

FUNDAMENTALS
OF DATABASE

MANAGEMENT
SYSTEMS

Second Edition

MARK L. GILLENSON
Fogelman College of Business and Economics

University of Memphis

John Wiley & Sons, Inc.

CREDITS

VP & PUBLISHER Don Fowley
EDITOR Beth Lang Golub
EDITORIAL ASSISTANT Elizabeth Mills
MARKETING MANAGER Christopher Ruel
DESIGNER James O’Shea
SENIOR PRODUCTION MANAGER Janis Soo
SENIOR PRODUCTION EDITOR Joyce Poh

This book was set in 10/12 TimesNewRoman by LaserWords and printed and bound by RR Donnelley. The
cover was printed by RR Donnelley.

This book is printed on acid free paper.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for
more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our
company is built on a foundation of principles that include responsibility to the communities we serve and
where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address
the environmental, social, economic, and ethical challenges we face in our business. Among the issues we are
addressing are carbon impact, paper specifications and procurement, ethical conduct within our business and
among our vendors, and community and charitable support. For more information, please visit our website:
www.wiley.com/go/citizenship.

Copyright © 2012, 2005 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976
United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood
Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030-5774, (201)748-6011, fax (201)748-6008, website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in
their courses during the next academic year. These copies are licensed and may not be sold or transferred to a
third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return
instructions and a free of charge return mailing label are available at www.wiley.com/go/returnlabel. If you
have chosen to adopt this textbook for use in your course, please accept this book as your complimentary
desk copy. Outside of the United States, please contact your local sales representative.

Library of Congress Cataloging-in-Publication Data

Gillenson, Mark L.
Fundamentals of database management systems / Mark L. Gillenson.—2nd ed.

p. cm.
Includes index.
ISBN 978-0-470-62470-8 (pbk.)
1. Database management. I. Title.
QA76.9.D3G5225 2011
005.74—dc23

2011039274

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/returnlabel

OTHER JOHN WILEY & SONS, INC. DATABASE BOOKS
BY MARK L. GILLENSON

Strategic Planning, Systems Analysis, and Database Design
(with Robert Goldberg), 1984

DATABASE Step-by-Step
1st edition, 1985
2nd edition, 1990

To my mother Sunny’s memory

and to my favorite mother-in-law, Moo

BRIEF CONTENTS

Preface xiii

About The Author xvii

CHAPTER 1 DATA: THE NEW CORPORATE RESOURCE 1
CHAPTER 2 DATA MODELING 19
CHAPTER 3 THE DATABASE MANAGEMENT SYSTEM CONCEPT 41
CHAPTER 4 RELATIONAL DATA RETRIEVAL: SQL 67
CHAPTER 5 THE RELATIONAL DATABASE MODEL: INTRODUCTION 105
CHAPTER 6 THE RELATIONAL DATABASE MODEL: ADDITIONAL CONCEPTS 137
CHAPTER 7 LOGICAL DATABASE DESIGN 157
CHAPTER 8 PHYSICAL DATABASE DESIGN 199
CHAPTER 9 OBJECT-ORIENTED DATABASE MANAGEMENT 247
CHAPTER 10 DATA ADMINISTRATION, DATABASE ADMINISTRATION, AND DATA

DICTIONARIES 269
CHAPTER 11 DATABASE CONTROL ISSUES: SECURITY, BACKUP AND RECOVERY,

CONCURRENCY 291
CHAPTER 12 CLIENT/SERVER DATABASE AND DISTRIBUTED DATABASE 315
CHAPTER 13 THE DATA WAREHOUSE 335
CHAPTER 14 DATABASES AND THE INTERNET 365

Index 385

CONTENTS

Preface xiii
About The Author xvii

CHAPTER 1 DATA: THE NEW CORPORATE RESOURCE 1

Introduction 2
The History of Data 2

The Origins of Data 2
Data Through the Ages 5
Early Data Problems Spawn Calculating Devices 7
Swamped with Data 8
Modern Data Storage Media 9

Data in Today’s Information Systems Environment 12
Using Data for Competitive Advantage 12
Problems in Storing and Accessing Data 12
Data as a Corporate Resource 13
The Database Environment 14

Summary 15

CHAPTER 2 DATA MODELING 19

Introduction 20
Binary Relationships 20

What is a Binary Relationship? 20
Cardinality 23
Modality 24
More About Many-to-Many Relationships 25

Unary Relationships 28
One-to-One Unary Relationship 28
One-to-Many Unary Relationship 29
Many-to-Many Unary Relationship 29

Ternary Relationships 31
Example: The General Hardware Company 31
Example: Good Reading Book Stores 34
Example: World Music Association 35
Example: Lucky Rent-A-Car 36
Summary 37

viii Contents

CHAPTER 3 THE DATABASE MANAGEMENT SYSTEM CONCEPT 41

Introduction 42
Data Before Database Management 43

Records and Files 43
Basic Concepts in Storing and Retrieving Data 46

The Database Concept 48
Data as a Manageable Resource 48
Data Integration and Data Redundancy 49
Multiple Relationships 56
Data Control Issues 58
Data Independence 60

DBMS Approaches 60
Summary 63

CHAPTER 4 RELATIONAL DATA RETRIEVAL: SQL 67

Introduction 68
Data Retrieval with the SQL SELECT Command 68

Introduction to the SQL SELECT Command 68
Basic Functions 70
Built-In Functions 81
Grouping Rows 83
The Join 85
Subqueries 86
A Strategy for Writing SQL SELECT Commands 89

Example: Good Reading Book Stores 90
Example: World Music Association 92
Example: Lucky Rent-A-Car 95
Relational Query Optimizer 97

Relational DBMS Performance 97
Relational Query Optimizer Concepts 97

Summary 99

CHAPTER 5 THE RELATIONAL DATABASE MODEL: INTRODUCTION 105

Introduction 106
The Relational Database Concept 106

Relational Terminology 106
Primary and Candidate Keys 109
Foreign Keys and Binary Relationships 111

Data Retrieval from a Relational Database 124
Extracting Data from a Relation 124
The Relational Select Operator 125
The Relational Project Operator 125
Combination of the Relational Select and Project Operators 126
Extracting Data Across Multiple Relations: Data Integration 127

Example: Good Reading Book Stores 129
Example: World Music Association 130
Example: Lucky Rent-A-Car 132
Summary 132

Contents ix

CHAPTER 6 THE RELATIONAL DATABASE MODEL: ADDITIONAL CONCEPTS 137

Introduction 138
Relational Structures for Unary and Ternary Relationships 139

Unary One-to-Many Relationships 139
Unary Many-to-Many Relationships 143
Ternary Relationships 146

Referential Integrity 150
The Referential Integrity Concept 150
Three Delete Rules 152

Summary 153

CHAPTER 7 LOGICAL DATABASE DESIGN 157

Introduction 158
Converting E-R Diagrams into Relational Tables 158

Introduction 158
Converting a Simple Entity 158
Converting Entities in Binary Relationships 160
Converting Entities in Unary Relationships 164
Converting Entities in Ternary Relationships 166
Designing the General Hardware Co. Database 166
Designing the Good Reading Bookstores Database 170
Designing the World Music Association Database 171
Designing the Lucky Rent-A-Car Database 173

The Data Normalization Process 174
Introduction to the Data Normalization Technique 175
Steps in the Data Normalization Process 177
Example: General Hardware Co. 185
Example: Good Reading Bookstores 186
Example: World Music Association 188
Example: Lucky Rent-A-Car 188

Testing Tables Converted from E-R Diagrams with Data Normalization 189
Building the Data Structure with SQL 191
Manipulating the Data with SQL 192
Summary 193

CHAPTER 8 PHYSICAL DATABASE DESIGN 199

Introduction 200
Disk Storage 202

The Need for Disk Storage 202
How Disk Storage Works 203

File Organizations and Access Methods 207
The Goal: Locating a Record 207
The Index 207
Hashed Files 215

Inputs to Physical Database Design 218
The Tables Produced by the Logical Database Design Process 219
Business Environment Requirements 219
Data Characteristics 219

x Contents

Application Characteristics 220
Operational Requirements: Data Security, Backup, and Recovery 220

Physical Database Design Techniques 221
Adding External Features 221
Reorganizing Stored Data 224
Splitting a Table into Multiple Tables 226
Changing Attributes in a Table 227
Adding Attributes to a Table 228
Combining Tables 230
Adding New Tables 232

Example: Good Reading Book Stores 233
Example: World Music Association 234
Example: Lucky Rent-A-Car 235
Summary 237

CHAPTER 9 OBJECT-ORIENTED DATABASE MANAGEMENT 247

Introduction 248
Terminology 250
Complex Relationships 251

Generalization 251
Inheritance of Attributes 253
Operations, Inheritance of Operations, and Polymorphism 254
Aggregation 255
The General Hardware Co. Class Diagram 256
The Good Reading Bookstores Class Diagram 256
The World Music Association Class Diagram 259
The Lucky Rent-A-Vehicle Class Diagram 260

Encapsulation 260
Abstract Data Types 262
Object/Relational Database 263
Summary 264

CHAPTER 10 DATA ADMINISTRATION, DATABASE ADMINISTRATION, AND DATA
DICTIONARIES 269

Introduction 270
The Advantages of Data and Database Administration 271

Data as a Shared Corporate Resource 271
Efficiency in Job Specialization 272
Operational Management of Data 273
Managing Externally Acquired Databases 273
Managing Data in the Decentralized Environment 274

The Responsibilities of Data Administration 274
Data Coordination 274
Data Planning 275
Data Standards 275
Liaison to Systems Analysts and Programmers 276
Training 276
Arbitration of Disputes and Usage Authorization 277
Documentation and Publicity 277

Contents xi

Data’s Competitive Advantage 277
The Responsibilities of Database Administration 278

DBMS Performance Monitoring 278
DBMS Troubleshooting 278
DBMS Usage and Security Monitoring 279
Data Dictionary Operations 279
DBMS Data and Software Maintenance 280
Database Design 280

Data Dictionaries 281
Introduction 281
A Simple Example of Metadata 282
Passive and Active Data Dictionaries 284
Relational DBMS Catalogs 287
Data Repositories 287

Summary 287

CHAPTER 11 DATABASE CONTROL ISSUES: SECURITY, BACKUP AND RECOVERY,
CONCURRENCY 291

Introduction 292
Data Security 293

The Importance of Data Security 293
Types of Data Security Breaches 294
Methods of Breaching Data Security 294
Types of Data Security Measures 296

Backup and Recovery 303
The Importance of Backup and Recovery 303
Backup Copies and Journals 303
Forward Recovery 304
Backward Recovery 305
Duplicate or ‘‘Mirrored’’ Databases 306
Disaster Recovery 306

Concurrency Control 308
The Importance of Concurrency Control 308
The Lost Update Problem 308
Locks and Deadlock 309
Versioning 310

Summary 311

CHAPTER 12 CLIENT/SERVER DATABASE AND DISTRIBUTED DATABASE 315

Introduction 316
Client/Server Databases 316
Distributed Database 321

The Distributed Database Concept 321
Concurrency Control in Distributed Databases 325
Distributed Joins 327
Partitioning or Fragmentation 329
Distributed Directory Management 330
Distributed DBMSs: Advantages and Disadvantages 331

Summary 332

xii Contents

CHAPTER 13 THE DATA WAREHOUSE 335

Introduction 336
The Data Warehouse Concept 338

The Data is Subject Oriented 338
The Data is Integrated 339
The Data is Non-Volatile 339
The Data is Time Variant 339
The Data Must Be High Quality 340
The Data May Be Aggregated 340
The Data is Often Denormalized 340
The Data is Not Necessarily Absolutely Current 341

Types of Data Warehouses 341
The Enterprise Data Warehouse (EDW) 342
The Data Mart (DM) 342
Which to Choose: The EDW, the DM, or Both? 342

Designing a Data Warehouse 343
Introduction 343
General Hardware Co. Data Warehouse 344
Good Reading Bookstores Data Warehouse 348
Lucky Rent-A-Car Data Warehouse 350
What About a World Music Association Data Warehouse? 351

Building a Data Warehouse 352
Introduction 352
Data Extraction 352
Data Cleaning 354
Data Transformation 356
Data Loading 356

Using a Data Warehouse 357
On-Line Analytic Processing 357
Data Mining 357

Administering a Data Warehouse 360
Challenges in Data Warehousing 361
Summary 362

CHAPTER 14 DATABASES AND THE INTERNET 365

Introduction 366
Database Connectivity Issues 367
Expanded Set of Data Types 373
Database Control Issues 374

Performance 374
Availability 375
Scalability 376
Security and Privacy 376

Data Extraction into XML 379
Summary 381

INDEX 385

PREFACE

PURPOSE OF THIS BOOK

A course in database management has become well established as a required
course in both undergraduate and graduate management information systems degree
programs. This is as it should be, considering the central position of the database
field in the information systems environment. Indeed, a solid understanding of the
fundamentals of database management is crucial for success in the information
systems field. An IS professional should be able to talk to the users in a business
setting, ask the right questions about the nature of their entities, their attributes, and
the relationships among them, and quickly decide whether their existing data and
database designs are properly structured or not. An IS professional should be able
to design new databases with confidence that they will serve their owners and users
well. An IS professional should be able to guide a company in the best use of the
various database-related technologies.

Over the years, at the same time that database management has increased
in importance, it has also increased tremendously in breadth. In addition to such
fundamental topics as data modeling, relational database concepts, logical and
physical database design, and SQL, a basic set of database topics today includes
object-oriented databases, data administration, data security, distributed databases,
data warehousing, and Web databases, among others. The dilemma faced by
database instructors and by database books is to cover as much of this material as
is reasonably possible so that students will come away with a solid background
in the fundamentals without being overwhelmed by the tremendous breadth and
depth of the field. Exposure to too much material in too short a time at the expense
of developing a sound foundation is of no value to anyone. We believe that a
one-semester course in database management should provide a firm grounding in
the fundamentals of databases and provide a solid survey of the major database
subfields, while deliberately not being encyclopedic in its coverage. With these
goals in mind, this book:

■ Is designed to be a carefully and clearly written, friendly, narrative introduction
to the subject of database management that can reasonably be completed in a
one-semester course.

■ Provides a clear exposition of the fundamentals of database management while
at the same time presentng a broad survey of all of the major topics of the field.

xiv Preface

It is an applied book of important basic concepts and practical material that can
be used immediately in business.

■ Makes extensive use of examples. Four major examples are used throughout the
text where appropriate, plus two minicases that are included among the chapter
exercises at the end of every chapter. Having multiple examples solidifies the
material and helps the student not miss the point because of the peculiarities of a
particular example.

■ Starts with the basics of data and file structures and then builds up in a progressive,
step-by-step way through the distinguishing characteristics of database.

■ Has a story and accompanying photograph of a real company’s real use of
database management at the beginning of every chapter. This is both for
motivational purposes and to give the book a more practical, real-world feel.

■ Includes a chapter on SQL that concentrates on the data-retrieval aspect and
applies to essentially every relational database product on the market.

NEW IN THE SECOND EDITION

It is important to reflect advances in the database management systems environment
in this book as the world of information systems continues to progress. Furthermore,
we want to continue adding materials for the benefit of the students who use this
book. Thus we have made the following changes to the second edition.

■ A ‘‘mobile chapter’’ on data retrieval with SQL that can be covered early in the
book, where it appears as Chapter 4, or later in the book after the chapters on
database design. This is introduced in response to a large reviewer survey that
indicated a roughly 50–50 split between instructors who like to introduce data
retrieval with SQL early in their courses to engage their students in hands-on
exercises as soon as possible to pique their interest and instructors who feel that
data retrieval with SQL should come after database design.

■ Internet-accessible databases that match the four main examples running through
the book’s chapters for hands-on student practice in data retrieval with SQL, plus
additional hands-on material.

■ The conversion of the book’s entity-relationship diagrams to today’s standard
practice format that is compatible with MS Visio, among other software tools.

■ The addition of examples for creating and updating databases using SQL.
■ The addition of ‘‘It’s Your Turn’’ exercises and the new formatting of the

‘‘Concepts in Action’’ real example vignettes.
■ The merging of the material about disk devices and access methods and file

organizations into the chapter on physical database design, to create a complete
package on this subject in one chapter.

ORGANIZATION OF THIS BOOK

The book effectively divides into two halves. After the introduction in Chapter 1,
Chapters 2 lays the foundation of data modeling. Chapter 3 describes the fundamental
concepts of databases and contrasts them with ordinary files. Importantly, this is
done separately from and prior to the discussion of relational databases. Chapter 4 is
the ‘‘mobile chapter’’ on data retrieval with SQL that can be covered as Chapter 4

Preface xv

or can be covered after the chapters on database design. Chapters 5 and 6 explain
the major concepts of relational databases. In turn, this is done separately from and
prior to the discussion of logical database design in Chapter 7 and physical database
design (yes, a whole chapter on this subject) in Chapter 8. Separating out general
database concepts from relational database concepts from relational database design
serves to bring the student along gradually and deliberately with the goal of a solid
understanding at the end.

Then, in the second half of the book, each chapter describes one or more of
the major database subfields. These latter chapters are generally independent and
for the most part can be approached in any order. They include Chapter 9 on object-
oriented database, Chapter 10 on data administration, database administration, and
data dictionaries, Chapter 11 on security, backup and recovery, and concurrency,
Chapter 12 on client/server database and distributed database, Chapter 13 on the
data warehouse, and Chapter 14 on database and the Internet.

SUPPLEMENTS
(www.wiley.com/college/gillenson)

The Web site includes several resources designed to aid the learning process:

■ PowerPoint slides for each chapter that instructors can use as is or tailor as they
wish and that students can use both to take notes on in the classroom and to help
in studying at home.

■ Quizzes for each chapter that students can take on their own to test their
knowledge.

■ For instructors: The Instructors’ Manual, written by the author. For each chapter
it includes a guide to presenting the chapter, discussion stimulation points, and
answers to every question, exercise, and minicase at the end of each chapter.

■ For instructors: The Test Bank, written by the author. Questions are organized
by chapter and are designed to test the level of understanding of the chapter’s
concepts, as well as such basic knowledge as the definitions of key terms presented
in the chapter.

Database Software

Now available to educational institutions adopting this Wiley textbook is a free
3-year membership to the MSDN Academic Alliance. The MSDN AA is designed
to provide the easiest and most inexpensive way for academic departments to make
the latest Microsoft software available in labs, classrooms, and on student and
instructor PCs.

Database software, including Access and SQL Server, is available through
this Wiley and Microsoft publishing partnership, free of charge with the adoption
of Gillenson’s textbook. (Note that schools that have already taken advantage of
this opportunity through Wiley are not eligible again, and Wiley cannot offer free
membership renewals.) Each copy of the software is the full version with no time
limitation, and can be used indefinitely for educational purposes. Contact your
Wiley sales representative for details. For more information about the MSDN AA
program, go to http://msdn.microsoft.com/academic.

xvi Preface

ACKNOWLEDGMENTS

I would like to thank the reviewers of the manuscript for their time, their efforts,
and their insightful comments:

Paul Bergstein University of Massachusetts Dartmouth

Susan Bickford Tallahassee Community College

Jim Q. Chen St. Cloud State University

Shamsul Chowdhury Roosevelt University

Deloy Cole Greenville College

Terrence Fries Indiana University of Pennsylvania

Dick Grant Seminole Community College

Betsy Headrick Chattanooga State Community College

Shamim Khan Columbus State University

Barbara Klein University of Michigan—Dearborn

Karl Konsdorf Sinclair Community College

Yunkai Liu Gannon University

Margaret McClintock Mississippi University for Women

Thomas Mertz Kansas State University

Keith R. Nelms Piedmont College

Bob Nielson Dixie State College

Rachida F. Parks Pennsylvania State University

Lara Preiser-Houy California State University Pomona

Il-Yeol Song Drexel University

Brian West Univeristy of Louisiana at Lafayette

R. Alan Whitehurst Southern Virginia University

Diana Wolfe Oklahoma State University at Oklahoma City

Hong Zhou Saint Joseph College

In addition, I would like to acknowledge and thank several people who read
and provided helpful comments on specific chapters and portions of the manuscript:
Mark Cooper of FedEx Corp., Satish Puranam of the University of Memphis, David
Tegarden of Virginia Tech, and Trent Sanders.

I would also like to thank the people and companies who agreed to participate
in the Concepts in Action vignettes that appear at the beginning of each chapter and,
in some cases, which appear later in the chapters. I strongly believe that business
students should not have to study subjects like database management in a vacuum.
Rather, they should be regularly reminded of the real ways in which real companies
put these concepts and techniques to use. Whether the products involved are power
tools, auto parts, toys, or books, it is important always to remember that database
management supports businesses in which millions and billions of dollars are at stake
every year. Thus, the people and companies who participated in these vignettes have
significantly added to the educational experience that the students using this book.

Finally, I would like to thank the crew at John Wiley & Sons for their
continuous support and professionalism, in particular Rachael Leblond, my editor
for this edition of the book, and Beth Lang Golub, my long-time editor and friend,
and her excellent staff.

Mark L. Gillenson
Memphis, TN

April 2011

ABOUT THE AUTHOR

Dr. Mark L. Gillenson has been practicing, researching, teaching, writing, and,
most importantly, thinking, about data and database management for over 35
years, split between working for the IBM Corporation and being a professor in the
academic world. While working for IBM he designed databases for IBM’s corporate
headquarters, consulted on database issues for some of IBM’s largest customers,
taught database management at the prestigious IBM Systems Research Institute in
New York, and conducted database seminars throughout the United States and on
four continents. In one such seminar, he taught introduction to database to an IBM
development group that went on to develop one of IBM’s first relational database
management system products, SQL/DS.

Dr. Gillenson conducted some of the earliest studies on data and database
administration and has written extensively about that subject as well as about
database design. He is an associate editor of the Journal of Database Management,
with which he has been associated since its inception. This is his third book on
database management, all published by John Wiley & Sons, Inc. Dr. Gillenson is
currently a professor of MIS in the Fogelman College of Business and Economics of
The University of Memphis. His degrees are from Rensselaer Polytechnic Institute
and The Ohio State University.

Oh, and speaking of interesting kinds of data, as a graduate student
Dr. Gillenson invented the world’s first computerized facial compositor and
codeveloped an early computer graphics system that, among other things, was
used to produce some of the special effects in the first Star Wars movie.

C H A P T E R 1

DATA: THE NEW
CORPORATE RESOURCE

T he development of database management systems, as well as the development of
modern computers, came about as a result of society’s recognition of the crucial

importance of storing, managing, and retrieving its rapidly expanding volumes of business
data. To understand how far we have come in this regard, it is important to know where
we began and how the concept of managing data has developed. This chapter begins
with the historical background of the storage and uses of data and then continues with a
discussion of the importance of data to the modern corporation.

OBJECTIVES

■ Explain why humankind’s interest in data dates back to ancient times.
■ Describe how data needs have historically driven many information technology

developments.
■ Describe the evolution of data storage media during the last century.
■ Relate the idea of data as a corporate resource that can be used to gain a

competitive advantage to the development of the database management systems
environment.

CHAPTER OUTLINE

Introduction
The History of Data

The Origins of Data
Data Through the Ages
Early Data Problems Spawn

Calculating Devices
Swamped with Data
Modern Data Storage Media

Data in Today’s Information Systems
Environment

Using Data for Competitive
Advantage

Problems in Storing and
Accessing Data

Data as a Corporate Resource
The Database Environment

Summary

2 C h a p t e r 1 Data: The New Corporate Resource

INTRODUCTION

What a fascinating world we live in today! Technological advances are all around
us in virtually every aspect of our daily lives. From cellular telephones to satellite
television to advanced aircraft to modern medicine to computers—especially
computers—high tech is with us wherever we look. Businesses of every description
and size rely on computers and the information systems they support to a degree that
would have been unimaginable just a few short years ago. Businesses routinely use
automated manufacturing and inventory-control techniques, automated financial
transaction procedures, and high-tech marketing tools. As consumers, we take
for granted being able to call our banks, insurance companies, and department
stores to instantly get up-to-the-minute information on our accounts. And everyone,
businesses and consumers alike, has come to rely on the Internet for instant
worldwide communications. Beneath the surface, the foundation for all of this
activity is data: the stored facts that we need to manage all of our human endeavors.

This book is about data. It’s about how to think about data in a highly
organized and deliberate way. It’s about how to store data efficiently and how to
retrieve it effectively. It’s about ways of managing data so that the exact data that
we need will be there when we need it. It’s about the concept of assembling data
into a highly organized collection called a ‘‘database’’ and about the sophisticated
software known as a ‘‘database management system’’ that controls the database
and oversees the database environment. It’s about the various approaches people
have taken to database management and about the roles people have assumed in
the database environment. We will see many real-world examples of data usage
throughout this book.

Computers came into existence because we needed help in processing and
using the massive amounts of data we have been accumulating. Is the converse true?
Could data exist without computers? The answer to this question is a resounding
‘‘yes.’’ In fact, data has existed for thousands of years in some very interesting, if
by today’s standards crude, forms. Furthermore, some very key points in the history
of the development of computing devices were driven, not by any inspiration about
computing for computing’s sake, but by a real need to efficiently handle a pesky data
management problem. Let’s begin by tracing some of these historical milestones in
the evolution of data and data management.

THE HISTORY OF DATA

The Origins of Data

What is data? To start, what is a single piece of data? A single piece of data is a
single fact about something we are interested in. Think about the world around you,
about your environment. In any environment there are things that are important to
you and there are facts about those things that are worth remembering. A ‘‘thing’’
can be an obvious object like an automobile or a piece of furniture. But the concept
of an object is broad enough to include a person, an organization like a company, or
an event that took place such as a particular meeting. A fact can be any characteristic
of an object. In a university environment it may be the fact that student Gloria
Thomas has completed 96 credits; or it may be the fact that Professor Howard Gold
graduated from Ohio State University; or it may be the fact that English 349 is being

The History of Data 3

CONCEPTS

IN ACT ION

1-A AMAZON.COM

When one thinks of online shopping,
one of the first companies that comes to mind is certainly
Amazon.com. This highly innovative company, based in
Seattle, WA, was one of the first online stores and has
consistently been one of the most successful. Amazon.com
seeks to be the world’s most customer-centric company,
where customers can find and discover anything they
might want to buy online. Amazon.com and its sellers list
millions of unique new and used items in categories such
as electronics, computers, kitchen products and house-
wares, books, music, DVDs, videos, camera and photo
items, toys, baby and baby registry, software, computer
and video games, cell phones and service, tools and
hardware, travel services, magazine subscriptions, and
outdoor living products. Through Amazon Marketplace,
zShops and Auctions, any business or individual can sell
virtually anything to Amazon.com’s millions of customers.
Demonstrating the reach of the Internet, Amazon.com
has sold to people in over 220 countries.

‘‘Photo Courtesy of Amazon.com’’

Initially implemented in 1995 and continually
improved ever since, Amazon.com’s ‘‘order pipeline’’
is a very sophisticated, information-intensive system that
accepts, processes, and fulfills customer orders. When
someone visits Amazon.com’s Web site, its system tries
to enhance the shopping experience by offering the
customer products on a personalized basis, based on
past buying patterns. Once an order is placed, the system
validates the customer’s credit-card information and sends
the customer an email order confirmation. It then goes
through a process of determining how best to fulfill the
order, including deciding which of several fulfillment sites
from which to ship the goods. When the order is shipped,
the system emails the customer a shipping confirmation.
Throughout the entire process, the system keeps track of
the current status of every order at any point in time.

Amazon.com’s order pipeline system is totally built
on relational database technology. Most of it uses Oracle
running on Hewlett Packard Unix systems. In order to

4 C h a p t e r 1 Data: The New Corporate Resource

achieve high degrees of scalability and availability, the
system is organized around the concept of distributed
databases, including replicated data that is updated
simultaneously at several domestic and international
locations. The system is integrated with the Oracle Finan-
cials enterprise resource planning (ERP) system and the
transactional data is shared with the company’s account-
ing and finance functions. In addition, Amazon.com
has built a multiterabyte data warehouse that imports its
transactional data and creates a decision support system
with a menu-based facility system of its own design.

Programs utilizing the data warehouse send personally
targeted promotional mailers to the company’s customers.

Amazon.com’s database includes hundreds of
individual tables. Among these are catalog tables listing
its millions of individual books and other products,
acustomer table with millions of records, personalization
tables, promotional tables, shopping-cart tables that
handle the actual purchase transactions, and order-history
tables. An order processing subsystem that determines
which fulfillment center to ship goods from uses tables that
keep track of product inventory levels in these centers.

held in Room 830 of Alumni Hall. In a commercial environment, it may be the fact
that employee John Baker’s employee number is 137; or it may be the fact that one
of a company’s suppliers, the Superior Products Co., is located in Chicago; or it
may be the fact that the refrigerator with serial number 958304 was manufactured
on November 5, 2004.

Actually, people have been interested in data for at least the past 12,000 years.
While today we often associate the concept of data with the computer, historically
there have been many more primitive methods of data storage and handling.

In the ancient Middle East, shepherds kept track of their flocks with pebbles,
Figure 1.1. As each sheep left its pen to graze, the shepherd placed one pebble in
a small sack. When all of the sheep had left, the shepherd had a record of how
many sheep were out grazing. When the sheep returned, the shepherd discarded one
pebble for each animal, and if there were more pebbles than sheep, he knew that
some of his sheep still hadn’t returned or were missing. This is, indeed, a primitive
but legitimate example of data storage and retrieval. What is important to realize
about this example is that the count of the number of sheep going out and coming
back in was all that the shepherd cared about in his ‘‘business environment’’ and
that his primitive data storage and retrieval system satisfied his needs.

Excavations in the Zagros region of Iran, dated to 8500 B.C., have unearthed
clay tokens or counters that we think were used for record keeping in primitive

F IGURE 1.1
Shepherd using pebbles to
keep track of sheep

The History of Data 5

FIGURE 1.2
Ancient clay tokens used to
record goods in transit

forms of accounting. Such tokens have been found at sites from present-day Turkey
to Pakistan and as far afield as the present-day Khartoum in Sudan, dating as long
ago as 7000 B.C. By 3000 B.C., in the present-day city of Susa in Iran, the use
of such tokens had reached a greater level of sophistication. Tokens with special
markings on them, Figure 1.2, were sealed in hollow clay vessels that accompanied
commercial goods in transit. These primitive bills of lading certified the contents
of the shipments. The tokens represented the quantity of goods being shipped and,
obviously, could not be tampered with without the clay vessel being broken open.
Inscriptions on the outside of the vessels and the seals of the parties involved
provided a further record. The external inscriptions included such words or concepts
as ‘‘deposited,’’ ‘‘transferred,’’ and ‘‘removed.’’

At about the same time that the Susa culture existed, people in the city-state
of Uruk in Sumeria kept records in clay texts. With pictographs, numerals, and
ideographs, they described land sales and business transactions involving bread,
beer, sheep, cattle, and clothing. Other Neolithic means of record keeping included
storing tallies as cuts and notches in wooden sticks and as knots in rope. The former
continued in use in England as late as the medieval period; South American Indians
used the latter.

Data Through the Ages

As in Susa and Uruk, much of thevery early interest in data can be traced to the rise
of cities. Simple subsistence hunting, gathering, and, later, farming had only limited
use for the concept of data. But when people live in cities they tend to specialize
in the goods and services they produce. They become dependent on one another,
bartering and using money to trade these goods and services for mutual survival.
This trade encouraged record keeping—the recording of data—to track how much
somone has produced and what it can be bartered or sold for.

6 C h a p t e r 1 Data: The New Corporate Resource

F IGURE 1.3
New types of data with the
advance of civilization

BILL OF LADING

MARCH 2005

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

S M T W T F S

Family Tree

As time went on, more and different kinds of data and records were kept.
These included calendars, census data, surveys, land ownership records, marriage
records, records of church contributions, and family trees, Figure 1.3. Increasingly
sophisticated merchants had to keep track of inventories, shipments, and wage
payments in addition to production data. Also, as farming went beyond the
subsistence level and progressed to the feudal manor stage, there was a need
to keep data on the amount of produce to consume, to barter with, and to keep as
seed for the following year.

The Crusades took place from the late eleventh to the late thirteenth centuries.
One side effect of the Crusades was a broader view of the world on the part of the
Europeans, with an accompanying increase in interest in trade. A common method of
trade in that era was the establishment of temporary partnerships among merchants,
ships captains, and owners to facilitate commercial voyages. This increased level of
commercial sophistication brought with it another round of increasingly complex
record keeping, specifically, double-entry bookkeeping.

Double-entry bookkeeping originated in the trading centers of fourteenth-
century Italy. The earliest known example, from a merchant in Genoa, dates to the
year 1340. Its use gradually spread, but it was not until 1494, in Venice (about
25 years after Venice’s first movable type printing press came into use), that
a Franciscan monk named Luca Pacioli published his ‘‘Summa de Arithmetica,
Geometrica, Proportioni et Proportionalita’’ a work important in spreading the use
of double-entry bookkeeping. Of course, as a separate issue, the increasing use of
paper and the printing press furthered the advance of record keeping as well.

As the dominance of the Italian merchants declined, other countries became
more active in trade and thus in data and record keeping. Furthermore, as the use
of temporary trading partnerships declined and more stable long-term mercantile
organizations were established, other types of data became necessary. For example,
annual as opposed to venture-by-venture statements of profit and loss were needed.
In 1673 the ‘‘Code of Commerce’’ in France required every businessman to draw up
a balance sheet every two years. Thus the data had to be periodically accumulated
for reporting purposes.

The History of Data 7

Early Data Problems Spawn Calculating Devices

It was also in the seventeenth century that data began to prompt people to take
an interest in devices that could ‘‘automatically’’ process their data, if only in
a rudimentary way. Blaise Pascal produced one of the earliest and best known
such devices in France in the 1640s, reputedly to help his father track the data
associated with his job as a tax collector, Figure 1.4. This was a small box containing
interlocking gears that was capable of doing addition and subtraction. In fact, it was
the forerunner of today’s mechanical automobile odometers.

In 1805, Joseph Marie Jacquard of France invented a device that automatically
reproduced patterns used in textile weaving. The heart of the device was a series
of cards with holes punched in them; the holes allowed strands of material to
be interwoven in a sequence that produced the desired pattern, Figure 1.5. While
Jacquard’s loom wasn’t a calculating device as such, his method of storing fabric
patterns, a form of graphic data, as holes in punched cards was a very clever
means of data storage that would have great importance for computing devices to
follow. Charles Babbage, a nineteenth-century English mathematician and inventor,
picked up Jacquard’s concept of storing data in punched cards. Beginning in 1833,
Babbage began to think about an invention that he called the ‘‘Analytical Engine.’’
Although he never completed it (the state of the art of machinery was not developed
enough), included in its design were many of the principles of modern computers.
The Analytical Engine was to consist of a ‘‘store’’ for holding data items and a
‘‘mill’’ for operating upon them. Babbage was very impressed by Jacquard’s work
with punched cards. In fact, the Analytical Engine was to be able to store calculation
instructions in punched cards. These would be fed into the machine together with
punched cards containing data, would operate on that data, and would produce the
desired result.

F IGURE 1.4
Blaise Pascal and his
adding machine Photo courtesy of IBM Archives

8 C h a p t e r 1 Data: The New Corporate Resource

F IGURE 1.5
The Jacquard loom recorded
patterns in punched-cards Photo courtesy of IBM Archives

Swamped with Data

In the late 1800s, an enormous (for that time) data storage and retrieval problem and
greatly improved machining technology ushered in the era of modern information
processing. The 1880 U.S. Census took about seven years to compile by hand. With
a rapidly expanding population fueled by massive immigration, it was estimated that
with the same manual techniques, the compilation of the 1890 census would not be
completed until after the 1900 census data had begun to be collected. The solution
to processing census data was provided by a government engineer named Herman
Hollerith. Basing his work on Jacquard’s punched-card concept, he arranged to
have the census data stored in punched cards. He built devices to punch the holes
into cards and devices to sort the cards, Figure 1.6. Wire brushes touching the
cards completed circuits when they came across the holes and advanced counters.
The equipment came to be classified as ‘‘electromechanical,’’ ‘‘electro’’ because
it was powered by electricity and ‘‘mechanical’’ because the electricity powered
mechanical counters that tabulated the data. By using Hollerith’s equipment, the
total population count of the 1890 census was completed a month after all the data
was in. The complete set of tabulations, including data on questions that had never
before even been practical to ask, took two years to complete. In 1896, Hollerith
formed the Tabulating Machine Company to produce and commercially market his
devices. That company, combined with several others, eventually formed what is
today the International Business Machines Corporation (IBM).

Towards the turn of the century, immigrants kept coming and the U.S.
population kept expanding. The Census Bureau, while using Hollerith’s equipment,
continued experimenting on its own to produce even more advanced data-tabulating
machinery. One of its engineers, James Powers, developed devices to automatically
feed cards into the equipment and automatically print results. In 1911 he formed the
Powers Tabulating Machine Company, which eventually formed the basis for the

The History of Data 9

FIGURE 1.6
Herman Hollerith and his
tabulator/sorter, circa 1890

UNIVAC division of the Sperry Corporation, which eventually became the Unisys
Corporation.

From the days of Hollerith and Powers through the 1940s, commercial data
processing was performed on a variety of electromechanical punched-card-based
devices. They included calculators, punches, sorters, collators, and printers. The data
was stored in punched cards, while the processing instructions were implemented as
collections of wires plugged into specially designed boards that in turn were inserted
into slots in the electromechanical devices. Indeed, electromechanical equipment
overlapped with electronic computers, which were introduced commercially in the
mid-1950s.

In fact, the introduction of electronic computers in the mid-1950s coincided
with a tremendous boom in economic development that raised the level of data
storage and retrieval requirements another notch. This was a time of rapid
commercial growth in the post-World War II U.S.A. as well as the rebuilding
of Europe and the Far East. From this time onward, the furious pace of new data
storage and retrieval requirements with more and more commercial functions and
procedures were automated and the technological advances in computing devices
has been one big blur. From this point on, it would be virtually impossible to
tie advances in computing devices to specific, landmark data storage and retrieval
needs. And there is no need to try to do so.

Modern Data Storage Media

Paralleling the growth of equipment to process data was the development of new
media on which to store the data. The earliest form of modern data storage was
punched paper tape, which was introduced in the 1870s and 1880s in conjunction
with early teletype equipment. Of course we’ve already seen that Hollerith in the
1890s and Powers in the early 1900s used punched cards as a storage medium. In

10 C h a p t e r 1 Data: The New Corporate Resource

Y O U R

T U R N

1.1 THE DeVELOPMENT OF DATA

The need to organize and store data
has arisen many times and in many ways throughout
history. In addition to the data-focused events presented in
this chapter, what other historical events can you think of
that have made people think about organizing and storing
data? As a hint, you might think about the exploration
and conquest of new lands, wars, changes in type of
governments such as the introduction of democracy, and

the implications of new inventions such as trains, printing
presses, and electricity.

QUESTION:
Develop a timeline showing several historical events that

influenced the need to organize and store data. Include
a few noted in this chapter as well as a few that you
can think of independently.

fact, punched cards were the only data storage medium used in the increasingly
sophisticated electromechanical accounting machines of the 1920s, 1930s, and
1940s.They were still used extensively in the early computers of the 1950s and
1960s and could even be found well into the 1970s in smaller information systems
installations, to a progressively reduced degree.

The middle to late 1930s saw the beginning of the era of erasable magnetic
storage media, with Bell Laboratories experimenting with magnetic tape for sound
storage. By the late 1940s, there was early work on the use of magnetic tape for
recording data. By 1950, several companies, including RCA and Raytheon, were
developing the magnetic tape concept for commercial use. Both UNIVAC and
Raytheon offered commercially available magnetic tape units in 1952, followed by
IBM in 1953, Figure 1.7. During the mid-1950s and into the mid-1960s, magnetic

F IGURE 1.7
Early magnetic tape drive,
circa 1953

The History of Data 11

tape gradually became the dominant data-storage medium in computers. Magnetic
tape technology has been continually improved since then and is still in limited use
today, particularly for archived data.

The original concept that eventually grew into the magnetic disk actually
began to be developed at MIT in the late 1930s and early 1940s. By the early 1950s,
several companies including UNIVAC, IBM, and Control Data had developed
prototypes of magnetic ‘‘drums’’ that were the forerunners of magnetic disk
technology. In 1953, IBM began work on its 305 RAMAC (Random Access
Memory Accounting Machine) fixed disk storage device. By 1954 there was a
multi-platter version, which became commercially available in 1956, Figure 1.8.

During the mid-1960s a massive conversion from tape to magnetic disk as
the preeminent data storage medium began and disk storage is still the data storage
medium of choice today. After the early fixed disks, the disk storage environment
became geared towards the removable disk-pack philosophy, with a dozen or more
packs being juggled on and off a single drive as a common ratio. But, with the
increasingly tighter environmental controls that fixed disks permitted, more data per
square inch (or square centimeter) could be stored on fixed disk devices. Eventually,
the disk drives on mainframes and servers, as well as the fixed disks or ‘‘hard
drives’’ of PCs, all became non-removable, sealed units. But the removable disk
concept stayed with us a while in the form of PC diskettes and the Iomega Corp.’s
Zip Disks, and today in the form of so-called external hard drives that can be easily
moved from one computer to another simply by plugging them into a USB port.
These have been joined by the laser-based, optical technology compact disk (CD),
introduced as a data storage medium in 1985. Originally, data could be recorded
on these CDs only at the factory and once created, they were non-erasable. Now,
data can be recorded on them, erased, and re-recorded in a standard PC. Finally,
solid-state technology has become so miniaturized and inexpensive that a popular
option for removable media today is the flash drive.

F IGURE 1.8
IBM RAMAC disk
storage device, circa 1956

12 C h a p t e r 1 Data: The New Corporate Resource

DATA IN TODAY’S INFORMATION SYSTEMS ENVIRONMENT

Using Data for Competitive Advantage

Today’s computers are technological marvels. Their speeds, compactness, ease of
use, price as related to capability, and, yes, their data storage capacities are truly
amazing. And yet, our fundamental interest in computers is the same as that of the
ancient Middle-Eastern shepherds in their pebbles and sacks: they are the vehicles
we need to store and utilize the data that is important to us in our environment.

Indeed, data has become indispensable in every kind of modern business
and government organization. Data, the applications that process the data, and
the computers on which the applications run are fundamental to every aspect of
every kind of endeavor. When speaking of corporate resources, people used to
list such items as capital, plant and equipment, inventory, personnel, and patents.
Today, any such list of corporate resources must include the corporation’s data. It
has even been suggested that data is the most important corporate resource because
it describes all of the others.

Data can provide a crucial competitive advantage for a company. We
routinely speak of data and the information derived from it as competitive weapons
in hotly contested industries. For example, FedEx had a significant competitive
advantage when it first provided access to its package tracking data on its Web
site. Then, once one company in an industry develops a new application that takes
advantage of its data, the other companies in the industry are forced to match it to
remain competitive. This cycle continually moves the use of data to ever-higher
levels, making it an ever more important corporate resource than before. Examples
of this abound. Banks give their customers online access to their accounts. Package
shipping companies provide up-to-the-minute information on the whereabouts of
a package. Retailers send manufacturers product sales data that the manufacturers
use to adjust inventories and production cycles. Manufacturers automatically send
their parts suppliers inventory data and expect the suppliers to use the data to keep
a steady stream of parts flowing.

Problems in Storing and Accessing Data

But being able to store and provide efficient access to a company’s data while also
maintaining its accuracy so that it can be used to competitive advantage is anything

Y O U R

T U R N

1.2 DATA AS A COMPETITIVE WEAPON

Think about a company with which
you or your family regularly does business. This might be
a supermarket, a department store, or a pharmacy, as
examples. What kind of data do you think they collect
about their suppliers, their inventory, their sales, and their
customers? What kind of data do you think they should
collect and how do you think they might be able to use it
to gain a competitive advantage?

QUESTION:
Choose one of the companies that you or your family

does business with and develop a plan for the kinds
of data it might collect and the ways in which it might
use the data to gain a business advantage over its
competitors.

Data in Today’s Information Systems Environment 13

but simple. In fact, several factors make it a major challenge. First and foremost,
the volume or amount of data that companies have is massive and growing all
the time. Walmart estimates that its data warehouse (a type of database we will
explore later) alone contains hundreds of terabytes (trillions of characters) of data
and is constantly growing. The number of people who want access to the data is
also growing: at one time, only a select group of a company’s own employees were
concerned with retrieving its data, but this has changed. Now, not only do vastly
more of a company’s employees demand access to the company’s data but also so
do the company’s customers and trading partners. All major banks today give their
depositors Internet access to their accounts. Increasingly tightly linked ‘‘supply
chains’’ require that companies provide other companies, such as their suppliers and
customers, with access to their data. The combination of huge volumes of data and
large numbers of people demanding access to it has created a major performance
challenge. How do you sift through so much data for so many people and give them
the data that they want in an acceptably small amount of time? How much patience
would you have with an insurance company that kept you on the phone for five or
ten minutes while it retrieved claim data about which you had a question? Of course,
the tremendous advances in computer hardware, including data storage hardware,
have helped—indeed, it would have been impossible to have gone as far as we have
in information systems without them. But as the hardware continues to improve,
the volumes of data and the number of people who want access to it also increase,
making it a continuing struggle to provide them with acceptable response times.

Other factors that enter into data storage and retrieval include data security,
data privacy, and backup and recovery. Data security involves a company protecting
its data from theft, malicious destruction, deliberate attempts to make phony changes
to the data (e.g. someone trying to increase his own bank account balance), and even
accidental damage by the company’s own employees. Data privacy implies assuring
that even employees who normally have access to the company’s data (much less
outsiders) are given access only to the specific data they need in their work. Put
another way, sensitive data such as employee salary data and personal customer
data should be accessible only by employees whose job functions require it. Backup
and recovery means the ability to reconstruct data if it is lost or corrupted, say in
a hardware failure. The extreme case of backup and recovery is known as disaster
recovery when an information system is destroyed by fire, a hurricane, or other
calamity.

Another whole dimension involves maintaining the accuracy of a company’s
data. Historically, and in many cases even today, the same data is stored several,
sometimes many, times within a company’s information system. Why does this
happen? For several reasons. Many companies are simply not organized to share
data among multiple applications. Every time a new application is written, new data
files are created to store its data. As recently as the early 1990s, I spoke to a database
administration manager (more on this type of position later) in the securities industry
who told me that one of the reasons he was hired was to reduce duplicate data
appearing in as many as 60–70 files! Furthermore, depending on how database files
are designed, data can even be duplicated within a single file. We will explore this
issue much more in this book, but for now, suffice it to say that duplicate data, either
in multiple files or in a single file, can cause major data accuracy problems.

Data as a Corporate Resource

Every corporate resource must be carefully managed so that the company can
keep track of it, protect it, and distribute it to those people and purposes in the

14 C h a p t e r 1 Data: The New Corporate Resource

company that need it. Furthermore, public companies have a responsibility to
their shareholders to competently manage the company’s assets. Can you imagine
a company’s money just sort of out there somewhere without being carefully
managed? In fact, the chief financial officer with a staff of accountants and financial
professionals is responsible for the money, with outside accounting firms providing
independent audits of it. Typically vice presidents of personnel and their staffs are
responsible for the administrative functions necessary to manage employee affairs.
Production managers at various levels are responsible for parts inventories, and so
on. Data is no exception.

But data may just be the most difficult corporate resource to manage. In data,
we have a resource of tremendous volume, billions, trillions, and more individual
pieces of data, each piece of which is different from the next. And it has the
characteristic that much of it is in a state of change at any one time. It’s not as if
we’re talking about managing a company’s employees. Even the largest companies
have only a few hundred thousand of them, and they don’t change all that frequently.
Or the money a company has: sure, there is a lot of it, but it’s all the same in the
sense that a dollar that goes to payroll is the same kind of dollar that goes to paying
a supplier for raw materials.

As far back as the early to mid-1960s, barely ten years after the introduction
of commercially viable electronic computers, some forward-looking companies
began to realize that storing each application’s data separately, in simple files, was
becoming problematic and would not work in the long run, for just the reasons
that we’ve talked about: the increasing volumes of data (even way back then), the
increasing demand for data access, the need for data security, privacy, backup,
and recovery, and the desire to share data and cut down on data redundancy.
Several things were becoming clear. The task was going to require both a new
kind of software to help manage the data and progressively faster hardware to
keep up with the increasing volumes of data and data access demands. And
data-management specialists would have to be developed, educated, and made
responsible for managing the data as a corporate resource.

Out of this need was born a new kind of software, the database management
system (DBMS), and a new category of personnel, with titles like database
administrator and data management specialist. And yes, hardware has progressively
gotten faster and cheaper for the performance it provides. The integration of these
advances adds up to much more than the simple sum of their parts. They add up to
the database environment.

The Database Environment

Back in the early 1960s, the emphasis in what was then called data processing was on
programming. Data was little more than a necessary afterthought in the application
development process and in running the data-processing installation. There was a
good reason for this. By today’s standards, the rudimentary computers of the time
had very small main memories and very simplistic operating systems. Even relatively
basic application programs had to be shoehorned into main memory using low-level
programming techniques and a lot of cleverness. But then, as we progressed further
into the 1960s and beyond, two things happened simultaneously that made this
picture change forever. One was that main memories became progressively larger
and cheaper and operating systems became much more powerful. Plus, computers

Summary 15

progressively became faster and cheaper on a price/performance basis. All these
changes had the effect of permitting the use of higher-level programming languages
that were easier for a larger number of personnel to use, allowing at least some of
the emphasis to shift elsewhere. Well, nature hates a vacuum, and at the same time
that all of this was happening, companies started becoming aware of the value of
thinking of data as a corporate resource and using it as a competitive weapon.

The result was the development of database management systems (DBMS)
software and the creation of the ‘‘database environment.’’ Supported by ever-
improved hardware and specialized database personnel, the database environment
is designed largely to correct all the problems of the non-database environment.
It encourages data sharing and the control of data redundancy with important
improvements in data accuracy. It permits storage of vast volumes of data with
acceptable access and response times for database queries. And it provides the tools
to control data security, data privacy, and backup and recovery.

This book is a straightforward introduction to the fundamentals of database
in the current information systems environment. It is designed to teach you the
important concepts of the database approach and also to teach you specific skills, such
as how to design relational databases, how to improve database performance, and
how to retrieve data from relational databases using the SQL language. In addition,
as you proceed through the book you will explore such topics as entity-relationship
diagrams, object-oriented database, database administration, distributed database,
data warehousing, Internet database issues, and others.

We start with the basics of database and take a step-by-step approach to
exploring all the various components of the database environment. Each chapter
progressively adds more to an understanding of both the technical and managerial
aspects of the field. Database is avery powerful concept. Overall it provides ingenious
solutions to a set of very difficult problems. As a result, it tends to be a multifaceted
and complex subject that can appear difficult when one attempts to swallow it in
one gulp. But database is approachable and understandable if we proceed carefully,
cautiously, and progressively step by step. And this is an understanding that no one
involved in information systems can afford to be without.

SUMMARY

Recognition of the commercial importance of data, of storing it, and of retrieving
it can be traced back to ancient times. As trade routes lengthened and cities grew
larger, data became increasingly important. Eventually, the importance of data led
to the development of electromechanical calculating devices and then to modern
electronic computers, complete with magnetic and optical disk-based data storage
media.

While the use of data has given many companies a competitive advantage in
their industries, the storage and retrieval of today’s vast amounts of data holds many
challenges. These include speedy retrieval of data when many people try to access
the data at the same time, maintaining the accuracy of the data, the issue of data
security, and the ability to recover the data if it is lost.

The recognition that data is a critical corporate resource and that managing data
is a complex task has led to the development and continuing refinement of specialized
software known as database management systems, the subject of this book.

16 C h a p t e r 1 Data: The New Corporate Resource

KEY TERMS

Balance sheet
Barter
Calculating devices
Census
Compact disk
Competitive advantage
Corporate resource
Data
Data storage

Database
Database environment
Database management system
Disk drive
Double-entry bookkeeping
Electromechanical equipment
Electronic computer
Flash drive
Information processing

Magnetic disk
Magnetic drum
Magnetic tape
Optical disk
Punched cards
Punched paper tape
Record keeping
Tally
Token

QUESTIONS

1. What did the Middle Eastern shepherds’ pebbles and
sacks, Pascal’s calculating device, and Hollerith’s
punched-card devices all have in common?

2. What did the growth of cities have to do with the
need for data?

3. What did the growth of trade have to do with the
need for data?

4. What did Jacquard’s textile weaving device have to
do with the development of data?

5. Choose what you believe to be the:
a. One most important
b. Two most important
c. Three most important landmark events in the

history of data. Defend your choices.

6. Do you think that computing devices would have
been developed even if specific data needs had not
come along? Why or why not?

7. What did the need for data among ancient Middle
Eastern shepherds have in common with the need
for data of modern corporations?

8. List several problems in storing and accessing data
in today’s large corporations. Which do you think is
the most important? Why?

9. How important an issue do you think data accuracy
is? Explain.

10. How important a corporate resource is data com-
pared to other corporate resources? Explain.

11. What factors led to the development of database
management systems?

EXERCISES

1. Draw a timeline showing the landmark events in
the history of data from ancient times to the present
day. Do not include the development of computing
devices in this timeline.

2. Draw a timeline for the last four hundred years
comparing landmark events in the history of data to
landmark events in the development of computing
devices.

3. Draw a timeline for the last two hundred years
comparing the development of computing devices
to the development of data storage media.

4. Invent a fictitious company in one of the following
industries and list several ways in which the
company can use data to gain a competitive
advantage.

a. Banking
b. Insurance
c. Manufacturing
d. Airlines

5. Invent a fictitious company in one of the following
industries and describe the relationship between
data as a corporate resource and the company’s
other corporate resources.
a. Banking
b. Insurance
c. Manufacturing
d. Airline

Minicases 17

MINICASES

1. Worldwide, vacation cruises on increasingly larger ships
have been steadily growing in popularity. People like the
all-inclusive price for food, room, and entertainment, the
variety of shipboard activities, and the ability to unpack
just once and still visit several different places. The
first of the two minicases used throughout this book is
the story of Happy Cruise Lines. Happy Cruise Lines
has several ships and operates (begins its cruises) from
a number of ports. It has a variety of vacation cruise
itineraries, each involving several ports of call. The
company wants to keep track of both its past and future
cruises and of the passengers who sailed on the former
and are booked on the latter. Actually, you can think of
a cruise line as simply a somewhat specialized instance
of any passenger transportation company, including
airlines, trains, and buses. Beyond that, a cruise line
is, after all, a business and like any other business of any
kind it must be concerned about its finances, employees,
equipment, and so forth.
a. Using this introductory description of (and hints

about) Happy Cruise Lines, make a list of the things
in Happy Cruise Lines’ business environment about
which you think the company would want to maintain
data. Do some or all of these qualify as ‘‘corporate
resources?’’ Explain.

b. Develop some ideas about how the data you identified
in part a above can be used by Happy Cruise Lines to
gain a competitive advantage over other cruise lines.

2. Sports are universally enjoyed around the globe.
Whether the sport is a team or individual sport, whether
a person is a participant or a spectator, and whether

the sport is played at the amateur or professional
level, one way or another this kind of activity can be
enjoyed by people of all ages and interests. Furthermore,
professional sports today are a big business involving
very large sums of money. And so, the second of
the two minicases to be used throughout this book is
the story of the professional Super Baseball League.
Like any sports league, the Super Baseball League
wants to maintain information about its teams, coaches,
players, and equipment, among other things. If you are
not particularly familiar with baseball or simply prefer
another sport, bear in mind that most of the issues
that will come up in this minicase easily translate to
any team sport at the amateur, college, or professional
levels. After all, all team sports have teams, coaches,
players, fans, equipment, and so forth. When specialized
equipment or other baseball-specific items come up, we
will explain them.
a. Using this introductory description of (and hints

about) the Super Baseball League, list the things in
the Super Baseball League’s business environment
about which you think the league would want to
maintain data. Do some or all of these qualify as
‘‘corporate resources,’’ where the term is broadened
to include the resources of a sports league? Explain.

b. Develop some ideas about how the data that you
identified in part a above can be used by the Super
Baseball League to gain a competitive advantage
over other sports leagues for the fans’ interest and
entertainment dollars (Euros, pesos, yen, etc.)

C H A P T E R 2

DATA MODELING

B efore reaching database management, there is an important preliminary to cover.
In order ultimately to design databases to support an organization, we must have

a clear understanding of how the organization is structured and how it functions. We
have to understand its components, what they do and how they relate to each other. The
bottom line is that we have to devise a way of recording, of diagramming, the business
environment. This is the essence of data modeling.

OBJECTIVES

■ Explain the concept and practical use of data modeling.
■ Recognize which relationships in the business environment are unary, binary,

and ternary relationships.
■ Describe one-to-one, one-to-many, and many-to-many unary, binary, and ternary

relationships.
■ Recognize and describe intersection data.
■ Model data in business environments by drawing entity-relationship diagrams

that involve unary, binary, and ternary relationships.

CHAPTER OUTLINE

Introduction
Binary Relationships

What is a Binary Relationship?
Cardinality
Modality
More About Many-to-Many

Relationships
Unary Relationships

One-to-One Unary Relationship

One-to-Many Unary Relationship
Many-to-Many Unary Relationship

Ternary Relationships
Example: The General Hardware

Company
Example: Good Reading Book Stores
Example: World Music Association
Example: Lucky Rent-A-Car
Summary

20 C h a p t e r 2 Data Modeling

INTRODUCTION

The diagramming technique we will use is called the entity-relationship or
E-R Model. It is well named, as it diagrams entities (together with their attributes)
and the relationships among them. Actually, there are many variations of E-R
diagrams and drawing them is as much an art as a science. We will use the E-R dia-
gramming technique provided by Microsoft Visio with the ‘‘crow’s foot’’ variation.

To begin, an entity is an object or event in our environment that we want to
keep track of. A person is an entity. So is a building, a piece of inventory sitting
on a shelf, a finished product ready for sale, and a sales meeting (an event). An
attribute is a property or characteristic of an entity. Examples of attributes include
an employee’s employee number, the weight of an automobile, a company’s address,
or the date of a sales meeting. Figure 2.1, with its rectangular shape, represents
a type of entity. The name of the entity type (SALESPERSON) is set in caps at
the top of the box. The entity type’s attributes are shown below it. The attribute
label PK and the boldface type denote the one or more attributes that constitute the
entity type’s unique identifier. Visio uses the abbreviation PK to stand for ‘‘primary
key,’’ which is a concept we define later in this book. For now, just consider these
attributes as the entity type’s unique identifier.

Entities in the real world never really stand alone. They are typically associated
with one another. Parents are associated with their children, automobile parts are
associated with the finished automobile in which they are installed, firefighters are
associated with the fire engines to which they are assigned, and so forth. Recognizing
and recording the associations among entities provides a far richer description of
an environment than recording the entities alone. In order to deal intelligently and
usefully with the associations or relationships among entities, we have to recognize
that there are several different kinds of relationships and several different aspects of
describing them. The most basic way of categorizing a relationship is by the number
of entity types involved.

F IGURE 2.1
An E-R model entity and its attributes

One
Salesperson

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

BINARY RELATIONSHIPS

What is a Binary Relationship?

The simplest kind of relationship is known as a binary relationship. A binary
relationship is a relationship between two entity types. Figure 2.2 shows a small
E-R diagram with a binary relationship between two entity types, salespersons and

Binary Relationships 21

CONCEPTS

IN ACT ION

2-A THE WALT DISNEY COMPANY

The Walt Disney Company is world-
famous for its many entertainment ventures but it is
especially identified with its theme parks. First there
was Disneyland in Los Angeles, then the mammoth Walt
Disney World in Orlando. These were followed by parks
in Paris and Tokyo, and one now under development in
Hong Kong. The Disney theme parks are so well run that
they create a wonderful feeling of natural harmony with
everyone and everything being in the right place at the
right time. When you’re there, it’s too much fun to stop
to think about how all this is organized and carried off
with such precision. But, is it any wonder to learn that
databases play a major part?

One of the Disney theme parks’ interesting
database applications keeps track of all of the costumes

‘‘Photo Courtesy of the Walt Disney Company’’

worn by the workers or ‘‘cast members’’ in the parks. The
system is called the Garment Utilization System or GUS
(which was also the name of one of the mice that helped
Cinderella sew her dress!). Managing these costumes is
no small task. Virtually all of the cast members, from the
actors and dancers to the ride operators, wear some
kind of costume. Disneyland in Los Angeles has 684,000
costume parts (each costume is typically made up of
several garments), each of which is uniquely bar-coded,
for its 46,000 cast members. The numbers in Orlando
are three million garments and 90,000 cast members.
Using bar-code scanning, GUS tracks the life cycle of
every garment. This includes the points in time when a
garment is in the storage facility, is checked out to a cast
member, is in the laundry, or is being repaired (in house

22 C h a p t e r 2 Data Modeling

or at a vendor). In addition to managing the day-to-day
movements of the costumes, the system also provides a
rich data analysis capability. The industrial engineers in
Disney’s business planning group use the accumulated
data to decide how many garments to keep in stock and
how many people to have staffing the garment check-
out windows based on the expected wait times. They
also use the data to determine whether certain fabrics
or the garments made by specific manufacturers are not
holding up well through a reasonable number of uses or
of launderings.

GUS, which was inaugurated at Disneyland in
Los Angeles in 1998 and then again at Walt Disney
World in Orlando in 2002, replaced a manual system
in which the costume data was written on index cards.
It is implemented in Microsoft’s SQL Server DBMS and
runs on a Compaq server. It is also linked to an SAP
personnel database to help maintain the status of the
cast members. If GUS is ever down, the process shifts to
a Palm Pilot-based backup system that can later update
the database. In order to keep track of the costume

parts and cast members, not surprisingly, there is a
relational table for costume parts with one record for
each garment and there is a table for cast members
with one record for each cast member. The costume
parts records include the type of garment, its size, color,
and even such details as whether its use is restricted
to a particular cast member and whether it requires
a special laundry detergent. Correspondingly, the cast
member records include the person’s clothing sizes and
other specific garment requirements.

Ultimately, GUS’s database precision serves several
purposes in addition to its fundamental managerial value.
The Walt Disney Company feels that consistency in how
its visitors or ‘‘guests’’ look at a given ride gives them
an important comfort level. Clearly, GUS provides that
consistency in the costuming aspect. In addition, GUS
takes the worry out of an important part of each cast
member’s workday. One of Disney’s creeds is to strive to
take good care of its cast members so that they will take
good care of Disney’s guests. Database management is
a crucial tool in making this work so well.

products. The E-R diagram in Figure 2.2 tells us that a salesperson ‘‘sells’’ products.
Conversely, products are ‘‘sold by’’ salespersons. That’s good information, but we
can do better than that at the price of a very small increase in effort. Just knowing that
a salesperson sells products leaves open several obvious and important questions.
Is a particular salesperson allowed to sell only one kind of product, or two, or
three, or all of the available products? Can a particular product be sold by only a
single salesperson or by all salespersons? Might we want to keep track of a new
salesperson who has just joined the company but has not yet been assigned to sell
any products (assuming that there is indeed a restriction on which salespersons can
sell which products)?

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Many
Salespersons

Many
Products

Sells

Sold by

F IGURE 2.2
A binary relationship

Binary Relationships 23

Cardinality

One-to-One Binary Relationship Figure 2.3 shows three binary relationships of
different cardinalities, representing the maximum number of entities that can be
involved in a particular relationship. Figure 2.3a shows a one-to-one (1-1) binary
relationship, which means that a single occurrence of one entity type can be
associated with a single occurrence of the other entity type and vice versa. A
particular salesperson is assigned to one office. Conversely, a particular office (in
this case they are all private offices!) has just one salesperson assigned to it. Note the
‘‘bar’’ or ‘‘one’’ symbol on either end of the relationship in the diagram indicating
the maximum one cardinality. The way to read these diagrams is to start at one
entity, read the relationship on the connecting line, pick up the cardinality on the
other side of the line near the second entity, and then finally reach the other entity.
Thus, Figure 2.3a, reading from left to right, says, ‘‘A salesperson works in one
(really at most one, since it is a maximum) office.’’ The bar or one symbol involved

OFFICE

PK Office
 Number

Telephone
Size

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Works in

Occupied by

CUSTOMER

PK Customer
 Number

Costomer
 Name
HQ City

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Sells to

Buys from

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Sells

Sold by

One
Salesperson

One
Office

Many
Customers

Many
Products

One
Salesperson

Many
Salespersons

(a.) One-to-one (1–1) binary relationship

(b.) One-to-many (1–M) binary relationship

(c.) Many-to-many (M–M) binary relationship

F IGURE 2.3
Binary relationships with cardinalities

24 C h a p t e r 2 Data Modeling

in this statement is the one just to the left of the office entity box. Conversely,
reading from right to left, ‘‘An office is occupied by one salesperson.’’

One-to-Many Binary Relationship Associations can also be multiple in nature.
Figure 2.3b shows a one-to-many (1-M) binary relationship between salespersons
and customers. The ‘‘crow’s foot’’ device attached to the customer entity box
represents the multiple association. Reading from left to right, the diagram indicates
that a salesperson sells to many customers. (Note that ‘‘many,’’ as the maximum
number of occurrences that can be involved, means a number that can be 1, 2, 3, …n.
It also means that the number is not restricted to being exactly one, which would
require the ‘‘one’’ or ‘‘bar’’ symbol instead of the crow’s foot.) Reading from
right to left, Figure 2.3b says that a customer buys from only one salesperson. This
is reasonable, indicating that in this company each salesperson has an exclusive
territory and thus each customer can be sold to by only one salesperson from the
company.

Many-to-Many Binary Relationship Figure 2.3c shows a many-to-many (M-M)
binary relationship among salespersons and products. A salesperson is authorized
to sell many products; a product can be sold by many salespersons. By the way,
in some circumstances, in either the 1-M or M-M case, ‘‘many’’ can be either an
exact number or have a known maximum value. For example, a company rule may
set a limit of a maximum of ten customers in a sales territory. Then the ‘‘many’’ in
the 1-M relationship of Figure 2.3b can never be more than 10 (a salesperson can
have many customers but not more than 10). Sometimes people include this exact
number or maximum next to or even instead of the crow’s foot in the E-R diagram.

Modality

Figure 2.4 shows the addition of the modality, the minimum number of entity
occurrences that can be involved in a relationship. In our particular salesperson
environment, every salesperson must be assigned to an office. On the other hand, a
given office might be empty or it might be in use by exactly one salesperson. This
situation is recorded in Figure 2.4a, where the ‘‘inner’’ symbol, which can be a zero
or a one, represents the modality—the minimum—and the ‘‘outer’’ symbol, which
can be a one or a crow’s foot, represents the cardinality—the maximum. Reading
Figure 2.4a from left to right tells us that a salesperson works in a minimum of one
and a maximum of one office, which is another way of saying exactly one office.
Reading from right to left, an office may be occupied by or assigned to a minimum
of no salespersons (i.e. the office is empty) or a maximum of one salesperson.

Similarly, Figure 2.4b indicates that a salesperson may have no customers
or many customers. How could a salesperson have no customers? (What are we
paying her for?!?) Actually, this allows for the case in which we have just hired
a new salesperson and have not as yet assigned her a territory or any customers.
On the other hand, a customer is always assigned to exactly one salesperson. We
never want customers to be without a salesperson—how would they buy anything
from us when they need to? We never want to be in a position of losing sales! If
a salesperson leaves the company, the company’s procedures require that another
salesperson or, temporarily, a sales manager be immediately assigned the departing
salesperson’s customers. Figure 2.4c says that each salesperson is authorized to sell
at least one or many of our products and each product can be sold by at least one

Binary Relationships 25

Works in

Occupied by

OFFICE

PK Office
 Number

Telephone
Size

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Sells to

Buys from

CUSTOMER

PK Customer
 Number

Customer
 Name
HQ City

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Sells

Sold by

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

(a.) One-to-one (1–1) binary relationship

(b.) One-to-many (1–M) binary relationship

(c.) Many-to-many (M–M) binary relationship

One
Salesperson

One
Salesperson

One
Salesperson

No
Salespersons

One
Office

Many
Customers

No
Customers

Many
Products

One
Product

Many
Salespersons

Modality

Cardinality

F IGURE 2.4
Binary relationships with cardinalities (maximums) and modalities (minimums)

or many of our salespersons. This includes the extreme, but not surprising, case in
which each salesperson is authorized to sell all the products and each product can
be sold by all the salespersons.

More About Many-to-Many Relationships

Intersection Data Generally, we think of attributes as facts about entities. Each
salesperson has a salesperson number, a name, a commission percentage, and a
year of hire. At the entity occurrence level, for example, one of the salespersons
has salesperson number 528, the name Jane Adams, a commission percentage of
15 %, and the year of hire of 2003. In an E-R diagram, these attributes are written
or drawn together with the entity, as in Figure 2.1 and the succeeding figures. This
certainly appears to be very natural and obvious. Are there ever any circumstances
in which an attribute can describe something other than an entity?

26 C h a p t e r 2 Data Modeling

Consider the many-to-many relationship between salespersons and products
in Figure 2.4c. As usual, salespersons are described by their salesperson number,
name, commission percentage, and year of hire. Products are described by their
product number, name, and unit price. But, what if there is a requirement to keep
track of the number of units (call it ‘‘quantity’’) of a particular product that a
particular salesperson has sold? Can we add the quantity attribute to the product
entity box? No, because for a particular product, while there is a single product
number, product name, and unit price, there would be lots of ‘‘quantities,’’ one
for each salesperson selling the product. Can we add the quantity attribute to the
salesperson entity box? No, because for a particular salesperson, while there is a
single salesperson number, salesperson name, commission percentage, and year of
hire, there will be lots of ‘‘quantities,’’ one for each product that the salesperson
sells. It makes no sense to try to put the quantity attribute in either the salesperson
entity box or the product entity box. While each salesperson has a single salesperson
number, name, commission percentage, and year of hire, each salesperson has
many ‘‘quantities,’’ one for each product he sells. Similarly, while each product
has a single product number, product name, and unit price, each product has many
‘‘quantities,’’ one for each salesperson who sells that product. But an entity box in
an E-R diagram is designed to list the attributes that simply and directly describe
the entity, with no complications involving other entities. Putting quantity in either
the salesperson entity box or the product entity box just will not work.

The quantity attribute doesn’t describe either the salesperson alone or the
product alone. It describes the combination of a particular salesperson and a
particular product. In general, we can say that it describes the combination of a
particular occurrence of one entity type and a particular occurrence of the other
entity type. Let’s say that since salesperson number 137 joined the company, she has
sold 170 units of product number 24 013. The quantity 170 doesn’t make sense as
a description or characteristic of salesperson number 137 alone. She has sold many
different kinds of products. To which one does the quantity 170 refer? Similarly,
the quantity 170 doesn’t make sense as a description or characteristic of product
number 24 013 alone. It has been sold by many different salespersons.

In fact, the quantity 170 falls at the intersection of salesperson number 137 and
product number 24013. It describes the combination of or the association between
that particular salesperson and that particular product and it is known as intersection
data. Figure 2.5 shows the many-to-many relationship between salespersons and

F IGURE 2.5
Many-to-many binary relationship with
intersection data

Sells

Sold by

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Quantity

Binary Relationships 27

products with the intersection data, quantity, represented in a separate box attached
to the relationship line. That is the natural place to draw it. Pictorially, it looks as
if it is at the intersection between the two entities, but there is more to it than that.
The intersection data describes the relationship between the two entities. We know
that an occurrence of the Sells relationship specifies that salesperson 137 has sold
some of product 24013. The quantity 170 is an attribute of this occurrence of that
relationship, further describing this occurrence of the relationship. Not only do we
know that salesperson 137 sold some of product 24013 but we know how many
units of that product that salesperson sold.

Associative Entity Since we know that entities can have attributes and now we
see that many-to-many relationships can have attributes, too, does that mean that
entities and many-to-many relationships can in some sense be treated in the same
way within E-R diagrams? Indeed they can! Figure 2.6 shows the many-to-many
relationship Sells converted into the associative entity SALES. An occurrence of
the SALES associative entity does exactly what the many-to-many relationship did:
it indicates a relationship between a salesperson and a product, specifically the
fact that a particular salesperson has been involved in selling a particular product,
and includes any intersection data that describes this relationship. Note very, very
carefully the reversal of the cardinalities and modalities when the many-to-many
relationship is converted to an associative entity. SALES is now a kind of entity in
its own right. Again, a single occurrence of the new SALES entity type records the
fact that a particular salesperson has been involved in selling a particular product.
A single occurrence of SALES relates to a single occurrence of SALESPERSON
and to a single occurrence of PRODUCT, which is why the diagram indicates that
a sales occurrence involves exactly one salesperson and exactly one product. On
the other hand, since a salesperson sells many products, the diagram shows that a
salesperson will tie into many sales occurrences. Similarly, since a product is sold
by many salespersons, the diagram shows that a product will tie into many sales
occurrences.

If the many-to-many relationship E-R diagram style of Figure 2.5 is equivalent
to the associative entity style of Figure 2.6, which one should you use? This is
an instance in which this type of diagramming is an art with a lot of leeway for
personal taste. However, you should be aware that over time the preference has
shifted towards the associative entity style of Figure 2.6, and that is what we will
use from here on in this book.

Sold

Sold by

Sold

Sold
Product

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

SALESSALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

PK

Quantity

PK Product
 Number

Salesperson
 Number

F IGURE 2.6
Associative entity with intersection data

28 C h a p t e r 2 Data Modeling

The Unique Identifier in Many-to-Many Relationships Since, as we have just seen,
a many-to-many relationship can appear to be a kind of an entity, complete with
attributes, it also follows that it should have a unique identifier, like other entities.
(If this seems a little strange or even unnecessary here, it will become essential later
in the book when we actually design databases based on these E-R diagrams.) In
its most basic form, the unique identifier of the many-to-many relationship or the
associative entity is the combination of the unique identifiers of the two entities
in the many-to-many relationship. So, the unique identifier of the many-to-many
relationship of Figure 2.5 or, as shown in Figure 2.6, of the associative entity, is the
combination of the Salesperson Number and Product Number attributes.

Sometimes, an additional attribute or attributes must be added to this
combination to produce uniqueness. This often involves a time element. As currently
constructed, the E-R diagram in Figure 2.6 indicates the quantity of a particular
product sold by a particular salesperson since the salesperson joined the company.
Thus, there can be only one occurrence of SALES combining a particular salesperson
with a particular product. But if, for example, we wanted to keep track of the sales on
an annual basis, we would have to include a year attribute and the unique identifier
would be Salesperson Number, Product Number, and Year. Clearly, if we want to
know how many units of each product were sold by each salesperson each year,
the combination of Salesperson Number and Product Number would not be unique
because for a particular salesperson and a particular product, the combination of
those two values would be the same each year! Year must be added to produce
uniqueness, not to mention to make it clear in which year a particular value of the
Quantity attribute applies to a particular salesperson-product combination.

The third and last possibility occurs when the nature of the associative entity
is such that it has its own unique identifier. For example, a company might specify
a unique serial number for each sales record. Another example would be the many-
to-many relationship between motorists and police officers who give traffic tickets
for moving violations. (Hopefully it’s not too many for each motorist!) The unique
identifier could be the combination of police officer number and motorist driver’s
license number plus perhaps date and time. But, typically, each traffic ticket has a
unique serial number and this would serve as the unique identifier.

UNARY RELATIONSHIPS

Unary relationships associate occurrences of an entity type with other occurrences
of the same entity type. Take the entity person, for example. One person may be
married to another person and vice versa. One person may be the parent of other
people; conversely, a person may have another person as one of their parents.

One-to-One Unary Relationship

Figure 2.7a shows the one-to-one unary relationship called Back-Up involving the
salesperson entity. The salespersons are organized in pairs as backup to each other
when one is away from work. Following one of the links, say the one that extends
from the right side of the salesperson entity box, we can say that salesperson
number 137 backs-up salesperson number 186. Then, going in the other direction,
salesperson number 186 backs-up salesperson 137. Notice that in each direction the

Unary Relationships 29

Y O U R

T U R N

2.1 MODELING YOUR WORLD—PART 1

Whether it’s a business environment
or a personal environment, the entities, attributes, and
relationships around us can be modeled with E-R
diagrams.

QUESTION:
How many binary relationships can you think of in your

school environment? The entities might be students,

professors, courses, sections, buildings, departments,
textbooks, and so forth. Make a list of the binary
relationships between pairs of these entities and
diagram them with E-R diagrams. Do any of the many-
to-many binary relationships have intersection data?
Explain.

modality of one rather than zero forbids the situation of a salesperson not having a
backup.

One-to-Many Unary Relationship

Some of the salespersons are also sales managers, managing other salespersons.
A sales manager can manage several other salespersons. Further, there can be
several levels of sales managers, i.e. several low-level sales managers can be
managed by a higher-level sales manager. Each salesperson (or sales manager) is
managed by exactly one sales manager. This situation describes a one-to-many
unary relationship. Consider Figure 2.7b and follow the downward branch out of
its salesperson entity box. It says that a salesperson manages zero to many other
salespersons, meaning that a salesperson may not be a sales manager (the zero
modality case) or may be a sales manager with several subordinate salespersons
(the many cardinality case.) Following the branch that extends from the right side
of the salesperson entity box, the diagram says that a salesperson is managed by
exactly one other salesperson (who must, of course, be a sales manager).

Many-to-Many Unary Relationship

Unary relationships also come in the many-to-many variety. One classic example
of a many-to-many unary relationship is known as the ‘‘bill of materials’’ problem.
Consider a complex mechanical object like an automobile, an airplane, or a large
factory machine tool. Any such object is made of basic parts like nuts and bolts
that are used to make other components or sub-assemblies of the object. Small sub-
assemblies and basic parts go together to make bigger sub-assemblies, and so on
until ultimately they form the entire object. Each basic part and each sub-assembly
can be thought of as a ‘‘part’’ of the object. Then, the parts are in a many-to-many
unary relationship to each other. Any one particular part can be made up of several
other parts while at the same time itself being a component of several other parts.

In Figure 2.7c, think of the products sold in hardware and home improvement
stores. Basic items like hammers and wrenches can be combined and sold as sets.
Larger tool sets can be composed of smaller sets plus additional single tools. All of
these, single tools and sets of all sizes can be classified as products. Thus, as shown
in Figure 2.7c, a product can be part of no other products or part of several other

30 C h a p t e r 2 Data Modeling

F IGURE 2.7
Unary relationships

COMPONENT

PK

Quantity

PK Subassembly
 Number

Product
 Number

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Backs-up

Backed-up by

Manages

Reports to

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

SALESPERSON

PK

Salesperson
 Name
Commission
 Percentage
Year of Hire

(a.) One-to-one (1–1) unary relationship

(b.) One-to-many (1–M) unary relationship

(c.) Many-to-many (M–M) unary relationship

Part of
Includes

Part of
Includes

One
Salesperson

One
Salesperson

One
Salesperson

Many
Products

Many
Products

No
Products

No
Products

No
Salespersons

Many
Salespersons

Salesperson
 Number

Example: The General Hardware Company 31

products. Going in the reverse direction, a product can be composed of no other
products or be composed of several other products.

TERNARY RELATIONSHIPS

A ternary relationship involves three different entity types. Assume for the
moment that any salesperson can sell to any customer. Then, Figure 2.8 shows
the most general, many-to-many-to-many ternary relationship among salespersons,
customers, and products. It means that we know which salesperson sold which
product to which customer. Each sale has intersection data consisting of the date of
the sale and the number of units of the product sold.

EXAMPLE: THE GENERAL HARDWARE COMPANY

Figure 2.9 is the E-R diagram for the General Hardware Company, parts of which
we have been using throughout this chapter. General Hardware is a wholesaler
and distributor of various manufacturers’ tools and other hardware products. Its
customers are hardware and home improvement stores, which in turn sell the
products at retail to individual consumers. Again, as a middleman it buys its goods
from the manufacturers and then sells them to the retail stores. How exactly does

CUSTOMER

PK Customer
 Number

Customer
 Name
HQ City

SALE

PK Salesperson
 Number

PK Product
 Number

PK Customer
 Number

Date
Quantity

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

One
Salesperson

Many
Salespersons

One
Customer

Many
Customers

Purchased
Sold to

Sold

Sold
Product

Sold

Sold by

One
Product

Many
Products

F IGURE 2.8
Ternary relationship

32 C h a p t e r 2 Data Modeling

F IGURE 2.9
The General Hardware Company E-R
diagram

PK Employee
 Number

Customer
 Number

PK

CUSTOMER
EMPLOYEE

Employee
 Name
Title

Office
 Number

OFFICE

PK

Telephone
Size

Salesperson
 Number

SALESPERSON

PK

Salesperson
 Name
Commission
 Percentage
Year of Hire

Customer
 Number

CUSTOMER

PK

Customer
 Name
HQ City

Product
 Number

PRODUCT

PK

Product
 Name
Unit Price

PK Product
 Number

Salesperson
 Number

SALES

PK

Quantity

Occupied by
Works in

Sells to

Buys from

Sold
Sold by

Sold

Sold
Product

Employs

Employed by

Example: The General Hardware Company 33

Y O U R

T U R N

2.2 MODELING YOUR WORLD—PART 2

Can you think of unary and ternary
relationships in your world?

QUESTION:
How many unary and ternary relationships can you think

of in your school environment? As in Your Turn 2-1,

make a list of the unary and ternary relationships in
the school environment and diagram them with E-R
diagrams. Do any of the many-to-many-many ternary
relationships have intersection data? Explain.

General Hardware operate? Now that we know something about E-R diagrams, let’s
see if we can figure it out from Figure 2.9!

Begin with the SALESPERSON entity box in the middle on the left.
SALESPERSON has four attributes with one of them, Salesperson Number, serving
as the unique identifier of the salespersons. Looking upwards from SALESPERSON,
a salesperson works in exactly one office (indicated by the double ones or bars
encountered on the way to the OFFICE entity). OFFICE has three attributes;
Office Number is the unique identifier. Looking back downwards from the OFFICE
entity box, an office has either no salespersons working in it (the zero modality
symbol) or one salesperson (the one or bar cardinality symbol). Starting again
at the SALESPERSON entity box and moving to the right, a salesperson has no
customers or many customers. (Remember that the customers are hardware or
home improvement stores.) The CUSTOMER entity has three attributes; Customer
Number is the unique identifier. In the reverse direction, a customer must have
exactly one General Hardware salesperson.

Below the CUSTOMER entity is the CUSTOMER EMPLOYEE entity.
According to the figure, a customer must have at least one but can have many
employees. An employee works for exactly one customer. This is actually a special
situation. General Hardware only has an interest in maintaining data about the people
who are its customers’ employees as long as their employer remains a customer of
General Hardware. If a particular hardware store or home improvement chain stops
buying goods from General Hardware, then General Hardware no longer cares about
that store’s or chain’s employees. Furthermore, while General Hardware assumes
that each of its customers assigns their employees unique employee numbers, those
numbers can be assumed to be unique only within that customer store or chain.
Thus, the unique identifier for a customer employee must be the combination
of the Customer Number and the Employee Number attributes. In this situation,
CUSTOMER EMPLOYEE is called a dependent or weak entity.

Returning to the SALESPERSON entity box and looking downward, there
is a one-to-many relationship between salespersons and sales. But, below that,
there is also a one-to-many relationship from products to sales. Also note that the
unique identifier of SALES is the combination of Salesperson Number and Product
Number. This is the signal that there is a many-to-many relationship between
salespersons and products! A salesperson is authorized to sell at least one and
generally many products. A product is sold by at least one and generally many
salespersons. The PRODUCT entity has three attributes, with Product Number being

34 C h a p t e r 2 Data Modeling

the unique identifier. The attribute Quantity is intersection data in the many-to-many
relationship and so becomes an attribute in the associative entity SALES that links
salespersons with the products they have sold in a many-to-many relationship.

EXAMPLE: GOOD READING BOOK STORES

Figure 2.10 shows the E-R diagram for Good Reading Bookstores. Good Reading
is a chain of bookstores that wants to keep track of the books that it sells, their
publishers, their authors, and the customers who buy them. The BOOK entity has
four attributes. Book Number is the unique identifier. A book has exactly one
publisher. Publisher Name is the unique identifier of the PUBLISHER entity. A
publisher may have (and generally has) published many books that Good Reading
carries; however, Good Reading also wants to be able to keep track of some
publishers that currently have no books in Good Reading’s inventory (note the
zero-modality symbol from PUBLISHER towards BOOK). A book must have at
least one author but can have many (where in this case ‘‘many’’ means a few,
generally two or three at most). For a person to be of interest to Good Reading
as an author, she must have written at least one and possibly many books that
Good Reading carries. Note that there is a many-to-many relationship between the

Publisher
 Name

PUBLISHER

PK

City
Country
President
Year Founded

Customer
 Number

Author
 Number

Book
 Number

BOOK

PK

Book Name
Publication
 Year
Pages

PK Author
 Number

Book
 Number

WROTE

PK

PK Customer
 Number

Book
 Number

CUSTOMER

PK

Customer
 Name
Street
City
State
Country

AUTHOR

PK

Author Name
Year Born
Year Died

SALE

PK

Date
Price
Quantity

Published

Published by Wrote

Written by

Wrote
Written by

Bought

Bought by

Sold
In sale

F IGURE 2.10
Good Reading Bookstores entity-relationship diagram

Example: World Music Association 35

Y O U R

T U R N

2.3 MODELING YOUR WORLD—PART 3

Now it’s time to put the university
environment all together.

QUESTION:
Create one comprehensive E-R diagram for your university

environment that you developed in Your Turn Parts 1
and 2.

BOOK and AUTHOR that is realized in the associative entity WROTE, which has
no intersection data. The company wants to keep track of which authors wrote
which books, but there are no attributes that further describe that many-to-many
relationship. The associative entity SALE indicates that there is a many-to-many
relationship between books and customers. A book can be involved in many sales
and so can a customer. But a particular sale involves just one book and one customer.
Date, Price, and Quantity are intersection data in the many-to-many relationship
between the BOOK and CUSTOMER entities.

Does this make sense? Might a customer have bought several copies of the
same book on the same date? After all, that’s what the presence of the Quantity
attribute implies. And might she have then bought more copies of the same book on
a later date? Yes to both questions! A grandmother bought a copy of a book for each
of three of her grandchildren one day and they liked it so much that she returned and
bought five more copies of the same book for her other five grandchildren several
days later. By the way, notice that the modality 0 going from book to sale says
that a book may not have been involved in any sales (maybe it just came out). The
modality of 1 going from customer to book says that for a person to be considered
a customer, he must have participated in at least one sale, which is reasonable.

EXAMPLE: WORLD MUSIC ASSOCIATION

The World Music Association (WMA) is an organization that maintains information
about its member orchestras and the recordings they have made. The WMA
E-R diagram in Figure 2.11 shows the information about the orchestras and their
musicians across the top and the information about the recordings in the rest of
the diagram. Each orchestra has at least one and possibly many musicians. (In this
case, the modality expressing ‘‘at least one’’ is a technicality. Certainly an orchestra
must have many musicians.) A musician might not work for any orchestra (perhaps
she is currently unemployed but WMA wants to keep track of her anyway) or may
work for just one orchestra. A musician may not be a college graduate or may have
several college degrees. A degree belongs to just one musician (for the moment we
ignore the possibility that more than one musician earned the same degree from
the same university in the same year). Since the DEGREE entity is dependent on
the MUSICIAN entity, the unique identifier for DEGREE is the combination of the
Musician Number and Degree (e.g. B.A.) attributes.

Looking downward from the ORCHESTRA entity box, an orchestra may
have made no recordings of a particular composition or may have made many. In
the reverse direction, a composition may not have been recorded by any orchestra

36 C h a p t e r 2 Data Modeling

Orchestra
 Name

ORCHESTRA

PK

City
Country
Music
 Director

Orchestra
 Name

Composer
 Name

Musician
 Number

MUSICIAN

PK

Musician
 Name
Instrument
Annual
 Salary

PK Degree

Musician
 Number

DEGREE

PK

University
Year

PK Composer
 Name

Composition
 Name

RECORDING

PK

Composition
 Name

PK

Composer
 Name

PK

Year
Price

COMPOSER

PK

Country
Date of Birth

COMPOSITION

PK

Year

Employs

Employed by Earned by

Earned

Recorded

Contains

Wrote

Written by

Recorded
Recorded by

F IGURE 2.11
World Music Association entity-relationship diagram

(but we still want to maintain data about it) or may have been recorded by many
orchestras. For a particular recording, we note the year of the recording and the retail
price, as intersection data of the many-to-many relationship between orchestras and
compositions. In fact, RECORDING is an associative entity. A composer may have
several compositions to his credit but must have at least one to be of interest to
WMA. A composition is associated with exactly one composer. COMPOSITION
is a dependent entity to COMPOSER, which means that the unique identifier of
COMPOSITION is the combination of Composer Name and Composition Name.
After all, there could be Beethoven’s ‘‘Third Symphony’’ and Mozart’s ‘‘Third
Symphony.’’ This has an important implication for the RECORDING associative
entity. To uniquely identify a recording (and attach the year and price intersection
data to it) requires an Orchestra Name, Composition Name, and Composer Name.

EXAMPLE: LUCKY RENT-A-CAR

Lucky Rent-A-Car’s business environment is, obviously, centered on its cars. This
is literally true in its E-R diagram, shown in Figure 2.12. A car was manufactured by
exactly one manufacturer. A manufacturer manufactured at least one and generally
many of Lucky’s cars. A car has had many maintenance events (but a brand new
car may not have had any, yet.) A car may not have been rented to any customers
(again, the case of a brand new car) or to many customers. A customer may have
rented many cars from Lucky, and to be in Lucky’s business environment must

Summary 37

FIGURE 2.12
Lucky Rent-A-Car entity-relationship
diagram

PK Customer
 Number

Car Serial
 Number

RENTAL

PK

Rental Date
Return Date
Total Cost

Manufacturer
 Name

MANUFACTURER

PK

Manufacturer
 Country
Sales Rep
 Name
Sales Rep
 Number

Car Serial
 Number

CAR

PK

Model
Year
Class

Customer
 Number

CUSTOMER

PK

Customer
 Name
Customer
 Address
Customer
 Credit Rating

MAINTENANCE
EVENT

Manufactured
Manufactured by

Rented

Car rented

Repaired
Car Repaired

Rented
Rented by

Repair
 Number

PK

Date
Procedure
Mileage
Repair Time

have rented at least one. Rental Date, Return Date, and Total Cost are intersection
data to the many-to-many relationship between CAR and CUSTOMER, as shown
in the associative entity RENTAL.

SUMMARY

Being able to express entities, attributes, and relationships is an important
preliminary step towards database management. The Entity-Relationship Model
is a diagramming technique that gives us this capability. The E-R model can
display unary relationships (relationships between entities of the same type,) binary
relationships (relationships between entities of two different types), and ternary
relationships (relationships between entities of three different types). Based on the
number of distinct entities involved in a relationship, we expand this to one-to-one,
one-to-many, and many-to-many unary relationships, one-to-one, one-to-many, and

38 C h a p t e r 2 Data Modeling

many-to-many binary relationships, and ternary relationships (which we consider
to in general be many-to-many-to-many.)

Other terms and concepts discussed include cardinality (the maximum number
of entities that can be involved in a particular relationship), modality (the minimum
number of entity occurrences that can be involved in a relationship), intersection
data (data that describes a many-to-many relationship), and associative entities.

KEY TERMS

Attribute
Associate entity
Binary relationship
Cardinality
Data modeling
Entity

Entity-relationship (E-R) diagram
Entity-relationship (E-R) model
Intersection data
Many-to-many relationship
Modality
One-to-many relationship

One-to-one relationship
Relationship
Ternary relationship
Unary relationship
Unique identifier

QUESTIONS

1. What is data modeling? Why is it important?
2. What is the Entity-Relationship model?
3. What is a relationship?
4. What are the differences among a unary relationship,

a binary relationship, and a ternary relationship?
5. Explain and compare the cardinality of a relationship

and the modality of a relationship.
6. Explain the difference between a one-to-one, a one-

to-many, and a many-to-many binary relationship.
7. What is intersection data in a many-to-many binary

relationship? What does the intersection data
describe?

8. Can a many-to-many binary relationship have no
intersection data? Explain.

9. Can intersection data be placed in the entity box
of one of the two entities in the many-to-many
relationship? Explain.

10. What is an associative entity? How does intersection
data relate to an associative entity?

11. Describe the three cases of unique identifiers for
associative entities.

12. Describe the concept of the unary relationship.
13. Explain how a unary relationship can be described

as one-to-one, one-to-many, and many-to-many if
only one entity type is involved in the relationship.

14. Describe the ternary relationship concept.
15. Can a ternary relationship have intersection data?

Explain.
16. What is a dependent entity? (See the description in

the General Hardware example.)

EXERCISES

1. Draw an entity-relationship diagram that describes
the following business environment.

The city of Chicago, IL, wants to maintain
information about its extensive system of high
schools, including its teachers and their university
degrees, its students, administrators, and the subjects
that it teaches.

Each school has a unique name, plus an address,
telephone number, year built, and size in square

feet. Students have a student number, name, home
address, home telephone number, current grade,
and age. Regarding a student’s school assignment,
the school system is only interested in keeping
track of which school a student currently attends.
Each school has several administrators, such as the
principal and assistant principals. Administrators are
identified by an employee number and also have a
name, telephone number, and office number.

Minicases 39

Teachers are also identified by an employee
number and each has a name, age, subject specialty
such as English (assume only one per teacher),
and the year that they entered the school system.
Teachers tend to move periodically from school to
school and the school system wants to keep track
of the history of which schools the teacher has
taught in, including the current school. Included
will be the year in which the teacher entered the
school, and the highest pay rate that the teacher
attained at the school. The school system wants
to keep track of the universities that each teacher
attended, including the degrees earned and the
years in which they were earned. The school
system wants to record each university’s name,
address, year founded, and Internet URL (address).
Some teachers, as department heads, supervise other
teachers. The school system wants to keep track of
these supervisory relationships but only for teachers’
current supervisors.

The school system also wants to keep track of
the subjects that it offers (e.g. French I, Algebra III,
etc.). Each subject has a unique subject number, a
subject name, the grade level in which it is normally
taught, and the year in which it was introduced in
the school system. The school system wants to keep
track of which teacher taught which student which
subject, including the year this happened and the
grade received.

2. The following entity-relationship diagram describes
the business environment of Video Centers of
Europe, Ltd., which is a chain of videotape and
DVD rental stores. Write a verbal description of
how VCE conducts its business, based on this E-R
diagram.

Recorded on

Contains

Rents

Rented by

Acts in

Has actor

Owns

Located in

Is rented

Involves

Name

ACTOR

PK

Date of Birth
Nationality

Store
 Number

STORE

PK

City
Country
Telephone

Title

MOVIE

PK

Length
Year Made

Serial
 Number

DISK

PK

Type (DVD
 or Blu Ray)

Customer
 Number

CUSTOMER

PK

Name
Address
Telephone

Serial
 Number
Customer
 Number
Date

RENTAL

PK

PK

PK

Rental Price

Figure for Exercise 2

MINICASES

1. Draw an entity-relationship diagram that describes the
following business environment.

Happy Cruise Lines has several ships and a variety
of cruise itineraries, each involving several ports of
call. The company wants to maintain information on
the sailors who currently work on each of its ships.
It also wants to keep track of both its past and future
cruises and of the passengers who sailed on the former
and are booked on the latter.

Each ship has at least one and, of course, normally
many sailors on it. The unique identifier of each ship

is its ship number. Other ship attributes include ship
name, weight, year built, and passenger capacity. Each
sailor has a unique sailor identification number, as well
as a name, date of birth, and nationality. Some of the
sailors are in supervisory positions, supervising several
other sailors. Each sailor reports to just one supervisor.
A cruise is identified by a unique cruise serial number.
Other cruise descriptors include a sailing date, a return
date, and a departure port (which is also the cruise’s
ending point). Clearly, a cruise involves exactly one
ship; over time a ship sails on many cruises, but there

40 C h a p t e r 2 Data Modeling

is a requirement to be able to list a new ship that has
not yet sailed on any cruises at all. Each cruise stops
at at least one and usually several ports of call, each of
which is normally host to many cruises, over time. In
addition, the company wants to maintain information
about ports that it has not yet used in its cruises but may
use in the future. A port is identified by its name and the
country it is in. Other information about a port includes
its population, whether a passport is required for
passengers to disembark there, and its current docking
fee, which is assumed to be the same for all ships.
Passenger information includes a unique passenger
number, name, home address, nationality, and date of
birth. A cruise typically has many passengers on it
(certainly at least one). Hoping for return business,
the company assumes that each passenger may have
sailed on several of its cruises (and/or may be booked
for a future cruise). For a person to be of interest to
the company, he or she must have sailed on or be
booked on at least one of the company’s cruises. The
company wants to keep track of how much money each
passenger paid (or will pay) for each of their cruises,
as well as their satisfaction rating of the cruise, if it has
been completed.

2. Draw an entity-relationship diagram that describes the
following business environment. The Super Baseball
League wants to maintain information about its teams,
their coaches, players, and bats. The information about
players is historical. For each team, the league wants

to keep track of all of the players who have ever played
on the team, including the current players. For each
player, it wants to know about every team the player
ever played for. On the other hand, coach affiliation
and bat information is current, only.

The league wants to keep track of each team’s team
number, which is unique, its name, the city in which
it is based, and the name of its manager. Coaches
have a name (which is assumed to be unique only
within its team) and a telephone number. Coaches
have units of work experience that are described by
the type of experience and the number of years of
that type of experience. Bats are described by their
serial numbers (which are unique only within a team)
and their manufacturer’s name. Players have a player
number that is unique across the league, a name, and
an age.

A team has at least one and usually several coaches.
A coach works for only one team. Each coach has
several units of work experience or may have none.
Each unit of work experience is associated with the
coach to whom it belongs. Each team owns at least one
and generally many bats. Currently and historically,
each team has and has had many players. To be of
interest to the league, a player must have played on at
least one and possibly many teams during his career.
Further, the league wants to keep track of the number
of years that a player has played on a team and the
batting average that he compiled on that team.

C H A P T E R 3

THE DATABASE
MANAGEMENT SYSTEM

CONCEPT

D ata has always been the key component of information systems. In the beginning
of the modern information systems era, data was stored in simple files. As

companies became more and more dependent on their data for running their businesses,
shortcomings in simple files became apparent. These shortcomings led to the development
of the database management system concept, which provides a solid basis for the modern
use of data in organizations of all descriptions.

OBJECTIVES

■ Define data-related terms such as entity and attribute and storage-related terms
such as field, record, and file.

■ Identify the four basic operations performed on stored data.
■ Compare sequential access of data with direct access of data.
■ Discuss the problems encountered in a non-database information systems

environment.
■ List the five basic principles of the database concept.
■ Describe how data can be considered to be a manageable resource.
■ List the three problems created by data redundancy.
■ Describe the nature of data redundancy among many files.
■ Explain the relationship between data integration and data redundancy in one file.
■ State the primary defining feature of a database management system.
■ Explain why the ability to store multiple relationships is an important feature of

the database approach.
■ Explain why providing support for such control issues as data security, backup

and recovery, and concurrency is an important feature of the database approach.
■ Explain why providing support for data independence is an important feature of

the database approach.

42 C h a p t e r 3 The Database Management System Concept

CHAPTER OUTLINE

Introduction
Data Before Database Management

Records and Files
Basic Concepts in Storing and

Retrieving Data
The Database Concept

Data as a Manageable Resource

Data Integration and Data
Redundancy

Multiple Relationships
Data Control Issues
Data Independence

DBMS Approaches
Summary

INTRODUCTION

Before the database concept was developed, all data in information systems (then
generally referred to as ‘‘data processing systems’’) was stored in simple linear
files. Some applications and their programs required data from only one file. Some
applications required data from several files. Some of the more complex applications
used data extracted from one file as the search argument (the item to be found)
for extracting data from another file. Generally, files were created for a single
application and were used only for that application. There was no sharing of files or
of data among applications and, as a result, the same data often appeared redundantly
in multiple files. In addition to this data redundancy among multiple files, a lack of
sophistication in the design of individual files often led to data redundancy within
those individual files.

As information systems continued to grow in importance, a number of
the ground rules began to change. Hardware became cheaper—much cheaper
relative to the computing power that it provided. Software development took on a
more standardized, ‘‘structured’’ form. Large backlogs of new applications to be
implemented built up, making the huge amount of time spent on maintaining existing
programs more and more unacceptable. It became increasingly clear that the lack of
a focus on data was one of the major factors in this program maintenance dilemma.
Furthermore, the redundant data across multiple files and even within individual
files was causing data accuracy nightmares (to be explained further in this chapter),
just as companies were relying more and more on their information systems to
substantially manage their businesses. As we will begin to see in this chapter, the
technology that came to the rescue was the database management system.

Summarizing, the problems included:

■ Data was stored in different formats in different files.
■ Data was often not shared among different programs that needed it, necessitating

the duplication of data in redundant files.
■ Little was understood about file design, resulting in redundant data within

individual files.
■ Files often could not be rebuilt after damage by a software error or a hardware

failure.
■ Data was not secure and was vulnerable to theft or malicious mischief by people

inside or outside the company.
■ Programs were usually written in such a manner that if the way that the data was

stored changed, the program had to be modified to continue working.
■ Changes in everything from access methods to tax tables required programming

changes.

Data Before Database Management 43

This chapter will begin by presenting some basic definitions and concepts
about data. Then it will describe the type of file environment that existed before
database management emerged. Then it will describe the problems inherent in the
file environment and show how the database concept overcame them and set the
stage for a vastly improved information systems environment.

DATA BEFORE DATABASE MANAGEMENT

As we said in Chapter 1, pieces of data are facts in our environment that are
important to us. Usually we have many facts to describe something of interest to us.
For example, let’s consider the facts we might be interested in about an employee
of ours named John Baker. Our company is a sales-oriented company and John
Baker is one of our salespersons. We want to remember that his employee number
(which we will now call his salesperson number) is 137. We are also interested in
the facts that his commission percentage on the sales he makes is 10%, his home
city is Detroit, his home state is Michigan, his office number is 1284, and he was
hired in 1995. There are, of course, reasons that we need to keep track of these facts
about John Baker, such as generating his paycheck every week. It certainly seems
reasonable to collect together all of the facts about Baker that we need and to hold
all of them together. Figure 3.1 shows all of these facts about John Baker presented
in an organized way.

Records and Files

Since we have to generate a paycheck each week for every employee in our
company, not just for Baker, we are obviously going to need a collection of facts
like those in Figure 3.1 for every one of our employees. Figure 3.2 shows a portion
of that collection.

F IGURE 3.1
Facts about salesperson Baker

Salesperson Salesperson Office Commission Year of
Number Name City State Number Percentage Hire

137 Baker Detroit MI 1284 10 1995

F IGURE 3.2
Salesperson file

Salesperson Salesperson Office Commission Year of
Number Name City State Number Percentage Hire

119 Taylor New York NY 1211 15 2003

137 Baker Detroit MI 1284 10 1995

186 Adams Dallas TX 1253 15 2001

204 Dickens Dallas TX 1209 10 1998

255 Lincoln Atlanta GA 1268 20 2003

361 Carlyle Detroit MI 1227 20 2001

420 Green Tucson AZ 1263 10 1993

44 C h a p t e r 3 The Database Management System Concept

CONCEPTS

IN ACT ION

3-A MEMPHIS LIGHT, GAS AND WATER

Memphis Light, Gas and Water
(MLGW) is the largest ‘‘three-service’’ (electricity, natu-
ral gas and water) municipal utility system in the United
States. It serves over 400,000 customers in Memphis and
Shelby County, TN, and has 2,600 employees. MLGW is
the largest of the 159 distributors of the federal Tennessee
Valley Authority’s electricity output. It brings in natural
gas via commercial pipelines and it supplies water from
a natural aquifer beneath the city of Memphis.

Like any supplier of electricity, MLGW is particularly
sensitive to electrical outages. It has developed a two-
stage application system to determine the causes of
outages and to dispatch crews to fix them. The first
stage is the Computer-Aided Restoration of Electric
Service (CARES) system, which was introduced in 1996.
Beginning with call-in patterns as customers report
outages, CARES uses automated data from MLGW’s
electric grid, wiring patterns to substations, and other
information, to function as an expert system to determine
the location and nature of the problem. It then feeds
its conclusion to the second-stage Mobile Dispatching
System (MDS), which was introduced in 1999. MDS

‘‘Photo Courtesy of Memphis Light, Gas, and Water Division’’

sends a repairperson to an individual customer’s location
if that is all that has been affected or sends a crew to
a malfunctioning or damaged piece of equipment in the
grid that is affecting an entire neighborhood. There is a
feedback loop in which the repairperson or crew reports
back to indicate whether the problem has been fixed or
a higher-level crew is required to fix it.

The CARES and MDS systems are supported by
an Oracle database running on Hewlett-Packard and
Compaq Alpha Unix platforms. The database includes
a wide range of tables: a Customer Call table has one
record per customer reporting call; an Outage table has
one record per outage; a Transformer table has one
record for each transformer in the grid; a Device table
has records for other devices in the grid. These can
also interface to the Customer Information System, which
has a Customer table with one record for each of the
over 400,000 customers. In addition to its operational
value, CARES and other systems feed a System Reliability
Monitoring database that generates reports on outages
and can be queried to gain further knowledge of outage
patterns for improving the grid.

Data Before Database Management 45

Let’s proceed by revisiting some terminology from Chapter 2, and introducing
some additional terminology along with some additional concepts. What we have
been loosely referring to as a ‘‘thing’’ or ‘‘object’’ in our environment that we want
to keep track of is called an entity. Remember that this is the real physical object or
event, not the facts about it. John Baker, the real, living, breathing person whom you
can go over to and touch, is an entity. A collection of entities of the same type (e.g.,
all the company’s employees) is called an entity set. An attribute is a property of,
a characteristic of, or a fact that we know about an entity. Each characteristic or
property of John Baker, including his salesperson number 137, his name, city of
Detroit, state of Michigan, office number 1284, commission percentage 10, and year
of hire 1995, are all attributes of John Baker. Some attributes have unique values
within an entity set. For example, the salesperson numbers are unique within the
salesperson entity set, meaning each salesperson has a different salesperson number.
We can use the fact that salesperson numbers are unique to distinguish among the
different salespersons.

Using the structure in Figure 3.2, we can define some standard file-structure
terms and relate them to the terms entity, entity set, and attribute. Each row in
Figure 3.2 describes a single entity. In fact, each row contains all the facts that we
know about a particular entity. The first row contains all the facts about salesperson
119, the second row contains all the facts about salesperson 137, and so on. Each
row of a structure like this is called a record. The columns representing the facts
are called fields. The entire structure is called a file. The file in Figure 3.2, which
is about the most basic kind of file imaginable, is often called a simple file or a
simple linear file (linear because it is a collection of records listed one after the
other in a long line). Since the salesperson attribute is unique, the salesperson field
values can be used to distinguish the individual records of the file. Speaking loosely
at this point, the salesperson number field can be referred to as the key field or key
of the file.

Tying together the two kinds of terminology that we have developed, a record
of a file describes an entity, a whole file contains the descriptions of an entire entity
set, and a field of a record contains an attribute of the entity described by that
record. In Figure 3.2, each row is a record that describes an entity, specifically a
single salesperson. The whole file, row by row or record by record, describes each
salesperson in the collection of salespersons. Each column of the file represents a
different attribute of salespersons. At the row or entity level, the salesperson name
field for the third row of the file indicates that the third salesperson, salesperson
186, has Adams as his salesperson name attribute, i.e. he is named Adams.

One last terminology issue is the difference between the terms ‘‘type’’ and
‘‘occurrence.’’ Let’s talk about it in the context of a record. If you look at a file,
like that in Figure 3.2, there are two ways to describe ‘‘a record.’’ One, which is
referred to as the record type, is a structural description of each and every record in
the file. Thus, we would describe the salesperson record type as a record consisting
of a salesperson number field, a salesperson name field, a city field, and so forth.
This is a general description of what any of the salesperson records looks like. The
other way of describing a record is referred to as a record occurrence or a record
instance. A specific record of the salesperson file is a record occurrence or instance.
Thus, we would say that, for example, the set of values {186, Adams, Dallas, TX,
1253, 15, 2001} is an occurrence of the salesperson record type.

46 C h a p t e r 3 The Database Management System Concept

Y O U R

T U R N

3.1 ENTITIES AND ATTRIBUTES

Entities and their attributes are all
around us in our everyday lives. Normally, we don’t stop
to think about the objects or events in our world formally
as entities with their attributes, but they’re there.

QUESTION:
Choose an object in your world that you interact with

frequently. It might be a university, a person, an
automobile, your home, etc. Make a list of some of

the chosen entity’s attributes. Then, generalize them to
‘‘type.’’ For example, you may have a backpack (an
entity) that is green in color (an attribute of that entity).
Generalize that to the entity set of all backpacks and
to the attribute type color. Next, go through the same
exercise for an event in your life, such as taking a
particular exam, your last birthday party, eating dinner
last night, etc.

Basic Concepts in Storing and Retrieving Data

Having established the idea of a file and its records, we can now, in simple terms at
this point, envision a company’s data as a large collection of files. The next step is to
discuss how we might want to access data from these files and otherwise manipulate
the data in them.

Retrieving and Manipulating Data There are four fundamental operations that can
be performed on stored data, whether it is stored in the form of a simple linear file,
such as that of Figure 3.2, or in any other form. They are:

■ Retrieve or Read
■ Insert
■ Delete
■ Update

It is convenient to think of each of these operations as basically involving one
record at a time, although in practice they can involve several records at once, as
we will see later in the book. Retrieving or reading a record means looking at a
record’s contents without changing them. For example, using the Salesperson file
of Figure 3.2, we might read the record for salesperson 204 because we want to
find out what year she was hired. Insertion means adding a new record to the file,
as when a new salesperson is hired. Deletion means deleting a record from the
file, as when a salesperson leaves the company. Updating means changing one or
more of a record’s field values, for example if we want to increase salesperson
420’s commission percentage from 10 to 15. There is clearly a distinction between
retrieving or reading data and the other three operations. Retrieving data allows a
user to refer to the data for some business purpose without changing it. All of the
other three operations involve changing the data. Different topics in this book will
focus on one or another of these operations simply because a particular one of the
four operations may be more important for a particular topic than the others.

One particularly important concept concerning data retrieval is that, while
information systems applications come in a countless number of variations, there
are fundamentally only two kinds of access to stored data that any of them require.

Data Before Database Management 47

These two ways of retrieving data are known as sequential access and direct
access.

Sequential Access The term sequential access means the retrieval of all or a portion
of the records of a file one after another, in some sequence, starting from the
beginning, until all the required records have been retrieved. This could mean all the
records of the file, if that is the goal, or all the records up to some point, such as up
to the point that a record being searched for is found. The records will be retrieved
in some order and there are two possibilities for this. In ‘‘physical’’ sequential
access, the records are retrieved one after the other, just as they are stored on the disk
device (more on these devices later). In ‘‘logical’’ sequential access the records
are retrieved in order based on the values of one or a combination of the fields.

Assuming the records of the Salesperson file of Figure 3.2 are stored on the
disk in the order shown in the figure, if they are retrieved in physical sequence they
will be retrieved in the order shown in the figure. However, if, for example, they
are to be retrieved in logical sequence based on the Salesperson Name field, then
the record for Adams would be retrieved first, followed by the record for Baker,
followed by the record for Carlyle, and so on in alphabetic order. An example of
an application that would require the sequential retrieval of the records of this file
would be the weekly payroll processing. If the company wants to generate a payroll
check for each salesperson in the order of their salesperson numbers, it can very
simply retrieve the records physically sequentially, since that’s the order in which
they are stored on the disk. If the company wants to produce the checks in the order
of the salespersons’ names, it will have to perform a logical sequential retrieval
based on the Salesperson Name field. It can do this either by sorting the records on
the Salesperson Name field or by using an index (see below) that is built on this
field.

We said that sequential access could involve retrieving a portion of the records
of a file. This sense of sequential retrieval usually means starting from the beginning
of the file and searching every record, in sequence, until finding a particular record
that is being sought. Obviously, this could take a long time for even a moderately
large file and so is not a particularly desirable kind of operation, which leads to the
concept of direct access.

Direct Access The other mode of access is direct access. Direct access is the
retrieval of a single record of a file or a subset of the records of a file based on
one or more values of a field or a combination of fields in the file. For example, in
the Salesperson file of Figure 3.2, if we need to retrieve the record for salesperson
204 to find out her year of hire, we would perform a direct access operation on
the file specifying that we want the record with a value of 204 in the Salesperson
Number field. How do we know that we would retrieve only one record? Because
the Salesperson Number field is the unique, key field of the file, there can only be
one record (or none) with any one particular value. Another possibility is that we
want to retrieve the records for all the salespersons with a commission percentage of
10. The subset of the records retrieved would consist of the records for salespersons
137, 204, and 420.

Direct access is a crucial concept in information systems today. If you
telephone a bank with a question about your account, you would not be happy
having to wait on the phone while the bank’s information system performs a
sequential access of its customer file until it finds your record. Clearly this example

48 C h a p t e r 3 The Database Management System Concept

calls for direct access. In fact, the vast majority of information systems operations
that all companies perform today require direct access.

Both sequential access and direct access can certainly be accomplished with
data stored in simple files. But simple files leave a lot to be desired. What is the
concept of database and what are its advantages?

THE DATABASE CONCEPT

The database concept is one of the most powerful, enduring technologies in
the information systems environment. It encompasses a variety of technical and
managerial issues and features that are at the heart of today’s information systems
scene. In order to get started and begin to develop the deep understanding of
database that we seek, we will focus on five issues that establish a set of basic
principles of the database concept:

1. The creation of a datacentric environment in which a company’s data can
truly be thought of as a significant corporate resource. A key feature of this
environment is the ability to share data among those inside and outside of the
company who require access to it.

2. The ability to achieve data integration while at the same time storing data
in a non-redundant fashion. This, alone, is the central, defining feature of the
database approach.

3. The ability to store data representing entities involved in multiple relationships
without introducing data redundancy or other structural problems.

4. The establishment of an environment that manages certain data control issues,
such as data security, backup and recovery, and concurrency control.

5. The establishment of an environment that permits a high degree of data
independence.

Data as a Manageable Resource

Broadly speaking, the information systems environment consists of several
components including hardware, networks, applications software, systems software,
people, and data. The relative degree of focus placed on each of these has varied
over time. In particular, the amount of attention paid to data has undergone a
radical transformation. In the earlier days of ‘‘data processing,’’ most of the time
and emphasis in application development was spent on the programs, as opposed
to on the data and data structures. Hardware was expensive and the size of main
memory was extremely limited by today’s standards. Programming was a new
discipline and there was much to be learned about it in order to achieve the goal
of efficient processing. Standards for effective programming were unknown. In this
environment, the treatment of the data was hardly the highest-priority concern.

At the same time, as more and more corporate functions at the operational,
tactical, and strategic levels became dependent on information systems, data
increasingly became recognized as an important corporate resource. Furthermore,
the corporate community became increasingly convinced that a firm’s data
about its products, manufacturing processes, customers, suppliers, employees,
and competitors could, with proper storage and use, give the firm a significant
competitive advantage.

The Database Concept 49

FIGURE 3.3
Corporate resources

People

Money Plant &
Equipment

Inventory

Data

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

Money, plant and equipment, inventories, and people are all important
enterprise resources and, indeed, a great deal of effort has always been expended
to manage them. As corporations began to realize that data is also an important
enterprise resource, it became increasingly clear that data would have to be managed
in an organized way, too, Figure 3.3. What was needed was a software utility that
could manage and protect data while providing controlled shared access to it so that
it could fulfill its destiny as a critical corporate resource. Out of this need was born
the database management system.

As we look to the future and look back at the developments of the last few years,
we see several phenomena that emphasize the importance of data and demand its
careful management as a corporate resource. These include reengineering, electronic
commerce, and enterprise resource planning (ERP) systems that have placed an
even greater emphasis on data. In reengineering, data and information systems are
aggressively used to redesign business processes for maximum efficiency. At the
heart of every electronic commerce Web site is a database through which companies
and their customers transact business. Another very important development was that
of enterprise resource planning (ERP) systems, which are collections of application
programs built around a central shared database. ERP systems very much embody
the principles of shared data and of data as a corporate resource.

Data Integration and Data Redundancy

Data integration and data redundancy, each in their own right, are critical issues in
the field of database management.

■ Data integration refers to the ability to tie together pieces of related data within
an information system. If a record in one file contains customer name, address,
and telephone data and a record in another file contains sales data about an item
that the customer has purchased, there may come a time when we want to contact
the customer about the purchased item.

■ Data redundancy refers to the same fact about the business environment being
stored more than once within an information system. Data integration is clearly a

50 C h a p t e r 3 The Database Management System Concept

positive feature of a database management system. Data redundancy is a negative
feature (except for performance reasons under certain circumstances that will be
discussed later in this book).

In terms of the data structures used in database management systems, data
integration and data redundancy are tied together and will be discussed together in
this section of the book.

Data stored in an information system describes the real-world business
environment. Put another way, the data is a reflection of the environment. Over the
years that information systems have become increasingly sophisticated, they and
the data that they contain have revolutionized the ways that we conduct virtually
all aspects of business. But, as valuable as the data is, if the data is duplicated
and stored multiple times within a company’s information systems facilities, it can
result in a nightmare of poor performance, lack of trust in the accuracy of the data,
and a reduced level of competitiveness in the marketplace. Data redundancy and
the problems it causes can occur within a single file or across multiple files. The
problems caused by data redundancy are threefold:

■ First, the redundant data takes up a great deal of extra disk space. This alone can
be quite significant.

■ Second, if the redundant data has to be updated, additional time is needed to do
so since, if done correctly, every copy of the redundant data must be updated.
This can create a major performance issue.

■ Third and potentially the most significant is the potential for data integrity
problems. The term data integrity refers to the accuracy of the data. Obviously,
if the data in an information system is inaccurate, it and the whole information
system are of limited value. The problem with redundant data, whether in a single
file or across multiple files, occurs when it has to be updated (or possibly when
it is first stored). If data is held redundantly and all the copies of the data record
being updated are not all correctly updated to the new values, there is clearly
a problem in data integrity. There is an old saying that has some applicability
here, ‘‘The person with one watch always knows what time it is. The person with
several watches is never quite sure,’’ Figure 3.4.

Data Redundancy Among Many Files Beginning with data redundancy across multiple
files, consider the following situation involving customer names and addresses.
Frequently, different departments in an enterprise in the course of their normal
everyday work need the same data. For example, the sales department, the accounts
receivable department, and the credit department may need customer name and

F IGURE 3.4
With several watches the correct time
might not be clear

The Database Concept 51

FIGURE 3.5
Three files with redundant data

Sales file

Customer Customer
Number Name Address

2746795 John Jones 123 Elm Street

Accounts Receivable file

Customer Customer
Number Name Address

2746795 John Jones 123 Elm Street

Credit file

Customer Customer

Customer

Customer

Customer
Number Name Address

2746795 John Jones 123 Elm Street

address data. Often, the solution to this multiple need is redundant data. The sales
department has its own stored file that, among other things, contains the customer
name and address, and likewise for the accounts receivable and credit departments,
Figure 3.5.

One day customer John Jones, who currently lives at 123 Elm Street, moves
to 456 Oak Street. If his address is updated in two of the files but not the third, then
the company’s data is inconsistent, Figure 3.6. Two of the files indicate that John
Jones lives at 456 Oak Street but one file still shows him living at 123 Elm Street.
The company can no longer trust its information system. How could this happen?
It could have been a software or a hardware error. But more likely it was because
whoever received the new information and was responsible for updating one or two
of the files simply did not know of the existence of the third. As mentioned earlier,

F IGURE 3.6
Three files with a data integrity problem

Sales file

Customer Customer
Number Name Address

2746795 John Jones 456 Oak Street

Accounts Receivable file

Customer Customer
Number Name Address

2746795 John Jones 456 Oak Street

Credit file

Customer Customer

Customer

Customer

Customer
Number Name Address

2746795 John Jones 123 Elm Street

52 C h a p t e r 3 The Database Management System Concept

at various times in information systems history it has not been unusual in large
companies for the same data to be held redundantly in sixty or seventy files! Thus,
the possibility of data integrity problems is great.

Multiple file redundancy begins as more a managerial issue than single file
redundancy, but it also has technical components. The issue is managerial to the
extent that a company’s management does not encourage data sharing among
departments and their applications. But it is technical when it comes to the reality
of whether the company’s software systems are capable of providing shared access
to the data without compromising performance and data security.

Data Integration and Data Redundancy Within One File Data redundancy in a single
file results in exactly the same three problems that resulted from data redundancy
in multiple files: wasted storage space, extra time on data update, and the potential
for data integrity problems. To begin developing this scenario, consider Figure 3.7,
which shows two files from the General Hardware Co. information system. General
Hardware is a wholesaler of hardware, tools, and related items. Its customers are
hardware stores, home improvement stores, and department stores, or chains of
such stores. Figure 3.7a shows the Salesperson file, which has one record for each
of General Hardware’s salespersons. Salesperson Number is the unique identifying
‘‘key’’ field and as such is underlined in the figure. Clearly, there is no data
redundancy in this file. There is one record for each salesperson and each individual
fact about a salesperson is listed once in the salesperson’s record.

Figure 3.7b shows General Hardware’s Customer file. Customer Number is
the unique key field. Again, there is no data redundancy, but two questions have

F IGURE 3.7
General Hardware Company files

(a) Salesperson file

Salesperson Salesperson Commission Year
Number Name Percentage of Hire

137 Baker 10 1995

186 Adams 15 2001

204 Dickens 10 1998

361 Carlyle 20 2001

(b) Customer file

Customer Customer Salesperson
Number Name Number HQ City

0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

1826 City Hardware 137 New York

2198 Western Hardware 204 New York

2267 Central Stores 186 New York

The Database Concept 53

to be answered regarding the Salesperson Number field appearing in this file. First,
why is it there? After all, it seems already to have a good home as the unique
identifying field of the Salesperson file. The Salesperson Number field appears in
the Customer file to record which salesperson is responsible for a given customer
account. In fact, there is a one-to-many relationship between salespersons and
customers. A salesperson can and generally does have several customer accounts,
while each customer is serviced by only one General Hardware salesperson. The
second question involves the data in the Salesperson Number field in the Customer
file. For example, salesperson number 137 appears in four of the records (plus once
in the first record of the Salesperson file!). Does this constitute data redundancy?
The answer is no. For data to be redundant (and examples of data redundancy will be
coming up shortly), the same fact about the business environment must be recorded
more than once. The appearance of salesperson number 137 in the first record of
the Salesperson file establishes 137 as the identifier of one of the salespersons.
The appearance of salesperson number 137 in the first record of the Customer file
indicates that salesperson number 137 is responsible for customer number 0121. This
is a different fact about the business environment. The appearance of salesperson
number 137 in the third record of the Customer file indicates that salesperson
number 137 is responsible for customer number 0933. This is yet another distinct
fact about the business environment. And so on through the other appearances of
salesperson number 137 in the Customer file.

Retrieving data from each of the files of Figure 3.7 individually is
straightforward and can be done on a direct basis if the files are set-up for direct
access. Thus, if there is a requirement to find the name or commission percentage
or year of hire of salesperson number 204, it can be satisfied by retrieving the
record for salesperson number 204 in the Salesperson file. Similarly, if there is a
requirement to find the name or responsible salesperson (by salesperson number!)
or headquarters city of customer number 1525, we simply retrieve the record for
customer number 1525 in the Customer file.

But, what if there is a requirement to find the name of the salesperson
responsible for a particular customer account, say for customer number 1525? Can
this requirement be satisfied by retrieving data from only one of the two files of
Figure 3.7? No, it cannot! The information about which salesperson is responsible
for which customers is recorded only in the Customer file and the salesperson
names are recorded only in the Salesperson file. Thus, finding the salesperson
name will be an exercise in data integration. In order to find the name of the
salesperson responsible for a particular customer, first the record for the customer
in the Customer file would have to be retrieved. Then, using the salesperson number
found in that record, the correct salesperson record can be retrieved from the
Salesperson file to find the salesperson name. For example, if there is a need to
find the name of the salesperson responsible for customer number 1525, the first
operation would be to retrieve the record for customer number 1525 in the Customer
file. As shown in Figure 3.7b, this would yield salesperson number 361 as the
number of the responsible salesperson. Then, accessing the record for salesperson
361 in the Salesperson file in Figure 3.7a determines that the name of the salesperson
responsible for customer 1525 is Carlyle. While it’s true that the data in the record
in the Salesperson file and the data in the record in the Customer file have been
integrated, the data integration process has been awfully laborious.

This kind of custom-made, multicommand, multifile access (which, by the
way, could easily require more than two files, depending on the query and the files

54 C h a p t e r 3 The Database Management System Concept

involved) is clumsy, potentially error prone, and expensive in terms of performance.
While the two files have the benefit of holding data non-redundantly, what is lacking
is a good level of data integration. That is, it is overly difficult to find and retrieve
pieces of data in the two files that are related to each other. For example, customer
number 1525 and salesperson name Carlyle in the two files in Figure 3.7 are related
to each other by virtue of the fact that the two records they are in both include
a reference to salesperson number 361. Yet, as shown above, ultimately finding
the salesperson name Carlyle by starting with the customer number 1525 is an
unacceptably laborious process.

A fair question to ask is, if we knew that data integration was important in
this application environment and if we knew that there would be a frequent need to
find the name of the salesperson responsible for a particular customer, why were
the files structured as in Figure 3.7 in the first place? An alternative arrangement is
shown in Figure 3.8. The single file in Figure 3.8 combines the data in the two files
of Figure 3.7. Also, the Customer Number field values of both are identical.

The file in Figure 3.8 was created by merging the salesperson data from
Figure 3.7a into the records of Figure 3.7b, based on corresponding salesperson
numbers. As a result, notice that the number of records in the file in Figure 3.8
is identical to the number of records in the Customer file of Figure 3.7b. This is
actually a result of the ‘‘direction’’ of the one-to-many relationship in which each
salesperson can be associated with several customers. The data was ‘‘integrated’’
in this merge operation. Notice, for example, that in Figure 3.7b, the record
for customer number 1525 is associated with salesperson number 361. In turn,
in Figure 3.7a, the record for salesperson number 361 is shown to have the name
Carlyle. Those two records were merged, based on the common salesperson number,
into the record for customer number 1525 in Figure 3.8. (Notice, by the way, that the
Salesperson Number field appears twice in Figure 3.8 because it appeared in each
of the files of Figure 3.7. The field values in each of those two fields are identical
in each record in the file in Figure 3.8, which must be the case since it was on those
identical values that the record merge that created the file in Figure 3.8 was based.
That being the case, certainly one of the two Salesperson Number fields in the file
in Figure 3.8 could be deleted without any loss of information.)

The file in Figure 3.8 is certainly well integrated. Finding the name of
the salesperson who is responsible for customer number 1525 now requires a
single record access of the record for customer number 1525. The salesperson
name, Carlyle, is right there in that record. This appears to be the solution to the

F IGURE 3.8
General Hardware Company combined file

Customer Customer Salesperson Salesperson Salesperson Commission Year
Number Name Number HQ City Number Name Percentage of Hire

0121 Main St. Hardware 137 New York 137 Baker 10 1995

0839 Jane’s Stores 186 Chicago 186 Adams 15 2001

0933 ABC Home Stores 137 Los Angeles 137 Baker 10 1995

1047 Acme Hardware Store 137 Los Angeles 137 Baker 10 1995

1525 Fred’s Tool Stores 361 Atlanta 361 Carlyle 20 2001

1700 XYZ Stores 361 Washington 361 Carlyle 20 2001

1826 City Hardware 137 New York 137 Baker 10 1995

2198 Western Hardware 204 New York 204 Dickens 10 1998

2267 Central Stores 186 New York 186 Adams 15 2001

The Database Concept 55

earlier multifile access problem. Unfortunately, integrating the two files caused
another problem: data redundancy. Notice in Figure 3.8 that, for example, the fact
that salesperson number 137 is named Baker is repeated four times, as are his
commission percentage and year of hire. This is, indeed, data redundancy, as it
repeats the same facts about the business environment multiple times within the
one file. If a given salesperson is responsible for several customer accounts, then
the data about the salesperson must appear in several records in the merged or
integrated file. It would make no sense from a logical or a retrieval standpoint to
specify, for example, the salesperson name, commission percentage, and year of
hire for one customer that the salesperson services and not for another. This would
imply a special relationship between the salesperson and that one customer that
does not exist and would remove the linkage between the salesperson and his other
customers. To be complete, the salesperson data must be repeated for every one of
his customers.

The combined file in Figure 3.8 also illustrates what have come to be referred
to as anomalies in poorly structured files. The problems arise when two different
kinds of data, like salesperson and customer data in this example, are merged into
one file. Look at the record in Figure 3.8 for customer number 2198, Western
Hardware. The salesperson for this customer is Dickens, salesperson number 204.
Look over the table and note that Western Hardware happens to be the only
customer that Dickens currently has. If Western Hardware has gone out of business
or General Hardware has stopped selling to it and they decide to delete the record
for Western Hardware from the file, they also lose everything they know about
Dickens: his commission percentage, his year of hire, even his name associated with
his salesperson number, 204. This situation, which is called the deletion anomaly,
occurs because salesperson data doesn’t have its own file, as in Figure 3.7a. The
only place in the combined file of Figure 3.8 that you can store salesperson data is
in the records with the customers. If you delete a customer and that record was the
only one for that salesperson, the salesperson’s data is gone.

Conversely, in the insertion anomaly, General Hardware can’t record data in
the combined file of Figure 3.8 about a new salesperson the company just hired until
she is assigned at least one customer. After all, the identifying field of the records
of the combined file is Customer Number! Finally, the update anomaly notes that
the redundant data of the combined file, such as Baker’s commission percentage of
10 repeated four times, must be updated each place it exists when it changes (for
example, if Baker is rewarded with an increase to a commission percentage of 15).

There appears to be a very significant tradeoff in the data structures between
data integration and data redundancy. The two files of Figure 3.7 are non-redundant
but have poor data integration. Finding the name of the salesperson responsible for
a particular customer account requires a multicommand, multifile access that can be
slow and error-prone. The merged file of Figure 3.8, in which the data is very well
integrated, eliminates the need for a multicommand, multifile access for this query,
but is highly data redundant. Neither of these situations is acceptable. A poor level
of data integration slows down the company’s information systems and, perhaps, its
business! Redundant data can cause data accuracy and other problems. Yet both the
properties of data integration and of non-redundant data are highly desirable. And,
while the above example appears to show that the two are hopelessly incompatible,
over the years a few—very few—ways have been developed to achieve both goals
in a single data management system. In fact, this concept is so important that it is
the primary defining feature of database management systems:

56 C h a p t e r 3 The Database Management System Concept

A database management system is a software utility for storing and retrieving
data that gives the end-user the impression that the data is well integrated
even though the data can be stored with no redundancy at all.

Any data storage and retrieval system that does not have this property should
not be called a database management system. Notice a couple of fine points in the
above definition. It says, ‘‘data can be stored with no redundancy,’’ indicating that
non-redundant storage is feasible but not required. In certain situations, particularly
involving performance issues, the database designer may choose to compromise
on the issue of data redundancy. Also, it says, ‘‘that gives the end-user the
impression that the data is well integrated.’’ Depending on the approach to database
management taken by the particular database management system, data can be
physically integrated and stored that way on the disk or it can be integrated at the
time that a data retrieval query is executed. In either case, the data will, ‘‘give the
end-user the impression that the data is well integrated.’’ Both of these fine points
will be explored further later in this book.

Multiple Relationships

Chapter 2 demonstrated how entities can relate to each other in unary, binary,
and ternary one-to-one, one-to-many, and many-to-many relationships. Clearly,
a database management system must be able to store data about the entities in
a way that reflects and preserves these relationships. Furthermore, this must be
accomplished in such a way that it does not compromise the fundamental properties
of data integration and non-redundant data storage described above. Consider the
following problems with attempting to handle multiple relationships in simple
linear files, using the binary one-to-many relationship between General Hardware
Company’s salespersons and customers as an example.

First, the Customer file of Figure 3.7 does the job with its Salesperson Number
field. The fact that, for example, salesperson number 137 is associated with four
of the customers (it appears in four of the records) while, for example, customer
number 1826 has only one salesperson associated with it demonstrates that the
one-to-many relationship has been achieved. However, as has already been shown,
the two files of this figure lack an efficient data integration mechanism; i.e., trying to
link detailed salesperson data with associated customer data is laborious. (Actually,
as will be seen later in this book, the structures of Figure 3.7 are quite viable in
the relational DBMS environment. In that case, the relational DBMS software will
handle the data integration requirement. But without that relational DBMS software,
these structures are deficient in terms of data integration.) Also, the combined file
of Figure 3.8 supports the one-to-many relationship but, of course, introduces data
redundancy.

Figure 3.9 shows a ‘‘horizontal’’ solution to the problem. The Salesperson
Number field has been removed from the Customer file. Instead, each record in
the Salesperson file lists all the customers, by customer number, that the particular
salesperson is responsible for. This could conceivably be implemented as one
variable-length field of some sort containing all the associated customer numbers
for each salesperson, or it could be implemented as a series of customer number

The Database Concept 57

FIGURE 3.9
General Hardware Company combined
files: One-to-many relationship horizontal
variation

(a) Salesperson file

Salesperson Salesperson Commission Year Customer
Number Name Percentage of Hire Numbers

137 Baker 10 1995 0121, 0933, 1047, 1826

186 Adams 15 2001 0839, 2267

204 Dickens 10 1998 2198

361 Carlyle 20 2001 1525, 1700

(b) Customer file

Customer Customer
Number Name HQ City

0121 Main St. Hardware New York

0839 Jane’s Stores Chicago

0933 ABC Home Stores Los Angeles

1047 Acme Hardware Store Los Angeles

1525 Fred’s Tool Stores Atlanta

1700 XYZ Stores Washington

1826 City Hardware New York

2198 Western Hardware New York

2267 Central Stores New York

fields. While this arrangement does represent the one-to-many relationship, it is
unacceptable for two reasons. One is that the record length could be highly variable
depending on how many customers a particular salesperson is responsible for. This
can be tricky from a space management point of view. If a new customer is added
to a salesperson’s record, the new larger size of the record may preclude its being
stored in the same place on the disk as it came from, but putting it somewhere else
may cause performance problems in future retrievals. The other reason is that once
a given salesperson record is retrieved, the person or program that retrieved it would
have a difficult time going through all the associated customer numbers looking for
the one desired. With simple files like these, the normal expectation is that there
will be one value of each field type in each record (e.g. one salesperson number,
one salesperson name, and so on). In the arrangement in Figure 3.9, the end-user
or supporting software would have to deal with a list of values, i.e. of customer
numbers, upon retrieving a salesperson record. This would be an unacceptably
complex process.

Figure 3.10 shows a ‘‘vertical’’ solution to the problem. In a single file, each
salesperson record is immediately followed by the records for all of the customers
for which the salesperson is responsible. While this does preserve the one-to-many
relationship, the complexities involved in a system that has to manage multiple
record types in a single file make this solution unacceptable, too.

A database management system must be able to handle all of the various
unary, binary, and ternary relationships in a logical and efficient way that does
not introduce data redundancy or interfere with data integration. The database
management system approaches that are in use today all satisfy this requirement. In

58 C h a p t e r 3 The Database Management System Concept

F IGURE 3.10
General Hardware Company combined
files: One-to-many relationship vertical
variation

0121

0933

1047

1826

Main St. Hardware

ABC Home Stores

Acme Hardware Store

City Hardware

137

137

137

137

New York

Los Angeles

Los Angeles

New York

2198 Western Hardware 204 New York

361 Carlyle 20 2001

204 Dickens 10 1998

186 Adams 15 2001

137 Baker 10 1995

1525

1700

Fred’s Tool Stores

XYZ Stores

361

361

Atlanta

Washington

0839

2267

Jane’s Stores

Central Stores

186

186

Chicago

New York

particular, the way that the relational approach to database management handles it
will be explained in detail.

Data Control Issues

The people responsible for managing the data in an information systems environment
must be concerned with several data control issues. This is true regardless of which
database management system approach is in use. It is even true if no database
management system is in use, that is, if the data is merely stored in simple files.
Most prominent among these data control issues are data security, backup and
recovery, and concurrency control, Figure 3.11. These are introduced here and will
be covered in more depth later in this book. The reason for considering these data
control issues in this discussion of the essence of the database management system

F IGURE 3.11
Three data control issues

Concurrency Control

Security Backup and Recovery

The Database Concept 59

concept is that such systems should certainly be expected to handle these issues
frequently for all the data stored in the system’s databases.

Computer security has become a very broad topic with many facets and
concerns. These include protecting the physical hardware environment, defending
against hacker attacks, encrypting data transmitted over networks, educating
employees on the importance of protecting the company’s data, and many more. All
computer security exposures potentially affect a company’s data. Some exposures
represent direct threats to data while others are more indirect. For example, the theft
of transmitted data is a direct threat to data while a computer virus, depending on
its nature, may corrupt programs and systems in such a way that the data is affected
on an incidental or delayed basis. The types of direct threats to data include outright
theft of the data, unauthorized exposure of the data, malicious corruption of the
data, unauthorized updates of the data, and loss of the data. Protecting a company’s
data assets has become a responsibility that is shared by its operating systems,
special security utility software, and its database management systems. All database
management systems incorporate features that are designed to help protect the data
in their databases.

Data can be lost or corrupted in any of a variety of ways, not just from the
data security exposures just mentioned. Entire files, portions of databases, or entire
databases can be lost when a disk drive suffers a massive accidental or deliberate
failure. At the extreme, all of a company’s data can be lost to a disaster such as
a fire, a hurricane, or an earthquake. Hackers, computer viruses, or even poorly
written application programs can corrupt from a few to all of the records of a file
or database. Even an unintentional error in entering data into a single record can
be propagated to other records that use its values as input into the creation of their
values. Clearly, every company (and even every PC user!) must have more than
one copy of every data file and database. Furthermore, some of the copies must be
kept in different buildings, or even different cities, to prevent a catastrophe from
destroying all copies of the data. The process of using this duplicate data, plus
other data, special software, and even specially designed disk devices to recover
lost or corrupted data is known as ‘‘backup and recovery.’’ As a key issue in data
management, backup and recovery must be considered and incorporated within the
database management system environment.

In today’s multi-user environments, it is quite common for two or more users
to attempt to access the same data record simultaneously. If they are merely trying
to read the data without updating it, this does not cause a problem. However, if two
or more users are trying to update a particular record simultaneously, say a bank
account balance or the number of available seats on an airline flight, they run the
risk of generating what is known as a ‘‘concurrency problem.’’ In this situation,
the updates can interfere with each other in such a way that the resulting data values
will be incorrect. This intolerable possibility must be guarded against and, once
again, the database management system must be designed to protect its databases
from such an eventuality.

A fundamental premise of the database concept is that these three data control
issues—data security, backup and recovery, and concurrency—must be managed
by or coordinated with the database management system. This means that when a
new application program is written for the database environment, the programmers
can concentrate on the details of the application and not have to worry about writing
code to manage these data control issues. It means that there is a good comfort
level that the potential problems caused by these issues are under control since

60 C h a p t e r 3 The Database Management System Concept

they are being managed by long-tested components of the DBMS. It means that
the functions are standard for all of the data in the environment, which leads to
easier management and economies of scale in assigning and training personnel to
be responsible for the data. This kind of commonality of control is a hallmark of the
database approach.

Data Independence

In the earlier days of ‘‘data processing,’’ many decisions involving the way that
application programs were written were made in concert with the specific file
designs and the choice of file organization and access method used. The program
logic itself was dependent upon the way in which the data is stored. In fact,
the ‘‘data dependence’’ was often so strong that if for any reason the storage
characteristics of the data had to be changed, the program itself had to be modified,
often extensively. That was a very undesirable characteristic of the data storage
and programming environments because of the time and expense involved in such
efforts. In practice, storage structures sometimes have to change, to reflect improved
storage techniques, application changes, attempts at sharing data, and performance
tuning, to name a few reasons. Thus, it is highly desirable to have a data storage and
programming environment in which as many types of changes in the data structure
as possible would not require changes in the application programs that use them.
This goal of ‘‘data independence’’ is an objective of today’s database management
systems.

DBMS APPROACHES

We have established a set of principles for the database concept and said that a
database management system is a software utility that embodies those concepts. The
next question concerns the nature of a DBMS in terms of how it organizes data and
how it permits its retrieval. Considering that the database concept is such a crucial
component of the information systems environment and that there must be a huge
profit motive tied up with it, you might think that many people have worked on the
problem over the years and come up with many different approaches to designing
DBMSs. It’s true that many very bright people have worked on this problem for a
long time but, interestingly, you can count the number of different viable approaches
that have emerged on the fingers of one hand. In particular, the central issue of
providing a non-redundant data environment that also looks as though it is integrated
is a very hard nut to crack. Let’s just say that we’re fortunate that even a small
number of practical ways to solve this problem have been discovered.

Basically, there are four major DBMS approaches:

■ Hierarchical
■ Network
■ Relational
■ Object-Oriented

The hierarchical and network approaches to database are both called
‘‘navigational’’ approaches because of the way that programs have to ‘‘navigate’’
through hierarchies and networks of data to find the data they need. Both

DBMS Approaches 61

CONCEPTS

IN ACT ION

3-B LANDAU UNIFORMS

Landau Uniforms is a premier sup-
plier of professional apparel to the healthcare community,
offering a comprehensive line of healthcare uniforms and
related apparel. Headquartered in Olive Branch, MS, the
company, which dates back to 1938, has continuously
expanded its operations both domestically and interna-
tionally and today includes corporate apparel among
its products. Landau sells its apparel though authorized
dealers throughout the U.S. and abroad.

Controlling Landau’s product flow in its warehouse
is a sophisticated information system that is anchored
in database management. Their order filling system,

‘‘Photo Courtesy of Landau Uniforms’’

implemented in 2001, is called the Garment Sortation
System It begins with taking orders that are then queued
in preparation for ‘‘waves’’ of as many as 80 orders to
be filled simultaneously. Each order is assigned a bin
at the end of a highly automated conveyor line. The
garments for the orders are picked from the shelves and
placed onto the beginning of the conveyor line. Scanning
devices then automatically direct the bar-coded garments
into the correct bin. When an order is completed, it
is boxed and sealed. The box then goes on another
conveyor where it is automatically weighed, a shipping
label is printed and attached to it, and it is routed to one

62 C h a p t e r 3 The Database Management System Concept

of several shipping docks, depending on which shipper is
being used. In addition, a bill is automatically generated
and sent to the customer. In fact, Landau bills its more
sophisticated customers electronically using an electronic
data interchange (EDI) system.

There are two underlying relational databases. The
initial order processing is handled using a DB2 database

running on an IBM ‘‘i’’ series computer. The orders are
passed on to the Garment Sortation System’s Oracle
database running on PCs. The shipping is once again
under the control of the DB2/‘‘i’’ series system. The
relational tables include an order table, a customer table,
a style master table, and, of course, a garment table with
2.4 million records.

of these technologies were developed in the 1960s and, relative to the other
approaches, are somewhat similar in structure. IBM’s Information Management
System (IMS), a DBMS based on the hierarchical approach, was released in 1969.
It was followed in the early 1970s by several network-based DBMSs developed
by such computer manufacturers of the time as UNIVAC, Honeywell, Burroughs,
and Control Data. There was also a network-based DBMS called Integrated Data
Management Store (IDMS) produced by an independent software vendor originally
called Cullinane Systems, which was eventually absorbed into Computer Associates.
These navigational DBMSs, which were suitable only for mainframe computers,
were an elegant solution to the redundancy/integration problem at the time that
they were developed. But they were complex, difficult to work with in many
respects, and, as we said, required a mainframe computer. Now often called ‘‘legacy
systems,’’ some of them interestingly have survived to this very day for certain
applications that require a lot of data and fast data response times.

The relational database approach became commercially viable in about 1980.
After several years of user experimentation, it became the preferred DBMS approach
and has remained so ever since. Chapters 4–8 of this book, as well as portions of later
chapters, are devoted to the relational approach. The object-oriented approach has
proven useful for a variety of niche applications and will be discussed in Chapter 9.
It is interesting to note that some key object-oriented database concepts have found

Y O U R

T U R N

3.2 INTEGRATING DATA

The need to integrate data is all
around us, even in our personal lives. We integrate data
many times each day without realizing that that’s what
we’re doing. When we compare the ingredients needed
for a recipe with the food ‘‘inventory’’ in our cupboards,
we are integrating data. When we think about buying
something and relate its price to the money we have in our
wallets or in our bank accounts or to the credit remaining
on our credit cards, we are integrating data. When we
compare our schedules with our children’s schedules and
perhaps those of others with whom we carpool, we are

integrating data. Can you think of other ways in which
you integrate data on a daily basis?

QUESTION:
Consider a medical condition for which you or someone

you know is being treated. Describe the different ways
that you integrate data in taking care of that condition.
Hints: Consider your schedule, your doctors’ schedules,
the amount of prescription medication you have on
hand, the inventory of medication at the pharmacy you
use, and so on.

Questions 63

their way into some of the mainstream relational DBMSs and some are described
as taking a hybrid ‘‘object/relational’’ approach to database.

SUMMARY

There are five major components in the database concept. One is the development of
a datacentric environment that promotes the idea of data being a significant corporate
resource and encourages the sharing of data. Another, which is really the central
premise of database management, is the ability to achieve data integration while
at the same time storing data in a non-redundant fashion. The third, which at the
structural level is actually closely related to the integration/redundancy paradigm,
is the ability to store data representing entities involved in multiple relationships
without introducing redundancy. Another component is the presence of a set of
data controls that address such issues as data security, backup and recovery, and
concurrency control. The final component is that of data independence, the ability
to modify data structures without having to modify programs that access them.

There are basically four approaches to database management: the early
hierarchical and network approaches, the current standard relational approach, and
the specialty object-oriented approach, many features of which are incorporated
into today’s expanded relational database management systems.

KEY TERMS

Attribute
Backup and recovery
Computer security
Concurrency control
Concurrency problem
Corporate resource
Data control issues
Data dependence
Data independence
Data integration
Data integrity problem

Data redundancy
Data retrieval
Data security
Datacentric environment
Direct access
Enterprise resource planning (ERP)

system
Entity
Entity set
Fact
Field

File
Logical sequential access
Manageable resource
Multiple relationships
Physical sequential access
Record
Sequential access
Software utility
Well integrated

QUESTIONS

1. What is data? Do you think the word ‘‘data’’ should
be treated as a singular or plural word? Why?

2. Name some entities and their attributes in a
university environment.

3. Name some entities and attributes in an insurance
company environment.

4. Name soe entities and attributes in a furniture store
environment.

5. What is the relationship between:
a. An entity and a record?

b. An attribute and a field?
c. An entity set and a file?

6. What is the difference between a record type and an
occurrence of that record? Give some examples.

7. Name the four basic operations on stored data. In
what important way is one in particular different
from the other three?

8. What is sequential access? What is direct access?
Which of the two is more important in today’s
business environment? Why?

64 C h a p t e r 3 The Database Management System Concept

9. Give an example of and describe an application that
would require sequential access in:
a. The university environment.
b. The insurance company environment.
c. The furniture store environment.

10. Give an example of and describe an application that
would require direct access in:
a. The university environment.
b. The insurance company environment.
c. The furniture store environment.

11. Should data be considered a true corporate resource?
Why or why not? Compare and contrast data to other
corporate resources (capital, plant and equipment,
personnel, etc.) in terms of importance, intrinsic
value, and modes of use.

12. Defend or refute the following statement: ‘‘Data is
the most important corporate resource because it
describes all of the others.’’

13. What are the two kinds of data redundancy, and
what are the three types of problems that they cause
in the information systems environment?

14. What factors might lead to redundant data across
multiple files? Is the problem managerial or techni-
cal in nature?

15. Describe the apparent tradeoff between data redun-
dancy and data integration in simple linear files.

16. In your own words, describe the key quality of a
DBMS that sets it apart from other data handling
systems.

17. Do you think that the single-file redundancy problem
is more serious, less serious, or about the same as
the multifile redundancy problem? Why?

18. What are the two defining goals of a database
management system?

19. What expectation should there be for a database
management system with regard to handling multi-
ple relationships? Why?

20. What are the problems with the ‘‘horizontal’’ and
‘‘vertical’’ solutions to the handling of multiple
relationships as described in the chapter?

21. What expectation should there be for a database
management system with regard to handling data
control issues such as data security, backup and
recovery, and concurrency control? Why?

22. What would the alternative be if database man-
agement systems were not designed to handle data
control issues such as data security, backup and
recovery, and concurrency control?

23. What is data independence? Why is it desirable?
24. What expectation should there be for a database

management system with regard to data indepen-
dence? Why?

25. What are the four major DBMS approaches? Which
approaches are used the most and least today?

EXERCISES

1. Consider a hospital in which each doctor is
responsible for many patients while each patient
is cared for by just one doctor. Each doctor has a
unique employee number, name, telephone number,
and office number. Each patient has a unique patient
number, name, home address, and home telephone
number.
a. What kind of relationship is there between

doctors and patients?
b. Develop sample doctor and patient data and

construct two files in the style of Figure 3.5
in which to store your sample data.

c. Do any fields have to be added to one or the
other of the two files to record the relationship
between doctors and patients? Explain.

d. Merge these two files into one, in the style of
Figure 3.6. Does this create any problems with
the data? Explain.

2. The Dynamic Chemicals Corp. keeps track of its
customers and its orders. Customers typically have
several outstanding orders while each order was
generated by a single customer. Each customer has a
unique customer number, a customer name, address,
and telephone number. An order has a unique order
number, a date, and a total cost.
a. What kind of relationship is there between

customers and orders?
b. Develop sample customer and order data and

construct two files in the style of Figure 3.5 in
which to store your sample data.

Minicases 65

c. Do any fields have to be added to one or the
other of the two files to record the relationship
between customers and orders? Explain.

d. Merge these two files into one, in the style of
Figure 3.6. Does this create any problems with
the data? Explain.

MINICASES

1. Answer the following questions based on the following
Happy Cruise Lines’ data.

(a) Ship table

Ship Ship Year Weight
Number Name Built (Tons)

005 Sea Joy 1999 80,000

009 Ocean IV 2003 75,000

012 Prince Al 2004 90,000

020 Queen Shirley 1999 80,000

(b) Crew Member table

Sailor Sailor Ship Home Job

Number Name Number Country Title

00536 John Smith 009 USA Purser

00732 Ling Chang 012 China Engineer

06988 Maria Gonzalez 020 Mexico Purser

16490 Prashant Kumar 005 India Navigator

18535 Alan Jones 009 UK Cruise Director

20254 Jane Adams 012 USA Captain

23981 Rene Lopez 020 Philippines Captain

27467 Fred Jones 020 UK Waiter

27941 Alain DuMont 009 France Captain

28184 Susan Moore 009 Canada Wine Steward

31775 James Collins 012 USA Waiter

32856 Sarah McLachlan 012 Ireland Cabin Steward

a. Regarding the Happy Cruise Lines Crew Member
file.

i. Describe the file’s record type.
ii. Show a record occurrence.

iii. Describe the set or range of values that the Ship
Number field can take.

iv. Describe the set or range of values that the
Home Country field can take.

b. Assume that the records of the Crew Memberfile
are physically stored in the order shown.

i. Retrieve all of the records of the file physically
sequentially.

ii. Retrieve all of the records of the file logically
sequentially based on the Sailor Name field.

iii. Retrieve all of the records of the file logi-
cally sequentially based on the Sailor Number
field.

iv. Retrieve all of the records of the file logi-
cally sequentially based on the Ship Number
field.

v. Perform a direct retrieval of the records with a
Sailor Number field value of 27467.

vi. Perform a direct retrieval of the records with a
Ship Number field value of 020.

vii. Perform a direct retrieval of the records with a
Job Title field value of Captain.

c. The value 009 appears as a ship number once in the
Ship file and four times in the Crew Member file.
Does this constitute data redundancy? Explain.

d. Merge the Ship and Crew Member files based on
the common ship number field (in a manner similar
to Figure 3.8 for the General Hardware database).
Is the merged file an improvement over the two
separate files in terms of:

i. Data redundancy? Explain.
ii. Data integration? Explain.

e. Explain why the Ship Number field is in the Crew
Member file.

f. Explain why ship number 012 appears three times
in the Crew Member file.

g. How many files must be accessed to find:
i. The year that ship number 012 was built?

ii. The home country of sailor number 27941?
iii. The name of the ship on which sailor number

18535 is employed?
h. Describe the procedure for finding the weight of the

ship on which sailor number 00536 is employed.
i. What is the mechanism for recording the one-to-

many relationship between crew members and ships
in the Happy Cruise Lines database above?

66 C h a p t e r 3 The Database Management System Concept

2. Answer the following questions based on the following
Super Baseball League data.

(a) TEAM file.

Team Team
Number Name City Manager

137 Eagles Orlando Smith

275 Cowboys San Jose Jones

294 Statesmen Springfield Edwards

368 Pandas El Paso Adams

422 Sharks Jackson Vega

(b) PLAYER file.

Player Player Team
Number Name Age Position Number

1209 Steve Marks 24 Catcher 294

1254 Roscoe Gomez 19 Pitcher 422

1536 Mark Norton 32 First Baseman 368

1953 Alan Randall 24 Pitcher 137

2753 John Harbor 22 Shortstop 294

2843 John Yancy 27 Center Fielder 137

3002 Stuart Clark 20 Catcher 422

3274 Lefty Smith 31 Third Baseman 137

3388 Kevin Taylor 25 Shortstop 294

3740 Juan Vidora 25 Catcher 368

a. Regarding the Super Baseball League Player file
shown below.

i. Describe the file’s record type.
ii. Show a record occurrence.

iii. Describe the set or range of values that the
Player Number field can take.

b. Assume that the records of the Player file are
physically stored in the order shown.

i. Retrieve all of the records of the file physically
sequentially.

ii. Retrieve all of the records of the file logically
sequentially based on the Player Name field.

iii. Retrieve all of the records of the file logically
sequentially based on the Player Number field.

iv. Retrieve all of the records of the file logically
sequentially based on the Team Number field.

v. Perform a direct retrieval of the records with a
Player Number field value of 3834.

vi. Perform a direct retrieval of the records with a
Team Number field value of 20.

vii. Perform a direct retrieval of the records with an
Age field value of 24.

c. The value 294 appears as a team number once in the
Team file and three times in the Player file. Does
this constitute data redundancy? Explain.

d. Merge the Team and Player files based on the
common Team Number field (in a manner similar
to Figure 3.8 for the General Hardware database).
Is the merged file an improvement over the two
separate tables in terms of:

i. Data redundancy? Explain.
ii. Data integration? Explain.

e. Explain why the Team Number field is in the Player
file.

f. Explain why team number 422 appears twice in the
Player file.

g. How many files must be accessed to find:
i. The age of player number 1953?

ii. The name of the team on which player number
2288 plays?

iii. The number of the team on which player number
2288 plays?

h. Describe the procedure for finding the name of the
city in which player number 3002 is based.

i. What is the mechanism for recording the one-to-
many relationship between players and teams in the
Super Baseball League database, above?

C H A P T E R 4

RELATIONAL DATA
RETRIEVAL: SQL

A s we move forward into the discussion of database management systems, we
will cover a wide range of topics and skills including how to design databases,

how to modify database designs to improve performance, how to organize corporate
departments to manage databases, and others. But first, to whet your appetites for what
is to come, we’re going to dive right into one of the most intriguing aspects of database
management: retrieving data from relational databases using the industry-standard SQL
database management language.

Note: Some instructors may prefer to cover relational data retrieval with SQL
after logical database design, Chapter 7, or after physical database design,
Chapter 8. This chapter, Chapter 4 on relational data retrieval with SQL, is
designed to work just as well in one of those positions as it is here.

OBJECTIVES

■ Write SQL SELECT commands to retrieve relational data using a variety of
operators including GROUP BY, ORDER BY, and the built-in functions AVG,
SUM, MAX, MIN, COUNT.

■ Write SQL SELECT commands that join relational tables.
■ Write SQL SELECT subqueries.
■ Describe a strategy for writing SQL SELECT statements.
■ Describe the principles of a relational query optimizer.

68 C h a p t e r 4 Relational Data Retrieval: SQL

CHAPTER OUTLINE

Introduction
Data Retrieval with the SQL SELECT

Command
Introduction to the SQL SELECT

Command
Basic Functions
Built-In Functions
Grouping Rows
The Join
Subqueries

A Strategy for Writing SQL
SELECT Commands

Example: Good Reading Book Stores
Example: World Music Association
Example: Lucky Rent-A-Car
Relational Query Optimizer

Relational DBMS Performance
Relational Query Optimizer Concepts

Summary

INTRODUCTION

There are two aspects of data management: data definition and data manipulation.
Data definition, which is operationalized with a data definition language (DDL),
involves instructing the DBMS software on what tables will be in the database,
what attributes will be in the tables, which attributes will be indexed, and so
forth. Data manipulation refers to the four basic operations that can and must be
performed on data stored in any DBMS (or in any other data storage arrangement,
for that matter): data retrieval, data update, insertion of new records, and deletion
of existing records. Data manipulation requires a special language with which users
can communicate data manipulation commands to the DBMS. Indeed, as a class,
these are known as data manipulation languages (DMLs).

A standard language for data management in relational databases, known as
Structured Query Language or SQL, was developed in the early 1980s. SQL
incorporates both DDL and DML features. It was derived from an early IBM
research project in relational databases called ‘‘System R.’’ SQL has long since
been declared a standard by the American National Standards Institute (ANSI) and
by the International Standards Organization (ISO). Indeed, several versions of the
standards have been issued over the years. Using the standards, many manufacturers
have produced versions of SQL that are all quite similar, at least at the level at which
we will look at SQL in this book. These SQL versions are found in such mainstream
DBMSs as DB2, Oracle, MS Access, Informix, and others. SQL in its various imple-
mentations is used very heavily in practice today by companies and organizations
of every description, Advance Auto Parts being one of countless examples.

SQL is a comprehensive database management language. The most interesting
aspect of SQL and the aspect that we want to explore in this chapter is its rich
data retrieval capability. The other SQL data manipulation features, as well as the
SQL data definition features, will be considered in the database design chapters that
come later in this book.

DATA RETRIEVAL WITH THE SQL SELECT COMMAND

Introduction to the SQL SELECT Command

Data retrieval in SQL is accomplished with the SELECT command. There are a few
fundamental ideas about the SELECT command that you should understand before
looking into the details of using it. The first point is that the SQL SELECT command

Data Retrieval with the SQL SELECT Command 69

CONCEPTS

IN ACT ION

4-A ADVANCE AUTO PARTS

Advance Auto Parts is the second
largest retailer of automotive parts and accessories in the
U. S. The company was founded in 1932 with three stores
in Roanoke, VA, where it is still headquartered today. In
the 1980s, with fewer than 175 stores, the company
developed an expansion plan that brought it to over 350
stores by the end of 1993. It has rapidly accelerated its
expansion since then and, with mergers and acquisitions,
now has more than 2,400 stores and over 32,000
employees throughout the United States. Advance Auto
Parts sells over 250,000 automotive components. Its
innovative ‘‘Parts Delivered Quickly’’ (PDQ) system, which
was introduced in 1982, allows its customers access to
this inventory within 24 hours.

One of Advance Auto Parts’ key database appli-
cations, its Electronic Parts Catalog, gives the company
an important competitive advantage. Introduced in the
early 1990s and continually upgraded since then, this
system allows store personnel to look up products they
sell based on the customer’s vehicle type. The system’s
records include part descriptions, images, and drawings.

Photo Courtesy of Advance Auto Parts

Once identified, store personnel pull an item from the
store’s shelves if it’s in stock. If it’s not in stock, then
using the system they send out a real-time request for the
part to the home office to check on the part’s warehouse
availability. Within minutes the part is picked at a regional
warehouse and it’s on its way. In addition to its in-store
use, the system is used by the company’s purchasing and
other departments.

The system runs on an IBM mid-range system at
company headquarters and is built on the SQL Server
DBMS. Parts catalog data, in the form of updates,
is downloaded weekly from this system to a small
server located in each store. Additional data retrieval
at headquarters is accomplished with SQL. The 35-table
database includes a Parts table with 2.5 million rows
that accounts not only for all of the items in inventory
but for different brands of the same item. There is also
a Vehicle table with 31,000 records. These two lead to
a 45-million-record Parts Application table that describes
which parts can be used in which vehicles.

70 C h a p t e r 4 Relational Data Retrieval: SQL

is not the same thing as the relational algebra Select operator discussed in
Chapter 5. It’s a bit unfortunate that the same word is used to mean two different
things, but that’s the way it is. The fact is that the SQL SELECT command is
capable of performing relational Select, Project, and Join operations singly or in
combination, and much more

SQL SELECT commands are considered, for the most part, to be ‘‘declarative’’
rather than ‘‘procedural’’ in nature. This means that you specify what data you are
looking for rather than provide a logical sequence of steps that guide the system in
how to find the data. Indeed, as we will see later in this chapter, the relational DBMS
analyzes the declarative SQL SELECT statement and creates an access path, a
plan for what steps to take to respond to the query. The exception to this, and the
reason for the qualifier ‘‘for the most part’’ at the beginning of this paragraph, is
that a feature of the SELECT command known as ‘‘subqueries’’ permits the user to
specify a certain amount of logical control over the data retrieval process.

Another point is that SQL SELECT commands can be run in either a ‘‘query’’
or an ‘‘embedded’’ mode. In the query mode, the user types the command at a
workstation and presses the Enter key. The command goes directly to the relational
DBMS, which evaluates the query and processes it against the database. The
result is then returned to the user at the workstation. Commands entered this way
can normally also be stored and retrieved at a later time for repetitive use. In
the embedded mode, the SELECT command is embedded within the lines of a
higher-level language program and functions as an input or ‘‘read’’ statement for
the program. When the program is run and the program logic reaches the SELECT
command, the program executes the SELECT. The SELECT command is sent to
the DBMS which, as in the query-mode case, processes it against the database and
returns the results, this time to the program that issued it. The program can then use
and further process the returned data. The only tricky part to this is that traditional
higher-level language programs are designed to retrieve one record at a time. The
result of a relational retrieval command is itself, a relation. A relation, if it consists
of a single row, can resemble a record, but a relation of several rows resembles, if
anything, several records. In the embedded mode, the program that issued the SQL
SELECT command and receives the resulting relation back, must treat the rows of
the relation as a list of records and process them one at a time.

SQL SELECT commands can be issued against either the actual, physical
database tables or against a ‘‘logical view’’ of one table or of several joined tables.
Good business practice dictates that in the commercial environment, SQL SELECT
commands should be issued against such logical views rather than directly against
the base tables. As we will see later in this book, this is a simple but effective
security precaution.

Finally, the SQL SELECT command has a broad array of features and options
and we will only cover some of them at this introductory level. But what is also
very important is that our discussion of the SELECT command and the features that
we will cover will work in all of the major SQL implementations, such as Oracle,
MS Access, SQL Server, DB2, Informix, and so on, possibly with minor syntax
variations in some cases.

Basic Functions

The Basic SELECT Format In the simplest SELECT command, we will indicate from
which table of the database we want to retrieve data, which rows of that table we

Data Retrieval with the SQL SELECT Command 71

are interested in, and which attributes of those rows we want to retrieve. The basic
format of such a SELECT statement is:

SELECT<columns>
FROM<table>
WHERE<predicates identifying rows to be included>;

We will illustrate the SQL SELECT command with the General Hardware
Co. database of Figure 4.1, which is derived from the General Hardware

F IGURE 4.1
The General Hardware Company relational
database

(a) SALESPERSON table

SPNUM SPNAME COMMPERCT YEARHIRE OFFNUM

137 Baker 10 1995 1284

186 Adams 15 2001 1253

204 Dickens 10 1998 1209

361 Carlyle 20 2001 1227

(b) CUSTOMER table

CUSTNUM CUSTNAME SPNUM HQCITY

0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

1826 City Hardware 137 New York

2198 Western Hardware 204 New York

2267 Central Stores 186 New York

(c) CUSTOMER EMPLOYEE table

CUSTNUM EMPNUM EMPNAME TITLE

0121 27498 Smith Co-Owner

0121 30441 Garcia Co-Owner

0933 25270 Chen VP Sales

0933 30441 Levy Sales Manager

0933 48285 Morton President

1525 33779 Baker Sales Manager

2198 27470 Smith President

2198 30441 Jones VP Sales

2198 33779 Garcia VP Personnel

2198 35268 Kaplan Senior Accountant

(Continues)

72 C h a p t e r 4 Relational Data Retrieval: SQL

F IGURE 4.1 (Continued)
The General Hardware Company relational
database

(d) PRODUCT table

PRODNUM PRODNAME UNITPRICE

16386 Wrench 12.95

19440 Hammer 17.50

21765 Drill 32.99

24013 Saw 26.25

26722 Pliers 11.50

(e) SALES table

SPNUM PRODNUM QUANTITY

137 19440 473

137 24013 170

137 26722 688

186 16386 1745

186 19440 2529

186 21765 1962

186 24013 3071

204 21765 809

204 26722 734

361 16386 3729

361 21765 3110

361 26722 2738

(f) OFFICE Table

OFFNUM TELEPHONE SIZE

1253 901-555-4276 120

1227 901-555-0364 100

1284 901-555-7335 120

1209 901-555-3108 95

entity-relationship diagram of Figure 2.9. If you have not as yet covered the
database design chapters in this book, just keep in mind that some of the columns
are present to tie together related data from different tables, as discussed in Chapter
3. For example, the SPNUM column in the CUSTOMER table is present to tie
together related salespersons and customers.

As is traditional with SQL, the SQL statements will be shown in all capital
letters, except for data values taken from the tables. Note that the attribute names in
Figure 4.1 have been abbreviated for convenience and set in capital letters to make
them easily recognizable in the SQL statements. Also, spaces in the names have
been removed. Using the General Hardware database, an example of a simple query
that demonstrates the basic SELECT format is:

‘‘Find the commission percentage and year of hire of salesperson number 186.’’

Data Retrieval with the SQL SELECT Command 73

The SQL statement to accomplish this would be:

SELECT COMMPERCT, YEARHIRE
FROM SALESPERSON
WHERE SPNUM=186;

How is this command constructed? The desired attributes are listed in the SELECT
clause, the required table is listed in the FROM clause, and the restriction or
predicate indicating which row(s) is involved is shown in the WHERE clause in
the form of an equation. Notice that SELECT statements always end with a single
semicolon (;) at the very end of the entire statement.

The result of this statement is:

COMMPERCT YEARHIRE

15 2001

As is evident from this query, an attribute like SPNUM that is used to search
for the required rows, also known as a ‘‘search argument,’’ does not have to appear
in the query result, as long as its absence does not make the result ambiguous,
confusing, or meaningless.

To retrieve the entire record for salesperson 186, the statement would change
to:

SELECT *
FROM SALESPERSON
WHERE SPNUM=186;

resulting in:

SPNUM SPNAME COMMPERCT YEARHIRE OFFNUM

186 Adams 15 2001 1253

The ‘‘*’’ in the SELECT clause indicates that all attributes of the selected
row are to be retrieved. Notice that this retrieval of an entire row of the table is, in
fact, a relational Select operation (see Chapter 5)! A relational Select operation can
retrieve one or more rows of a table, depending, in this simple case, on whether
the search argument is a unique or non-unique attribute. The search argument is
non-unique in the following query:

‘‘List the salesperson numbers and salesperson names of those salespersons
who have a commission percentage of 10.’’

SELECT SPNUM, SPNAME
FROM SALESPERSON
WHERE COMMPERCT=10;

which results in:

SPNUM SPNAME

137 Baker

204 Dickens

74 C h a p t e r 4 Relational Data Retrieval: SQL

The SQL SELECT statement can also be used to accomplish a relational
Project operation. This is a vertical slice through a table involving all rows and
some attributes. Since all of the rows are included in the Project operation, there
is no need for a WHERE clause to limit which rows of the table are included. For
example,

‘‘List the salesperson number and salesperson name of all of the salespersons.’’

SELECT SPNUM, SPNAME
FROM SALESPERSON;

results in:

SPNUM SPNAME

137 Baker

186 Adams

204 Dickens

361 Carlyle

To retrieve an entire table, that is to design an SQL SELECT statement that
places no restrictions on either the rows or the attributes, you would issue:

SELECT *
FROM SALESPERSON;

and have as the result:

SPNUM SPNAME COMMPERCT YEARHIRE OFFNUM

137 Baker 10 1995 1284

186 Adams 15 2001 1253

204 Dickens 10 1998 1209

361 Carlyle 20 2001 1227

Comparisons In addition to equal (=), the standard comparison operators, greater
than (>), less than (<), greater than or equal to (>=), less than or equal to (<=),
and not equal to (<>) can be used in the WHERE clause.

‘‘List the salesperson numbers, salesperson names, and commission percentages
of the salespersons whose commission percentage is less than 12.’’

SELECT SPNUM, SPNAME, COMMPERCT
FROM SALESPERSON
WHERE COMMPERCT<12;

This results in:

SPNUM SPNAME COMMPERCT

137 Baker 10

204 Dickens 10

Data Retrieval with the SQL SELECT Command 75

As another example:

‘‘List the customer numbers and headquarters cities of the customers that have
a customer number of at least 1700.’’

SELECT CUSTNUM, HQCITY
FROM CUSTOMER
WHERE CUSTNUM>=1700;

results in:

CUSTNUM HQCITY

1700 Washington

1826 New York

2198 New York

2267 New York

ANDs and ORs Frequently, there is a need to specify more than one limiting
condition on a table’s rows in a query. Sometimes, for a row to be included in
the result it must satisfy more than one condition. This requires the Boolean AND
operator. Sometimes a row can be included if it satisfies one of two or more
conditions. This requires the Boolean OR operator.

AND An example in which two conditions must be satisfied is:

‘‘List the customer numbers, customer names, and headquarters cities of the
customers that are headquartered in New York and that have a customer number
higher than 1500.’’

SELECT CUSTNUM, CUSTNAME, HQCITY
FROM CUSTOMER
WHERE HQCITY=‘New York’
AND CUSTNUM>1500;

resulting in:

CUSTNUM CUSTNAME HQCITY

1826 City Hardware New York

2198 Western Hardware New York

2267 Central Stores New York

Notice that customer number 0121, which is headquartered in New York, was
not included in the results because it failed to satisfy the condition of having a
customer number greater than 1500. With the AND operator, it had to satisfy both
conditions to be included in the result.

OR To look at the OR operator, let’s change the last query to:

‘‘List the customer numbers, customer names, and headquarters cities of the
customers that are headquartered in New York or that have a customer number
higher than 1500.’’

76 C h a p t e r 4 Relational Data Retrieval: SQL

SELECT CUSTNUM, CUSTNAME, HQCITY
FROM CUSTOMER
WHERE HQCITY=‘New York’
OR CUSTNUM>1500;

results in:

CUSTNUM CUSTNAME HQCITY

0121 Main St. Hardware New York

1525 Fred’s Tool Stores Atlanta

1700 XYZ Stores Washington

1826 City Hardware New York

2198 Western Hardware New York

2267 Central Stores New York

Notice that the OR operator really means one or the other or both. Customer
0121 is included because it is headquartered in New York. Customers 1525 and 1700
are included because they have customer numbers higher than 1500. Customers
1826, 2198, and 2267 are included because they satisfy both conditions.

Both AND and OR What if both AND and OR are specified in the same WHERE
clause? AND is said to be ‘‘higher in precedence’’ than OR, and so all ANDs are
considered before any ORs are considered. The following query, which has to be
worded very carefully, illustrates this point:

‘‘List the customer numbers, customer names, and headquarters cities of the
customers that are headquartered in New York or that satisfy the two conditions
of having a customer number higher than 1500 and being headquartered in
Atlanta.’’

SELECT CUSTNUM, CUSTNAME, HQCITY
FROM CUSTOMER
WHERE HQCITY=‘New York’
OR CUSTNUM>1500
AND HQCITY=‘Atlanta’;

The result of this query is:

CUSTNUM CUSTNAME HQCITY

0121 Main St. Hardware New York

1525 Fred’s Tool Stores Atlanta

1826 City Hardware New York

2198 Western Hardware New York

2267 Central Stores New York

Notice that since the AND is considered first, one way for a row to qualify
for the result is if its customer number is greater than 1500 and its headquarters city
is Atlanta. With the AND taken first, it’s that combination or the headquarters city
has to be New York. Considering the OR operator first would change the whole

Data Retrieval with the SQL SELECT Command 77

complexion of the statement. The best way to deal with this, especially if there are
several ANDs and ORs in a WHERE clause, is by using parentheses. The rule is that
anything in parentheses is done first. If the parentheses are nested, then whatever
is in the innermost parentheses is done first and then the system works from there
towards the outermost parentheses. Thus, a ‘‘safer’’ way to write the last SQL
statement would be:

SELECT CUSTNUM, CUSTNAME, HQCITY
FROM CUSTOMER
WHERE HQCITY=‘New York’
OR (CUSTNUM>1500
AND HQCITY=‘Atlanta’);

If you really wanted the OR to be considered first, you could force it by writing
the query as:

SELECT CUSTNUM, CUSTNAME, HQCITY
FROM CUSTOMER
WHERE (HQCITY=‘New York’
OR CUSTNUM>1500)
AND HQCITY=‘Atlanta’;

This would mean that, with the AND outside of the parentheses, both of two
conditions have to be met for a row to qualify for the results. One condition is that
the headquarters city is New York or the customer number is greater than 1500.
The other condition is that the headquarters city is Atlanta. Since for a given row,
the headquarters city can’t be both Atlanta and New York, the situation looks grim.
But, in fact, customer number 1525 qualifies. Its customer number is greater than
1500, which satisfies the OR of the first of the two conditions, and its headquarters
city is Atlanta, which satisfies the second condition. Thus, both conditions are met
for this and only this row.

BETWEEN, IN, and LIKE BETWEEN, IN, and LIKE are three useful operators.
BETWEEN allows you to specify a range of numeric values in a search. IN allows
you to specify a list of character strings to be included in a search. LIKE allows you
to specify partial character strings in a ‘‘wildcard’’ sense.

BETWEEN Suppose that you want to find the customer records for those customers
whose customer numbers are between 1000 and 1700 inclusive (meaning that both
1000 and 1700, as well as all numbers in between them, are included). Using the
AND operator, you could specify this as:

SELECT *
FROM CUSTOMER
WHERE (CUSTNUM>=1000
AND CUSTNUM>=1700);

Or, you could use the BETWEEN operator and specify it as:

SELECT *
FROM CUSTOMER
WHERE CUSTNUM BETWEEN 1000 AND 1700;

78 C h a p t e r 4 Relational Data Retrieval: SQL

With either way of specifying it, the result would be:

CUSTNUM CUSTNAME SPNUM HQCITY

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

IN Suppose that you want to find the customer records for those customers
headquartered in Atlanta, Chicago, or Washington. Using the OR operator, you
could specify this as:

SELECT *
FROM CUSTOMER
WHERE (HQCITY=‘Atlanta’
OR HQCITY=‘Chicago’
OR HQCITY=‘Washington’);

Or, you could use the IN operator and specify it as:

SELECT *
FROM CUSTOMER
WHERE HQCITY IN (‘Atlanta’, ‘Chicago’, ‘Washington’);

With either way of specifying it, the result would be:

CUSTNUM CUSTNAME SPNUM HQCITY

0839 Jane’s Stores 186 Chicago

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

LIKE Suppose that you want to find the customer records for those customers whose
names begin with the letter ‘‘A’’. You can accomplish this with the LIKE operator
and the ‘‘%’’ character used as a wildcard to represent any string of characters.
Thus, ‘A%’ means the letter ‘‘A’’ followed by any string of characters, which is the
same thing as saying ‘any word that begins with ‘‘A’’.’

SELECT *
FROM CUSTOMER
WHERE CUSTNAME LIKE ‘A%’;

The result would be:

CUSTNUM CUSTNAME SPNUM HQCITY

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

Note that, unlike BETWEEN and IN, there is no easy alternative way in SQL
of accomplishing what LIKE can do.

In a different kind of example, suppose that you want to find the customer
records for those customers whose names have the letter ‘‘a’’ as the second letter of
their names. Could you specify ‘%a%’? No, because the ‘%a’ portion of it would

Data Retrieval with the SQL SELECT Command 79

mean any number of letters followed by ‘‘a’’, which is not what you want. In
order to make sure that there is just one character followed by ‘‘a’’, which is the
same thing as saying that ‘‘a’’ is the second letter, you would specify ‘_a%’. The
‘‘_’’ wildcard character means that there will be exactly one letter (any one letter)
followed by the letter ‘‘a’’. The ‘‘%’’, as we already know, means that any string
of characters can follow afterwards.

SELECT *
FROM CUSTOMER
WHERE CUSTNAME LIKE ‘_a%’;

The result would be:

CUSTNUM CUSTNAME SPNUM HQCITY

0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

Notice that both the words ‘‘Main’’ and ‘‘Jane’s’’ have ‘‘a’’ as their second
letter. Also notice that, for example, customer number 2267 was not included in the
result. Its name, ‘‘Central Stores’’, has an ‘‘a’’ in it but it is not the second letter
of the name. Again, the single ‘‘_’’ character in the operator LIKE ‘_a%’ specifies
that there will be one character followed by ‘‘a’’. If the operator had been LIKE
‘%a%’, then Central Stores would have been included in the result.

Filtering the Results of an SQL Query Two ways to modify the results of an SQL SELECT
command are by the use of DISTINCT and the use of ORDER BY. It is important
to remember that these two devices do not affect what data is retrieved from the
database but rather how the data is presented to the user.

DISTINCT There are circumstances in which the result of an SQL query may contain
duplicate items and this duplication is undesirable. Consider the following query:

‘‘Which cities serve as headquarters cities for General Hardware customers?’’

This could be taken as a simple relational Project that takes the HQCITY column of
the CUSTOMER table as its result. The SQL command would be:

SELECT HQCITY
FROM CUSTOMER;

which results in:

HQCITY New York

Chicago

Los Angeles

Los Angeles

Atlanta

Washington

New York

New York

New York

80 C h a p t e r 4 Relational Data Retrieval: SQL

Technically, this is the correct result, but why is it necessary to list New York
four times or Los Angeles twice? Not only is it unnecessary to list them more than
once, but doing so produces unacceptable clutter. Based on the way the query was
stated, the result should have each city listed once. The DISTINCT operator is used
to eliminate duplicate rows in a query result. Reformulating the SELECT statement
as:

SELECT DISTINCT HQCITY
FROM CUSTOMER;

results in:

HQCITY

New York

Chicago

Los Angeles

Atlanta

Washington

ORDER BY The ORDER BY clause simply takes the results of an SQL query and
orders them by one or more specified attributes. Consider the following query:

‘‘Find the customer numbers, customer names, and headquarters cities of
those customers with customer numbers greater than 1000. List the results in
alphabetic order by headquarters cities.’’

SELECT CUSTNUM, CUSTNAME, HQCITY
FROM CUSTOMER
WHERE CUSTNUM>1000
ORDER BY HQCITY;

This results in:

CUSTNUM CUSTNAME HQCITY

1525 Fred’s Tool Stores Atlanta

1047 Acme Hardware Store Los Angeles

1826 City Hardware New York

2198 Western Hardware New York

2267 Central Stores New York

1700 XYZ Stores Washington

If you wanted to have the customer names within the same city alphabetized,
you would write:

SELECT CUSTNUM, CUSTNAME, HQCITY
FROM CUSTOMER
WHERE CUSTNUM>1000
ORDER BY HQCITY, CUSTNAME;

Data Retrieval with the SQL SELECT Command 81

This results in:

CUSTNUM CUSTNAME HQCITY

1525 Fred’s Tool Stores Atlanta

1047 Acme Hardware Store Los Angeles

2267 Central Stores New York

1826 City Hardware New York

2198 Western Hardware New York

1700 XYZ Stores Washington

The default order for ORDER BY is ascending. The clause can include the
term ASC at the end to make ascending explicit or it can include DESC for
descending order.

Built-In Functions

A number of so-called ‘‘built-in functions’’ give the SQL SELECT command
additional capabilities. They involve the ability to perform calculations based on
attribute values or to count the number of rows that satisfy stated criteria.

AVG and SUM Recall that the SALES table shows the lifetime quantity of particular
products sold by particular salespersons. For example, the first row indicates that
Salesperson 137 has sold 473 units of Product Number 19440 dating back to when
she joined the company or when the product was introduced. Consider the following
query:

‘‘Find the average number of units of the different products that Salesperson
137 has sold (i.e., the average of the quantity values in the first three records of
the SALES table).’’

Using the AVG operator, you would write:

SELECT AVG(QUANTITY)
FROM SALES
WHERE SPNUM=137;

and the result would be:

AVG(QUANTITY)

443.67

To find the total number of units of all products that she has sold, you would
use the SUM operator and write:

SELECT SUM(QUANTITY)
FROM SALES
WHERE SPNUM=137;

and the result would be:

SUM(QUANTITY)

1331

82 C h a p t e r 4 Relational Data Retrieval: SQL

MIN and MAX You can also find the minimum or maximum of a set of attribute
values. Consider the following query:

‘‘What is the largest number of units of Product Number 21765 that any
individual salesperson has sold?’’

Using the MAX operator, you would write:

SELECT MAX(QUANTITY)
FROM SALES
WHERE PRODNUM=21765;

and the result would be:

MAX(QUANTITY)

3110

To find the smallest number of units you simply replace MAX with MIN:

SELECT MIN(QUANTITY)
FROM SALES
WHERE PRODNUM=21765;

and get:

MIN(QUANTITY)

809

COUNT COUNT is a very useful operator that counts the number of rows that
satisfy a set of criteria. It is often used in the context of ‘‘how many of something’’
meet some stated conditions. Consider the following query:

‘‘How many salespersons have sold Product Number 21765?’’

Remember that each row of the SALES table describes the history of a particular
salesperson selling a particular product. That is, each combination of SPNUM
and PRODNUM is unique; there can only be one row that involves a particular
SPNUM/PRODNUM combination. If you can count the number of rows of that
table that involve Product Number 21765, then you know how many salespersons
have a history of selling it. Using the notational device COUNT(*), the SELECT
statement is:

SELECT COUNT(*)
FROM SALES
WHERE PRODNUM=21765;

and the answer is:

COUNT(*)

3

Data Retrieval with the SQL SELECT Command 83

Don’t get confused by the difference between SUM and COUNT. As we
demonstrated above, SUM adds up a set of attribute values; COUNT counts the
number of rows of a table that satisfy a set of stated criteria.

Grouping Rows

Using the built-in functions, we were able to calculate results based on attribute
values in several rows of a table. In effect, we formed a single ‘‘group’’ of rows and
performed some calculation on their attribute values. There are many situations that
require such calculations to be made on several different groups of rows. This is a
job for the GROUP BY clause.

GROUP BY A little earlier we found the total number of units of all products that
one particular salesperson has sold. It seems reasonable that at some point we might
want to find the total number of units of all products that each salesperson has sold.
That is, we want to group together the rows of the SALES table that belong to each
salesperson and calculate a value—the sum of the Quantity attribute values in this
case—for each such group. Here is how such a query might be stated:

‘‘Find the total number of units of all products sold by each salesperson.’’

The SQL statement, using the GROUP BY clause, would look like this:

SELECT SPNUM, SUM(QUANTITY)
FROM SALES
GROUP BY SPNUM;

and the results would be:

SPNUM SUM(QUANTITY)

137 1331

186 9307

204 1543

361 9577

Notice that GROUP BY SPNUM specifies that the rows of the table are to
be grouped together based on having the same value in their SPNUM attribute.
All the rows for Salesperson Number 137 will form one group, all of the rows for
Salesperson Number 186 will form another group, and so on. The Quantity attribute
values in each group will then be summed—SUM(QUANTITY)—and the results
returned to the user. But it is not enough to provide a list of sums:

1331

9307

1543

9577

These are indeed the sums of the quantities for each salesperson But, without
identifying which salesperson goes with which sum, they are meaningless! That’s

84 C h a p t e r 4 Relational Data Retrieval: SQL

why the SELECT clause includes both the SPNUM and the SUM(QUANTITY).
Including the attribute(s) specified in the GROUP BY clause in the SELECT clause
allows you to properly identify the sums calculated for each group.

An SQL statement with a GROUP BY clause may certainly also include a
WHERE clause. Thus, the query:

‘‘Find the total number of units of all products sold by each salesperson whose
salesperson number is at least 150.’’

would look like:

SELECT SPNUM, SUM(QUANTITY)
FROM SALES
WHERE SPNUM>=150
GROUP BY SPNUM;

and the results would be:

SPNUM SUM(QUANTITY)

186 9307

204 1543

361 9577

HAVING Sometimes there is a need to limit the results of a GROUP BY based on
the values calculated for each group with the built-in functions. For example, take
the last query above,

‘‘Find the total number of units of all products sold by each salesperson whose
salesperson number is at least 150.’’

Now modify it with an additional sentence so that it reads:

‘‘Find the total number of units of all products sold by each salesperson
whose salesperson number is at least 150. Include only salespersons whose total
number of units sold is at least 5000.’’

This would be accomplished by adding a HAVING clause to the end of the SELECT
statement:

SELECT SPNUM, SUM(QUANTITY)
FROM SALES
WHERE SPNUM>=150
GROUP BY SPNUM
HAVING SUM(QUANTITY)>=5000;

and the results would be:

SPNUM SUM(QUANTITY)

186 9307

361 9577

with Salesperson Number 204, with a total of only 1543 units sold, dropping out of
the results.

Data Retrieval with the SQL SELECT Command 85

Notice that in this last SELECT statement, there are two limitations One,
that the Salesperson Number must be at least 150, appears in the WHERE clause
and the other, that the sum of the number of units sold must be at least 5000,
appears in the HAVING clause. It is important to understand why this is so. If the
limitation is based on individual attribute values that appear in the database, then
the condition goes in the WHERE clause. This is the case with the limitation based
on the Salesperson Number value. If the limitation is based on the group calculation
performed with the built-in function, then the condition goes in the HAVING clause.
This is the case with the limitation based on the sum of the number of product units
sold.

The Join

Up to this point, all the SELECT features we have looked at have been shown in
the context of retrieving data from a single table. The time has come to look at how
the SQL SELECT command can integrate data from two or more tables or ‘‘join’’
them. There are two specifications to make in the SELECT statement to make a
join work. One is that the tables to be joined must be listed in the FROM clause.
The other is that the join attributes in the tables being joined must be declared and
matched to each other in the WHERE clause. And there is one more point. Since two
or more tables are involved in a SELECT statement that involves a join, there is the
possibility that the same attribute name can appear in more than one of the tables.
When this happens, these attribute names must be ‘‘qualified’’ with a table name
when used in the SELECT statement. All of this is best illustrated in an example.

Consider the following query, which we discussed earlier in this book:

‘‘Find the name of the salesperson responsible for Customer Number 1525.’’

The SELECT statement to satisfy this query is:

SELECT SPNAME
FROM SALESPERSON, CUSTOMER
WHERE SALESPERSON.SPNUM=CUSTOMER.SPNUM
AND CUSTNUM=1525;

and the result is:

SPNAME

Carlyle

Let’s take a careful look at this last SELECT statement. Notice that the two
tables involved in the join, SALESPERSON and CUSTOMER, are listed in the
FROM clause. Also notice that the first line of the WHERE clause:

SALESPERSON.SPNUM = CUSTOMER.SPNUM

links the two join attributes: the SPNUM attribute of the SALESPERSON table
(SALESPERSON.SPNUM) and the SPNUM attribute of the CUSTOMER table
(CUSTOMER.SPNUM). The notational device of having the table name ‘‘.’’ the
attribute name is known as ‘‘qualifying’’ the attribute name. As we said earlier,
this qualification is necessary when the same attribute name is used in two or more
tables in a SELECT statement. By the way, notice in the SELECT statement that

86 C h a p t e r 4 Relational Data Retrieval: SQL

the attributes SPNAME and CUSTNUM don’t have to be qualified because each
appears in only one of the tables included in the SELECT statement.

Here is an example of a join involving three tables, assuming for the moment
that salesperson names are unique:

‘‘List the names of the products of which salesperson Adams has sold more
than 2000 units.’’

The salesperson name data appears only in the SALESPERSON table and the
product name data appears only in the PRODUCT table. The SALES table shows
the linkage between the two, including the quantities sold. And so the SELECT
statement will be:

SELECT PRODNAME
FROM SALESPERSON, PRODUCT, SALES
WHERE SALESPERSON.SPNUM=SALES.SPNUM
AND SALES.PRODNUM=PRODUCT.PRODNUM
AND SPNAME=‘Adams’
AND QUANTITY>2000;

which results in:

PRODNAME

Hammer

Saw

Subqueries

A variation on the way that the SELECT statement works is when one SELECT
statement is ‘‘nested’’ within another in a format known as a subquery. This can
go on through several levels of SELECT statements, with each successive SELECT
statement contained in a pair of parentheses. The execution rule is that the innermost
SELECT statement is executed first and its results are then provided as input to the
SELECT statement at the next level up. This procedure can be an alternative to
the join. Furthermore, there are certain circumstances in which this procedure must

Y O U R

T U R N

4.1 QUERIES GALORE!

Having a relational database to
query in any business environment opens up a new world
of information for managers to use to help them run their
portion of the business.

QUESTION:
Think about a business environment that you are familiar

with from your daily life. It might be a university, a

supermarket, a department store, even a sports league.
Write a list of ten questions that you would like to be
able to ask that would enhance your interaction with
that environment. Is it reasonable that a database could
be constructed that would support your ability to ask
the questions you’ve come up with? Do you think that
you would be able to formulate your questions using
SQL? Explain.

Data Retrieval with the SQL SELECT Command 87

be used. These latter circumstances are common enough and important enough to
include in this treatment of the SQL SELECT command.

Subqueries as Alternatives to Joins Let’s reconsider the first join example given
above:

‘‘Find the name of the salesperson responsible for Customer Number 1525.’’

If you methodically weave through the database tables to solve this, as we discussed
earlier in the book, you start at the CUSTOMER table, find the record for Customer
Number 1525 and discover in that record that the salesperson responsible for
this customer is Salesperson Number 361. You then take that information to the
SALESPERSON table where you look up the record for Salesperson Number 361
and discover in it that the salesperson’s name is Carlyle. Using a subquery, this
logic can be built into an SQL statement as:

SELECT SPNAME
FROM SALESPERSON
WHERE SPNUM=

(SELECT SPNUM
FROM CUSTOMER
WHERE CUSTNUM=1525);

and the result will again be:

SPNAME

Carlyle

Follow the way that the description given above of methodically solving
the problem is reconstructed as a SELECT statement with a subquery. Since the
innermost SELECT (the indented one), which constitutes the subquery, is considered
first, the CUSTOMER table is queried first, the record for Customer Number 1525
is found and 361 is returned as the SPNUM result. How do we know that only one
salesperson number will be found as the result of the query? Because CUSTNUM is
a unique attribute, Customer Number 1525 can only appear in one record and that
one record only has room for one salesperson number! Moving along, Salesperson
Number 361 is then fed to the outer SELECT statement. This, in effect, makes the
main query, that is the outer SELECT, look like:

SELECT SPNAME
FROM SALESPERSON
WHERE SPNUM=361;

and this results in:

SPNAME

Carlyle

Notice, by the way, that in the SELECT statement, there is only one semicolon
at the end of the entire statement, including the subquery.

88 C h a p t e r 4 Relational Data Retrieval: SQL

When a Subquery is Required There is a very interesting circumstance in which a
subquery is required. This situation is best explained with an example up front.
Consider the following query:

‘‘Which salespersons with salesperson numbers greater than 200 have the lowest
commission percentage?’’ (We’ll identify salespersons by their salesperson
number.)

This seems like a perfectly reasonable request, and yet it turns out to be deceptively
difficult. The reason is that the query really has two very different parts. First, the
system has to determine what the lowest commission percentage is for salespersons
with salesperson numbers greater than 200. Then, it has to see which of these
salespersons has that lowest percentage. It’s really tempting to try to satisfy this
type of query with an SQL SELECT statement like:

SELECT SPNUM, MIN(COMMPERCT)
FROM SALESPERSON
WHERE SPNUM>200;

or, perhaps:

SELECT SPNUM
FROM SALESPERSON
WHERE SPNUM>200
AND COMMPERCT=MIN(COMMPERCT);

But these will not work! It’s like asking SQL to perform two separate operations
and somehow apply one to the other in the correct sequence. This turns out to be
asking too much. But there is a way to do it and it involves subqueries. In fact, what
we will do is ask the system to determine the minimum commission percentage
first, in a subquery, and then use that information in the main query to determine
which salespersons have it:

SELECT SPNUM
FROM SALESPERSON
WHERE SPNUM>200
AND COMMPERCT=

(SELECT MIN(COMMPERCT)
FROM SALESPERSON)
WHERE SPNUM>200);

which results in:

SPNUM

204

The minimum commission percentage across all of the salespersons with
salesperson numbers greater than 200 is determined first in the subquery and the
result is 10. The main query then, in effect, looks like:

SELECT SPNUM
FROM SALESPERSON

Data Retrieval with the SQL SELECT Command 89

WHERE SPNUM>200
AND COMMPERCT=10;

which yields the result of salesperson number 204, as shown.
Actually, this is a very interesting example of a required subquery. What

makes it really interesting is why the predicate, SPNUM>200, appears in both
the main query and the subquery. Clearly it has to be in the subquery because
you must first find the lowest commission percentage among the salespersons with
salesperson numbers greater than 200. But then why does it have to be in the
main query, too? The answer is that the only thing that the subquery returns to the
main query is a single number, specifically a commission percentage. No memory
is passed on to the main query of how the subquery arrived at that value. If you
remove SPNUM>200 from the main query, so that it now looks like:

SELECT SPNUM
FROM SALESPERSON
WHERE COMMPERCT=

(SELECT MIN(COMMPERCT)
FROM SALESPERSON)
WHERE SPNUM>200);

you would find every salesperson with any salesperson number whose commission
percentage is equal to the lowest commission percentage of the salespersons with
salesperson numbers greater than 20. (Of course, if for some reason you do want
to find all of the salespersons, regardless of salesperson number, who have the
same commission percentage as the salesperson who has the lowest commission
percentage of the salespersons with salesperson numbers greater than 20, then this
last SELECT statement is exactly what you should write!)

A Strategy for Writing SQL SELECT Commands

Before we go on to some more examples, it will be helpful to think about developing
a strategy for writing SQL SELECT statements. The following is an ordered list of
steps.

1. Determine what the result of the query is to be and write the needed attributes
and functions in the SELECT clause. This may seem an obvious instruction, but
it will really pay to think this through carefully before going on. In fact, it is
at this very first step that you must determine whether the query will require a
GROUP BY clause or a subquery. If either of these is required, you should start
outlining the overall SELECT statement by writing the GROUP BY clause or
the nested SELECT for the subquery further down the page (or screen).

2. Determine which tables of the database will be needed for the query and write
their names in the FROM clause. Include only those tables that are really
necessary for the query. Sometime this can be tricky. For example, you might
need an attribute that is the primary key of a table and you might be tempted
immediately to include that table in the FROM clause. However, it could be that
the attribute in question is a foreign key in another table that is already in the
FROM clause for other reasons. It is then unnecessary to include the table in
which it is the primary key unless, of course, other attributes from that table are
needed, too.

90 C h a p t e r 4 Relational Data Retrieval: SQL

3. Begin constructing the WHERE clause by equating the join attributes from the
tables that are in the FROM clause. Once this job is out of the way, you can
begin considering the row limitations that must be stated in the WHERE clause.

4. Continue filling in the details of the WHERE clause, the GROUP BY clause,
and any subqueries.

One final piece of advice: If you are new to writing SQL SELECT commands
but you have a programming background, you may be tempted to avoid setting up
joins and try writing subqueries instead. Resist this temptation, for two reasons!
One is that joins are an essential part of the relational database concept. Embrace
them; don’t be afraid of them. The other is that writing multiple levels of nested
subqueries can be extremely error prone and difficult to debug.

EXAMPLE: GOOD READING BOOK STORES

The best way to gain confidence in understanding SQL SELECT statements is to
write some! And there are some further refinements of the SQL SELECT that we
have yet to present. We will use the same three example databases that appeared
in previous chapters but, as with the General Hardware database, we will shorten
the attribute names. We will state a variety of queries and then give the SELECT
statements that will satisfy them, plus commentary as appropriate. You should try
to write the SELECT statements yourself before looking at our solutions!

Figure 4.2 is the Good Reading Bookstores relational database. Here is a list
of queries for Good Reading Bookstores.

F IGURE 4.2
Good reading Bookstores Relational
database

SALE table

BOOKNUM CUSTNUM DATE PRICE QUANTITY

WRITING table

BOOKNUM AUTHORNUM

CUSTOMER table

CUSTNUM CUSTNAME STREET CITY STATE COUNTRY

BOOK table

BOOKNUM BOOKNAME PUBYEAR PAGES PUBNAME

AUTHOR table

AUTHORNUM AUTHORNAME YEARBORN YEARDIED

PUBLISHER table

PUBNAME CITY COUNTRY TELEPHONE YRFOUND

Example: Good Reading Book Stores 91

1. ‘‘Find the book number, book name, and number of pages of all the books
published by London Publishing Ltd. List the results in order by book
name.’’

This query obviously requires the PUBNAME attribute but it does not require
the PUBLISHER table. All of the information needed is in the BOOK table,
including the PUBNAME attribute, which is there as a foreign key. The SELECT
statement is:

SELECT BOOKNUM, BOOKNAME, PAGES
FROM BOOK
WHERE PUBNAME=‘London Publishing Ltd.’
ORDER BY BOOKNAME;

2. ‘‘How many books of at least 400 pages does Good Reading Bookstores
carry that were published by publishers based in Paris, France?’’

This is a straightforward join between the PUBLISHER and BOOK tables that
uses the built-in function COUNT. All of the attribute names are unique between
the two tables, except for PUBNAME, which must be qualified with a table name
every time it is used. Notice that ‘Good Reading Bookstores’ does not appear as
a condition in the SELECT statement, although it was mentioned in the query.
The entire database is about Good Reading Bookstores and no other! There is no
BOOKSTORE CHAIN table in the database and there is no STORENAME or
CHAINNAME attribute in any of the tables.

SELECT COUNT(*)
FROM PUBLISHER, BOOK
WHERE PUBLISHER.PUBNAME=BOOK.PUBNAME
AND CITY=‘Paris’
AND COUNTRY=‘France’
AND PAGES>=400;

3. ‘‘List the publishers in Belgium, Brazil, and Singapore that publish books
written by authors who were born before 1920.’’

Sometimes a relatively simple-sounding query can be fairly involved. This
query actually requires four tables of the database! To begin with, we need the
PUBLISHER table because that’s the only place that a publisher’s country is
stored. But we also need the AUTHOR table because that’s where author birth
years are stored. The only way to tie the PUBLISHER table to the AUTHOR table
is to connect PUBLISHER to BOOK, then to connect BOOK to WRITING, and
finally to connect WRITING to AUTHOR. With simple, one-attribute keys such
as those in these tables, the number of joins will be one fewer than the number
of tables. The FROM clause below shows four tables and the first three lines of
the WHERE clause show the three joins. Also, notice that since a publisher may
have published more than one book with the stated specifications, DISTINCT
is required to prevent the same publisher name from appearing several, perhaps
many, times in the result. Finally, since we want to include publishers in three
specific countries, we list the three countries as Belgium, Brazil, and Singapore.
But, in the SELECT statement, we have to indicate that for a record to be
included in the result, the value of the COUNTRY attribute must be Belgium,
Brazil or Singapore.

92 C h a p t e r 4 Relational Data Retrieval: SQL

SELECT DISTINCT PUBNAME
FROM PUBLISHER, BOOK, WRITING, AUTHOR
WHERE PUBLISHER.PUBNAME=BOOK.PUBNAME
AND BOOK.BOOKNUM=WRITING.BOOKNUM
AND WRITING.AUTHORNUM=AUTHOR.AUTHORNUM
AND COUNTRY IN (‘Belgium’, ‘Brazil’, ‘Singapore’)
AND YEARBORN < 1920;

4. ‘‘How many books did each publisher in Oslo, Norway; Nairobi, Kenya;
and Auckland, New Zealand, publish in 2001?’’

The keyword here is ‘‘each.’’ This query requires a separate total for each
publisher that satisfies the conditions. This is a job for the GROUP BY clause.
We want to group together the records for each publisher and count the number of
records in each group. Each line of the result must include both a publisher name
and count of the number of records that satisfy the conditions. This SELECT
statement requires both a join and a GROUP BY. Notice the seeming complexity
but really the unambiguous beauty of the ANDs and ORs structure regarding the
cities and countries.

SELECT PUBNAME, CITY, COUNTRY, COUNT(*)
FROM PUBLISHER, BOOK
WHERE PUBLISHER.PUBNAME=BOOK.PUBNAME
AND ((CITY=‘Oslo’ AND COUNTRY=‘Norway’)

OR (CITY=‘Nairobi’ AND COUNTRY=‘Kenya’)
OR (CITY=‘Auckland’ AND COUNTRY=‘New Zealand’))

AND PUBYEAR=2001
GROUP BY PUBNAME;

5. ‘‘Which publisher published the book that has the earliest publication year
among all the books that Good Reading Bookstores carries?’’

All that is called for in this query is the name of the publisher, not the name
of the book. This is a case that requires a subquery. First the system has to
determine the earliest publication year, then it has to see which books have that
earliest publication year. Once you know the books, their records in the BOOK
table give you the publisher names. Since more than one publisher may have
published a book in that earliest year, there could be more than one publisher
name in the result. And, since a particular publisher could have published more
than one book in that earliest year, DISTINCT is required to avoid having that
publisher’s name listed more than once.

SELECT DISTINCT PUBNAME
FROM BOOK
WHERE PUBYEAR=

(SELECT MIN(PUBYEAR)
FROM BOOK);

EXAMPLE: WORLD MUSIC ASSOCIATION

Figure 4.3 is the World Music Association relational database. Here is a list of
queries for the World Music Association.

Example: World Music Association 93

FIGURE 4.3
World Music Association relational
database

RECORDING table

ORCHNAME YEAR PRICECOMPOSITIONNAME

COMPOSITION table

COMPOSITIONNAME

COMPOSITIONNAME

YEAR

YEAR

COMPOSERNAME

COMPOSERNAME

COMPOSER table

COMPOSERNAME COUNTRY DATEBIRTH

DEGREE table

MUSNUM DEGREE UNIVERSITY YEAR

MUSICIAN table

MUSNUM MUSNAME INSTRUMENT ANNSALARY ORCHNAME

ORCHESTRA table

ORCHNAME CITY COUNTRY MUSICDIR

1. ‘‘What is the total annual salary cost for all the violinists in the Berlin
Symphony Orchestra?’’

SELECT SUM(ANNSALARY)
FROM MUSICIAN
WHERE ORCHNAME=‘Berlin Symphony Orchestra’
AND INSTRUMENT=‘Violin’;

2. ‘‘Make a single list, in alphabetic order, of all of the universities attended by
the cellists in India.’’

SELECT DISTINCT UNIVERSITY
FROM ORCHESTRA, MUSICIAN, DEGREE
WHERE ORCHESTRA.ORCHNAME=MUSICIAN.ORCHNAME
AND MUSICIAN.MUSNUM=DEGREE.MUSNUM
AND INSTRUMENT=‘Cello’
AND COUNTRY=‘India’
ORDER BY UNIVERSITY;

3. ‘‘What is the total annual salary cost for all of the violinists of each orchestra
in Canada? Include in the result only those orchestras whose total annual
salary for its violinists is in excess of $150,000.’’

Since this query requires a separate total for each orchestra, the SELECT
statement must rely on the GROUP BY clause. Since the condition that the

94 C h a p t e r 4 Relational Data Retrieval: SQL

total must be over 150,000 is based on figures calculated by the SUM built-in
function, it must be placed in a HAVING clause rather than in the WHERE
clause.

SELECT ORCHNAME, SUM(ANNSALARY)
FROM ORCHESTRA, MUSICIAN
WHERE ORCHESTRA.ORCHNAME=MUSICIAN.ORCHNAME
AND COUNTRY=‘Canada’
AND INSTRUMENT=‘Violin’
GROUP BY ORCHNAME
HAVING SUM(ANNSALARY)>150,000;

4. ‘‘What is the name of the most highly paid pianist?’’

It should be clear that a subquery is required. First the system has to determine
what the top salary of pianists is and then it has to find out which pianists have
that salary.

SELECT MUSNAME
FROM MUSICIAN
WHERE INSTRUMENT=‘Piano’
AND ANNSALARY=

(SELECT MAX(ANNSALARY)
FROM MUSICIAN
WHERE INSTRUMENT=‘Piano’);

This is another example in which a predicate, INSTRUMENT=‘Piano’ in this
case, appears in both the main query and the subquery. Clearly it has to be in
the subquery because you must first find out how much money the highest-paid
pianist makes. But then why does it have to be in the main query, too? The
answer is that the only thing that the subquery returns to the main query is a single
number, specifically a salary value. No memory is passed on to the main query of
how the subquery arrived at that value. If you remove INSTRUMENT=‘Piano’
from the main query so that it now looks like:

SELECT MUSNAME
FROM MUSICIAN
WHERE ANNSALARY=

(SELECT MAX(ANNSALARY)
FROM MUSICIAN
WHERE INSTRUMENT=‘Piano’);

you would find every musician who plays any instrument whose salary is equal
to the highest- paid pianist. Of course, if for some reason you do want to find
all of the musicians, regardless of the instrument they play, who have the same
salary as the highest-paid pianist, then this last SELECT statement is exactly
what you should write.

5. ‘‘What is the name of the most highly paid pianist in any orchestra in
Australia?’’

This is the same idea as the last query but involves two tables, both of which
must be joined in both the main query and the subquery. The reasoning for this
is the same as in the last query. The salary of the most highly paid pianist in

Example: Lucky Rent-A-Car 95

Australia must be determined first in the subquery. Then that result must be used
in the main query, where it must be compared only to the salaries of Australian
pianists.

SELECT MUSNAME
FROM MUSICIAN, ORCHESTRA
WHERE MUSICIAN.ORCHNAME=ORCHESTRA.ORCHNAME
AND INSTRUMENT=‘Piano’
AND COUNTRY=‘Australia’
AND ANNSALARY=

(SELECT MAX(ANNSALARY)
FROM MUSICIAN, ORCHESTRA
WHERE MUSICIAN.ORCHNAME=ORCHESTRA.ORCHNAME
AND INSTRUMENT=‘Piano’
AND COUNTRY=‘Australia’);

EXAMPLE: LUCKY RENT-A-CAR

Figure 4.4 is the Lucky Rent-A-Car relational database. Here is a list of queries for
Lucky Rent-A-Car.

1. ‘‘List the manufacturers whose names begin with the letter ‘‘C’’ or the letter
‘‘D’’ and that are located in Japan.’’

SELECT MANUFNAME
FROM MANUFACTURER

F IGURE 4.4
Lucky Rent-A-Car relational database

RENTAL table

CARNUM CUSTNUM RENTALDATE RETURNDATE COST

CUSTOMER table

CUSTNUM CUSTNAME CUSTADDR CUSTPHONE

MAINTENANCE table

REPAIRNUM CARNUM DATE PROCEDURE MILEAGE REPAIRTIME

CAR table

CARNUM MODEL YEAR CLASS MANUFNAME

MANUFACTURER table

MANUFNAME COUNTRY SALESREPNAME SALESREPPHONE

96 C h a p t e r 4 Relational Data Retrieval: SQL

WHERE (MANUFNAME LIKE ‘C%’
OR MANUFNAME LIKE ‘D%’)

AND COUNTRY=‘Japan’;

2. ‘‘What was the average mileage of the cars that had tune-ups in August,
2003?’’

SELECT AVG(MILEAGE)
FROM MAINTENANCE
WHERE PROCEDURE=‘Tune-Up’
AND DATE BETWEEN ‘AUG-01-2003’ AND ‘AUG-31-2003’;

The exact format for specifying dates may differ among SQL processors and a
given processor may have several options.

3. ‘‘How many different car models are made by manufacturers in Italy?’’

This query will use an interesting combination of COUNT and DISTINCT that
may not work in all SQL processors. In this case it literally counts the different
models among the cars made in Italy. Since many different cars are of the same
model, DISTINCT is needed to make sure that each model is counted just once.

SELECT COUNT(DISTINCT MODEL)
FROM MANUFACTURER, CAR
WHERE MANUFACTURER.MANUFNAME=CAR.MANUFNAME
AND COUNTRY=‘Italy’;

4. ‘‘How many repairs were performed on each car manufactured by Superior
Motors during the month of March, 2004? Include only cars in the result
that had at least three repairs.’’

SELECT CAR.CARNUM, COUNT(*)
FROM CAR, MAINTENANCE
WHERE CAR.CARNUM=MAINTENANCE.CARNUM
AND MANUFNAME=‘Superior Motors’
AND DATE BETWEEN ‘MAR-01-2004’ AND ‘MAR-31-2004’
GROUP BY CAR.CARNUM
HAVING COUNT(*)>=3;

5. ‘‘List the cars of any manufacturer that had an oil change in January, 2004,
and had at least as many miles as the highest-mileage car manufactured by
Superior Motors that had an oil change that same month.’’

SELECT MAINTENANCE.CARNUM
FROM MAINTENANCE
WHERE PROCEDURE=‘Oil Change’
AND DATE BETWEEN ‘JAN-01-2004’ AND ‘JAN-31-2004’
AND MILEAGE>=

(SELECT MAX(MILEAGE)
FROM CAR, MAINTENANCE
WHERE CAR.CARNUM, MAINTENANCE.CARNUM
AND PROCEDURE=‘Oil Change’
AND DATE BETWEEN ‘JAN-01-2004’ AND ‘JAN-31-2004’
AND MANUFNAME=‘Superior Motors’);

Relational Query Optimizer 97

RELATIONAL QUERY OPTIMIZER

Relational DBMS Performance

An ever-present issue in data retrieval is performance: the speed with which
the required data can be retrieved. In a typical relational database application
environment, and as we’ve seen in the examples above, many queries require only
one table. It is certainly reasonable to assume that such single-table queries using
indexes, hashing, and the like, should, more or less, not take any longer in a relational
database system environment than in any other kind of file management system.
But,what about the queries that involve joins? Recall the detailed explanation of how
data integration works earlier in the book that used the Salesperson and Customer
tables as an example. These very small tables did not pose much of a performance
issue, even if the join was carried out in the worst-case way, comparing every row
of one table to every row of the other table, as was previously described. But what
if we attempted to join a 1-million-row table with a 3-million-row table? How long
do you think that would take—even on a large, fast computer? It might well take
much longer than a person waiting for a response at a workstation would be willing
to tolerate. This was actually one of the issues that caused the delay of almost ten
years from the time the first article on relational database was published in 1970
until relational DBMSs were first offered commercially almost ten years later.

The performance issue in relational database management has been approached
in two different ways. One, the tuning of the database structure, which is known
as ‘‘physical database design,’’ will be the subject of an entire chapter of this
book, Chapter 8. It’s that important. The other way that the relational database
performance issue has been approached is through highly specialized software in
the relational DBMS itself. This software, known as a relational query optimizer,
is in effect an ‘‘expert system’’ that evaluates each SQL SELECT statement sent to
the DBMS and determines an efficient way to satisfy it.

Relational Query Optimizer Concepts

All major SQL processors (meaning all major relational DBMSs) include a query
optimizer. Using a query optimizer, SQL attempts to figure out the most efficient
way of answering a query, before actually responding to it. Clearly, a query that
involves only one table should be evaluated to take advantage of aids such as indexes
on pertinent attributes. But, again, the most compelling and interesting reason for
having a query optimizer in a relational database system is the goal of executing
multiple-table data integration or join-type operations without having to go through
the worst-case, very time-consuming, exhaustive row-comparison process. Exactly
how a specific relational DBMS’s query optimizer works is typically a closely
held trade secret. Retrieval performance is one way in which the vendors of these
products compete with one another. Nevertheless, there are some basic ideas that
we can discuss here.

When an SQL query optimizer is presented with a new SELECT statement to
evaluate, it seeks out information about the tables named in the FROM clause. This
information includes:

■ Which attributes of the tables have indexes built over them.
■ Which attributes have unique values.
■ How many rows each table has.

98 C h a p t e r 4 Relational Data Retrieval: SQL

The query optimizer finds this information in a special internal database known
as the ‘‘relational catalog,’’ which will be described further in Chapter 10.

The query optimizer uses the information about the tables, together with the
various components of the SELECT statement itself, to look for an efficient way to
retrieve the data required by the query. For example, in the General Hardware Co.
SELECT statement:

SELECT SPNUM, SPNAME

FROM SALESPERSON

WHERE COMMPERCT=10;

the query optimizer might check on whether the COMMPERCT attribute has an
index built over it. If this attribute does have an index, the query optimizer might
decide to use the index to find the rows with a commission percentage of 10.
However, if the number of rows of the SALESPERSON table is small enough, the
query optimizer might decide to read the entire table into main memory and scan it
for the rows with a commission percentage of 10.

Another important decision that the query optimizer makes is how to satisfy
a join. Consider the following General Hardware Co. example that we looked at
above:

SELECT SPNAME

FROM SALESPERSON, CUSTOMER

WHERE SALESPERSON.SPNUM=CUSTOMER.SPNUM

AND CUSTNUM=1525;

In this case, the query optimizer should be able to recognize that since CUSTNUM
is a unique attribute in the CUSTOMER table and only one customer number is
specified in the SELECT statement, only a single record from the CUSTOMER
table, the one for customer number 1525, will be involved in the join. Once it finds
this CUSTOMER record (hopefully with an index), it can match the SPNUM value
found in it against the SPNUM values in the SALESPERSON records looking for
a match. If it is clever enough to recognize that SPNUM is a unique attribute in
the SALESPERSON table, then all it has to do is find the single SALESPERSON
record (hopefully with an index) that has that salesperson number and pull the
salesperson name (SPNAME) out of it to satisfy the query. Thus, in this type of
case, an exhaustive join can be completely avoided.

When a more extensive join operation can’t be avoided, the query optimizer
can choose from one of several join algorithms. The most basic, known as a
Cartesian product, is accomplished algorithmically with a ‘‘nested-loop join.’’ One
of the two tables is selected for the ‘‘outer loop’’ and the other for the ‘‘inner loop.’’
Each of the records of the outer loop is chosen in succession and, for each, the
inner-loop table is scanned for matches on the join attribute. If the query optimizer
can determine that only a subset of the rows of the outer or inner tables is needed,
then only those rows need be included in the comparisons.

A more efficient join algorithm than the nested-loop join, the ‘‘merge-scan
join,’’ can be used only if certain conditions are met. The principle is that for the
merge-scan join to work, each of the two join attributes either must be in sorted
order or must have an index built over it. An index, by definition, is in sorted order
and so, one way or the other, each join attribute has a sense of order to it. If this

Questions 99

condition is met, then comparing every record of one table to every record of the
other table as in a nested-loop join is unnecessary. The system can simply start at
the top of each table or index, as the case may be, and move downwards, without
ever having to move upwards.

SUMMARY

SQL has become the standard relational database management data definition
and data manipulation language. Data retrieval in SQL is accomplished with the
SELECT command. SELECT commands can be run in a direct query mode or
embedded in higher-level language programs in an embedded mode. The SELECT
command can be used to retrieve one or more rows of a table, one or more columns
of a table, or particular columns of particular rows. There are built-in functions
that can sum and average data, find the minimum and maximum values of a set of
data, and count the number of rows that satisfy a condition. These built-in functions
can also be applied to multiple subsets or groups of rows. The SELECT command
can also integrate data by joining two or more tables. Subqueries can be developed
for certain specific circumstances. There is a strategy for writing SQL commands
successfully.

Performance is an important issue in the retrieval of data from relational
databases. All relational database management systems have a relational query
optimizer, which is software that looks for a good way to solve each relational query
presented to it. While the ways that these query optimizers work are considered
trade secrets, there are several standard concepts and techniques that they generally
incorporate.

KEY TERMS

Access path
AND/OR
Base table
BETWEEN
Built-in functions
Comparisons
Data definition language (DDL)
Data manipulation language (DML)
Declarative

DISTINCT
Embedded mode
Filtering
GROUP BY
HAVING
IN
LIKE
Merge-scan join
ORDER BY

Nested-loop join
Procedural
Query
Relational query optimizer
Search argument
SELECT
Structured Query Language (SQL)
Subquery

QUESTIONS

1. What are the four basic operations that can be
performed on stored data?

2. What is Structured Query Language (SQL)?
3. Name several of the fundamental SQL commands

and discuss the purpose of each.
4. What is the purpose of the SQL SELECT command?

5. How does the SQL SELECT command relate to the
relational Select, Project, and Join concepts?

6. Explain the difference between running SQL in
query mode and in embedded mode.

7. Describe the basic format of the SQL SELECT
command.

100 C h a p t e r 4 Relational Data Retrieval: SQL

8. In a general way, describe how to write an SQL
SELECT command to accomplish a relational Select
operation.

9. In a general way, describe how to write an SQL
SELECT command to accomplish a relational
Project operation.

10. In a general way, describe how to write an SQL
SELECT command to accomplish a combination of
a relational Select operation and a relational Project
operation.

11. What is the purpose of the WHERE clause in SQL
SELECT commands?

12. List and describe some of the common operators
that can be used in the WHERE clause.

13. Describe the purpose of each of the following
operators in the WHERE clause:
a. AND
b. OR
c. BETWEEN
d. IN
e. LIKE

14. What is the purpose of the DISTINCT operator?
15. What is the purpose of the ORDER BY clause?

16. Name the five SQL built-in functions and describe
the purpose of each.

17. Explain the difference between the SUM and
COUNT built-in functions.

18. Describe the purpose of the GROUP BY clause.
Why must the attribute in the GROUP BY clause
also appear in the SELECT clause?

19. Describe the purpose of the HAVING clause. How
do you decide whether to place a row-limiting
predicate in the WHERE clause or in the HAVING
clause?

20. How do you construct a Join operation in an SQL
SELECT statement?

21. What is a subquery in an SQL SELECT statement?
22. Describe the circumstances in which a subquery

must be used.
23. What is a relational query optimizer? Why are they

important?
24. How do relational query optimizers work?
25. What information does a relational query optimizer

use in making its decisions?
26. What are some of the ways that relational query

optimizers can handle joins?

EXERCISES

1. Consider the following relational database that
Best Airlines uses to keep track of its mechanics,
their skills, and their airport locations. Mechanic
number (MECHNUM), airport name (AIRNAME),
and skill number are all unique fields. SIZE is
an airport’s size in acres. SKILLCAT is a skill
category, such as an engine skill, wing skill, tire
skill, etc. YEARQUAL is the year that a mechanic
first qualified in a particular skill; PROFRATE is the
mechanic’s proficiency rating in a particular skill.

MECHANIC Table

MECHNUM MECHNAME AGE SALARY −−−−−−AIRNAME

AIRPORT Table

AIRNAME CITY STATE SIZE YEAROPENED

SKILL Table

SKILLNUM SKILLNAME SKILLCAT

QUALIFICATION Table

−−−−−−−MECHNUM −−−−−−−SKILLNUM YEARQUAL PROFRATE

Write SQL SELECT commands to answer the
following queries.
a. List the names and ages of all the mechanics.
b. List the airports in California that are at least

20 acres in size and have been open since 1935.
Order the results from smallest to largest airport.

c. List the airports in California that are at least 20
acres in size or have been open since 1935.

d. Find the average size of the airports in California
that have been open since 1935.

Exercises 101

e. How many airports have been open in California
since 1935?

f. How many airports have been open in each state
since 1935?

g. How many airports have been open in each state
since 1935? Include in your answer only those
states that have at least five such airports.

h. List the names of the mechanics who work in
California.

i. Fan blade replacement is the name of a skill.
List the names of the mechanics who have a
proficiency rating of 4 in fan blade replacement.

j. Fan blade replacement is the name of a skill.
List the names of the mechanics who work in
California who have a proficiency rating of 4 in
fan blade replacement.

k. List the total, combined salaries of all of the
mechanics who work in each city in California.

l. Find the largest of all of the airports.
m. Find the largest airport in California.

2. Consider the following relational database for the
Quality Appliance Manufacturing Co. The database
is designed to track the major appliances (refrig-
erators, washing machines, dishwashers, etc.) that
Quality manufactures. It also records information
about Quality’s suppliers, the parts they supply, the
buyers of the finished appliances, and the finished
goods inspectors. Note the following facts about this
environment:

• Suppliers are the companies that supply Quality
with its major components, such as electric
motors, for the appliances. Supplier number is
a unique identifier.

• Parts are the major components that the suppliers
supply to Quality. Each part comes with a part
number but that part number is only unique within
a supplier. Thus, from Quality’s point of view, the
unique identifier of a part is the combination of
part number and supplier number.

• Each appliance that Quality manufactures is given
an appliance number that is unique across all of
the types of appliances that Quality makes.

• Buyers are major department stores, home
improvement chains, and wholesalers. Buyer
numbers are unique.

• An appliance may be inspected by several
inspectors. There is clearly a many-to-many
relationship among appliances and inspectors, as
indicated by the INSPECTION table.

• There are one-to-many relationships between
suppliers and parts (Supplier Number is a foreign
key in the PART table), parts and appliances
(Appliance Number is a foreign key in the PART
table), and appliances and buyers (Buyer Number
is a foreign key in the APPLIANCE table).

SUPPLIER Table

SUPPLIERNUM SUPPLIERNAME CITY COUNTRY PRESIDENT

PART Table

PARTNUM −−−−−−−−−SUPPLIERNUM PARTTYPE COST −−−−−−−−−−APPLIANCENUM

APPLIANCE Table

APPLIANCENUM APPLIANCETYPE DATEMANUF −−−−−−−BUYERNUM PRICE

BUYER Table

BUYERNUM BUYERNAME CITY COUNTRY CREDITRATING

INSPECTOR Table

INSPECTORNUM INSPECTORNAME SALARY DATEHIRE

INSPECTION Table

−−−−−−−−−−APPLIANCENUM −−−−−−−−−−INSPECTORNUM DATEINSPECTION SCORE

Write SQL SELECT commands to answer the
following queries.
a. List the names, in alphabetic order, of the

suppliers located in London, Liverpool, and
Manchester, UK.

b. List the names of the suppliers that supply motors
(see PARTTYPE) costing between $50 and $100.

102 C h a p t e r 4 Relational Data Retrieval: SQL

c. Find the average cost of the motors (see
PARTTYPE) supplied by supplier number 3728.

d. List the names of the inspectors who were
inspecting refrigerators (see APPLIANCE-
TYPE) on April 17, 2011.

e. What was the highest inspection score achieved
by a refrigerator on November 3, 2011?

f. Find the total amount of money spent on Quality
Appliance products by each buyer from Mexico,
Venezuela, and Argentina.

g. Find the total cost of the parts used in each
dishwasher manufactured on February 28, 2010.
Only include in the results those dishwashers that
used at least $200 in parts.

h. List the highest0paid inspectors.
i. List the highest0paid inspectors who were hired

in 2009.
j. Among all of the inspectors, list those who earn

more than the highest-paid inspector who was
hired in 2009.

MINICASES

1. Consider the following relational database for Happy
Cruise Lines. It keeps track of ships, cruises, ports, and
passengers. A ‘‘cruise’’ is a particular sailing of a ship
on a particular date. For example, the seven-day journey
of the ship Pride of Tampa that leaves on June 13,
2011, is a cruise. Note the following facts about this
environment.

• Both ship number and ship name are unique in the
SHIP Table.

• A ship goes on many cruises over time. A cruise is
associated with a single ship.

• A port is identified by the combination of port name
and country.

• As indicated by the VISIT Table, a cruise includes
visits to several ports and a port is typically included
in several cruises.

• Both Passenger Number and Social Security Number
are unique in the PASSENGER Table. A particular
person has a single Passenger Number that is used for
all the cruises she takes.

• The VOYAGE Table indicates that a person can
take many cruises and a cruise, of course, has many
passengers.

SHIP Table

SHIPNUM SHIPNAME BUILDER LAUNCHDATE WEIGHT

CRUISE Table

CRUISENUM STARTDATE ENDDATE DIRECTOR −−−−−−SHIPNUM

PORT Table

PORTNAME COUNTRY NUMDOCKS MANAGER

VISIT Table

CRUISENUM −−−−−−−PORTNAME −−−−−−COUNTRY ARRDATE DEPDATE

PASSENGER Table

PASSENGERNUM PASSENGERNAME SOCSECNUM STATE COUNTRY

VOYAGE Table

−−−−−−−−−−−PASSENGERNUM −−−−−−−−CRUISENUM ROOMNUM FARE

Write SQL SELECT commands to answer the
following queries.
a. Find the start and end dates of cruise number 35218.
b. List the names and ship numbers of the ships built

by the Ace Shipbuilding Corp. that weigh more than
60,000 tons.

c. List the companies that have built ships for Happy
Cruise Lines.

d. Find the total number of docks in all the ports in
Canada.

e. Find the average weight of the ships built by the Ace
Shipbuilding Corp. that have been launched since
2000.

f. How many ports in Venezuela have at least three
docks?

Minicases 103

g. Find the total number of docks in each country. List
the results in order from most to least.

h. Find the total number of ports in each country.
i. Find the total number of docks in each country but

include only those countries that have at least twelve
docks in your answer.

j. Find the name of the ship that operated on (was used
on) cruise number 35218.

k. List the names, states and countries of the passengers
who sailed on The Spirit of Nashville on cruises that
began during July, 2011.

l. Find the names of the company’s heaviest ships.
m. Find the names of the company’s heaviest ships that

began a cruise between July 15, 2011 and July 31,
2011.

2. Consider the following relational database for the Super
Baseball League. It keeps track of teams in the league,
coaches and players on the teams, work experience of
the coaches, bats belonging to each team, and which
players have played on which teams. Note the following
facts about this environment:

• The database keeps track of the history of all the teams
that each player has played on and all the players who
have played on each team.

• The database only keeps track of the current team that
a coach works for.

• Team number, team name, and player number are
each unique attributes across the league.

• Coach name is unique only within a team (and we
assume that a team cannot have two coaches of the
same name).

• Serial number (for bats) is unique only within a team.
• In the Affiliation table, the Years attribute indicates

the number of years that a player played on a team;
the batting average is for the years that a player played
on a team.

TEAM Table

TEAMNUM TEAMNAME CITY MANAGER

COACH Table

−−−−−−−TEAMNUM COACHNAME ADDRESS

WORK EXPERIENCE Table

−−−−−−−TEAMNUM −−−−−−−−COACHNAME EXPERIENCETYPE YEARSEXPERIENCE

BATS Table

−−−−−−−TEAMNUM SERIALNUM MANUFACTURER

PLAYER Table

PLAYERNUM PLAYERNAME AGE

AFFILIATION Table

−−−−−−−−PLAYERNUM −−−−−−−TEAMNUM YEARS BATTINGAVG

Write SQL SELECT commands to answer the
following queries.
a. Find the names and cities of all of the teams

with team numbers greater than 15. List the results
alphabetically by team name.

b. List all of the coaches whose last names begin with
‘‘D’’ and who have between 5 and 10 years of experi-
ence as college coaches (see YEARSEXPERIENCE
and EXPERIENCETYPE).

c. Find the total number of years of experience of Coach
Taylor on team number 23.

d. Find the number of different types of experience that
Coach Taylor on team number 23 has.

e. Find the total number of years of experience of each
coach on team number 23.

f. How many different manufacturers make bats for the
league’s teams?

g. Assume that team names are unique. Find the names
of the players who have played for the Dodgers for
at least five years (see YEARS in the AFFILIATION
Table.)

h. Assume that team names are unique. Find the total
number of years of work experience of each coach
on the Dodgers, but include in the result only
those coaches who have more than eight years of
experience.

i. Find the names of the league’s youngest players.
j. Find the names of the league’s youngest players

whose last names begin with the letter ‘‘B’’.

C H A P T E R 5

THE RELATIONAL
DATABASE MODEL:

INTRODUCTION

I n 1970, Dr. Edgar F. (Ted) Codd of IBM published in Communications of the
ACM a paper entitled ‘‘A Relational Model of Data for Large Shared Data Banks.’’

This paper marked the beginning of the field of relational databases. During the 1970s,
the relational approach to databases progressed from being a technical curiosity to a
subject of serious interest in the information systems community. But it was not until the
early 1980s that commercially viable relational database management systems became
available. There were two basic reasons for this. One was that, while the relational
database was very tempting in concept, its application in a real-world environment
was elusive for performance-related reasons. The second reason was that at exactly the
time that Codd’s paper was published, the earlier hierarchical and network database
management systems were just coming onto the commercial scene and were the focus of
intense marketing efforts by the software and hardware vendors of the day. Eventually,
both of these obstacles were overcome and the relational model became and remains the
database model of choice.

OBJECTIVES

■ Explain why the relational database model became practical in about 1980.
■ Define such basic relational database terms as relation and tuple.
■ Describe the major types of keys including primary, candidate, and foreign.
■ Describe how one-to-one, one-to-many, and many-to-many binary relationships

are implemented in a relational database.
■ Describe how relational data retrieval is accomplished using the relational algebra

select, project, and join operators.
■ Understand how the join operator facilitates data integration in relational database.

CHAPTER OUTLINE

Introduction
The Relational Database Concept

Relational Terminology
Primary and Candidate Keys

Foreign Keys and Binary
Relationships

Data Retrieval from a Relational Database
Extracting Data from a Relation

106 C h a p t e r 5 The Relational Database Model: Introduction

The Relational Select Operator
The Relational Project Operator
Combination of the Relational

Select and Project Operators
Extracting Data Across Multiple

Relations: Data Integration

Example: Good Reading Book Stores
Example: World Music Association
Example: Lucky Rent-A-Car
Summary

INTRODUCTION

Several factors converged in the early 1980s to begin turning the tide toward
relational database. One was that the performance issues that held back its adoption
in the 1970s began to be resolved. Another was that, after a decade of use
of hierarchical and network database management systems, information systems
professionals were interested in an alternative that would move toward simplifying
the database design process and produce database structures that were easier to use
and understand at all levels. Also, at this time there was increasing interest in a
DBMS environment that would allow easier, more intuitive access to the data by an
increasingly broad range of personnel. Finally, the early 1980s saw the advent of
the personal computer. As software developers began trying to create all manner
of applications and supporting software utilities for the PC, it quickly became clear
that the existing hierarchical and network database approaches would not work in
the PC environment, for two reasons. One was that these DBMSs were simply too
large to store and use on the early PCs. The other was that they were too complex to
be used by the very broad array of non-information-systems professionals at whom
the PCs were targeted.

Today, the relational approach to database management is by far the primary
database management approach used in all levels of information systems and for
most application purposes, from accounting to banking to manufacturing to sales on
the World Wide Web. Relational database management is represented today by such
products as Microsoft Access and SQL Server, Oracle, Sybase, and IBM’s DB2 and
Informix. While these and other relational database systems differ in their features
and implementations, they all share a common data structure philosophy and a
common data access tool: Structured Query Language (SQL) (often pronounced
‘‘sequel’’). This chapter will focus on the basic concepts of how data is stored
and retrieved in a relational database by a relational DBMS. Chapter 6 will discuss
some additional relational database concepts. Then, Chapter 7 will describe logical
database design and Chapter 8 will go into physical database design.

THE RELATIONAL DATABASE CONCEPT

Relational Terminology

In spite of the apparent conflict between non-redundant, linear file data storage
and data integration demonstrated in Chapter 3, the relative simplicity of simple,
linear files or structures that resemble them in a true database environment is very
desirable. After all, the linear file arrangement is the most basic and commonly used
data structure there is. This is precisely one of the advantages of relational database
management.

The Relational Database Concept 107

CONCEPTS

IN ACT ION

5-A BLACK & DECKER

Black & Decker is one of the world’s
largest producers of electric power tools and power tool
accessories; it is among the largest-selling residential lock
manufacturers in the U.S., and is a major manufacturer
of faucets sold in the U.S. It is also the world’s
largest producer of certain types of technology-based
industrial fastening systems. The company’s brand names
include Black & Decker and DeWalt power tools, Emhart
Teknologies, Kwikset locks and other home security
products, and Price Pfister plumbing fixtures. Based in
Towson, MD, Black & Decker has manufacturing plants
in ten countries and markets its products in over 100
countries around the globe.

One of the major factors in Black & Decker’s Power
Tools Division’s leadership position is its highly advanced,
database-focused information system that assures a steady
and accurate supply of raw materials to the manufacturing
floor. Using Manugistics’ Demand and Supply Planning
software, the system forecasts demand for Black &
Decker’s power tools and then generates a raw material

Printed by permission of Black & Decker

supply plan based on the forecast and on the company’s
manufacturing capacity. These results are fed into SAP’s
Plant Planning System that takes into account suppliers’
capabilities and lead-time constraints to set up orders for
the raw materials.

Both the Manugistics and SAP software use Ora-
cle databases to keep track of all the data involved in
these processes. Black & Decker runs the system, which
became fully integrated in 1998, on clustered Compaq
Alphas. The databases are also shared by the company’s
purchasing, receiving, finance, and accounting depart-
ments, assuring very high degrees of accuracy and speed
throughout the company’s operations and procedures.
Included among the major database tables that support
this information system are a material master table, a
vendor master table, a bill-of-materials table (indicating
which parts go into making which other parts), a rout-
ing table (indicating the work stations that the part will
move through during manufacturing), planning, purchase
order, customer, and other tables.

108 C h a p t e r 5 The Relational Database Model: Introduction

F IGURE 5.1
Relational database terminology

Relation (or Table or File)

Student Student
Number Name Class Major

03657 Robert Shaw Senior Biology

05114 Gloria Stuart Freshman English

05950 Fred Simpson Junior Mathematics

12746 W. Shin Junior English

15887 Pedro Marcos Senior History

19462 H. Yamato Sophomore French

21682 Mary Jones Freshman Chemistry

24276 Steven Baker Sophomore History

Attribute
(or Column or Field)

Tuple
(or Row or Record)

To begin with, consider the data structure used in relational databases. In a
relational database, the data appears to be stored in what we have been referring
to as simple, linear files. Following the conventions of the area of mathematics on
which relational database is based, we will begin calling those simple linear files
relations, although in common practice they are also referred to as ‘‘tables.’’ In the
terminology of files, each row is called a ‘‘record,’’ while in a relation, each row
is called a tuple. In files, each column is called a ‘‘field,’’ while in a relation each
column is called an attribute. In practice, in speaking about relational database,
people commonly use the terms relation, table, and file synonymously. Similarly,
tuple, row, and record are often used synonymously, as are attribute, column, and
field, Figure 5.1. We will use an appropriate term in each particular situation during
our discussion. In particular, we will use the term ‘‘relation’’ in this chapter and
the next, in which we are talking about relational database concepts. Following
common usage, we will generally use the word ‘‘table’’ in the more applied parts
of the book, such as in the corporate database stories in each chapter and in the
discussion of SQL in Chapter 4.

It is important to note that there are technical differences between the concept
of a file and the concept of a relation (which is why we say that in a relational
database the data only appears to be stored in structures that look like files).The
differences include:

■ The columns of a relation can be arranged in any order without affecting the
meaning of the data. This is not true of a file.

■ Similarly, the rows of a relation can be arranged in any order, which is not true
of a file.

■ Every row/column position, sometimes referred to as a ‘‘cell,’’ can have only a
single value, which is not necessarily true in a file.

■ No two rows of a relation are identical, which is not necessarily true in a file.

A relational database is simply a collection of relations that, as a group,
contain the data describing a particular business environment.

The Relational Database Concept 109

Primary and Candidate Keys

Primary Keys Figure 5.2 contains two relations, the SALESPERSON relation
and the CUSTOMER relation, from General Hardware Company’s relational
database. The SALESPERSON relation has four rows, each representing one
salesperson. Also, the SALESPERSON relation has four columns, each representing
a characteristic of salespersons. Similarly, the CUSTOMER relation has nine rows,
each representing a customer, and four columns.

A relation always has a unique primary key. A primary key (sometimes
shortened in practice to just ‘‘the key’’) is an attribute or group of attributes whose
values are unique throughout all rows of the relation. In fact, the primary key
represents the characteristic of a collection of entities that uniquely identifies each
one. For example, in the situation described by the relations in Figure 5.2, each
salesperson has been assigned a unique salesperson number and each customer
has been assigned a unique customer number. Therefore the Salesperson Number
attribute is the primary key of the SALESPERSON relation and the Customer
Number attribute is the primary key of the CUSTOMER relation. As in Figure 5.2,
we will start marking the primary key attribute(s) with a single, solid underline.

The number of attributes involved in the primary key is always the minimum
number of attributes that provide the uniqueness quality. For example, in the
SALESPERSON relation, it would make no sense to have the combination of
Salesperson Number and Salesperson Name as the primary key because Salesperson
Number is unique by itself. However, consider the situation of a SALESPERSON

F IGURE 5.2
General Hardware Company
relational database

(a) SALESPERSON relation

Salesperson Salesperson Commission Year
Number Name Percentage of Hire

137 Baker 10 1995

186 Adams 15 2001

204 Dickens 10 1998

361 Carlyle 20 2001

(b) CUSTOMER relation

Customer Customer Salesperson
Number Name Number HQ City

0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

1826 City Hardware 137 New York

2198 Western Hardware 204 New York

2267 Central Stores 186 New York

110 C h a p t e r 5 The Relational Database Model: Introduction

relation that does not include a Salesperson Number attribute, but instead has a First
Name attribute, a Middle Name attribute, and a Last Name attribute. The primary
key might then be the combination of the First, Middle, and Last Name attributes
(assuming this would always produce a unique combination of values. If it did not,
then a fourth attribute could be added to the relation and to the primary key as a
sequence field to produce, for example, John Alan Smith #1, John Alan Smith #2,
and so forth). Some attribute or combination of attributes of a relation has to be
unique and this can serve as the unique primary key, since, by definition, no two
rows can be identical. In the worst case, all of the relation’s attributes combined
could serve as the primary key if necessary (but this situation is uncommon in
practice).

Candidate Keys If a relation has more than one attribute or minimum group of
attributes that represents a way of uniquely identifying the entities, then they are
each called a candidate key. (Actually, if there is only one unique attribute or
minimum group of attributes it can also be called a candidate key.) For example, in
a personnel relation, an employee number attribute and a Social Security Number
attribute (each of which is obviously unique) would each be a candidate key of that
relation. When there is more than one candidate key, one of them must be chosen to
be the primary key of the relation. That is where the term ‘‘candidate key’’ comes
from, since each one is a candidate for selection as the primary key. The decision of
which candidate key to pick to be the primary key is typically based on which one
will be the best for the purposes of the applications that will use the relation and the
database. Sometimes the term alternate key is used to describe a candidate key that
was not chosen to be the primary key of the relation, Figure 5.3.

F IGURE 5.3
Candidate keys become either primary or
alternate keys

CandidateKey 1

CandidateKey 3

CandidateKey 2

CandidateKey 1

CandidateKey 3

CandidateKey 2

Alternate
Key

Alternate
Key

The Winner and
Primary Key

The Relational Database Concept 111

Foreign Keys and Binary Relationships

Foreign Keys If, in a collection of relations that make up a relational database, an
attribute or group of attributes serves as the primary key of one relation and also
appears in another relation, then it is called a foreign key in that other relation. Thus
Salesperson Number, which is the primary key of the SALESPERSON relation,
is considered a foreign key in the CUSTOMER relation, Figure 5.4. As shown
in Figure 5.4, we will start marking the foreign key attribute(s) with a dashed
underline. The concept of the foreign key is crucial in relational databases, as
the foreign key is the mechanism that ties relations together to represent unary,
binary, and ternary relationships. We begin the discussion by considering how
binary relationships are stored in relational databases. These are both the most
common and the easiest to deal with. The unary and ternary relationships will come
later. Recall from the discussion of the entity-relationship model that the three
kinds of binary relationships among the entities in the business environment are
the one-to-one, one-to-many, and many-to-many relationships. The first case is the
one-to-many relationship, which is typically the most common of the three.

One-to-Many Binary Relationship Consider the SALESPERSON and CUSTOMER
relations of Figure 5.2, repeated in Figure 5.4. As one would expect in most
sales-oriented companies, notice that each salesperson is responsible for several
customers while each customer has a single salesperson as their point of contact with
General Hardware. This one-to-many binary relationship can be represented as:

Salesperson Customer

137

186

204

361

Baker

Adams

Dickens

Carlyle

10

15

10

20

1995

2001

1998

2001

Salesperson
Number

Salesperson
Name

Year
of Hire

Commission
Percentage

0121

0839

0933

1047

1525

1700

1826

2198

2267

Main St. Hardware

Jane’s Hardware

ABC Home Stores

Acme Hardware Store

Fred’s Tool Stores

XYZ Stores

City Hardware

Western Hardware

Central Stores

137

186

137

137

361

361

137

204

186

New York

Chicago

Los Angeles

Los Angeles

Atlanta

Washington

New York

New York

New York

Customer
Number

Customer
Name HQ City

Salesperson
Number

Primary
Key

Foreign
Key

(a) SALESPERSON relation (b) CUSTOMER relation

United States Europe

F IGURE 5.4
A foreign key

112 C h a p t e r 5 The Relational Database Model: Introduction

F IGURE 5.5
A salesperson and his four customers

Customer 1826

Customer 1047

Customer 0933

Customer 0121

Salesperson 137
Mr. Baker

For example, the Salesperson Number attribute of the CUSTOMER relation
shows that salesperson 137 is responsible for customers 0121, 0933, 1047, and 1826.
Looking at it from the point of view of the customer, the same relation shows that
the only salesperson associated with customer 0121 is salesperson 137, Figure 5.5.
This last point has to be true. After all, there is only one record for each customer in
the CUSTOMER relation (the Customer Number attribute is unique since it is the
relation’s primary key) and there is only one place to put a salesperson number in
it. The bottom line is that the Salesperson Number foreign key in the CUSTOMER
relation effectively establishes the one-to-many relationship between salespersons
and customers.

By the way, notice that, in this case, the primary key of the SALESPERSON
relation and the corresponding foreign key in the CUSTOMER relation both have
the same attribute name, Salesperson Number. This will often be the case but it
does not have to be. What is necessary is that both attributes have the same domain
of values; that is, they must both have values of the same type, such as (in this case)
three-digit whole numbers that are the identifiers for salespersons.

It is the presence of a salesperson number in a customer record that indicates
which salesperson the customer is associated with. Fundamentally, that is why
the Salesperson Number attribute is in the CUSTOMER relation and that is the
essence of its being a foreign key in that relation. In Chapter 7, we will discuss
database design issues in detail. But, for now, note that when building a one-to-many
relationship into a relational database, it will always be the case that the unique
identifier of the entity on the ‘‘one side’’ of the relationship (Salesperson Number,
in this example) will be placed as a foreign key in the relation representing the entity
on the ‘‘many side’’ of the relationship (the CUSTOMER relation, in this example).

Here’s something else about foreign keys. There are situations in which a
relation doesn’t have a single, unique attribute to serve as its primary key. Then, it

The Relational Database Concept 113

requires a combination of two or more attributes to reach uniqueness and serve as
its primary key. Sometimes one or more of the attributes in that combination can be
a foreign key! Yes, when this happens, a foreign key is actually part of the relation’s
primary key! This was not the case in the CUSTOMER relation of Figure 5.2b.
In this relation, the primary key only consists of one attribute, Customer Number,
which is unique all by itself. The foreign key, Salesperson Number, is clearly not a
part of the primary key.

Here is an example of a situation in which a foreign key is part of a relation’s
primary key. Figure 5.6 adds the CUSTOMER EMPLOYEE relation, Figure 5.6c,
to the General Hardware database. Remember that General Hardware’s customers
are the hardware stores, home improvement stores, or chains of such stores that it
supplies. Figure 5.6c, the CUSTOMER EMPLOYEE relation, lists the employees of
each of General Hardware’s customers. In fact, there is a one-to-many relationship
between customers and customer employees. A customer (like a hardware store)
has many employees but an employee, a person, works in only one store:

Customer Customer Employee

For example, Figure 5.6c shows that customer 2198 has four employees,
Smith, Jones, Garcia, and Kaplan. Each of those people is assumed to work for
only one customer company, customer 2198. Following the rule we developed for
setting up a one-to-many relationship with a foreign key, the Customer attribute
must appear in the CUSTOMER EMPLOYEE relation as a foreign key, and indeed
it does.

Now, what about finding a legitimate primary key for the CUSTOMER
EMPLOYEE relation? The assumption here is that employee numbers are unique
only within a company; they are not unique across all of the customer companies.
Thus, as shown in the CUSTOMER EMPLOYEE relation in Figure 5.6c, there can
be an employee of customer number 0121 who is employee number 30441 in that
company’s employee numbering system, an employee of customer number 0933
who is employee number 30441 in that company’s system, and also an employee of
customer number 2198 who is also employee number 30441. That being the case, the
Employee Number is not a unique attribute in this relation. Neither it nor any other
single attribute of the CUSTOMER EMPLOYEE relation is unique and can serve,
alone, as the relation’s primary key. But the combination of Customer Number and
Employee Number is unique. After all, we know that customer numbers are unique
and within each customer company, employee numbers are unique. That means
that, as shown in Figure 5.6c, the combination of Customer Number and Employee
Number can be and is the relation’s primary key. Further, that means that Customer
Number is both a foreign key in the CUSTOMER EMPLOYEE relation and a part
of its primary key. As shown in Figure 5.6c, we will start marking attributes that
are both a foreign key and a part of the primary key with an underline consisting of
a dashed line over a solid line.

Many-to-Many Binary Relationship

Storing the Many-to-Many Binary Relationship Figure 5.7 expands the General Hardware
database by adding two more relations, the PRODUCT relation, Figure 5.7d, and the
SALES relation, Figure 5.7e. The PRODUCT relation simply lists the products that
General Hardware sells, one row per product, with Product Number as the unique
identifier and thus the primary key of the relation. Each of General Hardware’s

114 C h a p t e r 5 The Relational Database Model: Introduction

F IGURE 5.6
General Hardware Company relational
database including the CUSTOMER
EMPLOYEE relation

(a) SALESPERSON relation

Salesperson Salesperson Commission Year
Number Name Percentage of Hire

137 Baker 10 1995

186 Adams 15 2001

204 Dickens 10 1998

361 Carlyle 20 2001

(b) CUSTOMER relation

Customer Customer Salesperson
Number Name Number HQ City

0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

1826 City Hardware 137 New York

2198 Western Hardware 204 New York

2267 Central Stores 186 New York

(c) CUSTOMER EMPLOYEE relation

Customer Employee Employee
Number Number Name Title

0121 27498 Smith Co-Owner

0121 30441 Garcia Co-Owner

0933 25270 Chen VP Sales

0933 30441 Levy Sales Manager

0933 48285 Morton President

1525 33779 Baker Sales Manager

2198 27470 Smith President

2198 30441 Jones VP Sales

2198 33779 Garcia VP Personnel

2198 35268 Kaplan Senior Accountant

salespersons can sell any or all of the company’s products and each product can be
sold by any or all of its salespersons. Therefore the relationship between salespersons
and products is a many-to-many relationship.

Salesperson Product

The Relational Database Concept 115

So, the database will somehow have to keep track of this many-to-many
relationship between salespersons and products. The way that a many-to-many
relationship is represented in a relational database is by the creation of an additional
relation, in this example, the SALES relation in Figure 5.7e. The SALES relation
of Figure 5.7e is intended to record the lifetime sales of a particular product
by a particular salesperson. Thus, there will be a single row in the relation for
each applicable combination of salesperson and product (i.e., when a particular
salesperson has actually sold some of the particular product). For example, the first
row of the SALES relation indicates that salesperson 137 has sold product 19440.

F IGURE 5.7
General Hardware Company relational
database including the PRODUCT and
SALES relation

(a) SALESPERSON relation

Salesperson Salesperson Commission Year
Number Name Percentage of Hire

137 Baker 10 1995

186 Adams 15 2001

204 Dickens 10 1998

361 Carlyle 20 2001

(b) CUSTOMER relation

Customer Customer Salesperson
Number Name Number HQ City

0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

1826 City Hardware 137 New York

2198 Western Hardware 204 New York

2267 Central Stores 186 New York

(c) CUSTOMER EMPLOYEE relation

Customer Employee Employee
Number Number Name Title

0121 27498 Smith Co-Owner

0121 30441 Garcia Co-Owner

0933 25270 Chen VP Sales

0933 30441 Levy Sales Manager

0933 48285 Morton President

1525 33779 Baker Sales Manager

2198 27470 Smith President

2198 30441 Jones VP Sales

2198 33779 Garcia VP Personnel

2198 35268 Kaplan Senior Accountant

(Continues)

116 C h a p t e r 5 The Relational Database Model: Introduction

F IGURE 5.7 (Continued)
General Hardware Company relational
database including the PRODUCT and
SALES relation

(d) PRODUCT relation

Product Product Unit
Number Name Price

16386 Wrench 12.95

19440 Hammer 17.50

21765 Drill 32.99

24013 Saw 26.25

26722 Pliers 11.50

(e) SALES relation

Salesperson Product
Number Number Quantity

137 19440 473

137 24013 170

137 26722 688

186 16386 1,745

186 19440 2,529

186 21765 1,962

186 24013 3,071

204 21765 809

204 26722 734

361 16386 3,729

361 21765 3,110

361 26722 2,738

Since it is sufficient to record that fact once, the combination of the Salesperson
Number and Product Number attributes always produces unique values. So, in
general, the new relation created to record the many-to-many relationship will
have as its primary key the combined unique identifiers of the two entities in the
many-to-many relationship. That’s why, in this example, the Salesperson Number
and Product Number attributes both appear in the SALES relation. Each of the two
is a foreign key in the SALES relation since each is the primary key of another
relation in the database. The combination of these two attributes is unique, and
combined they comprise the primary key of the newly created SALES relation.

The new SALES relation of Figure 5.7e effectively records the many-to-
many relationship between salespersons and products. This is illustrated from the
‘‘salesperson side’’ of the many-to-many relationship by looking at the first three
rows of the SALES relation and seeing that salesperson 137 sells products 19440,
24013, and 26722. It is illustrated from the ‘‘product side’’ of the many-to-many
relationship by scanning down the Product Number column of the SALES relation,
looking for the value 19440, and seeing that product 19440 is sold by salespersons
137 and 186, Figure 5.8.

Intersection Data What about the Quantity attribute in the SALES relation? In addition
to keeping track of which salespersons have sold which products, General Hardware

The Relational Database Concept 117

FIGURE 5.8
Many-to-many relationship between
salespersons and products as shown in
the SALES relation

Salesperson 137
Mr. Baker

Product 19440
 Hammer

Product 24013
 Saw

Product 26722
 Pliers

Salesperson 186
Ms. Adams

wants to record how many of each particular product each salesperson has sold
since the product was introduced or since the salesperson joined the company. So,
it sounds like there has to be a ‘‘Quantity’’ attribute. And, an attribute describes
an entity, right? Then, which entity does the Quantity attribute describe? Does
it describe salespersons the way the Year of Hire does in the SALESPERSON
relation? Does it describe products the way Unit Price does in the PRODUCT
relation? Each salesperson has exactly one date of hire. Each product has exactly
one unit price. But a salesperson doesn’t have just one ‘‘quantity’’ associated with
her because she sells many products and similarly, a product doesn’t have just one
‘‘quantity’’ associated with it because it is sold by many salespersons.

While year of hire is clearly a characteristic of salespersons and unit price is
clearly a characteristic of products, ‘‘quantity’’ is a characteristic of the relationship
between salesperson and product. For example, the fact that salesperson 137 appears
in the first row of the SALES relation of Figure 5.7e along with product 19440
indicates that he has a history of selling this product. But do we know more about
his history of selling it? Yes! That first row of Figure 5.7e indicates that salesperson
137 has sold 473 units of product 19440. Quantity describes the many-to-many
relationship between salespersons and products. In a sense it falls at the intersection
between the two entities and is thus called ‘‘intersection data,’’ Figure 5.9.

Since the many-to-many relationship has its own relation in the database and
since it can have attributes, does that mean that we should think of it as a kind of
entity? Yes! Many people do just that and refer to it as an ‘‘associative entity,’’ a
concept we first described when discussing data modeling in Chapter 2!

Additional Many-to-Many Concepts Before leaving the subject of many-to-many relation-
ships, there are a few more important points to make. First, will the combination
of the two primary keys representing the two entities in the many-to-many
relationship always serve as a unique identifier or primary key in the additional
relation representing the many-to-many relationship? The answer is that this
depends on the precise nature of the many-to-many relationship. For example,

118 C h a p t e r 5 The Relational Database Model: Introduction

F IGURE 5.9
Intersection data that indicates that
salesperson 137 has sold 473 units of
product 19440

Salesperson 137

Product 19440

473
Units

Intersection
Data

in the situation of the SALES relation in Figure 5.7e, the combination of the two
entity identifier attributes works perfectly as the primary key, as described above.
But, what if General Hardware decides it wants to keep track of each salesperson’s
annual sales of each product instead of their lifetime sales? Fairly obviously, a
new attribute, Year, would have to be added to the SALES relation, as shown in
Figure 5.10. Moreover, as demonstrated by a few sample rows of that relation, the
combination of Salesperson Number and Product Number is no longer unique. For
example, salesperson 137 sold many units of product 19440 in each of 1999, 2000,
and 2001. The first three records of the relation all have the salesperson number,
product number combination of 137, 19440. Clearly, the way to solve the problem
in this instance is to add the Year attribute to the Salesperson Number and Product
Number attributes to form a three-attribute unique primary key. It is quite common
in practice to have to add such a ‘‘timestamp’’ to a relation storing a many-to-many
relationship in order to attain uniqueness and have a legitimate primary key.
Sometimes, as in the example in Figure 5.10, this is accomplished with a Year
attribute. A Date attribute is required if the data may be stored two or more times in a
year. A Time attribute is required if the data may be stored more than once in a day.

Next is the question of why an additional relation is necessary to represent
a many-to-many relationship. For example, could the many-to-many relationship
between salespersons and products be represented in either the SALESPERSON or
PRODUCT relations? The answer is no! If, for instance, you tried to represent the
many-to-many relationship in the SALESPERSON relation, you would have to list
all of the products (by Product Number) that a particular salesperson has sold in that
salesperson’s record. Furthermore, you would have to carry the Quantity intersection
data along with it in some way. For example, in the SALESPERSON relation, the
row for salesperson 137 would have to be extended to include products 19440,

The Relational Database Concept 119

FIGURE 5.10
Modified SALES relation of the General
Hardware Company relational database,
including a Year attribute

SALES relation (modified)

Salesperson Product
Number Number Year Quantity

137 19440 1999 132

137 19440 2000 168

137 19440 2001 173

137 24013 2000 52

137 24013 2001 118

137 26722 1999 140

137 26722 2000 203

137 26722 2001 345

186 16386 1998 250

186 16386 1999 245

186 16386 2000 581

186 16386 2001 669

24013, and 26722, plus the associated intersection data, Figure 5.11a. Alternatively,
one could envision a single additional attribute in the SALESPERSON relation into
which all the related product number and intersection data for each salesperson
would somehow be stuffed, Figure 5.11b (although, aside from other problems,
this would violate the rule that every cell in a relation must have only a single
value). In either case, it would be unworkable. Because, in general, each salesperson
has been involved in selling different numbers of product types, each record of
the SALESPERSON relation would be a different length. Furthermore, additions,

(a) Additional Product and Quantity columns

Salesperson Salesperson Commission Year
Number Name Percentage of Hire Product Qty Product Qty Product Qty Product Qty

137 Baker 10 1995 19440 473 24013 170 26722 688

186 Adams 15 2001 16386 1745 19440 2529 21765 1962 24013 3071

204 Dickens 10 1998 21765 809 26722 734

361 Carlyle 20 2001 16386 3729 21765 3110 26722 2738

(b) One additional column for Product and Quantity Pairs

Salesperson Salesperson Commission Year
Number Name Percentage of Hire Product and Quantity Pairs

137 Baker 10 1995 (19440, 473) (24013, 170) (26722, 688)

186 Adams 15 2001 (16386, 1745) (19440, 2529) (21765, 1962) (24013, 3071)

204 Dickens 10 1998 (21765, 809) (26722, 734)

361 Carlyle 20 2001 (16386, 3729) (21765, 3110) (26722, 2738)

F IGURE 5.11
Unacceptable ways of storing a binary many-to-many relationship

120 C h a p t e r 5 The Relational Database Model: Introduction

deletions, and updates of product/quantity pairs would be a nightmare. Also, trying
to access the related data from the ‘‘product side,’’ for example looking for all
of the salespersons who have sold a particular product, would be very difficult.
And, incidentally, trying to make this work by putting the salesperson data into the
PRODUCT relation, instead of putting the product data into the SALESPERSON
relation as in Figure 5.11, would generate an identical set of problems. No,
the only way that’s workable is to create an additional relation to represent the
many-to-many relationship. Each combination of a related salesperson and product
has its own record, making the insertion, deletion, and update of related items
feasible, providing a clear location for intersection data, and avoiding the issue of
variable-length records.

Finally, there is the question of whether an additional relation is required to
represent a many-to-many relationship if there is no intersection data. For example,
suppose that General Hardware wants to track which salespersons have sold which
products, but has no interest in how many units of each product they have sold.
The SALES relation of Figure 5.7e would then have only the Salesperson Number
and Product Number attributes, Figure 5.12. Could this information be stored in
some way other than with the additional SALES relation? The answer is that the
additional relation is still required. Note that in the explanation above of why an
additional relation is necessary in general to represent a many-to-many relationship,
the intersection data played only a small role. The issues would still be there, even
without intersection data.

One-to-One Binary Relationship After considering one-to-many and many-to-many
binary relationships in relational databases, the remaining binary relationship is the
one-to-one relationship. Each of General Hardware’s salespersons has exactly one
office and each office is occupied by exactly one salesperson, Figure 5.13.

Salesperson Office

F IGURE 5.12
The many-to-many SALES relation without
intersection data

SALES relation
(without intersection data)

Salesperson Product
Number Number

137 19440

137 24013

137 26722

186 16386

186 19440

186 21765

186 24013

204 21765

204 26722

361 16386

361 21765

361 26722

The Relational Database Concept 121

FIGURE 5.13
A one-to-one binary relationship

Salesperson 186

Salesperson 204

Salesperson 361

Salesperson 137 Office 1253

Office 1227

Office 1284

Office 1209

Figure 5.14f shows the addition of the OFFICE relation to the General
Hardware relational database. The SALESPERSON relation has the Office Number
attribute as a foreign key so that the company can look up the record for a salesperson
and see to which office she is assigned. Because this is a one-to-one relationship and
each salesperson has only one office, the company can also scan down the Office
Number column of the SALESPERSON relation, find a particular office number
(which can only appear once, since it’s a one-to-one relationship), and see which
salesperson is assigned to that office. In general, this is the way that one-to-one
binary relationships are built into relational databases. The unique identifier, the
primary key, of one of the two entities in the one-to-one relationship is inserted into
the other entity’s relation as a foreign key. The question of which of the two entities
is chosen as the ‘‘donor’’ of its primary key and which as the ‘‘recipient’’ will be
discussed further when we talk about logical design in Chapter 7.

But there is another interesting question about this arrangement. Could the
SALESPERSON and OFFICE relations of Figure 5.14 be combined into one
relation? After all, a salesperson has only one office and an office has only
one salesperson assigned to it. So, if an office and its unique identifier, Office
Number, ‘‘belongs’’ to one particular salesperson, so does that office’s Telephone

122 C h a p t e r 5 The Relational Database Model: Introduction

F IGURE 5.14
General Hardware Company relational
database including the OFFICE relation

(a) SALESPERSON relation

Salesperson Salesperson Commission Year Office
Number Name Percentage of Hire Number

137 Baker 10 1995 1284

186 Adams 15 2001 1253

204 Dickens 10 1998 1209

361 Carlyle 20 2001 1227

(b) CUSTOMER relation

Customer Customer Salesperson
Number Name Number HQ City

0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

1826 City Hardware 137 New York

2198 Western Hardware 204 New York

2267 Central Stores 186 New York

(c) CUSTOMER EMPLOYEE relation

Customer Employee Employee
Number Number Name Title

0121 27498 Smith Co-Owner

0121 30441 Garcia Co-Owner

0933 25270 Chen VP Sales

0933 30441 Levy Sales Manager

0933 48285 Morton President

1525 33779 Baker Sales Manager

2198 27470 Smith President

2198 30441 Jones VP Sales

2198 33779 Garcia VP Personnel

2198 35268 Kaplan Senior Accountant

(Continues)

Number and Size. Indeed, when we want to contact a salesperson, we ask for her
phone number, not for ‘‘her office’s phone number!’’ So, could we combine the
SALESPERSON and OFFICE relations of Figure 5.14 into the single relation of
Figure 5.15? The answer is, it’s possible in some cases, but you have to be very
careful about making such a decision. In the General Hardware case, how would
you store an unoccupied office in the database? The relation of Figure 5.15 allows
data about an office to be stored only if the office is occupied. After all, the primary
key of Figure 5.15’s relation is Salesperson Number! You can’t have a record with
office data in it and no salesperson data. A case where it might work is a database
of U.S. states and their governors. Every state always has exactly one governor and

The Relational Database Concept 123

FIGURE 5.14 (Continued)
General Hardware Company relational
database including the OFFICE relation

(d) PRODUCT relation

Product Product Unit
Number Name Price

16386 Wrench 12.95

19440 Hammer 17.50

21765 Drill 32.99

24013 Saw 26.25

26722 Pliers 11.50

(e) SALES relation

Salesperson Product
Number Number Quantity

137 19440 473

137 24013 170

137 26722 688

186 16386 1,745

186 19440 2,529

186 21765 1,962

186 24013 3,071

204 21765 809

204 26722 734

361 16386 3,729

361 21765 3,110

361 26722 2,738

(f) OFFICE relation

Office
Number Telephone Size (sq. ft.)

1253 901-555-4276 120

1227 901-555-0364 100

1284 901-555-7335 120

1209 901-555-3108 95

F IGURE 5.15
Combining the SALESPERSON and OFFICE
relations into a single relation

Combined SALESPERSON/OFFICE relation

Salesperson Salesperson Commission Year Office
Number Name Percentage of Hire Number Telephone Size (sq. ft.)

137 Baker 10 1995 1284 901-555-7335 120

186 Adams 15 2001 1253 901-555-4276 120

204 Dickens 10 1998 1209 901-555-3108 95

361 Carlyle 20 2001 1227 901-555-0364 100

124 C h a p t e r 5 The Relational Database Model: Introduction

Y O U R

T U R N

5.1 ENTITIES, KEYS, AND RELATIONSHIPS

Think about a retail store that sells
TVs, computers, cameras, DVDs, etc. What entities must
it keep track of? What are some of the attributes of
those entities? What about relationships among those
entities? What do you think would be appropriate
primary, candidate, and foreign keys in the relational
tables designed to store data about the entities?

QUESTION:
Specifically consider a chain of retail electronics stores.

List several of the main entities that the chain must keep
track of. What are the relationships between those
entities? What would appropriate primary, candidate,
and foreign keys be in the relational tables that would
store the data about these entities?

anyone who is a governor must be associated with one state. There can’t be a state
without a governor or a governor without a state.

At any rate, in practice, there are a variety of reasons for keeping the two
relations involved in the one-to-one relationship separate. It may be that because
each of the two entities involved is considered sufficiently important in its own
right, this separation simply adds clarity to the database. It may be because most
users at any one time seek data about only one of the two entities. It may have to
do with splitting the data between different geographic sites. It can even be done
for system performance in the case where the records would be unacceptably long
if the data was all contained in one relation. These issues will be discussed later in
this book but it is important to have at least a basic idea of the intricacies of the
one-to-one relationship, at this point.

DATA RETRIEVAL FROM A RELATIONAL DATABASE

Extracting Data from a Relation

Thus far, the discussion has concentrated on how a relational database is structured.
But building relations and loading them with data is only half of the story. The other
half is the effort to retrieve the data in a way that is helpful and beneficial to the
business organization that built the database. If the database management system did
not provide any particular help in this effort, then the problem would revert to simply
writing a program in some programming language to retrieve data from the relations,
treating them as if they were simple, linear files. But the crucial point is that a
major, defining feature of a relational DBMS is the ability to accept high-level data
retrieval commands, process them against the database’s relations, and return the
desired data. The data retrieval mechanism is a built-in part of the DBMS and does
not have to be written from scratch by every program that uses the database. As we
shall soon see, this is true even to the extent of matching related records in different
relations (integrating data), as in the earlier example of finding the name of the sales-
person on a particular customer account. We shall address what relational retrieval
might look like, first in terms of single relations and then across multiple relations.

Since a relation can be viewed as a tabular or rectangular arrangement of data
values, it would seem to make sense to want to approach data retrieval horizontally,
vertically, or in a combination of the two. Taking a horizontal slice of a relation
implies retrieving one or more rows of the relation. In effect, that’s an expression

Data Retrieval from a Relational Database 125

for retrieving one or more records or retrieving the data about one or more entities.
Taking a vertical slice of a relation means retrieving one or more entire columns of
the relation (down through all of its rows). Taken in combination, we can retrieve
one or more columns of one or more rows, the minimum of which is a single column
of a single row, or a single attribute value of a single record. That’s as fine a sense
of retrieval as we would ever want.

Using terminology from a database formalism called relational algebra and
an informal, hypothetical command style for now, there are two commands called
Select and Project that are capable of the kinds of horizontal and vertical manipula-
tions just suggested. (Note: the use of the word ‘‘Select’’ here is not the same as its
use in the SQL data retrieval language discussed in Chapter 4.)

The Relational Select Operator

Consider the database of Figure 5.14 and its SALESPERSON relation, Figure 5.14a.
To begin with, suppose that we want to find the row or record for salesperson number
204. In a very straightforward way, the informal command might be:

Select rows from the SALESPERSON relation in which Salesperson Number
= 204.

The result would be:

Salesperson Salesperson Commission Year
Number Name Percentage Of Hire

204 Dickens 10 1998

Notice that the result of the Select operation is itself a relation, in this case
consisting of only one row. The result of a relational operation will always be a
relation, whether it consists of many rows with many columns or one row with one
column (i.e., a single attribute value).

In order to retrieve all of the records with a common value in a particular
(nonunique) attribute, for example all salespersons with a commission percentage
of 10, the command looks the same as when dealing with a unique attribute:

Select rows from the SALESPERSON relation in which Commission
Percentage = 10.

But the result of the operation may include several rows:

Salesperson Salesperson Commission Year
Number Name Percentage Of Hire

137 Baker 10 1995

204 Dickens 10 1998

If the requirement is to retrieve the entire relation, the command would be:
Select all rows from the SALESPERSON relation.

The Relational Project Operator

To retrieve what we referred to earlier as a vertical slice of the relation requires the
Project operator. For example, the command to retrieve the number and name of
each salesperson in the file might look like:

Project the Salesperson Number and Salesperson Name over the SALESPER-
SON relation.

126 C h a p t e r 5 The Relational Database Model: Introduction

The result will be a long narrow relation:

Salesperson Salesperson
Number Name

137 Baker

186 Adams

204 Dickens

361 Carlyle

If we project a nonunique attribute, then a decision must be made on whether
or not we want duplicates in the result (although, since the result is itself a relation,
technically there should not be any duplicate rows). For example, whether:

Project the Year of Hire over the SALESPERSON relation.
produces

Year Of Hire

1995

2001

1998

2001

or (eliminating the duplicates in the identical rows) produces

Year Of Hire

1995

2001

1998

would depend on exactly how this hypothetical informal command language was
implemented.

Combination of the Relational Select and Project Operators

More powerful still is the combination of the Select and Project operators. Suppose
we apply them serially, with the relation that results from one operation being used
as the input to the next operation. For example, to retrieve the numbers and names
of the salespersons working on a 10 % commission, we would issue:

Select rows from the SALESPERSON relation in which Commission
Percentage = 10.

Project the Salesperson Number and Salesperson Name over that result.
The first command ‘‘selects out’’ the rows for salespersons 137 and 204. Then

the second command ‘‘projects’’ the salesperson numbers and names from those
two rows, resulting in:

Salesperson Salesperson
Number Name

137 Baker

204 Dickens

Data Retrieval from a Relational Database 127

The following combination illustrates the ability to retrieve a single attribute
value. Suppose that there is a need to find the year of hire of salesperson number
204. Since Salesperson Number is a unique attribute, only one row of the relation
can possibly be involved. Since the goal is to find one attribute value in that row,
the result must be just that: a single attribute value. The command is:

Select rows from the SALESPERSON relation in which Salesperson Number
= 204.

Project the Year of Hire over that result.
The result is the single value:

Year of Hire

1998

Extracting Data Across Multiple Relations: Data Integration

In Chapter 3, the issue of data integration was broached and the concept was defined.
First, the data in the Salesperson and Customer files of Figure 3.7 was shown to be
non-redundant. Then it was shown that integrating data would require extracting
data from one file and using that extracted data as a search argument to find
the sought-after data in the other file. For example, recall that finding the name of
the salesperson who was responsible for customer number 1525 required finding the
salesperson number in customer 1525’s record in the Customer file (i.e. salesperson
number 361) and then using that salesperson number as a search argument in the
Salesperson file to discover that the sought-after name was Carlyle. The alternative
was the combined file of Figure 3.8 that introduced data redundancy.

A fundamental premise of the database approach is that a DBMS must be
able to store data non-redundantly while also providing a data integration facility.
But it seems that we may have a problem here. Since relations appear to be largely
similar in structure to simple, linear files, do the lessons learned from the files
of Figure 3.7 and Figure 3.8 lead to the conclusion that it is impossible to have
simultaneously non-redundant data storage and data integration with relations in a
relational database? In fact, one of the elegant features of relational DBMSs is that
they automate the cross-relation data extraction process in such a way that it appears
that the data in the relations is integrated while also remaining non-redundant. The
data integration takes place at the time that a relational query is processed by the
relational DBMS for solution. This is a unique feature of relational databases and
is substantially different from the functional equivalents in the older navigational
database systems and in some of the newer object-oriented database systems, in both
of which the data integration is much more tightly built into the data structure itself.
In relational algebra terms, the integration function is known as the Join command.

Now, focus on the SALESPERSON and CUSTOMER relations of Figure 5.14,
which outwardly look just like the SALESPERSON and CUSTOMER files of
Figure 3.7. Adding the Join operator to our hypothetical, informal command style,
consider the following commands designed to find the name of the salesperson
responsible for customer number 1525. Again, this was the query that seemed to be
so problematic in Chapter 3.

Join the SALESPERSON relation and the CUSTOMER relation, using the
Salesperson Number of each as the join fields.

Select rows from that result in which Customer Number = 1525.
Project the Salesperson Name over that last result.

128 C h a p t e r 5 The Relational Database Model: Introduction

Obviously, the first sentence represents the use of the join command. The
join operation will take advantage of the common Salesperson Number attribute,
which for this purpose is called the join field, in both relations. The Salesperson
Number attribute is, of course, the primary key of the SALESPERSON relation
and is a foreign key in the CUSTOMER relation. Remember that the point of
the foreign key is to represent a one-to-many (in this case) relationship between
salespersons and customers. Some rows of the SALESPERSON relation are related
to some rows of the CUSTOMER relation by virtue of having the same salesperson
number. The Salesperson Number attribute serves to identify each salesperson in the
SALESPERSON relation, while the Salesperson Number attribute indicates which
salesperson is responsible for a particular customer in the CUSTOMER relation.
Thus, the rows of the two relations that have identical Salesperson Number values
are related. It is these related rows that the join operation will bring together in
order to satisfy the query that was posed.

The join operation tries to find matches between the join field values of the
rows in the two relations. For example, it finds a match between the Salesperson
Number value of 137 in the first row of the SALESPERSON relation and the
Salesperson Number value of 137 in the first, third, fourth, and seventh rows of the
CUSTOMER relation. When it finds such a pair of rows, it takes all the attribute
values from both rows and creates a single new row out of them in the resultant
relation. In its most basic form, as shown here, the join is truly an exhaustive
operation, comparing every row of one relation to every row of the other relation,
looking for a match in the join fields. (Comparing every possible combination of
two sets, in this case rows from the two relations, is known as taking the ‘‘Cartesian
product.’’) So the result of the join command, the first of the three commands in the
example command sequence we’re executing, is:

SalesPerson SalesPerson Commission Year of Customer Customer SalesPerson
Number Name Percentage Hire Number Name Number HQ City

137 Baker 10 1995 0121 Main St. Hardware 137 New York

137 Baker 10 1995 0933 ABC Home Stores 137 Los Angeles

137 Baker 10 1995 1047 Acme Hardware Store 137 Los Angeles

137 Baker 10 1995 1826 City Hardware 137 New York

186 Adams 15 2001 0839 Jane’s Stores 186 Chicago

186 Adams 15 2001 2267 Central Stores 186 New York

204 Dickens 10 1998 2198 Western Hardware 204 New York

361 Carlyle 20 2001 1525 Fred’s Tool Stores 361 Atlanta

361 Carlyle 20 2001 1700 XYZ Stores 361 Washington

Notice that the first and seventh columns are identical in all of their
values, row by row. They represent the Salesperson Number attributes from
the SALESPERSON and CUSTOMER relations respectively. Remember that two
rows from the SALESPERSON and CUSTOMER relations would not be combined
together to form a row in the resultant relation unless their two join field values
were identical in the first place. This leads to identical values of the two Salesperson
Number attributes within each of the rows of the resultant relation. This type of
join is called an ‘‘equijoin.’’ If, as seems reasonable, one of the two identical join
columns is eliminated in the process, the result is called a ‘‘natural join.’’

Example: Good Reading Book Stores 129

Continuing with the command sequence to eventually find the name of the
salesperson responsible for customer number 1525, the next part of the command
issued is:

Select rows from that result (the relation that resulted from the join) in which
Customer Number = 1525.

This produces:

SalesPerson SalesPerson Commission Year of Customer Customer SalesPerson
Number Name Percentage Hire Number Name Number HQ City

361 Carlyle 20 2001 1525 Fred’s Tool Stores 361 Atlanta

Finally, we issue the third command
Project the Salesperson Name over that last result.
and get:

SalesPerson Name

Carlyle

Notice that the process could have been streamlined considerably if the relational
DBMS had more ‘‘intelligence’’ built into it. The query dealt with only a single
customer, customer 1525, and there is only one row for each customer in the
CUSTOMER relation, since Customer Number is the unique key attribute. Therefore,
the query needed to look at only one row in the CUSTOMER relation, the one for
customer 1525. Since this row references only one salesperson, salesperson 361,
it follows that, in turn, it needed to look at only one row in the SALESPERSON
relation, the one for salesperson 1525. This type of performance issue in relational
query processing will be covered later in this book in Chapter 8.

EXAMPLE: GOOD READING BOOK STORES

Figure 5.16 shows the relational database for the Good Reading Book Stores
example described earlier. Since publishers are in a one-to-many relationship to
books, the primary key of the PUBLISHER Relation, Publisher Name, is inserted
into the BOOK relation as a foreign key. There are two many-to-many relationships.
One, between books and authors, keeps track of which authors wrote which books.
Recall that a book can have multiple authors and a particular author may have written
or partly written many books. The other many-to-many relationship, between books
and customers, records which customers bought which books.

The WRITING relation handles the many-to-many relationship between
books and authors. The primary key is the combination of Book Number and
Author Number. There is no intersection data! Could there be a reason for having
intersection data in this relation? If, for example, this database belonged to a
publisher instead of a bookstore chain, an intersection data attribute might be
Royalty Percentage, i.e. the percentage of the royalties to which a particular author
is entitled for a particular book. The SALE relation takes care of the many-to-many
relationship between books and customers. Certainly Book Number and Customer
Number are part of the primary key of the SALE relation, but is the combination
of the two the entire primary key? The answer is that this depends on whether the
assumption is made that a given customer can or cannot buy copies of a given

130 C h a p t e r 5 The Relational Database Model: Introduction

F IGURE 5.16
Good Reading Bookstores relational
database

SALE relation

Book Customer
Number Number Date Price Quantity

WRITING relation

Book Author
Number Number

CUSTOMER relation

Customer Customer
Number Name Street City State Country

BOOK relation

Book Book Publication Publisher
Number Name Year Pages Name

AUTHOR relation

Author Author Year Year
Number Name Born Died

PUBLISHER relation

Publisher Year
Name City Country Telephone Founded

book on different days. If the assumption is that a customer can only buy copies
of a particular book on one single day, then the combination of Book Number and
Customer Number is fine as the primary key. If the assumption is that a customer
may indeed buy copies of a given book on different days, then the Date attribute
must be part of the primary key to achieve uniqueness.

EXAMPLE: WORLD MUSIC ASSOCIATION

Figure 5.17 shows the relational database for the World Music Association example
described earlier. There is a one-to-many relationship from orchestras to musicians
and, in turn, a one-to-many relationship from musicians to degrees. Thus, the primary
key of the ORCHESTRA relation, Orchestra Name, appears in the MUSICIAN
relation as a foreign key. In turn, the primary key of the MUSICIAN relation,
Musician Number, appears in the DEGREE relation as a foreign key. In fact, since
the DEGREE attribute is unique only within a musician, the Musician Number
attribute and the Degree attribute together serve as the compound primary key of the
DEGREE relation. A similar situation exists between composers and compositions.
The one-to-many relationship from composers to compositions requires that the

Example: World Music Association 131

FIGURE 5.17
World Music Association relational
database

RECORDING relation

Orchestra Composition
Name Name Year Price

COMPOSITION relation

Composition
Name Year

COMPOSER relation

Composer Date of
Country Birth

DEGREE relation

Musician
Number Degree University Year

MUSICIAN relation

Musician Musician Annual Orchestra
Number Name Instrument Salary Name

ORCHESTRA relation

Orchestra Music
Name City Country Director

Name

Composer
Name

Composer
Name

primary key of the COMPOSER relation, Composer Name, appear as a foreign key
in the COMPOSITION relation. Since composition names are unique only within
composers, the combination of Composition Name and Composer Name serves as
the compound primary key of the COMPOSITION relation.

The many-to-many relationship between orchestras and compositions indicates
which orchestras have recorded which compositions and which compositions have
been recorded by which orchestras. As a many-to-many relationship, it requires
that an additional relation be created. The primary key of this new RECORDING
relation has three attributes: Orchestra Name, Composition Name, and Composer
Name. Orchestra Name is the unique identifier of orchestras. The combination of
Composition Name and Composer Name is the unique identifier of compositions.
The combination of Orchestra Name, Composition Name, and Composer Name is
the unique identifier of the RECORDING relation. The Year and Price attributes are
intersection data in the RECORDING relation. If a particular orchestra could have
recorded a particular composition multiple times in different years (although we
assume that this is limited to once per year), Year must also be part of the primary
key of the RECORDING relation to provide uniqueness.

132 C h a p t e r 5 The Relational Database Model: Introduction

F IGURE 5.18
Lucky Rent-A-Car relational database

RENTAL relation

Car Serial Customer Rental Return Total
Number Number Date Date Cost

CUSTOMER relation

Customer Customer Customer Customer
Number Name Address Telephone

MAINTENANCE relation

Repair Car Serial Repair
Number Number Date Procedure Mileage Time

CAR Relation

Car Serial Manufacturer
Number Model Year Class Name

MANUFACTURER relation

Manufacturer Manufacturer Sales Rep Sales Rep
Name Country Name Telephone

EXAMPLE: LUCKY RENT-A-CAR

Figure 5.18 shows the relational database for the Lucky Rent-A-Car example
described earlier. There is a one-to-many relationship from manufacturers to cars
and another one-to-many relationship from cars to maintenance events. The former
requires the manufacturer primary key, Manufactuer Name, to be placed in the CAR
relation as a foreign key. The latter requires the car primary key, Car Serial Number,
to be placed in the MAINTENANCE relation as a foreign key. The many-to-many
relationship among cars and customers requires the creation of a new relation, the
RENTAL relation. Each record of the RENTAL relation records the rental of a
particular car by a particular customer. Note that the combination of the Car Serial
Number and Customer Number attributes is not sufficient as the primary key of the
RENTAL relation. A given customer might have rented a given car more than once.
Adding Rental Date to the primary key achieves the needed uniqueness.

SUMMARY

The relational approach to database management is by far the primary database
management approach used in all levels of information systems applications today.
The basic structural component of a relational database is the relation, which
appears to be a simple linear file but has some technical differences.

Questions 133

Every relation has a unique primary key consisting of one or more attributes that
have unique values in that relation. Multiple such unique attributes or combinations
of attributes that have the uniqueness property are called candidate keys. The
candidate keys that are not chosen to be the one primary key are called alternate
keys. If the primary key of one relation in the database also appears in another
relation of the database, it called a foreign key in that second relation. Foreign keys
tie relations together in the sense that they implement relationships between the
entities represented by the relations. A one-to-many relationship is implemented
by adding the primary key on the ‘‘one side’’ of the relationship to the relation
representing the ‘‘many side’’ of the relationship. Many-to-many relationships are
implemented by constructing an additional relation that includes the primary keys of
the two entities in the many-to-many relationship. Additional attributes that describe
the many-to-many relationship are called intersection data.

Three basic relational algebra commands permit data retrieval from a relational
database. The Select command retrieves one or more rows of a relation. The
Project command retrieves one or more columns of a relation. The Join command
accomplishes data integration by tying together relations that have a common
primary key/foreign key pair. These three commands can be used in combination to
retrieve the specific data required in a particular query.

KEY TERMS

Alternate key
Attribute
Candidate key
Cell
Column
Data retrieval
Domain of values
Entity identifier
Entity type

Equijoin
Foreign key
Integrating data
Join operator
Natural join
Non-redundant data
Personal computer (PC)
Primary key
Project operator

Redundant data
Relation
Relational algebra
Relational database
Relational model
Row
Select operator
Tuple
Unique attribute

QUESTIONS

1. Why was the commercial introduction of relational
database delayed during the 1970s? What factors
encouraged its introduction in the early 1980s?

2. How does a relation differ from an ordinary file?
3. Define the terms ‘‘tuple’’ and ‘‘attribute.’’
4. What is a relational database?
5. What are the characteristics of a candidate key?
6. What is a primary key? What is an alternate key?
7. Define the term ‘‘foreign key.’’
8. In your own words, describe how foreign keys are

used to set up one-to-many binary relationships in
relational databases.

9. Describe why an additional relation is needed to
represent a many-to-many relationship in a relational
database.

10. Describe what intersection data is, what it describes,
and why it does not describe a single entity.

11. What is a one-to-one binary relationship?
12. Describe the purpose and capabilities of:

a. The relational Select operator.
b. The relational Project operator.
c. The relational Join operator.

13. Describe how the join operator works.

134 C h a p t e r 5 The Relational Database Model: Introduction

EXERCISES

1. The main relation of a motor vehicle registration
bureau’s relational database includes the following
attributes:

Vehicle License Owner
Identification Plate Serial
Number Number Number Manufacturer Model Year Color

The Vehicle Identification Number is a unique num-
ber assigned to the car when it is manufactured. The
License Plate Number is, in effect, a unique number
assigned to the car by the government when it is
registered. The Owner Serial Number is a unique
identifier of each owner. Each owner can own more
than one vehicle. The other attributes are not unique.
What is/are the candidate key(s) of this relation? If
there is more than one candidate key, choose one
as the primary key and indicate which is/are the
alternate key(s).

2. A relation consists of attributes A, B, C, D, E, F, G,
and H.

No single attribute has unique values.
The combination of attributes A and E is unique.
The combination of attributes B and D is unique.
The combination of attributes B and G is unique.
Select a primary key for this relation and indicate

and alternate keys.
3. In the General Hardware Corp. relational database

of Figure 5.14:
a. How many foreign keys are there in each of the

six relations?

b. List the foreign keys in each of the six relations.
4. Identify the relations that support many-to-many

relationships, the primary keys of those relations,
and any intersection data in the General Hardware
Corp. database.

5. Consider the General Hardware Corp. relational
database. Using the informal relational command
language described in this chapter, write commands
to:

a. List the product name and unit price of all of the
products.

b. List the employee names and titles of all the
employees of customer 2198.

c. Retrieve the record for office number 1284.
d. Retrieve the records for customers headquartered

in Los Angeles.
e. Find the size of office number 1209.
f. Find the name of the salesperson assigned to

office number 1209.
g. List the product name and quantity sold of each

product sold by salesperson 361.
6. Consider the General Hardware Corp. relational

database and the data stored in it, as shown
in Figure 5.14. Find the answer to each of the
following queries (written in the informal relational
command language described in this chapter).
a. Select rows from the CUSTOMER EMPLOYEE

relation in which Customer Number = 2198.
b. Select rows from the CUSTOMER EMPLOYEE

relation in which Customer Number = 2198.
Project Employee Number and Employee Name
over that result.

c. Select rows from the PRODUCT relation in
which Product Number = 21765.

d. Select rows from the PRODUCT relation in
which Product Number = 21765. Project Unit
Price over that result.

e. Join the SALESPERSON and CUSTOMER
relations using the Salesperson Number attribute
of each as the join fields. Select rows from that
result in which Salesperson Name = Baker.
Project Customer Name over that result.

f. Join the PRODUCT relation and the SALES
relation using the Product Number attribute of
each as the join fields. Select rows in which
Product Name = Pliers. Project Salesperson
Number and Quantity over that result.

7. For each of Exercise 6, describe in words what the
query is trying to accomplish.

MINICASES

1. Consider the following relational database for Happy
Cruise Lines. It keeps track of ships, cruises, ports, and
passengers. A ‘‘cruise’’ is a particular sailing of a ship
on a particular date. For example, the seven-day journey

of the ship Pride of Tampa that leaves on June 13,
2009, is a cruise. Note the following facts about this
environment.

Minicases 135

• Both ship number and ship name are unique in the
SHIP Relation.

• A ship goes on many cruises over time. A cruise is
associated with a single ship.

• A port is identified by the combination of port name
and country.

• As indicated by the VISIT Relation, a cruise includes
visits to several ports, and a port is typically included
in several cruises.

• Both Passenger Number and Social Security Number
are unique in the PASSENGER Relation. A particular
person has a single Passenger Number that is used for
all of the cruises that she takes.

• The VOYAGE Relation indicates that a person can
take many cruises and a cruise, of course, has many
passengers.

SHIP Relation

Ship Number Ship Ship Launch Gross
Number Name Builder Date Weight

CRUISE Relation

Cruise Start End Cruise Ship
Number Date Date Director Number

PORT Relation

Port Number Port
Name Country of Docks Manager

VISIT Relation

Cruise Port Arrival Departure
Number Name Country Date Date

PASSENGER Relation

Passenger Passenger Social Security Home Telephone
Number Name Number Address Number

VOYAGE Relation

Passenger Cruise Stateroom
Number Number Number Fare

a. Identify the candidate keys of each relation.
b. Identify the primary key and any alternate keys of

each relation.
c. How many foreign keys does each relation have?
d. Identify the foreign keys of each relation.
e. Indicate any instances in which a foreign key serves

as part of the primary key of the relation in which
it is a foreign key. Why does each of those relations
require a multi-attribute primary key?

f. Identify the relations that support many-to-many
relationships, the primary keys of those relations,
and any intersection data.

g. Using the informal relational command language
described in this chapter, write commands to:
i. Retrieve the record for passenger number 473942.

ii. Retrieve the record for the port of Nassau in the
Bahamas.

iii. List all of the ships built by General Shipbuilding,
Inc.

iv. List the port name and number of docks of every
port in Mexico.

v. List the name and number of every ship.
vi. Who was the cruise director on cruise number

38232?
vii. What was the gross weight of the ship used for

cruise number 39482?
viii. List the home address of every passenger on cruise

number 17543.
2. Super Baseball League Consider the following relational

database for the Super Baseball League. It keeps track
of teams in the league, coaches and players on the teams,
work experience of the coaches, bats belonging to each
team, and which players have played on which teams.
Note the following facts about this environment:

• The database keeps track of the history of all of the
teams that each player has played on and all of the
players who have played on each team.

• The database keeps track of only the current team that
a coach works for.

• Team Number, Team Name, and Player Number are
each unique attributes across the league.

• Coach Name is unique only within a team (and we
assume that a team cannot have two coaches of the
same name).

136 C h a p t e r 5 The Relational Database Model: Introduction

• Serial Number (for bats) is unique only within a team.
• In the AFFILIATION relation, the Years attribute

indicates that number of years that a player played
on a team; the Batting Average is for the years that a
player played on a team.

TEAM Relation

Team Team
Number Name City Manager

COACH Relation

Team Coach Coach
Number Name Telephone

WORK EXPERIENCE Relation

Team Coach Experience Years Of
Number Name Type Experience

BATS Relation

Team Serial
Number Number Manufacturer

PLAYER Relation

Number Name
Player Player Age

AFFILIATION Relation

Player Team Batting
Number Number Years Average

a. Identify the candidate keys of each relation.
b. Identify the primary key and any alternate keys of

each relation.
c. How many foreign keys does each relation have?
d. Identify the foreign keys of each relation.
e. Indicate any instances in which a foreign key serves

as part of the primary key of the relation in which
it is a foreign key. Why does each of those relations
require a multi-attribute primary key?

f. Identify the relations that support many-to-many
relationships, the primary keys of those relations,
and any intersection data.

g. Assume that we add the following STADIUM
relation to the Super Baseball League relational
database. Each team has one home stadium, which
is what is represented in this relation. Assume that a
stadium can serve as the home stadium for only one
team. Stadium Name is unique across the league.

STADIUM Relation

Stadium Year Team
Name Built Size Team Number

What kind of binary relationship exists between the
STADIUM relation and the TEAM relation? Could
the data from the two relations be combined into one
without introducing data redundancy? If so, how?

h. Using the informal relational command language
described in this chapter, write commands to:

i. Retrieve the record for team number 12.
ii. Retrieve the record for coach Adams on team

number 12.
iii. List the player number and age of every player.
iv. List the work experience of every coach.
v. List the work experience of every coach on team

number 25.
vi. Find the age of player number 42459.

vii. List the serial numbers and manufacturers of all
of the Vultures’ (the name of a team) bats.

viii. Find the number of years of college coaching
experience that coach Taylor of the Vultures has.

C H A P T E R 6

THE RELATIONAL DATABASE
MODEL: ADDITIONAL

CONCEPTS

C hapter 5 defined the basic terminology of relational database and then
demonstrated some fundamental ideas about constructing relations in relational

databases and manipulating data in them. The discussion focused on relationships between
two different entity types, i.e. binary relationships. This chapter will go beyond binary
relationships into unary and ternary relationships. It will then address the important issue
of referential integrity.

OBJECTIVES

■ Describe how unary and ternary relationships are implemented in a relational
database.

■ Explain the concept of referential integrity.
■ Describe how the referential integrity restrict, cascade, and set-to-null delete rules

operate in a relational database.

CHAPTER OUTLINE

Introduction
Relational Structures for Unary and

Ternary Relationships
Unary One-to-Many Relationships
Unary Many-to-Many Relationships

Ternary Relationships
Referential Integrity

The Referential Integrity Concept
Three Delete Rules

Summary

138 C h a p t e r 6 The Relational Database Model: Additional Concepts

INTRODUCTION

The previous chapter talked about how binary relationships, i.e. those involving
two entity types, can be constructed in relational databases so that the data can be
integrated while data redundancy is avoided. Unary relationships, with one entity
type, and ternary relationships, with three entity types, while perhaps not quite as
common as binary relationships, are also facts of life in the real world and so must
also be handled properly in relational databases.

Referential integrity addresses a particular issue that can arise between two
tables in a relational database. The issue has to do with a foreign key value in one
table being able to find a matching primary key value in another table during a join
operation. Interestingly, in the older hierarchical and network database management
systems, the equivalents of primary and foreign keys were linked by physical
address pointers and so were always tied together. But, in relational databases, the
tables are basically independent of each other. So, if there are no controls in place,
the proper foreign key-primary key matches can be lost when data is updated or
records are deleted.

This chapter will address the issues of unary relationships, ternary relation-
ships, and referential integrity, all of which will move us much closer to modeling
real-world business environments properly in relational databases.

CONCEPTS

IN ACT ION

6-A CITY OF MEMPHIS, TN—VEHICLE SERVICE CENTER

The city of Memphis, TN, is the
18th largest city in the United States in both population
(650,000) and land area (280 square miles). Memphis
was founded in 1819 by General/President Andrew
Jackson and others and was incorporated as a city in
1826. Because of its position on the Mississippi River in
the midst of the country’s largest cotton-farming region,
Memphis has traditionally been the center of the U.S.
cotton industry. It is still the world’s largest spot-cotton
market and also the world’s largest hardwood market.
The concept of the grocery supermarket was invented in
Memphis in the early 1900s and the concept of the motel
chain was invented in Memphis in the 1950s. Today,
because of its central location in the country and because
of its position as a major transportation hub, Memphis is
known as the ‘‘Distribution Center’’ of the United States.

The Vehicle Service Center of the Memphis city
government’s General Services Division is responsible
for all of the city’s municipal vehicles except for Fire
Department vehicles. The approximately 4,000 vehicles

include everything from police cruisers and sanitation
trucks to street cleaners and even lawn-mowing tractors.
Since 1991, the city has kept track of all these vehicles
with a database application that manages them through
their complete lifecycle. New vehicles are entered into
the database when they are purchased and they’re
assigned to a city department. The application then keeps
each vehicle’s maintenance history, generates automatic
reports on maintenance due dates, tracks mileage and
gasoline use, and produces monthly reports for the
departments listing all of this activity for each of their
vehicles. Finally, the system tracks the reassignment of
older vehicles and the auctioning of vehicles being
disposed of.

Memphis’ vehicle tracking system uses an Oracle
database running on Dell servers. For vehicle main-
tenance, the system’s major tables include a Vehicle
Downtime Detail table with 1.6 million records, a Work
Order Job Notes table with 3.3 million records, and a
Parts Journal table with 950,000 records.

Relational Structures for Unary and Ternary Relationships 139

‘‘Photo by Permission of City of Memphis’’

RELATIONAL STRUCTURES FOR UNARY AND TERNARY RELATIONSHIPS

Unary One-to-Many Relationships

Let’s continue with the General Hardware Co. example of Figure 5.14, reprinted
here for convenience as Figure 6.1. Suppose that General Hardware’s salespersons
are organized in such a way that some of the salespersons, in addition to having
their customer responsibilities, serve as the sales managers of other salespersons,
Figure 6.2. A salesperson reports to exactly one sales manager, but each salesperson
who serves as a sales manager typically has several salespersons reporting to
him. Thus, there is a one-to-many relationship within the set or entity type of
salespersons.

Salesperson who is also a sales manager Salesperson

This is known as a unary one-to-many relationship. It is unary because there is
only one entity type involved. It is one-to-many because among the individual
entity occurrences, i.e. among the salespersons, a particular salesperson reports

140 C h a p t e r 6 The Relational Database Model: Additional Concepts

F IGURE 6.1
General Hardware Company relational
database

(a) SALESPERSON relation

Salesperson Salesperson Commission Year Office
Number Name Percentage of Hire Number

137 Baker 10 1995 1284

186 Adams 15 2001 1253

204 Dickens 10 1998 1209

361 Carlyle 20 2001 1227

(b) CUSTOMER relation

Customer Customer Salesperson
Number Name Number HQ City

0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

1826 City Hardware 137 New York

2198 Western Hardware 204 New York

2267 Central Stores 186 New York

(c) CUSTOMER EMPLOYEE relation

Customer Employee Employee
Number Number Name Title

0121 27498 Smith Co-Owner

0121 30441 Garcia Co-Owner

0933 25270 Chen VP Sales

0933 30441 Levy Sales Manager

0933 48285 Morton President

1525 33779 Baker Sales Manager

2198 27470 Smith President

2198 30441 Jones VP Sales

2198 33779 Garcia VP Personnel

2198 35268 Kaplan Senior Accountant

(Continues)

to one salesperson who is his sales manager while a salesperson who is a sales
manager may have several salespersons reporting to her. Note that, in general, this
arrangement can involve as few as two levels of entity occurrences or can involve
many levels in a hierarchical arrangement. In general, in a company, an employee
can report to a manager who in turn reports to a higher-level manager, and so on up
to the CEO.

Relational Structures for Unary and Ternary Relationships 141

FIGURE 6.1 (Continued)
General Hardware Company relational
database

(d) PRODUCT relation

Product Number Unit
Number Name Price

16386 Wrench 12.95

19440 Hammer 17.50

21765 Drill 32.99

24013 Saw 26.25

26722 Pliers 11.50

(e) SALES relation

Salesperson Product
Number Number Quantity

137 19440 473

137 24013 170

137 26722 688

186 16386 1745

186 19440 2529

186 21765 1962

186 24013 3071

204 21765 809

204 26722 734

361 16386 3729

361 21765 3110

361 26722 2738

(f) OFFICE relation

Office
Number Telephone Size (sq. ft.)

1253 901-555-4276 120

1227 901-555-0364 100

1284 901-555-7335 120

1209 901-555-3108 95

Assume that the General Hardware Co. has two levels of sales managers,
resulting in a three-level hierarchy. That is, each salesperson reports to a sales
manager (who is himself a salesperson) and each sales manager reports to one of
several chief sales managers (who is herself a salesperson). Figure 6.3 shows two
levels of sales managers plus the salespersons who report to them. For example,
salespersons 142, 323, and 411 all report to salesperson (and sales manager) 137.
Salespersons 137 and 439, both of whom are sales managers, report to salesperson
186 who is a chief sales manager. As you go upward in the hierarchy, each
salesperson is associated with exactly one other salesperson. As you go downward
in the hierarchy from any salesperson/sales manager, each salesperson/sales manager

142 C h a p t e r 6 The Relational Database Model: Additional Concepts

F IGURE 6.2
Salespersons 142, 323, and 411
reporting to salesperson 137 who is their
sales manager

Salesperson 142 Salesperson 323 Salesperson 411

Sales Manager
Salesperson 137

Reports to

F IGURE 6.3
General Hardware Company salesperson
reporting hierarchy

137

412
323
411

186

439

170

267

198
204

285

483

361
388
446

is associated with many salespersons below, except for the bottom-level salespersons
who are not sales managers and thus have no one reporting to them.

Figure 6.4, which is an expansion of the General Hardware Co. SALESPER-
SON relation in Figure 6.1a, demonstrates how this type of relationship is reflected
in a relational database. A one-to-many unary relationship requires the addition of
one column to the relation that represents the single entity involved in the unary
relationship. In Figure 6.4, the Sales Manager Number attribute is the new attribute
that has been added to the SALESPERSON relation. The domain of values of the
new column is the same as the domain of values of the relation’s primary key. Thus,
the values in the new Sales Manager Number column will be three-digit whole
numbers representing the unique identifiers for salespersons, just like the values
in the Salesperson Number column. The value in the new column for a particular
row represents the value of the next entity ‘‘upward’’ in the unary one-to-many
hierarchy. For example, in the row for salesperson number 323, the sales manager

Relational Structures for Unary and Ternary Relationships 143

FIGURE 6.4
General Hardware Company
SALESPERSON relation including Sales
Manager Number attribute

SALESPERSON relation

Salesperson Salesperson Commission Year Sales Manager
Number Name Percentage of Hire Number

137 Baker 10 1995 186

142 Smith 15 2001 137

170 Taylor 18 1992 439

186 Adams 15 2001

198 Wang 20 1990 267

204 Dickens 10 1998 267

267 Perez 22 2000 285

285 Costello 10 1996

323 McNamara 15 1995 137

361 Carlyle 20 2001 483

388 Goldberg 20 1997 483

411 Davidson 18 1992 137

439 Warren 10 1996 186

446 Albert 10 2001 483

483 Jones 15 1995 285

value is 137 because salesperson 323’s sales manager is salesperson/sales manager
137, as shown in Figure 6.3. Similarly, the row for salesperson 137, who happens
also to be a sales manager, shows salesperson number 186 in its sales manager
number column. Salesperson/sales manager 137 reports to chief sales manager 186,
also as shown in Figure 6.3. The sales manager column value for salesperson/chief
sales manager 186 is blank because the reporting structure happens to end with each
chief sales manager; i.e., there is nothing ‘‘above’’ salesperson 186 in Figure 6.3.

Note that a unary one-to-one relationship, for example one salesperson
backing-up another (see Figure 2.7a) is handled in a manner similar to Figure 6.4.
The difference is that the Sales Manager Number column would be replaced by
a Back-Up Number column and a particular salesperson number would appear at
most once in that column.

Unary Many-to-Many Relationships

The unary many-to-many relationship is a special case that has come to be known
as the ‘‘bill of materials’’ problem. Among the entity occurrences of a single entity
type, which is what makes this ‘‘unary,’’ each particular entity occurrence can be
related to many other occurrences and each of those latter occurrences can, in turn,
be related to many other occurrences. Put another way, every entity occurrence
can be related to many other occurrences, which, if you think about it, makes this
a many-to-many relationship because only one entity type is involved. (Yes, that
sounds a little strange, but keep reading.) The general idea is that in a complex
item, say an automobile engine, small parts are assembled together to make a small
component or assembly. Then some of those small components or assemblies (and
maybe some small parts) are assembled together to make medium-sized components
or assemblies, and so on until the final, top-level ‘‘component’’ is the automobile
engine. The key concept here is that an assembly at any level is considered to be

144 C h a p t e r 6 The Relational Database Model: Additional Concepts

F IGURE 6.5
General Hardware Company product bill of
materials

Wrench Model A (#11)

Wrench Model B (#14)
Deluxe Wrench Set (#43)

Wrench Model C (#17) Supreme Tool Set (#53)

Wrench Model D (#19)
Master Wrench Set (#44)

Hammer Model A (#22)

Hammer Model B (#24) Deluxe Hammer Set (#48)
Grand ToolSet (#56)

Hammer Model C (#28)

Drill Model A (#31)

Drill Model B (#35)

both a part made up of smaller units and a unit that can be a component of a larger
part. Parts and assemblies at all levels are all considered occurrences of the same
entity type and they all have a unique identifier in a single domain of values.

Certainly, this requires an example! Figure 6.5 illustrates this concept using
an expansion of General Hardware Co.’s product set.

Product Product

The numbers in parentheses are product numbers. Assume, as is quite reasonable,
that General Hardware not only sells individual tools but also sells sets of tools. Both
individual tools and sets of tools are considered to be ‘‘products,’’ which also makes
sense. As shown in Figure 6.5, General Hardware carries several types (or perhaps
sizes) of wrenches, hammers, and drills. Various combinations of wrenches and
hammers are sold as wrench and hammer sets. Various combinations of these sets
and other tools such as drills are sold as even larger sets. Very importantly, notice
the many-to-many nature of this arrangement. For example, the Master Wrench Set
(product number 44), looking to its left, is comprised of three different wrenches,
including Wrench Model A (#11). Conversely, Wrench Model A, looking to its
right, is a component of two different wrench sets, both the Deluxe Wrench Set
(#43) and the Master Wrench Set (#44). This demonstrates the many-to-many nature
of products. Similarly, both the Supreme Tool Set (#53) and the Grand Tool Set
(#56) are, obviously, comprised of several smaller sets and tools, while the Deluxe
Hammer Set (#48) is a component of both the Supreme Tool Set (#53) and the
Grand Tool Set (#56).

How can this unary many-to-many relationship be represented in a relational
database? First of all, note that Figure 6.6 is a modification and expansion of the
PRODUCT relation in the General Hardware Co. relational database of Figure 6.1d.
Note that the product numbers matching the product numbers in Figure 6.5 have
been reduced to two digits for simplicity in the explanation. Every individual unit
item and every set in Figure 6.5 has its own row in the relation in Figure 6.6 because
every item and set in Figure 6.5 is a product that General Hardware has for sale.

Now, here is the main point. Just as a binary many-to-many relationship
requires the creation of an additional relation in a relational database, so does
a unary many-to-many relationship. The new additional relation is shown in
Figure 6.7. It consists of two attributes. The domain of values of each column is
that of the Product Number column in the PRODUCT relation of Figure 6.6. The
relation of Figure 6.7 represents, in a tabular format, the way that the assemblies
of Figure 6.5 are constructed. The first two rows of Figure 6.7 literally say that
product (assembly) number 43 (the Deluxe Wrench Set) is comprised of products

Relational Structures for Unary and Ternary Relationships 145

FIGURE 6.6
General Hardware Company modified
PRODUCT relation

PRODUCT relation

Product Product Unit
Number Name Price

11 Wrench Model A 12.50

14 Wrench Model B 13.75

17 Wrench Model C 11.62

19 Wrench Model D 15.80

22 Hammer Model A 17.50

24 Hammer Model B 18.00

28 Hammer Model C 19.95

31 Drill Model A 31.25

35 Drill Model B 38.50

43 Deluxe Wrench Set 23.95

44 Master Wrench Set 35.00

48 Deluxe Hammer Set 51.00

53 Supreme Tool Set 100.00

56 Grand Tool Set 109.95

F IGURE 6.7
General Hardware Company unary
many-to-many relation

Assembly Part

43 11

43 14

44 11

44 17

44 19

48 22

48 24

48 28

53 43

53 48

53 31

56 44

56 48

56 35

11 and 14, as indicated in Figure 6.5. Next, product (assembly) 44 is comprised
of products 11, 17, and 19. Moving to the last three rows of the relation, product
(assembly) 56 is comprised of products 44 and 48, both of which happen to be
assemblies, and product 35. Again, notice the many-to-many relationship as it is
represented in the relation of Figure 6.7. The first two rows indicate that assembly
43 is comprised of two parts. Conversely, the first and third rows indicate that part
11 is a component of two different assemblies.

146 C h a p t e r 6 The Relational Database Model: Additional Concepts

Ternary Relationships

A ternary relationship is a relationship that involves three different entity types. If
the entity types are A, B, and C, then we might illustrate this as:

B

C

A

To demonstrate this concept in the broadest way using the General Hardware
Co. database, let’s slightly modify part of the General Hardware premise. The
assumption has always been that there is a one-to-many relationship between
salespersons and customers. A salesperson is responsible for several customers,
while a customer is in contact with (is sold to by) exactly one of General Hardware’s
salespersons. For the purposes of describing a general ternary relationship,
we change that premise temporarily to a many-to-many relationship between
salespersons and customers. That is, we now assume that any salesperson can make
a sale to any customer and any customer can buy from any salesperson.

With that change, consider the ternary relationship among salespersons,
customers, and products. Such a relationship allows us to keep track of which
salesperson sold which product to which customer. This is very significant. In this
environment, a salesperson can sell many products and a salesperson can sell to
many customers. A product can be sold by many salespersons and can be sold
to many customers. A customer can buy many products and can buy from many
salespersons. All of this leads to a lot of different possibilities for any given sale. So,
it is very important to be able to tie down a particular sale by noting and recording
which salesperson sold which product to which customer. For example, we might
store the fact that salesperson 137 sold some of product number 24013 to customer
0839, Figure 6.8.

Relations a, b, and c of Figure 6.9 show the SALESPERSON, CUSTOMER,
and PRODUCT relations, respectively, from the General Hardware relational
database of Figure 6.1, except for one change. Since there is no longer a one-to-
many relationship between salespersons and customers, the Salesperson Number
foreign key in the CUSTOMER relation has been removed! The three relations are
now all quite independent with no foreign keys in any of them.

Figure 6.9d, the SALES relation, shows how this ternary relationship is
represented in a relational database. Similarly to how we created an additional
relation to accommodate a binary many-to-many relationship, an additional relation
has to be created to accommodate a ternary relationship, and that relation is
Figure 6.9d. Clearly, as in the binary many-to-many case, the primary key of the
additional relation will be (at least) the combination of the primary keys of the
entities involved in the relationship. Thus, in Figure 6.9d, the Salesperson Number,
Customer Number, and Product Number attributes all appear as foreign keys and
the combination of the three serve as part of the primary key. Why just ‘‘part of’’

Relational Structures for Unary and Ternary Relationships 147

FIGURE 6.8
A ternary relationship

Customer 0839

Salesperson 137

Salesperson 137 sold
Product 24013 to
Customer 0839

Product 24013

F IGURE 6.9
A portion of General Hardware Company
relational database modified to
demonstrate a ternary relationship

(a) SALESPERSON relation

Salesperson Salesperson Commission Year
Number Name Percentage of Hire

137 Baker 10 1995

186 Adams 15 2001

204 Dickens 10 1998

361 Carlyle 20 2001

(b) CUSTOMER relation

Customer Customer
Number Name HQ City

0121 Main St. Hardware New York

0839 Jane’s Stores Chicago

0933 ABC Home Stores Los Angeles

1047 Acme Hardware Store Los Angeles

1525 Fred’s Tool Stores Atlanta

1700 XYZ Stores Washington

1826 City Hardware New York

2198 Western Hardware New York

2267 Central Stores New York

(Continues)

148 C h a p t e r 6 The Relational Database Model: Additional Concepts

F IGURE 6.9 (Continued)
A portion of General Hardware Company
relational database modified to
demonstrate a ternary relationship

(c) PRODUCT relation

Product Product Unit
Number Name Price

16386 Wrench 12.95

19440 Hammer 17.50

21765 Drill 32.99

24013 Saw 26.25

26722 Pliers 11.50

(d) SALES relation

Salesperson Customer Product
Number Number Number Date Quantity

137 0839 24013 2/21/2002 25

361 1700 16386 2/27/2002 70

137 2267 19440 3/1/2002 40

204 1047 19440 3/1/2002 15

186 0839 26722 3/12/2002 35

137 1700 16386 3/17/2002 65

361 0121 21765 3/21/2002 40

204 2267 19440 4/03/2002 30

204 0839 19440 4/17/2002 20

the primary key? Because in this example, a particular salesperson may have sold
a particular product to a particular customer more than once on different dates.
Thus the Date attribute must also be part of the primary key. (We assume that this
combination of the three could not have happened more than once on the same
date. If it could, then there would also need to be a ‘‘time’’ attribute in the key.)
Recall that this need for an additional attribute in the primary key also came up
when we discussed binary many-to-many relationships in the last chapter. Finally,
the Quantity attribute in Figure 6.9d is intersection data, just as it would be in a
binary many-to-many relationship. The quantity of the product that the salesperson
sold to the customer is clearly an attribute of the ternary relationship, not of any one
of the entities.

There is one more important point to make about ternary relationships. In the
process of describing the ternary relationship, you may have noticed that, taken two
at a time, every pair of the three entities, salespersons, customers, and products, are
in a binary many-to-many relationship. In general, this would be shown as:

A B

B C

A C

The question is: are these three many-to-many relationships the equivalent of
the ternary relationship? Do they provide the same information that the ternary
relationship does? The answer is, no!

Relational Structures for Unary and Ternary Relationships 149

FIGURE 6.10
Ternary relationship counter-example

(a) Salespersons and customers

Salesperson 137 Customer 0839

Salesperson 204 Customer 1826

(b) Customers and products

Customer 0839 Product 19440

Customer 1826 Product 24013

(c) Salespersons and products

Salesperson 137 Product 19440

Salesperson 204 Product 24013

Again, consider salespersons, customers, and products. You might know that
a particular salesperson has made sales to a particular customer. You might also
know that a particular salesperson has sold certain products at one time or another.
And,you might know that a particular customer has bought certain products. But all
of that is not the same thing as knowing that a particular salesperson sold a particular
product to a particular customer. Still skeptical? Look at Figure 6.10. Parts a, b, and
c of the figure clearly illustrate three many-to-many relationships. They are between
(a) salespersons and customers, (b) customers and products, and (c) salespersons
and products. Part a shows, among other things, that salesperson 137 sold something
to customer 0839. Part b shows that customer 0839 bought product 19440. Does that
mean that we can infer that salesperson 137 sold product 19440 to customer 0839?
No! That’s a possibility and, indeed, part c of the figure shows that salesperson 137
did sell product 19440. But part c of the figure also shows that salesperson 204
sold product 19440. Is it possible that salesperson 204 sold it to customer 0839?
According to part a, salesperson 204 sold something to customer 0839, but it doesn’t
indicate what. You can go around and around Figure 6.10 and never conclude with
certainty that salesperson 137 sold product 19440 to customer 0839. That would

Y O U R

T U R N

6.1 TERNARY RELATIONSHIPS

Ternary relationships are all around
us. Think about an automobile dealership. Certainly the
dealership management wants to keep track of which
car was sold to which customer by which salesperson.
Certainly this is important for billing, accounting, and
commission purposes. But also, in that kind of high-
priced product environment, it’s simply good business
to keep track of such information for future marketing and
customer relationship reasons.

QUESTION:

Consider a hospital environment involving patients,
doctors, nurses, procedures, medicines, hospital rooms,
etc. Make a list of five ternary relationships in this
environment. Remember that each one has to make
sense from a business point of view.

150 C h a p t e r 6 The Relational Database Model: Additional Concepts

require a ternary relationship and a relation like the one in Figure 6.9d. Notice that
the last row of Figure 6.9d shows, without a doubt, that it was salesperson 204 who
sold product 19440 to customer 0839.

REFERENTIAL INTEGRITY

The Referential Integrity Concept

Thus far in this chapter and the previous one, we have been concerned with how
relations are constructed and how data can be retrieved from them. Data retrieval is
the operation that clearly provides the ultimate benefit from maintaining a database,
but it is not the only operation needed. Certainly, we should expect that, as with any
data storage scheme, in addition to retrieving data we must be prepared to perform
such data maintenance operations as inserting new records (or rows of a relation),
deleting existing records, and updating existing records. All database management
systems provide the facilities and commands to accomplish these data maintenance
operations. But there are some potential pitfalls in these operations that must be
dealt with.

The problem is that the logically related (by foreign keys) but physically
independent nature of the relations in a relational database exposes the database
to the possibility of a particular type of data integrity problem. This problem has
come to be known as a referential integrity problem because it revolves around
the circumstance of trying to refer to data in one relation in the database, based
on values in another relation. (Actually, referential integrity is an issue in all of
the DBMS approaches, not just the relational approach. We discuss this issue here
because we are focusing on relational databases and the concept is much easier
to explain in the context of an example, again the General Hardware database.)
Also, while referential integrity problems can surface in any of the three operations
that result in changes to the database—insert, delete, and update records—we will
generally use the case of delete to explain the concept while mentioning insert and
update where appropriate.

First, consider the situation of record deletion in the two relations of
Figure 6.11, which is a repeat of Figure 5.2. Suppose that salesperson 361, Carlyle,
left the company and his record was deleted from the SALESPERSON relation. The
problem is that there are still two records in the CUSTOMER relation (the records
for customers 1525 and 1700) that refer to salesperson 361, i.e. that have the value
361 in the Salesperson Number foreign key attribute. It is as if Carlyle left the
company and his customers have not as yet been reassigned to other salespersons.
If a relational join command was issued to join the two relations in order to (say)
find the name of the salesperson responsible for customer 1525, there would be a
problem. The relational DBMS would pick up the salesperson number value 361 in
the record for customer 1525 in the CUSTOMER relation, but would not be able to
match 361 to a record in the SALESPERSON relation because there no longer is a
record for salesperson 361 in the SALESPERSON relation—it was deleted! Notice
that the problem arose because the deleted record, a salesperson record, was on
the ‘‘one side’’ of a one-to-many relationship. What about the customer records on
the ‘‘many side’’ of the one-to-many relationship? Suppose customer 1047, Acme
Hardware Store, is no longer one of General Hardware’s customers. Deleting the
record for customer 1047 in the CUSTOMER relation has no referential integrity
exposure. Nothing else in these two relations refers to customer 1047.

Referential Integrity 151

FIGURE 6.11
General Hardware Company
SALESPERSON and CUSTOMER relations

(a) SALESPERSON relation

Salesperson Salesperson Commission Year
Number Name Percentage of Hire

137 Baker 10 1995

186 Adams 15 2001

204 Dickens 10 1998

361 Carlyle 20 2001

(b) CUSTOMER relation

Customer Customer Salesperson
Number Name Number HQ City

0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

1826 City Hardware 137 New York

2198 Western Hardware 204 New York

2267 Central Stores 186 New York

Similar referential integrity arguments can be made for the record insertion
and update operations, but the issue of whether the exposure is on the ‘‘one side’’
or the ‘‘many side’’ of the one-to-many relationship changes! Again, in the case
of deletion, the problem occurred when a record was deleted on the ‘‘one side’’
of the one-to-many relationship. But, for insertion, if a new salesperson record is
inserted into the Salesperson relation, i.e. a new record is inserted into the ‘‘one
side’’ of the one-to-many relationship, there is no problem. All it means is that a
new salesperson has joined the company but, as yet, has no customer responsibility.
On the other hand, if a new customer record is inserted into the CUSTOMER
relation, i.e. a new record is inserted into the ‘‘many side’’ of the one-to-many
relationship, and it happens to include a salesperson number that does not have a
match in the SALESPERSON relation, that would cause the same kind of problem
as the deletion example above. Similarly, the update issue would concern updating
a foreign key value, i.e. a salesperson number in the CUSTOMER relation with a
new salesperson number that has no match in the SALESPERSON relation.

The early relational DBMSs did not provide any control mechanisms for
referential integrity. Programmers and users were on their own to keep track of
it and this upset many people. This was particularly the case because referential
integrity issues in the older hierarchical and network DBMSs were more naturally
controlled by the nature of the hierarchical and network data structures on which they
were based, at the expense of some flexibility in database design. Modern relational
DBMS’s provide sophisticated control mechanisms for referential integrity with
so-called ‘‘delete rules,’’ ‘‘insert rules,’’ and ‘‘update rules.’’ These rules are
specified between pairs of relations. We will take a look at the three most common
delete rules, ‘‘restrict,’’ ‘‘cascade,’’ and ‘‘set-to-null,’’ to illustrate the problem.

152 C h a p t e r 6 The Relational Database Model: Additional Concepts

F IGURE 6.12
Delete rule: Restrict

Customer 1700

Customer 1525

Salesperson 361
Mr. Carlyle

Delete Rule: Restrict

Three Delete Rules

Delete Rule: Restrict Again, consider the two relations in Figure 6.11. If the delete
rule between the two relations is restrict and an attempt is made to delete a record on
the ‘‘one side’’ of the one-to-many relationship, the system will forbid the delete to
take place if there are any matching foreign key values in the relation on the ‘‘many
side.’’ For example, if an attempt is made to delete the record for salesperson 361 in
the SALESPERSON relation, the system will not permit the deletion to take place
because the CUSTOMER relation records for customers 1525 and 1700 include
salesperson number 361 as a foreign key value, Figure 6.12. This is as if to say,
‘‘You can’t delete a salesperson record as long as there are customers for whom
that salesperson is responsible.’’ Clearly, this is a reasonable and necessary course
of action in many business situations.

Delete Rule: Cascade If the delete rule between the two relations is cascade and
an attempt is made to delete a record on the ‘‘one side’’ of the relationship, not
only will that record be deleted but all of the records on the ‘‘many side’’ of the
relationship that have a matching foreign key value will also be deleted. That is,
the deletion will cascade from one relation to the other. For example, if an attempt
is made to delete the record for salesperson 361 in the SALESPERSON relation
and the delete rule is cascade, that salesperson record will be deleted and so too,
automatically, will the records for customers 1525 and 1700 in the CUSTOMER
relation because they have 361 as a foreign key value, Figure 6.13. It is as if the
assumption is that when a salesperson leaves the company she always takes all of
her customers along with her. While that might be a bit of a stretch in this case,
there are many other business situations where it is not a stretch at all. For example,
think about a company that has a main employee relation with name, home address,
telephone number, etc., plus a second relation that lists and describes the several
skills of each employee. Certainly, when an employee leaves the company you
would expect to delete both his record in the main employee relation and all his
records in the skills relation.

Delete Rule: Set-to-Null If the delete rule between the two relations is set-to-null
and an attempt is made to delete a record on the ‘‘one side’’ of the one-to-many
relationship, that record will be deleted and the matching foreign key values in

Summary 153

Customer 1700

Customer 1525

Salesperson 361
Mr. Carlyle

Delete Rule: Cascade

F IGURE 6.13
Delete rule: Cascade

F IGURE 6.14
Delete rule: Set-to-Null

Salesperson 361
Mr. Carlyle

Customer 1700

Customer 1525

Delete Rule: Set-to-Null

Temporarily
Without a
Saleperson
Assigned

the records on the ‘‘many side’’ of the relationship will be changed to null. For
example, if an attempt is made to delete the record for salesperson 361 in the
SALESPERSON relation, that record will be deleted, and the Salesperson Number
attribute values in the records for customers 1525 and 1700 in the CUSTOMER
relation will be changed from 361 to null, Figure 6.14. This is as if to say, ‘‘You
can delete a salesperson record and, we will indicate that, temporarily at least, their
former customers are without a salesperson.’’ Obviously this is the appropriate
response in many business situations.

SUMMARY

Relational databases must be capable of handling unary and ternary relationships,
as well as binary relationships. All of these have to promote data integration while
avoiding data redundancy. As this chapter demonstrated, the relational database
concept is up to this task.

154 C h a p t e r 6 The Relational Database Model: Additional Concepts

Referential integrity is an important issue in relational databases. Relational
database management systems must be able to allow users to specify referential
integrity controls between related tables. Otherwise, changes to one table that are
not coordinated with a related table may cause serious data integrity problems.

KEY TERMS

Cascade delete rule
Delete rules
Entity occurrence

Insert rules
Record deletion
Referential integrity

Restrict delete rule
Set-to-null delete rule
Update rules

QUESTIONS

1. Describe the concept of the unary one-to-many
relationship.

2. How is a unary one-to-many relationship con-
structed in a relational database?

3. Describe the concept of the unary many-to-many
relationship.

4. How is a unary many-to-many relationship con-
structed in a relational database?

5. Describe the concept of the ternary relationship.

6. How is a ternary relationship constructed in a
relational database?

7. Is a ternary relationship the equivalent of the
three possible binary relationships among the three
entities involved? Explain.

8. Describe the problem of referential integrity.
9. Compare and contrast the three delete rules: restrict,

cascade, and set-to-null.

EXERCISES

1. Leslie’s Auto Sales has a relational database with
which it maintains data on its salespersons, its
customers, and the automobiles it sells. Each of these
three entity types has a unique attribute identifier.
The attributes that it stores are as follows:

• Salesperson Number (unique), Salesperson Name,
Salesperson Telephone, Years with Company

• Customer Number (unique), Customer Name,
Customer Address, Value of Last Purchase From
Us

• Vehicle Identification Number (unique), Manu-
facturer, Model, Year, Sticker Price Leslie’s also
wants to keep track of which salesperson sold
which car to which customer, including the date
of the sale and the negotiated price. Construct a
relational database for Leslie’s Auto Sales.

2. The State of New York certifies firefighters through-
out the state and must keep track of all of them,
as well as of the state’s fire departments. Each
fire department has a unique department number, a
name that also identifies its locale (city, county, etc.),
the year it was established, and its main telephone

number. Each certified firefighter has a unique fire-
fighter number, a name, year of certification, home
telephone number, and a rank (firefighter, fire lieu-
tenant, fire captain, etc.) The state wants to record the
fire department for which each firefighter currently
works and each firefighter’s supervisor. Supervi-
sors are always higher-ranking certified firefighters.
Construct a relational database for New York’s fire
departments and firefighters.

3. The ABC Consulting Corp. contracts for projects
that, depending on their size and skill requirements,
can be assigned to an individual consultant or to
a team of consultants. A consultant or a team can
work on several projects simultaneously. Several
employees can be organized into a team. Larger
teams can consist of a combination of smaller teams,
sometimes with additional individual consultants
added. This pattern can continue to larger and larger
teams. ABC wants to keep track of its consultants,
teams, and projects, including which consultant or
team is responsible for each project. Each consultant
has a unique employee number, plus a name, home
address, and telephone number. Each project has a

Minicases 155

unique project number, plus a name, budgeted cost,
and due date. Construct a relational database for
ABC Consulting. Hint: You may want to develop
an attribute called ‘‘responsible party’’ that can
be either a team or an individual consultant. Each
project has one responsible party that is responsible
for its completion. Or you may want to think of an
individual consultant as a potential ‘‘team of one’’
and have the responsibility for each project assigned
to a ‘‘team’’ that could then be an individual
consultant or a genuine team.

4. Consider the General Hardware Corp. database
of Figure 6.1. Describe the problem of referen-
tial integrity in terms of the CUSTOMER and
CUSTOMER EMPLOYEE relations if the record
for customer 2198 in the CUSTOMER relation is
deleted. (Assume that no delete rules exist.)

5. In the General Hardware Corp. database of
Figure 6.1, what would happen if:
a. The delete rule between the CUSTOMER and

CUSTOMER EMPLOYEE relations is restrict
and an attempt is made to delete the record for
customer 2198 in the CUSTOMER relation?

b. The delete rule between the CUSTOMER and
CUSTOMER EMPLOYEE relations is cascade
and an attempt is made to delete the record for
customer 2198 in the CUSTOMER relation?

c. The delete rule between the CUSTOMER and
CUSTOMER EMPLOYEE relations is set-to-
null and an attempt is made to delete the record
for customer 2198 in the CUSTOMER relation?

d. The delete rule between the CUSTOMER and
CUSTOMER EMPLOYEE relations is restrict
and an attempt is made to delete the record
for employee 33779 of customer 2198 in the
CUSTOMER EMPLOYEE relation?

e. The delete rule between the CUSTOMER and
CUSTOMER EMPLOYEE relations is cascade
and an attempt is made to delete the record
for employee 33779 of customer 2198 in the
CUSTOMER EMPLOYEE relation?

f. The delete rule between the CUSTOMER and
CUSTOMER EMPLOYEE relations is set-to-
null and an attempt is made to delete the record
for employee 33779 of customer 2198 in the
CUSTOMER EMPLOYEE relation?

MINICASES

1. Happy Cruise Lines
a. Look at the Happy Cruise Lines database of Chapter

5, Minicase 1 but, for this question, consider only
the SHIP, PORT, and PASSENGER relations. The
company wants to keep track of which passengers
visited which ports on which ships on which dates.
Reconstruct these three relations as necessary and/or
add additional relation(s) as necessary to store this
information.

b. Consider the following data from the SHIP and
CRUISE relations of the Happy Cruise Lines database
of Chapter 5, Minicase 1:

SHIP Relation

Ship Ship Ship Launch Gross
Number Name Builder Date Weight

005 Sea Joy Jones 1999 80,000

009 Ocean IV Ajax 2003 75,000

012 Prince Al Ajax 2004 90,000

020 Queen Shirley Master 1999 80,000

CRUISE Relation

Cruise Start End Cruise Ship
Number Date Date Director Number

21644 7/5/2002 7/12/2002 Smith 009

23007 8/14/2002 8/24/2002 Chen 020

24288 3/28/2003 4/4/2003 Smith 009

26964 7/1/2003 7/11/2003 Gomez 020

27045 7/15/2003 7/22/2003 Adams 012

28532 8/17/2003 8/24/2003 Adams 012

29191 12/20/2003 12/27/2003 Jones 009

29890 1/15/2004 1/22/2004 Levin 020

What would happen if:
i. The delete rule between the SHIP and CRUISE

relations is restrict and an attempt is made to
delete the record for ship number 012 in the
SHIP relation?

ii. The delete rule between the SHIP and CRUISE
relations is restrict and an attempt is made to

156 C h a p t e r 6 The Relational Database Model: Additional Concepts

delete the record for ship number 005 in the
SHIP relation?

iii. The delete rule between the SHIP and CRUISE
relations is cascade and an attempt is made to
delete the record for ship number 012 in the
SHIP relation?

iv. The delete rule between the SHIP and CRUISE
relations is cascade and an attempt is made to
delete the record for ship number 005 in the
SHIP relation?

v. The delete rule between the SHIP and CRUISE
relations is set-to-null and an attempt is made to
delete the record for ship number 012 in the SHIP
relation?

vi. The delete rule between the SHIP and CRUISE
relations is set-to-null and an attempt is made to
delete the record for ship number 005 in the SHIP
relation?

vii. The delete rule between the SHIP and CRUISE
relations is restrict and an attempt is made to
delete the record for cruise number 26964 in the
CRUISE relation?

viii. The delete rule between the SHIP and CRUISE
relations is cascade and an attempt is made to
delete the record for cruise number 26964 in the
CRUISE relation?

ix. The delete rule between the SHIP and CRUISE
relations is set-to-null and an attempt is made to
delete the record for cruise number 26964 in the
CRUISE relation?

2. Super Baseball League
a. In the Super Baseball League database of Chapter

5, Minicase 2, assume that instead of having
coaches who are different from players, now some

of the players serve as coaches to other players.
A player/coach can have several players whom
he coaches. Each player is coached by only one
player/coach. Reconstruct the database structure to
reflect this change.

b. In the Super Baseball League database of Chapter
5, Minicase 2, assume that the TEAM relation has
a record for team number 17 and that the COACH
relation has records for three coaches on that team.
What would happen if:
i. The delete rule between the TEAM and COACH

relations is restrict and an attempt is made to
delete the record for team 17 in the TEAM
relation?

ii. The delete rule between the TEAM and COACH
relations is cascade and an attempt is made to
delete the record for team 17 in the TEAM
relation?

iii. The delete rule between the TEAM and COACH
relations is set-to-null and an attempt is made
to delete the record for team 17 in the TEAM
relation?

iv. The delete rule between the TEAM and COACH
relations is restrict and an attempt is made to
delete the record for one of team 17’s coaches in
the COACH relation?

v. The delete rule between the TEAM and COACH
relations is cascade and an attempt is made to
delete the record for one of team 17’s coaches in
the COACH relation?

vi. The delete rule between the TEAM and COACH
relations is set-to-null and an attempt is made to
delete the record for one of team 17’s coaches in
the COACH relation?

C H A P T E R 7

LOGICAL DATABASE
DESIGN

L ogical database design is the process of deciding how to arrange the attributes
of the entities in a given business environment into database structures, such as

the tables of a relational database. The goal of logical database design is to create well
structured tables that properly reflect the company’s business environment. The tables will
be able to store data about the company’s entities in a non-redundant manner and foreign
keys will be placed in the tables so that all the relationships among the entities will be
supported. Physical database design, which will be treated in the next chapter, is the
process of modifying the logical database design to improve performance.

OBJECTIVES

■ Describe the concept of logical database design.
■ Design relational databases by converting entity-relationship diagrams into

relational tables.
■ Describe the data normalization process.
■ Perform the data normalization process.
■ Test tables for irregularities using the data normalization process.
■ Learn basic SQL commands to build data structures.
■ Learn basic SQL commands to manipulate data.

CHAPTER OUTLINE

Introduction
Converting E-R Diagrams into Relational

Tables
Introduction
Converting a Simple Entity
Converting Entities in Binary

Relationships
Converting Entities in Unary

Relationships

Converting Entities in Ternary
Relationships

Designing the General
Hardware Co. Database

Designing the Good Reading
Bookstores Database

Designing the World Music
Association Database

Designing the Lucky Rent-A-Car
Database

158 C h a p t e r 7 Logical Database Design

The Data Normalization Process
Introduction to the Data

Normalization Technique
Steps in the Data Normalization

Process
Example: General Hardware Co.
Example: Good Reading Bookstores
Example: World Music Association

Example: Lucky Rent-A-Car
Testing Tables Converted from E-R

Diagrams
with Data Normalization

Building the Data Structure with SQL
Manipulating the Data with SQL
Summary

INTRODUCTION

Historically, a number of techniques have been used for logical database design. In
the 1970s, when the hierarchical and network approaches to database management
were the only ones available, a technique known as data normalization was
developed. While data normalization has some very useful features, it was difficult
to apply in that environment. Data normalization can also be used to design
relational databases and, actually, is a better fit for relational databases than it
was for the hierarchical and network databases. But, as the relational approach
to database management and the entity-relationship approach to data modeling
both blossomed in the 1980s, a very natural and pleasing approach to logical
database design evolved in which rules were developed to convert E-R diagrams
into relational tables. Optionally, the result of this process can then be tested with the
data normalization technique. Thus, this chapter on the logical design of relational
databases will proceed in three parts: first, the conversion of E-R diagrams into
relational tables, then the data normalization technique, and finally the use of the
data normalization technique to test the tables resulting from the E-R diagram
conversions.

CONVERTING E-R DIAGRAMS INTO RELATIONAL TABLES

Introduction

Converting entity-relationship diagrams to relational tables is surprisingly straight-
forward, with just a few simple rules to follow. Basically, each entity will convert
to a table, plus each many-to-many relationship or associative entity will convert
to a table. The only other issue is that during the conversion, certain rules must be
followed to ensure that foreign keys appear in their proper places in the tables. We
will demonstrate these techniques by methodically converting the E-R diagrams of
Chapter 2 into relational tables.

Converting a Simple Entity

Figure 7.1 repeats the simple entity box in Figure 2.1. Figure 7.2 shows a relational
table that can store the data represented in the entity box. The table simply contains
the attributes that were specified in the entity box. Notice that Salesperson Number
is underlined to indicate that it is the unique identifier of the entity, and the primary
key of the table. Clearly, the more interesting issues and rules come about when, as
almost always happens, entities are involved in relationships with other entities.

Converting E-R Diagrams into Relational Tables 159

CONCEPTS

IN ACT ION

7-A ECOLAB

Ecolab is a $3-billion-plus developer
and marketer of cleaning, sanitizing, pest elimination,
and industrial maintenance and repair products and
services that was founded in 1923. Its customers include
restaurants, hotels, hospitals, food and beverage plants,
laundries, schools, and other retail and commercial
facilities. Headquartered in St. Paul, MN, Ecolab is truly
a global company, operating directly in 70 countries and
through distributors, licensees, and export operations in
an additional 100 countries. Its domestic and worldwide
operations are supported by 20,000 employees and
over 50 manufacturing and distribution facilities. A large
percentage of the employees are sales and service
individuals who work in a mobile, remote environment.

One of Ecolab’s applications with a significant
database component is called ‘‘EcoNet.’’ EcoNet gives
the large sales and service work force access to infor-
mation distributed across many databases. EcoNet pro-
vides Ecolab’s North American sales and service people
with a portal into pertinent information needed when

‘‘Photo Courtesy of Ecolab’’ Printed by permission of Ecolab, Inc. (c) 2002 Ecolab
Inc. All rights reserved. Ecolab Inc., 370 Wabasha Street North, St. Paul, Minnesota
55102, U.S.A.

interacting with customers for sales and service purposes.
EcoNet also enables the standardization of processes
across the sales and service organizations within the
seven various North American business units. This is
achieved by having one application get data from
different databases.

The system is also used as a sales planning tool.
Using EcoNet, a salesperson can access such customer
information as past and outstanding invoices, service
reports, and order status. The salesperson can also use
the system to place new orders. Being Web-based, Econet
can be accessed from a home or office PC, from a laptop
at the customer location, and even through handheld
devices. In addition, customers can view their own data
through ‘‘My Ecolab.com.’’

Implemented in 2002, EcoNet uses an interesting
mix of databases.

1. The transactional data, including the last six month’s
orders, is held in a Computer Associates IDMS

160 C h a p t e r 7 Logical Database Design

network-type database. EcoNet accesses this ‘‘up-
to-the-minute’’ information using screen scrapping
technology against the IBM mainframe computer
rather than migrating the data in real time to a
relational DBMS.

2. Completed transaction data is bridged nightly to a
data warehouse holding seven years of sales data in
IBM DB2 Unix.

3. Summarized Sales tables and Key Performance
Indicators are also bridged to Microsoft SQL Server
relational databases.

Ecolab is continually looking for additional informa-
tion to add to the EcoNet application in order to provide
their sales and service people with valuable information
when interacting with customers.

F IGURE 7.1
The entity box from Figure 2.1

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

F IGURE 7.2
Conversion of an E-R diagram entity
box to a relational table

SALESPERSON

Salesperson Salesperson Commission Year
Number Name Percentage of Hire

Converting Entities in Binary Relationships

One-to-One Binary Relationship Figure 7.3 repeats the one-to-one binary relation-
ship of Figure 2.4a. There are three options for designing tables to represent this
data, as shown in Figure 7.4. In Figure 7.4a, the two entities are combined into one
relational table. On the one hand, this is possible because the one-to-one relationship
means that for one salesperson, there can only be one associated office and con-
versely, for one office there can be only one salesperson. So a particular salesperson
and office combination can fit together in one record, as shown in Figure 7.4a. On
the other hand, this design is not a good choice for two reasons. One reason is that
the very fact that salesperson and office were drawn in two different entity boxes
in the E-R diagram of Figure 7.3 means that they are thought of separately in this
business environment and thus should be kept separate in the database. The other
reason is the modality of zero at the salesperson in Figure 7.3. Reading that diagram
from right to left, it says that an office might have no one assigned to it. Thus, in
the table in Figure 7.4a, there could be a few or possibly many record occurrences
that have values for the office number, telephone, and size attributes but have the
four attributes pertaining to salespersons empty or null! This could result in a lot of
wasted storage space, but it is worse than that. If Salesperson Number is declared

Converting E-R Diagrams into Relational Tables 161

FIGURE 7.3
The one-to-one (1-1) binary
relationship from Figure 2.4a

OFFICE

PK Office
 Number

Telephone
Size

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Works in

Occupied by

to be the primary key of the table, this scenario would mean that there would be
records with no primary key values, a situation which is clearly not allowed.

Figure 7.4b is a better choice. There are separate tables for the salesperson
and office entities. In order to record the relationship, i.e. which salesperson is
assigned to which office, the Office Number attribute is placed as a foreign key in
the SALESPERSON table. This connects the salespersons with the offices to which

F IGURE 7.4
Conversion of an E-R diagram with two
entities in a one-to-one binary relationship
into one or two relational tables

a. One-to-one binary relationship converted to a single relational table.

b. One-to-one binary relationship converted to two relational tables, with the for-
eign key in the SALESPERSON table.

c. One-to-one binary relationship converted to two relational tables, with the for-
eign key in the OFFICE table.

OFFICE

Office Salesperson
Number Telephone Number Size

SALESPERSON

Salesperson Salesperson Commission Year of
Number Name Percentage Hire

OFFICE

Office
Number Telephone Size

SALESPERSON

Salesperson Salesperson Commission Year of Office
Number Name Percentage Hire Number

SALESPERSON/OFFICE

Salesperson Salesperson Commission Year of Office
Number Name Percentage Hire Number Telephone Size

162 C h a p t e r 7 Logical Database Design

they are assigned. Again, look at the modalities in the E-R diagram in Figure 7.3.
Reading from left to right, each salesperson is assigned to exactly one office
(indicated by the two ‘‘ones’’ adjacent to the office entity). That translates directly
into each record in the SALESPERSON table of Figure 7.4b having a value (and a
single value, at that) for its Office Number foreign key attribute. That’s good! But
what about the problem of unassigned offices mentioned in the previous paragraph?
In Figure 7.4b, unassigned offices will each have a record in the OFFICE table, with
Office Number as the primary key, which is fine. Their office numbers will simply
not appear as foreign key values in the SALESPERSON table.

Finally, instead of placing Office Number as a foreign key in the
SALESPERSON table, could you instead place Salesperson Number as a foreign key
in the OFFICE table, Figure 7.4c? Recall that, reading the E-R diagram of Figure 7.3
from right to left, the modality of zero adjacent to the salesperson entity says that
an office might be empty, i.e. it might not be assigned to any salesperson. But then,
some or perhaps many records of the OFFICE table of Figure 7.4c would have no
value or a null in their Salesperson Number foreign key attribute positions. Why
bother having to deal with this situation when the design in Figure 7.4b avoids it?

Certainly, it follows that if the modalities were reversed, meaning that the zero
modality was adjacent to the office entity box and the one modality was adjacent to
the salesperson entity box, then the design in Figure 7.4c would be the preferable
one. This would mean that every office must have a salesperson assigned to it but a
salesperson may or may not be assigned to an office. Perhaps lots of the salespersons
travel most of the time and don’t need offices. By the way, while we’re in ‘‘what if’’
mode, what if the modality was zero on both sides? Then there would be a judgment
call to make between the designs of Figure 7.4b and Figure 7.4c. If the goal is to
minimize the number of null values in the foreign key, then you have to decide
whether it is more likely that a salesperson is not assigned to an office (Figure 7.4c
is preferable) or that an office is empty (Figure 7.4b is preferable).

One-to-Many Binary Relationship Figure 7.5 (copied from Figure 2.4b) shows an
E-R diagram for a one-to-many binary relationship. Figure 7.6 shows the conversion
of this E-R diagram into two relational tables. This is, perhaps, the simplest case
of all. The rule is that the unique identifier of the entity on the ‘‘one side’’ of the
one-to-many relationship is placed as a foreign key in the table representing the
entity on the ‘‘many side.’’ In this case, the Salesperson Number attribute is placed
in the CUSTOMER table as a foreign key. Each salesperson has one record in
the SALESPERSON table, as does each customer in the CUSTOMER table. The
Salesperson Number attribute in the CUSTOMER table links the two and, since

F IGURE 7.5
The one-to-many (1-M) binary
relationship from Figure 2.4b

CUSTOMER

PK Customer
 Number

Customer
 Name
HQ City

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Sells to

Buys from

Converting E-R Diagrams into Relational Tables 163

FIGURE 7.6
Conversion of an E-R diagram with two
entities in a one-to-many binary
relationship into two relational tables

CUSTOMER

Customer Customer Salesperson
Number Name HQ City Number

SALESPERSON

Salesperson Salesperson Commission Year
Number Name Percentage of Hire

the E-R diagram tells us that every customer must have a salesperson, there are no
empty attributes in the CUSTOMER table records.

Many-to-Many Binary Relationship Figure 7.7 shows the E-R diagram with the
many-to-many binary relationship from Figure 2.5. The equivalent diagram from
Figure 2.6, using an associative entity, is shown in Figure 7.8. An E-R diagram with
two entities in a many-to-many relationship converts to three relational tables, as
shown in Figure 7.9. Each of the two entities converts to a table with its own attributes

F IGURE 7.7
The many-to-many binary relationship
from Figure 2.5

Sells

Sold by

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Quantity

Sold

Sold by

Sold

Sold
Product

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

SALESSALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

PK

Quantity

PK Product
 Number

Salesperson
 Number

F IGURE 7.8
The associative entity from Figure 2.6

164 C h a p t e r 7 Logical Database Design

F IGURE 7.9
Conversion of an E-R diagram in Figure
7.7 (and Figure 7.8) with two entities in
a many-to-many binary relationship into
three relational tables

SALE

Salesperson Product
Number Number Quantity

PRODUCT

Product Product
Number Name Unit Price

SALESPERSON

Salesperson Salesperson Commission Year
Number Name Percentage of Hire

but with no foreign keys (regarding this relationship). The SALESPERSON table
and the PRODUCT table in Figure 7.9 each contain only the attributes shown in the
salesperson and product entity boxes of Figure 7.7 and Figure 7.8.

In addition, there must be a third ‘‘many-to-many’’ table for the many-to-many
relationship, the reasons for which were explained in Chapter 5. The primary key of
this additional table is the combination of the unique identifiers of the two entities in
the many-to-many relationship. Additional attributes consist of the intersection data,
Quantity in this example. Also as explained in Chapter 5, there are circumstances
in which additional attributes, such as date and timestamp attributes, must be added
to the primary key of the many-to-many table to achieve uniqueness.

Converting Entities in Unary Relationships

One-to-One Unary Relationship Figure 7.10 repeats the E-R diagram with a one-
to-one unary relationship from Figure 2.7a. In this case, with only one entity type
involved and with a one-to-one relationship, the conversion requires only one table,
as shown in Figure 7.11. For a particular salesperson, the Backup Number attribute
represents the salesperson number of his backup person, i.e. the person who handles
his accounts when he is away for any reason.

F IGURE 7.10
The one-to-one (1-1) unary relationship
from Figure 2.7a

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Backs-up

Backed-up by

Converting E-R Diagrams into Relational Tables 165

FIGURE 7.11
Conversion of the E-R diagram in Figure
7.10 with a one-to-one unary relationship
into a relational table

SALESPERSON

Salesperson Salesperson Commission Year Backup
Number Name Percentage of Hire Number

F IGURE 7.12
The one-to-many (1-M) unary relationship
from Figure 2.7b

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

Manages

Reports to

One-to-Many Unary Relationship The one-to-many unary relationship situation is
very similar to the one-to-one unary case. Figure 7.12 repeats the E-R diagram
from Figure 2.7b. Figure 7.13 shows the conversion of this diagram into a relational
database. Some employees manage other employees. An employee’s manager
is recorded in the Manager Number attribute in the table in Figure 7.13. The
manager numbers are actually salesperson numbers since some salespersons are
sales managers who manage other salespersons. This arrangement works because
each employee has only one manager. For any particular SALESPERSON record,
there can only be one value for the Manager Number attribute. However, if you
scan down the Manager Number column, you will see that a particular value may
appear several times because a person can manage several other salespersons.

Many-to-Many Unary Relationship Figure 7.14 shows the E-R diagram for the
many-to-many unary relationship of Figure 2.7c. As Figure 7.15 indicates, this
relationship requires two tables in the conversion. The PRODUCT table has no
foreign keys. The COMPONENT table indicates which items go into making up
which other items, as was described in the bill-of-materials discussion in Chapter 6.
This table also contains any intersection data that may exist in the many-to-many
relationship. In this example, the Quantity attribute indicates how many of a
particular item go into making up another item.

The fact that we wind up with two tables in this conversion is really not
surprising. The general rule is that in the conversion of a many-to-many relationship
of any degree (unary, binary, or ternary), the number of tables will be equal to the
number of entity types (one, two, or three, respectively) plus one more table for
the many-to-many relationship. Thus, the conversion of the many-to-many unary
relationship required two tables, the many-to-many binary relationship three tables,
and, as will be shown next, the many-to-many ternary relationship four tables.

F IGURE 7.13
Conversion of the E-R diagram in Figure
7.12 with a one-to-many unary
relationship into a relational table

SALESPERSON

Salesperson Salesperson Commission Year
Number Name Percentage of Hire Manager

166 C h a p t e r 7 Logical Database Design

F IGURE 7.14
The many-to-many unary relationship
from Figure 2.7c

COMPONENT

PK

Quantity

PK Subassembly
 Number

Product
 Number

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

Part of
Includes

Part of
Includes

F IGURE 7.15
Conversion of the E-R diagram in Figure
7.14 with a many-to-many unary
relationship into two relational tables

COMPONENT

Product Subassembly
Number Number Quantity

PRODUCT

Product Product
Number Name Unit Price

Converting Entities in Ternary Relationships

Finally, Figure 7.16 repeats the E-R diagram with the ternary relationship from
Figure 2.8. Figure 7.17 shows the four tables necessary for the conversion to
relational tables. Notice that the primary key of the SALE table, which is the
table added for the many-to-many relationship, is the combination of the unique
identifiers of the three entities involved, plus the Date attribute. In this case, with
the premise being that a particular salesperson can have sold a particular product to
a particular customer on different days, the Date attribute is needed in the primary
key to achieve uniqueness.

Designing the General Hardware Co. Database

Having explored the specific E-R diagram-to-relational database conversion rules,
let’s look at a few examples, beginning with the General Hardware Co. Figure 7.18
is the General Hardware E-R diagram. It is convenient to begin the database
design process with an important, central E-R diagram entity, such as salesperson,
that has relationships with several other entities. Thus, the relational database in

Converting E-R Diagrams into Relational Tables 167

CUSTOMER

PK Customer
 Number

Customer
 Name
HQ City

SALE

PK Salesperson
 Number

PK Product
 Number

PK Customer
 Number

Date
Quantity

SALESPERSON

PK Salesperson
 Number

Salesperson
 Name
Commission
 Percentage
Year of Hire

PRODUCT

PK Product
 Number

Product
 Name
Unit Price

Purchased
Sold to

Sold

Sold
Product

Sold

Sold by

F IGURE 7.16
The ternary relationship from Figure 2.8

F IGURE 7.17
Conversion of the E-R diagram in Figure
7.16 with three entities in a ternary
relationship into four relational tables

SALE

Salesperson Customer Product
Number Number Number Date Quantity

PRODUCT

Product Product
Number Name Unit Price

CUSTOMER

Customer Customer
Number Name HQ City

SALESPERSON

Salesperson Salesperson Commission Year
Number Name Percentage of Hire

Figure 7.19 includes a SALESPERSON table with the four salesperson attributes
shown in Figure 7.18’s salesperson entity box (plus the Office Number attribute, to

168 C h a p t e r 7 Logical Database Design

F IGURE 7.18
The General Hardware
Company E-R diagram

PK Employee
 Number

Customer
 Number

PK

CUSTOMER
EMPLOYEE

Employee
 Name
Title

Office
 Number

OFFICE

PK

Telephone
Size

Salesperson
 Number

SALESPERSON

PK

Salesperson
 Name
Commission
 Percentage
Year of Hire

Customer
 Number

CUSTOMER

PK

Customer
 Name
HQ City

Product
 Number

PRODUCT

PK

Product
 Name
Unit Price

PK Product
 Number

Salesperson
 Number

SALES

PK

Quantity

Occupied by
Works in

Sells to

Buys from

Sold
Sold by

Sold

Sold
Product

Employs

Employed by

Converting E-R Diagrams into Relational Tables 169

FIGURE 7.19
The General Hardware Company
relational database

OFFICE

Office
Number Telephone Size

SALES

Salesperson Product
Number Number Quantity

PRODUCT

Product Product
Number Name Unit Price

CUSTOMER EMPLOYEE

Customer Employee Employee
Number Number Name Title

CUSTOMER

Customer Customer Salesperson
Number Name Number HQ City

SALESPERSON

Salesperson Salesperson Commission Year Office
Number Name Percentage of Hire Number

which we will return shortly). To the right of the salesperson entity box in the E-R
diagram, there is a one-to-many relationship (‘‘Sells To’’) between salespersons and
customers. The database then includes a CUSTOMER table with the Salesperson
Number attribute as a foreign key, because salesperson is on the ‘‘one side’’ of the
one-to-many relationship and customer is on the ‘‘many side’’ of the one-to-many
relationship.

Customer employee is a dependent entity of customer and there is a one-to-
many relationship between them. Because of this relationship, the CUSTOMER
EMPLOYEE table in the database includes the Customer Number attribute as a
foreign key. Furthermore, the Customer Number attribute is part of the primary key
of the CUSTOMER EMPLOYEE table because customer employee is a dependent
entity and we’re told that employee numbers are unique only within a customer.

The PRODUCT table contains the three attributes of the product entity.
The many-to-many relationship between the salesperson and product entities is
represented by the SALES table in the database. Notice that the combination
of the unique identifiers (Salesperson Number and Product Number) of the two
entities in the many-to-many relationship is the primary key of the SALES table.
Finally, the office entity has its table in the database with its three attributes, which
brings us to the presence of the Office Number attribute as a foreign key in the

170 C h a p t e r 7 Logical Database Design

SALESPERSON table. This is needed to maintain the one-to-one binary relationship
between salesperson and office. A fair question is, since the relationship is ‘‘one’’
on both sides, why did we decide to put the foreign key in the SALESPERSON
table rather than in the OFFICE table? The answer lies in the fact that the modality
adjacent to SALESPERSON is zero while the modality adjacent to OFFICE is one.
An office may or may not have a salesperson assigned to it but a salesperson must
be assigned to an office. The result is that every salesperson must have an associated
office number; the Office Number attribute in the SALESPERSON table can’t be
null. If we reversed it and put the Salesperson Number attribute in the OFFICE
table, many of the Salesperson Number attribute values could be null since the zero
modality going from office to salesperson tells us that an office can be empty.

One last thought: Why did the PRODUCT table end-up without any foreign
keys? Because it is not the ‘‘target’’ (it is not on the ‘‘many side’’) of any one-to-
many binary relationship. It is also not involved in a one-to-one binary relationship
that would require the presence of a foreign key. Finally, it is not involved in a
unary relationship that would require repeating the primary key in the table.

Designing the Good Reading Bookstores Database

The Good Reading Bookstores’ E-R diagram is repeated in Figure 7.20. Beginning
with the central book entity and looking to its left, we see that there is a one-to-many

Publisher
 Name

PUBLISHER

PK

City
Country
President
Year Founded

Customer
 Number

Author
 Number

Book
 Number

BOOK

PK

Book Name
Publication
 Year
Pages

PK Author
 Number

Book
 Number

WROTE

PK

PK Customer
 Number

Book
 Number

CUSTOMER

PK

Customer
 Name
Street
City
State
Country

AUTHOR

PK

Author Name
Year Born
Year Died

SALE

PK

Date
Price
Quantity

Published

Published by Wrote

Written by

Wrote
Written by

Bought

Bought by

Sold
In sale

F IGURE 7.20
Good Reading Bookstores entity-relationship diagram

Converting E-R Diagrams into Relational Tables 171

FIGURE 7.21
The Good Reading Bookstores
relational database

SALE

Book Customer
Number Number Date Price Quantity

WRITING

Book Author
Number Number

CUSTOMER

Customer Customer
Number Name Street City State Country

BOOK

Book Book Publication Publisher
Number Name Year Pages Name

AUTHOR

Author Author Year Year
Number Name Born Died

PUBLISHER

Publisher Year
Name City Country Telephone Founded

relationship between books and publishers. A publisher publishes many books but
a book is published by just one publisher. The Good Reading Bookstores relational
database of Figure 7.21 shows the BOOK and PUBLISHER tables. Publisher Name
is a foreign key in the BOOK table because publisher is on the ‘‘one side’’ of the one-
to-many relationship and book is on the ‘‘many side.’’ Next is the AUTHOR table,
which is straightforward. The many-to-many binary relationship between books and
authors is reflected in the WRITING table, which has no intersection data. Finally,
there is the customer entity and the many-to-many relationship between books and
customers. Correspondingly, the relational database includes a CUSTOMER table
and a SALE table to handle the many-to-many relationship. Notice the Date, Price,
and Quantity attributes appearing in the SALE table as intersection. Also notice that
since a customer can buy the same book on more than one day, the Date attribute
must be part of the primary key to achieve uniqueness.

Designing the World Music Association Database

Looking at the World Music Association E-R diagram in Figure 7.22, it appears that
the orchestra entity would be a good central starting point for the database design

172 C h a p t e r 7 Logical Database Design

Orchestra
 Name

ORCHESTRA

PK

City
Country
Music
 Director

Orchestra
 Name

Composer
 Name

Musician
 Number

MUSICIAN

PK

Musician
 Name
Instrument
Annual
 Salary

PK Degree

Musician
 Number

DEGREE

PK

University
Year

PK Composer
 Name

Composition
 Name

RECORDING

PK

Composition
 Name

PK

Composer
 Name

PK

Year
Price

COMPOSER

PK

Country
Date of Birth

COMPOSITION

PK

Year

Employs

Employed by Earned by

Earned

Recorded

Contains

Wrote

Written by

Recorded
Recorded by

F IGURE 7.22
World Music Association entity-relationship diagram

process. Thus, the relational database in Figure 7.23 begins with the ORCHESTRA
table. The Orchestra Name foreign key in the MUSICIAN table reflects the one-to-
many relationship from orchestra to musician. Since degree is a dependent entity
of musician in a one-to-many relationship and degrees (e.g. B.A.) are unique only
within a musician, not only does Musician Number appear as a foreign key in the
DEGREE table but also it must be part of that table’s primary key. A similar situation
exists between the composer and composition entities, as shown in the COMPOSER
and COMPOSITION tables in the database. Finally, the many-to-many relationship
between orchestra and composition is converted into the RECORDING table.

Y O U R

T U R N

7.1 THE E-R DIAGRAM CONVERSION LOGICAL DESIGN TECHNIQUE

In Your Turn in Chapter 2, you
created an entity-relationship diagram for your university
environment.

QUESTION:
Using the logical design techniques just described, convert

your university E-R diagram into a logical database
design.

Converting E-R Diagrams into Relational Tables 173

FIGURE 7.23
The World Music Association
relational database

RECORDING

Orchestra Composition
Name Name Year Price

COMPOSITION

Composition Composer
Name Name

Composer
Name

Year

COMPOSER

Composer Date of
Name Country Birth

DEGREE

Musician
Number Degree University Year

MUSICIAN

Musician Musician Annual Orchestra
Number Name Instrument Salary Name

ORCHESTRA

Orchestra Music
Name City Country Director

Notice that the primary key of the RECORDING table begins with the Orchestra
Name attribute and then continues with both the Composition Name and Composer
Name attributes. This is because the primary key of one of the two entities in the
many-to-many relationship, composition, is the combination of those two latter
attributes.

Designing the Lucky Rent-A-Car Database

Figure 7.24 shows the Lucky Rent-A-Car E-R diagram. The conversion to a
relational database structure begins with the car entity and its four attributes, as
shown in the CAR table of the database in Figure 7.25. Because car is on the ‘‘many
side’’ of a one-to-many relationship with the manufacturer entity, the CAR table
also has the Manufacturer Name attribute as a foreign key. The straightforward one-
to-many relationship from car to maintenance event produces a MAINTENANCE
EVENT table with Car Serial Number as a foreign key. The customer entity converts
to the CUSTOMER table with its four attributes. The many-to-many relationship
between car and customer converts to the RENTAL table. Car Serial Number, the
unique identifier of the car entity, and Customer Number, the unique identifier
of the customer entity, plus the Rental Date intersection data attribute form the
three-attribute primary key of the RENTAL table, with Return Date and Total
Cost as additional intersection data attributes. Rental Date has to be part of the

174 C h a p t e r 7 Logical Database Design

F IGURE 7.24
Lucky Rent-A-Car entity-
relationship diagram

PK Customer
 Number

Car Serial
 Number

RENTAL

PK

Rental Date
Return Date
Total Cost

Manufacturer
 Name

MANUFACTURER

PK

Manufacturer
 Country
Sales Rep
 Name
Sales Rep
 Number

Car Serial
 Number

CAR

PK

Model
Year
Class

Customer
 Number

CUSTOMER

PK

Customer
 Name
Customer
 Address
Customer
 Credit Rating

MAINTENANCE
EVENT

Manufactured
Manufactured by

Rented

Car rented

Repaired
Car Repaired

Rented
Rented by

Repair
 Number

PK

Date
Procedure
Mileage
Repair Time

primary key to achieve uniqueness because a particular customer may have rented
a particular car on several different dates.

THE DATA NORMALIZATION PROCESS

Data normalization was the earliest formalized database design technique and
at one time was the starting point for logical database design. Today, with the
popularity of the Entity-Relationship model and other such diagramming tools and
the ability to convert its diagrams to database structures, data normalization is used
more as a check on database structures produced from E-R diagrams than as a

The Data Normalization Process 175

FIGURE 7.25
The Lucky Rent-A-Car relational database

RENTAL

Car Serial Customer Rental Return Total
Number Number Date Date Cost

CUSTOMER

Customer Customer Customer Customer
Number Name Address Telephone

MAINTENANCE

Repair Car Serial Repair
Number Number Date Procedure Mileage Time

CAR

Car Serial Manufacturer
Number Model Year Class Name

MANUFACTURER

Manufacturer Manufacturer Sales Rep Sales Rep
Name Country Name Telephone

full-scale database design technique. That’s one of the reasons for learning about
data normalization. Another reason is that the data normalization process is another
way of demonstrating and learning about such important topics as data redundancy,
foreign keys, and other ideas that are so central to a solid understanding of database
management.

Data normalization is a methodology for organizing attributes into tables so
that redundancy among the non-key attributes is eliminated. Each of the resultant
tables deals with a single data focus, which is just another way of saying that
each resultant table will describe a single entity type or a single many-to-many
relationship. Furthermore, foreign keys will appear exactly where they are needed.
In other words, the output of the data normalization process is a properly structured
relational database.

Introduction to the Data Normalization Technique

The input required by the data normalization process has two parts. One is a list of all
the attributes that must be incorporated into the database: that is, all of the attributes
in all of the entities involved in the business environment under discussion plus all
of the intersection data attributes in all of the many-to-many relationships between
these entities. The other input, informally, is a list of all of the defining associations
among the attributes. Formally, these defining associations are known as functional
dependencies. And what are defining associations or functional dependencies? They
are a means of expressing that the value of one particular attribute is associated with

176 C h a p t e r 7 Logical Database Design

a specific single value of another attribute. If we know that one of these attributes
has a particular value, then the other attribute must have some other value. For
example, for a particular Salesperson Number, 137, there is exactly one Salesperson
Name, Baker, associated with it. Why is this true? In this example, a Salesperson
Number uniquely identifies a salesperson and, after all, a person can have only one
name! And this is true for every person! Informally, we might say that Salesperson
Number defines Salesperson Name. If I give you a Salesperson Number, you
can give me back the one and only name that goes with it. (It’s a little like the
concept of independent and dependent variables in mathematics. Take a value of the
independent variable, plug it into the formula and you get back the specific value of
the dependent variable associated with that independent variable.) These defining
associations are commonly written with a right-pointing arrow like this:

Salesperson Number Salesperson Name

In the more formal terms of functional dependencies, Salesperson Number, in
general the attribute on the left side, is referred to as the determinant. Why? Because
its value determines the value of the attribute on the right side. Conversely, we also
say that the attribute on the right is functionally dependent on the attribute on the left.

Data normalization is best explained with an example and this is a good place
to start one. In order to demonstrate the main points of the data normalization
process, we will modify part of the General Hardware Co. business environment
and focus on the salesperson and product entities. Let’s assume that salespersons are
organized into departments and each department has a manager who is not herself
a salesperson. Then the list of attributes we will consider is shown in Figure 7.26.
The list of defining associations or functional dependencies is shown in Figure 7.27.

Notice a couple of fine points about the list of defining associations in
Figure 7.27. The last association:

Salesperson Number, Product Number Quantity

shows that the combination of two or more attributes may possibly define another
attribute. That is, the combination of a particular Salesperson Number and a
particular Product Number defines or specifies a particular Quantity. Put another
way, in this business context, we know how many units of a particular product
a particular salesperson has sold. Another point, which will be important in

F IGURE 7.26
List of attributes for salespersons
and products

Salesperson Number
Salesperson Name
Commission

Percentage
Year of Hire
Department

Number
Manager Name
Product Number
Product Name
Unit Price
Quantity

The Data Normalization Process 177

FIGURE 7.27
List of defining associations (functional
dependencies) for the attributes of
salespersons and products

Salesperson Number Salesperson Name
Salesperson Number Commission Percentage
Salesperson Number Year of Hire
Salesperson Number Department Number
Salesperson Number Manager Name
Product Number Product Name
Product Number Unit Price
Department Number Manager Name
Salesperson Number, Product Number Quantity

demonstrating one step of the data normalization process, is that Manager Name
is defined, independently, by two different attributes: Salesperson Number and
Department Number:

Salesperson Number Manager Name

Department Number Manager Name

Both these defining associations are true! If I identify a salesperson by his
Salesperson Number, you can tell me who his manager is. Also, if I state a
department number, you can tell me who the manager of the department is. How
did we wind up with two different ways to define the same attribute? Very easily!
It simply means that during the systems analysis process, both these equally true
defining associations were discovered and noted. By the way, the fact that I know
the department that a salesperson works in:

Salesperson Number Department Number

(and that each of these two attributes independently define Manager Name) will
also be an issue in the data normalization process. More about this later.

Steps in the Data Normalization Process

The data normalization process is known as a ‘‘decomposition process.’’ Basically,
we are going to line up all the attributes that will be included in the relational
database and start subdividing them into groups that will eventually form the
database’s tables. Thus, we are going to ‘‘decompose’’ the original list of all of
the attributes into subgroups. To do this, we are going to step through a number
of normal forms. First, we will demonstrate what unnormalized data looks like.
After all, if data can exist in several different normal forms, then there should be
the possibility that data is in none of the normal forms, too! Then we will basically
work through the three main normal forms in order:

First Normal Form
Second Normal Form
Third Normal Form

There arc certain ‘‘exception conditions’’ that have also been described as normal
forms. These include the Boyce-Codd Normal Form, Fourth Normal Form, and
Fifth Normal Form. They are less common in practice and will not be covered here.

178 C h a p t e r 7 Logical Database Design

Here are three additional points to remember:

1. Once the attributes are arranged in third normal form (and if none of the
exception conditions are present), the group of tables that they comprise is, in
fact, a well-structured relational database with no data redundancy.

2. A group of tables is said to be in a particular normal form if every table in the
group is in that normal form.

3. The data normalization process is progressive. If a group of tables is in second
normal form it is also in first normal form. If they are in third normal form they
are also in second normal form.

Unnormalized Data Figure 7.28 shows the salesperson and product-related attributes
listed in Figure 7.26 arranged in a table with sample data. The salesperson and
product data is taken from the General Hardware Co. relational database of
Figure 5.14, with the addition of Department Number and Manager Name data.
Note that salespersons 137, 204, and 361 are all in department number 73 and their
manager is Scott. Salesperson 186 is in department number 59 and his manager is
Lopez.

The table in Figure 7.28 is unnormalized. The table has four records, one for
each salesperson. But, since each salesperson has sold several products and there is
only one record for each salesperson, several attributes of each record must have
multiple values. For example, the record for salesperson 137 has three product
numbers, 19440, 24013, and 26722, in its Product Number attribute, because
salesperson 137 has sold all three of those products. Having such multivalued
attributes is not permitted in first normal form, and so this table is unnormalized.

First Normal Form The table in Figure 7.29 is the first normal form representation
of the data. The attributes under consideration have been listed out in one table and

SALESPERSON/PRODUCT table

Salesperson Product Salesperson Commission Year of Department Manager Product Unit
Number Number Name Percentage Hire Number Name Name Price Quantity

137 19440 Baker 10 1995 73 Scott Hammer 17.50 473
24013 Saw 26.25 170
26722 Pliers 11.50 688

186 16386 Adams 15 2001 59 Lopez Wrench 12.95 1745
19440 Hammer 17.50 2529
21765 Drill 32.99 1962
24013 Saw 26.25 3071

204 21765 Dickens 10 1998 73 Scott Drill 32.99 809
26722 Pliers 11.50 734

361 16386 Carlyle 20 2001 73 Scott Wrench 12.95 3729
21765 Drill 32.99 3110
26722 Pliers 11.50 2738

F IGURE 7.28
The salesperson and product attributes, unnormalized with sample data

The Data Normalization Process 179

SALESPERSON/PRODUCT table

Salesperson Product Salesperson Commission Year of Department Manager Product Unit
Number Number Name Percentage Hire Number Name Name Price Quantity

F IGURE 7.29
The salesperson and product attributes in first normal form

a primary key has been established. As the sample data of Figure 7.30 shows, the
number of records has been increased (over the unnormalized representation) so
that every attribute of every record has just one value. The multivalued attributes
of Figure 7.28 have been eliminated. Indeed, the definition of first normal form is a
table in which every attribute value is atomic, that is, no attribute is multivalued.

The combination of the Salesperson Number and Product Number attributes
constitutes the primary key of this table. What makes this combination of attributes a
legitimate primary key? First of all, the business context tells us that the combination
of the two provides unique identifiers for the records of the table and that there is no
single attribute that will do the job. That, of course, is how we have been approaching
primary keys all along. Secondly, in terms of data normalization, according to the list
of defining associations or functional dependencies of Figure 7.27, every attribute
in the table is either part of the primary key or is defined by one or both attributes
of the primary key. Salesperson Name, Commission Percentage, Year of Hire,
Department Number, and Manager Name are each defined by Salesperson Number.
Product Name and Unit Price are each defined by Product Number. Quantity is
defined by the combination of Salesperson Number and Product Number.

Are these two different ways of approaching the primary key selection
equivalent? Yes! If the combination of a particular Salesperson Number and a
particular Product Number is unique, then it identifies exactly one record of the
table. And, if it identifies exactly one record of the table, then that record shows
the single value of each of the non-key attributes that is associated with the unique
combination of the key attributes.

SALESPERSON/PRODUCT table

Salesperson Product Salesperson Commission Year of Department Manager Product Unit
Number Number Name Percentage Hire Number Name Name Price Quantity

137 19440 Baker 10 1995 73 Scott Hammer 17.50 473
137 24013 Baker 10 1995 73 Scott Saw 26.25 170
137 26722 Baker 10 1995 73 Scott Pliers 11.50 688
186 16386 Adams 15 2001 59 Lopez Wrench 12.95 1475
186 19440 Adams 15 2001 59 Lopez Hammer 17.50 2529
186 21765 Adams 15 2001 59 Lopez Drill 32.99 1962
186 24013 Adams 15 2001 59 Lopez Saw 26.25 3071
204 21765 Dickens 10 1998 73 Scott Drill 32.99 809
204 26722 Dickens 10 1998 73 Scott Pliers 11.50 734
361 16386 Carlyle 20 2001 73 Scott Wrench 12.95 3729
361 21765 Carlyle 20 2001 73 Scott Drill 32.99 3110
361 26722 Carlyle 20 2001 73 Scott Pliers 11.50 2738

F IGURE 7.30
The salesperson and product attributes in first normal form with sample data

180 C h a p t e r 7 Logical Database Design

But that is the same thing as saying that each of the non-key attributes is
defined by or is functionally dependent on the primary key! For example, consider
the first record of the table in Figure 7.30.

Sales-person Product Sales-person Commission Year of Department Manager Product Unit
Number Number Name Percentage Hire Number Name Name Price Quantity

137 19440 Baker 10 1995 73 Scott Hammer 17.50 473

The combination of Salesperson Number 137 and Product Number 19440 is
unique. There is only one record in the table that can have that combination of
Salesperson Number and Product Number values. Therefore, if someone specifies
those values, the only Salesperson Name that can be associated with them is Baker,
the only Commission Percentage is 10, and so forth. But that has the same effect
as the concept of functional dependency. Since Salesperson Name is functionally
dependent on Salesperson Number, given a particular Salesperson Number, say
137, there can be only one Salesperson Name associated with it, Baker. Since
Commission Percentage is functionally dependent on Salesperson Number, given
a particular Salesperson Number, say 137, there can be only one Commission
Percentage associated with it, 10. And so forth.

First normal form is merely a starting point in the normalization process. As
can immediately be seen from Figure 7.30, there is a great deal of data redundancy
in first normal form. There are three records involving salesperson 137 (the first
three records) and so there are three places in which his name is listed as Baker, his
commission percentage is listed as 10, and so on. Similarly, there are two records
involving product 19440 (the first and fifth records) and this product’s name is listed
twice as Hammer and its unit price is listed twice as 17.50. Intuitively, the reason
for this is that attributes of two different kinds of entities, salespersons and products,
have been mixed together in one table.

Second Normal Form Since data normalization is a decomposition process, the
next step will be to decompose the table of Figure 7.29 into smaller tables to
eliminate some of its data redundancy. And, since we have established that at least
some of the redundancy is due to mixing together attributes about salespersons
and attributes about products, it seems reasonable to want to separate them out at
this stage. Informally, what we are going to do is to look at each of the non-key
attributes of the table in Figure 7.29 and, on the basis of the defining associations
of Figure 7.27, decide which attributes of the key are really needed to define it. For
example, Salesperson Name really only needs Salesperson Number to define it; it
does not need Product Number. Product Name needs only Product Number to define
it; it does not need Salesperson Number. Quantity indeed needs both attributes,
according to the last defining association of Figure 7.27.

More formally, second normal form, which is what we are heading for, does
not allow partial functional dependencies. That is, in a table in second normal form,
every non-key attribute must be fully functionally dependent on the entire key of
that table. In plain language, a non-key attribute cannot depend on only part of
the key, in the way that Salesperson Name, Product Name, and most of the other
non-key attributes of Figure 7.29 do.

Figure 7.31 shows the salesperson and product attributes arranged in second
normal form. There is a SALESPERSON Table in which Salesperson Number is

The Data Normalization Process 181

FIGURE 7.31
The salesperson and product attributes in
second normal form

QUANTITY table

Salesperson Product
Number Number Quantity

PRODUCT table

Product Product Unit
Number Name Price

SALESPERSON table

Salesperson Salesperson Commission Year of Department Manager
Number Name Percentage Hire Number Name

the sole primary key attribute. Every non-key attribute of the table is fully defined
just by Salesperson Number, as can be verified in Figure 7.27. Similarly, the
PRODUCT Table has Product Number as its sole primary key attribute and the
non-key attributes of the table are dependent just on it. The QUANTITY Table has
the combination of Salesperson Number and Product Number as its primary key
because its non-key attribute, Quantity, requires both of them together to define it,
as indicated in the last defining association of Figure 7.27.

Figure 7.32 shows the sample salesperson and product data arranged in the
second normal form structure of Figure 7.31. Indeed, much of the data redundancy
visible in Figure 7.30 has been eliminated. Now, only once is salesperson 137’s
name listed as Baker, his commission percentage listed as 10, and so forth. Only
once is product 19440’s name listed as Hammer and its unit price listed as 17.50.

Second normal form is thus a great improvement over first normal form. But,
has all of the redundancy been eliminated? In general, that depends on the particular
list of attributes and defining associations. It is possible, and in practice it is often
the case, that second normal form is completely free of data redundancy. In such a
case, the second normal form representation is identical to the third normal form
representation.

A close look at the sample data of Figure 7.32 reveals that the second normal
form structure of Figure 7.31 has not eliminated all the data redundancy. At the
right-hand end of the SALESPERSON Table, the fact that Scott is the manager of
department 73 is repeated three times and this certainly constitutes redundant data.
How could this have happened? Aren’t all the non-key attributes fully functionally
dependent on Salesperson Number? They are, but that is not the nature of the
problem. It’s true that Salesperson Number defines both Department Number and
Manager Name and that’s reasonable. If I’m focusing in on a particular salesperson,
I should know what department she is in and what her manager’s name is. But,
as indicated in the next-to- last defining association of Figure 7.27, one of those
two attributes defines the other: given a department number, I can tell you who
the manager of that department is. In the SALESPERSON Table, one of the non-
key attributes, Department Number, defines another one of the non-key attributes,
Manager Name. This is what is causing the problem.

182 C h a p t e r 7 Logical Database Design

F IGURE 7.32
The salesperson and product attributes in
second normal form with sample data

SALESPERSON table

Salesperson Salesperson Commission Year of Department Manager
Number Name Percentage Hire Number Name

137 Baker 10 1995 73 Scott

186 Adams 15 2001 59 Lopez

204 Dickens 10 1998 73 Scott

361 Carlyle 20 2001 73 Scott

PRODUCT table

Product Product Unit
Number Name Price

16386 Wrench 12.95

19440 Hammer 17.50

21765 Drill 32.99

24013 Saw 26.25

26722 Pliers 11.50

QUANTITY table

Salesperson Product
Number Number Quantity

137 19440 473

137 24013 170

137 26722 688

186 16386 1745

186 19440 2529

186 21765 1962

186 24013 3071

204 21765 809

204 26722 734

361 16386 3729

361 21765 3110

361 26722 2738

Third Normal Form In third normal form, non-key attributes are not allowed to
define other non-key attributes. Stated more formally, third normal form does
not allow transitive dependencies in which one non-key attribute is functionally
dependent on another.

Again, there is one example of this in the second normal form representation
in Figure 7.31. In the SALESPERSON table, Department Number and Manager
Name are both non-key attributes and, as shown in the next-to-last association in
Figure 7.27, Department Number defines Manager Name. Figure 7.33 shows the
third normal form representation of the attributes. Note that the SALESPERSON
Table of Figure 7.31 has been further decomposed into the SALESPERSON
and DEPARTMENT Tables of Figure 7.33. The Department Number and
Department Manager attributes, which were the problem, were split off to form

The Data Normalization Process 183

FIGURE 7.33
The salesperson and product attributes in
third normal form

QUANTITY table

Salesperson Product Quantity
Number Number

PRODUCT table

Product Product Unit
Number Name Price

DEPARTMENT table

Department Manager
Number Name

SALESPERSON table

Salesperson Salesperson Commission Year of Department
Number Name Percentage Hire Number

the DEPARTMENT Table, but a copy of the Department Number attribute (the
primary key attribute of the new DEPARTMENT Table) was left behind in the
SALESPERSON Table. If this had not been done, there no longer would have been
a way to indicate which department each salesperson is in.

The sample data for the third normal form structure of Figure 7.33 is shown
in Figure 7.34. Now, the fact that Scott is the manager of department 73 is shown
only once, in the second record of the DEPARTMENT Table. Notice that the
Department Number attribute in the SALESPERSON Table continues to indicate
which department a salesperson is in.

There are several important points to note about the third normal form structure
of Figure 7.33:

1. It is completely free of data redundancy.
2. All foreign keys appear where needed to logically tie together related tables.
3. It is the same structure that would have been derived from a properly drawn

entity-relationship diagram of the same business environment.

Finally, there is one exception to the rule that in third normal form, non-key
attributes are not allowed to define other non-key attributes. The rule does not hold
if the defining non-key attribute is a candidate key of the table. Let’s say, just for the
sake of argument here, that the Salesperson Name attribute is unique. That makes
Salesperson Name a candidate key in Figure 7.33’s SALESPERSON Table. But,
if Salesperson Name is unique, then it must define Commission Percentage, Year
of Hire, and Department Number just as the unique Salesperson Number attribute
does. Since it was not chosen to be the primary key of the table, Salesperson Name
is technically a non-key attribute that defines other non-key attributes. Yet it does

184 C h a p t e r 7 Logical Database Design

F IGURE 7.34
The salesperson and product attributes in
third normal form with sample data

SALESPERSON table

Salesperson Salesperson Commission Year of Department
Number Name Percentage Hire Number

137 Baker 10 1995 73

186 Adams 15 2001 59

204 Dickens 10 1998 73

361 Carlyle 20 2001 73

DEPARTMENT table

Department Manager
Number Name

59 Lopez

73 Scott

PRODUCT table

Product Product Unit
Number Name Price

16386 Wrench 12.95

19440 Hammer 17.50

21765 Drill 32.99

24013 Saw 26.25

26722 Pliers 11.50

QUANTITY Table

Salesperson Product
Number Number Quantity

137 19440 473

137 24013 170

137 26722 688

186 16386 1745

186 19440 2529

186 21765 1962

186 24013 3071

204 21765 809

204 26722 734

361 16386 3729

361 21765 3110

361 26722 2738

not appear from the sample data of Figure 7.34 to be causing any data redundancy
problems. Since it was a candidate key, its defining other non-key attributes is not a
problem.

The Data Normalization Process 185

FIGURE 7.35
List of defining associations (functional
dependencies) for the attributes of the
General Hardware Company example

Salesperson Number Salesperson Name
Salesperson Number Commission Percentage
Salesperson Number Year of Hire
Salesperson Number Department Number
Salesperson Number Manager Name
Customer Number Customer Name
Customer Number Salesperson Number
Customer Number HQ City
Customer Number, Employee Number Employee Name
Customer Number, Employee Number Title
Product Number Product Name
Product Number Unit Price
Department Number Manager Name
Salesperson Number, Product Number Quantity
Office Number Telephone
Office Number Salesperson Number
Office Number Size

Example: General Hardware Co.

If the entire General Hardware Co. example, including the newly added Department
Number and Manager Name attributes, were organized for the data normalization
process, the list of defining associations or functional dependencies of Figure 7.27
would be expanded to look like Figure 7.35. Several additional interesting functional
dependencies in this expanded list are worth pointing out. First, although Salesperson
Number is a determinant, defining several other attributes, it is in turn functionally
dependent on another attribute, Customer Number:

CustomerNumber SalespersonNumber

As we have already established, this functional dependency makes perfect
sense. Given a particular customer, I can tell you who the salesperson is who is
responsible for that customer. This is part of the one-to-many relationship between
salespersons and customers. The fact that, in the reverse direction, a particular
salesperson has several customers associated with him makes no difference in this
functional dependency analysis. Also, the fact that Salesperson Number is itself a
determinant, defining several other attributes, does not matter. Next:

Customer Number, Employee Number Employee Name

Customer Number, Employee Number Title

Remember that in the General Hardware business environment, employee numbers
are unique only within a customer company. Thus, this functional dependency
correctly shows that the combination of the Customer Number and Employee
Number attributes is required to define the Employee Name and Title attributes.

Figure 7.36 shows the General Hardware Co. attributes, including the added
Department Number and Manager Name attributes, arranged in first normal form.

186 C h a p t e r 7 Logical Database Design

Sal
esp

erso
n N

um
ber

Cus
tom

er N
um

ber

 Em
plo

yee
 Nu

mber

 Pro
duc

t N
um

ber

 Offic
e N

um
ber

Sal
esp

erso
n N

am
e

Com
missi

on
Per

cen
tag

e

Yea
r of

 Hir
e

Dep
artm

ent
 Nu

mber

Mana
ger

 Na
me

Cus
tom

er N
am

e

HQ
 Cit

y
Em

plo
yee

 Na
me

Title Pro
duc

t N
am

e

Uni
t Pr

ice

Quan
tity

Tele
pho

ne

Siz
e

F IGURE 7.36
The General Hardware Company attributes in first normal form

Moving to second normal form would produce the database structure in Figure 7.19,
except that the Department Number and Manager Name attributes would be split
out in moving from second to third normal form, as previously shown.

Example: Good Reading Bookstores

In the General Hardware Co. example, the reason that the table representing the
many-to-many relationship between salespersons and products

Sales person Product
Number Number Quantity

fell out so easily in the data normalization process was because of the presence of the
functional dependency needed to define the intersection data attribute, Quantity:

Salesperson Number, Product Number Quantity.

A new twist in the Good Reading Bookstores example is the presence of the many-
to-many relationship between the book and author entities with no intersection data.
This is shown in the WRITING Table of Figure 7.21. The issue is how to show this
in a functional dependencies list. There are a couple of possibilities. One is to show
the two attributes defining ‘‘null’’:

Book Number, Author Number null.

The other is to show paired ‘‘multivalued dependencies’’ in which the attribute on
the left determines a list of attribute values on the right, instead of the usual single
attribute value on the right. A double-headed arrow is used for this purpose:

Book Number Author Number

Author Number Book Number

These literally say that given a book number, a list of authors of the book can
be produced and that given an author number, a list of the books that an author
has written or co-written can be produced. In either of the two possibilities shown,
the null and the paired multivalued dependencies, the notation in the functional
dependency list can be used as a signal to split the attributes off into a separate table
in moving from first to second normal form.

The other interesting point in the Good Reading Bookstores example involves
the many-to-many relationship of the SALE Table in Figure 7.21. Recall that Date
and Price were intersection data attributes that, because of the requirements of the

The Data Normalization Process 187

company, had to be part of the primary key of the table. This would be handled very
simply and naturally with a functional dependency that looks like this:

Book Number, Customer Number, Date, Price Quantity.

The complete list of functional dependencies is shown in Figure 7.37. First
normal form for the Good Reading Bookstores example would consist of the list of
its attributes with the following attributes in the primary key:

Publisher Name
Author Number
Book Number
Customer Number
Date.

Moving from first to second normal form, including incorporating the rule
described above for the many-to-many relationship with no intersection data, would
directly yield the tables of Figure 7.21. As there are no instances of a non-key
attribute defining another non-key attribute, this arrangement is already in third
normal form.

F IGURE 7.37
List of defining associations (functional
dependencies) for the attributes of the
Good Reading Bookstores example

Publisher Name City
Publisher Name Country
Publisher Name Telephone
Publisher Name Year Founded
Author Number Author Name
Author Number Year Born
Author Number Year Died
Book Number Book Name
Book Number Publication Year
Book Number Pages
Book Number Publisher Name
Customer Number Customer Name
Customer Number Street
Customer Number City
Customer Number State
Customer Number Country

Book Number, Author Number null
(or)
Book Number Author Number
Author Number Book Number

Book Number, Customer Number, Date, Quantity
Book Number, Customer Number, Date Price

188 C h a p t e r 7 Logical Database Design

F IGURE 7.38
List of defining associations (functional
dependencies) for the attributes of the
World Music Association example

Orchestra Name City
Orchestra Name Country
Orchestra Name Music Director
Musician Number Musician Name
Musician Number Instrument
Musician Number Annual Salary
Musician Number Orchestra Name
Musician Number, Degree University
Musician Number, Degree Year
Composer Name Country
Composer Name Date of Birth

Orchestra Name, Composition Name, Composer Name Price, Year (recorded)
Composition Name, Composer Name Year (composed)

Example: World Music Association

The World Music Association example is straightforward in terms of data
normalization. The complete list of functional dependencies is shown in Figure 7.38.
Since degree is unique only within a musician and composition name is unique only
within a composer, note that three of the functional dependencies are:

Musician Number, Degree University

Musician Number, Degree Year

Composition Name, Composer Name Year

The primary key attributes in first normal form are:

Orchestra Name
Musician Number
Degree
Composer Name
Composition Name

With this in mind, proceeding from first to second normal form will produce
the tables in Figure 7.23. These are free of data redundancy and are, indeed, also in
third normal form.

Example: Lucky Rent-A-Car

Figure 7.39 lists the Lucky Rent-A-Car functional dependencies. The primary key
attributes in first normal form are:

Manufacturer Name
Car Serial Number
Repair Number
Customer Number
Rental Date

Testing Tables Converted from E-R Diagrams with Data Normalization 189

FIGURE 7.39
List of defining associations (functional
dependencies) for the attributes of the
Lucky Rent-A-Car example

Manufacturer Name Manufacturer Country
Manufacturer Name Sales Rep Name
Manufacturer Name Sales Rep Telephone
Car Serial Number Model
Car Serial Number Year
Car Serial Number Class
Car Serial Number Manufacturer Name
Repair Number Car Serial Number
Repair Number Date
Repair Number Procedure
Repair Number Mileage
Repair Number Repair Time
Customer Number Customer Name
Customer Number Customer Address
Customer Number Customer Telephone
Car Serial Number, Customer Number, Rental Date Return Date
Car Serial Number, Customer Number, Rental Date Total Cost

Once again, the conversion from first to second normal form results in a
redundancy-free structure, Figure 7.25, that is already in third normal form.

TESTING TABLES CONVERTED FROM E-R DIAGRAMS
WITH DATA NORMALIZATION

As we said earlier, logical database design is generally performed today by
converting entity-relationship diagrams to relational tables and then checking those
tables against the data normalization technique rules. Since we already know that
the databases in Figures 7.19, 7.21, 7.23, and 7.25 (for the four example business
environments we’ve been working) with are in third normal form, there really isn’t

Y O U R

T U R N

7.2 THE DATA NORMALIZATION TECHNIQUE

In Your Turn in Chapter 2, you crea-
ted an entity-relationship diagram for your university
environment.

QUESTION:
Develop a set of functional dependencies for your univer-

sity environment. Then design a database for your

university environment using the data normalization
technique.

190 C h a p t e r 7 Logical Database Design

much to check. As one example, consider the General Hardware Co. database of
Figure 7.19.

The basic idea in checking the structural worthiness of relational tables with
the data normalization rules is to:

1. Check to see if there are any partial functional dependencies. That is, check
whether any non-key attributes are dependent on or are defined by only part of
the table’s primary key.

2. Check to see if there are any transitive dependencies. That is, check whether
any non-key attributes are dependent on or are defined by any other non-key
attributes (other than candidate keys).

Both of these can be verified by the business environment’s list of defining
associations or functional dependencies.

In the SALESPERSON Table of Figure 7.19, there is only one attribute,
Salesperson Number, in the primary key. Therefore there cannot be any partial
functional dependencies. By their very definition, partial functional dependencies
require the presence of more than one attribute in the primary key, so that a non-key
attribute can be dependent on only part of the key! As for transitive dependencies,
are any non-key attributes determined by any other non-key attributes? No! And,
even if Salesperson Name is assumed to be a unique attribute and therefore it defines
Commission Percentage and Year of Hire, this would be an allowable exception
because Salesperson Name, being unique, would be a candidate key. The same
analysis can be made for the other General Hardware tables with single-attribute
primary keys: the CUSTOMER, PRODUCT, and OFFICE tables of Figure 7.19.

Figure 7.19’s CUSTOMER EMPLOYEE Table has a two-attribute primary
key because Employee Number is unique only within a customer. But then, by
the very same logic, the non-key attributes Employee Name and Title must be
dependent on the entire key, because that is the only way to uniquely identify who
we are talking about when we want to know a person’s name or title. Analyzing
this further, Employee Name cannot be dependent on Employee Number alone
because it is not a unique attribute. Functional dependency requires uniqueness
from the determining side. And, obviously, Employee Name cannot be dependent
on Customer Number alone. A customer company has lots of employees, not just
one. Therefore, Employee Name and Title must be dependent on the entire primary
key and the rule about no partial functional dependencies is satisfied. Since the
non-key attributes Employee Name and Title do not define each other, the rule
about no transitive dependencies is also satisfied and thus the table is clearly in third
normal form.

In the SALES Table of Figure 7.19, there is a two-attribute primary key
and only one non-key attribute. This table exists to represent the many-to-
many relationship between salespersons and products. The non-key attributes, just
Quantity in this case, constitute intersection data. By the definition of intersection
data these non-key attributes must be dependent on the entire primary key. In
any case, there would be a line in the functional dependency list indicating that
Quantity is dependent on the combination of the two key attributes. Thus, there are
no partial functional dependencies in this table. Interestingly, since there is only one

Building the Data Structure with SQL 191

non-key attribute, transitive dependencies cannot exist. After all, there must be at
least two non-key attributes in a table for one non-key attribute to be dependent on
another.

BUILDING THE DATA STRUCTURE WITH SQL

SQL has data definition commands that allow you to take the database structure
you just learned how to design with the logical database design techniques and
implement it for use with a relational DBMS. This process begins by the creation
of ‘‘base tables.’’ These are the actual physical tables in which the data will be
stored on the disk. The command that creates base tables and tells the system what
attributes will be in them is called the CREATE TABLE command. Using the
CREATE TABLE command, you can also specify which attribute is the primary
key. As an example, here is the command to create the General Hardware Company
SALESPERSON table we have been working with shown in Figure 7.19. (Note
that the syntax of these commands varies somewhat among the various relational
DBMS products on the market. The commands shown in this chapter, which are
based on the ORACLE DBMS, are designed to give you a general idea of the
command structures. You should check the specific syntax required by the DBMS
you are using.)

CREATE TABLE SALESPERSON
(SPNUM CHAR(3) PRIMARY KEY,
SPNAME CHAR(12)
COMMPERCT DECIMAL(3,0)
YEARHIRE CHAR(4)
OFFNUM CHAR(3));

Notice that the CREATE TABLE command names the table SALESPERSON
and lists the attributes in it (with abbreviated attribute names that we have created
for brevity). Each attribute is given an attribute type and length. So SPNUM, the
Salesperson Number, is specified as CHAR(3). It is three characters long (yes, it’s
a number, but it’s not subject to calculations so it’s more convenient to specify
it as a character attribute). On the other hand, COMMPERCT, the Commission
Percentage, is specified as DECIMAL(3,0), meaning that it is a three-position
number with no decimal positions. Thus it could be a whole number from 0–999,
although we know that it will always be a whole number from 0–100 since it
represents a commission percentage. Finally, the command indicates that SPNUM
will be the primary key of the table.

If a table in the database has to be discarded, the command is the DROP
TABLE command.

DROP TABLE SALESPERSON;

A logical view (sometimes just called a ‘‘view’’) is derived from one or more
base tables. A view may consist of a subset of the columns of a single table, a subset

192 C h a p t e r 7 Logical Database Design

Y O U R

T U R N

7.3 CHECKING YOUR LOGICAL DESIGN WITH NORMALIZATION

In Your Turn 7-1 (the first Your Turn in
this chapter), you designed a database for your university
environment by converting an E-R diagram to a relational
database.

QUESTION:
Check the resulting relational database design using the

data normalization technique.

of the rows of a single table, or both. It can also be the join of two or more base
tables. The creation of a view in SQL does not entail the physical duplication of
data in a base table into a new table. Instead, the view is a mapping onto the base
table(s). It’s literally a ‘‘view’’ of some part of the physical, stored data. Views are
built using the CREATE VIEW command. Within this command, you specify the
base table(s) on which the view is to be based and the attributes and rows of the
table(s) that are to be included in the view. Interestingly, these specifications are
made within the CREATE VIEW command using the SELECT statement, which is
also used for data retrieval.

For example, to give someone access to only the Salesperson Number,
Salesperson Name, and Year of Hire attributes of the SALESPERSON table, you
would specify:

CREATE VIEW EMPLOYEE AS
SELECT SPNUM, SPNAME, YEARHIRE
FROM SALESPERSON;

The name of the view is EMPLOYEE, which can then be used in other
SQL commands as if it were a table name. People using EMPLOYEE as a table
name would have access to the Salesperson Number, Salesperson Name, and Year
of Hire attributes of the SALESPERSON table but would not have access to the
Commission Percentage or Office Number attributes (in fact, they would not even
know that these two attributes exist!).

Views can be discarded using the DROP VIEW command:

DROP VIEW EMPLOYEE;

MANIPULATING THE DATA WITH SQL

Once the tables have been created, the focus changes to the standard data
manipulation operations of updating existing data, inserting new rows in tables,
and deleting existing rows in tables. (Data retrieval is discussed in Chapter 4.) The
commands are UPDATE, INSERT, and DELETE. In the UPDATE command, you
have to identify which row(s) of a table are to be updated based on data values within

Summary 193

Y O U R

T U R N

7.4 SQL DATA DEFINITION AND DATA MANIPULATION STATEMENTS

By now, from the previous Your Turns
in this chapter, you have a well structured relational
database design for your university environment.

QUESTION:
Take one of your university tables and write SQL com-

mands to create the table, create a view of the table,
and update, insert, and delete records in the table.

those rows. Then you have to specify which columns are to be updated and what the
new data values of those columns in those rows will be. For example, consider the
SALESPERSON table in Figure 7.34. If salesperson 204’s commission percentage
has to be changed from the current 10 percent to 12 percent, the command
would be:

UPDATE SALESPERSON
SET COMMPERCT = 12
WHERE SPNUM = ‘204’;

Notice that the command first specifies the table to be updated in the UPDATE
clause, then specifies the new data in the SET clause, then specifies the affected
row(s) in the WHERE clause.

In the INSERT command, you have to specify a row of data to enter into a
table. To add a new salesperson into the SALESPERSON table whose salesperson
number is 489, name is Quinlan, commission percentage is 15, year of hire is 2011,
and department number is 59, the command would be:

INSERT INTO SALESPERSON
VALUES
(‘489’,‘Quinlan’,15,‘2011’,‘59’);

In the DELETE command you have to specify which row(s) of a table are to
be deleted based on data values within those rows. To delete the row for salesperson
186 the command would be:

DELETE FROM SALESPERSON
WHERE SPNUM = ‘186’;

SUMMARY

Logical database design is the process of creating a database structure that is free
of data redundancy and that promotes data integration. There are two techniques
for logical database design. One technique involves taking the entity-relationship
diagram that describes the business environment and going through a series of steps

194 C h a p t e r 7 Logical Database Design

to convert it to a well structured relational database structure. The other technique
is the data normalization technique. Furthermore, the data normalization technique
can be used to check the results of the E-R diagram conversion for errors.

SQL is both a data definition language and a data manipulation language.
Included in the basic data definition commands are CREATE TABLE, DROP
TABLE, CREATE VIEW, AND DROP VIEW. Included in the basic data
manipulation commands are UPDATE, INSERT, and DELETE.

KEY TERMS

CREATE TABLE
CREATE VIEW
Data normalization
Data structures
Database design
DELETE

DROP TABLE
DROP VIEW
Entity-relationship diagram conver-

sion
First normal form
INSERT

Logical database design
Second normal form
Third normal form
UPDATE

QUESTIONS

1. What is logical database design?
2. What is physical database design and how does it

relate to logical database design?
3. In general terms, describe the main logical database

design techniques and how they relate to one
another.

4. Based on an entity-relationship diagram, how can
you determine how many tables there will be in the
corresponding relational database?

5. Describe the process for converting entities in
each of the following relationships into relational
database structures:
a. One-to-one binary relationship.
b. One-to-many binary relationship.
c. Many-to-many binary relationship.
d. One-to-one unary relationship.
e. One-to-many unary relationship.
f. Many-to-many unary relationship.
g. Ternary relationship.

6. Describe the data normalization process including its
specific steps. Why is it referred to as a ‘‘decompo-
sition process?’’

7. Explain the following terms:
a. Functional dependency.
b. Determinant.

8. What characterizes unnormalized data? Why is such
data problematic?

9. What characterizes tables in first normal form? Why
is such data problematic?

10. What is a partial functional dependency? What does
the term ‘‘fully functionally dependent’’ mean?

11. What is the rule for converting tables in first normal
form to tables in second normal form?

12. What is the definition of data in second normal
form?

13. What is a transitive dependency?
14. What is the rule for converting tables in second

normal form to tables in third normal form?
15. What is the definition of data in third normal form?
16. What are the characteristics of data in third normal

form?
17. How can data normalization be used to check the

results of the E-R diagram-to-relational database
conversion process?

18. What SQL command do you use to produce a new
table structure? What SQL command do you use to
discard a table?

19. What is a view? What SQL commands do you use
to produce a new view and to discard one that is no
longer needed?

20. What are the SQL data manipulation commands and
what are their functions?

Exercises 195

EXERCISES

1. Convert the Video Centers of Europe, Ltd., entity-
relationship diagram in Exercise 2.2 into a well
structured relational database.

2. Convert the Central Hospital entity-relationship
diagram on the next page into a well-structured
relational database.

3. Video Centers of Europe, Ltd., is a chain of movie
DVD rental stores. It must maintain data on the
DVDs it has for rent, the movies recorded on
the DVDs, its customers, and the actual rental.
Each DVD for rent has a unique serial number.
Movie titles and customer numbers are also unique
identifiers. Assume that each movie has exactly one
‘‘star.’’ Note the difference in the year that the
movie was originally filmed and the date that a
DVD—an actual disk—was manufactured. Some of
the attributes and functional dependencies in this
environment are as follows:

Attributes
DVD Number
Manufacture Date
Movie Title
Star
Year Filmed
Length [in minutes]
Customer Number
Customer Name
Customer Address
Rental Date
Return Date
Fee Paid

Functional Dependencies
DVD Number Movie Title
DVD Number Star
DVD Number Manufacture Date
Movie Title Star
Movie Title Length
Movie Title Year Filmed
Customer Number Customer Name
Customer Number Customer Address
DVD Number, Customer Number,

Rental Date Return Date, Fee Paid
For each of the following tables, first write the

table’s current normal form (as 1 NF, 2 NF, or 3 NF).
Then, take those tables that are currently in 1 NF or
2 NF and reconstruct them as well structured 3 NF

tables. Primary key attributes are underlined. Do
not assume any functional dependencies other than
those shown.
a. Movie Title, Star, Length, Year Filmed
b. DVD Number, Customer Number, Rental Date,

Customer Name, Return Date, Fee Paid
c. DVD Number, Manufacture Date, Movie Title,

Star
d. Movie Title, Customer Number, Star, Length,

Customer Name, Customer Address
e. DVD Number, Customer Number, Rental Date,

Return Date, Fee Paid
4. The U.S. government wants to keep track of

information about states, governors, cities, and
mayors. In addition, it wants to maintain data on the
various federal agencies and the annual grants each
agency gives to the individual states. Each federal
agency is headed by an administrator. Agency names
and state names are unique but city names are unique
only within a state. The attributes and functional
dependencies in this environment are as follows:

Attributes
State
Governor ID Number
Governor Name
State Flower
City
Mayor ID Number
Mayor Name
City Hall Address
Mayor Telephone
Federal Agency
Administrator
Annual Grant

Functional Dependencies
State Governor ID Number
State Governor Name
State State Flower
State, City Mayor ID Number
State, City Mayor Name
State, City City Hall Address
State, City Mayor Telephone
Mayor ID Number Mayor Name
Mayor ID Number Mayor Telephone
Federal Agency Administrator
State, City, Federal Agency Annual

Grant

196 C h a p t e r 7 Logical Database Design

PK Company
 Name

Telephone
City
State
President

INSURANCE
COMPANY

PK Operation
 Name

Duration
Cost

OPERATION
TYPE

CLAIM

PK Claim Number

Company Name
Patient Number
Date
Diagnosis
Amount

PATIENT

PK Patient
 Number

Patient Name
Age
Address
City
State

DEPARTMENT

PK Department
 Number

Office
 Number
Telephone
Administrator

NURSE

PK Nurse
 Number

Nurse
 Name
Certification
Year Hired

OPERATION

PK
PK
PK
PK

Patient Number
Doctor Number
Operation Name
Date

Start Time
End Time
Operating
 Room No

DEGREE

PK

PK

Doctor
 Number
Degree Type

Major
University
Year

DOCTOR

PK Doctor
 Number

Doctor Name
Office
 Number
Telephone

Processes

Processed by

Performed

Performed by

Supervises

Supervised by

Employs

Employed by

Employs

Employed by

Underwent

Underwent by

Type of
Of type

Earned

Earned by

Backs up

Backed up by

Filed by
Files

Central Hospital entity-relationship diagram

Minicases 197

For each of the following tables, first write the
table’s current normal form (as 1NF, 2NF, or 3NF).
Then, reconstruct those tables that are currently in
1 NF or 2 NF as well structured 3 NF tables. Primary
key attributes are underlined. Do not assume any
functional dependencies other than those shown.
a. State, City, Governor Name, Mayor ID Number,

Mayor Name, Mayor Telephone
b. State, City, Mayor Name, Mayor Telephone
c. State, City, Federal Agency, Governor Name,

Administrator, Annual Grant
d. State, City, Governor Name, State Flower, Mayor

Telephone
e. State, City, City Hall Address, Mayor ID Num-

ber, Mayor Name, Mayor Telephone
5. Consider the General Hardware relational database

shown in Figure 7.19.

a. Write an SQL command to create the CUS-
TOMER table.

b. Write an SQL command to create a view of
the CUSTOMER table that includes only the
Customer Number and HQ City attributes.

c. Write an SQL command to discard the OFFICE
table.

d. Assume that Customer Number 8429 is the
responsibility of Salesperson Number 758. Write
an SQL command to change that responsibility
to Salesperson Number 311.

e. Write an SQL command to add a new record
to the CUSTOMER table for Customer Number
9442. The Customer Name is Smith Hardware
Stores, the responsible salesperson is Salesperson
Number 577, and the HQ City is Chicago.

MINICASES

1. Happy Cruise Lines. Convert the Happy Cruise Lines
entity-relationship diagram on the next page into a well
structured relational database.

2. Super Baseball League. The Super Baseball League
wants to keep track of information about its players,
its teams, and the minor league teams (which we will
call minor league ‘‘clubs’’ to avoid using the word
‘‘team’’ twice). Minor league clubs are not part of the
Super Baseball League but players train in them with
the hope of eventually advancing to a team in the Super
Baseball League. The intent in this problem is to keep
track only of the current team on which a player plays
in the Super Baseball League. However, the minor
league club data must be historic and include all of the
minor league clubs for which a player has played. Team
names, minor league club names, manager names, and
stadium names are assumed to be unique, as, of course,
is player number.

Design a well structured relational database for this
Super Baseball League environment using the data
normalization technique. Progress from first to second
normal form and then from second to third normal form
justifying your design decisions at each step based on
the rules of data normalization. The attributes and func-
tional dependencies in this environment are as follows:

Attributes
Player Number

Player Name
Player Age
Team Name
Manager Name
Stadium Name
Minor League Club Name
Minor League Club City
Minor League Club Owner
Minor League Club Year Founded
Start Date
End Date
Batting Average

Functional Dependencies
Player Number Player Name
Player Number Age
Player Number Team Name
Player Number Manager Name
Player Number Stadium Name
Minor League Club Name City
Minor League Club Name Owner
Minor League Club Name Year Founded
Team Name Manager Name
Team Name Stadium Name
Player Number, Minor League Club Name

Start Date, End Date, Batting Average

198 C h a p t e r 7 Logical Database Design

TOURED

PK
PK

PK

Passenger
 Number
Cruise Number
Tour Number

Date

TOUR

PK Tour Number

Tour Name
Duration
Price

TOURED

PK

PK

Passenger
 Number
Cruise Number

Cabin Number
Fare

PASSENGER

PK Passenger
 Number

Passenger
 Name
Home Address
Telephone

PRODUCT

PK Product
 Number

Product Number
Product
 Category
Unit Price

VISIT

PK
PK
PK

Cruise Number
Port Name
Country

Arrival Date
Departure Date

PORT

PK
PK

Port Name
Country

Number of
 Docks
Port Manager

SHIP

PK Ship Number

Ship Name
Ship Builder
Launch Date
Gross Weight

CRUISE

PK Cruise Number

Start Date
End Date
Cruise Director

SUPPLIER

PK Supplier
 Number

Supplier Name
Supplier
 Address
Sales Rep

PROVISION

PK

PK

PK

Supplier
 Number
Product
 Number
Cruise Number

Quantity
Date
Cost

Includes

Included in

Offers

Offered on

Used on

Uses

Supplies

Supplied by

Uses

Used in

Visits

Visited by

Visits

Visited

Uses

Used in

Books

Booked by

Books
Booked by

A

B

Key to passenger unary
 relationship
A: Head of family
B: In family

Happy Cruise Lines entity-relationship diagram

C H A P T E R 8

PHYSICAL DATABASE
DESIGN

I f computers ran at infinitely fast speeds and data stored on disks could be found
and brought into primary memory for processing literally instantly, then logical

database design would be the only kind of database design to talk about. Well structured,
redundancy-free third normal form tables are the ideal relational database structures and,
in a world of infinite speeds, would be practical, too. But, as fast as computers have
become, their speeds are certainly not infinite and the time necessary to find data stored
on disks and bring it into primary memory for processing are crucial issues in whether
an application runs as fast as it must. For example, if you telephone your insurance
company to ask about a claim you filed and the customer service agent takes two minutes
to find the relevant records in the company’s information system, you might well become
frustrated with the company and question its ability to handle your business competently.
Data storage, retrieval, and processing speeds do matter. Regardless of how elegant
an application and its database structures are, if the application runs so slowly that it
is unacceptable in the business environment, it will be a failure. This chapter addresses
how to take a well structured relational database design and modify it for improved
performance.

OBJECTIVES

■ Describe the principles of file organizations and access methods.
■ Describe how disk storage devices work.
■ Describe the concept of physical database design.
■ List and describe the inputs to the physical database design process.
■ Describe a variety of physical database design techniques ranging from adding

indexes to denormalization.

CHAPTER OUTLINE

Introduction
Disk Storage

The Need for Disk Storage
How Disk Storage Works

File Organizations and Access Methods
The Goal: Locating a Record
The Index
Hashed Files

200 C h a p t e r 8 Physical Database Design

Inputs to Physical Database Design
The Tables Produced by the

Logical Database Design Process
Business Environment Requirements
Data Characteristics
Application Characteristics
Operational Requirements: Data

Security, Backup, and Recovery
Physical Database Design Techniques

Adding External Features

Reorganizing Stored Data
Splitting a Table into Multiple Tables
Changing Attributes in a Table
Adding Attributes to a Table
Combining Tables
Adding New Tables

Example: Good Reading Book Stores
Example: World Music Association
Example: Lucky Rent-A-Car
Summary

INTRODUCTION

Database performance can be adversely affected by a wide variety of factors,
as shown in Figure 8.1. Some factors are a result of application requirements and
often the most obvious culprit is the need for joins. Joins are an elegant solution
to the need for data integration, but they can be unacceptably slow in many cases.
Also, the need to calculate and retrieve the same totals of numeric data over and
over again can cause performance problems. Another type of factor is very large
volumes of data. Data is the lifeblood of an information system, but when there is a
lot of it, care must be taken to store and retrieve it efficiently to maintain acceptable
performance. Certain factors involving the structure of the data, such as the amount
of direct access provided and the presence of clumsy, multi-attribute primary keys,
can certainly affect performance. If related data in different tables that must be
retrieved together is physically dispersed on the disk, retrieval performance will be
slower than if the data is stored physically close together on the disk. Finally, the
business environment often presents significant performance challenges. We want
data to be shared and to be widely used for the benefit of the business. However, a
very large number of access operations to the same data can cause a bottleneck that

F IGURE 8.1
Factors affecting application
and database performance

Factors Affecting Application and Database Performance
• Application Factors

■ Need for Joins
■ Need to Calculate Totals

• Data Factors
■ Large Data Volumes

• Database Structure Factors
■ Lack of Direct Access
■ Clumsy Primary Keys

• Data Storage Factors
■ Related Data Dispersed on Disk

• Business Environment Factors
■ Too Many Data Access Operations
■ Overly Liberal Data Access

Introduction 201

CONCEPTS

IN ACT ION

8-A DUCKS UNLIMITED

Ducks Unlimited (‘‘DU’’) is the
world’s largest wetlands conservation organization. It
was founded in 1937 when sportsmen realized that they
were seeing fewer ducks on their migratory paths and the
cause was found to be the destruction of their wetlands
breeding areas. Today, with programs reaching from the
arctic tundra of Alaska to the tropical wetlands of Mexico,
DU is dedicated, in priority order, to preserving existing
wetlands, rebuilding former wetlands, and building new
wetlands. DU is a non-profit organization headquartered
in Memphis, TN, with regional offices located in the
four major North American duck ‘‘flyways’’. DU also
works with affiliated organizations in Canada and
Mexico to deliver their mutual conservation mission. DU
has 600 employees, over 70,000 volunteers, 756,000
paying members, and over one million total contributors.
Currently its annual income exceeds $140 million.

In 1999, Ducks Unlimited introduced a major rela-
tional database application that it calls its Conservation
System, or ‘‘Conserv’’ for short. Located at its Mem-
phis headquarters, Conserv is a project-tracking system
that manages both the operational and financial aspects

Photo Courtesy of Ducks Unlimited

of DU’s wetlands conservation projects. In terms of
operations, Conserv tracks the phases of each project and
the subcontractors performing the work. As for finances,
Conserv coordinates the chargeback of subcontractor
fees to the ‘‘cooperators’’ (generally federal agencies,
landowners, or large contributors) who sponsor the
projects.

Conserv is based on the Oracle DBMS and runs
on COMPAQ servers. The database has several main
tables, including the Project table and the Agreement
(with cooperators) table, each of which has several
subtables. DU employees query the database with Oracle
Discoverer to check how much money has been spent
on a project and how much of the expenses have been
recovered from the cooperators, as two examples. Each
night, Conserv sends data to and receives data from a
separate relational database running on an IBM AS/400
system that handles membership data, donor history,
and accounting functions such as invoicing and accounts
payable. Conserv data can even be sent to a geographic
information system (GIS) that displays the projects on
maps.

202 C h a p t e r 8 Physical Database Design

can ruin the performance of an application environment. And giving people access
to more data than they need to see can be a security risk.

Physical database design is the process of modifying a database structure
to improve the performance of the run-time environment. That is, we are going
to modify the third normal form tables produced by the logical database design
techniques to speed up the applications that will use them. A variety of kinds of
modifications can be made, ranging from simply adding indexes to making major
changes to the table structures. Some of the changes, while making some applications
run faster, may make other applications that share the data run slower. Some of
the changes may even compromise the principle of avoiding data redundancy! We
will investigate and explain a number of physical database design techniques in this
chapter, pointing out the advantages and disadvantages of each.

In order to discuss physical database design, we will begin with a review of
disk storage devices, file organizations, and access methods.

DISK STORAGE

The Need for Disk Storage

Computers execute programs and process data in their main or primary memory.
Primary memory is very fast and certainly does permit direct access, but it has
several drawbacks:

■ It is relatively expensive.
■ It is not transportable (that is, you can’t remove it from the computer and carry it

away with you, as you can an external hard drive).
■ It is volatile. When you turn the computer off you lose whatever data is

stored in it.

Because of these shortcomings, the vast volumes of data and the programs
that process them are held on secondary memory devices. Data is loaded from
secondary memory into primary memory when required for processing (as are
programs when they are to be executed). A loose analogy can be drawn between
primary and secondary memory in a computer system and a person’s brain and a
library, Figure 8.2. The brain cannot possibly hold all of the information a person
might need, but (let’s say) a large library can. So when a person needs some
particular information that’s not in her brain at the moment, she finds a book in the
library that has the information and, by reading it, transfers the information from
the book to her brain. Secondary memory devices in use today include compact

F IGURE 8.2
Primary and secondary memory
are like a brain and a library

Disk Storage 203

disks and magnetic tape, but by far the predominant secondary memory technology
in use today is magnetic disk, or simply ‘‘disk.’’

How Disk Storage Works

The Structure of Disk Devices Disk devices, commonly called ‘‘disk drives,’’ come
in a variety of types and capacities ranging from a single aluminum or ceramic disk
or ‘‘platter’’ to large multi-platter units that hold many billions of bytes of data.
Some disk devices, like ‘‘external hard drives,’’ are designed to be removable and
transportable from computer to computer; others, such as the ‘‘fixed’’ or ‘‘hard’’
disk drives in PCs and the disk drives associated with larger computers, are designed
to be non-removable. The platters have a metallic coating that can be magnetized
and this is how the data is stored, bit by bit. Disks are very fast in storage and
retrieval times (although not nearly as fast as primary memory), provide a direct
access capability to the data, are less expensive than primary memory units on a
byte-by-byte basis, and are non-volatile (when you turn off the computer or unplug
the external drive, you don’t lose the data on the disk).

It is important to see how data is arranged on disks to understand how they
provide a direct access capability. It is also important because certain decisions on
how to arrange file or database storage on a disk can seriously affect the performance
of the applications using the data.

In the large disk devices used with mainframe computers and mid-sized
‘‘servers’’ (as well as the hard drives or fixed disks in PCs), several disk platters are
stacked together and mounted on a central spindle, with some space between them,
Figure 8.3. In common usage, even a multi-platter arrangement like this is simply
referred to as ‘‘the disk.’’ Each of the two surfaces of a platter is a recording surface
on which data can be stored. (Note: In some of these devices, the upper surface of
the topmost platter and the lower surface of the bottommost platter are not used for
storing data. We will assume this situation in the following text and figures.) The
platter arrangement spins at high speed in the disk drive. The basic disk drive (there
are more complex variations) has an ‘‘access-arm mechanism’’ with arms that can
reach in between the disks, Figure 8.4. At the end of each arm are two ‘‘read/write
heads,’’ one for storing and retrieving data from the recording surface above the arm
and the other for the surface below the arm, as shown in the figure. It is important to
understand that the entire access-arm mechanism always moves as a unit in and out
among the disk platters, so that the read/write heads are always p aligned exactly
one above the other in a straight line. The platters spin at high velocity on the central

F IGURE 8.3
The platters of a disk are mounted
on a central spindle

Platters

204 C h a p t e r 8 Physical Database Design

F IGURE 8.4
A disk drive with its access arm
mechanism and read/write heads

Access arm
mechanism

Read/write heads

Platters

Recording surface 1

spindle, all together as a single unit. The spinning of the platters and the ability of
the access-arm mechanism to move in and out allows the read/write heads to be
located over any piece of data on the entire unit, many times each second, and it is
this mechanical system that provides the direct access capability.

Tracks On a recording surface, data is stored, serially by bit (bit by bit, byte by byte,
field by field, record by record), in concentric circles known as tracks, Figure 8.5.
There may be fewer than one hundred or several hundred tracks on each recording
surface, depending on the particular device. Typically, each track holds the same
amount of data. The tracks on a recording surface are numbered track 0, track 1,
track 2, and so on. How would you store the records of a large file on a disk? You
might assume that you would fill up the first track on a particular surface, then fill up
the next track on the surface, then the next, and so on until you have filled an entire
surface. Then you would move on to the next surface. At first, this sounds reasonable
and perhaps even obvious. But it turns out it’s problematic. Every time you move
from one track to the next on a surface, the device’s access-arm mechanism has to
move. That’s the only way that the read/write head, which can read or write only
one track at a time, can get from one track to another on a given recording surface.
But the access-arm mechanism’s movement is a slow, mechanical motion compared
to the electronic processing speeds in the computer’s CPU and main memory. There
is a better way to store the file!

Cylinders Figure 8.6 shows the disk’s access-arm mechanism positioned so that
the read/write head for recording surface 0 is positioned at that surface’s track 76.

F IGURE 8.5
Tracks on a recording surface

Track 0

Track 1

Track 2

Recording
surface

Disk Storage 205

FIGURE 8.6
Each read/write head positioned over
track 76 of its recording surface

Access arm
mechanism

Read/write heads

Each read/write head
positioned over track 76
of its recording surface

Recording surface 0
Recording surface 1

Since the entire access-arm mechanism moves as a unit and the read/write heads are
always one over the other in a line, the read/write head for recording surface 1 is
positioned at that surface’s track 76, too. In fact, each surface’s read/write head is
positioned over its track 76. If you picture the collection of each surface’s track 76,
one above the other, they seem to take the shape of a cylinder, Figure 8.7. Indeed,
each collection of tracks, one from each recording surface, one directly above the
other, is known as a cylinder. Notice that the number of cylinders in a disk is equal
to the number of tracks on any one of its recording surfaces.

If we want to number the cylinders in a disk, which seems like a reasonable
thing to do, it is certainly convenient to give a cylinder the number corresponding
to the track numbers it contains. Thus, the cylinder in Figure 8.7, which is made
up of track 76 from each recording surface, will be numbered and called cylinder
76. There is one more point to make. So far, the numbering we have looked at
has been the numbering of the tracks on the recording surfaces, which also led
to the numbering of the cylinders. But, once we have established a cylinder, it
is also necessary to number the tracks within the cylinder, Figure 8.8. Typically,
these are numbered 0, 1, …, n, which corresponds to the numbers of the recording
surfaces. What will ‘‘n’’ be? That’s the same question as how many tracks are
there in a cylinder, but we’ve already answered that question. Since each recording
surface ‘‘contributes’’ one track to each cylinder, the number of tracks in a cylinder
is the same as the number of recording surfaces in a disk. The bottom line is to
remember that we are going to number the tracks across a recording surface and
then, perpendicular to that, we are also going to number the tracks in a cylinder.

F IGURE 8.7
The collection of each recording surface’s
track 76 looks like a cylinder. This
collection of tracks is called cylinder 76

Track 76 of Recording Surface 2
Track 76 of Recording Surface 1
Track 76 of Recording Surface 0

206 C h a p t e r 8 Physical Database Design

F IGURE 8.8
Cylinder 76’s tracks

Track 2 of cylinder 76
Track 1 of cylinder 76
Track 0 of cylinder 76

Why is the concept of the cylinder important? Because in storing or retrieving
data on a disk, you can move from one track of a cylinder to another without having
to move the access-arm mechanism. The operation of turning off one read/write head
and turning on another is an electrical switch that takes almost no time compared to
the time it takes to move the access-arm mechanism. Thus, the ideal way to store
data on a disk is to fill one cylinder and then move on to the next cylinder, and so on.
This speeds up the applications that use the data considerably. Incidentally, it may
seem that this is important only when reading files sequentially, as opposed to when
performing the more important direct access operations. But we will see later that
in many database situations closely related pieces of data will have to be accessed
together, so that storing them in such a way that they can be retrieved quickly can
be a big advantage.

Steps in Finding and Transferring Data Summarizing the way these disk devices
work, there are four major steps or timing considerations in the transfer of data from
a disk to primary memory:

1. Seek Time: The time it takes to move the access-arm mechanism to the correct
cylinder from its current position.

2. Head Switching: Selecting the read/write head to access the required track of
the cylinder.

3. Rotational Delay: Waiting for the desired data on the track to arrive under the
read/write head as the disk is spinning. On average, this takes half the time of one
full rotation of the disk. That’s because, as the disk is spinning, at one extreme
the needed data might have just arrived under the read/write head at the instant
the head was turned on, while at the other extreme you might have just missed
it and have to wait for a full rotation. On the average, this works out to half a
rotation.

4. Transfer Time: The time to move the data from the disk to primary memory
once steps 1–3 have been completed.

One last point. Another term for a record in a file is a logical record. Since
the rate of processing data in the CPU is much faster than the rate at which data
can be brought in from secondary memory, it is often advisable to transfer several
consecutively stored logical records at a time. Once such a physical record or block
of several logical records has been brought into primary memory from the disk,
each logical record can be examined and processed as necessary by the executing
program.

File Organizations and Access Methods 207

FILE ORGANIZATIONS AND ACCESS METHODS

The Goal: Locating a Record

Depending on application requirements, we might want to retrieve the records of a
file on either a sequential or a direct-access basis. Disk devices can store records in
some logical sequence, if we wish, and can access records in the middle of a file.
But that’s still not enough to accomplish direct access. Direct access requires the
combination of a direct access device and the proper accompanying software.

Say that a file consists of many thousands or even a few million records.
Further, say that there is a single record that you want to retrieve and you know the
value of its unique identifier, its key. The question is, how do you know where it
is on the disk? The disk device may be capable of going directly into the middle
of a file to pull out a record, but how does it know where that particular record is?
Remember, what we’re trying to avoid is having it read through the file in sequence
until it finds the record being sought. It’s not magic (nothing in a computer ever is)
and it is important to have a basic understanding of each of the steps in working with
simple files, including this step, before we talk about databases. This brings us to
the subject known as ‘‘file organizations and access methods,’’ which refers to how
we store the records of a file on the disk and how we retrieve them. We refer to the
way that we store the data for subsequent retrieval as the file organization. The way
that we retrieve the data, based on it being stored in a particular file organization, is
called the access method. (Note in passing that the terms ‘‘file organization’’ and
‘‘access method’’ are often used synonymously, but this is technically incorrect.)

What we are primarily concerned with is how to achieve direct access to the
records of a file, since this is the predominant mode of file operation, today. In terms
of file organizations and access methods, there are basically two ways of achieving
direct access. One involves the use of a tool known as an ‘‘index.’’ The other is
based on a way of storing and retrieving records known as a ‘‘hashing method.’’
The idea is that if we know the value of a field of a record we want to retrieve, the
index or hashing method will pinpoint its location in the file and tell the hardware
mechanisms of the disk device where to find it.

The Index

The interesting thing about the concept of an index is that, while we are interested
in it as a tool for direct access to the records in files, the principle involved is exactly
the same as of the index in the back of a book. After all, a book is a storage medium
for information about some subject. And, in both books and files, we want to be able
to find some portion of the contents ‘‘directly’’ without having to scan sequentially
from the beginning of the book or file until we find it. With a book, there are really
three choices for finding a particular portion of the contents. One is a sequential
scan of every page starting from the beginning of the book and continuing until the
desired content is found. The second is using the table of contents. The table of
contents in the front of the book summarizes what is in the book by major topics,
and it is written in the same order as the material in the book. To use the table of
contents, you have to scan through it from the beginning and, because the items it
includes are summarized and written at a pretty high level, there is a good chance

208 C h a p t e r 8 Physical Database Design

that you won’t find what you’re looking for. Even if you do, you will typically be
directed to a page in the vicinity of the topic you’re looking for, not to the exact page.
The third choice is to use the index at the back of the book. The index is arranged
alphabetically by item. As humans, we can do a quick, efficient search through the
index, using the fact that the items in it are in alphabetic order, to quickly home in
on the topic of interest. Then what? Next to the located item in the index appears a
page number. Think of the page number as the address of the item you’re looking
for. In fact, it is a ‘‘direct pointer’’ to the page in the book where the material
appears. You proceed directly to that page and find the material there, Figure 8.9.

The index in the back of a book has three key elements that are also
characteristic of information systems indexes:

■ The items of interest are copied over into the index but the original text is not
disturbed in any way.

■ The items copied over into the index are sorted (alphabetized in the index at the
back of a book).

■ Each item in the index is associated with a ‘‘pointer’’ (in a book index this is a
page number) pointing to the place in the text where the item can be found.

Simple Linear Index The indexes used in information systems come in a variety of
types and styles. We will start with what is called a ‘‘simple linear index,’’ because
it is relatively easy to understand and is very close in structure to the index in the
back of a book. On the right-hand side of Figure 8.10 is the Salesperson file. As
before, it is in order by the unique Salesperson Number field. It is reasonable to
assume that the records in this file are stored on the disk in the sequence shown in
Figure 8.10. (We note in passing that retrieving the records in physical sequence,
as they are stored on the disk, would also be retrieving them in logical sequence
by salesperson number, since they were ordered on salesperson number when they
were stored.) Figure 8.10 also shows that we have numbered the records of the file
with a ‘‘Record Number’’ or a ‘‘Relative Record Number’’ (‘‘relative’’ because the
record number is relative to the beginning of the file). These record numbers are a
handy way of referring to the records of the file and using such record numbers is

F IGURE 8.9
The index in a book

214
INDEX

INDEX

 206, 248,
 322-323
Octopus, 214
 383, 401
Olfactory,
92 128

File Organizations and Access Methods 209

FIGURE 8.10
Salesperson file on the right with index
built over the Salesperson Name field, on
the left

Index Salesperson File

Salesperson Record Record Salesperson Salesperson
Name Address Number Number Name City

Adams 3 1 119 Taylor New York

Baker 2 2 137 Baker Detroit

Carlyle 6 3 186 Adams Dallas

Dickens 4 4 204 Dickens Dallas

Green 7 5 255 Lincoln Atlanta

Lincoln 5 6 361 Carlyle Detroit

Taylor 1 7 420 Green Tucson

considered another way of ‘‘physically’’ locating a record in a file, just as a cylinder
and track address is a physical address.

On the left-hand side of Figure 8.10 is an index built over the Salesperson
Name field of the Salesperson file. Notice that the three rules for building an index
in a book were observed here, too. The indexed items were copied over from the
file to the index and the file was not disturbed in any way. The items in the index
were sorted. Finally, each indexed item was associated with a physical address, in
this case the relative record number (the equivalent of a page number in a book)
of the record of the Salesperson file from which it came. The first ‘‘index record’’
shows Adams 3 because the record of the Salesperson file with salesperson name
Adams is at relative record location 3 in the Salesperson file. Notice the similarity
between this index and the index in the back of a book. Just as you can quickly find
an item you are looking for in a book’s index because the items are in alphabetic
order, a programmed procedure could quickly find one of the salespersons’ names
in the index because they are in sorted order. Then, just as the item that you found
in the book’s index has a page number next to it telling you where to look for the
detailed information you seek, the index record in the index of Figure 8.10 has the
relative record number of the record of the Salesperson file that has the information,
i.e. the record, that you are looking for.

Figure 8.11, with an index built over the City field, demonstrates another point
about indexes. An index can be built over a field with non-unique values.

F IGURE 8.11
Salesperson file on the right with index
built over the City field, on the left

Index Salesperson File

Record Record Salesperson Salesperson
City Address Number Number Name City

Atlanta 5 1 119 Taylor New York

Dallas 3 2 137 Baker Detroit

Dallas 4 3 186 Adams Dallas

Detroit 2 4 204 Dickens Dallas

Detroit 6 5 255 Lincoln Atlanta

New York 1 6 361 Carlyle Detroit

Tucson 7 7 420 Green Tucson

210 C h a p t e r 8 Physical Database Design

F IGURE 8.12
Salesperson file on the right with index
built over the Salesperson Number field,
on the left

Index Salesperson File

Salesperson Record Record Salesperson Salesperson
Number Address Number Number Name City

119 1 1 119 Taylor New York

137 2 2 137 Baker Detroit

186 3 3 186 Adams Dallas

204 4 4 204 Dickens Dallas

255 5 5 255 Lincoln Atlanta

361 6 6 361 Carlyle Detroit

420 7 7 420 Green Tucson

Figure 8.12 shows the Salesperson file with an index built over the Salesperson
Number field. This is an important concept known as an ‘‘indexed-sequential file.’’
In an indexed-sequential file, the file is stored on the disk in order based on a set
of field values (in this case the salesperson numbers) and an index is built over that
same field. This allows both sequential and direct access by the key field, which can
be an advantage when applications with different retrieval requirements share the
file. The odd thing about this index is that since the Salesperson file was already
in sequence by the Salesperson Number field, when the salesperson numbers were
copied over into the index they were already in sorted order! Further, for the same
reason, the record addresses are also in order. In fact, in Figure 8.12, the Salesperson
Number field in the Salesperson file, with the list of relative record numbers next
to it, appears to be identical to the index. But then, why bother having an index
built over the Salesperson Number field at all? In principle, the reason is that when
the search algorithm processes the salesperson numbers, they have to be in primary
memory. Again in principle, it would be much more efficient to bring the smaller
index into primary memory for this purpose than to bring the entire Salesperson file
in just to process the Salesperson Number field.

Why, in the last couple of sentences, did we keep using the phrase, ‘‘in
principle?’’ The answer to this is closely tied to the question of whether simple
linear indexes are practical for use in even moderately sized information systems
applications. And the answer is that they are not. One reason (and here is where
the ‘‘in principle’’ in the last paragraph come in) is that, even if the simple linear
index is made up of just two columns, it would still be clumsy to try to move all or
even parts of it into primary memory to use it in a search. At best, it would require
many read operations to the disk on which the index is located. The second reason
has to do with inserting new disk records. Look once again at the Salesperson file
and the index in Figure 8.10. Say that a new salesperson named French is hired
and assigned salesperson number 452. Her record can be inserted at the end of the
Salesperson file, where it would become record number 8. But the index would have
to be updated, too: an index record, French 8, would have to be inserted between
the index records for Dickens and Green to maintain the crucial alphabetic or sorted
sequence of the index, Figure 8.13. The problem is that there is no obvious way
to accomplish that insertion unless we move all the index records from Green to
Taylor down one record position. In even a moderate-size file, that would clearly
be impractical!

File Organizations and Access Methods 211

FIGURE 8.13
Salesperson file with the insertion of a
record for #452 French. But how can you
squeeze the index record into the proper
sequence?

Index Salesperson File

Salesperson Record Record Salesperson Salesperson
Name Address Number Number Name City

Adams 3 1 119 Taylor New York

Baker 2 2 137 Baker Detroit

Carlyle 6 3 186 Adams Dallas

Dickens 4 4 204 Dickens Dallas

Green 7 5 255 Lincoln Atlanta

Lincoln 5 6 361 Carlyle Detroit

Taylor 1 7 420 Green Tucson

8 452 French New York

French 8 ?

Indeed, the simple linear index is not a good solution for indexing the records
of a file. This leads us to another kind of index that is suitable for indexing even
very large files, the B+-tree index.

B+-Tree Index The B+-tree index, in its many variations (and there are many,
including one called the B*-tree), is far and away the most common data-indexing
system in use today. Assume that the Salesperson File now includes records for
several hundred salespersons. Figure 8.14 is a variation of how the B+-tree index
works. The figure shows the salesperson records arranged in sequence by the
Salesperson Number field on ten cylinders (numbered 1–10) of a disk. Above the
ten cylinders is an arrangement of special index records in what is known as a
‘‘tree.’’ There is a single index record, known as the ‘‘root,’’ at the top, with
‘‘branches’’ leading down from it to other ‘‘nodes.’’ Sometimes the lowest-level
nodes are called ‘‘leaves.’’ For the terminology, think of it as a real tree turned
upside-down with the roots clumped into a single point at the top, Figure 8.15.

Y O U R

T U R N

8.1 SIMPLE LINEAR INDEXES

When we think of indexes (other than
those used to access data in computers), most people
would agree that those thoughts would be limited to the
indexes in the backs of books. But, if we want to and
it makes sense, we can create indexes to help us find
objects in our world other than items inside books. (By
the way, have you ever seen a directory in a department
store that lists its departments alphabetically and then,
next to each department name, indicates the floor it’s on?
That’s an index, too!)

QUESTION:
Choose a set of objects in your world and develop a

simple linear index to help you find them when you
need to. For example, you may have CDs or DVDs on
different shelves of a bookcase or in different rooms
of your house. In this example, what would be the
identifier in the index for each CD or DVD? What
would be the physical location in the index? Think
of another set of objects and develop an index for
them.

212 C h a p t e r 8 Physical Database Design

477 641253

Records
with

Salesperson
Numbers
081–140

Cylinder 1

Records
with

Salesperson
Numbers
145–192

Cylinder 2

Records
with

Salesperson
Numbers
197–253

Cylinder 3

Records
with

Salesperson
Numbers
260–307

Cylinder 4

Records
with

Salesperson
Numbers
310–368

Cylinder 5

Records
with

Salesperson
Numbers
371–416

Cylinder 6

Records
with

Salesperson
Numbers
422–477

Cylinder 7

Records
with

Salesperson
Numbers
479–529

Cylinder 8

Records
with

Salesperson
Numbers
533–578

Cylinder 9

Records
with

Salesperson
Numbers
582–641

Cylinder 10

To
Cyl
1

192
To
Cyl
2

253
To
Cyl
3

140
To
Cyl
4

368
To
Cyl
5

416
To
Cyl
6

To
Cyl
7

477307
To
Cyl
8

578
To
Cyl
9

641
To
Cyl
10

529

F IGURE 8.14
Salesperson file with a B+-tree index

Alternatively, you can think of it as a family tree, which normally has this same
kind of top-to-bottom orientation.

F IGURE 8.15
A real tree, upside down, with the roots
clumped together into a single point

Node

Roots
Ground

Leaf
(“Terminal Node”)

File Organizations and Access Methods 213

Notice the following about the index records in the tree:

■ The index records contain salesperson number key values copied from certain of
the salesperson records.

■ Each key value in the tree is associated with a pointer that is the address of either
a lower-level index record or a cylinder containing the salesperson records.

■ Each index record, at every level of the tree, contains space for the same number
of key value/pointer pairs (four in this example). This index record capacity is
arbitrary, but once it is set, it must be the same for every index record at every
level of the index.

■ Each index record is at least half full (in this example each record actually
contains at least two key value/pointer pairs).

How are the key values in the index tree constructed and how are the pointers
arranged? The lowest level of the tree contains the highest key value of the
salesperson records on each of the 10 data cylinders. That’s why there are 10 key
values in the lowest level of the index tree. Each of those 10 key values has a
pointer to the data cylinder from which it was copied. For example, the leftmost
index record on the lowest level of the tree contains key values 140, 192, and 253,
which are the highest key values on cylinders 1, 2, and 3, respectively. The root
index record contains the highest key value of each of the index records at the next
(which happens to be the last in this case) level down. Looking down from the root
index record, notice that 253 is the highest key value of the first index record at the
next level down, and so on for key values 477 and 641 in the root.

Let’s say that you want to perform a direct access for the record for salesperson
361. A stored search routine would start at the root and scan its key values from left
to right, looking for the first key value greater than or equal to 361, the key value for
which you are searching. Starting from the left, the first key value in the root greater
than or equal to 361 is 477. The routine would then follow the pointer associated
with key value 477 to the second of the three index records at the next level. The
search would be repeated in that index record, following the same rules. This time,
key value 368 is the first one from the left that is higher than or equal to 361. The
routine would then follow the pointer associated with key value 368 to cylinder 5.
Additional search cues within the cylinder could then point to the track and possibly
even the position on the track at which the record for salesperson 361 is to be found.

There are several additional points to note about this B+-tree arrangement:

■ The tree index is small and can be kept in main memory indefinitely for a
frequently accessed file.

■ The file and index of Figure 8.14 fit the definition of an indexed-sequential file,
because the file is stored in sequence by salesperson numbers and the index is
built over the Salesperson Number field.

■ The file can be retrieved in sequence by salesperson number by pointing from
the end of one cylinder to the beginning of the next, as is typically done, without
even using the tree index.

■ B+-tree indexes can be and are routinely used to also index non-key, non-unique
fields, although the tree can be deeper and/or the structures at the end of the tree
can be more complicated.

■ In general, the storage unit for groups of records can be (as in the above example)
but need not be the cylinder or any other physical device sub-unit.

214 C h a p t e r 8 Physical Database Design

The final point to make about B+-tree indexes is that, unlike simple linear
indexes, they are designed to comfortably handle the insertion of new records into
the file and the deletion of records. The principle for this is based on the idea of unit
splits and contractions, both at the record storage level and at the index tree level.
For example, say that a new record with salesperson number 365 must be inserted.
Starting from the root and following the same procedure for a record search, the
computer determines that this record should be located on Cylinder 5 in order to
maintain the sequence of the records based on the salesperson number key. If there
is room on the track on the cylinder that it should go into to maintain the sequence,
the other records can be shifted over and there is no problem. If the track it should
go into is full but another track on the cylinder has been left empty as a reserve,
then the set of records on the full track plus the one for 365 can be ‘‘split,’’ with
half of them staying on the original track and the other half moving to the reserve
track. There would also have to be a mechanism to maintain the proper sequence of
tracks within the cylinder, as the split may have thrown it off.

But suppose that cylinder 5 is completely full. Then the collection of records
on the entire cylinder has to be split between cylinder 5 and an empty reserve
cylinder, say cylinder 11, Figure 8.16. That’s fine, except that the key value of 368
in the tree index’s lowest level still points to cylinder 5 while the record with key
value 368 is now on cylinder 11. Furthermore, there is no key value/pointer pair
representing cylinder 11 in the tree index, at all! If the lowest-level index record
containing key value 368 had room, a pointer to the new cylinder could be added and
the keys in the key value/pointer pairs adjusted. But, as can be seen in Figure 8.14,
there is no room in that index record.

Figure 8.17 shows how this situation is handled. The index record into which
the key for the new cylinder should go (the middle of the three index records at
the lower level), which happens to be full, is split into two index records. The
now five instead of four key values and their associated pointers are divided, as
equally as possible, between them. But, in Figure 8.14, there were three key values
in the record at the next level up (which happens to be the root), and now there
are four index records instead of the previous three at the lower level. As shown in
Figure 8.17, the empty space in the root index record is used to accommodate the
new fourth index record at the lower level. What would have happened if the root
index record had already been full? It would have been split in half and a new root
at the next level up would have been created, expanding the index tree from two
levels of index records to three levels.

F IGURE 8.16
The records of cylinder 5 plus the
newly added record, divided between
cylinder 5 and an empty reserve cylinder,
cylinder 11

Records
with

Salesperson
Numbers
332–368

Cylinder 11

Records
with

Salesperson
Numbers
310–330

Cylinder 5

File Organizations and Access Methods 215

FIGURE 8.17
The B+-tree index after the
cylinder 5 split

368 477253

To
Cyl
1

192
To
Cyl
2

253
To
Cyl
3

140
To
Cyl
4

330
To
Cyl
5

368
To
Cyl
11

307

To
Cyl
6

477
To
Cyl
7

416
To
Cyl
8

578
To
Cyl
9

641
To
Cyl
10

529

641

Remember the following about indexes:

■ An index can be built over any field of a file, whether or not the file is in physical
sequence based on that or any other field. The field need not have unique values.

■ An index can be built on a single field but it can also be built on a combination of
fields. For example, an index could be built on the combination of City and State
in the Salesperson file.

■ In addition to its direct access capability, an index can be used to retrieve the
records of a file in logical sequence based on the indexed field. For example, the
index in Figure 8.10 could be used to retrieve the records of the Salesperson file
in sequence by salesperson name. Since the index is in sequence by salesperson
name, a simple scan of the index from beginning to end lists the relative record
numbers of the salesperson records in order by salesperson name.

■ Many separate indexes into a file can exist simultaneously, each based on
a different field or combination of fields of the file. The indexes are quite
independent of each other.

■ When a new record is inserted into a file, an existing record is deleted, or an
indexed field is updated, all of the affected indexes must be updated.

Creating an Index with SQL Creating an index with SQL entails naming the index,
specifying the table being indexed, and specifying the column on which the index
is being created. So, for example, to create index A in Figure 8.21, which is an
index built on the Salesperson Number attribute of the SALESPERSON table, you
would write:

CREATE INDEX A ON SALESPERSON(SPNUM);

Hashed Files

There are many applications in which all file accesses must be done on a direct basis,
speed is of the essence, and there is no particular need for the file to be organized
in sequence by the values of any of its fields. An approach to file organization and
access that fills this bill is the hashed file. The basic ideas include:

■ The number of records in a file is estimated and enough space is reserved on a
disk to hold them.

216 C h a p t e r 8 Physical Database Design

■ Additional space is reserved for additional ‘‘overflow’’ records.
■ To determine where to insert a particular record of the file, the record’s key value

is converted by a ‘‘hashing routine’’ into one of the reserved record locations on
the disk.

■ To subsequently find and retrieve the record, the same hashing routine is applied
to the key value during the search.

Say, for example, that our company has 50 salespersons and that we have
reserved enough space on the disk for their 50 records. There are many hashing
routines but the most common is the ‘‘division-remainder method.’’ In the division-
remainder method, we divide the key value of the record that we want to insert or
retrieve by the number of record locations that we have reserved. Remember long
division, with its ‘‘quotient’’ and ‘‘remainder?’’ We perform the division, discard
the quotient, and use the remainder to tell us where to locate the record. Why the
remainder? Because the remainder is tailor-made for pointing to one of the storage
locations. If, as in this example, we have 50 storage locations and divide a key value
by that number, 50, we will get a remainder that is a whole number between 0 and
49. The value of the quotient doesn’t matter. If we number the 50 storage locations
0–49 and store a record at the location dictated by its ‘‘hashed’’ key value, we have
clearly developed a way to store and then locate the records, and a very fast way,
at that! There’s only one problem. More than one key value can hash to the same
location. When this happens, we say that a ‘‘collision’’ has occurred, and the two
key values involved are known as ‘‘synonyms.’’

Figure 8.18 shows a storage area that can hold 50 salesperson records plus
space for overflow records. (We will not go into how to map this space onto the
cylinders and tracks of a disk, but it can be done easily.) The main record storage
locations are numbered 0–49; the overflow locations begin at position 50. An

F IGURE 8.18
The Salesperson file stored
as a hashed file

361

186

436

236

Carlyle

Adams

James

Stein

50

51

–1

0

Record
Location

Salesperson
Number

Salesperson
Name

Synonym
Pointer

11

36

49

50

51

52

53

54

• • •

• • •

• • •

• • •

• • •

File Organizations and Access Methods 217

additional field for a ‘‘synonym pointer’’ has been added to every record location.
Let’s start by storing the record for salesperson 186. Dividing 186 by the number
of record locations (50) yields a quotient of 3 (which we don’t care about) and a
remainder of 36. So, as shown in the figure, we store the record for salesperson 186
at record location 36. Next, we want to store the record for salesperson 361. This
time, the hashing routine gives a remainder of 11 and, as shown in the figure, that’s
where the record goes. The next record to be stored is the record for salesperson
436. The hashing routine produces a remainder of 36. The procedure tries to store
the record at location 36, but finds that another record is already stored there.

To solve this problem, the procedure stores the new record at one of the
overflow record locations, say number 50. It then indicates this by storing that
location number in the synonym pointer field of record 36. When another collision
occurs with the insertion of salesperson 236, this record is stored at the next overflow
location and its location is stored at location 50, the location of the last record that
‘‘hashed’’ to 36.

Subsequently, if an attempt is made to retrieve the record for salesperson 186,
the key value hashes to 36 and, indeed, the record for salesperson 186 is found at
location 36. If an attempt is made to retrieve the record for salesperson 436, the key
hashes to 36 but another record (the one for salesperson 186) is found at location
36. The procedure then follows the synonym pointer at the end of location 36 to
location 50, where it finds the record for salesperson 436. A search for salesperson
236’s record would follow the same sequence. Key value 236 would hash to location
36 but another record would be found there. The synonym pointer in the record at
location 36 points to location 50, but another record, 436, is found there, too. The
synonym pointer in the record at location 50 points to location 51, where the desired
record is found.

There are a few other points to make about hashed files:

■ It should be clear that the way that the hashing algorithm scatters records within
the storage space disallows any sequential storage based on a set of field values.

■ A file can only be hashed once, based on the values of a single field or a single
combination of fields. This is because the essence of the hashing concept includes
the physical placement of the records based on the result of the hashing routine.
A record can’t be located in one place based on the hash of one field and at the
same time be placed somewhere else based on the hash of another field. It can’t
be in two places at once!

■ If a file is hashed on one field, direct access based on another field can be achieved
by building an index on the other field.

■ Many hashing routines have been developed. The goal is to minimize the number
of collisions and synonyms, since these can obviously slow down retrieval
performance. In practice, several hashing routines are tested on a file to determine
the best ‘‘fit.’’ Even a relatively simple procedure like the division-remainder
method can be fine-tuned. In this method, experience has shown that once the
number of storage locations has been determined, it is better to choose a slightly
higher number, specifically the next prime number or the next number not evenly
divisible by any number less than 20.

■ A hashed file must occasionally be reorganized after so many collisions have
occurred that performance is degraded to an unacceptable level. A new storage
area with a new number of storage locations is chosen and the process starts all
over again.

218 C h a p t e r 8 Physical Database Design

■ Figure 8.18 shows a value of −1 in the synonym pointer field of the record
for salesperson 236 at storage location 51. This is an end-of-chain marker. It is
certainly possible that a search could be conducted for a record, say with key
value 386, that does not exist in the file. 386 would hash to 36 and the chain
would be followed to location 50 and then to location 51. Some signal has to then
be set up at the end of the chain to indicate that there are no more records stored
in the file that hash to 36, so that the search can be declared over and a ‘‘not
found’’ condition indicated. (A negative number is a viable signal because there
can’t be a negative record location!)

INPUTS TO PHYSICAL DATABASE DESIGN

Physical database design starts where logical database design ends. That is, the
well structured relational tables produced by the conversion from entity-relationship
diagrams or by the data normalization process form the starting point for physical
database design. But these tables are only part of the story. In order to determine how
best to modify the tables to improve application performance, a wide range of factors
must be considered. The factors will help determine which modification techniques
to apply and how to apply them. And, at that, the process is as much art as science.
The choices are so numerous and the possible combinations of modifications are
so complex that even the experienced designer hopes for a satisfactory but not a
perfect solution.

Figure 8.19 lists the inputs to physical database design and thus the factors
that are important to it. These naturally fall into several subgroups. First, we will
take a look at each of these physical design inputs and factors, one by one. Then we

F IGURE 8.19
Inputs into the physical
database design process

Inputs Into the Physical Database Design Process
• The Tables Produced by the Logical Database Design

Process

• Business Environment Requirements
■ Response Time Requirements
■ Throughput Requirements

• Data Characteristics
■ Data Volume Assessment
 ■ Data Volatility

• Application Characteristics
■ Application Data Requirements
■ Application Priorities

• Operational Requirements
 ■ Data Security Concerns
 ■ Backup and Recovery Concerns

• Hardware and Software Characteristics
■ DBMS Characteristics
 ■ Hardware Characteristics

Inputs to Physical Database Design 219

will describe a variety of physical database design techniques, explaining how the
various inputs and factors influence each of these techniques.

The Tables Produced by the Logical Database Design Process

The tables produced by the logical database design process (which for simplicity
we will refer to as the ‘‘logical design’’) form the starting point of the physical
database design process. These tables are ‘‘pure’’ in that they reflect all of the
data in the business environment, they have no data redundancy, and they have in
place all the foreign keys that are needed to establish all the relationships in the
business environment. Unfortunately, they may present a variety of problems when
it comes to performance, as we previously described. Again, for example, without
indexes or hashing, there is no support for direct access. Or it is entirely possible
that a particular query may require the join of several tables, which may cause an
unacceptably slow response from the database. So, it is clear that these tables, in
their current form, are very likely to produce unacceptable performance and that is
why we must go on modifying them in physical database design.

Business Environment Requirements

Beyond the logical design, the requirements of the business environment lead the
list of inputs and factors in physical database design. These include response time
requirements and throughput requirements.

Response Time Requirements Response time is the delay from the time that the
Enter Key is pressed to execute a query until the result appears on the screen.
One of the main factors in deciding how extensively to modify the logical design
is the establishment of the response time requirements. Do the major applications
that will use the database require two-second response, five-second response, ten-
second response, etc.? That is, how long a delay will a customer telephoning your
customer service representatives tolerate when asking a question about her account?
How fast a response do the managers in your company expect when looking for
information about a customer or the sales results for a particular store or the
progress of goods on an assembly line? Also, different types of applications differ
dramatically in response time requirements. Operational environments, including the
customer service example, tend to require very fast response. ‘‘Decision support’’
environments, such as the data warehouse environment discussed in Chapter 13tend
to have relaxed response time requirements.

Throughput Requirements Throughput is the measure of how many queries from
simultaneous users must be satisfied in a given period of time by the application set
and the database that supports it. Clearly, throughput and response time are linked.
The more people who want access to the same data at the same time, the more
pressure on the system to keep the response time from dropping to an unacceptable
level. And the more potential pressure there is on response time, the more important
the physical design task becomes.

Data Characteristics

How much data will be stored in the database and how frequently different parts of
it will be updated are important in physical design as well.

220 C h a p t e r 8 Physical Database Design

Data Volume Assessment How much data will be in the database? Roughly, how
many records is each table expected to have? Some physical design decisions will
hinge on whether a table is expected to have 300, 30,000, or 3,000,000 records.

Data Volatility Data volatility describes how often stored data is updated. Some
data, such as active inventory records that reflect the changes in goods constantly
being put into and taken out of inventory, is updated frequently. Some data, such
as historic sales records, is never updated (except for the addition of data from
the latest time period to the end of the table). How frequently data is updated, the
volatility of the data, is an important factor in certain physical design decisions.

Application Characteristics

The nature of the applications that will use the data, which applications are the most
important to the company, and which data will be accessed by each application form
yet another set of inputs and factors in physical design.

Application Data Requirements Exactly which database tables does each application
require for its processing? Do the applications require that tables be joined? How
many applications and which specific applications will share particular database
tables? Are the applications that use a particular table run frequently or infrequently?
Questions like these yield one indication of how much demand there will be for
access to each table and its data. More heavily used tables and tables frequently
involved in joins require particular attention in the physical design process.

Application Priorities Typically, tables in a database will be shared by different
applications. Sometimes, a modification to a table during physical design that’s
proposed to help the performance of one application hinders the performance of
another application. When a conflict like that arises, it’s important to know which
of the two applications is the more critical to the company. Sometimes this can be
determined on an increased profit or cost-saving basis. Sometimes it can be based
on which application’s sponsor has greater political power in the company. But,
whatever the basis, it is important to note the relative priority of the company’s
applications for physical design choice considerations.

Operational Requirements: Data Security, Backup, and Recovery

Certain physical design decisions can depend on such data management issues as
data security and backup and recovery. Data security, which will be discussed in
Chapter 11, can include such concerns as protecting data from theft or malicious
destruction and making sure that sensitive data is accessible only to those employees
of the company who have a ‘‘need to know.’’ Backup and recovery, which will also
be discussed in Chapter 11, ranges from recovering a table or a database that has
been corrupted or lost due to hardware or software failure to recovering an entire
information system after a natural disaster. Sometimes, data security and backup
and recovery concerns can affect physical design decisions.

Hardware and Software Characteristics Finally, the hardware and software
environments in which the databases will reside have an important bearing on
physical design.

Physical Database Design Techniques 221

Y O U R

T U R N

8.2 PHYSICAL DATABASE DESIGN INPUTS

Consider a university information sys-
tems environment or another information systems envi-
ronment of your choice. Think about a set of 5–10
applications that constitute the main applications in this
environment.

QUESTION:
For each of these 5–10 applications, specify the response

time requirements and the throughput requirements.

What would the volumes be of the database tables
needed to support these applications? How volatile
would you expect the data to be? What concerns
would you have about the security and privacy of the
data?

DBMS Characteristics All relational database management systems are certainly
similar in that they support the basic, even classic at this point, relational model.
However, relational DBMSs may differ in certain details, such as the exact nature
of their indexes, attribute data type options, SQL query features, etc., that must be
known and taken into account during physical database design.

Hardware Characteristics Certain hardware characteristics, such as processor speeds
and disk data transfer rates, while not directly parts of the physical database design
process, are associated with it. Simply put, the faster the hardware, the more tolerant
the system can be of a physical design that avoids relatively severe changes in the
logical design.

PHYSICAL DATABASE DESIGN TECHNIQUES

Figure 8.20 lists several physical database design categories and techniques within
each. The order of the categories is significant. Depending on how we modify
the logical design to try to make performance improvements, we may wind up
introducing new complications or even reintroducing data redundancy. Also, as
noted in Figure 8.20, the first three categories do not change the logical design
while the last four categories do. So, the order of the categories is roughly from
least to most disruptive of the original logical design. And, in this spirit, the only
techniques that introduce data redundancy (storing derived data, denormalization,
duplicating tables, and adding subset tables) appear at the latter part of the list.

Adding External Features

This first category of physical design changes, adding external features, doesn’t
change the logical design at all! Instead, it involves adding features to the logical
design, specifically indexes and views. While certain tradeoffs have to be kept
in mind when adding these external features, there is no introduction of data
redundancy.

222 C h a p t e r 8 Physical Database Design

F IGURE 8.20
Physical database design categories and
techniques

Physical design categories and techniques that DO NOT change
the logical design
• Adding External Features

■ Adding Indexes
■ Adding Views

• Reorganizing Stored Data
■ Clustering Files

• Splitting a Table into Multiple Tables
 ■ Horizontal Partitioning
■ Vertical Partitioning
■ Splitting-Off Large Text Attributes

Physical design categories and techniques that DO change
the logical design
• Changing Attributes in a Table

■ Substituting Foreign Keys

• Adding Attributes to a Table
■ Creating New Primary Keys
■ Storing Derived Data

• Combining Tables
 ■ Combine Tables in One-to-One Relationships
■ Alternatives for Repeating Groups
 ■ Denormalization

• Adding New Tables
■ Duplicating Tables
■ Adding Subset Tables

Adding Indexes Since the name of the game is performance and since today’s
business environment is addicted to finding data on a direct-access basis, the use of
indexes in relational databases is a natural. There are two questions to consider.

The first question is: which attributes or combinations of attributes should you
consider indexing in order to have the greatest positive impact on the application
environment? Actually, there are two sorts of possibilities. One category is attributes
that are likely to be prominent in direct searches. These include:

■ Primary keys.
■ Search attributes, i.e. attributes whose values you will use to retrieve particular

records. This is true especially when the attribute can take on many different
values. (In fact, there is an argument that says that it is not beneficial to build an
index on an attribute that has only a small number of possible values.)

The other category is attributes that are likely to be major players in operations
such as joins that will require direct searches internally. Such operations also include

Physical Database Design Techniques 223

the SQL ORDER BY and GROUP BY commands described in Chapter 4. It should
be clear that a particular attribute might fall into both of these categories!

The second question is: what potential problems can be caused by building
too many indexes? If it were not for the fact that building too many indexes can
cause problems in certain kinds of databases, the temptation would be to build a
large number of indexes for maximum direct-access benefit. The issue here is the
volatility of the data. Indexes are wonderful for direct searches. But when the data in
a table is updated, the system must take the time to update the table’s indexes, too.
It will do this automatically, but it takes time. If several indexes must be updated,
this multiplies the time to update the table several times over. What’s wrong with
that? If there is a lot of update activity, the time that it takes to make the updates
and update all the indexes could slow down the operations that are just trying to
read the data for query applications, degrading query response time down to an
unacceptable level!

One final point about building indexes: if the data volume, the number of
records in a table, is very small, then there is no point in building any indexes on it
at all (although some DBMSs will always require an index on the primary key). The
point is that if the table is small enough, it is more efficient to just read the whole
table into main memory and search by scanning it!

Figure 8.21 repeats the General Hardware Co. relational database, to which
we will add some indexes. We start by building indexes, marked indexes A–F,
on the primary key attribute(s) of each table. Consider the SALESPERSON and
CUSTOMER tables. If the application set requires joins of the SALESPERSON
and CUSTOMER tables, the Salesperson Number attribute of the CUSTOMER
table would be a good choice for an index, index G, because it is the foreign key
that connects those two tables in the join. If we frequently need to find salesperson
records on a direct basis by Salesperson Name, then that attribute should have an
index, index H, built on it. Consider the SALES table. If we have an important,
frequently run application that has to find the total sales for all or a range of the
products, then the needed GROUP BY command would run more efficiently if the
Product Number attribute was indexed, index I.

Adding Views Another external feature that doesn’t change the logical design is the
view. In relational database terminology, a view is what is more generally known in
database management as a ‘‘logical view.’’ It is a mapping onto a physical table that
allows an end user to access only part of the table. The view can include a subset of
the table’s columns, a subset of the table’s rows, or a combination of the two. It can
even be based on the join of two tables No data is physically duplicated when a view
is created. It is literally a way of viewing just part of a table. For example, in the
General Hardware Co. SALESPERSON table, a view can be created that includes
only the Salesperson Number, Salesperson Name, and Office Number attributes. A
particular person can be given access to the view and then sees only these three
columns. He is not even aware of the existence of the other two attributes of the
physical table.

A view is an important device in protecting the security and privacy of data,
an issue that we listed among the factors in physical database design. Using views
to limit the access of individuals to only the parts of a table that they really need
to do their work is clearly an important means of protecting a company’s data. As
we will see later, the combination of the view capability and the SQL GRANT
command forms a powerful data protection tool.

224 C h a p t e r 8 Physical Database Design

F IGURE 8.21
The General Hardware Company relational
database with some indexes

Salesperson
Number

SALESPERSON

Salesperson
Name

Commission
Percentage Year of Hire

Office
NumberA

H

Customer
Number

CUSTOMER

Customer
Number

Customer
Name

Salesperson
Number HQ CityB

G

CUSTOMER EMPLOYEE

Employee
Number

Employee
Name TitleC

Product
Number

PRODUCT

Product
Number

Product
Name Unit PriceD

Salesperson
Number

SALES

QuantityE

I

Office
Number

OFFICE

Telephone SizeF

Reorganizing Stored Data

The next level of change in physical design involves reorganizing the way data
is stored on the disk without changing the logical design at all and thus without
introducing data redundancy. We present an example of this type of modification.

Physical Database Design Techniques 225

FIGURE 8.22
Clustering files with the SALESPERSON
and CUSTOMER tables

0121

0933

1047

1826

Main St. Hardware

ABC Home Stores

Acme Hardware Store

City Hardware

137

137

137

137

New York

Los Angeles

Los Angeles

New York

2198 Western Hardware 204 New York

Carlyle

Dickens

Adams

361

204

186

137 Baker

20

10

15

10

2001

1998

2001

1995

1525

1700

Fred’s Tool Stores

XYZ Stores

361

361

Atlanta

Washington

0839

2267

Jane’s Stores

Central Stores

186

186

Chicago

New York

Clustering Files Suppose that in the General Hardware Co. business environment,
it is important to be able to frequently and quickly retrieve all of the data in a
salesperson record together with all of the records of the customers for which that
salesperson is responsible. Clearly, this requires a join of the SALESPERSON
and CUSTOMER tables. Just for the sake of argument, assume that this retrieval,
including the join, does not work quickly enough to satisfy the response time or
throughput requirements. One solution, assuming that the DBMS in use supports it,
might be the use of ‘‘clustered files.’’

Figure 8.22 shows the General Hardware salesperson and customer data
from Figure 5.14 arranged as clustered files. The logical design has not changed.
Logically, the DBMS considers the SALESPERSON and CUSTOMER tables just
as they appear in Figure 5.14. But physically, they have been arranged on the
disk in the interleaved fashion shown in Figure 8.22. Each salesperson record is
followed physically on the disk by the customer records with which it is associated.
That is, each salesperson record is followed on the disk by the records of the
customers for whom that salesperson is responsible. For example, the salesperson
record for salesperson 137, Baker, is followed on the disk by the customer records
for customers 0121, 0933, 1047, and 1826. Note that the salesperson number 137
appears as a foreign key in each of those four customer records. So, if a query
is posed to find a salesperson record, say Baker’s record, and all his associated
customer records, performance will be improved because all five records are right
near each other on the disk, even though logically they come from two separate
tables. Without the clustered files, Baker’s record would be on one part of the disk
with all of the other salesperson records and the four customer records would be on
another part of the disk with the other customer records, resulting in slower retrieval
for this kind of two-table, integrated query.

The downside of this clustering arrangement is that retrieving subsets of
only salesperson records or only customer records is slower than without clustering.

226 C h a p t e r 8 Physical Database Design

Without clustering, all the salesperson records are near each other on the disk, which
helps when retrieving subsets of them. With clustering, the salesperson records are
scattered over a much larger area on the disk because they’re interspersed with all
of those customer records, slowing down the retrieval of subsets of just salesperson
records.

Splitting a Table into Multiple Tables

The three physical design techniques in this category arrange for particular parts of
a table, either groups of particular rows or groups of particular columns, to be stored
separately, on different areas of a disk or on different disks. In Chapter 12, when
we discuss distributed database, we will see that this concept can even be extended
to storing particular parts of a table in different cities.

Horizontal Partitioning In horizontal partitioning, the rows of a table are divided
into groups and the groups are stored separately, on different areas of a disk or on
different disks. This may be done for several reasons. One is to manage the different
groups of records separately for security or backup and recovery purposes. Another
is to improve data retrieval performance when, for example, one group of records
is accessed much more frequently than other records in the table. For example,
suppose that the records for sales managers in the CUSTOMER EMPLOYEE table
of Figure 5.14c must be accessed more frequently than the records of other customer
employees. Separating out the frequently accessed group of records, as shown in
Figure 8.23, means that they can be stored near each other in a concentrated space
on the disk, which will speed up their retrieval. The records can also be stored on an
otherwise infrequently used disk, so that the applications that use them don’t have
to compete excessively with other applications that need data on the same disk. The
downside of this horizontal partitioning is that it can make a search of the entire
table or the retrieval of records from more than one partition more complex and
slower.

F IGURE 8.23
Horizontal partitioning of the CUSTOMER
EMPLOYEE table

Customer Employee Employee
Number Number Name Title

0933 30441 Levy Sales Manager

1525 33779 Baker Sales Manager

Customer Employee Employee
Number Number Name Title

0121 27498 Smith Co-Owner

0121 30441 Garcia Co-Owner

0933 25270 Chen VP Sales

0933 48285 Morton President

2198 27470 Smith President

2198 30441 Jones VP Sales

2198 33779 Garcia VP Personnel

2198 35268 Kaplan Senior Accountant

Physical Database Design Techniques 227

FIGURE 8.24
Vertical partitioning of the
SALESPERSON table

Salesperson Salesperson Year
Number Name of Hire

137 Baker 1995

186 Adams 2001

204 Dickens 1998

361 Carlyle 2001

Salesperson Commission
Number Percentage

137 10

186 15

204 10

361 20

Vertical Partitioning A table can also be subdivided by columns, producing the
same advantages as horizontal partitioning. In this case, the separate groups, each
made up of different columns of a table, are created because different users or
applications require different columns. For example, as shown in Figure 8.24,
it might be beneficial to split up the columns of the SALESPERSON table of
Figure 5.14a so that the Salesperson Name and Year of Hire columns are stored
separately from the others. But note that in creating these vertical partitions, each
partition must have a copy of the primary key, Salesperson Number in this example.
Otherwise, in vertical partitioning, how would you track which rows in each
partition go together to logically form the rows of the original table? In fact, this
point leads to an understanding of the downside of vertical partitioning. A query
that involves the retrieval of complete records—i.e., data that is in more than one
vertical partition—actually requires that the vertical partitions be joined to reunite
the different parts of the original records.

Splitting Off Large Text Attributes A variation on vertical partitioning involves
splitting off large text attributes into separate partitions. Sometimes the records
of a table have several numeric attributes and a long text attribute that provides
a description of the data in each record. It might well be that frequent access
of the numeric data is necessary and that the long text attribute is accessed only
occasionally. The problem is that the presence of the long text attribute tends to
spread the numeric data over a larger disk area and thus slows down retrieval of the
numeric data. The solution is to split off the text attribute, together with a copy of
the primary key, into a separate vertical partition and store it elsewhere on the disk.

Changing Attributes in a Table

Up to this point, none of the physical design techniques discussed have changed the
logical design. They have all involved adding external features such as indexes and
views, or physically moving records or columns on the disk as with clustering and
partitioning. The first physical design technique category that changes the logical
design involves substituting a different attribute for a foreign key.

228 C h a p t e r 8 Physical Database Design

Substituting Foreign Keys Consider the SALESPERSON and CUSTOMER tables
of Figure 8.21. We know that Salesperson Number is a unique attribute and serves
as the primary key of the SALESPERSON table. Say, for the sake of argument,
that the Salesperson Name attribute is also unique, meaning that both Salesperson
Number and Salesperson Name are candidate keys of the SALESPERSON table.
Salesperson Number has been chosen to be the primary key and Salesperson Name
is an alternate key.

Now, assume that there is a frequent need to retrieve data about customers,
including the name of the salesperson responsible for that customer. The
CUSTOMER table contains the number of the Salesperson who is responsible
for a customer but not the name. By now, we know that solving this problem
requires a join of the two tables, based on the common Salesperson Number
attribute. But, if this is a frequent or critical query that requires high speed, we
can improve the performance by substituting Salesperson Name for Salesperson
Number as the foreign key in the CUSTOMER table, as shown in Figure 8.25.
With Salesperson Name now contained in the CUSTOMER table, we can retrieve
customer data, including the name of the responsible salesperson, without having to
do a performance-slowing join. Finally, since Salesperson Name is a candidate key
of the SALESPERSON table, using it as a foreign key in the CUSTOMER table
still retains the ability to join the two tables when this is required for other queries.

Adding Attributes to a Table

Another means of improving database performance entails modifying the logical
design by adding attributes to tables. Here are two ways to do this.

Creating New Primary Keys Sometimes a table simply does not have a single unique
attribute that can serve as its primary key. A two-attribute primary key, such as
the combination of state and city names, might be OK. But in some circumstances
the primary key of a table might consist of two, three, or more attributes and the
performance implications of this may well be unacceptable. For one thing, indexing
a multi-attribute key would likely be clumsy and slow. For another, having to use
the multi-attribute key as a foreign key in the other tables in which such a foreign
key would be necessary would probably also be unacceptably complex.

The solution is to invent a new primary key for the table that consists of a
single new attribute. The new attribute will be a unique serial number attribute, with
an arbitrary unique value assigned to each record of the table. This new attribute will
then also be used as the foreign key in the other tables in which such a foreign key
is required. In the General Hardware database of Figure 8.21, recall that the two-
attribute primary key of the CUSTOMER EMPLOYEE table, Customer Number
and Employee Number, is necessary because customer numbers are unique only
within each customer company. Suppose that General Hardware decides to invent a
new attribute, Customer Employee Number, which will be its own set of employee

F IGURE 8.25
Substituting another candidate key for a
foreign key

CUSTOMER

Customer Customer Salesperson
Number Name Name HQ City

Physical Database Design Techniques 229

FIGURE 8.26
Creating a new primary key attribute to
replace a multiattribute primary key

CUSTOMER EMPLOYEE

Customer
Employee Customer Employee Employee
Number Number Number Name Title

numbers for these people that will be unique across all of the customer companies.
Then, the current two-attribute primary key of the CUSTOMER EMPLOYEE table
can be replaced by this one new attribute, as shown in Figure 8.26. If the Customer
Number, Employee Number combination had been placed in other tables in the
database as a foreign key (it wasn’t), then the two-attribute combination would be
replaced by this new single attribute, too. Notice that Customer Number is still
necessary as a foreign key because that’s how we know which customer company
a person works for. Arguably, the old Employee Number attribute may still be
required because that is still their employer’s internal identifier for them.

Storing Derived Data Some queries require performing calculations on the data in
the database and returning the calculated values as the answers. If these same values
have to be calculated over and over again, perhaps by one person or perhaps by
many people, then it might make sense to calculate them once and store them in the
database. Technically, this is a form of data redundancy, although a rather subtle
form. If the ‘‘raw’’ data is ever updated without the stored, calculated values being
updated as well, the accuracy or integrity of the database will be compromised.

To illustrate this point, let’s add another attribute to General Hardware’s
CUSTOMER table. This attribute, called Annual Purchases in Figure 8.27a, is the
expected amount of merchandise, in dollars, that a customer will purchase from
General Hardware in a year. Remember that there is a one-to-many relationship
from salespersons to customers, with each salesperson being responsible for several

F IGURE 8.27
Adding derived data

a. Annual Purchases attribute added to the CUSTOMER table.

b. Total Annual Customer Purchases attribute added to the SALESPERSON table as
derived data.

CUSTOMER

Customer Customer Salesperson Annual
Number Name Number HQ City Purchases

SALESPERSON

Salesperson Salesperson Commission Year Office Total Annual
Number Name Percentage of Hire Number Customer Purchases

CUSTOMER

Customer Customer Salesperson Annual
Number Name Number HQ City Purchases

230 C h a p t e r 8 Physical Database Design

(or many) customers. Suppose that there is a frequent need to quickly find the total
amount of merchandise each salesperson is expected to account for in a year, i.e.
the sum of the Annual Purchases attribute for all of the particular salesperson’s
customers. This sum could be recalculated each time it is requested for any particular
salesperson, but that might take too long. The other choice is to calculate the sum for
each salesperson and store it in the database, recognizing that whenever a customer’s
Annual Purchases value changes, the sum for the customer’s salesperson has to be
updated, too.

The question then becomes, where do we store the summed annual purchases
amount for each salesperson? Since the annual purchases figures are in the
CUSTOMER table, your instinct might be to store the sums there. But where
in the CUSTOMER table? You can’t store them in individual customer records,
because each sum involves several customers. You could insert special ‘‘sum
records’’ in the CUSTOMER table but they wouldn’t have the same attributes as
the customer records themselves and that would be very troublesome. Actually, the
answer is to store them in the SALESPERSON table. Why? Because there is one
sum for each salesperson—again, it’s the sum of the annual purchases of all of that
salesperson’s customers. So, the way to do it is to add an additional attribute, the
Total Annual Customer Purchases attribute, to the SALESPERSON table, as shown
in Figure 8.27b.

Combining Tables

Three techniques are described below, all of which involve combining two tables
into one. Each technique is used in a different set of circumstances. It should be
clear that all three share the same advantage: if two tables are combined into one,
then there must surely be situations in which the presence of the new single table
lets us avoid joins that would have been necessary when there were two tables.
Avoiding joins is generally a plus for performance. But at what price? Let’s see.

Combine Tables in One-to-One Relationships Remember the one-to-one relationship
between salespersons and offices in the General Hardware environment? Figure 8.28
shows the two tables combined into one. After all, if a salesperson can have only
one office and an office can have only one salesperson assigned to it, there can be
nothing wrong with combining the two tables. Since a salesperson can have only
one office, a salesperson can be associated with only one office number, one (office)
telephone, and one (office) size. A like argument can be made from the perspective
of an office. Office data can still be accessed on a direct basis by simply creating an
index on the Office Number attribute in the combined table.

Again, the advantage is that if we ever have to retrieve detailed data about
a salesperson and his office in one query, it can now be done without a join.
There are two negatives. One is that the tables are no longer logically, as well as
physically, independent. If we want information just about offices, there is no longer

F IGURE 8.28
Combined SALESPERSON/OFFICE table
showing the merger of two tables in a
one-to-one relationship

SALESPERSON/OFFICE

Salesperson Salesperson Commission Year Office
Number Name Percentage of Hire Number Telephone Size

Physical Database Design Techniques 231

an OFFICE table to go to. The data is still there, but we have to be aware that it is
buried in the SALESPERSON/OFFICE table. The other negative is that retrievals
of salesperson data alone or of office data alone could be slower than before because
the longer combined SALESPERSON/OFFICE records spread the combined data
over a larger area of the disk.

Alternatives for Repeating Groups Suppose that we change the business environment
so that every salesperson has exactly two customers, identified respectively as their
‘‘large’’ customer and their ‘‘small’’ customer, based on annual purchases. The
structure of Figure 8.21 would still work just fine. But, because these ‘‘repeating
groups’’ of customer attributes, one ‘‘group’’ of attributes (Customer Number,
Customer Name, etc.) for each customer are so well controlled they can be folded
into the SALESPERSON table. What makes them so well controlled is that there
are exactly two for each salesperson and they can even be distinguished from each
other as ‘‘large’’ and ‘‘small.’’ This arrangement is shown in Figure 8.29. Note that
the foreign key attribute of Salesperson Number from the CUSTOMER table is no
longer needed.

Once again, this arrangement avoids joins when salesperson and customer
data must be retrieved together. But, as with the one-to-one relationship case above,
retrievals of salesperson data alone or of customer data alone could be slower than
before because the longer combined SALESPERSON/CUSTOMER records spread
the combined data over a larger area of the disk. And retrieving customer data alone
is now more difficult. In the one-to-one relationship case, we could simply create
an index on the Office Number attribute of the combined table. But in the combined
table of Figure 8.29, there are two customer number attributes in each salesperson
record. Retrieving records about customers alone would clearly take greater skill
than before.

Denormalization In the most serious database performance dilemmas, when
everything else that can be done in terms of physical design has been done, it
may be necessary to take pairs of related third normal form tables, and combine
them, introducing possibly massive data redundancy. Why would anyone in their
right mind want to do this? Because if after everything else has been done to
improve performance, response times and throughput are still unsatisfactory for the
business environment, eliminating run-time joins by recombining tables may mean
the difference between a usable system and a lot of wasted money on a database
(and application) development project that will never see the light of day. Clearly,
if the physical designers decide to go this route, they must put procedures in place
to manage the redundant data as they updated over time.

SALESPERSON/CUSTOMERS

Large Large Large Small Small Small
Salesperson Salesperson Commission Year Office Customer Customer Customer Customer Customer Customer
Number Name Percentage of Hire Number Number Name HQ City Number Name HQ City

F IGURE 8.29
Merging of repeating groups into another table

232 C h a p t e r 8 Physical Database Design

CUSTOMER

Customer Customer Salesperson Salesperson Salesperson Commission Year of
Number Name Number HQ City Number Name Percentage Hire

F IGURE 8.30
The denormalized SALESPERSON and CUSTOMER tables as the new CUSTOMER table

Figure 8.30 shows the denormalized SALESPERSON and CUSTOMER tables
combined into one. The surviving table of the two in the one-to-many relationship
will always be the table on the ‘‘many side’’ of the relationship. You can attach
one set of salesperson data to a customer record; you cannot attach many sets of
customer data to a single salesperson record without creating an even worse mess.
The sample salesperson and customer data from Figure 5.14 is denormalized in
Figure 8.31. (Figure 8.31 is identical to Figure 3.8. We used it in Chapter 3 to
make a point about data redundancy when we were exploring that subject.) Since
a salesperson can have several customers, a particular salesperson’s data will be
repeated for each customer he has. Thus, the table shows that salesperson number
137’s name is Baker four times, his commission percentage is 10 four times, and
his year of hire was 1995 four times. The performance improvement had better be
worth it, because the integrity exposure is definitely there.

Adding New Tables

Finally, there is the concept of simply duplicating data. Sometimes the final
performance issue is that trying to maintain response time and throughput with
the number of applications and users trying to share the same data is beyond
the capabilities of the hardware, the software, and all the other physical design
techniques. At the risk of overt data redundancy (which hopefully you will attempt
to managed), the only recourse is to duplicate the data.

CUSTOMER

Customer Customer Salesperson Salesperson Salesperson Commission Year of
Number Name Number HQ City Number Name Percentage Hire

0121 Main St. Hardware 137 New York 137 Baker 10 1995

0839 Jane’s Stores 186 Chicago 186 Adams 15 2001

0933 ABC Home Stores 137 Los Angeles 137 Baker 10 1995

1047 Acme Hardware Store 137 Los Angeles 137 Baker 10 1995

1525 Fred’s Tool Stores 361 Atlanta 361 Carlyle 20 2001

1700 XYZ Stores 361 Washington 361 Carlyle 20 2001

1826 City Hardware 137 New York 137 Baker 10 1995

2198 Western Hardware 204 New York 204 Dickens 10 1998

2267 Central Stores 186 New York 186 Adams 15 2001

F IGURE 8.31
The denormalized salesperson and customer data from Figure 5.12

Example: Good Reading Book Stores 233

Duplicating Tables Clearly, the direct approach is to duplicate tables and have
different applications access the duplicates. This is exactly the opposite of the
central database management concept of sharing data.

Adding Subset Tables A somewhat less severe technique is to duplicate only those
portions of a table that are most heavily accessed. These ‘‘subset’’ tables can then be
assigned to different applications to ease the performance crunch. Data redundancy
is still the major drawback, although obviously there is not as much of it as when
the entire table is duplicated.

EXAMPLE: GOOD READING BOOK STORES

Consider the Good Reading Book Stores database of Figure 5.16. Recall that there
is a one-to-many relationship between the PUBLISHER and BOOK tables. A
book is published by exactly one publisher but a publisher publishes many books.
That’s why the Publisher Name attribute is in the BOOK table as a foreign key.
A reasonable assumption is that there are several hundred publishers and many
thousands of different books. If the various stores in the Good Reading chain carry
different books to satisfy their individual clienteles, then there could be thousands
of publishers and hundreds of thousands of different books.

Assume that at Good Reading’s headquarters, there is a frequent need to find
very quickly the details of a book, based on either its book number or its title,
together with details about its publisher. As stated, this would clearly require a
join of the PUBLISHER and BOOK tables. If the join takes too long, resulting in
unacceptable response times, throughput, or both, what are the possibilities in terms
of physical design to improve the situation? Here are several suggestions, although
each has its potential drawbacks, as previously discussed.

■ The Book Number attribute and the Book Title attributes in the PUBLISHER
table can each have an index built on them to provide direct access, since the
problem says that books are going to be searched for based on one of these two
attributes.

■ The two join attributes, the Publisher Name attribute of the PUBLISHER table
and the Publisher Name attribute of the BOOK table, can each have an index
built on them to help speed up the joint operation.

■ If the DBMS permits it, the two tables can be clustered, with the book records
associated with a particular publisher stored near that publisher’s record on the
disk.

■ The two tables can be denormalized, with the appropriate publisher data being
appended to each book record (and the PUBLISHER table being eliminated), as:

Book Book Publication Publisher Year
Number Title Year Pages Name City Country Telephone Founded

What if it’s important to be able to find quickly the number of different books that
Good Reading carries from a particular publisher? This information could be found
by using the SQL COUNT function to count up the number of that publisher’s
books when the query is asked. However, if this proves too slow, as it well might,

234 C h a p t e r 8 Physical Database Design

then the number of books from each publisher can be calculated and stored as an
additional attribute of ‘‘derived data’’ in the PUBLISHER table as:

Publisher Year Number
Name City Country Telephone Founded of Books

EXAMPLE: WORLD MUSIC ASSOCIATION

Consider the World Music Association (WMA) relational database of Figure 5.17.
WMA has a problem: there are many more retrieval requests for information about
recordings by Beethoven and Mozart than for recordings by other composers. Since
those records are scattered throughout the RECORDING table, performance tends to
be slower than desired. A solution is to partition the RECORDING table horizontally
into two partitions, one with the records for recordings by Beethoven and Mozart
and the other with all the other records of the table. These two partitions can be
stored on different parts of the same disk or on different disks. Performance will be
improved with the Beethoven and Mozart records separated out and concentrated
together on a restricted disk area.

There is also an application need to frequently and quickly retrieve salary data
for the musicians on an individual and group basis. In the MUSICIAN table, the
salary data is mixed in with other data (potentially much more data in each record
than is shown in this example), which tends to slow down retrieval speeds. A solution
is to create a vertical partition for the Annual Salary attribute, separating it from the
rest of the attributes of the table. Remember that a copy of the primary key, in this
case Musician Number, must accompany the non-key attribute(s) being split off into
a separate vertical partition. Thus, one vertical partition will consist of the Musician
Number and Annual Salary attributes while the other will consist of Musician
Number and all of the non-key attributes except for the Annual Salary attribute.
Storing these two vertical partitions on different parts of a disk or on different disks
will enhance performance under the application circumstances described.

Assume that the COMPOSITION table has an additional attribute called
‘‘Description’’:

Composition −−−−−−Composer
Name −−−−Name Year Description

Description is a long text attribute that allows written descriptions of
compositions to be stored in the database. While this is certainly useful, WMA has
several applications that require frequent fast access to the other attributes of the
table. The bulky description data tends to spread the records over a wider area of
the disk than would otherwise be the case. Again, this is really a special case of
the vertical partitioning scenario. The solution is to break out the description data,
together with a copy of the primary key, and store it elsewhere on the disk or on a
different disk.

The next example involves the MUSICIAN table, and for this example we
want to assume that the Musician Name attribute is unique. This means that now
both Musician Number and Musician Name are candidate keys of the table and

Example: Lucky Rent-A-Car 235

Musician Number has been chosen to be the primary key. It seems that there is
an important application that requires the fast and frequent retrieval of musician
names together with their college-degree data, but without their musician numbers.
As currently structured, this would clearly require repeated joins of the MUSICIAN
and DEGREE tables, which might cause unacceptable performance problems. Since
the Musician Name attribute is unique and is a candidate key of the MUSICIAN
table, a solution to this problem is to replace the Musician Number foreign-key
attribute in the DEGREE table with Musician Name:

−−−−−−Musician

−−−−Name Degree University Year

With Musician Name already in the DEGREE table, the retrieval situation
described does not require a join. Plus, the DEGREE table can still tie degrees
uniquely to musicians, since Musican Name is unique.

Another possible solution to the more general problem of retrieving both
detailed data about musicians and their degrees at the same time involves the
concept of repeating groups. We know that there is a one-to-many relationship
between musicians and degrees since a musician can have several degrees but a
degree is associated with only one musician. Suppose we assume that a musician
can have at most three degrees. We can then eliminate the DEGREE table entirely
by merging its data into the MUSICIAN table:

Musician Musician Annual −−−−−−Orchestra Degree University Year Degree University Year Degree University Year
Number Name Instrument Salary −−−−Name #1 #1 #1 #2 #2 #2 #3 #3 #3

This is possible because of the small fixed maximum number of degrees and
because of the ability to distinguish among them, in this case in a time sequence
based on when they were awarded or by level, say bachelor’s degree first, master’s
degree second. Clearly, in this case, there will be null attribute values since not every
musician has three degrees. Further, there may be more programmer involvement
since inserting new degree data or even retrieving degree data may require more
informed and careful operations. But it certainly eliminates the join between the
MUSICIAN table and the now defunct DEGREE table, and may be the modification
necessary for acceptable performance.

EXAMPLE: LUCKY RENT-A-CAR

Consider the Lucky Rent-A-Car database of Figure 5.18. One issue with this
company is the privacy of their customers’ data. Some of their employees may
need to access the entire CUSTOMER table, while others may need, for example,
customer number and customer name data but not the more personal data, such as
customer address and customer telephone. A restriction can be set up to accomplish
this using views. One view can be created that includes the entire table; another
can be created that includes only the Customer Number and Customer Name
attributes. Using these two views in the SQL GRANT command (discussed in
Chapter 11), different employees or groups of employees can be given full access
to the CUSTOMER table or restricted access to only part of it.

236 C h a p t e r 8 Physical Database Design

The RENTAL table represents the many-to-many relationship among cars and
customers, recording who rented which car on a particular date. The primary key
is thus Car Serial Number, Customer Number, and Rental Date. Recall that Rental
Date must be part of the primary key because a particular customer could have
rented a particular car on more than one occasion. This three-attribute primary key
is clumsy. An index built on it would be long and clumsy too, and if it had to be
used as a foreign key in another table, that would be clumsy, too. A solution is to
add a new Rental Number attribute that will serve as a unique key of the table:

Rental Car Serial Customer Rental Return Total
Number Number Number Date Date Cost

Next, assume that the following table, which has data about the president of
each manufacturer, has been added to the database:

Manufacturer President President President President
Name Name Address Telephone email

Since each company has exactly one president, there is a one-to-one rela-
tionship between manufacturers, represented by the existing MANUFACTURER
table, and presidents, represented by the new PRESIDENT table. As is usually the
case in such situations, it makes sense to represent the two different entities in two
different tables. However, if we ever need to retrieve both detailed manufacturer
data and detailed president data, we will have to execute a join. If we have to do
this frequently and with significant speed, it may make sense to combine the two
tables together:

Manufacturer Manufacturer Sales Rep Sales Rep President President President President
Name Country Name Telephone Name Address Telephone email

After all, since a company has only one president, it also has only one
president name, one president address, and so forth. This arrangement makes for a
bulkier table that will be spread out over a larger disk area than either table alone,
possibly slowing down certain retrievals. But it will avoid the join needed to retrieve
manufacturer and president detailed data together.

Finally, here are examples of the physical design technique of adding new
tables. Lucky Rent-A-Car’s CAR table is accessed very frequently—so frequently,
in fact, that it has become a performance bottleneck. The company has decided
to duplicate the table and put each of the two copies on different disk devices
so that some applications can access one disk and other applications the other
disk. This will improve throughput. However, these two duplicate tables must
be kept identical at all times and any changes made to them must be made to
both copies simultaneously. Notice that while the CAR table may have to be read
frequently for Lucky’s rental operations, it has to be updated only when new cars
are added to Lucky’s inventory or existing cars are taken out of inventory. This
makes the duplicate-table technique practical, since frequent changes that require
the updating of both tables simultaneously would slow down the entire environment
significantly.

Summary 237

In the CUSTOMER table, some large corporate customers’ records are
accessed much more frequently than the rest of the customer records. To help
ease this performance bottleneck and to gather these customer records together in
one disk area to further enhance performance, a subset table of copies of just these
records can be created and stored elsewhere on the disk or on a different disk. Again,
the issue of simultaneous updates of the duplicate data must be considered. Note
the difference between creating a subset table and creating a horizontal partition.
In the case of subset tables, a copy of the records is left behind in the original table;
in the case of horizontal partitioning, no copy is left behind.

SUMMARY

Data is all around us but we normally don’t think about it unless we have to use it to
keep track of objects that are important to us. The objects and events we come into
contact with and their attributes can be noted in structures as simple as lists, which,
by extension, we can think of as files and their records.

Moving on to storing data in computers, four basic operations have to be
performed: retrieving stored data, inserting new data, deleting stored data, and
updating stored data. Applications requiring these operations, in particular the
operation of retrieving stored data, may require data to be accessed sequentially
while other applications—most of the applications we deal with today—may require
data to be accessed on a direct basis.

Disk devices are the predominant secondary memory devices in use today.
They are capable of providing both sequential and direct access to data. Disk
devices consist of one or more platters on which data can be stored magnetically,
mounted on a central spindle. The data is stored on each platter surface in a pattern
of concentric circles called tracks. Tracks located one above another on successive
surfaces comprise a cylinder.

The arrangement of data on disks is based on a file organization that in turn
allows data to be retrieved using an access method. Two such methods for direct
access are indexes and hashing. A simple linear index consists of two columns: an
ordered list of the identifiers of the records being indexed, each of which is associated
in the second column with its physical location on the disk. A more practical arrange-
ment and the one in common use in today’s computers is the B+-tree, in which the
index is constructed in a hierarchical arrangement. Hashing is a way of arranging the
records on the disk based on a mathematical calculation on each record’s identifier;
retrieval is accomplished using the same mathematical calculation.

Physical database design is the modification of the database structure to
improve performance. A variety of factors involving the database structure or its
use can adversely affect system performance. In addition to the logical design
results, inputs to the physical design process include response time requirements,
throughput requirements, and a variety of other data and application characteristics
and operational requirements.

Physical database design techniques fall into two categories: techniques that
do not change the logical design and techniques that do change the logical design.
The former include adding external features such as indexes, reorganizing stored
data on the disk, and splitting a table into multiple tables. The latter include adding
attributes to a table or changing attributes in a table, combining tables, and adding
new tables.

238 C h a p t e r 8 Physical Database Design

KEY TERMS

Access Method
B+-tree index
Clustering files
Collision
Cylinder
Data volatility
Data volume
Database performance
Denormalization
Derived data
Disk
Division-remainder method

File organization
Fixed disk drive
Hashing method
Head switching
Horizontal partitioning
Index
Logical view
Overflow records
Performance
Physical database design
Platter
Repeating groups

Response time
Rotational delay
Search attribute
Seek time
Subset tables
Text attribute
Throughput
Track
Transfer time
Vertical partitioning
View

QUESTIONS

1. Describe the following disk concepts or compo-
nents.
a. Platter and recording surface.
b. Track.
c. Cylinder.
d. Read/write head.
e. Access-arm mechanism.

2. Why is it important to store files on a cylinder-by-
cylinder basis?

3. Describe the four steps in the transfer of data from
disk to primary memory.

4. What is a file organization? What is an access
method? What do they accomplish?

5. What is an index? Compare the concept of the index
in a book to an index in an information system.

6. Describe the idea of the simple linear index. What
are its shortcomings?

7. What is an indexed-sequential file?
8. Describe the idea of the B+-tree index. What are its

advantages over the simple linear index?
9. Describe how a direct search works using a B+-tree

index.
10. Describe what happens to the index tree when you

insert new records into a file with a B+-tree index.
11. Answer the following general questions about

indexes:
a. Can an index be built over a non-unique field?
b. Can an index be built over a field if the file is not

stored in sequence by that field?

c. Can an index be built over a combination of fields
as well as over a single field?

d. Is there a limit to the number of indexes that can
be built for a file?

e. How is an index affected when a change is made
to a file? Does every change to a file affect every
one of its indexes?

f. Can an index be used to achieve sequential
access? Explain.

12. Describe the idea of the hashed file. What are
its advantages and disadvantages in comparison to
indexes?

13. Describe how a direct search works in a hashed file
using the division-remainder method of hashing.

14. What is a collision in a hashed file? Why do
collisions occur? Why are they of concern in the
application environment?

15. What is physical database design?
16. Describe why physical database design is necessary.
17. Explain why the need to perform joins is an

important factor affecting application and database
performance.

18. Why does the degree to which data is dispersed over
a disk affect application and database performance?

19. Explain why the volume of data access operations
can adversely affect application and database
performance.

20. Which ‘‘input’’ is the starting point for physical
database design?

Exercises 239

21. Describe how response time requirements and
throughput requirements determine the overall
performance level of the application and database
environment.

22. Describe the characteristics of the data in the
database that must be considered as inputs to the
physical database design process. Why are they
important?

23. Describe the characteristics of the applications that
must be considered as inputs to the physical database
design process. Why are they important?

24. Why do DBMS and hardware characteristics have
to be taken into account in the physical design
process?

25. Explain the statement, ‘‘Some physical database
design techniques change the logical design and
some do not.’’

26. What attributes should be considered as candi-
dates for having indexes built on them? What
is the potential problem with building too many
indexes?

27. What is a ‘‘view’’? Which factors affecting appli-
cation and database performance can be dealt with
by using views? Explain.

28. Describe the ‘‘clustering files’’ technique. What
advantage is gained by using it? What is its
disadvantage?

29. What is the difference between horizontal and
vertical partitioning? What is their common advan-
tage? Are their disadvantages the same or different?
Explain.

30. Describe the physical design technique of substitut-
ing foreign keys. Under what circumstances would
you use it?

31. Under what circumstances would you want to create
a new single-attribute primary key in a table? What
would it accomplish?

32. Under what circumstances would you want to store
derived data in a table? What would it accomplish?

33. Combining tables that are in a one-to-one relation-
ship, combining tables involving well controlled
repeating groups, and denormalization all lead to
the same performance advantage. What is it? Why
is it important?

34. What is denormalization? Denormalization, while
improving performance under certain circum-
stances, also leads to a serious problem. How does
denormalization improve performance and what is
this major drawback?

35. Duplicating entire tables or parts of tables (‘‘subset
tables’’) obviously introduces data redundancy.
What is the advantage of doing this? Do you
think it’s worth the introduction of redundancy?
Explain.

EXERCISES

1. A fixed disk consists of six platters. The upper
surface of the topmost platter and the lower surface
of the bottommost platter are not used for recording
data. There are 120 tracks on each recording
surface. How many of each of the following are
there in the disk:
a. Recording surfaces?
b. Cylinders?
c. Tracks per cylinder?

2. A fixed disk has 80 cylinders. The tracks in each
cylinder are numbered 0–11. The upper surface of
the topmost platter and the lower surface of the bot-
tommost platter are not used for recording data. How
many of each of the following are there in the disk:
a. Recording surfaces?
b. Platters?

c. Tracks per recording surface?
3. Consider the B+-tree index, below:

a. A record has just been added to Cylinder 6,
causing a cylinder split. The highest key value
on Cylinder 6 is now 2156, the highest key value
on Cylinder 20, and the empty reserve cylinder
that received half of Cylinder 6’s records is now
2348. Update the tree index accordingly.

b. A record has just been added to Cylinder 10,
causing a cylinder split. The highest key value
on Cylinder 10 is now 3780, the highest key value
on Cylinder 25, and the empty reserve cylinder
that received half of Cylinder 10’s records is now
3900. Update the tree index accordingly. (Note:
this question is intended to be independent of the

240 C h a p t e r 8 Physical Database Design

2769 42631644 5283

0709 13180524

To
cylinder

1

To
cylinder

2

To
cylinder

6

To
cylinder

10

1644 2348 27691971 3684 39003326 4263 4904 52834547

• • • • • • • • •

question in part a. Start each of parts a and b
from the figure shown.)

4. A hashed file has space for 70 records. Relative
record numbers of 0–69 label each of the 70 record
positions. In addition, there is space for several
overflow (synonym) records. Draw a picture of the
file and, using the division-remainder method, store
records with each of the following four digit keys,
taking collisions into account as necessary:
a. 4000.
b. 5207.
c. 0360.
d. 1410.

5. Consider the following relational database that Best
Airlines uses to keep track of its mechanics, their
skills, and their airport locations. Mechanic number,
airport name, and skill number are all unique fields.
Size is an airport’s size in acres. Skill Category is the
type of skill, such as an engine skill, wing skill, tire
skill, etc. Year Qualified is the year that a mechanic
first qualified in a particular skill; Proficiency Rating
is the mechanic’s proficiency rating in a particular
skill.

MECHANIC Table

Mechanic Mechanic Airport
Number Name Telephone Salary Name

AIRPORT Table

Airport Year
Name City State Size Opened

SKILL Table

Skill Number Skill Name Skill Category

QUALIFICATION Table

Mechanic Skill Year Proficiency
Number Number Qualified Rating

Analyze each of the following situations and,
using the physical database design techniques
discussed in this chapter, state how you would
modify the logical design shown to improve
performance or otherwise accommodate it.

a. There is a high-priority need to quickly find any
particular airport’s data given only the airport’s
city and state.

b. There is a frequent need to find the total salary
of all of the mechanics at any particular airport.

c. There is a high-priority need to quickly find any
particular mechanic’s data together with the data
about the airport at which she works.

d. There is a frequent need to list the names and
telephone numbers of the mechanics who work at
any particular airport, together with the airport’s
city and state.

e. Assume that there is an additional attribute
called Skill Description in the SKILL table. This
attribute is used to store lengthy descriptions of
each skill. The problem is that its presence in the
SKILL table is slowing down access to the rest
of the data in the table, which is accessed much
more frequently.

Exercises 241

f. The need to access data about the ten largest
airports in the country is much more frequent
than the need to access data about the rest of the
airports.

6. Consider the following relational database for the
Quality Appliance Manufacturing Co. The database
is designed to track the major appliances (refrig-
erators, washing machines, dishwashers, etc.) that
Quality manufactures. It also records information
about Quality’s suppliers, the parts they supply, the
buyers of the finished appliances, and the finished
goods inspectors. Note the following facts about this
environment:

• Suppliers are the companies that supply Quality
with its major components, such as electric
motors, for the appliances. Supplier number is
a unique identifier.

• Parts are the major components that the suppliers
supply to Quality. Each part comes with a part
number but that part number is unique only within
a supplier. Thus, from Quality’s point of view, the
unique identifier of a part is the combination of
part number and supplier number.

• Each appliance that Quality manufactures is given
an appliance number that is unique across all of
the types of appliances that Quality makes.

• Buyers are major department stores, home
improvement chains, and wholesalers. Buyer
numbers are unique.

• An appliance may be inspected by several
inspectors. There is clearly a many-to-many
relationship between appliances and inspectors.

• There are one-to-many relationships between
suppliers and parts (Supplier Number is a foreign
key in the PART table), parts and appliances
(Appliance Number is a foreign key in the PART
table), and appliances and buyers (Buyer Number
is a foreign key in the APPLIANCE table).

SUPPLIER Table

Supplier Supplier
Number Name City Country Telephone

PART Table

Part Number −−−−−−−−−−−Supplier Number Part Type Cost −−−−−−−−−−−Appliance Number

APPLIANCE Table

Appliance Number Appliance Type Date of Manufacture −−−−−−−−−Buyer Number Price

BUYER Table

Buyer Number Buyer Name City Country Credit Rating

INSPECTOR Table

Inspector Number Inspector Name Salary Date of Hire

INSPECTION Table

−−−−−−−−−−−Appliance Number −−−−−−−−−−−Inspector Number Date of Inspection Score

Analyze each of the following situations and,
using the physical database design techniques
discussed in this chapter, state how you would
modify the logical design shown to improve
performance or otherwise accommodate it.
a. The Appliance Type attribute in the APPLI-

ANCE table indicates whether an appliance is a
refrigerator, washing machine, etc. Refrigerator
records are accessed much more frequently than
those for the other appliance types and there are
strict response time requirements for accessing
them.

b. There is a frequent and very hig- priority need to
quickly retrieve detailed data about an appliance
together with detailed data about who bought it.

c. Because of the large number of people trying to
access the PART table and the fast response
time needed, the PART table has become a
bottleneck and the required response time is not
being achieved.

d. Assume that the Buyer Name attribute in the
BUYER table is unique. There is a high-priority
need to quickly retrieve the following data about
appliances: appliance number, appliance type,
date of manufacture, and buyer name.

e. In the APPLIANCE table, there is a much
more frequent need with strict response time
requirements to access the price data (of course
together with the appliance number) than to
access the rest of the data in the table.

242 C h a p t e r 8 Physical Database Design

MINICASES

1. Happy Cruise Lines.
Consider the Happy Cruise Lines Sailor file shown
below. It lists all the sailors on the company’s cruise
ships by their unique sailor identification number, their
name, the unique identification number of the ship
they currently work on, their home country, and their
job title.

Sailor file

Sailor Sailor Ship Home Job

Number Name Number Country Title

00536 John Smith 009 USA Purser

00732 Ling Chang 012 China Engineer

06988 Maria Gonzalez 020 Mexico Purser

16490 Prashant Kumar 005 India Navigator

18535 Alan Jones 009 UK Cruise
Director

20254 Jane Adams 012 USA Captain

23981 Rene Lopez 020 Philippines Captain

27467 Fred Jones 020 UK Waiter

27941 Alain DuMont 009 France Captain

28184 Susan Moore 009 Canada Wine
Steward

31775 James Collins 012 USA Waiter

32856 Sarah McLachlan 012 Ireland Cabin
Steward

a. Create a simple linear index for the Sailor file based
on:

i. The Sailor Name field.
ii. The Sailor Number field.

iii. The Ship Number field.
iv. The combination of the Ship Number and the

Job Title fields.
b. Construct a B+-tree index of the type shown in this

chapter for the Sailor file, assuming now that there
are many more records than are shown above. The
file and the index have the following characteristics:
• The file is stored on nine cylinders of the disk.

The highest key values on the nine cylinders, in
order, are:

Cylinder 1: 02653
Cylinder 2: 07784
Cylinder 3: 13957

Cylinder 4: 18002
Cylinder 5: 22529
Cylinder 6: 27486
Cylinder 7: 35800
Cylinder 8: 41633
Cylinder 9: 48374

• Each index record can hold four key value/pointer
pairs.

• There are three index records at the lowest level
of the tree index.

c. The same as part b above, but now there are four
index records at the lowest level of the tree index.

d. The same as part b above, but each index record can
hold two key value/pointer pairs and there are five
index records at the lowest level of the tree index.

2. The Super Baseball League.
Consider the Super Baseball League Player file shown
below. It lists all of the players in the league by their
unique player identification number, their name, age,
the year they joined the league, and the team on which
they are currently playing.

Player file

Player Player First Team

Number Name Age Year Number

1538 Fred Williams 23 2003 12

1882 Tom Parker 29 2000 35

2071 Juan Gomez 33 1990 12

2364 Steve Smith 24 2002 20

2757 Tim Jones 37 1988 18

3186 Dave Lester 29 1998 18

3200 Rod Smith 25 2002 20

3834 Chico Lopez 24 2003 12

4950 Chris Vernon 26 2003 15

5296 Barry Morton 30 1995 35

a. Create a simple linear index for the Player file based
on:

i. The Team Number field.
ii. The Player Name field.

iii. The Player Number field.
iv. The combination of the Team Number and the

Player Number fields.

Minicases 243

b. Construct a B+-tree index of the type shown in this
chapter for the Player file, assuming that there are
now many more records than are shown above. The
file and the index have the following characteristics:
• The file is stored on eight cylinders of the disk.

The highest key values on the eight cylinders, in
order, are:

Cylinder 1: 1427
Cylinder 2: 1965
Cylinder 3: 2848
Cylinder 4: 3721
Cylinder 5: 4508
Cylinder 6: 5396
Cylinder 7: 6530
Cylinder 8: 7442

• Each index record can hold four key value/pointer
pairs.

• There are three index records at the lowest level
of the tree index.

c. The same as part b above, but now there are four
index records at the lowest level of the tree index.

d. The same as part b above, but each index record can
hold two key value/pointer pairs and there are four
index records at the lowest level of the tree index.

3. Consider the following relational database for Happy
Cruise Lines. It keeps track of ships, cruises, ports,
and passengers. A ‘‘cruise’’ is a particular sailing of a
ship on a particular date. For example, the seven-day
journey of the ship Pride of Tampa that leaves on June
13, 2003, is a cruise. Note the following facts about
this environment:

• Both ship number and ship name are unique in the
SHIP Table.

• A ship goes on many cruises over time. A cruise is
associated with a single ship.

• A port is identified by the combination of port name
and country.

• As indicated by the VISIT Table, a cruise includes
visits to several ports and a port is typically included
in several cruises.

• Both Passenger Number and Social Security Number
are unique in the PASSENGER Table. A particular
person has a single Passenger Number that is used
for all of the cruises that she takes.

• The VOYAGE Table indicates that a person can
take many cruises and a cruise, of course, has many
passengers.

SHIP Table

Ship Ship Ship Launch Gross

Number Name Builder Date Weight

CRUISE Table

Cruise Start End Cruise −−−−Ship

Number Date Date Director −−−−−−−Number

PORT Table

Port Number of Port

Name Country Docks Manager

VISIT Table

−−−−−−Cruise −−−−Port Arrival Departure

−−−−−−−Number −−−−−Name −−−−−−−Country Date Date

PASSENGER Table

Passenger Passenger Social Security Home Telephone

Number Name Number Address Number

VOYAGE Table

−−−−−−−−Passenger −−−−−−Cruise Stateroom

−−−−−−−Number −−−−−−−Number Number Fare

Analyze each of the following situations and, using
the physical database design techniques discussed in
this chapter, state how you would modify the logical
design shown to improve performance or otherwise
accommodate it.
a. There is a need to list cruises by cruise number but

there is also a periodic need to list all of the cruises
in order by start date.

b. There is a frequent need to quickly retrieve the data
about a cruise together with the data about the ship
used on the cruise.

244 C h a p t e r 8 Physical Database Design

c. There is a frequent need to quickly retrieve cruise
data based on departure date.

d. Data about passengers from California must be
accessed quickly and much more frequently than
data about passengers from anywhere else.

e. There is a frequent need to quickly retrieve a list of
the port managers of the ports at which the ship on
any particular cruise will stop.

f. There is a frequent need to quickly find the total
number of passengers who were on any particular
cruise.

g. There is a frequent need to find the start and end
dates of cruises as quickly as possible.

h. There is a frequent need to find cruise data based on
ship name. Hint: The Ship Name attribute is unique.

4. Consider the following relational database for the Super
Baseball League. It keeps track of teams in the league,
coaches and players on the teams, work experience of
the coaches, bats belonging to each team, and which
players have played on which teams. Note the following
facts about this environment:

• The database keeps track of the history of all the
teams that each player has played on and all the
players who have played on each team.

• The database keeps track of only the current team
that a coach works for.

• Team number, team name, and player number are
each unique attributes across the league.

• Coach name is unique only within a team (and we
assume that a team cannot have two coaches of the
same name).

• Serial number (for bats) is unique only within a team.
• In the Affiliation table, the years attribute indicates

the number of years that a player played on a team;
the batting average is for the years that a player
played on a team.

TEAM Table

Team Team

Number Name City Manager

COACH Table

−−−−−Team Coach Coach

−−−−−−−Number Name Telephone

WORK EXPERIENCE Table

−−−−−Team −−−−−Coach Experience Years Of

−−−−−−−Number −−−−−Name Type Experience

BATS Table

−−−−−Team Serial

−−−−−−−Number Number Manufacturer

PLAYER Table

Player Player

Number Name Age

AFFILIATION Table

−−−−−Player −−−−−Team Batting

−−−−−−−Number −−−−−−−Number Years Average

Analyze each of the following situations and, using
the physical database design techniques discussed in
this chapter, state how you would modify the logical
design shown to improve performance or otherwise
accommodate it.
a. There is a frequent need to quickly find the total

number of years that any particular player has played
in the league (i.e., the total number of years played
for all of the teams a player played for).

Minicases 245

b. There is a need to retrieve AFFILIATION table
records directly based on batting averages.

c. The three-attribute primary key of the WORK
EXPERIENCE table has been found to be cum-
bersome to use in queries and awkward to index.

d. There is a frequent very high-priority need to quickly
retrieve player name and age data together with the
teams (identified by team number) they have played
on, the number of years they played on the teams,
and the batting averages they compiled.

e. Assume that we add the following Stadium table
to the Super Baseball League relational database.

Each team has one home stadium, which is what
is represented in this table. Assume that a stadium
can serve as the home stadium for only one team.
Stadium name is unique across the league.

STADIUM Table

Stadium Year −−−−−Team

Name Built Size −−−−−−−Number

There is a frequent high-priority need to quickly
retrieve detailed team and stadium data together.

C H A P T E R 9

OBJECT-ORIENTED
DATABASE MANAGEMENT

T raditional information systems and the applications within them have always
maintained a clear separation between their programs and their data. Programs

and data structures are designed separately, implemented separately, and stored
separately on disk. Relational databases fit very well into this arrangement. For a long
time the emphasis was on the programs, with the data structures and ultimately the data
stored in them being a secondary consideration. From a managerial point of view, the
concept of data as a corporate resource has made significant inroads into changing the
IS environment from this program-centric mentality into a more datacentric one.

On the technical side, an alternative approach to information systems and IS
development, which comes under the broad heading of ‘‘object orientation,’’ began
during the 1980s. This approach is, by its nature, more datacentric. It began with object-
oriented programming, then object-oriented systems analysis and object-oriented systems
design, and finally object-oriented database management, complete with object-oriented
database management systems (OODBMS). A variety of OODBMSs have been developed
and marketed commercially. We will take a brief look at the essential points of object-
oriented database management in this chapter, but, as we do, it is important to bear
in mind that the commercial OODBMSs vary widely in the OODBMS features that they
support either partially or fully.

OBJECTIVES

■ List several limitations in the relational database model.
■ Describe the object-oriented database concept.
■ Model data using such complex relationships as generalization and aggregation,

and such concepts as inheritance and polymorphism.
■ Describe the benefits of encapsulation.
■ Describe the value of developing abstract data types.
■ Explain what an object/relational database is.

248 C h a p t e r 9 Object-Oriented Database Management

CHAPTER OUTLINE

Introduction
Terminology
Complex Relationships

Generalization
Inheritance of Attributes
Operations, Inheritance of

Operations, and Polymorphism
Aggregation
The General Hardware Co.

Class Diagram

The Good Reading Bookstores
Class Diagram

The World Music Association
Class Diagram

The Lucky Rent-A-Vehicle Class
Diagram

Encapsulation
Abstract Data Types
Object/Relational Database
Summary

INTRODUCTION

Relational tables certainly seem to do a good job of storing data for information
systems, as we’ve seen in concept and in a variety of examples. So, what’s missing?
The answer to this question is a bit complicated. Many people would say that nothing
is missing from the relational model (or, for that matter, in this context, from the
hierarchical and network models that came before it)! Others would point out that
for certain kinds of complex applications, the relational model lacks support for the
more complex data model features they need. There is even an argument that all
applications could benefit from certain additional features in terms of data integrity.

Let’s take a look at ‘‘what’s missing’’ from the relational model. The answer
to this question will also serve as an introduction to the main features of the
object-oriented database model.

■ While the relational model is fine for dealing with unary, binary, and
ternary relationships among entities, it does not directly provide support for
more complex but important relationships among different subcategories or
specialized categories of particular entities. This is known as ‘‘generalization’’ or
‘‘generalization/specialization’’ in the object-oriented database model. Nor
does the relational model directly provide support for situations in which
particular entities are constructed from other component entities. This is known
as ‘‘aggregation’’ in the object-oriented database model.

■ As in all traditional information systems, the separation of programs and databases
exposes the data in the databases to being updated by a variety of programs.
Of course, we assume that these programs are thoroughly tested and debugged.
But with many people writing programs that can affect particular data, there is
always the question whether a hidden mistake can pop up unexpectedly and cause
errors in the data. This becomes even more serious as the sharing of data among
different applications increases. What might be desirable is to have a system in
which only a limited, controlled set of program segments is allowed to update
particular data. Application programs would then make requests for the execution
of these program segments to update the data. This could go a long way towards
improving the integrity of the data.

■ The relational model supports only a limited number of relatively simplistic
numeric and character-oriented data types. These are sufficient for most standard

Introduction 249

accounting, inventory, and other traditional business applications. But this model
does not directly support the more complex data types that we increasingly
encounter such as graphic images, photo images, video clips, audio clips, long text
documents, and such mathematical constructs as matrices. The object-oriented
database model, with its ‘‘abstract data type’’ feature, allows the creation of all
these data types and any others that are needed.

There are several other features or advantages of the object-oriented database
concept. One is that each unit of data or ‘‘object’’ has an object identifier that
is permanent and unique among all objects of all types in the system. Another
is that some OODBMSs are implemented as pointer-based systems, meaning that
related objects are ‘‘connected’’ by their storage addresses, as opposed to the
foreign key/join arrangement in relational databases. Arguments have been made
that this pointer-based approach provides better performance than the multi-table
join approach of relational databases when related data must be brought together.
(Ironically, relational databases replaced the pointer-based approach of the earlier
hierarchical and network DBMSs). Finally, it is argued that OODBMSs are the most
natural data storage vehicles when using object-oriented programming languages,
such as C++, Smalltalk, and Java.

CONCEPTS

IN ACT ION

9-A HNEDAK BOBO GROUP

Hnedak Bobo Group (HBG) is a
leading architecture and design firm headquartered in
Memphis, TN, with a satellite office in Las Vegas, NV.
The firm has 28 registered architects and 43 licensed
professionals. HBG is organized into architecture, inte-
rior design, and construction management divisions, with
three distinct specialty practice areas focused on the enter-
tainment and hospitality industry, corporate buildings,
and urban/historic/civic structures. Hnedak (pronounced
‘knee dak’) Bobo is best known for its work in the gam-
ing and hospitality industries and has been consistently
ranked as one of the top firms in the United States for hos-
pitality design (ranked second in national survey of hotel
and hospitality design firms by Hotel & Motel Manage-
ment Magazine). As for urban/historic/civic structures,
Hnedak Bobo was responsible for the Peabody Place
mixed-use project in Memphis, TN, which when con-
structed was the largest urban redevelopment project in
the United States.

Hnedak Bobo Group uses a relational database
application called the Contact Management and Lead
Tracking System to keep track of its customers, potential
customers, and potential projects or ‘‘leads.’’ This is
a critical system in this type of large project-oriented

business and requires that an owner or principal of the
firm be assigned as each potential project’s ‘‘pursuit
manager.’’ The system tracks all phases of ‘‘lead
development,’’ starting with first hearing of a possible
project. It then continues with estimating the project’s
potential for the firm, estimating the probability of getting
the contract, and, eventually, to contract negotiation and
signing. An important part of this ongoing effort is keeping
in touch with the firm’s customers and potential customers.
To this end, the system maintains personal information
about these people and is organized to maintain contact
with them through greeting cards, gifts, a newsletter, and
company announcements.

Hnedak Bobo’s Contact Management and Lead
Tracking System is stored as an MS Access relational
database running on a Compaq server It employs canned,
menu-based queries written in Visual Basic. The main
database tables are a Contacts table with 5,500 records
(meaning that HBG maintains contact with that many
people) and an Events table that tracks every meeting,
telephone call, etc. with each contact. Another set of
tables tracks the project leads and lead development
phases.

250 C h a p t e r 9 Object-Oriented Database Management

‘‘Photo Courtesy of Hnedak Bobo Group’’

TERMINOLOGY

Earlier we defined an entity as an object or event in our environment that we want to
keep track of. An entity set was defined as a collection of entities of the same type.
Entities have properties that we called attributes. We then defined a data structure
known as a record that contains all of the facts (the attributes) that we know about
a given entity. The records about all of the entities in an entity set were collected
together in a file. Finally, we spoke of a record type as a general description of all
of the records in a file, essentially a list of the kinds of attributes that describe each
of the entities. And we spoke of a record occurrence as a specific set of attribute
values that describe one of the entities.

Object-oriented data modeling has its own features and its own terminology,
but it still must describe the entities, the objects, and events in the real business
environment. Having said that, the first point to recognize is that in object-oriented
modeling, the term object is used to describe an advanced data structure that
includes an entity’s attributes plus methods or operations or procedures (program

Complex Relationships 251

code!) that can operate on and modify the object’s attribute values. This is obviously
a major departure from the strict separation of data and program code that we’re
used to. In the same spirit in which we organized the records that described similar
entities into a file, the objects that describe similar entities are known collectively
as an object class or, simply, a class. Conversely, an instance or an occurrence of a
class is an object.

This terminology is in keeping with the standard diagramming notation for
object-oriented systems development known as the Unified Modeling Language
(UML). Introduced in 1997 by the Object Management Group (OMG), UML
has nine standard diagrams that describe such features as the system’s data, its
business processes, its intended results, the components of its program code, and
its hardware and software architectures. For our purposes, we will focus on the
UML Class Diagram, which describes the system’s data, including attributes of and
relationships among the ‘‘objects.’’ As before, we will demonstrate these OODBMS
concepts in the context of the General Hardware Co. example, as well as the other
three running examples we have used. Some of the details of the examples will
have to be changed in order to demonstrate the object-oriented concepts and we will
point out those changes carefully as they occur.

COMPLEX RELATIONSHIPS

In our earlier discussion of data modeling using the entity-relationship model that led
to relational database design, we saw the importance of being able to model unary,
binary, and ternary one-to-one, one-to-many, and many-to-many relationships. The
first question, then, is: can we model such relationships in UML class diagrams and
can they be implemented in the OODBMS concept? The answer is definitely yes. It
had better be yes because, as we know by now, those are fundamental relationships
in any business environment. The point, however, is that UML class diagrams and
ultimately OODBMS implementations go beyond those fundamental relationships
to other more specifically targeted kinds of relationships known as generalization
and aggregation.

Generalization

Generalization, also known as ‘‘generalization/specialization,’’ is a relationship
that recognizes that some kinds of entities can be subdivided into smaller, more
specialized groups. All of the entities may have some common characteristics but
each of the smaller groups may have certain unique characteristics, as well. For
example, all movies have a producer and a director, but only animated movies
have animation artists. All boats have hulls, owners, and registration numbers, but
only sailboats have sails. All retail stores have names, addresses, and occupancy
licenses, but only restaurants have health inspection scores and restaurant critic
ratings; only gas stations have underground storage tanks; only supermarkets have
produce departments and meat departments.

The General Hardware Co. entity-relationship diagram of Figure 2.9 is
reproduced here as Figure 9.1. Remember that General Hardware is a wholesaler
that supplies retail stores such as hardware stores, home improvement chains, etc.
Thus far, the only products that we’ve assumed General Hardware sells its customers

252 C h a p t e r 9 Object-Oriented Database Management

F IGURE 9.1
The General Hardware Company E-R
diagram

PK Employee
 Number

Customer
 Number

PK

CUSTOMER
EMPLOYEE

Employee
 Name
Title

Office
 Number

OFFICE

PK

Telephone
Size

Salesperson
 Number

SALESPERSON

PK

Salesperson
 Name
Commission
 Percentage
Year of Hire

Customer
 Number

CUSTOMER

PK

Customer
 Name
HQ City

Product
 Number

PRODUCT

PK

Product
 Name
Unit Price

PK Product
 Number

Salesperson
 Number

SALES

PK

Quantity

Occupied by
Works in

Sells to

Buys from

Sold
Sold by

Sold

Sold
Product

Employs

Employed by

Complex Relationships 253

FIGURE 9.2
General Hardware Company product
generalization diagram

LIGHT FIXTURE

Number of Bulbs
Watts per Bulb

PRODUCT

Product Number
Product Name
Unit Price

LUMBER

Type of Wood
Dimensions

TOOL

Weight

NONPOWER TOOL

Years of Warranty

POWER TOOL

Amperes

are tools. But now, General Hardware has decided to expand its product line beyond
tools to include light fixtures and lumber. Figure 9.2 shows a generalization diagram
that represents General Hardware’s expanded product line and recognizes that while
all of the products share some common attributes, different kinds of products have
additional unique attributes. Each box in Figure 9.2 represents a class and has three
sections separated by horizontal lines. At the top, in capital letters, is the class
name. In the middle are the class attributes. At the bottom are the class operations
(although we’re not showing any operations yet). The upward-pointing arrows
indicate generalizations. The diagram shows that there are three kinds of products:
TOOLs, LIGHT FIXTUREs, and LUMBER. Furthermore, there are two kinds of
tools: POWER TOOLs and NON-POWER TOOLs.

Inheritance of Attributes

The PRODUCT class indicates that all products have three common attributes:
Product Number, Product Name, and Unit Price. In fact, we say that all of the
classes below PRODUCT inherit the attributes shown in PRODUCT; that is,
they include these attributes among their own. In general, attributes are inherited
downwards in these generalization diagrams. So,

■ the attributes for POWER TOOLs are Product Number, Product Name, Unit
Price (all from PRODUCT), Weight (from TOOL), and Amperes.

254 C h a p t e r 9 Object-Oriented Database Management

■ the attributes for NON-POWER TOOLs are Product Number, Product Name,
Unit Price, Weight, and Years of Warranty.

■ the attributes for LIGHT FIXTUREs are Product Number, Product Name, Unit
Price, Number of Bulbs, and Watts Per Bulb.

■ the attributes for LUMBER are Product Number, Product Name, Unit Price, Type
of Wood, and Dimensions.

Operations, Inheritance of Operations, and Polymorphism

Figure 9.3 shows the addition of some operations to the diagram in Figure 9.2.
Actually, there are three kinds of operations: constructor, query, and update. A
constructor operation creates a new instance of a class, i.e. a new object. An
example in Figure 9.3 is Add Lumber, which is an operation that will add a new
instance of LUMBER, i.e. a new object, to the database when General Hardware
starts carrying a new type or size of lumber in its wholesale inventory. A query
operation returns data about the values of an object’s attributes but does not update
them. Calculate Discount in the PRODUCT class is an example of a query operation.
The operation calculates a discount for a particular customer buying a particular
product and returns the result to the user who issued the query, but does not store
the result in the database. An update operation updates an object’s attribute values.
Change Unit Price in the PRODUCT class is an example of an update operation.
From time to time a product’s unit price has to be changed and the result stored in
the database as the new unit price.

F IGURE 9.3
General Hardware Company product
generalization diagram with operations

LIGHT FIXTURE

Number of Bulbs
Watts per Bulb

PRODUCT

Product Number
Product Name
Unit Price

Calculate Discount
Change Unit Price

LUMBER

Type of Wood
Dimensions

TOOL

Weight

NON-POWER TOOL

Years of Warranty

POWER TOOL

Amperes

Calculate Extended
 Warranty Price

Add Lumber

Calculate Extended
 Warranty Price for
 Nonpower Tools

Calculate Extended
 Warranty Price
 for Power Tools

Complex Relationships 255

Notice that Calculate Discount is an operation that applies to all products
because operations are inherited downwards in the same way that attributes are. In
fact, since there is nothing more said about the discount further down the hierarchy,
we conclude that the discount is calculated in the same way for all kinds of products.
On the other hand, the diagram indicates that the Calculate Extended Warranty Price
for TOOLs is performed differently for POWER TOOLs and for NON-POWER
TOOLs. The operation is initially specified in the TOOLs box but operation names
in the POWER TOOL and NON-POWER TOOL boxes indicate that it changes
in some way when it is inherited down to those boxes. Perhaps the presence of
an electric motor in the power tools requires a different kind of calculation. This
modification or refinement of operations as they are inherited downwards is called
polymorphism. (Note: technically, the operations that are performed differently
in the lower-level objects can have the same name—simply Calculate Extended
Warranty Price in this example—even though they will perform differently for the
different kinds of objects.)

Aggregation

Figure 9.4 shows the addition of the FRAME and BULBS classes, connected
to the LIGHT FIXTURE class with a diamond-shaped symbol. This is not
further generalization but is another type of relationship known as aggregation.

LIGHT FIXTURE

PRODUCT

Product Number
Product Name
Unit Price

Calculate Discount
Change Unit Price

LUMBER

Type of Wood
Dimensions

TOOL

Weight

NON-POWER TOOL

Years of Warranty

POWER TOOL

Amperes

Calculate Extended
 Warranty Price

Add Lumber

Calculate Extended
 Warranty Price for
 Nonpower Tools

Calculate Extended
 Warranty Price
 for Power Tools

BULBS

Number of Bulbs
Watts per Bulb

FRAME

Weight
Dimensions

F IGURE 9.4
General Hardware Company product diagram with aggregation

256 C h a p t e r 9 Object-Oriented Database Management

In generalization, lower-level classes are kinds of upper-level classes (e.g. POWER
TOOLs and NON-POWER TOOLs are both kinds of TOOLs). In aggregation, a
class is shown to be composed of other classes. FRAMEs and BULBS are not kinds
of LIGHT FIXTUREs; rather, each is a part of a LIGHT FIXTURE. As shown in
Figure 9.4, the component classes can each have their own special attributes and
conceivably, operations, too.

The General Hardware Co. Class Diagram

Figure 9.5 shows the complete General Hardware Co. UML Class Diagram. The
upper portion of the diagram is largely the same as the entity-relationship diagram of
Figure 9.1. In converting the entity boxes to class boxes we added some operations
and changed some of the notation. In terms of one-to-one, one-to-many, and many-
to-many relationships, in this notation ‘‘1’’ means exactly one, ‘‘0..1’’ means zero
or one, ‘‘0..*’’ means zero-to-many, and ‘‘1..*’’ means one-to-many. Also note that
the many-to-many relationship between SALESPERSON and PRODUCT requires
an additional class (similar in concept to an associative entity) to show the nature
of the many-to-many relationship, including any intersection data. This SALE class
is attached to the connective line between the SALESPERSON and PRODUCT
classes with a dashed line.

It is important to stop here for a moment and ask whether an ordinary relational
database together with application programming could be used to implement all the
various kinds of relationships in Figure 9.5. The answer is yes, it could. But the
point is that it would be up to the database designer and especially the application
programmer to manage the various kinds of relationships in the database with the
application code. This is different from an OODBMS, which is designed to handle
all of these relationships among its natural features. To stretch a term a bit, in
the OODBMS concept, the database management system ‘‘understands’’ all these
kinds of relationships and is capable of directly managing the data involved in them.

The Good Reading Bookstores Class Diagram

Good Reading Bookstores has decided to expand its product line to include
periodicals (newspapers and magazines), music CDs, and movie videos/DVDs. The
upper portion of Figure 9.6 is the class-diagram version of the entity-relationship
diagram of Figure 2.10, except that several changes have been made to reflect
the change in product line. The BOOK entity type has become the PRODUCT
class since there can now be several kinds of products, not just books. Similarly,
PUBLISHER has become PRODUCING COMPANY to reflect that we are now
dealing with publishers, music studios, and movie studios, and AUTHOR has
become CREATOR to reflect that we are now dealing with authors, singers, and
movie producers and directors.

A generalization hierarchy has been created under PRODUCT indicating that
there are four kinds of products: BOOK, PERIODICAL, CD, and VIDEO/DVD.
The three attributes in the PRODUCT class, Product Number, Product Name, and
Year Created, are inherited downwards to all four of the subordinate classes. In
addition, a book has a number of pages, a periodical has a volume, a number, and
a number of pages, a CD has a number of tracks, a total length in minutes, and a
chart rating (the current popularity of the CD), and a video/DVD has a length in
minutes. The BOOK class has a constructor-type operation, Add Book, that adds

Complex Relationships 257

LIGHT FIXTURE

PRODUCT

Product Number
Product Name
Unit Price

Calculate Discount
Change Unit Price

SALE

Quantity

LUMBER

Type of Wood
Dimensions

TOOL

Weight

NON-POWER TOOL

Years of Warranty

POWER TOOL

Amperes

Calculate Extended
 Warranty Price

Add Lumber

CUSTOMER
EMPLOYEE

Employee Number
Employee Name
Title

SALESPERSON

Salesperson Number
Salesperson Name
Commission Percentage
Year of Hire

Calculate Commission
Calculate Bonus

OFFICE

Office Number
Telephone
Size

CUSTOMER

Customer Number
Customer Name
HQ City

Calculate Extended
 Warranty Price for
 Non-Power Tools

Calculate Extended
 Warranty Price
 for Power Tools

BULBS

Number of Bulbs
Watts per Bulb

FRAME

Weight
Dimensions

1 0..*

1

1..*

1

0..1

1..*

1..*

F IGURE 9.5
General Hardware Company class diagram

258 C h a p t e r 9 Object-Oriented Database Management

PRODUCT

Product Number
Product Name
Year Created

PRODUCING
COMPANY

Company Name
Company Type
City
Country
Telephone
Year Founded

CREATOR

Creator Number
Creator Type
Creator Name
Year Born
Year Died

BOOK

Pages

CUSTOMER

Customer Number
Customer Name
Street
City
State
Country

PERIODICAL

Volume
Number
Pages

CD

Number of Tracks
Length
Chart Rating

Add Book Remove from Shelves Update Chart Ratings

SALE

Date
Price
Quantity

CREATION

0..*

11

1..*

1..*

1 0..* 1..* 1..*

1..*

Percent of
 Responsibility

ARTICLE

Title
Author
Length

SONG

Writer
Year Written

VIDEO/DVD

Length

F IGURE 9.6
Good Reading Bookstores class diagram

new BOOK instances, i.e. BOOK objects, as new books are published and added to
the store’s inventory. PERIODICAL has a query-type operation associated with it
that calculates the date when each periodical is to be removed from the store shelves
if it has not been purchased by then. CD has an update-type operation associated
with it that changes the value of a CD’s Chart Rating attribute on a weekly basis as
new industry-wide popularity charts come out.

Notice that the PERIODICAL class, and only this class, is associated with the
ARTICLE class. Similarly, the CD class, and only this class, is associated with the

Complex Relationships 259

SONG class. These are reasonable restrictions since only periodicals have articles
and only CDs have songs. But, this suggests an interesting point about generalization
that we have not seen before. Thus far, the reason for setting up subordinate classes
in a generalization hierarchy was to allow the subordinate classes to have distinct
attributes and operations that the other subordinate classes don’t have. Now, we
see that there is a second reason for setting up subordinate classes: to be able to
associate only selected subordinate classes with other classes!

The World Music Association Class Diagram

The upper portion of Figure 9.7 is the class diagram version of the World Music
Association entity-relationship diagram of Figure 2.11, with one major change.
Instead of considering only symphonies, which were associated with orchestras,
we are going to consider many kinds of compositions. Of course, different kinds
of compositions are performed by different kinds of musical groups. So, the
ORCHESTRA entity type in the E-R diagram of Figure 2.11 has become the
GROUP class and a generalization hierarchy has been constructed with subordinate
classes ORCHESTRA, CHAMBER GROUP, and JAZZ GROUP.

MUSICIAN

Musician Number
Musician Name
Instrument
Annual Salary

GROUP

Group Name
City
Country
Music Director

DEGREE

Degree
University
Year

ORCHESTRA

World Ranking

CHAMBER GROUP

Year Founded

0..1* 1..* 1 0..*

0..*

0..*

JAZZ GROUP

Jazz Specialty

RECORDING

Year
Price

COMPOSER

Composer Name
Country
Date of Birth

COMPOSITION

Composition Name
Year

1..* 1

F IGURE 9.7
World Music Association class diagram

260 C h a p t e r 9 Object-Oriented Database Management

The Lucky Rent-A-Vehicle Class Diagram

Lucky Rent-A-Car has expanded to become Lucky Rent-A-Vehicle! In addition to
renting cars, Lucky is now renting limousines, trucks, airplanes, and helicopters.
The upper part of the Lucky class diagram of Figure 9.8 looks very much like the
Lucky entity-relationship diagram of Figure 2.12. The only difference is the change
from the CAR entity-type to the VEHICLE class.

There is a two-level generalization hierarchy under VEHICLE. At the first
level are the LAND (vehicle) and AIR (vehicle) classes. Then, at the next level
down, a LAND vehicle can be a CAR, LIMOUSINE, or TRUCK, while an AIR
vehicle can be an AIRPLANE or a HELICOPTER. Each CAR object will have nine
attributes: Body Style and Color, plus four attributes inherited from VEHICLE and
another three attributes inherited from LAND. Similarly, each LIMOUSINE will
have nine attributes, each TRUCK will have eight attributes, each AIRPLANE will
have eleven attributes, and each HELICOPTER will have nine attributes.

There is an update operation for all LAND vehicles to update their mileage
attribute that is calculated in the same way for all three types of LAND vehicles;
i.e., there is no polymorphism associated with this operation. On the other hand,
the diagram indicates that there is polymorphism in the way that the Calculate Next
Overhaul Date is inherited downwards from the AIR class to the AIRPLANE and
HELICOPTER classes. The operation will be somewhat different for each of those
two classes.

The diamond-shaped symbol on the branch under the TRUCK class indicates
that there is an aggregation diagram under it. Indeed, each TRUCK is composed of an
ENGINE and a BODY, each with its own attributes. Notice that the company is inter-
ested in keeping data about engines and bodies for trucks but not for cars or limos.

ENCAPSULATION

Earlier, we introduced the concept that it might, in general, be a good idea to permit
particular data to be updated only by a limited, controlled set of program segments.
This would have the advantage of improving data integrity by eliminating the
possibility of some less-than-fully-debugged or otherwise rogue program updating
the data in some inaccurate way. But how can such a concept be implemented?

Y O U R

T U R N

9.1 GENERALIZATION/SPECIALIZATION AND AGGREGATION

Many objects in the world can be bro-
ken down into subordinate categories, i.e. ‘‘specialized,’’
or, in the opposite direction, ‘‘generalized.’’ Other objects
can be created from component parts, i.e. ‘‘aggregated.’’

QUESTION:
Develop a generalization/specialization diagram for

objects in your university environment or another

business environment of your choice. Develop an
aggregation diagram for objects in the same business
environment. Can you combine the two diagrams into
one in a way that makes sense?

Encapsulation 261

LIMOUSINE TRUCK

Cargo CapacityNumber of
 Passengers
Equipment

CAR

Body Style
Color

HELICOPTER

Next Overhaul Date

AIRPLANE

Number of Engines
Type of Engine
Next Overhaul Date

Calculate Next
 Overhaul Date
 (Helicopter)

Calculate Next
 Overhaul Date
 (Airplane)

AIR

Flying Time
Number of Crew
Number of
 Passengers
Top Speed

LAND

Number of Wheels
Mileage
Weight

Calculate Next
 Overhaul Date

Update Mileage

BODY

Body Number
Length

ENGINE

Engine Number
Horsepower

VEHICLE

Vehicle Number
Vehicle Type
Model
Year

MAINTENANCE
EVENT

Repair Number
Date
Procedure
Repair Time
Mileage

MANUFACTURER

Manufacturer Name
Manufacturer
 Country
Sales Rep Name
Sales Rep
 Telephone

0..* 1 1..* 1

CUSTOMER

Customer Number
Customer Name
Customer Address
Customer Telephone

RENTAL

Rental Date
Return Date
Total Cost

0..*

1..*

F IGURE 9.8
Lucky Rent-A-Car Vehicle class diagram

262 C h a p t e r 9 Object-Oriented Database Management

F IGURE 9.9
An application program sends a message
that triggers an encapsulated operation in
an object

Class or Object

message

Attribute 1
Attribute 2
 •

 •

 •

Attribute n
Operation 1
Operation 2
 •

 •

 •

Operation m

Application Program

A fascinating feature of object-oriented database management that implements
these ideas is called encapsulation. In encapsulation, as illustrated in Figure 9.9, the
attributes of a class’ or even an individual object are ‘‘encapsulated,’’ stored together
on the disk, with the operations that will act upon them. Yes, the program segments
are actually stored within the database, which is a radical departure from the
complete separation of data and programs that we always assumed in the relational
database environment (as well as in the earlier navigational database environment).
Furthermore, the OODBMS will permit the attributes of the encapsulated objects to
be updated only by the encapsulated update-type operations. New class instances or
objects will be permitted to be created only by the class’s encapsulated constructor-
type operations. Query-type operations would also be encapsulated but since they
do not update data, the data integrity issue is not a factor.

When an application program requires encapsulated data for any reason, it
sends a message to one of the object’s encapsulated operations to trigger it into
action, Figure 9.9. The application program sends along any input data needed for
the operation (for example, the number of years that an extended warranty is to
be in effect for the Calculate Extended Warranty Price for Power Tools operation
in General Hardware’s POWER TOOL class in Figure 9.5). The encapsulated
operation then executes its program code. Depending on the type of operation, it
updates the object’s attribute values, adds a new instance of a class or object, or
simply returns data to satisfy a query.

ABSTRACT DATA TYPES

Data has traditionally fitted into one of a small number of simple data types
consisting of a few variations of character and numeric data. These are adequate to
handle the kinds of attributes that we usually think of as being stored in a database.
Names, addresses, descriptions, and so forth are stored as character data types.
Attributes involving money and other numeric data that includes fractional amounts
are stored as decimal numbers. Serial numbers or quantity attributes that count a
number of items are stored as integers. Furthermore, these simple data types have
operations associated with them in the programming languages that use them. We
take it for granted that we can add, subtract, multiply, and divide data stored in the

Object/Relational Database 263

FIGURE 9.10
Abstract data types

00:01:14

Static Image Line Drawing

Video Clip Audio Clip

00:02:29

numeric data types, but these operations are indeed associated with numeric data
types and they are specifically not associated with character-type data.

Another of the interesting features of object-oriented database management is
the ability to create new, abstract data types and operations that are associated with
them. But what kinds of data might require these new and perhaps exotic data types?
Figure 9.10 illustrates some of them. In today’s increasingly rich data environments,
we may want to store static images, line drawings, video clips, and audio clips.
For example, consider adding an attribute called ‘‘Picture,’’ to the TOOL class
of General Hardware’s class diagram in Figure 9.5, so that one of the attributes
of each tool is a photo of it. (This particular data type has been called a ‘‘binary
large object’’ or ‘‘BLOB’’). Associated operations might include zoom and rotate.
Consider adding an attribute called ‘‘Flight’’ to the HELICOPTER class of Lucky
Rent-A-Vehicle’s class diagram in Figure 9.8 in order to include a video clip of
each helicopter flying. Associated operations might include pause or fast-forward.
Or consider adding an attribute called ‘‘Music’’ to the CD class of Good Reading
Bookstore’s class diagram in Figure 9.6 to include an audio clip of one of a CD’s
songs. An associated operation might be adjust volume. It is worth emphasizing
that part of the beauty of this concept is that the attributes that use these new data
types are treated exactly like the less exotic attributes that merely use the simple
character, decimal, and integer data types.

OBJECT/RELATIONAL DATABASE

When OODBMSs first became commercially available in the 1980s, they found
some limited use in niche applications like storing an electric power company’s
power grid in a data format that could take advantage of the unique features of the
object-oriented data approach. But, as we know by now, these OODBMSs didn’t
overwhelm relational databases and displace them. For, in spite of their new bells
and whistles, the OODBMSs were lacking in several areas, including the superior

264 C h a p t e r 9 Object-Oriented Database Management

F IGURE 9.11
The TOOL table in an object/relational
database

Product
Number

Product
Name

Unit
Price Photo

16386

19440

21765

24013

26722

Wrench

Hammer

Drill

Saw

Pliers

12.95

17.50

32.99

26.25

11.50

SQL query capabilities that everyone had become accustomed to with relational
databases. Yet their advanced features were too tempting to ignore.

Eventually, perhaps inevitably, relational databases and object-oriented
databases came together in the form of hybrid relational database management
systems with added object-oriented features. At first, these were called ‘‘extended
relational’’ database systems, but as they became more formalized they became
known as ‘‘object/relational’’ database systems. Imagine the General Hardware
Co. data stored as an object/relational database. A data structure for storing data
about tools would essentially be a relational table that would include columns for
Product Number, Product Name, Unit Price, Weight, and Photo (a photo of the
tool), which would be stored as a static image-type of attribute, Figure 9.11. The
attribute Photo could then appear in SQL statements just like the other attributes
and could be processed as such, returning the photo to the user in a query or even
matching a photo against the photos already in the table.

SUMMARY

The relational database model is certainly powerful and has proven to be highly
resilient as the standard for data storage and retrieval. However, for certain kinds
of complex applications, the relational model is lacking in support for certain
useful data model features. The object-oriented model fills this gap. The object-
oriented model provides support for more complex but important relationships
among different subcategories or specialized categories of particular entities. This
is known as ‘‘generalization’’ or ‘‘generalization/specialization.’’ It also supports
situations in which particular entities are constructed from other component entities,
known as ‘‘aggregation.’’ Further, the object-oriented database model with its
‘‘abstract data type’’ feature supports graphic images, photo images, video clips,
audio clips, long text documents, and such mathematical constructs as matrices.
The object-oriented model also supports ‘‘encapsulation,’’ in which a controlled

Exercises 265

set of program segments is stored with the data and is the only code allowed to
update that particular data. Today, object-oriented database management systems
have largely given way to the incorporation of these object-oriented features rated
into mainstream relational database management systems.

KEY TERMS

Abstract data type
Aggregation
Class
Class diagram
Complex relationships
Encapsulation
Generalization/specialization

Inheritance
Message
Method
Object
Object class
Object-oriented data modeling
Object-oriented database

Object/relational database
Operation
Polymorphism
Procedure
Unified Modeling Language (UML)

QUESTIONS

1. Name and briefly describe three deficiencies in the
relational database model.

2. In object-oriented terminology, what is an object?
What is a class?

3. Describe the advanced relationship known as
‘‘generalization.’’ What are its benefits?

4. Describe how attributes are inherited in a general-
ization hierarchy.

5. What is an ‘‘operation?’’ Can operations be
inherited? What is polymorphism?

6. Describe the advanced relationship known as
‘‘aggregation.’’ What are its benefits?

7. What is encapsulation in object-oriented databases?
What are its benefits?

8. What is an abstract data type (ADT)? What is the
significance of a database system that is capable of
creating ADTs?

9. What is an object/relational database management
system? What are its advantages?

EXERCISES

1. Draw an object-oriented class diagram, including
traditional unary, binary, and ternary relationships,
as well as generalization and aggregation relation-
ships as needed, to represent the following business
environment. Include all of the attributes and oper-
ations listed in the description.

The Houston, TX, city government wants to
develop an information system to keep track of
all the buildings in the city for both taxation and fire
department dispatch purposes. The city will track
the address, year built, and owner of record of every
building. It will also record the station number,
address, and telephone number of each fire station.
Each fire station has primary responsibility for a
given set of buildings.

There are four types of buildings: single-family
homes, apartment buildings, stores, and office

buildings. The city wants to record the number
of apartments in each apartment building, and the
type of goods and annual sales volume of each
store. It wants to record the number of floors in
each office building. It must also keep track of
the companies in each office building. An office
building can have several or many companies in it;
a company can have offices in several buildings.
Each company has a name, telephone number, and
unique tax identification number. The city also wants
to store the number of square feet that a particular
company occupies in a particular office building.
Single-family homes are made up of three parts: the
house itself, a garage, and a shed. The city wants to
keep track of the number of bedrooms, number of
baths, and total floor space in the house, the capacity
of the garage in number of cars, and the capacity of

266 C h a p t e r 9 Object-Oriented Database Management

the shed in volume (cubic feet). There is also a tax
calculation formula that differs for each of the four
building types.

2. Draw an object-oriented class diagram, including
traditional unary, binary and ternary relationships,
as well as generalization and aggregation relation-
ships as needed, to represent the following business
environment. Include all the attributes and opera-
tions listed in the description.

Reliable Home Warranty Company contracts
with homeowners to repair their major appliances,
electrical systems, and plumbing, all for a single
annual fee. When a homeowner needs a repair,
he calls Reliable and speaks to a dispatcher who
sends a qualified technician from a participating
repair company. The participating repair company
then charges Reliable for the repair. Each dispatcher
has an employee number, name, home address,
and home telephone number. Each homeowner
has a contract number, name, home address, home
telephone number, and contract renewal date. Each
job has a unique job number, date, and time. Each
job is handled by one dispatcher and (obviously)
involves one homeowner.

There are three kinds of jobs: appliance repair,
electrical repair, and plumbing repair. For an
appliance repair, the company wants to record the
appliance type, its model number, its serial number,
and the name of the appliance repair company

assigned. In addition, Reliable wants to keep track
of the manufacturer of the appliance. For each
appliance manufacturer it lists the manufacturer
name, headquarters address, and telephone number
for parts ordering. There is a calculation for the
charge that the appliance repair company makes to
Reliable based on the type of appliance and the
time spent. For a plumbing repair, Reliable keeps
track of the name of the plumbing company and
the length of time for the repair, but beyond that
it makes a distinction between inside repairs and
outside repairs such as to sewer lines or septic
tanks. Charges from the plumbing company to
Reliable are based on a specific plumbing charge
formula, but are calculated differently depending on
whether the repair is an inside or outside repair.
Also, for outside repairs, Reliable must record the
distance from the house to the main sewer line
or septic tank. For an electrical repair, Reliable
tracks the length of time for the repair and the
amount and type of wire used in the repair. There
is a formula for calculating electrical repair charges
based on time and the specialized materials used.
Reliable must also keep certain information about
the electrical contracting company assigned to the
repair. This information includes the contractor’s
license number, name, address, and liability insurer.
A particular electrical contracting company can be
involved in many repairs.

MINICASES

1. In Minicase 1 of Chapter 2, you were asked to draw an
entity-relationship diagram describing Happy Cruise
Lines’ business environment. We now report that
Happy Cruise Lines has been acquired by MegaShip
Lines, Inc., which has a fleet of oil tankers, container
ships, and automobile transport ships. Thus, with the
addition of Happy’s cruise ships, MegaShip Lines will
have four kinds of ships.
a. Draw an object-oriented generalization diagram,

including aggregation relationships as needed, to
represent MegaShip’s new business environment,
with the following attributes and operations. All of
MegaShip’s ships have ship number, ship name,
year built, weight, miles traveled, and next overhaul
date attributes. In addition, cruise ships have
passenger capacity and next health inspection date;

oil tankers have oil capacity, container ships have
number of containers, and automobile transport
ships have number of automobile attributes. An
operation determines the next overhaul date for all
of the ships in the same manner. Another operation
determines the next health inspection date for cruise
ships. An operation calculates the next date for a
ship to be refueled. This operation is the same for oil
tankers, container ships, and automobile transport
ships, but is different for cruise ships because of
safety precautions regarding the passengers. Oil
tankers are composed of a hull, one or more
engines, and one or more oil storage tanks. An
attribute of hull is length, an attribute of engine is
horsepower, and an attribute of oil storage tank is
capacity.

Minicases 267

b. Add the information given about cruise ships,
cruises, etc., in Chapter 2, Exercise 1, to the diagram
in part a, constructing a complete object-oriented
class diagram.

2. In Minicase 2 of Chapter 2, you were asked to
draw an entity-relationship diagram describing the
Super Baseball League’s business environment. We
now report that the Super Baseball League has been
absorbed into the Sensational Sports Federation (SSF).
SSF divides its sports into two categories: team sports
and individual sports. There are three team sports:
baseball, basketball, and football, and two individual
sports: golf and tennis. The central entity in each
of these five sports is a ‘‘participant.’’ In the team
sports a participant is a team; in the individual
sports a participant is an individual player. Every

SSF participant (team or individual) has a participant
number, participant name, sport (e.g. baseball, golf,
etc.), and year affiliated with SSF. In addition, every
team has a number of players, a home city and state,
and a mascot. Every player in the individual sports has
a name, home address, home telephone number, and
annual income. Furthermore, golfers have a handicap;
tennis players have a world ranking.
a. Draw an object-oriented generalization diagram, to

represent SSF’s business environment.
b. Add the information given about baseball teams

and associated entities in Exercise 2 of Chapter 2,
to the diagram in part a, constructing a complete
object-oriented class diagram.

c. Add several operations to the class diagram in part
b, demonstrating polymorphism with some of them.

C H A P T E R 10

DATA ADMINISTRATION,
DATABASE

ADMINISTRATION, AND
DATA DICTIONARIES

A dvanced technologies are only as effective as the people who guide them. This
is true of jet airliners, x-ray imaging devices, nuclear power plants, and certainly

computers! In the late 1960s, as early navigational database management systems were
starting to come into use, a few forward-looking companies began to recognize the need
for a department whose job it would be to manage the DBMS and its environment. As the
years went on, some of these groups gained responsibility over data in non-DBMS files
as well. In addition, some of them advanced from managing data only on an operational
basis to performing in addition strategic planning, policy setting, and other broader-based
duties. This chapter will describe the functions and groups that companies create to
manage their data and their database environment.

OBJECTIVES

■ Define and compare data administration and database administration.
■ List and describe the advantages of data administration and database administra-

tion.
■ List and describe the responsibilities of data administration and database

administration.
■ Explain the concept of metadata.
■ List and describe such metadata realizations as passive and active data dictionaries,

relational DBMS catalogs, and data repositories.

CHAPTER OUTLINE

Introduction
The Advantages of Data and Database

Administration
Data as a Shared Corporate Resource

Efficiency in Job Specialization
Operational Management of Data
Managing Externally Acquired

Databases

270 C h a p t e r 10 Data Administration, Database Administration, and Data Dictionaries

Managing Data in the
Decentralized Environment

The Responsibilities of Data
Administration
Data Coordination
Data Planning
Data Standards
Liaison to Systems Analysts and

Programmers
Training
Arbitration of Disputes and

Usage Authorization
Documentation and Publicity
Data’s Competitive Advantage

The Responsibilities of Database
Administration

DBMS Performance Monitoring
DBMS Troubleshooting
DBMS Usage and Security

Monitoring
Data Dictionary Operations
DBMS Data and Software

Maintenance
Database Design

Data Dictionaries
Introduction
A Simple Example of Metadata
Passive and Active Data

Dictionaries
Relational DBMS Catalogs
Data Repositories

Summary

INTRODUCTION

The ‘‘people side’’ of database management has two parts: data administration and
database administration. Data administration is a planning and analysis function
that is responsible for setting data policy and standards, for promoting the company’s
data as a competitive resource, for accounting for the use of data, and for providing
liaison support to systems analysts during application development. The database
administration function is more operationally oriented and is responsible for the
day-to-day monitoring and management of the company’s various active databases,
as well as for providing liaison support to program designers during application
development. Database administration typically carries out many of the policies set
by data administration. This chapter will also describe a class of software tools,
known generically as ‘‘data dictionaries,’’ that the data administration and database
administration functions can use to help manage their company’s data.

CONCEPTS

IN ACT ION

10-A ESPN

ESPN, headquartered in Bristol, CT,
is a major sportscasting network whose ventures include
cable television, radio, sports news, a magazine, and
even wireless sports updates. ESPN acquires sports
programming, broadcasts it, and stores it. The backbone
of this complex operation is a database application called
the Network Cable System (NCS). NCS is implemented
in Oracle and runs on an IBM large-end Unix server.

NCS is a cradle-to-grave system that tracks all of
ESPN’s broadcasting business from the time programming

is acquired until long after it is shown. It tracks and
stores the contracts for the programming, schedules the
programming, coordinates the commercial advertisements
that will be shown during the broadcasts, and manages
the tape library of current and historical sports footage.
It even has pointers to digitally stored advertisements.
Finally, it stores Nielsen ratings that indicate how many
people watched its broadcasts, on a historical basis.

One of the main relational tables in the system
is the Program Schedule table. With one record per

The Advantages of Data and Database Administration 271

sports event, this table coordinates the broadcast schedule
for ESPN, ESPN2, ESPNNews, ESPNClassic, and other
operations. There is also an Airings table and a Units table
that records commercials aired, with 12 million records
dating back to 1993. These can be linked back to the
events in the Program Schedule table. These database
tables are used both in the operational and analytical

Photo Courtesy of ESPN

modes. Operationally on a day-to-day basis, they, for
example, manage the check-in and check-out of tapes
from the tape library. But they are also used to analyze
the historical broadcast, Nielsen, and advertising data to
learn the effectiveness of the broadcasting and the value
of the advertising.

THE ADVANTAGES OF DATA AND DATABASE ADMINISTRATION

The initial question is, why do companies need these data and database
administration departments? What value do they add? Are they just additional
‘‘cost centers’’ that don’t produce revenue? Indeed, at one time or another,
most companies have struggled with these questions. But in today’s heavily
data-intensive, information-dependent business environment, these functions are
recognized as being more important than ever. The reasons, as listed in Figure 10.1,
are explained next.

Data as a Shared Corporate Resource

Data is a corporate resource that has taken its rightful place alongside money, plant
and equipment, personnel, and other corporate resources. Virtually all aspects of
business have become dependent on their information systems and the data flowing

272 C h a p t e r 10 Data Administration, Database Administration, and Data Dictionaries

F IGURE 10.1
The advantages of data and database
administration

• Data as a shared corporate resource

• Efficiency in job specialization

• Operational management of data

• Managing externally acquired databases

• Managing data in the decentralized environment

through them. Today’s organizations could not function without their vast stores
of personnel data, customer data, product data, supplier data, and so forth. Indeed,
data may well be the most important corporate resource because, by its very nature,
it describes all of the others. Furthermore, the effective use of its data can give a
company a significant competitive advantage. Whether it is used for supply chain
management, customer service, or advanced marketing applications, a company’s
data can have a real impact on its share of the marketplace and on its bottom-line
profitability.

But all resources tend to be scarce (is there ever enough money to go around?)
and there is typically internal competition for them. Data is no exception. As more
and more corporate functions seek the same data for their work, bottlenecks can
form and the speed of accessing the data can slow. Companies have responded to
this in a variety of ways, including bringing in faster computers and making copies
of the data for different applications. But the former strategy has its limits and
the latter introduces the kind of multi-file redundancy that we have argued against
throughout this book. Also, some companies have a policy of data ‘‘ownership’’
in which one of several corporate functions that share some particular data has the
primary claim to it and often the ability to decide who else can use it.

What all of this is leading to is simply this: Any shared corporate resource
requires a dedicated department to manage it. How would a company handle its
money without its finance and accounting departments? It makes little sense to
have an important resource either not managed at all or managed part-time and
half-heartedly by some group that has other responsibilities too. It also makes little
sense to have any one of the groups competing for the shared resource also manage
it—the resource manager must obviously be impartial when a dispute arises. The
dedicated departments that manage the company’s data are the data administration
and database administration departments. And, actually, the parallel between the
two corporate resources, money and data, is reflected in the parallel of having two
company functions to manage each. Finance and data administration, respectively,
take a more strategic or tactical-level view of each resource. Accounting and
database administration, respectively, take a more operational-level view of them.

Efficiency in Job Specialization

Many of the functions involved in the management of data are highly specialized
and require specific expertise. They can range from long-range data planning to
working with the idiosyncrasies of a particular database management system. This
argues for a full-time staff of specialists who do nothing but manage a company’s
data and databases.

A good example, and one on which we have spent considerable time already, is
database design. To do a really good job of both logical and physical database design

The Advantages of Data and Database Administration 273

requires considerable education and practice. The question then becomes one of
who among the information systems personnel should be responsible for designing
the company’s main, shared databases. The systems analysts? The application
programmers? Which systems analysts or application programmers? After all, there
may be several or many application development projects, each with different
systems analysts and application programmers assigned, that will share the same
databases. It doesn’t make a lot of sense to have any of these people design the
databases, for at least two reasons. One is that it is unreasonable to expect any
of them to be as expert at designing databases as people who do it on a full-time
basis. The other reason is that if any one application development group designs
the shared databases, they will tend to optimize them for their own applications
and not take into account the needs of the other applications. The solution is to
have application-independent, full-time database specialists, i.e. data and database
administration personnel, who are experts at database design and who will optimize
the database designs for the overall good of the company.

Operational Management of Data

It is clear that at the operational level, for the day-to-day management of the
company’s production databases, an independent department must be responsible.
The reasons for this have already been set forth above. Since the data is likely to
be shared among several or many corporate functions and users, it makes sense for
the data to be managed by an independent group whose loyalty is to the overall
company and not to any individual function. There is also the specific example
that in the shared data environment there will always be some applications or users
that depend on other applications or users to collect data and/or update the tables
on a regular or irregular basis. Clearly it is prudent to have an independent data
administration group keep track of who is responsible for updating which tables,
and monitor whether they have kept to the expected schedule, for the benefit of
everyone else who uses these tables.

Also, working with the databases at the operational level requires an in-depth
knowledge of the DBMS in use, of the databases themselves, and of such specific
skills and tasks as physical database design, database security, and backup and
recovery. It is unreasonable to expect application programmers, systems analysts,
or anyone else with their own focused duties to be experts at the techniques of data
management. In short, it requires specialists.

Managing Externally Acquired Databases

In today’s information systems environment, some databases are not designed by a
company’s own personnel but are acquired as part of purchased software packages.
A prominent example of this is Enterprise Resource Planning (ERP) software like the
multifunction integrated software sold by companies such as SAP and Peoplesoft.
These packages consist of application modules that manage a variety of corporate
functions (personnel, accounting, etc.). They typically include a central database
that all the application modules share. When a company decides to go the ERP
route, they are making an important commitment to a shared data resource. Once
again, the only arrangement that makes sense for managing this shared resource is
to have an independent group that is tasked with managing it for the overall good of
the company.

274 C h a p t e r 10 Data Administration, Database Administration, and Data Dictionaries

Managing Data in the Decentralized Environment

With the advent in the 1980s of personal computers, local-area networks, and new,
user-friendly software, many companies ‘‘decentralized’’ at least some of their
information systems work. These technologies permitted user departments all over
the company to handle some or all of their information systems needs on their
own, without having to rely on the central information systems organization. There
are a variety of advantages and disadvantages to this arrangement (but a book on
database management is not the place to go into them). While such developments as
ERP software with its centralized database concept have swung the pendulum back
towards the centralized IS environment to some extent, decentralization is a fact of
life to a greater or lesser degree in virtually all companies.

The question is then, in terms of the advantages of data and database
administration: do we need these functions more or less in the decentralized
environment than we do in the centralized environment? Some people might say
that we don’t need them. In fact, when the move towards decentralization began,
one of the stated reasons was to reduce the ‘‘overhead’’ of the central IS department
and that included database administration. Furthermore, many people are quite
content to develop their own databases on their PCs using MS Access and other
such PC-based DBMSs. But a very strong argument says that data and database
administration are even more important in a decentralized environment than in a
centralized one.

First of all, most large companies do not have totally decentralized IS but
rather a hybrid centralized/decentralized environment. And, if nothing else, the
centralized portion includes a central shared database, which certainly requires a
database administration function to manage it. But, more than that, with company
data present in a variety of central databases, databases associated with local-area
networks, and even databases on PCs, the coordinating role of data administration
is crucial. This coordinating role is a key element of the responsibilities of data
administration, which is our next topic.

THE RESPONSIBILITIES OF DATA ADMINISTRATION

Since information systems are used in all aspects of a company’s business, data
administrators find themselves playing key roles in the corporate environment.
Those who understand what data a company possesses, and how it flows both
from department to department within the company and between the company
and its customers, suppliers, and other external entities, are in the best position to
understand how the company really functions. Data administrators often come from
the ranks of systems analysts and, indeed, some companies use the term ‘‘data
analyst’’ to describe them. What are the responsibilities of the data administration
function? They are listed in Figure 10.2 and discussed below.

Data Coordination

With the prominent role of data in the corporate environment, its accuracy is of the
utmost importance. But in the centralized/decentralized environment, with data and
copies of data scattered among mainframe computers, local-area network servers,
and even PCs, the possibilities of inconsistency and error increase. There is nothing
more annoying than two people making important presentations in a meeting and
showing different figures that should be the same. It is up to the data administrators

The Responsibilities of Data Administration 275

FIGURE 10.2
The responsibilities of data administration

• Data coordination

• Data planning

• Data standards

• Liaison to systems analysts and programmers

• Training

• Arbitration of disputes and usage authorization

• Documentation and publicity

• Data’s competitive advantage

to keep track of the organization’s data including downloading schedules, updating
schedules and responsibilities, and interchanging data with other companies. This
is not to suggest that data administration should try to control all the databases on
all the employees’ PCs. That would be impossible. But total data anarchy is not
desirable either, and it is the job of the data administrators to maintain a reasonable
amount of control over the company’s data.

Data Planning

Data planning begins with the determination of what data will be needed for future
company business efforts and what applications will support them. This may be
limited to data generated and used internally within the company. However, today
it often means coordinating with other companies in a supply chain or acquiring
external customer data for use in marketing. In either case, there is the need to
plan for integrating the new data with the company’s existing data. A number of
methodologies have been developed to aid in data planning. These methodologies
take into account the business processes that the company performs as part of its
normal operations and add the data needed to support them. While they generally
operate at a high ‘‘strategic’’ level and may not get into the details of individual
attributes, they do provide a broad roadmap to work from.

Related to strategic data planning is the matter of what hardware and software
will be needed to support the company’s information systems operations in the
future. The questions involved range from such relatively straightforward matters
as how many disk drives will be needed to contain the data to broader issues of
how much processing power will be needed to support the overall IS environment.
Another data planning issue is how metadata and the data dictionary concept
(discussed later in this chapter) should be put to use. This involves what data should
be stored in the data dictionary, to what uses the data dictionary should be put, who
should interact with the data dictionary, and how and on what kind of schedule
all of this should take place. Yet another data planning issue that occasionally
faces companies is the migration of old, pre-database data and applications into the
company’s database environment. There is also the problem of migrating data from
one DBMS to another as the company’s software infrastructure changes.

Data Standards

In order to reduce errors, improve performance, and enhance the ability of one
IS worker to understand the work done by another, it is important for the data

276 C h a p t e r 10 Data Administration, Database Administration, and Data Dictionaries

administration function to set standards regarding data and its use. One example
of standards is controlling the way that attribute names, table names, and other
data-related names are formed. Attribute names must be meaningful and consistent.
The company can’t have its human resources department use Serial Number as
the attribute name for employee numbers while at the same time its manufacturing
department uses it for finished product serial numbers. Similarly, there is a problem
if the human resources department tries to use Serial Number and Employee Number
in different tables to represent the employee number. Another example of standards
setting is insisting on consistency in the way the programs that access the database
are written, especially in regard to the database call instructions. Care here can
help to prevent database-call-related performance problems, as well as to ease
maintenance by having standard, readily understood instructions.

Data standards also come into play in the IS interactions between companies
in supply chains. When data is exchanged using electronic data interchange (EDI)
technology, adjustments have to be made to take into account attribute structures
and other differences in the information systems of the two companies involved.

Liaison to Systems Analysts and Programmers

In the role of liaison to application developers, data administrators (often called ‘‘data
analysts’’ in this role) are responsible for providing support to the systems analysts
and programmers in all matters concerning the data needed by an application.
During the systems analysis phase of application development, the support may
include help in determining what data is needed for the application and which of
the data items needed for the application already exist in the active database.

Another aspect of such liaison activity, which is really a topic in itself, is
the question of database design. Data analysts are generally involved in database
design at some level, but deciding exactly what that level of involvement should
be depends on a number of factors. In an IS environment in which the data
administration organization is very strong and in which there is a significant amount
of data sharing among different applications and different functional areas of
the company, the data analysts may do all of the logical database design work
themselves. Here again, they can stand as an impartial group creating the best
design for the overall good of all of the users. The other choice is for the application
developers to do the database design with either active consultation by the data
analysts, or approval responsibility after the fact by the data analysts. In the active
consultation role, the data analysts lend their expertise to the effort, as well as
determining how the new data should mesh with data in the existing database,
if there is to be such a merging. In the approval role, the application developers
(usually the lead programmers for this activity) design the database, which is then
shown to the data analysts for discussion and approval.

Training

In some companies, data administration is responsible for training all those in the
company who need to understand the company’s data and, in some cases, the DBMS
environment. Management personnel should understand why the database approach
is good for the company and for their specific individual functions. Users must
understand why the shared data is secure and private. Application developers must
be given substantial training in how to work in the database environment, including

The Responsibilities of Data Administration 277

training in database concepts, database standards, how to write DBMS calls in their
programs, possibly how to do database design, how to use the data dictionary to
their advantage, and in general, what services they can expect to be provided by
data and database administration.

Arbitration of Disputes and Usage Authorization

To introduce this heading, we should spend a moment on the question of data
‘‘ownership.’’ Who in a company ‘‘owns’’ a piece of data or a database? To be
technical, since data is a resource of value to the company, the data ‘‘belongs to’’
the company’s owners or stockholders. But in practical terms, in many companies
data is controlled by its user or primary user. In this case, data and database
administration act as ‘‘custodians’’ of the data in the sense of providing security,
backup, performance monitoring, and other such services. In some companies with
extensive data sharing, ownership responsibility actually falls to data administration
itself.

If ownership has been established and a new application requires the use of
existing data, then it is the job of data administration to act as an intermediary and
approach the owner of the data with the request for data sharing. This can also
happen if someone in the company simply wants to query someone else’s database.
If there is a dispute over such data sharing, then the data administration group acts as
an arbitrator between the disagreeing parties. Incidentally, the data administration
group may also find itself acting as arbitrator between two database users who are
sharing the same CPU and vying for better performance.

Documentation and Publicity

Using the data dictionary as its primary tool, the data management function is
responsible for documenting the data environment. This documentation includes a
description of the data and the databases, plus programs, reports, and which people
have access to these items. A more complete list of such metadata items will be
given later in this chapter in discussing data dictionaries.

As a related issue, the data management group should perform a publicity
function, informing potential users of what data already exists in the database.
Knowing what data exists might encourage employees to think about how they can
use the company’s data to gain competitive advantages that did not previously exist.
They may discover how to automate more of their work and how to integrate their
work more directly with related business processes that are already automated.

Data’s Competitive Advantage

Earlier, we talked about the idea of data providing a competitive advantage for
the company. Another point is that data administrators, through their knowledge of
the company’s data and how it flows from one company function to another, are
in a unique position to understand how the company ‘‘works.’’ This is especially
true since virtually all company functions today are dependent on information
systems. Combining these two concepts, a very important and very high-profile
responsibility of the data administration function is to respond to questions about
how the company’s business procedures can be adjusted or modified to improve its

278 C h a p t e r 10 Data Administration, Database Administration, and Data Dictionaries

operating efficiency. This can also extend to data administration taking the initiative
and making suggestions for improvement on its own. This capability, which can
clearly lead to decreased costs and improved profits for the company, makes data
administration a particularly important company function.

THE RESPONSIBILITIES OF DATABASE ADMINISTRATION

Database administration is a technical function that is responsible for the day-
to-day operations and maintenance of the DBMS environment, including such
related tools as the data dictionary. This is quite analogous to the role of the systems
programmers who are responsible for maintaining the mainframe operating systems.
Like operating systems, DBMSs tend to include many highly product-specific
features that require thorough training to handle. What are the responsibilities of
the database administration function? They are listed in Figure 10.3 and explained
as follows.

DBMS Performance Monitoring

One of the key functions performed by database administration is performance
monitoring. Using utility programs, the database administrators can gauge the
performance of the running DBMS environment. This activity has a number of
implications. It is important to know how fast the various applications are executing
as part of assuring that response time requirements are being met. Also, this type
of performance information is pertinent to future hardware and software acquisition
plans. Depending on the characteristics of the DBMS and the operating system it is
running under, the performance information may be used to redistribute the database
application load among different CPUs or among different memory regions within
a system. Finally, performance information can be used to ferret out inefficient
applications or queries that may be candidates for redesign.

An additional note is that the database administrators must interface with the IS
organization’s systems programming staff, which maintains the mainframe operating
systems. The systems programmers will also have performance and troubleshooting
responsibilities that may overlap with those of the database administrators. The net
of this is that it greatly facilitates matters if the two groups get along well with each
other and can work together effectively as need be.

DBMS Troubleshooting

Inevitably there will be times when a DBMS application fails during execution. The
reason can range from a bug in the application code to a hardware or system software
failure. The question is, ‘‘Whom do the users call when this happens?’’ In a strongly
controlled environment, the database administrators should be the troubleshooting
interface. The key to the troubleshooting operation is assessing what went wrong
and coordinating the appropriate personnel needed to fix it. These may include
server administrators, network administrators, application programmers, and the
data administrators themselves.

The Responsibilities of Database Administration 279

Y O U R

T U R N

10.1 THE DATA ADMINISTRATOR

There is no doubt that both the
amount of data that companies hold and the importance
of this data to the companies’ bottom lines are continually
increasing. This would seem to make data administrators
more and more important within their companies. Yet data
administration is often seen as a support function that is
a cost to a company with no clearly quantifiable benefit.

QUESTION:

Develop an argument in favor of dedicating more
resources to data administration even if the benefits
cannot be directly quantified.

DBMS Usage and Security Monitoring

Database administrators keep track of which applications are running in the database
environment and can track who is accessing the data in the database at any moment.
There are software utilities that enable them to perform these functions. Monitoring
the users of the database environment is really done from several perspectives.
One is the issue of security: making sure that only authorized personnel access
the data. This includes instructing the system to allow new users to access the
database, as ordered by data administration personnel in conjunction with the data
owners. Another perspective is the need to maintain records on the amount of
use by various users of the database. This can have implications for future load
balancing and performance optimizing work, and may also be used in allocating
system costs among the various users and applications. And a related concern is
database auditing. Even assuming that only authorized users have accessed the
database, accounting and error correction require that a record be kept of who has
accessed and who has modified which data items. Incidentally, if the data auditing
function is to be done, the tool that lets it be accomplished is a journal or log similar
to the one used for backup and recovery. Depending on the nature of the auditing,
this journal or log may have to record all simple data accesses, as well as all data
modifications.

Data Dictionary Operations

The database administration group is responsible for the operational aspects, as
opposed to the planning aspects, of the data dictionary, to be discussed shortly,
and any other metadata tools. It also provides dictionary access to other personnel

F IGURE 10.3
The responsibilities of database
administration

• DBMS performance monitoring

• DBMS troubleshooting

• DBMS usage and security monitoring

• Data dictionary operations

• DBMS data and software maintenance

• Database design

280 C h a p t e r 10 Data Administration, Database Administration, and Data Dictionaries

such as systems analysts, generates periodic data dictionary reports as required by
management, and answers management’s ad hoc questions about the data and the
IS environment. For example, systems analysts developing a new application may
want to find out if the data that they need in the new application already exists in the
company’s databases. IS management will want periodic reports on the company’s
databases, including a list of the tables and their sizes. An ad hoc query may include
which people had access to certain data that leaked out of the company! We will
discuss this more in the data dictionary section of this chapter below.

DBMS Data and Software Maintenance

Database administration personnel will be involved with a wide range of data and
software maintenance activities, to a greater or lesser degree depending on how the
IS department is organized. These activities include installing new versions of the
DBMS, installing ‘‘fixes’’ or ‘‘patches’’ (corrections) to the DBMS, performing
backup and recovery operations (as discussed in Chapter 11), and any other tasks
related to repairing or upgrading the DBMS or the database. One particular data
maintenance activity is modifying the database structures as new tables and attributes
are inevitably added. This is really also an issue of database design, which we come
to next.

Database Design

In the mix of centralized and decentralized IS environments that exist today, there
is a wide range in database administration responsibilities for database design.
For shared central databases, database administration is responsible for physical
database design and may also either be responsible for or be a participant in logical
database design. Notice that their responsibility for physical database design is
consistent with their expertise in the features (and idiosyncrasies!) of the DBMS
in use and with their overall responsibility for the performance of the DBMS
environment. For decentralized databases on LAN servers or even on PCs, database

Y O U R

T U R N

10.2 The Database Administrator

Many companies have decentralized
their information systems operations. This can involve
different corporate divisions in one country or different
divisions spread throughout several or many countries.
Another circumstance in which this can happen is when
a holding company owns a variety of independent
companies that may or may not involve the same industry.

QUESTION:
Consider one of these decentralized information systems

environments. Are database administrators more or

less important in these environments than in a central-
ized information systems environment? Why? Should
database administration be considered a cost that can
be reduced or eliminated in such an environment or a
critical need that should be enhanced?

Data Dictionaries 281

administrators’ role in database design is often more that of consultants who are
called in on request.

DATA DICTIONARIES

Introduction

The information systems function (and within it, the data and database administration
functions) is responsible for managing data as a corporate resource. Not only must
the data be stored but, like any other resource, there have to be provisions for
inputting more of it, outputting it (in the form of reports, query responses, data
transmissions to supply chain partners, etc.), and, most certainly, processing it! To
accomplish all this requires people, equipment (i.e., computers, disks, networks, and
so forth) and established procedures, standards, and policies. The question before
us now is, how does IS management keep track of all of this? But then, how does
any corporate function keep track of their resources and other responsibilities? With
information systems, of course! Does that mean that IS management can keep track
of its resources and responsibilities with information systems? The apparent answer
should be yes, perhaps even obviously yes. But this has been a long and at times
difficult road. Do you know the old story about the shoemaker’s children being the
last ones to get shoes, Figure 10.4? The shoemaker was so busy making shoes for
the other children of the town in order to make a living that his own children were
the last ones to get shoes. And the IS function has been so busy developing and
running systems to support all the other corporate functions that it was a long time
before it could invest the resources to develop information systems to support itself.

What we are talking about here comes under the general term metadata,
literally data about data. What data does an IS function need to manage itself and
what kinds of tools can it employ to store and handle the data? For a long time,
the term for such a metadata storage tool has been the data dictionary, literally a
database about data. More recently, the term data repository has come into vogue.
Also, the term data catalog has taken on certain specific meanings. We will discuss

Personnel
Dept.

Manufacturing
Dept.

Accounting
Dept.

Finance
Dept.

Information Systems
Dept.

F IGURE 10.4
The shoemaker’s children are the last ones to get shoes

282 C h a p t e r 10 Data Administration, Database Administration, and Data Dictionaries

all of these terms and their implications in the rest of this chapter. But, since the
metadata concept can be hard to grasp at first, let’s begin with a simple but concrete
example: part of a data dictionary.

A Simple Example of Metadata

Figure 10.5 once again shows the General Hardware Company’s relational database.
Recall that among the entities that General Hardware has to keep track of are
salespersons and customers. Each row of the SALESPERSON table describes one
entity, i.e. one salesperson. Each column of the SALESPERSON table describes
one kind of attribute or feature or fact about a salesperson. Similar statements can
be made for the CUSTOMER table. Why are we belaboring these points this late
in the book? To contrast them with the tables of a data dictionary. We know that
the SALESPERSON and CUSTOMER tables exist to help the company’s sales
function conduct its business. Today, we take this kind of database support of

F IGURE 10.5
The General Hardware Company relational
database

OFFICE

Office
Number Telephone Size

SALES

Salesperson Product
Number Number Quantity

PRODUCT

Product Product
Number Name Unit Price

CUSTOMER EMPLOYEE

Customer Employee Employee
Number Number Name Title

CUSTOMER

Customer Customer Salesperson
Number Name Number HQ City

SALESPERSON

Salesperson Salesperson Commission Year Office
Number Name Percentage of Hire Number

Data Dictionaries 283

company functions, as provided by the company’s information systems, almost for
granted. But do all company functions have database support? Sales, personnel,
accounting, finance, product development, manufacturing, and customer support
certainly do. But what about information systems themselves?

Figure 10.6 shows two of the tables of a simple data dictionary, a database
designed to help the IS function manage its own responsibilities. Again, we know
that the sales function wants to keep track of salespersons and customers. So, what
does the IS function want to keep track of? Two entities that IS must manage are
the tables and attributes in the company’s databases and more broadly in its IS
environment. IS must have a complete list of all of the tables in the company’s
databases (at least in its central, shared databases), plus detailed data about the
tables. It also has to track the attributes that are in the tables. Thus Figure 10.6
shows a TABLES table and an ATTRIBUTES table. That’s right, a data dictionary
table listing the company’s tables and a data dictionary table listing the attributes in
the company’s tables.

In the SALESPERSON table, each row represents one of the entities: a
salesperson. In the CUSTOMER table, each row represents a customer. The
equivalent in the data dictionary is that each row of the TABLES table represents
one of the tables in the company’s database and each row of the ATTRIBUTES table
represents one of attributes in the tables in the company’s database. Thus in this
example, we see that each row of the TABLES table in Figure 10.6 represents one

F IGURE 10.6
Two data dictionary tables

(a) TABLES table

Table Table Disk
Name Length Number

Salesperson 500 A23

Customer 6,400 A23

Customer Employee 127,000 A23

Product 83,000 A47

Sales 273,000 A47

Office 600 A47

(b) ATTRIBUTES table.

Attribute Attribute Attribute
Name Type Length

Salesperson Number Numeric 3

Salesperson Name Alphabetic 20

Commission Percentage Numeric 2

Year of Hire Numeric 4

Customer Number Numeric 4

Customer Name Alphabetic 20

HQ City Alphabetic 15

284 C h a p t e r 10 Data Administration, Database Administration, and Data Dictionaries

F IGURE 10.7
A data dictionary table representing the
many-to-many relationship between the
TABLES table and the ATTRIBUTES table

Table Attribute
Name Name

Salesperson Salesperson Number
Salesperson Salesperson Name
Salesperson Commission Percentage
Salesperson Year of Hire
Customer Customer Number
Customer Customer Name
Customer Salesperson Number
Customer HQ City

of the tables of General Hardware’s database in Figure 10.5. Also, each row of the
ATTRIBUTES table in Figure 10.6 represents one of the attributes in Figure 10.5.

If the sales function has decided that Salesperson Number, Salesperson Name,
Commission Percentage, and Year Of Hire are attributes that it must store for each
salesperson, and Customer Number, Customer Name, Salesperson Number, and HQ
City are attributes that it must store for each customer, what are the attributes for
tables and attributes that IS feels it must store in the data dictionary? Figure 10.6a
shows that the attributes for tables are Table Name, Table Length (number of
records), and Disk Number (the disk on which the table is stored).The attributes for
attributes (yes, that’s correct, think about it!) shown in Figure 10.6b are Attribute
Name, Attribute Type, and Attribute Length (in bytes).

As in any database, in addition to keeping track of the basic facts about the
represented entities, a data dictionary must keep track of the relationships between
the entities. The data dictionary table in Figure 10.7 represents the many-to-many
relationship between the tables and attributes in the data dictionary’s TABLES
table and ATTRIBUTES table. Demonstrating the nature of the many-to-many
relationship between tables and attributes, first Figure 10.7 obviously shows that
each table has several attributes. But also notice that the Salesperson Number
attribute is associated with two tables, both the SALESPERSON and CUSTOMER
tables (because it is the primary key of the SALESPERSON table and a foreign key
in the CUSTOMER table).

Thus, the tables of Figure 10.6 and Figure 10.7 contain metadata, data about
the company’s data. How is the data organized? What are the data structures called?
Where is the data stored? How much data is there? These questions point to the
essence of metadata. Now, let’s see how it has evolved.

Passive and Active Data Dictionaries

Definitions and Distinctions Commercially available data dictionaries, which date
from the late 1970s, are passive in nature. Basically a passive data dictionary is one
used just for documentation purposes. Data about the entities in the IS environment
are entered into the dictionary and cross-referenced as one-to-many and many-to-
many relationships. Requests for information in the forms of reports and queries
about the dictionary’s contents are run as needed. The passive data dictionary is
simply a self-contained database used for documenting the IS environment.

Data Dictionaries 285

FIGURE 10.8
Data dictionary sample entities

• Data-Related Entities
■ Databases
■ Tables
■ Attributes
■ Web Pages

• Software-Related Entities
■ Application Programs
■ Database Management Systems
■ Jobs

• Hardware-Related Entities
■ Computers
■ Disks
■ Local Area Networks

• Outputs
■ Reports
■ Queries

• People

In contrast, an active data dictionary is one that interacts with the IS
environment on a real-time basis. The nature of the interaction can involve input
into the data dictionary, output from it, or both. When a data dictionary is active
in terms of input, an event taking place in the IS environment, such as the creation
of a new database table, automatically results in new data (about this event)
being input into the data dictionary. When a data dictionary is active in terms of
output, responses from the dictionary are an integral part of the running of the IS
environment. For example, the data dictionary may contain data about who in the
company is authorized to access particular tables. If the data dictionary must be
‘‘consulted’’ for this data every time someone tries to access a table, then the data
dictionary is considered active in the output sense.

Entities and Attributes In the earlier example, we discussed tables and attributes
as two possible data dictionary entities. Figure 10.8 shows a broader range of
possibilities. This is not intended to be a complete list that fits the needs of all
companies. In fact, one of the principles of the data dictionary concept is to make
the data dictionary expandable and customizable to a company’s particular needs.

There are two classes of attributes for data dictionary entities: those that are
of a general nature and are likely to apply to any of the entities and those that are
specific to particular data dictionary entities. An example of a general attribute is
‘‘Name.’’ Most data dictionary entities must have a name or some other identifier.
By far most data dictionary attributes, however, are specific to particular entities.
Some examples include the Value Range of a numeric attribute, the Length of a

286 C h a p t e r 10 Data Administration, Database Administration, and Data Dictionaries

F IGURE 10.9
Data dictionary sample relationships

• Table (or file) Construction: Which attributes (or fields) appear in which
tables (or files).

• Security: Which people have access to which databases or tables or files.

• Impact of Change: Which programs might be affected by changes to which
tables or files. (Note: This has become much less of an issue due to the data
independence of relational databases.)

• Physical Residence: Which tables or files are on which disks.

• Program Data Requirements: Which programs use which tables or files.

• Responsibility: Which people are responsible for updating which databases
or tables or files.

record or table row, the Home Address of a person, the Capacity of a disk, the
Language that a program is written in, and so forth.

Relationships The relationship between almost any pair of data dictionary entities
can have value to IS management. Some examples of common data dictionary
relationships and the entities involved are shown in Figure 10.9. With such
relationships between the dictionary entities, data administration personnel can aid
in new software development, data security and privacy, change management, and
do a host of other IS environment tasks.

Uses and Users Data dictionaries can be of considerable use to a variety of people in
the corporate environment in general, as well as in the IS environment specifically.
Clearly, the heaviest users of the data dictionary will be IS management and the
data administration and database administration functions under them. The data
dictionary is fundamentally the database used to store the data about the data and
computer resources that these various people are charged with managing. Whether
producing periodic lists of databases or tables in the IS environment or responding to
ad hoc queries about which personnel had access to leaked data, the data dictionary
is the information resource for IS.

Systems analysts and program designers use the data dictionary in two major
ways. One is as a source of information about what entities, attributes, and so forth
already exist in the IS environment that might be needed in a new application
development effort underway. If the data needed for a new system already exists,
then the new application may be able to use it. If there are existing database
structures that the application can add on to in order to satisfy its requirements, then
that might yield a large cost saving. In those and related situations, the dictionary
is the repository of data to be searched. The other use of dictionaries for systems
analysts and designers is as a documentation device for the new information that is
generated as a result of their application development efforts. In this way, application
developers have a natural vehicle for documentation and the data dictionary has a
natural way of being populated with data concerning new applications.

Corporate employees in all functions and at almost all levels can benefit
from the data dictionary by using it to discover the data available in the company.
Exploring new ways to use the data to improve their own responsibilities will help
the company as a whole. Finally, there is the benefit to corporate management. As
we said earlier, it becomes increasingly important for management to understand
the nature of the data in its systems, which mirrors the workings of the organization,
in order to have the best grasp on how the company functions.

Summary 287

Relational DBMS Catalogs

An integral part of every relational DBMS is its catalog. A relational catalog is
a highly active but limited scope data dictionary that is very closely tied to the
operations of the relational DBMS. Not surprisingly, the relational catalog is itself
composed of relational tables and may be queried with standard SQL commands.
Typical database entity data stored in relational catalogs includes databases, tables,
attributes, views, indexes, users and disks. At the attribute level, the relational
catalog will note such important facts as which attributes in the database are unique.
Notice that all of these entities are very closely tied to the running of the relational
DBMS. Unlike general-purpose data dictionaries, relational catalogs do not include
such entities as reports and non-relational files.

The main purpose of the relational catalog is to accurately support the relational
query optimizer. As we discussed earlier in the book, when a query is posed to the
relational DBMS, the relational query optimizer tries to find an efficient way or
‘‘access path’’ to satisfy it. In order to accomplish this, the optimizer must have a
source of complete and absolutely accurate data about the database. It must know
what attributes are in the tables, which attributes are indexed, which attributes are
unique, and whatever other data will help it to come up with an efficient solution. It
finds all of this data in the relational catalog. In order to keep the relational catalog
absolutely accurate, it must be highly active in data dictionary terms and must be
updated in a mechanical and automated way. The system can’t take the chance that
a human inputting data into the relational catalog might make a mistake. So, input to
the relational catalog is accomplished programmatically as changes to the database
environment occur. For example, if the relational DBMS is instructed to create a
new table, it does two things. It creates the new table and it automatically inputs
data about the new table into the relational catalog. This is the only way to assure
that the relational catalog will be accurate.

Another use of the relational catalog, which we already spoke about generically
when discussing data dictionaries above, is to provide a ‘‘roadmap’’ through the
database data for anyone who wants to query the data or explore new ways to use
the data.The relational DBMS checks the user authorization data in the catalog
before it allows a user to retrieve data he is requesting with a SELECT statement or
to update, delete, or insert records in application tables.

Data Repositories

The latest realization of the metadata concept is known as the data repository. A
data repository is, in effect, a large-scale data dictionary that includes entity types
generated and needed by the latest IS technologies. One popular usage of the term
data repository is associated with CASE (Computer-Aided Software Engineering)
software. In the CASE environment, the data repository holds the same types of data
that traditional data dictionaries hold, plus CASE-specific data such as reusable code
modules. The term data repository has also been associated with object-oriented
database environments in which OODBMS-specific entity types such as objects are
included.

SUMMARY

Data administration and database administration are critical information systems
functions in today’s information-dependent corporate environment. The data has to

288 C h a p t e r 10 Data Administration, Database Administration, and Data Dictionaries

be managed as any corporate resource would be. Data and database administration
promote the sharing of data as a corporate resource, efficiency in job specialization
related to data functions, efficiency in the operational management of data, and
competence in such related issues as the management of externally acquired
databases and the management of data in decentralized environments.

Data administration is the corporate function that is responsible for data
coordination, data planning, data standards, liaison to systems analysts and pro-
grammers, training, arbitration of disputes and usage authorization, documentation
and publicity, and the promotion of data’s competitive advantage. Database admin-
istration is the corporate function responsible for DBMS performance monitoring,
DBMS troubleshooting, DBMS usage and security monitoring, data dictionary
operations, DBMS data and software maintenance, and database design.

Data dictionaries are databases that store metadata or ‘‘data about data.’’ They
can be active or passive. Important implementations of the metadata concept include
relational DBMS catalogs and data repositories.

KEY TERMS

Active data dictionary
Arbitration
Data administration
Data analyst
Data coordination
Data dictionary
Data ownership

Data planning
Data repository
Data standards
Database administration
Decentralized environment
Documentation
Job specialization

Metadata
Passive data dictionary
Performance monitoring
Relational catalog
Security monitoring
Troubleshooting
Usage monitoring

QUESTIONS

1. What is data administration?
2. What is database administration?
3. What are the advantages of having data administra-

tion and database administration departments?
4. Explain and defend the following statement: Data is

a corporate resource and should be managed in the
same manner in which other corporate resources are
managed.

5. Why is it important in terms of efficiency in job spe-
cialization to have data and database administration
specialists?

6. What is the importance in terms of externally
acquired databases of data and database adminis-
tration?

7. Defend the following statement: Data and database
administration are even more important in the
decentralized IS environment than in the centralized
one.

8. List and briefly explain five major responsibilities
of data administration.

9. Why is it important that data administrators perform
a data coordination role?

10. What kinds of planning do data administrators have
to do regarding data?

11. Defend or refute the following statement: Current
IS technologies and practices make having data
standards more important than ever before.

12. In general, what are data administration’s responsi-
bilities to the professional and managerial employ-
ees of the company? Concentrate on training, pub-
licity, and liaison tasks.

13. Why might data administration have to serve as the
arbitrator of disputes?

14. List and briefly explain five major responsibilities
of database administration.

15. Discuss database administration’s role in perfor-
mance monitoring and troubleshooting.

16. How do database administration’s responsibilities to
the data dictionary differ from data administration’s?

Minicases 289

17. Describe the role of database administration in
database design and explain why that role makes
sense.

18. What is metadata?
19. What is a data dictionary?
20. Explain in your own words why a data dictionary

in a relational DBMS environment would have a
‘‘Tables table.’’

21. What is the difference between an active and a
passive data dictionary?

22. List some typical data dictionary entities.
23. List some typical uses of the data dictionary.
24. How does a relational catalog differ from a general-

purpose data dictionary? What is its role in the
relational DBMS environment?

25. How does a data repository differ from a general-
purpose data dictionary?

EXERCISES

1. You have just been named Director of Data
Administration of General Hardware Co. General
Hardware maintains a large central IS organization
with several operational relational databases at
its headquarters. It also has databases on several
local-area network servers, some located at its
headquarters and some in regional offices. Of
course, there are many relational databases on
individual employees’ PCs, too. Certain data is sent
from the central databases to the LAN databases
nightly.

You have been given a free hand to create
a data administration department and supporting
database administration departments for General
Hardware and its IS environment. Design your data
and database administration functions. Include their
responsibilities and explain how they will add value
to the corporation.

2. Good Reading Bookstores Database.
a. Create a data dictionary TABLES table and an

ATTRIBUTES table and enter data in them for
Good Reading Bookstores database shown in
Figure 7.21. Your answer should be based on the
format shown in Figure 10.6. Use your judgment
as to attribute type values, length values, etc.

b. Create a relationships table for this tables and
attributes data, using the format in Figure 10.7.

3. Best Airlines Mechanics Database.
a. Create a data dictionary TABLES table and an

ATTRIBUTES table and enter data in them for
Best Airlines’ mechanics database, shown in
Exercise 8.5. Your answer should be based on the
format shown in Figure 10.6. Use your judgment
as to attribute type values, length values, etc.

b. Create a relationships table for this tables and
attributes data, using the format in Figure 10.7.

MINICASES

1. Happy Cruise Lines.
a. You have just been named Director of Data Admin-

istration of Happy Cruise Lines. Happy Cruise Lines
maintains a central IS organization with several oper-
ational relational databases on several large servers
at its headquarters. Each of its cruise ships has a
medium-scale server on board with its own databases
that help manage the running of the ship. Real-time
transmissions are made via satellite between head-
quarters and the ships that keep both the headquarters
and shipboard databases constantly up to date.

You have been given a free hand to create a data
administration department and supporting database

administration departments for Happy Cruise Lines
and its IS environment. Design your data and
database administration functions. Include their
responsibilities and explain how they will add value
to the corporation.

b. Create a data dictionary TABLES table and an
ATTRIBUTES table and enter data in them for Happy
Cruise Lines’ database, shown in Minicase 5.1. Your
answer should be based on the format shown in
Figure 10.6. Use your judgment as to attribute type
values, length values, etc.

c. Create a relationships table for this tables and
attributes data, using the format in Figure 10.7.

290 C h a p t e r 10 Data Administration, Database Administration, and Data Dictionaries

2. Super Baseball League.
a. You have just been named Director of Data Admin-

istration of the Super Baseball League. The Super
Baseball League maintains a substantially decentral-
ized IS organization with the focus on the individual
teams. Each team has a server at its stadium or
offices near the stadium. The League has a server at
its headquarters. Data collected at the team locations,
such as player statistics updates and game attendance
figures, is uploaded nightly to the server at league
headquarters.

You have been given a free hand to create a data
administration department and supporting database
administration departments for the Super Baseball

League and its IS environment. Design your data
and database administration functions. Include their
responsibilities and explain how they will add value
to the corporation.

b. Create a data dictionary TABLES table and an
ATTRIBUTES table and enter data in them for
the Super Baseball League database (including
the STADIUM table) shown in Minicase 5.2.Your
answer should be based on the format shown in
Figure 10.6. Use your judgment as to attribute type
values, length values, etc.

c. Create a relationships table for this tables and
attributes data, using the format in Figure 10.7.

C H A P T E R 11

DATABASE CONTROL
ISSUES: SECURITY, BACKUP

AND RECOVERY,
CONCURRENCY

W e’ve said that data is a corporate resource and that corporate resources must be
carefully managed. Different corporate resources have different management

requirements. Money must be protected from theft. Equipment must be secured against
misuse. Buildings may require security guards. Data, too, is a corporate resource and
has its own peculiar concerns that we have termed database control issues. We will
discuss the three main database control issues in this chapter. The first, data security,
involves protecting the data from theft, malicious destruction, unauthorized updating, and
more. The second, backup and recovery, refers to having procedures in place to
recreate data that has been lost for any reason. The third, concurrency control, refers
to problems that can occur when two or more transactions or users attempt to update a
piece of data simultaneously. Certainly, these very important issues require well thought out
and standardized solutions. Indeed, entire books have been written about each one! Our
goal in this chapter is to introduce each of these topics, discuss why they are important,
explain what can go wrong, and highlight several of the main solutions for each.

OBJECTIVES

■ List the major data control issues handled by database management systems.
■ List and describe the types of data security breaches.
■ List and describe the types of data security measures.
■ Describe the concept of backup and recovery.
■ Describe the major backup and recovery techniques.
■ Explain the problem of disaster recovery.
■ Describe the concept of concurrency control.
■ Describe such concurrency control issues and measures as the lost update problem,

locks and deadlock, and versioning.

292 C h a p t e r 11 Database Control Issues: Security, Backup and Recovery, Concurrency

CHAPTER OUTLINE

Introduction
Data Security

The Importance of Data Security
Types of Data Security Breaches
Methods of Breaching Data Security
Types of Data Security Measures

Backup and Recovery
The Importance of Backup and

Recovery
Backup Copies and Journals
Forward Recovery

Backward Recovery
Duplicate or ‘‘Mirrored’’ Databases
Disaster Recovery

Concurrency Control
The Importance of Concurrency

Control
The Lost Update Problem
Locks and Deadlock
Versioning

Summary

INTRODUCTION

In today’s world, not a week goes by without a news story involving data being
compromised in some way. One week a hacker breaks into a company’s computer
and steals credit-card numbers. The next week someone breaks into the trunk of a
parked car and steals a laptop computer that turns out to have confidential data on
its hard drive. The week after that a hurricane or earthquake causes major damage
to some company’s computer center and a great deal of data is lost. And so on.

With industries of every kind as dependent on their data as they are today,
it is critical that they protect their information systems and the data they contain
as carefully as they can. This involves a wide range of technologies and actions
ranging from anti-virus software to firewalls to employee training to sophisticated
backup and recovery arrangements, and beyond (all of which we will delve into in
this chapter). Companies invest a great deal of money in these because breaches in
computer and data security can lead to loss of profits, loss of the public’s trust, and
lawsuits. All of this has really become a major issue in information systems today.

CONCEPTS

IN ACT ION

11-A HILTON HOTELS

Hilton Hotels is one of the world’s
premiere lodging companies. Since opening its first hotel
in 1919, Hilton has grown to a worldwide presence
of over 2000 hotel properties today. Headquartered in
Beverly Hills, CA, the company operates hotels under
the names Hilton, Conrad, Doubletree, Embassy Suites,
Hampton Inn, Hampton Inns and Suites, Hilton Garden
Inn, and Homewood Suites by Hilton. Among the most
famous Hilton Hotels are the Beverly Hilton in Beverly
Hills, CA, the Waldorf Astoria in New York City, and the
Hilton Hawaiian Village.

Hilton is a leader in information technology in
its industry, and one of its leading-edge database
applications is its Guest Profile Manager (GPM.) This
is a customer relationship management (CRM) system
that strives to achieve guest recognition and guest
acknowledgement at all customer ‘‘touch points.’’ These
include email, contact at the hotel front desk, special
channels on the in-room television, the Audix voice mail
system, and post-stay surveys. For example, in the CRM
spirit of developing a personalized relationship with the
customer, when a guest checks in at any Hilton property,

Data Security 293

‘‘Photo Courtesy of Hilton Hotels’’

the front desk clerk receives information on their terminal
that allows them to say, ‘‘Welcome back to Hilton, Mr.
Smith,’’ or ‘‘Welcome, Ms. Jones. I understand this is
your first visit to this hotel (or to Hilton Hotels).’’ Both
the front desk clerk and the housekeeping staff also get
information on customer preferences and past complaints,
such as wanting a room with good water pressure and
not wanting a noisy room. Targeted customers such as
frequent guests might find fruit baskets, bottled water,
or bathrobes in their rooms. The system even prepares
personalized voice-mail greetings on the guest’s in-room
telephone.

The system, uses an Informix DBMS on a Sun
Microsystems platform. The database contains both
current reservations information and guest history, making
it an interesting hybrid of a transaction processing
system and a data warehouse. The pending reservations
relation contains about two million records, while the
one-year ‘‘stay summary’’ contains 60 million records.
The database is shared for reservations, CRM, and other
purposes. In addition, some of the data is copied into
an offline data mart for marketing query purposes, using
SQL Server as the DBMS and SAS software. Some of the
data is organized in a classic data mart ‘‘star schema’’
arrangement using Epiphany software. In addition to
Hilton’s access by its hotels and marketing staff, Hilton
provides its guests with access to their own records,
including their history data, through the Hilton web site.

DATA SECURITY

The Importance of Data Security

With data taking its place as a corporate resource and so much of today’s business
dependent on data and the information systems that process it, good data security is
absolutely critical to every company and organization. A data security breach can
dramatically affect a company’s ability to continue normal functioning. But even
beyond that, companies have a responsibility to protect data that often affects others
beyond the company itself. Customer data, which for example can be financial,
medical, or legal in nature, must be carefully guarded. When customers give a
company personal data they expect the company to be very careful to keep it
confidential. Banks must be sure that the money they hold, now in the form of data,
cannot be tampered with or leaked outside of the bank. Individuals want personal
information that insurance companies keep about them to remain confidential. Also,

294 C h a p t e r 11 Database Control Issues: Security, Backup and Recovery, Concurrency

when a company has access to a trading partner’s data in a supply chain arrangement,
the partner company expects its data to remain secure. Governments, charged with
protecting their citizens, must protect sensitive defense data from unauthorized
intrusion. And the list goes on and on.

Types of Data Security Breaches

There are several different ways that data and the information systems that store
and process it can be compromised.

Unauthorized Data Access Perhaps the most basic kind of data security breach is
unauthorized data access. That is, someone obtains data that they are not authorized
to see. This can range from seeing, say, a single record of a database table to
obtaining a copy of an entire table or even an entire database. You can imagine an
evil company wanting to steal a competitor’s customer list or new product plans,
the government of one country wanting to get hold of another country’s defense
plans, or even one person simply wanting to snoop on his neighbor’s bank account.
Sometimes the stolen data consists of computer passwords or security codes so that
data or property can be stolen at a later time. And a variety of different people can be
involved in the data theft, including a company’s own employees, a trading partner’s
employees, or complete outsiders. In the case of a company’s own employees, the
situation can be considerably more complicated than that of an outsider breaking
in and stealing data. An employee might have legitimate access to some company
data but might take advantage of his access to the company’s information systems
to steal data he is not authorized to see. Or he might remove data from the company
that he is authorized to see (but not to remove).

Unauthorized Data or Program Modification Another exposure is unauthorized data
modification. In this situation, someone changes the value of stored data that they are
not entitled to change. Imagine a bank employee increasing her own bank account
balance or that of a friend or relative. Or consider an administrative employee in a
university changing a student’s grade (or, for that matter, the student breaking into
the university computer to change his own grade!). In more sophisticated cases a
person might manage to change one of a company’s programs to modify data now
or at a later time.

Malicious Mischief The field of reference has to be expanded when discussing
malicious mischief as a data security issue. To begin with, someone can corrupt
or even erase some of a company’s data. As with data theft, this can range from
a single record in a table to an entire table or database. But there is even more to
malicious mischief. Data can also be made unusable or unavailable by damaging the
hardware on which it is stored or processed! Thus, in terms of malicious mischief,
the hardware as well as the data has to be protected and this is something that we
will address.

Methods of Breaching Data Security

Methods of breaching data security fall into several broad categories, Figure 11.1.
Some of these require being on a company’s premises while others don’t.

Data Security 295

Company OfficesSupply Chain
Partner

Computer

Customer
Computer

“Hacker”
Computer

Computer

Damaging
Hardware

Computer
Virus Database

Stealing Disks
or Computers

Intercepted
Communications

“Unauthorized
Access”

F IGURE 11.1
Data security breaches

Unauthorized Computer Access One method of stealing data is gaining unauthorized
access to a company’s computer and its data. This can be accomplished in a variety
of ways. One is by ‘‘hacking’’ or gaining access from outside the company. Some
hackers are software experts who can exploit faults in a company’s software. Others
use stolen identification names and passwords to enter a computer looking like
legitimate users. Indeed, as we suggested earlier, some data thieves actually are
legitimate users: company employees who have authorized access to the company’s
computer system but are intent on stealing data they are authorized to see or
breaking into databases for which they do not have access. In all these cases, data
is ‘‘downloaded’’ or copied and used illicitly from then on.

Intercepting Data Communications Intercepting data communications is the computer
version of the old concept of ‘‘wiretapping.’’ While data may be well protected
in a company’s computers, once it is transmitted outside the company it becomes
subject to being stolen during transmission. Some data transmission media are more
subject to interception than others. Tapping a simple ‘‘twisted-pair’’ telephone line
or a coaxial cable takes skill but is feasible. When data is bounced off satellites it
is also subject to interception. On the other hand, the light pulses going fiber-optic
transmission lines cannot be tapped.

Stealing Disks or Computers Can disks or even computers (with data on their hard
drives) be stolen? That would have been difficult years ago when all computers were

296 C h a p t e r 11 Database Control Issues: Security, Backup and Recovery, Concurrency

mainframes and all disks were very large. But today, it is very possible. Flash disks
and CDs have the potential to be stolen from company offices or, for example, from
hotel rooms in which company employees on travel are staying. Laptop computers
can be stolen, too, and many have been taken by organized teams of thieves as
the laptops go through airport security stations. Even desktop computers have been
stolen from company offices.

Computer Viruses A computer virus is a malicious piece of software that is
capable of copying itself and ‘‘spreading’’ from computer to computer on diskettes
and through telecommunications lines. Strictly speaking, a computer virus doesn’t
have to cause harm, but most are designed to do just that. Computer viruses have
been designed to corrupt data, to scramble system and disk directories that locate
files and database tables, and to wipe out entire disks. Some are designed to copy
themselves so many times that the sheer number of copies clogs computers and data
communications lines. Computer viruses that travel along data communications
lines are also called, ‘‘worms.’’

Damaging Computer Hardware All of the previous methods of breaching data
security have something in common: they’re deliberate. However, this last category,
damaging computer hardware, can be deliberate or accidental. Even when accidental,
the issue of damaging hardware has always been considered to fall into the computer
security realm. Computers and disks can and have been damaged in many ways and
it’s not been a matter of anything ‘‘high-tech,’’ either. They have been damaged or
ruined by fires, coffee spills, hurricanes, and disgruntled or newly fired employees
with hammers or any other hard objects handy. We will discuss security measures
for these problems but, in truth, no security measures for them are foolproof. That’s
one of the reasons that backup and recovery procedures, as discussed later in this
chapter, are so very important.

Types of Data Security Measures

With the critical importance of data and all of the possible threats to data security, it
is not surprising that the information systems industry has responded with an array
of data security measures to protect the data and the hardware on which it is stored
and processed, Figure 11.2.

Physical Security of Company Premises In the 1950s, some progressive companies
in New York and other large cities put their mainframe computers on the ground
floor behind big picture windows so that everyone could see how, well, progressive
they were. Those days are long gone. Today, suppose your company is located in
a skyscraper it shares with other companies. Where do you put your mainframe
computer (or your several LAN servers, which are often placed in the same room for
precisely the security reasons we’re talking about?) Here are some rules of thumb,
often learned from hard experience.

■ Don’t put the computer in the basement because of the possibility of floods.
■ Don’t put the computer on the ground floor because of the possibility of a truck

driving into the building, accidentally or on purpose. (I know of a company that
had its computer center in a low-rise building adjoining an interstate highway.

Data Security 297

Company OfficesData
Encryption

Supply Chain
Partner

Computer

Customer
Computer

Firewall
or Proxy

Computer

“Hacker”
Computer

Computer

DatabaseAntivirus
Software

Controlled
Access to
Database

Controlled
Access to
Computer
System

Physical Security
of Company Offices

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

Employee
Training

F IGURE 11.2
Data security measures

They eventually put up concrete barriers outside of the building because they
were concerned about just this possibility.)

■ Don’t put the computer above the eighth floor because that’s as high as firetruck
ladders can reach.

■ Don’t put the computer on the top floor of the building because it is subject to
helicopter landing and attack.

■ If you occupy at least three floors of the building, don’t put the computer on
your topmost floor because its ceiling is another company’s floor, and don’t put
the computer on your bottommost floor because its floor is another company’s
ceiling.

■ Whatever floor you put the computer on, keep it in an interior space away from
the windows.

Another issue is personnel access to the computer room. Obviously, such
access should be limited to people with a legitimate need to be in the room. Access
to the room is controlled by one or a combination of:

■ Something they know, such as a secret code to be punched in.
■ Something they have, such as a magnetic stripe card, possibly combined with a

secret code.
■ Some part of them that can be measured or scanned. These ‘‘biometric’’ systems

can be based on fingerprints, the dimensions and positions of facial features,
retinal blood vessel patterns, or voice patterns.

298 C h a p t e r 11 Database Control Issues: Security, Backup and Recovery, Concurrency

There are also ‘‘electric-eye’’ devices that protect against a second person following
right behind an authorized person into the secure room.

Believe it or not, a critical physical security issue involves the company’s
offices and cubicles. These contain PCs and possibly even LAN servers that contain
their own data and provide access to the company’s larger computers and to other
PCs and servers. Such a simple procedure as locking your office door when you
leave it, even for a short period of time, can be critical to data security. Logging
off or going into a password-protected mode, especially when doorless cubicles are
involved, is an alternative.

Controlled Access to the Computer System What if someone has gained access
to a company’s offices and tries to access the computer system and its database
from a PC or terminal from within? For that matter, what if someone tries to
access a company’s computer by dialing into it or otherwise accessing it through
telecommunications lines from the outside? The first line of defense to prevent
unauthorized entry to a computer system is to set up a combined ID tag/password
necessary to get into the system. ID tags are often publicly known (at least within
the company), but passwords must be kept secret, should be changed periodically,
and should not be written down, to reduce the risk of someone else learning them.
Passwords should not appear on the terminal screen when they are typed in, and the
user should create them himself to reduce the chance of his forgetting them. There
are a variety of rules of thumb for creating passwords. They should not be too long
or too short, say 6–12 characters. They should not be obvious, like a person’s own
name. They should not be so difficult to remember that the person herself has to
write them down, since this is a security exposure in itself because someone else
could see it.

Controlled Access to the Database An additional layer of data security controls
access to the data itself, once a legitimate user or an outsider has successfully gained
entry to the computer system. This layer involves restricting access to specific data
so that only specific people can retrieve or modify it. Some systems have such
controls in the operating system or in other utility software. Basically, these controls
involve a grid that lists users on one axis and data resources, such as databases or
tables, on another axis, to indicate which users are authorized to retrieve or modify
which data resources. Also, an additional layer of passwords associated with the
various data resources can be introduced Even after a legitimate user has given his
system password to gain entry to the computer system, these additional passwords
would be needed to gain access to specific data resources.

At the DBMS level, a user should not be able simply to access any data he
wants to Users have to be given explicit authorization to access data. Relational
DBMSs have a very flexible and effective way of authorizing users to access data
that at the same time serves as an excellent data security feature. We are referring
to the combination of the logical view, or simply the ‘‘view’’ concept, and the
SQL GRANT command. With this combination, users, either individually or in
groups (for example everyone in the Accounting Department), can be restricted to
accessing only certain database tables or only certain data within a database table.
Furthermore, their access to this data can be restricted to read-only access or can
include the ability to update data or even to insert new or delete existing rows in
the table. The GRANT command is supported by several tables in the relational
catalog.

Data Security 299

How do these two features work in combination? First, using the CREATE
VIEW statement, a view of a database table, consisting of a subset of the rows
and/or columns, is created and named. This is done with an embedded SELECT
statement! (Isn’t that clever?) The desired rows and/or columns are identified just
as if they were being retrieved, but instead of being retrieved they are given a view
name. Then, through the GRANT command, a user or a group of users is given
access to the view, not to the entire table. In fact, they may not even be aware that
there is more to the table than their subset. They simply use the view name in a
SELECT statement for data retrieval as if it were a table name.

But how is a user given the authority to access data through the use of a view
(or directly using a table name?) That’s where the GRANT command comes in. The
general form of the GRANT command is:

GRANT privileges ON (view or table) TO users [WITH GRANT OPTION].

Thus, the database administrator grants the ability to read, update, insert, or delete
(the ‘‘privileges’’) on a view or a table to a person or group of people (the ‘‘users’’).
If the WITH GRANT OPTION is included, this person or group can in turn grant
other people access to the same data.

So, to allow a person named Glenn to query the SALESPERSON table by
executing SELECT commands on it, you would issue the command:

GRANT SELECT ON SALESPERSON TO GLENN;

Data Encryption So far, all of the data security techniques we’ve covered assume
that someone is trying to ‘‘break into’’ the company’s offices, its computer, or
its DBMS. But data can be stolen in other ways, too. One is through wiretapping
or otherwise intercepting some of the huge amounts of data that is transmitted
today through telecommunications between a company and its trading partners or
customers. Another is by stealing a disk or a laptop computer outside a company’s
offices, for example in an airport. A solution to this problem is data encryption.
When data is encrypted, it is changed, bit by bit or character by character, into a
form that looks totally garbled. It can and must be reconverted, or decrypted, back to
its original form to be of use. Data may be encrypted as it is sent from the company’s
computer out onto telecommunications lines to protect against its being stolen while
in transit. Or the data may actually be stored in an encrypted form on a disk, say on
a diskette or on a laptop’s hard drive, to protect against data theft if the diskette or
laptop is stolen while an employee is traveling. Of course, highly sensitive data can
also be encrypted on a company’s disks within its mainframe computer systems or
servers. This adds a further level of security if someone breaks into the computer
system. Why not then simply encrypt all data wherever it may be? The downside to
encryption is that it takes time to decrypt the data when you want to use it and to
encrypt it when you want to store it, which can become a performance issue.

Data encryption techniques can range from simple to highly complex. The
simpler the scheme, the easier it is for a determined person to figure it out and
‘‘break the code.’’ The more complex it is, the longer it takes to encrypt and
decrypt the data, although this potential performance problem has been at least
partially neutralized by the introduction of high-performance hardware encryption
chips. Encryption generally involves a data conversion algorithm and a secret key.
A very simple alphabetic encryption scheme is as follows. Number the letters of the

300 C h a p t e r 11 Database Control Issues: Security, Backup and Recovery, Concurrency

alphabet from A to Z as 1 to 26. For each letter in the data to be encrypted, add the
secret key (some number in this case) to the letter’s numeric value and change the
letter to the letter represented by the new number. For example, if the key is 4, an
A (value 1) becomes an E (since 1+4 = 5 and E is the fifth letter of the alphabet),
a B becomes an F, and so on through the alphabet. W wraps around back to the
beginning of the alphabet and becomes an A, X becomes a B, and so forth. The
recipients must know both the algorithm and the secret key so that they can work
the algorithm in reverse and decrypt the data.

Modern encryption techniques typically encrypt data on a bit-by-bit basis
using increasingly long keys and very complex algorithms. Consider the data
communications case. The two major types of data encryption techniques are
symmetric or ‘‘private key’’ and asymmetric or ‘‘public key’’ encryption. Private
key techniques require the same long bit-by-bit key for encrypting and decrypting
the data (hence the term ‘‘symmetric’’). But this has an inherent problem. How
do you inform the receiver of the data of the private key without the key itself
being compromised en route? If the key itself is stolen, the intercepted data can
be converted once the conversion algorithm is identified. There are only a few
major conversion algorithms; the security is in the key, not in having a great many
different conversion algorithms.

The key transmission problem is avoided using algorithms that employ the
very clever public-key technique. Here there are two different keys: the public
key, which is used for encrypting the data, and the private key, which is used for
decrypting it (hence the term ‘‘asymmetric’’). The public key is not capable of
decrypting the data. Thus, the public key can be published for all the world to
see. Anyone wanting to send data does so in complete safety by encrypting the
data using the algorithm and the openly published public key. Only the legitimate
receiver can decrypt the data because only the legitimate receiver has the private
key that can decrypt the data with the published public key. The downside of the
public-key technique is that encrypting and decrypting tend to be slower than with
the private-key technique, resulting in slower application transactions when the
public-key technique is used.

A particularly interesting combination of private-key and public-key
encryption is used in Secure Socket Layer (SSL) technology on the World
Wide Web. Consider a person at home who wants to buy something from an online
store on the Web. Her PC and its WWW browser are the ‘‘client’’ and the online
store’s computer is the ‘‘server.’’ Both sides want to conduct the secure transaction
using private-key technology because it’s faster, but they have the problem that one
side must pick a private key and get it to the other side securely. Here are the basic
steps in SSL:

1. The client contacts the server.
2. The server sends the client its public key for its public-key algorithm (you’ll

see why in a moment). No one cares if this public key is stolen since it’s, well,
public!

3. The client, using a random number generator, creates a ‘‘session key,’’ the key
for the private key algorithm with which the secure transaction (the actual online
shopping) will be conducted once everything is set up. But, as we’ve described,
the problem now is how the client can securely transmit the session key it
generated to the server, since both must have it to use the faster private-key
algorithm for the actual shopping.

Data Security 301

4. Now, here is the really clever part of the SSL concept. The client is going to
send the session key to the server, securely, using a public-key algorithm and
the server’s public key. The client encrypts the session key using the server’s
public key and transmits the encrypted session key to the server with the public
key algorithm. It doesn’t matter if someone intercepts this transmission, because
the server is the only entity that has the decrypting private key that goes with its
public key!

5. Once the session key has been securely transmitted to the server, both the client
and the server have it and the secure transaction can proceed using the faster
private-key algorithm.

Anti-virus Software Companies (and individuals!) employ anti-virus software to
combat computer viruses. There are two basic methods used by anti-virus software.
One is based on virus ‘‘signatures,’’ portions of the virus code that are considered
to be unique to it. Vendors of anti-virus software have identified and continue to
identify known computer viruses and maintain an ever-growing, comprehensive
list of their signatures. The anti-virus software contains those signatures and on a
real-time basis can check all messages and other traffic coming into the computer
to see if any known viruses are trying to enter. The software can also, on request,
scan disks of all types to check them for viruses. The other anti-virus method is that
the software constantly monitors the computer environment to watch for requests
or commands for any unusual activity, such as, for example, a command to format a
disk, therefore wiping out all the data on it. The software will typically prevent the
command from executing and will ask the person operating the computer whether
she really wants this command to take place. Only if the operator confirms the
request will it take place.

Firewalls In today’s business world, where supply chain partners communicate
via computers over networks and customers communicate with companies’ Web
sites over the Internet, a tremendous amount of data enters and leaves a company’s
computers every day over data communications lines. This, unfortunately, opens the
possibility of a malicious person trying to break into a company’s computers through
these legitimate channels. Whether they are trying to steal, destroy, or otherwise
harm the company’s data, they must be stopped. Yet,these data communications
channels must be kept open for legitimate business with the company’s supply chain
partners and customers.

One type of protection that companies use to protect against this problem
is the ‘‘firewall.’’ A firewall is software or a combination of hardware and
software that protects a company’s computer and its data against external attack
via data communications lines. There are several types of firewalls. Some that
are purely software-based involve checking the network address of the incoming
message or components of the content of the message. An interesting firewall
that is a combination of hardware and software is the ‘‘proxy server,’’ shown in
Figure 11.3. The idea of the proxy server is that the message coming from an outside
computer does not go directly to the company’s main computer, say a mainframe
computer for the sake of argument. Instead, it goes to a separate computer, the
proxy server or firewall computer. The proxy server has software that takes apart the
incoming message, extracts only those legitimate pieces of data that are supposed
to go to the company’s mainframe, reformats the data in a form the company’s
mainframe is expecting, and finally passes on the reformatted data to the company’s

302 C h a p t e r 11 Database Control Issues: Security, Backup and Recovery, Concurrency

F IGURE 11.3
A firewall protecting a company’s
computer

Extracts
Data
From

Message

Firewall
or Proxy

Computer

Outside
Computer

Company
Mainframe
Computer

or Web Server

Message Data

main computer. In this way, any extraneous parts of the incoming message, including
any malicious code, never reaches the company’s main computer.

Training Employees A surprisingly important data security measure is training a
company’s employees in good security practices, many of which are very simple
and yet very important. What should the company tell its employees in terms of
good data security practices? Here are a few samples:

■ Log off your computer, or at least lock your office door, when you leave your
office, even for just a few minutes.

■ Don’t write your computer password down anywhere.
■ Don’t respond to any unusual requests for information about the computer system

(or anything else!) from anyone over the telephone. (People posing as employees
of the company have phoned company personnel and said that they need their
password to check out a problem in the computer system. And this trick has
worked!)

■ Don’t leave flash disks or other storage media lying around your office.
■ Don’t take flash disks or other storage media out of the building.
■ Don’t assume that a stranger in the building is there legitimately: always

check. (People have posed as telephone repairpersons to tap a company’s data
communications lines.)

Y O U R

T U R N

11.1 PROTECTING YOUR DATA

What about protecting your own
data on your own PC? (If you don’t have one, think
about someone you know who does.) Think about the
data you have stored on your PC’s hard drive. Have
you stored personal data such as your Social Security
Number or your birth date? Have you written personal
letters to people and stored them on your hard drive
before sending them? How about your bank records? Tax
records? Personal medical information?

QUESTION:

What kinds of personal data do you have on your PC?
Describe the methods you currently use to protect your
PC and its data. If it’s a laptop, what precautions do
you take when carrying it with you outside your home
or dorm? Do you think you should increase the security
in and for your PC? If so, how would you go about
doing it?

Backup and Recovery 303

BACKUP AND RECOVERY

The Importance of Backup and Recovery

Regardless of how sophisticated information systems have become, we have to be
prepared to handle a variety of events that can affect or even destroy data in a
database. Trouble can come from something as simple as a legitimate user entering
an incorrect data value or from something as overwhelming as a fire or some other
disaster destroying an entire computer center and everything in it. Thus the results
can range in consequence from a single inaccurate data value to the destruction
of all the installation’s databases, with many other possibilities in between. In the
information systems business we have to assume that from time to time something
will go wrong with our data and we have to have the tools available to correct or
reconstruct it. These operations come under the heading of backup and recovery. In
this section we will take a look at some of the basic backup and recovery techniques.

Backup Copies and Journals

The fundamental ideas in backup and recovery are fairly straightforward in concept
and some have been around for a long time. They begin with two basic but very
important tasks: backing up the database and maintaining a journal. First, there is
backup. On a regularly scheduled basis, say once per week, a company’s databases
must be ‘‘backed up’’ or copied. The backup copy must be put in a safe place,
away from the original in the computer system. (There have been cases of the copy
being kept in the computer room only to have a fire destroy both the original and
the copy.) There are several possibilities for storing the backup copy. For example,
it may be kept in a fire-proof safe in a nearby company building. Or it may be kept
in a bank vault. Often, during the next back-up cycle, the previous backup copy
becomes the ‘‘grandfather copy’’ and is sent even farther away to a distant state or
city for additional security.

The other basic backup and recovery task is maintaining a disk log or journal
of all changes that take place in the data. This includes updates to existing records,
insertion of new records, and deletion of existing records. Notice that it does not
include the recording of simple read operations that do not change the stored data
in any way. There are two types of database logs. One, which is variously called a
‘‘change log’’ or a ‘‘before and after image log,’’ literally records the value of a
piece of data just before it is changed and the value just after it is changed. So, if an
employee gets a raise in salary and the salary attribute value of his personnel record
is to be changed from 15.00 (dollars per hour) to 17.50, the change log identifies the
record by its unique identifier (e.g. its employee number) within its table name, the
original salary attribute value of 15.00, and the new salary attribute value of 17.50.
The other type of log, generally called a ‘‘transaction log,’’ keeps a record of the
program that changed the data and all of the inputs that the program used. A very
important point about both kinds of logs is that a new log is started immediately
after the data is backed up (i.e., a backup copy of the data is made). You’ll see why
in a moment.

Now, how are backups and logs used in backup and recovery operations?
Actually, it depends on the reason for the backup and recovery operation and, yes,
there is more than one reason or set of circumstances that require some kind of
backup and recovery.

304 C h a p t e r 11 Database Control Issues: Security, Backup and Recovery, Concurrency

Forward Recovery

First let’s consider a calamity that destroys a disk, or an only slightly lesser calamity
that destroys a database or a particular database table. The disk or the database or the
table has to be recreated and the recovery procedure in this case is called ‘‘forward
recovery’’ or ‘‘roll-forward recovery’’ (the word ‘‘roll’’ in ‘‘roll forward’’ comes
from the earlier use of tapes to record the logs). Let’s look at this by considering a
lost table. To recreate the lost table, you begin by readying the last backup copy of
the table that was made and readying the log with all of the changes made to the
table since the last backup copy was made. The point is that the last backup copy
is, well, a copy of the table that was lost, which is what you want, except that it
doesn’t include the changes to the data that were made since the backup copy was
made. To fix this, a ‘‘recovery program’’ begins by reading the first log entry that
was recorded after the last backup copy was made. In other words, it looks at the
first change that was made to the table right after the backup copy was made. The
recovery program updates the backup copy of the table with this log entry. Then,
having gone back to the beginning of the log, it continues rolling forward, making
every update to the backup copy of the table in the same order in which they were
originally made to the database table itself. When this process is completed, the lost
table has been rebuilt or recovered, Figure 11.4! This process can be performed with
either a change log or a transaction log. Using the change log, the ‘‘after images’’
are applied to the backup copy of the database. Using the transaction log, the actual
programs that updated the database are rerun. This tends to be a simpler but slower
process.

One variation of the forward recovery process when a change log is used is
based on the recognition that several changes may have been made to the same
piece of data since the last backup copy of the table was made. If that’s the case,
then only the last of the changes to the particular piece of data, which after all shows
the value of this piece of data at the time the table was destroyed, needs to be used
in updating the database copy in the roll-forward operation.

F IGURE 11.4
Forward recovery

Log
(starting with
first change

to the database
after the last
backup copy
was made)

Last
database
backup

copy

Recreated
database

Roll
forward
program

Backup and Recovery 305

If the database environment is a volatile one in which changes are made
frequently and it is common for the same piece of data to be updated several times
between backup operations, then the roll-forward operation as we have described
it may be needlessly inefficient. Instead, it may be worthwhile to sort through the
log prior to the roll-forward operation to find the last change made to each piece of
data that was updated since the last backup copy was made. Then only those final
changes need be applied to the backup copy in the roll-forward operation.

Backward Recovery

Now let’s consider a different situation. Suppose that in the midst of normal
operation an error is discovered that involves a piece of recently updated data. The
cause might be as simple as human error in keying in a value, or as complicated as a
program ending abnormally and leaving in the database some, but not all, changes
to the database that it was supposed to make. Why not just correct the incorrect
data and not make a big deal out of it? Because in the interim, other programs may
have read the incorrect data and made use of it, thus compounding the error in other
places in the database.

So the discovered error, and in fact all other changes that were made to the
database since the error was discovered, must be ‘‘backed out.’’ The process is
called ‘‘backward recovery’’ or ‘‘rollback.’’ Essentially, the idea is to start with
the database in its current state (note: backup copies of the database have nothing to
do with this procedure) and with the log positioned at its last entry. Then a recovery
program proceeds backwards through the log, resetting each updated data value in
the database to its ‘‘before’’ image, until it reaches the point where the error was
made. Thus the program ‘‘undoes’’ each transaction in the reverse order (last-in,
first-out) from which it was made, Figure 11.5. Once all the data values in the
tainted updates are restored to what they were before the data error occurred, the
transactions that updated them must be rerun. This can be a manual process or, if a
transaction log was maintained as well as a change log, a program can roll forward

F IGURE 11.5
Backward recovery

Log
(starting with

last change to
the database
and prepared

to read
backward)

Current
database

(with
error
in it)

Corrected
database

Roll
backward
program

306 C h a p t e r 11 Database Control Issues: Security, Backup and Recovery, Concurrency

through the transaction log, automatically rerunning all of the transactions from the
point at which the data error occurred.

Another note about backward recovery: some systems are capable of
automatically initiating a roll-backward operation to undo the changes made to
the database by a partially completed and then halted or failed transaction. This is
called ‘‘dynamic backout.’’ There are situations in which it is helpful to restore the
database to the point at which there is confidence that all changes to the database up
to that point are accurate. Some systems are capable of writing a special record to
the log, known as a ‘‘checkpoint,’’ that specifies this kind of stable state.

Duplicate or ‘‘Mirrored’’ Databases

A backup and recovery technique of a very different nature is known as duplicate
or ‘‘mirrored’’ databases. Two copies of the entire database are maintained and
both are updated simultaneously, Figure 11.6. If one is destroyed, the applications
that use the database can just keep on running with the duplicate database. This is
a relatively expensive proposition, but allows continuous operation in the event of
a disk failure, which may justify the cost for some applications. By the way, this
arrangement is of no help in the case of erroneous data entry (see backward recovery
above) because the erroneous data will be entered in both copies of the database!

The greater the ‘‘distance’’ between the two mirrored copies of the database,
the greater the security. If both are on the same disk (not a good idea!) and the disk
fails or is destroyed, both copies of the database are lost. If the two copies are on
different disks but are in the same room and a fire hits the room, both might be
destroyed. If they are on disks in two different buildings in the same city, that’s
much better, but a natural disaster such as a hurricane could affect both. Thus, some
companies have kept duplicate databases hundreds of miles apart to avoid such
natural disasters.

Disaster Recovery

Speaking of natural disasters, the author lived through Hurricane Andrew in Miami,
FL, in August, 1992 and learned about disaster recovery first-hand! The information

F IGURE 11.6
Mirrored databases

Database
Copy

2

Database
Copy

1

Database
Application

Computer

Physical separation

Backup and Recovery 307

systems of two major companies and a host of smaller ones were knocked out
of service by this hurricane. Miami companies in buildings with major roof and
window damage actually found fish that the hurricane had lifted out of the ocean and
deposited in their computers (I’m not kidding!). They also discovered that when the
salt water from the ocean saturated the ceiling tiles in their offices, wet flakes from
the tiles fell down onto their computer equipment, ruining some of it. A company
that thought that it was keeping its database backup copies in a safe place in another
part of the city didn’t take into account that the roof of the backup site would not
stand up to a major hurricane and lost its backup copies.

As its name implies, disaster recovery involves rebuilding an entire
information system or significant parts of one after a catastrophic natural disaster
such as a hurricane, tornado, earthquake, building collapse, or even a major fire.
There are several approaches to preparing for such disasters. They tend to be
expensive or complex or both, but with today’s critical dependence on information
systems, companies that want to be careful and prepared have little choice. The
possibilities include:

■ Maintain totally mirrored systems (not just databases) in different cities.
■ Contract with a company that maintains hardware similar to yours so that yours

can be up and running again quickly after a disaster. The companies providing
these so-called ‘‘hot sites’’ make money by contracting their services with many
companies, assuming that they will not all suffer a disaster and need the hot site
at the same time.

■ Maintain space with electrical connections, air conditioning, etc., into which new
hardware can be moved if need be. These so-called ‘‘cold sites’’ are not nearly
as practical as they once were because of the online nature and mission-critical
character of today’s information systems. They simply take too long to get up
and running.

■ Make a reciprocal arrangement with another company with hardware similar
to yours to aid each other in case one suffers a disaster. Obviously, the two
companies should be in different industries and must not be competitors!

■ Build a computer center that is relatively disaster proof. After Hurricane Andrew,
one of the large affected companies in Miami rebuilt their computer center in a
building they started referring to as ‘‘the bunker.’’

Y O U R

T U R N

11.2 WHEN DISASTER STRIKES

Disasters can take many forms and
can affect individuals as well as businesses. A disaster
can take the form of a natural disaster such as a hurricane,
earthquake, or tornado, but it can also take the form of
fire, theft of your PC or laptop, or even a very damaging
computer virus.

QUESTION:
What would be the consequences to you if a disaster

struck and you lost all your personal data? What
precautions have you taken to back up your important
personal data? Do you think you should take further
precautions? If so, what might they be?

308 C h a p t e r 11 Database Control Issues: Security, Backup and Recovery, Concurrency

CONCURRENCY CONTROL

The Importance of Concurrency Control

Generally speaking, today’s application systems, and especially those running
within the database environment, assume that many people using these systems will
require access to the same data at the same time. Modern hardware and systems
software are certainly capable of supporting such shared data access. One very
common example of this capability is in airline reservations, where several different
reservations clerks, as well as customers on the Web, may have simultaneous
requests for seats on the same flight. Another example is an industrial or retail
inventory application in which several employees on an assembly line or in an order
fulfillment role simultaneously seek to update the same inventory item.

When concurrent access involves only simple retrieval of data, there is no
problem. But when concurrent access requires data modification, the two or more
users attempting to update the data simultaneously have a rather nasty way of
interfering with each other that doesn’t happen if they are merely performing
data retrievals. This is certainly the case in the airline reservations and inventory
examples, since selling seats on flights and using items in inventory require that
the number of seats or inventory items left be revised downwards; i.e., many of the
database accesses involve updates. The result can be inaccurate data stored in the
database!

The Lost Update Problem

Using the airline reservations application as an example, here is what can happen
with simultaneous updates, Figure 11.7. And before we begin the example, bear in
mind that we are not talking about simultaneous updates only at the ‘‘microsecond’’
level. As you are about to see, the problem can occur when the time spans involved
are in seconds or minutes. Suppose that there are 25 seats left on Acme Airlines
flight #345 on March 12. One day, at 1:45 PM, a reservations clerk, Ms. Brown,
is phoned by a customer who is considering booking four seats on that particular

F IGURE 11.7
The lost update problem

Ms. BrownTime

Reads the record
Finds 25 seats left

Deducts 4 seats and
 writes updated record
 indicating 21 seats
 left

Mr. Green

But at this point the record
should show 15 seats left!

Reads the record
Finds 25 seats left

Deducts 6 seats and
 writes updated record
 indicating 19 seats
 left

1:45 PM

1:52 PM

1:48 PM

1:56 PM

Concurrency Control 309

flight. Brown retrieves the record for the flight from the database, notes that there
are 25 seats available, and begins to discuss the price and other details with her
customer. At 1:48 PM, another reservations clerk, Mr. Green receives a call from
another customer with a larger family who is considering booking six seats on the
very same flight. Green retrieves the record for the flight from the database and notes
that there are 25 seats available. At 1:52 PM, Brown’s customer decides to go ahead
and book four seats on the flight. Brown completes the transaction and four seats
are deducted from the number of seats available on the flight, updating the database
record to show that there are now 21 seats available. Then, at 1:56 PM, Green’s
customer decides to book six seats on the flight. Green completes this transaction
and six seats are deducted from the number of seats (25) that Green thought were
available on the flight, leaving the database showing that 19 seats are now available.

So, the record for flight #345 on March 12 now shows that there are 19 seats
available. But shouldn’t it show only 15, since a total of 10 seats were sold? Yes,
but the point is that neither of the clerks knew that the other was in the process of
selling seats on the flight at the same time that the other was. Both Brown and Green
started off knowing that there were 25 seats left. When Brown deducted four seats,
for a couple of minutes the record showed that there were 21 seats left. But then
when Green deducted his six, he was deducting them from the original 25 seats that
he saw when he originally retrieved the record from the database, not from the 21
seats that were left after Brown’s sale.

By the way, you might question the likelihood of two clerks going after the
same record simultaneously in a large airline reservations system. Have you ever
tried to book a reservation on a flight from New York to Miami for Christmas week
in the week before Christmas week? The likelihood of this kind of conflict is very
real in the airline reservations application and in countless other applications of
every type imaginable.

Locks and Deadlock

The usual solution to this problem is to introduce what are known as software
‘‘locks.’’ When a user begins an update operation on a piece of data, the DBMS
locks that data. Any attempt to begin another update operation on that same piece of
data will be blocked or ‘‘locked out’’ until the first update operation is completed
and its lock on the data is released. This effectively prevents the lost-update problem.
The level or ‘‘granularity’’ of lockout can vary. Lockout at a high level, for instance
at the level of an entire table, unfortunately prevents much more than that one
particular piece of data from being modified while the update operation is going
on, but is a low-overhead solution since only one lock is needed for the entire
table. Lockout at a lower level, the record level for instance, doesn’t prevent access
or updates to the rest of the table, but is a comparatively high-overhead solution
because every record must have a lock that can be set.

Unfortunately, as so often happens, the introduction of this beneficial device
itself causes other problems that did not previously exist. Follow the next scenario,
Figure 11.8: consider an inventory situation in which clerks must find out if sufficient
quantities of each of two parts, say nuts and bolts, are available to satisfy an order.
If there are enough parts, then the clerks want to take the parts from inventory
and update the quantity remaining values in the database. Each clerk can fill the
order only if enough of both parts are available. Each clerk must access and lock
the record for one of the two parts while accessing the record for the other part.

310 C h a p t e r 11 Database Control Issues: Security, Backup and Recovery, Concurrency

F IGURE 11.8
Deadlock

Mr. WhiteTime

Gets and locks the
 record for nuts

Tries to get (and lock)
 the record for bolts
 but finds it locked by
 Ms. Black

Ms. Black

DEADLOCK!

Gets and locks the
 record for bolts

Tries to get (and lock)
 the record for nuts
 but finds it locked by
 Mr. White

10:15 A.M.

10:17 A.M.

10:16 A.M.

10:18 A.M.

Proceeding with this scenario, suppose two clerks, Mr. White and Ms. Black, each
request a quantity of nuts and bolts. White happens to list the nuts before the bolts
in his query. At 10:15 AM, he accesses and locks the record for nuts. Ms. Black
happens to list the bolts before the nuts in her query. At 10:16 AM, she accesses
and locks the record for bolts. Then, at 10:17 AM, White tries to access the record
for bolts but finds it locked by Black. And 10:18 AM, Black tries to access the
record for nuts but finds it locked by White. Both queries then wait endlessly for
each other to release what they each need to proceed. This is called ‘‘deadlock’’
or ‘‘the deadly embrace.’’ It actually bears a close relationship to the ‘‘gridlock’’
traffic problem that major cities worry about during rush hour.

Does the prospect of deadlock mean that locks should not be used? No, because
there are two sorts of techniques for handling deadlock: deadlock prevention and
deadlock detection. Outright deadlock prevention sounds desirable but turns out to
be difficult. Basically, a transaction would have to lock all the data it will need,
assuming it can even figure this out at the beginning of the transaction (often the
value of one piece of data that a program retrieves determines what other data it
needs). If the transaction finds that some of the data it will need is unavailable
because another transaction has it locked, all it can do is release whatever data it
has already locked and start all over again.

So the usual way to handle deadlock is to let it occur, detect it when it does, and
then abort one of the deadlocked transactions, allowing the other to finish. The one
that was backed out can then be run again. One way to detect deadlock is through
a timeout, meaning that a query has been waiting for so long that the assumption
is it must be deadlocked. Another way to detect deadlock is by maintaining a
resource usage matrix that dynamically keeps track of which transactions or users
are waiting for which pieces of data. Software can continuously monitor this matrix
and determine when deadlock has occurred.

Versioning

There is another way to deal with concurrent updates, known as ‘‘versioning,’’
that does not involve locks at all. Basically, each transaction is given a copy or
‘‘version’’ of the data it needs for an update operation, regardless of whether any

Questions 311

other transaction is using the same data for an update operation at the same time.
Each transaction records its result in its own copy of the data. Then each transaction
tries to update the actual database with its result. At that point, monitoring software
checks for conflicts between two or more transactions that are trying to update the
same data at the same time. If it finds a conflict, it allows one of the transactions
to update the database and makes the other(s) start over again. The hope is that
conflicts will not occur often, allowing the applications to proceed along more
efficiently without the need for locks.

SUMMARY

There are three major technological and methodological subfields of database
management that involve the protection of data: data security, backup and recovery,
and concurrency control. Data security issues include types of data security breaches,
methods of breaching data security, and types of data security measures, such as
anti-virus software, firewalls, data encryption, and employee training, among others.

Backup and recovery includes creating backup copies of data and maintaining
journals, procedures such as forward recovery, backward recovery, arrangements
such as duplicate or ‘‘mirrored’’ databases, and the separate but related subfield
of disaster recovery. Concurrency control includes issues such as the lost-update
problem and deadlock and fixes that include locks and versioning.

KEY TERMS

Anti-virus software
Backup and recovery
Backward recovery
Before and after image log
Biometric systems
Change log
Checkpoint
Cold site
Computer virus
Concurrency control
Data encryption
Data security
Database control issues

Deadlock
Disaster recovery
Duplicate database
Dynamic backout
Firewall
Forward recovery
GRANT
Hot site
Locks
Lost update problem
Mirrored database
Password
Physical security

Private key encryption
Proxy server
Public key encryption
Reciprocal agreement
Resource usage matrix
Rollback
Roll forward
Secure Socket Layer (SSL)

technology
Signature
Transaction log
Versioning
Wiretapping

QUESTIONS

1. Explain why data security is important.
2. Compare unauthorized data access with unautho-

rized data modification. Which do you think is the
more serious issue? Explain.

3. Name and briefly describe three methods of breach-
ing data security. Which do you think is potentially
the most serious? Explain.

4. How does the physical security of company premises
affect data security?

5. How do magnetic stripe cards and fingerprints
compare in terms of physical security protection?

6. Describe the rules for creating a good password.

312 C h a p t e r 11 Database Control Issues: Security, Backup and Recovery, Concurrency

7. Explain how the combination of views and the
SQL GRANT command limits access to a relational
database.

8. What is data encryption and why is it important to
data security?

9. In your own words, describe how Secure Socket
Layer (SSL) technology works.

10. In your own words, describe how a proxy server
firewall works.

11. Explain why backup and recovery is important.
12. What is a journal or log? How is one created?
13. Describe the two different problems that forward

recovery and backward recovery are designed to

handle. Do mirrored databases address one of these
two problems or yet a third one? Explain.

14. In your own words, describe how forward recovery
works.

15. In your own words, describe how backward recovery
works.

16. What is disaster recovery? Can the techniques for
backup and recovery be used for disaster recovery?

17. Explain why concurrency control is important.
18. What is the lost-update problem?
19. What are locks and how are they used to prevent the

lost-update problem?
20. What is deadlock and how can it occur?

EXERCISES

1. A large bank has a headquarters location plus
several branches in each city in a particular region
of the country. As transactions are conducted at
each branch, they are processed online against a
relational database at headquarters. You have been
hired as the bank’s Director of Data Security. Design
a comprehensive set of data security measures to
protect the bank’s data.

2. The bank in Exercise 1, which it totally dependent
on its relational database, must be able to keep
running in the event of the failure of any one table
on one disk drive, in the event of a major disaster
to its headquarters computer, or in the event of any
catastrophe between these two extremes. Describe
the range of techniques and technologies that you
would implement to enable the bank to recover from
this wide range of failures.

3. The Tasty Seafood Restaurant is a large restaurant
that specializes in fresh fish and seafood. Because
its reputation for freshness is important to Tasty,
it brings in a certain amount of each type of fish
daily and, while trying to satisfy all of its customers,
would rather run out of a type of fish than carry it
over to the next day. After taking a table’s order, a
waiter enters the order into a touch-screen terminal
that is connected to a computer in the kitchen. The

order is sent from the touch-screen terminal to the
computer only after all of it has been entered.

At 8:00 PM there are 10 servings of salmon, 15
servings of flounder, and eight orders of trout left in
the kitchen. At 8:03 PM, waiter Frank starts entering
an order that includes five servings of salmon, six
of flounder, and four of trout. At the same time,
on another touch-screen terminal, waitress Mary
starts entering an order that includes one serving
of salmon, three of flounder, and two of trout. At
8:05 PM, before the other two have finished entering
their orders, waitress Tina starts entering an order
that includes six servings of salmon, one of flounder,
and five of trout. Frank finishes entering his order
at 8:06 PM, Mary finishes at 8:07 PM, and Tina
finishes at 8:09 PM.

a. What would the result of all of this be in the
absence of locks?

b. What would the result be with a locking
mechanism in place?

c. What would happen if versioning was in use?

4. Construct examples of the lost update problem, the
use of locks, deadlock, and versioning for the case
of a joint bank account (i.e. two people with access
to the same bank account).

Minicases 313

MINICASES

1. Happy Cruise Lines is headquartered in New York and
in addition has regional offices in the cruise port cities
of Miami, Houston, and Los Angeles. New York has a
large server and several LANs. The other three sites each
have a single LAN with a smaller server. The company’s
four offices communicate with each other via land-based
telecommunications lines. The company’s ships, each
of which has a server on board, communicate with the
New York headquarters via satellite. Also located in
New York is the company’s Web site, through which
passengers and travel agents can book cruises.
a. Devise a data security strategy for Happy Cruise

Lines that incorporates appropriate data security
measures.

b. Happy Cruise Line’s main relational database (see
Minicase 5.1), located in New York, is considered
critical to the company’s functioning. It must be kept
up and running as consistently as possible and it must
be quickly recoverable if something goes wrong.
Devise backup and recovery and disaster recovery
strategies for the company.

c. A particularly popular Christmas-week cruise is
booking up fast. There are only a few cabins left and
the company wants to be careful to not ‘‘overbook’’
the cruise. With customers, travel agents, and the
company’s own reservations agents all accessing the
database at the same time, devise a strategy that will
avoid overbooking.

2. The Super Baseball League maintains a substantially
decentralized IS organization with the focus on the

individual teams. Each team has a server with a LAN
at its stadium or offices near the stadium. The League
has a server with a LAN at its Chicago headquarters.
The league and each of the teams maintain a Web site
at their locations. People can get general information
about the league at the league’s Web site; they can
get information about the individual teams as well as
buy game tickets through each team’s Web site. Data
collected at the team locations, such as player statistics
updates and game attendance figures, is uploaded nightly
to the server at league headquarters via telephone lines.
a. Devise a data security strategy for the Super

Baseball League, incorporating appropriate data
security measures.

b. The Super Baseball League’s main relational
database (see Minicase 5.2), located at its head-
quarters in Chicago, is for the most part a repository
of data collected from the teams. The league wants
to keep the headquarters database up and running,
but it is more important to keep the individual team
databases in their stadiums or offices up and running
with as little downtime as possible. Devise backup
and recovery and disaster recovery strategies for the
Super Baseball League.

c. Fans can order or buy tickets from the individual
teams over the telephone, through the teams’ Web
sites, or in person at the teams’ box offices. All of this
activity takes place simultaneously. Devise a strategy
that will avoid selling a particular seat for a particular
game more than once.

C H A P T E R 12

CLIENT/SERVER DATABASE
AND DISTRIBUTED

DATABASE

S imply put, the question in this chapter is, ‘‘Where is the database located?’’
Often, the obvious answer is, ‘‘It’s in the computer itself!’’ That is, it is located on

one of the computer’s disk drives. If the computer in question is a stand-alone personal
computer, of course the database is stored on the PC’s hard drive or perhaps on a flash
disk. (Where else could it be?!) The same can be and often is true of much larger computer
systems. A company can certainly choose to have its databases stored in its mainframe
computer, while providing access to the computer and its databases on a broad, even
worldwide scale. This chapter will describe alternative arrangements in which the data is
decentralized and not stored in one central location.

OBJECTIVES

■ Describe the concepts and advantages of the client/server database approach.
■ Describe the concepts and advantages of the distributed database approach.
■ Explain how data can be distributed and replicated in a distributed database.
■ Describe the problem of concurrency control in a distributed database.
■ Describe the distributed join process.
■ Describe data partitioning in a distributed database.
■ Describe distributed directory management.

CHAPTER OUTLINE

Introduction
Client/Server Databases
Distributed Database

The Distributed Database Concept
Concurrency Control in

Distributed Databases

Distributed Joins
Partitioning or Fragmentation
Distributed Directory Management
Distributed DBMSs: Advantages

and Disadvantages
Summary

316 C h a p t e r 12 Client/Server Database and Distributed Database

INTRODUCTION

Over the years, two arrangements for locating data other than ‘‘in the computer
itself’’ have been developed. Both arrangements involve computers connected to
one another on networks. One, known as ‘‘client/server database,’’ is for personal
computers connected together on a local area network. The other, known as
‘‘distributed database,’’ is for larger, geographically dispersed computers located
on a wide-area network. The development of these networked data schemes has
been driven by a variety of technical and managerial advantages, although, as is so
often the case, there are some disadvantages to be considered as well.

CLIENT/SERVER DATABASES

A local-area network (LAN) is an arrangement of personal computers connected
together by communications lines, Figure 12.1. It is ‘‘local’’ in the sense that the
PCs must be located fairly close to each other, say within a building or within several
nearby buildings. Additional components of the LAN that can be utilized or shared
by the PCs can be other, often more powerful ‘‘server’’ computers and peripheral
devices such as printers. The PCs on a LAN can certainly operate independently
but they can also communicate with one another. If, as is often the case, a LAN is
set up to support a department in a company, the members of the department can
communicate with each other, send data to each other, and share such devices as
high-speed printers. Finally, a gateway computer on the LAN can link the LAN
and its PCs to other LANs, to one or more mainframe computers, or to the Internet.

F IGURE 12.1
Local area network (LAN)

Server

PC

PC

PC Printer

PC PC

PC

Client/Server Databases 317

CONCEPTS

IN ACT ION

12-A HASBRO

Hasbro is a world leader in chil-
dren’s and family leisure time entertainment products
and services, including the design, manufacture, and
marketing of games and toys ranging from traditional
to high-tech. Headquartered in Pawtucket, RI, Hasbro
was founded in 1923 by the Hassenfeld brothers (hence
the company name). Over the years, the Hasbro fam-
ily has expanded through internal growth plus acqui-
sitions that include Milton Bradley (founded in 1860),
Parker Brothers (founded in 1883), Tonka, Kenner,
and Playskool. Included among its famous toys are
MR. POTATO HEAD®, G.I. Joe®, Tonka Trucks®,
Play Doh®, Easy Bake Oven®, Transformers®, Furby®,
Tinkertoy®, and the games Monopoly® (the world’s
all-time best-selling game), Scrabble®, Chutes and
Ladders®, Candy Land®, The Game of Life®, Risk®,
Clue®, Sorry®, and Yahtzee®.

Hasbro keeps track of this wide variety of toys and
games with a database application called PRIDE (Product
Rights Information Database), which was implemented
in 2001. PRIDE’s function is to track the complete
life cycle of Hasbro’s contract to produce or market
each of its products. This includes the payment of

Photo Courtesy of Hasbro

royalties to the product’s inventor or owner, Hasbro’s
territorial rights to sell the product by country or
area of the world, distribution rights by marketing
channel, various payment guarantees and advances, and
contract expiration and renewal criteria. A variety of
Hasbro departments use PRIDE, including accounting for
royalty payments, marketing for worldwide marketing
plans, merchandising, product development, and legal
departments throughout the world.

PRIDE utilizes the Sybase DBMS and runs on an
IBM RS-6000 Unix platform. Actual scanned images of
the contracts are stored in the database. The system is
designed to store amendments to the contracts, including
tracking which amendments are in effect at any point in
time. It is also designed to incorporate data corrections
and to search the scanned contracts for particular text.
The main database table is the Contract Master table,
which has 7,000 records and a variety of subtables
containing detailed data about royalties, territories,
marketing channels, agents, and licensors. These tables
produce a variety of customizable reports and queries.
The data can also be exported to MS Excel for further
processing in spreadsheets.

318 C h a p t e r 12 Client/Server Database and Distributed Database

If one of the main advantages of a LAN is the ability to share resources, then
certainly one type of resource to share is data contained in databases. For example,
the personnel specialists in a company’s personnel department might all need access
to the company’s personnel database. But then, what are the options for locating
and processing shared databases on a LAN? In terms of location, the basic concept
is to store a shared database on a LAN server so that all of the PCs (also known
as ‘‘clients’’) on the LAN can access it. In terms of processing, there are a few
possibilities in this ‘‘two-tiered’’ client/server arrangement.

The simplest tactic is known as the ‘‘file server’’ approach. When a client
computer on the LAN needs to query, update, or otherwise use a file on the server,
the entire file (yes, that’s right, the entire file) is sent from the server to that client.
All of the querying, updating, and other processing is then performed in the client
computer. If changes are made to the file, the entire file is then shipped back to the
server. Clearly, for files of even moderate size, shipping entire files back and forth
across the LAN with any frequency will be very costly. In addition, in terms of
concurrency control, obviously the entire file must be locked while one of the clients
is updating even one record in it. Other than providing a rudimentary file-sharing
capability, this arrangement’s drawbacks clearly render it not very practical or
useful.

A much better arrangement is variously known as the ‘‘database server’’ or
‘‘DBMS server’’ approach. Again, the database is located at the server. But this
time, the processing is split between the client and the server and there is much
less network data traffic. Say that someone at a client computer wants to query the
database at the server. The query is entered at the client and the client computer
performs the initial keyboard and screen interaction processing, as well as initial
syntax checking of the query. The system then ships the query over the LAN to
the server where the query is actually run against the database. Only the results
are shipped back to the client. Certainly, this is a much better arrangement than
the file server approach! The network data traffic is reduced to a tolerable level,
even for frequently queried databases. Also, security and concurrency control can
be handled at the server in a much more contained way. The only real drawback to
this approach is that the company must invest in a sufficiently powerful server to
keep up with all the activity concentrated there.

Another issue involving the data on a LAN is the fact some databases can be
stored on a client PC’s own hard drive while other databases that the client might
access are stored on the LAN’s server. This is known as a ‘‘two-tier approach,’’
Figure 12.2. Software has been developed that makes the location of the data
transparent to the user at the client. In this mode of operation, the user issues a
query at the client and the software first checks to see if the required data is on the
PC’s own hard drive. If it is, the data is retrieved from it and that is the end of the
story. If it is not there, then the software automatically looks for it on the server. In
an even more sophisticated three-tier approach, Figure 12.3, if the software doesn’t
find the data on the client PC’s hard drive or on the LAN server, it can leave the
LAN through a ‘‘gateway’’ computer and look for the data on, for example, a large
mainframe computer that may be reachable from many LANs.

In another use of the term ‘‘three-tier approach,’’ the three tiers are the
client PCs, servers known as ‘‘application servers,’’ and other servers known as
‘‘database servers,’’ Figure 12.4. In this arrangement, local screen and keyboard
interaction is still handled by the clients but they can now request a variety of
applications to be performed at and by the application servers. The application

Client/Server Databases 319

FIGURE 12.2
Two-tier client/server database

Server

PC

PC

PC
Query
Issued
Here

Printer

PC PC

PC

D
at

ab
as

e

D
at

ab
as

e

Server/
Gateway

PC

PC

PC
Query
Issued
Here

Printer

PC PC

PC

D
at

ab
as

e Mainframe
Computer

D
at

ab
as

e

D
at

ab
as

e

F IGURE 12.3
Three-tier client/server database

320 C h a p t e r 12 Client/Server Database and Distributed Database

PC

PC

PC Printer

PC PC

PC

Application
Server

Database
Server

D
at

ab
as

e

F IGURE 12.4
Another type of three-tier client/server approach

servers, in turn, rely on the database servers and their databases to supply the data
needed by the applications. Although certainly well beyond the scope of LANs, an
example of this kind of arrangement is the World Wide Web on the Internet. The
local processing on the clients is limited to the data input and data display capabilities
of browsers such as Netscape’s Communicator and Microsoft’s Internet Explorer.
The application servers are the computers at company Web sites that conduct
the companies’ business with the ‘‘visitors’’ working through their browsers. The

Y O U R

T U R N

12.1 CLIENT/SERVER DATABASE

Universities have many computers on
their campuses and many of these are organized into
local-area networks. LANs may be found in academic
departments or colleges, in administrative units such as
the admissions department, in research centers, and so
forth. The people utilizing the computers on these LANs
probably have data that is unique to their work, and also
have a need for data that goes beyond their specific area
of work.

QUESTION:

Choose several academic, administrative, and/or
research units at your university and think about their
data needs. Develop a scheme for organizing the
data in the type of three-tier arrangement described in
Figure 12.3.

Distributed Database 321

company application servers in turn rely on the companies’ database servers for the
necessary data to complete the transactions. For example, when a bank’s customer
visits his bank’s Web site, he can initiate lots of different transactions, ranging
from checking his account balances to transferring money between accounts to
paying his credit-card bills. The bank’s Web application server handles all of these
transactions. It in turn sends requests to the bank’s database server and databases to
retrieve the current account balances, add money to one account and deduct money
from another in a funds transfer, and so forth.

DISTRIBUTED DATABASE

The Distributed Database Concept

In today’s world of universal dependence on information systems, all sorts of people
need access to companies’ databases. In addition to a company’s own employees,
these include the company’s customers, potential customers, suppliers, and vendors
of all types. It is certainly possible for a company to concentrate all of its databases
at one mainframe computer site with worldwide access to this site provided by
telecommunications networks, including the Internet. While the management of
such a centralized system and its databases can be controlled in a well contained
manner and this can be advantageous, it has potential drawbacks as well. For
example, if the single site goes down, then everyone is blocked from accessing the
databases until the site comes back up again. Also, the communications costs from
the many far-flung PCs and terminals to the central site can be high. One solution
to such problems, and an alternative design to the centralized database concept, is
known as distributed database.

The idea is that instead of having one centralized database, we are going to
spread the data out among the cities on the distributed network, each of which
has its own computer and data storage facilities. All this distributed data is still
considered to be a single logical database. When a person or process anywhere on
the distributed network queries the database, they do not have to know where on
the network the data that they are seeking is located. They just issue the query and
the result is returned to them. This feature is known as ‘‘location transparency.’’
This arrangement can quickly become rather complex and must be managed by
sophisticated software known as a distributed database management system or
distributed DBMS.

Distributing the Data Consider a large multinational company with major sites in
Los Angeles, Memphis, New York (which is corporate headquarters), Paris, and
Tokyo. Let’s say that the company has a very important transactional relational
database that is used actively at all five sites. The database consists of six large
tables, A, B, C, D, E, and F, and response time to queries made to the database is an
important factor. If the database was centralized, the arrangement would look like
Figure 12.5, with all six tables located in New York.

The first and simplest idea for distributing the data would be to disperse the six
tables among all five sites. If particular tables are used at some sites more frequently
than at others, it would make sense to locate the tables at the sites at which they are
most frequently used. Figure 12.6 shows that we have kept Tables A and B in New
York, while moving Table C to Memphis, Tables D and E to Tokyo, and Table F

322 C h a p t e r 12 Client/Server Database and Distributed Database

F IGURE 12.5
Centralized database

UNITED STATES

Memphis

Paris

Tokyo

Los Angeles
New York

NORTH AMERICA

SOUTH AMERICA

ASIA

EUROPE

AFRICACANADA

U.K.GREENLAND
(DEN.)

MEXICO

PACIFIC
OCEAN

ARCTIC
OCEAN

ATLANTIC
OCEAN

Gulf of
Mexico

Caribbean
Sea

D E F

A B C

to Paris. Say that the reason we moved Table F to Paris is because it is used most
frequently there. With Table F in Paris, the people there can use it as much as they
want to without running up any telecommunications costs. Furthermore, the Paris
employees can exercise ‘‘local autonomy’’ over the data, taking responsibility for
its security, backup and recovery, and concurrency control.

Unfortunately, distributing the database in this way has not relieved some
of the problems with the centralized database and it has introduced a couple of
new ones. The main problem that is carried over from the centralized approach is
‘‘availability.’’ In the centralized approach of Figure 12.5, if the New York site
went down, no other site on the network could access Table F (or any of the other
tables). In the dispersed approach of Figure 12.6, if the Paris site goes down, Table F
is equally unavailable to the other sites. A new problem that crops up in Figure 12.6
has to do with joins. When the database was centralized at New York, a query
issued at any of the sites that required a join of two or more of the tables could be
handled in the standard way by the computer at New York. The result would then be
sent to the site that issued the query. In the dispersed approach, a join might require
tables located at different sites! While this is not an insurmountable problem, it
would obviously add some major complexity (we will discuss this further later in
this chapter). Furthermore, while we could (and did) make the argument that local
autonomy is good for issues like security control, an argument can also be made that
security for the overall database can better be handled at a single central location.

Distributed Database 323

FIGURE 12.6
Distributed database with no data
replication

UNITED STATES

Memphis

Paris

Tokyo

Los Angeles
New York

NORTH AMERICA

SOUTH AMERICA

ASIA

EUROPE

AFRICACANADA

U.K.GREENLAND
(DEN.)

MEXICO

PACIFIC
OCEAN

ARCTIC
OCEAN

ATLANTIC
OCEAN

Gulf of
Mexico

Caribbean
Sea

A B

D E
F

C

Clearly, the simple dispersal of database tables as shown in Figure 12.6 is of limited
benefit.

Let’s introduce a new option into the mix. Suppose that we allow database
tables to be duplicated—the term used with distributed database is ‘‘replicated’’—at
two or more sites on the network. There are several clear advantages to this idea,
as well as, unfortunately, a couple of disadvantages. On the plus side, the first
advantage is availability. If a table is replicated at two or more sites and one of
those sites goes down, everyone everywhere else on the network can still access the
table at the other site(s). Also, if more than one site requires frequent access to a
particular table, the table can be replicated at each of those sites, again minimizing
telecommunications costs during data access. And copies of a table can be located
at sites having tables with which it may have to be joined, allowing the joins to take
place at those sites without the complexity of having to join tables across multiple
sites. On the down side, if a table is replicated at several sites, it becomes more of
a security risk. But the biggest problem that data replication introduces is that of
concurrency control. As we have already seen, concurrency control is an issue even
without replicated tables. With replicated tables, it becomes even more complex.
How do you keep data consistent when it is replicated in tables on three continents?
More about this issue later.

Assuming, then, that data replication has some advantages and that we are
willing to deal with the disadvantages, what are the options for where to place the

324 C h a p t e r 12 Client/Server Database and Distributed Database

F IGURE 12.7
Distributed database with maximum data
replication

UNITED STATES

Memphis

Paris

Tokyo

Los Angeles
New York

NORTH AMERICA

SOUTH AMERICA

ASIA

EUROPE

AFRICACANADA

U.K.GREENLAND
(DEN.)

MEXICO

PACIFIC
OCEAN

ARCTIC
OCEAN

ATLANTIC
OCEAN

Caribbean
Sea

D E F

A B C

D E F

A B C

D E F

A B C

D E F

A B C

D E F

A B C

replicated tables? Figure 12.7 shows the maximum approach of replicating every
table at every site. It’s great for availability and for joins, but it’s the absolute worst
arrangement for concurrency control. Every change to every table has to be reflected
at every site. It’s also a security nightmare and, by the way, it takes up a lot of disk
space.

The concept in Figure 12.8 is to have a copy of the entire database at
headquarters in New York and to replicate each table exactly once at one of the
other sites. Again, this improves availability, at least to the extent that each table
is now at two sites. Because each table is at only two sites, the security and
concurrency exposures are limited. Any join that has to be executed can be handled
at New York. So, this arrangement sounds pretty good, but it is limiting. What if a
particular table is used heavily at both Tokyo and Los Angeles? We would like to
place copies of it at both of those sites, but we can’t because the premise is to have
one copy in New York and only one other copy elsewhere. Also, New York would
tend to become a bottleneck, with all of the joins and many of the other accesses
being sent there. Still, the design of Figure 12.8 appears to be an improvement over
the design of Figure 12.7. Can we do better still?

The principle behind making this concept work is flexibility in placing
replicated tables where they will do the most good. We want to:

■ Place copies of tables at the sites that use them most heavily in order to minimize
telecommunications costs.

Distributed Database 325

FIGURE 12.8
Distributed database with one complete
copy in one city

UNITED STATES

Memphis

Paris

Tokyo

Los Angeles

New York

NORTH AMERICA

SOUTH AMERICA

ASIA

EUROPE

AFRICACANADA

U.K.GREENLAND
(DEN.)

MEXICO

PACIFIC
OCEAN

ARCTIC
OCEAN

ATLANTIC
OCEAN

Gulf of
Mexico

Caribbean
Sea

B
C

F

A E

D

D E F

A B C

■ Ensure that there are at least two copies of important or frequently used tables to
realize the gains in availability.

■ Limit the number of copies of any one table to control the security and concurrency
issues.

■ Avoid any one site becoming a bottleneck.

Figure 12.9 shows an arrangement of replicated tables based on these principles.
There are two copies of each of Tables A, B, E, and F, and three copies of Table D.
Apparently, Table C is relatively unimportant or infrequently used, and it is located
solely at Los Angeles.

Concurrency Control in Distributed Databases

In Chapter 11, we discussed concurrency control in terms of the problems involved
in multiple people or processes trying to update a record at the same time. When
we allow replicated tables to be dispersed all over the country or the world in a
distributed database, the problems of concurrent update expand, too. The original
possibility of the ‘‘lost update’’ is still there. If two people attempt to update a
particular record of Table B in New York at the same time, everything we said
about the problem of concurrent update earlier remains true. But now, in addition,
look at what happens when geographically dispersed, replicated files are involved.

326 C h a p t e r 12 Client/Server Database and Distributed Database

F IGURE 12.9
Distributed database with targeted data
replication

UNITED STATES

Memphis

Paris

Tokyo

Los Angeles

New York

NORTH AMERICA

SOUTH AMERICA

ASIA

EUROPE

AFRICACANADA

U.K.GREENLAND
(DEN.)

MEXICO

PACIFIC
OCEAN

ARCTIC
OCEAN

ATLANTIC
OCEAN

Gulf of
Mexico

Caribbean
Sea

B ED

C D

A F

ED

A B F

In Figure 12.9, if one person updates a particular value in a record of Table B in
New York at the same time that someone else updates the very same value in the
very same record of Table B in Paris, clearly the results are going to be wrong. Or if
one person updates a particular record of Table B in New York and then right after
that a second person reads the same record of Table B in Paris, that second person
is not going to get the latest, most up-to-date data. The protections discussed earlier
that can be set up to handle the problem of concurrent update in a single table are
not adequate to handle the new, expanded problem.

If the nature of the data and of the applications that use it can tolerate retrieved
data not necessarily being up-to-the-minute accurate, then several ‘‘asynchronous’’
approaches to updating replicated data can be used. For example, the site at which
the data was updated, New York in the above example involving Table B, can
simply send a message to the other sites that contain a copy of the same table
(in this case Paris) in the hope that the update will reach Paris reasonably quickly
and that the computer in Paris will update that record in Table B right away. In
another asynchronous scheme, one of the sites can be chosen to accumulate all of
the updates to all of the tables. That site can then regularly transmit the changes
to all of the other sites. Or each table can have one of the sites be declared the
‘‘dominant’’ site for that table. All of the updates for a particular table can be sent
to the copy of the table at its dominant site, which can then transmit the updates to
the other copies of the table on some timed or other basis.

Distributed Database 327

But if the nature of the data and of the applications that use it require all of
the data in the replicated tables worldwide always to be consistent, accurate, and
up-to-date, then a more complex ‘‘synchronous’’ procedure must be put in place.
While there are variations on this theme, the basic process for accomplishing this is
known as the ‘‘two-phase commit.’’ The two-phase commit works like this. Each
computer on the network has a special log file in addition to its database tables.
So, in Figure 12.9, each of the five cities has one of these special log files. Now,
when an update is to be made at one site, the distributed DBMS has to do several
things. It has to freeze all the replicated copies of the table involved, send the update
out to all the sites with the table copies, and then be sure that all the copies were
updated. After all of that happens, all of the replicated copies of the table will have
been updated and processing can resume. Remember that, for this to work properly,
either all of the replicated files must be updated or none of them must be updated.
What we don’t want is for the update to take place at some of the sites and not at
the others, since this would obviously leave inconsistent results.

Let’s look at an example using Table D in Figure 12.9. Copies of Table D are
located in Los Angeles, Memphis, and Paris. Say that someone issues an update
request to a record in Table D in Memphis. In the first or ‘‘prepare’’ phase of the
two-phase commit, the computer in Memphis sends the updated data to Los Angeles
and Paris. The computers in all three cities write the update to their logs (but not to
their actual copies of Table D at this point). The computers in Los Angeles and Paris
attempt to lock their copies of Table D to get ready for the update. If another process
is using their copy of Table D then they will not be able to do this. Los Angeles and
Paris then report back to Memphis whether or not they are in good operating shape
and whether or not they were able to lock Table D. The computer in Memphis takes
in all of this information and then decides whether to continue with the update or
to abort it. If Los Angeles and Paris report back that they are up and running and
were able to lock Table D, then the computer in Memphis will decide to go ahead
with the update. If the news from Los Angeles and Paris was bad, Memphis will
decide not to go ahead with the update. So, in the second or ‘‘commit’’ phase of
the two-phase commit, Memphis sends its decision to Los Angeles and Paris. If it
decides to complete the update, then all three cities transfer the updated data from
their logs to their copy of Table D. If it decides to abort the update, then none of
the sites transfer the updated data from their logs to their copy of Table D. All three
copies of Table D remain as they were and Memphis can start the process all over
again.

The two-phase commit is certainly a complex, costly, and time-consuming
process. It should be clear that the more volatile the data in the database is, the less
attractive is this type of synchronous procedure for updating replicated tables in the
distributed database.

Distributed Joins

Let’s take a look at the issue of distributed joins, which came up earlier. In a
distributed database in which no single computer (no single city) in the network
contains the entire database, there is the possibility that a query will be run from
one computer requiring a join of two or more tables that are not all at the same
computer. Consider the distributed database design in Figure 12.9. Let’s say that a
query is issued at Los Angeles that requires the join of Tables E and F. First of all,
neither of the two tables is located at Los Angeles, the site that issued the query.

328 C h a p t e r 12 Client/Server Database and Distributed Database

Then, notice that none of the other four cities has a copy of both Tables E and F.
That means that there is no one city to which the query can be sent for complete
processing, including the join.

In order to handle this type of distributed join situation, the distributed
DBMS must have a sophisticated ability to move data from one city to another to
accomplish the join. In Chapter 4, we described the relational DBMS’s relational
query optimizer as an expert system that figures out an efficient way to respond to
and satisfy a relational query. Similarly, the distributed DBMS must have its own
built-in expert system that is capable of figuring out an efficient way to handle a
request for a distributed join. This distributed DBMS expert system will work hand
in hand with the relational query optimizer, which will still be needed to determine
which records of a particular table are needed to satisfy the join, among other things.
For the query issued from Los Angeles that requires a join of Tables E and F, there
are several options:

■ Figure out which records of Table E are involved in the join and send copies of
them from either Memphis or Paris (each of which has a copy of Table E) to
either New York or Tokyo (each of which has a copy of the other table involved
in the join, Table F). Then, execute the join in whichever of New York or Tokyo
was chosen to receive the records from Table E and send the result back to Los
Angeles.

■ Figure out which records of Table F are involved in the join and send copies of
them from either New York or Tokyo (each of which has a copy of Table F) to
either Memphis or Paris (each of which has a copy of the other table involved
in the join, Table E). Then, execute the join in whichever of Memphis or Paris
was chosen to receive the records from Table F and send the result back to Los
Angeles.

■ Figure out which records of Table E are involved in the join and send copies of
them from either Memphis or Paris (each of which has a copy of Table E) to
Los Angeles, the city that initiated the join request. Figure out which records of
Table F are involved in the join and send copies of them from either New York
or Tokyo (each of which has a copy of Table F) to Los Angeles. Then, execute
the join in Los Angeles, the site that issued the query.

How does the distributed DBMS decide among these options? It must consider:

■ The number and size of the records from each table involved in the join.
■ The distances and costs of transmitting the records from one city to another to

execute the join.
■ The distance and cost of shipping the result of the join back to the city that issued

the query in the first place.

For example, if only 20 records of Table E are involved in the join while all of
Table F is needed, then it would make sense to send copies of the 20 Table E
records to a city that has a copy of Table F. The join can then be executed at the
Table F city and the result sent back to Los Angeles. Looking at the arrangement of
tables in Figure 12.9, one solution would be to send the 20 records from Table E
in Memphis to New York, one of the cities with Table F. The query could then be
executed in New York and the result sent to Los Angeles, which issued the query.
Why Memphis and New York rather than Paris and Tokyo, the other cities that have

Distributed Database 329

copies of Tables E and F, respectively? Because the distance (and probably the cost)
between Memphis and New York is much less than the distances involving Paris
and Tokyo. Finally, what about the option of shipping the data needed from both
tables to Los Angeles, the city that issued the query, for execution? Remember, the
entirety of Table F is needed for the join in this example. Shipping all of Table F
to Los Angeles to execute the join there would probably be much more expensive
than the New York option.

Partitioning or Fragmentation

Another option in the distributed database bag-of-tricks is known as ‘‘partitioning’’
or ‘‘fragmentation.’’ This is actually a variation on the theme of file partitioning
that we discussed in the context of physical database design.

In horizontal partitioning, a relational table can be split up so that some
records are located at one site, other records are located at another site, and so on.
Figure 12.10 shows the same five-city network we have been using as an example,
with another table, Table G, added. The figure shows that subset G1 of the records
of Table G is located in Memphis, subset G2 is located in Los Angeles, and so on.
A simple example of this would be the company’s employee table: the records of
the employees who work in a given city are stored in that city’s computer. Thus,
G1 is the subset of records of Table G consisting of the records of the employees

F IGURE 12.10
Distributed database with data
partitioning/fragmentation

UNITED STATES

Memphis

Paris

Tokyo

Los Angeles

New York

NORTH AMERICA

SOUTH AMERICA

ASIA

EUROPE

AFRICACANADA

U.K.GREENLAND
(DEN.)

MEXICO

PACIFIC
OCEAN

ARCTIC
OCEAN

ATLANTIC
OCEAN

Caribbean
Sea

B ED

C D

A

G5

F

ED

A B F

G1

G4

G3
G2

330 C h a p t e r 12 Client/Server Database and Distributed Database

Y O U R

T U R N

12.2 DISTRIBUTED DATABASES

Now think about a consortium of
universities around the world that are engaged in common
research projects. Some data is needed only by one or
a subset of the universities, while other data is needed
by most or all of them. We know that the universities can
communicate with one another via the Internet.

QUESTION:
Think about a research project, perhaps in the medical

field, that would involve a widely dispersed consortium

of universities. Plot the universities on a world map.
Devise a plan for locating and perhaps replicating
database tables at the university locations. Justify your
placement and replication.

who work in Memphis, G2 is the subset consisting of the employees who work
in Los Angeles, and so forth. This certainly makes sense when one considers that
most of the query and access activity on a particular employee’s record will take
place at his work location. The drawback is that when one of the sites, say the New
York headquarters location, occasionally needs to run an application that requires
accessing the employee records of everyone in the company, it must collect them
from every one of the five sites.

In vertical partitioning, the columns of a table are divided up among several
cities on the network. Each such partition must include the primary key attribute(s)
of the table. This arrangement can make sense when different sites are responsible
for processing different functions involving an entity. For example, the salary
attributes of a personnel table might be stored in one city while the skills attributes
of the table might be stored in another city. Both partitions would include the
employee number, the primary key of the full table. Note that bringing the different
pieces of data about a particular employee back together again in a query would
require a multi-site join of the two fragments of that employee’s record.

Can a table be partitioned both horizontally and vertically? Yes, in principle!
Can horizontal and vertical partitions be replicated? Yes again, in principle! But
bear in mind that the more exotic such arrangements become, the more complexity
there is for the software and the IT personnel to deal with.

Distributed Directory Management

In discussing distributed databases up to this point, we’ve been taking the notion
of location transparency for granted. That is, we’ve been assuming that when a
query is issued at any city on the network, the system simply ‘‘knows’’ where to
find the data it needs to satisfy that query. But that knowledge has to come from
somewhere and that place is in the form of a directory. A distributed DBMS must
include a directory that keeps track of where the database tables, the replicated
copies of database tables (if any), and the table partitions (if any) are located. Then,
when a query is presented at any city on the network, the distributed DBMS can
automatically use the directory to find out where the required data is located and
maintain location transparency. That is, the person or process that initiated the query
does not have to know where the data is, whether or not it is replicated, or whether
or not it is partitioned.

Distributed Database 331

Which brings up an interesting question: where should the directory itself be
stored? As with distributing the database tables themselves, there are a number of
possibilities, some relatively simple and others more complex, with many of the
same kinds of advantages and disadvantages that we’ve already discussed. The
entire directory could be stored at only one site, copies of the directory could be
stored at several of the sites, or a copy of the directory could be stored at every site.
Actually, since the directory must be referenced for every query issued at every site
and since the directory data will change only when new database tables are added
to the database, database tables are moved, or new replicated copies or partitions
are set up (all of which are fairly rare occurrences), the best solution generally is to
have a copy of the directory at every site.

Distributed DBMSs: Advantages and Disadvantages

At this point it will be helpful to pause, review, and summarize the advantages
and disadvantages of the distributed database concept and its various options.
Figure 12.11 provides this summary, which includes the advantages and
disadvantages of a centralized database for comparison.

F IGURE 12.11
Advantages and disadvantages of
centralized and distributed database
approaches

Centralized Database—Like Figure 12.5
Advantages:

• Single site provides high degree of security, concurrency, and backup and
recovery control.

• No need for a distributed directory since all of the data is in one place.

• No need for distributed joins since all of the data is in one place.

Disadvantages:

• All data accesses from other than the site with the database incur commu-
nications costs.

• The site with the database can become a bottleneck.

• Possible availability problem: if the site with the database goes down, there
can be no data access.

Dispersing Tables on the Network (without replication or partitioning)—Like Figure 12.6
Advantages:

• Local autonomy.

• Reduced communications costs because each table can be located at the site
that most heavily uses it.

• Improved availability because portions of the database are available even if
one or some of the sites are down.

Disadvantages:

• Several sites have to be concerned with security, concurrency, and backup
and recovery.

• Requires a distributed directory and the software to support location trans-
parency.

• Requires distributed joins.

(Continues)

332 C h a p t e r 12 Client/Server Database and Distributed Database

F IGURE 12.11 (Continued)
Advantages and disadvantages of
centralized and distributed database
approaches

Targeted Data Replication—Like Figure 12.9
Advantages in addition to the advantages of dispersed tables:

• Greatly reduced communications costs for read-only data access because
copies of tables can be located at multiple sites that most heavily use them.

• Greatly improved availability because if a site with a database table goes
down, there may be another site with a copy of that table.

Disadvantages in addition to the disadvantages of dispersed tables:

• Multi-site concurrency control when data in replicated tables is updated.

Partitioned Tables—Like Figure 12.10
Advantages:

• Greatest local autonomy because data at the record or column level can be
stored at the site(s) that most heavily use it.

• Greatly reduced communications costs because data at the record or column
level can be stored at the site(s) that most heavily use it.

Disadvantages:

• Retrieving all or a large portion of a table may require multi-site accesses.

SUMMARY

Local area networks are designed to share data. In a two-tier approach, data is stored
on a server on the LAN. The data can be accessed by a client PC on the LAN using
either the file server approach or the database server approach. In the file server
approach, entire files are shipped from the server to the client PC for processing.
In the database server approach, the processing is split between the client PC and
the server, with the query ultimately being processed at the server. There are two
uses of the term ‘three-tier approach.’ In one, the three tiers are the client PC’s hard
drive, the server, and computers beyond the LAN. In the other, the three tiers are
the client PC, the LAN’s application server, and the LAN’s database server.

In a distributed database, different parts of a single logical database are stored
in different geographic locations. There are a variety of approaches to locating
the different parts of the database, all with different associated advantages and
disadvantages, but in all cases the distribution should be transparent to the user.
One option, replicating data at different sites, requires sophisticated concurrency
control, including the two-phase commit protocol. Distributed joins may have to
be accomplished if the tables needed in a query are not co-located at a single site.
Distributed database can include partitioning tables with different partitions of a
particular table stored at different sites.

KEY TERMS

Application server
Client
Client/server database

Database server
Database server approach
Distributed data

Distributed database
Distributed database management
Distributed join

Exercises 333

Distributed directory management
File server approach
Fragmentation
Gateway computer
Local area network (LAN)

Local autonomy
Location transparency
Partitioning
Replicated data
Server

Three-tiered client/server approach
Two-phase commit
Two-tiered client/server approach

QUESTIONS

1. What is a client/server database system?
2. Explain the database server approach to client/server

database.
3. What are the advantages of the database server

approach to client/server database compared to the
file server approach?

4. What is data transparency in client/server database?
Why is it important?

5. Compare the two-tier arrangement of client/server
database to the three-tier arrangement.

6. What is a distributed database? What is a distributed
database management system?

7. Why would a company be interested in moving from
the centralized to the distributed database approach?

8. What are the advantages of locating a portion of a
database in the city in which it is most frequently
used?

9. What are the advantages and disadvantages of data
replication in a distributed database?

10. Describe the concept of asynchronous updating of
replicated data. For what kinds of applications would
it work or not work?

11. Describe the two-phase commit approach to updat-
ing replicated data.

12. Describe the factors used in deciding how to
accomplish a particular distributed join.

13. Describe horizontal and vertical partitioning in a
distributed database.

14. What are the advantages and disadvantages of
horizontal partitioning in a distributed database?

15. What are the advantages and disadvantages of
vertical partitioning in a distributed database?

16. What is the purpose of a directory in a distributed
database? Where should the directory be located?

17. Discuss the problem of directory management for
distributed database. Do you think that, as an issue,
it is more critical, less critical, or about the same as
the distribution of the data itself? Explain.

EXERCISES

1. Australian Boomerang, Ltd. wants to design a
distributed relational database. The company is
headquartered in Perth and has major operations
in Sydney, Melbourne, and Darwin. The database
involved consists of five tables, labeled A, B, C, D,
and E, with the following characteristics:

Table A consists of 500,000 records and is heavily
used in Perth and Sydney.

Table B consists of 100,000 records and is
frequently required in all four cities.

Table C consists of 800 records and is frequently
required in all four cities.

Table D consists of 75,000 records. Records
1–30,000 are most frequently used in Sydney.
Records 30,001–75,000 are most frequently
used in Melbourne.

Table E consists of 20,000 records and is used
almost exclusively in Perth.

Design a distributed relational database for
Australian Boomerang. Justify your placement,
replication, and partitioning of the tables.

2. Canadian Maple Trees, Inc. has a distributed
relational database with tables in computers in
Halifax, Montreal, Ottawa, Toronto, and Vancouver.
The database consists of twelve tables, some of
which are replicated in multiple cities. Among
them are tables A, B, and C, with the following
characteristics.

Table A consists of 800,000 records and is located
in Halifax, Montreal, and Vancouver.

Table B consists of 100,000 records and is located
in Halifax and Toronto.

Table C consists of 20,000 records and is located
in Ottawa and Vancouver.

Telecommunications costs among Montreal,
Ottawa, and Toronto are relatively low, while

334 C h a p t e r 12 Client/Server Database and Distributed Database

telecommunications costs between those three cities
and Halifax and Vancouver are relatively high.

A query is issued from Montreal that requires a
join of tables A, B, and C. The query involves a

single record from table A, 20 records from table B,
and an undetermined number of records from table
C. Develop and justify a plan for solving this query.

MINICASES

1. Consider the Happy Cruise Lines relational database in
Minicase 5.1.The company has decided to reconfigure
this database as a distributed database among its major
locations: New York, which is its headquarters, and
its other major U.S. ports, Miami, Los Angeles, and
Houston. Distributed and replicated among these four
locations, the tables have the following characteristics:

SHIP consists of 20 records and is used in all four
cities.

CRUISE consists of 4,000 records. CRUISE records
are used most heavily in the cities from which the
cruise described in the record began.

PORT consists of 42 records. The records that
describe Atlantic Ocean ports are used most
heavily in New York and Miami. The records
that describe Caribbean Sea ports are used most
heavily in Houston and Miami. The records that
describe Pacific Ocean ports are used most heavily
in Los Angeles.

VISIT consists of 15,000 records and is primarily
used in New York and Los Angeles.

PASSENGER consists of 230,000 records and is
primarily used in New York and Los Angeles.

VOYAGE consists of 720,000 records and is used in
all four cities.

Design a distributed relational database for Happy
Cruise Lines. Justify your placement, replication, and
partitioning of the tables.

2. Consider the Super Baseball League relational database
in Minicase 5.2. The league has decided to organize
its database as a distributed database with replicated

tables. The nodes on the distributed database will
be Chicago (the league’s headquarters), Atlanta, San
Francisco (where the league personnel office is located),
and Dallas. The tables have the following charac-
teristics:

TEAM consists of 20 records and is located in
Chicago and Atlanta.

COACH consists of 85 records and is located in
San Francisco and Dallas.

WORKEXP consists of 20,000 records and is located
in San Francisco and Dallas.

BATS consists of 800,000 records and is located in
Chicago and Atlanta.

PLAYER consists of 100,000 records and is located
in San Francisco and Atlanta.

AFFILIATION consists of 20,000 records and is
located in Chicago and San Francisco.

STADIUM consists of 20 records and is located only
in Chicago.

Assume that telecommunications costs among the cities
are all about the same.

Develop and justify a plan for solving the following
queries:

a. A query is issued from Chicago to get a list of all the
work experience of all the coaches on the Dodgers.

b. A query is issued from Atlanta to get a list of the
names of the coaches who work for the team based
at Smith Memorial Stadium.

c. A query is issued from Dallas to find the names of all
the players who have compiled a batting average of
at least. 300 while playing on the Dodgers.

C H A P T E R 13

THE DATA WAREHOUSE

T raditionally, most data was created to support applications that involved
current corporate operations: accounting, inventory management, personnel

management, and so forth. As people began to understand to power of information
systems and their use became more pervasive, other options regarding data began to
develop. For example, companies began to perform sales trend analyses that required
historic sales data. The idea was to predict future sales and inventory requirements based
on past sales history. Applications such as this led to the realization that there is a great
deal of value in historic data, and that it would be worthwhile to organize it on a very
broad basis. This is the data warehouse.

OBJECTIVES

■ Compare the data needs of transaction processing systems with those of decision
support systems.

■ Describe the data warehouse concept and list its main features.
■ Compare the enterprise data warehouse with the data mart.
■ Design a data warehouse.
■ Build a data warehouse, including the steps of data extraction, data cleaning, data

transformation, and data loading.
■ Describe how to use a data warehouse with online analytic processing and data

mining.
■ List the types of expertise needed to administer a data warehouse.
■ List the challenges in data warehousing.

CHAPTER OUTLINE

Introduction
The Data Warehouse Concept

The Data is Subject Oriented
The Data is Integrated
The Data is Non-Volatile
The Data is Time Variant

The Data Must Be High Quality
The Data May Be Aggregated
The Data is Often Denormalized
The Data is Not Necessarily

Absolutely Current
Types of Data Warehouses

336 C h a p t e r 13 The Data Warehouse

The Enterprise Data Warehouse
(EDW)

The Data Mart (DM)
Which to Choose: The EDW, the

DM, or Both?
Designing a Data Warehouse

Introduction
General Hardware Co. Data

Warehouse
Good Reading Bookstores Data

Warehouse
Lucky Rent-A-Car Data Warehouse
What About a World Music

Association Data Warehouse?

Building a Data Warehouse
Introduction
Data Extraction
Data Cleaning
Data Transformation
Data Loading

Using a Data Warehouse
On-Line Analytic Processing
Data Mining

Administering a Data Warehouse
Challenges in Data Warehousing
Summary

INTRODUCTION

Generally, when we think about information systems, we think about what are
known as operational or ‘‘transaction processing systems’’ (TPS). These are
the everyday application systems that support banking and insurance operations,
manage the parts inventory on manufacturing assembly lines, keep track of airline
and hotel reservations, support Web-based sales, and so on. These are the kinds of
application systems that most people quickly associate with the information systems
field and, indeed, these are the kinds of application systems that we have used as
examples in this book. The databases that support these application systems must
have several things in common, which we ordinarily take for granted. They must
have up-to-the-moment current data, they must be capable of providing direct access
and very rapid response, and they must be designed for sharing by large numbers of
users.

But the business world has other needs of a very different nature. These needs
generally involve management decision making and typically require analyzing data
that has been accumulated over some period of time. They often don’t even require
the latest, up-to-the-second data! An example occurs in the retail store business,
when management has to decide how much stock of particular items they should
carry in their stores during the October-December period this year. Management is
going to want to check the sales volume for those items during the same three-month
period in each of the last five years. If airline management is considering adding
additional flights between two cities (or dropping existing flights), they are going
to want to analyze lots of accumulated data about the volume of passenger traffic
in their existing flights between those two cities. If a company is considering
expanding its operations into a new geographical region, management will want to
study the demographics of the region’s population and the amount of competition
it will have from other companies, very possibly using data that it doesn’t currently
have but must acquire from outside sources.

In response to such management decision-making needs, there is another class
of application systems, known as ‘‘decision support systems’’ (DSS), that are
specifically designed to aid managers in these tasks. The issue for us in this book
about database management is: what kind of database is needed to support a DSS?

Introduction 337

In the past, files were developed to support individual applications that we would
now classify as DSS applications. For example, the five-year sales trend analysis
for retail stores described above has been a fairly standard application for a long
time and was always supported by files developed for it alone. But, as DSS activity
has mushroomed, along with the rest of information systems, having separate
files for each DSS application is wasteful, expensive and inefficient, for several
reasons:

■ Different DSS applications often need the same data, causing duplicate files to be
created for each application. As with any set of redundant files, they are wasteful
of storage space and update time, and they create the potential for data integrity
problems (although, as we will see a little later, data redundancy in dealing with
largely historical data is not as great a concern as it is with transactional data).

■ While particular files support particular DSS applications, they tend to be
inflexible and do not support closely related applications that require slightly
different data.

■ Individual files tied to specific DSS applications do nothing to encourage other
people and groups in the company to use the company’s accumulated data to gain
a competitive advantage over the competition.

■ Even if someone in the company is aware of existing DSS application data that
they could use to their own advantage (really, to the company’s advantage),
getting access to it can be difficult because it is ‘‘owned’’ by the application for
which it was created.

When we talked about the advantages of data sharing earlier in this book,
the emphasis was on data in transactional systems. But the factors listed above
regarding data for decision support systems, which in their own way largely parallel
the arguments for shared transactional databases, inevitably led to the concept of
broad-based, shared databases for decision support. These DSS databases have
come to be known as ‘‘data warehouses.’’ In this chapter, we will discuss the
nature, design, and implementation of data warehouses. Later in the chapter we will
briefly touch upon some of their key uses.

CONCEPTS

IN ACT ION

13-A SMITH & NEPHEW

Smith & Nephew is a leader in
the manufacture and marketing of medical devices.
Headquartered in London, UK, the company has over
7,000 employees and operations in 34 countries.
Smith & Nephew focuses on three areas of medical
device technology, each run by a separate business
unit. In orthopedics, Smith & Nephew is a leading
manufacturer of knee, hip, and shoulder replacement
joints, as well as products that aid in the repair of broken
bones. In endoscopy, the company is the world leader

in arthroscopic surgery devices for minimally invasive
surgery of the knee and other joints. Last, the company
is the world leader in providing products and techniques
for advanced wound management. All of this from a
beginning in 1856 when Thomas J. Smith opened a
pharmaceutical chemist shop in Hull, England. And, yes,
he later brought his nephew into the company.

Smith and Nephew supports its orthopedics prod-
ucts business with a state-of-the-art data warehouse. This
data warehouse incorporates daily sales and inventory

338 C h a p t e r 13 The Data Warehouse

Photo Courtesy of Smith & Nephew

data from its operational SAP system plus global data
and data from external sources regarding finance and
market data. It provides a decision support environment
for sales administrators who must manage and realign
sales territories, marketing specialists who must analyze
market potentials, product managers, and logistics man-
agers. The data warehouse also supports an executive
information system for reporting the company’s results to
the Orthopedic Executive Staff.

The data warehouse is built on the Oracle RDBMS
and runs on Hewlett-Packard Unix hardware. Queries
are generated through Oracle query products as well
as native SQL. Smith & Nephew’s data warehouse
architecture employs the classic star schema design, with
several major subject areas. These and their fact tables
include U.S. sales, global sales, budget, and inventory.
The dimension tables, for example for global sales,
include customer, time, and product. This arrangement
allows historical sales data to be compiled by customer,
sales territory, time period, product, and so forth.

THE DATA WAREHOUSE CONCEPT

Informally, a data warehouse is a broad-based, shared database for management
decision making that contains data gathered over time. Imagine that at the end of
every week or month, you take all the company’s sales data for that period and you
append it to (add it to the end of) all of the accumulated sales data that is already
in the data warehouse. Keep on doing this and eventually you will have several
years of company sales data that you can search and query and perform all sorts of
calculations on.

More formally and in more detail, the classic definition of a data warehouse
is that it is ‘‘a subject oriented, integrated, non-volatile, and time variant
collection of data in support of management’s decisions.’’1 In addition, the data in
the warehouse must be high quality, may be aggregated, is often denormalized, and
is not necessarily absolutely current, Figure 13.1. Let’s take a look at each of these
data warehouse characteristics.

The Data is Subject Oriented

The data in transactional databases tends to be organized according to the company’s
TPS applications. In a bank this might mean the applications that handle the
processing of accounts; in a manufacturing company it might include the applications
that communicate with suppliers to maintain the necessary raw materials and parts
on the assembly line; in an airline it might involve the applications that support the
reservations process. Data warehouses are organized around ‘‘subjects,’’ really the
major entities of concern in the business environment. Thus, subjects may include

1 Inmon, W.H., Building the Data Warehouse, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 1996.

The Data Warehouse Concept 339

FIGURE 13.1
Characteristics of data warehouse data

• The data is subject oriented

• The data is integrated

• The data is non-volatile

• The data is time variant

• The data must be high quality

• The data may be aggregated

• The data is often denormalized

• The data is not necessarily absolutely current

sales, customers, orders, claims, accounts, employees, and other entities that are
central to the particular company’s business.

The Data is Integrated

Data about each of the subjects in the data warehouse is typically collected from
several of the company’s transactional databases, each of which supports one or
more applications having something to do with the particular subject. Some of the
data, such as additional demographic data about the company’s customers, may be
acquired from outside sources. All of the data about a subject must be organized
or ‘‘integrated’’ in such a way as to provide a unified overall picture of all the
important details about the subject over time. Furthermore, while being integrated,
the data may have to be ‘‘transformed.’’ For example, one application’s database
tables may measure the company’s finished products in centimeters while another
may measure them in inches. One may identify countries of the world by name while
another may identify them by a numeric code. One may store customer numbers as
an integer field while another may store them as a character field. In all of these
and in a wide variety of other such cases, the data from these disparate application
databases must be transformed into common measurements, codes, data types, and
so forth, as they are integrated into the data warehouse.

The Data is Non-Volatile

Transactional data is normally updated on a regular, even frequent basis. Bank
balances, raw materials inventories, airline reservations data are all updated as
the balances, inventories, and number of seats remaining respectively change in
the normal course of daily business. We describe this data as ‘‘volatile,’’ subject
to constant change. The data in the data warehouse is non-volatile. Once data is
added to the data warehouse, it doesn’t change. The sales data for October 2010
is whatever it was. It was totaled up, added to the data warehouse at the end of
October 2010, and that’s that. It will never change. Changing it would be like going
back and rewriting history. The only way in which the data in the data warehouse
is updated is when data for the latest time period, the time period just ended, is
appended to the existing data.

The Data is Time Variant

Most transactional data is, simply, ‘‘current.’’ A bank balance, an amount of
raw materials inventory, the number of seats left on a flight are all the current,
up-to-the-moment figures. If someone wants to make a withdrawal from his bank

340 C h a p t e r 13 The Data Warehouse

account, the bank doesn’t care what the balance was ten days ago or ten hours ago.
The bank wants to know what the current balance is. There is no need to associate a
date or time with the bank balance; in effect, the data’s date and time is always now.
(To be sure, some transactional data must include timestamps. A health insurance
company may keep six months of claim data online and such data clearly requires
timestamps.) On the other hand, data warehouse data, with its historical nature,
always includes some kind of a timestamp. If we are storing sales data on a weekly
or monthly basis and we have accumulated ten years of such historic data, each
weekly or monthly sales figure obviously must be accompanied by a timestamp
indicating the week or month (and year!) that it represents.

The Data Must Be High Quality

Transactional data can actually be somewhat forgiving of at least certain kinds of
errors. In the bank record example, the account balance must be accurate but if
there is, say, a one-letter misspelling of the street name in the account holder’s
street address, that probably will not make a difference. It will not affect the account
balance and the post office will probably still deliver the account statements to the
right house. But what if the customer’s street address is actually spelled correctly
in other transactional files? Consider a section of a data warehouse in which the
subject is ‘customer.’ It is crucial to establish an accurate set of customers for the
data warehouse data to be of any use. But with the address misspelling in one
transactional file, when the data from that file is integrated with the data from the
other transactional files, there will be some difficulty in reconciling whether the two
different addresses are the same and both represent one customer, or whether they
actually represent two different customers. This must be investigated and a decision
made on whether the records in the different files represent one customer or two
different customers. It is in this sense that the data in the data warehouse must be of
higher quality than the data in the transactional files.

The Data May Be Aggregated

When the data is copied and integrated from the transactional files into the data
warehouse, it is often aggregated or summarized, for at least three reasons. One
is that the type of data that management requires for decision making is generally
summarized data. When trying to decide how much stock to order for a store for
next December based on the sales data from the last five Decembers, the monthly
sales figures are obviously useful but the individual daily sales figures during those
last five Decembers probably don’t matter much. The second reason for having
aggregated data in the data warehouse is that the sheer volume of all of the historical
detail data would often make the data warehouse unacceptably huge (they tend to
be large as it is!). And the third reason is that if the detail data were stored in the
data warehouse, the amount of time needed to summarize the data for management
every time a query was posed would often be unacceptable. Having said all that, the
decision support environment is so broad that some situations within it do call for
detail data and, indeed, some data warehouses do contain at least some detail data.

The Data is Often Denormalized

One of the fundamental truths about database we have already encountered is that
data redundancy improves the performance of read-only queries but takes up more
disk space, requires more time to update, and introduces possible data integrity
problems when the data has to be updated. But in the case of the data warehouse,

Types of Data Warehouses 341

we have already established that the data is non-volatile. The existing data in the
data warehouse never has to be updated. That makes the data warehouse a horse (or
a database) of a different color! If the company is willing to tolerate the substantial
additional space taken up by the redundant data, it can gain the advantage of the
improved query performance that redundancy provides without paying the penalties
of increased update time and potential data integrity problems because the existing
data is historical and never has to be updated!

The Data is Not Necessarily Absolutely Current

This is really a consequence of the kind of typical time schedule for loading new
data into the data warehouse and was implied in ‘‘The Data is Time Variant’’ item
above. Say that you load the week-just-ended sales data into the data warehouse
every Friday. The following Wednesday, a manager queries the data warehouse for
help in making a decision. The data in the data warehouse is not ‘‘current’’ in the
sense that sales data from last Saturday through today, Wednesday, is not included
in the data warehouse. The question is, does this matter? The answer is, probably
not! For example, the manager may have been performing a five-year sales trend
analysis. When you’re looking at the last five years of data, including or omitting
the last five days of data will probably not make a difference.

TYPES OF DATA WAREHOUSES

Thus far, we have been using the term ‘‘data warehouse’’ in a generic sense. But,
while there are some further variations and refinements, there are basically two
kinds of data warehouses. One is called an enterprise data warehouse (EDW),
the other is called a data mart (DM), Figure 13.2. They are distinguished by two

F IGURE 13.2
The enterprise data warehouse and data
marts

Data
Mart

Departments

The Corporation

Accounting

Data
Mart

Finance

Data
Mart

Development

Data
Mart

Production

Enterprise
Data

Warehouse

342 C h a p t e r 13 The Data Warehouse

factors: their size and the portion of the company that they service (which tend to go
hand in hand), and the manner in which they are created and new data is appended
(which are also related).

The Enterprise Data Warehouse (EDW)

The enterprise data warehouse is a large-scale data warehouse that incorporates
the data of an entire company or of a major division, site, or activity of a
company. Both Smith & Nephew and Hilton Hotels employ such large-scale data
warehouses. Depending on its nature, the data in the EDW is drawn from a variety
of the company’s transactional databases as well as from externally acquired data,
requiring a major data integration effort. In data warehouse terminology, a full-scale
EDW is built around several different subjects. The large mass of integrated data in
the EDW is designed to support a wide variety of DSS applications and to serve as
a data resource with which company managers can explore new ways of using the
company’s data to its advantage. Many EDWs restrict the degree of denormalization
because of the sheer volumes of data that large-scale denormalization would produce.

The Data Mart (DM)

A data mart is a small-scale data warehouse that is designed to support a small part
of an organization, say a department or a related group of departments. As we saw,
Hilton Hotels copies data from its data warehouse into a data mart for marketing
query purposes. A company will often have several DMs. DMs are based on a lim-
ited number of subjects (possibly one) and are constructed from a limited number
of transactional databases. They focus on the business of a department or group of
departments and thus tend to support a limited number and scope of DSS applica-
tions. Because of the DM’s smaller initial size, there is more freedom to denormalize
the data. Managerially, the department manager may feel that she has more control
with a local DM and a greater ability to customize it to the department’s needs.

Which to Choose: The EDW, the DM, or Both?

Should a company have an EDW, multiple DMs, or both? This is the kind of decision
that might result from careful planning, or it might simply evolve as a matter of
management style or even just happenstance. Certainly, there are companies that
have very deliberately and with careful planning decided to invest in developing an
EDW. There are also companies that have made a conscious decision to develop a
series of DMs instead of an EDW. In other situations, there was no careful planning,
at all. There have been situations in managerially decentralized companies in which
individual managers decided to develop DMs in their own departments. At times
DMs have evolved from the interests of technical people in user departments.

In companies that have both an EDW and DMs, there are the questions of
‘‘Which came first?’’ and ‘‘Were they developed independently or derived from
each other?’’ This can go either way. In regard to data warehousing, the term, ‘‘top-
down development’’ implies that the EDW was created first and then later data was
extracted from an EDW to create one or more DMs, initially and on an ongoing
basis. Assuming that the company has made the decision to invest in an EDW, this
can make a great deal of sense. For example, once the data has been scrutinized
and its quality improved (see ‘‘data cleaning’’ below) as it was entered into the
EDW, downloading portions of it to DMs retains the high quality without putting
the burden for this effort on the department developing the DM. Development in
the other direction is possible, too. A company that has deliberately or as a matter of

Designing a Data Warehouse 343

circumstance developed a series of independent DMs may decide, in a ‘‘bottom-up
development’’ fashion, to build an EDW out of the existing DMs. Clearly, this
would have to involve a round of integration and transformation beyond those that
took place in creating the individual DMs.

DESIGNING A DATA WAREHOUSE

Introduction

As data warehousing has become a broad topic with many variations in use, it
comes as no surprise that there are a variety of ways to design data warehouses.
Two of the characteristics of data warehouses are central to any such design:
the subject orientation and the historic nature of the data. That is, the data
warehouse (or each major part of the data warehouse) will be built around a subject
and have a temporal (time) component to it. Data warehouses are often called
multidimensional databases because each occurrence of the subject is referenced
by an occurrence of each of several dimensions or characteristics of the subject,
one of which is time. For example, in a hospital patient tracking and billing system,
the subject might be charges and dimensions might include patient, date, procedure,
and doctor. When there are just two dimensions, for example the charges for a
particular patient on a particular date, they can easily be visualized on a flat piece of
paper, Figure 13.3. When there are three dimensions, for example the charges for
a particular procedure performed on a particular patient on a particular date, they
can be represented as a cube and still drawn on paper, Figure 13.4. When there are
four (or more) dimensions, say the charges for a particular procedure ordered by
a particular doctor performed on a particular patient on a particular date, it takes
some imagination (although there are techniques for combining dimensions that
bring the visual representation back down to two or three dimensions). There are
data warehouse products on the market that have special-purpose data structures to
store such multidimensional data. But there is also much interest in storing such

F IGURE 13.3
Hospital patient tracking and billing
system data with two dimensions

J.
 S

m
ith

$1,230

195

250

F.
 J

on
es

C
. C

ha
se

P.
 A

da
m

s

R
. B

ra
dl

ey

Oct. 10

Oct. 11

Oct. 12

Oct. 13

Oct. 14

Oct. 15

Oct. 16

570

2,450

1,775

5,890

2,300

855

Patient

Total charges
for patient
F. Jones on
Oct. 11

D
at

e

• • •

•
•
•

344 C h a p t e r 13 The Data Warehouse

F IGURE 13.4
Hospital patient tracking and billing
system data with three dimensions

J.
 S

m
ith

F
. J

on
es

C
. C

ha
se

P
. A

da
m

s

R
. B

ra
dl

ey

Oct. 10

Oct. 11

Oct. 12

Oct. 13

Oct. 14

Oct. 15

Oct. 16

$800

X-Ray
Blood

Transfusion

Heart

Transplant

Tonsillectom
y

Patient

D
at

e

Pro
ce

du
re

Charges for patient
F. Jones’ blood transfustion
on Oct. 11

data in relational databases. A way to store multidimensional data in a relational
database structure is with a model known as the star schema. The name comes
from the visual design in which the subject is in the middle and the dimensions
radiate outwards like the rays of a star. As noted earlier, Smith & Nephew employs
the star schema design for its data warehouse, as does Hilton Hotels for at least part
of its data warehouse environment.

General Hardware Co. Data Warehouse

Figure 13.5 repeats the General Hardware relational database and Figure 13.6 shows
a star schema for the General Hardware Co., with SALE as the subject. Star schemas
have a ‘‘fact table,’’ which represents the data warehouse ‘‘subject,’’ and several
‘‘dimension tables.’’ In Figure 13.6, SALE is the fact table and SALESPERSON,
PRODUCT, and TIME PERIOD are the dimension tables. The dimension tables
will let the data in the fact table be studied from many different points of view.
Notice that there is a one-to-many relationship between each dimension table entity
and the fact table entity. Furthermore, the ‘‘one side’’ of the relationship is always
the dimension table and the ‘‘many side’’ of the relationship is always the fact table.
For a particular salesperson there are many sales records, but each sales record is
associated with only one salesperson. The same is true of products and time periods.

To begin to understand this concept and see it come to life, refer back to the
SALES table in Figure 13.5, in which General Hardware keeps track of how many
units of each product each salesperson has sold in the most recent time period, say

Designing a Data Warehouse 345

FIGURE 13.5
The General Hardware Company relational
database

OFFICE

Office
Number Telephone Size

SALES

Salesperson Product
Number Number Quantity

PRODUCT

Product Product
Number Name Unit Price

CUSTOMER EMPLOYEE

Customer Employee Employee
Number Number Name Title

CUSTOMER

Customer Customer Salesperson
Number Name Number HQ City

SALESPERSON

Salesperson Salesperson Commission Year of Office
Number Name Percentage Hire Number

in the last week. But what if we want to record and keep track of the sales for the
most recent week, and the week before that, and the week before that, and so on
going back perhaps five or ten years? That is a description of a data warehouse. The
SALE table in the star schema of Figure 13.6 also reflects General Hardware’s sales
by salesperson and product but with a new element added: time. This table records
the quantity of each product that each salesperson sold in each time period stored.

The SALE table in Figure 13.6 has to have a primary key, like any relational
table. As shown in the figure, its primary key is the combination of the Salesperson
Number, Product Number, and Time Period Number attributes. But each of those
attributes also serves as a foreign key. Each one leads to one of the dimension tables,
as shown in Figure 13.6. Some historic data can be obtained from the fact table
alone. Using the SALE table, alone, for example, we could find the total number
of units of a particular product that a particular salesperson has sold for as long as
the historical sales records have been kept, assuming we know both the product’s
product number and the salesperson’s salesperson number. We would simply add
the Quantity values in all of the SALE records for that salesperson and product. But
the dimension tables provide, well, a whole new dimension! For example, focusing
in on the TIME PERIOD’s Year attribute and taking advantage of this table’s foreign
key connection to the SALE table, we could refine the search to find the total number

346 C h a p t e r 13 The Data Warehouse

F IGURE 13.6
General Hardware Company data
warehouse star schema design

Salesperson
Number

Salesperson
Name

Commission
Percentage

Year of
Hire

SALESPERSON

Product
Number

Product
Name

Unit Price

PRODUCT

Salesperson
Number

Product
Number

Time Period
Number

Quantity

SALE

Time Period
Number

Year

Quarter

Month

Week

TIME PERIOD

of units of a particular product that a particular salesperson sold in a particular single
year or in a particular range of years. Or, focusing on the PRODUCT table’s Unit
Price attribute and the TIME PERIOD table’s Year attribute, we could find the total
number of units of expensive (unit price greater than some amount) products that
each salesperson sold in a particular year. To make this even more concrete, suppose
that we want to decide which of our salespersons who currently are compensated at
the 10% commission level should receive an award based on their sales of expensive
products over the last three years. We could sum the quantity values of the SALE
table records by grouping them based on an attribute value of 10 in the Commission
Percentage attribute of the SALESPERSON table, an attribute value greater than
50 (dollars) in the Unit Price attribute of the PRODUCT table, and a Year attribute
representing each of the last three years in the TIME PERIOD table. The different
combinations and possibilities are almost endless.

Figure 13.7 shows some sample data for General Hardware’s star schema data
warehouse. The fact table, SALE, is on the left and the three dimension tables are
on the right. The rows shown in the SALE table are numbered on the left just for
convenience in discussion. Look at the TIME PERIOD table in Figure 13.7. First of
all, it is clear from the TIME PERIOD table that a decision was made to store data
by the week and not by any smaller unit, such as the day. In this case, even if the
data in the transactional database is being accumulated daily, it will be aggregated
into weekly data in the data warehouse. Notice that the data warehouse began in
the first week of the first month of the first quarter of 1997 and that this week was

Designing a Data Warehouse 347

FIGURE 13.7
General Hardware Company data
warehouse sample data

SALESPERSON

Salesperson Salesperson Commission Year
Number Name Percentage of Hire

137 Baker 10 1995

186 Adams 15 2001

204 Dickens 10 1998

361 Carlyle 20 2001

PRODUCT

Product Product Unit
Number Name Price

16386 Wrench 12.95

19440 Hammer 17.50

21765 Drill 32.99

24013 Saw 26.25

26722 Pliers 11.50

TIME PERIOD

Time
Period
Number Year Quarter Month Week

001 1997 1 1 1

002 1997 1 1 2

003 1997 1 1 3

101 1998 4 3 1

102 1998 4 3 2

103 1998 4 3 3

104 1998 4 3 4

329 2003 2 2 1

330 2003 2 2 2

331 2003 2 2 3

(Continues)

…
…

given the Time Period Number value of 001. The week after that was given the
Time Period Number value of 002, and so on to the latest week stored. Now, look
at the SALE table. Row 10 indicates that salesperson 137 sold 59 units of product
24013 during time period 103, which according to the TIME PERIOD table was
the second week of the third month of the fourth quarter of 1998 (i.e. the second
week of December, 1998). Row 17 of the SALE table shows that salesperson 204
sold 44 units of product 16386 during time period 331, which was the third week
of May, 2003. Overall, as you look at the SALE table from row 1 down to row 20,
you can see the historic nature of the data and the steady, forward time progression
as the Time Period Number attribute starts with time period 001 in the first couple
of records and steadily increases to time period 331 in the last batch of records.

348 C h a p t e r 13 The Data Warehouse

F IGURE 13.7 (Continued)
General Hardware Company data
warehouse sample data

SALE

Salesperson Product Time Period
Number Number Number Quantity

1 137 16386 001 57

2 137 24013 001 129

3 137 16386 002 24

4 137 24013 002 30

5 137 16386 102 85

6 137 24013 102 36

7 204 16386 102 111

8 204 24013 102 44

9 137 16386 103 47

10 137 24013 103 59

11 204 16386 103 13

12 204 24013 103 106

13 137 16386 331 63

14 137 24013 331 30

15 186 16386 331 25

16 186 24013 331 16

17 204 16386 331 44

18 204 24013 331 107

19 361 16386 331 18

20 361 24013 331 59

…
…

…

Good Reading Bookstores Data Warehouse

Does Good Reading Bookstores need a data warehouse? Actually, this is a very
good question, the answer to which is going to demonstrate a couple of important
points about data warehouses. At first glance, the answer to the question seems to
be: maybe not! After all, the sales data in Good Reading’s transactional database
already carries a date attribute, as shown in the SALE table of Figure 5.16. Thus,
it looks like Good Reading’s transactional database is already historical! But Good
Reading does need a data warehouse for two reasons. One is that, while Good
Reading’s transactional database performs acceptably with perhaps the last couple
of months of data in it, its performance would become unacceptable if we tried
to keep ten years of data in it. The other reason is that the kinds of management
decision making that require long-term historical sales data do not require daily data.
Data aggregated to the week level is just fine for Good Reading’s decision making
purposes and storing the data on a weekly basis saves a lot of time over retrieving
and adding up much more data to answer every query on data stored at the day level.

Figure 13.8 shows the Good Reading Bookstores data warehouse star schema
design. The fact table is SALE and each of its records indicates how many of a
particular book a particular customer bought in a particular week (here again week is
the lowest-level time period) and the price that the customer paid per book. For this

Designing a Data Warehouse 349

Publisher
Name

City

Country

Telephone

Year Founded

PUBLISHER

Book
Number

Book
Name

Publication
Year

Pages

Publisher
Name

BOOK

Book
Number

Customer
Number

Time Period
Number

Price

Quantity

SALE

Time Period
Number

Year

Quarter

Month

Week

TIME PERIOD

Customer
Number

Customer
Name

Street

City

State

Country

CUSTOMER

F IGURE 13.8
Good Reading Bookstores data warehouse star schema design with snowflake feature

to make sense, there must be a company rule that the price of a book cannot change
in the middle of a week, since each SALE table row has space to store only one
price to go with the total quantity of that book purchased by that customer during
that week. The design in Figure 13.8 also has a feature that makes it a ‘‘snowflake’’
design: one of the dimension tables, BOOK, leads to yet another dimension table,
PUBLISHER. Consistent with the rest of the star schema, the snowflake relationship
is one-to-many, ‘‘inward’’ towards the center of the star. A publisher publishes
many books but a book is associated with only one publisher.

To help in deciding how many copies of Moby Dick to order for its stores
in Florida during the upcoming Christmas season, Good Reading could check how
many copies of Moby Dick were purchased in Florida during each of the last
five Decembers. This query would require the Book Name attribute of the BOOK
table, the State and Country attributes of the CUSTOMER table, and the Year and
Month attributes of the TIME PERIOD table. To help in deciding whether to open
more stores in Dallas, TX, Good Reading could sum the total number of all books
purchased in all their existing Dallas stores during each of the last five years. The
snowflake feature expands the range of query possibilities even further. Using the

350 C h a p t e r 13 The Data Warehouse

Country attribute of the PUBLISHER table, the State and Country attributes of the
CUSTOMER table, and the Quarter and Year attributes of the TIME PERIOD table,
they could find the total number of books published in Brazil that were purchased
by customers in California during the second quarter of 2009.

Lucky Rent-A-Car Data Warehouse

Like Good Reading Bookstores’ transactional database, Lucky Rent-A-Car’s
transactional database (Figure 5.18) already carries a date attribute (two, in fact) in
its RENTAL table. The reasoning for creating a data warehouse for Lucky is based
on the same argument that we examined for Good Reading, that its transactional
database would bog down under the weight of all the data if we tried to store ten
years or more of rental history data in it. Interestingly, in the Lucky case, the data
warehouse should still store the data down to the day level (resulting in a huge data
warehouse). Why? In the rental car business, it is important to be able to check
historically whether, for example, more cars were rented on Saturdays over a given
time period than on Tuesdays.

Figure 13.9 shows the Lucky Rent-A-Car data warehouse star schema design.
The fact table is RENTAL. In this case, as implied above, the fact table does not

Manufacturer
Name

Manufacturer
Country

Sales Rep
Name

Sales Rep
Telephone

MANUFACTURER

Car Serial
Number

Model

Year

Class

Manufacturer
Name

CAR

Car Serial
Number

Customer
Number

Rental Date
(Time Period
Number)

Return Date
(Time Period
Number)

Cost

RENTAL

Time Period
Number

Year

Quarter

Month

Week

Day

TIME PERIOD

Customer
Number

Customer
Name

Customer
Address

Customer
Telephone

CUSTOMER

F IGURE 13.9
Lucky Rent-A-Car data warehouse star schema design with snowflake feature

Designing a Data Warehouse 351

contain aggregated data. Every car rental transaction is recorded for posterity in the
data warehouse. Notice that this data warehouse has a snowflake feature since the
CAR dimension table is connected outwards to the MANUFACTURER table. The
query possibilities in this data warehouse are very rich. Lucky could ask how many
mid-size (the CAR table’s Class attribute) General Motors cars were rented on July
weekends in each of the last five years. To find who some of their most valuable
customers are for marketing purposes, Lucky could identify the customers (and
create a name and address list for them) who rented full-size cars at least three times
for at least a week each time during the winter months of each of the last three years.
Or, using the Manufacturer Country attribute of the MANUFACTURER table in the
snowflake, they could find the amount of revenue (based on the RENTAL table’s
Cost attribute) that they generated by renting Japanese cars during the summer
vacation period in each of the last eight years.

What About a World Music Association Data Warehouse?

Did you notice that we haven’t talked about a data warehouse for the World Music
Association (WMA), whose transactional database is shown in Figure 5.17? If there
were to be such a data warehouse, its most likely subject would be RECORDING,
as the essence of WMA’s business is to keep track of different recordings made of
different compositions by various orchestras. There is already a Year attribute in
the RECORDING table of Figure 5.17. In this sense, the main data of the World
Music Association’s transactional database is already ‘‘timestamped,’’ just like
Good Reading Bookstores’ and Lucky Rent-A-Car’s data. We gave reasons for
creating data warehouses for Good Reading and for Lucky, so what about WMA?
First, the essence of the WMA data is historical. We might be just as interested
in a recording made fifty years ago as one made last year. Second, by its nature,
the amount of data in a WMA-type transactional database is much smaller than the
amount of data in a Good Reading or Lucky-type transactional database. The latter
two transactional databases contain daily sales records in high-volume businesses.
Even on a worldwide basis, the number of recordings orchestras make is much
smaller in comparison. So, the conclusion is that, since the nature of the WMA
transactional database blurs with what a WMA data warehouse would look like and
the amount of (historical) data in the WMA transactional database is manageable,
there is no need for a WMA data warehouse.

Y O U R

T U R N

13.1 DESIGNING A UNIVERSITY DATA WAREHOUSE

Universities create a great deal of
data. There is data about students, data about professors,
data about courses, data about administrative units such
as academic department, data about the physical plant,
and accounting data, just as in any business operation.
Some of the data is current, such as the students enrolled
in particular courses in the current semester. But it may be
useful to maintain some of the data on a historical basis.

QUESTION:

Think about what data a university might want to maintain
on a historical basis. Design a data warehouse for this
historical data. You may focus on students as the subject
of the data warehouse or any other entity that you wish.

352 C h a p t e r 13 The Data Warehouse

BUILDING A DATA WAREHOUSE

Introduction

Once the data warehouse has been designed, there are four steps in actually building
it. As shown in Figure 13.10, these are:

■ Data Extraction
■ Data Cleaning
■ Data Transformation
■ Data Loading

Let’s take a look at each of these steps.

Data Extraction

Data extraction is the process of copying data from the transactional databases in
preparation for loading it into the data warehouse. There are several important points
to remember about this. One is that it is not a one-time event. Obviously, there
must be an initial extraction of data from the transactional databases when the data
warehouse is first built, but after that it will be an ongoing process, performed at
regular intervals, perhaps daily, weekly, or monthly, when the latest day’s, week’s,
or month’s transactional data is added to the data warehouse. Another point is that

F IGURE 13.10
The four steps in building a data
warehouse

Transactional
Databases

Data Loading

Data Extraction

Data Warehouse Data Transformation

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0
1 0 1 1 1 0 1 1
0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1

Data Cleaning

Building a Data Warehouse 353

the data is likely to come from several transactional databases. Specific data (that
means not necessarily all of the data) in each transactional database is copied and
merged to form the data warehouse. There are pitfalls along the way that must be
dealt with, such as, for example, that the employee serial number attribute may be
called, ‘‘Employee Number’’ in one transactional database and ‘‘Serial Number’’
in another. Or, looking at it another way, the attribute name ‘‘Serial Number’’ may
mean ‘‘Employee Serial Number’’ in one database and ‘‘Finished Goods Serial
Number’’ in another.

Some of the data entering into this process may come from outside of the
company. For example, there are companies whose business is to sell demographic
data about people to companies that want to use it for marketing purposes.
This process is known as data enrichment. Figure 13.11 shows enrichment data

Manufacturer
Name

Manufacturer
Country

Sales Rep
Name

Sales Rep
Telephone

MANUFACTURER

Car Serial
Number

Model

Year

Class

Manufacturer
Name

CAR

Car Serial
Number

Customer
Number

Rental Date
(Time Period
Number)

Return Date
(Time Period
Number)

Cost

RENTAL

Time Period
Number

Year

Quarter

Month

Week

Day

TIME PERIOD

Customer
Number

Customer
Name

Customer
Address

Customer
Telephone

Age

Income

Education

CUSTOMER

F IGURE 13.11
Lucky Rent-A-Car data warehouse design with enrichment data added to the CUSTOMER table

354 C h a p t e r 13 The Data Warehouse

added to Lucky Rent-A-Car’s data warehouse CUSTOMER dimension table from
Figure 13.9. Notice that in the data enrichment process, age, income, and education
data are added, presumably from some outside data source. Lucky might use this
data to try to market the rental of particular kinds of cars to customers who fall into
certain demographic categories. We will talk more about this later in the section on
data mining.

Data Cleaning

Transactional data can contain all kinds of errors that may or may not affect the
applications that use it. For example, if a customer’s name is misspelled but the
Post Office can correctly figure out to whom to deliver something, no one may ever
bother to fix the error in the company’s customer table. On the other hand, if a
billing amount is much too high, the assumption is that the customer will notice it
and demand that it be corrected. Data warehouses are very sensitive to data errors
and as many such errors as possible must be ‘‘cleaned’’ (the process is also referred
to as ‘‘cleansed’’ or ‘‘scrubbed’’) as the data is loaded into the data warehouse.
The point is that if data errors make it into the data warehouse, they can throw
off the totals and statistics generated by the queries that are designed to support
management decision making, compromising the value of the data warehouse.

There are two steps to cleaning transactional data in preparation for loading it
into a data warehouse. The first step is to identify the problem data and the second
step is to fix it. Identifying the problem data is generally a job for a program,
since having people scrutinize the large volumes of data typical today would simply
take too long. Fixing the identified problems can be handled by sophisticated
artificial intelligence programs or by creating exception reports for employees to
scrutinize. Figure 13.12 shows sample data from two of Good Reading Bookstores’
transactional database tables (see Figure 5.16). (The row numbers on the left are
solely for reference purposes in this discussion.) Each table has several errors that
would have to be corrected as the data is copied, integrated, and aggregated into a
data warehouse. Some of the errors shown may be less likely than others actually to
turn up in today’s more sophisticated application environment, but as a group they
make the point that there are lots of potential data hazards out there.

There are four errors or possible errors in the CUSTOMER table,
Figure 13.12a:

■ Missing Data: In row 1, the City attribute is blank. It’s possible that a program
could check an online ‘‘white pages’’ listing of Tennessee (State=‘‘TN’’ in row
1), look for a Mervis at 123 Oak St., and in that way discover the city and
automatically insert it as the City value in row 1. But it should also be clear that
this type of error could occur in data for which there is no online source of data
for cross checking. In that case, the error may have to be printed in an error report
for an employee to look at.

■ Questionable Data: Rows 2 and 6, each of which has a different customer number,
both involve customers named Gomez who live at 345 Main Ave., Columbus,
USA. But one city is Columbus, Ohio (‘‘OH’’) and the other is Columbus,
Georgia (‘‘GA’’), each of which is a valid city/state combination. So the question
is whether these are really two different people who happen to have the same
name and street address in two different cities named Columbus, or whether they
are the same person (if so, one of the state designations is wrong and there should
only be one customer number).

Building a Data Warehouse 355

(a) CUSTOMER table

Customer Customer
Number Name Street City State Country

1 02847 Mervis 123 Oak St. TN USA

2 03185 Gomez 345 Main Ave. Columbus OH USA

3 03480 Taylor 50 Elm Rd. San Diego CA USA

4 06837 Stevens 876 Leslie Ln. Raleigh NC USA

5 08362 Adams 1200 Wallaby St. Brisbane Australia

6 12739 Gomez 345 Main Ave. Columbus GA USA

7 13848 Lucas 742 Ave. Louise Brussels Belgium

8 15367 Tailor 50 Elm Rd. San Diego CA USA

9 15933 Chang 48 Maple Ave. Toronto ON Canada

10 18575 Smith 390 Martin Dr. Columbus RP USA

11 21359 Sanchez 666 Ave. Bolivar Santiago Chile

(b) SALE table

Book Customer
Number Number Date Price Quantity

1 426478 03480 May 19, 2003 32.99 1

2 077656 18575 May 19, 2003 19.95 21

3 365905 06837 May 19, 2003 24.99 3

4 645688 21359 May 20, 2003 49.50 1

5 474640 15367 May 34, 2003 3200.99 1

6 426478 08362 June 03, 2003 32.99 2

7 276432 03480 June 04, 2003 30.00 1

8 365905 12738 June 04, 2003 24.99 1

9 276432 06837 June 05, 2003 30.00 5

10 327467 18575 June 12, 2003 -32.99 2

11 426478 06837 June 15, 2003 32.99 1

F IGURE 13.12
Good Reading Bookstores sample data prior to data cleaning

■ Possible Misspelling: Rows 3 and 8 have different customer numbers but are
otherwise identical except for a one-letter difference in the customer name,
‘‘Taylor’’ vs. ‘‘Tailor.’’ Do both rows refer to the same person? For the sake of
argument, say that an online white pages is not available but a real estate listing
indicating which addresses are single-family houses and which are apartment
buildings is. A program could be designed to assume that if the address is a
single-family house, there is a misspelling and the two records refer to the same
person. On the other hand, if the address is an apartment building, they may,
indeed, be two different people.

■ Impossible Data: Row 10 has a state value of ‘‘RP.’’ There is no such state
abbreviation in the U.S. This must be flagged and corrected either automatically
or manually.

356 C h a p t e r 13 The Data Warehouse

There are also four errors or possible errors in the SALE table in
Figure 13.12b. The data in this table is more numeric in nature than the CUSTOMER
table data:

■ Questionable Data: In row 2, the quantity of a particular book purchased in a
single transaction is 21. This is possible, but generally unlikely. A program may
be designed to decide whether to leave it alone or to report it as an exception
depending on whether the type of book it is makes it more or less likely that the
quantity is legitimate.

■ Impossible/Out-of-Range Data: Row 5 indicates that a single book cost $3,200.99.
This is out of the possible range for book prices and must either be corrected, if
the system knows the correct price for that book (based on the book number), or
reported as an exception.

■ Apparently Incorrect Data: The Customer Number in row 8 is invalid. We don’t
have a customer with customer number 12738. But we do have a customer with
customer number 12739 (see row 6 of the CUSTOMER table in part a of the
figure). A person would have to look into this one.

■ Impossible Data: Row 10 shows a negative price for a book, which is impossible.

Data Transformation

As the data is extracted from the transactional databases, it must go through several
kinds of transformations on its way to the data warehouse:

■ We have already talked about the concept of merging data from different
transactional databases to form the data warehouse tables. This is indeed one of
the major data transformation steps.

■ In many cases the data will be aggregated as it is being extracted from the
transactional databases and prepared for the data warehouse. Daily transactional
data may be summed to form weekly or monthly data as the lowest level of data
storage in the data warehouse.

■ Units of measure used for attributes in different transactional databases must
be reconciled as they are merged into common data warehouse tables. This is
especially common if one transactional database uses the metric system and
another uses the English system. Miles and kilometers, pounds and kilograms,
gallons and liters all have to go through a conversion process in order to wind up
in a unified way in the data warehouse.

■ Coding schemes used for attributes in different transactional databases must be
reconciled as they are merged into common data warehouse tables. For example,
states of the U.S. could be represented in different databases by their full names,
two-letter postal abbreviations, or a numeric code from 1 to 50. Countries of the
world could be represented by their full names, standard abbreviations used on
vehicles, or a numeric code. Another major issue along these lines is the different
ways that dates can be stored.

■ Sometimes values from different attributes in transactional databases are
combined into a single attribute in the data warehouse or the opposite occurs:
a multipart attribute is split apart. Consider the first name and last name of
employees or customers as an example of this.

Data Loading

Finally, after all of the extracting, cleaning, and transforming, the data is ready to
be loaded into the data warehouse. We would only repeat here that after the initial

Using a Data Warehouse 357

load, a schedule for regularly updating the data warehouse must be put in place,
whether it is done on a daily, weekly, monthly, or some other designated time period
basis. Remember, too, that data marts that use the data warehouse as their source of
data must also be scheduled for regular updates.

USING A DATA WAREHOUSE

We have said that the purpose of a data warehouse is to support management
decision-making. Indeed, such ‘‘decision support’’ and the tools of its trade are
major topics by themselves and not something we want to go into in great detail
here. Still, it would be unsatisfying to leave the topic of data warehouses without
considering at all how they are used. We will briefly discuss two major data
warehouse usage areas: on-line analytic processing and data mining.

On-Line Analytic Processing

On-Line Analytic Processing (OLAP) is a decision support methodology based on
viewing data in multiple dimensions. Actually, we alluded to this topic earlier in
this chapter when we described the two-, three-, and four-dimensional scenarios for
recording hospital patient tracking and billing data. There are many OLAP systems
on the market today. As we said before, some employ special purpose database
structures designed specifically for multidimensional OLAP-type data. Others,
known as relational OLAP or ‘‘ROLAP’’ systems, store multidimensional data in
relational databases using the star schema design that we have already covered!

How can OLAP data be used? The OLAP environment’s multidimensional
data is very well suited for querying and for multi-time period trend analyses, as we
saw in the star schema discussion. In addition, several other data search concepts
are commonly associated with OLAP:

■ Drill-Down: This refers to going back to the database and retrieving finer levels of
data detail than you have already retrieved. If you begin with monthly aggregated
data, you may want to go back and look at the weekly or daily data, if the data
warehouse supports it.

■ Slice: A slice of multidimensional data is a subset of the data that focuses on a
single value of one of the dimensions. Figure 13.13 is a slice of the patient data
‘‘cube’’ of Figure 13.4, in which a single value of the patient attribute, F. Jones,
is nailed down and the data in the other dimensions is displayed.

■ Pivot or Rotation: While helpful in terms of visualization, this is merely a matter
of interchanging the data dimensions, for example interchanging the data on the
horizontal and vertical axes in a two-dimensional view.

Data Mining

As huge data warehouses are built and data is increasingly considered a true
corporate resource, a natural movement towards squeezing a greater and greater
competitive advantage out of the company’s data has taken place. This is especially
true when it comes to the data warehouse, which, after all, is intended not to support
daily operations but to help management improve the company’s competitive
position in any way it can. Certainly, one major kind of use of the data warehouse
is the highly flexible data search and retrieval capability represented by OLAP-type
tools and techniques. Another major kind of use involves ‘‘data mining.’’

358 C h a p t e r 13 The Data Warehouse

F IGURE 13.13
A ‘slice’ of the hospital patient tracking
and billing system data F.

 J
on

es

Oct. 10

Oct. 11

Oct. 12

Oct. 13

Oct. 14

Oct. 15

Oct. 16

X-Ray

Blood

Transfusion

Heart

Transplant
Tonsillectom

y

D
at

e

Proce
dure

450

0

625

0

0

0

0

2,450

0

$120

0

1,150

Data mining is the searching out of hidden knowledge in a company’s data
that can give the company a competitive advantage in its marketplace. This would
be impossible for people to do manually because they would immediately be
overwhelmed by the sheer amount of data in the company’s data warehouse. It
must be done by software. In fact, very sophisticated data mining software has been
developed that uses several advanced statistical and artificial intelligence techniques
such as:

■ Case-based learning
■ Decision trees
■ Neural networks
■ Genetic algorithms

Describing these techniques is beyond the scope of this book. But it’s worth taking
a quick look at a couple of the possibilities from an application or user’s point of
view.

One type of data mining application is known as ‘‘market basket analysis.’’
For example, consider the data collected by a supermarket as it checks out its
customers by scanning the bar codes on the products they’re purchasing. The
company might have software study the collected ‘‘market baskets,’’ each of which
is literally the goods that a particular customer bought in one trip to the store.

Using a Data Warehouse 359

The software might try to discover if certain items ‘‘fall into’’ the same market
basket more frequently than would otherwise be expected. That last phrase is
important because some combinations of items in the same market basket are too
obvious or common to be of any value. For example, finding eggs and milk being
bought together frequently is not news. On the other hand, a piece of data mining
folklore has it that one such study was done and discovered that people who bought
disposable diapers also frequently bought beer (you can draw your own conclusions
on why this might be the case).The company could use this to advantage by stacking
some beer near the diapers in its stores so that when someone comes in to buy
diapers, they might make an impulse decision to buy the beer sitting next to it, too.
Another use of market basket data is part of the developing marketing discipline
of ‘‘customer relationship management.’’ If, through data mining, a supermarket
determines that a particular customer who spends a lot of money in the store often
buys a particular product, they might offer her discount coupons for that product as
a way of rewarding her and developing ‘‘customer loyalty’’ so that she will keep
coming back to the store.

Another type of data mining application looks for patterns in the data.
Earlier, we suggested that Lucky Rent-A-Car might buy demographic data about
its customers to ‘‘enrich’’ the data about them in its data warehouse. Once again,
consider Figure 13.11 with its enriched (Age, Income, and Education attributes
added) CUSTOMER dimension table. Suppose, and this is quite realistic, that
Lucky joined its RENTAL fact table with its CAR and CUSTOMER dimension
tables, including only such attributes in the result as would help it identify its most
valuable customers, for example those who spend a lot of money renting ‘‘luxury’’
class cars. Figure 13.14 shows the resulting table, with the rows numbered on the left

CAR/RENTAL/CUSTOMER

Manufacturer Customer
Class Name Cost Number Age Income Education

1 Compact Ford 320 884730 54 58,000 B.A.

2 Luxury Lincoln 850 528262 45 158,000 M.B.A.

3 Full-Size General Motors 489 109565 48 62,000 B.S.

4 Sub-Compact Toyota 159 532277 25 34,000 High School

5 Luxury Lincoln 675 155434 42 125,000 Ph.D.

6 Compact Chrysler 360 965578 64 47,500 High School

7 Mid-Size Nissan 429 688632 31 43,000 M.B.A.

8 Luxury Lincoln 925 342786 47 95,000 M.A.

9 Full-Size General Motors 480 385633 51 72,000 B.S.

10 Compact Toyota 230 464367 64 200,000 M.A.

11 Luxury Jaguar 1170 528262 45 158,000 M.B.A.

12 Sub-Compact Nissan 89 759930 29 28,000 B.A.

13 Full-Size Ford 335 478432 57 53,500 B.S.

14 Full-Size Chrysler 328 207867 29 162,000 Ph.D.

F IGURE 13.14
Lucky Rent-A-Car enriched data, integrated for data mining

360 C h a p t e r 13 The Data Warehouse

Y O U R

T U R N

13.2 USING A UNIVERSITY DATA WAREHOUSE

Consider the university data ware-
house that you designed in the Your Turn exercise earlier
in this chapter.

QUESTION:
Develop a plan for using your university data warehouse.

What benefits can you think of to querying the data

warehouse? What kinds of new knowledge might you
discover by using data mining techniques on the data
warehouse?

for convenience here. The Class and Manufacturer Name attributes came from the
CAR table, the Cost attribute (the revenue for a particular rental transaction) came
from the RENTAL table, and the Customer Number, Age, Income, and Education
attributes came from the CUSTOMER table. While it would take much more data
than this to really find statistically significant data patterns, the sample data in the
figure gives a rough idea of what a pattern might look like. Rows 2, 5, 8, and 11 all
involve rentals of luxury-class cars with high cost (revenue to the company) figures.
As you look across these rows to the customer demographics, you find ‘‘clusters’’
in age, income, and education. These expensive, luxury car rental transactions all
involved people in their mid-40s with high income and education levels. On the
other hand, rows 10 and 14 involved people who also had high income and education
levels. But these people were not in their mid-40s and they did not rent luxury
cars and run up as big a bill. With enough such data, Lucky might conclude that
it could make more money by heavily promoting its luxury cars to customers in
their mid-40s with high income and education levels. If its competitors have not
thought of this, then Lucky has gained a competitive advantage by ‘‘mining’’ its
data warehouse.

ADMINISTERING A DATA WAREHOUSE

In Chapter 10, we discussed the issues of managing corporate data and databases
with people called data administrators and database administrators. As a huge
database, the data warehouse certainly requires a serious level of management.
Further, its unique character requires a strong degree of personnel specialization in
its management (some have even given the role its own name of ‘‘data warehouse
administrator’’). In fact, managing the data warehouse requires three kinds of
heavily overlapping employee expertise:

■ Business Expertise

• An understanding of the company’s business processes underlying an
understanding of the company’s transactional data and databases.

• An understanding of the company’s business goals to help in determining what
data should be stored in the data warehouse for eventual OLAP and data mining
purposes.

Challenges in Data Warehousing 361

■ Data Expertise

• An understanding of the company’s transactional data and databases for
selection and integration into the data warehouse.

• An understanding of the company’s transactional data and databases to design
and manage data cleaning and data transformation as necessary.

• Familiarity with outside data sources for the acquisition of enrichment data.

■ Technical Expertise

• An understanding of data warehouse design principles for the initial design.
• An understanding of OLAP and data mining techniques so that the data

warehouse design will properly support these processes.
• An understanding of the company’s transactional databases in order to manage

or coordinate the regularly scheduled appending of new data to the data
warehouse.

• An understanding of handling very large databases in general (as the data
warehouse will inevitably be) with their unique requirements for security,
backup and recovery, being split across multiple disk devices, and so forth.

The other issue in administering a data warehouse is metadata; i.e., the data
warehouse must have a data dictionary to go along with it. The data warehouse is
a huge data resource for the company and has great potential to give the company
a competitive advantage. But, for this to happen, the company’s employees have to
understand what data is in it! And for two reasons. One is to think about how to use
the data to the company’s advantage, through OLAP and data mining. The other is
actually to access the data for processing with those techniques.

CHALLENGES IN DATA WAREHOUSING

Data warehousing presents a distinct set of challenges. Many companies have
jumped into data warehousing with both feet, only to find that they had bitten
off more than they could chew and had to back off. Often, they try again with
a more gradual approach and eventually succeed. Many of the pitfalls of data
warehousing have already been mentioned at one point or another in this chapter.
These include the technical challenges of data cleaning and finding more ‘‘dirty’’
data than expected, problems associated with coordinating the regular appending
of new data from the transactional databases to the data warehouse, and difficulties
in managing very large databases, which, as we have said, the data warehouse will
inevitably be. There is also the separate challenge of building and maintaining the
data dictionary and making sure that everyone who needs it understands what’s in
it and has access to it.

Another major challenge of a different kind is trying to satisfy the user
community. In concept, the idea is to build such a broad, general data warehouse
that it will satisfy all user demands. In practice, decisions have to be made about
what and how much data it is practical to incorporate in the data warehouse at a given
time and at a given point in the development of the data warehouse. Unfortunately,
it is almost inevitable that some users will not be satisfied in general with the data
at their disposal and others will want the data warehouse data to be modified in
some way to produce better or different results. And that’s not a bad thing! It means
that people in the company understand or are gaining an appreciation for the great

362 C h a p t e r 13 The Data Warehouse

potential value of the data warehouse and are impatient to have it set up the way
that will help them help the company the most—even if that means that the design
of the data warehouse and the data in it are perpetually moving targets.

SUMMARY

A data warehouse is a historical database used for applications that require the
analysis of data collected over a period of time. A data warehouse is a database
whose data is subject oriented, integrated, non-volatile, time variant, high quality,
aggregated, possibly denormalized, and not necessarily absolutely current. There
are two types of data warehouses: the enterprise data warehouse and the data mart.
Some companies maintain one type, some the other, and some both.

Data warehouses are multidimensional databases. They are often designed
around the star schema concept. Building a data warehouse is a multi-step process
that includes data extraction, data cleaning, data transformation, and data loading.
There are several methodologies for using a data warehouse, including on-line
analytic processing and data mining. Data warehouses have become so large and so
important that it takes special skills to administer them.

KEY TERMS

Aggregated data
Data cleaning
Data enrichment
Data extraction
Data loading
Data mart
Data mining
Data transformation
Data warehouse
Data warehouse administrator

Decision support system (DSS)
Dimension
Drill-down
Enterprise data warehouse
Historic data
Integrated
Market basket analysis
Multidimensional database
Non-volatile
On-line analytic processing (OLAP)

Pivot or rotation
Slice
Snowflake design
Star schema
Subject oriented
Time variant
Transaction processing system

(TPS)

QUESTIONS

1. What is the difference between transactional pro-
cessing systems and decision support systems?

2. Decision support applications have been around for
many years, typically using captive files that belong
to each individual application. What factors led to
the movement from this environment towards the
data warehouse?

3. What is a data warehouse? What is a data warehouse
used for?

4. Explain each of the following concepts. The data in
a data warehouse:

a. Is subject oriented.
b. Is integrated.

c. Is non-volatile.
d. Is time variant.
e. Must be high quality.
f. May be aggregated.
g. Is often denormalized.
h. Is not necessarily absolutely current.

5. What is the difference between an enterprise data
warehouse and a data mart?

6. Under what circumstances would a company build
data marts from an enterprise data warehouse? Build
an enterprise data warehouse from data marts?

7. What is a multidimensional database?

Exercises 363

8. What is a star schema? What are fact tables? What
are dimension tables?

9. What is a snowflake feature in a star schema?
10. After a data warehouse is designed, what are the

four steps in building it?
11. Name and describe three possible problems in trans-

actional data that would require ‘‘data cleaning’’
before the data can be used in a data warehouse.

12. Name and describe three kinds of data transforma-
tions that might be necessary as transactional data is
integrated and copied into a data warehouse.

13. What is online analytic processing (OLAP?) What
does OLAP have to do with data warehouses?

14. What do the following OLAP terms mean?

a. Drill-down.
b. Slice.
c. Pivot or rotation.

15. What is data mining? What does data mining have
to do with data warehouses?

16. Describe the ideal background for an employee who
is going to manage the data warehouse.

17. Describe the challenges involved in satisfying a data
warehouse’s user community.

EXERCISES

1. Video Centers of Europe, Ltd. data warehouse:

a. Design a multidimensional database using a star
schema for a data warehouse for the Video
Centers of Europe, Ltd. business environment
described in the diagram associated with Exercise
2.2. The subject will be ‘‘rental,’’ which repre-
sents a particular tape or DVD being rented by
a particular customer. As stated in Exercise 2.2,
be sure to keep track of the rental date and the
price paid. Include a snowflake feature based on
the actor, movie, and tape/DVD entities.

b. Describe three OLAP uses of this data ware-
house.

c. Describe one data mining use of this data
warehouse.

2. Best Airlines, Inc., data warehouse:
In the exercises in Chapter 8, we saw the following
relational database, which Best Airlines uses to keep
track of its mechanics, their skills, and their airport
locations. Mechanic number, airport name, and skill
number are all unique fields. Size is an airport’s size
in acres. Skill Category is a skill’s category, such
as an engine skill, wing skill, tire skill, etc. Year
Qualified is the year that a mechanic first qualified
in a particular skill; Proficiency Rating is the
mechanic’s proficiency rating in a particular skill.

MECHANIC Table

Mechanic Mechanic −−−−Airport
Number Name Telephone Salary −−−−Name

AIRPORT Table

Airport Year
Name City State Size Opened

SKILL Table

Skill Skill Skill
Number Name Category

QUALIFICATION Table

−−−−−−Mechanic −−−Skill Year Proficiency

−−−−−Number −−−−−Number Qualified Rating

We now add the following tables to the database
that record data about airplanes and maintenance
performed on them. A maintenance event is a
specific maintenance activity performed on an
airplane.

AIRPLANE Table

Airplane Airplane Year Passenger
Number Model Manufactured Capacity

364 C h a p t e r 13 The Data Warehouse

MAINTENANCE ACTIVITY Table

Activity Activity Expected Required
Number Name Duration Frequency

MAINTENANCE EVENT Table

−−−−−Airplane −−−−−Activity −−−−−−Mechanic

−−−−−Number −−−−−Number Date −−−−−Number

a. Design a multidimensional database using a
star schema for a data warehouse for the Best
Airlines, Inc., airplane maintenance environment
described by the complete seven-table relational
database above. The subject will be maintenance
event. Include snowflake features as appropriate.

b. Describe three OLAP uses of this data ware-
house.

c. Describe one data mining use of this data
warehouse.

MINICASES

1. Happy Cruise Lines data warehouse:
a. Design a multidimensional database using a star

schema for a data warehouse for the Happy Cruise
Lines business environment described in Minicase
2.1. The subject will be ‘‘passage,’’ which represents
a particular passenger booking on a particular cruise.
As stated in Minicase 2.1, be sure to keep track of
the fare that the passenger paid for the cruise and the
passenger’s satisfaction rating of the cruise.

b. Describe three OLAP uses of this data warehouse.
c. Describe one data mining use of this data warehouse.

2. Super Baseball League data warehouse:
a. Design a multidimensional database using a star

schema for a data warehouse for the Super Baseball
League business environment described in Minicase
2.2. The subject will be ‘‘affiliation,’’ which repre-
sents a particular player having played on a particular
team. As stated in Minicase 2.2, be sure to keep track
of the number of years that the player played on the
team and the batting average he compiled on it.

b. Describe three OLAP uses of this data warehouse.
c. Describe one data mining use of this data warehouse.

C H A P T E R 14

DATABASES AND THE
INTERNET

O ne of the fascinating things about successful new technologies is that, after they’ve
been around for a while, it’s hard to imagine how we ever did without them!

Automobiles and airplanes have always been a part of the lives of anyone reading this
book. Computers are almost too obvious in this regard. What about photocopiers, as an
example? How did we ever get along without photocopiers, which we used to routinely
call ‘‘Xerox machines?’’ But even they have been in substantial use for well over forty years
at this point. Then, there is the Internet. How did we ever get along without the Internet?
The Internet has become such a huge part of our lives so quickly that it’s easy to forget
that its widespread commercial use began only in the mid-1990s. Do you remember when
there was no Amazon.com? It seems as if it was always there! The question for us in this
chapter is: how does the Internet relate to database management?

OBJECTIVES

■ List the four differences between the Internet database environment and the
standard database environment.

■ Describe the database connectivity issues in the Internet environment.
■ Describe the expanded set of data types found in the Internet environment.
■ Describe such database control issues as performance, availability, scalability,

and security and privacy in the Internet environment.
■ Describe the significance of data extraction into XML in the Internet environment.

CHAPTER OUTLINE

Introduction
Database Connectivity Issues
Expanded Set of Data Types
Database Control Issues

Performance

Availability
Scalability
Security and Privacy

Data Extraction into XML
Summary

366 C h a p t e r 14 Databases and the Internet

INTRODUCTION

Aside from email and file transfers, we associate the Internet with that most
exciting of applications, electronic commerce. It’s amazing how we as individuals
can shop online, bank online, get our news online, get all sorts of entertainment
online, and search for every kind of information imaginable, all within the broad
scope of e-commerce. Companies have found new ways of selling to one another,
forming alliances with one another, disposing of excess inventory, and generally
speaking turning the world into a global marketplace. And, the essence of all of
this e-commerce activity is data stored in databases. When you look through a
company’s product selections, the data comes from a database. When you place
an order with a company, the order goes into a database. When you check your
bank account balance, you’re querying a database. Even reading newspapers online
involves retrieving data from specialized text databases.

The question for us in this chapter is: what makes the Internet database
environment different from a database environment that does not specifically
involve the Internet? Well, first of all, what’s not different? The fact is that most (but
not all) e-commerce databases are relational databases and many are transactional
in nature. The concepts of relational databases and the rules for designing relational
databases are the same for transactional e-commerce applications as for any other
transactional applications. SQL and other standard query tools can be and are
used in the e-commerce environment, too. Yet, there are some differences between
the Internet database environment and the non-Internet environment. So, what’s
different? We will organize the answer to this question into four categories that will
form the major headings in this chapter:

■ Database Connectivity Issues
■ Expanded Set of Data Types
■ Database Control Issues
■ Data Extraction into XML

CONCEPTS

IN ACT ION

14-A STATE OF TENNESSEE—DEPARTMENT OF SAFETY

Tennessee, with 5.7 million people
and an area of over 42,000 square miles, is the 16th
largest U.S. state in population and the 36th largest in
area. It became the 16th state of the U.S. in 1796.
Its principal cities are Memphis, Nashville (the capital),
Knoxville, and Chattanooga. Its leading industries include
printing, publishing, chemicals, fabricated metals, and
automobile manufacturing. Almost one-half of the state’s
land is dedicated to 80,000 farms, with the major prod-
ucts being cattle, hardwood lumber, dairy products, and
cotton. Centrally located in the U.S., the state is also
known as a major distribution center. As in all states,

the Tennessee state government is responsible for a wide
variety of public services, including the collection and
management of state taxes, the management and main-
tenance of state parks, and the management of various
social services for its citizens. The state’s Department of
Safety is responsible for services such as the licensing of
motor vehicles and drivers and the enforcement of laws
covering the operation of motor vehicles.

The Department of Safety maintains a Driver’s
License System database application that tracks the state’s
driver’s licenses. Implemented in 1978, the database
stores basic name and address data as well as data

Database Connectivity Issues 367

specifying the type of license and any restrictions such
as corrective lenses. In 1996, an extension to the
application was implemented that captures and stores
both a photograph of the driver and the driver’s signature
in a digital format or ‘‘image.’’ All of this data, including
the photo and signature, are incorporated into the actual
physical driver’s license. The images are captured at
each driver’s licensing location and transmitted online
to the database for storage. All the data, including the
images, can be queried and retrieved online using canned
queries.

Printed by permission of State of Tennessee—Department of Safety

Running on an IBM OS/390 mainframe computer
located in Nashville, the database application is an
interesting hybrid of two different types of databases
and DBMSs. The original 1978 application that stores the
name and address and license type data is implemented
in IBM’s IMS DBMS. The 1996 extension that stores
the photos and signatures is implemented in IBM’s
DB2 relational DBMS. The relational database currently
holds approximately 7 million photo and signature
images, including driver photos taken for previous license
renewals.

DATABASE CONNECTIVITY ISSUES

In a simple database environment, the application program, the database
management system, and even the data (during execution) are all contained and run
within the hardware of a single computer. Figure 14.1 illustrates this arrangement
when the computer is a stand-alone PC, but the situation is certainly similar for a
much larger computer with multiple simultaneous users.

368 C h a p t e r 14 Databases and the Internet

F IGURE 14.1
A stand-alone PC

Application
Programs

Database

DBMS

In Chapter 12, we talked about client/server systems. In the simplest
client/server systems, there are two classes of computers, as shown in Figure 14.2.
The client computers are end-user PCs that are all connected to a server computer
on a local-area network. The server contains the application programs, the database
management system, and the database that all of the clients share. When an end-user
wants to run an application or retrieve data from the shared database, the client

F IGURE 14.2
Basic client/server system

PC

PC

PC

PC

PC

Application
Programs

Database

Server

DBMS

Database Connectivity Issues 369

computers handle the initial processing of the request. This is the ‘‘presentation’’
or ‘‘graphical user interface’’ aspect. Then the data is sent on to the server for
processing by the application code, including data retrieval from the shared database
as necessary. The server then returns the results to the client PC, where the client is
again responsible for formatting the screen display.

While we usually associate the term ‘‘client/server system’’ with a system built
on a local-area network, in a broad sense the World Wide Web can be considered
a massive client/server system built on the Internet, Figure 14.3. The clients are the
PCs that individuals and companies use to connect to the Internet. The browsers
in the PCs, such as Microsoft’s Internet Explorer and Google Chrome, constitute
the software that handles the ‘‘client-side’’ screen presentation duties. The servers
are the company Web servers with which people at their PCs communicate as
they participate in the world of e-commerce. With this expansion of the idea of a
client/server system, the World Wide Web, built on the Internet, certainly qualifies
as the world’s largest client/server system!

But there is more to it than that, which really shouldn’t be surprising
considering the much larger scale of a company’s Web site and Web server than
the server on a typical LAN. Let’s talk about the hardware first, then the software.
In the discussion in Chapter 12 on client/server database systems, we suggested
the possibility of having a ‘‘database server’’ as a separate computer from the

F IGURE 14.3
The World Wide Web as a client/server
system

“The Internet”

PC Browser

PC

PC

PC

PC

PC

PC

Company
Web Server

Browser

Browser

Browser

Browser

Browser

Browser

370 C h a p t e r 14 Databases and the Internet

F IGURE 14.4
Basic hardware components of the Web
to database connection

Database

Database
Server“The Internet”

PC

PC

PC

PC

PC

PC

PC

Web
Server

‘‘application server,’’ Figure 12.4. This is a common arrangement in larger Web
sites. Figure 14.4 shows the hardware components of the Web, including the disks
containing the databases. There are three levels of computers in this arrangement:
the client PCs, the Web server, and the database server. How does all of this connect
together? Let’s use an example and talk about this at two levels of detail, first at
a high level and then at a somewhat more detailed level that will introduce some
of the specialized software developed for the Web environment. Remember, this
book is about database management systems and so our goal in this discussion is to
connect the ultimate user into the database.

Suppose that Good Reading Bookstores has developed a Web site to sell books
to consumers online and that you are about to become one of its customers. Follow
along in Figure 14.4. You sit down at your PC, establish contact with your Internet
Service Provider (ISP) (such as America Online or Microsoft’s MSN), and enter the
URL or Web address www.GoodReadingBookstores.com. The browser software in
your PC sends a message to Good Reading’s Web server and establishes a ‘‘session’’
or connection with it. The Web server sends your browser Good Reading’s ‘‘home
page,’’ which your browser displays on your monitor. Suppose you are shopping
for a particular book. On the home page is a space for you to fill in the book’s
name. So, from the information systems point of view, what you are really trying to

Database Connectivity Issues 371

FIGURE 14.5
The Good Reading Bookstores relational
database

SALE

Book Customer
Number Number Date Price Quantity

WRITING

Book Author
Number Number

CUSTOMER

Customer Customer
Number Name Street City State Country

BOOK

Book Book Publication Publisher
Number Name Year Pages Name

AUTHOR

Author Author Year Year
Number Name Born Died

PUBLISHER

Publisher Year
Name City Country Telephone Founded

do at this point, is to search the BOOK table in Good Reading’s database (repeated
here as Figure 14.5) to see if Good Reading carries this particular book. You type
the book’s name in the space on the home page display and press the Enter key.
The book name is transmitted on the Internet to the application running in Good
Reading’s Web server. This application sends a command to the relational DBMS
in Good Reading’s database server, ordering it to perform the look-up operation in
the database. This could very well be done with an SQL command embedded in
the application running in the Web server. Then, everything flows in reverse. The
relational DBMS retrieves the data from the database and sends it to the application
in the Web server, which then sends it back over the Internet to the browser in
your PC. The browser displays it for you, either showing information about the
book or stating that Good Reading doesn’t carry it. If the book is in stock and you
want to buy it, the transaction continues with message traffic passing back and forth
between you and your browser on the ‘‘client side’’ and the Web server on the
‘‘server side’’. Every time the database must be accessed, the application in the
Web server passes a command to the database server, which queries the database
and returns the result.

372 C h a p t e r 14 Databases and the Internet

F IGURE 14.6
Basic software components of the Web to
database connection

Database

Database
Server

ODBC

Middleware

CGI or API

TCP/IP and HTTP

“The Internet”

PC Browser

PC

PC

PC

PC

PC

PC

Web
Server

Browser

Browser

Browser

Browser

Browser

Browser

Now, using Figure 14.6, let’s take a bit more of a detailed look at the same Good
Reading Bookstores scenario, introducing some of the specialized Web software
that we have met. When your browser sends a message to the Web server (and vice
versa), the message follows the rules of the Transmission Control Protocol/Internet
Protocol (TCP/IP), which all Internet traffic (including, e.g., email) must follow,
and the Hypertext Transfer Protocol (HTTP), which is an additional protocol layer
for World Wide Web traffic on the Internet. TCP specifies how the message is
broken up into smaller ‘‘packets’’ for transmission. IP deals with the address of the
computer to which the message is being sent. At the Web level, HTTP indicates the
type of browser in the client and other information needed to format Web pages.
But what happens once the message reaches the Web server and, in particular, how
is access to the database accomplished?

In the kind of self-contained computer and database environment illustrated
in Figure 14.1, all of the hardware and software are designed to work together from
beginning to end. The problem to be addressed in the Web database environment is
that there can be different kinds of hardware even merely between the Web server
and the database server, different kinds of application software languages, different
browsers on the client side, and a variety of different kinds of data, not just data in

Expanded Set of Data Types 373

relational databases. In order to tie all these variable and assorted pieces together
and make them work in concert we need specialized interfaces and specialized
software known as middleware.

Consider again the application program that manages Good Reading’s online
sales process running in the Web server and follow the diagram in Figure 14.6.
First, in order for the application software running in the Web server to connect with
software outside the Web server, there must be agreed upon interfaces, and indeed
there are. The original such interface is called the Common Gateway Interface (CGI).
Later, another such interface with certain performance advantages was developed,
known as the Application Program Interface (API). These interfaces have associated
software ‘‘scripts’’ that let them exchange data between the application in the server
and the databases controlled by the database server. The connection to the databases
could be made directly at this point, but again, with the prospect of different
database management systems and different kinds of data involved, it made sense
to create another level of standards to smooth out the differences and have one
standard way of accessing the data. The most common set of such standards is
called Open Database Connectivity (ODBC), which is designed as an interface to
relational databases. Another, with its own set of features, is called Java Database
Connectivity (JDBC). Other standards exist for various kinds of non-relational
data.

Because of the importance of connecting the applications in the Web
server with the databases in the database server, various companies have
developed specialized middleware with a variety of broad features, capabilities,
and connectivity options. Among the products of this type on the market are Cold
Fusion, Oracle Application Server, Microsoft Active Server Pages (ASP), and others.

EXPANDED SET OF DATA TYPES

Most of the data in traditional transactional databases are of two basic ‘‘types’’:
numeric and character. These data types are all we generally need for accounting
data, inventory data, marketing data, production data, and so forth. Indeed, all of
the database examples in this book have used only numeric and character data. But
there are other kinds of data, as brought up once before in discussing object-oriented
databases (see Figure 9.10). There can be large text blocks (e.g. newspaper stories
or descriptions of entities of any kind), graphic images (e.g. industrial design
images or maps), photographs, video clips (or entire movies), and audio clips
(or recordings). Specialized applications have focused on these special data types.
For example, newspaper composition deals with large text blocks and photos, and
geographic information systems (GIS) are based on maps as graphic images.

But the Internet and its World Wide Web have created a new emphasis on this
assortment of data types in a way that no previous information systems environment
ever did. Think of the Web sites you have visited. The displays coming to you
as Web pages don’t exactly look like reams of accounting data! Certainly they
contain numbers and short character strings, but they also contain photographs,
graphic images, animated graphic images, large text blocks (in online newspapers,
magazines, etc.), video clips, and audio clips. The point for us is that databases
supporting Web sites must be capable of storing, searching, and retrieving this wide
variety of data.

374 C h a p t e r 14 Databases and the Internet

Relational DBMS vendors have added features to their products that support
these various text and multimedia data types. Oracle has a category of data types
known as the large object (LOB) category that includes data types:

■ Binary LOB (BLOB)—Up to four gigabytes of unstructured binary data, suitable
for graphic images, photographs, video clips, and audio clips.

■ Binary File (BFILE)—A pointer to up to four gigabytes of ‘‘read-only’’
unstructured binary data stored in a file external to the database.

■ Character LOB (CLOB)—Up to four gigabytes of character data suitable for
large text files or documents.

■ National Character LOB (NCLOB)—Up to four gigabytes of data suitable for
large text files or documents in languages based on pictographs or non-Latin
characters.

An older category of data types used for multimedia data and known as RAW,
including the data types RAW and LONG RAW, is no longer recommended.

The object/relational DBMS Informix Universal Server provides another style
of handling multimedia and large text data using ‘‘data blades.’’ Among these are:

■ The data type IMAGE, which can be used as a general-purpose image data type.
Alternatively, a data type may be defined for each of the common image formats,
including JPEG, GIF, TIFF, and others.

■ The data type DOC, which is used for storing large text blocks.
■ A set of data types, including point, line, polygon, path, and circle, which can be

used for storing a variety of graphic images.

DATABASE CONTROL ISSUES

Managing an Internet database environment presents several unique challenges in
comparison to a database environment in a system that is specifically not connected
to the Internet. Having said that, we must recognize that today most systems are
either directly connected to the Internet or are connected to other systems that
are. Thus, in the Internet database environment, the general public potentially has
access (planned or unplanned access, as by hackers) to the company’s databases.
Furthermore, the public response to the applications that involve the Internet is often
unpredictable, meaning that the load on the system and on access to the databases
can change rapidly. These and other challenges require a special emphasis on:

■ Performance
■ Availability
■ Scalability
■ Security and Privacy

Performance

We have all experienced widely different performance levels when interacting with
Web sites on the Internet. Response time, the elapsed time from pressing the Enter
key or clicking on a ‘‘Go’’ icon to displaying the Web server’s response as a new
Web page on your monitor, can vary greatly. In business-to-consumer electronic
commerce, for example, a consumer’s lack of tolerance for poor performance at one
Web site can easily cause him to click over to a competitor’s site. The complexity

Database Control Issues 375

of the Internet and Web environment provides many potential reasons for poor
performance, including whether your connection to the Internet is through a 56K
modem or a broadband connection, the level of hardware at your Internet service
provider, the speed of the Web server you are interacting with, associated facilities
at the Web site, and so forth.

From the point of view of the company and its Web site, there is another major
factor, too: the amount of traffic coming in from the Internet. Internet traffic to a
Web site, the number of people or companies trying to access it simultaneously, can
vary greatly because of a variety of factors:

■ The time of day (which must be considered on a worldwide basis).
■ The season of the year (e.g. the Christmas shopping season).
■ The rapidly growing popularity of a Web site.
■ A major new product introduction.
■ A major event (e.g. the Victoria’s Secret annual fashion show, which has

overwhelmed its Web site).

These spikes, some of them huge, in Internet traffic require serious predictive
capacity planning. The trick is that the companies want to be able to maintain
reasonable response time during the spikes without spending lots of money to buy
lots of extra computer equipment that will sit idle much of the time. Accomplishing
this takes some serious planning and significant expertise.

Of course, system performance is also affected by software design and, in
particular for our interest here, in database design. Thus, Chapter 8 on physical
database design is of particular interest in the Internet database environment.
The various performance-boosting physical design techniques that we discussed,
including denormalization, are applicable at least for relatively static database tables
such as product lists in some industries.

In addition, we mention two performance-boosting techniques that are of
particular interest in the Web database environment. For the first one, take another
look at Figure 14.4. When a query comes in from a PC and is passed from the Web
server to the database server to the database, it is often the case that the retrieved
data will be used again by the same or a different end user fairly soon. If a copy
of that data can be held somewhere outside the database on a temporary basis for
the next time it is requested, then two benefits can be gained: not only can the
response time for future retrievals of that data be improved, but the amount of
traffic between the Web server and the database server can be decreased, which
helps to improve the performance of other accesses to the database. This concept of
database persistence can be accomplished with a query cache, a special dedicated
memory associated with the Web server or a proxy server attached to it, to hold a
copy of the retrieved data temporarily. A second performance-boosting technique is
used in situations where company employees can write SQL queries to access data
over the Internet (or over an internal Intranet): frequently run queries can be stored
or ‘‘canned’’ and then called when needed. This avoids having the system spend
time going through query optimization to come up with an efficient access path
every time the query is run, a concept that was discussed in general in Chapter 4.

Availability

A company’s Web site and the databases it accesses should be available to the
public at all times. This is especially true if the company is expecting traffic to the

376 C h a p t e r 14 Databases and the Internet

site on a worldwide basis, which, after all, is one of the hallmarks of e-commerce.
Three o’clock in the morning in one part of the world is the middle of the day in
another, and so the system really has to be up all of the time. There are several
reasons that an information system can be unavailable.

■ Because of some kind of system or telecommunications failure.
■ Because of the failure of a support system, such as an electrical outage.
■ Because of a planned down period for system maintenance.
■ Because of excessive traffic that clogs the system.

Here again, the challenge is to make the information systems and their
databases available 24/7 without going overboard in terms of cost. Regarding system
failure, electrical outages, and planned maintenance time, redundant computer
hardware and such accessories as electrical generators and batteries will do the job.
The trick is to accomplish this at a reasonable cost. Excessive traffic is another story.
Legitimate traffic spikes, as discussed above, can certainly reduce availability.
But computer viruses that reproduce many copies of themselves and automated
‘‘robots’’ searching Web sites for information can clog systems, too. Either these
must be prevented or the system must be constantly monitored by software that
watches for such conditions.

One technique used to improve availability is known as clustering. A cluster
of several servers is built, each with its own replicated copy of the database. As
queries come in over the Web, sophisticated software checks the activity on each
of the servers and their databases and performs ‘‘load balancing,’’ sending each
particular query to a server that is relatively idle at that moment.

Scalability

Some electronic commerce efforts, in both ‘‘pure’’ e-commerce start-up companies
and established companies, have experienced rapid growth. In one case, the growth
rate in traffic to a Web site was estimated at 1000-4000 % per year in the early years.
This is certainly good news for the company that experiences it! But the information
system that supports this Web site and its traffic growth must be scalable; that is, it
must be capable of growing without adversely affecting the operations of the site. It
is thus imperative to choose that hardware and software that is capable of rapid and
major expansion.

Security and Privacy

In Chapter 11 we discussed data security at some length. Now, consider the Internet
database environment in which all of the traditional data security concerns are
still present but in addition, the information system is exposed to the whole world
through its Web site! And that is not an exaggeration. In the business-to-consumer
e-commerce environment, the company wants as many people as possible to visit its
Web site and buy its products. But that also means that hackers, data thieves, virus
writers, and anyone else with mischief on their minds has an openly published entry
point into the company’s information system. Obviously, this requires heavy-duty
security, such as:

■ Separating the different parts of the information system so that they run on
different computers. Thus, the Web server and the database server should be

Database Control Issues 377

different computers, as shown in Figure 14.4. Furthermore, these should be
separated from the rest of the company’s information system by being on a
different LAN.

■ Making major use of firewalls. As we discussed earlier, firewalls can be separate
‘‘proxy’’ computers that extract data from incoming messages and pass the data
on in a different format to the Web server. Figure 14.7 is a redrawing of the
hardware arrangement in Figure 14.4 with the inclusion of a firewall computer.
Firewalls can also be software-based, checking incoming messages for viruses and
other suspicious code. And additional firewalls, including additional middleware
(see Figure 14.6), can be placed between the Web server and the database server
to catch any malicious code that gets through the initial firewall. Firewalls can
also be placed between the Web server and the rest of the company’s information
systems.

Closely related to the issue of security is the issue of privacy. Companies have
long held in their databases personal data about their customers. What is different
in the Internet database environment is first, that the companies are communicating
digitally with their customers through their Web sites over the Internet, including
passing their personal data. This requires the use of encryption so that the data cannot

F IGURE 14.7
A firewall between the Internet and the
Web server

Database

Database
Server“The Internet”

PC Browser

PC

PC

PC

PC

PC

PC

Web
ServerBrowser

Browser

Browser

Browser

Browser

Browser

Firewall

378 C h a p t e r 14 Databases and the Internet

Y O U R

T U R N

14.1 UNIVERSITY DATA ACCESS OVER THE INTERNET

Consider a university information sys-
tems environment that includes both tables with current
data and historic data in a data warehouse.

QUESTION:
Describe the kinds of data that a university might want

to store and access that would be in an expanded

set of data types as described in this chapter. What
uses would the university have for this data and who
would want access to it? What circumstances could
occur in a university environment that would bring up
Internet database issues of performance, availability,
scalability, security, and privacy?

be intercepted and read while in transit over the Internet. Second, the collected
personal data in the company’s database makes a tempting target for someone out
to steal such data. And again, the database is potentially accessible through the
company’s public Web site, which brings us back to the discussion about firewalls
and such above.

CONCEPTS

IN ACT ION

14-B BAPTIST MEMORIAL HEALTH CARE

Baptist Memorial Health Care Corp.,
headquartered in Memphis, TN, operates a total of 17
hospitals in Arkansas, Mississippi, and Tennessee. Its
flagship hospital, Baptist Memorial Hospital-Memphis, is a
706-bed tertiary care teaching hospital, closely affiliated
with University of Tennessee Medical School. Baptist
Memphis annually has more than 28,000 admissions,
53,000 emergency department visits, 25,000 surgeries,
and 125,000 outpatient visits. Located on the same
campus are the Baptist Heart Institute and the Baptist
Memorial Hospital for Women.

Baptist Memphis has a state-of-the-art relational
database application, ‘‘Baptist MD,’’ that was originally
implemented in 2000. Supporting approximately 1,400
physicians and physician staff employees, the central
feature of Baptist MD is a Web site on which a wide
variety of patient data can be stored. This includes patient
history, pathology reports, blood tests, and radiology
results. The site can also store and display x-ray and MRI
images. A special site feature is real-time fetal monitoring
by which a physician can remotely check on the condition
of the fetus via the Web site while the mother is in labor.
The system provides each physician with a ‘‘My Patient’’

list, from which the physician can select one of their current
patients to check their condition. The physician’s office
staff also has access to the Web site for record keeping
purposes. Since the system is Web based, physicians can
check on their patients anywhere they can log onto the
Internet. In one critical case, a physician who was out of
state on vacation was contacted by the hospital and was
able to access the Web site and make a decision about
a patient.

Baptist MD is based on the Microsoft SQL Server
DBMS, running on a Compaq server. It relies on XML
to deal with all the different kinds of data in its Web
site presentations. The system by its very nature is
oriented around queries. These are menu driven with
menu selections triggering SQL queries. The relational
database’s main tables are a physician table with
physician qualifications and patient admitting authority,
a patient table that contains about 45,000 records
(including a 90-day history), a results table that typically
has 10?20 test results and so forth per patient, and a users
table with additional information about the physicians and
the physician office staff employees who have access to
the database.

Data Extraction into XML 379

Photo Courtesy of Baptist Memorial Health Care

DATA EXTRACTION INTO XML

As the final topic on Internet databases, we will briefly touch on the Extensible
Markup Language, ‘‘XML,’’ and how it relates to database management. First,
some background. You are probably aware that when a Web server sends a Web
page to your PC, the text and data in the page is formatted in HyperText Markup
Language (HTML). Embedded HTML ‘‘tags’’ literally ‘‘mark up’’ the text and
data, instructing your PC’s browser on how to display the page on your monitor.
In the Good Reading Bookstores example, if the place on the Web page at which
you are to enter the book title you’re searching for is labeled ‘‘Book Title’’ and this
label is to appear in boldface type on your monitor, it will come from the server
looking like:

<h1>Book Title</h1>

which instructs your browser to display it in boldface type (the ‘‘b’’ in ‘‘’’).
OK, but what does this have to do with database management? We’re getting there.

HTML is derived from a broader markup language called the Standard
Generalized Markup Language (SGML). As you can see from HTML, SGML is
capable of handling the formatting of displayed text and data. But, SGML is also

380 C h a p t e r 14 Databases and the Internet

F IGURE 14.8
XML Document Type Definition (DTD) for
Good Reading Bookstores’ BOOK data

<!ELEMENT book>

<!ELEMENT booknumber (#PCDATA)>

<!ELEMENT bookname (#PCDATA)>

<!ELEMENT publicationyear (#PCDATA)>

<!ELEMENT pages (#PCDATA)>

<!ELEMENT publishername (#PCDATA)>

F IGURE 14.9
XML for a Good Reading Bookstores’ book

<book>

<booknumber>374566</booknumber>

<bookname>Catch-22</bookname>

<publicationyear>1955</publicationyear>

<pages>443</pages>

<publishername>Simon and Schuster</publishername>

capable of indicating the meaning of data. It is this capability that XML, which is
also derived from SGML, focuses on. Figure 14.8 shows how the attributes in the
BOOK table in Good Reading’s database, Figure 14.5, would be represented in an
XML ‘‘document type definition’’ (DTD). Figure 14.9 shows some actual BOOK
table data described by XML based on the DTD of Figure 14.8. Notice that each
actual attribute in Figure 14.9, each piece of data, is accompanied by tags indicating
its meaning. This XML ability to handle different kinds of data is put to good
use by Baptist MD, as noted earlier, and is indeed important in the Web database
environment. But beyond this ability of XML to represent data in a generalized way
that incorporates the meaning of the data with the data itself, what does XML have
to do with database management?

Finally, the answer to this question goes straight to the heart of e-commerce
and the countless databases that support it. Modern companies are interconnected
in automated ‘‘supply-chains’’ in which their information systems applications
send data to each other over telecommunications networks. This is not a new
concept. For many years this activity has been accomplished with ‘‘electronic data
interchange’’ (EDI). For example, an automobile manufacturer’s parts inventory
management system might recognize that it is starting to run short of tires on the
assembly line. When the number of tires falls below a pre-set ‘‘reorder point’’ it
automatically sends a message to an application in the tire manufacturer’s computer
ordering more tires. This type of process could also apply to Good Reading
Bookstores and the publishers or book wholesalers that supply its stores. But a
classic problem in EDI has been the different data formats in the supply-chain
partners’ databases. In order to automatically exchange data in an EDI arrangement,
two companies have to go to a lot of trouble to match up attribute names, types,
lengths, and so forth, with each other. Furthermore, a particular company has to go
through this with each of its supply-chain partners. It can be done and it is done,
but it is a grueling, time-consuming process.

The beauty of XML in this regard is that it provides an independent layer of
data definition that is separate from the particular formatting of each company’s

Summary 381

FIGURE 14.10
XML as an independent layer of data
definition

XML

Publisher
Databases

Bookstore and
Bookstore Chain
Databases

data in its databases. Again, consider Good Reading Bookstores, but broaden the
view and realize that there are many bookstores and bookstore chains, and many
publishers and book wholesalers. Assume that every one of these companies agrees
to use a single standard XML description of books. Further, each company will
arrange to have software convert their stored book data to the standard XML format.
Then, they can all freely exchange book data with one another, Figure 14.10.
For example, if Good Reading has to order books from Publisher A, its software
converts the book data in its database needed for the order to the XML standard.
When Publisher A receives Good Reading’s order in the XML standard, its software
converts the data from the XML standard to its own format and go on to process the
order. And, of course, this works in both directions. So, as long as Good Reading
can convert its data to the XML standard, it can assume that every publisher it deals
with can go on to convert the XML standard data to that publisher’s data format,
and vice versa from the publishers to the bookstores.

SUMMARY

The Internet and its associated application, electronic commerce, have greatly
increased the activity of access to databases. This has brought up several issues, one
of which is modes of connectivity to the databases. Also, with the desire for access
to music, movies, and other media over the Internet, dealing with an expanded set
of data types has gained new importance. Access to databases over the Internet has

382 C h a p t e r 14 Databases and the Internet

brought increased focus on several database control issues including performance,
availability, scalability, and security and privacy. Finally, data extraction into XML
provides an important means of data conversion for companies transacting business
over the Internet.

KEY TERMS

Audio clip
Availability
Binary file (BFILE)
Binary large object (BLOB)
Browser
Character large object (CLOB)
Client side
Clustering
Data type
Database connectivity
Database persistence
Electronic data interchange (EDI)

Home page
HyperText Markup Language

(HTML)
Electronic commerce
Graphic image
Internet
Java Database Connectivity (JDBC)
Load balancing
Middleware
National character large object

(NCLOB)

Open Database Connectivity
(ODBC)

Query cache
Scalability
Server side
Standard Generalized Markup Lan-

guage (SGML)
Supply chain
Video clip
World Wide Web (WWW)
XML

QUESTIONS

1. Explain why the World Wide Web is like a giant
client/server system.

2. One of the principles of client/server systems is that
the processing functions are divided among different
computers in the system. Describe and explain this
‘‘division of labor’’ in the World Wide Web.

3. Describe the arrangement of computers and disks at
a Web site.

4. Describe the various software components needed
to reach a database within a Web site.

5. Why is it important to have standardized software
interfaces between the various Web site compo-
nents?

6. List three multimedia data types that might be
required for a Web site.

7. What is a BLOB? What is a CLOB? What are they
used for?

8. List some factors that can affect response time in
e-commerce.

9. List some factors that can cause large variations in
the number of people trying to access a Web site
simultaneously.

10. What can a company do to handle spikes in traffic
to its Web site?

11. What does ‘‘availability’’ mean? Why is it important
in the e-commerce environment?

12. What factors or events can affect a Web site’s
availability?

13. What does ‘‘scalability’’ mean? Why is it important
in the e-commerce environment?

14. What is different about data security concerns
in the Internet environment vs. the non-Internet
environment?

15. What techniques or equipment can be employed for
data security in the Internet environment?

16. Why is data privacy a concern in the e-commerce
environment?

17. What is XML and why is it useful regarding database
in the e-commerce environment?

Minicases 383

EXERCISES

1. Consider Lucky Rent-A-Car’s Web site, which
contains its database, as described in Figure 5.18.
Describe, in detail, the steps taken in both hardware
and software to reach the database when a customer
is making a reservation for a rental car over the
Web.

2. Consider the World Music Association’s Web
site, which contains its database, as described in
Figure 5.17. Describe, in detail, the steps taken in

both hardware and software to reach the database
when a customer is searching for information about
recordings of Beethoven’s Fifth Symphony.

3. Describe three different uses for non-traditional data
types in the Web sites of:

a. Good Reading Bookstores.
b. World Music Association.
c. Lucky Rent-A-Car.

MINICASES

1. Happy Cruise Lines.
a. Consider Happy Cruise Lines’ Web site, which

contains its database, as described in Minicase 5.1.
Describe, in detail, the steps taken in both hardware
and software to reach the database when an employee
is gathering statistics about a particular cruise, such
as the total revenue (the sum of the fares paid) for the
cruise.

b. Describe three different uses for non-traditional data
types in the Happy Cruise Lines Web site.

2. Super Baseball League.
a. Consider the Super Baseball League’s Web site,

which contains its database, as described in Minicase
5.2. Describe, in detail, the steps taken in both
hardware and software to reach the database to
produce a list of the work experiences of a particular
coach on a particular team.

b. Describe three different uses for non-traditional data
types in the Super Baseball League Web site.

INDEX

A
abstract data types, 262–263
access-arm mechanism, 203
access methods, 207–218. See also

index
file organizations and, 207–218
sequential, 207, 210, 213, 217

access path plan, 70
accessing data, problems in, 12–13
active data dictionaries, 284–286. See

also passive dictionaries
attributes, 285–286
definitions, 284
distinctions, 284
entities, 285–286
relationships, 286
uses and users, 286

Advance Auto Parts, 69
aggregated data, 340
aggregation, 248, 255–256
alternate key, 110
Amazon.com, 3–4
Analytical Engine, 7
AND operator, 75–76
anomalies data, 55
anti-virus software, 301
application characteristics, 218, 220
Application Program Interface (API),

373
application servers, 318
arbitration, 288
associative entity, in M–M binary

relationship, 27

asymmetric data encryption, 300
attribute, 20, 45, 108

columns, 108
creating uniqueness with, 20, 28
data normalization and, 157–158,

174
data normalization examples,

185–189
domain of values, 112, 142, 144
E-R diagrams, 158–160
inheritance of, 253–254
keys and, 109
physical database design, 97,

199–237
unique, 20

attribute names, 72, 85
ATTRIBUTES table, 283
audio clips, 373
availability, database, 374, 375–376
AVG operator, 81

B
B+-tree index, 211–214

information from, 212–213
Babbage, Charles, 7
backup, 291, 303–307

backup copies and journals, 303
importance, 303

backward recovery, 305–306
balance sheet, 6
Baptist Memorial Health care, 378–379
bartering, 5
base table, 70

386 Index

basic SELECT format, 70
before and after image log, 303
BETWEEN operator, 77–78
bill of materials, 29, 143–144, 165
Binary File (BFILE), 374
binary large objects (BLOBs), 263, 374
Binary LOB (BLOB), 374
binary relationships, 20–28

cardinality, 23–24
converting entities in, 160–164
data modeling in, 19–38
E-R diagram, 22
many-to-many (M–M) binary relationship, 23–28
modality, 24–25
one-to-many (1–M) binary relationship, 23–25
one-to-one (1–1) binary relationship, 23, 25

biometric systems, 297
Black & Decker, 107
block of logical records, 206
Boolean AND operator, 75–76
Boolean OR operator, 75–76
breaches, data security, 294

methods of, 294–296
types, 294

browsers, 369
built-in functions, 81–83

C
calculating devices, 9
candidate keys, 109–110
cardinality, in binary relationships, 23–24
Cartesian product, 98, 128
cascade delete rule, 152
case-based learning, 358
catalogs, 270, 287
census, 8
centralized database, 322
change log, 303
Character LOB (CLOB), 374
checkpoint, 306
class, 251
class diagram, 251
client side, 371–372
client/server database, 315–321

application servers, 318
database server, 318
file server approach, 318
three-tier approach, 318–320
two-tiered client/server arrangement, 318–319

client/server system, 368

clustering, 376
clustering files, 225
Codd, Edgar F. ‘‘Ted’’, 105
cold sites, 307
collision, 216
column (field), 108
Common Gateway Interface (CGI), 373
compact disk (CD), 11
comparisons, 98
competitive advantage, 12
complex relationships, 251–260

aggregation, 255–256
class diagrams, 251, 256
General Hardware Co. Class Diagram, 256
generalization, 251–253
Good Reading Bookstores Class Diagram, 256–259
inheritance of attributes, 253–254
inheritance of operations, 254–255
Lucky Rent-A-Vehicle Class Diagram, 260–261
operations, 254–255
polymorphism, 254–255
World Music Association class diagram, 259

Computer-Aided Restoration of Electric Service
(CARES), 44

Computer-Aided Software Engineering (CASE), 287
computer security issue, 59
computer viruses, 296
concurrency control, 291, 308–311

deadlock, 309–310
in distributed databases, 325–327
importance of, 308
locks, 309–310
lost update problem, 308–309
resource usage matrix, 310
versioning, 310–311

concurrency problem, 59
Contact Management and lead Tracking System,

249–50
controlled access (passwords and privileges),

297–299
corporate resource, 12–14, 49

data as, 1–15, 49
data mining, 357–361

COUNT operator, 82
CREATE TABLE command, 191
CREATE VIEW command, 192
Customer Information System, 44
customer relationship management systems (CRMs),

292–293
cylinders, 204–205

Index 387

D
data access, unauthorized, 294
data administration, 269–290

advantages, 271–274
decentralized environment, managing data in, 274
externally acquired databases, managing, 273
operational management of data, 273
responsibilities of, 274–278

data analyst, 274
data before database management, 43–48

attribute, 45
entity, 45
entity set, 45
field, 45
files, 43–46
record, 45
records, 43–46
storing and retrieving data, basic concepts in, 46–48

data characteristics, 218–220
data cleaning, 352, 353–356

apparently incorrect data, 356
impossible data, 355–356
impossible/out-of-range data, 356
missing data, 353
possible misspelling, 355
questionable data, 353, 356

data communications, intercepting, 295
data control issues, 58–60

computer security, 59
concurrency problem, 59
data independence, 60

data coordination, 274–275, 288
data definition language (DDL), 68
data dependence, 60
data dictionaries. See dictionaries, data
data encryption 299
data enrichment 353
data extraction 352–353

into XML, 379–381. See also under Extensible
Markup Language (XML)

data independence 60
data integration 49–56, 127–129

among many files, 50–51
within one file, 52–56

data integrity 50–52, 248, 260
data loading 352, 356–357
data maintenance 150, 280
data management. See also Structured Query

Language (SQL)

data definition, 68, 191, 193
data manipulation, 68, 192–194
in decentralized environment, 274, 288
documenting data environment, 277
responsibility for, 252

data manipulation languages (DMLs) 68
data mart (DM) 341–343
data mining 357–360

case-based learning, 358
decision trees, 358
genetic algorithm, 358
neural networks, 358

data modeling 19–40
aggregation, 255–256, 260
attribute, 20
entity, 20
examples, 31–37
generalization/specialization, 248, 251–253,

260–262
inheritance, 253–254
object-oriented, 250–251
polymorphism, 254–255
relationships, 20. See also binary relationships;

ternary relationships; unary relationships
unique identifier, 20

data normalization process 158, 174–189
Boyce-Codd normal form, 177
fifth normal form, 177
first normal form, 177–180
fourth normal form, 177
General hardware Co., 185–186
Good Reading Bookstores, 186–188
Lucky Rent-A-Car, 188–189
second normal form, 177, 180–182
steps in, 177
third normal form, 177, 182–185
unnormalized data, 178
World Music Association, 188

data ownership 277
data planning 275
data redundancy 49–56

among many files, 50–52
data integration and, 48–63
liminating, 126, 231
nonredundant data, 54–60, 127
physical design techniques and, 218–37
within one file, 52–56

data repository 281, 287
data retrieval 124–129. See also under relational

database model

388 Index

data retrieval (contd.)
DBMS and, 56, 60–63, 97, 124
disk storage considerations, 202–6

data security 291, 293–302
breaches, 294–296. See also breaches, data security
importance of, 293–294
measures, types of, 296–302
as operational requirement, 220–221

data standards 275–276
data storage 7. See also data security

clustering files, 222, 225–227
data relationships, 56–58, 111–124
data repositories, 287
DBMS and, 14–15, 56, 60–63, 68–70, 106,

124, 127, 129, 150–151,
201, 218, 221

derived, 221
hashed files and, 217
Internet security and privacy, 376–378
problems with, 12–13
storage media, 9–11, 302

data structure building with SQL 157, 191–192
data theft 294, 299
data transformation 352, 356
data types 373
data volatility 220
data volume 223
data warehouse 335–364

administering, 360–361
building, 352–357
challenges in, 361–362
concept(s), 338–341
data cleaning, 344, 352, 354–356, 361
designing, 343–351
General Hardware Co., 344–348
Good Reading Bookstores, 348–350
Lucky Rent-A-Car, 350–351
types of, 341–343
using, 357–360
utilizing, 357–360
World Music Association, question of, 351

database 2
database administration 269–290

advantages, 271–274
responsibilities of, 278–281

database concept 48–60. See also database
management system (DBMS)

data integration, 48
data redundancy, 48
datacentric environment, 48

multiple relationships, 56–58
principles of, 48

database connectivity issues 367–373
basic client/server system, 368
stand-alone PC, 368

database control issues 291–313, 374–379. See also
backup; concurrency control; data security;
disaster recovery; recovery

availability, 374, 375–376
performance, 374–375
scalability, 374, 376
security and privacy, 376–379

database environment 2, 14–15
database management system (DBMS) 2, 14–15,

41–66
DBMS approaches, 60–63
definition of, 43
externally-acquired databases, 273
need for, 55, 74, 148
relational catalogs, 98, 287, 298
server approach, 370–381

database performance 200
factors affecting, 200

database persistence 375
database server 318
databases and internet 365–383

database connectivity issues, 367–373. See also
individual entry

database control issues, 374–379
expanded set of data types, 373–374
Good Reading Bookstores relational database,

371
data-centric environments 48
deadlock 309–310
decentralized environment, managing data in 274
decision support systems (DSS) 336
decision trees 358
declarative SQL SELECT statement 70
defining associations 175–177, 179–181, 189–190
DELETE command 192–193
delete rules 151–153

Cascade, 152
Restrict, 152
Set-to-Null, 152–153

deletion anomaly 55
denormalization 221, 231–232
dependent entities 33, 36, 169, 172

functional, 148, 149, 151–155, 157–161
derived data 221

storing, 229–230

Index 389

designing databases. See database design
determinant 176, 185
development of data 10
dictionaries, data 281–287. See also active data

dictionaries; passive dictionaries
active, 284–286
ATTRIBUTES table, 283
metadata, 281–284
passive, 284–286
relational DBMS catalogs, 287
TABLES table, 283

dimension tables 338, 344–346, 322–325, 349, 359
dimensions 343
direct access 47–48

disk storage and, 11, 202–206
examples of, 233–237
hashed files, 215–218
indexes, 97, 202, 215

directories 296
disaster recovery 306–307

hot sites, 307
cold sites, 307

disk/disk devices 200, 207
disk drives, 11
disk-pack philosophy, 11
disk storage, 202–206. See also under physical

database design
structure of, 203

dispersing tables on the LAN 331
DISTINCT operator 79
distributed database/distributed DBMS 321–334. See

also distributed joins
advantages, 331–332
centralized database, 322
concept, 321–325
concurrency control in, 325–327
disadvantages, 331–332
distributed directory management, 330–331
location transparency, 321
two-phase commit, 327
with maximum data replication, 324
with no data replication, 323
with one complete copy in one city, 325
with targeted data replication, 326

distributed directory management 330–331
distributed joins 327–329
division-remainder method 216
documentation 277
domain of values 112
double-entry bookkeeping 6

Drill-Down 357
Driver’s License System (Tennessee Department of

Safety) 366
DROP TABLE command 191
DROP VIEW command 192
Ducks Unlimited (DU) 201
duplicate databases 306
duplicating tables 233
dynamic backout 306

E
early data problems spawn calculating devices,

7–8
Ecolab, 159
electric-eye devices, 298
electromechanical equipment, 9
electronic commerce, 366
electronic computers, 9
electronic data interchange (EDI), 380
embedded mode, 70
encapsulation, 260–262
enriched data, 359
enterprise data warehouse (EDW), 341–343
enterprise resource planning (ERP) systems, 49
entity, 20, 45
entity identifier, 118
entity occurrences, 140
entity-relationship diagram. See E-R diagram
entity set 45
equijoin 128
E-R diagram 20, 22, 24–37

conversions, 158. See also under binary
relationships; data normalization process;
logical database design

with data normalization, testing tables converted
from, 189–191

ESPN 270–271
expanded set of data types 373–374

audio clips, 373
binary file (BFILE), 374
binary LOB (BLOB), 374
character LOB (CLOB), 374
graphic images, 373
National Character LOB (NCLOB), 374
video clips, 373

Extensible Markup Language (XML), data extraction
into 379–381

as an independent layer of data definition, 381
Document Type Definition (DTD), 380
for Good Reading Bookstores book, 380

390 Index

external features, adding 221–222
externally acquired databases, managing 273

F
facts, 45
field, 45
file organizations, 207–218. See also hashed files
file server approach, 318
files, 43–46

clustered, 225, 233
data redundancy and integration, 48–56
hashed, 215–218
indexed-sequential, 210, 213
loss or corruption of, 59
terminology of, 106, 108, 250–251
well-integrated, 54–56

filtering, 79
firewalls, 301
first normal form, 177–180
fixed disk drives, 11, 203
flash drive, 9
foreign keys, 111

substituting, 228
forward recovery, 304–305
fragmentation, 329–330
functional dependencies, 175, 177, 190

G
Garment Sortation System, 61–62
Garment Utilization System (GUS), 21
gateway computer, 316
generalization, 248, 251–253
genetic algorithm, 358
geographic information systems (GIS), 373
GRANT command, 298
graphic images, 373
GROUP BY clause, 83–89, 223
Guest Profile Manager (GPM), 292

H
hacking, 295
hard disk drives, 203
hard ware, 13–15, 29, 31, 307, 367
Hasbro, 317
hashed files, 215–218
hashing method, 207
HAVING clause, 84
head switching, 206
hierarchical DBMS approach, 60

Hilton Hotels, 292–293
history of data, 2–11

1900s, 8–10
Analytical Engine, 7
bartering, 5
Census, 8
‘Code of Commerce’, 6
commercial data processing, 9
compact disk (CD), 11
data storage means, 7
data through the ages, 5–6
disk drives, 11
double-entry bookkeeping, 6
early data problems spawn calculating devices, 7–8
effect of Crusades, 6
electronic computers, 9
fourteenth century, 6
late 1800s, 8
late thirteenth centuries, 6
magnetic tape concept, 10
modern data storage media, 9–11
punched cards, 7
punched paper tape, 9
record keeping, 5–6
seventeenth century, 7

Hnedak Bobo Group (HBG), 249
Hollerith, Herman, 8–9
home page, 370
horizontal partitioning, 226
hot sites, 307
HyperText Markup Language (HTML), 379
Hypertext Transfer Protocol (HTTP), 372

I
IMAGE data type, 303
importance of data, 1–17

as a competitive weapon, 12
as new corporate resource, 13–14

IN operator, 77–78
index, 207–215

B+-tree index, 211–214
creating an index with SQL, 215
indexed-sequential file, 210
salesperson file, 209–210
simple linear index, 208–211

Information Management System (IMS), 62
information processing, 8
information systems environment, today’s data in,

12–15

Index 391

accessing data, problems in, 12–13
data for competitive advantage, 12
challenging factors, 13
storing data, problems in, 12–13

information theft, 13, 42, 59, 220
Informix Universal Server, 374
inheritance

of attributes, 253–254
of operations, 254–255

INSERT command 192–193
insert rules 151
insertion anomaly 55
Integrated Data Management Store (IDMS) 62
integrated queries 225
integrated software 273
integrated, data as 339
integrating data 127–129
International Business Machines Corporation (IBM) 8
internet 365–383. See also databases and internet
Internet Service Provider (ISP) 370
intersection data 116–117

in binary relationships, 25–31
data normalization and, 158
in M–M binary relationship, 25–26
nonkey attributes and, 175, 179, 180
in ternary relationships, 31–37
in unary relationships, 28–31

J
Jacquard, Joseph Marie, 7–8
Java Database Connectivity (JDBC), 373
job specialization, 272–273
Join operator, 127
join work, in SQL, 85–90
JPEG data type, 374

K
key fields, 45
keys. See candidate keys; foreign keys; primary keys

L
Landau Uniforms, 61–62
large object (LOB) data types, 374
LIKE operator, 77–79
load balancing, 376
local-area network (LAN), 316
local autonomy, 322
location transparency, 321
locks, 309–310

logical database design, 157–198
converting E-R diagrams into relational tables,

158–174
data normalization process, 174–189
E-R diagram conversion logical design technique,

172
General Hardware Co. Database, designing, 166–170
Good Reading Bookstores database, designing,

170–171
Lucky Rent-A-Car Database, designing, 173–174
manipulating the data with SQL, 192–193
testing tables converted
World Music Association database, designing,

171–173
logical design technique, for E-R diagram conversion,

172
logical records, 206
logical sequential access, 47
logical view, 223
logs, database, 303

change log, 303
transaction log, 303

lost update problem, 308–309

M
magnetic disk, 11
magnetic drum, 1–17
magnetic tape concept, 10–11
malicious mischief, 294
manageable resource, data as, 48–49

corporate resource, 49
software utility, 49

manipulating data, 46–47
manugistics, 107
many-to-many (M–M) binary relationship, 23–28, 113,

163–166
associative entity, 27
associative entity SALES, 27
associative entity with intersection data, 27
E-R diagram conversion, 158–174
intersection data, 25–26
primary keys and, 109–110
record deletion and, 150
relations and, 96–97
ternary, 31, 146–50
unary, 29–31, 143–145, 165–166
unique identifiers in, 28, 116

market basket analysis, 358
MAX operator, 82

392 Index

memory, primary and secondary, 202–203,
206–210

memphis, TN, 138–139
merge-scan join algorithm, 98
message, 262
metadata, 281

data catalogs, 98, 281, 287
data dictionaries, 281–287
data planning issues, 275
data repositories, 287
documentation of, 277
example of, 282–284

Microsoft Active Server Pages (ASP), 373
middleware, 373
MIN operator, 82
mirrored databases, 306
Mobile Dispatching System (MDS), 44
modality, in binary relationships, 24–25
modern data storage media, 9–11
multidimensional databases, 343
multiple relationships, 56–58
multiple tables, 222, 226

N
National Character LOB (NCLOB), 374
natural join, 128
navigational DBMSs, 62
Neolithic means of record keeping, 5
nested-loop join, 98
Network Cable System (NCS), 270
network DBMS approach, 60, 158
neural networks, 358
non-redundant data, 127
non-volatile, data as, 339
normal forms, 177, 180–181, 183

O
object class, 251
Object Management Group (OMG), 251
object, 250
object/relational database, 263–264
object-oriented database management systems

(OODBMS), 60, 247–267. See also complex
relationships; encapsulation

abstract data types, 262–263
encapsulation, 262
object/relational database, 263–264
object-oriented data modeling, 250

relational databases vs., 263–264
terminology, 250–251

objects, 46, 249–251, 287
occurrence vs. type, 45
one-to-many (1–M) binary relationships,

111, 162–163
binary relationship, 23–25
E-R diagram conversion, 158–164
primary keys and, 109–111
record deletion and, 150
unary, 29, 139–143, 165

one-to-one (1–1) binary relationship, 23, 120–124,
160–162, 164–165

combining tables in, 222, 230–231
E-R diagram conversion, 23, 158–164
unary relationship, 28–29, 164–165

on-line analytic processing (OLAP), 357
drill-down, 357
pivot or rotation, 357
slice, 357

Open Database Connectivity (ODBC), 373
operational management of data, 273
operations, 254–255
optical disk, 11, 15
OR operator, 75–76
ORDER BY operator, 80–81
order pipeline system (Amazon.com), 3
origins of data, 2–5

ancient Middle East, 4
clay tokens or counters, 4
Neolithic means of record keeping, 5
Susa culture, 5

overflow records, 216

P
Pacioli, Luca, 6
partitioning/fragmentation, 329–330
Parts Delivered Quickly (PDQ) system, 69
Pascal, Blaise, 7
passive dictionaries, 284–286. See also active data

dictionaries
attributes, 285–286
definitions, 284
distinctions, 284
entities, 285–286
relationships, 286
uses and users, 286

passwords, 298
PeopleSoft, 273

Index 393

performance monitoring, 278
performance, database, 374–375
personal computer (PC), 106
physical database design, 199–245. See also file

organizations
disk storage, 202–206
examples
finding and transferring data, steps in, 206
inputs to, 218–221
techniques that DO change the logical design,

227–233
techniques that DO NOT change the logical design,

222–227
techniques, 221–233

physical sequential access, 47
pivot or rotation, 357
Plant Planning System, 107
‘platter’, 203
polymorphism, 254–255
Powers Tabulating Machine Company, 8
Powers, James, 8
primary keys, 109–110

creating, 228–229
data normalization and, 218, 222

primary memory, 202
priorities, application, 218, 220
private-key technique, 300
privileges, 299
procedures, 250
program modification, unauthorized, 294
project operator, 125–127
proxy server, 301
publicity, 277
public-key technique, 300
punched cards, 7
punched paper tape, 9
pure tables, 219

Q
queries

filtering results of, 79
integrated, 54, 62–63, 225. 339
multiple limiting conditions in, 56–57, 90
nonunique search argument, 73, 125–26
optimizers and indexes, 98, 206–15
subqueries, 86–90
using COUNT, 82–83, 96

query cache 375
query mode 70

R
Random Access Memory Accounting Machine

(RAMAC), 11
RAW, for multimedia data, 374
read/write heads, 203–205
reciprocal agreement, 307
record deletion, 150
record keeping, 5
records, 43–46
recovery, 291, 303–307

backward recovery, 305–306
forward recovery, 304–305
importance, 303

redundant data. See data redundancy
reengineering 49
referential integrity 150–153

concept, 150–151
relational algebra 125
relational catalogs 223, 265–266, 276
relational data retrieval 67–103. See also Structured

Query Language (SQL)
relational database model 105–156

candidate keys, 109–110
concept, 106–124
data integration, 127–129
data retrieval from, 124–129
delete rules, 152–153
examples
foreign keys, 111
many-to-many binary relationship, 113–124
one-to-many binary relationship, 111
primary keys, 109–110
referential integrity, 150–153
relational terminology, 106–108

relational DBMS approach 60, 62, 287
relational DBMS performance 97
relational OLAP (ROLAP) 357
relational Project Operator 125–127
relational query optimizer 97–99

comparisons, 98
concepts, 97–99
merge-scan join algorithm, 98
nested-loop join, 98
relational DBMS performance, 97

relational query processing, streamlining 129
relational Select operator 125–127
relational tables, E-R diagrams conversion into

158–174

394 Index

relational terminology 106–108
relations 108
relationships 20

adding, 46, 84, 127, 221–224
combining, 230–232
extracting data from, 42, 124–125
primary keys, 133, 177, 146
splitting tables, 222, 226–227
tables or files as, 108

reorganization 37
repeating groups 231
replicated data 4, 326
resource usage matrix 310
response time 219
restrict delete rule 152
retrieving data 46–47

direct access, 47–48
sequential access, 47

rollback 305
roll-forward recovery 304
root index record 213–214
rotation or pivot 357
rotational delay 206
row (record) 108

S
SAP, 22, 107, 273, 338
SAS software, 293
scalability, database, 374, 376
screen scrapping technology, 160
search argument, 73
search attributes, 222
second normal form, 177, 180–182
secondary memory, 202–203, 206
Secure Socket Layer (SSL) technology, 300
security and privacy, database, 376–379
security monitoring, 288
seek time, 206
SELECT operator, 85–86, 125–127. See also

Structured Query Language (SQL)
access privileges, 299
basic format, 71
BETWEEN, IN, and LIKE, 77–79
built-in functions, 81–3
command writing strategy, 89–90
comparisons, 74–75, 98
examples, 90–96
filtering results, 79–80
grouping rows, 83–85
joins with, 85–86

AND / OR functions, 75–77
relational algebra, 125
subqueries, 86–89

sequential access, 47
logical sequential access, 47
physical sequential access, 47

server, 316
server approach, 318
server side, 371

Set-to-Null delete rule, 152–153
shared corporate resource, data as, 271–272
signatures, 301
simple entity, 158–160
simple linear index, 208–211
slice, 357
Smith & Nephew, 337–338
‘snowflake’ design, 349
software components, Web-to-database connection,

372
software utility, 49
splitting off large text attributes, 227
stand-alone PC, 368
Standard Generalized Markup Language (SGML), 379
star schema, 344
storage media, 9–11
Store Inventory Management System, 380
stored data, reorganizing, 224–226
storing data, problems in, 12–13
Structured Query Language (SQL), 67–103

basic functions, 70–81
built-in functions, 81–83
data structure building with, 191–192
examples
grouping rows, 83–85
index creation with, 215
join work, 85–86
operators, 75–76
SQL query, filtering the results of, 79
SQL select command, data retrieval with, 68–90
SQL SELECT commands, writing strategies, 89–90
subqueries, 86–89

subject oriented, data as, 338–339
subqueries, in SQL, 86–89

as alternatives to joins, 87
requirement, 88

subset tables, 221, 233
SUM operator, 81
supply-chains, 380
symmetric data encryption, 300
synonym pointer, 217

Index 395

‘synonyms’, 216
System Reliability Monitoring database, 44

T
table splitting into multiple tables, 226–227
TABLES table, 283
Tennessee Department of Safety, 366–367
terminology, relational vs. file, 108
ternary relationships, 31

converting entities in, 166
relational structures for, 146–150

testing tables converted from E-R diagrams with data
normalization, 189–191

text attributes, 227
third normal form, 177, 182–185
three-tier approach, 318
throughput, 218–219, 236
TIFF data type, 374
time variant data, 338–340
tokens, 4–5
tracks, 204
training personnel, 60
transaction log, 303
transaction processing systems (TPS), 336
transfer time, 206
transitive dependencies, 182, 190–191
Transmission Control Protocol/Internet Protocol

(TCP/IP), 372
troubleshooting, 278–279
tuple, 108
two-phase commit, 327
two-tiered client/server arrangement, 318
type vs. occurrence, 45

U
unary relationships, 28–31

converting entities in, 164–166
E-R diagram conversion examples, 158, 194

many-to-many, 29–31
one-to-many, 29
one-to-one, 28–29
relational structures for, 139–150

unauthorized computer access, 295
unauthorized data access, 294
unauthorized data or program modification, 294
Unified Modeling Language (UML), 251
unique attribute, 113
unique identifier, 20
Unisys Corporation, 9
unnormalized data, 178
update anomalies, 55
UPDATE command, 192–193
update rules, 151
usage monitoring, 279

V
Vehicle Service Center (Memphis, TN),

138–139
versioning, 310–311
vertical partitioning, 227
video clips, 373
view, 223
viruses (computer), 59, 296. 301, 376
volume, 13–14, 200, 223

W
Walt Disney Company, 21–22
well integrated file, 54
wiretapping, 295
World Wide Web, 369

as a client/server system, 369

X
XML. See under Extensible Markup Language

(XML)

	Copyright
	Brief Contents
	Contents
	Preface
	About The Author
	Chapter 1: Data: The New Corporate Resource
	Introduction
	The History of Data
	The Origins of Data
	Data Through the Ages
	Early Data Problems Spawn Calculating Devices
	Swamped with Data
	Modern Data Storage Media

	Data in Today’s Information Systems Environment
	Using Data for Competitive Advantage
	Problems in Storing and Accessing Data
	Data as a Corporate Resource
	The Database Environment

	Summary

	Chapter 2: Data Modeling
	Introduction
	Binary Relationships
	What is a Binary Relationship?
	Cardinality
	Modality
	More About Many-to-Many Relationships

	Unary Relationships
	One-to-One Unary Relationship
	One-to-Many Unary Relationship
	Many-to-Many Unary Relationship

	Ternary Relationships
	Example: The General Hardware Company
	Example: Good Reading Book Stores
	Example: World Music Association
	Example: Lucky Rent-A-Car
	Summary

	Chapter 3: The Database Management System Concept
	Introduction
	Data Before Database Management
	Records and Files
	Basic Concepts in Storing and Retrieving Data

	The Database Concept
	Data as a Manageable Resource
	Data Integration and Data Redundancy
	Multiple Relationships
	Data Control Issues
	Data Independence

	DBMS Approaches
	Summary

	Chapter 4: Relational Data Retrieval: SQL
	Introduction
	Data Retrieval with the SQL SELECT Command
	Introduction to the SQL SELECT Command
	Basic Functions
	Built-In Functions
	Grouping Rows
	The Join
	Subqueries
	A Strategy for Writing SQL SELECT Commands

	Example: Good Reading Book Stores
	Example: World Music Association
	Example: Lucky Rent-A-Car
	Relational Query Optimizer
	Relational DBMS Performance
	Relational Query Optimizer Concepts

	Summary

	Chapter 5: The Relational Database Model: Introduction
	Introduction
	The Relational Database Concept
	Relational Terminology
	Primary and Candidate Keys
	Foreign Keys and Binary Relationships

	Data Retrieval from a Relational Database
	Extracting Data from a Relation
	The Relational Select Operator
	The Relational Project Operator
	Combination of the Relational Select and Project Operators
	Extracting Data Across Multiple Relations: Data Integration

	Example: Good Reading Book Stores
	Example: World Music Association
	Example: Lucky Rent-A-Car
	Summary

	Chapter 6: The Relational Database Model: Additional Concepts
	Introduction
	Relational Structures for Unary and Ternary Relationships
	Unary One-to-Many Relationships
	Unary Many-to-Many Relationships
	Ternary Relationships

	Referential Integrity
	The Referential Integrity Concept
	Three Delete Rules

	Summary

	Chapter 7: Logical Database Design
	Introduction
	Converting E-R Diagrams into Relational Tables
	Introduction
	Converting a Simple Entity
	Converting Entities in Binary Relationships
	Converting Entities in Unary Relationships
	Converting Entities in Ternary Relationships
	Designing the General Hardware Co. Database
	Designing the Good Reading Bookstores Database
	Designing the World Music Association Database
	Designing the Lucky Rent-A-Car Database

	The Data Normalization Process
	Introduction to the Data Normalization Technique
	Steps in the Data Normalization Process
	Example: General Hardware Co.
	Example: Good Reading Bookstores
	Example: World Music Association
	Example: Lucky Rent-A-Car

	Testing Tables Converted from E-R Diagrams with Data Normalization
	Building the Data Structure with SQL
	Manipulating the Data with SQL
	Summary

	Chapter 8: Physical Database Design
	Introduction
	Disk Storage
	The Need for Disk Storage
	How Disk Storage Works

	File Organizations and Access Methods
	The Goal: Locating a Record
	The Index
	Hashed Files

	Inputs to Physical Database Design
	The Tables Produced by the Logical Database Design Process
	Business Environment Requirements
	Data Characteristics
	Application Characteristics
	Operational Requirements: Data Security, Backup, and Recovery

	Physical Database Design Techniques
	Adding External Features
	Reorganizing Stored Data
	Splitting a Table into Multiple Tables
	Changing Attributes in a Table
	Adding Attributes to a Table
	Combining Tables
	Adding New Tables

	Example: Good Reading Book Stores
	Example: World Music Association
	Example: Lucky Rent-A-Car
	Summary

	Chapter 9: Object-Oriented Database Management
	Introduction
	Terminology
	Complex Relationships
	Generalization
	Inheritance of Attributes
	Operations, Inheritance of Operations, and Polymorphism
	Aggregation
	The General Hardware Co. Class Diagram
	The Good Reading Bookstores Class Diagram
	The World Music Association Class Diagram
	The Lucky Rent-A-Vehicle Class Diagram

	Encapsulation
	Abstract Data Types
	Object/Relational Database
	Summary

	Chapter 10: Data Administration, Database Administration, and Data Dictionaries
	Introduction
	The Advantages of Data and Database Administration
	Data as a Shared Corporate Resource
	Efficiency in Job Specialization
	Operational Management of Data
	Managing Externally Acquired Databases
	Managing Data in the Decentralized Environment

	The Responsibilities of Data Administration
	Data Coordination
	Data Planning
	Data Standards
	Liaison to Systems Analysts and Programmers
	Training
	Arbitration of Disputes and Usage Authorization
	Documentation and Publicity
	Data’s Competitive Advantage

	The Responsibilities of Database Administration
	DBMS Performance Monitoring
	DBMS Troubleshooting
	DBMS Usage and Security Monitoring
	Data Dictionary Operations
	DBMS Data and Software Maintenance
	Database Design

	Data Dictionaries
	Introduction
	A Simple Example of Metadata
	Passive and Active Data Dictionaries
	Relational DBMS Catalogs
	Data Repositories

	Summary

	Chapter 11: Database Control Issues: Security, Backup and Recovery, Concurrency
	Introduction
	Data Security
	The Importance of Data Security
	Types of Data Security Breaches
	Methods of Breaching Data Security
	Types of Data Security Measures

	Backup and Recovery
	The Importance of Backup and Recovery
	Backup Copies and Journals
	Forward Recovery
	Backward Recovery
	Duplicate or ‘‘Mirrored’’ Databases
	Disaster Recovery

	Concurrency Control
	The Importance of Concurrency Control
	The Lost Update Problem
	Locks and Deadlock
	Versioning

	Summary

	Chapter 12: Client/Server Database and Distributed Database
	Introduction
	Client/Server Databases
	Distributed Database
	The Distributed Database Concept
	Concurrency Control in Distributed Databases
	Distributed Joins
	Partitioning or Fragmentation
	Distributed Directory Management
	Distributed DBMSs: Advantages and Disadvantages

	Summary

	Chapter 13: The Data Warehouse
	Introduction
	The Data Warehouse Concept
	The Data is Subject Oriented
	The Data is Integrated
	The Data is Non-Volatile
	The Data is Time Variant
	The Data Must Be High Quality
	The Data May Be Aggregated
	The Data is Often Denormalized
	The Data is Not Necessarily Absolutely Current

	Types of Data Warehouses
	The Enterprise Data Warehouse (EDW)
	The Data Mart (DM)
	Which to Choose: The EDW, the DM, or Both?

	Designing a Data Warehouse
	Introduction
	General Hardware Co. Data Warehouse
	Good Reading Bookstores Data Warehouse
	Lucky Rent-A-Car Data Warehouse
	What About a World Music Association Data Warehouse?

	Building a Data Warehouse
	Introduction
	Data Extraction
	Data Cleaning
	Data Transformation
	Data Loading

	Using a Data Warehouse
	On-Line Analytic Processing
	Data Mining

	Administering a Data Warehouse
	Challenges in Data Warehousing
	Summary

	Chapter 14: Databases and the Internet
	Introduction
	Database Connectivity Issues
	Expanded Set of Data Types
	Database Control Issues
	Performance
	Availability
	Scalability
	Security and Privacy

	Data Extraction into XML
	Summary

	Index

