC , and  OTHERRACE . Again, the inclusion of the entire set of 
new “interaction instruments” brings about no substantial improvement 
in fi rst-stage fi t, as indicated by the minimal improvement of the  R  2  statistic 
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from 0.0269 in Table   10.6  , to 0.0276 in Table   10.7  . Thus, as you might 
expect, the estimated impact of  COLLEGE  on  REGISTER  at the second 
stage also appears largely unaffected by the addition of the new interac-
tion instruments (the impact of  COLLEGE  rises only from 0.2776 
to 0.2854) and the associated standard error declines only minimally. 

      Table 10.7  Civic engagement (in 1992) and educational attainment (in 1984) for 9,227 
participants in the sophomore cohort of the HS&B survey. IV estimation of the  REGIS-
TER  on  COLLEGE  regression slope, using 2SLS, with  DISTANCE  and  NUMBER  and 
their interactions with each other and with race as instruments, and with the main 
effects of race included at both stages as covariates  

   (a) 1st Stage: Outcome = COLLEGE   

 Model A  Model B  

 Parameter  Estimate  St. Error  Estimate  St. Error  

  INTERCEPT     α  0       0.6028    ∗  ∗  ∗      0.0114  0.5941    ∗  ∗  ∗      0.0129  
  DISTANCE     α  1       –0.0061     ∗  ∗  ∗       0.0007  –0.0056     ∗  ∗  ∗       0.0008  
  NUMBER     α  2       0.0180     ∗  ∗  ∗       0.0047  0.0250     ∗  ∗  ∗       0.0040  
  BLACK     α  3       –0.0563     ∗  ∗  ∗       0.0159  –0.0663     ∗       0.0302  
  HISPANIC     α  4       –0.1160     ∗  ∗  ∗       0.0132  –0.0964     ∗  ∗  ∗       0.0247  
  OTHERRACE     α  5       0.0297  0.0240  0.0687  0.0429  
  DISTANCE × NUMBER     α  6       0.0006  0.0005  
  DISTANCE × BLACK     α  7       0.0010  0.0021  
  NUMBER × BLACK     α  8       0.0012  0.099  
  DISTANCE × HISPANIC     α  9       0.0003  0.0016  
  NUMBER × HISPANIC     α  10       –0.0147   ∼     0.0078  
  DISTANCE × OTHERRACE     α  11       –0.0037  0.0030  
  NUMBER × OTHERRACE     α  12       –0.0045  0.0123  

  R 2       0.0270  0.0276  

  (b) 2nd Stage: Outcome = REGISTER   

 Model A  Model B  

 Parameter  Estimate  Corrected 
St. Error 

 Estimate  Corrected 
St. Error  

  INTERCEPT     β  0       0.5113    ∗  ∗  ∗      0.0398  0.5058    ∗  ∗  ∗      0.0393  

  �COLLEGE       β  1        0.2757      ∗  ∗  ∗       ,      †      0.0691   0.2854      ∗  ∗  ∗       ,      †      0.0682  
  BLACK     β  2       0.0627    ∗  ∗  ∗      0.0151  0.0631    ∗  ∗  ∗      0.0151  
  HISPANIC     β  3       0.0310    ∗      0.0142  0.0320    ∗      0.0142  
  OTHERRACE     β  4       –0.1080    ∗  ∗  ∗      0.0228  –0.1084    ∗  ∗  ∗      0.0228  

  R 2       0.0295  0.0274  

  ∼ p  <0.10;  ∗   p  <0.05;  ∗  ∗   p  <0.01;  ∗  ∗  ∗   p  <0.001  
   † One-sided test  .
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The principle, however, remains intact and potentially useful, for applying 
IVE in other data: it is always a good idea to look beyond a simple main-
effects specifi cation of the fi rst-stage model by considering interactions 
among your instruments, and between your instruments and your exog-
enous covariates. All these could function potentially as instruments and 
you could benefi t if they did.   23      

   Examining the Impact of Interactions Between the 
Endogenous Question Predictor and Exogenous 
Covariates in the Second-Stage Model   

 In many situations, a question of interest may be whether the impact of 
the endogenous question predictor on the outcome in the second-stage 
model differs among important subgroups. For example, in the case of 
Dee’s   2004   study, a plausible hypothesis might be that enrollment in col-
lege has a greater impact on the probability that white students will 
register to vote as adults than it has on the probability that black or 
Hispanic students or students of other races will register to vote subse-
quently. A possible rationale underlying this hypothesis could be that when 
the HS&B data were collected during the 1980s, almost all candidates for 
public offi ce were white; consequently, citizens from minority groups may 
have seen less value in registering to vote than did white citizens. 

 We could test the hypothesis that the effect of college enrollment on 
subsequent voter registration differs by race/ethnicity by including in 
the second-stage model not only the main effect of the endogenous pre-
dictor  COLLEGE , but also its two-way interactions with each of  BLACK , 
 HISPANIC , and  OTHERRACE.  However, it is critical to understand that 
the statistical interaction between a potentially endogenous predictor like 
 COLLEGE  and an exogenous covariate like  BLACK  is itself potentially 
endogenous. 

 In cases in which the second-stage model includes multiple endogenous 
predictors, it is important to verify that you have satisfi ed what is known 
as the  rank condition  (Wooldridge,   2002  ). This condition says that  for every 
endogenous predictor included in the second stage ,  there must be at least one 
instrument included in the fi rst stage . This means that if we include one 
potentially endogenous main effect and three potentially endogenous 
interactions in the second-stage model, then we must include at least four 
instruments in the fi rst-stage model. Given that it is usually incredibly 

23.  To keep the exposition as simple as possible, we do not make use of the second instru-
mental variable,  NUMBER , in subsequent sections of this chapter. 
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hard to fi nd — and justify — even a single instrument in most research 
projects, you might wonder if this is an insurmountable task. Fortunately, 
the required instruments are readily at hand. They are the corresponding 
interactions between the original instrument for the main effect of 
 COLLEGE  — that is,  DISTANCE  — and its interactions with the same exoge-
nous covariates. Thus, just as  DISTANCE  is an arguably viable instrument 
for  COLLEGE , the two-way interaction of  DISTANCE  and  BLACK  is a 
viable instrument for the potentially endogenous interaction of  COLLEGE  
and  BLACK . 

 We have introduced these new sets of interactions into the IVE analysis 
in Table   10.8   .  At the fi rst stage, we have included the main effect of 
 DISTANCE  and its interactions with the race/ethnicity covariates as 
instruments. At the second stage, we have introduced the main effect of 
 COLLEGE  and its interactions with the same covariates; these latter inter-
actions are then themselves potentially endogenous question predictors. 
Because there are now four potentially endogenous predictors at the 
second stage, we require four fi rst-stage statistical models, one relating 
each endogenous predictor to the instruments available. Consequently, 
you will see that there are four discrete sections to the fi rst-stage output in 
Table   10.8  , one for each potentially endogenous second-stage predictor: 
 COLLEGE ,  COLLEGE   ×   BLACK ,  COLLEGE   ×   HISPANIC , and  COLLEGE   ×  
OTHERRACE . In each case, we have regressed each endogenous predic-
tor on the full complement of instruments and covariates:  DISTANCE , 
 DISTANCE   ×   BLACK ,  DISTANCE   ×   HISPANIC , and  DISTANCE   ×   OTHER-
RACE .   24  To save space in the table, we have listed parameter estimates 
and their associated statistics for only those fi rst-stage predictors that 
actually play a role in predicting the respective fi rst-stage outcome. Thus, 
you will see that all of the instruments and covariates can potentially 
play a role in predicting the main effect of  COLLEGE , and so the impact 
of all of them and the remaining exogenous covariates are listed. In con-
trast, only the instruments  BLACK  and  DISTANCE   ×   BLACK  are needed 
to predict the potentially endogenous interaction of  COLLEGE  and 
 BLACK , as indicated in the second discrete section of the fi rst-stage output 
in Table   10.8  . Even if the full complement of predictors — main effects of 
instrument and covariates, and their interactions — are included in each of 
the fi rst-stage models for each of the potentially endogenous question 

24.  This is a practice that is enforced by the programming structure of statistical software 
such as Stata. 



      Table 10.8  Civic engagement (in 1992) and educational attainment (in 1984) for 9,227 
participants in the sophomore cohort of the HS&B survey. IV estimation of the  REGIS-
TER  on  COLLEGE  relationship using 2SLS, including participant race as covariates at 
both the fi rst and second stages. Second-stage model contains interactions between the 
endogenous question predictor  COLLEGE  and participant race, and fi rst-stage model 
includes  DISTANCE  and its interactions with race as instruments  

  (a) 1st Stage:  

 Parameter  Estimate  St. Error  

  Outcome = COLLEGE   
  INTERCEPT     α  0       0.6452    ∗  ∗  ∗      0.0101  
  DISTANCE     α  1       –0.0071     ∗  ∗  ∗       0.0007  
  BLACK     α  2       –0.0651     ∗  ∗  ∗       0.0228  
  HISPANIC     α  3       –0.1276     ∗  ∗  ∗       0.0194  
  OTHERRACE     α  4       0.0590   ∼     0.0351  
  DIST  ×  BLACK     α  5       0.0009  0.0020  
  DIST  ×  HISPANIC     α  6       0.0013  0.0016  
  DIST  ×  OTHERRACE     α  7       –0.0030  0.0030  

  R 2       0.022  

  Outcome = COLLEGE  ×  BLACK   
  BLACK     α  8       0.5801     ∗  ∗  ∗       0.0081  
  DIST  ×  BLACK     α  9       –0.0062     ∗  ∗  ∗       0.0007  

  R 2       0.504  

  Outcome = COLLEGE  ×  HISPANIC   
  HISPANIC     α  10       0.5176     ∗  ∗  ∗       0.0087  
  DIST  ×  HISPANIC     α  11       –0.0058     ∗  ∗  ∗       0.0007  

  R 2       0.419  

  Outcome = COLLEGE  ×  OTHERRACE   
  OTHERRACE     α  12       0.7041     ∗  ∗  ∗       0.0076  
  DIST  ×  OTHERRACE     α  13       –0.0101     ∗  ∗  ∗       0.0006  

  R 2       0.617  

  (b) 2nd Stage: Outcome = REGISTER   

 Parameter  Estimate  Corrected St. Error  

  INTERCEPT     β  0       0.4640    ∗  ∗  ∗      0.0553  

  �COLLEGE       β  1        0.3587      ∗  ∗  ∗       ,      †      0.0965  
  BLACK     β  2       0.2780   ∼     0.1627  
  HISPANIC     β  3       0.1765  0.1208  
  OTHERRACE     β  4       –0.1742  0.1756  

  �COLLEGE      ×  BLACK     β  5       –0.3986  0.3021  

  �COLLEGE      ×  HISPANIC     β  6       –0.2929  0.2478  

  �COLLEGE      ×  OTHERRACE     β  7       –0.4634  0.2844  

  R 2       0.0125  

  ∼ p  <0.10;  ∗   p  <0.05;  ∗  ∗   p  <0.01;  ∗  ∗  ∗   p  <0.001  
   † One-sided test  .
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predictors, the un-needed predictors take on coeffi cients that have zero 
magnitude during the estimation process.   25 ,   26     

 Notice that the new “interaction instruments” are particularly effective 
in predicting their corresponding second-stage endogenous interactions. 
Thus, the interaction of  DISTANCE  and  BLACK  is an effective predictor 
of the potentially endogenous interaction of  COLLEGE  and  BLACK , and 
consequently acquires an  R  2  statistic of 0.504 at the fi rst stage. The same 
is true for the other fi rst-stage models. However, at the end of the day, not 
much differs at the second stage. Although the potentially endogenous 
main effect of  COLLEGE  continues to have a statistically signifi cant impact 
on voter registration ( p  <0.001), its companion interactions — although of 
large magnitude — do not have statistically signifi cant impacts on the out-
come. Thus, we can ultimately reject the notion that the effect of  COLLEGE  
on  REGISTER  differs by race/ethnicity. This leads us to fall back on the 
results of the earlier analyses in Table   10.7  .   27      

25.  This statement is easy to confi rm analytically, by fi tting the requisite models by simul-
taneous-equations estimation. Then, both the “full” and “reduced” models can be fi t 
and will provide identical answers, with un-needed coeffi cients taking on a value of 
zero during analysis if they are not set to zero in advance. 

26.  Another approach that can be used to test for the presence of interactions between 
the endogenous predictor and covariates in the second-stage model is 2SLS, 
conducted piecewise “by hand” using OLS regression analysis. Under the two-step 
approach, you fi t a single fi rst-stage model by regressing the endogenous question 
predictor ( COLLEGE ) on the main effect of the single instrument ( DISTANCE ) and 
covariates. Fitted values of  COLLEGE  are then output from the fi tted fi rst-stage model 
into a new variable, call it  PREDCOLL . This latter variable is then introduced into the 
second-stage model, in place of  COLLEGE , in the usual way.  PREDCOLL  can be inter-
acted with exogenous predictors in the second-stage model, by forming cross-products 
and entering them as predictors also. The estimates obtained are identical to those 
obtained using the simultaneous methods described in the text, but you must adjust 
the standard errors by hand, which can be tedious. 

27.  Notice that the coeffi cients on  COLLEGE  ∗  BLACK ,  COLLEGE  ∗  HISPANIC , and 
 COLLEGE  ∗  OTHERRACE  are all negative and of approximately the same size (in abso-
lute value) as the positive coeffi cient on the main effect of  COLLEGE . Recall that the 
estimate of the impact of college enrollment on the probability of voter registration 
for blacks, for example, is the sum of the coeffi cient on the main effect plus the coef-
fi cient on the interaction term. Thus, the pattern of coeffi cients suggests that Dee’s 
fi nding that college enrollment results in an increase in the probability of voter regis-
tration may be driven by the behavior of white students. However, it would take 
analyses based on a much larger sample than that available in HS&B to reject the null 
hypothesis that the impact of college is the same for all racial/ethnic groups. 
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   Choosing Appropriate Functional Forms for 
Outcome/Predictor Relationships in 
First- and Second-Stage Models   

 In presenting this conceptual introduction to IVE, we have not empha-
sized the importance of the functional form of our statistical models. 
In fact, up to this point in the chapter, we have used a simple linear prob-
ability specifi cation for both our fi rst- and second-stage models. We did 
this both for pedagogic reasons, and because the linear probability model 
has a long history in statistical analysis. In fact, methodologists argue that 
results obtained from IV analyses of dichotomous outcomes with fi rst- 
and second-stage linear probability models are  consistent  — are  asymptotically 
unbiased —  in large datasets like the one we have analyzed here (Angrist & 
Pischke,   2009  ). Our principal objective in using the linear probability 
specifi cation was to ensure that we provided a straightforward introduc-
tion to IVE that was focused on the concepts rather than the details. 
In particular, we wanted to emphasize the central idea that, provided that 
you possess viable instruments (like  DISTANCE  and  NUMBER ), you can 
carve out exogenous variation in a potentially endogenous question pre-
dictor,  COLLEGE , for use in the subsequent stage of estimation. 

 Of course, now that we have established the fundamental ideas behind 
the basic IVE approach, we can stress some details. Clearly, for all the 
usual reasons, it makes sense to select specifi cations for your fi rst- and 
second-stage models that best describe the functional forms of the rela-
tionships being modeled. This is no different from the process of model 
specifi cation in regular regression analysis, except that you must consider 
the specifi cations of two linked statistical models that will be fi tted, either 
sequentially or simultaneously, during the IVE process. Consequently, 
you must bring to bear all of your usual skills in conducting responsible 
regression analysis. For instance, it makes sense to capitalize on appropri-
ate transformations of outcome and/or predictors, guided by  Tukey’s 
ladder  (Tukey,   1977  ) or to adopt a sensible polynomial or nonlinear model 
specifi cation as the need arises in your data. We do not discuss the details 
of this process further here, other than to note that it is an application of 
standard statistical methods. In our own case, with dichotomous out-
comes at both the fi rst and second stages, it makes sense to adopt a probit 
model at both stages, as Dee (  2004  ) did. In Table   10.9  , we present fi rst- 
and second-stage parameter estimates from an IV analysis that uses a 
probit specifi cation at both stages and simultaneous-equations estimation 
in our subset of Dee’s data. Notice that the coeffi cient on  COLLEGE  in 
the second-stage model (0.7799) remains positive and statistically signifi -
cant ( p  <0.001). Subsequent analyses of marginal effects, evaluated at the 
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sample mean of  COLLEGE , indicate that enrollment in college results in 
a 16.13 percentage point increase in the probability that a student will 
register to vote as an adult.   28          

   Finding and Defending Instruments   

 The primary challenge in using the IVE approach to answer an educational 
policy question is fi nding and defending an appropriate instrumental vari-
able.   29  Two types of knowledge are especially important in the hunt for 

28.  The estimated coeffi cient on  COLLEGE  in the second-stage fi tted probit model must 
be transformed into a more meaningful metric before it can be interpreted easily. This 
is usually achieved by estimating the instantaneous slope of the outcome/predictor 
relationship at the average values, or some other sensible specifi ed values, of the cova-
riates. Here, we have estimated its value when  COLLEGE  is set to its sample average of 
0.55, controlling for the presence of other predictors in the model. 

29.  Many of the ideas in this section derive from the presentation of Angrist and Krueger 
(2001). 

      Table 10.9  Civic engagement (in 1992) and educational attainment (in 1984) for 9,227 
participants in the sophomore cohort of the HS&B survey. IV estimation of the 
 REGISTER  on  COLLEGE  regression slope, using  bivariate  probit analysis, with 
 DISTANCE  and  NUMBER  as instruments and including covariates representing 
participant race, at the fi rst and second stages  

  Parameter  Estimate  St. Error  

  1st Stage: Outcome = COLLEGE   
  INTERCEPT     α  0       0.2494    ∗  ∗  ∗      0.0283  
  DISTANCE     α  1       –0.0144     ∗  ∗  ∗       0.0016  
  NUMBER     α  2       0.0575     ∗  ∗  ∗       0.0081  
  BLACK     α  3       –0.1451     ∗  ∗  ∗       0.0409  
  HISPANIC     α  4       –0.2967     ∗  ∗  ∗       0.0340  
  OTHERRACE     α  5       0.0833  0.0627  

  2nd Stage: Outcome = REGISTER   
  INTERCEPT     β  0       0.0005  0.1125  
  COLLEGE     β  1        0.7799      ∗  ∗  ∗       ,      †      0.1855  
  BLACK     β  2       0.1810     ∗  ∗  ∗       0.0434  
  HISPANIC     β  3       0.0876      0.0396  
  OTHERRACE     β  4       –0.2952     ∗  ∗  ∗       0.0620  
 Model   χ  2( df  = 33)  312.6     ∗  ∗  ∗       

   ∼  p  <0.10;  ∗   p  <0.05;  ∗  ∗   p  <0.01;  ∗  ∗  ∗   p  <0.001  
   † One-sided test  .
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good instruments. The fi rst is a thorough understanding of the relevant 
substantive theory relevant to the problem. For example, economic 
theory posits that students and their families compare the benefi ts and 
costs of available alternatives in deciding whether to enroll in an educa-
tional program. Consequently, any variable that affects either costs or 
benefi ts — for example, the length of the home-to-school commute — may 
affect the investment decision, and therefore be a potential instrument. 

 The second type of important knowledge concerns the setting in which 
the data for the study were, or are being, obtained. The better your under-
standing of the institutions and policies in the settings from which your 
data come, the stronger the position you will be in to fi nd and defend an 
appropriate instrumental variable. For example, understanding the ratio-
nale that government agencies used in deciding how many schools or 
colleges to build during a particular time period, and where to place them, 
can be important in defending measures of the proximity of educational 
institutions as legitimate instruments for predicting the amount of educa-
tion young people acquire. Also, knowledge of institutional rules, such as 
the minimum school-starting age and the minimum school-leaving age 
in particular settings, may suggest that the timing of a child’s birth 
will provide a useful instrument for predicting educational attainment. 
We explain these kinds of arguments below. 

 In the next subsections, we describe three types of instruments that 
have been used effectively by social scientists to address questions of edu-
cational policy. We illustrate each type of instrument using evidence from 
a high-quality research study. For each study, we list the principal research 
question, the population that was studied, the variable chosen as the out-
come, the potentially endogenous question predictor, the instrument(s), 
and the fi ndings from the study. We then comment on the threats to 
internal validity that are common with each type of instrument — that is, 
the challenges to the assumption that the instrument satisfi es the “no 
third path” assumption, and to the requirement that it predicts the 
outcome in the fi rst-stage equation strongly.    

   Proximity of Educational Institutions   

 Variables that describe participants’ proximity to relevant educational 
institutions are often used as instruments in the hope of carving out exog-
enous variation in educational attainment. As we noted earlier, the logic 
underlying their use is that, holding other things constant, the shorter 
a potential student’s commute to the nearest appropriate educational 
institution, the lower the cost of enrollment and the higher the ensuing 
attainment. The variation in educational attainment predicted by using 
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distance as an instrument can then be argued to be exogenous, providing 
that participants’ geographic placement around the institutions are 
themselves distributed exogenously. Janet Currie and Enrico Moretti’s 
(  2003  ) study of the impact of college enrollment on women’s subsequent 
parenting skills provides a compelling example of the use of this type of 
instrument. 

 There are three major threats to the internal validity of instruments 
that utilize research subjects’ geographical access to educational institu-
tions. The fi rst is that educational institutions are often placed in 
communities populated by families with a high demand for education 
and, potentially, with unmeasured attributes, such as motivation, that 
would result in above-average life outcomes, such as labor-market earn-
ings. The second is that colleges are placed in communities with 
high-quality public services, such as hospitals, that affect residents’ life 
outcomes. The third is that families with high demand for educational 
services (and potentially with unmeasured attributes that contribute to 
subsequent above-average life outcomes) choose to live near appropriate 
educational institutions. Any of these scenarios could lead to a “third 
path” that permits the measure of proximity to impact a participant’s 
subsequent life outcomes directly and therefore invalidates the use of the 
potential instrument. 

 Currie and Moretti (  2003  ) demonstrate how the creative use of rich 
datasets allows researchers to respond to such threats to validity. The 
research question that they address is whether increasing the attainment 
of post-secondary education for women has a causal impact on the health 
of the children they bear. The authors concluded that this was indeed the 
case. In particular, they found that increasing maternal education reduced 
the probability that a woman’s fi rst child would be born prematurely or 
with very low birth weight (both of which are indicators of subsequent 
health problems for the child). They also found that increasing maternal 
education led to greater use of prenatal care (a positive predictor of 
infants’ health) and reduced the probability that women smoked during 
pregnancy (a negative predictor of infants’ health). 

 The data that Currie and Moretti used in their research came from the 
birth certifi cates of virtually all children born in the United States in the 
years from 1970 to 1999. These records contain information about a vari-
ety of birth outcomes, including birth weight and gestational age. They 
also contain information on the number of years of schooling that each 
mother had completed at the time of the birth of her child, when she 
began prenatal care during her pregnancy, whether she smoked during 
the pregnancy, and the county in which the child was born. The number 
of years of schooling that the mother had completed, as of the date of the 



Instrumental-Variables Estimation 255

birth of her fi rst child, constituted the endogenous question predictor in 
Currie and Moretti’s second-stage model. To be reasonably sure that the 
women had completed their formal education by the time of their fi rst 
child’s birth, Currie and Moretti restricted their sample to women who 
were between the ages of 24 and 45 when their fi rst child was born. 

 Currie and Moretti knew that using OLS regression methods to fi t a 
statistical model that specifi ed the health of the fi rst child as a function of 
the mother’s educational attainment would not provide unbiased causal 
evidence that a mother’s education affected her child’s birth outcomes. 
The reason is that women who have relatively high educational attain-
ments are likely to differ from those with relatively low educational 
attainments along many unmeasured dimensions, such as motivation, 
that may also affect their children’s birth outcomes. The unmeasured dif-
ferences among women with different educational attainments could 
then result in a spurious relationship between a mother’s educational 
attainment and the health of her fi rst child. Thus, Currie and Moretti 
recognized the need to fi nd a credible instrument that they could use to 
carve out an exogenous portion of the potentially endogenous variation 
in a mother’s educational attainment. To do this, they collected informa-
tion on the number of four-year colleges and the number of two-year 
colleges per 1,000 residents, aged 18–22, that were present in each county 
in the United States in each year from 1940 through 1996. They then 
made the critical assumption that all women in the sample lived in the 
same county when they were 17 years of age that they lived in when their 
fi rst child was born. This assumption allowed Currie and Moretti to merge 
the data on the availability of two- and four-year colleges in each woman’s 
home county in the year in which she was 17 years old with the data on 
the birth records of the woman’s fi rst child. They then used these mea-
sures of college proximity as instruments for women’s subsequent 
educational attainments. The instruments were strong. Currie and Moretti 
found that, for each additional four-year college per 1,000 college-aged 
residents in the county, the probability that a woman obtained a four-year 
degree before the birth of her fi rst child was 19 percentage points higher. 
For each two-year college per 1,000 college-aged residents in the county, 
the probability that a woman obtained some college credits before the 
birth of her fi rst child was 3.2 percentage points higher. 

 As mentioned earlier, Currie and Moretti faced three threats to the 
validity of these instruments. The fi rst was that perhaps colleges had been 
placed in counties in which demand for college was high. The second was 
that counties with good college availability also had good health facilities 
that contributed to good health outcomes for infants. Both of these pos-
sibilities posed threats to the validity of college proximity as a suitable 
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instrumental variable because they provided a plausible third path 
through which college availability may have had a direct impact on the 
health of newborns. Consequently, the authors used a variety of strate-
gies to respond to this threat. Of particular importance, they included — in 
both their fi rst- and second-stage models — the fi xed effects of the two-way 
interaction between county and the child’s year of birth. These fi xed 
effects absorbed all of the variation in mothers’ educational attainment 
and infants’ health outcomes that could be accounted for by the observed 
and unobserved attributes of the county (including the quality of the 
health facilities) the year in which the child was born. In other words, 
Currie and Moretti’s causal estimates of the impact of a mother’s educa-
tional attainment on her fi rst child’s birth outcomes stemmed solely 
from differences in the availability of educational services among differ-
ent cohorts of women bearing their fi rst child in the same county the 
same year. 

 Although the inclusion of this rich set of county-by-birth-year fi xed 
effects was important in refi ning the effect of, and defending, Currie 
and Moretti’s choice of instruments, the authors pointed out that it might 
still be the case that differences over time in the availability of colleges 
in a county could be a response to a growing demand for college enroll-
ment. This too would threaten the validity of Currie and Moretti’s 
instruments because an increase in the availability of colleges in a particu-
lar county could refl ect the in-migration of young women particularly 
motivated to obtain post-secondary education and also bear healthy chil-
dren. In response to this potential threat, Currie and Moretti showed that 
although the availability of colleges when a woman was 17 years of age 
predicted her educational attainment as of the date of her fi rst child’s 
birth, this was not the case for another variable that measured the avail-
ability of colleges when the woman was 25 years of age. This evidence is 
important in refuting the possibility that colleges were placed in counties 
where demand for college enrollment was growing. 

 The second major threat to the validity of instruments based on the 
proximity of educational institutions is that families with a strong demand 
for education may choose to live near schools or colleges. This was a 
particularly important threat to the validity of Currie and Moretti’s choice 
of instruments because, as mentioned earlier, they only knew the county 
in which the fi rst child had been born (from the birth record), not the 
county in which the woman had lived when she was 17 years of age, and 
they had assumed that the former was the same as the latter. On the other 
hand, it is possible that some women moved to a county with good college 
availability in order to enroll in post-secondary education and then 
remained in that county. If the same unmeasured attributes that led some 
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women to move to counties with abundant post-secondary educational 
facilities also led them to engage in the behaviors that resulted in their 
giving birth to healthy children (such as obtaining good prenatal care and 
not smoking during pregnancy), measures of the availability of post-
secondary institutions would not be legitimate instruments. The reason is 
that such mobility would create a direct “third path” that linked availability 
of post-secondary educational institutions to children’s health outcomes. 

 Currie and Moretti conceded that “endogenous mobility” was the pri-
mary threat to the validity of their instruments. To assess the severity of 
this threat, they also fi tted their fi rst-stage model using information on 
women from the National Longitudinal Survey of Youth (NLSY) dataset 
who had borne a child by 1996. The advantage of this dataset is that it 
provides information on the county in which each woman lived when she 
was 14 years of age. This allowed Currie and Moretti to fi t a version of 
their fi rst-stage model in which they predicted a woman’s educational 
attainment in 1996 (when the youngest women in the NLSY dataset were 
32 years of age) as a function of the availability of colleges in the county 
the year in which the woman was 14 years of age. Fitting the fi rst-stage 
model with data from this sample of NLSY women produced estimates of 
the impact of the instruments on women’s educational attainment that 
were very similar to those that the authors obtained in their primary 
dataset. Thus, this pattern supported Currie and Moretti’s argument that 
endogenous mobility was not a major threat to the validity of their 
research strategy. 

 In summary, by using rich data from a variety of sources, Currie and 
Moretti were able to muster a compelling defense of the suitability of 
their measures of college proximity as credible instruments for women’s 
subsequent educational attainments. Particularly important was the con-
struction of a dataset that contained information on the fi rst births of 
children to women aged 24–45 in particular counties in the United States 
over an extended time period.     

   Institutional Rules and Personal Characteristics   

 A second type of instrumental variable that has been used to carve out 
exogenous variation in endogenous question predictors derives from the 
institutional rules embedded in educational systems. Angrist and 
Krueger’s (  1991  ) study of the impact of educational attainment on the 
subsequent weekly earnings of males in the United States provides an 
example of the use of this type of instrument. The authors point out 
that most states in the United States require that children begin school 
the calendar year in which they turn six years old. This means that, 
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if December 31 is the birth date cut-off, children who are born early in the 
calendar year enter school almost a year older than children who are born 
later. Most states also have compulsory schooling laws, and usually require 
students to remain in school until their 16th birthday. Thus, children 
whose birthdays fall early in the calendar year typically reach the age of 16 
one grade lower than children whose birthdays fall later in the school 
year. This pattern led Angrist and Krueger to hypothesize that “quarter of 
birth” — that is, whether the child was born in Spring, Summer, Fall, or 
Winter — provided a set of credible instruments for identifying exogenous 
variation in educational attainment. At any subsequent age, children 
who had been born in a later quarter in the calendar year would tend 
to have higher completed educational attainment. Furthermore, these 
differences would be arguably exogenous because they were simply a con-
sequence of the haphazard and idiosyncratic nature of birth timing. The 
authors applied their instruments in statistical models fi tted to data from 
the 1960, 1970, and 1980 censuses of the population. They included in 
their analytic samples males who were 30–39 years of age, and those who 
were 40–49 years of age, at the time they completed the relevant census 
questionnaire. 

 The outcome variable in Angrist and Krueger’s fi rst-stage model was 
the number of years of schooling that each male had completed as of the 
date of the relevant census. And, as you might expect, the predictor vari-
ables at this stage were of two types: (a) exogenous variables that also 
served as covariates in the second-stage model, and (b) instruments. The 
fi rst group included a vector of nine dichotomous variables to distinguish 
year of birth, and a vector of eight dichotomous variables that described 
region of residence. The instruments included three dichotomous vari-
ables that identifi ed the quarter of birth, and the interactions of these 
quarter-of-birth predictors with the year-of-birth predictors.   30  To confi rm 
their claim that the quarter of birth did indeed predict completed years 
of schooling, Angrist and Krueger demonstrated that, on average, men 
born in the fi rst quarter of a calendar year had completed about one-
tenth of a year less schooling by age-30 than men born in the last quarter 
of the calendar year. In their second-stage model, Angrist and Krueger 
used the exogenous variation in educational attainment that had been 
identifi ed at the fi rst stage to predict the logarithm of the men’s weekly 
labor-market earnings. They found that, on average, each additional year 
of education had caused a 10 %  increase in average weekly earnings. 

30.  To demonstrate the robustness of their results, Angrist and Krueger present 
coeffi cients estimated from fi tting fi rst- and second-stage models with a variety of 
specifi cations. 
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Of course, the authors were careful to point out that their estimate was a 
local average treatment effect (LATE) that pertained only to males who 
wanted to leave school as soon as they were old enough to do so. 

 Angrist and Krueger faced two threats to the validity of their instru-
ments. The fi rst is that there may have been intrinsic differences in the 
unobserved abilities of males who were born in different quarters of the 
calendar year. If this were the case, then there could be a “third path” that 
connected quarter of birth directly to subsequent labor-market earnings, 
invalidating the use of quarter-of-birth indicators as instruments. The 
authors responded to this potential threat in the following way. First, they 
argued that quarter of birth should not affect the completed years of 
schooling of males who had college degrees because the ultimate educa-
tional decisions of this group would not have been constrained by 
compulsory schooling laws. Thus, for college graduates, there should not 
even be any “ second  path” that related quarter of birth to labor-market 
earnings  through  the impact on educational attainment. Consequently, 
evidence that quarter of birth predicted the labor-market earnings of 
college graduates would suggest the presence of a third path, directly 
relating quarter of birth to the ultimate earnings outcome. The presence 
of such a third path would invalidate the quarter-of-birth instruments. 

 Angrist and Krueger used their data on 40 to 49-year-old male college 
graduates in the 1980 Census data to test for the presence of the direct 
“third path.” They achieved this by fi tting a single OLS regression model 
in which they treated the ultimate outcome, logarithm of weekly earn-
ings, as the outcome variable and all the fi rst-stage covariates and 
instruments as predictors. In the annals of IVE, this is called the  reduced-
form model , and it corresponds to the statistical model that is obtained by 
collapsing the fi rst-stage model into the second-stage model algebraically.   31  
After fi tting their reduced-form model, Angrist and Krueger conducted a 
test of the null hypothesis that the coeffi cients on the three quarter-
of-birth dichotomous predictors were jointly equal to zero. They failed 
to reject this null hypothesis. They found the same result when they 
repeated the exercise using data on 40 to 49-year-old college graduates 
taken from the 1970 Census. This evidence led them to conclude that 
there was no direct path relating quarter of birth to the weekly earnings 

31.  Recall that the endogenous predictor both appears in the second-stage model (as the 
question predictor) and is the outcome of the fi rst-stage model. Thus, you can take 
the right-hand side of the fi rst-stage model and substitute it for the endogenous pre-
dictor in the second-stage model, and simplify the resulting combination algebraically 
to leave a “reduced-form” model in which the ultimate outcome is regressed directly 
on the instruments and covariates. 
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of  college graduates . By analogy, they argued that this pattern would also 
hold true for males with lower completed years of schooling. This evi-
dence and logic were central to Angrist and Krueger’s argument that 
quarter-of-birth predictors satisfi ed the “no third path” requirement that 
was needed for an instrument to be legitimate.   32  

 The second threat to the validity of Angrist and Krueger’s instrumental-
variables strategy is that their instruments predicted only a very small part 
of the total variation in the endogenous question predictor, years of com-
pleted schooling. As a result, their analyses could have been subject to 
the weak-instrument problem. As explained earlier, one problem with the 
implementation of IVE using weak instruments is that the results of 
fi tting the second-stage model can be very sensitive to the presence in the 
point-cloud of even relatively few aberrant data points. Thus, IVE with 
weak instruments can produce substantially biased results, even when the 
analytic samples are very large (Bound, Jaeger, & Baker,   1995  ; Murray, 
  2006  ). 

 Angrist and Krueger’s response to the weak-instrument threat was to 
check whether they did indeed have a problem. They conducted tests of 
the null hypothesis that the coeffi cients on the three quarter-of-birth 
dummy variables in their fi tted fi rst-stage model were jointly equal to 
zero. (Recall that this is the model in which the men’s years of completed 
schooling is the outcome variable.) As reported in Table 1 of their 1991 
paper, they were able to reject this null hypothesis when they fi t the fi rst-
stage model to data on a sample of 30 to 39-year-old males ( F  = 24.9; 
 p  <0.0001) and to data from a sample of 40 to 49-year-old males ( F  = 18.6; 
 p  <0.0001), both samples taken from the 1980 Census. They presented 
these test results as evidence that their IV estimations did not suffer from 
a weak-instrument problem.   33      

32.  Several studies published after the appearance of the Angrist and Krueger (1991) 
paper provide evidence that season of birth affects adult life outcomes through mech-
anisms other than via the effect of compulsory-schooling laws. See, for example, 
Bound and Jaeger (2000), and Buckles and Hungerman (2008). 

33.  Bound, Jaeger, and Baker (1995) argued that Angrist and Krueger’s defense of their 
instruments was inadequate for two reasons. First, they did not fi nd convincing 
Angrist and Krueger’s defense of the “weak instrument” threat, pointing out that the 
values of the  R  2  statistic from Angrist and Krueger’s fi rst-stage regressions were 
extraordinarily low. Second, Bound and his colleagues questioned whether the quarter-
of-birth instruments that Angrist and Krueger used in their 1991 paper satisfy the “no 
third path” assumption. 
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   Deviations from Cohort Trends   

 A third type of instrument that a number of scholars have used in educa-
tional policy research consists of estimates of deviations from smooth 
population trends. Caroline Hoxby’s (  2000  ) study of the causal impact of 
class size on student achievement in Connecticut schools provides a good 
example of the use of this type of instrument. Hoxby collected data on 
enrollment and class size, by grade level, for all elementary schools in 
Connecticut each year from 1974 through 1997. She also collected data 
on average student achievement, by grade, at the school level for the years 
1992 to 1997 and by grade aggregated to the school district level from 
1986 to 1997. She explained that it was not appropriate to use variation in 
class size across classrooms or schools at a single point in time to estimate 
the causal impact of class size on student achievement. The reason is that 
class sizes are infl uenced by the decisions of parents about the school 
attendance zone in which they choose to live and by the decisions of 
school administrators about the assignment of students to classes. One 
result of such decisions is that students in classes of different sizes may 
differ in unobserved ways that affect student achievement. 

 However, Hoxby argued that the availability of panel data on grade-
level enrollments in individual schools over a 24-year period provided a 
solution to the endogenous class-size problem. She began by explaining 
that class size in any grade of a particular school depended on two things. 
The fi rst were long-term and potentially endogenous school enrollment 
trends. The second were natural idiosyncrasies in birth timing that 
resulted in some school- and grade-specifi c enrollment cohorts being ran-
domly larger or smaller than would be anticipated from the underlying 
smooth long-term trends. In other words, Hoxby argued that  deviations 
from the long-term trends  represented exogenous shocks in school-specifi c 
grade-level enrollments that could be used as a legitimate instrument for 
grade-level class size. 

 This line of reasoning led Hoxby to a three-phase estimation strategy. 
First, she fi tted models that predicted the logarithm of grade-level enroll-
ment in each school as a fourth-order polynomial function of year. These 
then were her models of the smooth long-term trends, by school. Second, 
she collected the residuals from each model, arguing that they repre-
sented the exogenous variation in the logarithm of enrollment for that 
school. Third, implementing her IVE, she used these residuals as instru-
ments for the logarithm of class size in her fi rst-stage model. The outcome 
in her second-stage model was a measure of average student achievement 
in each school and year. She found that the obtained residuals did indeed 
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predict the logarithm of class size quite well at the fi rst stage.   34  However, 
the exogenous portion of class size that was thereby carved out ended up 
having no causal impact on student achievement. She concluded that 
there was no causal relationship between class size and student achieve-
ment in her data. Hoxby defended her null fi nding by arguing that it was 
most likely that this idiosyncratic year-to-year variation in class size would 
be unlikely to lead teachers to change their instructional patterns in a 
manner that would affect student achievement. 

 The primary threat to the validity of Hoxby’s choice of instrument is 
the possibility that her residual deviations from the smooth underlying 
enrollment trends were not simply a consequence of idiosyncrasies in the 
timing of births, but rather stemmed from purposeful actions by families 
that could also result in a “third path” that connected the values of the 
instrument to the ultimate levels of student achievement directly. For 
example, perhaps entrepreneurial parents who learned that their child 
was about to be placed in a large class could have transferred their child 
to another school in the same school district, moved to another school 
district, or sent their child to a private school. If the parents who responded 
in this way were those who also devoted a particularly large amount of 
time and resources at home to improving their child’s achievement, these 
responses would create a direct third path that linked the enrollment 
deviations to children’s achievement. 

 Hoxby presented four arguments in defense of her choice of instru-
ment. First, she pointed out that the coeffi cients on the time predictors in 
her fourth-order polynomial enrollment model captured virtually all the 
smooth time trends, even the quite subtle ones. Consequently, it is highly 
likely that the residuals from these fi tted curves (which served as her 
instrument) were indeed the results of idiosyncratic events. Second, she 
argued that even if the idiosyncratic variation did refl ect the purposeful 
actions of a few families choosing one school over another, it is likely that 
the families would be choosing  among  public schools  in a particular district . 
She then showed that the results of fi tting her fi rst- and second-stage 
models remained essentially the same when she refi tted them on data 
that had been aggregated to the district level. Third, Hoxby refi t the 
models from which she had derived her instrumental residuals, this time 
using data on the number of children in each district who were aged 
fi ve on the school-entry date as her outcome variable, instead of the com-
plete grade-level enrollment in the district. Replicate analyses using these 

34.  As reported in Table III (p. 1270) of Hoxby’s (2000) paper, the  t -statistics on the instru-
ment in her fi rst-stage regressions ranged in value from roughly 4 to 80, depending on 
the grade level and model specifi cation. 
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new residuals as instruments produced the same results — no causal impact 
of class size on student achievement. The logic underlying this sensitivity 
analysis is that it removes any bias resulting from the actions of those par-
ents who might have responded to large class sizes by moving to another 
school district (after the child was aged fi ve) or by choosing a private 
school for their child. Fourth, Hoxby estimated the impact of class size on 
student achievement in her Connecticut sample using a second estima-
tion strategy that was totally independent of her “residuals as instruments” 
strategy. This second strategy was similar to that used by Angrist and Lavy 
in the Maimonides’ rule paper, which we described in Chapter 9. Hoxby 
found that this second set of estimates of the class-size effects on student 
achievement was virtually identical to the results that she had obtained 
using her fi rst strategy. She argued that this supported her case that the 
threats to the validity of her fi rst strategy were not compelling.     

   The Search Continues   

 The three types of instrumental variables that we have described in this 
section are among the most commonly used in the investigation of the 
causal impact of educational policies on academic outcomes. One reason 
is that they are relatively easy to understand and, through extensive use, 
they have acquired a considerable amount of face validity. The second 
reason is that, as we saw above, talented researchers have been able to 
present a variety of credible arguments to support the appropriateness of 
these types of instruments in particular settings. Indeed, defending the 
credibility of the instruments is usually the most diffi cult challenge in 
implementing an IVE strategy. The authors of each of the papers described 
in the previous sections went to great lengths to defend their instruments. 

 It is important to understand that the types of instruments described 
throughout this chapter are not the only ones that researchers have found 
useful. Indeed, creative researchers suggest new potential instrumental 
variables frequently, a few of which skeptical critics fi nd compelling, and 
many not so compelling. And so, the search continues. 

 We have purposefully omitted from the discussion in this chapter two 
types of instruments that have been used very convincingly in many of the 
most important educational-policy studies of causal effects. These are 
instruments that describe the original assignment to experimental condi-
tion among participants in both random-assignment and natural 
experiments. In both cases, participants so assigned may contravene their 
assignments subsequently, thereby rendering their treatment status 
endogenous. However, because the original random assignment of 
participants to experimental conditions is known, it can be used as an 
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instrument for carving out the exogenous variation in treatment take-up, 
despite the interference of the endogenous participant choices. This is 
a very powerful idea, because it is easy to argue persuasively that such 
instruments uphold the “no third path” assumption that has rendered 
other applications of IVE less than credible. We describe this use of 
 original random assignment as instrument  in the following chapter.      

   What to Read Next   

 The literature on instrumental-variables estimation is large and continues 
to grow. Angrist and Krueger’s   2001   paper “Instrumental Variables and 
the Search for Identifi cation: From Supply and Demand to Natural 
Experiments,” provides a brief yet illuminating history of the develop-
ment of the IVE approach, from its inception in research on agriculture 
to its growing use in research that capitalizes on the occurrence of natu-
ral experiments. Chapter 4 of Angrist and Pischke’s  Mostly Harmless 
Econometrics  (  2009  ) and Chapter 7 of Morgan and Winship’s  Counterfactuals 
and Causal Inference  (  2007  ) provide insightful descriptions of the strategy 
and cautions about its pitfalls.   
                                                                                               



265

                                             11  

 Using IVE to Recover the 
Treatment Effect in a 
Quasi-Experiment        

       An important educational-policy issue in many developing countries is 
how to increase children’s educational attainments effi ciently. The con-
ventional strategy has been to build and staff more public schools that 
either charge no fees or set fees well below those charged by private 
schools. However, concerns about costs and about the low quality of the 
public schools that typically serve children from low-income families have 
led some countries to try an alternative — namely, to provide families with 
fi nancial aid to send their children to private schools. Colombia, for 
example, has pursued this policy option. 

 In 1991, the Colombian government introduced a program known by 
its acronym, PACES, which offered scholarships to students living in low-
income neighborhoods to help pay for education at private secondary 
schools.   1  The goal of the PACES program, which ended in 1999, was to 
increase the educational attainments and skills of low-income students. 
The description of the program that we provide pertains to 1998, the date 
when data for an evaluation of the program were collected. In that year, 
the scholarships were worth about $200 annually, an amount that covered 
approximately 60 %  of the average annual tuition at participating private 
schools. About half of the nation’s private secondary schools accepted 
the government-provided scholarships, and those that did not tended to 
be schools that charged relatively high tuitions and served primarily stu-
dents from high-income families. Secondary school in Colombia begins 

1.  PACES is the acronym for Programa de Ampliación de Cobertura de la Educación 
Secundaria, which means Program to Increase Coverage of Secondary Education. 
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in the sixth grade and ends in the eleventh. Recipients of the PACES 
scholarships could renew them through eleventh grade so long as their 
academic progress was suffi cient to merit promotion each year to the next 
grade. 

 The PACES program was administered by local governments, which 
covered 20 %  of the cost. The other 80 %  was covered by the central gov-
ernment. In many locales, including the capital city of Bogotá, demand 
for the secondary-school scholarships exceeded supply. This led local gov-
ernments, including Bogotá’s, to use lotteries to determine which children 
were offered scholarships. To be eligible for the government scholarship 
lottery in Bogotá, a child had to live in a designated low-income neighbor-
hood, have attended a public primary school, and have been accepted at 
a private secondary school that participated in the PACES program. 

 The evaluators of the Colombia secondary-school voucher program, a 
group that included Joshua Angrist, Eric Bettinger, Erik Bloom, Elizabeth 
King, and Michael Kremer (2002), started out by addressing the following 
question: Did the  offer  of a PACES scholarship increase students’ educa-
tional attainments? The evaluators hypothesized that there were several 
mechanisms through which this might be the case. First, some low-income 
families that wanted to send their child to a private secondary school 
could not have afforded to do so (at least for very long) in the absence of 
a scholarship. A second is that availability of a scholarship would allow 
some parents who might have sent their child to a private secondary 
school in any case to upgrade to a better (and more expensive) private 
school. A third is that the condition that renewal of the scholarship was 
contingent on promotion would induce some students to devote more 
attention to their studies than they otherwise would have.   2  

 You, the careful reader, will recognize from Chapter 4 that you already 
know how to make use of information from a fair lottery to answer a 
research question about the impact of an offer of a scholarship from the 
PACES program. The lottery created two exogenously assigned groups: 
(a) a treatment group of participants who were offered a scholarship, and 
(b) a control group of participants who were not offered a scholarship. 
Using standard ordinary least-squares (OLS)-based regression methods 
on the sample of students who participated in the 1995 Bogotá lottery, 
the investigators found that the offer of a government-provided scholar-
ship increased the probability that a student from a low-income family 

2.  The Angrist et al. (2002) paper explains how the authors used their hypotheses about 
the mechanisms underlying the program effects to inform their empirical work. 
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completed eighth grade within three years of starting secondary school 
by slightly more than 11 percentage points.   3  Obtaining this unbiased 
estimate of the causal impact of the offer was important to educational 
policymakers, who needed to decide whether the PACES scholarship 
program was a good use of scarce public resources.     

   The Notion of a “Quasi-Experiment”   

 Angrist and his colleagues also wanted to address a second research ques-
tion: Does the  use  of fi nancial aid to pay for secondary school increase the 
educational attainments of low-income students? There are two reasons 
why this second question differs from the fi rst. One reason is that not all 
of the low-income families that won the lottery and were offered a govern-
ment scholarship chose to use it. The second is that some families that 
lost out in the lottery were successful in fi nding fi nancial aid from other 
sources. The challenge is to fi nd a way to obtain an unbiased estimate of 
the answer to this second research question. 

 It is important to keep in mind that Angrist and his colleagues’ second 
research question concerns the consequences of obtaining  and  making 
use of fi nancial aid, not the consequences of attending a private school. 
The distinction is important because almost all students who participated 
in the PACES lottery, even those who were not awarded a PACES scholar-
ship, enrolled in a private secondary school for grade 6. This is not 
surprising, given that a condition for eligibility for the PACES lottery was 
that students had to have been accepted by a private secondary school 
that participated in the PACES program. As mentioned earlier, some of 
the families that lost out in the PACES lottery were able to obtain fi nan-
cial aid from another source to help pay their child’s private-school fees. 
Some families that lost out in the PACES lottery paid the private-school 
fees out of their own resources. However, many of these families were 
unable to pay the private-school fees in subsequent years and consequently 
their children left private school. 

3.  The estimates reported in the Angrist et al. (2002) paper range between 9 and 11 
percentage points, depending on the covariates included in the statistical model. 
The fi gure that we report here comes from an OLS-fi tted regression model in which 
the outcome was a dichotomous variable indicating whether a student had completed 
eighth grade by 1998, and the single predictor was a dichotomous variable that took on 
a value of 1 for students who were offered a government scholarship in the 1995 Bogotá 
lottery. 
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 The challenge that Angrist and his colleagues faced was to fi nd a way to 
obtain an asymptotically unbiased estimate of the causal impact of the use 
of fi nancial aid on children’s subsequent educational attainment when 
the  offer  — but not the  use  — of fi nancial aid had been assigned randomly. In 
what follows, we reorient our account of the evaluation of the PACES 
scholarship program in Colombia to show how to answer this second 
research question. Rather than regard the PACES lottery in Bogotá as a 
randomized experiment designed to assess the causal impact of the offer 
of a government scholarship on subsequent educational attainment, we 
will regard it as a “fl awed” (i.e., nonrandomized) experiment to assess the 
impact of the  use  of scholarship aid from any source. In other words, in 
our subsequent descriptions, the treatment of interest will be the use of 
scholarship aid from any source. Seen from this perspective, the assign-
ment of participants to experimental conditions — that is, to a treatment 
group that made use of fi nancial aid or to a control group that did not 
make use of fi nancial aid — was tainted by self-selection. Thus, using the 
term we defi ned in Chapter 3, we will refer to the evaluation of the 
Colombia PACES program as a  quasi-experiment  to investigate the impact 
of the use of fi nancial aid on educational attainment, rather than as a 
randomized experiment examining the impact of the offer of a PACES 
scholarship. 

 As we explained in Chapter 3, it was not so long ago that researchers tried 
to eliminate potential biases in their analyses of such quasi-experimental 
data by incorporating large numbers of covariates into their OLS regres-
sion analyses in the hope of “controlling away” the differences due to 
selection into the treatment and control groups. However, as we hope is 
now clear, this strategy is unlikely to be successful because students whose 
families took advantage of fi nancial aid may have differed from those that 
did not in many unobserved ways. For instance, parents who made use of 
fi nancial aid may have placed an especially high value on education, 
regardless of whether they were assigned a government-provided scholar-
ship or not. Such a family value system may then have led to enhanced 
family support for the child’s education and eventually to greater educa-
tional attainment, irrespective of any impact of the use of fi nancial aid. 
Then, in naïve OLS analyses of the quasi-experimental data, investigators 
would have attributed these achievement differences spuriously to the 
effect of the use of fi nancial aid unless all differences in relevant family 
values were controlled completely. Since many of the differences between 
the families that found and used fi nancial aid and those that did not were 
unobserved, it is unlikely that the use of OLS methods, even including a 
rich set of covariates, would provide an unbiased estimate of the answer 
to the research question.     
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   Using IVE to Estimate the Causal Impact of a Treatment 
in a Quasi-Experiment   

 As we intimated in the previous chapter, instrumental-variables estima-
tion (IVE) provides a powerful way to analyze such quasi-experimental 
data. The approach is simple: treat the original exogenous  offer  of a PACES 
scholarship as an instrument for the potentially endogenous question 
predictor,  use  of fi nancial aid, and apply IVE to obtain an asymptotically 
unbiased estimate of the causal impact of use of fi nancial aid on the ulti-
mate outcome, educational attainment. The logic is also straightforward. 
First, the offer of a government-provided scholarship by fair lottery was 
clearly random and exogenous. It undoubtedly had an impact on the deci-
sion of at least some families to make use of fi nancial aid to pay for a 
child’s secondary-school education at a private school. In fact, we can con-
fi rm this relationship from the data themselves. Ninety-two percent of the 
students who were winners in the lottery made use of fi nancial aid to pay 
the tuition at private secondary schools, compared to 24 %  of the losers in 
the lottery. So, the instrument and potentially endogenous question pre-
dictor are clearly related, providing the “fi rst path” that is the initial 
important condition required for successful IVE. Second, the random 
receipt of a PACES scholarship is likely to affect a student’s subsequent 
educational attainment only through its effect on the probability that a 
family made use of fi nancial aid to pay for a child’s tuition at a private 
secondary school. So, there is “no third path” — no  direct  impact of the 
random receipt of a PACES scholarship on subsequent educational 
attainment — as credible IVE also requires. 

 In what follows, we illustrate this new analytic strategy, using a subset 
of the data that Angrist and his colleagues used in their study of the 
PACES program. These data pertain to low-income students from the 
capital city, Bogotá, who were in fi fth grade in 1995. For our outcome, 
we have chosen a measure of educational attainment, the dichotomous 
variable  FINISH8TH , which takes on a value of 1 for students who had 
completed grade 8 by 1998, and a value of zero for those who had not. We 
present descriptive statistics on this outcome in Table   11.1  . Notice that 
almost 70 %  of all children in our sample fi nished grade 8 on time. In the 
table, we also present descriptive statistics on our other two important 
variables. The fi rst is  USE_FIN_AID , a dichotomous variable that takes on 
a value of 1 for a child whose family used fi nancial aid from any source to 
help pay for tuition at a private secondary school at any time during the 
years 1995–1998; 0, otherwise. We treat this variable as the potentially 
endogenous question predictor in our analyses of the quasi-experiment 
to evaluate the impact of fi nancial-aid use on educational attainment. 
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Notice that about 58 %  of the students in our subsample did make use of 
fi nancial aid for at least one year during the three-year period under study. 
The second variable listed is also dichotomous, and we have named it 
 WON_LOTTRY . Under our new quasi-experimental conception of the 
Bogotá evaluation, this randomized offer of a government PACES schol-
arship is now an expression of the investigators’  intent  to provide fi nancial 
aid, and is exogenous by randomization.  WON_LOTTRY  therefore has a 
value of 1 for students who won the lottery and were offered a govern-
ment scholarship, and a value of 0 for students who lost out in the lottery. 
In our subsample of children from Bogotá who participated in the 1995 
lottery, almost 51 %  of participants were assigned randomly to receive an 
offer of a government scholarship. Finally, in Table   11.1  , we present paral-
lel descriptive statistics on two other variables measured at baseline: 
(a)  BASE_AGE , which measures the child’s age (in years) on the date of the 
lottery, and (b)  MALE , a dichotomous indicator that takes on a value of 
1 for a male child, 0 for a female. We treat  BASE_AGE  and  MALE  as cova-
riates in our instrumental-variables analysis, using the strategies described 
in the previous chapter to improve the precision of our estimates.  

 In the remaining columns of Table   11.1  , we provide descriptive statis-
tics on outcome  FINISH8TH , potentially endogenous question predictor, 
 USE_FIN_AID , and covariates  BASE_AGE  and  MALE  for the subsample 
of children who were offered a PACES scholarship ( WON_LOTTRY  = 1), 

      Table 11.1  Sample means (and standard deviations, where appropriate) on the outcome 
variable, question predictor, instrument, and covariates, for a sample of students from 
Bogotá, Colombia, who participated in the 1995 lottery to obtain a government-funded 
private-school tuition scholarship, overall and by whether the child was offered fi nancial aid  

  Variable  Sample 
Mean 

 Sample Mean   p -value 
(testing equality 
of pop. means)      WON_LOTTRY  = 1   WON_LOTTRY  = 0 

 ( n  = 1,171)  ( n  = 592)   n  = 571 

Outcome:
   FINISH8TH   0.681  0.736  0.625  0.000  

Endogenous Question Predictor:
   USE_FIN_AID   0.582  0.915  0.240  0.000  

Instrument:
   WON_LOTTRY   0.506  –  –  –  

Covariates:
   BASE_AGE   12.00  11.97  12.04  0.42  

 (1.35)  (1.35)  (1.34)  
   MALE   0.505  0.505  0.504  0.98  
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and for the subsample of children who were not ( WON_LOTTRY  = 0). 
We have also added a fi nal column that contains the  p -value from a  t -test 
of the null hypothesis that the population means of each variable do not 
differ between those children who received the offer of a PACES scholar-
ship and those who did not. Notice the interesting similarities and 
differences between the two groups, which ultimately drive the success of 
our instrumental-variables estimation. For instance, on average, age on 
the lottery date is the same in the two groups at baseline, as is the percent-
age of male students, as you would expect because the groups were formed 
by the random assignment of a tuition offer. After three years, however, 
there is about an 11 percentage point difference favoring the group that 
was offered PACES scholarships in the percentage of students who had 
completed grade 8. Notice that there are also statistically signifi cant differ-
ences in the average value of the potentially endogenous question predictor, 
 USE_FIN_AID , between the two groups. As mentioned earlier, almost 92 %  
of the students who were offered a government scholarship used fi nancial 
aid to pay private-school fees, whereas only 24 %  of students who lost out 
in the lottery did so. This confi rms, as we suspected, that there is a strong 
relationship between our potential instrument,  WON_LOTTRY , and our 
suspect and potentially endogenous question predictor,  USE_FIN_AID.  
Therefore, we have met the fi rst condition for a credible instrument. 

 Under our new quasi-experimental framework for investigating the 
impact of use of fi nancial aid on students’ educational attainment, varia-
tion in our question predictor,  USE_FIN_AID , is potentially endogenous. 
Clearly, the choice of whether to use fi nancial aid (from any source) 
depends not only on the lottery outcome but also on the many unseen 
resources, needs, and objectives of the family, each of which may also 
impact the child’s subsequent educational attainment. Consequently, if 
we were to use OLS regression analysis to investigate the relationship 
between outcome  FINISH8TH  and question predictor  USE_FIN_AID  
(controlling for  BASE_AGE  and  MALE ), we would undoubtedly end up 
with a biased estimate of any causal effect. Instead, we have used the two-
stage least-squares (2SLS) approach to obtain an IV estimate of the 
relationship, using the exogenous assignment of  intent to treat , repre-
sented by  WON_LOTTRY , as our instrument. Our fi rst- and second-stage 
statistical models follow the pattern that we established in the previous 
chapter, as follows:
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 with the usual notation and assumptions. We have written these models 
to refl ect that, under 2SLS, the predicted values of potentially endoge-
nous question predictor  USE_FIN_AID  are obtained at the fi rst stage and 
used in place of the corresponding observed values at the second stage 
(with appropriate corrections to the standard errors).   4  We have also fol-
lowed our own earlier advice and included covariates,  BASE_AGE  and 
 MALE , in both the fi rst- and second-stage models. Finally, for pedagogical 
clarity, we have again adopted the simple linear-probability specifi cation 
for the fi rst- and second-stage models.  

 We provide estimates, corrected standard errors, and approximate  p -val-
ues for the model parameters, at both stages, in the upper and lower panels 
of Table   11.2  . In addition, in the two right-hand columns of the lower 
panel, we have included estimates of corresponding parameters from a 
naïve OLS regression analysis of  FINISH8TH  on the potentially endoge-
nous question predictor  USE_FIN_AID , again controlling for  BASE_AGE  
and  MALE , for comparison.   5  Much of the table confi rms what we already 
suspected from examining the descriptive statistics in Table   11.2  .  

4.  As we noted in the previous chapter, if we had adopted a simultaneous-equations mod-
eling (SEM) approach to conducting this IVE, we would have specifi ed the models 
slightly differently, retaining  USE_FIN_AID  as the question predictor at the second 
stage, but permitting the fi rst- and second-stage residuals,  δ  and  ε , to covary in the 
population. 

5.  In our quasi-experimental example, the endogenous question predictor and instru-
ment are both dichotomous. Under this condition, our original method-of-moments 
IV estimator reduces to a conceptually interesting form. Ignoring the effects of addi-
tional covariates, Equation 10.10 states that the population slope of the regression of 
outcome  Y  on potentially endogenous predictor  X  is a ratio of population covariances 
with instrument,  I :
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  Because instrument  I  is a dichotomy — with values of 1 and 0, say — this ratio of covari-
ances reduces to a ratio of  differences in means , conditional on the values of  I :
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  Because endogenous predictor  X  is a dichotomy, its averages are  proportions , and so the 
denominator can be further simplifi ed:

   
( ) ( )

| 1 | 0 
1| 1 1| 0

Y I Y I
YX p X I p X I

m m
b = =−

=
= = − = =

    
  This result has an interesting interpretation. First, the numerator is the difference in 

outcome means between subpopulations defi ned by the values of the instrument, 
1 and 0. In our Colombia tuition-voucher example, for instance, it is the difference in 
outcome means between the subpopulation that received an offer of a scholarship and 
the subpopulation that did not. It is the population effect of  intent to treat  (ITT). Second, 
the denominator is the difference between subpopulations for whom  I  = 1 and  I  = 0, 
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in the  proportions of participants  for whom the endogenous predictor takes on a value of 1. 
In our Colombia tuition-voucher example, this is the difference between the “offer” 
and “no-offer” groups in the  proportion  of children who made use of fi nancial aid from 
any source. Combining these interpretations, we conclude that an asymptotically unbi-
ased estimate of the effect of using fi nancial aid on educational attainment can be 
obtained by rescaling the ITT estimate, using the difference in the sample proportion 
of children who made use of fi nancial aid, in each of the original randomized offer and 
no-offer groups. (This is called a  Wald estimator , after the eminent statistician, Abraham 
Wald.) This conclusion continues to hold when additional exogenous covariates are 
included, except that the effects of the new covariates must be partialed from the con-
ditional averages being divided above. Including the additional covariates in the fi rst 
and second stages of the 2SLS procedure achieves the conditioning automatically. 

      Table 11.2  Instrumental-variables (2SLS) and naïve OLS estimates of the impact of use 
of fi nancial aid on on-time graduation from grade 8, among low-income students from 
Bogotá, controlling for student gender and baseline age  

   First Stage: Outcome = USE_FIN_AID   

 Parameter Estimate  Standard Error  

INTERCEPT   0.433    ∗  ∗  ∗      0.095  
Instrument:   
   WON_LOTTRY    0.675      ∗  ∗  ∗       0.021  
Covariates:   
   BASE_AGE   –0.015   ∼     0.008  
   MALE   –0.020  0.021  

R  2  Statistic  0.471  

Second Stage: Outcome = FINISH8TH  

 IV Estimates  Naïve OLS Estimates  

 Parameter 
Estimate 

 Standard 
Error 

 Parameter 
Estimate 

 Standard 
Error  

INTERCEPT   1.378    ∗  ∗  ∗      0.123  1.410    ∗  ∗      0.121  

Endogenous Question Predictor:  

   USE FSS INFF AIDII_ _�   0.159      ∗  ∗  ∗       ,      †      0.039  0.121    ∗  ∗  ∗      0.027  

Covariates:   
   BASE_AGE   –0.062    ∗  ∗  ∗      0.010  –0.063    ∗  ∗  ∗     ,    †     0.010  
   MALE   –0.085    ∗  ∗      0.027  –0.085    ∗  ∗      0.026  

R  2  Statistic  0.062  0.064  

∼ p  <0.10;  ∗  p  <0.05;  ∗  ∗  p  <0.01;  ∗  ∗  ∗  p  <0.001  
† One-sided test  .
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 From the upper panel, at the fi rst stage, we can examine the all-important 
fi rst path that links instrument  WON_LOTTRY  to the potentially endog-
enous question predictor,  USE_FIN_AID . Their relationship is strong and 
statistically signifi cant ( p  <0.001), and the fi tted probability that a child 
will use a scholarship is almost 68 percentage points higher among those 
who received the offer of a PACES government scholarship than among 
those who did not. Thus,  WON_LOTTRY  is confi rmed as a strong instru-
ment.   6  Notice, also, that covariate  BASE_AGE  has a negative relationship 
( p  <0.10) with the outcome variable, indicating that older children were 
somewhat less likely to make use of fi nancial aid than were those who 
were relatively young on the date of the lottery. 

 At the second stage (lower panel), we can examine the second path 
linking the predicted values of the potentially endogenous question pre-
dictor,  USE_FIN_AID , to children’s subsequent educational attainment. 
The results of the (biased) naïve OLS regression analysis suggest that the 
children whose families made use of fi nancial aid were 12 percentage 
points more likely to have graduated from secondary school by 1998 than 
those who did not make use of a scholarship. In contrast, our IV estimate 
is almost 16 percentage points, almost one-third larger than the biased 
OLS estimate. Notice that both covariates,  BASE_AGE  and  MALE , play a 
statistically signifi cant role at the second stage, reducing residual variance 
and increasing statistical power.     

   Further Insight into the IVE (LATE) Estimate, in the 
Context of Quasi-Experimental Data   

 In the Venn diagrams of our previous chapter, we pointed out that 
although IVE does indeed provide an asymptotically unbiased estimate of 
the impact of a question predictor on an outcome, it does so only within 
the “overlap”—that is, the covariation — of the instrument and question 
predictor. Consequently, IV estimates capitalize only on variation in the 
question predictor that “falls within” or is “sensitive to” variation in the 
instrument. Thus, we argued that an estimate of a treatment effect 
obtained by IV methods should be regarded as an estimated  local average 
treatment effect , or LATE. From a graphical perspective, this is not diffi cult 
to comprehend, as we can imagine ratios of covariances between corre-
sponding variables being obtained within ellipses of covariation carved 

6.  The  F -statistic associated with instrument,  WON_LOTTRY , in the fi rst-stage equation is 
very large indeed, with a value of 1,033. 
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out by the instrument. However, it is a little more diffi cult to understand 
what it means to say that the interpretation is credible within a corner of 
the real world in which participants’ values of the question predictor are 
sensitive to or covary with their values of the instrument. The empirical 
situation that is the focus of this chapter, in which we use randomly 
assigned intent to treat as an instrument for potentially endogenous entry 
into an actual treatment, leads to new insight into the practical interpreta-
tion of the LATE estimate. 

 In a quasi-experiment like the one we have described here, when the 
investigator’s original and randomly assigned intent-to-treat is revealed to 
the members of a population, there are several ways that each may 
respond. Some families will comply with the investigator’s intent and end 
up in the designated treatment or control group. Others may go their 
own way, insisting on choosing the experimental condition they prefer, 
irrespective of the group to which they were assigned by the lottery. 
It serves us well at this point to defi ne, label, and clarify these possible 
responses. Angrist, Imbens, and Rubin (  1996  ) provide a carefully crafted 
framework for thinking about possible  compliance styles  that such partici-
pants in an experiment may exhibit.   7  In Figure   11.1  , we present a simplifi ed 
version of this framework. In so doing, we abstract from some of the 
details of the way the PACES scholarship program actually worked.  

 Consider a situation in which researchers actually knew the population 
of students in Colombia who were eligible for PACES scholarships in 1995 
and who applied for these scholarships. Members of this population 
would have been students who lived in designated low-income neighbor-
hoods, who were attending the fi fth grade in a public elementary school, 
who had been accepted at a private secondary school that participated in 
the PACES scholarship program, and who applied for a PACES scholar-
ship. We will call this the population of eligible volunteers. Now assume 
that all of the students in this population were assigned randomly either 
to a group that was offered PACES scholarships or to a group that was 
not. Next, assume that a random sample of students was chosen from the 
population of eligible volunteers. In Figure   11.1  , we display the set of 
responses that members of the research sample might have elicited. 
Notice that in setting up and discussing this framework, we have stated 
that the members of the  population  of eligible volunteers  could have been  
fi rst designated as either potential “PACES scholarship” recipients or as 
potential “non-PACES scholarship” students before a random sample of 

7.  Our description of the use of IVE to identify causal effects within the context of Rubin’s 
causal model draws heavily on the lucid description provided by Gennetian and her 
colleagues in Chapter 3 of the 2005 book edited by Howard Bloom. 
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children was actually drawn from the population of eligible volunteers. 
The reason we did this is because, in what follows, we make an argument 
about this population, not about the sample.   8  

8.  The reason we abstract from the details of the administration of the 1995 PACES lot-
tery in Bogotá in presenting this framework is that we want to distinguish the population 
from the research sample. This distinction is not present in the Bogotá case because all 
members of the population of eligible volunteers in Bogotá participated in that PACES 
lottery. 

Population Member Assigned to:

“Always-Takers”

“Never-Takers”

“Compliers”
USE_FIN_AID = 1
(used financial aid
from some source)

USE_FIN_AID = 0
(did not use financial
aid from any source)

USE_FIN_AID = 1
(used financial aid
from some source)

USE_FIN_AID = 1
(used financial aid
from some source)

USE_FIN_AID = 0
(did not use financial
aid from any source)

USE_FIN_AID = 0
(did not use financial
aid from any source)

“PACES schol.
Offered”

WON_LOTTRY = 1

“PACES schol.
Not Offered”

WON_LOTTRY = 0

     Figure 11.1    Compliance styles in the population of students from Bogotá, by offer of a 
government private-school tuition voucher,  WON_LOTTRY  (1 = scholarship voucher 
offered; 0 = no scholarship voucher offered), and ultimate use of fi nancial aid, 
 USE_FIN_AID  (1 = used; 0 = did not use).    
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 At the top of the fi gure, labeling its columns, we designate population 
members’ actual (random) assignment to the intent-to-treat conditions: 
The fi rst column represents the subpopulation of students who were ran-
domly offered a PACES scholarship ( WON_LOTTRY  = 1), the second 
column represents the sub population who were not ( WON_LOTTRY  = 0). 
In our quasi-experiment, members of each of these two subpopulations 
could then make an individual decision either to accept the status to 
which he or she was assigned or not. For the subpopulation of children 
who were offered PACES scholarships, accepting their status meant that 
they chose to use fi nancial aid (so,  USE_FIN_AID  = 1). For the subpopula-
tion of children who were not offered PACES scholarships, accepting 
their status means that they did not make use of fi nancial aid from 
any source (so,  USE_FIN_AID  = 0). It is this decision about whether to 
make use of fi nancial aid or not that we regard as the treatment in our 
quasi-experiment. Bearing these choices in mind, we can classify each 
subpopulation member as one of three mutually exclusive groups, distin-
guished by their compliance or their lack of compliance with the intent 
of the lottery. We label members of these three compliance styles as 
(a)  compliers , (b)  always-takers , and (c)  never-takers . Any population of exper-
imental subjects may contain members of each of these classes, although 
in potentially different (and unknown) proportions. Their presence in the 
two offered-scholarship and not-offered-scholarship subpopulations is rep-
resented by the three cells in each of the two columns we have displayed. 

 In constructing the fi gure, we have established the heights of the respec-
tive cells to refl ect hypothetical proportions of each kind of participant 
that might be anticipated reasonably to occur in the population, and, of 
course, these proportions are the same in both the  WON_LOTTRY  = 1 
and  WON_LOTTRY  = 0 subpopulations because, in our thought experi-
ment, participants in the population were assigned randomly to these two 
conditions. We have chosen to make the largest proportion of partici-
pants into compliers, but there are also small proportions of always-takers 
and never-takers. In a practical quasi-experiment, of course, these exact 
population proportions are hidden from the investigator’s view, and are 
determined by unknown characteristics of the population members them-
selves. Nonetheless, the act of thinking through these alternatives in the 
framework provided by Angrist, Imbens, and Rubin (  1996  ) helps us 
understand exactly how the hidden choices made by participants can 
impact potential estimates of treatment impact. This, in turn, helps us to 
understand more deeply the consequences of IVE and the nature of the 
LATE estimator. 

 Now, let’s examine the three kinds of compliance style that participants 
may possess in any experimental design. First, there are the compliers. 
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In designing the research, we hope that there are a lot of these. Compliers 
are willing to have their behavior determined by the outcomes of the lot-
tery, regardless of the particular experimental condition to which they 
were assigned. Complying families who were assigned a PACES scholar-
ship use fi nancial aid to help pay their children’s school fees at a private 
secondary school; complying families who were not assigned a PACES 
scholarship do not make use of fi nancial aid from any source. The last two 
compliance styles in the Angrist, Imbens, and Rubin framework, labeled 
always-takers and never-takers, are also present potentially in empirical 
research. Always-takers are families who will fi nd and make use of fi nan-
cial aid to pay private-school fees regardless of whether they had been 
assigned a PACES government scholarship. Never-takers are their mirror 
image — they will not make use of fi nancial aid to pay children’s fees at a 
private secondary school under any circumstances.   9  

 What do these three categories of potential compliance style teach us 
about the interpretation of the instrumental-variables estimation of a 
LATE? They have no consequence if you are only interested in estimating 
and interpreting the causal effect of intent to treat (that is, the impact of 
the offer of a PACES scholarship). However, they are relevant if you want 
to know the impact on educational attainment of actually making use of 
fi nancial aid to pay private-school fees. The fi rst thing to keep fi rmly in 
mind is that, in any quasi-experiment, membership in these compliance 
classes is hidden from view. All we know for sure is what we can observe .  
In the case of the Bogotá study, this is whether the participant was offered 
a PACES scholarship, and whether that participant then made use of 
fi nancial aid from any source. Notice that this information is not suffi -
cient to enable us to distinguish the compliance style of the family. Among 
families that were assigned to the offer of a PACES scholarship, both 
those that were compliers and those that were always-takers actually make 

9.  Gennetian et al. (2005) also describe a fourth potential group of population members, 
whom they call  defi ers . These are participants whose experimental assignment induces 
them to do  exactly the opposite  of what the investigator intends — they are contrarians. 
Assigning them a PACES scholarship induces them  not  to use any scholarship; denying 
them a government scholarship induces them to fi nd a scholarship from another 
source for their child. Such behavior is usually not anticipated in most experiments 
because it implies that these participants are  consistently  contrary — that they will always 
do the opposite of what the investigator asks them to do. To classify families as defi ers, 
we must be convinced that they simply choose to do the opposite of their intent-to-treat 
assignment. Although logic demands the existence of this fourth class, in practice we 
believe that it is often an empty set, and so we have eliminated it from our argument 
here. This makes our presentation consistent with the framework presented by Angrist, 
Imbens, and Rubin (1996). These authors describe the “no defi ers” assumption as the 
“monotonicity” assumption. 
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use of fi nancial aid to pay fees at a private secondary school. So, we cannot 
distinguish between these two groups by observing their actions. Yet, the 
two groups may differ in unobserved ways — the latter group being pre-
pared to use whatever effort is necessary to fi nd fi nancial aid from an 
alternative source if they lose out in the lottery for the government schol-
arships. Similarly, among families that were not assigned a government 
scholarship, neither the compliers nor the never-takers make use of fi nan-
cial aid to pay private secondary-school fees, and these groups cannot be 
distinguished on the basis of their overt actions. Yet again, these two 
groups may differ. The fi rst are families that would like to make use of 
fi nancial aid, but, after losing out in the PACES lottery, are unable to fi nd 
aid from another source. The second are families that have decided not 
to make use of fi nancial aid to pay private secondary-school fees under 
any circumstances. 

 You can imagine how problematic such differences in compliance style 
can be, if you are interested in the unbiased estimation of the causal 
impact of use of fi nancial aid on students’ educational attainment. If you 
were to form two contrasting groups naïvely, those children whose par-
ents made use of fi nancial aid and those children whose parents did not 
use fi nancial aid, and compare the children’s subsequent average educa-
tional attainment, you would be on shaky ground in claiming that any 
difference detected was due solely to the causal impact of fi nancial aid. 
Why? Because both the group that made use of fi nancial aid, and the 
group that did not, contain a self-selected and unknown mixture of par-
ticipants of different compliance styles, each differing in unobserved 
ways. Among members of the group that made use of fi nancial aid, some 
families (the compliers) would have done so because they were complying 
with their favorable outcome in the lottery. Others (the always-takers) 
would have done so because they searched for and found fi nancial aid 
from another source after losing out in the lottery. Similarly, some mem-
bers of the group that did not make use of fi nancial aid (the compliers) let 
the unfavorable outcome of the lottery dictate their behavior. Others (the 
never-takers) would not have made use of fi nancial aid under any circum-
stances, even if they had been offered it. Consequently, comparisons of 
average educational attainments of the group that made use of fi nancial 
aid and the group that did not would be polluted potentially by the unseen 
personal choices of families with different motivations (and perhaps dif-
ferences in their ability to support their children’s efforts to succeed in 
secondary school). 

 In this context, it is interesting to ask: Exactly what comparison is being 
estimated by the execution of the IVE using the PACES data that we 
described earlier in this chapter? Or, more to the point perhaps, is the 
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behavior of only some — and not all — of the compliance groups captured in 
an IV estimate of the LATE? The answer is straightforward, and is rooted 
in our initial conceptualization of the IV estimator as capitalizing only on 
variation in the question predictor that is sensitive to variation in the 
instrument. In fact, in our quasi-experimental evaluation of the effect of 
fi nancial aid on subsequent educational attainment among children in 
Bogotá, our IV estimate summarizes only the behavior of the compliers —
 the families for which the outcome of the lottery affected their decision 
regarding their use of fi nancial aid to pay private secondary-school fees. 
In other words, among the compliers, those families that were awarded a 
PACES scholarship in the lottery used the offered fi nancial aid, and those 
that lost out in the lottery did not make use of fi nancial aid from any 
source. The values of the outcome and the question predictor for any 
always-takers and never-takers present in the population do not affect the 
value of the LATE estimate that has been obtained by IVE.   10  Our conclu-
sion is that, in a quasi-experiment, when self-selection into experimental 
conditions has intervened between the random assignment of intent to 
treat and the actual experience of experimental treatment (in our exam-
ple, using or not using fi nancial aid to pay private secondary-school fees), 
it is the responses of the unseen class of compliers that determine the 
magnitude and direction of the IV estimate.     

   Using IVE to Resolve “Fuzziness” in a 
Regression-Discontinuity Design   

 What strategies are effective in increasing the skills of students who lag 
behind their classmates? One policy that many schools have tried is to 
provide extra instruction to those who need it, either after the regular 
school day is fi nished or during the school vacation period. Another 
common, and quite controversial, policy is to mandate that students who 
do not meet achievement benchmarks be retained in the same grade for 
another school year. Recall from Chapter 8 that the Chicago Public 
Schools (CPS) introduced a policy, in 1996, that included elements of 
both of these remediation strategies. First, the district examined the 
results of the standardized reading and mathematics tests that students in 

10.  Angrist, Imbens, and Rubin (1996) prove this statement. A critical assumption under-
lying the interpretation of the IV estimator as the treatment effect for compliers is 
that the treatment effect for always-takers must not be infl uenced by the outcome of 
the random assignment — that is, by whether always-takers were assigned to the treat-
ment or to the control group. The same applies to never-takers. 
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grade 3 took at the end of the school year.   11  It then mandated that all 
third-grade students whose scores fell below a cut-off score of 2.8 grade 
equivalents on the reading or mathematics test had to attend a six-week 
summer school that focused on building skills in these subjects. The 
summer school attendees then retook the achievement tests at the end of 
the summer instructional period. The policy specifi ed that those students 
who then met the 2.8 grade equivalents benchmarks were promoted to 
fourth grade, and those who did not meet these benchmarks were retained 
in the third grade for another year. All students were tested in reading a 
year later. 

 The CPS policy was based on a sensible theory of action. The notion 
was that the policy would provide a signifi cant amount of extra instruc-
tion in core subjects for lagging students. Summer school classes were 
small, typically with fewer than 15 students. For the summer session, prin-
cipals hand-picked teachers whom they thought would be effective in 
teaching those students in need of remediation. All teachers were told to 
follow a highly structured curriculum designed to emphasize mastery of 
basic skills. The students had incentives to pay attention because their 
promotion to the following grade was contingent on their achieving 
scores of at least 2.8 grade equivalents on the end-of-summer reading and 
mathematics achievement tests. 

 One of the fi rst steps that researchers Brian Jacob and Lars Lefgren 
(  2004  ) undertook to evaluate whether it would be possible to conduct a 
strong evaluation of the consequences of the CPS policy was to examine 
whether the assignment rules specifi ed in the policy had actually been 
followed. They did this by estimating — on the end-of-school-year reading 
examination that was used to determine which children would be assigned 
to attend summer school — the percentage of students obtaining each 
possible grade equivalent score who actually  attended  summer school. 
They then plotted this percentage versus the grade-equivalent reading 
score (centered to have a value of zero at the cut-off score of 2.8 grade 
equivalents).   12  In Figure   11.2  , which is a reproduction of Figure 2 from 
Jacob and Lefgren’s paper, we present the resulting graph. It shows that 
the rules for assigning participants were obeyed fairly well, but not per-
fectly. About 90 %  of the students who scored below the exogenously 
determined cut-off score of 2.8 grade equivalents attended the mandatory 

11.  As we discuss in Chapter 13, the policy pertained to students in grade 6 as well as 
to those in grade 3. To simplify the description of the policy, we focus here on the 
students in grade 3. 

12.  Students were much more likely to fail the reading than the mathematics achievement 
test. This led the investigators to focus their analysis on the former. 



282 Methods Matter

summer school as the policy specifi ed they should, and only a very small 
percentage of students scoring above the cut-off score did so. This good, 
but less than perfect, take-up of the summer program by participants 
meant that the cut-off score of 2.8 grade equivalents provided what meth-
odologists refer to as a  fuzzy discontinuity , dividing students into treatment 
and control groups well, but not perfectly, as a  sharp discontinuity  would 
have done.  

 If compliance with the policy mandate had been perfect, Jacob and 
Lefgren could have obtained an unbiased estimate of the impact of 
summer school attendance on reading scores one year later by fi tting the 
 regression discontinuity ( RD) regression model specifi ed in Equation 11.2 
using OLS:   13 

   , 1 0 1 , 2( 2.8) ( ) 'i t i t i iREAD READ SUMMERb b b e+ = + − + + +g X     (11.2)  

 where  SUMMER i   is a dichotomous variable that takes on a value of 1 if the 
 i  th  child attended summer school (0, otherwise); predictor  READ i  ,  t   repre-
sents the  i  th  student’s score on the standardized reading test that was taken 

13.  We have simplifi ed the author’s model specifi cation for pedagogic purposes. 
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     Figure 11.2    The relationship between the June reading scores (centered at the cut-off) 
for Chicago Public-School (CPS) students in grades 3 and 6 and the sample probability 
of attending summer school. Reproduced with permission from Figure 2, Jacob and 
Lefgren,   2004  , p. 230.    
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at the end of third grade and used as the forcing variable in the  RD  design; 
outcome  READ i  ,  t + 1   is the student’s score on the standardized reading test 
taken one year later;   X   is a vector of exogenous time-invariant student 
characteristics; and residual   ε  i   is the error term.   14  The key point to under-
stand is that if compliance with the assignment policy had been perfect, 
the dichotomous variable  SUMMER i   would have had the same value for 
every student as the exogenous variable  BELOW i  , which we defi ne as 
taking on a value of 1 for every student whose score on the end-of-third-
grade reading examination  READ i   ,t  was less than 2.8 (0, otherwise). Had 
compliance with the CPS remediation policy been perfect, the estimate of 
  β  2   would have provided an unbiased estimate of the impact of summer 
school attendance on the subsequent reading scores of children whose 
initial reading score  READ i   ,t  was very close to the cut-off score of 2.8 grade 
equivalents.  

 Since compliance with the policy mandate was not perfect, Jacob and 
Lefgren realized that simply fi tting Equation 11.2 by OLS methods would 
result in a biased estimate of the causal impact of summer school atten-
dance. The values of question predictor  SUMMER  were not assigned 
entirely exogenously. Although most students had complied with their 
assignment, not all had. Some students with reading scores above the cut-
off actually participated in summer school, and some students with scores 
below the cut-off did not. It is likely that students who did not comply 
with their assignment had unobserved abilities and motivation that not 
only resulted in their crossing over, but also infl uenced their reading-
achievement scores a year later. Thus, the endogeneity of the actual 
assignment of students to the treatment group ( SUMMER  = 1) meant that 
fi tting Equation 11.2 by OLS regression methods would result in a biased 
estimate of the program effect. 

 Fortunately, we know that the solution to this problem is simple now 
that we understand an original exogenous assignment to an experimental 
condition can serve as a credible instrument for the potentially endoge-
nous take-up of that treatment. We simply combine our interest in fi tting 
the statistical model in Equation 11.2 with what we have learned about 
the application of IVE earlier in this chapter. We see from Figure   11.2   that 
exogenous assignment to experimental condition was indeed a strong 
predictor of the actual take-up of program — most of the students did what 

14.  In formal analyses, we would need to specify an error covariance structure that 
accounted for the clustering of students within schools. 
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they were told.   15  Thus, the potential instrument predicts the endogenous 
predictor strongly, as required. Second, it was unlikely that exogenous 
assignment to the program would affect reading achievement a year later 
for those immediately on either side of the cut-off, except through the 
provision of the summer program. Thus, there was no “third path.” So, 
Jacob and Lefgren treated Equation 11.2 as the second stage of a two-
stage model in which the fi rst-stage model predicted enrollment in the 
 SUMMER  program by the exogenous RD assignment, as follows:

   0 1 , 2( 2.8) 'i i t i iSUMMER READ BELOWa a a d= + − + + +j X     (11.3)  

 where, as stated earlier,  BELOW  is a dichotomous instrument that 
describes whether the student was assigned exogenously to summer 
school (= 1), or not (= 0), and   δ   is a fi rst-stage residual.   16   

 Jacob and Lefgren used the 2SLS strategy to estimate the parameters 
of these two models and obtained IV estimates of the unbiased effect of 
the remediation policy on reading achievement one year later. They found 
that the combination of summer school and retention-in-grade for stu-
dents whose end-of-school-year scores did not meet benchmarks had a 
positive impact on students’ subsequent achievement. The magnitude of 
the impact was approximately equal to 15 %  of third-graders’ average 
annual learning gain. 

 As Jacob and Lefgren emphasize, because this evaluation has an RD 
design, their result pertains only to students whose scores on the end-
of-third-grade reading test fell just above or just below the cut-off, as these 
are the only students who were arguably equal in expectation prior to 
treatment. In other words, unless one is willing to make the heroic assump-
tion that the policy would have the same effect for all students at every 
point on the reading scale, it is not appropriate to conclude from Jacob 
and Lefgren’s research how the policy would have affected students whose 
end-of-third-grade scores were way below the 2.8 grade equivalents cut-
off, or the consequence of extending the policy to higher-achieving 
students. Despite this limitation, the results are important because a key 
focus of the CPS policy was indeed to improve the skills of students whose 
scores fell close to the cut-off.     

15.  Jacob and Lefgren (2004) explain that Figure 2 in their paper (which is reproduced as 
Figure 11.2 here) is based on data pertaining to CPS students in grade 6 as well as 
those in grade 3. In a private communication, Brian Jacob told us that the relationship 
displayed in Figure 11.2 is virtually identical for students in the two grades. 

16.  Again, in formal analyses, we would specify an error covariance structure that 
accounted for the clustering of students within schools. 
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   What to Read Next   

 To follow up on this topic, we recommend that you read Chapter 3 of 
 Learning More from Social Experiments , a book edited by Howard Bloom 
(  2005  ). In this chapter, Lisa Gennetian and her colleagues provide many 
of the technical details that support the arguments we have made in this 
chapter. They also provide references to many other relevant technical 
papers.   
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 Dealing with Bias in Treatment 
Effects Estimated from 
Nonexperimental Data        

       In 1982, the sociologist James Coleman and two colleagues published an 
infl uential book,  High School Achievement: Public ,  Catholic ,  and Private 
Schools Compared , the theme of which was that Catholic high schools in the 
United States were more effective than public high schools in educating 
students. This fi nding received massive media attention and was used to 
support the Reagan administration’s proposal to provide tuition tax cred-
its to families that wanted to send their children to non-public schools. 

 Critics were quick to challenge the research methodology that Coleman 
and his colleagues had employed to reach their conclusions.   1  They pointed 
out that the so-called Catholic-school advantage might easily stem, not 
from the relative effectiveness of Catholic schools, but from unobserved 
differences between the students whose parents chose to send them to 
Catholic schools and those whose parents chose to send them to public 
schools. The logic of this argument was that parents who cared deeply 
about the quality of their children’s education may have been especially 
likely to pay the tuition required to send their children to Catholic schools. 
These same parents may also have been especially likely to try to enhance 
their children’s skills at home, for example, by emphasizing the impor-
tance of reading, by monitoring their television watching, and by checking 
that their homework was completed. As a result, the average academic 
achievement of children attending Catholic schools could be greater than 
that of children attending public high schools even if the two types of 

1.  See, for example, Goldberger and Cain (    1982  ). 
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schools were equally effective. In other words, the  choices  that families 
made in selecting Catholic school for their children may have deceived 
the researchers into overestimating the impact of the Catholic school 
“treatment.” Methodologists refer to this as the  selection-bias  problem. 
As we have noted throughout our book, you face this problem when you 
evaluate any program in which participants or their advocates can choose 
the treatment conditions they will experience. 

 Coleman and his colleagues recognized that they faced the selection-
bias problem, and responded by using a fi x-up strategy that was 
conventional at that time. In their work, they had used multiple regres-
sion analysis to model the relationship between students’ ultimate 
academic achievement and a dichotomous question predictor that distin-
guished between the Catholic- and public-school treatments. To this basic 
model, they added carefully selected covariates — representing the parents’ 
socioeconomic status and other background characteristics — in an attempt 
to control away important pre existing differences between the Catholic 
and public high-school students and their families. Critics argued that 
this strategy was inadequate because one could never be sure that the full 
spectrum of underlying unobserved differences has been taken into 
account fully by the particular control predictors included, no matter how 
well chosen. 

 Of course, if Coleman and his colleagues had possessed a suitable 
instrument — an exogenous variable that predicted entry into Catholic 
school, and through it student achievement, all without the presence of 
an offending “third path” — they would have been able to solve their selection-
bias problem. As explained in Chapters 10 and 11, they could have used 
instrumental-variables estimation (IVE) to obtain an asymptotically unbi-
ased estimate of the size of the “Catholic-school advantage.”   2  Our point 
is that, if you have a viable instrument, you simply do not need the 
methods that we are about to describe in this chapter. Without a viable 
instrument, though, all you can do is include covariates in your analysis 
in order to try to control for any extant differences among children 
who attended public or Catholic school, as Coleman attempted. But, no 
matter which covariates you decide to include, it will always be dangerous 
to draw causal conclusions from analyses of observational data. The 
reason is that you can only eliminate the bias due to the observables you 

2.  Some analysts have suggested that a family’s religious affi liation (Evans & Schwab,     1995  ) 
and the distance between a family’s residence and the nearest Catholic school (Neal,    
 1997  ) could serve as instrumental variables. However, Altonji and his colleagues (    2005b  ) 
present evidence that these variables are not legitimate instruments in existing datasets. 
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include (which were primarily measures of family socioeconomic status, 
in Coleman’s case).   3  

 In recent years, approaches for incorporating sensible covariates into 
statistical models in order to remove  observed bias  from estimates of treat-
ment effects, using observational data, have expanded dramatically. They 
now include new applications of  stratifi cation  and  propensity score estima-
tion , in addition to the method of  direct control for covariates by regression 
analysis  that Coleman and his colleagues implemented. In this chapter, we 
describe these three approaches, point out the links among them, and 
explain how they differ in implementation and assumption. 

 We stress throughout the chapter that the credibility of all three strate-
gies rests on the critical assumption of  unconfoundedness . This is the 
assumption, laid out with clarity by Donald Rubin (  1990  ), that once we 
have controlled for an explicit set of observed covariates, we can regard 
treatment assignment as exogenous. This may sound as though we are 
defi ning the problem away, but it is a point that Rubin has repeatedly 
emphasized, even in his earliest work (Rubin,   1974  ), and it serves as a 
stern warning. The methods that we describe in this chapter — despite 
their sophistication — are not magic. They are no better than the particular 
covariates they incorporate. If your theory is good, your knowledge of the 
selection process strong, and your covariates capture the selection pro-
cess well, then you can certainly improve your estimation of causal effects 
with these methods. On the other hand, if any of these conditions does 
not hold, you are building a house on sand and it will not remain standing 
no matter how sophisticated its construction.     

3.  You might argue that you could keep piling additional covariates into the model in 
order to “whittle down” any bias present in the estimated Catholic-school advantage. 
However, there is a problem with this strategy — apart from the fact that adding each 
covariate costs an additional degree of freedom and leads to an accumulation of Type I 
error. As you add each new covariate, it can only predict that part of the variation in the 
outcome  that has not yet already been predicted by all the other covariates . This means that 
the outcome variation available nominally for subsequent prediction by new covariates 
declines as the process continues. If covariates are intercorrelated (as they usually are!), 
and if they also correlated with the endogenous question predictor,  CATHOLIC  in our 
example, then you may face a burgeoning problem of  multicollinearity  as you proceed. 
In this case, your estimation may become increasingly sensitive to the presence of aber-
rant data points in the point cloud, leading your estimates to become increasingly 
erratic. 
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   Reducing Observed Bias by the Method of Stratifi cation      

   Stratifying on a Single Covariate   

 To illustrate the removal of observed bias from estimates of treatment 
effects, we draw on data from the National Educational Longitudinal 
Study–1988 (NELS-88), a longitudinal survey of students conducted by 
the National Center for Education Statistics. In the base year, 1988, 
students in grade 8 of U.S. schools were surveyed, one year before they 
entered secondary school. They were resurveyed in 1990 (when they 
should have been in tenth grade), and in 1992 (when they should have 
been in twelfth grade).   4  Data were collected on many topics, including on 
the following variables: (a)  MATH8  and  MATH12 , continuous measures 
of student mathematics achievement in eighth and twelfth grade on stan-
dardized tests, respectively; (b)  CATHOLIC , a dichotomous indicator of 
whether the student attended a Catholic (= 1) or a public (= 0) high school; 
and (c) many prior characteristics measured in the base year, which we 
describe later. In our analyses throughout the chapter, we investigate the 
impact on a student’s twelfth-grade mathematics achievement of attend-
ing a Catholic (versus a public) high school, while attempting to remove 
bias due to observed differences in base-year family income, parental edu-
cational attainment and expectations, and base-year student academic 
achievement and behavior. We were guided in our choice of covariates by 
the excellent paper written by Joseph Altonji, Todd Elder, and Christopher 
Taber (  2005a  ). 

 Our analytic sample contains the 5,671 students from the NELS-88 
dataset who were living in families with annual income of less than $75,000 
(in 1988 dollars) in the base year of the survey.   5  Our rationale for limiting 
our sample to the children of these non–high-income families was moti-
vated by our pedagogic needs, rather than by substance. By limiting the 
sample, we feel safe in working under the simplifying assumption that the 
Catholic-school advantage was  homogeneous  across all children, rather 
than having to consider a  heterogeneous  treatment effect that differed by 

4.  Although we do not make use of data beyond the 1992 survey, follow-up surveys of 
NELS-88 participants were also conducted in 1994 and 2000. 

5.  For pedagogic reasons, we have also limited our sample to students with no missing 
data on any variable included in our analyses. Thus, our sample size is smaller than that 
of the original NELS-88 sample and has not maintained its population generalizability. 
Consequently, we do not account for the complex survey sampling design in our analy-
ses. However, our results do not differ dramatically from full-sample analyses that do 
take the design into account. 
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family income. Although there is evidence within the complete NELS-88 
dataset that the Catholic-school advantage is smaller for high-income 
families than for families with lower incomes, within our restricted sub-
sample, we are willing to assume homogeneity of the Catholic-school 
advantage across children. This allows us to simplify our presentation and 
focus more narrowly on the methods of bias correction. However, the 
same methods could easily be applied within the expanded sample and 
used to remove observed bias even when the Catholic-school advantage 
differed by values of covariates such as annual family income. 

 Do children do better academically if they attend Catholic rather than 
public high schools? If we were willing to ignore any self-selection into 
Catholic and public high schools, we could use standard ordinary least-
squares (OLS) methods to regress outcome  MATH12  on the main effect 
of question predictor  CATHOLIC . In our example, if we do this, we fi nd 
(as you might expect, given Coleman’s fi ndings) that children who 
attended Catholic high schools had higher mathematics achievement, on 
average, than those who attended public high schools ( ̂ 3.895CATHOLICb =   ; 
 p  <0.001, one-sided).   6  This naïve estimated regression slope tells us that 
the twelfth-grade students at Catholic high schools have an average math-
ematics score that is about 4 points higher — that’s around 40 %  of the 
outcome standard deviation   7  — than that of their public-school peers. 
Notice that the magnitude and direction of this slope estimate are just 
equal to the difference between the sample outcome means of Catholic 
and public high-school students (54.540 – 50.645 = 3.895). With a dichot-
omous predictor (like  CATHOLIC , coded with values of 0 and 1), this is 
always the case. The trend line that joins the subsample outcome means 
in the “0” and “1” groups is always identical to the fi tted trend line 
obtained in the corresponding OLS regression analyses of the same out-
come on that predictor. We mention this equivalence here, because we 
rely on it later in the chapter, using both the terms “mean difference 
between subgroups” and the “fi tted slope of the corresponding OLS 
trend-line,” as suits our purpose. 

 Does this difference of almost half a standard deviation in the average 
mathematics score for students attending the two types of schools refl ect 
the superior quality of Catholic schools? Or, is there an alternative expla-
nation? Descriptive analyses, for instance, show that there are dramatic 

6.  Throughout this chapter, we have used one-sided tests in examining the hypothesis 
that Catholic schools are more effective than public schools in enhancing the mathe-
matics achievement of students. We recognize that one could make the case for 
two-sided hypothesis tests. 

7.  The standard deviation of  MATH12  is 9.502 in our subsample. 
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differences in the sample distributions of background characteristics, 
such as base-year average annual family income between students who 
attended Catholic high schools and those who attended public high 
schools. Unfortunately, in the NELS-88 survey, this latter covariate — which 
we have named  FAMINC8  — was measured only coarsely on an ordinal scale, 
with 15 income bands.   8  In our sample of children from non − high-income 
families, we are working with those participants whose values of  FAMINC8  
ranged from 1 through 12. In our sample, the median base-year annual 
income of the families of eighth-graders who subsequently attended a 
Catholic high school was in the $35,000 to $49,999 range (in 1988 dol-
lars), one full scale-point higher than the median annual income of 
families who sent their children subsequently to a public high school, 
which ranged from $25,000 to $34,999 ( p  <0.001).   9  So, on average, fami-
lies that sent their children to a Catholic high school had greater fi nancial 
resources to pay for educational enrichment for their children than did 
families whose children attended a public high school. This pattern raises 
the question of the extent to which our naïve estimate of the Catholic-
school advantage is biased by the unaccounted for impact of this observed 
covariate,  FAMINC8.  

 One simple and robust method for eliminating from the estimate of 
the Catholic-school advantage any potential bias due to differences across 
students in base-year annual family income makes use of  sample stratifi cation . 
If we suspect that heterogeneity in family income across children — and its 
implicit relationship to twelfth-grade mathematics achievement — are bias-
ing our estimate of the Catholic-school advantage, then all we need to do 
is fi nd some way to eliminate the offending heterogeneity when estimat-
ing the advantage. We can do this most easily by subdividing the sample 
into “strata” according to base-year annual family income. Then, within 
each of these strata, we estimate the Catholic-school advantage. This, of 
course, leads to multiple estimates (one per stratum) of the principal rela-
tionship that we care about — the average mean difference in twelfth-grade 
mathematics achievement between Catholic and public high-school 
students. To obtain a single “fi nal” estimate, we then simply average across 
strata. 

8.  Annual family income was coded as follows (in 1988 dollars): (1) no income, (2) less 
than $1,000, (3) $1,000–$2,999, (4) $3,000–$4,999, (5) $5,000–$7,499, (6) $7,500–
$9,999, (7) $10,000–$14,999, (8) $15,000–$19,999, (9) $20,000–$24,999, (10) 
$25,000–$34,999, (11) $35,000–$49,999, (12) $50,000–$74,999, (13) $75,000–$99,999, 
(14) $100,000–$199,999, (15) more than $200,000. 

9.  Test for equality of medians, between groups: continuity-corrected  χ 2( df  = 1) = 104.7 
( p  <0.001). 
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 This three-step process of stratifi cation, effect estimation, and averag-
ing is simple and robust, but the choice of the particular strata is subtle 
and important. To succeed, suffi cient numbers of both Catholic- and public-
school children must be present within each stratum to allow the 
computation of average mathematics scores with reasonable precision for 
each group. Because of this suffi cient numbers requirement, there is a 
tension involved in the design of the stratifi cation. Creating more and 
narrower strata ensures less heterogeneity in base-year family income 
within each stratum. This is good because we need to diminish the hetero-
geneity in family income within a stratum in order to mitigate the bias in 
our corresponding estimate of the  MATH12 / CATHOLIC  relationship. 
But it will also mean that there are fewer children providing scores within 
each stratum. This is bad because each subgroup analysis will then lack 
statistical power and will be more sensitive to the infl uence of aberrant 
cases. A consequence is that the multiple estimates of the Catholic-school 
advantage obtained  within  strata will be more scattered in value  across  
strata. In the worst-case scenario, with many narrow strata, we may end 
up lacking participants in one or another of the treatment conditions 
entirely and be unable to estimate the very mean difference in which we 
are interested. These tensions must be balanced with care, and we have 
much more to say about them later, especially when we introduce the 
method of propensity score estimation. 

 In the NELS-88 example that we describe here, we made our stratifi ca-
tion decisions iteratively, by inspecting the distribution of our sample of 
students by base-year annual family income. We grouped and regrouped 
the children, each time examining the distribution of base-year annual 
family income, by  CATHOLIC , within each stratum. We sought a solution 
that had a small number of strata, within each of which future Catholic 
and public high-school students were “balanced” on their respective base-
year family incomes. Our rationale is straightforward. If we can stratify so 
that, within each stratum, the sample distributions of base-year annual 
family income are essentially identical for the future Catholic and public 
high-school students, then we would be secure. Why? Because, within 
each stratum, we would then be estimating the Catholic-school advantage 
by comparing the average twelfth-grade mathematics achievement of 
groups of Catholic and public high-school students who were identical on 
their base-year annual family income. Consequently, within each stratum, 
our estimates of the Catholic-school advantage would not be affected by 
bias due to spurious differences in annual family income between the 
schooling groups. This lack of bias would then be preserved in our overall 
estimate when we averaged the within-stratum estimates across strata. 
This is the principle behind bias reduction by stratifi cation. 
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 To clarify this process, we provide an example using our subset of 
NELS-88 data. For this part of our analysis, we have grouped all the stu-
dents in our sample into three strata, which we have labeled the  Lo_Inc , 
 Med_Inc , and  Hi_Inc  family income groups.   10  In Table   12.1  , we summarize 
the stratum membership (labeled by the corresponding range of base-
year annual family income), and we list within-stratum statistics on 
base-year annual family income, the frequencies of students within 
stratum, and average twelfth-grade mathematics achievement by the type 
of high school attended.  Lo_Inc  families had base-year annual incomes of 
less than $20,000 (in 1988 dollars),  Hi_Inc  families had greater than 
$35,000, and the annual incomes of  Med_Inc  families fell between these 
limits.    

 First, notice that our partition has indeed led to reassuring reductions 
in the variability of annual family income within strata, when compared 

10.  There is no imperative to choose three groups. In fact, there is technical evidence, 
which we present later, that it is most effective to create at least fi ve strata. 

      Table 12.1  Descriptive statistics on annual family income, by stratum, overall and by 
type of high school attended, and average twelfth-grade mathematics achievement by 
income stratum and by high-school type ( n  = 5,671)  

  Stratum  Average Base-Year 
Annual Family Income 
 (1988 dollars ,  15-point 
ordinal scale)  

 Cell 
Frequencies 

 Average Mathematics 
Achievement (12th 
grade)  

 Label  Income 
Range 

 Sample 
Variance 

 Sample Mean  Public  Catholic 
 ( %  of 
stratum 
total)  

 Public  Catholic  Diff.  

 Public  Catholic  

  Hi_Inc   $35,000 
to $74,999 

 0.24  11.38  11.42  1,969  344 
( 14.87 %  ) 

 53.60  55.72  2.12    ∗  ∗  ∗     ,    †     

  Med_
Inc  

 $20,000 
to $34,999 

 0.22  9.65  9.73  1,745  177 
( 9.21 %  ) 

 50.34  53.86  3.52    ∗  ∗  ∗     ,    †     

  Lo_Inc    ≤ $19,999  3.06  6.33  6.77  1,365  71 
( 4.94 %  ) 

 46.77  50.54  3.76    ∗  ∗  ∗     ,    †     

  Weighted 
Average ATE  

   3.01    

  Weighted 
Average ATT  

   2.74    

  ∼ p  <0.10;  ∗  p  <0.05;  ∗  ∗  p  <0.01;  ∗  ∗  ∗  p  <0.001  
   † One-sided test  .
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to the original variability in base-year annual family income in the full 
sample. The original full-sample variance of  FAMINC8  was almost 6 units 
(on NELS-88’s 15-point ordinal scale). After stratifi cation, there is little 
variability left in base-year annual family income within either the  Hi_Inc  
or  Med_Inc  stratum (the sample variance in each is less than 0.25). We do 
not do quite so well with  Lo_Inc  families, though, where the within-
stratum variance in  FAMINC8  is about 3 units, still about half of the 
original full-sample variance. However, we were reticent to split this stra-
tum further in order to create additional strata with less heterogeneity in 
family income because only 77 children from the  Lo_Inc  families stratum 
entered a Catholic high school (seventh column, third row). We were 
worried about the precision of the estimated Catholic-school advantage 
within this cell. Also, we knew that we intended to stratify by other covari-
ates later and would need to “spread” these 71 Catholic high-school 
students across additional dimensions. Thus, although we have concerns 
about the  Lo_Inc  group’s contribution to our overall bias-correction pro-
cess, due to its small size and larger heterogeneity in annual family income, 
we proceed with our presentation while asking you to bear in mind that 
we are least confi dent about its contribution. Notice that, among  Hi_Inc  
families, a total of 2,313 students are compared, by type of high school, 
with 344 in Catholic high schools. Among  Med_Inc  families, there are 
1,922 children in total, with 177 Catholic high-school students. Thus, in 
each of our three strata, we do indeed possess groups of Catholic and 
public high-school students whose twelfth-grade mathematics achievement 
can be compared. 

 Of particular importance, the average values of the base-year annual 
family income for Catholic and public high-school students within each 
stratum are now almost identical (Table   12.1  , Columns 4 and 5). In the 
 Hi_Inc  stratum, the average values of annual family income are 11.42 and 
11.38, respectively. They are separated by less than a few hundredths of a 
point! Similarly, the average base-year annual family incomes of the two 
groups are very close to each other in the other two strata, being sepa-
rated by only 0.08 in the  Med_Inc  stratum and by 0.44 in the  Lo_Inc  
stratum. Using  t -tests, by  CATHOLIC , we fail to reject the null hypotheses 
that the average base-year annual family incomes of public and Catholic 
high-school students are identical within each stratum in the population.   11  

11.  When you iterate to a fi nal set of strata, you may conduct many such hypothesis tests, 
leading to an accumulation of Type I error. To avoid this, you can invoke a  Bonferroni  
correction to the  α -level, in each test. In our work, for instance, we conducted each of 
our balancing tests at the 0.01 level. 
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Formally, we describe this condition by stating that participants in each of 
the three strata are “balanced” on base-year annual family income.   12  

 However, to obtain credible bias-corrected estimates of the Catholic-
school advantage, we would like the entire sample distributions of 
base-year annual family income to be identical for the Catholic and public 
high-school subgroups within each stratum. Such comparisons of entire 
distributions are diffi cult to make. But, if the sample distributions are 
identical, so should be their  moments . In an ideal world, we would com-
pare the subgroups not only on their means ( fi rst moment ), but also on 
their variances ( second moment ), skewnesses ( third moment ), and so on. 
Such a process can be exhausting, and leads to a rapid accumulation of 
Type I error. So, typically, when we are striving for an optimal stratifi cation, 
we focus only on achieving balance on the means. 

 Once a balanced stratifi cation has been obtained on the covariate, 
family income, as in Table   12.1  , you can estimate differences in average 
twelfth-grade mathematics achievement between the Catholic and public 
high-school students within stratum. In our table, these differences are 
listed in the last column. Compare them to the overall estimated Catholic-
school advantage of 3.89 points that we obtained in our earlier naïve OLS 
regression analysis. All within-stratum estimates of the Catholic high-
school advantage are positive, but they are smaller than the biased overall 
estimate. In fact, in strata where we have been the most successful in 
diminishing heterogeneity in annual family income and balancing the 
subgroup means (the  Hi_Inc  and  Med_Inc  strata), the new bias-corrected 
estimates range from around 0.25 point to almost 2 points lower than the 
initial biased estimate. In fact, in the  Hi_Inc  stratum — which contains the 
most children, and in which the Catholic and public subgroups means of 
base-year annual family income are almost indistinguishable — we observe 
the greatest bias reduction (of almost 2 points). This halves our previous 
naïve full-sample estimate of the Catholic-school advantage. 

 To provide an overall single-number estimate of the Catholic-school 
advantage, corrected for bias due to differences in base-year annual family 
income, we can form a weighted average of the three within-stratum esti-
mates. In doing so, we have some choices about the weights. If we weight 
by the total number of high-school students present in each stratum, both 

12.  Our adoption of three strata in Table     12.1   results from an iterative “divisive” approach. 
We started by pooling all students into a single income stratum. When a within-
stratum  t -test suggested that we had not achieved balance on the sample means, by 
 CATHOLIC , we split the stratum into successively narrower strata, until balance on 
the means was achieved in all strata. This process led to the three strata we present 
here. Software designed to help you stratify typically uses this approach. 
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public and Catholic, we obtain the estimated  average effect of the Catholic 
treatment , or  ATE . Its value is 3.01 (lower right corner, Table   12.1  ), almost 
a full point lower than the earlier biased estimate.   13  A reason that this 
estimate is so much lower than the naïve biased estimate is that the  Hi_Inc  
stratum — which contributes the smallest within-stratum estimate — contains 
the greatest number of children, and so contributes most heavily to the 
fi nal estimate. An alternative is to weight within-stratum estimates of the 
Catholic-school advantage by the number of treated (Catholic) students 
in each cell. Doing so provides an estimate of 2.74 (lower-right corner of 
Table   12.1  ).   14  This is called an estimate of the  average impact of the Catholic 
treatment on the treated , or  ATT.  It is our best estimate of the difference in 
average twelfth-grade mathematics achievement between students who 
experienced the Catholic treatment and what their average would have 
been if they had not been treated. 

 To provide additional insight into how stratifi cation functions to 
eliminate observed bias, we have used these stratum means and mean dif-
ferences to simulate the OLS-fi tted relationships between outcome 
 MATH12  and question predictor  CATHOLIC  within each of our three 
family income strata, in Figure   12.1  . The fi tted within-stratum trends are 
presented as three solid lines, labeled on the right. The dashed line repre-
sents the original naive OLS-fi tted trend line, corresponding to our initial 
biased estimate of the Catholic-school advantage, obtained in the full 
sample. Notice, fi rst, that the between-stratum differences we have com-
mented on — which are evident in the last column of the table — are also 
clear in the plot. All three of the fi tted within-stratum trends have slopes 
that are less steep than the naïve and biased full-sample slope estimate, 
with the slope of the fi tted trend line obtained in the  Hi_Inc  stratum the 
least steep.   15     

13.  The weighted average is {(2,313  ×  2.12)  +  (1,922  ×  3.52)  +  (1,436  ×  3.76)}/5,671. Its 
associated standard error can be obtained by pooling within-stratum standard devia-
tions, or by applying a resampling method such as bootstrapping. Similar computations 
can be made for each of the overall bias-corrected estimates of the Catholic-school 
advantage that we have estimated in this chapter. 

14.  The weighted average is {(344  ×  2.12)  +  (177  ×  3.52)  +  (71  ×  3.76)}/592. 
15.  Unfortunately, there is some evidence in this plot of a potential interaction between 

 CATHOLIC  and  FAMINC8 , in that the slopes of the three line segments appear to 
diminish systematically at higher baseline annual family income. It was this heteroge-
neity in the impact of the Catholic schools that we were seeking to avoid by limiting 
our sample to children in “non-wealthy” families. Although we have not succeeded 
completely in this mission, we ignore the potential interaction in what follows and 
retain our focus on the main effect of Catholic versus public high school, in order to 
keep the exposition as simple as possible. This means, in essence, that we have aver-
aged the heterogeneous treatment effects across family-income groups. 
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 These plots, along with the entries in Table   12.1  , provide insight 
into why the intrusion of base-year family income into the  MATH12 / 
 CATHOLIC  relationship led the original naïve estimate to have a 
positive — “upward” — bias. In building your intuition, begin from the per-
spective of the three separate within-stratum relationships displayed in 
Figure   12.1   and try to resurrect mentally the full-sample relationship by 
combining the associated (and undisplayed) point clouds.   16  First, notice 
that the three within-stratum trend lines are ordered by the base-year 

16.  The point clouds surrounding these trend lines are not the familiar ellipses, because 
the principal predictor,  CATHOLIC , is dichotomous. 
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     Figure 12.1    Sample distributions of twelfth-grade mathematics achievement, by whether 
students attended a public or a Catholic high school, within strata defi ned on  FAMINC8  
( n  = 5,671).    
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family income stratum in which they originated. The fi tted relationship 
from the  Lo_Inc  stratum, for instance, occupies the lowest elevation on 
the plot, and that of the  Hi_Inc  stratum, the highest. This, of course, is 
consistent with our substantive theory. The observed differences in eleva-
tion confi rm that, regardless of whether students choose to go to a 
Catholic or public high school, children from higher-income homes tend 
to do better on tests of mathematics achievement in twelfth grade. 

 Second, recall the hypothesis that a positive relationship exists between 
annual base-year family income and whether the family chose to send 
their child to a Catholic or public high school. In the full sample, the 
estimated bivariate correlation between  FAMINC8  and  CATHOLIC  is 
small — of magnitude 0.129 — but it is convincingly positive ( p  <0.001). You 
can see evidence of this positive relationship in the sample percentages 
presented in the parentheses below the entries in the seventh column 
of Table   12.1  . In the  Lo_Inc  stratum, only 71 out of 1,436 children — less 
than 5 %  — attend Catholic school. In the  Med_Inc  stratum, the correspond-
ing fi gure is about 9 % , whereas in the  Hi_Inc  stratum it is approximately 
15 % . (The percentages of children within each income stratum who 
attended each of the types of high school, respectively, are represented in 
Figure   12.1   by the relative sizes of the rectangles at either end of each 
trend line.) 

 Imagine the contributions of these joint trends to the full point cloud —
 that is, for the combination of the three stratum-specifi c point clouds. As 
we ascend through the full point cloud, traversing the stratum-specifi c 
point clouds from bottom to top, two effects occur simultaneously. First, 
mathematics achievement is elevated as we transition from lower-income 
to higher-income families. Second, a greater proportion of the children 
within each stratum appear on the right-hand (Catholic) side of the cloud 
than on the left-hand (public) side. Given these concurrent effects, the 
full point cloud will be more “top-right” and “bottom-left” heavy than any 
of the separate within-stratum point clouds. Thus, a  MATH12  versus 
 CATHOLIC  trend line fi tted in the full point cloud (illustrated by the 
dashed line in Figure   12.1   )  must be steeper than the trend lines fi tted in 
any of the separate point clouds. The difference between the overall slope 
and the average of the within-stratum slopes is a summary of the bias that 
was introduced into the estimate by ignoring the impact of family income 
on both the choice of Catholic versus public high school and ultimate 
student achievement. 

 Essentially, then, when we examine the relationship between  MATH12  
and  CATHOLIC  naïvely in the full sample and do not adjust for the impact 
of annual family income, we observe a composite of the “true” relation-
ship between mathematics achievement and attendance at Catholic versus 
public high school plus the biasing impact of family income, as it pushes 
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children of higher-income families both to higher mathematics achieve-
ment and into Catholic high school. Of course, we put “true” in quotes 
here to emphasize that we are referring only to the biasing effect of a 
single observed covariate — base-year annual family income. We do not 
know whether other components of bias, which derive from infl uences 
of other characteristics of the children, remain unresolved. It is to this 
question that we turn next.     

   Stratifying on Covariates   

 Now, suppose our theory suggests that, in addition to the impact of differ-
ences in base-year annual family income, parents of children who display 
above-average prior academic skills are especially likely to enroll their 
child in a Catholic high school. If this is the case, then the children who 
enter Catholic high schools would not be equivalent in terms of prior 
academic ability to those children who enroll in public high schools. This 
too would create bias in the estimate of the Catholic-school advantage. 
In fact, there is evidence in the NELS-88 dataset that this is the case: 
Children who entered Catholic high schools had a base-year average 
mathematics achievement (53.66) that was about 2 points higher, on aver-
age, than that of children who entered public high schools (51.24), and 
the difference is statistically signifi cant ( t  = 5.78;  p  <0.001). 

 Thus, it makes sense to now remove observed bias that is attributable to 
both base-year annual family income and prior mathematics achievement 
simultaneously from our naïve estimate of the Catholic-school advantage. 
We can generalize the stratifi cation approach easily to accommodate this, 
but it stretches the capabilities of the technique. For instance, in the 
NELS-88 dataset, student base-year mathematics achievement was mea-
sured by a standardized test, and information on this score is coded in 
our covariate,  MATH8 . In our sample,  MATH8  ranges from about 34 to 
77, with a mean of 51.5. Following our earlier strategy of creating strata 
within which children were relatively homogeneous on the new covariate, 
we have created four prior achievement strata:  

        • Hi_Ach : High achievement stratum — scores of 51 or more.  
        • MHi_Ach:  Medium-high achievement stratum — scores from 44 to 51.  
        • MLo_Ach:  Medium-low achievement stratum — scores from 38 to 44.  
        • Lo_Ach : Low achievement stratum — scores below 38.    

 Imposing this stratifi cation again limits heterogeneity in prior mathemat-
ics achievement within each stratum, and we can again attain balance on 
the means of base-year mathematics achievement, by  CATHOLIC , within 
each of the new strata.  
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 Now, we have the option to go through the same exercise within these 
four base-year mathematics achievement strata as we did with our three 
original family-income strata, inspecting the distribution of children’s 
grade 12 mathematics scores and providing respective estimates of the 
Catholic-school advantage. In fact, we have performed these analyses, 
and their consequences are as expected. However, our purpose here is 
greater than this. First, we want to illustrate how to use stratifi cation to 
correct for bias due to both observed covariates —  FAMINC8  and  MATH8  —
 simultaneously. Second, we want to point out the problems that surface 
when multiple covariates are incorporated into the stratifi cation process. 
Consequently, rather than stratifying by the child’s base-year mathemat-
ics achievement alone, we have “crossed” the three base-year annual 
family-income strata with the four prior mathematics-ability strata to pro-
duce a cross-tabulation that contains 12 cells. Then, within each of these 
cells, we have estimated the average twelfth-grade mathematics achieve-
ment of children in the public schools and those in Catholic high schools 
and subtracted one from the other to obtain 12 estimates of the Catholic-
school advantage. We list these estimates, along with their corresponding 
cell frequencies, in Table   12.2  .    

 Notice that there has been a dramatic decline in the frequencies of 
students who participated in each of the separate Catholic/public com-
parisons, a result of spreading the original sample across many more cells. 
This problem of data sparseness has become particularly acute for chil-
dren who attended Catholic high schools, a modest-sized group to begin 
with. For example, in strata where the  Med_Inc  and  Lo_Inc  base-year 
annual family-income groups are crossed with the  Lo_Ach  prior mathe-
matics-achievement group (the eighth and twelfth strata from the top, 
in Table   12.2  ), only a total of three students are in Catholic high schools. 
The numbers of public high-school children in these cells are also smaller 
(96 and 142, respectively) than in other cells in the stratifi cation. 
Comparisons in these sparse cells lack statistical power and precision. 

 This problem of  sparseness  is a standard concern in the application of 
stratifi cation methods, even in large datasets. As we try to correct for bias 
along more and more dimensions, we fi nd ourselves with cells that con-
tain fewer and fewer observations. This results in erratic within-stratum 
estimates of the size of the treatment effect. This is illustrated by the 
estimates of the size of the Catholic-school advantage listed in the 
fi nal column of Table   12.2  . Some are very small, such as the estimate of 
0.47 in the ninth ( Med_Inc   ×   Hi_Ach ) stratum. Others are very large, such 
as the estimate of 5.76 in the twelfth ( Lo_Inc   ×   Lo_Ach ) stratum. Notice 
that the outlying estimates tend to occur in cells containing very few 
Catholic high-school students. This is a generic problem with the method 
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of stratifi cation. With increased stratifi cation, the magnitudes of the esti-
mated treatment effects become increasingly erratic across cells (another 
example of the general principle that estimates obtained from samples of 
diminishing size become increasingly sensitive to the idiosyncrasies of 
sampling). The aberrant estimates that have been obtained in one or two 
of the cells of the stratifi cation may even be due to the presence of just a 
few idiosyncratic cases within the offending cells. The infl uence of such 
cases on the estimated effects rises as cell sample sizes fall. 

 Rather than dwelling on these oddities, however, let’s examine the big 
picture. Although there may be increased scatter among the 12 within-
stratum biased-corrected estimates, perhaps the multiple estimates are 
still scattered around some reasonable “central” bias-corrected estimate 
of the Catholic-school advantage. Again, we can compute weighted aver-
ages of the 12 estimates to summarize the bias-corrected difference 
between Catholic and public high-school students in twelfth-grade math-
ematics achievement. For instance, the estimated ATE — in which the 

      Table 12.2  Sample frequencies and average twelfth-grade mathematics achievement, by 
high-school type, within 12 strata defi ned by the crossing of stratifi ed versions of 
base-year annual family income and mathematics achievement ( n  = 5,671)  

  Stratum  Cell Frequencies  Average Mathematics 
Achievement (12th Grade)  

 Base-Year 
Family 
Income 

 Base-Year 
Mathematics 
Achievement 

 Public  Catholic  Public  Catholic  Diff.  

  Hi_Inc    Hi_Ach   1,159  227  58.93  59.66  0.72  
  MHi_Ach   432  73  49.18  50.71  1.53    ∗     ,    †     
  MLo_Ach   321  38  42.75  44.23  1.48  
  Lo_Ach   57  6  39.79  40.40  0.62  

  Med_Inc    Hi_Ach   790  93  57.42  59.42  2.00    ∗  ∗     ,    †     
  MHi_Ach   469  49  47.95  50.14  2.19    ∗  ∗     ,    †     
  MLo_Ach   390  33  41.92  44.56  2.64    ∗     ,    †     
  Lo_Ach   96  2  37.94  39.77  1.83  

  Lo_Inc    Hi_Ach   405  36  56.12  56.59  0.47  
  MHi_Ach   385  13  47.12  48.65  1.53  
  MLo_Ach   433  21  40.99  41.70  0.71  
  Lo_Ach   142  1  36.81  42.57  5.76  

  Weighted Average ATE     1.50    
  Weighted Average ATT     1.31    

  ∼ p  <0.10;  ∗  p  <0.05;  ∗  ∗  p  <0.01;  ∗  ∗  ∗  p  <0.001  
   † One-sided test  .
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within-cell estimates have been weighted by the  total  cell sample size within 
cell — is 1.50 (listed in the lower right corner of Table   12.2  ).   17  Clearly, we 
have again reduced the observed bias in our naïve estimate of the Catholic-
school advantage (3.89) dramatically from the intermediate estimate that 
we obtained by stratifying on base-year annual family income alone 
(3.01). 

 This progress toward successively smaller estimates of the Catholic-
school advantage as we bias-correct for additional covariates prompts us 
to wonder whether, by incorporating further well-chosen covariates, we 
could reduce the apparent Catholic-school advantage to zero. Of course, 
it would be diffi cult to continue to add covariates into our stratifi cation 
without exacerbating the technical problems that we just described. 
As we add covariates into the stratifi cation design, the number of cells in 
the cross-tabulation increases multiplicatively and cell frequencies plum-
met. We have to deal with increasing data sparseness, diminishing 
statistical power, and poor precision for estimates of the Catholic-school 
advantage within the cells of the stratifi cation, and the increasing scatter 
of the within-cell estimates. Clearly, there are practical limits to the appli-
cation of the stratifi cation approach in bias correction! 

 The most serious consequence of increasing the complexity of the 
stratifi cation design by adding further covariates is that it leads eventually 
to an extreme form of data sparseness in which there may be either no 
Catholic high-school students or no public high-school students present 
in particular cells of the cross-tabulation. Then, we can no longer estimate 
the critical bias-corrected Catholic-school advantage in these cells. 
Methodologists use the expression a  lack of common support  to describe 
such regions in the space spanned by the covariates. In these regions, 
estimates of treatment effects cannot be made because the regions do not 
contain members of both the treatment and control groups that share the 
same values of the covariates. 

 We could, of course, proceed by eliminating the offending cells 
from contention. In some sense, this is not a problem because the public-
school students who would be eliminated from the sample had no 
Catholic-school counterparts whom they matched on the values of the key 
covariates. We would be left comparing only those Catholic and public 
high-school students who are matched on the covariates. Perhaps 
this enhances the legitimacy of the obtained comparisons, despite the 

17.  Weighting by the within-cell frequencies of Catholic high-school students, the average 
effect of the treatment on the treated is 1.31 (lower right-hand cell in Table     12.2  ). 
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reduction in sample size. Nevertheless, in resolving selection bias by com-
plex simultaneous stratifi cation on observed covariates, it pays to remain 
alert to who is excluded from either of the two treatment conditions 
because they have no “neighbors” that match them on the other side. 

 Lack of common support can be particularly problematic in quasi-
experimental studies in which rampant self-selection into the treatment 
and control conditions has occurred.   18  For example, in observational 
studies of the Catholic/public high-school difference in achievement, it 
could be that very few low-income families with relatively low-achieving 
children send their children to Catholic schools. If this were the case, 
then fi ne-grained stratifi cation on family income and eighth-grade math-
ematics achievement could reveal an extreme lack of common support, 
leaving relatively few, viable bias-corrected comparisons to be estimated 
and pooled into an overall estimate.   19  

 Estimates of treatment effects obtained by the strategy for observed-
bias correction that we discuss next — the direct control for observed 
covariates in a regression framework — are also affected by problems of 
extreme sparseness and lack of common support in observational data. 
However, the impact of this lack of common support is usually concealed 
inadvertently in the analysis. By relying on strong assumptions of func-
tional form and homoscedasticity, direct control for covariates through 
regression analysis can continue to incorporate data from the unmatched 
cases. The original sample size is preserved, and no cases are lost. However, 
the unmatched cases have only been retained by reliance on strong 
assumptions. 

 Finally, it is important to remember that sparseness and lack of common 
support are not the most diffi cult issues, as they can be surfaced, exam-
ined, explained, or worked around. The key problem — and one that 
underlies all methods for bias correction on the observables — remains 
substantive. For bias correction to be credible, by any method, you must 

18.  In experimental data, with decent sample sizes, there tends to be no equivalent problem 
because random assignment to experimental conditions ensures that the distribution 
of participants over all levels of every covariate is similar in both the treatment and 
control groups. 

19.  In fact, Catholic high schools serve a substantial number of children from relatively 
low-income families who exhibit quite modest academic skills as eighth-graders. 
Consequently, the problem of lack of common support is not an especially serious 
problem in comparing the achievement of Catholic high-school students and public 
high-school students using quite large datasets such as NELS-88. However, lack of 
common support is a much greater problem in comparing the achievement of stu-
dents who attend non-Catholic private high schools and the achievement of students 
who attend public schools, using data from NELS-88 and other similar datasets. 
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have identifi ed — and incorporated — the correct “observables.” Only when 
you truly understand what has driven the selection process, can you 
defend your choice of the covariates for which to correct. Thus, it is the 
substantive issues that always remain the most critical in selection-bias 
correction, regardless of the sophistication of the method chosen to 
account for the infl uences of covariates. 

 We now move on to consider our second strategy for removing bias 
due to observables — the method of direct control for covariates, via regres-
sion modeling. This is the strategy that Coleman and his colleagues 
employed, and the one with which you are already the most familiar. It is 
interesting to contrast its consequences with those of the stratifi cation 
method, especially from the perspective of the technical problems we 
have surfaced. It responds to these diffi culties in different ways, with 
different kinds of costs.      

   Reducing Observed Bias by Direct Control for Covariates 
Using Regression Analysis   

 Given our theoretical position that family income and prior achievement 
are both elements of a selection process that drove better-prepared chil-
dren from relatively high-income families disproportionately into Catholic 
high schools, it is natural to ask why we need to employ stratifi cation to 
correct for the bias due to these observed covariates. Indeed, including 
measures of these two constructs directly as covariates in a multiple regres-
sion model that will address our research question seems a sensible way 
to proceed, although the approach is laden with assumptions that are 
often overlooked. 

 In most respects, the incorporation of base-year annual family income 
and prior achievement as covariates in the regression of  MATH12  on 
 CATHOLIC  is conceptually identical — as an approach to bias correction 
on observables — to the earlier stratifi cation approach. Even though it may 
not appear so on the surface, direct control for covariates by regression 
analysis implicitly forces the Catholic-school advantage to be estimated 
simultaneously in “slices” of the dataset that are defi ned by the values 
of the covariates. In addition, by including only the main effect of ques-
tion predictor  CATHOLIC  in the model, we force the estimated 
Catholic-school advantage to be identical across all these slices; that is, we 
force the  MATH12  versus  CATHOLIC  trend lines to be parallel within 
each cell defi ned by the covariates. Thus, in a very real sense, the overall 
covariate-adjusted regression estimate is an implicit average of all of the 
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“slice-by-slice” estimates.   20  However, the regression approach draws deeply 
on functional-form assumptions — the requirement of parallel linear trends 
within each covariate-constrained cell. As a consequence, bias correction 
by direct control of covariates via regression analysis has the appearance 
of being less challenged by the technical problems of sparseness, power/
precision, and scatter revealed under the stratifi cation approach. However, 
its apparent effectiveness and ease of use come at the cost of a greater 
reliance on the built-in assumptions. 

 As an illustration of the technique, we display in Table   12.3   the results 
from the use of standard OLS methods to regress outcome  MATH12  
on our question predictor,  CATHOLIC , while controlling for the two 
critical covariates —  FAMINC8  and  MATH8  — that we have argued motivate 
a selection process that delivers children into their particular high-school 
choices. We present two fi tted models in the table ( Model A  and  Model   B ) 
that differ only in the way that the effects of the two selection predictors 
have been specifi ed. Inspecting the results of both specifi cations, and 
considering their relative strengths can be informative, as we now show.    

 Conceptually, the fi rst specifi cation — Model A — emulates our earlier 
stratifi cation-based correction for observed bias. In this model, we have 
retained the earlier “three-by-four” stratifi cation on the  FAMINC8  and 
 MATH8  variables, by introducing a vector of 12 dichotomous predictors 
into the model to distinguish the main effects of each of the 12 cells in the 
cross-stratifi cation. This is a fully crossed  fi xed effects of cell  model, without 
an intercept parameter, which allows us to retain all 12 fi xed effects of cell 
in the model, rather than removing one as a reference category. This 
model — although its specifi cation seems unusual — is equivalent algebra-
ically to the more common specifi cation that contains the main effects of 
the stratifi ed versions of  FAMINC8  and  MATH8 , and their two-way inter-
action. However, by adopting Model A, we have defi ned a model that is 
conceptually and pedagogically appealing. Essentially, it possesses 12 
intercepts — one per cell — each of which is an estimate of the average 

20.  Technical details of the averaging process differ implicitly between the stratifi cation 
and regression approaches. In our example, under stratifi cation, we averaged the 
multiple within-cell estimates of the Catholic-school advantage by hand, weighting by 
some version of the cell frequencies. If we weight by the  total frequency  of students in 
each cell, we obtain an estimate of the overall ATE. If we weight by the  frequency of 
treated  (Catholic-school) participants in each cell, we obtain an estimate of the overall 
 average effect of the treatment on the treated . In the regression approach, however, this 
choice is taken out of our hands by an averaging process built implicitly into the OLS 
estimation of the main effect of  CATHOLIC . This latter averaging incorporates built-
in weights that depend essentially on the precisions of the within-cell estimates. Thus, 
an OLS estimate of the Catholic-school advantage is a special kind of weighted ATE. 
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twelfth-grade mathematics achievement of the  public  high-school students 
 in that cell . Thus, directly from the parameter estimates in the fi tted model, 
we know that the average mathematics achievement is 36.84 for students 
in public high schools whose families were in the lowest stratum of base-
year annual income and whose base-year mathematics achievement was 
the lowest.   21  The only other effect that is included in Model A is the 

21. These intercept estimates are not exactly identical to the sample estimates of cell 
means obtained in the stratifi cation analyses. For instance, in the lowest stratum of 
both income and prior mathematics achievement, the cell average twelfth-grade 
mathematics achievement was 36.81 in the stratifi cation analysis (Table     12.2  , Row 12), 
not 36.84, as in the regression analysis. The reason that these estimates are not identical, 

      Table 12.3  Parameter estimates and approximate  p -values from the OLS regression of 
twelfth-grade mathematics achievement on attendance at a Catholic versus public high 
school, controlling for base-year annual family-income (Model A:  FAMINC8 ; Model B: 
 INC8 ) and mathematics achievement ( n  = 5,671)  

  Predictor  OLS-Fitted Regression Model  

 A:  FAMINC8  and  MATH8   
Stratifi ed ,  Fully Crossed  

 B:  INC8  and  MATH8  
 Linear Main Effects , 
 Two-Way Interaction   

  Hi_Inc  ×  Hi_Ach   58.83    ∗  ∗  ∗      
  Hi_Inc  ×  MHi_Ach   49.21    ∗  ∗  ∗      
  Hi_Inc  ×  MLo_Ach   42.76    ∗  ∗  ∗      
  Hi_Inc  ×  Lo_Ach   39.72    ∗  ∗  ∗      
  Med_Inc  ×  Hi_Ach   57.49    ∗  ∗  ∗      
  Med_Inc  ×  MHi_Ach   48.03    ∗  ∗  ∗      
  Med_Inc  ×  MLo_Ach   42.03    ∗  ∗  ∗      
  Med_Inc  ×  Lo_Ach   37.95    ∗  ∗  ∗      
  Lo_Inc  ×  MHi_Ach   56.05    ∗  ∗  ∗      
  Lo_Inc  ×  MLo_Ach   47.13    ∗  ∗  ∗      
  Lo_Inc  ×  MLo_Ach   40.96    ∗  ∗  ∗      
  Lo_Inc  ×  Lo_Ach   36.84    ∗  ∗  ∗      
  INTERCEPT   4.827    ∗  ∗  ∗      
  INC8   0.164    ∗  ∗  ∗      
  MATH8   0.872    ∗  ∗  ∗      
  INC8  ×  MATH8   –0.002    ∗  ∗  ∗      
   CATHOLIC      1.33       ∗  ∗  ∗       ,      †        1.66       ∗  ∗  ∗       ,      †      

  R 2  Statistic   0.601  0.697  
  Residual Variance   6.009  5.232  

  ∼ p  <0.10;  ∗  p  <0.05;  ∗  ∗  p  <0.01;  ∗  ∗  ∗  p  <0.001  
   † One-sided test  .
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parameter of central interest to our research question — the main effect of 
question predictor  CATHOLIC . The slope coeffi cient on this predictor 
summarizes the average effect of the adjusted Catholic treatment that we 
seek, and has a value of 1.33 ( p  <0.001), with its bias attributable to the 
observed covariates, base-year annual family income, and mathematics 
achievement, removed.   22  This new  direct control of covariates by regression 
analysis  estimate is somewhat smaller than, but of the same order of mag-
nitude as, the bias-corrected estimate of the Catholic-school advantage 
that we obtained earlier by stratifi cation (1.50, see Table   12.2  ), and both 
estimates are much lower than the naïve and uncorrected OLS estimate 
of 3.89.   23  

 The advantage of this regression approach to observed bias correction 
is that we can pool all of the sampled children simultaneously into the 
same analysis, borrowing strength across cells to improve statistical power 
and smooth the relative infl uence of aberrant data points. However, we 
have bought these advantages by making additional assumptions — by 
imposing additional constraints on the model. We have assumed that the 
Catholic-school advantage is identical in each cell, in the population, and 
we have enforced that, in the model, via the analysis.   24  In addition, rather 
than simply letting the scatter of the data (and sample size) within each 
cell determine the standard error of the mean in that cell, we have assumed 
that the scatter is homoscedastic across cells, in the population, and have 
consequently pooled all that variation to obtain a common estimate of 
the standard error of the  CATHOLIC  slope. 

and neither are other respective pairs, is because we estimated cell means  separately  
during the stratifi cation analyses, and each cell was free to take on its own mean and 
standard deviation, determined only by its own data, independent of data in all other 
cells. This is not the case under the regression specifi cation, where we have analyzed 
all data simultaneously across 12 cells, under the assumption that the population 
Catholic- versus public-school difference is identical in each cell and that population 
residual variance is homoscedastic. These constraints, while tenable, have wrought 
minor changes in the estimated high-school means in each cell. So, the new quantities 
remain estimates of the average mathematics score in twelfth grade of the public high-
school students in each cell, but assume that the Catholic-school advantage is identical 
in each cell and that residual variance is homoscedastic in the population. We benefi t 
by this pooling of data across cells — in terms of power and precision — at the cost of 
relying on additional assumptions. 

22.  The regression approach estimates the ATE, not the ATT. 
23.  Again, the two estimates differ because of constraints imposed by the additional 

assumption on Model A’s functional form. 
24.  We could test this assumption by including interactions between question predictor 

 CATHOLIC  and the fi xed effects of the 12-cell  FAMINC8  by  MATH8  stratifi cation. 
Follow-up analyses showed that none of the additional interactions made a statistically 
signifi cant contribution to model fi t, beyond Model A. 



308 Methods Matter

 By making these new assumptions, we appear to have somewhat 
mitigated the impact of data sparseness. For instance, even if there were 
only one case in one or more of the cells in the stratifi cation, either a 
public or a Catholic high-school student, we would still be able to fi t the 
regression model using all of the data. But is this a sensible thing to do? 
It means that participants who do not have common support across all 
covariates have been included in the estimate. In other words, we may 
have estimated the Catholic-school advantage by comparing students who 
should not be compared, at least based on the observed values of our two 
critical covariates. The evident lack of common support, something about 
which we learned while correcting for observed bias by stratifi cation, is 
not evident immediately under the regression approach. Of course, a 
thoughtful data analyst could enjoy the best of both worlds. He or she 
could determine the boundaries of the region of common support in 
exploratory data analyses and trim the sample appropriately, retaining 
only participants who enjoy common support across viable values of the 
covariates. Only then would he or she fi t Model A in the new subsample. 

 Despite these warnings, you may now prefer to use the regression 
approach to fi t Model A  —  after all, it did work well. So, why then did we fi t 
a second regression model, Model B, the results of which are displayed in 
the last column of Table   12.3  ? We did this to emphasize that once you 
begin adding covariates to a regression model like this, you do more than 
assume that the Catholic-school advantage itself is homogeneous and 
the stochastic scatter homoscedastic across cells. You also — explicitly or 
implicitly — make assumptions about the functional form of all outcome: 
covariate relationships in each cell. In Model B, for instance, we have bias-
corrected using the same baseline covariates and their two-way interaction, 
but we have used different specifi cations of their effects. First, we have 
replaced our measure of base-year annual family income,  FAMINC8 , by a 
new variable named  INC8 . This new predictor has values that represent 
the actual incomes of the families as closely as possible. For instance, stu-
dents whose value of  FAMINC8  was 12 on the original ordinal scale —  and 
whose income fell between $50,000 and $74,999 — have been assigned a 
value of  INC8  midway between these bounds, at $62,500, and so on 
for other families, all amounts being expressed in thousands of 1988 
dollars.   25  We have also assumed that the main effects of covariates  INC8  
and  MATH8  on the outcome are linear. Recall that  FAMINC8 , in particu-
lar, was measured originally on an arbitrary ordinal 15-point scale — with 

25.  The converted values are: (1) $0K, (2) $0.5K, (3) $2K, (4) $4K, (5) $6.25K, (6) $8.75K, 
(7) $12.5K, (8) $17.5K, (9) $22.5K, (10) $30K, (11) $42.5K, (12) $62.5K, in 1988 dollars, 
where K = 1,000. 
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values in our sample ranging from 1 through 12. The steps between these 
original scale points were not equally spaced in monetary terms and, 
when we created our three original strata to limit observed variability in 
this covariate, we collapsed together many of the original categories. So, 
for instance, our  Lo_Inc  category included families with incomes that 
ranged from $0 through $19,999. The median family incomes in each of 
our three strata were not equally spaced, either. On the other hand, we 
made no assumption that the effect of annual family income was linear 
over its entire range. Thus, for children with a medium-low level of math-
ematics preparation (those in the  MLo_Ach  strata), the estimated 
difference in elevation between the  Med_Inc  and  Lo_Inc  intercepts was 
(42.03 – 40.96) or 1.07 (Table   12.3  , Model A, rows 7 and 11). In contrast, 
the difference in estimated elevation between the  Hi_Inc  and  Med_Inc  
intercepts is (42.76 – 42.03) or 0.73. The situation is different in Model B. 
Not only have we replaced  FAMINC8  by a variable that is measured in 
actual dollar amounts, we have included only its linear effect in the model. 
So, now, the effects of equal increments in  INC8  on the outcome are held 
implicitly to be equal by the linearity assumption. The same goes for 
 MATH8 , now modeled in its original test metric, with the impact of equal 
increments of test score on the outcome also held to be equal. Finally, the 
same goes for the two-way interaction. It is now the interaction of the 
linear effects of  INC8  and  MATH8 . In the Model A specifi cation, we may 
have crudely collapsed categories of family income and test score, but we 
did not mandate linearity! 

 Notice that Model B actually fi ts better than Model A — its  R  2  statistic is 
almost 10 percentage points higher, and its residual variance about 13 %  
smaller. In addition, the estimated Catholic-school advantage is now 
1.66, larger than the estimate obtained under Model A, but consistent 
with the estimate obtained under the stratifi cation approach (1.50). The 
reason this improvement in fi t has occurred is that: (a) the linearity 
assumptions may make sense, given the data coding; (b) we have managed 
to pick up on some of the additional variation in the covariates that was 
sacrifi ced when we stratifi ed them; and (c) Model B is dramatically more 
parsimonious — we have estimated fi ve parameters rather than 13. 

 Rather than designate one of these estimates of the Catholic-school 
advantage as “correct,” our point is that differences in functional form 
between Models A and B make a difference. So, when you decide to adopt 
a direct control for covariates by regression modeling approach, you may 
no longer need to make arbitrary decisions about how to collapse the 
covariates and stratify, but you do have other, equally critical decisions to 
make. This point will resurface when we describe the use of  propensity 
scores  for bias correction, in the following section. Finally, it is worth 
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mentioning that this is not the end of the process of selection-bias correc-
tion for observed covariates. If Model B had not fi tted so well, we would 
have sought transformations of the covariates, perhaps polynomials, and 
included multiple interactions among the differently transformed vari-
ables, hoping for a successful and parsimonious specifi cation. Perhaps we 
would not have found such a specifi cation and, in the end, had to accept 
the coarsening of the covariates in the stratifi cation process and fallen 
back on non-parsimonious Model A, with its 13 parameters, or even on 
the stratifi cation method itself. 

 On the other hand, our choice of linear effects has served us well in this 
particular example. So, we could continue the process of bias adjustment 
by including other carefully selected covariates into the regression model. 
However, there is a better approach to controlling bias due to observed 
covariates in the estimation of treatment effects from non experimental 
data, and we turn now to this approach.     

   Reducing Observed Bias Using a Propensity-Score 
Approach   

 It is useful to consider our covariate-controlled regression analyses from 
a conceptually different point of view. In Model B, we needed three terms 
to incorporate our hypotheses about the selection process into the princi-
pal regression model: the main effect of  INC8 , the main effect of  MATH8 , 
and their interaction. Inspecting Model B, in Table   12.3  , we see that our 
analyses have provided an estimate of the Catholic-school advantage while 
controlling statistically for a  particular linear composite of the covariates . In 
fact, you can regard Model B as though it is telling you to regress  MATH12  
on  CATHOLIC , while controlling for an “optimal” composite of the cova-
riates, given by (or proportional to):

  
0.164 8 0.872 8 0.002( 8 8)

Composite
INC MATH INC MATH

Covariate
⎧ ⎫

= + − ×⎨ ⎬
⎩ ⎭    

 By virtue of our acceptance of the OLS fi t as “optimal” in some sense, we 
learn that this particular composite best captures the effects of selection 
on the outcome, given our choice of covariates. Of course, in reading the 
fi tted model in this way, we have not learned much that is of practical use 
because we only discovered the respective “weights” that feature in the 
composite — that is 0.164, 0.872, and –0.002 — via the regression analysis 
itself. Hypothetically, though, if we had known these weights in advance, 
we would not have needed to include the main effects and their interaction 
separately as controls. Instead, we could have obtained the same estimate 
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of the magnitude of the Catholic-school advantage by forming a linear 
composite of the covariates in a prior step, using these weights or weights 
proportional to them, and including it as the sole covariate in our regres-
sion model.  

 We mention this hypothetical process because it communicates an 
important pedagogic message on which we can now capitalize. Suppose 
that, in our example, we possessed literally dozens, perhaps even hun-
dreds, of covariates that were potential contributors to our observed bias 
correction. For example, in Table 1 of the original paper on this same 
topic by Altonji and his colleagues (  2005a  ), the authors list fi ve possible 
demographic covariates, six family background covariates, four geo-
graphic covariates, fi ve covariates that describe prior parent and student 
expectations, and ten covariates that capture the student’s eighth-grade 
achievement and behavior. This is a total of 26 potential main effects for 
which we could adjust. In addition to these, there are literally thousands 
of two-, three-, four-, and multi-way interactions that could be formed 
from these same covariates and also included as controls. If we were to 
add all of these covariates into our principal regression equation to try 
to whittle down the observed bias, we may even eventually run out of 
degrees of freedom, ramp up our Type I error, and reduce our statistical 
power dramatically, even in very large samples. More importantly, our 
analyses might lose their important theoretical orientation and simply 
become a fi shing expedition in an enormous ocean of potential covari-
ates, and their products and transformations. 

 From our introductory discussion earlier, you will guess that what we 
seek is a single “optimal” composite of all the observed covariates that we 
hope will describe the selection process effectively and for which we can 
control. This suggests that, as a fi rst step in any correction for observed 
bias, it makes sense to focus fi rst on the selection process itself in order to 
seek out explicitly some optimal composite of the hypothesized selection 
predictors — in advance of our principal regression analyses. Specifi cally, 
we might use logistic regression analysis to investigate the relationship 
between dichotomous variable  CATHOLIC , which we now treat as an out-
come in a new fi rst-stage analysis, and the covariates that we think best 
describe that selection. From these results, we can then reconstruct a com-
posite variable that best describes the selection of each child into Catholic 
or public high schools — specifi cally, for this purpose, we can use the fi tted 
values of  CATHOLIC  for each child. Once we have fi tted the fi rst-stage 
selection model, these fi tted values then estimate the probabilities — we 
will refer to them as  propensities  — that children in the sample will attend a 
Catholic high school. In what follows, we describe how these propensities 
are used in what has become known as  propensity-score analysis . 
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 With this new perspective in mind, we present a pair of fi tted  selection 
models  for our NELS-88 example in Table   12.4  . In both models, we have 
used logistic regression analysis to regress our dichotomous treatment 
variable,  CATHOLIC , on the covariates that we have already hypothesized 
best describe children’s selection into either a Catholic or a public high 
school: annual family income and student prior mathematics achieve-
ment, along with their two-way interaction. In Model A, we include only 
the linear (main) effects of both selection predictors and their corre-
sponding two-way interaction. We do this with the recoded version of 
base-year family income,  INC8 .    

 Notice that by fi rst fi tting such selection models, we are able to test 
explicitly our hypotheses about the joint impact of base-year annual family 
income and prior mathematics achievement on children’s selection into 
Catholic and public high schools. In Model A, for instance, we learn that 
our original hypotheses are strongly supported ( χ 2 statistic = 120.13, 

      Table 12.4  Parameter estimates and approximate  p -values for a pair of fi tted logistic 
regression models in which attendance at a public or a Catholic high school 
( CATHOLIC ) has been regressed on hypothesized selection predictors ( INC8  and 
 MATH8 ) that describe the base-year annual family income and student mathematics 
achievement ( n  = 5,671)  

   Model A  : Initial specifi cation ,  with linear main effect of INC8   

 Predictor  Parameter Estimates  

  INTERCEPT   –5.209    ∗  ∗  ∗      
  INC8    0.062    ∗  ∗  ∗      
  MATH8    0.043    ∗  ∗  ∗      
  INC8  ×  MATH8   –0.0007    ∗  ∗      

  –2LL   3,675.2  
  Model LR  χ 2 Statistic (3 df)   120.13    ∗  ∗  ∗      

  Model B :  Final specifi cation, with quadratic main effect of INC8   

 Predictor  Parameter Estimates  

  INTERCEPT   –5.362    ∗  ∗  ∗      
  INC8   0.087    ∗  ∗  ∗      
  INC8 2    –0.0004    ∗  ∗      
  MATH8   0.036    ∗  ∗      
  INC8  ×  MATH8   –0.0006    ∗      

  –2LL   3,667.1  
  Model LR  χ 2 Statistic (4 df)   128.2    ∗  ∗  ∗      

  ∼ p  <0.10;  ∗  p  <0.05;  ∗  ∗  p  <0.01;  ∗  ∗  ∗  p  <0.001  
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 p  <0.001). Both the main effects of the covariates ( p  <0.001) and their 
two-way interaction ( p  <0.01) have statistically signifi cant effects on the 
type of high school attended. We learn that it is more probable that chil-
dren from higher-income homes and with greater eighth-grade 
mathematics achievement will attend a Catholic high school, although 
the effect of each predictor is moderated by the presence of the other. At 
higher levels of base-year annual family income, the impact of prior aca-
demic preparation is lessened, and vice versa. 

 In Model B (the lower panel of Table   12.4  ), we have refi ned our selec-
tion model by including a quadratic transformation of base-year annual 
family income. This leads to a statistically signifi cant improvement in fi t, 
as indicated by the decline in the –2LL statistic of 8.1 points with the loss 
of one degree of freedom ( p  <0.01). As a selection model, we favor fi tted 
Model B over Model A for reasons that we reveal below and that hark 
back to the issues of sparseness and common support that we described 
at the beginning of the chapter. 

 Notice that the parameter estimates listed in both panels were obtained 
by  maximum likelihood  estimation. In that sense, they are then “best” esti-
mates of the population parameters, chosen to maximize the joint 
probability of observing all the outcome data — that is, the entire collec-
tion of 0’s and 1’s that represent the public- or Catholic-school choices of 
the sampled children, given the statistical model. Thus, in a real sense, 
these estimates provide us with a mathematical vision of how the covari-
ate values can best be combined to discriminate between children who 
attend the two types of high school.   26  Their contributions, in this regard, 
can then be consolidated into a single number, for each child, by estimat-
ing his or her fi tted value of the outcome. Because our outcome —  
CATHOLIC  — is dichotomous, and its “upper” category represents the 
Catholic high-school choice, the fi tted values are simply the estimated 
probabilities that each child will attend a Catholic high school. As noted 
earlier, in this application, we refer to these fi tted probabilities as esti-
mated  propensities .   27  Providing that we have chosen the covariates well and 

26.  Here, we draw a conceptual link between logistic regression analysis and discriminant 
analysis, with the former being parametrically less stringent in that its covariates need 
not be drawn from a multivariate normal distribution (as the case with discriminant 
analysis). 

27.  Because we have specifi ed a logistic function for the selection model, the estimated 
propensities are a nonlinear composite of covariate values and are optimal for dis-
criminating between children who choose the Catholic- versus public-school options, 
 given the adequacy of the logistic model . We could also have used a  probit  or a  linear-
probability  function. In the former, the propensities would again be a nonlinear 
composite of covariate values; in the latter, a linear composite. However, the issue is 
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have specifi ed the selection model correctly, the estimated propensities 
will summarize appropriately all that we know about the systematic nature 
of selection into Catholic and public high schools. They are that particu-
lar scalar function of the covariates that contains all of the information 
necessary to correct the estimated Catholic-school advantage for selec-
tion due to base-year annual family income and mathematics achievement 
(Rosenbaum & Rubin,   1984  ).   28  

 We display in the histogram in panel A of Figure   12.2   the distribution 
of the estimated propensities obtained by fi tting Model B across all sam-
pled children.   29  In our NELS-88 example, these propensities are not large. 
They range from 0.016 to 0.173, with a median value of 0.106. The pro-
pensity scores provide an index — or scalar, in Rubin’s terms — that optimally 
summarizes the information the covariates contain.    

 In the bottom panel of Figure   12.2  , we re-present the sample distribu-
tions of the estimated propensities from Model B, divided into two panels 
by whether the child attended a Catholic or a public high school. Notice 
that the two sample distributions overlap completely, having almost iden-
tical ranges. But, as you might expect, the shapes of the two histograms 
differ somewhat, with the distribution of the propensities for the public 
high-school students having a much thicker lower tail. These differences, 
of course, embody the success with which we were able to predict the fi rst-
stage  CATHOLIC  outcome by our selection predictors, base-year annual 
family income and mathematics achievement. 

 The overlap of the sample distributions of the estimated propensities, 
by the values of  CATHOLIC , is important because it suggests that stu-
dents who enroll in Catholic high schools and those who enroll in public 

not whether the composite is linear or nonlinear, but that the estimated propensities 
best discriminate among those who choose to go to Catholic versus public schools, 
given the particular covariates  and the model . Thus, which of the three possible sets 
of propensities is optimal — the logit-based, probit-based, or linear-probability–
based — depends on which of the three functions is appropriate. In practice, the choice 
between probit and logit functions makes little difference. But, the linear-probability 
function may lead to fi tted values that fall outside the permissible range [0,1]. 
Traditionally, in propensity score estimation, the logit function has been preferred 
(Rosenbaum & Rubin,     1984  ). 

28.  Rosenbaum and Rubin (    1984  ) show that this statement is true under the assumption 
of  unconfoundedness.  As explained earlier in the chapter, this critical assumption is that 
the treatment assignment is independent of the outcomes,  conditional on the covariates . 
Or, in simpler terms, this means that we are assuming that, within each cell of a cross-
tabulation formed by the values of the covariates, assignment to treatment and control 
conditions is random. 

29.  Notice that we have superimposed a  kernel density plot  in Panel A, to describe the 
smoothed envelope of the histogram. We provide similar smooth envelopes on all 
subsequent histograms displayed in fi gures in this chapter. 
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high schools share a large region of common support on the covariates. 
It also suggests that if we were to now stratify the sample carefully, not by 
base-year annual family income and prior mathematics achievement, as 
before, but using our new scalar index, the  propensity score , we could suc-
cessfully anticipate fi nding both Catholic and public high-school children 
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     Figure 12.2    Histograms (and smoothed kernel-density estimates) of the propensities of 
selection into Catholic high school, from fi tted Model B of Table   12.4  , overall (Panel A) 
and by whether the child attended a Catholic or a public high school (Panel B).    
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within each stratum. This, in turn, would imply that we could estimate the 
difference in average twelfth-grade mathematics achievement between 
Catholic and public high-school children within each stratum and pool 
the average differences across strata to obtain an overall estimate of the 
Catholic-school advantage. This is exactly what we do.    

   Estimation of the Treatment Effect by Stratifying on 
Propensity Scores   

 Once we have estimated these new propensity scores, we can correct for 
observed bias due to base-year annual family income and prior mathemat-
ics preparation by stratifying  on the propensities , rather than on the 
covariates themselves. With our NELS-88 example, we began this process 
with propensities estimated from fi tted Model A in Table   12.4  , which con-
tains only the linear main effect of baseline family income. Initially, we 
stipulated fi ve initial strata or  blocks , as they are known in the vernacular 
of propensity-score analysis. We made this choice based on technical rec-
ommendations that, with at least fi ve blocks, you can eliminate more than 
nine-tenths of the observed bias that is present (Rosenbaum & Rubin, 
  1984  ). From that point, we iterated, as we described in our application of 
stratifi cation earlier in the chapter. We fi rst checked whether there was 
common support and whether balance had been attained within each of 
the blocks. In other words, we checked that there were both Catholic and 
public high-school students present in each propensity block, and that 
their average values on the covariates were no different within block. In 
fact, when you stratify on the propensities, it makes sense to check fi rst 
that the average values of the propensities, within each block, are equal 
for Catholic and public high-school students. If this test is met in your 
proposed block structure, you can then delve more deeply and compare 
the average values of each of the covariates themselves, by  CATHOLIC , 
within blocks. If these balancing checks fail, you can then split or recom-
bine blocks iteratively. Only when the groups of Catholic and public 
high-school students in each block are balanced on  both  their mean pro-
pensities and on the means of all the covariates, can you conclude that 
you have an acceptable stratifi cation and consequently move ahead to the 
second stage of the process in which you obtain bias-corrected estimates 
of the treatment effect. 

 In fact, it was just such an iterative process of balance checking and 
reblocking that led us to reject the initial Model A specifi cation of the 
selection model in favor of Model B (Table   12.4  ). Under a variety of block 
structures, from three through 13 blocks, and even when within-block 
groups of Catholic and public high-school students were balanced on the 
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propensity scores themselves, we found that the means of base-year annual 
family income were consistently out of balance in one or two of the upper 
blocks. When this kind of problem occurs, our advice is to question your 
specifi cation of the selection model and seek out alternative specifi ca-
tions while remaining true to your theoretical decisions about which 
covariates to include. Typically, you can be guided in your respecifi cation 
by being alert to where — that is, on which covariates — the failure to bal-
ance is occurring, and then seek an alternative specifi cation for that 
particular covariate. Try sensible transformations of the offending covari-
ate, based on the skewness of its sample distribution, or include polynomial 
versions of the covariate (as we did) to provide for a nonlinear relation-
ship. Another useful strategy that can be effective is checking whether it 
makes sense to include interactions among the covariates as predictors in 
the selection model. We have not documented the additional data analy-
ses that led from Model A to Model B here. However, the process is 
rendered data-analytically transparent by the new focus on fi nding a rea-
sonable selection model as an initial step before correcting for observed 
selection bias. In our example, we were able to resolve the lack of balance 
in our initial blocking by adding a quadratic main effect of  INC8  to the 
selection equation .  

 Once our selection model was modifi ed and refi tted, we again used the 
obtained propensity scores to create a stratifi cation that now contained 
six blocks, within which all necessary balancing conditions were met. We 
present this stratifi cation in Table   12.5  . Notice, fi rst, as anticipated from 
Figure   12.2  , we now enjoy common support across the six blocks — there 
are both Catholic and public high-school students present in each block. 
The fi rst block, for instance, contains the 841 children whose propensi-
ties fell below 0.05, 810 of whom attended a public high school, and 31 of 
whom attended a Catholic high school. In addition, we confi rmed bal-
ance in each block — the average values of the propensity scores, annual 
family income, and prior mathematics achievement for the two groups of 
students in each block were close in value. We cannot reject the null 
hypothesis of no mean difference by high school type, in the population, 
for either the propensities or any of the covariates in any block.   30     

 Finally, we obtain within-stratum estimates of the Catholic high-school 
advantage by subtracting the corresponding within-block means (fi nal 
column of the table). Again, although the subgroup estimates are scattered 
(from 0.36 through 3.07), weighting by the total within-stratum frequen-
cies, we obtain an overall estimate of the average treatment effect — the 

30.  At a Bonferroni-adjusted  α -level of 0.01, in each case. 



      Table 12.5  Six propensity-score strata, based on predicted values from Model B of Table 12.4. Within-block sample statistics include: 
(a) frequencies, (b) average propensity scores, (c) average base-year annual family income, (d) average base-year mathematics achievement, 
and (e) average twelfth-grade mathematics achievement by type of high school, and their difference ( n  = 5,671)  

  Propensity Blocks 
and Scores 

 Block 
Frequencies 

 Average Estimated 
Propensity Score 

 Average Base-Year 
Annual Family 
Income 

 Average Base-
Year Mathematics 
Achievement (8th 
Grade) 

 Average Mathematics 
Achievement (12th Grade)  

 Block  Range  Publ.  Cath.  Publ.  Cath.  Publ.  Cath.  Publ.  Cath.  Publ.  Cath.  Diff.  

  1  
  
p̂

   
<0.05  810  31  0.036  0.040  8.47  9.81  43.16  44.68  42.74  45.35  2.61    ∗     ,    †     

  2  
 
0.05 ≤

  
p̂    

<0.075
 

 741  45  0.062  0.064  18.14  17.53  47.45  49.46  47.16  50.22  3.07    ∗  ∗     ,    †     

  3  
 
0.075 ≤  p̂   <0.1

 
 928  100  0.088  0.089  26.64  26.57  48.80  49.63  48.79  49.63  0.84    ∗  ∗     ,    †     

  4  
 
0.1 ≤  p̂   

<0.125
 

 786  87  0.114  0.114  33.35  33.36  52.62  52.91  52.02  54.26  2.24    ∗     ,    †     

  5  
 
0.125 ≤  p̂   <0.15  810  145  0.136  0.137  40.73  41.47  55.15  54.79  54.72  56.54  1.82    ∗  ∗     ,    †     

  6  
 
0.15 ≤  p̂   <0.2

 
 1,004  184  0.163  0.163  57.34  58.37  58.55  57.86  56.95  57.32  0.36  

  Weighted Average ATE     1.69    
  Weighted Average ATT     1.40    

  ∼ p  <0.10;  ∗  p  <0.05;  ∗  ∗  p  <0.01;  ∗  ∗  ∗  p  <0.001  
   † One-sided test  .
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Catholic-school advantage — of 1.69. This estimate is similar to the corre-
sponding estimate that we obtained under the earlier direct control for 
covariates approach with the same covariates.   31  This time, though, notice 
that we have delved more deeply into the selection problem itself. We 
have modeled the selection process. We have checked for common (cova-
riate) support and verifi ed that there are Catholic and public high-school 
students in every block. We have checked the balancing property for the 
propensities and the covariates and found that it was met. 

 To conclude this subsection, we illustrate briefl y how simple it is — given 
the propensity-score framework — to incorporate more covariates into the 
observed bias correction. For instance, as we have noted earlier, Altonji 
and his colleagues (  2005a  ) argued that it made sense to include additional 
selection predictors such as base-year family background and prior parent 
and student expectations. Thus, we refi tted our selection model in the 
lower panel of Table   12.4  , Model B, adding covariates for the mother’s 
and father’s expectations for the student’s education attainment, and 
measures of student misbehavior (including whether they got into fi ghts 
at school, whether they failed to do homework, whether they were disrup-
tive in class, and the risk of their dropping out), all measured in the base 
year. We refer to this supplemented model as  Model C . Although we do 
not list its parameter estimates and goodness-of-fi t statistics here, the 
model fi tted well, and the additional covariates made a statistically signifi -
cant improvement to its fi t ( ∆  χ 2 = 58.83,  ∆  df  = 6,  p  <0.001). 

 Based on propensity scores estimated from the more complex Model 
C, we repeated the blocking on propensity score process, this time ending 
up with fi ve blocks. We list them in Table   12.6  , along with statistics on the 
number of students within each block, average propensity score, and aver-
age twelfth-grade mathematics achievement, by the type of high school 
attended. There was again complete overlap of the sample distributions 
of the propensity scores, by type of high school, and so there are both 
Catholic and public high-school students within each block. Comparisons 
within block, by  CATHOLIC , indicate that balance was achieved on the 
mean propensity scores and also on the means of all of the selection 
predictors in the model. Estimates of the Catholic-school advantage, 
within block, are scattered from 0.48 through 2.51, with an overall 
weighted-average estimated treatment effect of 1.78 (with the average 
effect of the treatment on the treated being 1.56). These estimates are 
similar in magnitude to our earlier bias-corrected estimates, and do not 

31.  The corresponding estimated effect of the Catholic-school treatment  on the treated  was 
1.40, obtained by weighting within-block estimates by the number of Catholic high-
school students within block. 



      Table 12.6  Five propensity-score blocks, based on predicted values from fi nal Model C (which contains selected covariates in addition to 
those included in Model B). Within-block sample statistics include: (a) frequencies, (b) average propensity scores, and (c) average twelfth-
grade mathematics achievement by type of high school, and their difference ( n  = 5,671)  

  Propensity Blocks 
and Scores 

 Block Frequencies  Average Estimated 
Propensity Score 

 Average Mathematics Achievement 
(12th Grade)  

 Block  Range  Publ.  Cath.  Publ.  Cath.  Publ.  Cath.  Diff.  

  1  
  
p̂

   
<0.05

 
 1,089  34  0.030  0.035  43.66  46.01  2.35   ∼    ,    †     

  2  
 
0.05  ≤  p̂   <0.1

 
 1,431  110  0.075  0.078  48.85  51.00  2.15    ∗     ,    †     

  3  
 
0.1  ≤  p̂   

<0.15
 

 1,599  253  0.127  0.129  53.62  55.38  1.76    ∗  ∗     ,    †     

  4  
 
0.15  ≤  p̂   <0.2

 
 829  160  0.172  0.173  56.87  57.35  0.48  

  5  
 
0.2  ≤

  
p̂   <0.3

 
 131  35  0.213  0.212  52.51  55.01  2.51   ∼    ,    †     

  Weighted Average ATE     1.78    
  Weighted Average ATT     1.56    

  ∼ p < 0.10;  ∗  p < 0.05;  ∗  ∗  p < 0.01;  ∗  ∗  ∗  p < 0.001  
   † one-sided test.  
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represent much of a shift from the estimate we obtained by correcting 
for observed bias due only to base-year annual family income and the 
student’s prior mathematics achievement.   32         

   Estimation of the Treatment Effect by Matching on 
Propensity Scores   

 The fact that we can eliminate large amounts of observed selection bias by 
stratifying the sample into fi ve or six blocks on the propensity scores 
tempts one to think that we may do better with seven blocks, or eight, and 
so on. As we create more blocks, we can anticipate removing more of the 
observed bias, provided that we remain within the region of common sup-
port and that the balancing property continues to be met. However, we 
know from Cochran and Rubin’s work (  1973  ) that you can do pretty well 
with as few as fi ve blocks and so, beyond that, there may be diminishing 
returns. 

 Rather than continuing to search for blocking Nirvana, however, you 
can turn the search for an optimal number of blocks on its head. Rather 
than adopting a top-down approach in which you divide up well-populated 
blocks to form smaller and narrower blocks, and then check for overlap 
and balance in the new blocks, you can adopt a bottom-up approach. You 
can list all members of the treatment group (in this case, the Catholic 
high school students) and, for each of them, use the estimated propensity 
scores to fi nd a “nearest neighbor” in the control group — that is, someone 
among the public high-school students whose propensity score matches 
theirs, as closely as is feasible.   33  For this pair, balance on the propensity 
scores will be present automatically, and usually on the covariates as well.   34  
Once you have found viable neighbors for each treated participant, you 
can drop unused public high-school students from your analysis. They are 
not needed because either another control-group member is standing in 
their stead, or they fall outside the region of common support, as defi ned 
by their propensity score. This process is called  nearest-neighbor matching . 

32.  Details of these analyses are available from the authors on request. 
33.  Because the estimated propensity scores depend on many continuous (and categori-

cal) predictors, it is unlikely that two participants will share  exactly  the same propensity 
score. 

34.  This claim, of course, is not universally true, as two participants can have similar pro-
pensity scores but differ on their values of the covariates, the differences in the latter 
being offset by differences in the parameter estimates associated with the covariates 
in the selection model. However, when selection predictors have been chosen sensibly, 
it usually turns out to be a defensible claim. 
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 There are two ways to conceptualize the process of matching nearest 
neighbors on propensity scores. First, you can regard nearest-neighbor 
matching as a kind of subsampling. It is a way of examining members 
of the control group, under the microscope of their propensities, to fi nd 
that particular subgroup of control members that most closely resembles 
the members of the treatment group, one on one, based on the covariates 
that you believe matter most. Once the matched groups have been identi-
fi ed, their average outcomes can be compared using standard methods. 
Alternatively, you can think of nearest-neighbor matching as an extreme 
form of stratifi cation, in which only two participants are present in each 
stratum, one Catholic high-school student and one public high-school 
student. These pairs have been chosen because their matched propensity 
scores suggest that their important characteristics — those that we believe 
are most closely linked to selection — are very similar. Unmatched public 
high-school students are eliminated because they are not needed, once 
viable neighbors have been found.   35  

 Of course, our broad description of the nearest-neighbor matching 
algorithm disguises many technical complexities that must be faced in 
practical data analysis. We suggest that you consult the literature that we 
cite at the end of the chapter to learn more about their subtleties. However, 
just to alert you, here are a few of the questions you must answer. What 
should you do if there are multiple possible “control” matches for a par-
ticular member of the treatment group? Should you include all the matched 
neighbors in the control subsample? If you do include them, how do you 
deal with their multiple values on the fi nal outcome in your estimation of 
the treatment effect? Should each of them count as a separate control par-
ticipant? Should they be pooled into a single simulated “super-neighbor”? 
If you don’t include all of the multiple possible matches, how should you 
pick the best one for the job — by a random drawing, or in a more system-
atic way? Should matching and resampling from the control group be 
conducted with, or without, replacement? If you do use a control-group 
member as a match for more than one treatment-group member, how do 
you estimate the standard errors associated with the difference in fi nal 
outcome means? This is only a taste of the many questions relevant to 
nearest-neighbor matching that methodologists have tackled and resolved. 
Their solutions lie beyond our presentation here. However, in the next 
section, we describe a strategy that allows you to avoid these questions. 

35.  It is true that this process sacrifi ces statistical power as it eliminates members of the 
sample from the analysis. However, remember that we are using observational data, 
and that the sample members who have been eliminated were demonstrably non-equiv-
alent to those who were retained. 
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 By way of illustration, though, we have executed one particular form of 
nearest-neighbor matching in our NELS-88 example, using Stata’s user-
supported routine,  attnd  (Becker &Ichino,   2002  ). We implemented it 
using the propensity scores estimated in our fi nal and most complex selec-
tion model, Model C. If more than one good match exists for any treated 
individual, the  attnd  algorithm picks one of the duplicates by a random 
draw to become the actual “neighbor” from the control group. It also 
picks out nearest neighbors with replacement, meaning that control-
group members can serve as neighbors for more than one member of the 
treatment group. So, you can end up with a “matched” control group that 
is smaller than the treatment group. 

 In our example, after the matching process was over, each of our original 
Catholic high-school students had been matched with a public high-school 
neighbor who had an almost identical propensity score. For instance, 
among the Catholic high-school students, student #1485802 had a pro-
pensity score of 0.0099903 and was matched with public high-school 
student #709436, whose propensity score was 0.0100709. And, as you 
would expect with propensities that have been estimated in double preci-
sion, although their values on the selection predictors did not match 
exactly, these students had very similar values on the covariates. They 
both came from families with low incomes, they had low prior mathemat-
ics achievement, they never got into fi ghts in school, and so on. In the 
end, we were left with a sample that contained the entire treated group of 
592 Catholic high-school students and a comparison group of 553 
matched public high-school “neighbors.” Notice that the size of the 
matched control group was smaller than the size of the treatment group 
because some control-group members served as matches for more than 
one treatment-group member. The estimate of the ATE was 1.04, and the 
estimate of the average treatment effect on the treated (ATT) was 0.92. 
These estimates are smaller than our previous bias-corrected estimates 
of treatment effects. However, in both cases, we can reject the null 
hypothesis that the bias-corrected Catholic-school advantage is zero in 
the population.   36  

 We conclude this discussion of the nearest-neighbor matching tech-
nique by describing another common application of the approach that 
capitalizes on access to a set of propensity scores. Let’s suppose that 
you possess non experimental data on a sample of individuals who were 

36.  There is a lot of recent technical research on matching methods. For example, Abadie 
and Imbens (    2008  ) show that the use of bootstrapping does not produce correct stan-
dard errors for matching estimators. We thank Juan Saavedra for pointing this out to 
us and for very helpful conversations about the topics discussed in this chapter. 
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 all  treated. For example, they may be low-income adult males who had 
participated in the National Supported Work (NSW) program, an initia-
tive that provided participants with structured work experiences. Now, 
you want to learn whether the treatment improved labor-market outcomes 
for participants. However, you lack a control group. How can you best 
select a suitable control group from another dataset, such as the Current 
Population Survey (CPS), which the U.S. Bureau of the Census administers 
monthly to a sample of more than 50,000 U.S. households? Propensity-
score analysis and nearest-neighbor matching provide one alternative. 
First, you merge all your data on the participants in the training program 
with the CPS data from an appropriate year. Second, you fi t a sensible 
selection model that predicts whether an adult male participated in 
the training program, or not, in the combined dataset and estimate a 
propensity score for each person. Working with these propensities and 
nearest-neighbor matching, you then select a subsample of males from 
the CPS sample that can best serve as the control group for comparison 
of outcomes with your treatment group, in the usual way. 

 In recent years, a number of studies have examined whether this par-
ticular application of propensity scores and nearest-neighbor matching 
produces estimates of treatment effects that are similar to those obtained 
from random-assignment experiments. Not surprisingly, the results of 
these studies are mixed. For example, Rajeev Dehejia and Sadek Wahba 
(  2002  ) fi nd that the application of these techniques allowed them to 
replicate the results of the random-assignment evaluation of the NSW 
program using a comparison group drawn from the CPS. On the other 
hand, Diaz and Handa (  2006  ) report that the use of these methods did 
not allow them to replicate consistently the experimental results from the 
analysis of Mexico’s PROGRESA conditional cash-transfer program. 
The mixed nature of the results of studies that examine whether the 
application of matching methods can reproduce the results from random-
assignment experiments should not surprise you. Much depends on the 
success of the researchers in understanding the selection process, in mod-
eling it accurately, and in obtaining comparable measures of the critical 
covariates in all of the datasets used in the analysis.     

   Estimation of the Treatment Effect by Weighting by the 
Inverse of the Propensity Scores   

 In the previous subsection, we used nearest-neighbor matching to choose 
a control subset of 553 public high-school students, and we compared 
their twelfth-grade mathematics achievement with that of our treatment 
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group of 592 Catholic high-school students. In the process, we eliminated 
from the estimate of the treatment effect thousands of public-school 
students who were legitimate members of the original survey sample, but 
didn’t happen to become “nearest neighbors.” This may seem wasteful. 
We now turn to a method of making use of propensity scores that allows 
us to utilize the information on all of the public-school students in the 
original sample. 

 Conceptually, you can regard our estimation of the Catholic-school 
advantage using the nearest-neighbor matching method as the creation 
of a  weighted  average of  all  the students’ outcome values, whether they 
were selected as a nearest neighbor or not. This may seem like a strange 
statement to make, given that we dropped a large number of potential 
neighbors during the computation. In essence, we incorporated into our 
estimation of the treatment effect a set of weights that were dichotomous 
and could take on a value of either 1 or zero. It is as though we had 
assigned everyone in the Catholic high-school treatment group a weight 
of 1. There were 592 of these. Then, students in the public high-school 
control group were assigned a weight of 1 if they proved to be a suitable 
nearest neighbor (553 students) or a weight of zero if they were not a 
nearest neighbor to any Catholic-school student in the sample. Then, we 
estimated and compared the average twelfth-grade mathematics achieve-
ment outcome for Catholic and public high-school students, weighting 
each student’s contribution by the respective dichotomous weight. All 
children with a weight of zero contributed nothing to the computation. 
We were left with the difference in outcome means between all the stu-
dents in the Catholic-school treatment group and those in the public-school 
control group who had been assigned a weight of 1 by the matching pro-
cess. And where did we obtain the values of these dichotomous weights? 
We got them indirectly by examining the values of each participant’s 
propensity score! This raises the question of whether we might be able to 
use the propensities themselves — for every person — to create a more fi ne-
grained set of weights, and then redo the computation while retaining 
everyone in the sample. 

 Begin by thinking about what the values of the propensities would have 
been if this had been an experiment in which children had been assigned 
randomly to the Catholic or public high school conditions. In this case, 
we would not have been able to predict  CATHOLIC  by any covariate, 
regardless of its theoretical support, because the random assignment 
would ensure that high-school assignment was uncorrelated with all 
potential covariates. So, all of the children’s estimated propensities —
 regardless of their values on the covariates — would be identical, and we 
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would learn nothing by fi tting the fi rst-stage selection model.   37  However, 
our data do not come from a random-assignment experiment, and we 
have indeed been able to predict whether a child went to a Catholic (or 
public) high school. In fact, the estimated propensities themselves describe 
the success of our prediction of selection. They summarize the extent to 
which a systematic selection process led each participant to attend the 
particular type of high school that he or she did, in fact, enter. In a sense, 
the propensities summarize how nonrandom the children’s choices of 
high-school type were in our data. Then, throughout this entire section 
we have been trying essentially to correct estimates of the Catholic-school 
advantage for differences in the propensities across children. 

 To obtain an unbiased estimate of the impact of the Catholic-school 
treatment, we need to purge our estimate of the treatment effect of the 
impact of this selection. In carrying out this purging process, we can be 
guided by the magnitudes of the propensities themselves. Consider two 
Catholic high-school students, for instance — let’s call them Andy and 
Bob — and let’s suppose that we know that Andy’s estimated propensity 
score  ̂ Andyp    was much higher than Bob’s,  ̂ Bobp   . We can then conclude that 
selection on the observable variables played a stronger and more predict-
able role in Andy’s school choice than in Bob’s. To bias-correct an estimate 
of the Catholic-school advantage that incorporated information from 
both of these students, we would want to downplay the contribution of 
Andy, whose choice was more predictable, in comparison to the contribu-
tion of Bob, whose choice was less so. Thus, we would want to down-weight 
the contribution made by Catholic high-school student Andy, relative to 
the contribution of Catholic high-school student Bob. We can achieve this 
by incorporating weights that are the  inverse  of their propensity scores,

 
ˆ1 Andyp

   and 
ˆ1 Bobp

  , into our estimation of the average treatment effect. 

That way, Andy would have a lower weight than Bob, among Catholic 
high-school students. 

 How should the contributions of the public high-school students be 
weighted? The argument is similar. Consider two public high-school stu-
dents, Yves and Zack. Recall that the propensities that we have estimated 
describe the fi tted probability of entering Catholic high school for each 
student in the sample. For Yves and Zack, however, who went to public 
school, we want to weight by the inverse of their probabilities of entering 
their own kind of school, a public high school. These probabilities are 

37.  They would be equal to the overall proportion of Catholic high-school students in the 
full sample, 0.104. 
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therefore the complement of their propensities — that is, ˆ (1 )Yvesp−    and 
 ˆ(1 )Zackp−   .   38  So, we would weight their contributions to the average treatment 
effect by their respective inverses, ˆ1 (1 )Yvesp−    and  ˆ1 (1 )Zackp−   . 

 Technical work based on Rubin’s potential outcomes framework has 

shown that such  inverse probability weights  —  ˆ1 p    for treatment participants, 

and ˆ1 (1 )p−    for control participants — are exactly the weights needed to 
counteract the effect of selection on an estimate of the average treatment 
effect (Imbens & Wooldridge,   2009  ), provided that you have estimated 
the propensity scores correctly. They are straightforward to compute 
from the obtained propensities, as shown, and can be incorporated read-
ily into the estimation of the average mean difference in outcome between 
treatment and control groups. Although several explicit weighted estima-
tors have been proposed, based on this principle, each incorporating 
inverse probability weights in a slightly different way, we recommend 
Imbens and Wooldridge’s inverse-probability weighting (IPW) estimator 
(2009, Equation 18, p. 35),   39  the value of which can easily be estimated 
directly in a weighted least-squares (WLS) regression analysis. For instance, 
in our NELS-88 example, we used WLS regression analysis to regress 
 MATH12  on  CATHOLIC , with IPW weights.   40  In this most sophisticated 
application of propensity scores, we fi nd that the average Catholic-school 
advantage corrected for bias due to our fi nal set of observed covariates is 
1.47 ( p  <0.001), an effect that is consistent with our earlier estimates. 

 As a fi nal comment on this method of using propensity scores, it is 
interesting to see how the application of the inverse-probability weights 
(that have proven effective in removing observed bias from our estimate 

38.  With only two choices, if the probability of choosing one of them is  p , then the 
probability of choosing the other must be (1 –  p ). 

39.  There is a typo in the extreme right-hand quotient in Imbens and Wooldridge’s 
Equation (18). When corrected, it should read:

  
1 1 1 1

(1 ) (1 )ˆ
ˆ ˆ ˆ ˆ( ) ( ) 1 ( ) 1 ( )

N N N N
i i i i i i

ipw
i i i ii i i i

WY W W Y W
e X e X e X e X

t
= = = =

⎛ ⎞ ⎛ ⎞− −= −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑

      (Imbens, private communication,     2009  ), where  W i   is the value of the treatment indica-
tor for the  i  th  individual and takes on a value of 1, when the participant is a member 
of the treatment group (0, otherwise) and  ̂ ( )ie X   is the propensity score, predicted 
from covariates  X . 

40.  Be cautious how you program and execute the WLS regression analysis, as the idio-
syncrasies of your statistical software may affect how you need to communicate the 
IPW weights. To obtain the Imbens and Wooldridge IPW estimator by classical WLS 
regression analysis, the regression weights must be the square-roots of the IPW 
weights. However, some statistical routines require you to input WLS regression 
weights as squares — that is, as variance-based weights — in which case, the IPW weights 
themselves are the required form. 
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of the Catholic-school advantage) affects the sample distributions of the 
covariates from which they were derived. In Figure   12.3  , we present kernel-
smoothed density estimates of the sample distribution of our  MATH8  
selection predictor, by levels of the question predictor  CATHOLIC , before 
( top panel ) and after weighting by the IPW weights ( bottom panel ). Notice 
that the application of the weights alters the sample densities so that the 
Catholic-school and public-school densities acquire similar shapes and 
overlap completely. In a sense, the inverse-probability weights have acted 
to restructure the Catholic-school and public-school densities for com-
plete common support and balance. This same pattern holds for the 
distributions of all of the covariates.         

   A Return to the Substantive Question   

 As we mentioned at the beginning of this chapter, our choice of substan-
tive question and the dataset that we used to illustrate these methods of 
reducing bias in treatment effects due to selection on observed variables 
was infl uenced by Altonji, Elder, and Taber’s thoughtful paper (  2005a  ). 
Their paper examined the question of whether Catholic high schools pro-
vide better education than public high schools, using a technique the 
authors had developed to assess the degree of omitted-variables bias 
from evidence on the extent to which the observed covariates are able to 
predict selection of students into the Catholic and public schools. We 
describe two related lessons from this paper that bear on efforts to address 
causal questions with non-experimental data, and that extend the presen-
tation here. 
 One lesson concerns the importance of thinking carefully about the defi -
nition of the analytic sample. Altonji and his colleagues reported results 
based on two analytic samples. The fi rst included all students in the NELS-
88 database who attended either a Catholic or public high school. The 
second included only those students in NELS-88 who attended a Catholic 
school  in grade 8.  The authors presented two reasons why they believed 
that results based on the second, smaller sample were more credible. 
First, only 0.3 %  of students who attended a public school as an eighth-
grader subsequently enrolled in a Catholic high school. Consequently, 
the authors argued that public-school eighth-graders were unlikely to be 
appropriate comparison group members for predicting what the educa-
tional outcomes of Catholic high-school students would have been, if they 
had attended a public high school. Second, the observed covariates chosen 
to model the selection process were much less successful in predicting 
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     Figure 12.3    Kernel-density estimates of the sample distribution of selection predictor 
 MATH8 , by  CATHOLIC , before and after application of the IPW weights.    
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choice of high-school type for students who attended a Catholic school as 
an eighth-grader than they were in predicting choice of high-school type 
in the larger NELS-88 sample. This pattern led the authors to conclude 
that bias in estimates of treatment effects stemming from the infl uences 
of unobserved differences between students who attended the two types 
of high schools was also likely to be smaller in the subsample of Catholic-
school eighth-graders than in the larger sample. 

 The second lesson is that the direction of bias in estimates of treatment 
effects from non-experimental data is often not clear. Altonji and his col-
leagues focused, for instance, on whether a student graduated ultimately 
from high school. They found a substantial and statistically signifi cant 
Catholic-school advantage. For example, their preferred estimate — based 
on the subsample of students who attended Catholic schools as eighth-
graders — was between 5 and 8 percentage points (depending on the 
degree of bias that stemmed from the infl uences of unobserved variables). 
However, when they estimated this same parameter in the larger sample 
of all NELS-88 participants, using the same statistical models with the 
same sets of covariates, their estimates of the same treatment effect were 
less than half as large. Given the authors’ compelling argument that omit-
ted-variables bias was a bigger problem in the larger sample, this pattern 
suggests that controlling for a great many covariates in the larger sample 
resulted in an estimate of the Catholic school advantage that was  down-
wardly  biased. Thus, we conclude that not only do the infl uences of 
unobserved variables that determine selection into different treatments 
often create bias in estimates of treatment effects, but that often the direc-
tion of the bias is not clear. 

 The Altonji, Elder, and Taber paper (  2005a  ) illustrates the progress 
that methodologists have made in devising creative and powerful strate-
gies for using the rich information contained in many longitudinal surveys 
to address causal questions. In this respect, their paper contributes to the 
set of methods described in this chapter. In another respect, however, the 
paper provides a cautionary message to potential users of such techniques. 
The message is that selection into treatments is as likely to be based on 
unobserved variables as on observed variables, and this source of bias 
remains, even after the methods of selection described in this chapter 
have been applied. In other words, the assumption of unconfoundedness 
that underlies all of the techniques described in this chapter — that selec-
tion into treatment is solely a function of observed covariates — is an 
extremely stringent condition.     
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   What to Read Next   

 A good place to start in learning more about the burgeoning literature on 
the topics described in this chapter is Imbens and Wooldridge’s   2009   
survey paper in the  Journal of Economic Literature . The widely cited papers 
by Dehejia and Wahba (  1999 ,  2002  ) and the ensuing interchange between 
Smith and Todd (  2005a  , 2005b) and Dehejia (  2005  ) illustrate both the 
promise and pitfalls in using matching techniques to estimate causal 
impacts from non-experimental data.   
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                                             13  

 Methodological Lessons from 
the Long Quest        

       Recall from Chapter 1 the statement that Paul Hanus made at the 1913 
meeting of the National Education Association: “The only way to combat 
successfully mistaken common-sense as applied to educational affairs is to 
meet it with uncommon-sense in the same fi eld — with technical informa-
tion, the validity of which is indisputable” (Hanus,   1920  ). The quest for 
Hanus’s “indisputable technical information” has been a long one, stretch-
ing out over the last century. However, advances made in recent decades 
have made it increasingly possible to conduct social science research that 
meets this standard. Some of these advances refl ect improvements in our 
application and interpretation of powerful analytic approaches. For exam-
ple, the efforts of Donald Rubin and other methodologists have clarifi ed 
the assumptions under which random-assignment experiments can pro-
vide unbiased answers to educational policy questions. A body of work 
that began with contributions from psychologist Donald Campbell, and 
to which methodologists from several disciplines have contributed, has 
improved our understanding of the conditions under which the regression-
discontinuity design can support causal inferences. Methodologists have 
also developed new insights into the application of instrumental-variables 
estimation and the practical utility of particular kinds of instruments. 

 Other notable advances have been in the use of computers and data 
warehouses for administrative record-keeping. For example, well-organized 
digitized records that provide extensive information on such important 
things as school enrollments, teacher assignments, student test scores, 
and the labor-market outcomes of adults have become available increas-
ingly. This, in turn, has increased dramatically the feasibility of examining 
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the causal consequences of a wide variety of educational-policy initiatives, 
and has also lowered the cost of doing so. 

 Still other important advances have been made in the sophistication of 
statistical software that makes it easy to analyze vast amounts of quantita-
tive data using new and comprehensive analytic strategies. For example, 
as recently as the 1970s, researchers who wanted to correct the standard 
errors in regression analyses of data on students grouped within class-
rooms had to write their own computer programs to account for the 
clustering. Today, researchers can obtain the correct standard errors by 
choosing among options available in most software packages. Sophisti-
cated statistical software and rapid computer processing even make it 
possible to estimate these standard errors using nonparametric resam-
pling procedures — like the bootstrap — when conventional normal-theory 
assumptions are not appropriate. 

 These advances in research methodology, administrative record-
keeping, and statistical software enhance our ability as researchers to 
investigate the causal consequences of educational-policy interventions. 
However, all this new potential will be realized only if researchers keep 
the lessons described in this book fi rmly in their minds. It is not enough 
to have access to bigger datasets, better methods, and more sophisticated 
software; you also have to make use of the data and tools in thoughtful 
ways. In this chapter, we review and comment further on some of the les-
sons from our book and illustrate them once again with examples drawn 
from a variety of well-designed and well-implemented quantitative stud-
ies, many of which we have already introduced in earlier chapters. While 
we do not discuss every strategic and analytic detail that has graced the 
pages of our book, we frame those we have selected here as a parting set 
of important “lessons learned.”     

   Be Clear About Your Theory of Action   

 As explained in Chapter 2, basing an investigation on sound and relevant 
social science theory is critical to both the design of research for causal 
inference and to the interpretation of its fi ndings. Social science theory 
informs the questions that must be addressed, the population of interest, 
the nature of the intervention, the outcomes that we expect a particular 
policy intervention to infl uence, the expected timing of those impacts, and 
the mechanisms through which the impacts are hypothesized to take place. 
Without sound theory, research becomes little more than an unguided 
fi shing expedition and cannot be considered science. We illustrate the 
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important roles that theory plays in social science research by again con-
sidering how a reduction in class size might result in higher student 
achievement. At its most basic level, a simple theory about why smaller 
class size would lead to higher student achievement seems straightfor-
ward: The smaller the class, the more time the teacher has to work with 
students, individually or in small groups. However, a little refl ection leads 
one to the realization that this minimal theory must be refi ned if it is 
to address the many subtle questions that arise in designing a class-
size-reduction policy and to evaluate the sensitivity of its consequences to 
design decisions. For example, what can theory tell us about whether it 
matters if all students are placed in smaller classes of the same size, or if 
students with particular characteristics are assigned to especially small 
classes? Does it matter how teachers are assigned to classes of different 
size? More refi ned theories that suggest answers to questions such as 
these shed light on the design of class-size reduction initiatives and on the 
interpretation of their results. 

 For example, in 2001, economist Edward Lazear published a theory of 
the links between class size and student achievement that addressed one 
of these questions. Lazear theorized that students differ in their propen-
sity to disrupt the classroom learning-environment through their poor 
behavior. In his theory, the mechanism through which a smaller class size 
increases student achievement is that it reduces the amount of instruc-
tional time that is lost to student disruptions. One hypothesis stemming 
from Lazear’s “disruptive-student” theory is that class-size reductions 
would then have a greater aggregate impact on student achievement if 
administrators grouped disruptive students strategically in especially 
small classes than if students are assigned randomly to smaller classes. 
The reason is that, in the larger classes now free of disruptions by unruly 
students, all students will achieve at higher levels. In testing this subtle 
hypothesis, it would be important to be able to identify disruptive chil-
dren and obtain the permission of participants to place them in particularly 
small classes. 

 A quite different theory of why class size affects student achievement 
centers on teacher labor markets and working conditions. From this theo-
retical perspective, smaller classes offer more desirable working conditions 
for teachers. Consequently, schools that offer small classes will be more 
effective in attracting strong applicants for their teaching positions than 
will schools with larger classes (Murnane,   1981  ). In designing research to 
test this “working-conditions” hypothesis, it would be important to adopt 
a time-frame that is long enough to allow schools with reduced class sizes 
to recruit these stronger candidates for their teaching positions and to 
observe their impacts on subsequent student achievement. 
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 These two theories about the mechanisms through which class size 
affects student achievement are relevant to the interpretation of the 
results from the Tennessee Student/Teacher Achievement Ratio (STAR) 
experiment. Recall from Chapter 3 that, in this experiment, teachers and 
students were assigned randomly either to small classes (of 13–17 stu-
dents) or to regular- size classes (of 21–25 students). The results of the 
evaluation showed that, at the end of the fi rst year of the experiment, 
students placed in small classes scored 4 percentage points higher, on 
average, on a standardized test of cognitive skills than did students placed 
in regular size classes (Krueger,   1999  ). Although advocates of class-size 
reduction applauded the positive impact of the intervention, critics 
argued that the impact was only modest in size, given the high fi nancial 
cost of reducing the class sizes in the fi rst place (Hanushek,   1998  ). 

 One thing missing from the debate about the results of the STAR 
experiment was recognition that the design of the experiment eliminated 
two mechanisms through which class-size reductions may affect student 
achievement. The assignment process in the STAR experiment meant 
that, on average, potentially disruptive children were distributed randomly 
among classes, rather than being clustered together in small classes. 
Recent ingenious research by Bryan Graham (  2008  ) using data from the 
STAR experiment lends support for Lazear’s “disruptive-student” hypoth-
esis. The random assignment of teachers to classes of different size within 
the same school also meant that the STAR experiment did not provide an 
opportunity to test the “working-conditions” hypothesis. 

 The point of this example is to illustrate the importance of theory in 
designing and in interpreting the results of research to evaluate the 
impact of a policy intervention. The STAR experiment was a remarkable 
accomplishment that provided important new information about the 
consequences of class-size reductions. However, thinking about the theo-
retical mechanisms through which class size may infl uence student 
achievement leads to the realization that the experiment was not designed 
to test important hypotheses about two potential benefi ts of small classes: 
the ability to handle disruptive students well, and the ability to attract 
especially skilled teachers. It would take subsequent research, with different 
designs, to estimate the importance of these mechanisms.     

   Learn About Culture, Rules, and Institutions in the 
Research Setting   

 Developing a deep understanding of the culture of the setting in which 
your research takes place is critical to conducting research successfully. 
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The descriptions in Chapter 5 of the efforts of Abdul Latif Jameel Poverty 
Action Lab (J-PAL) researchers to build support for random-assignment 
evaluations of the Balsakhi program in Indian cities and a novel teacher-
incentive program in rural India illustrate this lesson. Equally important 
is an understanding of the institutions and rules that affect the actions of 
the individuals and organizations participating in educational interven-
tions. Brian Jacob and Lars Lefgren’s (  2004  ) evaluation of the mandatory 
summer-school and student-retention policy that the Chicago Public 
Schools (CPS) introduced in 1996 illustrates this point. 

 We explained in Chapters 8 and 11 that the CPS policy included 
mandatory summer school for third-grade students whose end-of-year 
mathematics or reading achievement fell below a prespecifi ed level, and 
retention in grade for those students whose reading or mathematics 
achievement level after the completion of summer school was still below 
the minimum level for promotion. In fact, the policy also pertained to 
students in grade 6. Jacob and Lefgren assessed the consequences of the 
CPS policy by comparing the achievement of students in the treatment 
and control groups two years after the original promotion decisions had 
been made for the third- and sixth-graders. They found that retention 
in grade had a detrimental effect on the reading achievement of the 
former sixth-graders, but not on the reading achievement of the former 
third-graders. 

 Conversations with teachers and district offi cials about testing policies 
led Jacob and Lefgren to the following explanation for the difference in 
results across the original grade levels. Two years after retention and pro-
motion decisions had been made for the former sixth-graders, the 
students who had been promoted were now in the eighth grade and faced 
a high-stakes test that they needed to pass in order to be promoted to 
ninth grade. The high stakes led these students to put their best efforts 
into doing well on the tests. In contrast, most of the students who had 
been retained in sixth grade originally were now only fi nishing the sev-
enth grade, two years later. Facing no high stakes, these students had no 
incentive to work hard on the reading examination they took at the end 
of the school year. Thus, the differences in average reading scores detected 
two years later for students who had just met the standard for promotion 
out of sixth grade and for students who just fell short of the promotion 
standard may have stemmed from the difference in incentives to work 
hard on the reading examination they faced subsequently. 

 Among children who faced the promotion decision at the end of third 
grade, however, there were no differences in incentives when they took 
the corresponding reading tests two years later. The reason is that there 
were no high stakes attached to either the fourth- or fi fth-grade test scores. 
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Putting this pattern together, Jacob and Lefgren concluded that their 
results were consistent with the conclusion that retention in grade had no 
long-term effect on the reading achievement of either third-grade students 
or sixth-grade students. The difference in the test patterns two years after 
promotion decisions were made could be accounted for by the pattern of 
stakes attached to the tests subsequently faced by the different groups. 

 This example illustrates the importance of developing a thorough 
understanding of the institutions and rules in the settings where an 
educational-policy intervention takes place. In the case of the Jacob and 
Lefgren study, knowledge of the details of Chicago’s testing policy —
 including the stakes attached to tests administered at different grade 
levels — was important in shedding light on the likely explanation of an 
initially puzzling set of fi ndings about the consequences of grade retention.     

   Understand the Counterfactual   

 The goal of causal research is to learn how a particular treatment affects 
outcomes for a well-defi ned population. The conceptual model underly-
ing such research is a comparison of the distribution of the values of an 
outcome for the population subject to the treatment with the best edu-
cated guess of what the distribution of outcomes would have been for the 
same population in the absence of the policy. The chapters of our book 
describe a variety of strategies for estimating the distribution of outcomes 
under treatment and counterfactual conditions. In Chapter 5, we used 
the career-academies evaluation to illustrate the importance of being 
clear on the defi nition of the treatment. Here we use an example from an 
evaluation of a quite different initiative to illustrate the importance of 
being clear on the defi nition of the counterfactual. 

 In 2004, Mathematica Policy Research released the results of a random-
assignment evaluation of how effective Teach for America (TFA) 
participants had been in increasing students’ mathematics and reading 
achievement (Decker, Mayer, & Glazerman,   2004  ). The report attracted 
considerable media attention because TFA brings to public-school teach-
ing academically talented graduates from highly competitive colleges and 
universities, many of whom would not have elected to go through lengthy 
conventional teacher-certifi cation programs. The program is controver-
sial because: (a) TFA participants’ initial formal training is restricted to an 
intensive fi ve-week summer program, (b) the majority of TFA participants 
leave their assigned classrooms after fulfi lling a two-year commitment, 
and (c) TFA participants teach in schools that serve some of the nation’s 
neediest children. 
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 The Mathematica study found that elementary-school students taught 
by TFA participants achieved higher mathematics scores, on average, than 
students taught by other teachers in the same schools, and that there were 
no statistically signifi cant differences between the average reading scores 
of students taught by the two groups of teachers. However, understand-
ing the nature of the group to which TFA teachers were compared — the 
counterfactual — is important in interpreting the fi ndings. 

 A close reading of the Mathematica evaluation reveals that a large per-
centage of the non-TFA teachers in the schools participating in the 
study — that is, the teachers in the comparison group — were remarkably ill-
prepared to educate children at all. Less than 4 %  of them had graduated 
from a college or university that was classifi ed as at least “very competitive” —
 compared to 22 %  of the national teaching force and 70 %  of TFA 
participants. In addition, almost 30 %  of the non-TFA teachers in these 
schools had no student-teaching experience at all. 

 The evaluation showed that TFA participants helped to alleviate the 
damage caused by state and local government policies and collectively 
bargained contracts that allowed many of the nation’s most needy chil-
dren to be taught by some of the nation’s least well-prepared teachers. 
This is a praiseworthy accomplishment. However, understanding the 
counterfactual creates the realization that the Mathematica evaluation 
could only draw conclusions about the effectiveness of TFA participants 
compared to ill-prepared teachers, not to well-prepared, veteran teachers. 
This highlights the importance of designing public policies to attract well-
prepared, experienced teachers to schools serving high concentrations of 
needy children.     

   Always Worry About Selection Bias   

 The creation of rich longitudinal datasets on children’s educational expe-
riences in recent decades has increased markedly the list of variables that 
researchers can use in attempting to control for selection bias in causal 
research based on observational data. The development of propensity-
score matching methods has brought new tools to the efforts of 
researchers engaged in such efforts. Nonetheless, we want to emphasize 
that the assumption of  unconfoundedness  — that selection into different 
treatments is totally a function of observed variables — is typically very dif-
fi cult to defend. We illustrate this by returning, once again, to the history 
of research on career academies. 

 Prior to the MDRC random-assignment study of career academies, a 
number of nonexperimental studies had found that participants in career 
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academies had higher high-school graduation rates, better grades, and 
better end-of-school test scores than observationally similar students 
enrolled in other high-school programs (Stern, Raby, & Dayton,   1992  ). Of 
course, the implicit assumption underlying the interpretation of the 
results of these quasi-experimental studies was unconfoundedness — that, 
after controlling for observed covariates, students in the comparison 
groups did not differ from the students who were enrolled in a career 
academy. The MDRC random-assignment study of career academies 
showed that this assumption was not consistent with the evidence. Indeed, 
the MDRC study found no differences between the average values of these 
academic outcomes for students who won the lottery and received an 
offer of a place in a career academy and those students who lost in the 
lottery. The MDRC evaluation also showed that the control group in the 
random-assignment study had much higher high-school graduation rates 
and grades than observationally similar students who did not apply to the 
career-academy lottery. The explanation for both of these sets of results is 
that students who applied to participate in career academies had atypi-
cally high motivation levels. Consequently, the earlier studies, which 
lacked appropriate exogenous variation in the assignment of students to 
career academies, produced biased estimates of the causal impact of 
career academies on student outcomes. 

 The difference between the results of the MDRC random-assignment 
study and the results of the prior quasi-experimental and observational 
studies is not atypical. In fact, a number of researchers have demonstrated 
that applying even the most sophisticated statistical techniques to data 
that lack a source of exogenous treatment variation will not replicate cred-
ibly the results obtained in random-assignment experiments (Agodini & 
Dynarski,   2004  ; Glazerman, Levy, & Myers,   2003  ; LaLonde,   1986  ). This 
does not mean, however, that random-assignment evaluations are the 
only way to obtain unbiased estimates of the causal impacts of educational 
interventions. Natural experiments can also provide arguably exogenous 
variation in assignment to experimental condition that can sometimes be 
exploited to create treatment and control groups that are equal in expec-
tation prior to the onset of the intervention. In fact, two groups of 
researchers have used a regression-discontinuity approach recently to re-
analyze data from random-assignment experiments and concluded that 
the results are very similar (Buddelmeyer & Skoufi as,   2004  ; Cook & Wong, 
forthcoming). 

 As we discussed in Chapter 12, researchers are often asked to evaluate 
the impact of an educational intervention in situations where no credible 
source of exogenous variation in assignment to experimental condition 
exists. In these cases, the investigator’s ability to obtain an unbiased 
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estimate of the causal impact of the intervention is often severely compro-
mised. As Thomas Cook and his colleagues (  2008  ) have demonstrated, 
this is especially true when researchers must turn to already collected 
nationally representative observational data to seek out a “comparison” 
group by matching participants on the basis of their demographic 
characteristics and those of their families. Cook and his colleagues argue, 
however, that the potential for limiting the bias of an estimate of the 
causal impact of an intervention, in the absence of actual exogenous vari-
ation in treatment, is improved if researchers can form a matched 
“comparison group” from participants at the same local sites where the 
intervention was implemented. This is especially true if it is possible 
to include strong correlates of the outcome, measured at baseline, as 
covariates in the matching process.     

   Use Multiple Outcome Measures   

 Even when policymakers are interested only in whether an educational 
intervention affects one particular outcome, there are two reasons why it 
is valuable to design evaluations that incorporate multiple measures of 
several outcomes. First, some educational interventions create incentives 
for educators to focus instruction on the skills needed to improve stu-
dents’ scores on a particular test. As Daniel Koretz (  2008  ) has explained, 
often such “teaching to the test” leads to increased scores on the “high-
stakes” test, but not to improved performances on other assessments of 
skills in the same domain. In such cases, the intervention is unlikely to 
benefi t participants in the long run. On the other hand, some interven-
tions aimed primarily at improving outcomes in one particular domain 
still have impacts in other domains. Examining potential theories of 
action drawn from different disciplines can often provide insights about 
types of outcomes to measure. In this section, we describe recent evalua-
tions that illustrate these points. 

 Cecilia Rouse and Alan Krueger (  2004  ) evaluated the effectiveness of 
software programs known as the Fast ForWard (FFW) Family of Programs 
in improving the reading skills of low-achieving elementary-school stu-
dents in four schools in an urban school district in the United States. 
Low-achieving students were randomized to a treatment group that was 
asked to spend 90 minutes per day working with the FFW software. The 
control group did not have access to the software. The researchers used 
scores on four standardized tests of reading skills as outcomes, one of 
which was a test provided by the developer of the FFW software. Rouse 
and Krueger found that scores of the treatment group on the reading 
test provided by the software vendor were higher, on average, than the 
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scores of the control group. However, this difference did not translate to 
a treatment–control group difference in scores on the other tests of 
reading. In particular, the students who were given access to the FFW 
software did not score better than the control group, on average, on the 
criterion-referenced state test that was aligned with the state’s reading 
standards. This pattern led Rouse and Krueger to conclude that use of 
the Fast ForWard computer-aided instruction (CAI) programs did not 
result in improved reading skills for low-achieving urban students. Of 
course, their conclusion would have been different had they only exam-
ined scores on the test provided by the software developer. 

 The random-assignment evaluation of Moving to Opportunity (MTO) 
provides a compelling illustration of the second point. MTO is a ten-year 
experiment sponsored by the U.S. Department of Housing and Urban 
Development that provides a large random sample of low-income families 
with the opportunity to move from extremely disadvantaged urban 
neighborhoods to less distressed communities. Many social scientists 
hypothesized that the primary benefi t of MTO would be improvement in 
labor-market outcomes for adults in treatment-group families. The logic 
was that the residential moves would place families closer to jobs. However, 
to date, the results of the evaluation have shown no improvements in 
labor-market outcomes. Had the evaluation focused solely on examining 
labor-market outcomes, the evidence regarding the effects of the MTO 
experiment would have been uniformly discouraging. 

 Fortunately, in planning the evaluation, the research team considered 
a variety of mechanisms through which moving to a better neighborhood 
could alter the lives of families. One of many hypotheses was that the 
opportunity to move out of high-crime neighborhoods would reduce 
stress levels for parents and improve their mental health. This hypothesis 
led the research team to collect data on a variety of measures of partici-
pants’ mental health. One of the most striking fi nding to date from the 
MTO evaluation has been the marked improvement in the mental health 
of mothers (Kling, Liebman, & Katz,   2007  ). This fi nding has led the 
research team to plan for the next round of data collection and analysis, 
an assessment of whether improved health for mothers is a mechanism 
through which MTO leads to better cognitive and emotional develop-
ment for young children. Results bearing on this hypothesis will be 
available by 2012.     

   Be on the Lookout for Longer-Term Effects   

 Most impact evaluations of educational interventions examine relatively 
short-term effects. For example, the Mathematica evaluation of TFA 
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examined impacts on student test scores at the end of the school year in 
which each teacher worked with a particular group of students. This 
makes sense because the effects of particular teachers on students’ skills 
are likely to become muted over subsequent years, as the students experi-
ence other teachers. At the same time, policymakers are interested 
especially in learning whether particular interventions have lasting effects, 
and evidence that they do or do not is especially important in evaluating 
whether to continue the interventions and whether to scale them up so 
that they serve more participants. For that reason, it is useful, when fi nan-
cially feasible, to design research in a manner that makes it possible to 
evaluate whether interventions have long-term impacts. 

 Recall that, on average, the MDRC evaluation team found no differ-
ences between the treatment group of students offered places in a career 
academy and the control group in terms of their high-school grades, test 
scores, graduation rates, or college-enrollment rates (Kemple,   2008  ). 
Thus, even though each participant contributed data on each of multiple 
outcome measures, the conclusion reached by the investigators by the 
end of the participants’ high-school years was that the offer of a place in 
a career academy had not resulted in better academic outcomes. However, 
the evidence on outcomes that were measured subsequently — eight years 
after high-school graduation — was quite different. For instance, the origi-
nal offer of a place in a career academy ultimately resulted in members of 
the treatment group enjoying labor-market earnings that were 11 %  higher 
than members of the control group, on average. Thus, the combination 
of a long-term evaluation and the use of multiple outcome measures 
resulted in an important — and surprising — set of results concerning the 
outcomes of career academies.     

   Develop a Plan for Examining Impacts on Subgroups   

 It is always possible that particular policies or interventions may have 
heterogeneous effects, meaning that the effects on particular outcomes 
for identifi able subgroups of participants may be different from the 
effects on other subgroups of participants. For example, girls in families 
that were part of the MTO treatment group experienced positive educa-
tion and health impacts from moving to a better neighborhood, but boys 
did not (Kling, Liebman, & Katz,   2007  ). Such information about sub-
group differences is often important in policy discussions about particular 
interventions. For that reason, it makes sense to design research in a 
manner that facilitates the exploration of heterogeneous effects. Often, 
however, this is less straightforward to do than it may seem initially. 
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We illustrate some of these challenges using evidence from the evaluation 
of the New York Scholarship Program (NYSP). 

 Recall from Chapter 4 Howell et al.’s (  2002  ) fi nding that the offer of a 
scholarship to help pay tuition at a private elementary school resulted in 
an increase in the average academic achievement of African-American 
children. These researchers also reported that the scholarship offer did 
not result in an improvement in the average achievement of Hispanic 
children. Despite many attempts to explain these subgroup differences, 
they remain a puzzle. One challenge in solving the puzzle is achieving 
clarity on the defi nitions of the subgroups. In preparing the data for 
subgroup analysis, the Mathematica research team based their grouping 
of participants on the responses that mothers (or female guardians) 
provided to a question on the survey that asked about their own race/
ethnicity. The question permitted mothers to select one, and only one, 
response from among the following choices: (a) black/African-American 
(non-Hispanic), (b) white (non-Hispanic), (c) Puerto Rican, Dominican, 
and other Hispanic. The evaluation team headed by William Howell and 
Paul Peterson then assigned a race of “black/African-American” to those 
participating children whose mothers chose this particular category to 
describe themselves. 

 In a subsequent reanalysis of the NYSP data, Princeton Professor Alan 
Krueger and doctoral student Pei Zhu pointed out that there were other, 
equally reasonable, ways to code students’ race/ethnicity and to form 
subgroups (Krueger & Zhu,   2004  ). For example, you could code as 
“black/African-American” those children whose father  or  mother chose 
this category as a self-description. Krueger and Zhu reported that, when 
this broader defi nition was adopted, the number of students classifi ed as 
“black/African-American” increased by approximately 10 % . More impor-
tantly, they also reported that the impact of voucher receipt on the 
academic achievement for this larger group of students was smaller than 
the impact that Howell and Peterson had estimated and, in contrast to 
their fi nding, was not statistically signifi cantly different from zero on a 
conventional test. The point that we wish to make here is that subgroup 
analyses can be treacherous, even in well-designed randomized experi-
ments, because subgroup membership or classifi cation itself may be a 
matter of personal choice among several plausible alternatives, and the 
evaluation results may depend on the choices made. You need to think 
carefully when defi ning the membership of these groups. 

 It is natural for researchers to want to examine whether a particular 
educational intervention had a larger or smaller impact on outcomes for 
some important subset of participants than for others. There is particular 
pressure to do so when researchers have found no statistically signifi cant 
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impact of the treatment on outcomes in the research sample as a whole. 
However, although investigating subgroup effects makes sense, there are 
two related dangers. The fi rst concerns the subgroup defi nitions them-
selves. Often, as was the case in the NYSP, there are alternative plausible 
ways to defi ne subgroups, and there is a natural tendency to explore the 
consequences of alternative defi nitions and to choose the one that pro-
vides the strongest results. Second, as more tests are conducted, Type I 
error accumulates, with a contingent increased risk of rejecting one or 
more null hypotheses incorrectly during the testing process. Although 
standard adjustments to testing procedures are available to compensate 
for the accumulation of Type I error, many researchers resist applying 
them because they (properly) reduce the probability of fi nding statisti-
cally signifi cant effects for any one subgroup. 

 The key to investigating subgroup effects appropriately is to plan to do 
so as an integral part of the initial research design. This involves three 
steps. First, list all subgroups in which the treatment effect should be 
investigated and defi ne each carefully as part of the research design. 
Second, conduct suitable statistical-power analyses to ensure that sample 
sizes are large enough to detect subgroup effects of a meaningful size, at 
predetermined levels of Type I error for each comparison. Third, adopt 
a sensible strategy for limiting the number of tests and comparisons 
conducted to those that are of critical substantive importance.     

   Interpret Your Research Results Correctly   

 Throughout this book, we have emphasized the importance of being clear 
about the interpretation of the results of causal research. Here, we review 
two aspects of this theme. The fi rst is that the results of regression-
discontinuity analyses and analyses in which instrumental variables are 
used to achieve identifi cation are  local-average effects of a treatment , or LATE 
estimates. They pertain only to a particular subgroup of participants in 
the research sample, and it is important to defi ne the relevant subgroup. 
The second is that experiments typically provide estimates of the total 
effects of a policy intervention, not the effects of the intervention holding 
constant the levels of other inputs. We illustrate these two points using 
Angrist and colleagues’ evaluation (2002, 2006) of the impact of a second-
ary private-school scholarship program (PACES) on the educational 
attainments of low-income students in Bogotá, Colombia. 

 Recall from Chapter 11 that the research team found that students who 
were offered a PACES scholarship had a higher rate of on-time gradua-
tion from eighth grade — by 11 percentage points — than eligible low-income 
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students who had also applied for a PACES scholarship, but lost out in the 
lottery. Of course, this is an unbiased estimate of the causal impact of the 
 intent to treat.  Angrist and his colleagues then used instrumental-variables 
estimation to address their second question: Does making use of a schol-
arship to help pay private secondary-school fees increase the educational 
attainments of low-income students? One reason that the answer to this 
question differs from the answer to the fi rst question is that 8 %  of the 
low-income students who won the lottery did not make use of the offer of 
a scholarship from the PACES program. A second is that almost one-quarter 
of those students who lost out in the lottery were successful eventually in 
obtaining a scholarship to help pay private secondary-school fees. Thus, 
the assignment of a scholarship take-up “treatment” was endogenous, a 
result in part of unobserved family motivations and skills. 

 Using the randomized assignment of the offer of a PACES scholarship 
as an instrument, the research team estimated that making use of a schol-
arship increased by 16 percentage points the probability that low-income 
students completed the eighth grade on time. Recall from our earlier dis-
cussion of instrumental-variables estimation that this is an estimate of the 
local-average treatment effect, or LATE estimate, and that it pertains to 
those students whose decision about whether to make use of a scholar-
ship to pay secondary-school fees was sensitive to the PACES scholarship 
offer or the lack of this offer. It is the effect of the treatment for  compliers , 
and not for those students in the population who would have always 
obtained a scholarship (the  always-takers ) or never have done so (the  never-
takers ), regardless of their original assignment. Of course, we do not know 
which members of the student population fall into each of these classes, 
as they are unobserved features of individuals. If the impact of scholar-
ship use is homogeneous across all population members, then the LATE 
estimate obtained by Angrist and his colleagues also applies universally to 
all students in the population. When only one instrument is available, it is 
not possible to explore whether this is the case or not. 

 It is also important to recognize that the LATE estimate does not 
provide an estimate of the impact of scholarship use on students’ subse-
quent educational attainment, holding constant all other aspects of family 
dynamics. Instead, it provides an estimate of the total impact of fi nancial 
aid on a student’s subsequent educational attainment. The distinction 
may matter because the choice of whether to make use of a scholarship 
offer to help pay a child’s secondary-school fees may not have been the 
only parental decision affected by the lottery outcome. For example, par-
ents may have decided to reduce expenditures on books and other 
learning materials for the child who obtained and made use of a scholar-
ship in order to free up money to help other children in their family who 
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lacked this opportunity. The research team’s estimate of the impact of 
fi nancial aid on subsequent educational attainment is an estimate of 
the total impact, including the effects of any reallocation of fi nancial 
resources and time that the parents made in response to the child using a 
scholarship.   1      

   Pay Attention to Anomalous Results   

 As part of the struggle to have their work published in the best possible 
peer-reviewed journals, researchers often do not report evidence that par-
ticular interventions have no statistically signifi cant effects on outcomes 
or effects that run counter to their theories. Instead, they focus their 
papers on describing the strongest results that support their theories. 
Unfortunately, this behavior hinders the accumulation of knowledge. 
Then, attempts to synthesize evidence about the effi cacy of a particular 
intervention from published studies can only summarize positive evi-
dence even in cases in which the vast majority of evaluations have found 
no effects of the intervention (but were either not published, or the con-
trary fi ndings down played). This problem is often referred to as  publication 
bias . Although there is no easy solution to the problem, the best defense 
against it may be the practices of conscientious referees who focus on the 
quality of the methodology used in a particular causal study, not on the 
consistency of the results. In this regard, it is important to keep in mind 
that unexpected results often occur in well-designed studies. We illustrate 
this with evidence from Angrist and Lavy’s Maimonides’ rule paper. 

 Recall from Chapter 9 that Angrist and Lavy (  1999  ) made clever use of 
a natural experiment created by the exogenous application of Maimonides’ 
rule to estimate the causal impact of differences in intended class sizes on 
student achievement. The substantive results that most readers of their 
classic paper remember are that class size had a substantial impact on the 
reading and mathematics achievement of students in fi fth grade in the 
year 1991, and that the impact was especially large in schools that served 
high concentrations of economically disadvantaged students. In thinking 
about the substantive implications of this study — and for that matter, of all 
evaluations of the causal impacts of policy interventions — we believe it is 

1.  For more discussion of this point, see Todd and Wolpin (    2003  ), and Dufl o, Glennerster, 
and Kremer (    2008  ). 
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important to pay attention to  all  of the results, including those that seem 
somewhat puzzling. 

 In their paper, Angrist and Lavy also reported results on the impact of 
class size on the reading and mathematics achievement of fourth-graders 
in 1991 and third-graders in 1992. The results for the fourth-graders were 
much weaker than those for the fi fth-graders — the corresponding impact 
on reading achievement was less than half as large, and the impact on 
mathematics achievement was even smaller, and was not statistically sig-
nifi cant. Angrist and Lavy suggest that this pattern could be due to the 
cumulative effect of class size: students who were taught in small fi fth-
grade classes were probably also in relatively small classes in their earlier 
grades, and each year brought additional benefi ts. Although this is a plau-
sible explanation for why the impact of intended class size on student 
achievement should be somewhat smaller for fourth- than for fi fth-graders, 
it does not explain why the fourth-grade impacts would be less than half 
as large as the corresponding fi fth-grade impacts. 

 The results for third-graders are even more puzzling. Angrist and Lavy 
found no impact of differences in intended class size on the reading and 
mathematics achievement of third-graders in 1992 (the second and fi nal 
year of the testing program that provided the student-achievement 
outcome). They speculated that this pattern stemmed from teachers’ 
responses to the publication of the 1991 results. After reading the results, 
teachers may have devoted more time to test preparation in 1992, and 
thus weakened the relationship between students’ test scores and their 
true skill levels. Angrist and Lavy’s hypothesized explanation for their 
third-grade results raises questions about the quality of the information 
on students’ skills that is generated by test-based accountability systems, 
an issue with which many countries grapple today.   2  The point that we 
want to emphasize, however, is the importance of paying attention to all 
of the results of well-designed research studies, not just the strongest. We 
see this as a necessary condition for research to have a benefi cial impact 
on public policy debates concerning the consequences of particular 
educational initiatives. We applaud Angrist and Lavy for describing the 
puzzling results for the third- and fourth-grade students whose achieve-
ment they investigated.     

2.  To learn more about the diffi culty of interpreting student test results under test-based 
accountability systems, see Koretz (    2008  ). 
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   Recognize That Good Research Always Raises 
New Questions   

 Good research is expensive, especially random-assignment evaluations 
that follow participants over an extended period of time. For example, 
the MDRC random-assignment evaluation of career academies cost 
$12 million. For that reason, policymakers sometimes want assurances 
that a particular evaluation will provide defi nitive evidence about the con-
sequences of a particular educational policy or program. In fact, however, 
even carefully designed studies typically raise as many questions as they 
answer. For that reason, it is important to design a sequence of studies to 
address important educational-policy questions, recognizing that each 
well-designed study will answer some questions and will also raise new 
questions that can inform the design of subsequent studies. We illustrate 
this point with evidence from the STAR class-size experiment. 

 Project STAR is one of the best-known evaluations of an educational 
intervention. Given its celebrity status and the transparency of its 
randomized-experimental design, you might think that experts’ inter-
pretations of its fi ndings would be clear and unassailable. Yet, two 
internationally respected researchers disagreed on that interpretation. 
Frederick Mosteller, pioneering statistician and senior member of the 
Harvard University faculty, wrote in 1995: “After four years, it was clear 
that smaller classes did produce substantial improvement in early learn-
ing and cognitive studies . . . ” (Mosteller,   1995  , p. 113). In contrast, Eric 
Hanushek, one of the world’s most creative and productive educational 
economists, wrote in 1998: “The most expansive conclusion that can be 
reached from Project STAR and the Lasting Benefi ts Study is that they 
might support an expectation of positive achievement effects from moving 
toward small kindergartens, and maybe small fi rst grades. None of the 
STAR data support a wholesale reduction of class sizes across grades in 
schools” (Hanushek,   1998  , p. 30). 

 A close reading of the Mosteller and Hanushek papers on Project STAR 
reveals that the two experts agreed on key fi ndings. Both reported that, 
on average, students in small classes had higher achievement at the end of 
the fi rst grade than did students in regular-size classes. They also agreed 
that the magnitude of the average achievement differential between 
students in small classes and those in regular-size classes was no larger at 
the end of the third grade than at the end of the fi rst grade. Where they 
differed, however, is in their assumptions about what would have hap-
pened to the achievement of children in small classes had they been 
placed in regular-size classes in grades 2 and 3. Mosteller assumed that 
the achievement of the children in the treatment group would have fallen 
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back to that of the children in the control group. This led him to conclude 
that the smaller class sizes for grades 2 and 3 were required for the treat-
ment group to sustain its higher achievement. Hanushek assumed that 
the higher achievement for children in the treatment group would have 
been sustained if these children had been placed in regular-size classes in 
grades 2 and 3. Thus, he concluded that, since the achievement differ-
ences at the end of grade 3 were no larger than those detected at the end 
of grade 1, placement in small classes for grades 2 and 3 did not result in 
further achievement benefi ts. Unfortunately, Project STAR did not pro-
vide the evidence needed to determine whether Mosteller’s or Hanushek’s 
assumption was more accurate because the research design did not 
include the randomization of a subset of students into small classes 
for grades K and 1 and into regular-size classes in grades 2 and 3. This 
step needs to be taken in a new round of random-assignment studies of 
class-size reduction.     

   What to Read Next   

 Among the many books that provide thoughtful discussions of issues 
critical to the design of causal research are Shadish, Cook, and Campbell’s 
 Experimental and Quasi-Experimental Designs  (  2002  ), and Larry Orr’s  Social 
Experiments  (  1999  ).   
          



350

                                             14  

 Substantive Lessons and 
New Questions        

       At a meeting at United Nations Headquarters in New York City in 
September 2000, 189 world leaders committed their countries to pursue 
a set of eight Millennium Development Goals (MDGs). One of these goals 
was that, by the year 2015, “Children everywhere, boys and girls alike, will 
be able to complete a full course of primary schooling.” Another was to 
“eliminate gender disparity in primary and secondary education, prefer-
ably by 2005, and in all levels of education no later than 2015.”   1  The high 
priority that these world leaders gave to education in this remarkable set 
of commitments refl ects compelling evidence that providing a high-quality 
education for all children is a powerful strategy for enhancing economic 
growth, promoting equality of opportunity, and reducing poverty. 

 Meeting the MDG education goals and realizing the social benefi ts of 
educational investments requires progress on two fronts: increasing the 
number of young people who attend school regularly, and improving 
the quality of the education that they receive. Of course, the details of the 
respective policy challenges differ among countries. For example, some 
countries, such as Liberia, are still struggling to achieve universal primary 
education. Middle-income countries, such as Colombia, are working to 
improve secondary-school graduation rates. Many high-income countries, 
such as the United States, seek to increase the number of young people, 
especially those from minority groups, who enroll in, and graduate from, 
post-secondary educational institutions. 

1.  See the description of the MDGs at:   http://www.unmillenniumproject.org/goals/gti.htm#-
 goal2  . 
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 Despite these differences, a common element to the educational chal-
lenges that the countries of the world face is the interdependency of the 
access and quality challenges. Pursuing the access goal without investing 
in improvements in quality will typically be unsuccessful because parents 
will not send their children to schools where little learning takes place 
and teenagers will not attend school regularly if they see there is little 
value in doing so. In the last 20 years, a growing number of empirical 
studies have made effective use of the methodological advances described 
in this book to investigate the effects of particular policies on school 
enrollments or on students’ educational outcomes. In this chapter, we 
close out our book by summarizing lessons from these high-quality studies. 
We also point out new questions arising from recent studies that will need 
attention in future research. In choosing the studies to mention in this 
fi nal chapter, we only considered those with designs that we felt supported 
causal inference well. Within this set, we focused attention on studies that 
examined the consequences of providing more or better inputs to schools, 
of improving incentives for teachers or students, or of increasing the 
schooling choices of students.   2  

 Of course, it will not surprise you that there are no sure-fi re strategies 
for making progress toward the complementary goals of increasing school 
enrollment and improving educational quality. From reading our previ-
ous chapters, you know that it is the details of the intervention that matter. 
For example, two different initiatives to improve the pedagogy of incum-
bent teachers, often called  professional development , may have the same 
name, but result in very different experiences for participating teachers. 
Also, sometimes a particular educational intervention will evoke quite dif-
ferent responses in different cultures. Michael Kremer and his colleagues 
(  2009  ) found that to be the case in their evaluation of a merit-scholarship 
program for girls in two districts in Kenya. We provide more information 
later about the responses to this incentive program. 

 Keeping in mind the cautions just expressed, we present four guide-
lines for policy that emerge from the growing corpus of high-quality 
evaluations that have examined the causal impacts of educational inter-
ventions. First, school enrollment decisions are very sensitive to costs, 
especially for low-income families. Second, a necessary condition for 
improving school quality and student achievement is that the daily experi-
ences of students must change. Third, providing explicit incentives for 

2.  The topics we explore do not exhaust the interventions aimed at improving student 
achievement that researchers have evaluated using high-quality causal research methods. 
For example, there are many studies examining the effectiveness of new curricula and 
of particular computer-based software programs. 
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teachers and students can be a powerful way of improving educational 
outcomes for students. Fourth, policies to increase the schooling options 
available to children from poor families have signifi cant promise. We dis-
cuss each of these guidelines in turn, and in each case we point out puzzles 
in the available evidence and questions from recent studies that need to 
be examined in future research.     

   Policy Guideline 1: Lower the Cost of School Enrollment   

 The empirical evidence on how school enrollments can be increased is 
consistent and clear: it is lowering the cost of school enrollment that 
makes a big difference, especially to low-income families. There are at 
least three ways to lower these costs: reduce the time that students must 
spend commuting between home and school, reduce out-of-pocket costs 
that families must bear to send their children to school, and reduce the 
burden families experience from losing the labor of a child who attends 
school. Below, we summarize recent evidence from well-designed empiri-
cal studies of the impact of these three approaches on school enrollments 
and on longer-term outcomes.    

   Reduce Commuting Time   

 Between 1973 and 1979, Indonesia, the world’s fourth most populous 
country, has engaged in a massive school construction project aimed at 
improving access to primary schools in regions where school enrollments 
had formerly been low. During this period, the government funded the 
construction of more than 61,000 primary schools. It also recruited teach-
ers for these schools and paid their salaries. Esther Dufl o (  2001  ) studied 
the consequences of this remarkable natural experiment and found that 
it had a striking impact on both school enrollment and students’ educa-
tional attainments. She estimated (p. 804) that the school-building 
program increased by 6 percentage points the probability that a child 
living in an area affected by the program would complete primary school. 

 The fi ndings of Dana Burde and Leigh Linden’s (  2009  ) evaluation of 
the consequences of an intervention aimed at reducing home-to-school 
commuting distance for children in rural northwestern Afghanistan are 
consistent with Dufl o’s results. The intervention was to create and staff 
primary schools in a random sample of villages that had no primary 
schools previously. Children living in villages that served as controls in the 
experiment continued to travel to another village to attend school. The 
researchers found that the length of the home-to-school commute had a 
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dramatic impact on school enrollment rates, with enrollment falling by 
16 percentage points for every mile that children had to travel. The impact 
of distance to school on enrollment rates was especially large for girls. In 
fact, providing a community-based school virtually eliminated the gender 
gap in enrollment (which was 21 percentage points in control villages). 

 The study by Janet Currie and Enrico Moretti (  2003  ), which we described 
in Chapter 10, has many similarities to Dufl o’s Indonesian study. These 
authors took advantage of a natural experiment that was created by the 
rapid growth in the number of two- and four-year colleges in the United 
States in the decades after World War II. They found that the construc-
tion of each new four-year college in a county (per 1,000 residents, aged 
18–22) increased by 19 percentage points the probability that women 
aged 18–22 living in the county obtained a four-year college degree. 

 These three high-quality studies, conducted in very different contexts, 
demonstrate that providing new educational institutions close to the 
homes of potential students is one powerful way to increase enrollments.     

   Reduce Out-of-Pocket Educational Costs   

 One of the potential obstacles that face parents who want to increase the 
educational attainments of their children is the burden of out-of-pocket 
schooling costs that they bear, just to send their children to school. In 
some cases, these constitute school-tuition payments; in others, fees for 
books or school uniforms. A number of recent high-quality studies have 
shown that reducing such out-of-pocket costs results in a marked increase 
in school enrollments. 

 Since 2003, parents have not been required to pay school fees to enroll 
their children in public primary schools in Kenya. However, they do need 
to purchase school uniforms. To learn whether the cost of school uni-
forms posed an obstacle to school enrollment for Kenyan families, Esther 
Dufl o and colleagues (  2006  ) conducted a random-assignment experiment 
in which sixth-grade students in treatment-group schools were provided 
with free school uniforms. They found that the provision of free uniforms 
reduced the student dropout rate by more than 2 percentage points, 
which constitutes a 15 %  decline in that rate (p. 20). 

 As you learned in Chapter 8, Susan Dynarski (  2003  ) exploited a natural 
experiment in the United States to study the impact of college costs on 
college enrollment and educational attainments. The natural experiment 
occurred in 1982, when the federal government eliminated a substan-
tial subsidy of college costs that it had provided previously to children 
of deceased Social Security recipients. Dynarski found that an offer of 
$1,000 in scholarship aid increased the probability of attending college 
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by almost 4 percentage points. Many other high-quality empirical studies 
have also confi rmed that reducing out-of-pocket costs results in an increase 
in college enrollment.     

   Reduce Opportunity Costs   

 A third type of expense that families bear in sending their children to 
school is the loss of their children’s labor. Economists use the term 
 opportunity cost  to refer to the value of the foregone time. As children 
become old enough to work, the opportunity costs associated with the 
loss of their time rise. In many countries, this is especially the case for 
girls, who are often called on to care for their younger siblings. 

 In 1997, the Mexican government introduced a conditional cash-
transfer (CCT) program called PROGRESA, which was aimed at reducing 
poverty and providing incentives for low-income parents to invest in the 
human capital of their children. Families eligible for PROGRESA received 
monthly payments so long as their school-aged children remained enrolled 
in school and met their attendance targets, and so long as parents com-
plied with requirements for health-care check-ups for family members. 
The payments could add as much as one-fi fth to a family’s total income, 
and depended on the number, ages, and gender mix of children in the 
family. Cash payments under PROGRESA were intentionally large for 
families with teenage girls. The reason was to stimulate school attendance 
in this group, which has had an especially low school-attendance rate 
historically. In effect, PROGRESA provided low-income families with 
a strong incentive to send their children to school (Fiszbein, Schady, & 
Ferreira,   2009  ). 

 PROGRESA was fi rst implemented in a random sample of low-income 
rural communities, a design that made it possible to conduct a high-quality 
impact evaluation. The evaluation showed that PROGRESA increased the 
school-enrollment rate of sixth-graders by almost 9 percentage points (up 
from a baseline participation rate of 45 % ). This evidence was important 
in building support for the program — now called  Oportunidades  — which, by 
2008, had become available to more than 20 %  of the Mexican population. 
The convincing nature of the empirical evidence for the causal impact 
of the PROGRESA intervention also contributed to the introduction of 
similar CCT programs in more than 25 other countries, including 
Bangladesh, Cambodia, Ecuador, and Turkey. 

 The major puzzle arising from causal research on initiatives to increase 
school-enrollment rates and the school attendance of children from 
low-income families concerns their impacts on the children’s academic 
achievement and life outcomes. Some initiatives result in better long-term 
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outcomes for children — for example, the school-building program in 
Indonesia. However, others, including PROGRESA, led to increased 
school attendance, but not to increased academic achievement, at least 
as measured by standardized test scores (Fiszbein, Schady, & Ferreira 
  2009  ). An important question to address in new research is why these 
discrepancies occurred.      

   Policy Guideline 2: Change Children’s Daily 
Experiences in School   

 Until quite recently, the dominant strategy for improving school quality 
was to purchase more or better inputs — for example, provide more books; 
hire additional teachers so that class sizes could be reduced; or raise 
teacher salaries in order to attract more skilled teachers. The attraction 
of this approach is that teachers, students, and parents all enjoy having 
additional resources in classrooms and so the strategy is popular politi-
cally. Unfortunately, input-based improvement strategies do not result in 
improved student achievement consistently, and it is not diffi cult to under-
stand why. The fundamental problem in a great many schools is that 
students do not receive consistently good instruction that is tailored to 
their needs. As a result, children are not engaged actively in learning 
while they are in school. A necessary condition for improving student 
achievement is increased student engagement, and this means changing 
the daily educational experiences of children in schools. Simply providing 
additional resources to the school or classroom, without changing how 
those resources are used, does not achieve the desired result. 

 Of course, the conclusion that resource levels do not affect student 
achievement is too strong. In some settings, the provision of additional 
resources does indeed make a difference to student outcomes because 
the new resources  do  result in a change in children’s daily experiences in 
school. In fact, we argue that paying attention to whether a particular 
school-improvement strategy results in a change in children’s daily experi-
ences goes a long way toward predicting whether the intervention will 
succeed in improving student achievement. We illustrate this point with 
evidence from a number of high-quality studies that have investigated the 
impacts of input-based educational interventions.    

   More Books?   

 Paul Glewwe and his colleagues conducted a random-assignment evalua-
tion of a program in rural Kenya that provided primary schools with 
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additional textbooks written in English, the offi cial language of instruction 
(Glewwe, Kremer, & Moulin,   2009  ). The intervention seemed promising 
because these schools possessed almost no textbooks. However, the evalu-
ation showed that simply providing the additional textbooks did not result 
in greater academic achievement for the children in the treatment-group 
schools than for those in control-group schools, on average. The research-
ers’ explanation was that English was the third language for most of the 
children, and they were not able to read the textbooks. Under these 
circumstances, it is not surprising that providing these books did not 
result in a change in children’s daily experiences in school nor result in 
increases in their academic achievement. Of course, this fi nding raises 
the question of whether provision of books that were better tailored to 
the students’ needs would have changed children’s daily experiences 
enough to increase their reading skills. This is a question worth examin-
ing, especially in schools in which there are teachers trained to make use 
of books to stimulate children’s interest in reading.     

   Smaller Classes?   

 In earlier chapters, we described two well-known studies of the impact of 
class size on student achievement. The Tennessee Student/Teacher 
Achievement Ratio (STAR) experiment provided strong evidence that 
spending the fi rst year of school in a small class improved student achieve-
ment, especially for students from low-income families (Krueger,   1999  ). 
The likely explanation is that when children come to school for the fi rst 
time, they have a lot to learn about how to behave in a structured class-
room setting. In a relatively small class (13–17 students), children’s initial 
experiences are different from those in a larger class because teachers are 
better able to help children acquire the appropriate behaviors. 

 Other relevant evidence for the impact of class size on student achieve-
ment comes from Angrist and Lavy’s (  1999  ) analyses of data from Israel, 
and from Miguel Urquiola’s (  2006  ) similar study of the impact of class 
size on the achievement of third-graders in schools in rural Bolivia. Both 
studies found that students in some middle-primary grades who were in 
small classes had higher reading and mathematics achievement, on aver-
age, than children schooled in larger classes. One possible explanation 
for these fi ndings stems from the identifi cation strategy they employed. 
Both studies used a regression-discontinuity design to exploit the 
consequences of natural experiments that had been inaugurated by the 
implementation of rules to govern maximum class size. The net effect 
of this identifi cation strategy was that comparisons of achievement 
were between students in classes containing quite different numbers of 
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students — for example, classes of 21 and 39 students on either side of 
a Maimonides-inspired class-size cut-off, in the Angrist and Lavy study. 
It seems plausible that the day-to-day school experiences of students in 
classes that differ in size by this amount could be quite different. This 
explanation is consistent with the fi ndings of Caroline Hoxby’s (  2000  ) 
study of the impact of class size for students in Connecticut public ele-
mentary schools. Hoxby found no impact of differences in class sizes on 
students’ average language and mathematics skills. However, the differ-
ences in class size in the Hoxby study were considerably smaller than the 
class-size differences in the Angrist and Lavy and Urquiola studies.   3  
It seems sensible that the day-to-day school experiences of students in 
classes of 20 may not differ much from those in classes that contain 
25 students. 

 As explained in Chapter 13, the impact of class size on student achieve-
ment in the Angrist and Lavy (  1999  ) study in Israel differed by grade level, 
with the impacts of small classes in grade 4 being much smaller than the 
corresponding impacts in grade 5. Moreover, estimates from well-designed 
studies of the impacts of class size on student achievement in other coun-
tries also differ widely. An important question to address in future research 
is why class size has a substantial impact on student achievement at some 
grade levels but not in others, and in some settings but not others. We 
suggest that the design of studies to address this question should pay 
attention to the extent to which class size in particular settings affects 
children’s daily experiences in the classroom. Our hypothesis is that class 
size will not make a difference to children’s academic outcomes in set-
tings in which it does not affect children’s daily in-school experiences.     

   Better Teaching?   

 Studies conducted in a great many countries have documented that chil-
dren have higher achievement, on average, in some classrooms than they 
do in others, and that differences in the quality of teaching are the likely 
explanation (Rivkin, Hanushek, & Kain,   2005  ). This unsurprising pattern 
suggests the potential value of devoting resources to either hiring teach-
ers who are known to be more effective or to improving the skills of 
the incumbent teaching force. Many educational systems try to do both. 

3.  The standard deviation in class size in Hoxby (    2000  ) ranged between 5.5 and 6.4 
students, depending on the grade level (Appendix table, p. 1283). The standard devia-
tion of class size in the discontinuity sample in the Angrist and Lavy (    1999  ) study 
ranged between 7.2 and 7.4 (Table 1, p. 539). The standard deviation in class size in the 
Urquiola (    2006  ) study was 9.9 (Table 1, p. 172).  
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For example, increasing the educational requirements that aspiring 
teachers must satisfy is a common strategy used to upgrade teacher qual-
ity. Some school systems have raised teachers’ salaries in order to attract 
more talented applicants for teaching positions. Almost all school systems 
require that incumbent teachers participate in in-service training pro-
grams. Unfortunately, three obstacles hinder the effectiveness of these 
input-based approaches to improving teaching quality. 

 The fi rst obstacle is that formal educational credentials are not good 
predictors of teaching effectiveness (Rivkin, Hanushek, & Kain,   2005  ). 
Consequently, improving the educational credentials that applicants for 
teaching positions must obtain is typically not an effective way to increase 
the quality of the teaching force. Nor are salary incentives effective consis-
tently, because school directors have diffi culty in identifying better 
teachers from pools of applicants. Consequently, salary increases often 
go to ineffective teachers as well as to those who are more successful in 
helping students learn. 

 The second obstacle to an input-based approach to improving teaching 
is that the types of professional-development programs that are easy to 
implement — for example, having teachers attend conferences or work-
shops in which they listen to the advice of “experts” — have little or no 
impact on the teachers’ effectiveness in the classroom (Borko,   2004  ; 
Garet, Porter, & Desimone,   2001  ; Hill & Cohen,   2001  ). The third obstacle 
is that even when promising teachers are identifi ed and assigned to 
schools that serve children with especially great learning needs, the teach-
ers tend to move to schools where working conditions are better as soon 
as they acquire suffi cient seniority to do so. In developing countries, this 
typically means moving from schools in rural areas to schools close to 
cities (Ezpeleta & Weiss,   1996  ; Reimers,   2006  ). In many developed coun-
tries, including the United States, it means moving out of inner-city 
schools to schools on the fringes of cities (Clotfelter, Ladd, & Vigdor, 
  2005  ). In both sets of circumstances, the net result is that children most 
in need of the best teachers are the least likely to be taught by them. 

 The evidence for the effectiveness of different strategies to improve the 
teaching that children receive on a daily basis raises many questions. 
Among the most policy-relevant are questions about the professional 
development (in-service training) available for incumbent teachers. 
Almost every public-school system invests resources in improving the 
skills of its teachers. Indeed, this is a major area of investment in many 
school systems. Yet, to our knowledge, there is no compelling evidence 
about whether particular professional-development strategies cause 
teachers to become more effective.      
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   Policy Guideline 3: Improve Incentives   

 The evidence that input-based strategies, such as reducing class size and 
investing in the professional development of teachers, do not result con-
sistently in improved education for children is sobering. This pattern has 
led to a growing interest in using different kinds of incentives to alter 
the behaviors of teachers or students, and thereby improve educational 
outcomes for children.    

   Improve Incentives for Teachers   

 The potential power of the incentive approach is illustrated by the evalu-
ation of the teacher-incentive program in rural India that we described in 
Chapter 5. Recall that basing rural teachers’ compensation on their 
school-attendance rate halved the percentage of days that teachers were 
absent from their positions, from 42 %  to 21 % . Moreover, the increase in 
teacher attendance resulted in an increase of one-third in the amount of 
time that students received instruction. This, in turn, led to an increase 
of almost one-fi fth of a standard deviation in students’ scores on tests of 
their language and mathematical achievement. There is also evidence 
from the United States that fi nancial incentives make a difference in 
attracting academically talented teachers to low-performing schools 
(Steele, Murnane, & Willett,   2010  ), and in inducing teachers to remain 
teaching in schools that serve high concentrations of poor children 
(Clotfelter et al.,   2008  ). Thus, all of these studies support the hypothesis 
that fi nancial incentives can play an important role in inducing teachers 
to take actions under their control—such as coming to school regularly, 
and teaching in schools where the need is particularly great. 

 The more diffi cult issue concerns the effectiveness of incentives for 
teachers to improve students’ scores on standardized achievement tests. 
There is evidence that performance-based pay plans or merit pay, as such 
incentives are often called, did indeed result in improvements in student 
outcomes in some settings. However, there is also evidence that incen-
tives for teachers to improve student test scores have led to dysfunctional 
responses in other settings. 

 On the positive side are the results of a random-assignment experiment 
in rural India that Karthik Muralidharan and Venkatesh Sundararaman 
(  2009  ) evaluated. These researchers found that paying bonuses to pri-
mary-school teachers based on the average score improvement of their 
students on tests of language and mathematics skills led to improved 
student achievement in these subjects. Moreover, in this well-designed 
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random-assignment experiment, the research team also found that 
students’ average scores on science tests were higher in treatment-group 
schools than in control-group schools. This is important because it sug-
gested that teachers had not simply reallocated instructional time to the 
particular subset of subjects (language and mathematics) on which their 
bonuses depended. 

 On the negative side, there is evidence from some settings that teachers’ 
responses to incentives to improve their students’ scores on standardized 
tests did not serve the students well. For example, the superintendent of 
the Chicago public schools introduced a new accountability policy in 1996. 
Under this policy, elementary schools in which less than 15 %  of students 
scored at, or above, national norms on a standardized test of reading skills 
would be placed on academic probation. Schools on probation that did not 
then make adequate progress in improving their students’ reading scores 
would be reconstituted and their faculties dismissed or reassigned. Brian 
Jacob and Steven Levitt (  2003  ) documented that, in at least 5 %  of Chicago’s 
elementary schools, teachers or administrators responded to this incentive 
by editing their students’ answers on the standardized reading test. 

 Although changing students’ answers to test items is a troubling, and 
hopefully rare, response to an incentive program, many studies have doc-
umented other responses that similarly do not improve the quality of 
education provided to students. For example, David Figlio and Lawrence 
Getzler (  2002  ) showed that a response to an incentive system designed 
to hold public-school educators in Florida accountable for improving 
students’ skills was that schools then misclassifi ed low-achieving students 
as disabled, so that their scores would not be counted in state-wide evalu-
ations of school performance. 

 Our review of evidence from recent evaluations of incentive-based 
policies for teachers suggests two lessons, two questions, and a hypothe-
sis. The fi rst lesson is that incentives can play an important role in 
motivating teachers to engage in actions that are under their control – 
such as choosing to work in high-poverty schools. The second lesson is 
that incentives for teachers to improve student performance may play a 
constructive role in improving school performance in at least some set-
tings. However, the challenge is to design the incentives so as to maximize 
the chance that responses will result in better education for children. 

 The fi rst question concerns the extent to which responses to particular 
teacher-incentive plans depend on the characteristics of the setting and 
the skills and norms of the teaching force. For example, would the perfor-
mance incentives for rural teachers in India that Muralidharan and 
Sundararaman (  2009  ) studied elicit similar results in a setting in which 
teacher attendance was not a problem? The second question concerns 
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long-term responses to incentives for teachers to improve student test 
scores. Would teachers’ responses change over time as they learned more 
about the role that peer groups and particular instructional strategies 
played in infl uencing student test scores? If so, would teachers’ long-term 
responses to performance incentives benefi t children more or less than 
short-term responses? To learn the answers to these questions, it is impor-
tant to conduct evaluations that examine long-run responses to particular 
incentive programs as well as short-run responses, and to do so in many 
different types of settings. 

 The hypothesis that we believe deserves testing stipulates that teachers’ 
responses to incentives intended to improve student test scores are more 
likely to result in better education for children if they are combined with 
investments to provide teachers with the knowledge and tools to achieve 
this objective. In other words, the hypothesis is that incentives and capacity-
building are complements, not substitutes.     

   Improve Incentives for Students   

 In most societies students have strong long-term incentives to do the hard 
work needed to excel in school and to increase both their skill levels and 
educational attainments. The cognitive skills that are taught in schools 
and the educational credentials that high-achieving students tend to obtain 
pay off handsomely in adult labor markets (Hanushek & Woessmann, 
  2008  ; Murnane, Willett, & Levy   1995  ). However, many students do not 
devote consistent effort to school work. One hypothesis to explain this 
latter phenomenon is that the behaviors of many students are dictated by 
more immediate concerns, and they do not pay much attention to longer-
term outcomes. A second is that many students do not understand what 
they need to do in order to improve their academic performance. These 
hypotheses raise the question of whether providing more immediate 
incentives to do the hard work needed to acquire critical skills would have 
a positive impact on students’ effort levels and on their academic perfor-
mances. A related question concerns whether it is more effective to reward 
student skills as measured by grades or scores on standardized examina-
tions or to reward behaviors such as reading books that may contribute to 
the development of those skills. The evidence bearing on the answers to 
these questions is both intriguing and puzzling.    

   Different Responses in Different Settings   

 Michael Kremer, Edward Miguel, and Rebecca Thornton (  2009  ) examined 
the consequences of an experiment in Kenya in which samples of primary 
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schools in two districts were randomized to treatment and control groups. 
The two districts, Busia and Teso, differed in several respects, including 
primary language and cultural traditions. Also, residents of Teso had less 
education, on average, than residents of Busia, and were more suspicious 
of outsiders. The experimental treatment consisted of providing aca-
demic scholarships to female students who scored well on district-wide 
academic examinations in fi ve academic subjects. The experiment focused 
on girls because they had a higher dropout rate from primary schools 
than did boys. The scholarships paid school fees for the subsequent school 
year and also provided a small cash grant. All girls who attended treat-
ment-group schools in the two districts were eligible to compete for the 
scholarships. Girls attending control-group schools were not eligible for 
the merit-based scholarships. 

 Kremer and his colleagues found that the experiment elicited very 
positive responses in Busia. Girls in that district who were eligible for the 
merit-based scholarships had higher test scores, on average, than girls in 
control-group schools. Moreover, average scores were even higher in treat-
ment-group schools than in control-group schools among girls with low 
pre-test scores who were unlikely to win scholarships, and among boys, 
who were not eligible for the scholarships. The research team also found 
that teacher attendance was higher in treatment-group schools than in 
control-group schools in Busia, and attributed this to increased parental 
monitoring. Kremer and his colleagues concluded that the positive effects 
of the merit-based scholarships in Busia stemmed primarily from a combi-
nation of positive peer-group effects and greater teacher effort. 

 Responses to the merit-based scholarship program in Teso were quite 
different. Parents in Teso were less supportive of the program than those 
in Busia, and several schools in Teso dropped out of the experiment soon 
after its inception. Virtually none of the positive results that the research 
team found in Busia were present in the Teso sample. This pattern illus-
trates not only that the details of incentive plans matter, but also that the 
task of designing constructive incentives is often critically setting-specifi c. 
An incentive system that contributes to improved student achievement in 
one setting may not do so in another, and for reasons that may not be clear.     

   Heterogeneous Responses in the Same Setting   

 Another complexity in designing incentives is that they may elicit quite 
different responses from different groups in the same setting. For exam-
ple, Angrist and Lavy (  2009  ) found that an experimental program in 
Israel that provided fi nancial rewards to secondary-school students in 
low-performing schools who achieved passing scores on the school-leaving 
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“Bagrut” examination had a large positive impact on the average perfor-
mance of girls. Paradoxically, the incentives provided by the achievement 
awards had no impact on the performances of boys. Angrist, Lang, and 
Oreopoulos (  2009  ) found a similar pattern in their evaluation of an exper-
iment conducted in Canada in which fi rst-year university students were 
assigned randomly to one of three treatment groups, or to a control 
group. One treatment group was offered academic support services, 
including mentoring by upper-class students and supplemental instruc-
tion. A second group was offered substantial cash awards, up to the 
equivalent of a full year’s tuition, for meeting a target GPA (the GPA 
target for each student depended on the student’s high-school GPA.) 
A third treatment group was offered a combination of the support ser-
vices and incentives. The control group was eligible for standard university 
support services but nothing extra. The research team found that the  com-
bination  of incentives and support was especially effective in improving 
the academic performance of women. In contrast, the academic achieve-
ment of males was unchanged by any of the interventions. The evidence 
from these experiments in Israel and Canada raise an intriguing ques-
tion: Why did female students respond positively to fi nancial incentives 
for good academic performance, but male students did not?     

   Student Responses Depend on What Is Rewarded   

 Recently, Roland Fryer (2010) completed a set of randomized experi-
ments that shed light on the responses of poor minority children attending 
urban public schools in the United States to fi nancial incentives for aca-
demic achievement and for activities that contribute to achievement. 
Fryer found that paying students to take actions that are conducive to 
learning, such as reading books, coming to school regularly, and behav-
ing well in school resulted in improved scores on standardized tests. 
These results are consistent with the theme that changing children’s daily 
experiences is a necessary condition for improving their academic achieve-
ment. In contrast to these encouraging fi ndings, Fryer also found that 
paying students for achieving benchmarks on tests of reading and math-
ematics did not result in improved scores. His explanation for this pattern 
is that, when faced with incentives to score well on standardized tests of 
reading and mathematics, students in urban settings in the United States 
do not know what actions to take to improve their scores.     

   Summary of Evidence on Incentives for Students   

 Recent well-designed evaluations of experimental programs that provided 
fi nancial rewards to students suggest two lessons and many new questions. 
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The fi rst is that programs of this type have promise, as shown by the posi-
tive results of the student incentive program in Busia, Kenya. Second, 
incentives may be a way to increase students’ use of the extra support 
services that a great many educational institutions offer to struggling stu-
dents. Angrist, Lang, and Oreopoulos (  2009  ) found this pattern in the 
responses of female college students in Canada to the combination of 
extra supports and fi nancial rewards for academic achievement. Indeed, 
paying students to engage in behaviors known to contribute to skill devel-
opment may be more effective in enhancing students’ skills in some 
settings than rewarding their performances on standardized tests. Among 
the questions worthy of attention in new studies of these effects are why 
the same set of incentives elicits different responses in different settings, 
and why, in at least some settings, girls are more responsive to short-term 
incentives for improving academic performance than are boys.       

   Policy Guideline 4: Create More Schooling Options 
for Poor Children   

 In recent years, a growing number of countries have introduced programs 
that attempt to increase the schooling options for children from low-
income families. Many programs do this by offering to families vouchers 
or scholarships that they can use to pay part or all of children’s tuitions at 
private schools. Other programs provide public funds to private schools 
in return for serving students from low-income families. Still others, such 
as charter-school legislation in the United States, make it possible for 
entrepreneurs to start new public schools that are free from many of the 
restrictions that are thought to hamper effi cient resource use in conven-
tional public schools that are part of large school systems. One theory 
underlying these initiatives is that they will spur competition among 
schools, and this will result in performance improvements. A complemen-
tary theory is that providing parents with choices between public schools 
and private schools helps them to fi nd schools that match their children’s 
needs (Chubb & Moe,   1990  ). 

 There is enormous variation in the design of programs that seek to 
provide new schooling options for poor children. Eligibility for some pro-
grams, such as the New York Scholarship Program (NYSP) that we 
described in Chapter 4 and the Colombia secondary-school voucher ini-
tiative described in Chapter 11, was restricted to children from low-income 
families. Other initiatives, such as charter schools in the United States, are 
available to all children in a particular geographical area. Some programs 
incorporate explicit performance incentives for students or for schools. 
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For example, recipients of secondary-school tuition vouchers in Colombia 
must make satisfactory progress toward their diplomas each academic 
year in order to have their vouchers renewed (Angrist et al.,   2002  ). A pro-
gram in Pakistan makes per student payments to low-cost private schools 
contingent on successful student performance on periodic tests of aca-
demic skills (Barrera-Osorio & Raju,   2009  ). The program also provides 
substantial cash bonuses to the faculties of schools in which students do 
particularly well on the tests. Finally, some programs, such as the one 
in Pakistan and charter-school laws in the United States, prohibit partici-
pating schools from charging fees. Others, such as the NYSP and the 
Colombian program, allow private schools to charge fees in excess of the 
value of the voucher. In the next section, we describe recent evidence 
from initiatives to create new private-school options for poor children. 
We then turn to evidence bearing on charter schools in the United States, 
an attempt to create new public-school options.    

   New Private-School Options   

 As we described in Chapter 11, Joshua Angrist and his colleagues (  2006  ) 
found that the Colombia secondary-school voucher program increased 
high-school graduation rates for students from low-income families. In an 
evaluation with a regression-discontinuity design, Felipe Barrera-Osorio 
and Dhushyanth Raju (  2009  ) found that the private-school subsidy pro-
gram in Pakistan increased markedly the number of students from 
low-income families who enrolled in school. A common thread connect-
ing these programs is that both made continued funding contingent on 
improved student performance. 

 Private school-choice programs targeted at low-income students in 
particular cities in the United States also show some positive results, 
although the fi ndings are not completely consistent. For example, in an 
evaluation with a random-assignment design, Cecilia Rouse (  1998  ) found 
that a private-school tuition voucher program in Milwaukee led to improve-
ments in the mathematics achievement of students from low-income 
families, but not in their reading achievement.     

   New Public-School Options   

 Several recent high-quality evaluations of urban charter schools in the 
United States show encouraging results. These include Dobbie and Fryer’s 
(  2009  ) study of the effectiveness of charter schools in the Harlem 
Children’s Zone, Abdulkadiroglu and his colleagues’ (  2009  ) evaluation of 
charter schools in Boston, and Hoxby and Murarka’s (  2009  ) evaluation of 
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charter schools in New York City. All of these evaluations found that 
children who won a lottery that provided the offer of a place in a charter 
school had higher test scores one or more years later than children who 
lost out in the lottery and typically then attended conventional public 
schools. In interpreting this evidence, it is important to keep in mind that 
these lottery-based evaluations only examine the effectiveness of charter 
schools that are heavily oversubscribed, and therefore have used lotteries 
to determine who is accepted. Many charter schools across the nation are 
not oversubscribed, and results from nation-wide evaluations of their 
effects on student test scores, which are necessarily conducted with less 
rigorous evaluation methods, are mixed.   4  

 Although the evidence from many recent evaluations of charter schools 
is encouraging, many important questions remain. One is whether the 
charter schools that are more effective in increasing students’ skills will 
fl ourish and those that are not will die. Given the complexity of the polit-
ical processes that determine which schools are granted renewals of their 
charters, the answer is not obvious. Second, some charter schools require 
that parents sign pledges stating they will be responsible for ensuring 
their children adhere to a dress code and to rules regarding behavior and 
attendance. It is not clear the extent to which such requirements mean 
that “high commitment” charter schools will only ever serve a modest 
percentage of children from low-income families. Third, some charter 
schools make extraordinary demands on teachers, for example, requiring 
very long work days and that teachers respond to phone calls from stu-
dents on evenings and weekends. It is not clear whether limits on the 
supply of skilled teachers who are willing to work under these conditions 
for sustained periods of time will limit the role of charter schools in edu-
cating poor students. Fourth, almost all of the evidence to date on the 
relative effectiveness of charter schools comes from analyses of student 
scores on standardized tests. Of course, the more important outcomes 
are success in post-secondary education, in labor markets, and in adult 
life. To date, there is little information on the extent to which charter 
schools are more effective than public schools in helping children from 
poor families achieve these outcomes.   5       

4.  For example, see the Center for Research on Education Outcomes or CREDO (2009). 
5.  Many of the questions about charter schools described in this paragraph are taken 

from Curto, Fryer, and Howard (2010). 
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   Summing Up   

 In recent decades, governments have introduced a large number of 
educational initiatives aimed at increasing the number of young people 
who attend school regularly and increasing the quality of education that 
they receive. A growing body of solid evidence provides insights into the 
effectiveness of alternative strategies for pursing these goals. We see four 
guidelines for policy stemming from recent high-quality evaluations of 
these initiatives. 

 One guideline is that educational enrollment rates, especially for children 
from low-income families, are extremely sensitive to costs. Consequently, 
policies that reduce the cost of school attendance — by lowering the com-
muting time of students, by reducing families’ out-of-pocket costs, or by 
reducing the opportunity costs of children’s school attendance — are effec-
tive in increasing the number of children from low-income families who 
enroll in, and attend, schools or colleges regularly. 

 A second guideline is that if a policy initiative is to improve students’ 
skills, it must change their daily experiences in school. Although this may 
seem obvious, many initiatives — such as providing books that are not 
tailored to students’ skill levels — fail this test. So do “one-shot” teacher 
training initiatives that lack follow-up. 

 A third guideline is that providing incentives for educators and students 
can play a constructive role in enhancing student achievement. However, 
great care is needed in designing such incentives because they are power-
ful tools that may elicit unanticipated dysfunctional responses. 

 The fourth guideline is that initiatives to increase schooling options for 
poor children have signifi cant promise. However, there are important 
questions about scalability and the extent to which the new schooling 
options result in improved long-term outcomes for children. 

 We hope that these guidelines can serve a useful purpose by informing 
the design of policies aimed at improving educational quality. However, 
they are  guidelines , not  recipes . The important details of policy initiatives 
with common names like “educational vouchers,” “class-size reduction,” 
or “performance pay for teachers” will differ from place to place. 
Responses to their implementation will also differ, both because the 
details of program design differ, and because institutions and cultures 
matter and differ from place to place. For these reasons, the important 
work of providing causal evidence on the effects of a particular type of 
educational-policy initiative is not a matter of conducting one — or even a 
few — high-quality studies. Instead, it is a matter of conducting enough 
high-quality studies to reveal the ways that results depend on particular 
details of the empirical design, on the institutions in which interventions 
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are embedded, and on the cultures that infl uence the priorities and 
behaviors of teachers, administrators, parents, children, and employers.     

   Final Words   

 At this point, we want to share the sentiment expressed by Winston 
Churchill when he reported the defeat of Rommel’s Panzer divisions at 
the second battle of El Alamein, North Africa, a turning point in World 
War II. He said: “This is not the end. It is not even the beginning of the 
end. But it is, perhaps, the end of the beginning” (Knowles,   1999  , p. 215). 
Likewise, although this is the end of our book, we hope that it is the begin-
ning of your efforts to understand causal research, to use it, and to do it! 
You will need to continue to learn, because new research is providing 
improvements in methods for making causal inferences in educational 
and social science research constantly. Some of the new technical advances 
improve old research designs and old analytic methods. Some create 
new designs and methods. Other important work improves data quality. 
We anticipate rapid advances in all three of these domains in the future. 
We hope that our book will provide you with a strong foundation for 
understanding advances to come, and inspire you to continue to learn 
and apply these methods. Most of all, we hope that research informed by 
our book will lead us all to a better understanding of effective strategies 
for educating the world’s children.   
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