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This book is dedicated

to those who would like to improve their ability
to apply mathematics effectively to practical problems,

to teachers of mathematics who would like to improve their ability
to convey a better understanding and appreciation of mathematics
to their students,

and

to those who are curious about
the linguistic nature and aspects of mathematics and its notation.
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PREFACE

We live today in a highly technological world built upon science and engineering.
These, in turn, are based extensively on mathematics. It is not an exaggeration to
state that mathematics is the language of engineering. Thus, to be able to understand
science and engineering—and hence, the physical world in which we live—one must
have at least a basic understanding of mathematics. This need will increase in time
as the world in which we live becomes ever more technological in nature.

Unfortunately, too few people today have a sufficient understanding of mathe-
matics to enable them to understand important technological topics. They are in-
adequately prepared to contribute substantially to resolving related issues, such as
the safe employment of nuclear systems in our society, avoiding or resolving envi-
ronmental problems, or structuring transportation systems (including vehicles, their
energy, roadways, terminal facilities), and especially, to making trade-off decisions
among the many aspects of such issues.

An important reason for this widespread lack of familiarity with mathematics and
the disciplines based on mathematics is the way in which mathematics is typically
introduced and taught. Many people are turned off mathematics early in their school
experience. Although current teaching approaches are effective for a relatively small
group of pupils already oriented to technical, mathematical, and scientific subjects,
they fail to motivate the majority. They do not build on the prior knowledge and
interests of the target group. They are typically too late in addressing the ultimate
and nontechnical advantages of applying mathematics, doing so only after many
students have already lost interest and have turned off their minds to mathematics.
A primary goal of this book is to present a view of mathematics that can overcome
these shortcomings.

In this book | present a new and unique way of looking at mathematics. In it,
mathematics is viewed through the specialized language and notation that mathe-
maticians have developed for communicating among themselves, for recording the
results of their work, and perhaps most important, for reasoning and conducting the
various analyses involved in their investigations. This view of mathematics differs
significantly from that presented in the traditional works on mathematics available
in the extensive mathematical literature. It also differs significantly from the ways in
which mathematics is taught today. This book will improve and increase the reader’s
insight into mathematics and how to utilize it in practice.

No particular previous knowledge of mathematics by the reader is required. All
readers will, of course, have encountered arithmetic and some mathematics in school,
and whatever they remember correctly will make it easier for them to read and

XV



XVi PREFACE

understand some of the consequences of the material and concepts presented in this
book. Readers with a more extensive prior knowledge of mathematics will be able to
read the book faster, but they will still find many ideas to be new and different from
their previous views of mathematics and its language. They will find that the material
in the book will help them to apply mathematics to practical problems more easily,
efficiently, and effectively than they could have earlier.

The book is an introduction to how to apply mathematics to practical problems by
translating English statements of a problem to be solved into the Language of Math-
ematics. We also study some fundamental aspects of mathematics via the language
used in mathematics, but that is only a by-product of investigating the Language of
Mathematics.

The first step in solving a problem stated in English with the help of mathematics is
to reformulate the English text into appropriate mathematical expressions reflecting
the essential aspects of the problem and the requirements that its solution must sat-
isfy. Reformulating the English text into such mathematical expressions is often the
hardest part of solving a problem. It is often presumed to be part of the mathematical
task, but actually, it is a translation problem—a language problem. Omissions and
errors in this step will often be discovered only later, when the final mathematical
solution is found to be wrong or inadequate—or found to be a solution to a different
problem. Only after a suitable mathematical formulation of the problem and its solu-
tion has been completed can one begin to apply mathematics itself to find the desired
solution.

As with most large and complex bodies of knowledge made up of a number of
different subdisciplines, mathematics can be viewed from many different standpoints
and in many different ways. None of these views exclude the validity of the others;
rather, they complement each other. Each view typically offers something that the
others do not offer. The most appropriate view depends on the viewer’s goals, inter-
ests, particular purpose at the time, background knowledge, experience, and many
other factors. Any person will find it useful to view mathematics from a different
viewpoint—and the more, the better. The more able one is to take advantage of
many different views, the better one will understand a subject and be able to apply
mathematics to it efficiently, effectively, and productively. The approach taken in
this book consolidates many of these different viewpoints within a unifying um-
brella of language. It builds a bridge between natural languages such as English and
mathematics.

My own experience learning, utilizing, and teaching mathematics has led me to
the conclusion that mathematics should be introduced by examining the basics of
the Language of Mathematics. | believe that learning mathematics in this way will
help—even enable—many people to understand mathematics who would otherwise
be turned off the subject by the current and traditional approaches to learning math-
ematics. Unfortunately, there are many such people in today’s world whose work
would benefit through simple applications of mathematics. This conclusion is based
on my experience learning mathematics, learning how to apply it to a variety of
technical, business, and economic problems, utilizing it extensively in practice in
these areas, as well as teaching certain areas of mathematics and how to apply them
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both to university students and to people working in various technical, business, and
management positions.

This language-oriented approach will make mathematics more accessible to
those who like language and languages, but who have until now avoided—even
disliked—mathematics. In my experience as a pupil in primary school through to
teaching university courses involving applying mathematics to various types of prob-
lems, I have repeatedly observed that students at all levels and people on the job have
considerable trouble solving word problems using mathematics. They have as much,
usually more trouble coping with translating the English statement of the problem
into mathematical notation as they do with solving the resulting mathematical expres-
sions for the answers desired—if they ever get that far. It is my considered opinion
that this difficulty is due to an inappropriate approach to teaching this material. The
normal teaching approach presents word problems within the context of mathematics
and as mathematics problems. In reality, they are, as mentioned above, translation
and language problems, not mathematics problems. The mathematics comes later,
after the word problem has been translated into the Language of Mathematics.

I believe that presenting word problems as language problems will draw students’
conscious attention to the real issues involved in applying mathematics and will
make learning this material easier. It will give them a broader and deeper basic
understanding of mathematics, link mathematics with their previous knowledge of
language, and provide them with a better foundation upon which specific skills in
applying mathematics can then be developed. Instead of learning mathematics as
something different, new, and unrelated to their previous experience and knowledge,
they will learn mathematics as an extension of their already accumulated experience
with and knowledge of language.

Viewing mathematics, mathematical models and mathematical expressions from a
language standpoint can, in my experience, facilitate communication between people
with different areas of expertise working on specific problems to which mathematics
is applied. A language viewpoint diverts attention away from explaining mathematics
to the less mathematically literate experts working on a problem. Instead, it directs
attention to the real need to translate between the language of the application domain
and the mathematical model and expressions representing an application problem
and its solution. Secondarily, it can help those working on and affected by the
application to improve their ability to read, at least passively, the mathematical model
and expressions.

I also believe that many people who already understand mathematics well will find
the new view presented in this book beneficial and that conscious awareness of and
familiarity with it will help them when applying mathematics to practical problems
and when explaining mathematics to others. At least that was my experience after
I began to consider, first subconsciously, then consciously, the linguistic aspects
of mathematics and to view mathematics from the standpoint of the Language of
Mathematics as presented in this book.

While the explicitly language-oriented view of mathematics presented in this book
is atypical and new, the mathematical material itself is old, having been developed
over five or more millenia. This development has been uneven and sporadic, with
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flurries of creative phases interspersed between longer intervals of slow or no im-
provement. In the last few centuries, the development of mathematics has tended
to become somewhat more regular, continuous, and productive. Whereas some as-
pects of mathematics are millenia old (e.g., numbers and arithmetic operations on
numbers), other important features have been introduced comparatively recently:
variable names to represent numbers or other values, functions and functional no-
tation, compact standard forms for writing mathematical expressions, and symbolic
logic.

The idea of viewing mathematics (or a part thereof) as a language is not at all
widespread, nor is it completely new. To the best of my knowledge, however, the par-
ticular approach taken in this book is new. Whereas other works nominally dealing
with linguistic aspects of mathematics tend to view the topic from the standpoint of
mathematics, this book quite intentionally views the Language of Mathematics from
the opposite side: from the standpoint of language. Whereas other works tend to con-
centrate on defining and understanding mathematical concepts and terms in English,
this book deals explicitly and extensively with translating English statements into the
Language of Mathematics, pointing out grammatical clues useful as guidelines. Ways
of modeling dynamic, temporal processes described in English using the static, tense-
less Language of Mathematics are dealt with in this book. Also new in this book is
the observation that all verbs implicit in expressions in the Language of Mathematics
are stative in nature (timeless, tenseless verbs of state or being), a characteristic that
has significant implications for translating from English to the Language of Mathe-
matics. In particular, many sentences in English cannot be translated directly into the
Language of Mathematics, but must first be substantially reformulated.

In composing the presentation of the Language of Mathematics in this book,
I have followed an old, common, and very successful strategy for formulating a
mathematical model to be used as the basis for solving a given problem:

e Generalize.

e Identify the essential aspects of the problem and the corresponding mathematical
model.

¢ Simplify, retaining the essentials but eliminating nonessentials where helpful.

Nonessential details often confuse both a model’s developers and its readers
by distracting their attention from the essentials. Nonessential details also make
a mathematical model larger, more complex, and therefore more complicated. The
resulting structure is more difficult to understand and use than one including only the
essential details would be.

In introductory articles, lectures, and so on, one often encounters an apology for
mathematical formulas and a statement that the reader or listener does not really have
to understand the formulas in detail, only generally what they are about, and even
that not really seriously or deeply. In this book, the reader will find no such apology
or excuse. Such false rationalization is like telling the audience attending a play by
Shakespeare that they need listen only to the poetic, musical flow of the voices—that
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the actual meaning of the words is unimportant. In this book, the meaning of each
mathematical expression (formula) is important; the meaning, not the poetic style, is
the message. The style can help or hinder the reader to understand the meaning, but
appreciating the style is not enough; the meaning must be understood. If you read a
play by Shakespeare but do not understand the language used, you will not get the
message. The same applies to expressions in the Language of Mathematics.

The Language of Mathematics has evolved to facilitate reasoning logically about
things. It has been developed to make it easy to make exact, precise, unambiguous log-
ical statements and to make it difficult—even impossible—to make vague, ambiguous
statements. One should take advantage of these characteristics of the Language of
Mathematics and use it, not English, when reasoning about things. Therefore, convert
from English to the Language of Mathematics at as early a stage in the reasoning
process as possible.

When asked about their motivation for writing a book, authors often state that
they wrote the book that they would have liked to have read earlier themselves.
That was definitely an important reason for my writing this book. | would have
liked very much to have had a copy of it when | was in high school and during
my early undergraduate years. It would have given me a view of mathematics and
mathematical notation that would have helped me to learn mathematics better and
faster and to understand it more thoroughly and deeply. It would not have replaced any
of the other books from which | learned mathematics, but it would have been a very
helpful adjunct and introduction to them. | hope that you find reading this book as
useful and as enjoyable as | would have so many years ago, and as | did conceiving and
writing it.

Acknowledgments
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PART A
Introductory Overview



1 | ntroduction

Welcometo mathematicsand particularly toitslanguage. Youwill finditto beasimple
language, with only alittle grammar and alimited vocabulary, but quite different from
the other languagesyou know. Unlike natural languages such asEnglish, its semantics
are precisely defined and unambiguous. In particular, its complete lack of ambiguity
enables exact reasoning, probably its greatest advantage. On the negative side, one
cannot express such a wide variety of things in the Language of Mathematics as in
English, and intentional vagueness, so important in English poetry and much prose,
cannot be expressed directly. Nonetheless, it is often surprising what one can express
in and with the help of the Language of Mathematics, especialy when combined
appropriately with English or some other natural language.

Vagueness cannot be expressed directly in the Language of Mathematics, but it
can be model ed—precisely and unambiguously—with mathematics. Expressed dif-
ferently, the Language of Mathematics enables one to make precise and unambiguous
statements about vaguely determined things. Probability theory, statistics, and, more
recently, fuzzy theory are the mathematical subdisciplines that enable oneto talk and
write about uncertainty and vagueness—hbut with precision and without ambiguity.

Although the Language of Mathematicsis quite limited in the range of things that
can be expressed in it directly, many things outside the Language of Mathematics
can be related to mathematical objects as needed for specific applications. Thus, the
Language of Mathematics is, in effect, a template language for such applications.
Adapting it to the needs of a particular application extends its usefulness greatly and
posesthe main challengein its application. This chalengeis primarily linguistic, not
mathematical, in nature. Helping the reader to meet this challenge is an important
goal of this book and underlies essentialy al of the material init.

One of thelimitationsin the Language of Mathematicsisthe fact that the notion of
timeisabsent from it completely. Thisfact is mentioned here, at the very beginning,
because the lack of conscious awareness of it has led to many students becoming
(and sometimes remaining) very confused without realizing this source of confusion.
Time and dynamic processes can easily be and often are modeled mathematically,
but this is part of the adaptation of the template Language of Mathematics to the
particular application in question. How this can be done is covered in several places
in the book, in particular in Section 7.5.

The Language of Mathematics: Utilizing Math in Practice, First Edition. Robert Laurence Baber.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.



4 INTRODUCTION
1.1 WHAT ISLANGUAGE?
A language is amedium for:

e Expressing or communicating:

o Verbally or visualy (e.g., in written form)

o Facts, opinions, thoughts, ideas, feelings, desires, or commands

o At onetime or from one time to another

o Between different people or from one person to her/himself at adifferent time
e Thinking
e Analyzing or reasoning

Every language employs abstract symbols—verbal, visual, and sometimes using
other senses, such astouch—to represent things. In many natural languages, thevisual
form was devel oped to represent the verbal form, so that there is a close relationship
between the spoken and written forms. Other languages, however, have devel oped
spoken and written forms which are not directly related. Originaly, their symbols
were often pictoria in nature, albeit often rather abstractly. One can think of such
a language as two distinct languages, a spoken language and a written language.
In the case of Sumerian (the earliest known written language), written symbols
(in cuneiform) represented what we think of today as words, so that there was no
direct connection between the written and spoken forms of the language. Later, the
cuneiform symbols were taken over by other languages (e.g., Akkadian) to represent
syllablesin the spoken language, establishing adirect connection between the spoken
and written forms of the language. Still later, other languages introduced symbolsfor
parts of a syllable, leading to the abstract symbols that we now call letters.

Mathematics exhibits the characteristics of alanguage described above. Therange
and distribution of topics communicated in natural languages such as English and
those communicated in the Language of Mathematics differ in some significant ways,
however. Feelings and emotions are rarely expressed in mathematical terms. Vague
(i.e., imprecisely defined) terms are not permitted in the Language of Mathematics.
Otherwise, all of the characteristics of alanguage mentioned above are found in the
Language of Mathematics, albeit with different emphasis and importance.

Scientists and historians believe that language began by our distant ancestors
communicating with one another via sounds made by using the vocal chords, the
mouth, the lips, and the tongue (hence our term language, from lingua, Latin for
“tongue”). Thisform of language was useful for communicating between individuals
at one time and when they were physically close to one another. Sounds made in
other ways (e.g., by drums) were used for communication over greater distances, but
still between people at essentially onetime. Visual signals of various kinds were also
employed in much the same way.

Marks on bones apparently representing numbers are believed to be an early
(perhaps the earliest) form of record keeping: communicating from one time to
another. Gradually, this idea was extended to symbols for various things, ideas,
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concepts, and so on, leading in along sequence of developmental steps to language
as we know it today. It is noteworthy that even precursors to writing apparently
included numbers, the basic objects of arithmetic, and hence of mathematics. The
earliest forms of writing known to us today certainly included numbers. Thus, the
development of languages included elements of mathematics from very early times.

Symbols and signs recorded physically in visually observable form constitute
recordsthat storeinformation for later use. They are amajor source of our knowledge
of early civilizations. Their durability seriously limits our knowledge of those early
civilizations. The most durable records known to date are clay tablets inscribed with
cuneiform characters and inscriptions on stone monuments. Records of old societies
that used less durable forms of writing have decomposed in the meantime and are no
longer available. Those potentially interesting historical records are lost forever.

Recently, humans have begun to communicate with symbols they cannot observe
visually but only with the help of technical equipment. The symbolsareintheform of
electrically and magnetically recorded analog signals and, still more recently, digital
symbols. In some cases, these signals and symbols are direct representations of
previous forms of human language. In other cases, they are not; rather, they represent
new linguistic structures and forms.

Natural languages such as English, Chinese, and Arabic have evolved to enable
people to communicate about all the kinds of things they encounter in everyday
life. Therefore, the universes of discourse of natural languages overlap considerably.
The Language of Mathematics has, however, evolved to fulfill quite different, very
specific, and comparatively quite limited goals. It is a language dealing only with
abstract things and concepts and having only arather limited scope. Therefore, for the
purposes of applicationsto real-world situations, the Language of Mathematicsis not
a finished language but, instead, a template language. When applying mathematics,
the Language of Mathematics must be adapted for each application. Thisis done by
specifying how the elements of the mathematical description are to beinterpreted in
the terminology of the application area. A new interpretation must normally be given
for each application, or at least for each group of closely related applications.

1.2 WHAT ISMATHEMATICS?

The archaeological record suggests that mathematics probably originated with count-
ing and measuring things and recording those quantities. Soon, however, people began
to pose and answer questions about the quantities of the things counted or needed
for some purpose; that is, they began to reason about quantities and to solve related
problems. As early as about 4000 years ago, mathematics included the study of
geometrical figures: in particular, of relationships between their parts and between
numerical measures of their parts. Later, mathematiciansturned their attention to ever
more abstract things and concepts, including ones not necessarily of a numerical or
geometrical nature.

The description of language at the beginning of Section 1.1. also applies to math-
ematics. The relative emphasis on communication on the one hand and on reasoning
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and analysison the other hand is perhaps different, but thereis much common ground.
Some would say that mathematics itself, in the narrow sense, concentrates on con-
cepts and techniques for reasoning and analyzing, and that mathematicsis therefore
not itself a language. However, mathematics does use extensively a particular lan-
guage that has evolved to facilitate reasoning and analyzing. Such reasoning and
analyzing is performed primarily by manipulating the symbols of mathematical lan-
guage mechanistically, according to precise rules. The Language of Mathematicsis
also used extensively for expressing and communicating both over time and between
people. Itisalso used for thinking.

What is mathematics today? Someone once answered that question with “What
mathematicians do.” That, of course, begs the question “What do mathematicians
do?’ Answered most succinctly, they reason logically about things—artificial, ab-
stract things—not just about quantities, numbers, or numerical properties of various
objects.

Many of thosethings, although artificial and abstract, are useful in modeling actual
thingsin the real world; for example:

e Structures of buildings, dams, bridges, and other engineering artifacts

e Materials of al kinds and their properties

e Mechanical devices and equipment

e Machines, engines, and all kinds of energy conversion devices and systems

e Vehicles of al types: land, underwater, water surface, air, space

e Electrical circuits and systems composed of them

e Communication systems—wired and wireless—and their components

e Systems for cryptography

¢ Molecules, atoms, nuclei, and subatomic particles

e Chemical reactions and chemical reactors

e Systemsfor generating and distributing electrical power

¢ Nuclear decay and interaction processes and nuclear reactors

¢ Heating and cooling systems

e Computer software

e Pricesin financial markets

e Salesand markets

e Order processing and billing systems

¢ Inventory control systems

e Various business assets and liabilities

e Dataand information of all types, including names and addresses

e Social, economic, business and technical systems

¢ Relationships among objects, properties, and values of al (not just numerical)
types

e Structural aspects of languages, natural and artificial
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Such models better enable us to describe, to understand, and to predict things in the
real world—to our considerable benefit.

It is important that the reader always be consciously aware that mathematics
today consists of much more than numbers and arithmetic. Important as these are,
they constitute only a part of mathematics. The main goal of mathematics is not
to work with numbers but to reason about objects, properties, values, and so on,
of all types. Mathematicians work mostly with relationships between these things.
Mathematicians actually spend very little of their time calculating with numbers.
They spend most of their time reasoning about abstract things. Logic is an important
part of that work.

Different subdisciplines of mathematics have been created in the course of time.
Numbers, counting, geometric figures, and quantitative analyses constituted the first
subdisciplines. Among the more recent is logic. Unfortunately, especialy for the
novice learning mathematics, logic used its own terminology and symbols, and this
distinction is still evident in the ways in which mathematical logic is often taught
today. This leads many beginners to believe that logic is somehow fundamentally
different from the other subdisciplines and that a different notation and point of
view must be learned. The linguistic approach presented in this book integrates these
views and notational schemes, so that the beginner need learn only one mathematical
language. Although this integrating view is aready present in some mathematical
work, it isnot really widespread yet, especially not in teaching mathematics.

1.3 WHY USE MATHEMATICS?

Among the several reasonsfor using mathematicsin practice, the two most important
are

¢ To find asolution to a problem. The statement of a problem or the requirements
that a solution must fulfill can often be transformed into the solution itself.

e To understand something better and more thoroughly: for example, to identify
all possibilitiesthat must be considered when defining a problem and solvingit.

Examples are given in Chapter 2, in Section 6.13.2, and in Chapter 8.

Theauthor and many othershavefound inthe course of their work that mathematics
frequently enables them to think effectively about and solve problems they could not
have cometo gripswithinany other way. Aslong asaproblemisexpressedin English,
one can reason about the problem and deduce its solution only when one constantly
keeps the precise meaning of the words, phrases, and sentences consciously in mind.
If the text is at all long, this becomes unworkable and very subject to error. It is
likely that some important detail will be overlooked. After formulating the problem
in mathematical language, the expressions can be transformed in ways reflecting and
representing the reasoning about the corresponding English sentences. However, the
expressions can be transformed mechanistically according to generally applicable
rules without regard to the meaning of the expressions. This effectively reduces
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reasoning to transformations independent of the interpretation of the expressions
being transformed, simplifying the process considerably and enabling much more
complicated problems to be considered and solved. People who are specidists in
transforming mathematical expressions but who are not specialistsin the application
area can find solutions. In this way, the mental work of reasoning can be largely
reduced to the mechanistic manipulation of symbols. In the words of Edsger W.
Dijkstra, a well-known computer scientist whose areas of specia interest included
mathematics and logic, one can and should “let the symbols do the work.”

For the reasons cited above, one should convert from English to the Language of
Mathematics at as early a stage as possible when reasoning about anything. Trans-
forming themathematically formulated statement of aproblem intoitssolution sounds
easy. Although it is, in principle, straightforward, it can be computationally intensive
and tedious to do manually. For agreat many applications, algorithms for solving the
problem and computer programs for cal culating the numerical solutions exist. Where
such solutions do not already exist, mathematicians can often devel op them.

The usefulness of the Language of Mathematics for the purposes listed above
derives from its precision, the absence of ambiguity, and rules for transforming
mathematical expressions into various equivalent forms while preserving meaning.
These characteristics are unique to the Language of Mathematics. Natural languages,
lacking these characteristics, are much less satisfactory and useful for the purposes
noted above.

1.4 MATHEMATICSAND ITSLANGUAGE

In order to reason logically about things, mathematicians have developed a par-
ticular language with particular characteristics. That language—the Language
of Mathematics—and other languages developed by human societies—such as
English—are similar in some respects and different in some ways.

Distinguishing characteristics of the Language of Mathematics are its precision
of expression and total lack of ambiguity. These characteristics make it particularly
useful for exact reasoning. They also make it useful for specifying technical things.
The Language of Mathematics is a language of uninterpreted expressions, which
are described in Section 3.4. This does not imply that mathematical expressions are
uninterpretable. They can be and often are interpreted when applying mathematics
in the real world: when associating mathematical values, variables, and expressions
with entities in the application area (see Chapters 6 and 7, especially Section 6.13).

Within the Language of Mathematics, however, expressions are never interpreted.
When transforming mathematical expressions in order to reason or analyze, one
should be very careful not to interpret them, as doing so takes one out of the Language
of Mathematics and into English. Thiscan result in theloss of precision and theintro-
duction of ambiguity—the loss of the very reasons for using mathematics—without
one being aware that the loss is occurring. Reasoning must be conducted only and
strictly within the abstract world of uninterpreted expressions, applying only math-
ematically valid transformations to the expressions without interpreting them. In
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this way, mathematical expressions represent the ultimate form of abstraction of the
logicaly essential aspects of a practical problem, containing only the logical rela-
tionships between its various aspects and without any inherent reference to the real
world represented. The final results of the transformations representing reasoning
are mathematical expressions representing solutions. The latter expressions are, of
courseg, interpreted in order to implement the solution in the application domain.

Mathematics and the Language of Mathematics are not the same thing. Facil-
ity with the language is a prerequisite for understanding and applying mathematics
effectively. Unfortunately, mathematics is usually taught without explicitly introduc-
ing the language used. The student of mathematics is left to discover the language
unassisted. Although thisis possible for some people, it makes learning mathematics
unnecessarily difficult and time consuming for many. For others, it constitutes the
difference between learning mathematics and giving up before getting very far.

My experience learning, using, and teaching others mathematics and how to
use it in practice has convinced me that looking at mathematics consciously as a
language can facilitate the learning process, understanding, and the ability to apply
mathematics in practice. | believe that it can even enable some people to learn
how to use mathematics effectively who would otherwise be turned off mathematics
completely by their early exposure to it—and unfortunately, there are many such
people in today’s world.

One must distinguish between the Language of Mathematics on the one hand
and that part of English that is used to talk and write about mathematics on the
other hand. The Language of Mathematics itself builds expressions upon values,
variables, functions, and structures of these components. To communicate with other
people about mathematics, one typically uses a combination of normal English and
specialized mathematical terminology and jargon, just asis donein other specialized
disciplines, such as the several scientific and engineering fields, medicine, and law.
Thisdistinction is discussed in greater depth in Section 6.10.

15 THE ROLE OF TRANSLATING ENGLISH TO MATHEMATICSIN
APPLYING MATHEMATICS

The steps in the overall process of applying mathematics to a problem areillustrated
in the following diagram, in which translating English to mathematicsis highlighted.

————— N

actual | English mathematical
:\problem text model

'
'
.

mathematical ,,,,,, ’ English§ ,,,,,, *{/implemented\;
solution Dotext ! ‘. solution
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Translating from an English description of a problem to the Language of Mathe-
matics is the second step in the process of applying mathematics to a problem. The
mathematical model is needed in order to reason logically about the problem, to
analyze it systematically, accurately, and precisely, and to find a solution.

The mathematical model itself represents an interface between:

e The English language—oriented analysis and identification of the problem and
the requirements for its solution, and

e The purely mathematical analysis and determination of one or more solutions

The mathematical model, being written in the Language of Mathematics, is an
unambiguous statement of the problem and the requirements that any solution must
satisfy. Its meaning in terms of the application is defined by the interpretation of the
values, variables, and functions in the mathematical model, but its meaning in terms
of the subsequent mathematical analysisisindependent of that interpretation and the
application. Thus, themathematical model representsaboundary between the English
language view of the application and the mathematical view of the application. The
mathematical model connects, couples, the application and the mathematical worlds
with each other, and at the same time it separates, insulates, isolates each from the
other.

This, in turn, means that a solution can be determined in the mathematical world
without regard to the application world, and correspondingly, any solution that sat-
isfies the mathematical model will be applicable to the application world, without
regard to how that solution was found. In the extreme, the specialists who find the
mathematical solution do not really need to know anything about the application
world to the left of the mathematical model in the diagram above. Correspondingly,
the specialists in the application domain do not need to know or understand how the
solution was found in the mathematical world below the mathematical model in the
diagram at the beginning of this section.

Both specialist groups must, however, be able to read and understand the mathe-
matical model (the interface specification) itself. Two factors are critical:

e That the application specialists agree that the mathematical model is an appro-
priate statement of the application problem and the requirements any solution
must satisfy

e That the mathematical specialists agree that the mathematical model is a syn-
tactically correct and semantically meaningful mathematical expression in the
Language of Mathematics

That is the extent of the need for communication between the two groups of
specialists. Lest the reader think that this is an unrealistic, utopian view, it must be
pointed out that exactly this type of interface specification underlies all engineering
work. Such interface specifications enable—and are prerequisites for—the division
of labor required for the efficient and effective realization of any large-scale task,
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such as the design of a system for generating and distributing electricity regionally,
nationally, or internationally; the design of a vehicle of any type (ship, automobile,
truck, airplane, etc.); the design of abuilding; or the design of international telephone
and communication systems.

Expressed differently but equivalently, communication and mutual understanding
among the people involved is the key in such efforts. It is not necessary that every
team member have the mathematical ability to solve all aspects of a problem or
that every team member be an expert in all aspects of the application area. What
is important is that they all understand what the problem is: what problem is being
solved. The ahility to read the expressions in a mathematical model and understand
their meaning is sufficient; actually finding a solution can be | eft to specialists. That
is one of the advantages of a mathematical formulation of the problem: Finding a
solution depends only on the unambiguous mathematical expressions, not on what
they are interpreted to mean in the application domain.

Although problems regarding accuracy, discrepancies, and errors can have their
originsin any and all steps shown in the earlier diagram, particularly severe conse-
guences arise from inaccuracies in translating the English text into the mathematical
model. The especially important step of translating from English into the Language
of Mathematics is the subject of this book.

16 THE LANGUAGE OF MATHEMATICSVS MATHEMATICSVS.
MATHEMATICAL MODELS

The Language of Mathematics, mathematical models, and mathematics are three
different but closely related entities. The Language of Mathematicsisthe language of
the notational forms used in mathematics. Mathematical models express rel ationships
among thevariousvariables, values, and functionsthat describe some part of theworld
to which mathematics is being applied. Mathematics, what one does in and with the
Language of Mathematics, includes the notational forms, that is, the Language of
Mathematics, and definitions of many different mathematical objects, techniques
for transforming mathematical expressions and the proofs of their general validity,
the theory underlying such techniques, and proofs of characteristics of the various
mathematical objects.

A rough comparison will perhaps help to make these distinctions clearer. Corre-
sponding to the Language of Mathematics, the English language can be thought of as
the definitions of English wordstogether with the grammar and accepted conventions
for forming variations of the words (e.g., conjugating verbs, forming plurals and
participles) and for combining words into sentences. Corresponding to mathemat-
ics, English in general can be considered to be the collection of the language itself
together with what one does in and with the language, that is, the literature written
(and spoken) in English and the associated culture. Corresponding to a mathematical
model isan individual piece of English literature.

The distinction between the English language, English in genera (i.e., together
withitsliterature and culture), and particular pieces of English literatureiscommonly
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madeinteaching and learning. The goalsand contents of acoursein English grammar
are different from the goal's and contents of a coursein English literature and literary
culture. The goals and contents of a course in an individual piece of literature, or in
acollection of closely related literature (such as by one author), are different again.
The approaches employed in such different types of courses are, correspondingly,
different.

Unfortunately, the corresponding distinction between the Language of Mathe-
matics, mathematical models, and mathematics is usually not made in teaching or
learning any of these topics. The Language of Mathematics is, for the most part,
treated implicitly and the student is, also implicitly, expected to absorb intuitively
the linguistic aspects of the Language of Mathematics on his or her own. The nomi-
nal topics of courses are either mathematics or particular application areas. Courses
on mathematics deal with specific subdisciplines of mathematics, such as differen-
tial calculus, integral calculus, linear algebra, real analysis, analytical geometry, and
number theory. Definitions of mathematical objects relevant to the subdiscipline and
techniques for manipulating expressions typically arising in the subdiscipline make
up the content of those courses. Courses on particular application areas deal with
phenomena in the application area in question and present the relevant mathemati-
cal models together with relevant aspects of mathematics. The mathematical models
are presented as the relevant mathematics, not explicitly as models as such. Some
examples of such application-oriented courses are physics, atomic physics, nuclear
reactor physics, chemistry, mechanics (statics and dynamics), operations research,
inventory control, electrical circuit theory, switching circuits, control theory, thermo-
dynamics, heat transfer, and fluid mechanics. The mathematical flavor varies among
such courses, but all emphasize the mathematical models relevant to the particular
application area.

Notable in both the mathematics courses and the application-oriented courses are
(2) that linguistic aspects of notation—the Language of Mathematics—are either
absent or only implicit; and (2) that formulating new mathematical models (e.g.,
tranglating an English text into a mathematical model) is not dealt with.

The material in this book distinguishes consciously between these three top-
ics. the Language of Mathematics, mathematical models, and mathematics. The
reader should pay conscious attention to the distinction between them and to
each individualy. A maor goal of the material in this book is to provide explicit
guidelines for formulating new mathematical models based on descriptive English
text.

1.7 GOALSAND INTENDED READERSHIP

By presenting the Language of Mathematicsexplicitly and systematically, thisbook is
intended to help its readersto improve their ability to apply mathematics beneficially
in their own work: in particular, by improving their ability to translate English
descriptions into the Language of Mathematics. This book is not intended as a
textbook on mathematics itself or on any subdiscipline of mathematics.
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In summary, this book iswritten for the following people:

e Those who would liketo improve their ability to apply mathematics effectively,
systematically, and efficiently to practical problems

e Teachers of mathematics who would like to improve their ability to convey to
their students a better understanding and appreciation of mathematics and how
to apply it in practice

¢ Those who are curious about the linguistic nature and aspects of mathematical
notation

More specifically, the intended readership includes:

e Engineers, consultants, managers, scientists, technicians, and others who could
benefit vocationally and professionally by a greater ability to use and apply
mathematics in their work

e Studentsin tertiary educational institutions

e Studentsin secondary schools especially interested in mathematics, science, or
languages

¢ Educators designing mathematics curricula, course content, and teaching mate-
rialsfor students at all levels

e Teachers of mathematics, science, or languages in tertiary educational institu-
tions (universities, polytechnics, and vocational and technical schools)

¢ Teachers of mathematics, science, or languages in secondary schools

e Teachersin primary schoolswho introduce pupil sto mathematics and especially
to word problems

¢ Persons with a general or an intellectual interest in mathematics, science, or
language

The prerequisites for reading this book are a recognition and conscious aware-
ness that mathematics might be useful in your work or other activities and a de-
sire to realize its potential benefits. Basic knowledge of English grammar is aso
necessary; the essentials needed are summarized in Section 6.2. This book is self-
contained in the sense that no particular mathematical background is assumed or
needed.

Readers with an extensive mathematical background will find much of the math-
ematical notation presented in this book familiar. Their earlier mathematical courses
will have given them the mathematical models needed for classical professional
practice, but will not have taught them how to formulate mathematical models
for new or significantly different types of problems themselves. Some, but not all,
readers will have developed this ability intuitively and implicitly. This book will
show all of them explicitly how to formulate new mathematical models based on
English descriptions of problems to be analyzed and solved. Logica mathematical
expressions will aso be new to some readers with a mathematical background,
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especially to those whose mathematics concentrated on differential and integral
calculus.

Readers with limited or no prior mathematical knowledge will find both the
mathematical notation and the mathematics presented in this book largely new. Of
particular importance to this group of readersis this book’s goal of helping them to
develop their ability to contribute actively to the trandlation of English descriptions
of application requirements into the Language of Mathematics: that is, to formulate
mathematical models. Part of this is helping them to become familiar with mathe-
matical notation—with the Language of Mathematics itself.

This book is not about mathematics as a subject and is not intended to help you
learn mathematics itself or any particular subdiscipline of mathematics. The book
does not deal with the various topics typically covered in texts on mathematics. If
you encounter mathematical topics in this book that you want to know more about,
refer to an appropriate book on the relevant area of mathematics.

1.8 STRUCTURE OF THE BOOK

The Preface outlinesthe societal background and environment in which mathematics
and its application are relevant and useful. It aso describes the author’s experience,
observations, and thoughts leading to the decision to write the book and to the
selection of its contents.

Part A, Introductory Overview (Chapters 1 and 2), deals with the subject of the
book. Chapter 1 introduces the topics covered in the book: language, mathemat-
ics, reasons for applying mathematics to practical problems, the distinction between
mathematics, its language (notational forms), and mathematical models. Chapter 1
a so states the goals and outlines the intended readership. Guidelines for the reader
are presented. Chapter 2 gives examples of the application of mathematics and math-
ematical models.

Part B, Mathematics and Its Language (Chapters 3, 4, and 5): An important
purpose and goal of mathematical notation—the Language of Mathematics—is to
enable ideas and concepts to be expressed unambiguously and to enable and encour-
age a corresponding way of thinking. In addition to mathematical notation, Part B
presents a number of concepts that have been found in the course of time to be ben-
eficial and important for many applications of mathematics and that have therefore
become fundamental parts of mathematics. They are presented here because they are
some of the reasons for the form and structure that the L anguage of Mathematics has
acquired. Some acquaintance with these mathematical conceptsis a prerequisite for
understanding the nature of the Language of Mathematics and for acquiring even a
passive knowledge of it.

In short, Part B is an introductory overview of those things that mathematicians
and nonmathematicians who apply mathematics in their work often use, think, talk,
and write about.

Part C, English, the Language of Mathematics, and Translating Between Them
(Chapters 6, 7, and 8):
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e Comparesimportant characteristics of English and the Language of Mathemat-
ics

¢ |dentifies their similarities and differences and the implications of their differ-
ences for trandating

e Describes how to translate between English and the Language of Mathematics,
giving extensiveguidelinesandillustrating this processwith extensive examples.

Part D, Conclusion (Chapter 9), summarizes the main points developed in the
book.

The appendices present various aspects of mathematics that some readers will
find interesting and useful as additional background. Appendix B comprisesalist of
mathematical symbolsused inthe book, givestheir meanings, and refersthe reader to
sections of the book describing them in detail. Appendix G isaglossary of English
terms and their usual translations into the Language of Mathematics. The other ap-
pendices give additional information on numbers, sel ected structuresin mathematics,
mathematical logic, the mathematical treatment of waves, and programming lan-
guages in contrast with the Language of Mathematics. Finally, recommendations are
given to the reader for finding works on selected subtopics among the vast literature
on mathematics.

19 GUIDELINESFOR THE READER

Everything in this book is simple, and some of it is trivial. While reading, look for
generality and simplicity—the simple things, structures, concepts—not complexity.
Don't look for complicated things because you will not find them. If you expect
them, you will be confused by their absence. If something looks complicated, you
are reading complexity into the material where there is none. Read it again, looking
for the simplicity. What you encounter may seem strange, unfamiliar, and lengthy,
sometimes tedious, but it is not complicated.

Although every step in this book’s devel opment of the description of the Language
of Mathematicsissimple, there are many such steps. Especially inthe mathematically
oriented Chapters 3, 4, and 5 of Part B, try to understand the material in each step
before proceeding to the next. Only partial understanding at one stage will usually
be followed by aweaker understanding at the next stage, and your degree of under-
standing will lessen progressively. The material will then seem to be complicated.

On the other hand, it is sometimes useful to skip over material you do not at
first understand, read other parts of the book, and return to that material later. This
strategy is particularly useful to newcomers to material in any book who are looking
for challenging material to stretch themselves and to widen their horizons. It is also
useful to newcomers who seek only selected subtopics on their first reading.

Some readers will find some, perhaps much, of the materia in the book to
be intuitive. That intuitive, unconscious knowledge will be transferred into con-
scious, explicit knowledge. Experience shows that people can apply knowledge more
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effectively, more extensively, and to more complicated problems when they are ex-
plicitly and consciously aware of that knowledge than when that knowledge is only
intuitive.

While and after reading the book, you will find it helpful to refer to standard
books on mathematics and particular subdisciplines for more specific information
on particular areas of mathematics. Select books and articles on those mathematical
topics of relevance to the applications in which you are interested.

The reader aready familiar with mathematics and its application will find some
material in the book to be old and familiar, especialy the contents of Chapter 3.
These readers should scan those parts of the book, however, as some of the material
is presented in new, different, and unconventional ways.

Readerswill find that the topic of the book is presented in ways quite different from
traditional mathematics teaching, and some might therefore question itsvalidity. The
very point of the book is that mathematics can be viewed from different standpoints
and in different ways and that some of these approaches are absent from traditional
mathematics teaching and learning. Those missing approaches can be useful, even
critical, for some people. Starting by viewing the linguistic aspects of mathematics
is the most important of these approaches.

Nothing in the book is mathematically incorrect, at least not intentionally so. If
you do find an error, please let me know so that | can correct it.

Mathematics and the Language of Mathematicsarelikeliterature and the language
in which that literature is written. If you don’t understand the language, you will not
understand the literature written in that language. Similarly, if you are not familiar
with the Language of Mathematics, you will not get very far with your study of
mathematics. If you try to study the literature (e.g., mathematics) anyway, without
first learning its language—as newcomers and students of mathematics are too often
forced today to do—your progresswill at best be unnecessarily slow and frustrating.
You will have to learn the language implicitly as you try to study the subject. The
result will be that it will take you unnecessarily long to learn either the language or
the subject, your knowledge of both will be incomplete, and the level of knowledge
of both that you will attain will be unnecessarily limited. So begin your study of
mathematics by examining explicitly its language, and you will find that you will be
able to proceed faster and go farther in mathematics than you would otherwise be
able to do.

At thispoint it isworthwhileto consider how peoplelearn their first language (i.e.,
their native language) and how they learn subsequent languages. “Native’ ability
in a person’s first language is acquired initially from the parents, especialy the
mother, who does not try so much to teach the child the language but simply to use
it to communicate with the child. Later, in play and in school, this native ability is
developed further by communicating with other speakers of the language, especially
peers. Later, formal instruction complements and refines the native ability already
acquired. When learning a second language, thislearning processis usually reversed:
First, basic aspects of the new language are learned in formal instruction. Then
the learners develop their capability and fluency further by communicating in the
language: the more, the better. This suggests that the best way to develop a thorough
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knowledge of and ability in the Language of Mathematics is to learn the basics and
then, as soon as possible, to useit to communicate, both with others and with yourself,
as much as possible.

Given serious motivation and a reasonable amount of time to spend on learning,
most people find that they can learn a new language faster than they learned their
first language. (A question for the reader to ponder: How many years elapsed before
you were really fluent in your native language?) However, developing a truly native
ability in a subsequent language can take much longer than developing fluency. In
fact, many people who develop complete fluency in aforeign language never develop
truly native ability, that intuitive feeling for colloquial, formal, and common usage
patterns and many other aspects of the language: for those aspects of the language
never covered in school. Knowing alanguageand living withiit, livinginit, embracing
it, are not the same things.

Whenever one learns a new language (e.g., French), one must read, write, and
talk about something. That something is typically taken from the daily lives of
the speakers of the language in question. So, when learning French, one will read
about France, typical cultural aspects of France and its people, its politics, life in
France, situations arising there, its history, its literature, and so on. When learning
the Language of Mathematics, one similarly must read, write, and talk about things
about which mathematicians and people who apply mathematicsin practicetypically
read, write, and talk: the culture of the field of mathematics, objects defined and used
in mathematics and in its typical application areas, and so on. Therefore, this book
presents both the language and some aspects of the subject of mathematics, hand in
hand. The language is the initial and guiding factor. Mathematics itself is presented
here only in conjunction with linguistic aspects of the Language of Mathematics and
insofar as is necessary or helpful to proceed with an examination of the language.
After completing the book, the reader will be in a much better position to read
traditional mathematical books and articles and thereby learn more mathematics.

The reader who wishes to learn this material in order to be able to apply it
actively and effectively to practical problems should examine the passages in the
book thoroughly, filling in the sketches of proofs presented here. On the other hand,
the reader who wishes only to become passively aware of the ideas and concepts
presented may believe them uncritically, reading them somewhat cursorily and noting
only the main points developed. Practice in reading mathematical expressions and
modelsis still required.

The book may be read in various ways. Depending on the interests and prior
knowledge of the reader, different balances between scanning cursorily, reading, and
studying the several parts, chapters, and sections are appropriate.

It is recommended that the reader begin by scanning or reading the Preface and
Part A, Introductory Overview, consisting of Chapters 1 and 2. While perusing the
examples in Chapter 2, the reader should keep in mind the questions posed at the
beginning of the Chapter.

Chapters3through 7 providethetheoretical basisfor the Language of Mathematics
and for trandating from English to the Language of Mathematics. Sections 3.1, 3.2,
and 3.3 present the foundations of the Language of Mathematics and are therefore
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required reading. At least one subsection of Section 3.4 on expressions should be
read and understood and the others at |east scanned.

Chapter 8, with its many examples, can be viewed as “practice” When reading
each of the longer examples, scan it first, noting only afew details of each kind, to
gain an overview of the overall structure of the problem and of its solution. Then
reread the example in more detail. If you do not first gain an overview of alengthy
example, there is a danger that you will become bogged down in the middle of a
long series of details and lose sight of the path through which you are being led. This
can lead to confusion and frustration. First acquiring and then maintaining a good
overview of the structure of the example will enable you to maintain your orientation
on your way from the beginning through to the end of the example.

Whether one reads the theory or the practice first, or skips between them while
reading, isamatter of personal choice; pick the sequence that you feel enablesyou to
make the best progress. Ultimately, both are necessary to acquire full understanding
and satisfactory application skills, so your choice is not theory or practice, it is the
sequence in which you cover both. It haslong been recognized that in the practically
oriented professions such as medicine, law, and engineering, agood balance between
both theory and practice, with a thorough, well-developed knowledge of both, is
necessary for success. (The Roman architect and engineer Vitruvius recognized the
need for a balanced and thorough knowledge of both theory and practice over 2000
years ago.) If either theory or practice is lacking, the results will be unsatisfactory.
Furthermore, alittle knowledge and skill can get one into trouble, while more exten-
sive knowledge and ability are required to get one out. Worse yet, with inadequate
knowledge, one will often not even recognize that oneisin trouble and how and why
one got there.

Finally, Chapter 9, the summary, should beread—again if thereader read it earlier.

The appendices are included for reference and, if desired, additional insight into
certain selected topics.



2 Preview: Some Statementsin
English and the Language
of Mathematics

In each section of this chapter an English statement of a problem or a description of
asituation is given, followed by atrangation into the Language of Mathematics. No
explanation of how the trandation was made is given; in most cases, the statements
and mathematical expressionsare sufficiently simplethat the correspondence between
the English statements and the mathematical expressionsis clear. Translating longer
and more complex English text is covered in other chapters of the book.

This chapter serves only as a brief introduction to the Language of Mathematics
and a summary of selected, simple parts of it. Characteristics of the Language of
Mathematics, its notational forms, its grammar, manipulation permitted, and trans-
formation of mathematical expressions are covered in detail in subseguent chapters.

When reading the examplesin this chapter, the reader should determine the mean-
ing of the English text and notice how that meaning is expressed in the mathematical
expressions. While doing so, try to answer the following questions:

e Which parts of the English text correspond to which parts of the mathematical
expressions?

e What arethe grammatical forms of those corresponding parts of the English text
and of the mathematical expressions: for example, nouns, verbs, noun phrases,
adjectives, adverbs, prepositional phrases, and clauses in the English text, and
variables, values, and functions (e.g., +, —, *, /, A, =, <) in the mathematical
expressions?

e What information is contained in the mathematical model but not in the English
text? Where did it come from?

e What information is contained in the English text but not in the mathematical
model ? Why is it missing from the mathematical model?

e How are the meanings of the nouns and noun phrases in the English statements
expressed in the mathematical expressions?

¢ How are the meanings of the verbs in the English statements expressed in the
mathematical expressions?

The Language of Mathematics: Utilizing Math in Practice, First Edition. Robert Laurence Baber.
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e Aredifferent types of verbsin the English text handled differently in the math-
ematical expressions? If so, what are those different categories of verbs in
English, and how is each type expressed in the Language of Mathematics?

e Canyouidentify arelationship between the grammatical categories of thewords
and phrases in the English text and the corresponding parts of the mathematical
expressions?

e How are tenses of verbs in the English text expressed in the mathematical
expressions? How istime handled in general in the mathematical expressions?

In summary, consider the grammatical structure of the English text and notice the
ways in which the meaning implied by that grammatical structure is written in the
mathematical expressions. Read the mathematical expressions both in the context of
the preceding English text and separately, without any context whatsoever. Note how
your interpretation of the mathematical expressions isinfluenced by the context or a
compl ete absence thereof.

More generally, note how the meaning of English textsiswritten in the Language
of Mathematics.

Note al so that some statementsin the English texts aretranslated into mathematical
expressions and some are not. Identify which are and which are not translated, and
why.

Identify also what, if any, “common knowledge” is expressed in the mathematical
model but not stated explicitly in the English text.

Note also that in examples below the dimensions of certain quantities (e.g., watts,
watt-hours, barrels per day) are converted. Although such conversions are absolutely
critical for accuracy in applying mathematics to practical problems, they are of
secondary importance from a language standpoint. This topic is covered in more
detail in Section 6.13.1.

Finally, the reader should describe the meaning of every variablein the mathemat-
ical modelsbelow in terms of the application areain question (e.g., “the length of the
canal in meters’). Then, after reading the rest of the book, review those descriptions
and revise them appropriately.

The following examples have been devised to illustrate various types of applica-
tions of mathematics. Although the numbersin them have been selected to berealistic
and within the rangesin the relevant published research literature, any reader needing
corresponding numbers for serious analyses or research should refer to the published
research literature. This comment applies especially to the examplesin Sections 2.2,
2.7,and 2.13.

21 ANANCIENT PROBLEM: PLANNING THE DIGGING OF A CANAL

Aslong asseveral thousand yearsago it was hecessary to plan construction projects of
various kindsin order that adequate resources could be made available and supported
logistically when needed and for the length of time required. One simple example
involves determining the number of workers needed and the number of days they
were needed to dig acana of given dimensions.
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This arithmetic calculation can be expressed in today’s mathematical notation as
follows:

NWorkers « NDays = (Depth « Width  Length) /VolumePerWorkerDay
[2.1-1]

If only a certain number of workers are available, the number of days needed to
complete the task can be calculated using the formula

NDays = (Depth = Width * Length)/(\VolumePerWorkerDay x NWorkers)
[2.1-2]

If the task must be completed within a certain number of days, the number of workers
needed to compl ete the task can be calculated using the formula

NWorkers= (Depth « Width *« Length)/(VolumePerWorkerDay « NDays)
[2.1-3]

Similar calculations were required to calculate the storage capacity of grain silos,
the number of clay bricks needed to build a wall, the labor needed to produce the
bricks, the amount of material needed to build a pyramid, and so on. Records of such
calculations are contained on ancient Mesopotamian clay tabletsin cuneiform script
and in ancient Egyptian records. In those records, the calculations were described
in words and numbers, not with variables and mathematical expressions as we do
today, but the substance of the descriptions was the same. The computational steps
in the cal culations were described and listed in aform comparable to short computer
programs of today.

22 THEWALL AROUND THE ANCIENT CITY OF URUK

According to the Epic of Gilgamesh, probably the world's oldest known written liter-
ary work, thewall around the ancient Sumerian city of Uruk was built by Gilgamesh,
one of its rulers. Archaeologists have dated the wall to the third millenium B.c.E.
Its sizeis not known accurately, and estimates vary considerably. It was, apparently,
between 6 and 11 km long, between 5 and 15 m high, and between 3.5 and 6 m wide.

We want to estimate the manual effort required to mold the bricks for this wall.
The bricks were made of mud or clay and measured about 10 x 15 x 40 cm. We will
assume that the actual average dimensions of the bricks were within 20% of these
estimates. The bricks were made by laying a mold on the ground, filling the mold
with muddy material, leveling the top by hand, and then lifting off the mold to let
the brick dry in the sun. This process was then repeated for the next brick. We will
assume that one worker could mold one brick in this way in between 0.5 and 1.5
minutes and that, allowing for breaks for meals and rest, a worker actually worked
between 7 and 9 hours aday. What was the manual effort in worker-days required to
mold the bricks for the wall of Uruk?

All of the quantities mentioned above may be real nhumbers, that is, have whole
and/or fractional parts, except the number of bricks, which must be an integer.
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Because of the uncertainty of each of the several factors in this problem, one
cannot calculate precisely the effort required. One can, however, calculate the range
of effort required given the ranges of uncertainty of the several factorsinvolved. One
can often draw interesting and useful conclusions from the lower and upper bounds
calculated for the values of the quantities in question.

Many variables (LWm, HWm, WWm, LBcm, HBcm, WBcm, VolWcubm,
VolBcubm, WMperB, HperD, NB, WD) are used in the mathematical model be-
low. To what in the English text does each refer or correspond? In the English text,
which references are explicit and which are implicit? Why were those variables with
only implicit references to the statement of the problem introduced?

Translated into the Language of Mathematics, the statements above become

LWmeR A HWmeR A WWmeR A HBcmeR A WBCmMeR A
LBcmeR A

VolWcubmeR A VolBcubmeR A WMperBeR A HperDeR A
NBeZ A WDeR A

6000 < LWm < 11000A5 < HWmMm <15A35<WWm <6 A

10+0.8 < HBcm < 10x1.2 A 15¢0.8 < WBcm < 15«1.2 A
40+0.8 < LBcm < 40+«1.2 A

VolWcubm = LWm+HWm+WWm A

VolBcubm = (HBcnm=WBcmxLBcm) /1,000,000 A

0.5 <WMpeaB <15A7 <HpeD <9 A

NB = VolWcubm/VolBcubm A

WD = NB*WMperB/(60xHperD) [2.2-1]

The expression above implies that

60005+ 3.5 < VolWcubm < 11,000« 15+6 A
8+ 12+32/1,000,000 < VolBcubm < 12+18+48/1,000,000 A
6000+ 5+ 3.5/(12+ 18+ 48/1,000,000) < NB <

11,000+ 15 6,/(8+ 12+ 32/1,000,000) A
10,127,315 < NB < 322,265,625 A
10,127,315+ 0.5/(60+9) < WD < 322,265,625+ 1.5/(60+7) A
9377.14 < WD < 1,150,948.66 [2.2-2]

The analysis above brackets the number of worker-days required between about
9000 and 1,000,000, avery widerange. Thisexampleillustrates how the uncertainties
of several factors become compounded, leading to a greater uncertainty of derived
quantities: in this case, the number of bricks required and the manual effort needed
to mold them. The lower and upper bounds can still be useful and of interest, even
when their differenceisvery large. Perhaps more importantly, their difference clearly
indicatesthe limits of our knowledge based on the estimates available. The numerical
analysis also indicates where better estimates of the input factors are needed if we
want to calculate more precise estimates of the quantities of interest.
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If, later, additional information isobtained, the analysis above can be extended and
the range of the number of worker-days needed reduced. For example, the discovery
that between 500 and 550 bricks could be or were produced in one day by one worker
would enable us to extend the mathematical model above by the following:

500 < BperWD < 550 A

BperWD = NB/WD A

500 < NB/WD < 550 A

10,127,315/550 < WD < 322,265,625/500 [2.2-3]

Thus, the additional information about the productivity in bricks per worker-day
has enabled us to reduce the range of worker-days needed to between 18,413.3 and
644,531.25, still awide range but much narrower than the first estimate above.

This additional information might enable us to reduce the uncertainty of our
knowledge of the length of the working day in hours (the variable HperD) and the
number of minutesthat aworker needed to produce each brick (thevariable WM perB).
The relevant parts of the mathematical model above and the new information lead to
the following additional extension of the mathematical model:

0.5 <WMperB <15A7 <HperD <9A

500 < BperWD < 550 A

BperWD = (60«HperD)/WMperB A

500/60 < HperD/WMperB < 550/60 A

500/120 < HperD < 550/40 A

420/550 < WMperB < 540/500 A

7 <HperD <9A

0.76 < WMperB < 1.08 [2.2-4]

Thus, the additional information has also enabled us to reduce the range of worker-
minutes per brick produced. It has not enabled us to reduce the range of working
hours per day; that is, it has not given us any additional knowledge of the working
hoursin a day.

23 ANUMERICAL THOUGHT PUZZLE

Once upon atime, a baseball bat cost $1 more than aball. A bat and a ball together
cost $1.10. How much did each cost?
Trand ated into the Language of Mathematics, these statements become

PrBat = 1+ PrBall A PrBat + PrBall = 1.1 [2.3-1]

The reader should compare her/his immediate intuitive answer to the question
above with the correct answer derived by manipulating the mathematical expression
above into the form

PrBall = anumber A PrBat = a number
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Substituting the expression 1 4+ PrBall from the first equation in expression 2.3-1
for PrBat in the second equation in expression 2.3-1 leads to

1+ PrBall + PrBall = 1.1 [2.3-2]
which isthe same as

1+ 2«PrBall = 1.1 [2.3-3]
which is equivalent to

PrBall = (1.1-1)/2 [2.34]
which is equivalent to

PrBall = 0.05 [2.3-5]

Substituting 0.05 for PrBall in the first equation in expression 2.3-1 gives the rest of
the solution:

PrBat = 1.05 [2.3-6]

24 A NURSERY RHYME

Anold nursery rhyme posesaproblem most systematically and reliably solved by first
trandating it into the Language of Mathematics and then manipulating the resulting
expression appropriately. The well-known nursery rhymeis:

Asl was going to St. lves,

| met aman with seven wives;
Every wife had seven sacks,

Every sack had seven cats,

Every cat had seven kits.

Kits, cats, sacks, and wives,

How many were going to St. Ives?

Translated into the Language of Mathematics, the relevant lines of the rhyme become

NWives =7 A

NSacks = 7*NWives A

NCats = 7«NSacks A

NKits = 7x*NCats A

NGoingToStIves = NKits+NCats+NSacks+NWives [2.4-1]
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The expression above can be transformed into the equivalent expression

NWives =7 A

NSacks = 49 A

NCats = 343 A

NKits = 2401 A

NGoingToStlves = 2800 [2.4-2]

thelast lineof which givesthe desired answer to one of several different interpretations
of the question.

One should notethat the question refersto English language text that is ambiguous
in several ways. Major ambiguity starts in the second line with the second word,
“met.” Did the storyteller (“1”) meet the man with seven wives as afellow traveler, as
atraveler going in some other way, or as someone staying at a stopping point? Did
the storyteller also meet the seven wives? Were the man’s seven wives with him or
not? Thus, it is not clearly stated whether the man mentioned in the second line was
or was not going to St. Ives (i.e., is or is not to be counted). The next-to-last line of
the rhyme suggests that the man is not to be included in the count, but the first two
lines could be interpreted to imply that the man was also going to St. Ives. The same
comment appliesto the“1” mentioned in thefirst line. Increasing the count of people
and things going to St. lves to include the man or the storyteller would increase the
answer to 2801 or 2802.

Furthermore, the statementsin thefirst fivelines of therhymedo not stateexplicitly
that the wives, sacks, cats, and kits are actualy going to St. Ives, only that the
storyteller met the man with the wives, and so on, while he (the storyteller) was going
to St. Ives. This interpretation leads to the answer 1 (the storyteller only). Probably
many peoplewill interpret the next-to-last lineto imply that the wives, and the others,
aregoing to St. Ives, but thisis not, in fact, clearly stated.

Thus, the process of translating the English rhyme into the Language of Mathe-
matics can help in identifying ambiguities in the original English text. In practical
problems, such ambiguities arise often, more often than is sometimes realized. They
are most reliably identified by reading and analyzing the English text repeatedly,
pedantically, and critically. Then, they must be resolved explicitly before completing
the trandation into the Language of Mathematics and then proceeding to calculate
the answer desired.

The main message in this example is important: Before transating an English
text into the Language of Mathematics, identify the ambiguities in the English text.
If you do not find any, look again and again until you do find some. Then look for
still more. Some ambiguities are present in amost every English text.

25 MAKING A POT OF TEA

To make a pot of tea, an old rule of thumb says to put between 1 and 2 teaspoons
of teafor each cup to be made, plus “one for the pot,” into a pot and add hot water
for the number of cups of tea desired. The exact number of teaspoons of tea per cup
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depends on the particular kind of tea and the desired strength of the final product.
Beforehand, one should warm the pot by putting hot water into it and let it stand for
sometime.

The quantity of tea and water required can be expressed by the mathematical
expression

1<TspTeaPerCup<2 A NTspTea = TspTeaPerCupxNCups+ 1 A
NCupsWater = NCups [2.5-1]

This example illustrates a simple tranglation of an English statement into the
Language of Mathematics. It doesnot represent aproblemto be solved or aquestion to
beanswered. It could be part of alarger exampl e contai ning aquestionto be answered,
but it need not be. Like text in any other language, mathematical expressions in the
Language of Mathematics can represent anything: a simple statement, a question to
be answered, a problem to be solved, a specification of a mechanism or system to be
designed, or something else.

2.6 COMBINING DATA FILES

Jane and George, two teenage friends in secondary school, helped older people in
their town to use and maintain their various computer systems. Jane and George each
kept afile of data on his’her own customers. They did not compete with each other,
so had no customer in common. When Jane left to attend a university, she turned
over her business to George, who merged the two files and sorted the combined file,
which became his new customer file.

As abrief homework problem, George wrote the following mathematical expres-
sion to describe the relationship between the two original files and his new, combined
file. Init, hemodel ed each file as a sequence of dataitems, oneitem for each customer.
He modeled the combined file as the concatenation of the two files. His new file was
a sorted permutation of the combined file.

NGCustNew = NGCustOrg + NJCustOrg A [2.6-1]
( ([&i:ieZA1<i < NGCustOrg: [GCustOrg(i)]] [2.6-2]
&[&i:i€Z Al <i < NJICustOrg : [JCustOrg(i)]]) [2.6-3]
Perm [2.6-4]
([&i:iez A1l <i<NGCustNew : [GCustNew()]]) ) A [2.6-5]

[Airiez Al <i< NGCustNew : GCustNew(i) < GCustNew(i+1)]
[2.6-6]

The reader should interpret each numbered line in the mathematical expression
above in terms of the English description. To which part of the English text does each
line or group of linesin the mathematical expression correspond?
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2.7 SELECTING A TELEPHONE TARIFF

Two telephone tariffs are offered to a subscriber. One couples a low monthly fixed
cost with a high usage cost. The other is just the opposite: a high monthly fixed cost
with a low usage cost. Depending on the subscriber’s monthly usage, one will be
cheaper than the other. What criteria should the subscriber use in selecting the less
expensive tariff?

We define the several variables as follows:

t: an identification of the tariff, either 1 or 2
MFC(t): the monthly fixed cost for tariff t
VUC(1): the variable usage cost per minute for tariff t

MU: the subscriber’s average monthly usage in minutes
Opt: the identification number of the optimum tariff or O if the
costs are the same

One of the several equivalent mathematical expressions defining the value of Opt
given values for the other variablesis asfollows:

[(MFC(1)+MU+VUC(1)) < (MFC(2)+MU*VUC(2)) = Opt=1] A
[(MFC(1)+MU+VUC(1)) > (MFC(2)+MU*VUC(2)) = Opt=2] A
[(MFC(1)+MUxVUC(1)) = (MFC(2)+MU*VUC(2)) = Opt=0]  [2.7-1]

Another equivalent expression is

[(MFC(1)+MU=VUC(1)) < (MFC(2)+MU=VUC(2)) A Opt=1] v
[(MFC(1)+MU+VUC(1)) > (MFC(2)+MU=VUC(2)) A Opt=2] v
[(MFC(1)+MU=VUC(1)) = (MFC(2)+MU*VUC(2) A Opt=0]  [2.7-2]

A shorter and more easily readable expression can be written if one defines
the function MCost(t) (monthly cost for tariff t) to be the value of the expression
MFC(t)+MU=VUC(t). Thefirst expression above can then be rewritten as

[MCost(1) < MCost(2) = Opt=1] A
[MCost(1) > MCost(2) = Opt=2] A
[MCost(1) = MCost(2) = Opt=0] [2.7-3]

Any of the three expressions above serves to define a value of the variable Opt. If
that value is O, the two tariffs result in the same monthly cost and it does not matter
which tariff the subscriber selects. Otherwise, the value of Opt is the identification
number of the cheaper tariff.

To determine the value of the variable Opt, substitute the values of the variables
MFC(1), MFC(2), VUC(1), VUC(2), and MU in any of the three expressions above
and simplify the expression as much as possible. The result will be an equation of
theform Opt=..., which gives the value of the variable Opt and, hence, the optimum
tariff.
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2.8 INTEREST ON SAVINGSACCOUNTS, BONDS, ETC.

An investor deposits $1000 at 5% interest annually. What is the value of thisinvest-
ment after 1 year? 2 years? n years?

The valuein dollars of the investment after 1 year is 1000+1000x 5/100, which is
equal to 1000+ (1+5/100), or 1050.

The value in dollars of the investment after 2 yearsis.

e 1000+ (1+42+5/100) (i.e., 1100) if theinterest is“simple” interest
e 1000+ (14-5/100)* (1+5/100), which is equal to 1000+ (1+5/100)? (i.e., 1102.5)
if the interest is compounded annually

More generally, the value of an initial investment of V after n years at an interest
rate of r% per year is:

e V+(1+n*r/100) if theinterest is“simple” interest
e Vx(1+4r/100)" if the interest is compounded annually

After how many years will the value of the investment double at an interest rate
of 1% per year compounded annually? Thefinal value will be double theinitial value
if

2+V = Vx(1-+r/100)" [2.8-1]
that iss, if
2 = (1+r/100)" [2.8-2]

or, equivalently, if

log(2) = n«log(1+r/100) [2.8-3]
which, in turn, will be the case if

n = log(2)/ log(1+r/100) [2.8-4]

If r = 100% per year, theinitial investment will, of course, double after 1 year. If
r = 15% per year, the initia investment will double after 4.96 years. If r = 5% per
year, the initial investment will double after 14.21 years.

29 SALESAND VALUE-ADDED TAX ON SALESOF GOODS
AND SERVICES

In many placesatax isimposed on sales of goods and services. It is sometimes called
a sales tax and sometimes, a value-added tax. (The economic difference between
these two types of taxes is not relevant for the purposes of this example.) In both
cases, the amount of the tax is a fraction of the base price of the goods or services
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being sold and purchased. Thetax rateisusually expressed as a percentage. The price
to be paid by the purchaser to the seller is the sum of the base price and the tax.

In the description of the tax above, the tax rate and three monetary amounts are
mentioned: the base price, the tax, and the total price to be paid. Therefore, the
variables in our mathematical model are:

TaxRate: the percentage of the base price imposed as the tax
BasePrice:  the price of the goods and services, exclusive of the tax
Tax: the monetary amount of the tax

TotalPrice:  the price of the goods and services, including the tax

Mathematical formulas are required that give each monetary amount in terms of
the tax rate and any other single monetary amount. Also needed are formulas giving
the tax rate in terms of any two of the monetary amounts.

From the description in the first paragraph in this section, the mathematical model
can be written

Tax = BasePricex TaxRate/100 A Total Price = BasePrice + Tax [2.9-1]

Theformulasrequested in the statement of the problem but not inthe mathematical
model above follow fromit:

Total Price = BasePricex (1 + TaxRate/100) [2.9-2]
BasePrice = Taxx 100/ TaxRate [2.9-3]
BasePrice = TotalPrice/(1 + TaxRate/100) [2.9-4]
TotalPrice = Tax* (1 + 100/ TaxRate) [2.9-5]
Tax = TotalPrice/(1 + 100/ TaxRate) [2.9-6]
TaxRate = 100/(TotalPrice/Tax — 1) [2.9-7]
TaxRate = 100+ (Total Price/BasePrice — 1) [2.9-8]
TaxRate = 100 Tax/BasePrice [2.9-9]

This completes the collection of formulas required in the problem statement.
The value of any of the four variables in this model can be expressed in terms of
any two of the other three variables. Such equations not already listed above are

BasePrice = TotalPrice — Tax [2.9-10]
Tax = TotalPrice — BasePrice [2.9-11]

Expression 2.9-1 reflects the definitions in the English text and are the most
commonly used relationships in calculating the tax on sales. In practice, equations
2.9-2 and 2.9-4 are convenient for converting base prices into total prices, and vice
versa. Equation 2.9-6 is used to calculate the tax given the total price. The other
equations are used occasionally as the need arises.
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210 A HAND OF CARDS

During a card game, one player's hand contains the following cards: the nine of
hearts, the two of clubs, the king of diamonds, the jack of spades, the three of clubs,
the two of spades, the three of diamonds, the queen of spades, the ace of diamonds,
and the five of diamonds.

This player’s hand can be modeled by the mathematical expression

hand={(9, ©), (2, &), (K, <), (J, &), (3, &), (2, #), (3, <), (Q, ),
(A, ), (5, ) [2.10-1]

The hand ismodeled as a set of elements, each of which represents a card. Each card
is represented by an ordered pair of the value and the suit.

This mathematical model of a player’'s hand of cards could be, for example, part
of amodel of the rulesfor playing a card within alarger model of a card game being
played by several players (see Section 8.8).

211 SHEAR AND MOMENT IN A BEAM

Inthisexample, oneend of abeam isfirmly fixed in awall and aload isapplied to the
other end of the beam. A mathematical model is needed that givesthe shear force and
the moment at any location in the beam, to determine whether or not the beam will
support the given load. For the sake of simplicity of this example, the weight of the
beam is neglected. The diagram below illustrates the beam, its support, and its load.

\Wall

The several variables and their interpretation are as follows:

Length:  thelength in meters of the beam from the wall to its other end

L: the load in kilograms applied to the end of the beam

S the shear force in kilograms in the beam at alocation d meters
from the wall

M: the moment in kg-m in the beam at alocation d meters from the
wall

d: at d meters from the wall the shear and the moment in the beam

are Sand M, respectively
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Additional Implicit Information Fundamental laws of physics and mechanics,
in particular Newton's laws, tell us that if a body is stationary, the sum of the
forces applied to it must be zero and the sum of the torques applied to it must be
zero. Applying this principle to that part of the beam to the right of the point d
meters from the wall in the foregoing diagram, the load of L kilograms downward
must be offset by an upward force of L kilograms applied to the right part of the
beam by the left part. Correspondingly, the force applied to the left part of the
beam by the right part is aso L kilograms, but downward. Thus, a shear force of
L kilograms is present at the cross section of the beam d meters from the wall. At
this same point, the torque resulting from the load L kilograms at the end of the
beam is L*(Length—d) kg-m clockwise. This torque must be offset by a torque
of the same amount but counterclockwise exerted on the right part of the beam by
the left part of the beam. Thus, a moment of L*(Length—d) kg-m is present at the
cross section of the beam d meters from the wall, in the direction shown in the
diagram.
The mathematical model relating the values of the variables above is therefore

O<d<Length A M=Lx(Length—d) A S=L [2.11-1]

From this model it can be seen that the moment M has its maximum value when
d = 0 (i.e, at the point in the beam at the wall). If L = 100 kg and Length = 2 m,
the maximum moment M in the beam is 200 kg-m. If the strength of the beam is
not at least this much, the beam will break under the load. The shear Sis a constant
100 kg at al locationsin the beam. Similarly, if the beam’s shear strengthisnot at least
this much, the beam will break under the load L. Correspondingly, the attachment of
the beam to the wall must be strong enough to withstand a shear (vertical load) of at
least 100 kg and a moment of 200 kg-m; otherwise, the attachment will break under
theload L at the end of the beam.

Other configurations of beams and loads can be analyzed in a similar manner. Of
interest to do-it-yourself hobbyists is to determine where a bookshelf (effectively, a
beam as above) should be supported at two locations along the shelf to minimize
the maximum moment M in the shelf uniformly loaded along its length by books.
This will minimize the bending of the shelf in the long term, because bending is
proportional to the moment M. (Hint: Supporting the bookshelf at its extremities
does not minimize the bending.)

This example illustrates the trandation into the Language of Mathematics of an
English text accompanied by a diagram. Such combinations of English text and
diagrams arise often in engineering work. This exampleistypical of topicsand prob-
lems covered in acoursein statics taken by studentsin all disciplines of engineering
early in their studies. Such examples arise so often in engineering studies that stu-
dents can easily overlook the fact that their mathematical models are really nothing
other than trandations of English text accompanied by diagrams describing physical
mechanisms or systems.
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212 FORMING ABBREVIATIONS OF NAMES

In this example, a mathematically precise definition is formulated for a dynamic
processto form the abbreviation of any given name. Such abbreviationsare sometimes
used in systemsin which apossibly misspelled version of anameisto bematched with
the correctly spelled name (e.g., airline reservation systems, processing handwritten
orders from customers). If an effective method for forming the abbreviations is
selected, misspellings of a name will usually have the same abbreviation as the
correctly spelled name, whereas misspellings of adifferent name will rarely have the
same abbreviation.

The process for forming the abbreviation of a name is modeled as a finite state
machine (automaton).

Names are to be abbreviated as shown in the table that follows. In a sequence of
vowels, only the first is to be considered. In a sequence of consonants, only the first
isto be considered. The letters are to be converted as shown.

Replace:

=3
<

aely
o,u
b, p

m, n

¢k q
dt

9]
f,v,w
h ignore asif not present
I, r r

S X, Z s

Q@ 9 g3oTo

We will view the method for forming the abbreviation as a dynamic process in
which each letter of the input name is examined, one after the other. Depending on
each input letter, the process will, if and as appropriate, output (append) a letter to
the abbreviation being formed and change state. The state will, in effect, keep track
of whether a consonant, a vowel, or nothing has most recently been input.

From the description above of the abbreviation rules, a table can be constructed
that gives, for every combination of current state and input letter, the appropriate
output letter (if any) and the next state. Each column represents a group of input
letters as defined in the table. Each row represents a current state. In each cell, the
output letter and the next state are given [e.g., (X, 1)]. A dash (-) indicates that no
letter is output (i.e., the empty sequence [] is appended to the output abbreviation
formed previously).

Notice how Table 2.12-1 specifies the logic for all combinations of the several
different cases of h at the beginning of the name, h after the beginning of the name,
more than one vowel in a sequence, more than one consonant in a sequence, an h
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TABLE 2.12-1 State Transition Table for Forming Abbreviations

Input Letter
Current State a,e,i,y o,u b,p mn ckq dt g,j f,vyw h ILbr sxz
Oinitial @b (01 b2 M2 @2 2 92 2 -0 (L2 (52
1 after vowel (_! 1) (_1 1) (bx 2) (mv 2) (qx 2) (t, 2) (gl 2) (fv 2) (_v 1) (r! 2) (S, 2)
2 after @) 01 =2 -2 =2 -2 -2 -2 -9 =2 =2

consonant

within a vowel sequence, an h within a consonant sequence, an h between a vowel
sequence and a consonant sequence, and so on.
The mathematical model is

InputLetters = {a b, c,d, e f,g,hi,j,k I, mnopqrstuv,wXy,z

A Outputs = {[a], [0], [b], [m], [d]. [t]. [a]. [f]. []. []. [I}

A States = {0, 1, 2}

A (NextState : InmputLetters x States — States)

A (NextOutput : TnputLetters x States — Qutputs)

A [A Nn:neZ A 1<n<length(name) : input(n)eInputLetters A output(n)e Outputs]

A state(0)=0

A [An:neZ A 0<n < length(name) : output(n+1)=NextOutput(input(n+1), state(n))
A state(n+1)=NextState(input(n+1), state(n))]

A name = [input(1), input(2), input(3), ..., input(length(name))]

A StateHistory = [state(0), state(l), state(2), ..., state(length(name))]

A abbreviation = output(1) & output(2) & ... & output(length(name)) [2.12-1]

The expression 2.12-1 defines the values of the variables abbreviation and State-
History given thevalue of the variable name. Thefunctions NextState and NextOutput
are defined by Table 2.12-1. The value of the function length is the number of letters
in the argument of the function.

There is some redundancy in the mathematical model 2.12-1. The reader should
identify which terms are redundant and could be deleted without changing the value
of the entire expression.

This type of mathematical model is often used to specify a process for verifying
the correctness of the syntax of many kinds of sequences of symbols, such as math-
ematical expressions as defined in Section 3.4, file names in computer systems, and
statements in computer programs to be compiled.

213 THE ENERGY IN EARTH'SREFLECTED SUNLIGHT VS. THAT IN
EXTRACTED CRUDE OIL

The sunlight arriving at Earth brings with it about 1.6 = 10" watts of power, of
which about 30% isreflected or scattered back into space. Therest isabsorbed by the
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surface or the atmosphere—and mostly reradiated. Worldwide crude oil extraction
averages about 70 » 10° barrels per day. Burning the products of 1 barrel of crude oil
releases approximately 1.7 = 106 watt-hours of energy. (Estimates of the preceding
numerical values vary significantly.) Therefore, the amount of solar energy reflected
and scattered back into space is more than 9500 times as much as the amount of
energy in crude oil extracted from underground reserves.

The truth of the last sentence above can be demonstrated by first transating the
preceding paragraph into the Language of Mathematics, paying appropriate attention
to the dimensions of the various numbers, giving

PowerArrivingWatts = 1.6 s 10%" A

Albedo = 0.3 A

PowerReturningWatts = PowerArrivingWatts+ Albedo A
OilExtrBblperDay = 70 % 106 A

WHperBbl = 1.7 % 108 A

HperDay = 24 A
PowerOil ExtrWatts = (OilExtrBblperDay « WHperBbl) /HperDay
= PowerReturningWatts > 9500 « PowerOil Extr\Watts [2.13-1]

The reader should verify that the value of the entire expression above is true: that
the numbers given imply the truth of the last line in the mathematical model above,
which says the same thing as the last sentence in the English statement.

The mathematical analysis above shows that the rate at which solar energy is
being reflected and scattered back into space is quantitatively much, much more
than enough to replace al the energy currently derived from extracted crude oil. The
reader should contemplate what this implies. How can we take advantage of this
fact by employing solar energy directly instead of burning fuels derived from crude
0il? Into what forms of energy must the solar energy be converted? How can it be
converted into those forms, stored until needed, and distributed to the places where
needed? The Language of Mathematics is also useful in the analyses involved in
answering these questions. The tasks involved are many and very challenging, but
with serious, concerted effort and very considerable engineering and technical talent,
they arefeasible.
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3 Elements of the Language
of Mathematics

The fundamental elements in expressions written in the Language of Mathematics
are

¢ \alues: basic constants, arbitrary componentsnot requiring further mathematical
definition

e Variables: abstract representations of values, often unknown or undetermined

e Functions: ways of determining a value from other values

e Expressions: combinations of values, variables, and functions

31 VALUES

Values are the basic building blocks in the Language of Mathematics. Mathematical
expressions and structures of all typesare made up of values, referencesto values, and
compositions thereof. Common examples of values are such numbers as 4, 89, —3,
1.414, 83/99, 0, and 1. Numbers used for counting were apparently the first values to
be used in mathematics, so values were often called quantities, and thisterm is still
used frequently.

Other values introduced in early mathematics are geometrical figures such as
points, lines, triangles, rectangles, circles, ellipses, and polyhedrons, in addition
to and apart from numerical measurements characterizing them, such as position,
orientation, length, area, and volume.

In the course of time, still other values became important in mathematical work.
Among them arethelogical valuesfalse and true (also called Boolean values), |etters
(eg.,a b, c, ...), specia symbols (e.q., ;, :, # *,/, 2 +, %, ...), sequences of letters
and symbols (e.g., to form names and addresses, or words in a language), and any
other values convenient and appropriate for any particular application of mathematics
(e.g., colors such as red and green; states such as open, closed, rising, and falling).

Values are not restricted to numbers or any other particular category of things.
A person applying mathematics to any problem area may define additional values if
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desired. Theonly restriction on avalueisthat either it cannot be subdivided further or
€else every one of its subcomponents is a value. Examples of various types of values
and of structures of values (values composed of other values) are presented in several
sections of the book.

The term constant is often used in mathematical writing. It usually meansavalue,
but it can also refer to a variable whose value remains unchanged, either always or
over some period of time or over anumber of applications of the mathematical model
containing references to the constants in question. In this book, the term constant
alone will not be defined mathematically and will be used only infrequently and in
anormal English sense. It will sometimes be used in combination with other words
to refer to particular categories of constants, such as physical constants (e.g., the
speed of light in a vacuum), mathematical constants [e.g., pi, also written m (Greek
lowercase letter pi), the ratio of the circumference to the diameter of a circle], or
chemical constants.

3.2 VARIABLES

Often, in the course of mathematical analysis or reasoning, one cannot or does not
need to refer to particular values. This can arise, for example, if a particular value
is not yet known but is to be determined. In other cases, a mathematical property
may apply to many different values, so one specifically wants to avoid referring to a
particular value so that the results of the analysis are more generally applicable.

Therefore, aname is often substituted for a value in amathematical analysis, and
the pair consisting of the name and the (possibly unknown or undetermined) value
iscalled avariable. Thus, avariable is the association between a name and a value.
One should always be careful to distinguish among three different things:

e The name of the variable
e The value of the variable

e Thevariable itself: that is, the pair (name, value), the association of the name
and the value

An exampleis(x, 3.2). Thevariableisthe pair (x, 3.2). The name of this variable
isx. Thevaue of thisvariableis 3.2.

Another exampleis (y, ?). Thevariableisthe pair (y, ?). The name of thisvariable
isy. The value of thisvariable is undetermined; it is unknown.

Numerical values are usually associated with particular dimensions or units, de-
pending upon their interpretation in the application domain. For example, a number
representing the length of aside of atriangle could have the dimension of centimeters,
kilometers, inches, feet, yards, miles, furlongs, fathoms, and so on. Numerical terms
in expressions must be consistent with respect to such dimensionsiif the values of the
expressions are to have any meaning in the application area. Therefore, the concept
of a variable could be defined mathematically to include the dimension associated
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with anumerical variable (i.e., theterm variable could be the association of aname, a
value, and the dimension of that value). More commonly, however, the dimension of
each numerical variable is specified in the interpretation of the mathematical model
and its variables (i.e., outside the Language of Mathematics). Thistopic is discussed
in more detail in Section 6.13 and, especialy, in Section 6.13.1.

In this book, a name of a variable or function that consists of two or more
English words is written without spaces between the words and with each word
capitalized. Thisnaming convention isfor reading convenience only. In the Language
of Mathematics there is no commonly accepted rule for naming variables or for
capitalization.

Traditionally, the names of variables and functions are typeset in italics in the
formal mathematical literature. Within English text this sometimes helps the reader
a little to understand that text more quickly and precisely. However, within math-
ematical expressions and in the English interpretation of the variables and func-
tions appearing in the mathematical model, italicizing the namesis of no advantage.
There, it is always clear whether or not the name of a variable or function is meant.
Within mathematical expressions, other aspects of formatting contribute much more
to readability, especially indenting and aligning corresponding parts of expressions.
Reference numbers for expressions and even for lines within an expression also help
the readers considerably in communicating with one another about the mathematical
expressions.

3.3 FUNCTIONS

A function yields a value depending on other value(s). The other values on which the
value of the function depends are called the arguments of the function. The value of
the function is determined uniquely by the values of the arguments.

A common example is the function “sum,” the value of which is the sum of the
values of its arguments: The value of sum(4, 5) is 9 (the sum of the values 4 and 5).

Another example of areferenceto the value of afunctionissum(x, y). Thevalue of
sum(X, y) isthe sum of the value of the variable named x and the value of the variable
namedy. If the value of the variable named x is 4 and the value of the variable named
y is 5, then the value of sum(x, y) is the same as the value of sum(4, 5), which is 9
(see above).

English phrases such as “the value of the variable named x” and “the value of
the variable named y” are long and they occur often. To reduce the length of such
English phrases and the sentences containing them, the phrases “the value of” and
“the variable named” are often dropped completely. Other shortcuts are also often
employed, such as dropping the phrase “the same as’ in the last sentence in the
preceding paragraph. Applying these abbreviations, thelast sentencein the paragraph
above becomes “If x is4 and y is 5, then sum(X, y) is sum(4, 5), which is 9.” Such
abbreviations are convenient and can improve readability, provided that the reader
is aware of the full meaning of such abbreviated sentences. The reader who does
not keep these implied but missing phrases in mind will, sooner or later, become
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confused. A careless beginner can easily become confused early in the learning
process, and his or her confusion will become worse, not less, as he or she deals with
more complicated expressions. Lack of attention to detail in mathematics is aways
dangerous and leads quickly to errors and confusion.

A function may be defined to have any particular number of arguments, including
none. The value of a function having no arguments is, of course, aways the same,
so such afunction is of limited usefulness. Usually, a particular function has a fixed
number of arguments, but this need not always be the case.

The values of the arguments of the function “sum” must be numbers and the value
of the function itself is anumber.

An example of a function whose value is not numerical is the function “Is-
GreaterThan,” whose name we will shorten here to “1sGreater.” Because 6 is greater
than 3, thevalue of 1sGreater(6, 3) isthelogical value“true.” Thevalue of sGreater(3,
6) is“false,” because 3 isnot greater than 6. The values of the arguments of the func-
tion “1sGreater” are numbers, but the value of the function itself islogical (i.e., “true”
or “false”), not numerical.

The order of the arguments is, in general, significant; that is, the value of
func(x, y) is not necessarily the same as the value of func(y, x). In the case of
the function sum above, the value of sum(4, 5) is the same as that of sum(5, 4), but
the function “IsGreater” has different values for IsGreater(6, 3) and |sGreater(3, 6),
as we have seen above.

For references to the value of a function, the notational form above is standard
and can be used in general. That is, the value of the function iswritten in the form of
the function name followed by alist of the arguments enclosed in parentheses. The
individual argumentsin the list are separated by commas. Examples are;

e sum(4, 5)
e sum(x, 5)
* sum(4,y)
* sum(x, y)
o |sGreater(X, y)

In the above, “4, 5" isalist of the two arguments 4 and 5. Similarly, “x, y” isthelist
of the two arguments x and y.

A shorter notational form is commonly used for a few frequently referenced
functions of two arguments, such asthe functions sum and IsGreater. A single symbol
replaces the name (e.g., “sum,” “IsGreater”) and the symbol is written between the
two arguments. Thus, instead of writing sum(X, y), one writes x+y, and instead of
writing IsGreater(5, 3), one writes 5>3. This shorter form is called infix notation
because the function symbol is placed between the arguments (in the sequence of the
arguments). Relative advantages and disadvantages of these two and other notational
forms are discussed in Section 3.4.10.
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For definitions of the domain and the range of a function, and for a notation for
expressing the relationship between a function and its domain and range, see the
latter part of Section 4.1.1 and Section 3.4.9.

Functions of two argumentswhose val ues are el ements of the same set arecommon
in mathematics. Such functions are called binary functions or binary operators.
Examples are the numerical functions addition (+), subtraction (—), multiplication
(%), and division (/); the logical functions and (A), or (), and implication (=); and
therelational functions equals (=), isnot equal to (), islessthan (<), isgreater than
(>), islessthan or equal to (<), and is greater than or equal to (>). These and other
binary operators will be encountered in many sections of the book. Except for the
logical functions, it isassumed that the reader isalready familiar with these functions.

The logical functions and (A), or (Vv), negation (—), and implication (=) are
defined in the following truth table:

TABLE 3.3-1 Déefinitions of the Logical Functions

X Y XAY XvY =X X=Y
false false false false true true
false true false true true true
true false false true false false
true true true true false true

Informally, XAY istrueif both X and Y are true; otherwise, it isfalse. XVY is
true if either X or Y (or both) is true; otherwise, it is false. =X istrueif X isfase,
and vice versa.

Some people question the appropriateness of the definition of the implication
function (=) when they first encounter it. In particular, some consider the first two
lines with X being false and the value of the function being true to be strange. One
possibleresponseisthat, mathematically, ajustification isnot needed; theimplication
issimply defined that way. Another possible response isthat the English sentence “if
Xistrue, thenY istrue” saysnothing about the casesinwhich X isfalse, and therefore,
(1) Xisfaseand Y isfaseand (2) X isfalseand Y istrue are both consistent with the
given English sentence—they do not contradict it or represent examplesinvalidating
it. Therefore, “true” is appropriate as the value of the implication function in these
cases. Still another justification could be that the mathematical expression “X =Y”
is to be trandlated directly and colloquially into the English sentence “if X is true,
then Y istrue; otherwise (i.e., if X isfalse), anything goes”

When mathematical expressionsincluding thelogical functions areintended to be
read by people not familiar with these functions and the symbols A, v, =, and =,
the words and, or, not, and implies, respectively, are sometimes used instead of the
more abstract symbols. For example, the mathematical expression

XAY)==Z
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can be written
(X'and Y) impliesnot Z

When used as mathematical symbols, these words are often set in boldface type
to distinguish their use as mathematical symbols from their use as normal words in
English text.

34 EXPRESSIONS

Expressions are the highest-level elements in the Language of Mathematics. Ex-
pressions can be combined in certain ways to form another expression, much asin
English, phrases are combined to form a larger phrase, a clause, or a sentence and
clauses are combined to form a complete sentence. An expression in the Language
of Mathematics corresponds to a phrase, clause, or sentence in English, depending
on whether the value of the mathematical expression is alogical value (false, true)
or not (i.e., anything else) and whether and how it is combined with other expres-
sions. See Section 6.2 for amore detailed discussion of the correspondence between
mathematical expressions and phrases, clauses, and sentencesin English.
An expression is one of the following:

e Avaue

¢ A reference to the value of avariable: that is, a variable name

¢ A reference to the value of afunction: that is, a function name followed by a
list of arguments separated by commas and enclosed in parentheses

e A certain combination of expressions

By composing functions as described in Section 3.4.1, expressions can be com-
bined to form another expression. An expression can be written using any of several
different notational forms, each of which is the subject of a later subsection. An
expression represents afunction and is areference to the value of that function.

Sections 3.4.1 through 3.4.9 define different notational forms for expressions.
These definitionsare givenin relatively precise English or inthe form of equivalences
between these notational forms (e.g., in the form of rules for converting from one
notational form to another). More advanced works define these notational forms
mathematically precisely using the Language of Mathematics, not English.

3.4.1 Standard Functional Notation

The standard notational form for references to the value of a function (see Section
3.3)is

function(x, y, 2) [3.4.1-1]
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Each of the arguments X, y, z, and so on, may be a value, a reference to the value
of avariable (i.e., a variable name), or a reference to the value of a function. One
may write references to values of functions as arguments of higher-level functions,
embedded to any depth desired. Thus one can write, for example,

sum(product(a, sum(w, x)), product(b, sum(y, z))) [3.4.1-2]

and

and(lIsLess(product(a, sum(w, 2)), sum(product(d, x), 3)),
| sGreater(sum(w, u), 2)) [3.4.1-3]

where the value of the logical function “and” is defined in Table 3.3-1.

Building expressions as described above by including references to values of
functions as arguments of higher-level references to values of functions is called
composing functions. Using this method, any valid expression can be formed, so this
provides a general way of writing expressions. Other notational forms are defined
in later sections, but they are all semantically equivalent to—and are defined below
in terms of—a composition of standard notational forms for references to values of
functions.

Note that both numbers and logical values (false and true) occur as values in
expression 3.4.1-3. The values of the functions “IsLess’ and “IsGreater” are logical
values, whereas their arguments are numerical values. The values of the functions
“product” and “sum” as well as the values of their arguments are numerical values.
The value of the function “and” as well as the values of its arguments are logical
values. The types of these various values can be seen more clearly in atree diagram
for this expression in Section 3.4.3.

3.4.2 Infix Notation

The most commonly used form for writing mathematical expressionsin practiceisa
mixture of partially parenthesized infix notation (i.e., “x+Yy”; see Section 3.3) and the
standard notational form for references to values of functions|[i.e., “function(x, y)"].

Infix notation is used for frequently occurring functions of two arguments. The
name of thefunctionisreplaced by aspecia symbol and the symbol is placed between
the two arguments (hence the name “infix,” as opposed to “prefix” and “postfix”;
see Section 3.4.4). If either argument is an infix expression, it may or may not be
necessary to enclose the argument in parentheses, depending on the context in which
the argument then appears. It is never wrong to enclose the argument in parentheses,
so whenin doubt, do so. Eliminating unnecessary parenthesesisdiscussed later inthis
section.

Functions of one argument can also be written in a prefix form similar to infix
notation. The negative function for numbers and the logical negation function are the
most common examples. The value of “negative(x)” is written “—x.” The value of
“not(x)” iswritten “ —x.”
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Viewed simply, an expression in infix notational form consists of a sequence
of references to values and of symbols representing functions of two arguments
alternating with each other. An infix expression must begin and end with areference
to avalue. In addition, an infix expression may be enclosed in a pair of parentheses.
Aninfix expression, whether or not enclosed in apair of parentheses, isareferenceto
the value of the function represented by the infix expression. A symbol for afunction
of one argument (e.g., — or —) together with its following argument is areference to
the value of the function.

Infix notation isnot used for referencesto the val ues of functionswith no argument
or with three or more arguments. Standard functional notation is normally used for
such functions.

Spaces may be inserted in an infix expression to improve readability. Similarly,
an expression may be written in several lines and indented. Spaces and line breaksin
an infix expression have no mathematical meaning; the expression is interpreted as
if they were not present (i.e., asif the expression were written with no spaces and no
line bresks).

Following are some examples of infix expressions:

a
at+b
(atb—c)
atbxc
—a+bxc
(atbx—c)
at(bx(c+2))/x
a+sum(b, product(c, d))+product(f, 5)

The symbol = is used in this book as the infix symbol for the product of two
numbers (multiplication). Other symbols are aso in common use for this function,
such as a centered dot (-), the symbol x, and no symbol at al: that is, simply writing
the two variable names immediately after another (e.g., xy for xxy). In this book,
the symbol x isused for another function (the Cartesian product of two sets, not the
numerical product).

Notice that the meaning of the expression a+bxc is not defined by the description
above. The functions + and x require two arguments each, but there are three argu-

ments in the expression. It is not clear to which two arguments each function isto be
applied. The expression could mean either

(at+b)xc [i.e., product(sum(a, b), c)] [3.4.2-1]
or

a+(bxc) [i.e., sum(a, product(b, c))] [3.4.2-2]
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whose values are not, in general, the same. Such ambiguities can be resolved by
inserting parentheses into the unparenthesized infix expression (e.g., asin either of
the two expressions above).

Toimprovereadability in general by reducing the number of parentheses appearing
in expressionstypically arising in practice, conventions have evolved for interpreting
unparenthesized expressions and parts thereof. Such conventions, in effect, supply
the missing parentheses. Applied to the expression a+bxc, the conventions state that
this expression means a+(bxc) [i.e., sum(a, product(b, c))]. If the other interpretation
is meant, the parentheses must appear explicitly. The conventions are described in
detail below.

In aninfix expression the various functions are applied (the functions bind) in the
following order unless otherwise indicated by parentheses:

TABLE 3.4.2-1 Binding Order for Functionsin the Absence of Parentheses

Binding Number of
Order Arguments  Symbol and Function

1 2 1 (exponentiation, also written with superscripting, e.g., xX¥?)
2 1 +, — (when used as the sign of a number, not for addition or
subtraction)
3 2 *, [ (multiplication, division)
N (set intersection)
4 2 +, — (when used for addition or subtraction, not as the sign of a
number)
U, \ (set union or set difference)
5 2 <,>,=, <, >, # (relations)

€, ¢ (element of aset), D, 2, ¢, C, C (Subset)

— (logical negation, sometimes written not)

A (logical and (conjunction), sometimes written and)
Vv (logical or (disunction), sometimes written or)

=, <, & (logica implications)

© 0o ~NO®
NNDN B

Each function of two arguments is applied to the two arguments immediately
adjacent to the function’s symbol. Each function of one argument is applied to the
argument immediately to the right of the function’s symbol. When functions at the
same hinding level above appear in immediate succession, they are applied from left
to right; see below.

The lower the binding order (the higher up in the list above), the more tightly
the function binds its arguments. Thus, in an expression involving addition and
multiplication, the multiplication function(s) apply before the addition function(s).
Parentheses are assumed first around each multiplication and its immediately neigh-
boring arguments. Afterward, parentheses are assumed around each addition and its
immediate arguments. An expression in parentheses is considered a single argument.

As a general memory aid, remember that the arithmetic and set operations bind
most tightly, the relations less tightly, and the logical functions the least tightly.
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If several functions with the same binding level occur in succession in an expres-
sion, parentheses are inserted in pairs from left to right. For example,

dxe/fxg [3.4.2-3]
means

(((dxe)/f)xg) [3.4.2-4]
and, similarly, the expression

h+i—j+k [3.4.2-5]
means

(((h+1)—j)+k) [3.4.2-6]

Expressions containing several functions at each of several binding levels are
parenthesized by considering the functions with the lowest binding order first, then
the functions with the second lowest binding order, and so on. For example, in the
expression

M/ P4/ Skt —UskVsw [3.4.2-7]
parentheses are first placed around the x and / infix symbols
((msn)/p) + ((r/9)*t) — ((uxv)*xw) [3.4.2-8]

and then around the + and — infix symbols, whereby each already parenthesized
expression is considered as a single argument. After inserting the parentheses around
the 4+ and — infix symbols from left to right, expression 3.4.2-8 becomes

((((m=n)/p) + ((r/9)x1)) — ((Uxv)*w)) [3.4.2-9]
or, eliminating the spaces,
((((m=n) /p)+((r/)1)) — ((Uxv)w)) [3.4.2-10]

asthe fully parenthesized expression for the original expression above.
Consider again an expression of the form

at+b+c [3.4.2-11]
which, by usual convention, means

(a+b)+c [3.4.2-12]
but could otherwise mean

a+(b+c) [3.4.2-13]

In the case of some functions (the mathematical function + isone of them), the values
of the last two types of expressions above are always the same. Such a function is
called associative. Thus, even if the structural meaning of the expression “a+b+c”
were not covered by the convention of grouping parentheses from left to right, its
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value is aways unambiguously determined; its value is always the same no matter
which structural meaning isassumed. Because the ultimate meaning of any expression
isits value for given values of its arguments, the Language of Mathematics permits
one to write “at+b+c” as an abbreviation for either “(a+b)+c” or “a+(b+c).” The
convention of parenthesizing from left to right expressionsinvolving functions at the
same binding level is really needed only for functions that are not associative.

Caution is called for when abbreviating expressions with numerical values in
this way. While the mathematical function + is associative, arithmetic functions
implemented in computer systems are generally not; they are only approximations
to the corresponding mathematical arithmetic functions. The deviations from the
mathematical functions are usually small, but they can be critical in some cases.
A purported mathematical proof of the behavior of a computer program can be
invalidated by incorrectly assuming that the value of “(a+h)+c” is the same as the
vaue of “a+(b+c)” when + means computational addition in a computer system.

Not all functions are associative. The difference function (subtraction) isan exam-
ple. Thevalue of the expression“(a—b)—c” isnot, in general, the same asthe value of
“a—(b—c).” (Thetwo expressions have the same value only when the value of cis0.)
By the conventions for supplying missing parentheses, the expression “a—b—c” will
be interpreted as “(a—b)—c,” not as “a—(b—c).” When in doubt, the writer should
insert the parentheses explicitly.

Another special abbreviation is useful in expressions involving the functions
<, <, =, >, and >. It isoften convenient to write an expression such as

a<b<c=d [3.4.2-14]
when one really means
(a<b) A (b=c) A (c=d) [3.4.2-15]

which does not need further parentheses because the function A is associative (see
above). Thistype of abbreviation is most appropriately considered to be anidiom in
the Language of Mathematics, because its meaning is not the meaning the binding-
level conventions described above would assign to it.

In expression 3.4.2-15, the parentheses can be dropped because the relational
functions bind more tightly than the logical functions do.

Note that “a<b=<c=d" does not mean “(((a<b)<c)=d)” or any other expression
formed only by inserting parentheses into “a<b<c=d.” None of the expressions
formed inthat way have any meaning. In each such expression alogical value (falseor
true) would bean argument to arelational function (<, <, >, or >) requiring numerical
values as arguments, and such an argument would be of the wrong type. Thiswould
be a grammatical error in the Language of Mathematics. Such an inconsistency of
argument typesis discussed further in connection with tree notation in Section 3.4.3.
Section 6.5 dealsin greater depth with thistopic and itsimplicationsfor the semantics
of infix notation without parentheses.

References to the following functions are usually written in infix notation.
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TABLE 3.4.2-2 Transforming Standard Functional Notation to Infix Notation

Standard Notation for Functions Fully Parenthesized Infix Notation
sum(argl, arg2) ((argl)+(arg2))
difference(argl, arg2) ((argl)—(arg2))
product(argl, arg2) ((argl)*(arg2))
quotient(argl, arg?) ((argl)/(arg2))
IsGreater(argl, arg?) ((argl)>(arg2))
|sGreaterOrEqual (argl, arg2) ((argl)>(arg2))
equals(argl, arg2) ((argl)=(arg2))
DoesNotEqual (argl, arg2) ((argl)#(arg2))
IsLessOrEqual (argl, arg?) ((argl)<(arg2))
IsLess(argl, arg2) ((argl)<(arg2))
and(argl, arg?) ((argl)A(arg2))
or(argl, arg?) ((argl)v(arg2))
implies(argl, arg?) ((argl)=(arg2))
IsimpliedBy(argl, arg2) ((argl)<=(arg2))
negative(argl) (—(arg))
not(argl) (—(argl))

In the table, “argl” refers to the first (left) argument and “arg2” to the second
(right) argument. In general, the order of the argumentsis significant and must be the
same in the two notations.

If argl isavalue, avariable name (i.e., areferenceto the value of avariable), or a
reference to the value of afunction in standard functional notation [i.e., in the form
“function(...)"], it need not be enclosed in parentheses, and similarly for arg2.

If argl is an infix expression [including such forms as “funcl(...)+func2(...)"],
parentheses around argl might be needed and should, therefore, be included, at |east
initially. The same appliesto arg2.

Finally, depending on the context in which the infix expression “(argl)+(arg2)”
will appear, a pair of parentheses around this entire expression may be needed, so if
in doubt, include them. It is never wrong to do so.

Ingeneral, to convert areferenceto the val ue of afunction from standard functional
notation to fully parenthesized infix notation, place the first argument in parentheses,
write the symbol for the function afterward, and then write the second argument also
enclosed in parentheses. Then place parentheses around the entire expression thereby
formed. Substitute this final expression for the original reference to the value of the
function. Table 3.4.2-2 illustrates this for each of the functions shown. Finally, one
may eliminate every pair of parentheses that would be implied by the conventions
above for binding levels and |eft-to-right grouping.

Example: Transforming Standard Functional Notation to Infix Notation Con-
sider the last expression in Section 3.4.1:

and(IsLess(product(a, sum(w, 2)), sum(product(d, x), 3)),
| sGreater(sum(w, u), 2)) [3.4.2-16]
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Assuming that “a” “w,” “d,” “x,” “u,” and “Z” are names of variables, expression
3.4.2-16 can be rewritten in the forms shown below, al of which mean the same.

In the following sequence of transformations, each subexpression to be trans-
formed to infix notation is enclosed in a box. (Such boxes are not provided for in
the Language of Mathematics; the expressions are to be interpreted mathematically
as if the boxes were not present. The boxes are inserted here to indicate particular
subexpressions.)

and(IsL ess(product(a, ), sum, 3)),
IsGreater( sum(w, u) | 2)) [3.4.2-17]

The reference to “sum(w, 2)” can be replaced by “w-+2." The reference to “prod-
uct(d, x)” can be replaced by “d«x.” The reference to “sum(w, u)” can be replaced
by “w-+u.” Each of these becomes an entire argument of areference to the value of a
function in standard functional notation, so surrounding parentheses are not needed,;
if included, the meaning of the expression would be the same. The expression above
can therefore be written in the form

and(lsLess(product(a, w+2), sum(d«x, 3)), |sGreater(w+u, z)) [3.4.2-18]

In the transformation above we began with those functions whose arguments
contained no references to functions. Viewed differently but equivalently, we began
with referencesto the values of functions with simple arguments (values and variable
names) only. Thisis not the only possibility. One can rewrite referencesto the values
of functions with arguments in other forms, also. For example, we can rewrite the
references to the functions “IsLess’ and “1sGreater” in the expression

and(\ IsLess(product(a, w+2), sum(dxx, 3)) H IsGreater(w-+u,2) )~ [3.4.2-19]

to obtain
and(product(a, w+2) <sum(dXx, 3), (w+u)>2z) [3.4.2-20]

In expression 3.4.2-20, parentheses are not needed around “ product(a, w—+2)” because
it is a reference to the value of a function. Enclosing it in parentheses would not
change the meaning of the expression within which it appears. For the same reason,
“sum(dx*x, 3)" need not be enclosed in parentheses.

Theinfix expression “w+-u,” however, isnot so clear. Therefore, we enclose it in
parentheses initialy, as it is hever wrong to do so. The parentheses around “w-+Uu”
in “(w+u)>2z" could be removed only if “w+u>z" means “(w+u)>z" and not
“w+(u>2z)." The conventions for binding levels (see Table 3.4.2-1) provide that +
binds before >, therefore “w-+u>z" means, by convention, “(w+u)>z." Therefore,
the parentheses can be removed.

The reference to the value of the function “and” in the expression

\ and(product(a, w+2)<sum(d*x, 3), W+u>2z) \ [3.4.2-21]
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can be replaced by its equivalent in infix notational form. For the same reason that
applied to “w+u” in the previous transformation above, the two arguments in infix
notation [“product(a, w+2)<sum(dxx, 3)” and “w-+u>z"] will each be enclosed,
initially at least, in parenthesesin the new expression:

(product(a, w+2)<sum(dxx, 3)) A (W+U>2) [3.4.2-22]

By the conventions for binding levels, the relational functions < and > bind more
tightly than the logical and function A, so the parentheses around each argument of
the A function can be dropped [remember that “(w+u>2)" means “((w+u)>2)"]:

product(a, w+2) |<| sum(d«Xx, 3) | A WHuU>Z [3.4.2-23]
| < |

Thereferencesin standard functional notation in expression 3.4.2-23 can be trans-
formed in the same way as above so that the entire expression isin infix notation:

((ax(W+2)) <((dxx)+3)) A w+u>z [3.4.2-24]

Because the function < binds more tightly (has a higher binding level) than the
function A, the outer parentheses around the left argument of A can be removed,
yielding

(asx(W+2)) <((d*x)+3) A w+u>2Z [3.4.2-25]

asan equivalent expression. Because the functions x and + bind moretightly than the
relational function <, the outer parentheses around the two arguments of the function
< can be removed, giving

ak(W=+2) <(dxx)+3 A wHu>z [3.4.2-26]

Because x binds more tightly than +, the parentheses around “dx” can be re-
moved. Removing the parentheses around “w+2" would change the meaning of
“ax(w+2)" to “(axw)+2,” which, in general, does not have the same value, so this
pair of parentheses may not be removed. The resulting expression is, therefore,

ak(W+2) <dsxx+3 A WHu>z [3.4.2-27]

which is the minimally parenthesized infix expression for the original expression
3.4.2-16:

and(IsLess(product(a, sum(w, 2)), sum(product(d, x), 3)),
I sGreater(sum(w, U), z)) [3.4.2-16 repeated]

in standard functional notation.

Readers will find tree notation (presented in Section 3.4.3) helpful in understand-
ing parenthesizing and for remembering when parentheses are necessary, when they
are optional, and when they should not be used around certain subexpressions. Paren-
theses serve to define the tree structure associated with an expression written in infix
notation.

An expression in infix notation is valid grammatically if and only if it can be
derived from an expression in purely standard functional notation (i.e., containing no
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infix subexpression) as described above or is equivalent to such an expression by the
rules given above for parentheses. Such an expression in infix notation has the same
meaning (i.e., the sameval ue) asthe expressionin purely standard functional notation.

It is suggested that the reader apply the rules for parentheses above to insert
explicitly the implied parenthesesin the infix expression

ax(W=+2) <d«x+3 A wHu>z [3.4.2-28]
to obtain the more extensively parenthesized expression
(((@x(W+2)) < ((d+x)+3)) A ((W+u)>2)) [3.4.2-29]

for the expression

and(IsLess(product(a, sum(w, 2)), sum(product(d, x), 3)),
|sGreater(sum(w, u), z)) [3.4.2-16 repeated]

in standard functional notation from earlier in this section and from Section 3.4.1.

The comments above on parentheses in infix expressions can be summarized in
the following rules for parentheses. The term “exp” in these rules stands for any
expression in any notational form.

TABLE 3.4.2-3 Summary of the Rulesfor Parentheses

1. Equality of transformed expressions If a syntactically correct composed expression in
standard functional notation only (i.e., al arguments are in standard functional notation)
istransformed as specified in Table 3.4.2-2 Transforming standard functional notation to
infix notation, then the resulting infix expression is syntactically correct and fully
parenthesized and means the same as the original expression in standard functional
notation.

2. Value independent of surrounding parentheses For any expression exp written in any
notational form, the value of (exp) isthe same as the value of exp [e.g., function((expl),
exp2) can be reduced to function(expl, exp2), and similarly for exp2]. Note that thisrule
does not permit (exp) to be reduced to exp if (exp) isapart of an infix expression, such as
...+(exp)x..., and so on, because the structure of the entire expression can be changed by
removing these parentheses.

3. Removing extra parentheses If exp isincluded in more than one pair of ( ), it can be
reduced to (exp) [i.e., al but one outer pair of () can aways be removed from any
(...(exp)...)].

4. Removing parentheses froma simple expression If expissimple (i.e., isavalue, a
variable name, or areference to the value of a function in standard functional notation),
then (exp) can be reduced to exp. If exp isin infix notation, this reduction is not permitted
by thisrule.

5. Removing parentheses implied by binding rules Any pair of parentheses can be removed
if itisimplied by the binding orders of the relevant functionsin the infix expression in
question or by the left-to-right grouping rule as described earlier in this section.
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Note that pairs of parentheses match from inside out. They do not necessarily
match from outside in. For example, in the structure of parentheses

«C C )y + ) )
a b ¢ d e f

in an infix expression, parentheses b and ¢ match (i.e., enclose a subexpression).
Similarly, parentheses d and e match. Parentheses aand f match.

Examining the parentheses from outside inward, one might expect parentheses b
and e to match, but they do not. The text between (but not including) the parentheses
b and eis not a syntactically correct expression. That text contains two parentheses
but not their matching parentheses.

In long infix expressions it is often difficult to see immediately which paren-
thesis matches with which other parenthesis. For this reason, different symbols are
sometimes used for different parentheses, for example,

¢ )y + ) 1]

larger symbols being used for outer matching parentheses and smaller symbolsbeing
used for inner matching parentheses. This method is of limited usefulness, however,
because the number of different available symbols is often insufficient to provide a
different symbol for each level of parenthesesin along and complex expression.

Matching parentheses can be identified diagrammatically in various ways. One
convenient way isto connect matching parentheses with lines:

C C ) + ) )
L L

Another method to identify matching parentheses is to number the parentheses ac-
cording to their nesting level (i.e., enclosing level):

«c ¢y ¢ ¢ )y )y )y )y ¢ € ) )
1 2 2 2 3 4 4 3 2 1 1 2 2 1

Each | eft parenthesis matches with the next following right parenthesis with the same
number. Conversely, each right parenthesis matches with the closest preceding left
parenthesis with the same number.

These numbers are written under the parentheses from left to right, starting with
1, to indicate that the following part of the expression is at nesting level 1. If the
next parenthesis is a left parenthesis, the next-higher number is written under it,
indicating that the following part of the expression is at the next-higher nesting level.
If, instead, the next parenthesisisaright parenthesis, the same number (the number of
the current nesting level) iswritten under it and the current nesting level isreduced by
1. This procedure continues from left to right until the last parenthesis is numbered.
That last parenthesis will be a right parenthesis and will be numbered 1, and the
lowest number ever assigned to any parenthesiswill be 1; otherwise, the parenthesis
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structure is syntactically incorrect. If desired, one can proceed from right to left
correspondingingly.

3.4.3 TreeNotation

Tree notation gives a good visual insight into the structure of an expression and
facilitates understanding various aspects of it. Tree notation is, therefore, useful for
learning purposes and for analyzing an expression in detail. It is not commonly used
for practical work, however, because of the space required to represent an expression
and because it takes longer to draw.

Consider again expression 3.4.1-3 (which is the same as 3.4.2-16):

and(lIsLess(product(a, sum(w, 2)), sum(product(d, x), 3)),
| sGreater(sum(w, U), 2)) [3.4.3-1]

This expression refers to the value of the function “and” for two arguments. Thefirst
argument is, in turn, a reference to the value of the function “IsLess’ for two argu-
ments, each of which is composed further of referencesto the values of the functions
“product” and “sum.” The second argument of the function “and” is a reference to
the value of the function “IsGreater” for two arguments. The first argument of the
function “I1sGreater” is a reference to the value of the function “sum,” whose argu-
ments are the values of the variablesw and u. The second argument of “IsGreater” is
the value of the variable z.

Note in expression 3.4.3-1 that all of the following appear as arguments to func-
tions:

e Values(e.g., 2 and 3)
¢ References to the values of variables (the variable names a, d, w, X, u, and z)
¢ References to the values of functions (IsLess, product, sum, and | sGreater)
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The hierarchical composition of these functions, values, and variables to form ex-
pression 3.4.3-1isillustrated in the tree diagram above. It showsthe logical structure
of the expression (i.e., the relationships between the components of the expression).
It also indicates the order in which the intermediate values must be determined and
used when evaluating the expression.

In earlier sections it was pointed out that the types of values of arguments must
agree with the types of values required by the functions in question. The tree shown
below has been annotated with thisinformation so that one can verify that the type of
each value provided as an argument matches the requirements of the function at the
next-higher node in the tree. The nodes of the tree below have also been relabeled
with the infix symbolsinstead of with the function names.

true/false

Example: Transforming Standard Functional Notation to Tree Notation An
expression in standard functional notation can be transformed into a tree in the
following way. Expression 3.4.3-1, repeated below, is used as an example.

and(IsLess(product(a, sum(w, 2)), sum(product(d, x), 3)),
IsGreater(sum(w, u), z)) [3.4.3-1 repeated]

Begin by separating the first function name and its arguments from each other:

e and
e |sLess(product(a, sum(w, 2)), sum(product(d, x), 3))
e |sGreater(sum(w, u), z)
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Draw anode and write the function’snameinit. Then draw oneline downward for
each argument, and below each line, write the corresponding argument. Be careful to
maintain the order of the arguments; the left argument in the reference to the function
in the expression must be written under the left line from the node, and so on.

| IsLess(product(a, sum(w, 2)), sum(product(d, x),3)) | | IsGreater(sum(w, u), z) |

Next, repeat the process above for each of the two arguments above. That is, sepa-
rate, for each argument above, itsfirst function name from that function’s arguments:

IsLess |sGreater
product(a, sum(w, 2))  sum(w, u)
sum(product(d, x),3)  z

For each, draw anode, write the function nameinit, and draw lines downward for
the arguments. Place the node for each argument’s first function under the line for
that argument:

[ product(a, sum(w, 2)) | [ sum(product(d, x), 3) | [ sum(w, u) |

When a value or a variable name remains, that branch is complete (e.g., the
rightmost branch above, ending with the variable “z"). Branches ending with a
reference to the value of a function must be developed further by repeating the
process described above. Separating each such argument above into its function
name and its arguments:

product sum sum
a product(d, X) w
sum(w, 2) 3

c
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and adding the corresponding nodes and descending lines to the tree above resultsin
the following tree;

[sum(w, 2) | [ product(d, x) |

Two branches still end with references to the value of a function, so they must,
in turn, be developed further in the same way as above. Separating in each case the
function name and its arguments from each other:

sum product
w d
2 X

and drawing the corresponding nodes and downward lines for the arguments yields
the final tree:
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Every branch in the tree above ends with avalue or avariable name, so thetreeis
complete. Thistreeisthe same asthefirst tree in this section.

The tree above was constructed “top down” from an expression in standard func-
tional notation. A tree can also be constructed “bottom up” by starting with the
innermost groups of arguments, which will be only values or variables. In general,
there will be more than one such subtree at the bottom level (in the tree above, there
are two such subtrees).

The parentheses in an extensively parenthesized infix expression correspond di-
rectly to the structure of the equivalent tree. Each pair of parentheses encloses the
infix expression corresponding to one node and its arguments. For example, the fully
parenthesized infix expression (cf. Table 3.4.2-2 for transforming standard functional
notation to infix notation) equivalent to the tree aboveis

(((((@(((wW)+(29)) < ((((d)=N+)) A (W) +(u)))>(2)))
[3.4.3-2]

Removing the parentheses immediately surrounding the values and variable names
simplifies the expression somewhat to

(((((@((w-+2)))) <((((d=x))+3))) A ((W+1))>2))) [3.4.3-3]

Removing extra pairs of parentheses around single subexpressions [i.e., reducing
“((exp))” to “(exp)"] simplifies the expression further to the expression

(B (W+2)) <((d*x)+3)) A (W+U)>2)) [3.4.3-4]

in which one can see the correspondences between parenthesized infix subexpres-
sions and subtrees. The tree is repeated here with the nodes numbered to facilitate
referencing the subtrees.
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The subtrees starting from the several nodes correspond to the infix subexpressions:

subtree 7:  (w+2) subtree 8:  (dx)
subtree 4: (ax(w-+2)) subtree 5: ((d#x)+3)
subtree 2:  ((ax(w+2)) < ((dxx)+3))

subtree 6:  (w+-u)

subtree 3: ((w—+u) > 2)

tree (1):  (((ax(w+2)) < ((d«x)+3)) A ((W+Uu) > 2))

Notice how subtree 2 combines subtrees 4 and 5 and how subtree 1—the entire
tree—combines subtrees 2 and 3.

Notice also that the nesting depth of parentheses around a subexpression in the
infix expression isthe same asthe depth in the tree of the node heading the subtree for
that subexpression. For example, consider the subexpression “d«x.” To the left of this
subexpression there are six left parentheses and two right parentheses, for a nesting
depth of 6—2, or 4. The subtree for this expression begins at node 8, which is at the
fourth level of the tree. This relationship applies to every node in any tree and its
corresponding subexpression provided that the infix expression isfully parenthesized
except for those parentheses removabl e by rules 1 through 4 (only) in Table 3.4.2-3 of
rulesfor parentheses. For this relationship to apply, parentheses may not be removed
by rule 5 (binding order and left-to-right grouping).

3.4.4 Prefix and Postfix Notation

Instead of placing the symbol for a function between its arguments, as in infix
notation (see Section 3.4.2), the symbol can be placed before or after the arguments.
These notational forms are called Polish prefix or Polish postfix, respectively, or more
simply, prefix or postfix. These notational forms have the advantages that functions
with any number of arguments (not only 1 or 2 asin the case of infix notation) can be
represented and that no parentheses are needed. Thereare alsological advantagesthat
simplify converting expressions automatically from one notational form to another.
Prefix and postfix expressions are, therefore, often used internally in compilerswhich
translate infix expressions into computer program instructions for performing the
corresponding calculations as well as in other computer programs for processing
mathematical expressions in various ways for various purposes. Prefix and postfix
notation is occasionally used for analytical purposes, but it is otherwise rarely used
manually in practice.

A restriction on the use of prefix and postfix notation is that each function must
have a fixed number of arguments. That is, it is not permitted that some function f
sometimes has one number of arguments [e.g., f(a, b, c)] and sometimes some other
number of arguments [e.g., f(a, b, ¢, d)].

To convert an expression from standard functional notation to prefix notation, one
replaces each reference to the value of afunction by the function name (or symbol)
followed by its arguments, maintaining their order from left toright [e.g., “f (a, b, ¢)”
becomes “f ab c"]. Variable names following one another must be separated from
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each other in some way [e.g., with asymbol (such as a space) not permitted within a

name], in order to prevent two or more variable names becoming one (e.g., to prevent

the three variable names x, y, and z from merging into the single variable name xyz).
For example, consider again expression 3.4.3-1:

and(IsLess(product(a, sum(w, 2)), sum(product(d, x), 3)),
| sGreater(sum(w, u), 2)) [3.4.4-1]
The equivalent prefix expression is
AN<xa+W2++xdX3>4+wuz [3.4.4-2]

where the function names have been changed to the same symbols as used in infix
notation in Section 3.4.2.

No parentheses are needed because thereisonly oneway of grouping functionsand
arguments. For example, the last 4 in the expression above requires two arguments
and they must follow the symbol +. That is, the arguments for this + can only be w
and u, leading to the term “sum(w, u)” in the following expression mixing prefix and
standard functional notation:

A<xa+w2++xdx3 > sum(w, u) z [3.4.4-3]
For the same reason, the arguments of the function > must be sum(w, u) and z:
A < xa+ w2+ x dx 3IsGreater(sum(w, u), 2) [3.4.4-4]

The arguments of the function « must be d and x, for the same reasons asin the cases
above. Combining the prefix sequence “x d X" into standard functional notation as
above, we obtain

A < % a+ w 2+ product(d, x) 3 IsGreater(sum(w, u), 2) [3.4.4-5]

We continue as above, step by step, for the functions appearing in prefix notation in
the remaining expression:

A < * a+ w 2 sum(product(d, x), 3) IsGreater(sum(w, u), z) [3.4.4-6]
A < x asum(w, 2) sum(product(d, x), 3) IsGreater(sum(w, u), z) [3.4.4-7]
A < product(a, sum(w, 2)) sum(product(d, x), 3) IsGreater(sum(w, u), z)

[3.4.4-8]
A lsLess(product(a, sum(w, 2)), sum(product(d, x), 3)) IsGreater(sum(w, u), z)
[3.4.4-9]

and(lIsLess(product(a, sum(w, 2)), sum(product(d, x), 3)),
|sGreater(sum(w, U), 2)) [3.4.4-10]

Thus, expression 3.4.4-10isthe only way tointerpret the prefix expression 3.4.4-2:

A<xa+W2++%dX3>4+wuz [3.4.4-2 repeated]
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S0 no parentheses are necessary. This applies generally to al prefix and to all postfix
EXpressions.

Postfix expressions differ from prefix expressions in that the function name (or
symbol) is placed after the list of arguments [e.g., “f (a, b, ¢)” becomes “ab ¢ f"].
Otherwise, postfix expressions are formed and interpreted in the same way as prefix
expressions. Note that a postfix expression is not the reverse of the corresponding
prefix expression, because the order of the arguments of each function is the same
(not reversed) in both prefix and postfix notation. The function symbolsalso appear in
different positions relative to the arguments, asillustrated in the following example.

For example, the postfix expression for expression 3.4.4-1 can be constructed as
follows. Step by step we replace a reference to the value of a function in standard
functional notation by its equivalent postfix expression. Theintermediate expressions
below mix postfix and standard functional notation.

and(IsLess(product(a, sum(w, 2)), sum(product(d, x), 3)),
IsGreater(sum(w, u), z)) [3.4.4-1 repeated)]

IsLess(product(a, sum(w, 2)), sum(product(d, x), 3))
| sGreater(sum(w, u), ) A [3.4.4-11]

product(a, sum(w, 2)) sum(product(d, x), 3) < sum(w, u) z > A [3.4.4-12]

product(a, sum(w, 2)) sum(product(d, x), 3) <wu+2z> A [3.4.4-13]
product(a, sum(w, 2)) product(d, X) 3+ <wu+2z> A [3.4.4-14]
product(a, sum(w, 2)) dX 3+ <wU+2Z> A [3.4.4-15]
asum(w, 2) xdx*«3+ <wu+2z> A [3.4.4-16]
aw2+xdx*x3+<wu+z> A [3.4.4-17]

Compare the postfix expression 3.4.4-17 with the equivalent prefix expression
3.4.4-2 from earlier:

A<kxa+w2++«dXx3>4+wuz [3.4.4-2 repeated]

Notice that neither is simply the reverse of the other.

It issuggested that the reader convert the postfix and prefix expressions aboveinto
trees. Thetwo treeswill, of course, be the same as the complete treein Section 3.4.3.
The conversion process corresponds basicaly to the reverse of the transformation
above from standard functional notation to postfix notation. It is probably easiest to
start from the left of a postfix expression or from the right of a prefix expression
(i.e., the bottom of the tree) and to work to the other end of the postfix or prefix
expression. This effectively works upward in the tree. At each step of constructing
the tree, work next with the leftmost function in the remaining postfix expression or
with the rightmost function in the remaining prefix expression.
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3.45 Tabular Notation

Many types and formats of tables are used to define functions. Their advantages
are ease of writing, reading, and checking against nonmathematical statements of
requirements, intentions, desires, and so on. A common characteristic of all tables
is that they subdivide the range of concern by conditions and then give, for each
condition, the value or an expression for the value of the function being defined.
Beyond this common feature, they exhibit a wide variety of forms—one- and two-
dimensional—as well as avariety of structures.

Tables can be illustrated with the example from previous sections. The infix
expression 3.4.2-28 for this function was given earlier as

ax (W+2)<dxx+3 A wHu>z [3.4.5-1]
This function could have been defined by the following table:
Condition
ax(W+2) <dsx+3 W+HU>Z Value of Function

false (no) false (no) fase

false (no) true (yes) false

true (yes) false (no) false

true (yes) true (yes) true

In this table, all possible combinations of the conditions are listed, and for each
combination of the conditions, the value of the function is given. The table includes
one column for each condition and one column for the value of the function being
defined. A header row contains the conditions. Each subsequent row contains values
of the conditions and the value of the function for those values of the conditions.

Normally, the values of the conditions in the rows will be mutually exclusive and
exhaustive, that is, exactly one row will aways apply. Two rows will never apply in
the same situation, but one always will. If this restriction is not met, the table might
not define the function. If two or more rows ever apply in the same situation, and the
values in the fina column of those rows differ, the table is self-contradictory. If no
row appliesin some situation, the value of the function is not defined for the missing
combination of values of the conditions.

In the table above, only two conditions appear. In situations arising in practice,
such tables may contain alarge number of conditions and, correspondingly, rows. In
the table above, only one function is being defined, so only one column is present for
thevalues of the function. In practice, one can define several functionswith onetable,
inwhich casetherewill be one function value column for each function being defined.

The function defined in the table above can, aternatively, be defined with the
following differently structured table with the same meaning:

ax(W+2)>dxx+3 ax(W+2) <dx+3

w-Hu<z false false
W-+U>Z false true
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In atable of this type, any number of conditions may appear across the top, in
different columnsin the top header, and any number of conditions may appear down
the left side, in different rows in the side header. The value of the function—or an
expression for that value—is placed in the cell at the junction of the row and column
whose conditions are true.

The conditions across the top should normally be mutually exclusive and exhaus-
tive; that is, exactly one of these conditions should apply in every situation. Similarly,
the conditions down the side header should be mutually exclusive and exhaustive.
If these restrictions are not met, the table might either be self-contradictory or might
fail to define the value of the function in some situation.

Many other layouts for tables defining a function (i.e., for writing an expression)
can be found in the relevant literature. The term decision table is often applied to
some types of tables. Any convenient structure can be used in practice, provided that
its meaning is well defined.

Remember that a table is another notational form for a mathematical expression.
One should always be able to transform an expression in tabular form into one of the
notational forms described in earlier sections. Use tabular notation when the people
specifying the function find it easier to write, read, analyze, and verify than other
notational forms and when a table facilitates communication between the people
involved in the application problem and its solution.

3.4.6 Graphical Notation

Graphical notation differs from the other types of notation described above in that,
inherently, it cannot be absolutely precise and accurate. Visualizing functional re-
lationships between variables often helps people to understand those relationships
much more clearly than other notational forms do. For that reason it is important
in practice and used frequently. It can be used to aid thinking and preparing for
more detailed analyses, but its direct application to analysisis limited because of its
inherent lack of complete precision and accuracy.

Thesimplest form of agraphisatwo-dimensional plot onapieceof paper or similar
medium. Horizontal distances represent values of one variable, and vertical distances
represent values of a second variable. A reference point, called the origin, from
which distances are measured, is defined and two straight lines, the axes along which
distances corresponding to the values of the two variables involved are measured,
are drawn through the origin. The two axes are usually drawn perpendicular to each
other. Measurements along the two axes may, but need not, be to the same scale.
The two distances thereby defining the position of each point in question are called
the Cartesian coordinates of the point, named after the French mathematician René
Descartes, to whom such graphs are attributed.

Example 1 A graph of the function y=x/2+1 is plotted below. For severa values
of x the corresponding values of y are calculated from this equation and the point
corresponding to each pair of values for x and y is marked. The points are then
connected with a smooth line: in this case, astraight line.
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10

-15 -10 -5 0 5 10 15

-10

[3.4.6-1]

Example 2 Below is aplot of the function y=x3+2xx2—50«x+50. It is made in
the same way as the graph in Example 1 was made, but here, more points should
be marked because the graph is not a straight line. The greater the number of points
marked, the better the accuracy of the graph between them will be.

y
1000

500

-10 -5 0 5 10

-500

[3.4.6-2]

Three-dimensional graphs can be conceived and, to a limited extent, modeled
with various solid materials. They can be computed and various perspective views
displayed on two-dimensional media such as paper, computer monitors, or projec-

tion screens. In principle, higher-dimensional graphs can be generated similarly and
perspective views displayed.
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The Cartesian coordinate system is not the only basis for graphs in mathematics.
For some types of relations between variables, graphs based on polar coordinates
are more convenient. A polar coordinate system is defined by a reference point (the
origin) and aninfinitely long straight line (the axis) beginning at the origin. The polar
coordinates of a given point are (1) the length of the straight line from the origin to
the given point and (2) the angle between that line and the axis. Any point can be
represented with polar coordinates by a nonnegative length and an angle greater than
or equal to 0° and less than 360°.

270° o 45°

v

Axis

Oe-----cccceen-tano

[3.4.6-3]

For example, the polar coordinates of point C in the graph above are 5 and
45°, typicaly written (5,45°). The polar coordinates of point D are (4, 270°). For
mathematical analyses the angles are usually measured in radians instead of degrees
(°). If one superimposes the axes of a Cartesian coordinate system and the origin and
axis of a polar coordinate system on one another, equations for converting one type
of coordinates to the other type can easily be derived by geometric considerations.

Polar coordinates are especially convenient for circularly symmetric rel ationships.
For example, if the distance from the origin to apoint in question is called d, then the
equation for acircle of radius r centered at the origin is simply d=r, independent of
the angle. The equation for the same circle in Cartesian coordinates is x?4y?=r2.

Polar coordinates can be generalized for three- and higher-dimensional spaces.
The coordinates of a point are then the distance between the origin and the point and
the two or more angles defining the direction of the line between the origin and the
point. Still other coordinate systems can be and sometimes are defined for particular
analyses and purposes.

One simpleway to draw graphsiswith apencil (or pen) and ruler on paper already
printed with lines representing the coordinates. For Cartesian coordinates, horizontal
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and vertical grid lines asin the examples above are preprinted. For polar coordinates,
concentric circles centered on the origin (corresponding to different distances from
the origin) and straight lines radiating from the origin (corresponding to different
angular coordinates) are preprinted.

The accuracy with which a point can be placed is limited by the accuracy of the
ruler, the width of the markings on it, the thickness of the pencil point, parallax
between the markings on the ruler, the pencil, and the paper, and the eyesight of the
person placing the point. Visual interpolation between markings on the ruler and the
preprinted coordinate lines a so limits accuracy. The limited accuracy with which the
lines were printed on the paper, the thickness of the lines, and warping of the paper
due to variations in temperature and humidity also reduce the accuracy of a graph.

In principle, the accuracy with which graphs can be drawn with fine mechanical
assistance, digital computation and displays, and so on, can always be improved,
but deviations from the ideal can never be eliminated completely. Therefore, despite
their very considerable usefulness, graphs can never replace notational forms based
on discrete symbols as described in previous sections of the chapter. Graphs play an
important role in human interpretation of mathematical expressions, but in practice
graphs remain a representation of an unrealizable ideal. Therefore, graphs do not
play the same central role in the Language of Mathematics as do the notational forms
based on discrete symbols discussed previously.

3.4.7 Figures, Drawings, and Diagrams

In addition to graphs as described in Section 3.4.6, many other types of figures,
drawings, diagrams, and pictorial representations are used to illustrate mathematical
relationships, functions, expressions, and so on, in visual form. Some of the common
forms are technical and engineering drawings, maps, nautical charts, bar charts,
and pie charts. Such figures can be drawn to scale, show perspective views, or
be abstract illustrations indicating only general relationships between the various
subcomponents. Like graphs as discussed earlier, al these figures facilitate human
understanding through visualization, but they lack the absol ute precision and accuracy
inherent in the Language of Mathematics. Therefore, they have the same limitations
as graphs, as pointed out in Section 3.4.6.

The advantages of visua illustrationsin conveying information and understanding
derivelargely from thefact that visionisby far the fastest input medium to the human
brain and that the majority of the brainisused for processing visual input. Visual input
coming from a person’s two eyes is stereoscopic and therefore three-dimensional in
nature. Text, however, being a single sequence of symbols, is only one-dimensional,
so does not take good advantage of the potential of visual input to the human brain.
The difference is captured in the old saying “a picture is worth a thousand words.”
Consider, for example, a map vs. a verbal description of the road network and the
spatial relationships between locations of places of interest.

Geometric figures are probably the first examples of nontextual writing in math-
ematics. They were certainly a well-established part of the mathematical language
of geometry in early Greek mathematics and Euclidian geometry. Today, however,
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as graphs, it is better to consider them as very valuable adjuncts to mathematical
language, but not to rely on them for accuracy, precision, and detailed analyses and
proofs.

Like graphs as presented in Section 3.4.6, figures, diagrams, and drawings of all
types should be viewed as adjunct representations of the mathematical model or even
part of the interpretation of amathematical model oriented to a particular application
area. In some cases, they are perhaps best viewed as part of the application language
itself and not of the Language of Mathematics at all.

Visual representationshave not only advantagesbut al so have pitfalls. For example,
consider a geometrical figure illustrating a general theorem to be proved. The brain
can notice some particular characteristic of the figure and subconsciously use that
characteristic in the proof. Such a proof is not applicable to the genera case and the
theorem might not be true in general, despite the “proof.” Many students have fallen
into thistrap in geometry classes in school.

Visua representations also are prone to the well-known phenomena of optical
illusions. Some of theillusions are: Parallel lines clearly appear to the observer not to
beparallel. Straight linesappear clearly curved. Dots appear white or gray, depending
on which one the observer looks at. Two circles, one surrounded by small circles, the
other surrounded by larger circles, clearly appear to be of different sizes, despite the
fact that they are of the same size. The list of such optical illusions can be extended
almost endlessly. After looking at afew dozen of these optical illusions, one realizes
that visual perceptions are not reliable, even if they are totally convincing.

Engineering drawings of three-dimensiona objects are typically projections of
the object onto three perpendicular planes. Perspective views are also often used,
especialy in architecture. Drawings in these fields are almost always to scale, but
drawings not to scale can be useful (e.g., to highlight certain features or aspects of
the object being illustrated).

Some examples of figures, drawings, and illustrations of different types appear
elsewhere in the book. See, for example, the drawing of a beam in Section 2.11, the
pictures of dice and the drawings of urns containing colored balls in Sections 4.6.1,
4.6.3, and 4.6.4, and the drawings of awater reservoir and supply pipe with valve in
Sections 8.10.1 and 8.11.1.

3.4.8 Notation for Series and Quantification

Often, one wants to write an expression adding, for example, a number of values, in
which the number of valuesto be added isgiven by the value of some other variable or
expression. None of the notational forms defined above satisfies this need adequately.
One of the common examples is adding the values of expressions or array variables:
for example,

X(1) + X(2) + -+ + x(n) [3.4.8-1]

where the value of the variable n is an integer greater than or equa to 1 and the
X(...) are array variables. (Array variables are treated extensively in Section 4.1.2.)
Because such expressions arise frequently in both theoretical and applied
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mathematics, expression 3.4.8-1 is often written more concisely, and unambiguously,
asfollows:

n

Z x(i) [3.4.8-2]

i=1

where the capital Greek letter ¥ (sigma) represents the function “sum.” The expres-
sion “x(i)” is atemplate for an expression and the variable “i” is a special variable
used to generate val ues to be applied to the template expression. Thefirst value of the
special variableis given by the expression to the right of the symbol = in the bottom
line, and the last value is given by the expression above the = symbol. Thelast value
is normally greater than or equal to the first value. All integer values equal to and
between the first value and the last value inclusive are substituted for the special
variable in the template expression to form the actual individual expressions whose
values are to be added together. That is, the X expression above is defined to mean
the expression x(1) + x(2) + --- + x(n). Such an expression is often called a series.

The speciad variable (i in the example above) is sometimes called a running
or dummy variable. In more formal mathematical terminology, it is the variable of
“quantification”: that is, the variable being quantified, the variableto which quantities
(values) are being assigned. The variable of quantification is also called a bound
variable, because its values are determined (bound, set) within the expression and
referred to only within the X expression. In contrast, the values of n and the array
variables x(...) must be determined externally to the X expression; these variables
are often called unbound or free variables.

Note especially that expression 3.4.8-2 asawhole does not depend on any external
variablenamed “i.” Thiscan be seen most clearly by considering thesimpler example

5

> x() [3.4.8-3]

i=2

which, by the definition of this ¥ notation, means

X(2) + X(3) + x(4) + x(5) [3.4.8-4]
Note that there is no reference to any variable “i” in expression 3.4.8-4. In the
expression
5
> x(k) [3.4.8-5]
k=2

the running variable has adifferent name, but the meaning of the expression is defined
to bethe same [i.e., X(2) + X(3) + X(4) + x(5)]. The “running variable”’ isnot redlly a
variable at al, hence its alternative name “dummy variable” The name of arunning
variable can always be changed to any name not otherwise appearing within the
quantified expression.
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Consider the expression
n
i+ x() [3.4.8-6]
i=1

The first variable named “i” is not the same variable as the running variable “i” in
the X expression. The first variable named “i” is a free, unbound variable, whose
val ue does not influence the value of the X term in expression 3.4.8-6. The distinction
between the two “variables’ named “i” can be made clearer by renaming the running
variable in expression 3.4.8-6 asin the earlier example, to obtain

i+ x(K) [3.4.8-7]
k=1

In expression 3.4.8-7 the distinction between the free, unbound variable named “i”
and the bound, quantified variable named “Kk” is explicit. Because using the same
name for bound and unbound variables in an expression can be confusing, it is
strongly recommended that different names be used for them. Although thisis not a
grammatical rule for writing in the Language of Mathematics, it is an accepted rule
of good style. It helps human readers to understand the expressions in question.

Inthe general case, theinitial and final values of the running variable can be given
by any expressions. The template term can be any expression. Typically, the template
expression will refer to and depend on the running variable asin the exampl es above,
but it is not required to do so; for example,

5
o1 [3.4.8-8]
i=2

which, by the definition above, means 1+1+1+41. The first “1” is the template
expression evaluated for i=2; the second “1,” for i=3; the third “1,” for i=4; and
the last “1,” for i=5. The fact that the running variable “i” does not appear in the
template term does not affect the application of the definition of the meaning of a
3 expression. Such X expressions, in which the running variable does not appear
in the template term, are not common in practice, but they do sometimes arise (e.g.,
after simplification of more complicated expressions or after evaluating expressions
in special situations).

The examples above al involved series for sums. Series for products are also
useful. The capital Greek letter IT (pi) istypically used for series for products:

4

1_[ (i) [3.4.8-9]

i=1
which means x(1)xx(2)*x(3)*x(4). Series based on other functions are also useful,

such as the logical and (A) and or (Vv), and the set functions intersection (N) and
union (U). Some examples are:

" name(i) <name(i-+1) [3.4.8-10]
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i \zr}l name(i)=customername [3.4.8-11]
_ﬁlS(i) [3.4.8-12]
_QlS(i) [3.4.8-13]

Inthetraditional mathematical literature, several different special notational forms
for seriesinvolving thelogical functions A and v are common. For historical reasons,
different symbols were and still are used:

e V, an upside-down “A,” corresponding to “for al” in English, instead of A for
“ ar]dn

e 3, an upside-down “E,” corresponding to “there exists’ in English, instead of v
for “or”

Theformer (v, “for all”) iscalled universal quantification. Thelatter (3, “thereexists’)
iscalled existential quantification. Aswith sumsand productsin the earlier examples
above, universal and existential quantification amount to the repeated application of
a function—in these cases, of the logical “and” and the logical “or,” respectively.
Some of the notational formsin which vV and 3 often appear are:

¢ Ji(name(i)=customername)
(3i)name(i)=customername

e V1<i<n—1(name(i)<name(i+1))
(V1<i<n—1)name(i)<name(i+1)

e (V1<i<n-—1, name(i)<name(i+1))

e (Viez, 1<i<n—1: name(i)<name(i+1))

Many other variationsof theformsabove are also seenin mathematical textsinvolving
logic.

Above, Z isthe set of integers (whole numbers). Sets are the subject of Section
4.1.1. Here and elsewhere in this section it suffices to read the subexpression i€z as
“iintheset z,” “i isan integer,” or “integersi.”

Most of the notational variations above for series and quantification have certain
disadvantages; for example, the end of the template is not always clear in the =
notation, and it is not always completely clear which are the quantified variables in
some of the V and 3 expressions of the types listed above. Furthermore, the variety
of notational forms can confuse newcomers and students. A more general notational
form capable of expressing al types of quantification has, therefore, been introduced
in the last few decades. Although it has not yet achieved universal acceptance, it is
used extensively in certain branches of mathematics. It is possible to define each of
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the various notational forms presented above in terms of this more general notation,
which has the following general form:

[functioni, j, k, ... : range(i, j, k, ...) : TemplateTerm(i, j, k, ...)] [3.4.8-14]

where

e function is the name or infix symbol for the function being repeatedly applied

° i,j,k, ...isalist of the quantified variables (the “bound,” “running,” “dummy”
variables)

e range(i, |, k, ...) is a Boolean function defining the values for the quantified
variables

e TemplateTerm(i, |, k, ...) isthe template for forming the actual termsto which
the function isto be applied

These, and only these, are the essential elements of any quantified expression.
Throughout the book, quantified expressions are usualy written in the form of ex-
pression 3.4.8-14.

Typically, the function in the series or quantified expression is commutative and
associative, so the order of the arguments has no effect on the resulting value and
the grouping of the implied parentheses does not matter [e.g., mathematical addition
(4) is commutative because x+y always has the same value as y+x, and mathe-
matical addition (+4) is associative because ((x+Y)+2z) aways has the same value as
(X+(y+2))]. If either property does not apply to the function in question, the order of
the terms and the grouping of parentheses must be defined. Usually, the range begins
by indicating a set of valuesfor each quantified variable, and if this set is ordered (as,
e.g., the set z of integers), this same order is applied to the terms formed from the
template. If the function is not associative, implied parentheses are usually assumed
to group the terms from left to right, the normal convention for infix expressions.

Each combination of values of the quantified variables satisfying the range [i.e.,
for which the value of the Boolean function range(i, j, K, ...) istrue] is used once to
form an actual term from the template term. For example, the series expression

5

> x(k) [3.4.8-15]

k=2

iswritten in the general format for quantified expressions as

[+ k : kez A 2<k<5: x(K)] [3.4.8-16]
The series

'_”Rll name(i) <name(i+1) [3.4.8-17]

i=

can be written in the general format for quantified expressions as

[Ad:ieZ Al<i<n—1: name(i)<name(i+1)] [3.4.8-18]
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or as
[Vi:iez A 1<i<n—1: name(i)<name(i+1)] [3.4.8-19]

If expression 3.4.8-18 is true, every term “name(i)<name(i+1)” in the range of
quantification is true [i.e., the term is true “for al” values of i in the range of
quantification], so expression 3.4.8-19 is true. Similarly, if expression 3.4.8-19 is
true, then expression 3.4.8-18 is true (i.e., each expression is true if and only if the
other is true); the two expressions aways have the same value. Thus, the logical
functions “and” and “for al” are the same.

In the same way, the expressions

i, 1<i<n(name(i)=customername) [3.4.8-20]
and

i \21 name(i)=customername [3.4.8-21]
and

[Vi:ieZ A 1<i<n: name(i)=customername] [3.4.8-22]
and

[Ti:iez A 1<i<n: name(i)=customername] [3.4.8-23]
always have the same value.

If expression 3.4.8-22 istrue, then at |east one of the termsistrue (i.e., there exists
some value of i in the range of quantification for which a term is true). Therefore,
expression 3.4.8-23 is true. The reverse also applies, so the two expressions are
equivalent. Thus, the logical functions “or” and “there exists” are the same.

In summary, ageneral notational form for series and quantified expressions of all
of the types mentioned in thisbook is

[functioni, j, k... : range(i, j, k...) : term(i, j, k ...)] [3.4.8-24]

For descriptions of the several parts of this format, see earlier parts of this section.
The many other notational formsfor series and quantified expressions can be defined
in terms of this more general format. Some of the other notational forms for specific
types of quantified expressions are shorter and therefore convenient, but they should
be used only when they are defined in terms of the more general format and when both
the writer and the reader are fully aware of that definition. Those other notational
forms are best thought of as abbreviations or colloquialisms in the Language of
Mathematics.

The reader might ask at this point what the value of a quantified expression is
when the range of quantification is empty. Although thisis, in the final anaysis, a
matter of definition, one definition stands out as particularly sensible. It derives from
the observation that the value of a series of n terms can be expressed as the value of
the function applied to a series of n—1 of the terms and the other remaining term. If
this relationship is to apply to the situation in which n=1, then the value of a series
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of 0 terms must have the characteristic that if the function is applied to it and to a
single term, the result is the value of the single term itself. In mathematics, such a
valueis called theidentity element with respect to the function. For example, 0+x=x
for any number x, so O is the identity element with respect to addition (+). The
identity element with respect to multiplication is 1, because 1xx=x for any number
x. Similarly, the identity element for the logical and (A) function is true, because
truenx=x for any Boolean value of x. The identity element for the logical or (V)
function isfalse, because falsevx=x for any Boolean value of x. In general, the value
of an empty seriesisthe identity element with respect to the function in the series.

Quantification in the Language of Mathematics refers to many occurrences of
the same type of object and, therefore, often corresponds to plural formsin English.
Particularly when other wordstypical of quantification (suchas“all,” “every,” “ some,”
“any,” etc.) occur in the same phrase with a plural noun or pronoun, one should
consider trandating plural forms with quantified expressions. See Section 7.3 for
further discussion of thistopic.

3.4.9 Specialized Notational Formsfor Certain Expressions

The preceding sections in this chapter define notational forms for functions and
expressions. Additional notational formsfor structures such assets, arrays, sequences,
series, and quantified expressionsare defined in Sections 3.4.8,4.1.1,4.1.2, and 4.1.3.
These forms constitute the notational foundation of the Language of Mathematics.

In addition and like other languages, the Language of Mathematics has specialized
abbreviations and idioms of various types. Some are in widespread use in mathemat-
ics, whereas others are used only in particular specialties. They are used because
they are convenient; they facilitate writing, analysis, and communication between
mathematicians. All of them can be defined in terms of the fundamental notational
forms for functions, expressions, sets, arrays, sequences, and series. Linguistically,
these other notational forms can be viewed as synonyms for the normal, usual forms
they are defined to stand for.

One of these types of idiomatic expressions was defined in Section 3.4.2 on infix
notation. An expression of the form

a<b<cxd [3.4.9-1]
is defined to mean
(@<bA(b<c)a(c=<d [3.4.9-2]

and correspondingly for expressions of thisform with other lengths. Thisabbreviation
isin general usein all areas of mathematics.

Often in mathematics one needs to select one value or another depending upon
whether or not a Boolean variable or expression is true. This need arises especially
in definitions, for example, of functions. The traditional mathematical notation for
such aselectionis

Y, if B
X= {Z, otherwise [3.4.9-3]
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This notational form can be extended for three or more Boolean conditions with
the corresponding values. A significant disadvantage of this notation is that it is
inconvenient for embedding within larger expressions. It isalso inconvenient to enter
viaakeyboard.

The same need is met in some computer programming languages by the subex-
pression

if BthenY elseZ [3.4.9-4]

which, after enclosing in parentheses, can be embedded in any expression. However,
neither this notational form nor variations of it using special symbols has found gen-
eral acceptance in the Language of Mathematics. Defining afunction [e.g., choice(B,
Y, Z)], using standard functional notation isprobably the simplest way to provide such
a selection in a mathematical model. Several other possibilities can be constructed,
but they are generally clumsier and they do not fit so well into the general spirit and
culture of the Language of Mathematics.

Another specialized notational form describes the rel ationship between afunction
and its domain and range:

f:X—>Y [3.4.9-5]

It corresponds to the English statement “f is a function with domain X and range Y.”
Itisusedin al areas of mathematics. It can be defined formally and mathematically
by the quantified expression

[Ana:aeX: f(a)eY] [3.4.9-6]

See the latter part of Section 3.4.8 and Section 4.1.1.

In probability theory, one often writes something of the form Pr{Bexp}, where
Bexp is aBoolean expression including references to arandom variable x. Although
this looks like a reference to the value of afunction Pr applied to the Boolean value
of the expression Bexp, itisnot. Instead, it isan abbreviation or idiomatic expression
defined to mean the probability of the set defined by the Boolean expression Bexp:
that is, p([Ux:xeSA Bexp: {x}]), where p is a function to be applied to the value
of the argument [UX:xeSA Bexp: {x}]. See Sections 3.4.8 and 4.6.1 for further
information on this particular notational form. This example illustrates that when
working in a particular specialized area of mathematics, one must become familiar
with the particular abbreviations and idioms defined and used in that area. They will
all be based on, and defined in terms of, the fundamental notational forms in the
Language of Mathematics, but they can exhibit their own linguistic variations.

Another notational form amounts to a different way of writing a function applied
to an argument: f.x is defined to mean f(x). Here, the symbol . is viewed as an infix
function meaning the application of a function to an argument (e.g., f.x means the
application of the function f to the argument x). This notation distinguishes between
an array variable named f and a function named f (cf. Section 4.1.4). The notation
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f.x isused extensively in some particular areas of mathematics, but the older notation
f(x) is till used more widely.

An example of anotation used only in the specialized area of mathematics dealing
with computer programs and segments thereof is

(V} S{P} [3.4.9-7]

where V and P are Boolean functions and S is the function representing the effect of
executing asegment of aprogram. Thisexpression isinterpreted to mean “if V istrue
before Sis executed, then Pwill betrue afterward” in the language of the application
domain. Mathematically, {V} S {P} isformally defined to mean

[Ad:V.d:P(Sd)] [3.4.9-8]

The notation for this quantified structure is defined in Section 3.4.8. In this defini-
tion, the symbol . is used as the infix operator as presented in the paragraph above.
Visually, the notation {V} S{P} suggests the interpretation in the application do-
main much more directly than does the more formal expression [A d:V.d: P(S.d)].
The notational form {V} S{P} is, therefore, much easier to recognize and to work
with when manipulating expressions. Thisis the reason for defining this specialized
notation.

In specific areas of mathematics additional symbols are used: for example, 9
(partial derivativein differential calculus), [ (integration inintegral calculus), and V
(divergence and gradient in vector calculus).

In some cases in mathematics, the same symbol is used for different things. The
use of the symbol x for both the product of two numbers and for the Cartesian
product of setsis mentioned in Section 3.4.2. Potentially more confusing is the use
of the symbol > for both subset (As>Bs meaning that Bs is a subset of As) and
logical implication (ADB meaning that A implies B). The symbol > was used in
the development of one branch of logic and is still used in modern texts in that
specialized area. In many other application areas of logic, implication is written as
Ab=-Bb, meaning that Ab implies Bb. Confusion can and sometimes does result
from the fact that if the Boolean expression Ab corresponds to the set As and the
Boolean expression Bb corresponds to the set Bs and Ab=-Bb, the set Asis a subset
of the set Bs, which can be written BsOAs. However, using O as the implication
symbol in logic, one would write AbDBDb, just the reverse of BbDAD.

The lesson to be learned here is that one should always be completely aware of
what the symbols mean in the context of the mathematical specialty within which
one is working and the context of the application. In this regard, the Language
of Mathematics is like other languages, too. For example, the word jig in English
can mean either a type of dance or a mechanical fitting to guide or hold a tool,
depending on the context. In mathematics, the words ring and field have very spe-
cific and well-defined meanings not related to their meanings in general English

usage.
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Restrictions on choices of additional notational forms in mathematics and guide-
lines for their interpretation are discussed in Section 6.5.

3.4.10 Advantagesand Disadvantages of the Different Notational Forms

In this section the relative advantages and disadvantages of the several notational
forms described in Sections 3.4.1 through 3.4.9 are identified. They are then summa-
rized and compared in Table 3.4.10-1 below.

The notational forms for series and quantification described in Section 3.4.8 are
not included explicitly in this comparison because they represent extensions to infix
and standard functional notation and the combination of them. It isleft asan exercise
for the reader to identify the relative advantages and disadvantages of the different
notational forms for series and quantification mentioned in Section 3.4.8.

Inthefollowing paragraphsan abbreviationisgiven for the name of each notational
form. In Table 3.4.10-1, the notational forms are referred to by these abbreviations.

Standard Functional Notation (SFN) Standard functional notation is a compact
and simple, yet general notational form which can represent any expression. It reflects
the compositional structure of the expression directly, but with deep nesting the overall
view can become difficult to follow. For this reason standard functional notation
aoneis not used extensively in practice. It requires parentheses only to enclose the
argument list of each function and commasto separate the individual argumentsfrom
one another. Otherwise, no special symbols are needed. An expression in standard
functional notation is a sequence of letters, parentheses, and commas only and is,
therefore, easy to write by hand or with a standard keyboard.

Infix Notation (INF) Infix notation represents a function by a symbol for the
function between its two arguments. Because of this structure, it is suitable only for
functionswith exactly two arguments, aseverelimitationin general. Many of themost
commonly used functions have two arguments (e.g., sum, difference, product, and
quotient) and for expressions involving only such functions, infix notation is widely
used. Nesting is represented by parentheses and is, therefore, generally clearer than
with standard functional notation, but deep nesting can still be difficult to follow. An
expression in infix notation is a sequence of letters, parentheses, and special symbols
andis, therefore, relatively easy towrite by hand or with astandard keyboard, provided
that all special symbols needed are available in the editing program or system being
used.

Combination of Infix and Standard Functional Notation (SFN+INF) Expres-
sions can be written using infix notation for the most common functions of two argu-
ments and standard functional notation for the others. Such a combination avoids the
limitation of infix notation while retaining its advantages. For this reason, acombina-
tion of infix and standard functional notation is the most commonly used notational
form for expressions.
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Tree Notation (Tree) The main advantage of tree notation is that the composi-
tional structure of the expression is especially clear, regardless of the nesting depth.
This clarity is gained at the expense of a two-dimensional representation, with the
accompanying difficulty of writing it by hand or with a standard keyboard. Because
of the two-dimensional representation, a much larger areais required for an expres-
sion than with a one-dimensional notational form. For these reasons, tree notation is
rarely, if ever, used in practice. Because of the clarity with which tree notation illus-
trates the compositional structure of an expression, it is very useful for teaching and
learning.

Prefix and Postfix Notation (PPF) By placing each symbol for a function before
or after its arguments instead of between them, both the restriction of infix notation
to functions with two arguments and the need for parentheses can be eliminated. This
makes it easier to analyze an expression to determine its compositional structure,
but the lack of the visual clues provided by parentheses and commas in infix and
standard functional notation make it more difficult for the human reader to discern
this structure. Probably for this—and historical—reasons, prefix and postfix notation
israrely used in practice manually by humans. It is used within automated expression
processors, such as compilersfor computer programs. By eliminating the punctuation
in infix and standard functional notational forms, expressions in prefix and postfix
notation are shorter.

Tabular Notation (TBL) Basically, tabular notation is equivalent to an expression
that has been factored in a certain way, with the several subexpressions arranged in a
table. Theresult isanimproved view of the compositional structure of the expression,
an improved view of some of the functional dependencies, and a reduction in the
length of each subexpression to be examined by a human reviewer. A human reader,
especially one more familiar with the application area than with mathematics, will
often find the tabular notation easier to read, understand, examine, and verify than
the other notational forms. In short, a table is a human reader-friendly notational
form for amathematical expression. Because of the two (or even three)-dimensional
format (and sometimes the repetition of subexpressionsin several cells of the table),
atable is usualy less compact than an equivalent one-dimensional expression. In
some application areas, tables are frequently used, whereas in others, they arerarely
encountered.

Graphical Notation (GRA) The main advantage of a graph is, as with atable, its
human reader-friendly form. The functional relationship between the function value
and one or more arguments is presented visually very clearly. The compositional
structure of the function is not shown at all. The usual graph is two-dimensional, but
two-dimensional perspective views of three-dimensional graphs can be generated.
Three-dimensional graphs are also sometimes constructed. A critical limitation of
graphs for mathematical purposesistheir lack of absolute accuracy and precision. A
person can beneficially use agraph in considering what to look for or how to prove a
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theorem, but the graph cannot, for example, be used directly to prove the theorem. A
graph can be used to determine an approximate value of afunction, but never its exact
value. In other words, agraph can be useful in planning a mathematical analysis, but
it cannot be used in the formal analysis itself. Remember that a graph’s usefulness
derives only from human visual psychology. Graphs lack the precision of the other
notational forms: Lines have nonzero width, measurement accuracy islimited and the
paper on which they are printed can warp and stretch due to variationsin temperature
and humidity, folding, curling into rolls, and physical forces applied.

Figures, Drawings, and Diagrams (FDDs) Figures, drawings, and diagrams are
much like graphs except that they refer to an object in the application area and
not to a mathematical function or expression itself. They are less abstract and more
concrete than amathematical expression. Special symbolsmay or may not be needed,
depending on the nature of the figures, drawings, or diagrams and the object to be
represented.

Specialized Notational Forms (SPCs) Specialized notational forms are abbrevia-
tions for lengthier subexpressions arising frequently in certain areas or applications.
Each abbreviation must be defined precisely and unambiguously. The intention of
such an abbreviation is to improve human readability, even when an insight into
the structure of the subexpressions they represent may be lost. Depending on the
particular abbreviation, an insight into functional dependencies may or may not be
lost. Many specialized notations are one-dimensional, but two-dimensional notations
(e.g., tables) are not excluded. Specialized notations are normally defined in such a
way that they are easy to write by hand, but whether or not they are easy to enter with
a keyboard depends on the particular abbreviation and the symbols within it.

Of the different types of notational forms, standard functional notation, infix
notation, combined standard functional and infix notation, prefix and postfix notation,
and usually specialized notation are one-dimensional, even though they are written
or printed on two-dimensional paper. In a sense, this represents a less than optimum
use of the two-dimensional medium. Actually, a one-dimensional expression can be
split into separate lines and indented to facilitate human readability without affecting
the one-dimensional structure and, hence, the meaning of the expression. In practice,
thisis often done. This book contains examples of longer expressions split into lines
and indented to improve readability.

Table 3.4.10-1 summarizes and compares the advantages and disadvantages of the
various notational forms for mathematical expressions. Refer to the text above for
finer distinctions in some cases. The degree to which acriterion ismet or absent in a
particular notational form is indicated roughly by the number of + or — symbolsin
the corresponding cell in the table. An asterisk (*) in acell indicates that the degree
to which the criterion is or is not met depends on the particular figure, drawing,
diagram, or specia notation. The abbreviations for the notational forms are given in
the paragraphs above.
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TABLE 3.4.10-1 Advantages and Disadvantages of the Different Notational Forms

Notational Form

Criterion SFN INF SFN+INF Tree PPF TBL GRA FDD SPC

Overall readability — + + + - ++ ++ ++ o+

Clarity of structure + + + +++ +  ++ = - -
of expression

Clarity of functional - — — — - + 4+ + ¥
dependencies

Compact + + + -— ++ - - - +
representation

Absolutely precise yes  yes yes yes yes yes no no yes
and accurate

Frequency of usein — + ++ —— — + + + +
practice

Dimension 1 1 1 2 1 23 2@ 2@ =

Can represent any yes no yes yes yes yes yes no yes
expression

Easy to write by + + + - + + - - +
hand

Easy to typein + + + -— + - == == ¥

Requires parentheses some yes yes no no yes no no *

Requires special no yes yes no yes yes no * *
symbols

3.5 EVALUATING VARIABLES, FUNCTIONS, AND EXPRESSIONS

The subject of this section is the definition of the value of a variable, function, or
expression—not calculating it in asequence of stepsin time by amechanistic process.
Within the Language of Mathematics itself, the value of a variable, function, or
expression is something—it is not calculated. No procedure for calculating the value
of anything isincluded in the universe of discourse of the Language of Mathematics
itself. A mathematical analysis of such a procedure is best viewed as an application
of mathematics, requiring a mathematical model and its interpretation to bridge the
gap between the temporal view of the calculation and the static view of the Language
of Mathematics, just as any other application would.

A variable name appearing in an expression is a reference to the value of that
variable. Therefore, the value of an expression is defined as the value of the expres-
sion obtained by replacing every variable name appearing in the expression by its
value. The value of the resulting expression containing functions and values only is
then determined by applying the definitions of the functions in the expression, the
parenthesis rules, and the binding orders (see Section 3.4.2).

Thus, the value of the expression depends on the context of the values associ-
ated with the variables. These values are usually determined by other terms in the
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mathematical model in which the expression appears. The topic of assignment of
values to variablesis covered in more detail in Sections 6.10, 6.11, 6.13, and 6.13.2.

In determining the value of an expression, several different situations can arise.
They lead to different types of results. The various situations are:

e The values of al variables in the expression are assigned (determined) and all
arguments of each function are in the domain of that function. Evaluation is
complete. See Section 3.5.1.

e Thevalueof at least one variablein the expression isnot assigned (determined),
but no argument of any function is outside the domain of that function. In
general, only partial evaluation is possible. See Section 3.5.2.

¢ One or more arguments of one or more functions in the expression are not in
the domain of the function(s). The value of the expression is not defined. See
Section 3.5.3.

3.5.1 Complete (Total) Evaluation

If the values of al variables in an expression are assigned (determined) and all
arguments of each function are in the domain of that function, the value of the
expression is defined to be the value of the expression obtained by replacing every
variable name by its value.
Example 1l Inthe context

XER AYER A ZER AX=25AYy=4 A z=15 [3.5.1-1]

the value of the expression

X+ yxzZ [3.5.1-2]
is

2.5+ 4%15 [3.5.1-3]
whichis

25+6 [3.5.1-4]

which is, in turn, 8.5. Notice that the arguments of the function * (product) are both
numbers and, therefore, in the domain of «. Similarly, the arguments of the function
+ (sum) are both numbers and, therefore, in its domain.
Example2 Inthe context

acB A YER A ZER A a=true A y=4 A z=1.5 [3.5.1-5]
the value of the expression

any<z [3.5.1-6]
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is

true A 4<1.5 [3.5.1-7]
whichis

true A false [3.5.1-8]

which is, in turn, false. Notice that the arguments of the function < (is less than or
equal to) are both numbers and, therefore, in the domain of <. The arguments of the
function A are both Boolean values and, therefore, in its domain.

3.5.2 Partial Evaluation

If the value of at least one variable in an expression is not assigned (determined), but
no argument of any function is outside the domain of that function, the expression
can be partially evaluated. The partially evaluated expression is the expression after
all the known values of variables have been substituted for their respective names
and subexpressions have been evaluated wherever possible.

Example 1l Inthe context
XER AYER A zEB AYy=4 A 2=15 [3.5.2-1]
the value of the expression

X+y*z [3.5.2-2]

X+ 4x1.5 [3.5.2-3]
so that the partialy evaluated expression is
X+ 6 [3.5.2-4]

Notice that the arguments of the function = (product) are both numbersand, therefore,
in the domain of . Although the value of X is not known, the term xeR ensures that
thevalue of x isanumber, so the arguments of the function + (sum) are both numbers
and, therefore, in its domain.
Example 2 Inthe context

WER A XER AYER A ZER A W=3 A X=5Ay=4 [3.5.2-5]
the value of the expression

W<X A Y=<z [3.5.2-6]

3<5A4<z [3.5.2-7]
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whichis

true A 4<z [3.5.2-8]
so that the partially evaluated expression is

4<z [3.5.2-9]

Although the value of z is not known, the term zeR ensures that the value of z is
a number, so the arguments of the function < (is less than or equal to) are both
numbers and, therefore, in the domain of <. The arguments of the function < are
both numbers and, therefore, in its domain. The arguments of the function A are both
Boolean values and, therefore, in its domain.

For most purposes in mathematics, reduced expressions as in Examples 1 and 2
above are desired and accepted as results of partial evaluation. In some contexts,
however, a partially evaluated expression is not desired as a result. In such cases,
the result can be considered undefined (as in Section 3.5.3), instead of a reduced
expression. A typical example occurs during the execution of a computer program,
when it is expected that the values of all program variables be defined.

When the value of at least one variable is unknown, only partial evaluation is
possiblein general. However, in certain situations, the val ue of an unassigned variable
isirrelevant and complete evaluation is possible, asin Examples 3 and 4 below.

Example3 Inthe context
XER AYER A ZER A X=5Ay=0 [3.5.2-10]

the value of the expression

X+Yy*Z [3.5.2-11]
is

54 0%z [3.5.2-12]
which is, for any numerical value of the variable z,

5+0 [3.5.2-13]
so that the evaluated expression is

5 [3.5.2-14]

Although the value of z is not known, the term zeR ensures that the value of zis a
number, so the arguments of the function  (product) are both numbersand, therefore,
in the domain of . The arguments of the function + (sum) are both numbers and,
therefore, in its domain.

Example4 Inthe context

WER A XER A YER A ZER A W=5A X=3 A y=4 [3.5.2-15]



82 ELEMENTS OF THE LANGUAGE OF MATHEMATICS

the value of the expression

W<X A Y=<z [3.5.2-16]
is

5<3An4<z [3.5.2-17]
whichis

fadsen 4<z [3.5.2-18]
so that the evaluated expression is, for any numerical value of the variable z,

false [3.5.2-19]

Although the value of z is not known, the term zeR ensures that the value of z is
a number, so the arguments of the function < (is less than or equa to) are both
numbers and, therefore, in the domain of <. The arguments of the function < are
both numbers and, therefore, in its domain. The arguments of the function A are both
Boolean values and, therefore, in its domain.

3.5.3 Undefined Values of Functions and Expressions

If one or more arguments of one or more functions in an expression are not in
the domain of the function(s), the value of an affected function is not defined and,
correspondingly, the value of the expression is not defined.
Example 1l Inthe context

acER AYER AZER A8=9AYy=4A2=15 [3.5.3-1]
the value of the expression

any<z [3.5.3-2]

9An4<15 [3.5.3-3]
which is not defined because the first argument of the function A isanumber, which
isnot in the domain of the function A. In the given context, this expression is not a
valid expression in the Language of Mathematics.
Example 2 Inthe context

WER A XER A YER A ZEB A W=3 A X=5 A y=4 [3.5.3-4]
the value of the expression

W<X AY<Z [3.5.3-5]

3<5A4<z [3.5.3-6]
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whichis

true A 4<z [3.5.3-7]
so that the reduced expressionis

4<z [35.3-8]

Although the value of z is not known, the term zeB in the given context indicates
that the value of z will be Boolean. Therefore, the second argument of the function
< (isless than or equal to) will be Boolean, which is not in the domain of <. That
is, for al values of z consistent with the given context, the value of the expression
is undefined. In the given context, this expression is not a valid expression in the
Language of Mathematics.

Example 3 This example illustrates a situation that arises also in computer pro-
grams, particularly in the conditional expression of certain types of loops.
In the context

i€eZ AneZ AO<i<nAkeSA[A]:jezZ Al<j<n:&j)eS] Ai=n

[3.5.3-9]
where S isalinearly ordered set, the value of the expression
i<nA a(i+1)<k [3.5.3-10]
is
n<n A a(n+1)<k [3.5.3-11]
whichis
false A a(n+1)<k [3.5.3-12]

Inthisexpression, neither the value of a(n+1) nor the type of thisvariableis specified
in the context. The context does not ensure that the value of a(n+1) will be a valid
argument of the function <, and, in turn, does not ensure that the value of this
expression will be defined. Expressed differently, there are many possible values for
the variable a(n+1) which are consistent with the given context but for which the
value of the function < (and, therefore, the entire expression) is not defined.

In many situationsit isuseful and appropriate to consider the value of an undefined
Boolean expressionto befal se. Such aconventionisby no meansuniversal or common
in mathematics, but can be introduced when and where useful. One proper way to
handle such situations in the Language of Mathematics is to extend each function
involved so that its domain includes any arguments and so that its value for arguments
outside the original domain is an appropriate value (e.g., either false asin this case,
or anew value indicating that the arguments are not in the usual domain).
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Such an extended function is defined in terms of an existing function, but it is
important to recognize that the two functions are different. An extended function will
not necessarily have al the propertiesthat the original function uponwhichitisbased
has (e.g., commutativity, associativity, relationships with other functions).

In the case of Example 3 above, one might wish to define an extended function
“islessthan” asfollows:

Xcy = x<y, if (x, y)eDomain(<),

= fase, otherwise [3.5.3-13]
Then, in the context
i€Z ANeZ AO<Zi<snAKkeSA[A]:jeZ Al<j<n:&j)eS] Ai=n
[3.5.3-14]
the expression
i<nAai+1)ck [3.5.3-15]
evauates to
fase A a(n+1)Ck [3.5.3-16]
and, because a(n+1) is unassigned and of unknown type, to
false A false [3.5.3-17]
and, inturn, to
false [3.5.3-18]

Note that the functions < and  do not share &l their properties. If one defines
the extended function 3 in terms of the function > in the same way as the extended
function C is defined above in terms of the function <, then

e (xZy) and (x3y) have different Boolean valuesif (x, y)eDomain(<), but
e (xy) and (x3y) are equal and both false otherwise[i.e., if (X, y)¢Domain(<)].

Thatis, itistruethat (x<y)=not(x>y), but it isnot alwaystruethat (X_y)=not(x2y).

In Example 3, the second argument of the logical and function is sometimes
undefined when the first argument is false. This pattern arises moderately often in
mathematical expressions. The more general formis

Bexpl A Bexp2 [3.5.3-19]

where Bexp2 is always defined when Bexpl is true, but Bexp2 is not always defined
when Bexpl is false. One way to avoid the consequences of an undefined value of
Bexp2 when Bexpl isfaseisto replace the expression Bexpl A Bexp2 by

Bexpl A [Ai : Bexpl : Bexp2] [3.5.3-20]
or, equivalently,
Bexpl A[Vvi: Bexpl: Bexp2] [3.5.3-21]



REPRESENTATIONS OF VALUES VS. NAMES OF VARIABLES 85

(wherei is avariable name not appearing in either Bexpl or Bexp2) or
Bexpl A [if Bexpl then Bexp2 else falsg] [3.5.3-22]

when such acase can arise. In expressions 3.5.3-20, 3.5.3-21, and 3.5.3-22, the value
of Bexp2 (and whether or not the value of Bexp2 is even defined) is relevant only
if Bexpl is true. These expressions correspond to a Boolean function called cand
(conditional and).

There are still other ways of handling situations in which values can be unde-
fined. The writer(s) of a mathematical model must decide which approach is most
appropriate for the application in question and then modify the expressions or define
extensions of the functions in question accordingly. The ideal way of handling such
special casesisto avoid them in the first place by writing all expressions so that all
values referenced in an expression are defined. Unfortunately, this cannot always be
achieved conveniently and easily.

In any event, the writer(s) of mathematical expressions should always consider
the question of whether or not al terms are always defined. When undefined results
can result, one should consider carefully what resulting values are appropriate for the
possibly undefined expressions and modify the relevant expressions accordingly.

3.6 REPRESENTATIONSOF VALUESVS. NAMESOF VARIABLES

Notice that the name of a variable consists of a sequence of symbols. A vaue is
also represented by a sequence of symbols (e.g., 425 for the number four hundred
and twenty-five). One can view a sequence of symbols such as 425 either as a direct
representation of the numerical value (i.e., as the value itself) or as the name of a
variable whose value isthe numerical value. The same can be said of arepresentation
of anonnumerical value such as red, rectangular, physician, true, or false. Whether
a particular sequence of symbolsisto be viewed as the name of a variable or as the
value itself is usually clear from the context, but it should also be stated clearly in
the interpretation of the mathematical model within which the sequence of symbols
in question appears.

Mathematically, it makes no difference whether a sequence of symbols represent-
ing a value is considered to be a direct representation of the value or the name of a
variable with that value, because the name of avariable is areference to the value of
that variable. Consequently, it does not really matter whether or not one makes the
distinction at all. In this book, the distinction is made because it is sometimes hel pful
to do so, particularly in the framework of the application domain.

The Language of Mathematics, being a static language, has no mechanism for
changing the value of a variable. A mathematical expression such as x=4 does not
set or change the value of X; it is a statement—which may be true or false—that the
value of the variable named x is 4. Not even the English statement “Let x=4" means
“set the value of the variable named x to 4”; instead, it really means “suppose”’ or
“assume that the value of the variable named x is 4" Similarly, definitions of the
values of functions (defined in Section 3.3) are static; they simply apply, without any
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reference to time. Therefore, whether the sequence of symbols 425 is viewed as the
name of avariable with the numerical value or as a direct representation of the value
is of no consequence.

In some contexts outside the Language of Mathematics, however, it can beimpor-
tant to distinguish between adirect representation of avalue and avariable associated
with that value. For example, in dynamic languages such as computer programming
languages, this distinction can be important and, therefore, should be made explicitly.
For example, in one compiler for a programming language with which the author
once worked, this distinction was not made and numerical constants were handled as
program variables with predefined values. The compiler applied some restrictions to
prevent the values of such constants from being changed, but not enough, and it was
possiblefor an executing program to change the value of anumerical constant such as
2. Subsequent arithmetic operations gave correspondingly incorrect results. After this
anomaly was reported to the computer manufacturer, the compiler was modified to
make the distinction between names of variables and direct representations of values.



4 Important Structuresand
Conceptsin the Language
of Mathematics

In addition to the basic elementsintroduced in Chapter 3, the Language of Mathemat-
icsincludes a number of structures and concepts composed of those basic elements.
The simpler, more fundamental, and most common of them are defined and described
in Section 4.1. More advanced ones are the subjects of the remaining sections.

The material in this chapter is intended to present and explain certain additional
mathematical terminology only: certain notational formsin the Language of Mathe-
matics and certain associated English terms used in mathematical texts. None of the
material inthischapter isintended to be atutorial on the mathematical topics covered
themselves. The explanations and examples are intended to convey an understanding
of certain notational forms, terms, and terminology, not acomplete mathematical un-
derstanding of the topics themselves. Many of these topics are the subjects of entire
books themselves.

Some of the extensions to the Language of Mathematics represented by these
structures can be viewed as interpretations of the more fundamental structures pro-
vided for major classes of applications. Probability theory, the subject of Section 4.6,
isagood example. It introduces no new component into the Language of Mathemat-
ics, but provides a structured “package”’ of previously defined elements for dealing
with, and reasoning about, random events and processes. Included in this package
are interpretations of elements of the Language of Mathematics in the terminology
of the many application areas that involve random processes.

41 COMMON STRUCTURESOF VALUES

In mathematics, one object is often built out of other, already defined objects. Within
the object being built, the components may be structured in some particular way,
characterizing the object being built. This approach is used in mathematics in order
to facilitate working with the new object and its component objects. It is particularly
useful when the newly defined type of structure arisesin many different applications.

A particularly common and useful structureisaset: acollection of different values,
without any other particular internal structure (defined in Section 4.1.1). Oftenin an
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application, different variables of the same kind arise (e.g., temperatures at different
places in a nuclear reactor). In such cases it is often useful to consider the closely
related variables as a collection of indexed variables, a structure also called an array
(defined in Section 4.1.2). In other cases it is useful to arrange a number of values
one after the other; such an ordered collection of valuesis called a sequence (defined
in Section 4.1.3). A structure can also consist of other structures, functions, and so
on. An example is the finite state machine, a structure consisting of three sets, two
functions, and a value of one of the sets (defined and discussed in Section 4.1.7). A
finite state machine is used, in turn, to define three sequences of relevance in typical
applications.

Equivalence and direct correspondence—important relationships between partic-
ular structures—are defined and discussed in Sections 4.1.4, 4.1.5, and 4.1.6.

411 Sets

A set is a collection of different values. The word different here emphasizes that
the values in a set are distinguishable from one another. Put still another way, any
particular value occurs at most once in a set. Each valuein aset is called an element
or amember of the set. No two elements of a set are the same—no two elements of
aset are equal to each other. A set may be empty, that is, it contains no element.

One way of writing a set isto enclose alist of its elementsin braces (e.g., {1, 2,
3, 4}). Another way to define a set isto specify a property that its elements, and only
its elements, have. This property is typically written as a Boolean expression. One
commonly used notation for thisis“{x | property(x)},” meaning that the set contains
all valuesx for which thevalue of the function property(x) istrue. Any notational form
can be used to write the expression for property(x). Other more general notational
formsfor writing an expression defining a set are presented in Section 3.4.8.

A setisastructure of values. A setitself isalso avalue. Hence, one of the elements
inaset can, itself, be a set.

Some common sets arising in mathematical work, the symbols used to refer to
them, and their definitions are:

e Natural numbers: N = {1, 2,3, ...}

e Natural numberswith zero: No = {0, 1, 2,3, ...}

e Integers: z ={... -3,-2,-1,0,1,2,3, ...}

e Rational numbers: Q = {x | x=alb, whereaand b are integersand b is not 0}
e Real numbers: R (see the paragraph below)

e Boolean: B = {false, true}

The real numbers include al the rational numbers and, in addition, the irrational
numbers, numbers that cannot be expressed as the ratio of two integers. Some exam-
ples of irrational numbers are +/2 (the square root of 2), = (the ratio of the circumfer-
ence of acircleto itsdiameter), e (the base of the natural logarithms), and many other
important mathematical constants. A more formal definition of the real numbersis
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given in Appendix C. To distinguish more clearly between the sets of the natural
numbers with and without zero, the symbol N; isoften used for theset {1, 2, 3, ...}.

The expression above defining the set of rational numbersiswrittenin amixture of
English and mathematics. In Section 3.4.8 amore general notational formispresented
for expressions involving “dummy” variables (*a” and “b” in the description above
of rational humbers).

An ordinary set has no internal arrangement or organization; it is an amorphous
collection of its elements. Various arrangements of the elements of a set can be
defined, if desired. A common arrangement is ordering a set as described in the next
paragraph. Other more extensive structures can be built upon a set, some of which
are described in Appendix D.

An order can be defined on a set by defining aBool ean function (afunction whose
value is an element of B) exhibiting certain properties. An ordering function, called
“orderf” below, must have two arguments, each of which is a value in the set in
question and must have the following two properties, where the variables x, y, and z
have valuesin the set.

e |f orderf(x,y) is true, the values of x and y are different and the value of
orderf(y, x) isfalse.

e If orderf(x, y) and orderf(y, z) are both true, orderf(x, z) istrue. Thisis caled
the transitive property.

The infix symbol < isfreguently used for an ordering function, especialy where
the elements of the set in question are numbers. For orders on sets whose elements
are not numbers, asimilar symbol such as  or < isaso sometimes used.

If, in addition to the two properties above,

¢ exactly one of the expressions orderf(x, y), x=y, or orderf(y, x) istrue for every
pair of elementsx andy in the set

the set is called alinearly ordered set. A set that is ordered but not linearly ordered
is sometimes called partially ordered.

Notethat the functions represented by the symbols < and > are not orders, because
they do not satisfy the definition of order above. The reader should identify why not:
What property of an order do they violate? These symbols are used for a convenient
composition of the functions < and = in the first case and of the functions > and =
in the second case. The functions < and > are defined as follows:

* X<y meansx<y V X=Y.
* X>Yy means x>y V X=Yy.

The combinations “isless than or equal to” and “is greater than or equal to” arise so
often in practice that a single function is warranted for each of these combinations of
functions.
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Functions of sets arise often in applications of mathematics. The functions de-
scribed below are among the most common functions on sets.

Thefunction ... isan element of the set ...” hasthevaluetrue or false, depending
on whether or not the value of the first argument (which may be any value) is a
member of the value of the second argument (which may be any set). The infix
symbol € isused for this function. For example, the value of the expression “4ez”
istrue, but the value of the expression “1.5€7” isfalse.

The union of two sets is the set containing those elements that are in either (or
both) of the argument sets. Theinfix symbol U isused for thisfunction. For example,
the value of the expression “{1, 3, 5}U{2, 4, 5, 6}" isthe set {1, 2, 3, 4, 5, 6}.

The intersection of two sets is the set containing those elements that are in both
of the argument sets. The infix symbol N is used for this function. For example,
the value of the expression “{1, 3, 5}N{2, 4, 6}" is the set containing no element
(i.e., the empty set, written { } or, more commonly, ¥). The value of the expression
“{1,3,5}n{1, 2, 3,4} istheset {1, 3}.

A memory aid for remembering that U standsfor “union” isthe similarity between
the symbol “U” and the letter “U” for union. Another memory aid is that a bucket
placed with its opening upward, asthe symbol “U,” will catch morerain than abucket
placed with its opening downward, as the symbol “N.” From the definitions above,
it is clear that the union of two sets will generally contain more elements than the
intersection; sometimes the union and the intersection will contain the same number
of elements, but never will the union contain fewer elements than the intersection.

The Cartesian product of two sets is the set of ordered pairs of elements in the
two sets. The infix symbol x is used for this function. By ordered pair is meant
apair of values, the first value being in the first set and the second value being in
the second set. For example, the value of the expression {1, 3} x{2,4, 6} is the set
{1, 2), (1, 4),(1,6), (3,2), (3,4), (3 6)}, consisting of six elements, each being a
pair of valuesin thefirst and second sets, respectively. The pair (2, 4) isnot in the set
{1,3} x{2,4,6} because 2 is not an element of the set {1, 3}. The pair (1, 3) is not
in the set {1, 3} x{2,4, 6} because 3 is not an element of the set {2, 4, 6}. The pair
(2, 3)isnotintheset {1,3}x{2,4,6} because 2 is not an element of the set {1, 3}
and 3 is not an element of the set {2, 4, 6}. Note that the Cartesian product is not
commutative (i.e., Sx T isnot, in general, the sameas T x S).

The difference of two setsisthe set of elementsin one set but not in the other. The
infix symbols\ and — are used for thisfunction. The symbol \ isthe more traditional
one, but the normal minus sign (—) has come into increasing use. For example, the
value of the expression {1, 2,3,4}\{2,4,6, 8} isthe set {1, 3}, the set of elements
in the first set that are not in the second set. In other words, the set X\Y isthe set X
with the elementsthat arealso in Y removed.

One set isasubset of another set if every element of the first set is also an element
of the second set. Theinfix symbol C is used for the corresponding function, whose
value is Boolean (i.e., is either “false” or “true”’). Thus, the value of the expression
“AcB” istrueif and only if every element of the set A isalso an element of the set B.
If any element of the set A isnot an element of the set B, the value of the expression
“AcCB” isfalse. Note that every set isasubset of itself by this definition.
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Two sets are equal to each other if and only if they contain exactly the same
elements, that is, if and only if each is a subset of the other. This condition is often
used as atest for the equality of two sets: (A=B) = ((ACB) A (BCA))

If the set A is a subset of the set B, the sets A and B may or may not be equal
to each other. Sometimes one wants to distinguish between these two situations. The
symbols C and < are used to make this distinction. These functions are defined as
follows:

* (ACB) means ((ACB) A (A#B)).
* (ACB) means ((ACB) v (A=B)).

In thefirst case, A isasubset of B but A and B are not equal (i.e., are not the same
set). In this case, A is called a proper subset of B. In the second case, A is a subset
of B and A and B may, but need not, be equal to each other. Note that the Boolean
and function A appears in the first expression above, while the Boolean or function
Vv appearsin the second.

Thelist above of setsof different types of numbersyields severa examples of sets
being subsets of other sets: N, the set of natural numbers, is a proper subset of Ny,
the set of natural numbers with zero. In turn, Ny is a proper subset of Z, the set of
integers. Z, inturn, is aproper subset of Q, the set of rational numbers, and Q is, in
turn, a proper subset of R, the set of real numbers.

Strictly speaking, the functions C and < as defined above are the same function
(theexpressions“AcB” and “ACB” awayshave the same value), so the two symbols
are redundant. However, in some mathematical writing, especially older material, the
symbol C was used in the sense of a proper subset (i.e., C meant C, not C asis
more common today). To prevent confusion arising from these different conventions,
it isrecommended that one use the functions and symbols C and < only, avoiding C
completely.

The change in meaning of the symbol C illustrates that the Language of Math-
ematics has undergone changes in the course of time, just as English has, and that
some ambiguity can arise from different writers using symbols or words in the dif-
ferent senses in vogue at different times. For example, when the author was young,
the English noun fag meant in slang usage “ cigarette,” nothing else. Today, its main
slang meaning is completely different, even unrelated. When writing for an audience
including all age groups, ambiguity can best be avoided by not using this word,
but by using instead an unambiguous synonym for the meaning intended. Similarly,
ambiguity can best be avoided by not using the symbol c, but by using C or C
instead.

Two sets are part of the definition of every function: the function’s domain and
itsrange. The domain of afunction is the set of values of the argument(s) for which
the value of the function is defined. Every value of the function isin the range of the
function. Consider, for example, the function + (*normal” mathematical addition),
which has two arguments, each of which must be areal number, and whose value is
areal number. The same applies to the function +. The function / is similar, but its
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second argument may not be 0, because division by zero is not defined. The relational
function < has two arguments, each of which must be areal number, while the value
of the function is either false or true (i.e., is a Boolean value). The same applies to
the other relational functions: <, >, and >. Therefore, the domains and the ranges of
these functions are as follows:

e Thefunction + hasthe domain Rx R and the range R.
e Thefunction * hasthe domain Rx R and the range R.
e Thefunction / has the domain R x (R\{0}) and the range RR.
e Thefunction < hasthe domain RxR and the range B.
e Thefunction < hasthe domain Rx R and the range B.
e Thefunction > hasthe domain RxR and the range B.
e Thefunction > hasthe domain RxR and the range B.

The name of a set (more precisely, the name of a variable whose value is a set)
is often printed in a particular type style, such as R and B above. This is done for
the convenience of human readers only. The particular type style itself conveys no
meaning or information in the Language of Mathematics.

As pointed out in Section 3.4.9, the relationship between afunction f, its domain
X, and itsrange Y is often written

fiX—> Y [4.1.1-1]

which is an abbreviation for—and is defined to mean the same as—the following
quantified expression:

[Ana:aeX:f(aeY] [4.1.1-2]

Trandated to English, this means “for every element ain the set X, the value of f(a)
isan element of Y. Quantified expressions such as this one are dealt with in detail in
Section 3.4.8.

412 Arrays(Indexed Variables), Subscripted Variables, and Matrices

An array is a group of closely related variables, usually with the same basic inter-
pretation. An array variable is a variable whose name is written in a particular way:
the name of the array followed by avalue, called an index, in parentheses[e.g., X(4)].
Any expression with a suitable value (see below) can be written for the index [e.g.,
X(y+z+3)].

To determine the value of an array variable, the index expression is evaluated.
The value of the array variable with that value of the index is the desired value. For
example, if y=2, z=1, x(4)=8, x(5)=9, and x(6)=7, then x(y+z*3) is x(5), which
is9.

A subscripted variableis essentially the same as an array variable, but it iswritten
in a different form. The index follows the name of the array as a subscript (e.g., X4,



COMMON STRUCTURES OF VALUES 93

Xy+z3). The difference between arrays and subscripted variables is notational and
historical only. It is not linguistically significant.

Notice that an array is, in effect, a function that maps the value of the index to
the value of the array variable. The index of the array variable is the argument of
the function, and the value of the array variable is the value of the function. The
conceptual views of a collection of array variables and of a corresponding function
are different, but thisisthe only difference. The effects and consequences of the two
are the same.

The different ways of writing the index—f(0), fo, and even fO—can be viewed as
only anotational difference. However, if one clearly distinguishestheindex from the
function name, as in the first two of the three notational forms above, an expression
can be allowed for the index. Thisis often very convenient when writing the various
expressions in amathematical model.

The variables in an array are usually of the same type; that is, their values are
elements of the same set. This restriction is not necessary, but it is convenient in
many situations, both from a mathematical and from an application viewpoint.

Index values are usually elements of a finite set of consecutive nonnegative inte-
gers, but thisrestriction is also not necessary. The index need not even be a number.
The set of index values may be infinite, although such usageisrare.

Inthe paragraphs above, the names of array variableswere shown with exactly one
index. More generally, array variables may have more than one index [e.g., &%, Y),
a(x, Y, 2)]. One can even view an ordinary variable asan array variable with O indices:
for example, the variable a as the array variable a().

Example In anuclear reactor, the temperature is measured at n different points.
The temperature at point i is the value of the array variable Temp(i) for i ranging
from 1 to ninclusive. The average temperature is, therefore,

average temperature = (Temp(1) + Temp(2) + --- + Temp(n))/n [4.1.2-1]

which can also be written as (see Section 3.4.8)

average temperature = (1/n) = »  Temp(i) [4.1.2-2]
i=1

The convenience of being able to write the latter expression illustrates the advantage
offered by array variables.

Other examples of array variables are names, addresses, and related data on
customers, the power of each of the several enginesin an airplane, and flow rates at
various placesin an oil pipeline network.

Other examples of indices to an array are “pointer” variables in some computer
programming languages and their implementations. The structure formed by pointer
variables and the objects to which they point is seldom thought of as an array, but
viewing it as such can facilitate understanding and working with pointer structures.
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The index (pointer) values are generally elements of a finite set of nonconsecutive
integers.

If the values of an array are written in atable, where the row number is one index
to the array and the column number is the other index to the array, the resulting
tableis called amatrix (plural, matrices). The definition can be generalized to one or
three or more dimensions (number of indices). In mathematics, several operations on
matrices are defined, including addition, multiplication, inversion, and transposition
(interchanging rows and columns).

4.1.3 Sequences

A sequenceis, as the name suggests, values arranged in order, one after another. The
linear order is the distinguishing characteristic. The three most common notational
formsfor sequencesarealist of theterms of the sequence, simplejuxtaposition of the
terms, and an array. An ordered pair, atriple, and, more generally, an n-tuple make
up another form of a sequence. These are described in the following paragraphs.

List A seguence isfrequently written by listing the values, one after another, sep-
arated by commas and enclosing the list in brackets. Each value in the list may be
written asthe value itself, the name of avariable with the value, or an expression: for
example, [4, x+z,5%a,5, 4, §].

Juxtaposition A sequence may also be written by juxtaposing the terms of the
sequence. For example, the word or name “George Brown” is a sequence of the
letters and symbols G, €, o, 1, g, €, a blank space, B, r, 0, w, and n. This notational
formis most frequently used when the entire sequenceisto beinterpreted asasingle
object, name, symbol, or value. The usua notation for the number one hundred forty-
six is 146, the sequence of digits 1, 4, and 6, but “146” is normally interpreted as a
single symbol for the single numerical value.

Array Anarray (see Section 4.1.2) can represent a sequence, the order of theterms
of the sequence being given by the order of the index values. For example, the array
awith itsarray variables and values

a(1)=46
a2)=2
a(3)=8
a4)=17
a(5)=34
a(6)=46
a7)=21

can represent the sequence [46, 2, 8, 7, 34, 46, 21]. Such an array is, in effect, a
sequence.

Because a sequence can be viewed as an array and an array can be viewed as a
function, a sequence can be viewed as a function. A sequence of values can, itself,
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be viewed as a single value. Such a single value may be a term of another sequence
(i.e., asequence may be aterm of asequence). For example, in the sequence[3, 82, 7,
[X,y, z],55], the fourth term is X, y, z], which is, itself, a sequence.

Notice that the arguments of a function can be viewed as a single sequence of
arguments. In this view, a function can always be considered to have exactly one
argument, which is a sequence of 0 or more values. That is, the functional reference
f(x,y, z+w, 4) can be viewed as a function of the single sequence [X, y, z+w, 4], that
is, asf([x,y, z+w, 4]).

In contrast to a set, the same value may appear more than once in a sequence.
Another important difference between a set and a sequence is that the elements of
a set are not necessarily ordered, but the terms of a sequence are aways linearly
ordered.

A sequence may be empty, that is, contain O terms. A sequence may contain
exactly 1 term. A sequence may contain any number of terms. A sequence may be
infinite: have no end, have no beginning, or have neither a beginning nor an end.

Two sequences can be combined to form one sequence by writing the terms
of the second sequence immediately after the terms of the first sequence, in
the original order. The resulting sequence is called the concatenation of the two
sequences. The infix symbol & is often used for this function. For example,
[1,4,6]&[3,7,9]=[1,4,6,3,7,9]. The order of the arguments is significant, that is,
A&B isnot, in general, the same as B& A.

If the terms of a sequence are rearranged (i.e., put into a different order), the new
sequenceis called a permutation of the original sequence. Therelationship ismutual;
that is, each sequenceis a permutation of the other. For this relation the infix symbol
Perm is sometimes used. For example, [3, X, 6, 6, y]|Perm[x, y, 3, 6, 6], and vice versa.
The sequence [X, Y, 3, 6] is not a permutation of [3, X, 6, 6, y] because one of the two
terms“6” ismissing from[x,y, 3, 6].

Concatenation & is afunction that maps two sequences to a sequence. The func-
tion Perm defined in the preceding paragraph maps two sequences to a Boolean
value: true if the two segquences are permutations of each other and false if they
are not.

Tuple A tupleisasequence usually written with parentheses( ) instead of brackets
[ ]. If atuple containstwo terms, itisusually called an ordered pair; if threeterms, a
triple; and if four or moreterms, an n-tuple. Thetermstuple and sequencearetypically
used in different contexts, but the meaning is essentially the same. The term tuple is
often used in definitions of structures, where the structure being defined consists of
several more basic components of different types. The structure is defined as atuple
of the components, each of which has certain stated properties. The elements of a
sequence are typically simple values, whereas the terms of a tuple are often more
complex structures, but this distinction is not defined sharply. The difference between
a sequence and a tuple is comparable to the difference between the words sick, ill,
and indisposed in English. These words all mean the same thing, but they are used in
different contexts (e.g., the monarch of a country would not be described as sick, but
instead, as indisposed).
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4.1.4 TheEquivalence of Array Variables, Functions, Sequences,
and Variables

The notational forms for variables, array variables, functions, and sequences are
equivalent in certain ways, as outlined briefly in Sections 4.1.2 and 4.1.3 and as
described more systematically below. Any of them can be formulated as a func-
tion of a single argument or index. Therefore, one has considerable freedom when
choosing which of these elements and structures to use when constructing a math-
ematical model. Notational convenience, correspondence with the application area
being modeled, and ease of reading are the main criteria for choosing among these
alternatives. Thesecriteriaare usually closely related in the eyes of the peoplereading
the mathematical model.

A function and an array with the same list of arguments or indices are mathemat-
icaly equivaent in the sense that they have the same meaning (values). A function
or an array with any number of arguments or indices is equivalent to a function or
array with exactly one argument or index, that argument or index being a sequence of
the original arguments. A variableis equivalent to afunction or array with an empty
list of arguments or indices. A variable corresponds in a certain sense to a sequence
with exactly one term (see aso the end of Section 4.1.5). A honempty sequence is
equivalent to a function of one argument, that argument being an integer in a set of
consecutive integers.

The following statements summarize the severa corresponding forms between
variables, array variables, functions, and sequences. In the statements below, var
represents a variable; arr, an array; func, afunction; [...], asequence; and ..., alist
of one or more arguments or indices:

e var, [var], arr(), arr([]), func(), and func([]) correspond with each other.
e arr(...), arr([...]), func(...), and func([ ...]) correspond with each other.

e arr(i), arr([i]), func(i), func([i]), and [ ...] correspond with each other, where the
value of i selectsaterm of the sequence.

Each of the array variables and functions of the form arr([]), arr([...]), func([]),
and func([...]) hasasingleindex or argument, a sequence.

Thus, these severa structures are al fundamentally the same. This is one of the
many comparable examples of correspondences between various objects and struc-
tures in mathematics. A few more are identified in Section 4.1.5. They illustrate the
generality inherent in mathematicsand inthe Language of Mathematics. They area so
examples of a characteristic shared with many other languages: the existence of dif-
ferent words, essentially synonymous, but connoting different aspects of the context.

4.1.5 Direct Correspondence of Other Mathematical Objectsand Structures

In Section 4.1.4 several mathematical structures were shown to be equivalent in a
certain sense, that is, to correspond directly to one another. Also in other situa-
tions one finds similar correspondences between different mathematical structures
and objects. Identifying such correspondences consciously and explicitly can often
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facilitate simplifying, analyzing, interpreting, and understanding mathematical ex-
pressions. Corresponding structures are alternatives between which the writer(s) of
mathematical models can choose.

Boolean Functions and Subsets One common example is the correspondence
between a Boolean function and the subset of its domain on which the function has
the value “true” If the Boolean function is named Zf and the subset of its domain
where the function is true is named Zs, it is sometimes useful to refer to both Zf
and Zs by the same name Z, even though this is not formally correct. The context
of each reference to Z will make it clear whether Zf (a Boolean function) or Zs (a
set) is meant. Because of this correspondence between a set and a Boolean function,
anything defined in terms of a Boolean function can be defined alternatively in terms
of a set, and vice versa. This correspondence also means that a set and a Boolean
function are not fundamentally different and separate ideas, but are, instead, closely
related concepts.

If thedomain of Zf is'S and Zsis a subset of the set S, then Zs and Zf correspond
directly intheforegoing senseif any of the following equivalent conditions are true:

[AX:xeS: Zf(X) = (xeZ9)] [4.1.5-1]
Zs=[UX:XeS A Zf(x) : {x}] [4.1.5-2]
Zf = [U X : xeS: {(x, xeZs)}] [4.1.5-3]

Expression 4.1.5-1 states that (1) Zf is true on the set Zs and false elsewhere and
that (2) Zf(x) istrueif and only if xeZs. Expression 4.1.5-2 states that Zs consists
of those elements and only those elements of S for which Zf is true. Expression
4.1.5-3 states that Zf maps all elements of Zs to true and al other elements of S to
false. It defines Zf as a particular subset of SxB. Viewing a function as a subset of
the Cartesian product of its domain and range and as a particular kind of relation is
discussed further in Section 4.1.6.

Given the set S, expression 4.1.5-1 can be used to define either Zf or Zsin terms
of the other. Expression 4.1.5-2 can be used to define Zs in terms of Zf. Expression
4.1.5-3 can be used to define Zf in terms of Zs.

Relations, dealt with in more detail in Section 4.1.6, are sometimes defined as
Boolean functions and sometimes as subsets. This direct correspondence shows that
either kind of definition is equivalent to the other kind.

Logical Functions and Set Functions Following from the paragraphs above, the
logical function A and the set function N correspond directly with one another, as do
thelogical function v and the set function U. Assume that the following are true:

e XsandYsare subsets of some set S.

e Xfand Yf are Boolean functionson S.

e Xsand Xf correspond directly with each other as described in the paragraphs
above.

e Ysand Yf correspond directly with each other as described above.
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Then the Boolean function XfAYT and the set XsNY's correspond directly with one
another. Also, the Boolean function XfvYf and the set XsUY's correspond directly
with one another. The proof of this theorem is|eft as an exercise for the reader after
reading Section 5.2.

Inthissense, thelogical function A and the set function N correspond directly with
one another, and the logical function v and the set function U correspond directly
with one another.

I mages, Preimages, and Related Functions  If the function f maps elements of the
set X to elements of the set Y, that is, if

X > Y [4.1.5-4]

it is often useful to talk about the image of a subset X1 of X under the function f. It
is defined to be the set of those elements of Y to which f maps elements of X1:

image(X1, f) = [Ua: aex1: {f(a)}] [4.1.5-5]

Note that the image is afunction of the subset X1 and the function f. Because of the
direct correspondence between this new image function and the original function f,
the image is often written as f(X1). Strictly speaking, thisis not correct, because the
two functions are different; f maps an element of X to an element of Y, whereas the
image function maps a subset of X to a subset of Y, so we should give a different
name to the image function. However, the context of every reference to f will make
it clear whether the original function f or the image function is meant.

Similarly, itisoften useful to talk about the preimage of asubset Y1 of Y under the
function f. It isusually written f~2(1) and is defined to be the set of those elements
of X that f maps to elements of Y1:

f71(v1) = [Ua: aeX A f(@)eYl : {a}] [4.1.5-6]

The inverse function of f (if it exists), also written f ~, maps each element y of Y
to that element x of X that f mapstoy. (The inverse function of f does not exist if f
maps two or more different elements of X to the same element of Y.) The preimage
function (which always exists) maps a subset of Y to asubset of X. Theinverse of the
function f and the preimage function correspond to each other in the same way that
the function f and the image function correspond with each other. Both the inverse
function and the preimage function are therefore often written in the same way, that
is, f~1.

Summarizing, afunction f and itsimage function, different from f but usually also
written as f, correspond directly with each other. Similarly, 1, the inverse function
of f (if it exists), and the preimage function, also written as 2, correspond directly
with each another.

A Singleton Set and Its Element A set consisting of only one element is called
a singleton set. Strictly speaking, a singleton set and its element are two different
things, two different mathematical objects. For example, consider a singleton set
consisting of the number 7. The singleton set {7} and its element, 7, are different
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objects. The number 7 can be added to another number, but a set (e.g., {7}) cannot
be added to anything. The union of the set {7} and some other set can be formed,
but the union of a number and a set is not defined. In some analyses, some authors
prefer not to have to make a notational distinction between a singleton set and its
element, because the distinction between the two is always clear from the context,
in particular, from the functions applied to them. A singleton set and its element can
be viewed as corresponding directly to one another. They can be written in the same
way without introducing any ambiguity.

Using the convention of not distinguishing notationally between a singleton set
and its element, expression 4.1.5-6 can be written without enclosing the variable ain
the set parentheses { }, asfollows:

f=1(v1) = [Ua: aeX A f(@)eYl : 4 [4.1.5-7]

Similarly, one could write {7} +5=12, athough this is not done, mainly because
itissimpler towrite only 7 instead of {7}. Therefore, the element alone is sometimes
written instead of the singleton set, but not vice versa.

In asimilar way, a sequence consisting of only one term (a singleton sequence)
and its term can be considered to be in direct correspondence to another and the
notational distinction dropped. This correspondence was mentioned in Section 4.1.4.

4.1.6 Relations

It is often useful to consider specific relationships, associations, or connections be-
tween values. The mathematical structurerelation isfrequently used for this purpose.
Some examples of relations and some of the ways of expressing them are given in
Table 4.1.6-1.

TABLE 4.1.6-1 Notational Formsfor Relations

English Infix Standard Functional Element of a Subset
2islessthan 4 2<4 IsLess(2, 4) 2,9 eL,

whereL ¢ RxR
12isgreater than 11 12> 11 IsGreater(12, 11) (12, 11) € G,

where G C RxR
3isequa to 3 3=3 Equals(3, 3) (3,3 €E,

whereE C RxR
Georgeisthefather  Georgef Sarah IsFather(George, Sarah)  (George, Sarah) € T,

of Sarah whereF C PxP
Jenny isthewifeof  Jenny w Thomas IsWife(Jenny, Thomas)  (Jenny, Thomas) € W,
Thomas where W C PxP

The two middle notational forms, infix and standard functional, both express
relationsasfunctionswith thevaluestrue and fal se. The column on theright expresses
the relations as subsets of a Cartesian product of appropriate sets. Both provide a
basis for defining arelation. The more common general mathematical definition of a
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relation is based on the latter: A relation is a subset of the Cartesian product of two
sets. The two sets may, but need not be, the same.

The observation that arelation can be expressed as either a Boolean function or a
subset is an example of the direct correspondence between a Boolean function and a
subset as pointed out in Section 4.1.5.

A function wasdefined in Section 3.3. Fromthat definitionit followsthat afunction
isaspecial kind of relation. A function relates each value of its argument with only
one value of the function, while arelation relates each value of its argument (the left
value in the pair of values being related) with one or more values (right value in the
pair). That is, afunction is arelation that relates every left value with only one right
value. Expressed more mathematically, arelation (set) Rel of ordered pairs of values
isafunction if and only if for al values of x, y and z, (x, y)eRel and (X, Z)eRel
imply that y=z.

Among the examples above, therelation “Equals’ isafunction. In amonogamous
society, the relation “IsWife” is also a function. The other relations above are not
functions.

Thereader should consider in what waysan order (see Section4.1.1) and arelation
are similar and different. Is an order a relation? Is a relation an order? Which is a
special case of the other?

Although convenient and often useful, the introduction of the separate concept of a
relation is not necessary. Any particular relation can be expressed either as aBoolean
function or as a set of ordered pairs of values. For such a Boolean function any of
the notational forms described in Section 3.4 may be used (e.g., infix or standard
functional notation).

Note that a relation on the sets X and Y can be viewed aternatively as afunction
fXx that maps each element of X to a subset of Y. It can also be viewed as a function
fy that maps each element of Y to a subset of X (cf. Section 4.1.5). The reader
should write a definition for each of the functions fx and fy using only mathematical
expressions (i.e., solely in the Language of Mathematics).

4.1.7 Finite State Machines

A finite state machine, often called an automaton in the theoretical literature, is
a mathematical structure often used to model dynamic processes in engineering
applications and to model controllers for such processes. Finite state machines have
been found useful in many other application areas as well.

Finite state machines are suitable for modeling processes in which discrete events
occur at successive points in time. To model continuous processes, differential and
integral calculusis more suitable and is used instead.

The basic idea of a finite state machine is that it exists in some state and, upon
receiving an input symbol, outputs a symbol and undergoes a transition to a new
state. Then, upon receiving another input symbol, the process continues, potentially
indefinitely. The output symbol depends on both the input symbol and the previous
state. A sequence of input symbolsis transformed into a sequence of output symbols
and, internally, a sequence of states.
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In afinite state machine, the state is its memory. It makes the input-to-output
transformation more general than it would otherwise be. Each state effectively re-
members the information in the preceding part of the input sequence that is needed
to determine the future part of the output sequence.

In practical applications, the “input symbols’ typically correspond to physical
events such as a person pressing a button, a person entering an elevator, or a door
reaching itsclosed position. The* output symbols’ correspond to actionstaken by the
machine on its environment, such as opening or closing an elevator door, applying
power to a motor to pull an elevator upward, or turning alight on or off.

Mathematically, afinite state machine consists of three finite, nonempty sets, two
functions related to these sets as described below, and an element of one of the sets.
These components are interpreted as follows. One of the sets is the set of states.
Ancther set is the set of input symbols. The third set is the set of output symbols.
One function determines the next state as a function of the preceding state and the
input symbol. The other function determines the output symbol as a function of the
preceding state and theinput symbol. An element of the set of statesistheinitial state.

More formally, afinite state machine consists of the following:

¢ A finite, nonempty set States

¢ A finite, nonempty set Inputs

e A finite, nonempty set Outputs

e A function NextState: Statesx Inputs — States

e A function NextOutput: Statesx Inputs — Qutputs

e Aninitia state s(O)eStates

This mathematical structure is used to define a function mapping a sequence of

input symbols into a sequence of output symbolsin the following way. If the input
sequenceis

[in(1), in(2),in(3),in(4), ...]

where each in(k)elnputs, the sequence of statesis defined to be
[s(0), 5(2). 5(2). S(3). s(4). -]

and the sequence of output symbolsis defined to be
[out(1), out(2), out(3), out(4), ...]

where for every value of k=0, 1, 2, 3,4, ...,

s(k+1) = NextState(s(k), in(k+1))
out(k+1) = NextOutput(s(k), in(k+1))

For some applications, the definition above of the function “output” is modified
so that its value is a (possibly empty) sequence of output symbols, not necessarily
exactly one output symbol.

Examples using finite state machines are the subjects of Sections2.12, 8.10, 8.11,
and 8.13.
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4.2 INFINITY

Many students, including the author of this book in his student days, have had
considerable difficulty with the concept of infinity in mathematics. Most of this
difficulty is due to the fact that the English word infinity is sometimes used in ways
that suggest that “infinity” isathing, an object, or avalue in the sense of Section 3.1.
However, the word infinity does not mean athing, an object, or avalue. The implicit
feeling that it does, and the fact that it does not can and often does lead to confusion.
What does infinity mean? Let’s break the word down into its component parts:

e The prefix “in-" means no, not, without, negation of whatever follows.
e Theword stem “fin” means end.
e The suffix “-ity” means a property, quality, characteristic, state, or condition.

The noun infinity means, therefore, the property of having no end, the quality of
being endless (without end)—no more, no less. It means a property, not a thing.

Some dictionaries include an additional meaning: an indefinitely large number or
amount. If your dictionary gives such a meaning, strike it out and forget it before
it confuses you, as it confused me for too long a time. Such a “definition” is at
best very misleading. It is mathematically wrong. It is self-contradictory and hence
meaningless, because no number, no amount, isindefinitely large.

The corresponding adjective infinite means without end, boundless. Again, if your
dictionary includes a definition such as “greater than any number,” strike it out and
forget it. “ Greater than any number” suggests the existence of some other number or
object whichisgreater than any number, and such asuggestion can bevery misleading
to anew student of mathematics.

Also, the use of the symbol “o0” in mathematics in connection with the concept
of infinity suggests to some people that it represents athing or avalue. This, in turn,
also confuses many beginners and even advanced students. This symbol is used in
expressions best thought of asidioms. For example, the pair of symbols — oo occurs
often and means“ increases without bound,” “increases unendlessly.” It does not mean
“approaches something very large” (a statement that is ambiguous and therefore has
no place in the Language of Mathematics). Similarly, it does not mean “ approaches
infinity” or “goesto infinity,” English phrasesthat would beliterally meaningful only
if the word infinity meant a value, which it does not. In other words, “—o0” in the
Language of Mathematics and “approaches infinity” or “goesto infinity” in English
are al best viewed as unfortunate idiomatic expressions.

Onewill sometimes hear or read the phrase “ aninfinite number of ... .” No number
is“infinite,” or without end, so the noun phrase “infinite number” is meaningless and
incorrect. The terms “infinitely many” or “unendlessly many” are perhaps better.
Still better, the entire clause in which the phrase appears should be appropriately
restructured and reworded.

Occasionally, alarge but finite set of numbers (a set containing a definite number
of elements) will be extended by an additional value representing any other number
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not already inthe set. The symbol oo issometimes used for the additional value. Some
computer arithmetic systems operate on a set defined in this way. In such a system,
the division function is defined so that the value of 5 divided by O, for example, isthis
additional value, often labeled “co.” Note that thisis not the standard mathematical
division. It isa similar—but different—computer division.

Examples: The sequence [1, 4, 9] isfinite. The sequence[1, 2, 3, 4, ...] isinfinite
because there is no end to the sequence; after every term in the sequence there is
another term following it. Asn— oo, (1/n)— 0. In English, asthe value of nincreases
without bound, the value of 1/n approaches O (i.e., becomes ever closer to 0). Seethe
discussion of limitsin Section 4.4.

In summary, the English adjective infinite means endless or having no end and
the English noun “infinity” means the property of having no end. “Infinity” isnot a
value.

4.3 |ITERATIVE DEFINITIONSAND RECURSION

It is sometimes convenient to define sequences and functionsin terms of themselves.
In other referencesto termsin asequence and to functionsit is also sometimes useful
to include references to themselves in their subscripts or arguments. Such repetitive
self-references in mathematical contexts are called iteration or recursion.

Example 1 Consider a sequence of numbers in which each term is the sum of its
index and the preceding term, whereby the value of the first termis 1. The termsin
this sequence can be defined iteratively as follows:

X =1 [4.3-1]

Xj = j+Xj—1, for all j#1 [4.3-2]
This defines the sequence

[1,3,6,10,15,21, ...] [4.3-3]

Example2 The factorial function of a positive integer n is defined as the product
of al integers between 1 and n inclusive. This English definition can be translated
into a recursive statement in the Language of Mathematics asin Example 1:

fac(l) =1 [4.3-4]
fac(n) = n«fac(n—1), for all n£1 [4.3-5]

Note that the definitions above define the values of the terms of the sequence or
the function for positive integer values of the subscript or argument only. For other
values of the subscript or argument, the value of the term or function is “defined” in
terms of the preceding value, but that value is not defined. Note also that a base case
[e.0., x3=1 and fac(1)=1 above] is aways needed to provide a basis for an iterative
definition.
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In Examples 1 and 2, iterative or recursive references were to the single preceding
valueof theindex or argument. Referencesto several other valuescan a so beincluded,
asillustrated in the following example.

Example 3 The Fibonacci function or sequence is commonly defined mathemati-
cally by the following recursive expression:

fib(0) =0 [4.3-6]

fib(1)) =1 [4.3-7]

fib(n) = fib(h—1)+fib(n—2), for n£0 and n#£1 [4.3-8]
The above defines the sequence

[0,1,1,2 3,58, 13,21, 34, 55, 89, 144, ...] [4.3-9]

The Fibonacci functionisof interest in certain areas of mathematics and of nature.

In the definitions in the examples above, different expressions applied depending
onthevalue of theargument or theindex in question. Theformat aboveiscommon for
selecting the appropriate expressions in mathematical texts written in a combination
of English and the Language of Mathematics. The choice of the applicable expression
can be written entirely in the Language of Mathematics by employing a selection
function, although thisis not common practice. If we define the value of the function
reference choice(Bexp, expl, exp2) to be the value of the expression expl if the
value of the Boolean expression Bexp is true, and the value of the expression exp2
otherwise, the three definitions above can each bewritten asasingle expression solely
in the Language of Mathematics:

xj = choice(j=1, 1, j+Xj_1) [4.3-10]
fac(n) = choice(n=1, 1, n«xfac(n—1)) [4.3-11]
fib(n) = choice(n=0 v n=1, n, fib(n—1)+fib(n—2)) [4.3-12]

The base case or the iterative part of each definition is selected by the function
“choice” instead of by the separate parts of the definitions as in the examples above.
The iterative or recursive nature of each definition remains.

It isimplicit from the context that the three equalities above are to apply for al
appropriate values of the index j and the arguments n. To be precise and complete,
one should express this explicitly by placing each of the three equations above in an
appropriate quantified expression:

[A] 1 jez A1<) X = choice(j=1, 1, j+Xj-1)] [4.3-13]
[An: nez A l<n:fac(n) = choice(n=1, 1, nxfac(n—1))] [4.3-14]
[An: nez A 0=<n:fib(n) = choice(h=0 v n=1,n,

fib(n—1)+fib(n—2))] [4.3-15]
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Iteration and recursion are related structurally to series (defined in Section 3.4.8).
A series can be defined iteratively and, conversely, an iteratively defined function can
often be expressed as a series. For example, consider the function s(-) defined by the
following series:

n

s(n) = > x(k) [4.3-16]
k=1
Note that
n—-1
s(n) = x(n) + > x(K) [4.3-17]
k=1

can be written as
s(n) = x(n)+s(n—1) [4.3-18]

Therefore, the function s(-) can alternatively be defined iteratively by the expres-
sions

s(0)=0 [4.3-19]

s(n) = x(n)+s(n—1), for all n£0 [4.3-20]
or, more completely and explicitly, by the corresponding quantified expression

[An:neZ A 0<n: s(n) = choice(n=0, 0, x(N)+s(n—1))] [4.3-21]

Thus, a translator and developer of a mathematical model for a practical appli-
cation has the choice of defining some functions either iteratively or as a series.
The relationship between the function in question and various aspects of the given
application and its environment will determine which approach is more natural, more
understandable, and easier.

4.4 CONVERGENCE, LIMITS, AND BOUNDS

Often, thetermsin asequence become closer and closer to acertain val ue, eventhough
no term ever becomes equal to it. An example is the infinite (endless) sequence

[1,1/2,1/3,1/4, ...] [4.4-1]

The terms in this sequence become—and remain—arbitrarily close to 0, but no
termis exactly equal to O.

Expressed more formally: For every arbitrarily small positive number €, some
term in the sequence deviates from O by less than €, and so do all following terms
in the sequence. One says that the limit of 1/n is 0 as n increases without bound
(as n“goes to infinity” in colloquial, but incorrect, language; see Section 4.2). The
sequence converges to 0. A common notation for thislimit is

lim (1/m) =0 [4.4-2]
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Inthe phrase above, “for every arbitrarily small positive number €,” theword small
is helpful to the reader in suggesting the concept or idea motivating the notion of
limit, but the word small islogically superfluous. If the deviation in question is less
than some number ¢, it is clearly less than any other value larger than €. Therefore,
the word small can be eliminated from a mathematical definition. The statement “for
every arbitrary positive number €, some term in the sequence deviates from O by
less than € and so do all following terms in the sequence’ is logically sufficient.
The word arbitrary adds subjective emphasis but makes no objective contribution to
the statement, so also the word arbitrary can be eliminated from this mathematical
definition without changing its meaning.

Formally, L isthelimit of the sequence [f(1), f(2), ... f(i), ... f(j), ...] of numbers
if, for every positive number €, some term in the sequence deviates from L by less
than € and so do all following termsin the sequence. Wetranslatethisinto aquantified
expression: “For every positive number €,

[Ve:eeR AEe>0: ...] [4.4-3]

“some term in the sequence” (or, in more mathematically oriented wording, “there
exists aterm in the sequence that”)

[Ve:eeRAe>0:[TiiezZAi=1: ..]] [4.4-4]

“deviates from L by less than € and so do all following terms in the sequence’

[Ve:eeR Aex>0:[Ti:ieZzAi=1:[V]:jezZ ni<]: |f()—L]| < €]]]
[4.4-5]

which, as mentioned in Section 3.4.8, can aso be written as

[neieeRAex>0:[ViiiezZAI=1:[A]:jezZ ANi<]:|f()—L| < €]]]
[4.4-6]

Notice how the English sentence above has been translated to a quantified expres-
sion step by step, quantification by quantification. Thefollowing slight revision of the
English sentence above might make the last step clearer: “For every positive number
€, someterm in the sequence and al following terms deviate from L by lessthan€.”
Often, restructuring an English statement in such a way makes it easier to transate
the statement into an expression in the Language of Mathematics.

The quantified expressions 4.4-5 and 4.4-6 are equivalent to the English sentence
“For every positive number €, some term in the sequence [f(2), f(2), ... f(i), ...] and
all following terms deviate from L by less than €.” The expression using the limit
notation aboveis

lim f(i) = L [4.4-7]

which by definition means expression 4.4-5 or 4.4-6.
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Note that expressions 4.4-6 and 4.4-7 are both Boolean functions of the value of
thevariable L and of thefunction f. In particular, in expression 4.4-7 in limit notation,
the variablei isnot afree variable; it is a quantified variable.

Expressions 4.4-5, 4.4-6, and 4.4-7 evaluate to either true or false, depending on
whether or not the value of L is the limit of the function f as its argument increases
without bound. Sometimes, one would like to know whether or not a sequence
converges (i.e., has alimit) without determining the limit (if it exists). A theoremin
mathematics states that a sequence converges if and only if after some term, every
two terms are arbitrarily close to each other. Expressed more precisely and in away
similar to the statement for a limit in earlier paragraphs in this section, a sequence
convergesif and only if for every positive number €, someterm in the sequence exists
such that every two later terms deviate from each other by lessthan e.

This statement can be translated step by step, quantification by quantification, as
earlier: For every positive number €,

[Ve:eeR Ae>0: ...] [4.4-8]
some term in the sequence exists

[Ve:eeRAe>0:[TiiezZAi=1: .. ]] [4.4-9]
such that every two later terms deviate from each other by lessthan €.

[Ve:eeRAex>0:[Ti:iez Aix=1:
[Vik:jez nkez ni<jni<k:|f()—F(K) < e]]]

If the value of expression 4.4-10 is true for the function f, the sequence [f(1),
f(2), ... f(i), ...] converges and has a limit. Such a sequence is caled a Cauchy
sequence. If the value of expression 4.4-10 is false, the sequence does not converge;
it has no limit.

An obvious exampl e of asequencethat doesnot convergeis[1, 2, 3,4, ...]. Clearly,
the values in this sequence increase without bound; they do not become closer and
closer to somevalue. Thetermsin this sequence do not become and remain arbitrarily
close to any particular value.

A less obvious example of a sequence that does not convergeisthe sequence[g(1),
a2, ...q(), ... 9(j), ...], where g isthe function

[4.4-10]

gn) =Y 1/i [4.4-11]
i=1

For large values of n, this function increases very slowly with n, but it does increase
without bound.

The definition above of the limit of a sequence can be generalized to afunction of
acontinuous variable. In other words, the argument of the function (f in the example
above) need not be an integer, but can be any real number. If f isafunction of areal
number, L isthe limit of the function f asits argument increases without bound if

[AneieeR Ae>0:[vb:beR:[AX:XeR A b=<x:|f(X)—L| < €]]]

[4.4-12]
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Below isagraph illustrating such a function. In this example, 1 isthe limit of the
function as the argument increases without bound.

Limit of f(x) as x increases without bound

=
o

f(x)

o P N W A~ OO0 O N 00 ©

0 10 20 30 40 50
X f(x) limit

In the examples above, the limit of the value of a function was defined as the
argument of the function increased without bound. A limit can also be defined as
the argument decreases without bound (e.g., becomes more and more negative). As
an exercise for the reader, modify expression 4.4-12 for afunction g as its argument
decreases without bound.

The notion of convergence to a limit can also apply to afunction as its argument
approaches some particular value. The argument need not increase or decrease in-
definitely. The argument need not actually become equal to the particular value it
approaches (e.g., if the function is not defined for that value of the argument). Simi-
larly, asin the case examined above, the value of the function need not become equal
to the limit. The value of the function need only become and remain arbitrarily close
to the limit.

For example, consider theval ue of the expression (x?—4)/(x—2). When theval ue of
X is 2, the value of thisexpression is not defined, because division by 0 is not defined.
However, as the value of x approaches 2, either from above (values of x greater than
2) or from below (values of x less than 2), the value of this expression becomes
and remains arbitrarily close to 4 (i.e., converges to 4). Therefore, mathematicians
say that the limit of the value of the expression (x?—4)/(x—2) is 4 as the value of x
approaches 2.

Functions defined in different regions of the argument can converge to different
limits, depending on whether the value of the argument approaches a particular value
from below or from above. Consider, for example, the function defined as follows:

f(x) =1/x, forO0<x<3
f(x) = 1, for x=3
f(x) = x—1, for3<x
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Asx increasestoward 3, the value of f(x) decreasesto 1/3. That is, the limit of f(X) is
1/3 asx approaches 3 from below. Asx decreasestoward 3, the value of f(x) decreases
to 2. That is, the limit of f(x) is 2 as x approaches 3 from above. When the value of
the argument is equal to 3, the value of the function is 1, which is neither of the two
limits. This function and its limits are shown in the graph below.

A function with different limits

Mathematical expressions corresponding to those given earlier but for a function
converging to alimit as the argument approaches a particular value X0 from one side
or the other are given below.

L is the limit of f(x) at xO as x approaches x0 from below if and only if the
expression

[nereeRAe>0:[vd:deRAdD>O0:

[AX:xeR AX0—d<x<x0: [f(X)—L| < €]]] [4.4-13]

istrue.
L is the limit of f(x) at x0 as x approaches x0 from above if and only if the
expression

[Ane:reeRAe>0:[vd:deRAdD>O0:

[AX:XERAXO<Xx<X0+d:[f(X)—L| < €]]] [4.4-14]

istrue.

The reader should notice how the two expressions above describe the limits of f(x)
in the graph above (1) as x approaches 3 from below and (2) as x approaches 3 from
above.

If afunction is smooth (in mathematical terminology continuous) at a point, the
limits as x approaches the point from below and from above will be equal to each
other and to the value of the function at that point. This statement is not the usual
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definition of continuous, but is equivalent to it. By the usua definition, a function f
is continuous at x0 if (and only if)

[ne:eeRAE>0:[vd:deRAd>O0:
[AX:XeR A |X—X0] <d: |f(X)—f(x0)| < €]]]

istrue. Thereader should understand why this definition and the statement in thefirst
sentence of this paragraph are equivalent ways of defining the mathematical term
continuous.

In the examples above, the values of the function approach the limit smoothly and
monotonically. This is not necessary; the values of the function can and sometimes
do increase and decrease as they approach the limit. The only requirement is that
the range between the peaks and dips decreases sufficiently so that for any small,
arbitrary deviation €, the value of the function comes and remains within € of the
limit for any positive €, no matter how small.

Notice the structural similarity among the several definitions above of alimit: For
any (every) arbitrarily small range (range F) of values of the function, there exists a
range (range A) of values for the argument of the function, such that the value of the
function for every argument in the range A iswithin the range F. This structure arises
often in mathematical expressions for convergence or limits of various kinds. It will
arise again in Section 4.5.

Sometimes oneisinterested in the largest (maximum) or the smallest (minimum)
value a variable or a function can have. Alternatively, upper or lower bounds are
sometimes of interest, even if these bounds are not actually taken on by the variable
or function of interest. The corresponding theoretical mathematical literature deals
with upper bounds, lower bounds, least upper bounds, greatest lower bounds, and so
on. These concepts are introduced briefly in the paragraphs below. Conceptually and
in the forms of the expressions arising, these ideas are similar to convergence and
limits dealt with above.

A value UB is said to be an upper bound of aset S if UB is greater than or equal
to every elementin S, that is, if the following quantified expression istrue:

[AX:XxeS:x<UB] [4.4-16]

Note that UB may, but need not, be an element of the set S.

Any value larger than one upper bound is also an upper bound, so the concept of
an upper bound is rather weak and inadequate for many purposes. The smallest of
the upper bounds of a set is a stronger and more meaningful characteristic of the set.
Therefore, theleast upper bound LUB (also called the supremum, abbreviated “sup”)
isdefined to be that upper bound of S whichislessthan or equal to every upper bound
of S. Theleast upper bound LUB must, therefore, satisfy the following expression:

[4.4-15]

[AX:xeS:x<LUB]A[ADb:[AX:xeS:x<h]:LUB<b] [4.4-17]

In most contexts arising in practical applications, it can be proved that if S is not
empty and that if any upper bound of S exists, aleast upper bound LUB satisfying
expression 4.4-17 exists.
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Lower bounds and greatest lower bounds are defined in the corresponding ways.
In many applications, the set S aboveis a subset of R, the real numbers.

45 CALCULUS

Calculus is a subdiscipline of mathematics that deals with the rate of change of
the value of one function or variable as the value of another variable changes. The
rate of change is the slope of the graph of the function or variables in question.
The mathematical term is the derivative of the one function or variable with respect
to the other.

The graph of y=x/2+1 in Example 1 in Section 3.4.6 isa straight line:

y
10

-15 -10 -5 0 5 10 15

-10

When x increases by 1, y increases by 1/2; when x increases by 2, y increases by
1; and so on. The slope of the graph is defined to be the change in y divided by the
corresponding change in x (i.e., in this example, the slope is 1/2). The slope is the
same at all places along the function because the graph is a straight line.

This notion can be generalized for functions whose graphs are not straight
lines, but curves. As an example, consider y=x2. If x increases from 0 to 1, y
increases from 0 to 1, so the slope over thisinterval is 1. If X increasesfrom 1to 2,y
increases from 1 to 4, so the slope over thisinterval is 3. If x increases from 1 to 1.5,
y increases from 1 to 2.25, so the slope over thisinterval is 1.25/0.5, or 2.5. Thus, the
slope over an interval of afunction whose graph is not a straight line varies depend-
ing on both the position and the length of the interval selected. If x increases from
1to 1.1,y increasesfrom 1to 1.21, so the slopeis0.21/0.1, or 2.1. If x increasesfrom
110 1.001, y increases from 1 to 1.002001, so the slopeis 0.002001/0.001, or 2.001.
The limit of the slope as the interval between the two values of x becomes smaller
and smaller is 2. Thislimit is called the Slope, or derivative, of the function x? at the
point x=1.
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The following is a graph of y=x3/9 and several straight lines from the base point
(x=1, y=1/9) to different points to the right. The several straight lines connect the
base point with points successively closer to the base point. The uppermost straight
line has a slope of 1. The second straight line from the top has a slope of 0.671.
The next-lower straight line has a slope of 0.5. The limit of the slope of such lines
as their rightmost points approach x=1 from above is /3. Thislimit is the slope, or
derivative, of the function at x=1.

Slopes and derivative
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0,4
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0.6 0.8 1 1.2 14 14 18 2 2,2 2,4
X

Cubic function Slope =1 Slope = 0.671 Slope =0.5 Slope (derivative) at x=1

Thelowest straight line in this graph has aslope of 1/3, the slope of the function at
x=1, and touches (includes) the base point. Note that in contrast to the other straight
lines shown in the graph, the lowest line never goes above the curve. It is tangential
to the graph of the function at x=1.

The general formulafor the slope of afunction f along theinterval fromxtox1lis

slope = (f(x1)—f(x))/(x1—x) [4.5-1]
or, equivalently,
dope = (f(x+dx)—f(x))/dx [4.5-2]

where dx is defined as the difference x1—x.
The derivative of f(x) with respect to x is most commonly written
df (x)
dx
but is also often written typographically more simply as df(x)/dx. Each letter “d”
indicates the “difference” or “differential” of the following value.

[4.5-3]
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The derivative of the function f(x) with respect to x is the limit of the slope
(expression 4.5-2) as dx approaches O:

f
% = dIim0 (f(x+dx)—f(x))/dx [definition of derivative, 4.5-4]
X—

The corresponding quantified expression defining the derivative of a function is
asfollows. The function g(x) is the derivative of the function f(x) with respect to x if
and only if

[ne:eeRAe>0:[vd:deR Ad>0:
[Adx:dxeR AO0<|dx| <d: |((f(x+dx)—f(x))/dx)—g(x)| <€]]] [4.5-5]

istrue. Notethat the only free variablesin this quantified expression are the functions
f and g and the argument value x. Thus, the derivative g is afunction of the function
f and the argument value x only. More generally, the derivative can be defined for
complex variables and functions also.

Aswithlimitsasdiscussedin Section 4.4, the derivative can be defined either as dx
approaches 0 only from above or only from below. Thisis meaningful if the function
f has a kink, a sudden, abrupt bend, at the argument value x in question. If only
the derivative from above is to be considered, the term O<|dx|<d in the quantified
expression above must be changed to O<dx<d. If only the derivative from below is
to be considered, this term must be changed to —d<dx<0. If the function f is not
defined for the argument value x, but is defined for al neighboring argument values,
a corresponding modification can be made to the quantified expression above.

The derivative of aparticular function f can be derived algebraically starting with
the expression 4.5-4 “definition of derivative” For example, if f(x) is defined to be
x2, then

(f (x+dx)—F (x)) /dx
((x+dx)®>—x2)/dx

(%% + 2xxs0X 4 (dx)2—x?)/dx
(2#xxdX + (dx)?)/dx

= [provided that dx O]
24X 4 dx

The expression 2+ x-+dx clearly becomes arbitrarily close to 2xx as dx approaches
0; that is,
dIimo((x+dx)2 —x?)/dx = 2xx [4.5-6]
IX—>
and, therefore, the derivative of the function f(x) = x? with respect to x is 2xx.

A derivativeisafunction, and one can consider itsderivative, that is, the derivative
of a derivative, also called the second derivative. The second derivative of f with
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respect to x iswritten d’f(x)/dx?. It isthe derivative of df(x)/dx, which can be written
as (d/dx)(df(x)/dx). This suggests the view that the derivative operator or function,
written symbolically as d/dx, is applied to the first derivative df(x)/dx. Derivatives
of derivatives can be continued indefinitely: for example, df(x)/dx?, d3f(x)/dx3, and
d*(x)/dx?.

In many applications one works with functions of two or more variables, and the
derivatives with respect to any or al of them are of interest. For example, in dealing
with waves (e.g., the displacement of a string in a stringed instrument, the voltage
acrossthewiresin atransmissionline, or an electromagnetic field in space) one might
define afunction amp (amplitude) with arguments x (representing the position along
the string or line or in space) and t (representing time). The derivative of amp with
respect to x is then written damp(x, t)/ox or simply damp/ax and the derivative of
amp with respect to t, damp(x, t)/at or simply damp/at. The symbol 0 is used instead
of dto indicate that the derivative in question is a partial derivative; that is, it isthe
derivative with respect to only one of the several variables (arguments of the function)
in question. The different partial derivatives are often related in ways depending on
the physics or other underlying characteristics of the phenomena in question. For
example, Appendix F illustrates some aspects of waves that can be derived from the
fundamenta wave equation, which relates the second partial derivative with respect
to x with the second partial derivative with respect to't.

As pointed out above, the usual notational form for the derivative is dy/dx or a
typographical variant thereof. Other notational forms are or have been in use, such
as f’ for the derivative of f and y for the derivative of y. It was also pointed out
above that the derivative of afunction f at argument value x is afunction of f and x.
The notational forms f’ and y do not explicitly indicate the variable with respect to
which the derivative is to be taken and are, perhaps therefore, not widely used. The
notational form dy/dx does make thisexplicit and clearly suggeststhe differential and
guotient nature of the terms underlying its definition, but it is not an otherwisetypical
notation for afunction. Something like d(f, x) would be amoretypical notation for the
derivative function, but it has not comeinto accepted use. Apparently, thefact that the
notation dy/dx suggests the quotient of adeviation iny divided by the corresponding
deviation in x is a significant reason for this notation becoming and remaining the
standard notational form for the derivative.

The integral of afunction f isafunction g such that f is the derivative of g. That
is, the integration operation is the inverse of taking the derivative. The integral of f
with respect to the variable x is written

/ £(x) dx [4.5-7]

Thisintegral isafunction g such that f isthe derivative of g. That is, g isthe integral
of f and f isthe derivative of g:

o) = / £(x) dx (4.58]

f(x) = dg(x)/dx [4.5-9]
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Notice that the derivative f is unique for a given g. However, the integral g is
unique for agiven f except for aconstant. If the function f(x) isthe derivative of g(x),
f(x) isalso the derivative of (g(x)+1), (9(x)+7), and so on. Thisfollowsfrom the fact
that any two functions that differ only by a constant have the same slope, and hence
the same derivative, at every value of the argument. For example, the derivative of
X2 + any constant is 2«x and, therefore, the integral of 2«x isx? + any constant.

The derivative of afunction was interpreted graphically above asthe slope (rate of
change) of the function at any argument value in question. The integral of afunction
f isinterpreted graphically as the area under the curve of the function f between two
values of the argument. This follows from the observation that the rate of change of
this area as one of the argument values changes is the height of the changing border
(i.e., thevalue of f at that argument value). Thus, the value of f is the rate of change
(derivative) of thearea, sotheareaisgiven by theintegral of f (i.e., thefunction named
g above). The two argument values bounding the area are called the limits of integra-
tion and the integral between the two limitsis called a definite integral. It iswritten

/ i f(x) dx [4.5-10]

where a and b are the limits of integration. The value of this definite integral is the
area under the curve f(x) between the argument values a and b.
For example, the area corresponding to the definite integral

2
/ f(x) dx [4.5-11]
1
is shaded in the graph that follows.
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Derivatives and integralsareimportant in many applications of mathematics. They
arisein very basic physical laws such as Newton’'s laws of motion. For example, if a
net force F isapplied to abody of massm, the accel eration of that body will be propor-
tional tothat forceand inversely proportional tothe massm. Acceleration istherate of
change of velocity with respect to time. The velocity is, in turn, the rate of change of
position of the body with respect to time. Thus, acceleration is the second derivative
of position with respect to time. Newton’s law can, therefore, be expressed as

F = mxd®x/dt? [4.5-12]

provided that the force F, mass m, position X, and time t are measured in
corresponding physical units.

Derivatives and integral s appear in connection with many other physical phenom-
ena. For example, energy isthe integral of force with respect to the distance through
which the force is applied:

b
Energy = / F(x) dx [4.5-13]
a

while power is the derivative of energy with respect to time:

Power = dEnergy/dt [4.5-14]
or, equivalently,
tl
Energy = Power(t) dt [4.5-15]

t0

When electrical energy is delivered to a user, a meter measures the amount of
energy delivered. The power delivered is the product of the voltage e and the current
i, each as a function of time. The traditional meter effectively measures the voltage
and current, multiplies these values, and integrates the product over time by an
appropriate configuration of coils, a magnet, a rotor, and other parts, but without a
computer! The meter effectively determines the value of the definite integral

current time

/ e(t)i(t) dt [4.5-16]
initia time

and displays this value continuously on a set of dials or digital wheels.

The three most common passive elementsin electrical circuits are the resistor, the
capacitor, and the inductor. The mathematical model of each isarelation between the
voltage e across the element and the current i flowing through it. The mathematical
models for two of these three elements involve derivatives with respect to time:

for the inductor: e = L x di/dt [4.5-17]

for the capacitor: i = C x de/dt [4.5-18]
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Other examples of derivatives arise in mathematical models of the storage and
flow of all types of liquids, such aswater, oil, or chemicals. The flow of aliquid into
a storage tank or reservoir minus the flow of the liquid out of the tank or reservoir
is the derivative with respect to time of the volume of liquid stored. The storage and
flow of gases, heat, and energy give rise to the same kinds of relationships involving
derivatives.

In business and commerce, derivative relationships arise in many places. Many
optimization problemsinvolve differential equations. Delivery from inventory repre-
sents changes (the derivative with respect to time) of inventory levels. Interest and
return on investment are the derivative with respect to time of the investment value.
Comparable notions of levels and flows appear even in double-entry bookkeeping,
with its two categories of accounts: balance sheet accounts (assets, liabilities, and
equity) and profit and loss accounts (income and expenditures). The latter category
represents short-term changes (sales, purchases) to the first-category levels (things of
value on hand, things owed or owned).

In this section we presented basic concepts of calculus—derivatives and
integrals—and introduced basic terminology commonly used in this mathematical
disciplineand especially initsapplication. Further aspectsof calculus, such assolving
equations and other expressions involving derivatives or integrals, are to alesser ex-
tent language topics, and to agreater extent mathemati cal topics, and hence go beyond
the scope of the book. They arethe subject of avery extensive mathematical literature.

4.6 PROBABILITY THEORY

Many important applications of mathematics require analyzing and reasoning about
events or outcomes of processes involving uncertainty (i.e., nondeterministic results
that cannot be predicted exactly with the information available). A common structure
for appropriate mathematical models has been developed within the area of applied
mathematics and it has become known as probability theory. It can be viewed as a
sort of generalized template for frequently repeating parts of mathematical models
for events and processes involving uncertainty. Much of the associated terminology
belongs to the interpretation of the mathematical model in the application domain
rather than to the Language of Mathematics proper. See the sections immediately
below for examples of interpretations of mathematical models and their parts and
Section 6.13 for adefinition of interpretation as used here.

The idea underlying the application of probability theory is that of the relative
frequency (likelihood) of occurrence of events that cannot be predicted exactly in
advance. A simple example is the result of rolling a die. Joint events resulting
from rolling two or more dice, or rolling one die many times in succession, are
more complex examples. Examples in important commercial applications include
demand for and sales of products, supplying articles from inventory, prices and
volumes of goods in financia markets, failure rates of mechanisms and systems,
and events leading to insurance claims. Examples in scientific and engineering work
include noisein electrical communication systems; nuclear decay; failure modes and
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frequencies in all kinds of physical components, devices, systems, and structures;
loads (such as from earthquakes) on such structures and systems; genetics, mutations
in DNA; and statistical analyses of |etters and words in texts in various languages.

From the standpoint of the Language of Mathematics, probability theory isnothing
other than a structure of sets and afunction as already introduced in earlier sections,
primarily Sections 4.1.1 and 3.3. How these sets and functions are combined and
interpreted to form probabilistic mathematical modelsfor many applicationsisshown
in the following sections.

Probability theory isaspecial case of measure theory in mathematics. In probabil-
ity theory, every probability isrequired to belessthan or equal to 1. In measuretheory,
the measure of aset can be any nonnegative real value; it isnot bounded above. Other-
wise, the mathematical model introduced in the following section appliesto measure
theory also.

It must be emphasized that most of the new terminology introduced in this section
and its subsections does not belong to the Language of Mathematics but to the
jargon of the application areas. This begins with the term relative frequency and goes
throughout the text in this section.

4.6.1 Mathematical Model of a Probabilistic Process

Mathematically, a nondeterministic process and the probabilities of its possible re-
sulting events are model ed with a combination of the following:

e A nonempty set S
e A nonempty set A of subsetsof S
e A function p mapping each element of A (subset of S) to areal number

all subject to the following requirements:

o (JeA.

* SeA.

* p(#)=0.

* p(S=L

e For every BeA, 0 < p(B) < 1.

e For every CeA and every DeA, CUDeA and CNDeA.

e For every CeA and every DeA, p(CUD) = p(C) + p(D) — p(CND).

The parts of this model are interpreted as follows. The elements of S are the
individual possible results (outcomes) of the nondeterministic process. The set S
includes every possible result of the process. So that every probability value can be
interpreted asarelative frequency, it must be areal number between O and 1inclusive.
The value of p(X) is the probability (likelihood) that the result of the processis an
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element of the set X; p(X) is a measure of the set X. This probability is interpreted
as the relative frequency with which some element of X occurs in a large number
of trials of the process. The probability that something resultsis 1, and that nothing
resultsis 0. The probability of the union of two disjunct (nonoverlapping) subsets of
S is the sum of the probabilities of the two subsets. In the case of two overlapping
subsets of S, the sum must be corrected for the otherwise double counting of the
intersection of the two subsets. To permit these calculations, both the union and the
intersection of every pair of subsetsin A must also bein A (so that the probabilities
of the union and the intersection are defined).

The structure (S, A, p) defined above is called the probability space of the non-
deterministic process in question. The set Sis called the sample space. Sometimes
the term probability space refers just to the set S. In the theoretical literature, the
Greek capital letter omega (€2) isoften used instead of S. Each element of A (asubset
of S) isoften called an event.

The result of a nondeterministic process is often represented by a variable that
either takes on values in the set S of the corresponding probability space (S, A, p)
as defined above or is afunction of the elements of S. Such a variable (or function)
is called arandom variable. Conditions or categories (sets) of values of the random
variable aretypically formulated as Boolean expressions [e.g., X=5, Xx<4, IsEven(x),
x=5vx=6, x=red]. Each such Boolean expression identifies an element of A (a
subset of S) (i.e. an event). The Boolean expression representing an event must
correspond directly (in the sense of the correspondence of a set and a Boolean
function presented in Section 4.1.5) to the subset of the sample space representing
the event in question. That is, the Boolean expression representing an event must be
equivalent to an expression of the form xeB (e.g., xe{5}, xe{1, 2, 3}, xe{2, 4, 6}),
where x is the random variable in question and B is the subset of the sample space
representing the event in question.

If the sample space Sisfinite, A istypicaly defined to be the set of all subsets of
S, and p is defined by assigning a probability to each element of S. The probabilities
of subsetsof S containing two or more elements of Sfollow from thelast requirement
listed above in the definition of a probability space. This approach can generally be
used to define the probability function p for acountably infinite sample space S also.
(A setiscountably infiniteif its elements can be put into aone-to-one correspondence
with the positiveintegers.) Otherwise, and particularly if the sample space Sisinfinite
and not countable, other approachesto defining the set A and the probability function
p must be employed.

The probability of the event xeB is p(B), where p is the function p of the corre-
sponding probability space (S, A, p) asdefined above. Thisprobability isoftenwritten
as Pr{xeB}. The notation Pr{xeB} may suggest to some that Pr is afunction whose
argument is a Boolean value, but the definitions above require that the argument of
afunction whose value is anumerical probability be a subset of the sample space S.
Note that Pr{xeB} is not the value of afunction of aBoolean value. The probability
in question depends on the set B, not on aBoolean value true or false. More generally,
Pr{Bexp}, where Bexp is a Boolean expression including one or more references to
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a random variable, should be interpreted as p(B), where B is the set of all values
of the random variable for which the value of the expression Bexp is true. In other
words, Pr{Bexp} is the probability of the set corresponding directly to the Boolean
expression Bexp as described in Section 4.1.5.

Notational forms such as Pr{x=5vx=6} and Pr{x<4} are used because they are
readable, simple in form, and easy to work with. However, it should aways be kept
in mind that they are written instead of aterm such asp(B), where B isasubset of S.
More specificaly, if Bexp isaBoolean expression containing referencesto arandom
variable x whose values are elements of a set (sample space) S, then Pr{Bexp} isan
abbreviation or an idiom for

p([U X : xeS A Bexp : {x}]) [4.6.1-1]

Noticethat the numerical value of the probability depends on the function represented
by Bexp (and the set corresponding to that Boolean function; see Section 4.1.5), not
on the value of Bexp for any particular value of the random variable.

Note also that if the Boolean expression Bexp contains references to more than
one variable, the notation Pr{Bexp} does not distinguish between random variable(s)
and other variables. Often, the context within the mathematical model will make the
distinction between these two different types of variables clear. If not, the distinction
will follow from the English statements in the interpretation of the mathematical
model defining the variables in question. When using the notational form Pr{Bexp},
one must ensure that this distinction is made explicitly somewhere. From a purely
mathematical standpoint, the notational formp([U x : xeSA Bexp: {x}]) ispreferable
because it distinguishes unambiguously between random and other variables in the
expression Bexp. On the other hand, the notation Pr{Bexp} is, to a human reader,
generaly clearer. It facilitates understanding the mathematical model in its entirety
and its connection with the practical application.

A notational form such as Pr{S, p,x, Bexp}, defined to mean p([U X : XxeS A
Bexp : {x}]), would represent a compromise between the two extremes and distin-
guish between random and other variables. However, this notation has not become
an accepted standard in the Language of Mathematics.

Defining the sample space completely and in detail is the most important step in
formulating a mathematical model of a nondeterministic (probabilistic) process. In
practice, this step is too often handled carelessly or only implicitly—or even not at
all—with the consequence that the model isinadequate or even wrong, and the results
of the analysis are not applicable. Each element of S should be defined in such away
that it cannot, even conceptually, be subdivided further.

For example, when modeling the process of rolling two dice, one should consider
the result of rolling each individual die separately, even if the two dice are identical
in appearance. One can conceptualy identify each die individually, and the sample
space should take this possibility into consideration. If one does not subdivide each
possible result in full detail, one is likely to make errors in assigning probabilities
to the resulting events (i.e., in defining the probability function p). Such errors will
generaly lead to incorrect conclusions about the probabilistic process involved.
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Example Rolling aDice:

After thedieisrolled and it finally comes to rest, one, and only one, of the six faces
will be up. We can identify these six possibilities with the numbers 1, 2, 3, 4, 5, and
6. The sample space Siis, therefore, the set {1, 2, 3, 4, 5, 6}. If each of these events
isequally likely, the probability of eachis 1/6 [i.e., p(1)=1/6, p(2)=1/6, etc.].

The probability of the event that the result of rolling the die is an even number
can be calculated from the requirements of aprobability space listed at the beginning
of this section. The event that an even number resultsis the event that either 2, 4, or
6 results. That is, the probability that the result is even is the probability of the set
{2, 4, 6}, which is p(2)+p(4)+p(6), which is 1/2. Correspondingly, the probability
that either 1 or 6 resultsis p(1)+p(6), whichis 1/3.

Thereader should consider astandard deck of 52 cards and the process of drawing
a single card at random (i.e., each card with the same probability). Calculate the
probability of each of the following:

¢ Drawing a spade

e Drawing ared card

e Drawing aface card

e Drawing ared face card

e Drawing acard that is either red or aface card

4.6.2 Mean, Median, Variance, and Deviation

If the elements of the sample space of a probabilistic process are numbers, it is
meaningful to define several numerical characteristics of the probability space. Some
of these characteristicsindicate the average or “typical” value generated while others
measure the typical variation of the values generated.

A common measure of the “typical” value generated by a probabilistic processis
the average value. In the terminology of probability theory, it is called the expected
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value or mean. Theideaunderlying the formal definition given below isthat the mean
is the average of the numbers that will result if the probabilistic process is repeated
many times.

In the case of rolling a die as described in Section 4.6.1, we expect a 1 to result
1/6 of thetimesthe dieisrolled; a2, 1/6 of the times; and so on. The average would
therefore be

1x1/6 + 2x1/6 + 3%x1/6 + 4%1/6 + 5x1/6 4 6x1/6 [4.6.2-1]
which isequal to
(14-24-3+4+4-5+6)*1/6 [4.6.2-2]

and, inturn, to 21/6 and to 3.5. Note that the mean (expected value) is not necessarily
avaluein the sample space S.
Formally, the mean is defined by the formula

mean = " vsp(V) [4.6.2-3]

VeS

or, using the more general form for a series (quantified expression) as introduced in
Section 3.4.8,

mean = [+ Vv : VES: vkp(V)] [4.6.2-4]

provided that Sisafinite or acountably infinite set. Otherwise, the mean isdefinedin
a corresponding way using integral calculus. Calculusis outlined briefly in Section
4.5, but is otherwise outside the scope of this book.

The expected value (mean) of the random variable Sis often written as E(S), using
the name of the sample space to represent the random variable in question.

Another measure of the “typical” value generated by a probabilistic processisthe
median, which is a value in the middle of the probability distribution (i.e., a value
bel ow which and above which the random variable occurs with equal probability). In
thecaseof rolling adieabove, avaluel, 2, or 3resultswith probability 1/2, and avalue
4,5, or 6 resultswith probability 1/2, so themedianinthiscaseisany number between
3 and 4. In such a situation, the midpoint is typicaly chosen (here, 3.5). Strictly
speaking, the term median is usually defined mathematically with regard to a (finite)
collection of numbers, not a probability space. Applying this term to a probabilistic
process requires in some situations adapting the definition above appropriately; for
example, M is the median if the probability that the random variable is greater
than or equal to M is at least 1/2 and the probability that the random variable is
less than or equal to M is also at least 1/2. The example below of the newsboy
problem requires such an interpretation of the definition of the term median.

If the probability function p is symmetric about the mean, the mean and the median
will be equal. The mean and the median can be different when the probability function
p is skewed, or assymetric. In the newsboy example below the mean and median are
different.
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The variation, or spread, of the values generated by a probabilistic process can
be defined in any of several different ways. The most common is the variance, the
expected value of the square of the difference between the value and the mean:

variance = [+ v : veS: (v—mean)?xp(V)] [4.6.2-5]

Squaring the difference effectively treats positive and negative deviations from
the mean equally. It also weights large deviations more heavily than smaller ones,
which for some types of analyses may be considered to be inappropriate. Note that
the dimension of the variance is the square of the dimension of the random variable,
so the two are not directly comparable. To facilitate such a comparison, the square
root of the variance is often taken; it is called the standard deviation or sometimes
the root mean square deviation.

To avoid the variance's overemphasis on large deviations caused by squaring
the deviation, the mean absolute deviation (abbreviated MAD) is sometimes used
instead:

mean absolute deviation = [+ v : veS: [v—mean| x p(v)] [4.6.2-6]

In theoretical analysesthe variance and the functionally related standard deviation
are by far the most commonly used of these measures of variation. The expressions
are easier to work with algebraically than the expressions for the mean absolute
deviation. In some practical applications the mean absolute deviation is used for the
reason mentioned above.

Example The newsboy problem isasimple and classical example of optimizing a
small business process. Early each day, the newsboy buys a number of newspapers,
which he then hopes to sell during the morning to passersby on their way to work.
Any newspapersleft unsold are worthless and he scrapsthem. His profit isthe amount
of money he receives for the newspapers he sells during the morning less his cost of
the newspapers he purchased at the beginning of the day. If he buys too many, the
unsold newspapers represent a potentially avoidable loss, and if he buystoo few, the
potential profit on the newspapers he could not supply represents a lost opportunity.
The newshoy wants to cal culate how many newspapers to buy each day to maximize
his profit.

The newsboy has collected data on the demand for newspapers each day for the
last 60 days. He recorded not only the actual number of newspapers he sold each day,
but also the additional number he could have sold had he had enough newspapers.
He believes that the demand varies randomly from day to day with no identifiable
pattern; that is, he believes that the data he has collected adequately represents the
probability distribution for the demand on any day. The following table summarizes
his data and shows on how many days he could have sold each particular number of
newspapers. The final column shows the fraction of days on which each number of
newspapers were or could have been sold (i.e., his best estimate of the probability of
that number of newspapers being demanded on any day).



124 IMPORTANT STRUCTURES AND CONCEPTS IN THE LANGUAGE OF MATHEMATICS

Number of Days on Which

N N Newspapers Were Demanded Probability
5 1 1/60
6 5 5/60
7 15 15/60
8 10 10/60
9 8 8/60

10 6 6/60

11 3 3/60

12 4 4/60

13 5 5/60

14 2 2/60

15 1 1/60

Thus, the sample space Sfor this probabilistic processisthe set of numbersin the
column“N" in thetable. The probability of each element in Sisshown inthe column
“Probability.”

The expected value or mean of the number of newspapers sold on any one day can
be calculated by applying the definition above to the problem as stated above:

15

mean = " Nxp(N) [4.6.2-7]
N=5
Inserting the numbers from the table gives
mean = 5%(1/60) + 6x(5/60) + --- + 14%(2/60) + 15%(1/60) [4.6.2-8]
and
mean = 541/60 = 9.0166666... [4.6.2-9]

That is, on average, the newsboy will sell slightly fewer than 9.02 newspapers per
day, provided that he bought enough to supply each day’s demand.

The median (middle value of the distribution) can also be determined from the
table above. The probability that N>8 is more than half and the probability that N<8
is also more than half; the “middle” value of N is one of the 10 occurrences of 8 as
the value of N.

Another way to see that 8 isthe “middle’ value of N isto look at the 60 days of
data the newsboy collected. From the table it is evident that the data (when sorted in
ascending order and written with 15 days per line) was

56,6,6,6,6,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,8,8,8,8,8,8, 8,8, 8,
8,9,9,9909090909, 10, 10, 10, 10, 10, 10,

11,11, 11,12,12,12,12, 13, 13, 13, 13, 13, 14, 14, 15

The middle point in this sequence of numbers is between the next-to-last 8 and the
last 8. The median is, therefore, 8.
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The variance can be calculated by applying the definition of variance above to the
datain the table and the mean as already calculated:

15
variance = » ~ (N—mean)?+p(N) [4.6.2-10]
N=5

Inserting the numbers from the table gives

variance = (5—mean)?x(1/60) + (6—mean)?«(5/60) + ---

+ (14—mean)?«(2/60) + (15—mean)2«(1/60) [4.6.2-11]

and
variance = 5.85 [4.6.2-12]

The standard deviation is the square root of 5.85, or 2.42. It indicates how large the
variation from the mean typically is.

Similarly, the mean absolute deviation can be calculated from the numbersin the
table by applying its definition:

15
mean absolute deviation = ) _ [N—mean|+p(N) [4.6.2-13]
N=5

Performing the cal culation in the sameway asabove givesavalue of 1.99 for the mean
absolute deviation. That is, the newsboy can expect his customers' daily demand to
be dightly more than 9 on average, but variations of 2 from this average will be
typical. Roughly speaking, daily demand varying from 7 to 11 will be normal and
usual. Such variations will represent an entirely normal risk in his business.

Thenormal risk in thisbusinessissignificant, so the newshoy, intending to become
an astute businessman, will want to control thisrisk in arational way and to prevent it
from destroying theviability of hisbusiness—and wasting histime. The only decision
that he can make is the quantity of newspapers to buy at the beginning of each day.
If he buys Q newspapers and during the day experiences a demand N, he will sell
the lesser of these two quantities[i.e., min(N, Q) newspapers]. If each newspaper he
buys costs him C and if he sells each newspaper for the price Pe each, his profit for
the day will be

profit = Pexmin(N, Q) — CxQ [4.6.2-14]

His expected profit, or mean profit, will be the average of expression 4.6.2-14
weighted by the probabilities of the various values of N:

15
expected profit = )~ (Pexmin(N, Q) — CxQ)xp(N) [4.6.2-15]

N=5

The newsboy will want to choose that value for Q which maximizes his expected
profit.

If Pe=1and C=0.3, calculating the profit expected for every value of the purchase
quantity Q yields the following numerical results:
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Purchase Quantity Q  Expected Profit

4 2.80
5 3.50
6 4.18
7 4.78
8 513
9 532
10 537
11 532
12 522
13 5.05
14 4.80
15 4.52
16 4.22

The newsboy should, therefore, buy 10 newspapers each day to maximize his
expected (average) profit, which will then be 5.37 per day. He will then have on
average 1.63 newspapers left over at the end of his sales day. How can one calculate
the expected number of newspapers left over?

Note that buying fewer than 5 newspapers cannot be optimum, because at least 5
can aways be sold. Similarly, buying more than 15 cannot be optimum, because no
more than 15 will ever be sold.

4.6.3 Independent Probabilistic Processes

If two probabilistic processes are modeled with the two probability spaces (S1, A1,
pl) and (S2, A2, p2) as described above, their combination can be modeled by the
Cartesian product of the two probability spaces and a probability function in which
the probability of every pair of results is the product of the individual results in
their individual probability spaces. That is, the probability space (Sc, Ac, pc) for the
combination of the two probability spaces aboveis

Sc = S1xS2 [4.6.3-1]
Ac = AlxA2 [4.6.3-2]
[AX,Y : XeALAYeA2: pe(X, Y) = pL(X) * p2(Y)] [4.6.3-3]

provided that the two processes are independent. “Independent” means that the two
processesdo not influence each other, that their resultsare not influenced by something
incommon, and that knowing theresult of one process does not affect the probabilities
of the results of the other. An exampleisthrowing two dice in such away that neither
affects the other, such as two different people rolling the two different dice, or
one person rolling one die first and another later, or one person rolling both dice
simultaneously but in such away that neither die affects the other in such away asto
alter the expected relative frequencies (the probabilities) of the results.
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Note that the probability of a pair of results from each of the two processes is
defined to be the product of the two probabilities of the individual results. The notion
of independence in the paragraph above is an argument for the plausibility of the
definition, but not alogical justification in arigorous sense.

Example Rolling Two Individually Identifiable Dice:

In this example, each die—the gray die and the white die—is rolled independently,
that is, in such away that the probability of any number appearing on one die is not
affected by the number that appears on the other die.

The probabilistic model for each die is the same as that for the one die in the
examplein Section 4.6.1. The probabilistic model for the combination of rolling both
the gray and white dice is formed by applying the formulas at the beginning of this
section. The combined sample space Scis, therefore,

Sc={(1,1), (1, 2), ...(1,6), (2. 1), (2.2), ...(2.6), ...(6, 1),
(6,2), ...(6,6)} [4.6.3-4]

where the first number in each pair is the number appearing on one die (e.g., the
gray die) and the second number in each pair is the number appearing on the other
die (e.g., the white one). The probability of each combination isthe same, 1/36 [i.e.,
pc(1, 1)=1/36, ..., pc(6, 6)=1/36].

From these values one can calculate the probabilities of various events of interest.
One such event is “snake eyes,” the event that a 1 is rolled on each die. Thisisthe
event consisting of only one element in Sc, namely (1, 1), so its probability is 1/36.

Another event of interest is that the sum of the numbers on the two diceis 7. The
subset of elements of Sc corresponding to this event is

{(1.6).(2.5).(3.4).(4.3).(5.2.(6.1)}

and because this set contains six elements, each with a probability of 1/36, the
probability of rolling a7 is 6+1/36, whichis 1/6. Thisisthe most likely sum that can
appear on the two dice. Why? The reader should calculate the probability of rolling
some other number, suchas 1, 2, 4, 11, 12, or 15.
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4.6.4 Dependent Probabilistic Processes and Conditional Probabilities

If two processes are not independent, they can be modeled by considering al individ-
ual possible results and their interaction explicitly and constructing the sample space
S, the set of subsets A, and the probability function p accordingly. The following
example illustrates this procedure.

Example Consider an urn containing b black balls and w white balls, where b>1
andw>1. Theballsinthe urn are thoroughly mixed and then aball is drawn randomly
fromtheurn (i.e., each ball is sel ected with the same probability). Afterward, asecond
ball is drawn randomly from the remaining balls. Among themselves, the black balls
are indistinguishable, and similarly, the white balls are indistinguishable among
themselves.

Thefirst ball drawn will be either black or white. The second ball will be either black
or white. So the combined sample space contains only four elements: {(black, black),
(black, white), (white, black), (white, white) }.

The various probabilities can be determined from the given numbersb and w. The
probability that the first ball drawn is black is b/(b+w) and the probability that the
first ball drawn iswhite is w/(b+w).

The probability that the second ball drawn is black depends on the number of
black and white balls remaining after the first drawing, and those numbers depend
on which color of ball was drawn the first time. This introduces dependence into the
process.

If the first ball drawn was black, there are b—1 black balls and w white balls
remaining in the urn. In this case, the conditional probability that the second ball
drawnisblack given that thefirst ball drawnwasblack is, therefore, (b—1)/(b—1+w),
and the conditional probability that the second ball drawn is white given that the first
ball drawn was black isw/(b—1+w).

If the first ball drawn was white, there are b black balls and w—1 white balls
remaining in the urn. In this case, the conditional probability that the second ball
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drawn is black is b/(b+w—1), and the conditional probability that the second ball
drawn iswhiteis (w—1)/(b-+w—1).

Notethat if b=1or w=21 (or both), certain of the probabilitiesaboveisO, indicating
that the event in question is impossible (e.g., if no white balls remain in the urn,
drawing awhite ball impossible and the corresponding probability is 0).

Thejoint probability that the first ball drawn isblack and the second ball drawn is
black isthe product of the following two probabilities:

¢ The probability that thefirst ball drawn is black, which is (b/(b+w))

¢ The probability that the second ball drawn isblack given that thefirst ball drawn
was black, which is ((b—21)/(b—1+w))

That is, thejoint probability that thefirst ball drawn isblack and the second ball drawn
isblack is (b* (b—1))/((b-+w)* (b—1+w)). The other joint probabilities are cal culated
in the same way.

The following table shows the various events and their probabilities.

TABLE 4.6.4-1 Probabilitiesfor a Dependent Probabilistic Process

Conditional
Color Probability Color  Probability of Colors of the
of of Color of Color of Second Two Balls
First of First  Second Ball Drawn Drawnin
Bal Ball Ball Given the Color  Order of Joint Probability of the Colors
Drawn Drawn Drawn of theFirst Ball Drawing of the Two Balls Drawn

black b/(b+w) black (b—1)/(b—1+w) (black, black) (bx(b—1))/((b+w)*(b—1+w))
white  w/(b—1+w) (black, white) - (bxw)/((b+w)* (b—1-+w))

white w/(b+w) black b/(b+w—1) (white, black) (wxb)/((b+w)* (b—1+w))
white  (w—21)/(b+w—1) (white, white) (wx(w—21))/((b-+w)x*(b—14w))

For the numerical example b=3 and w=7 illustrated in the drawing of the urn
above, Table 4.6.4-1 isasfollows:

Conditional

Probability of Joint
Color Probability Color of Second Probability of
of First of Color of Color of Ball Drawn Colors of the Two  the Colors of
Ball First Ball Second Ball  Giventhe Color BalsDrawnin the Two Balls
Drawn  Drawn Drawn of theFirst Ball ~ Order of Drawing Drawn
black 3/10 black 2/9 (black, black) 6/90

white 7/9 (black, white) 21/90

white  7/10 black 3/9 (white, black) 21/90

white 6/9 (white, white) 42/90
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The last two columns in each of the tables above show all the elements of the
sample space S and the probabilities of each. From the entries in those columns one
can calculate the probability of any possible outcome of the process of drawing two
ballsfrom the urn as described above. To do so, one must first express the outcome of
interest in terms of the elements of the sample space and then add the corresponding
probabilities.

For example, to calculate the probability of drawing at least one black ball, one
expresses this outcome as the subset {(black, black), (black, white), (white, black)}
of the sample space. The three probabilities are 6/90, 21/90, and 21/90, respectively,
and their sum is 48/90, which equals 8/15. Similarly, the outcome that one draws
one black ball and one white ball isthe subset {(black, white), (white, black)} of the
sample space, and its probability is 42/90, which equals 7/15.

A common notational formfor the conditional probability of the event Bexp2 given
the occurrence of the event Bexpl is Pr{Bexp2|Bexpl}. In the example above, if c1
and c2 are random variables whose values are the colors of thefirst and second balls
drawn, respectively, then the probability that the second ball drawn isblack given that
the color of thefirst ball drawn waswhite would be written Pr{c2=black|cl=white}.

More general conditional probabilitiesaswell as notational formssuch as Pr{x|y}
(where x and y are random variables) are formally defined in probability theory. For
example, the reversed conditional probability Pr{cl=white|c2=black} can also be
defined and an expression for calculating it can be derived. (Pr{cl=white|c2=black}
does not mean the same as Pr{c2=Dblack|cl=white} and their numerical values are
different.) These topics go beyond the scope of this book.

Among the many applications of conditional probabilities and related serial cor-
relation are linguistic analyses. Letter frequencies and their sequential dependencies
vary characteristically between languages and language groups. They can be helpful
in identifying the language of an unknown text and in identifying relationships be-
tween different languages. They can aso be used to correct or fill in gapsin damaged
texts. Extreme examples of different conditional probabilitiesin letter sequences are
the following: The letter sequence “cz” is much more common in Slavic languages
thanin English. If thefirst lettersin an English word are “throu,” it isvery likely that
the next two letters are “gh.” If a short sample of text in a contemporary language
contains the letter sequence “ough,” the sample is likely to be English, and most
other European languages can be excluded as possibilities. The statistical nature of
sequences of words can be used in similar ways.

4.7 THEOREMS

A theorem in mathematics is a statement that is true for al values of the variables
appearing in the statement. In the mathematical literature a theorem is often written
in a mixture of English and mathematical expressions, but every theorem can be
formulated as a mathematical expression only. A theorem can be any statement
(provided that it isalwaystrue), but itisusualy intheform “if X then Y”; that is, “if
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Xistrue, then'Y istrue’ or, more precisely, “if the value of the expression X istrue,
then the value of the expression Y is (must be) true.” This can be written in the form
of the mathematical expression

X =Y [4.7-1]

where X and Y are Boolean expressions. The expression X is called the antecedent,
the condition, or the hypothesis of the theorem and the expression Y, the consequent
or thesis. Theinfix symbol = representsthelogical implication function. Thedomain
of thisfunctionis BxB and its range isB. Thisfunction is defined in Table 3.3-1.

Any Boolean expression purported to be a theorem must be proved to be true
for every combination of values of the variables appearing in the statement of the
theorem. Proving theorems is the subject of Section 5.2.

Note that a theorem is, in the Language of Mathematics, just a Boolean expres-
sion: nothing more, nothing less. The Language of Mathematics itself provides no
way of specifying a Boolean expression to be a theorem—this must be stated in
English, typically in preceding explanatory text or simply by prefixing the mathe-
matical expression by the label “Theorem:.” More generaly, the interpretation of a
mathematical expression—nbe it atheorem purported to be true, a statement that may
or may not be true, an expression whose value is unknown or unimportant within
some context—Ilies outside the scope of the Language of Mathematics. See Sections
6.9, 6.12, and 6.13 and Chapter 7.

48 SYMBOLSAND NOTATION

In al written language, symbols are used to represent both concrete and abstract
things and concepts. The actual subjects of the writing never appear in the writing
itself. Sequences of symbols are used to form names—representations—of various
objects, such as variables, and to form other objects, such as expressions of several
kinds. Representations in the form of tables, diagrams, drawings, pictures, and so
on, are common in English texts and are al so often used to supplement mathematical
models (e.g., graphs, as described in Section 3.4.6).

The distinction between actual things and their representation is particularly great
inthe case of valuesin the Language of Mathematics. Values themselves can never be
included in texts in the Language of Mathematics; values are aways referred to with
intermediate symbols, names, or representations of one type or another. One should
aways keep in mind, for example, that the sequence “241” of the symbols*“2,” “4,”
and “1” is not the numerical value, but only represents it. Many other sequences of
symbols can represent this value, such as, CCXLI, 41, C1, F1, 361, 11110001, two
hundred forty-one, zweihunderteinundvierzig, oo, and Y¢ . Thesingledigit 2isnot
the numerical value; it only represents or symbolizesit. The same distinction applies
in English; theword “ cat” only represents acat. It also appliesto names representing
values. “George Smith” is not the person (value); it represents a person named
George Smith.



132 IMPORTANT STRUCTURES AND CONCEPTS IN THE LANGUAGE OF MATHEMATICS

One can say that nothing in any languageisreally defined precisely. The definition
of every word relies on the definitions of other words, so thereisno solid, independent
foundation upon which to build. Instead, one relies on general consensus on the
meanings of basic terms, symbols, and words and then builds on that consensus.
Typically, that consensus is based on certain observable things, but many abstract
terms cannot be based completely and only upon commonly agreed things observed
in the physical environment.

In principle, the foundations of the Language of Mathematics are similarly prob-
lematic, but the Language of Mathematics is founded on fundamental concepts that
have been kept as few in number and as simple as possible. The most important
of these basics are values, the definition of which is left open (see Section 3.1),
and certain symbols used to form names of variables and functions, representations
of values, and expressions. The rules by which the symbols may be combined are
defined precisely, and the rules by which expressions and their components may be
mani pulated are al so defined precisely. Symbolsand their manipulation play agreater
and more centra role in the Language of Mathematics than they do in English and
other natural languages. The linguistic emphasis in the Language of Mathematicsis
on symbols and notation. Within the Language of Mathematics, their meaning plays
asimple and very limited role. We assign meaning to mathematical objects through
our interpretation of them, and thistakes place outside the L anguage of Mathematics.

The very limited number of fundamental basics upon which the Language of
Mathematicsisbuilt leadsnot only to thelimitations of the Language of Mathematics,
particularly itslimited universe of discourse, but alsotoits precision and unambiguity.

In Section 1.1 the main purposes of languages were identified as communicating,
thinking, and reasoning. The relatively precise definitions of the foundations of the
Language of Mathematics compared to those of natural languages make the Lan-
guage of Mathematics much more suitable for reasoning and analyzing. In fact, such
reasoning and analyzing can be reduced to manipulating mathematical expressions
according to precise, well-defined rules. Because the rules are so well and precisely
defined, mathematical expressions can be transformed mechanistically. Subjectivity
has been eliminated from the process and has been replaced by objectivity. Decid-
ing which transformations to apply in any particular case is not so mechanistic, and
typically requires human knowledge, insight, and experience, but whether or not the
proposed transformations are permitted is clearly defined.

In other words, the strengths of the Language of Mathematics in the area of rea-
soning and analyzing are founded in the precise definitions of its notation system
and the rules for manipulating symbols deriving from those definitions. Thus, sym-
bols and notation play an even more important and critical role in the Language of
Mathematics than in the natural languages.



5 Solving Problems M athematically

The stepsin the overall process of going from an actual problem to a mathematically
founded solution areillustrated in the following diagram:

English mathematical
text model

A4
mathematical English
solution text

In this chapter only the mathematical aspects of this process, that is, transforming
the mathematical model into a mathematical solution, are considered. This step is
represented by the vertical arrow in the diagram. Transating the English text into a
mathematical model is the subject of Chapter 7.

Finding a mathematical solution from the mathematical model involves trans-
forming the expression constituting the mathematical model into aform that is either
equivalent to or that follows logically from (isimplied by) the mathematical model.
Thisisdone by modifying the mathematical model and subexpressionsinitinaseries
of steps. Each step transforms a subexpression according to standard mathematical
rules. The rules guarantee that either the value of the overall expression is preserved
or that the initial expression logically implies the resulting expression.

Mathematically, the goal of thistransformation isusually to find valuesfor certain
variables or definitions of certain functions. Ultimately, one strivesfor afinal expres-
sion that contains subexpressions giving the desired values directly. In the process,
it may be necessary to formulate and prove new transformation rules: that is, to state
and to prove theorems.

Theinitial mathematical model can be thought of as a specification of the solution.
The final, transformed expression contains the solution in the form of values for the
previously unknown variables and functions.

actual
problem

implemented
solution
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In some cases the goal isto optimize some quantity: to find values of variablesand
functions so that some quantity ismaximized or minimized. Parts of the mathematical
model will restrain the solution found in some way.

More detailed descriptions of how the desired solution can be derived from the
original mathematical model are the subjects of the following sections.

51 MANIPULATING EXPRESSIONS

Asoutlined above, the purposes of manipulating subexpressionsin the mathematical
model are (1) to transform one expression into another form with the same meaning
(value) and (2) to draw logical conclusions relevant to the desired solution. In either
case, the manipulation should be valid for all values of the variables appearing in the
expression.

It should be emphasized that transforming mathematical expressions from one
form to another does not, and cannot, generate new information. Manipulating an
expression into an equivalent form maintains all the information in the original
expression but expresses it in a different way. The different form is often intended
to express information in a way that human readers can understand or interpret
more easily. Manipulating an expression into a form that logically follows from the
origina expression can, and usualy does, lose information. Again, the purpose of
the manipulation is often to express the information in aform more useful to human
readers. Manipulating a mathematical expression can help one to discover facts and
information that were already there but not readily apparent. It can help to improve
insight into a problem or a solution represented by the mathematical expression, but
it cannot create new information or facts.

Every transformation of a mathematical expression is ultimately justified by one
of only three principles:

e Equals may be substituted for equals.
e Applying the same function to equal arguments gives equal results.

e Particular properties of specific function(s) ensure that certain transformations
arevalid.

The first two principles are general and apply to al types of expressions. Be-
cause the third type of transformation depends on particul ar properties of parts of the
expression in question, such transformations are applicable only in specific circum-
stances.

The first principle for manipulating mathematical expressions—equals may be
substituted for equals—is simple, but the devil lies in the details: What is equal to
what? Also, the opposite of theruledoesnot alwaysapply: Evenif two subexpressions
are not equal for al values of the variables appearing therein, one may sometimes
be substituted for the other without changing the value of the overall expression.
Whether or not such a substitution is permitted depends on the context within which
the substitution takes place. Thisis discussed further below, with examples.
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The second principle—applying the same function to equal arguments gives equal
results—isadirect consequence of the definition of afunction (see Section 3.3). This
principle can be expressed mathematically as

(a=b) = (f(a)=Ff(b)) [5.1-1]

whereaand b arevalues, variables, or expressionsand f isany function. Thisprinciple
isthe basis for many common transformations of expressions, including those often
described as “canceling” and “moving a term” from one side of an eguation to the
other. Neither “canceling” nor “moving aterm” is, itself, avalid transformation. Only
when the desired effect can be achieved by the application of the second principleis
the transformation justifiable.

The third principle gives rise to many specific transformation rules based on cer-
tain properties of the relevant functions. Such properties, in turn, follow from the
definitions of the functions in question. Among these properties are the commuta:
tive, associative, and distributive properties, satisfied by functions such as addition,
multiplication, logical and, and logical or. An example of another particular property
of multiplication isthat the product of two numbersiszero if and only if at least one
of the numbersis zero. In mathematical notation this can be written as

(xxy=0) = (x=0V y=0) [5.1-2]

This identity, or transformation rule, is useful, for example, in solving some types
of equations. Evaluation of subexpressions containing only values is still another
example of applying the third principle.

The following points are overriding guidelines to observe when transforming
expressions or parts thereof.

e Watch both implied and explicit parentheses to be sure that you are really
substituting what you think you are substituting. For example, x+y=y+Xx, but
2xx+Yy does not always equal 2xy+X, because X+y is not a subexpression of
2xx+y. The subexpressions of 2«x+y are 2+X, y, 2, and X. 2*(x+Y) does equal
2+ (y+X), because x+Y is a subexpression of 2x(x+Yy). This problem can arise
with any functions, not just addition and multiplication.

¢ By applying the same operation to both sides of an equation to obtain a second
equation, the first equation implies the second. The reverse is not always true;
that is, the two equations are not necessarily equal. They do not necessarily have
the same value for all values of the variables appearing therein. For example,
x=y impliesthat 0+ x=0+y, but Oxx=0+y doesnot imply that x=y; that is, itisnot
generaly truethat (x=y)=(0xx=0+y). If both sides of an equation aremultiplied
by any number other than zero, the two equationsare equivalent. If themultiplier
can be zero, the two equations are not equivalent. This phenomenon arises with
many functions, not just multiplication. With nonarithmetic operations, even
more careiscalled for. Only if the operation isreversible will the two equations
be equivalent in general.
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e “Canceling” aterm is often mentioned as a possible transformation, but it is
not a legitimate operation. Only if the effect can be achieved in some other
legitimate way is the result correct. For example, arc=bAc is not equivalent
to a=b and it does not imply that a=b. The equations x+z=y-+z and x=y are
equivalent because the first can be transformed to the second by adding —z to
each side, whichisalwaysallowed, and the second can betransformed to thefirst
by adding z to each side, which is always allowed. Note that this transformation
can be performed only if aninverse (here, —2z) of the term to be canceled exists.
There are no inverses of Boolean values with respect to either the logical and
or the logical or, so Boolean values cannot be “canceled” from each side of an
equation.

e “Moving” aterm from one side of the equation to the other is aso often men-
tioned as a convenient transformation, but it also is not a legitimate operation.
With numerical equations the effect can be achieved by adding or subtracting
the term to be moved to both sides of the equation. Again here, aswith “ cancel-
ing” above, an inverse must be added to both sides of an equation to effect the
transfer of a term from one side of the equation to the other. When no inverse
exists, the term cannot be “moved” from one side of the equation to the other.
For example, x+y=z isequivalent to x=z—y, but anb=c cannot be transformed
into any equation with a on the left side of the equation and b and ¢ on theright
side.

e |f equals are added to equals, the original equations will imply the result, but
not vice versa. Similarly, if equals are subtracted or multiplied or divided by
equals, the origina equations imply the result, but the result does not imply the
original equations. See the example in expression 5.1-3.

Note especially the difference between equality and implication. If one needs
to maintain equality of the original and resulting expressions but wants to use a
transformation for which the first expression only implies the second, then one
should include the original expression in the second expression. This hasthe effect of
retaining all original information, permitting implication in both directions, thereby
ensuring equality. For example,

(a=b A c=d) = (at+c=b+d) [5.1-3]

but (a=b A c=d) is not in general equal to (a+-c=b+-d). It is, however, aways true
that

(a=b A c=d)=(a=b A c=d A atc=Db+d) [5.1-4]

Thisisan application of the transformation rulethat if x=y, then x=xAy. In English:
If x impliesy, then x and xAy always have the same value. This can be seen easily
by considering the two cases x=false and x=true. If x isfalse, x and xAy are both
false, regardless of the value of y. If x istrue, soisy, so x and xAy again have the
same value.
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Another exampleis
(z=2+X A X=4+y) = (z=6+Y) [5.1-5]

in which equals have been substituted for equals (the subexpression 4+y has been
substituted for x in the leftmost equality) to obtain the equality on the right side of
the implication. This implication goes in one direction only; the two sides of the
implication are not, in general, equal. From z=6-+Yy one can conclude nothing about
the value of x. But

(z=24X A X=44Y) = (z=24+X A X=44+Y A Z=64Y) [5.1-6]

Having noted the overall principles and potential pitfalls above, we now turn to a
series of useful identities that are useful in transforming mathematical expressions.
Each serves as a basic pattern. The variables in each pattern can be applied to
values, variables, functions, or subexpressions in the expression that one wishes to
transform.

Thefirst group of identities deals with numbers and the operations of addition and
multiplication. Readers will have learned them in school.

TABLE 5.1-1 Identitiesfor Sumsand Products

Sum Product Comments

X+y =y+z Xxy = y*2Z + and * are commutative
(X+Y)+2z = x+(y+2) (x*y)*Z = xx (y*2) + and * are associative

— Xx(Y+2) = (X*y)+(x*2) + does not distribute over

* distributes over +

The commutative, associative, and distributive laws also apply to the logical
functions and and or (A and V). In fact, each of these functions distributes over
the other.

TABLE 5.1-2 Identitiesfor the Logical Or and the Logical And

Logical Or Logical And Comments
XVY = yvz XAY = YAZ v and A are commutative
(xvy)vz = xv(yvz) (XAY)AZ = XA(YAZ) v and A are associative

XV(YAZ) = (XVY) A (XVZ) XA(YVZ) = (XAY) V (XAZ) each distributes over the other

Because of the associative laws for the functions +, *, A and Vv, parentheses
can be dropped in expressions involving sequences of any of these functions; that
is, because (x+y)+z = x+(y+2), either may be abbreviated as x+y-+z. The two
expressions with this abbreviation always have the same value, so this type of ambi-
guity is of no consequence. Many other functions are not associative, however, and
expressions with parentheses involving them either may not be abbreviated or require
additional conventions for dropping parentheses (see Section 3.4.2). Subtraction and
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division are commonly used functionsthat are not associative; for example, (a—b)—c
and a—(b—c) mean different things and often have different values. Note that each
of the identities above is valid for all values of the variables appearing therein.
Additional identities often used in transforming Boolean expressions are given in
Section 5.2.4.

The following examples show how an expression can be transformed using the
principles and identities above. The three examples also illustrate extremes of manip-
ulative steps: In Example 1, full detail is given, showing each individual justification.
In Example 3, many individual steps that are obvious to someone with moderate
experience are combined into asingle step. Example 2 is intermediate between these
two extremes.

Examplel Thefollowingexpression containstwo egquationsinvolving thevariables
x andy. Thegoal of thetransformationsisto determinevaluesof x andy that satisfy the
expression (i.e., for which it istrue). In this example, each and every transformation
step is shown in full detail. In practice, several of the steps below would be com-
bined into one step in several places in the transformations below, asin Examples 2
and 3.

XER A XER A X+y=4 A X+2xy=6

= [insert equality derived from definition of multiplication by 2]
XER A XER A X+y=4 A X+2xy=6 A 2*y=y+y

= [substitute equals for equals (i.e., y+Y for 2y in the middle equation)]
XER A XER A X4+y=4 A X+2xy=6 A X+y+Yy=6

= [substitute equals for equals (i.e., 4 for x+y)]
XER A XeR A X+y=4 A X4+2%y=6 A 4+y=6

= [apply the function sum to the equal arguments (4-+y, —4) and (6, —4)]
XER A XER A X+y=4 A X+2xy=6 A (4+Y)+(—4)=6+(—4)

= [+ is commutative, so exchange terms on the | eft side of the last equation]
XER A XER A X+y=4 A X+2xy=6 A (y+4)+(—4)=6+(—4)

= [+ isassociative; regroup parentheses on the left side of the last equation]
XER A XER A X+Yy=4 A X+2%y=6 A y+(4+(—4))=6+(—4)

= [substitute equals for equals: 4+(—4) is zero, property of inverse]
XER A XER A X+Yy=4 A X+2¢y=6 A y+0=6+(—4)

= [substitute equals for equals (i.e., 2 for 6+-(—4) in the last equation)]
XER A XER A X+y=4 A X+2+xy=6 A y+0=2

= [...4+0is..., property of +0]
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XER A XER A X4+y=4 A X+2xy=6 A y=2

= [substitute equals for equals (i.e., 2 for y in the first equation)]
XER A XER A X+Y=4 A X+2xy=6 N y=2 A X+2=4

= [apply the function sum to the equal arguments (x+2, —2) and (4, —2)]
XER A XER A X+Yy=4 A X+2¢y=6 A y=2 A (X+2)+(—2)=4+(—2)

= [+ is associative; regroup parentheses on the left side of the last equation]
XER A XER A X+y=4 A X+2xry=6 A Yy=2 A (X + (2+(—2))=4+(—2)

= [substitute equals for equals: 2+( —2) is zero, property of inverse]
XER A XER A X+y=4 A X+2xry=6 A y=2 A X+0=4+(—2)

= [...40is..., property of +0]
XER A XER A X+y=4 A X+2xry=6 A y=2 A X=4+4+(—2)

= [substitute equals for equals (i.e., 2 for 44+-(—2) in the last equation)]
XER A XER A X+Yy=4 A X4+2%y=6 A y=2 A X=2

The expression above contains the desired result: The only solution of the original

expression aboveisthe value 2 for x and the value 2 for y (i.e., only for these values
of x and y isthe original expression above true).

Example 2 Example 1 is repeated here, but the solution is found using different

transformations. Also, several steps below are actually combinations of several more

detailed steps.
XER A XeER A X4+y=4 A X+2+y=6

= [apply the function sum to the equal arguments (x+y, —y) and (4, —y)]
XER A XeR A X=4—y A X+2xy=6

= [apply the function sum to the equal arguments (X+2xy, —2xy) and

(6, —2xy)]

XeR A XeR A X=4—y A X=6—-2*y

= [substitute equals for equals (i.e., 4—y for x in the last equation above)]
XER A XER A X=4—y A X=6—2%y A 4—y=6—2xy

= [apply the function sum to the equal arguments (4—y, 2xy—4) and
(6—2+y, 2xy—4)]

XER A XeR A X=4—y A X=6—2%y A y=2
= [substitute equals for equals (i.e., 2 for y in the first equation above)]

XER A XER A X=4—Yy A X=6—2xy A Yy=2 A X=2



140 SOLVING PROBLEMS MATHEMATICALLY

Again, the expression above contains the desired result: The only solution of the
original expression aboveisthevalue 2 for x and the value 2 for y.

Example 3 The examples above are repeated here as a moderately experienced
person would combine steps.

XeR A XeR A X+y=4 A X4-2xy=6

= [apply the function difference to the equal arguments (X+2xy, X+Y)
and (6, 4)]

XER A XER A X4+y=4 A X+2+xy=6 A y=2
= [subtract the last equation from the first equation]
or: [substitute equals for equals (i.e., 2 for y in the first equation above)]
XER A XER A X4+y=4 A X+2xy=6 A y=2 A X=2

Note that because each step in the transformations above is valid for al values of
the variablesin the expressions, the transformation consisting of the entire sequence
of stepsisalso valid for al values of the variables.

These three examplesiillustrate that although a large number of individual justifi-
cations are logically required to manipulate the original expression into the solution,
with some practice and experience one can group a fairly large number of indi-
vidual steps into one and reduce very considerably the effort required to find the
solution.

52 PROVING THEOREMS

As discussed in Section 4.7, atheorem is a Boolean mathematical expression that is
purported to be true for all values of the variables appearing in the expression, and
that has been or isto be proved. A theorem is often of the form X=Y, where X and Y
are Boolean expressions. The expression X is called the antecedent (or hypothesis)
and the expression Y is called the consequent (or thesis).

Unless stated explicitly otherwise, atheorem is assumed to apply for all values of
the variables appearing in it. This is sometimes stated in the English formulation of
atheorem but is usually not included in the mathematical expression of the theorem.
One should be consciously aware that the expressioniis, at least implicitly, embedded
in a corresponding quantified expression as defined and described in Section 3.4.8.
Because a theorem is intended to apply for al values of the variables appearing
therein, each step in the proof of a theorem must be valid for al values of the
variables.

The following sections outline and describe various ways of proving theorems
and convenient mathematical notation for recording and presenting proofs. Examples
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illustrate the application of the ideas. Frequently used equalities for transforming
expressions are given.

5.21 Techniquesand Guidelinesfor Proving Theorems

Frequently used techniques and guidelines for proving a theorem (an expression of
the form X=Y) include the following:

e Transform the antecedent X of the theorem into the consequent Y (the classical
approach). The transforms may show equivalence or that one expression implies
the next.

e Show that the theorem X=Y is equivalent to the logical constant true for all
values of the variables appearing in thetheorem. Transformations demonstrating
equivalences or reverse implications may be used. However, transformations
demonstrating forward equivalences may not be used, because anything implies
true, so a transformation showing forward implication would prove nothing
using this technique.

¢ Prove by contradiction, that is, prove that the theorem X=Y cannot be false.
This is usually done by assuming that the theorem is false (i.e, that X is
true and Y is false) and showing that a known fact is contradicted. Then,
the assumption (XA—Y) must be false [i.e., =(XA—=Y) must be true]. Thisis
equivalent to =X VY, which, in turn, is equivalent to X=Y, thereby proving the
theorem.

e Prove by induction. Prove the theorem for a base case. Then prove that if the
theorem istrue for one case, it istrue for the next case. For example, prove that
the theorem is true when n=0, and then prove that if it istrue for n, it is aso
true for n+1. In thisway, one proves that the theorem is true for n=0, for n=1,
for n=2, and so on (i.e., for all nonnegative integer values of n).

e Construct a truth table, a table of all possible combinations of values for
the variables appearing in the theorem and the corresponding values (false
or true) of the theorem. If al values of the theorem are true, the theorem
is proved; otherwise, counterexamples are identified. This approach is feasi-
ble for theorems referring to values in small sets (e.g., Boolean values) or
(rarely) when the combinations of values can be grouped into asmall number of
categories.

With all of the techniques above, expressions are, where appropriate, transformed as
described in Section 5.1 using additional identitiesin Section 5.2.4.

There is no standard, general way to find a sequence of steps to prove theorems.
Finding aproof is, therefore, in general, acreative process. For most theoremsarising
in practice, this is not a problem standing in the way of applying mathematics.
Many helpful approaches and guidelines are available. With increasing experience,
proving theorems arising in practical applications of mathematics becomes ever
easier.
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Examples illustrating the use of the techniques above are included in Sec-
tion 5.2.3.

5.2.2 Notation for Proofs

The following format is particularly convenient for documenting proofs;

expression 1 [comment about the expression to the | eft]

= [justification for the step between the expressions above and below]
expression 2 [comment about the expression to the left]

= [justification for the step between the expressions above and below]
expression 3 [comment about the expression to the | eft]

[...]

[...]

The above is defined to mean (expression 1 = expression 2) and (expression 2 =
expression 3), and so on.

Similarly,
expression 1 [comment about the expression to the | eft]
= [justification for the step between the expressions above and below]
expression 2 [comment about the expression to the |eft]
= [justification for the step between the expressions above and below]
expression 3 [comment about the expression to the | eft]

[..]
[..]

is defined to mean (expression 1 = expression 2) and (expression 2 = expression
3), and so on.

The text or expressions in brackets at the right margin are comments intended
for the human reader to facilitate understanding the proof. They are not part of the
mathematical expressions.

Using the classical proof technique outlined in Section 5.2.1, the first expression
in the sequence of expressions is the antecedent X. The final expression is Y. Each
individual step may prove equality (=) or forward implication (=). No reverse
implication (<) is permitted.

Using the second proof technique outlined in Section 5.2.1, thefirst expression in
the sequence of expressionsis the entire theorem (X=Y) itself. The final expression
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isthelogical constant true. Each individual step may prove equality (=) or reverse
implication («<). No forward implication (=) is permitted.

Using the technique proof by contradiction outlined in Section 5.2.1, the first
expression in the sequence of expressions is the negation of the theorem (XA—Y)
or, equivalently, (—(X=-Y)). The final expression is the logical constant false or,
aternatively, any expression knownto befalsefor all values of the variables appearing
therein. Each individual step may prove equality (=) or forward implication (=). No
reverse implication (<) is permitted.

Using the technique proof by induction outlined in Section 5.2.1, the proof is
divided into two parts. The first part proves that the theorem is true for some value
of some variable, called the variable of induction. The second part proves that if the
theorem is true for some value of the variable of induction, it is true for the next
value of that variable. The first and final expressions in each part of the proof are as
outlined above, depending on the technique used in each part of the proof. See the
example of a proof by induction in the latter part of Section 5.2.3.

5.23 Lemmata and Examples of Proofs

A theorem used in the proof of another theorem is sometimes called alemma (plural
lemmata). In the literature on logic the first three lemmata below are often pre-
sented as basic rules of logic. They follow from the definitions of the Boolean
functions A, v, —, and = given in Table 3.3-1. If X, Y, and Z are expressions with
Boolean values (i.e., if XeB A YeB A ZeB), the following lemmata are true. Note
that the expression XeB A YeB A ZeB is an antecedent of each of the following
lemmata.

[(X=Y)A(Y=2)] = (X=2) [Lemmal]
X=Y) = (=Y=>—X) [Lemma 2]
X=Y) = =(XA—Y) [Lemma 3]
X=Y) = (=XVY) [Lemma 4]

These lemmata are proved below. The proofs serve not only to allow the lemmata
to be used in proofs of other theorems, but also to show how the above-mentioned
principles and techniques can be used in proofs of theorems.

Lemmalisanimportant basisfor essentially al proofs. By applying it iteratively,
it enablesaproof to be madein any number of stepsinwhich each expressionimplies
the next. The original expression is the antecedent X of the theorem to be proved,
and the final statement is the consequent (here, Z).

Proof of Lemma 1l Lemma 1 can be proved by constructing atruth table as shown
below. For every possible combination of valuesfor X, Y, and Z, the table shows that
the value of the expression [(X=Y) A (Y=2)] = (X=2Z) representing Lemmalis
awaystrue.
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[(X=Y) A (Y=2)]

X Y z X=Y Y=Z (X=sY)A(Y=2Z) X=Z = (X=2)
false fase fdse true true true true true
fase fdse true true true true true true
fase true false @ true false fase true true
false true true true true true true true
true false fase fase true false fase true
true false true fase true false true true
true true fase true false false false true
true true true true true true true true

Lemma 2 will be proved after Lemma 4 because Lemma 4 will be used in the
proof of Lemma 2.

Lemma 3 underlies a proof by contradiction (also called reductio ad absurdum)
of atheorem X=Y (see Section 5.2.1). Lemma 3 impliesthat aproof by contradition
isavalid proof method. Lemma 3 itself statesthat (X=Y) = —=(XA—Y).

Proof of Lemma 3 Lemma 3 can be proved by constructing the truth table below.
For every possible combination of values for X and Y, the table shows that the value
of theexpression —(X A—Y) isthe same asthe value of the expression X=Y [i.e., that
the value of the expression (X=Y)=—(XA—Y) representing Lemma 3 is always
true).

X Y XA=Y) —=(XA=Y) X=Y) X=Y) = =(XA=Y)
false false false true true true
false true false true true true
true false true false false true
true true false true true true

Lemma4issimilar to Lemma3 and can be viewed as aminor modification of the
rule for proving atheorem by contradiction. Lemma 4 can also be used to eliminate
the function implies (=) from expressions to transform them into a more regular
form involving only logical and, or, and negation functions.

One proof of Lemma4 uses one of de Morgan's rules for the negation of alogical
A OF Vv expression:

—~(AAB)=(—A v —B)
—~(AVB)=(—A A —B)

These identities can easily be proved: for example, with appropriate truth tables as
shown above.
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Proof of Lemma4 Thislemma, (X=Y) = (—X Vv Y), can beproved by thefollowing
steps:

X=Y

= [Lemma3]
—(XA—Y)

= [de Morgan’s rule]
-XVvY

Lemma 2isareversing rule for logical implications. Many people tend at first to
assumeimplicitly that if X=Y, itisalso truethat Y=X. Thisisnot, in genera, true.
It is true, however, that if X=Y, then =Y ==X, and vice versa. That is, X=Y and
—-Y=-X areequdl; if either istrue, the other isalso true. In some casesit iseasier to
prove that =Y =—X than X=Y, and Lemma 2 permits one to prove that =Y =-X
when aproof of X=-Y is needed.

Proof of Lemma 2 We prove Lemma 2 by reducing the expression representing it
tothelogical constant true. The expression for Lemma2is

X=Y) = (=Y=—-X) [Lemma?2]

= [Lemma 4 applied to left side of equation]
(=X VY)=(=Y=>—=X)

= [Lemma 4 applied to right side of equation]
(=X VvY)=(YVv—=X)

= [V iscommutative]
(=X VY)=(=XVY)

= [avalueisequal toitself, definition of function equals]
true

Example: Proof by Induction This example deals with a calculation often at-
tributed to Johann Carl Friedrich Gauss (1777-1855), a famous German mathemati-
cian. As the story goes, when Gauss was nine years old, his teacher instructed the
class to add the numbers from 1 to 100 inclusive. Gauss finished the calculation in
an unbelievably short time by, in effect, applying the formulain this theorem. Gauss
was not, however, the first person aware of this smple method for calculating such
a series. Such a calculation is the subject of an Egyptian papyrus in Demotic script
dated to the first millenium B.c.E., which is now in the British Museum (BM 10520).
The subject of this papyrus is the sum of the first 10 integers, not the first 100, but
the formula effectively behind it is the same.

The theorem to be proved here states that the sum of the first n natural numbersis
given by the formula nx (n+1)/2. This theorem can be written as the expression

NeEZ An>0A [+ i:i€Z A 1<i<n:i] =nx(n+1)/2

Dividing this theorem into two parts, the first for the base case and the second
for the inductive step, gives two subtheorems to be proved. The first part is the
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base case,

1eZ AN1>0A [+ :i€Z A 1<i<1 1 i]=1%(141)/2 [base case, n=1]
and the second part is the inductive step,

NeEZ AnN>0A [+i:i€eZ AL<i<n:i] = n=(n+1)/2
[If the theorem istrue for n,]
= nN+1eZ An+1>0A [+i:1€Z A 1Li<n+1 0 0] = (n+1)*(n+2) /2
[thenitistruefor n+1.]

Proof, Part 1, Base Case, n=1 When n=1, the statement of the theorem is
1eZ AN1>0A[+i:i€eZ A1<i<Li]=1(141) /2
whichis
true A true A 1=1
whichisclearly true.
Proof, Part 2, Inductive Sep We begin with the antecedent of part 2 of the theorem
and transform it into the consequent:
NEZ AN>0A[+i:i€Z A1<i<n:i] = nx(n+1)/2
[If the theorem istruefor n,]
= [n€Z = n+1eZ,n>0 = n+1>0]
N+1€Z An+1>0A[+i:i€Z A 1<i<n:i] =nx(n+1)/2
= [adding n+1 to each side of the equation]
N+1€Z AN+1>0 A [+ 11 1€Z A Ii<n 1 i]4+(n+1) = nx(n+1)/24+-(n+1)
= [simplifying both sides of the equation]
N+1€Z AN+150 A [+ 1 1€Z A I<i<n+1 : i]=(n+1)* (n+2) /2
[thenitistruefor n+1.]

The last expression above is the consequent of the inductive step, so the proof is
complete.

Example: Proof by Contradiction The theorem to be proved here states that the
sguare root of 2 is irrational. [Briefly, a rational number is a number that can be
expressed as the ratio of two integers. Any number that is not rationa (i.e., that
cannot be expressed as the ratio of two integers) isirrational. See Appendix C for a
further explanation of rational and irrational numbers.)
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Proof (English) Assumethat the squareroot of 2 isrational. Then, by the definition
of arational number, there exist two integersaand b such that +/2=alb. Then 2=a2/b?
and 2+b?=a?. The number of occurrences of 2 as a prime factor of & must be even.
Similarly, the number of occurrences of 2 as a prime factor of b? must be even and,
therefore, the number of occurrences of 2 as a prime factor of 2+b? must be odd.
Because 2+b?=a?, and because the prime factorization of any number is unique, the
number of occurrences of 2 as a prime factor of & and 2xb? must be the same.
However, as argued earlier, one must be even and the other must be odd. Since no
number is both odd and even, there is a contradiction. Therefore, the square root of
2 cannot berational, so it must beirrational.

Proof (Language of Mathematics)  Again, assume the negation of the theorem to be
proved, that is, that the square root of 2 isrational.

V2eQ [5.2.3-1, /2 isrational]
= [definition of rational]
[V ab:acZ AbeN; : acZ A beN; A v/2=a/b]
[5.2.3-2, acZ A beN; repeated for convenience below]
To determine the value of the quantified expression above, the template term will be
evaluated first. In the expressions below, NOcc(p, N) is the number of occurrences
of p as aprime factor of N, where p is a prime number and N is an integer. (Thisis
a function because the prime factorization of any integer is unique.) 1sOdd(N) and
IsEven(N) are Boolean functions that have the value true when and only when N is
odd or even, respectively.
acZ A beN;y A v/2=a/b [5.2.3-3, template term of 5.2.3-2]
= [square both sides of the equation above]
ac’Z A beNy A /2=a/b A 2=a2/b?
= [multiply both sides of the last equation above by b?]
acZ A beNj A v/2=a/b A 2¢bP=a?
= [A true terms to expression above]
acZ A beNy A v/2=a/b A 2xb?=a A 1SOdd(NOcc(2, 2+b?))
A IsEven(NOcc(2, &))
= [substitute equals for equals (i.e., & for 2xb?)]
acZ A beN;y A /2=a/b A 2xb?=a2 A 1SOdd(NOcc(2, &2))
A IsEven(NOcc(2, &)
= [anumber (e.g., NOcc(2, &)) cannot be both odd and even.]
false [5.2.3-4]
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Expressions 5.2.3-3 through 5.2.3-4 show that the template term of 5.2.3-2 isfalse.
Returning to 5.2.3-1 and 5.2.3-2, we have

V2eQ
= [5.2.3-1 repeated]
[V ab:acZ A beN; : acZ A beN; A /2=a/b] [5.2.3-2 repeated]
= [5.2.3-3 through 5.2.3-4, substitute false for template term)]
[Vab:acZ A beN; : fase]

false

Thus, the square root of 2 is not rational. It must, therefore, be irrational, by the
definition of irrational .

Steps 5.2.3-3 through 5.2.3-4 are, in effect, the proof of alemma used in the proof
that the square root of 2 isirrational.

The structure of the proof above applies not just to 2, but to any prime number. It
can be generalized easily to other numbers as well. To what type of numbers can it
be generalized?

5.2.4 Additional Useful |dentities

In addition to the equalities presented in the paragraphs on the commutative, asso-
ciative, and distributive laws in Section 5.1, the following identities are also often
used aslemmatain proofs of theorems. Some have been used in the proofsin Section
5.2.3. As an exercise the reader should prove that each of the following expressions
aretruefor all X,Y,ZeB, where X, Y, and Z can be values, variables, expressions,
or functions. Your proofs should assume only the definitions of the Boolean func-
tionsin Table 3.3-1 and, where appropriate, already proved identities. Use the proof
table approach in some proofs and the algebraic approach for others. Apply both
approaches to some identities to be proved and notice their relative advantages and
disadvantages.

(X A =X)=fdse [A with complement isfalse, 5.2.4-1]
(X A false)=fadse [(X A) can be dropped in this context, 5.2.4-2]
(X A X)=X [(X A) can be dropped in this context, 5.2.4-3]
(X A true)=X [(A true) can be dropped in this context, 5.2.4-4]

(—(=X))=X [double negation can be dropped, 5.2.4-5]
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(X v fase)=X [(v false) can be dropped in this context, 5.2.4-6]
(X v X)=X [(X V) can be dropped in this context, 5.2.4-7]
(X v true)=true [(X V) can be dropped in this context, 5.2.4-8]
(X v =X)=true [V with complement istrue, 5.2.4-9]

XvXAY)=X [(v (X AY)) can be dropped in this context, 5.2.4-10]
XV EXAY))=(X VYY)  [(— X) can be dropped in this context, 5.2.4-11]

=X AY))=((—X) v (=Y)) [de Morgan’srule, 5.2.4-12]
=XV Y)=({(—=X) A (=Y)) [de Morgan’s rule, 5.2.4-13]
fase = X [falseimplies anything, 5.2.4-14]
X = true [anything implies true, 5.2.4-15]

X=Y)=(=X)VY)
[useful for eliminating = from an expression, 5.2.4-16]
(X=2Y)AX=22)=(XAY) V(=X AZ)
[useful for eliminating = from an expression, 5.2.4-17]
X =Y)=((=X) < (=)
[reverse direction of implication, negate both terms, 5.2.4-18]
X=Y)=X=(XAY))
[(A weaker term) can be dropped or inserted, 5.2.4-19]
X=Y)=(Y=(Y vX))
[(v stronger term) can be dropped or inserted, 5.2.4-20]
X=(XVY) [any Boolean expression implies aweaker one, 5.2.4-21]
(X AY) = X [any Boolean expression isimplied by a stronger one, 5.2.4-22]
X=Y)=(X AY) V (=X A =Y))
[useful for eliminating = within a subexpression, 5.2.4-23]
X=(Y=2))=(XAY)=(XA2Z)
[condition for substituting Z for Y when not equal, 5.2.4-24]

Note that the terms “X A” may not be dropped in the last identity above. They are
needed when X isfalseand Y and Z are not equal.
After proving each of the identities above, the reader should try to prove that

X=(Y=2)) = (Y=2)
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Note how the failure of the attempted proof shows the need for the “X A” termsin
thisidentity.

53 SOLVING EQUATIONSAND OTHER BOOLEAN EXPRESSIONS

In technical applications of mathematics one often wantsto “ solve the equations’ for
the values of certain variables. Thisisan instance of the more general task of finding
the solution of aBoolean expression, of which an equation isonetype. The solution of
aBoolean expression is defined to mean those combinations of values of the variables
appearing in the Boolean expression for which the value of the expression istrue.

A solution depends only on the expression, and not on the interpretation of the
expression in the application domain. Consequently, solutions can be derived without
regard to the interpretation. Thus, solving a Boolean expression is an exercise that
takes place strictly and solely in the mathematical domain, completely outside the
application domain. This characteristic |eads to several advantages: Solutions can be
derived without regard to unnecessary factors and detail s and without regard to possi-
ble ambiguities in the application domain. Solutions can be derived by mathematical
specialists without specific knowledge and experience in the application domain.
The solutions found apply to any interpretation (i.e., to any application domain to
which the mathematical model may apply), so the solutions are often more generally
applicable than a solution derived specifically for the application problem would be.
This, in turn, means that fewer solution methods are needed than would otherwise be
the case.

Not only can a solution be derived without regard to the interpretation of the
expression in the application domain, it should be so derived. If additional infor-
mation from the application domain appears to be helpful or required, the mathe-
matical model—and the English statement of the requirements from which it was
translated—are probably incomplete. Both should be completed or corrected before
proceeding to derive the solution desired.

In some cases, the definitions of functions referred to in the Boolean expression
areto be determined as part of the solution. The functionsin question can usualy be
handled in the same way as array variables (see Section 4.1.4).

The solution of a Boolean expression is found by manipulating the Boolean
expression in suitable ways as outlined in Section 5.1. The Boolean expression or
parts thereof can be transformed in two ways: One type of transformation preserves
the value of the expression for all values of the variables appearing therein. The
second type of transformation resultsin anew expression that the original expression
implies. The most useful transformations to apply depend on the form and structure
of the original expression, but the general goal is to derive an expression containing
terms of the form

variable name = value [5.3-1]

for the names of al variables whose values are to be determined.
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Example A rectangle with area 600 m? is to be enclosed with fencing material
with total length 100 m. What are the length x and width y, both in meters, of the
rectangle?

Implicit in this statement is the following information from elementary geometry:
The area 600 m? of the rectangle is the product of the length x and width y. The
perimeter 100 m of the rectangle is twice the sum of x and y.

Combining the given statement and theimplicit information above, the mathemat-
ical model is:

XER A yeR A xxy=600 A 2+ (x+Yy)=100 [5.3-2]

From this expression, valuesfor x andy in terms of the given area A and the given
length of the fencing material L can be derived as shown below.

XER A yeR A xxy=600 A 2% (x+Yy)=100 [5.3-3]
XER A yeR A xxy=600 A X+y=50 [5.3-4]
XER A yeR A xxy=600 A X+y=50 A y=50—x [5.3-5]

XeR AyeR A xxy=600 A Xx+y=50 A y=50—X A x*(50—x)=600 [5.3-6]

XeR A yeR A xxy=600 A Xx+y=50 A y=50—x A x*(50—x)=600
A x*50—x2=600 [5.3-7]

XER A yeR A xxy=600 A X+y=50 A y=50—x A x*(50—x)=600
A 0=x?>—50+x+600 [5.3-8]

XER A YeR A xxy=600 A X+y=50 A y=50—x A x*(50—x)=600
A 0=(x—20)* (x—30) [5.3-9]

XER A yeR A xxy=600 A X+y=50 A y=50—Xx A x*(50—x)=600
A (x=20Vv x=30) [5.3-10Q]

y=50—x A (Xx=20 Vv x=30) [5.3-11]
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(x=20 A y=50—x) v (x=30 A y=50—x) [5.3-12]

(x=20 A y=30) Vv (x=30 A y=20) [5.3-13]

Thelast line above isthe solution: Either x is20andy is30 or x is30 and y is 20.
Thereader should insert thejustification for each transformation step in the deriva-
tion of the solution above.

In many of the lines in the derivation above, two or more terms were equal to
one another and the repetitions could have been eliminated. They were repeated in
order that each step, each manipulation of a subexpression, can be clearly seen. In
practice, one would write many of the lines above more concisely, and two or more
steps would be taken in one larger step. Although such shortcuts are legitimate, they
do place more of a burden on less experienced readers. When devel oping such solu-
tionsin practice, the repetition and small steps help to reduce the chances of making
mistakes and provide better opportunities to check intermediate results. When doc-
umenting derivations of solutions in practice, the writer should keep the experience
and manipulative skills of the intended readers in mind. Too much detail and repe-
tition bore and distract the experienced reader, while too many shortcuts strain the
inexperienced reader. A good approach to verifying a derivation of a solution isfirst
to read the derivation, noting mentally the basic approach and techniques used, and
then, without referring to the existing derivation, to derive the solution anew.

Several examples in Chapters 2 and 8, especially Sections 2.2, 2.3, and 2.8 and
Sections 8.6 and 8.13, contain derivations of solutions of Boolean expressions. Sec-
tions 8.6.7 and 8.13.10 especially deal with deriving functions as the solutions.

Note that a Boolean expression may have no solution, any number of solutions,
or infinitely many solutions. For example, the following Boolean expressions have
no solution, that is, there are no values for the variables x and y for which these
expressions have the value true.

XER A X°=—1
xeR A X?<0

XER AYER A X>0 A y>0 A X+y=6 A 2xX+y=5

The example in Section 8.9, the classical paradox of the Barber of Seville, aso
has no solution. The example in Section 8.6 has exactly one solution. The following
Boolean expressions have two, three, and infinitely many solutions, respectively:

XeR A X°=4
XeR A x3—x=0

XER AYeR AX>0Ay>0A y>X
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Always keep in mind that a given Boolean expression may have no solution, one
solution, any finite number of solutions, or infinitely many solutions. Never assume
exactly one solution. Don't forget the possibility that there is no solution.

54 SOLVING OPTIMIZATION PROBLEMS

The goal of an optimization problem isto maximize or minimize some quantity sub-
ject to given restraints. |f the quantity to be maximized or minimized is a continuous
and differentiable function, it will take on its maximum or minimum value when its
derivative (see Section 4.5) with respect to the appropriate independent variable is
zero. Thisis most easily seen by considering a graph of the function and observing
that at a maximum or minimum point, the derivative is zero.

Example Here a problem similar to that in Section 5.3 will be considered as an
example. What are the length x and width y, each in meters, of the rectangle with the
largest area A (m?) that can be enclosed using L meters of fencing material? Making
use of the implicit information from basic geometry in Section 5.3, the mathematical
model can be written

XER A YeR A xxy=A A 2x(x+y)=L [5.4-1]

This expression can be solved for A in terms of x alone asfollows:

XeR A YeR A xxy=A A 2% (x+y)=L [5.4-1 repeated]

XER A YER A Xxy=A A x+y=L/2 [5.4-2]

XER AYER A Xxy=A A y=L/2—x [5.4-3]

XeR AyeR A y=L/2—x A A=x*(L/2—X) [5.4-4]

X€R A yER A y=L/2—x A A=x*L/2—x? [5.4-5]
=

A=xxL/2—x? [5.4-6]
=

dA
=L/ [5.4-7]
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For agivenL, A will be at amaximum only if the derivative of A with respect tox is
equal to zero; that is, A will be at its maximum when x=xg, where

0=L/2—2%X [5.4-8]
which is equivalent to

Xo=L/4 [5.4-9]
in which case the maximum value of A is Amax, where

Amax=Xg*(L /2—Xo) [5.4-10]

which is equivalent to
Amax=(L /4)*(L/2—L/4) [5.4-11]
Amax=(L /4)? [5.4-12]

If L=100, asinthe examplein Section 5.3, the maximum enclosable rectangular area
is 625 m?. In this case, x=y=25 and the rectangle is a square, as one might have
suspected on grounds of symmetry.

Finally, one must verify that a maximum, and not a minimum, has been found,
because the condition for both is the same—the derivative being equal to zero. This
can easily be seen from a graph of A as a function of x. Alternatively, take the
second derivative (the derivative of the derivative) and evaluate it at the point in
guestion; in this example it is negative, so a maximum has been found. (If it were
positive, a minimum would have been found.) Still another alternative is to notice
that A decreases when x deviates both above and below L/4 by a small amount, so a
maximum has been found.

Inthe exampleabove, equating the appropriate derivative to zero gavethe condition
for optimality. More generally, the optimality requirement can be expressed in the
mathematical model by an appropriate term, including a quantified expression whose
value is the optimum. In the case of the example above, this additional term could
have been

A = [maxx : XeR : x*L/2—x?] [5.4-13]

in which case the entire mathematical model would have been

X€R A YER A y=L/2—x A A=x*L/2—x?
A A = [maxx: XeR : xxL/2—x?] [5.4-14]
or any oneof several other equivalent expressions. Notethat thex within the quantified

expression aboveisnot the sameasthe x outsidethe quantified expression (see Section
3.4.8). To avoid any possible confusion arising from the double use of the variable
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name x in expression 5.4-14, it could be rewritten using a new name (e.g., z) for the
quantified variable:

X€R A YER A y=L/2—x A A=x*L/2—x?
AA =[maxz:zeR : zxL/2—7%] [5.4-15]
In the theoretical mathematical literature, the “max” function above is often re-

ferred to as supremumor least upper bound, abbreviated “sup” or “l.u.b.,” respectively
(see Section 4.4).



PART C

English, the Language of Mathematics,
and Tranglating Between Them



6 Linguistic Characteristics of
English and the Language
of Mathematics

Languages differ from one another in several ways. The most important way in
which English and the Language of Mathematics differ is probably their universes
of discourse, that is, what they enable their users to write about and express. The
Language of Mathematics deals with few and purely abstract things, beginning with
valuesand variables (see Sections 3.1 and 3.2), whereas English deal swith essentially
all aspects of theworld in which their speakerslive and, therefore, has a much richer
vocabulary. Languages differ also in how statements intended to convey information
can be composed and structured. Also in this regard, English and the Language of
Mathematics differ from one another fundamentally. The Language of Mathematics
provides only precisely defined mathematical expressions—combinations of values,
variables, and structures built upon them—as media for communication, whereas
English provides a large number of less precise words, sentences, paragraphs, and
so on, intended not only to communicate specific information, but also to enable the
author to stimulate the readers’ thinking and to encourage readers to add their own
interpretations, in the context of their previous experience.

This chapter deals with these contrasting differencesin some detail and examines
the consequences of these differences for translating between English and the Lan-
guage of Mathematics. A few similarities will provide the bridges needed to connect
the two different media for communication. Conscious awareness of the differences
will enable the translator to avoid the potential pitfalls arising from the considerable
differences between English and the Language of Mathematics.

6.1 UNIVERSE OF DISCOURSE

All those things that one talks or writes about in a language make up the universe
of discourse of that language. The universe of discourse of a natural language such
as English consists of the various aspects of the real, physical world in which its
speakerslive and the abstract concepts they think and communi cate about. Subgroups
of speakers with specialized interests based, for example, on vocations or hobbies
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will often have specialized terms (“jargon”) for things of particular interest (i.e., will
have specialized universes of discourse), extending the common, shared universe of
discourse. Commonly used termsin such fields will not be understood by people not
working in that field and having no need for those specialized terms.

A native speaker of Arabictold methat Arabic poetry is characterized by rhythms
reflecting the different rhythms of a camel traveling at different speeds over sand,
a common feature of the physical world in which many Arabic-speaking societies
live. Arabic has aricher vocabulary for describing fine distinctions between different
aspects of sand and sand dunes than do languages whose speakers live in areas with
no sand deserts. Inhabitants of cold regions need to be able to describe different
kinds of snow and ice conveniently, and their languages or dialects will cater to
this need with specific words or standardized phrases. Languages spoken by people
living in areas where it never snows do not have the vocabulary to enable one to
make such distinctions so easily; their language may even lack a specific word for
snow itself. Different groups living or working in different environments will need
and develop correspondingly different universes of discourse, with special terms or
standard phrases for important aspects of their own particular environments.

The universe of discourse of the Language of Mathematics is quite restricted
and very different from the universes of discourse of English and other natural
languages. Most of the basic terms of importance in the Language of Mathematics
were introduced in earlier chapters. The universe of discourse of the Language of
Mathematics in the pure, narrow sense does not include any of the aspects of the
real, physical world in which people live. It includes only those abstract concepts
mathematiciansthink and communi cate about when doing mathematics. The universe
of discourse of the Language of Mathematicsisvery limited, consisting only of values,
variables, functions, expressions, and the various types of structures built up of these
components. The universe of discourse of the Language of Mathematics does not
include any elements of the areas to which mathematics can be applied. This has
implications for interpreting mathematical models in terms of the application areas
(e.g., things in the real, physical world). This is discussed in greater detail in the
sections below and in Chapter 7.

The universes of discourse of natural languages overlap extensively. Text in one
language whose meaning is a so in the universe of discourse of another language can
be translated into that other language using only more or less standard correspon-
dences between the elements of the two languagesin question. That is, the only rules
and guidelines needed for tranglating the text from one language into the other are
general ones, ones that are valid for all texts and not specific to the particular text
in question itself. Although the rules and guidelines will not depend on the text, the
application of those rules and guidelinesto the text will, of course, depend on certain
aspects of the text. For example, standard grammatical rules must be applied and
generally accepted styles of expression observed. For words with different meanings
or interpretations in the source language, one must select the one intended (which
usually depends on the context) and expressit in the target language. When an idiom
is to be translated, a corresponding and appropriate expression must be identified
in the target language—sometimes idioms translate directly, but often they do not.



UNIVERSE OF DISCOURSE 161

The existence of “rules and guidelines’ independent of the text to be translated does
not mean that such tranglation is straightforward and mechanistic. It means only
that a new set of rules and guidelines will not be required for every new text to be
trandlated.

For example, consider the English sentence “Eleanor chose a girl for her team”
and its trandation into Esperanto: “Eleanor selektis knabinon por sia teamo.” The
correspondence between these two sentences follows from rules and guidelines that
are not specific to this text but that are applied to particular aspects, such as tense of
the verb and cases of nouns.

English Word Esperanto Word Rules and Guidelines
Eleanor Eleanor (or Proper nouns are the same (or the noun ending
Eleanoro) -0 can be added).

chose selektis Dictionary, past tense conjugation ending -is

a — Esperanto has no indefinite article.

girl knabinon Dictionary, feminine ending -in, noun ending
-0, singular objective case ending -n

for por Dictionary, preposition

her sia Dictionary, reflexive, possessive, adjective
ending -a

team teamo Dictionary, singular subjective case ending -0
only

Several different word orders are possible for the Esperanto sentence, for example:

Knabinon Eleanor selektis por siateamo.
Knabinon selektis Eleanor por siateamo.
Por siateamo Eleanor selektis knabinon.

In English, not all of these word orders would be correct trandations of the
Esperanto sentence. In particular, if “girl” precedes” Eleanor” inthe English sentence,
the subject and the object become reversed, with acorrespondingly different meaning
of the sentence: “A girl chose Eleanor for her team” hasavery different meaning than
“Eleanor chose agirl for her team.” Thereversal in the Esperanto sentenceispossible
becausethe case ending -n on *“knabinon” identifiesit asthe object, no matter whether
it appears before or after the subject.

Note that all of the rules cited in the table above are general rules and guidelines;
they are not specific to thistext.

If atext in one language (e.g., English) has a meaning not expressiblein a second
language (e.g., the Language of Mathematics) (i.e., @ meaning not in the common
universe of discourse), trandating the text into the second language will not be so
straightforward—if it ismeaningfully possible at al. In place of the missing standard
correspondences between elements of the two languages, a correspondence specific
to the text (and its context) must be defined. Such a correspondence defines how
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the elements of the text in the first language are to be related to elements in the
second language. In this book such a correspondence is called an interpretation of
the mathematical model. The interpretation itself must be written in the language
with the more extensive, more encompassing universe of discourse. An interpretation
can be thought of asrelating the universes of discourse of the two languages with one
another.

When atext inthe Language of Mathematicsisto be understood in the context of a
real-world application, itisnecessary to provideaninterpretation for the mathematical
text in question, and that interpretation will be specific to the text and to the context
and applicationinwhichitisto beinterpreted. Another mathematical text—or another
context or application—uwill require another interpretation.

A text in the Language of Mathematics can always be translated into English
using only a standard interpretation independent of the mathematical text, but such
atrandation does not convey information of additional usefulness or interest. Such
a trandlation will not relate to the application area. For example, an expression
such as“a=2x(b+c)” can betrangated directly, without atext-specific interpretation,
into “the value of the variable ais twice the sum of the values of the variables b and
¢ If aconnection to some application isintended, the meanings of the values of the
variables a, b, and ¢ must be defined in terms meaningful in the application world.
That definition will constitute the interpretation of the mathematical text in question.
Such an interpretation might be, for example, “the values of b and c are the lengthsin
meters of adjacent sides of arectangular piece of land and the value of aisthelength
in meters of a fence enclosing that piece of land.” This interpretation is not unique;
many other interpretations of the expression “a=2x(b+-c)” are possible, each within
another context or application.

To the extent that things in the universe of discourse of English can be modeled
with elements of the universe of discourse of the Language of Mathematics (i.e., in
terms of values, variables, functions, expressions, and the various types of structures
built up of these), one can use the Language of Mathematics to describe things
otherwise described in English. In the Language of Mathematics one cannot say
or write anything that cannot be expressed in English, but one can express things
unambiguously and usually more concisely in the Language of Mathematics. Most
importantly, mathematical expressions can be used as a basis for logically reasoning
about things and in ways for which English language texts are inadequate.

6.2 LINGUISTIC ELEMENTSIN THE LANGUAGE OF MATHEMATICS
AND IN ENGLISH

The fundamental elements in the Language of Mathematics are:

e Values (see Section 3.1)
e Variables (see Section 3.2)
e Functions (see Section 3.3)
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e Expressions (see Section 3.4)
e Structures of the elements above (see Section 4.1)

Letters and words are the building blocks of written English. The types of words
and sequences of words that will be of concernto us are:

¢ Nouns [names of people, things, concepts, etc. (e.g., house, George, length)]

¢ Pronouns [shortened references to names (e.g., I, you, he, she, it, they)]

e Articles(e.g., the, a, and an)

e Adjectives[wordsqualifying nouns (e.g., large, long, green, beautiful, dry, hot)]

e \erbs [words indicating actions or state or being (e.g., goes, wrote, drove, is,
were)]

e Adverbs [words qualifying verbs (e.g., Slowly, illegibly, always, erratically)]

e Past participles and present participles[words derived from verbs, used to form
perfect tenses and also used as adjectives (e.g., gone, coming, lifted, lifting,
closed)]

e Prepositions [words relating or connecting other words (e.g., of, in, to, at)]

e Phrases [certain combinations of the above (e.g., the green house, the color of
Anne's dress)]

e Predicate [a verb phrase (e.g., a verb together with its adverbs and object,
predicate adjective, or predicate noun)]

¢ Clauses [combinations of the above including a conjugated verb (e.g., George
hit the ball, the length of the box is greater than its height)]

¢ Conjunctions[words combining words or phrases of the same grammatical type
or clauses (e.g., and, or, when, if ... then, but)]

e Sentences (clauses or combinations of several clauses (e.g., George hit the ball
and it flew over the fence)]

Some of the categories above are subdivided further in the study of grammar
(e.g., possessive adjectives, relative pronouns, demonstrative pronouns), but these
subdivisions will not be important for our purposes of translating between English
and the Language of Mathematics. For trand ating between English and other natural
languages, however, such subdivisions are often very important in order to construct
grammatically correct sentences in the target language.

The elements of English above are used to form the subject, the verb or predicate,
and the object of a clause whose verb is an action verb. They are also used to form
the subject, the verb or predicate, and the predicate adjective or the predicate noun of
aclausewhoseverbisaverb of state or being. For example, in the clause “ George hit
the ball,” “George’ isthe subject, “hit” isthe verb of action, and “ball” is the object.
In the clause “Anne'sdressis green,” “dress’ isthe subject, “is’ isthe verb of state,
and “green” isthe predicate adjective. In the clause “Susan is an editor,” “Susan” is
the subject, “is’ isthe verb of state, and “editor” is the predicate noun.
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Note that the basic linguistic elements of the Language of Mathematics differ
completely and fundamentally from the basic linguistic elements of English. Estab-
lishing in detail an appropriate correspondence between the linguistic elements of
English in agiven text and the linguistic elements of the Language of Mathematicsin
amathematical model isthetask of the translator, but many useful general guidelines
can be deduced from the characteristics of the different types of linguistic elements
in each language. These general guidelines are developed in the rest of this chapter
and in Chapter 7.

All of the linguistic elements of English listed above are common to many natural
languages, and most of those elements are common to al natural languages. The
main exception is probably the article, which some languages do not have. The ways
in which these elements are formed and combined in the various natural languages
differ significantly from language to language, however.

6.2.1 Verbs, Clauses, and Phrases

A sentenceisaclause or acombination of clausesjoined by conjunctions. In English
and many other languages, each clause must contain a conjugated verb. In some
languages, however, verbless clauses and sentences are permitted in some cases.
Arabic, Hebrew, and Russian are among the languages of this type in current use,
and Egyptian was an example of an ancient such language.

For transglating between anatural language and the Language of Mathematics, the
important distinction between a clause and a phraseisthat aclause is a statement that
iseither true or false, and whose question form is answered by yesor no. A phraseis
not simply true or false, and its question form (if thereis any) cannot be answered by
yes or no. For example, the sentence “John’s house is brown” is a statement that is
either trueor false, soitisaclause (and asentence). A verblessversion of thisEnglish
sentence, which correspondsto avalid sentence in some languages, would be“ John’s
house brown.” Because English does not permit verbless clauses, the presence of a
conjugated verb is used in this book as the distinguishing characteristic of a clause.
If the reader also wishes to trandate between a natural language permitting verbless
clauses and the Language of Mathematics, the presence or absence of a conjugated
verb will not be a satisfactory distinguishing characteristic of a clause and relevant
passages in this book must be adjusted accordingly.

In English, a clause contains a finite (finished, complete, conjugated) verb. An
independent clause can stand on its own as a grammatically correct and complete
sentence, as can a dependent clause without the conjunction joining it with another
clause. A phrase does not satisfy these conditions; it is not a grammatically correct
and complete sentence. In the Language of Mathematics, expressions corresponding
to phrases and clauses can be similarly distinguished from one another, but the
criterionisdifferent, becausein the Language of Mathematics verbs are not explicitly
present. A Boolean expression correspondsto aclause, and anon-Boolean expression
corresponds to a phrase.
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Examples of phrases are “the color of Anne's dress,” “the number of elevatorsin
the Eiffel Tower,” “Sam’s profession,” “the state of the door,” and “the altitude of the
rocket in meters at time t seconds after ignition.” None of these are statements that
aretrue or false; the values of these phrases might be green, 7, lawyer, opening, and
2xt2, respectively.

Boolean variables and functions and expressions with a Boolean value and one or
more non-Boolean arguments correspond to clausesin English because both are either
true or false. Therefore, such avariable, function, or expression effectively contains
a verb. For example, the expression “x>Yy” corresponds to the English clause “the
value of x is greater than the value of y,” which contains the verb “is” A variable,
function, or expression whose valueis not Boolean does not correspond linguistically
to aclause in English.

Functions with a Boolean value and only Boolean arguments correspond to con-
junctions in English and, hence, do not themselves contain implicit verbs, but their
subsidiary Boolean components do. (Theimplication function = can beviewed asan
exception; see below.) For example, in the expression “ (x>y) A (z=2),” the function
A corresponds to the English conjunction “and,” combining two independent clauses
to form the sentence “ The value of x is greater than the value of y and the value of z
isequal to 2" Each of the relational functions > and = implicitly contains the verb
“is,” but the function A does not.

Thus, a mathematical expression with a Boolean value (and non-Boolean subex-
pressions) corresponds to either a dependent clause or an independent clause, de-
pending on whether and how it is combined with another expression. An independent
clause may be a sentence or may be combined with one or more other clauses by
appropriate conjunctions to form a sentence. English sentences in a sequence are,
logically, connected with “and,” so the mathematical expressions corresponding to
the individual English sentences in a sequence are, therefore, connected with the
logical “and,” usually written A.

One English translation of the expression “(x>Yy) = (z=2)" isthe sentence “If the
value of X is greater than the value of y, then the value of z is equal to 2" Instead
of “if” one could write “when,” “whenever,” and so on. The first part (“If the value
of X is greater than the value of y") is a dependent clause. The second part (“the
value of z is equal to 2") is the independent clause. The conjunction “if ... then”
combines the dependent clause and the independent clause to form the complete
sentence.

Some English tranglations of expressions involving the implication function =
include the verb “implies,” as in the trandation “X implies Y” or “The truth of X
implies the truth of Y” for the mathematical expression “X=Y.”

Verbs of state or being not referring to any particular time (e.g., present, past,
future) are often called stative verbs in grammatical terminology. All verbs in the
Language of Mathematics are stative verbs. This and other aspects of verbs are
discussed in more detail in Sections 6.2.6 and 6.6. In a verbless clause (see the
beginning of this section), there is no verb expressing tense, so the corresponding
missing verb can be considered to be tensless, and hence stative.
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6.2.2 Nounsand Pronouns

A mathematical expression with a non-Boolean value corresponds to a phrase in
English. The phrase is often a noun phrase. Sometimesit is only a single noun.

In mathematical expressions, the names of variables and functions serve asrelative
pronouns, referring to the values, mathematical definitions (the set of values), and/or
interpretations of these names. The definitions referred to may, in principle, be any-
where in the expressions, but good style indicates that each definition should precede
all referencestoit (i.e., beforeall other appearancesof thenameof thevariableor func-
tion in question). Using names to refer to the corresponding definitions and interpre-
tationsin this way enables mathematical expressions to be more concise and clearer
than English text with the same meaning. English has very few relative pronouns,
and referencesto adistant target tend to be unclear, so that alonger phrase reiterating
the definition must be repeated, often many times, in an equivalent English text.

Nouns and pronouns in English text can refer to things or properties. Things can
normally be represented in mathematical models by values. Some properties can be
represented by values, such as the colors red and blue. Other properties mentioned
in English text are not normally represented by values in mathematical models, such
as “infinity.” When translating English text into a mathematical model written in
the Language of Mathematics, one must be careful to distinguish between those
nouns and pronouns associated with values in the mathematical model and those
not associated with such values. The two categories of nouns and pronouns will be
handled differently and translated differently, if translated at all.

6.2.3 Adjectives, Adverbs, and Prepositional Phrases

The two main parts of any English sentence are the subject (a noun/pronoun phrase)
and the predicate (averb phrase). Subcomponents of these two parts (e.g., adjectives,
adverbs, and prepositional phrases) appearing in English text related to expressions
in amathematical model are normally considered together with the noun, pronoun, or
verb they modify or complement. How adjectives, adverbs, and prepositional phrases
are handled when transl ating between English and the L anguage of Mathematics and
when naming variablesis discussed in Section 6.2.6.

6.24 Conjunctions

A conjunction in English connects two or more like things. nouns and pronouns,
adjectives, verbs, clauses, and sentences. The combination retains the grammatical
character of thetwo like things. Common conjunctionsin English are“and” and “or.”
These conjunctions can be used with any part of speech.

In the Language of Mathematics the situation is quite different. In mathematics,
a function with two or more arguments is used to connect or combine two or more
things. In contrast to conjunctionsin English:

¢ Different functions are used to connect different types of arguments.
e A function can connect or combine unlike (different) types of arguments.
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For example, the mathematical functions “and” or “or” do not connect two or more
numbers; instead, arithmetic functions such as+, —, *, and / connect numbers. When
and where useful, afunction can be defined to connect Bool ean variables and numbers
or any other combination of different types of arguments.

Therefore, aparticular conjunction in English does not alwaystranslateto asingle
conjunction in the Language of Mathematics. A particular conjunctionin Englishwill
trandate into different mathematical functions depending on what the conjunction
in English is combining. The English conjunction “and” applied to two clauses will
trandate into the Boolean function “and,” but when the English conjunction “and” is
applied to other parts of speech, it will not translate into any Boolean function. Its
tranglation will depend on other parts of the English sentence in question.

For example, the “and” in “the sum of the length and the width of a rectangle
...” can be tranglated into the infix function + in an expression or implicitly into
the connection of length and width in the sequence of arguments of the function
sum(length, width). In other cases, the conjunction can lead to afunction (e.g., union,
intersection, sequence).

When aconjunctionin English connectsor combinestwo thingsother than clauses,
thetranslator should first identify what mathematical object should represent the com-
bination. The most common mathematical structures containing two or more values
are the set and the sequence. These are, therefore, primary candidates to represent a
combination of values. The phrase “John, George, and Miriam” could, therefore, be
translated into the Language of Mathematics as {John, George, Miriam} or as[John,
George, Miriam]. The sentence “John, George, and Miriam are physicians’ could
then be translated as “ {John, George, Miriam} C Physicians.”

Alternatively, the translator can reformulate a clause in which a conjunction ap-
pearsinto separate clauses connected by one or more conjunctions (e.g., rewrite“ John
and George are physicians’ as*“ John isa physician and Georgeisaphysician”). This
sentence, consisting of the conjunction of two clauses, can then be translated as
“JohnePhysicians A Georgec Physicians.”

In other cases, other key words, such as“is’ or “are” (see Sections 7.2 and 7.3) or
words and phrases suggesting a quantified expression (e.g., al, for al, any, for any,
each, every, there exists, thereis, there are, for some, at least one), will indicate how
to translate an English text containing aconjunction into an appropriate mathematical
expression.

Logically, the English conjunction “ but” meansthe sameas*“and.” “But” isused to
draw attention to some sort of a contrast between the two thingsit joins. Sometimes,
it points out that the things it joins would often seem at first to contradict each other,
although they do not. This extra connotation of “but” over “and” is rarely, if ever,
trandated into a mathematical expression. When translating text containing the word
“but,” it should normally be treated in the same way as “and.”

6.25 Negation

In the Language of Mathematics the term negation has two quite different mean-
ings: numerical negation and logical negation. Numerical negation is, in effect,
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multiplication by —1. Logical negation reverses the values true and false. Because
these two negations are mathematically different, two different prefix symbols are
used: — for numerical negation and — for logical negation. When translating, one
must be careful to distinguish between these two meanings.

The English negation “not” is an adverb that corresponds to the logical negation
in the Language of Mathematics. The numerical negation in mathematics is usually
better translated by the English word “minus.” The word “negative,” asin “negative
2, is aso sometimes used.

A translator should pay careful attention to what is being negated. Note that
“negative 2" means “minus 2,” not “not 2" A phrase such as “not 2" will always
appear in a clause (e.g., “x is not 2"), and the “not” will refer to the verb, not to
the number “2.” (The clause can be implicit; see Section 6.4 for an example.) The
positive formulation of the clausewill correspond to aBoolean expression (e.g., Xx=2)
in the Language of Mathematics, and the logical function “not” will be applied to
that Boolean expression: for example, —(x=2), which can also be written x#2. The
symbol # can be translated as “is not equal to.”

In English, negative forms of questions and even statements are sometimes used
when the positive forms are actually meant. When translating from English to the
Language of Mathematics, one must be careful in such cases to trandate what is
meant, not what is written. For example, one sometimes asks “Isn’t that a nice
painting?’ when the question could be formulated positively “Isthat anice painting?’
with exactly the same intended meaning. Questions of the form “don't you...”
often fall into this category, such as the question “Don’t you think that her dress
is elegant?” which usually suggests—and even emphasizes—a positive meaning
(i.e., that her dress is elegant). Such negatively phrased questions are sometimes
not even meant as questions but instead as statements of the questioner’s positive
opinion.

Conversely, positive statements in English sometimes have a negative meaning.
For example, the sentence “That’s a fine kettle of fish” usually means just the op-
posite: that one is confronted with a miserable mess, not with something fine and
nice.

Different languages have different conventions for answering anegatively phrased
question. If the painting is, in fact, nice, the correct answer in English to the ques-
tion “lsn’t that a nice painting?’ is “yes’ (that is a nice painting). In Chinese and
other Asian languages, the correct answer is “no” (the negatively phrased corre-
sponding statement “That is not a nice painting” is not true). The English answer
refers aways to the positively phrased statement corresponding to the question.
The Chinese answer refers to the statement derived by rephrasing the question, in-
cluding the “not” if present. This aspect of different languages can and does cause
confusion and misunderstanding—and laughs—when native speakers of the two
types of languages converse with each other. For correct communication between
native speakers of such different languages, questions should always be phrased pos-
itively, even when this is not normal usage. An old joke — and a line in a song —
is derived from this difference between languages. To the question “Don’'t you
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have any bananas today?’ the immigrant grocer replies: “Yes, we have no bananas
today.”

When translating English text into amathematical model, be careful to understand
what is meant, not just what iswritten, particularly when negatives appear in the text.
Especialy if people from different language backgrounds are working together in a
team must one pay close attention to the intended meaning of negatively formulated
parts of text.

6.2.6 Partsof Speech and Naming Conventionsfor Functionsand Variables

In general, the name of avariable or afunction should be selected to reflect both:

e The part of speech of the key word in its definition or interpretation and
e Thetype of valueit can take on

Selecting names of variables and functions according to the guidelines below will
make the mathematical model easier to read, to understand, and to work with. The
guidelines below will help those who formulate the mathematical model to avoid
structural and logical problems, oversights, inconsistencies, and errors.

Each combination of the parts of speech and the types of values of variables
and functions are discussed below. Combinations that should generally not occur
and should be avoided are identified. Naming conventions and suggestions for the
other combinations are given. Any exception to the guidelines given below should be
carefully thought out and justified.

Thefollowing parts of speech of the key word(s) in the definition or interpretation
of avariable or function are discussed below:

e Noun or pronoun

e \erb of state or being (stative verb)

e \erb of action

e Adjective (including predicate adjective)
e Adverb

¢ Prepositional or other phrase

For each of these parts of speech, the following types of values taken on by the
variable or function are discussed:

e Boolean
e Numerical
e Other

The following table summarizes the recommended naming conventions for vari-
ables and functions, depending on the type of their value.
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TABLE 6.26-1 Naming Conventionsfor Variables and Functions

Type of Vaue of the Variable or Function

Boolean Other (e.g., Numerical)
noun or only together with a recommended
pronoun stative verb
stative verb recommended avoid
part of action verb avoid avoid
speech of adjective only together with a only as part of anoun or
name of stative verb pronoun phrase
variable or adverb only together with a only as part of an
function stative verb adjective phrasein a
noun or pronoun phrase
prepositional only together with a only as part of anoun or
or other stative verb pronoun phrase

phrase

If the proposed

e name of avariable or function
e definition or description in itsinterpretation
¢ type of the variable or function

are inconsistent with the guidelines outlined in the table and discussed in more detail
below, one or more of the three items above should be revised accordingly. It may
be necessary to reformulate the English text in the interpretation of the variable or
function, especially when translating English text to the Language of Mathematics
and in order to eliminate action verbs. Only very rarely and only after careful and
extensive consideration and justification should exceptions to these guidelines be
allowed.

In the foregoing classification of verbs as stative or action, one type of verb has
been left out: verbs of state or being but with a reference to time (e.g., was, had
been). Like action verbs, state verbs cannot be trandated directly into the Language
of Mathematics because there is no concept of time in the Language of Mathematics.
Any reference to time must be embedded in theinterpretation of avariable or function
or must be brought into the mathematical model by a variable whose val ue represents
time.

Before examining the relationships above in detail, it is useful to consider the
various main parts of the structure of English sentences and the types of valuesin the
Language of Mathematics to which they correspond.

There are two types of sentences, a statement and a question. Each consists of one
or more clauses. Every clause contains a subject, averb, and often some combination
of an object, adjectives, adverbs, prepositiona phrases, and so on. A clause is aso
either a statement or a question, but phrases within a clause are not.
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A statement in English can be thought of as being a proposition that is either true
or false (i.e., as having a Boolean value). A phrase or word within a statement is
typically associated with some type of value other than Boolean, common examples
being numbers, things, properties, and characteristics.

A question can be thought of as having a value corresponding to the answer to
the question. If the question is a sentence in the form of a question (e.g., “Is Rome
the capital of Italy?’), the answer is yes or no, corresponding to the Boolean value
of the statement. If the question is formulated with an interrogative word, the type of
value of the answer corresponds to an interrogative word:

e Who?—a person

e What?—athing

e \When?—adate or time (e.g., expressed by numbers)
e Where?—aplace

e Why?—areason

e How?—a procedure or process

e How many?—a number

e How much?—a quantity expressed as a humber and a unit of the quantity in
guestion

When formulating amathematical model in the Language of Mathematicsfrom an
English text, statements and their component phrasestypically play amore important
role than do questions. Similarly, statements occur more often in interpretations of
mathematical values, variables, and functions than do questions.

Keep the comments above in mind when reading the following paragraphs about
the correspondence between parts of speech and naming conventions for variables
and functions in a mathematical model.

Noun or Pronoun In English texts associated with mathematical models, many
nouns refer to things represented or measured by numbers. Commonly appearing
nouns include “number,” “quantity,” and “amount.” Other nouns associated with
aspects of physical objects or systems measured with one or more numbers are “dis-
tance” “length,” “height,” “width,” “weight,” “mass,” “position,” “velocity,” “rate,”
“force,” “pressure,” “stress,” “strain,” “voltage,” “current,” “field strength,” “gravita-
tional attraction,” and “angle.” Thisillustrates that the meaning and interpretation of
numerical variables in a mathematical model are best described by nouns or noun
phrases.

Nonnumeric characteristics, properties, and categories can be handled in asimilar
way. Nouns and noun phrases such as “color,” “shape,” “direction of movement,”
“structure of bridge,” “material,” “poetic meter,” “name,” and “address’ describe
variables or functions whose values can be nouns, adjectives, adverbs, or correspond-
ing phrases. For example, a variable described by the noun phrase “structure of
bridge” might take on such values as “suspension,” “cantilever,” “cable-stayed,” or
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“truss.” Another variable described by the noun phrase “ poetic meter” might take on
such values as “iambic pentameter” or “anapestic trimeter.” A variable or function
named “shape” might take on such values as “rectangular,” “circular,” “oval,” or
“triangular.”

Thisleaves the question: Can nouns, pronouns, or phrases based on them describe
avariable or function that takes on Boolean values? A description that iseither true or
false must relate at least two things with each other, but a noun or pronoun expresses
only onething (or acollection of things, but not the relationship between them). This,
in turn, raises the question: What kinds of words can connect two or more nouns or
pronouns such that the combination takes on Boolean values?

Two or more nouns or pronouns can be related with each other by a verb or
verb phrase, leading to a clause or a sentence in English. Thus, a distinguishing
characteristic of a variable or function with Boolean values is a verb in its English
description. See the section “Verb of State or Being” below.

Aspointed out in Section 6.2.4, aconjunction in English a so connectstwo or more
like things, such as nouns and pronouns, but the combination retains the character
of the two like things. Thus, when a conjunction connects two or more nouns or
pronouns, the combination is anoun or pronoun phrase, not a clause with a Boolean
value. Only if the nouns or pronouns being connected already had Boolean values
would the combination have aBoolean value. Except for nouns or pronouns referring
to a clause or a sentence, such nouns or pronouns are neither evident nor apparent.
In exceptional cases where nouns or pronouns refer to clauses or sentences, the
clauses or sentences referred to should be the description of the variable or function
in question. See also the section “Conjunction” below.

In summary, avariable or function with a non-Bool ean value should be described
by a noun, pronoun, or phrase based on a noun or pronoun. Variables or functions
with a Boolean value should not be described by a noun, pronoun, or phrase based
on a noun or a pronoun, but instead, they should be described by a clause or a
sentence.

Verb of Stateor Being As pointed out above, avariable or function with aBoolean
value should be described by aclause or sentence, not by anoun, pronoun, or a phrase
based on anoun or apronoun. The name of avariable or function with aBoolean value
may be shortened to a verbal phrase, thereby maintaining the distinction between a
Boolean and a non-Boolean variable or function, the latter being given a name based
on anoun or pronoun.

A Boolean variable or function should be described by a clause or sentence
containing a verb of state or being. Depending on whether or not the verb is a
conjugated form of “to be” the name of the Boolean variable or function is best
formed as follows. If the verb of state or being is“is’ or “are” (or some other tense
of “to be"), it will be followed by a predicate adjective or noun. Form the name of
the Boolean variable or function by combining the verb and the predicate adjective
or noun. The combination can be abbreviated when no ambiguity results. Often, the
subject of the sentence describing the Boolean function will be the argument or one of
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the arguments of the Boolean function. When naming a Boolean variable, the subject
can aso be included in the name. Some examples are;

e DoorlsOpen

e AllCardsAreDealt

¢ MotorPowerIsOn

¢ |sGreen(object)

¢ |sColor(object, color)

¢ |sPhysician(name)

¢ |sProfession(name, profession)
¢ |sKingOf(name, country)
e |SOff(device)

* |sOn(device)

¢ |sOpen(door)

e |sOpening(door)

e |sClosed(door)

e |sClosing(door)

* |sInState(subsystem, state)

Sometimes one is tempted to shorten the name of a Boolean variable or function
by dropping the verb. The remaining part of the namewill be anoun or adjective. This
can lead to misinterpretation of the nature of the variable or function. Therefore, such
an abbreviation should be avoided. As an example of the possible confusion that can
result, consider the names*“ IsKingOf” and “KingOf.” The name*IsKingOf” includes
averb and, therefore, one would expect the value of the function to be true or false
(i.e., Boolean). The name “KingOf” is the beginning of a noun phrase, so one would
expect the value of the function to be the person who isthe king of the given country.
Thus, abbreviating the function name “1sKingOf” to “KingOf” misleads the reader.
Similarly, one would expect “PowerlsOn” to be the name of a Boolean variable or
function. The name “PowerOn” can easily be expected to be the name of a variable
or function whose value is the object of the preposition “on,” that is, whose value is
the device or devicesto which power isbeing applied (e.g., “rear wheelsonly,” “front
wheels only,” “front and rear wheels,” “headlights,” “all”).

To avoid such possibilities of misunderstanding, one should not abbreviate the
names of Boolean variables or functions of non-Boolean arguments by dropping the
verb from the name.

If the verb of state or being is not a conjugated form of “to be,” the name of the
Boolean variable or function can be the verb alone or the verb followed by part or
al of the verbal phrase of the English sentence describing the Boolean variable or
function. In the case of aBoolean variable, it is often desirable to include the subject
of the descriptive sentence in the name of the variable. In the case of a Boolean
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function, the subject of the descriptive sentence will often be one of the arguments
of the function. Some examples are:

e Georgel ovedSarah

e Eats(animal, food)

ResidedIn(person, city)

WorksAt(person, company)

e Shaves(name of person shaving, name of person being shaved)
WillPlay(player, card)

Remember that the Boolean variable or function itself is not associated with any
time, the concept of time being absent in the Language of Mathematics. Any associ-
ation between the value of the variable or function and time is in the interpretation,
not the mathematical variable or function itself.

Note that many verbs of the type noted above represent habitual, regular action
and can be viewed as verbs of state or being. “ George loves Sarah” and “ Cows eat
grass’ are examples of sentences containing verbsthat can be viewed as stative verbs
(i.e., timeless, tenseless verbs of state or being). Such verbs do not refer to time, but
express a static relationship.

In summary, the name of avariable or function should signal the type of value of
that variable or function. A name based on a verb signals a Boolean value. A name
not based on a verb signals a non-Boolean value.

Verbof Action  English statements or phrases about action in the application domain
cannot be tranglated to variables and functions in the Language of Mathematics.
Therefore, action verbs are not appropriate and should be avoided in theinterpretation
of variablesand functionsand should not appear inthe names of variablesor functions.
Statements about action in the application domain must be reformulated in terms of
statements of state or being before defining and naming variables or functions. Thisis
not difficult, but it is necessary that one pays conscious attention to thisidiosyncracy
of translating between English and the Language of Mathematics.

Action verbs often describe or represent achange of state. In such cases, asentence
with an action verb can be reformulated to refer to the state before or after the
transition. The states will be described by noun or adjective phrases and will be
represented by variablesand sequencesof values. Further detail sof modeling dynamic
processes in the Language of Mathematics are discussed in Section 7.5.

Some examples of sentences with action verbs and how they can be reformulated
in terms of states are:

¢ |f the pedestrian pushes the button to cross the street, ... :
o If button X isdepressed, ... or
o If button contact X isclosed, ... .
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e When the pilot pullsthe stick back, ... :

o When the control stick isin position (v, h), ... .
e |f aperson pushes against the elevator door whileit isclosing, ... :

o If the blockage sensor on the elevator door ison ... or

o If the signal from the blockage sensor on the elevator door is active ...
e |f thereactivity rises above the permissible limit, shut the reactor down:

o If the reactivity is greater than the reactivity safety threshold, the reactor’s
control state is“shut down.”

Basically, every clause containing an action verb is reworded to refer to the state
after (and possibly also the state before) the transition represented by the action.
The reworded clauses contain only verbs of state or being. The reworded statements
are the basis for formulating the interpretations and names of relevant variables and
functions.

Adjective and Predicate Adjective Adjectives and predicate adjectives normally
appear in names and interpretations of variables and functions as parts of noun or
verb phrases. They are discussed in the corresponding sections on houns, pronouns,
and verbs above.

Adverb Adverbsplay asubordinateroleinthenamesandinterpretationsof variables
and functions. There, they modify adjectives and verbs as needed and appropriate.
It isusually not necessary to consider them separately when formulating names and
interpretations of variables and functions.

Conjunction  Conjunctions connect two or more clauses with Boolean values to
form a sentence with a Boolean value; the English conjunctions “and” and “or”
(corresponding to the mathematical functions of the same names) are two com-
mon examples. In such cases, the name of the function will be the conjunc-
tion. The interpretation of the function will be the conjunction or a phrase based
onit.

A mathematical function corresponding to an English conjunction not connecting
clauses should be named and interpreted according to the type of the value of the
function and the part of speech of the phrases being joined by the English conjunction.
See the corresponding paragraphs above and Section 6.2.4.

The question of naming and interpreting a variable does not arise in the context of
a conjunction, because a variable does not join two or more things.

Examples The following table contains examples of functions and shows the rela-
tionship between the types of their values and the parts of speech of their names and
interpretations.
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TABLE 6.2.6-2 Conventionsfor Names and I nterpretations of Functions: Examples

Infix notation X<y XVy X+y (not applicable)
Referenceto IsLessThan or(x,y) sum(x, y) ShapeOf(object)
function x,y)
Function name IsLessThan or sum ShapeOf
Type of value of Boolean Boolean number other (adjective)
function (eg.,
triangular)
Typeof valuesof | number Boolean number geometrical
arguments object
Part of speech of | verb phrase  conjunction noun noun
the name
Alternative names | IsLess disunction addition
English Thevalueof x The value of Thesum of the  The shape of the
interpretation (in islessthan X Vvyisthe values of x object given as
full) the value of digiunction of andy the argument
V. the values of
xandy.
Abbreviated xislessthany. xory (or both). sumof xandy  shape of object
English
interpretation
Part of speech sentence sentence noun phrase noun phrase
of the
interpretation

6.3 CAUSE AND EFFECT

Cause—ffect relationships can be expressed in English. They can be expressed ex-
plicitly, as in the sentence “Rain falling on the grass makes the grass wet.” The verb
“makes’ indicatesclearly that “ Rain falling onthe grass’ isthe cause of the effect that
the grass becomes wet. Such causal relationships are expressed so often in English
that noncausal sentences are often used to imply causdlity, as in the sentence “If
it rains, the grass will become wet.” Analyzed precisely and pedantically, the latter
sentence does not state at all that the rain causes the grass to become wet, only that
thereisarelationship between rain and the grass becoming wet. Which causeswhich,
whether both are caused by something else, or the absence of a causal relationship
between them is not stated. However, the context implied by the sentence and the
generally recognized causal relationship leads most people to interpret that sentence
to mean that the rain causes the grass to become wet. That is, most people will under-
stand that sentence to imply a causal relationship, even though, strictly and precisely,
it does not.

Causality cannot be expressed in the Language of Mathematics. There is no
provision for causal relationshipsin the definitions of values, variables, expressions,
and functions. Cause—€ffect relationships may be defined in the interpretation of a
mathematical model to the application area, but thismust bedonein English—outside



WORD ORDER 177

the Language of Mathematics. A mathematical expression relates values to one
another but does not state anything about cause and effect. The concept of cause
and effect is simply missing from the Language of Mathematics. For example, the
Boolean expression “x=y+2" corresponds to the English sentence “The value of
x equals the sum of the value of y and the value 2" A value of 3 for y does not
cause the value of x to be 5. Neither does a value of 5 for x cause the value of y to
be 3. Neither does a value of 3 for y and a value of 5 for x cause the value of the
expressiontobe“true”; inthiscase, thevalueof theexpressionis, by definition, “ true.”
One should be careful not to attribute cause—effect relationships to mathematical
expressions.

The logical implication function (infix notation =) is sometimes used in a math-
ematical model to represent a causal relationship in the application area, but even in
this case the causality is introduced in the interpretation of the model as mentioned
in the paragraph above. The concept of causality always lies outside the Language of
Mathematics, never within it.

In English texts the notion of cause and effect is often used more extensively than
is really appropriate, especially in technical contexts. One often finds it convenient
to think of a voltage across a resistor (e.g., the filament of a light bulb) as causing
current to flow through it. However, it isjust as meaningful physically to think of the
current flowing through the resistor as causing a voltage acrossitsterminals. Physics,
as mathematics, says nothing, really, about which isthe cause and which isthe effect.
The very concept of cause and effect in this case is not really physically meaningful;
itisan artifact of human thinking. There are many similar examplesin the scientific,
engineering, and technical fields.

6.4 WORD ORDER

When analyzing an English sentence to determine its meaning when preparing to
trandate it, the order of words and phrases is important—but sometimes also mis-
leading. Before translating an English sentence into the Language of Mathematics,
one must be consciously aware that the structure of the given sentence and its word
order might not reflect the intended meaning. Common usage, although usually ade-
quatefor general communication, can often|ead to ambiguity that iseasily overlooked
and that can lead to mathematical expressions that do not express the meaning in-
tended. In particular, the position of words and phrases modifying other wordsin the
sentence can lead to problems that are often not recognized immediately.

For example, consider the sentence “He is tied to a fence with white shorts”
Grammatically, it is not at all clear what the phrase “with white shorts” modifies.
Proximity to the word “fence” suggests first that the phrase “with white shorts’
modifies “fence,” in which case the fence has or is wearing white shorts, which is
semantically very unusual. The word “shorts’ here presumably means an item of
clothing, which suggests that the person tied to the fence is wearing white shorts. In
thiscase, it isnot clear whether heiswearing only the white shorts or the white shorts
under outer trousers. Another possibility isthat the prepositional phrase “with white
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shorts” is used as an adverb, modifying “tied,” in which case the white shorts were
used instead of arope to tie him to the fence. Thus, this sentence can be interpreted
to have any one of several meanings; for example:

Heistied to afence. The fence has white shorts.

Heistied to afence. The fence is wearing white shorts.

Heistied to afence. Heis wearing white shorts under his trousers.
Heistied to afence. Heis wearing only white shorts.

Heistied to afence. White shorts were used to bind him to the fence.

Considering all aspects of this sentence, the last possibility above is probably the
most justifiable interpretation, but the next-to-last interpretation above is also very
likely to be the intended meaning. In any case, the sentence is ambiguous.

The word order in the original sentence above strongly suggests either the first or
second interpretation above, but the meanings of the words “he,” “tied,” “fence,” and
“shorts” argue just as strongly against these interpretations.

As the example above illustrates, considerable ambiguity can be introduced into
an English sentence by careless word order. The adverb “only” is often placed in an
inappropriate position in a sentence, increasing the possibility of misinterpreting the
sentence. It is often placed within or next to the verb, although it really isintended to
restrict the meaning of some other part of the sentence.

For example, consider the sentence “The light should only be on if condition
A is true” in a context in which two conditions, A and B, are mentioned. How
should this sentence be interpreted? Which of the following meanings did the author
intend?

e Thelight should be on if condition A istrue, regardless of condition B. Other-
wise, the light should be off.

e Thelight should be onif condition A istrue and condition B isfalse. Otherwise,
the light should be off.

If the first interpretation above was meant, a much clearer formulation of the
original sentence would be “The light should be on only if condition A is true’ or,
even better, “ The light should be on if and only if condition A istrue.”

If the second interpretation above was meant, a much clearer formulation of the
original sentence would be “The light should be on if only condition A istrue” (note
the different position of the word “only”) or, till clearer, “The light should be on
if and only if only condition A is true” Because this last formulation includes the
word “only” twice, it is stylistically perhaps poorer, but it is in a form closer to
mathematical language and, therefore, less ambiguous.

Still clearer and completely unambiguous would be a table representing the in-
tended meaning in mathematically explicit form, such as, for the first interpretation
above,



WORD ORDER 179

Condition A Light
false off
true on

or, for the second interpretation above,

Condition A Condition B Light

false false off
false true off
true false on
true true off

representing the mathematical expressions
lighte{off, on} A conditionAe{false, true} A (light=on) = conditionA

and

lighte{off, on} A conditionAe{false, true} A conditionBe{false, true}
A (light=on) = (conditionA A —conditionB)

respectively. Such tables can be structured and labeled so that they can be read and
understood by nonmathematically inclined people. For logical relationships that are
difficult to express clearly and unambiguously in English, tables should always be
considered as an alternative descriptive mechanism in otherwise English texts.

The reader should identify still other possible interpretations of the original sen-
tence above. How can they be expressed unambiguously in English?

The position of theword “not” for logical negation in an English sentence can also
lead to confusion and misunderstanding. Normally, “not” is an adverb modifying a
verb and it is, therefore, typically written adjacent to the verb or some part of it. In
some situations, however, it is meant as a restriction on an adjective or even on a
noun. Sentences in which the word “not” refers most directly to an adjective or to
a noun are usually abbreviated sentences with major parts of one or more clauses
implied. This should be kept in mind explicitly when analyzing such a sentence.

For example, consider the sentence

Not Bill, but either Georgeor Samisthecriminal.

Here, “not” refers most directly to the person named “Bill,” not to the verb “is” The
sentence above suggests immediately the mathematical expression

(—Bill A (George v Sam)) = crimina

which is obviously meaningless and nonsense. The negation function — yields a
Boolean value, and its argument must be Boolean. The values of the arguments of
the v function must also be Boolean. Presumably the names Bill, George, and Sam
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are values in this context (i.e., are not variables with Boolean values), so are not
valid arguments for the — and Vv functions. The value of the variable criminal should
presumably be a name (e.g., Bill, George, Sam), not a Boolean value. The necessity
that arguments of certain functions have certain types of values was discussed in
several parts of Chapter 3 and is dealt with in more detail in Section 6.5.

These inconsi stencies arise because the sentence above isin a highly abbreviated
form that disguisesthe grammatical structure of itsnonabbreviated intended meaning,
whichis

The criminal is not Bill, but is either George or Sam.

or, more fully,

The criminal is not Bill, but either the criminal is George or
the criminal is Sam.

In this form, it is clearer that “not” does not modify “Bill,” but instead, that “not”
modifies the verb “is’ and hence effectively the entire clause “The criminal is Bill.”
The words “but” and “or” are conjunctions, each combining clauses. This form of
the sentence leads directly to the correct mathematical expression

—(criminal=Bill) A (criminal=George Vv criminal=Sam)

whose value is Boolean, as the value of an expression corresponding to an English
sentence must be. The values of al termsin the expression above are also consistent
with the functions applied to them.

As pointed out in Section 6.2.4, the English conjunction “but” means, logically,
“and.”

In summary, when “not” appears to refer most directly to something other than a
verb, look for implicit clauses. Reformulate the given sentence, at least mentally, into
the full, intended sentence, with all verbs expressed explicitly. Whenever the word
“only” appearsinan Englishtext, identify exactly theword towhichitlogically refers
and itsintended meaning. More generally, ask yourself consciously which words and
phrases modify which other words and phrasesin a sentence and whether or not they
modify what the author actually intended them to modify.

6.5 GRAMMATICAL AGREEMENT

In English and other natural languages, various grammatical rules must be satisfied.
These rules pertain to relationships between various parts of sentences. For example,
in English the verb must agree with the subject in person and in number:

e | am happy.
e You are happy.

e Sarahis happy.
e They are happy.
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The sentences “I are happy,” “I is happy,” “You am happy,” “You is happy,” “ Sarah
am happy,” “Sarah are happy,” and “They am happy” are grammatically incorrect,
although the meanings are clear.

The reader should identify which of the following examples are grammatically
correct and incorrect and why.

e George saw he.

e George saw him.
e George saw his.

e George saw she.

e George saw her.

e George saw hers.
e George saw they.
e George saw them.
¢ | saw George.

e Me saw George.

¢ She saw George.
e Her saw George.
e Hers saw George.
e They saw George.
e Them saw George.

These examples illustrate the requirement that the object of a sentence be in the
objective case, not the nominative or genitive case. Similarly, a pronoun must be in
the subjective (nominative) case when it is the subject of the sentence. In English,
only pronouns have case distinctions. Many other languages have distinctive case
formsfor still other pronouns, nouns, adjectives, and articles as well.

Similarly, in the Language of Mathematicsthe types of arguments must be consis-
tent with the functions applied to them. This need for type agreement between differ-
ent partsof an expressionwascoveredinitialy in Section 3.4.2 oninfix notationandin
Section 3.4.3 on tree notation. See also Section 3.3 and the | atter part of Section 4.1.1
for the definition of the domain of afunction. In the paragraphs below, this aspect of
the grammar of the Language of Mathematicsis discussed in greater depth and more
extensively. In particular, its influence on the possible meanings of an expression
consisting of a sequence of infix functions without parentheses is examined.

Consider an infix symbol op and the following expression involving it:

Xopyopz

The justification for writing this expression without parentheses is the observation
that in many cases, the expression (x opy) opz and the expression x op (y opz) are
both defined (the requirements for type agreement are met) and the two expressions
have the same value. Thus, it makes no difference where one writes the parentheses.



182 LINGUISTIC CHARACTERISTICS OF ENGLISH AND THE LANGUAGE OF MATH

This leads to the view that the parentheses are irrelevant and redundant, so they can
be dropped completely.

More generally, the expression x opy op z can be interpreted to mean any one of
several things. The requirement that the types of arguments agree with the function
being applied to them influences which meaning can be associated with the expression
above.

First priority is given to the interpretation above, which motivated dropping the
parentheses in the first place: that is, that the expression x opy op z is interpreted to
mean

(xopy)opz
or

xop (yop2)

provided that (1) both of these expressions satisfy the requirement of type agreement
and (2) they both have the same value for al values of the variables x, y, and z (i.e.,
the function op is associative). Requirement (1) is satisfied if and only if the types of
the arguments and of the function value are the same. Thisimplies that the variables
X, Y, and z are al of the same type.

If both of the parenthesized expressions above satisfy the requirement that all
types are consistent, but the function op is not associative, then the rule “ parenthesize
from left to right” for functions with the same binding order (see Table 3.4.2-1
and the accompanying text) can be employed, but this can easily lead to a reader
misinterpreting theexpression. Inthiscase, theintended parentheses should bewritten
explicitly in the expression.

If theinterpretation with first priority above cannot apply because the requirements
are not fulfilled, then second priority is given to the interpretation

(xopy) A (yop2)

provided that the requirement for type agreement is satisfied.

If the requirements for both interpretations above are violated, the original ex-
pression is syntactically incorrect—it is not a valid construct in the Language of
Mathematics. It must be rewritten.

Anexampleof theexpression a+b+-c, wherea, b, and ¢ have numerical values, was
presented and discussed in Section 3.4.2. The requirements for the first convention
above are met, so that convention applies.

Therelational operators (e.g. <, >, <, >, =, #) and theimplications (=, <, <)
areimportant in this context, asthey exhibit pecularities of the type mentioned above.
Below are examples of their usage and meaning in certain forms of expressions.

Example 1. = AppliedtoBxB Consider the expression
X=y=12

wherex, y, and z are variables or expressions with Boolean values. The requirements
for thefirst interpretation above are met—the arguments and the value of the function
are the same (Boolean) and the function = on Bx B is associative. The reader should
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provethat thisisthe case. The expression x=y=z s, therefore, defined to mean either
(x=Yy)=z or x=(y=2z), both of which have the same value for all Boolean values of
X, Y, and z.

Example 2: = Applied to RxR In this example, the expression x=y=z does
not fulfill the requirements for the first convention because the arguments of = are
numbers, but the value of the function = is Boolean (false or true). The requirement
(type agreement) for the second convention does apply, so that in this case the
expression x=y=z is defined to mean (Xx=y)A(y=z). This last expression implies
that x=z, so that the expression x=y=z can be interpreted to mean that all three
variables (or expressions) x, y, and z have the same value. In this example, the set
R is not critical; the same conclusions apply if any set other than B is substituted
for R.

Example 3: < Applied to RxR In this example, the expression x<y<z does
not fulfill the requirements for the first convention because the arguments of < are
numbers, but the value of thefunctionisBoolean (false or true). Therequirement (type
agreement) for the second convention does apply, so that in this case the expression
X<y<z is defined to mean (x<y)A(y<z). This last expression implies that x<z. In
this example, the set R is not critical; the same conclusions apply if any linearly
ordered set (other than B) is substituted for R.

Example4: = AppliedtoBxB Inthisexample, the expression x=y—=>z satisfies
the first convention’s requirement of type agreement, but = is not associative. One
could apply the first convention and the “parentheses from left to right” rule, but as
mentioned above, thisis not desirable, asit can too easily lead to misinterpretation.
Applying the second convention would lead to the expression (Xx=Yy)A(y=-2). Be-
cause it is not really clear to the reader whether the writer intended the first or the
second convention to be applied, the writer should avoid an expression of the form
X=y=>z and, instead, write the intended expression with appropriate parentheses.

Example 5: < Applied to BxB The functions < and = are both equality func-
tions; that is, the value of each function istrueif both arguments have the same value
and false otherwise. The functions differ in that the domain of < isBx B, while the
domain of = is Sx S, where S is any nonempty set (i.e., including B). Also, their
binding orders are different (see Table 3.4.2-1). The comments on Example 1 above
apply here. Correspondingly, the expression x<y<z is to be interpreted to mean
either (x&y)&zor x& (Y& 2).

Depending on one's viewpoint, the various interpretations of the several subex-
pressions appearing in infix expressions discussed above can be considered to be
definitions, abbreviations, idioms, irregularities, peculiarities, idiosyncracies, or odd-
ities of the Language of Mathematics. In thisregard, the Language of Mathematicsis
just like English or any other natural language; they all have their own peculiarities.
The need for parentheses to match and ways to check that they do were discussed in
Section 3.4.2.
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6.6 VERBS: TENSE, MOOD, VOICE, ACTION VS. STATE
OR BEING, STATIVE

In English and other natural languages, different conjugated forms of verbs are used
to distinguish the characteristics tense, mood, voice, and action vs. state or being.
In English, some of the differences in the conjugated forms have disappeared as the
language has evolved, with the consequence that fluent and even native speakers of
English are sometimes unaware of some of the grammatical distinctions. In the case
of auxiliary verbs, even infinitive forms have disappeared from English (e.g., the
infinitive forms for the verbs may, must, can, and shall). In other languages (e.g.,
French and German) these infinitives still exist and are used.

Tense The tense of a verb expresses the time when the action took place or the
state existed. The tense can also indicate if the action or state ended and whether the
action or state was continuous, habitual, or asingle event. The temporal relationship
between actions or states can also be expressed by the tenses of the corresponding
verbs.

In the Language of Mathematics, the meanings of mathematical expressions de-
pend only on the values associated with the variables appearing in them. Thereis no
reference to time—aconcept missing completely from the Language of Mathematics.
The Language of Mathematicsis atimeless language. Verbs directly associated with
mathematical expressions are, therefore, timeless—they are tenseless.

In the Language of Mathematics, verbs arise only in Boolean-valued functions,
and there only implicitly, see Section 6.2, especially Sections 6.2.1 and 6.2.6. These
verbs are always verbs of state or being. Most commonly, they are expressed by
conjugated forms of “to be” in English. Other examples are “equals’ (is equal to),
“exceeds’ (isgreater than), and “implies.” Action verbsdo not appear in direct, literal
trangations from the Language of Mathematics to English.

In the grammar of natural languages such as English, verbs in statements that
express states (i.e., relationships, characteristics, or properties as opposed to actions)
independent of time or without reference to time are called stative verbs. All implicit
verbs arising in Boolean functions are such stative—timeless, tenseless—verbs. Di-
rect, literal trandations from the Language of Mathematics into English describe
a timeless, static model. The present tense in English is usually the most suitable
tense for such verbs in a direct translation from the Language of Mathematics to
English, but it is only an approximation to the true timelessness of the implicit verbs
in the Language of Mathematics. The tense (reference to time) associated with ev-
ery conjugated verb in English can lead one to think of a verb in the Language of
Mathematics as expressing a state or relationship valid in the past, present, and fu-
ture, or a state or relationship that has no beginning or end point of concern in time,
but this is introducing a concept actually absent from the verb in the Language of
Mathematics.

Some examples of stative verb constructs in English are: Lemons are yellow.
Giraffes’ necks are long. Giraffes have long necks. The sun is hot. Mt. Everest is
high. The specific weight of water is 1 kg/liter. Water weighs 1 kg/liter.
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English and many other contemporary natural languages do not have specific
grammatical formsfor stative verbs. In such languages, stative verbs can beidentified
only by their meanings and within context. The irrelevance of time for the truth or
falsity of the statement is one of the two criteria for identifying a stative verb. The
other criterion is that the verbal part (predicate) of the sentence describes a state or
condition rather than an action. The verb in apredicate expressing astatic relationship
istypicaly stative.

The ancient Akkadian, written in cuneiform on clay tablets and the oldest known
Semitic language, had a particular conjugation for stative verbs. Middle Egyptian,
written with hieroglyphs and derived scripts, also had specific grammatical forms
for stative verbs. In such languages, stative verbs can be distinguished grammat-
ically from nonstative verbs, without having to rely on the intended meanings of
the statements in which they appear. A stative verb can be viewed as an inflected
verbal form of an adjective. The subsequent development of natural languages
has, apparently, tended to drop the grammatical distinction between stative and
nonstative verbs.

In Akkadian, stative verb forms of many words were used instead of the verb “to
be” with a predicate adjective, so the verb “to be” was used infrequently. Such
a structure in the verb system corresponds well with verbs in the Language of
Mathematics, and if English had explicit forms for stative verbs, they would be
used in English translations of mathematical models expressed in the Language of
Mathematics. Lacking explicit formsfor stative verbs, however, many translations of
Boolean expressions and functionsinto English will consist of the verbs*“is’ or “are”
followed by a predicate adjective or predicate adjective phrase describing a state,
characteristic, or property. However, even these will be only approximations to the
timeless meanings of the mathematical expressionsin question.

In order to model temporal relationships in the application world (e.g., the phys-
ical world), mathematical variables representing time in the application world and
functions of these variables are employed. The mathematical representation (model)
itself remains a static one. Lack of conscious awareness of this distinction has caused
much confusion and many errors in the practical application of mathematics to dy-
namic processes: for example, in the mathematical specification and logical analysis
of computer programs.

English and natural languages have the capability to express both static and dy-
namic views in their universe of discourse. The Language of Mathematics itself
enables only a static view to be expressed. Some technical languages (e.g., many
computer programming languages) are oriented to adynamic view of a process, such
as a computer executing a program. Some processes of concern to engineers in the
traditional fields are fundamentally dynamic. These differences must be kept in mind
when applying mathematics in practice.

Mood In English and other natural languages, the mood of a verb expresses a
category of purpose or intended interpretation of the verb and the statement in which
it appears. The indicative mood, typically the most commonly used mood, expresses
afact or asks a question of fact.
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The subjunctive mood expresses supposition, speculation, condition, wish, possi-
bility, uncertainty, irreality, and so on. A sentence with the verb in the subjunctive
mood is not to be understood as a statement of fact. For example, in the sentence “If
| wereyou, | would study medicine,” thefirst clause expresses an unreal supposition,
and the second clause, an action that is not taking place and that will not take place.
Both verbs are, therefore, in the subjunctive mood. (Some other languages, and some
English grammarians, distinguish between the subjunctive mood and the conditional
mood.)

The imperative mood expresses a command: for example “Come here”

Mathematical expressions may also have various purposes or intended interpreta-
tions. The antecedent in an implication (e.g., “A” in the expression “A=B") corre-
sponds directly to the subjunctive (or conditional) mood in many natural languages.
In this structure, it is not necessary to distinguish explicitly between the subjunctive
and the indicative moods because the meaning is completely clear from the context.
Furthermore, the antecedent A above will at |east sometimesrefer to avery real con-
dition, in which case the subjunctive mood is not really appropriate. A corresponding
English sentence might be “When a 100-kg weight is attached to the cable, the cable
will not break,” in which both verbs are in the indicative mood.

For these reasons, adistinction corresponding to the subjunctive mood is not made
in the Language of Mathematics. Such distinctions are often neglected in English,
also. Infact, so many subjunctive formshave been dropped in theevol ution of English
that one could say that the subjunctive mood has almost disappeared from common
usage. Many other natural languages, however, still require that this distinction be
expressed explicitly and systematically. Such languages have retained the distinctive
conjugational forms of the verbs for the subjunctive mood.

Semantically, the Language of Mathematics does give rise to other needs for
moods of the verbs. Different purposes and intended interpretations (moods) of
mathematical expressions are listed and described in Sections 6.9 and 6.12. If there
were a mechanism in the Language of Mathematics to indicate the intended purpose
or interpretation of an expression, the several purposes could be viewed as moods
of the verbs in question. However, there is no such mechanism in the Language of
Mathematics, so the purpose or grammatical “mood” in this sense must be explained
in English in the interpretation of the mathematical expressions in question. See
Section 6.13 and the examples in Chapter 7.

Voice Thevoiceof averb refersto the relationship between the verb and the subject
of the clause either as the acting agent (actor, performer of the action) or the receiver
of the action. In the sentence “The boy threw the ball,” the verb “threw” is in the
active voice because the subject of the sentence, “boy,” isthe performer of the action.
The passive voice version of this sentence is“ The ball was thrown by the boy” ; here
the subject of the sentence, “ball,” isthe receiver of the action.

In mathematical expressions, this distinction could occasionally be made, particu-
larly in logical implications. The expression “A=-B” (A implies B) could be viewed
as the active voice version and the reversed implication “B<A” (B is implied by)
as the passive voice version. This distinction is unnecessary and contributes nothing
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of apparent value in terms of insight, so the voice of a verb can be neglected in the
Language of Mathematics.

Action vs. State In natural languages, the distinction between verbs of action and
verbs of state or being is useful in many respects. As pointed out earlier, there is no
equivalent to verbs of action in the Language of Mathematics, all verbsbeing not only
timeless, but also verbs of state or being. Therefore, in the Language of Mathematics
no distinction between verbs of action and verbs of state can be made.

To model an action mathematically, one must formulate an appropriate static
representation of the dynamic process involving the action. A mathematical struc-
ture commonly used to represent discrete time steps is based on a sequence (see
Section 4.1.3), with the terms in the sequence representing states resulting from
actions, not the actions themselves. The steps between the terms in the sequence
correspond to actions. Related to this is the use of a finite state machine (see Sec-
tion 4.1.7), in which the transitions between states are associated with actions. Thus,
the mathematical expressions model the results of the actions, not the actions them-
selves. In other cases, a variable can be interpreted as a command to perform the
action in the physical world: for example, a variable with the meaning “power to
the motor” or the interpretation “apply power to the motor” (see the example in
Section 8.13).

In summary, in the Language of Mathematicsiit is neither meaningful nor possible
to distinguish verbs based on tense, voice, or action vs. state. It is meaningful to
distinguish between the moods (i.e., the purposes or intended interpretations) of
mathematical expressions. The Language of Mathematics has no mechanisms for
making these distinctions. Such distinctions can be made only in accompanying text
in English, in the interpretation of the mathematical model in question.

In trandations from the Language of Mathematicsinto English, verbs will appear
in a tense other than the present or in a mood other than than the indicative only
when the text is intended to reflect the interpretation of the mathematical model in
the context of the application world. Such forms of verbs will appear only when the
English text is not intended to be a direct, literal restatement of the mathematical
model itself. See also Sections 6.9, 6.12, and 6.13 and Chapter 7.

6.7 AMBIGUITY

Ambiguity in the logical sense has no place in the world of mathematics. The
Language of Mathematics does not provide for ambiguous or vague expressions
or statements. Probability theory, a subdiscipline of mathematics, does enable one
to make statements about uncertain events, but those statements themselves are
neither ambiguous nor vague. Similarly, “fuzzy” theory provides a way of mod-
eling incompletely or vaguely defined objects or properties, but the statements
about those incompletely or vaguely defined objects or properties are, themselves,
unambiguous.
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Statementswritten in natural languages such as English are almost always ambigu-
ous in some way, that is, are subject to different interpretations. For most purposes
for which natural languages are used, this can actually be an advantage. Most writers
and even more readers do not want to go into the excrutiating, pedantic precision
and detail that would be necessary to even attempt to eliminate ambiguity. Authors
of literary works often intend to invoke the reader’s imagination to fill in details, and
this requires alanguage that permits ambiguity—that |eaves certain details open.

Because sentences in English are unconsciously interpreted within certain con-
texts, the communicating parties are usually not consciously aware of the ambiguity
of their communication and the misunderstanding it can cause. The ambiguity in
typical English sentences is often underestimated.

One example sometimes cited is the sentence

Timeflieslike an arrow.

The most common interpretation is probably that this sentence is an observation
about how fast time seems to pass. In this interpretation, “time” is a houn and the
subject of the sentence, “flies” is averb in the indicative mood, and “like an arrow”
isaprepositional phrase used as an adverb, indicating how fast time seems to go.

A second interpretation, grammatically and semantically fully justifiable, is that
this sentence is a command to measure the speed at which flies fly (“time’ their
flight), just as one would measure the speed of an arrow in flight. In this case, the
word “time” is a verb in the imperative mood, “flies” is a noun and the object, and
“like an arrow” is aprepositional phrase used as an adverb.

A third interpretation, also grammatically and semantically fully justifiable, but
in a context somewhat difficult to imagine, is the following. “Time” is an adjective
indicating which typeof fliesismeant, “flies” isanoun and the subj ect of the sentence,
“like” isaverb, and “an arrow” isanoun phrase and the object.

Most people will immediately interpret the sentence above in the first way de-
scribed. When pressed for another meaning, some will recognize the second interpre-
tation as valid. Few will recognize the third interpretation, but when it is explained,
most will agree that it is, grammatically, a possible interpretation, although a rather
odd one.

Similarly, many unexpected ambiguities exist in English sentences describing a
problem to be solved or an application to be analyzed. Sometimes, the author will see
only one interpretation and the reader will also see only one interpretation, but their
two interpretations will be different. The discrepancy will often go unnoticed until
much later in the project, when resolving the matter will be more time consuming
and expensive and will require redoing some of the intermediate work.

For logical and technical analyses, ambiguity is counterproductive and unde-
sired. For those purposes, a language is needed that permits—or even better,
requires—statements to be unambiguous. The Language of Mathematics has evolved
to fulfill this need. Where ambiguities could arise (e.g., when abbreviating), con-
ventions have been laid down for eliminating otherwise possible ambiguities (see
Sections 3.4 and 6.5 for examples).
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Do not try to express ambiguous statements in the Language of Mathematics.
Either you will not be able to do so or the expressions you do write will not be
legitimate mathematical expressions—they will violate rules of the Language of
Mathematics.

The languages and notations used in mathematics were not always unambigu-
ous. Initially, mathematical statements consisted of numbers embedded in natural
language. Very early number systems were positional systems but without a symbol
for zero. Furthermore, a symbol for separating the whole-number part from the frac-
tional part was not written. For example, “257” could have stood for two hundred
and fifty-seven, two thousand five hundred and seven, twenty-five and seven tenths,
and so on. Because named variables did not exist, references to the various values to
be used in the calculation were expressed in words or numbers. In Babylonian texts
describing calculations, for example, thisleads to ambiguity regarding the targets of
such references, making it more difficult for us to decipher the ancient algorithms
correctly and precisely.

6.8 STYLE

In any language there are many ways of expressing any particular thing. Selecting
one of the grammatically and semantically valid possibilitiesis a matter of style. The
overal goal isto make it easy for the reader to read and understand the intended
message fully with a minimum of time and mental effort. Good style is just as
important in mathematics as in English and other natural languages—perhaps even
more important, because for readers of mathematical expressions the Language of
Mathematicsis not their first, their native language.

Theauthors of English texts pursue avariety of goals. Literary and poetic textsaim
to convey a combination of ideas, concepts, facts, impressions, feelings, emotions,
enjoyment, and entertainment. The reader is often expected to fill in images and
details based on imagination stimulated by the text. The style in which the text is
written should encourage and enabl e the reader to participate actively and effectively
in this communication.

The goals of technical texts are similar, but with a rather different distribution of
emphasis. Depending on the specific text, conveying facts, concepts, or ideas is of
primary importance. Impressions, feelings, emotions, enjoyment, and entertainment
are of comparatively little or even no concern, but this does not mean that the
reader should find the text unenjoyable or even disagreeable. Mathematical models
and expressions are normally intended to convey primarily facts, and secondarily
concepts and ideas, relating to some rational problem so that a solution can logically
be deduced.

Feelings and emotions are rarely the concern of authors of mathematical expres-
sions. The universe of discourse of the Language of Mathematics does not, itself,
include feelings and emotions. Mathematicians do, however, sometimes perceive
beauty and corresponding feelings and emotions when reading mathematical mate-
rial, but these perceptions derive from the way the Language of Mathematicsis used
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to deal with aspects of the world outside mathematics. These perceptions themselves
exist only outside the world of mathematics in the narrow sense.

In summary, the goals of most mathematical translations of English text are to
convey to the reader facts and related concepts, ideas, and understanding of selected
rational aspects of the application area in question. The facts and understanding
conveyed should be in a form suitable for mechanistic, symbolic reasoning leading
to a solution to a problem. The style in which the mathematical model is written
should help readers to understand the problem and deduce a solution to it. Expressed
differently, the author should predigest the material for the reader.

Although the overall goalsfor style are much the same for English and mathemat-
ical texts—to help the readersto understand the text quickly—the specific guidelines
differ in many cases considerably.

One guideline for English text isto avoid repetition. Repetition is often perceived
as boring. It does not offer aternative views that might stimulate the readers’ own
imagination. Instead, the use of other words with similar meanings and, for the sake
of brevity, pronouns is suggested. Limits are posed by the rather small number of
pronouns available in English, the limited number of other words with appropriate
meanings, and the fact that distant references of pronounsto their targets can reduce,
rather than increase, clarity. In mathematical models, there are no near synonyms
(either the names of variables or functions are the same or they are different) and
there are no pronouns as such, so the author of a mathematical model has no choice
but to repeat. There is one exception: Define a function to represent an expression
that is either long or that must be repeated often. Repeating the name of avariable or
function is desirable because it makes it easier for readers to see that the same thing
is meant in the various places.

Alternativeviewscan and, where appropriate, should be expressed in mathematical
text. Such aternatives can usually be expressed most clearly by alternative formu-
lations of the mathematical model or of parts of it, not by embedding the different
views in one conglomerate model. It should be made explicitly clear to the reader
what the alternative views are.

An essential guideline for style is: Be especially careful to write precisely what
you mean, not just something that contains the same symbols and “looks sort of”
right. For example, when writing references to the functionsf and g and avariable x,
choose between such expressions as

f(9)
f(9(x))
f(9,%)

carefully. Mean what you write and write what you mean.

Thefirst expression above, f(g), means afunction f whose value is determined by
the function g, not by the value of the function g for some argument of g.

The second expression above, f(g(x)), means the value of the function f for the
value of the function g for the argument value of the variable x.
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The third expression above, f(g, X), means the value of the function f for its two
arguments, the first of which isthe function g (not the value of g for some argument)
and the second of which is the value of the variable x.

Still another variation of the expressions above is (f(g))(x). The reader should
identify how this expression differs from the three expressions above and to which
one(s) it relates and how.

At first glance the differences between these meanings might appear to someto be
subtle, but in mathematics there is no such thing as a subtle difference. Two things
are either the same or they are different. A “slight” difference is a difference.

Some additional guidelines for the style of a translation of English text into a
mathematical model are:

¢ Introduce new variables and functions where helpful to achieve the goals out-
lined above.

e Write an interpretation for each variable used in the model.

¢ Define and write an interpretation for each function used in the model that is
not already awell-known standard mathematical function.

e For every variable in the model, include a definition of its value set (e.g., in the
form xeR) at the beginning of the model, before any reference to the value of
any variable. In this section of the model, group the independent variables first
and the dependent (derived) variables second.

e Structure the entire mathematical model as a single Boolean expression.

e Group and organize the various subexpressions in the mathematical model in
alogical way, much as one sequences sentences in English text to follow from
previous sentences.

¢ Indent subexpressionsto facilitate reading. Indent in waysrelated to the nesting
of parentheses so that it is clear which parentheses match.

¢ Include reference numbers or brief comments at the right margin and enclose
them in a standard type of parentheses.

e |nclude redundancy only when it improves clarity and facilitates reading and
understanding.

e Simplify expressions and subexpressions where possible.

e Be consistent. For example, sequence references to variables the same way
throughout the model. Write subexpressions that occur repeatedly in the same
way so that the reader can easily see that they are the same. Apply naming
conventions and indentation guidelines consistently.

¢ Define abbreviated notational forms only when helpful. Use widely accepted
terminology and notational forms.

¢ Choose names of variables and functionsto achieve abalance between clarity of
meaning and brevity. Follow the guidelines for naming variables and functions
given in Section 6.2.6.

e Include aglossary and relevant citations.

e |nclude an index to names of variables and functions.
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6.9 LIMITATIONSAND EXTENDABILITY OF THE LANGUAGE
OF MATHEMATICS

The Language of Mathematicsis alanguage of uninterpreted expressions: the math-
ematical expressions presented in Chapter 3, particularly in Section 3.4. These ex-
pressions deal with abstract entities, with no inherent reference to anything in the
concrete, real world.

The Language of Mathematics provides no way of indicating how an expression
or any of its components is to be interpreted or related to anything in a particular
application area, what they mean in the context of the application in question or
the motivation behind them. This information can be provided only by English text
supplemented appropriately by the special terminology and jargon of the application
areain gquestion (see Sections 6.10 and 6.13).

There is an additional ambiguity regarding mathematical expressions. A mathe-
matical expression may represent any of the following:

e A statement that may or may not be true

e A variable or an expression to be evaluated

e A problem to be solved

e An assertion purported to be true

e An assumption (axiom) accepted without proof as true

¢ A theorem to be proved

¢ A definition of a mathematical object or structure

e Something whose value is unknown or unimportant within some context

(see a'so Section 6.12). Which of these applies to any particular expression cannot
be indicated within the Language of Mathematics. Often, it is evident from the
context, but sometimesit is not. Although the definition of a mathematical object or
structure can—and should—be written entirely in the Language of Mathematics, the
motivation for it and common applications cannot.

As mentioned above, the Language of Mathematicsis alanguage of uninterpreted
expressions. That does not mean that the expressions are uninterpretable. In fact, they
frequently areinterpreted in the description of the mathematical model of which they
are a part. Such interpretations cannot be written in the Language of Mathematics,
they must be explained in English text.

In contrast to the limitations of the Language of Mathematics stands its very con-
siderable extendibility. Functions were composed to form other functionsin Section
3.4. Different mathematical objects can be combined to form still other structures,
such asafinite state machine (defined in Section 4.1.7) or agroup, which consistsof a
set and afunction of two elements of that set yielding afunction value also in that set,
and exhibiting certain properties specified by expressions called the group axioms.
Inturn, afield is defined as a structure based on a group. Such structures are useful
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in various analyses and mathematical models. A number of standard structures are
defined in mathematics, and additional ones can be defined as needed. This process
can be continued without any inherent limit.

The ability to generalize is another very valuable advantage of the Language of
Mathematics. Generalizing reduces the amount of detail that one must cope with
in learning and applying mathematics to practical problems, thereby simplifying
problems and making their solutions applicable to a wider variety of problems. For
example, any structure of values can, itself, be considered to be a value. A set of
values can be handled as a single value. Similarly, a sequence of values can, itself,
be viewed as asingle value.

Applying this idea to the arguments of functions, the several arguments of a
function can be viewed as a sequence of values, which, in turn, can be viewed as a
single value. Thus, every function can be viewed as having only a single argument.
Even afunction with no arguments(i.e., aconstant value) can be viewed asafunction
of one argument, the empty sequence.

As another related example, generalization can be applied to the function “sum”
used frequently in Chapter 3. Thereit was considered to be afunction of two numbers.
As mentioned above, it can be viewed as a function of one argument, that argument
being a sequence of two numbers. This suggests generalizing the definition of the
function “sum” to allow the argument to be a sequence of any (finite) length. Even
the sum of the terms in an infinitely long sequence (in a sequence of unbounded
length) of numbers can, under certain conditions, be suitably defined: for example,
by considering the limit of a sequence of sums of afinite number of arguments asthe
number of arguments increases without bound as outlined in Section 4.4.

Some other examples of unifying mathematical concepts by generalizing them to
acommon concept are given in Section 4.1.4.

6.10 THE LANGUAGESUSED IN MATHEMATICAL TEXT

Mathematical texts, articles, analyses, and so on, are typically written in an unstruc-
tured mixture of the following:

e The Language of Mathematics as presented in this book.
e Normal English supplemented by special mathematical terms and jargon.

e Theinterpretation (as described below and defined in Section 6.13) connecting
the two. Thisinterpretation iswritten in English.

When reading such material, the reader should clearly distinguish mentally be-
tween these three components and especially between the preci se, unambiguous parts
of the messages formulated in the Language of Mathematics and the less precise, am-
biguous parts formulated in English. When documenting mathematical models and



194 LINGUISTIC CHARACTERISTICS OF ENGLISH AND THE LANGUAGE OF MATH

their application, these three components should be distinguished from one another
clearly and structurally in order to help the reader.

There are several reasons for writing mathematical textsin amixture of these two
rather different languages. Asdiscussed in Section 6.9, the Language of Mathematics
provides no way to do any of the following:

e Express reasons or the motivation for making the various decisions about what
to express in the mathematical model and how to express it

¢ Explainmany characteristicsor aspectsof thevariousmathematical expressions,
variables, functions, terms, and other parts of the mathematical model

e [nterpret the various parts of the mathematical model in terms of the applica
tion area: that is, to establish the connection between the mathematical model
expressed in the Language of Mathematics and the relevant aspects of the ap-
plication area

The third reason is particularly important. The Language of Mathematics does
not include any of the special terms and jargon used in the application area and
needed to understand the relevance of the mathematical model to the application
area. For example, a mathematical model for optimizing the inventory of finished
goods will contain various variables representing sales, purchases, costs of various
types, quantities of the various articles ordered, in stock, arriving, being shipped,
and so on. Such a mathematical model will be of use to people only if the various
variables are explained and, especialy, linked to the quantities in the real world that
they represent. The Language of Mathematics does not provide the terminology and
vocabulary needed to do this. Natural languages such as English do.

Every other application area provides examples of this inability to explain and
express the connection between the mathematical model and the real-world applica
tion area. In traditional engineering disciplines, one talks about force, stress, strain,
voltage, current, energy, speed, power, temperature, pressure, rate of flow of gases
and liquids, and so on. The Language of Mathematics has no vocabulary for such
things;, they are all represented by numerical variables and values. The Language of
Mathematics deals only with a completely abstract world. When applying mathe-
matics, one must establish explicitly the connection between the abstract world of
mathematics and the real world of the application. This requires English or some
other natural language, supplemented by the special terminology (“jargon”) of the
application area.

A document presenting a mathematical model for an application will, therefore,
typically contain the following:

e A statement of the problem to be solved, written in English and mathematical
expressions as appropriate

e Aninterpretation of the variablesin the mathematical model in terms of entities
in the application world, written in English
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¢ The mathematical model itself, written in the Language of Mathematics

e An assignment of values to variables, written either as mathematical equations
or intheform of an equivalent list of the variable names together with the value
of each

¢ Oneor moresolutionsto the problem, al so written in an appropriate combination
of English and mathematical expressions

These parts of the documentation of a mathematical model are discussed in more
detail in Section 6.13.

6.11 EVALUATING STATEMENTSIN ENGLISH AND EXPRESSIONSIN
THE LANGUAGE OF MATHEMATICS

A statement in English, interpreted within the context of one's knowledge, is either
true, false, or, if any essential information is missing from one’'s knowledge, unde-
termined (undefined, unknown). For example, the sentence “ George Washington was
the first president of the United States of America’ is true within the context of the
knowledge learned by school children in many countries. The sentence “ The sum of 2
and 3is6” isfalse within the context of all people who learned arithmetic in school.
The truth value of the sentence “At least one of my ancestors who lived in the second
century B.c.E. wastaller than 190 centimeters’ is undetermined within the context of
my knowledge, because | know nothing about any ancestor of mine who lived in that
time period. My knowledge of my ancestorsliving in that time period does not enable
me to evaluate that sentence as being either true or false. The statement is, clearly,
either false or true, but | do not know—and have no way of knowing—which.

The same comments apply to mathematical expressions. They are evaluated within
the context of assignments of values to variables. If those assignments lack values
for certain variables referenced in the expression to be evaluated, the value of that
expression cannot be determined. In many cases, the expression can be partially
evaluated, that is, reduced to an expression in which only variables without assigned
values appear (see Section 3.5).

6.12 MEANINGSOF BOOLEAN EXPRESSIONSIN AN ENGLISH
LANGUAGE CONTEXT

Within the Language of Mathematics a Boolean expression is, like any other ex-
pression, an expression ultimately to be evaluated (see Section 3.5): no more, no
less. When tranglating into English, however, one must keep in mind that Boolean
expressions typically serve several somewhat different purposes, as mentioned in
Section 6.9. An English language translation must usually distinguish between these
various purposes. The lines distinguishing these purposes are not always sharp and
well defined; they can be somewhat blurred.
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A Boolean expression may be a statement that may or may not be true. Typically,
the expression is to be evaluated.

A Boolean expression may represent a problem to be solved. The values of vari-
ables appearing in the expression are to be determined so that the value of the
expression istrue.

A Boolean expression may be an assertion, astatement purported to be universally
true, that is, true for all values of the variables appearing in it. The assertion may or
may not be accompanied by a proof of its truth or by an English language argument
of its plausibility. If no proof or plausibility argument is given, a claim is implied
that the assertion is provable. It is to be accepted as true in the text and anaysis
following it.

A Boolean expression may be an axiom. The statement is not assumed to be
universally true, but is accepted without proof for the subsequent analysis. An axiom
is intended to restrict attention to situations in which it is true. Such a statement
restricts the subsegquent universe of discourse.

A Boolean expression may be a proposition, a conjecture, or a theorem. Such a
statement is often proved to be universally true in the subsequent text. These Boolean
expressions usually take the form of an implication, such as A=B (if the Boolean
expression A is true, then the Boolean expression B is true). The proof amounts to
transforming the expression A=-B into the logical constant “true,” demonstrating
that the value of the expression is alwaystrue.

A Boolean expression may constitute the definition of some term used later fre-
quently. For example, the equation sum(a, b)=a+b might serve to define the function
named “sum” in terms of the already defined infix symbol +. More precisely, this
definition of the function “sum” might be written as

[Aa b:acR A beR : sum(a b)=a+b] [6.12-1]

Finally, an expression (Boolean or otherwise) may simply represent a quantity,
entity, or restriction in the application world whose value is unknown or unimportant
in the context in question.

The different purposes of a Boolean expression are comparable to the different
moods of averb in English as outlined in Section 6.6.

The intended purpose of a Boolean expression is not usually clear from the math-
ematical expression alone. Sometimes the purpose is clear from the context. English
language comments indicating the purpose often accompany such Boolean expres-
sions. For these reasons, mathematical worksare almost never writteninthe Language
of Mathematicsalone, but are almost always supplemented with English explanations
and comments. Therefore, the tranglator will rarely, if ever, translate from mathemat-
ical expressions aloneinto English.

Trandating mathematical expressions into English is a useful exercise in the
process of learning and becoming fluent in the Language of Mathematics. In actual
practice, one will sometimes trandlate an individual mathematical expression—or
even apart thereof—in order to check atranslation from English to mathematics, that
is, to check that a mathematical expression was written correctly and conveys the
intended low-level meaning. In these cases, the mathematical expression will usually
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be examined at a rather detailed level and without regard to the full context within
which it appears.

6.13 MATHEMATICAL MODELSAND THEIR INTERPRETATION

A mathematical model is a collection of the following:

e Variables
¢ Values (constants)

e Expressions determining the relationship between the values of the model’'s
variables

As stated in Section 1.5, a mathematical model is a statement of a problem and the
reguirements that any solution must satisfy.

The variables in a mathematical model are typically of two types: independent
variables, sometimes called “input” values, and dependent variables, the “output”
variables. If values are given for all the independent variables, the expressionsin the
mathematical model determine possible values of the dependent variables.

A mathematical model typically represents selected aspects of some part of the
real world, commonly called the application or application domain or application
world. The application in question could be, for example, a physical system such as
the structure of a building or an automobile, or proceduresin an organization such as
those for receiving orders, supplying goods ordered, or billing. See Section 1.2 for a
lengthier list of some applications.

The expressions referred to above that make up a mathematical model are typ-
ically equations, inequalities, and other Boolean expressions. Normally, all are to
apply. Thus, the mathematical model consists of all the expressionsreferred to above
combined with thelogical “and” function. The mathematical model is, then, asingle
Boolean expression.

Part of the mathematical model should specify the range of values that can be
assumed by each variable appearing in the model. This part of the model we call the
header, and the rest of the model, the body. The header should ensure that the value
of every function and subexpression appearing in the body of the model is properly
defined, that is, that every argument of each function or subexpression is within the
domain of the respective function or subexpression.

The interpretation of a mathematical model relates the variables, functions, and,
where helpful, expressions appearing in a mathematical model to objects and entities
in the application world. It defines the meaning and explains the significance of
each variable in the model in terms of the application being modeled. Because the
interpretation must refer to things in the application world, it is written in English
supplemented with accepted terminology and jargon of the application world as
appropriate. The interpretation forms a bridge between the mathematical model and
the application world. The interpretation belongs to the area to which or in which
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mathematics is being applied, not to the world of mathematics itself. Because the
interpretation is written in English, the potential problems of vagueness, ambiguity,
imprecision, and so on, inherent in any natural language must be considered and
taken into account.

As pointed out in Section 1.1, mathematics provides a template language, the
Language of Mathematics, which must be adapted to every application. Theinterpre-
tation of a mathematical model, as described in the preceding paragraph, constitutes
that adaptation. Different applicationswill generally require different interpretations.

The mathematical model itself is a collection of mathematical functions and ex-
pressions. These should be “uninterpreted,” but this does not mean or imply that they
should be “uninterpretable.” The various functions and expressions can be and often
are interpreted in terms related to the application world when this helps the reader
to understand the functions and expressions and to relate them to the “real” world.
Mathematically, however, it should never be necessary to interpret the functions and
expressions this way; the mathematical model should stand on its own logically and
mathematically without the support of an interpretation in English. See also the end
of Section 4.7 and Section 6.9.

The assignment specifies values for some of the variables appearing in the math-
ematical model. These values may be physical constants or parameters that can be
changed to adapt the model to different particular individual applications or calcula-
tions (e.g., the number of articlesin an inventory system, the number of elevatorsin
an elevator system). The assignment of values to variables can be expressed in the
form of equations, connected with the logical and (A).

The statement of the problem can have various forms, depending on the problem
to be solved. It normally includes expressions that relate and restrict the values of
the variables. It sometimes includes an expression whose value is to be maximized
or minimized subject to the restrictions.

A solution to the problem specifies the val ues of the variables not already assigned
valuesin the assignment. These remaining values must satisfy the requirementsin the
statement of the problem. There may be more than one solution, exactly one solution,
or no solution. Inthelast case, the“ solution” isthe statement that thereisno solution.

Note that two trandations of a mathematical model are possible. One is a literal
trandlation, a direct restatement of the mathematical expressions into English. For
example, alitera translation of the expression d=v+t is “the value of the variable d
is the product of the values of the variables v and t.” Such atrandlation refers only
to concepts in the Language of Mathematics. It contains no reference to anything in
any application. Alone, it isof little, if any, use.

An example of atranglation of the second type of the expression d=v=t is “the
distanceinkilometerstraveled by avehicle moving at aconstant speed of v kilometers
per hour for atimet hoursis the product of v and t.” Most of this translation refers
to things in the application domain, outside the Language of Mathematics. This
tranglation amounts to a reformulation of the literal trandation in the paragraph
above combined with the interpretation of the relevant parts of the mathematical
model. Those relevant parts of the interpretation of the mathematical model are: “the
value of the variable d isthe distance in kilometers traveled by avehicle,” “the value
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of the variable v is the constant speed in kilometers per hour of avehicle’” and “the
value of the variablet isthe time in hours during which avehicle travels”

Many variables in mathematical models represent numbers (i.e., quantities). In
the interpretation, such variables are typically described by the nouns to which the
numerical values refer. In the example above, these nouns are “distance,” “speed,”
and “time.” Including the dimensions of these numbers, the descriptions become the
noun phrases “distance in kilometers,” “speed in kilometers per hour,” and “timein
hours”

The values of variables and functions in mathematical models need not always
be numbers. They are also often adjectives such as “male” “female” “blue” and
“brown.” They can also be nouns used as descriptions, such as“physician,” “teacher,”
and “farmer.” In all such cases, they are specific instances of the generic noun
describing the variable in the interpretation (e.g., “gender,” “color,” “vocation”).

Theinterpretation of aBoolean variable or functionistypically aclause describing
astate or arelationship. Possible examplesare“ x isgreater thany,” “the gateisopen,”
and “the door isclosing” (in the state/process of changing from open to closed). Such
clauses often contain a conjugated form of the verb “to be” and a predicate adjective
or predicate noun.

The comments above suggest that one should look especially for (1) nouns and
noun phrases and (2) clauses with predicate adjectives or predicate nouns when
formulating a mathematical model from an English description of the application.
Thetopic of trand ating from English to amathematical model isdealt with extensively
in Chapter 7.

6.13.1 Dimensionsof Numerical Variables

An old saying reminds us that “you can’t add apples and oranges.” Correspondingly,
it makes no sense to add a length expressed in feet to a length expressed in meters,
or to add alength in feet to an areain square feet. In each case, one can add the two
numbers, but the resulting sum is neither a combined length in any units nor alength
nor an areain any units; the sum is meaningless as alength or an area—it represents
nothing in the physical world.

The dimensions, or units, associated with the variables and terms in a numerical
expression must be dimensionally consistent if the value of the expression isto have
any meaning in the application areain question.

The definitions of various physical quantities enable measures to be converted
from one unit to another. For example, akilometer (km) is defined to be 1000 meters
(m), and there are 3600 seconds (s) in an hour (h). Therefore, if Skmh isthe velocity
of an object in km/h and Sms is the same velocity in m/s, the relationship between
the two numbers Smsand Skmhis

Sms = Skmhx1000/3600 [6.13.1-1]
or

Sms = Skmh/3.6 [6.13.1-2]
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or
3.6+Sms = Skmh [6.13.1-3]

Similarly, the Fahrenheit and Celsius scal es for measuring temperature are defined
in such a way that a temperature F measured in degrees Fahrenheit is the same as
the temperature C measured in degrees Celsius, where F and C are related by the
equation

(F-32)+5/9 = C [6.13.1-4]

As pointed out in Chapter 2 and Section 3.2, the interpretation of every numerical
variable in a mathematical model must include the specification of the dimension
(units) in which that variable’s numerical value is expressed. These units are critical
inall quantitiesin the physical world. The selection of aconvenient system of unitsis
an important consideration in the several areas of physics [e.g., the meter-kilogram-
second (mks) system vs. the centimeter-gram-second (cgs) system], in chemistry, in
medicine, and so on. A numerical measurement of a physical quantity is meaningful
only when the units of measure are stated explicitly.

Note the symbols used to connect the names of units when the dimension of a
number is acombination of two or more other dimensions. For example, if avelocity
is given in meters per second, the dimensional abbreviation is, as in the example
above, m/s. The amount of effort that 10 workers expend in 15 days is 10+ 15, or
150 worker days. This is usualy written worker-days, athough workerxdays or
worker-days would be more logical. In the written abbreviation for a dimensional
combination, aminus sign (—) never occurs (because such a combination would be
physically meaningless), so no ambiguity isintroduced by using ahyphen (-) instead
of amultiplication sign.

6.13.2 An Example of a Mathematical Model and Its Interpretation

In this section an exampleillustrates how an interpretation connects with each other:

e A mathematical model written in the Language of Mathematics
e A description of aproblem to be solved written in English

Thisexample of amathematical model, itsinterpretation, and its English language
trandation involves a problem of mixing two components (acrinium and lodus) in
different ratios to make two different products (protana and satea) in such away that
the available quantities of both components are used completely. The quantities of
each component and product are measured in appropriate (and possibly different)
units (e.g., liters, kilograms, milligrams). Constants in the model will convert the
various units of measure as required.

The chemical properties of acrinium, lodus, protana, and satea are such that:

e Acrinium and lodus must be mixed in theratio of 3 units of acrinium to 5 units
of lodus to make protana, in which case 7 units of protana are produced.
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¢ Acrinium and lodus must be mixed in theratio of 11 units of acrinium to 6 units
of lodus to make satea, in which case 19 units of satea are produced.

Normalizing the given ratios can reduce the chance of making an error when writing
the corresponding mathematical expressions. Theinformation above can be rewritten
asfollows:

¢ With each unit of acrinium mix 5/3 units of lodus; 7/3 units of protana will be

produced.
e With each unit of acrinium mix 6/11 unit of lodus; 19/11 units of sateawill be
produced.
Theinterpretation of the variablesin thismodel is:
AP: the number of units of acrinium used to make protana
LP: the number of units of lodus used to make protana
AS the number of units of acrinium used to make satea
LS the number of units of lodus used to make satea
P: the number of units of protana produced
S the number of units of satea produced
QA: the number of units of acrinium available
QL: the number of units of lodus available

Note that each variable in this mathematical model is a number and that the
variable corresponds to a noun phrase (“number of units of ...”) in English. This
correspondence between anumerical variable in the Language of Mathematics and a
noun or noun phrasein Englishistypical.

The mathematical model is:

QAER A QLER A APER A LPeER A ASER A LSER A PER A SER A [6.13.2-1]
QA>0AQL>0AAP>0ALP>0AAS>0ALS>0AP>0AS>0A [6.13.2-2]

LP = (5/3)*AP A P = (7/3)*AP A [6.13.2-3]
LS = (6/11)*ASA S = (19/11)+AS A [6.13.2-4]
AP+AS=QAALP+LS=0QL [6.13.2-5]

Lines 6.13.2-1 and 6.13.2-2 in the mathematical expression above constitute the
header of the mathematical model, and the other lines constitute the body of the
model (see the definitions of header and body in Section 6.13).

The mathematical model above can be trandated into English line by line and
term by term, interpreting the variables appropriately:

QAcR A QLeR A APeR A LPER A ASER A LSER A PER A SER A
[6.13.2-1 repeated]
QA>0 AQL>0AAP>0ALP>0AAS>0ALS>0AP>0AS>0A

[6.13.2-2 repeated]
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canbetrandatedto“ ThevariablesQA, QL, AP, LP, AS, LS, Pand Sarerea numbers.
They are al greater than or equal to zero.”

Including the English interpretations of the variable names, this English text can be
reformulated as“ The number of units of acrinium available (QA), of lodus available
(QL), of acrinium used to produce protana (AP), of lodus used to make protana (L P),
of acrinium used to make satea (AS), of lodus used to make satea (LS), of protana
produced (P), and of satea produced (S) are all nonnegative real numbers.”

Next, line 6.13.2-3 istrand ated:

LP = (5/3)*AP A P = (7/3)xAP A [6.13.2-3 repeated]

“The number of unitsof acrinium times 5/3 isthe number of unitsof lodusrequired to
make protana. The number of units of protana produced isthen 7/3 times the number
of units of acrinium used.”

This paragraph can be reformulated as “ With every 3 units of acrinium mix 5 units
of lodus to make 7 units of protana.”

Next, line 6.13.2-4 istrand ated:

LS = (6/11)*AS A S = (19/11)+AS A [6.13.2-4 repeated]

“The number of units of acrinium times 6/11 isthe number of units of lodus required
to make satea. The number of units of satea produced isthen 19/11 times the number
of units of acrinium used.”

This, in turn, can be rewritten as “With every 11 units of acrinium mix 6 units of
lodus to make 19 units of satea.”

Finally, we translate line 6.13.2-5 in the mathematical model above:

AP+AS=QAALP+LS=0QL [6.13.2-5 repeated]

“The sum of the quantity of acrinium used to make protana and the quantity of
acrinium used to make satea must be equal to the quantity of acrinium available. The
sum of the quantity of lodus used to make protana and the quantity of lodus used to
make satea must be equal to the quantity of lodus available.”

This can be rewritten in a more typical style as “ The total quantities of acrinium
and lodus used to make both protana and satea must be equal to the quantities of the
components available” or even “ The quantities of acrinium and lodus available must
be used completely to make protana and satea.”

The complete translation of the mathematical model into English is, then, “With
every 3 units of acrinium mix 5 units of lodus to make 7 units of protana. With every
11 units of acrinium mix 6 units of lodus to make 19 units of satea. The quantities of
acrinium and lodus available must be used completely to make protana and satea”
The sentence “The values of the variables QA, QL, AP, LP, AS, LS, P, and S are
real numbers” would typically be left out of the translation because the names of the
variables are not otherwise mentioned explicitly in the translation and because the
quantities of the components and products are implicitly numbers.

Notice that, first, the individual terms in the mathematical model were trans-
lated literally from the Language of Mathematics into English. The resulting rel-
atively stilted style was then rephrased into a more typical natural language style,
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sometimes in more than one step. With practice and experience, one can perform
these trandational steps mentally, without writing them all down. After completing
the trandlation, one should compare it with the original formulasin the mathematical
model to verify that the tranglation reflects the meaning of the mathematical model.
Some precision will be lost and some ambiguity will beintroduced, due to the nature
of every natural language, but this loss of precision and introduction of ambiguity
should be held to an acceptable level. The translator’s goal is an English text that
will convey to the intended readers an accurate understanding of the meaning of the
mathematical expressions.

Notice again that the variables in this model have numerical values and are in-
terpreted in English as noun phrases referring to certain quantities. This is typical
for numerical variables in mathematical models in general. Such quantities can be
lengths, weights, or volumes of materials; the strength of electrical, magnetic, or grav-
itational fields; velocities; acceleration; the strengths of various types of radiation;
earthquakes; and so on.

The assignment of valuesto variablesis

QA =18 [6.13.2-6]
QL=19 [6.13.2-7]

Thevariables QA and QL aretheinput variablesin thisproblem, and theremaining
variables, AP, LP, AS, LS, P, and S, are the output variables.

The statement of the problem is, in mathematically oriented terms: Determine
the values of the variables AP, LB, AS, LS, P, and S.

That is, the purpose of this example of a mathematical model is to determine how
to mix thetwo components to make the two products so that the components available
are used completely. That is, the task isto determine values for the variables AP, LB,
AS, LS, P, and Sthat satisfy the expression—the mathematical model—above, given
the values for the variables listed in the assignment section above.

Solving the Problem More precisely, we are to determine values for the variables
such that the value of the expression

QAcR A QLeR A APeR A LPeR A ASeR A LSeER A PeR A SeER A
[6.13.2-1 repeated]

QA>0AQL>0AAP>0ALP>0AAS>0ALS>0AP>0AS>0A
[6.13.2-2 repeated]

LP = (5/3)*AP A P = (7/3)*AP A [6.13.2-3 repeated]
LS = (6/11)*ASA S = (19/11)+AS A [6.13.2-4 repeated]
AP+AS=QAALP+LS=0QLA [6.13.2-5 repeated]
QA=18AQL =19 [6.13.2-8]

istrue.
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One way to solve this problem is to transform the mathematical expression above
into aform in which every variable appears on the left side of an equation and only a
numerical value appears on its right side. In each transformation step, we substitute
one subexpression by another subexpression having the same value, thus preserving
the value of the entire expression. In some cases, we substitute a variable name by
anumber.

Line6.13.2-8 of the mathematical expression aboveisaready in the desired form,
so we need not change it. Noting that the value of the variable QA is 18 and that
the value of the variable QL is 19, we can substitute these values for QA and QL
elsawhere in the body of the mathematical model, obtaining

QAcR A QLeR A APeR A LPeR A ASER A LSER A PER A SER A
[6.13.2-1 repeated)]

QA>0AQL>0AAP>0ALP>0AAS>0ALS>0AP>0AS>0A
[6.13.2-2 repeated]

LP = (5/3)xAP A P = (7/3)«AP A [6.13.2-3 repeated]
LS = (6/11)*ASA S = (19/11)AS A [6.13.2-4 repeated]
AP+AS=18 ALP+LS=19 A [6.13.2-9]
QA =18AQL = 19 [6.13.2-8 repeated]

If the values of AP and AS were known, the values of all the other variablesLP, P,
LS, and S would follow directly from lines 6.13.2-3 and 6.13.2-4 of the expression.
Therefore, we transform those equations not already in the desired form (variable
name = a number or an expression involving only AP and/or AS) so that only AP
and AS appear in them. Only the equations in line 6.13.2-9 are not already in this
form, so only they need to be changed.

Our goa now is to transform the two equations in line 6.13.2-9 into the forms
AP=... and AS=... by suitable manipulations. We begin by substituting equivalent
expressions for LP and LS in the second equation in order to transform that equation
into aform involving only the variables AP and AS. Theresult is

QAcR A QLeR AAPeR A LPeR A ASeER A LSeER A PeR A SeER A
[6.13.2-1 repeated]

QA>0AQL>=0AAP>0ALP>0AAS>0ALS>0AP>0AS>0A
[6.13.2-2 repesated)]

LP = (5/3)«AP A P = (7/3) % AP A [6.13.2-3 repeated]
LS = (6/11)*ASA S = (19/11)xAS A [6.13.2-4 repeated]
AP+ AS = 18 A (5/3)*AP + (6/11)*AS = 19 A [6.13.2-10]

QA =18AQL = 19 [6.13.2-8 repeated]
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We can change the equalities in line 6.13.2-10 into the forms AP=... and
AS=... by subtracting appropriately from each side of each equation to obtain

QAR A QLeR A APeR A LPeR A ASER A LSER A PER A SER A

[6.13.2-1 repeated]
QA>0A QL>0AAP>0ALP>0AAS>0ALS>0AP>0AS>0A

[6.13.2-2 repeated)]
LP = (5/3)xAP A P = (7/3)*AP A [6.13.2-3 repeated]
LS=(6/11)*ASA S= (19/11)+AS A [6.13.2-4 repeated]
AP = 18—ASA (6/11)*AS = 19 — (5/3)*AP A [6.13.2-11]
QA =18AQL =19 [6.13.2-8 repeated]

We must now combine the two equationsin line 6.13.2-11 to effectively solve for
the values of AP and AS. The first equality in line 6.13.2-11 states that the value of
AP isthe same as the value of the subexpression (18—AS). Therefore, we substitute
(18—AYS) for the variable AP in the second equality in line 6.13.2-11, obtaining an
equality involving only AS

QAcR A QLR A APeR A LPER A ASER A LSER A PER A SER A
[6.13.2-1 repeated]
QA>0AQL>0AAP>0ALP>0AAS>0ALS>0AP>0AS>0A

[6.13.2-2 repeated]

LP = (5/3)*AP A P = (7/3)*AP A [6.13.2-3 repeated]
LS = (6/11)*ASA S = (19/11)*AS A [6.13.2-4 repeated]
AP = 18—AS A (6/11)+AS = 19 — (5/3)+(18—AS) A [6.13.2-12]
QA=18AQL =19 [6.13.2-8 repeated]

Transforming the second equality in line 6.13.2-12 into the form AS=... yields

QAR A QLeR A APeR A LPeR A ASER A LSER A PER A SER A

[6.13.2-1 repested)]
QA>0AQL>0AAP>0ALP>0AAS>0ALS>0AP>0AS>0A

[6.13.2-2 repeated]
LP = (5/3)*AP A P = (7/3)*AP A [6.13.2-3 repeated)]

LS = (6/11)*ASA S = (19/11)*AS A [6.13.2-4 repeated]
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AP = 18-ASA AS = 363/37 A [6.13.2-13]
QA =18AQL =19 [6.13.2-8 repeated]

The numerical value 363/37 can be substituted for AS everywhere that it appears
on the right side of an equation, giving

QAR A QLeR A APeR A LPeR A ASER A LSER A PER A SER A

[6.13.2-1 repesated)]
QA>0AQL>0AAP>0ALP>0AAS>0ALS>0AP>0AS>0A

[6.13.2-2 repeated]
LP = (5/3)xAP A P = (7/3)*AP A [6.13.2-3 repeated]
LS = (6/11)*(363/37) A S = (19/11)*(363/37) A [6.13.2-14]
AP = 18—(363/37) A AS = 363/37 A [6.13.2-15]
QA=18AQL =19 [6.13.2-8 repeated]

and, performing the indicated arithmetic, we have

QAcR A QLeR A APeR A LPeR A ASeR A LSeER A PeR A SeR A

[6.13.2-1 repeated]
QA>0AQL>0AAP>0ALP>0AAS>0ALS>0AP>0AS>0A

[6.13.2-2 repeated]
LP = (5/3)xAP A P = (7/3)*AP A [6.13.2-3 repeated)]
LS = 198/37 A S= 627/37 A [6.13.2-16]
AP = 303/37 A AS = 363/37 A [6.13.2-17]
QA=18AQL =19 [6.13.2-8 repeated]

Finally, substituting the value 303/37 for AP everywhere that it appears on the
right side of an equation and performing the arithmetic indicated yields the compl ete
solution desired.

The solution to the problem is, therefore,

QAcR A QLER A APER A LPeR A ASER A LSER A PeR A SER A
[6.13.2-1 repeated)]

QA>0AQL>0AAP>0ALP>0AAS>0ALS>0AP>0AS>0A
[6.13.2-2 repeated]
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LP = 505/37 A P = 707/37 A [6.13.2-18]
LS = 198/37 A S= 627/37 A [6.13.2-16 repeated]
AP = 303/37 A AS = 363/37 A [6.13.2-17 repeated]
QA=18AQL =19 [6.13.2-8 repeated)]

This solution can be translated from the Language of Mathematics into English to
obtain

“The 18 units of acrinium and the 19 units of lodus should be used to produce
707/37 (approximately 19.108) units of protana and 627/37 (approximately 16.946)
units of satea. To do this, 303/37 (approximately 8.189) units of acrinium and 505/37
(approximately 13.649) units of lodus will be used to produce the protana, while
363/37 (approximately 9.811) units of acrinium and 198/37 (approximately 5.351)
units of lodus will be used to produce the satea.”

This example is a smple form of a class of industrially important optimization
problems. These problems deal with refining and/or mixing components with the
goal of maximizing the total value of the various products produced. Refining crude
oil into various types of fuels and chemicals and mixing animal feeds are classical
examples of this class of optimization problem. Such problems were among the early
industrial applications of computers.

In the example in this section, the mathematical problem involved solving a set
of linear equations in the same number of variables. Here, the initial form was
particularly convenient, and a relatively simple approach led to the solution. This
approach is generalized in the mathematical literature, enabling larger problemswith
less convenient structures to be solved in a standard and straightforward—although
often computationally more intensive—way.



7 Translating English
to Mathematics

Before tranglating an English text into the Language of Mathematics one should be
clear why atrandation is needed at all. An English text is trandated into another
natural language so that a person not fluent in English can read and understand it.
This reason does not apply to translations into the Language of Mathematics. A
tranglation in the Language of Mathematics is useful for a very different purpose:
to reason logically about a problem; to analyze it systematically, accurately, and
precisely; to find a solution; and to provide a basis for trangating the solution back
into an English description for those implementing and utilizing the solution in
practice.

As pointed out in Chapter 5, the steps in the overall process of going from the
original actual problem to a mathematically founded solution are illustrated in the
following diagram.

actual English mathematical
problem text model

A 4
mathematical English
solution text

This chapter deals with the second step in this process: translating the English text
to a mathematical model. Although the most severe problems regarding accuracy,
discrepancies, and errors have their origins in the step translating the English text
to the mathematical model, problems can arise in any and all of the steps above.
Issues of accuracy, discrepancies, errors, oversights, and other problemsin all steps
are considered in this chapter, in particular, in Section 7.8.

Thefirst two stepsin the processillustrated above are especially proneto problems
arising from ambiguity and unrecognized incompleteness and omissions. No reliable
method exists to verify that the results of these first two steps are consistent and
complete, mainly because the meaning of anatural language text (such asEnglish) is,

implemented
solution
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itself, almost always ambiguous. The meaning of the mathematical model is precisely
and unambiguously defined, so it provides a reference for verifying the consistency
and completeness of subsequent formulations, provided, of course, that they are
themselves defined precisely.

When tranglating from one natural language to another, the goal is to express the
same meaning in thetarget language asin the source language. When trandlating from
English to the Language of Mathematics, however, thisgoal is necessarily somewhat
different because of fundamental differences between these languages’ universes of
discourse. These differences are mainly in the areas of ambiguity and abstraction and
are discussed in more detail in Section 7.1.

Sometimes a mathematical model is needed only to analyze or investigate certain
properties of a system, process, or object, not to solve a particular problem. Then
only the English text and the mathematical model shown in the diagram above are
necessary; the remaining steps leading to a solution are not needed. The trandation
from an English text to a mathematical model, the subject of this chapter, remains.

7.1 GENERAL CONSIDERATIONS

The overall process for translating from English to the Language of Mathematics
involves the following:

e Understanding thoroughly what the author(s) of the English text meant
e Formulating that meaning in:
o Mathematical expressionsin the Language of Mathematics
o Aninterpretation linking the values, variables, functions, and, where relevant,

subexpressionsin themathematical model withthevariouspartsof theEnglish
text

To help the reader to do this, many useful guidelines for translating are given be-
low. Although they are usually applicable, not al are universal laws, and they should
not be regarded as instructions for translating the English text mechanistically or au-
tomatically. Thetranslator must understand the original text correctly and completely
and be able to express that understanding in the Language of Mathematics as adapted
by the trandlator in the interpretation.

Translating written material successfully from any source language into any target
language (whether or not the Language of Mathematics is one of these languages) is
amultistep (not single) process:

1. Read the text in the source language.

2. Understand (internalize) the meaning of that text in the source language and in
the context of the subject of the message.

3. Understand (internalize) that meaning in terms of the target language.
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4. Write something in the target language so that a reader of the text in the target
language will interpret it to mean the same thing that areader of the text in the
source language will interpret it to mean.

After one believes that the trandation is complete, one must verify that the mean-
ings of the texts in the source and target languages are the same:

5. Reread and understand (interpret again) the text in the source language.

6. Read and understand (interpret anew) the translated version in the target
language.
7. Compare the meanings of the two.

If any discrepancies are discovered, they must be resolved by repeating some
or al of the foregoing activities as appropriate. An important discrepancy arises
if in either step 1 or 2, it becomes evident that the original text is inconsistent,
incomplete, clearly wrong, or makes no sense. One should always be sensitive to
these possibilities, as they arise in English texts more often than one might expect.
Often, important information is implied by the context of the English text. Such
implied information must be explicitly expressed in a mathematical model.

Note especialy that “trandating” is not a matter of going immediately from
activity 1 above to activity 4. Activities 2 and 3—understanding in the two different
contexts—is essential. Often, iteration is required to complete activities 2, 3, and 4.
An independent check is also needed (activities 5, 6, and 7). If at al possible, one
should wait awhile between activities4 and 5, because aslong asthe material isfresh
in the trandlator’s mind, the brain will often fill in missing detail and subconsciously
correct errors present. It is also desirable that a different person perform activities 5,
6, and 7 than the person who performed activities 1, 2, 3, and 4.

The English word translate is often used to describe this process, but “translate”
suggests an oversimplified view of what actually must take place. The word inter pret
is more descriptive of activities 2 and 3—understanding the meaning of the message
before writing it in the target language. In fact, professionals who “translate” from
one language to another, especially simultaneously and verbally, are often called
“interpreters,” not “translators,” and their work is often called “interpreting,” not
“trandating.”

Attemptsto translate material from a source language to atarget |anguage without
going through the intermediate activity of understanding are typically unsuccessful.
The true meaning of the original is not conveyed properly, completely, adequately,
and correctly in the target language. Machine trandlations often exhibit discrepancies
attributable to the lack of area understanding of the meanings of the statementsin
the two languages.

Another consequence of the observation above that understanding is necessary is
that fluency in both the original and target languages is not enough for successful
trandation. The transator must be able to understand the material in the original
language in its context. Therefore, if, for example, one is to trandate a scientific
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articleinajournal on chemistry from French into English, one must be fluent in both
French and English and, in addition, one must have at |east a sufficient knowledge of
chemistry. Furthermore, knowledge of translating asan activity itself isal so necessary
for efficient work.

Each language has its own world view, cultural context, style, and idiosyncracies.
These differ from language to language. Mathematics and natural languages differ
considerably in this regard. Pay close attention to these differences when translating.

Certain terms or phrases in one language often correspond to particular terms
or phrases in another language. People who frequently translate between languages
often collect a set of such corresponding pairs of terms or phrases and record them
intheir translator’s glossary. Appendix G contains the beginnings of such a glossary
for English and the Language of M athematics. Readers should expand upon it in their
own areas of expertise and trandating activity.

In summary, in order to interpret English into the Language of Mathematics, one
must:

e Befluent in English
¢ Befluent in the Language of Mathematics
e Befamiliar with mathematics

¢ Know the subject about which you areinterpreting statements from English into
the Language of Mathematics

e Be familiar with certain terms and phrases typically corresponding with each
other in English and the Language of Mathematics

e Be consciously aware of the special aspects of the process of interpreting from
one language into another, especialy into the Language of Mathematics

English and other natural languages can express:

e Both static and dynamic views, with the concept of time
e States and actions (having verbs of being and action)

while the conceptual world of the Language of Mathematicsis limited to:

e A static view only with no concept of time
e States of being but no actions (having stative verbs only)

Thesearefundamental conceptual differencesbetweenthelanguages. Itisnot difficult
to bridge these gaps when tranglating, but translators must pay conscious attention to
them.

Some approaches to overcoming difficulties in trandating are outlined below.
Examples are given later in this chapter and in the examples in Chapter 8.

¢ Reduce the gaps noted above by reformulating the source text into aform closer
to the Language of Mathematics. For example, reformulate clauses with action
verbs into clauses with stative verbs only. One technique for this is to convert
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verbs and verbal phrases of actions to noun phrases (e.g., using participles or
gerunds). The noun phrases are candidates for variables or functions in the
mathematical model.

¢ Divide and conquer. Subdivide a complex task into simpler components. Con-
tinue hierarchically as necessary. Modularize the problem.

¢ Understand complex sourcetext by constructing a specific instance of ageneral
problem, drawing adiagram, examining special cases, or enumerating explicitly
all possible situations that can arise (e.g., with atable).

e |dentify background information in the source text not needed in the mathe-
matical model. This will typically be information relevant in the application
domain but:

o Irrelevant or meaningless in the mathematical domain

o Qutlining the environment of the problem area

o Explaining the motivation for solving the problem

o QOutside the universe of discourse of the Language of Mathematics, or
o Not needed to describe or solve the problem

e |dentify implicitinformation (e.g., by context), verify that such information can
be assumed, and expressit explicitly in the mathematical model.

e |dentify and ask the author(s) for missing information.
e |dentify false “information” and ask the author(s) for corrections.
¢ |dentify vague and ambiguous statements in the English text and clarify them.

e |dentify essential objects in the English text (especially in nouns and noun
phrases) and the relationships between them.

¢ Close the gap between the universes of discourse of English and the Language
of Mathematics by formulating the interpretation defining the meanings of the
values, variables, functions, and other appropriate parts of the mathematical
model in terms of the application domain.

Translating from English to mathematics differsin particular and important ways
from trandlating between two natural languages. When translating from one natural
language to another, the goal is to express the same meaning in the target language
as in the source language, including the same degree of ambiguity. When trans-
lating into the Language of Mathematics, however, the intention is to end with a
precise, unambiguous statement that expresses the intended meaning of the source
text. Therefore, ambiguity in the origina English text (and ambiguity is present in
essentially every natural language text) must be identified, resolved, and eliminated
before the mathematical text can be formulated. People not accustomed to working
with an unambiguous language such as the L anguage of Mathematicswill find elimi-
nating ambiguity to be an extremely difficult task, simply becausethey are completely
unaccustomed to such away of thinking. The effort to eliminate ambiguity will often
appear to them to be unnecessarily pedantic. They will often be surprised about the
ambiguities found in the source text, ambiguities they would otherwise never have
noticed. They must remind themselves continually that the Language of Mathematics
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is used in such situations precisely because it cannot express ambiguity, because it
forcesonetoidentify, resolve, and eliminate ambiguity present inthe original English
text. This, in turn, prevents subsequent errors in reasoning, analysis, and design.

A simple example of an English text containing some of the discrepancies men-
tioned aboveisthe sentence “A jet airplane flies faster than apropeller airplane.” The
basic form “fast” of the comparative adverb “faster” indicates that speed is the char-
acteristic of the two airplanes being compared. The action verb “flies’ together with
its adverb of comparison “faster” can be eliminated by reformulating this sentence to
“The speed of ajet airplaneisgreater than the speed of apropeller airplane.” Thenoun
phrase “speed of ajet airplane”’ can be represented by a variable in the mathematical
model (e.g., “ SpeedJetAirplane”). Similarly, “speed of a propeller airplane” can be
represented by another variable (e.g., “ SpeedPropellerAirplane”). The corresponding
part of the mathematical model is, then,

SpeedJetAirplane > SpeedPropellerAirplane [7.1-1]

When one starts to formulate in detail the interpretation of the two variables, a
question arises regarding what speed is meant. The actual current speeds of one of
each type of airplane are presumably not meant, because those speeds depend on
their current use (e.g., whether in flight or parked on the ground), not on the types of
their engines. Presumably, some speed in their specificationismeant (e.g., “ maximum
speed,” “cruising speed”). Such additional detail should beincluded ininterpretations
of thevariablesin question. Furthermore, it isnot clear from the English text which jet
airplane(s) and which propeller airplane(s) are meant—any? every? all? each? some?
Depending on precisely what the English sentence is intended to mean, a quantified
expression over al elements of the set of jet airplanes and all elements of the set
of propeller airplanes might be a more appropriate translation in the Language of
Mathematics.

Another difference between trandating between natural languages and from En-
glish to mathematics relates to abstraction. This involves generalizing, extracting
essential characteristics, and eliminating nonessential aspects. Constructing a math-
ematical model always involves abstracting characteristics of the actual problem in
some way. Abstracting can be done either when writing or reformulating the English
text or when constructing the mathematical model from the English text. Part of the
latter step will beformulating the interpretation of thefunctions, variables, and values
in the mathematical model in terms of the application domain.

The interpretation itself represents an abstraction. The mathematical model repre-
sents the ultimate abstract formulation of the English text. The mathematical model
itself includesall essential logical relationships between the values of thevariousvari-
ables, but excludes any and all references to the “outside” world of the application.
Those references are contained only in the interpretation of the mathematical model.
For example, the expression x=yxz is an abstraction both of the relationship between
distance (x), velocity (y), and time (z) of a moving object and of the relationship
between voltage (x), current (y), and resistance (z) for an electrical resistor. These
two very different things in the practical world can be represented by the same ab-
stract relationship in the mathematical world. In engineering applications, thistype of
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abstraction arises often. The same differential equation can describe either an el ectri-
cal circuit or acombination of mechanical components, such as amass, aspring, and
adamper (shock absorber, dashpot), or the radioactive decay of a chemical element,
or many other applications.

English text often contains explanatory phrases, clauses, or sentences that are
redundant as far as the meaning is concerned. They may help areader to understand
the intentions or background, but do not contribute to the actual logical or technical
content. Check for such unneeded passages in the English text by deleting each
suspicious one and asking the question: “Does deleting or inserting the passage in
guestion change the actual meaning of thetext in any essential way?’ If the answer is
“no,” the passage in question can usually be disregarded for the purpose of translating
the English text into the Language of Mathematics. Such redundant passages need
not be examined for phrases suggesting variables or functions to be included in the
mathematical model.

What one can say in the Language of Mathematics is much more restricted than
what one can say in any natural language. Natural languages have evolved so that they
can all expressmore or less the samethings, but the Language of Mathematicsisvery
different inthisregard. Many thingsthat can be expressed in English and other natural
|languages cannot be expressed directly in the Language of Mathematics at all. When
translating from English to the Language of Mathematics, the translator must define
anew appropriate mathematical representations of the meanings of the English text.
In the example above of jet and propeller airplanes, the notion of “speed” has been
represented by each of the two variables. In the Language of Mathematics, they are
variables with numerical values, nothing more. Their names, consisting of particular
but arbitrary sequences of symbols, are meaningless in the mathematical realm.
Whether or not these variables represent anything in the “real” world, and if so what,
are questions outside the Language of Mathematics and outside the mathematical
model. Their interpretations in terms of speeds of airplanes are completely outside
the realm of mathematics; these meanings are exclusively in the minds of the people
using mathematics as an aid in some analysis.

7.2 SENTENCES OF THE FORM “... IS (A) ...” (SINGULAR FORMS)

At first glance, many beginners tend to trandate “is’ as “=." Only if the verb “is’
in the clause in question means “is equal to” (or sometimes “is the same as’) is this
correct. Often, “is’” means something else and the translation will be quite different.

The verb “is’ can have many meanings and uses, among which the following
occur commonly in texts upon which mathematical models are based:

e “|s” expresses membership in acategory or class(i.e., inaset in the Language of
Mathematics). In this case, the trandlation will usually indicate set membership
(eg., “...e...”). Anexampleis“ Sarah isastudent,” which can be translated as
“SaraheStudents.”
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e “Ig’ ispart of aphrase stating arelation (e.g., “is greater than,” “is older than,”
“isheavier than”). Inthis case, the translation will typically expressthe relation
directly (e.g., with“<,” “>"). Functions may be required to convert the identi-
fication of the objectsin question to suitable numbers; for example, “ George is
heavier than Sam” can betrand ated into “ weight(George)>weight(Sam).” If the
values of the expressions on each side of the relational operator are not num-
bers, the relation can be expressed asaBoolean function [e.g., “ I sOlder(George,
Sam)”]), but even here, numerical measurements (e.g., of body weights) are the
basis for the relation.

e “|s" precedes a predicate adjective or noun, often expressing a characteristic
of the object in question. Such a clause can be translated by an appropriate
function applied to the subject of the clause, an equals sign (=), and the value
associated with the characteristic in question [e.g., “ The shirt is green” can be
trandated by “ColorOf (the shirt)=green”].

e “|s’ isfollowed by a phrase indicating the state of the subject of the clause.
A clause with “is’ in this sense is often translated by a Boolean variable,
whose name identifies the subject of the clause and its state. In the examplein
Section 8.13, the entire sentence “The door is in its fully open position” is
transdlated by the variable named “ DoorlsOpen.”

e “Ig’ occurs in sentences providing background information or explanations
that are not to be trandated into specific expressions in the mathematical
model.

Note that the categories of meaningsof “is’ above are not mutually exclusive. The
sentence “The door isin its fully open position” above or, more simply, “The door
is open” can also be viewed as a sentence of the predicate adjective type, in which
case one might trangdlate it as “ Position(Door)=open.” The decision to translate such
a sentence in one way or another is a question of writing style in the Language of
Mathematics. Ease of reading the mathematical model is usually the most important
factor influencing the translator’s choice. The structure of the mathematical model
and the context of the mathematical expressionswill affect which alternative is more
readable and, hence, influence the choice.

The distinction made above between the several groups of meanings and uses
is less important with regard solely to the English text than it is with regard to
the mathematical formulation. The Language of Mathematics draws a sharper dis-
tinction between these meanings than does English. The clearer distinction makes
the statements more precise, and this, in turn, contributes to the unambiguity of the
mathematical expressions. Before formulating the mathematical expressions, the
translator must clarify precisely which meaning isintended. The Language of Math-
ematics does not permit the vagueness present in the English text to be carried
over to the mathematical translation. This aspect of trandating is not unique to the
Language of Mathematics, but it is especially important when the target language is
mathematics.
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Note aso that in many sentences in which “is’ appears, the verb “is’ is not
semantically commutative; that is, “Carl is a lawyer” does not mean the same as
“A lawyer is Carl” (except possibly in a poetic literary style, but never in normal,
colloquial style). This consideration alone eliminates the possibility of translating
“is” with “=," because the mathematical function “=" is commutative.

In choosing the form of the expression translated, one must keep in mind the
overall needs of the mathematical model. For example, we have at least two choices
for trandating “Mosche is a physician”: “MoschecPhysicians” (the membership
choice) and “Vocation(Mosche)=physician” (the predicate noun choice). If Mosche
isboth aphysician and arabbi, a predicate noun trandation of “Moscheisaphysician
and a rabbi” would be “Vocation(Mosche)=physician A Vocation(Mosche)=rabbi.”
However, this expression can never be true, because a function can have only one
value for agiven argument and, therefore, at least one of the two termswould always
be false. In such cases, either the set of values of the function Vocation must include
every possible combination of multiple vocations (often, a clumsy style) or one
must choose the membership form of the translation (e.g., “Moschec Physicians A
MoschecRabbis”). Alternatively, an egquivalent relational Boolean function of the
form “IsA(name, vocation) can be defined and the sentence “Mosche is a physician
and a rabbi” trandated as “IsA(Mosche, physician) A IsA(Mosche, rabbi).” The
choice between

Moschee Physicians A Moschee Rabbis [7.2-1]
and
IsA(Mosche, physician) A ISA(Mosche, rabbi) [7.2-2]

is, again, a matter of style. Choosing the former has the consequence that one must
define aset of people for every possible vocation. Using the latter form, avalue must
be defined for each vocation. Often, alarge number of sets, the more abstract entity,
will be perceived to lead to a more complex model than the same number of values,
the simplest entity in the Language of Mathematics, but one can dispute the validity
of this perception. Here the best choice is not generally clear; overall aspects of the
mathematical model’s structure should determine the translator’s selection. In any
case, consistency is definitely called for, as mixing the two types of expressionsin
a mathematical model will tend to confuse the reader and is, therefore, definitely
a bad style. In English writing, repetition of the same structure is sometimes con-
sidered monotonous and undesirable, and variety is recommended for flavor. In the
Language of Mathematics, just the opposite applies: Repetition of the same form
calls attention to the fact that the structures are identical, facilitating comparison and
understanding.

Equivalent to the definition of the Boolean function I SA inthe paragraph aboveisa
corresponding subset of the Cartesian product of the set of persons and the set of pro-
fessions. The subset represents the same relation as the Boolean function ISA. In the
exampl e described above, the ordered pairs (Mosche, physician) and (M osche, rabhbi)
would beinthe set PersonProfessionRelation. The Boolean function ISA and the
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set PersonProfessionRelation arein direct correspondence with each other in the
sense of Section 4.1.5. The choice between a Boolean function such as IsA and a
set such as PersonProfessionRelation is a matter of style. The better choice is
generally that which most of theintended readers of the mathematical model will find
simpler to understand. Many people will perceive the Boolean function model to be
simpler than the set model, but mathematically, neither can be argued to be simpler
than the other.

Note that the sentence “Moscheisaphysician and arabbi” in the paragraph above
is an abbreviated form of “Mosche is a physician and Mosche is a rabbi.” In the
paragraph above, we have translated the latter sentence, not the former sentence.
From the tranglation

Mosches Physicians A Moschee Rabbis [7.2-3]
one can write the mathematically equivalent expression
Moschee PhysiciansNRablbis [7.2-4]

whichisamoredirect trandation of the original sentence, “Moscheisaphysician and
arabbi” or, more emphatically, “Moscheis both a physician and arabbi.” Sometimes
such equivalences are easier to see in the Language of Mathematics than in the
English language text. Formal proofs of the equivalence are possible only when the
statements are expressed in the Language of Mathematics.

A similar construction in English is “Laslo and Nancy are physicians,” which is
a shorter form meaning “Laslo is a physician and Nancy is a physician.” As above,
this can be trandated into the Language of Mathematics as

IsA(Laslo, physician) A IsSA(Nancy, physician) [7.2-5]
or as

Lasloe Physicians A Nancy€Physicians [7.2-6]
Sometimes expression 7.2-6 is abbreviated as

Laslo, NancyePhysicians [7.2-7]

Thisformin 7.2-7 is best considered to be an idiomatic abbreviation. More formally,
one can shorten expression 7.2-6 to

{Laslo, Nancy} C Physicians [7.2-8]

7.3 SENTENCES OF THE FORM “...S ARE ...S” (PLURAL FORMYS)

Clauses or sentences of theform*...sare...s” appear superficialy to be plural forms
of the structure “... is () ...”, which is the subject of Section 7.2. Clauses such as
“...sare ...s" include references to plural words in English, but the Language of
M athematics does not have correspondingly simpleformsfor the plural. Plural forms
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in English and their corresponding expressionsin the Language of Mathematics have
somewhat different meanings (i.e., they are semantically different constructions).

Often, clauses of the form “...s are ...s" have a meaning that differs from the
meaning of the corresponding singular form “... is (&) ...” in subtle but important
ways. The simple grammatical change of the singular to the plural form in En-
glish conceals these differences in meaning. The different forms in the Language of
Mathematics expose these differences in meaning. Although this may seem at first
to complicate matters, it has the advantage of making the differences explicit and
eliminating potential ambiguity.

When forming the plural in English, one in effect combines severa individua
things. The way they are combined may or may not be specified. This can, and often
does, lead to ambiguity and misunderstanding. In the Language of Mathematics the
function combining them must be specified clearly and unambiguously. The logical
functions“and” and “or,” the corresponding set functions “intersection” and “union,”
and the arithmetic functions “sum” and “product” are common ways of combining
the individua things in question. The individual things being combined are values
or, more generally, elements of sets.

In Section 7.2 various meanings of sentencesand clauses of theform*...is(a@) ...”
and their respective translations into English were identified. A distinction was made
between thefoll owing meaningsand uses. membershipinacategory or class, relation,
predicate adjective or noun, and state. The translation of plural forms belonging to
each of these groups is considered below.

Membership in a Category or Class A plural form of “that girl is a student” is
“those girls are students.” In Section 7.2, “Sarah is a student” was transated by the
expression “SaraheStudents,” so “that girl is a student” can be translated by the
expression “that girle Studemnts.”

How, then, can the sentence “those girls are students’ be trandated? First, the
intended meaning must be clarified precisely. Presumably, “those girls are students”
means “that girl is a student and that other girl is a student and that other girl next to
themisastudent and ...,” leading to a mathematical expression of the form

that girleStudents A that other girleStudents [7.3-1]
A that other girl nexttothemeStudents A ... '
The variable number of termsin this expression suggests a quantified expression over
the set of “those girls’:

[A g: geThoseGirls : geStudents] [7.3-2]

Other formulations of the English sentence leading to mathematical expression 7.3-2
include: “al those girlsare students,” “ each of those girlsisastudent,” and “ every one
of those girlsisastudent.” The last two sentences lead most directly to the quantified
expression 7.3-2.

Notethat the plural form “those girls” hasled to a quantification. The grammatical
number of theverb (“is’ or “are”) or of the predicate noun “ student” or “students’ has
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not affected the mathematical formulation. The quantified expression corresponds to
the singular formulation of the English sentence.

It follows from the definition of a subset that the mathematical expression above
is equivalent to (i.e., aways has the same val ue as) the following expression:

ThoseGirls C Students [7.3-3]

In expression 7.3-3 the plural noun phrase “those girls’ has been translated by the set
ThoseGirls; the plural noun “students,” by the set Students; and the verb “are,” by
the set function “subset” (). In the case of the singular clause “ Sarah is a student,”
the name Sarah was translated by the value “ Sarah” and the verb “is’ by the function
“element of” (€). In this sense, a set (e.g., ThoseGirls) can be thought of as the
plural of avalue (e.g., “Sarah” or “that girl”), and the function “subset” (C) can be
thought of as the plural of the function “element of” ().

Other examplesare“birdsareanimals,” which can betranglated into the L anguage
of Mathematics in the same way described above as “Birds C Amimals.” Corre-
spondingly, “animals are birds” would be trandated into “ Animals C Birds,” both
of which are false.

Relation A plural form of a sentence such as “George is heavier than Sam” could
be “our boxers are heavier than our sprinters’ or “all boxers are heavier than all
sprinters.” The latter formulation, especially, could be interpreted in more than one
way. Presumably, however, the intended meaning of al of these sentences is that
“every boxer is heavier than each sprinter” or, equivalently, “any boxer is heavier
than any sprinter” or “each boxer is heavier than each sprinter.” This interpretation
leads to a double quantification, one over the boxers and the other over the sprinters:

[A b, s: beBoxers A seSprinters : weight(b) > weight(s)] [7.3-4]

Other equivalent formulations are possible, but each containstwo quantifications, one
over the boxers and the other over the sprinters. The quantifications can be structured
differently (e.g., nested or separated completely), as in an expression corresponding
to “the lightest boxer is heavier than the heaviest sprinter,” but both quantifications
are needed to express this relationship.

Predicate Adjective or Noun An example of a plural form of a sentence of this
type is “The pencils are green.” As in the preceding examples, this sentence can
be translated by formulating a mathematical expression for such a sentence in the
singular and then embedding that expression in a suitable quantifying structure.

A singular version of this sentence would be “the pencil is green,” which can be
translated “ ColorOf(the pencil)=green” as in Section 7.2. Assuming that the phrase
“the pencils’ means al the pencils (i.e., every pencil) in a particular collection (set),
quantification over that set is appropriate. The words “al” and “every” both call for
thelogical “and” function, leading to

[A p: pePencils : ColorOf (p)=green| [7.3-5]
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Thisis atypical form for the translation of a sentence with a predicate adjective or
noun and a plural subject.

Note that sometimes verbs other than conjugated forms of “to be” can appear in
a sentence of this type (e.g., “Emily’s children all have black hair”). Thisis amore
colloquial way of saying “the color of the hair of all Emily’s children is black” or
“the color of the hair of every one of Emily’s children is black” or “the color of the
hair of each of Emily’s children is black.” The first sentence isin a simpler English
style, but the latter sentences express more explicitly and precisely the relationships
between Emily, her children, and their hair. The latter sentences, using the verb “is”
highlight the predicate adjective aspect of the color black, rather than the possession
of hair suggested by the verb “have,” which is not really the essential relationship
here. Furthermore, in the latter versions of the sentence, the directly related aspects
are mentioned closer together in the sentence (e.g., color of the hair of a child),
corresponding to the functional relationshipsin the mathematical translation:

[A ¢ : ceEmily sChildren : ColorOfHair(c)=black] [7.3-6]

Noticein the example above the use of the verb “to have” in English instead of “to
be” to express a relationship that is basically adjectival. Notice also that the words
“al,” “every,” and “each” commonly require a quantification with the logical “and’
(A, V) function in the translation in the Language of Mathematics.

State Sentences about states containing the plural form “are” appear relatively
infrequently. One type of such a sentence is of the form “The states of the system
are ..., ..., " Such a sentence is an enumeration of the set of states (i.e., defines
the set of states) and can therefore best be translated by an expression of the form
States={aq, b, c, ...}.

Another type of such a sentence is of the form “All doors are closed,” which is
usualy a shorter form of “Door 1 is closed, door 2 is closed, ..., and door N is
closed.” This type of sentence can be translated by translating each singular clause
separately asdescribed in Section 7.2 and combining them in aquantified expression:
for example,

[Ai:ieZ A 1<i<N : DoorlsClosed(i)] [7.3-7]
or

[Ai:ieZ A 1<i<N : PositionOf Door(i)=closed] [7.3-8]
or

[Ai:iez A 1<i<N : StateOfDoor(i)=closed] [7.3-9]

7.4 PERCENT, PER ..., AND OTHER LOW-LEVEL EQUIVALENCES

In English text the term percent is often used in a context involving numbers.
This term is unnecessary and has, unfortunately, confused many people, but it is
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in such common use that everyone wishing to apply arithmetic or mathematics in
practice must have a good command of this concept and be able to work with it
fluently.

The word “percent” (abbreviated %) means “per hundred,” “hundredths,” or, in
more mathematical terminology, “divided by 100"—nothing more, nothing less.
When trandating from English to the Language of Mathematics, one can simply
replace the word “ percent” by the partial expression “/100.” The prefix “per” itself
means “for every” or, equivalently, “divided by.”

The preposition “ of " frequently appearsin phrases with the word percent, and the
English preposition “of " can usually be translated as“ multiplied by,” whichisin turn
abbreviated by the infix symbol .

The following examples give mathematical translations of English phrases con-
taining “percent”:

Thirty percent of the population:  (30/100) * population
Eight iswhat percentage of 23?: 8 = (x/100) * 23

Ten is 4 percent of what? 10 = (4/100) * x
Ten is 4 hundredths of what? 10 = (4/100) = x
Four is 80% of five: 4 = (80/100) « 5

Presumably, the term “percent” was introduced in order to express fractions as
whole numbers; that is, instead of writing 1/25 or 4/100, one writes 4%. Although
it is unnecessary to do so, people have found this convention convenient, and it
has become thoroughly established in talking about and working with numbers and
relationships between them.

Similarly, the terms per mille (per thousand, abbreviated %) and per million (of-
ten occurring in the phrase “ parts per million,” abbreviated “ppm,” in chemical con-
texts) can be translated into the Language of Mathematics as /1,000 and /1,000,000,
respectively.

As mentioned above, the preposition “of” can often be translated with multiplica
tion (i.e., x). Theword per can often be translated with division, that is, with the infix
symbol /, and not only in phrases or word combinations such as percent. A few other
such examples of English words and short phrases representing common low-level
mathematical functions are the following:

times: *
by (e.g., “4 by 57): *
to the power (exponentiation): 4 (or ™)

raised to (e.g., “2 raised to the 3rd power”): 4 (or )

Other common examplesrelating to numerical sumsand differencesand tothelogical
functions and, or, and implies are contained in many other sections elsewhere in this
book.
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7.5 MODELING TIME AND DYNAMIC PROCESSES IN
THE LANGUAGE OF MATHEMATICS

The Language of Mathematicsis made up of expressions, which are, inturn, based on
values, variables, and functions. Values can be single entities or any one of a number
of well-defined structures, such as sets and sequences. These things are all static; in
none of them isthere any reference to or any concept of time. In short, the Language
of Mathematicsis a static language in which time plays no role.

Nonetheless, the Language of Mathematics can be used to model processes in
which time does play arole. In fact, many important applications of the L anguage of
Mathematics involve time. Some involve continuous time steps and others, discrete
time steps.

7.5.1 Dynamic Processes in Continuous Time

The various subdisciplines of physics and other sciences provide examplesin which
continuous time is modeled: mechanics, electricity, chemistry, biology, and so on.
Many important basic physical laws pertaining to motion and time are formulated as
mathematical expressions, such as Newton's second law of motion, F=mxa, where
F isthe force on amass m and aisits acceleration (i.e., the second derivative of its
position with respect to time):

d?x

F=mx ra [Newton’s second law of motion, 7.5.1-1]

Example: Dynamic Process in Continuous Time If an object of massmfallsina
forcefield (e.g., Earth’s gravity) applying a constant force F to the mass, the distance
x through which it will fall in timet is a solution to equation 7.5.1-1. If at time t=0
the massis at the position x=0, is at rest (its velocity is zero), and is released to fall,
the solution to equation 7.5.1-1 is

Fx t2
= 7.5.1-2
2xm [ ]
Thevelocity v of themass at timet isthefirst derivative of x with respecttot andis
Fxt
v= [7.5.1-3]
m

Thus, the velocity increases linearly with time and the distance fallen increases
quadratically with time (i.e., as the square of the time).

Equation 7.5.1-1 neglects the force on the falling mass due to air resistance. To
include the effect of this force (drag), which is opposite in direction to the motion
of the mass, an appropriate term can be included in equation 7.5.1-1. If thisforce is
proportional to the velocity of the mass, the resulting equation of motion is

d??x k dx F
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where k is the coefficient of the drag force on the falling body. The solution to
equation 7.5.1-4 with the sameinitial conditions as above [x=0 and the velocity (%)
isO at timet=0] is

X = E *t— mk%': s (1 — e vm) [7.5.1-5]
where eis 2.71828 ..., amathematical constant, the base of the natural logarithms.
This constant appears in solutions of many differential equations.

Equation 7.5.1-4 is an example of a linear, second-order, nhonhomogeneous dif-
ferential equation with constant coefficients. Methods for finding the solution of this
and many other types of differential equations are covered extensively and thor-
oughly in both the theoretical mathematical literature and the engineering-oriented
mathematical literature.

Noticeintheexpressionsabovethat themeaningsof distance, force, mass, velocity,
and time have been attributed to the variables x, F, m, v, and t by us because of the
way we wish to interpret these variables and expressions. None of these meanings
is inherent in the mathematical expressions themselves; the values of al of these
variables, including t for time, are, mathematically, just real numbers, nothing more.
Completely different application environments lead to the same types of differential
equations, and for those applications, the corresponding variables and constants are
interpreted very differently.

Although we interpret the equations above to apply to dynamic processes, the
equations themselves and their solutions are all static relationships between the
values of the numerical variables appearing in the equations.

The example above illustrates the typical way in which continuous time is rep-
resented in mathematical models: by a variable whose value represents time in the
application domain. The value of that variable is a real number. The expressions
in the mathematical model frequently involve derivatives and differential equations.
Sometimes the expressions involve integrals and integral equations.

Other application areas calling for continuous time models include:

¢ Design and operation of:

o Vehicle steering systems

o Engine control systems

o Heating and cooling systems

o Chemical reactors

o Nuclear reactors

o Systemsfor generating and distributing electrical power
e Electrical circuits for many purposes
e Mechanical equipment with moving components
¢ Forecasting continuous processes such as:

o Wesather

o Demand for electricity

o Availability of solar, wind, and water power
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e Economic processes and business procedures such as:
o Forecasting gross national product and other economic measures and indices
o Forecasting sales of goods and services
o Optimizing inventories
o Forecasting prices of commodities, bonds, and shares
o Calculating prices of derivativesin financial markets

7.5.2 Dynamic Processes in Discrete Time Steps

Dynamic processes not involving continuoustime but instead discrete stepsintimeare
usually modeled with one or more sequences. Each termin the sequenceisinterpreted
to represent one time step. Successive time steps are represented by successive terms
in the sequence. The finite state machine or automaton as defined in Section 4.1.7 is
acommonly used structure for such situations.

Example: Dynamic Process in Discrete Time Steps Consider alock in aninland
waterway used to raise and lower ships and boats between two different levels of the
waterway. At the upper level of the waterway is a gate that can be opened or closed.
Another gate is located at the lower level of the waterway. The level of water in the
space between the two gates can be raised or lowered between the two levels of the
waterway by allowing water to flow in from the higher level or by allowing water to
flow out to the lower level.

The cycle of operation is as follows. The gates at the upper level are open and
ships and boats can enter the space between the gates. Then the upper gate is closed.
Water isallowed to flow out of the space between the gates (both of which are closed)
to the lower level of the waterway. When that level is reached, the lower gates are
opened and the boats continue their journey downstream. Then boats from the lower
level enter the space between the gates, after which the lower gates are closed. Water
isthen allowed to flow from the higher level of the waterway into the space between
the gates. When the water between the gates reaches the higher level, the upper gates
are opened and the boats continue their journey upstream. Then boats from the upper
level enter the space between the gates and the cycle is repeated.

In front of each set of gates are red and green signal lights. They are used to
indicate to boats outside the lock when they are and are not permitted to enter the
lock. The signal lights may be green only if the gate at that level is open; otherwise,
they must be red.

A control system coordinates many of the operations of the lock’s gates, valves,
and signal lights. A human operator monitors the positions and movements of all
the boats in the vicinity of the lock, decides when certain operations can and should
be performed, and presses corresponding button switches on the control panel. The
automatic part of the system controls all operations from the time the operator
indicatesthat the lock should beraised or lowered until the new water level isreached
and the gates are open with the signal lights red. The human operator monitors boat
movements into and out of thelock at each level. He or she switchesthe signal lights
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from red to green and back to red and initiates raising or lowering the level of water
in the lock.

Operator’s Control Panel  On the operator’s control panel there are six pushbutton
switches:

e To switch on thered signa lights at the lower level
e To switch on the green signa lights at the lower level
e To switch on thered signa lights at the upper level
e To switch on the green signal lights at the upper level

e Toinitiateraising the level of water in the lock (between the gates) to the upper
level

e To initiate lowering the level of water in the lock (between the gates) to the
lower level

If the operator presses two or more button switches at the same time, only oneis
signaled to the controller. The other depressions are disregarded.

There are also several lamps on the operator’s control panel indicating which
signal lights are red, which are green, and the state of the entire system, in particular
whether the level of water between the gatesis at the lower level, at the upper level,
and if at an intermediate level, whether it isrising or falling.

Interfaces Between the Operator’s Control Panel, the Master Controller, and the Sub-
sidiary Controller  The mechanized control system consists of the master controller,
which is the subject of this example, and a subsidiary controller. The master (higher
level, overal) controller communicates with the subsidiary controller by sending
output signals to it and receiving input signals from it. Otherwise, the subsidiary
controller is not modeled in this example.

The master controller receives the following input signals:

e Signals from the six pushbuttons on the operator’s control panel (see above)

e A signal from the subsidiary controller indicating that the water in the lock has
reached the upper level, the upper gate is open, and the upper signal lights are
red

¢ A signal from the subsidiary controller indicating that the water in the lock has
reached the lower level, the lower gate is open, and the lower signal lights are
red

The master controller sends, when appropriate, the following output signals to the
subsidiary controller:

e A signa indicating that the level of water in the lock should be raised to the
upper level

e A signal indicating that the level of water in the lock should be lowered to the
lower level
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Safety Conditions For safety reasons, the master controller will respond to certain
inputs from the operator’s control panel only when certain conditions are met. If they
are not met, the master controller will simply ignore the inputs from the operator’'s
control panel as if the corresponding button switch had not been pressed (i.e., the
new state will be the same as the old state and no output message will be generated).
Superfluous inputs (such as the operator requesting green signal lights at the lower
gate when they are already green) will be handled in the same way. The relevant
conditions and restrictions are:

If the operator presses the button to switch on the red signal lights at the lower
level, those lights must aready be green. (Condition 1)

If the operator pressesthe button to switch on the green signal lights at the lower
level, those lights must already be red and the lower gate must already be open.
(Condition 2)

If the operator presses the button to switch on the red signal lights at the upper
level, those lights must aready be green. (Condition 3)

If the operator pressesthe button to switch on the green signal lights at the upper
level, those lights must already be red and the upper gate must already be open.
(Condition 4)

If the operator presses the button to initiate raising the level of water in the lock
to the upper level, the lower gate must be open and the lower signal lights must
be red. (Condition 5)

If the operator presses the button to initiate lowering the level of water in the
lock to the lower level, the upper gate must be open and the upper signal lights
must be red. (Condition 6)

Master Controller Sates From the foregoing descriptions of the lock system, it
can be deduced that the master controller must distinguish among the following six
states:

The lower gate is open and the lower signal lights are red. The upper gate is
closed and the upper signal lights are red.

The lower gate is open and the lower signal lights are green. The upper gateis
closed and the upper signal lights are red.

The upper gate is open and the upper signal lights are red. The lower gate is
closed and the lower signal lights are red.

The upper gate is open and the upper signal lights are green. The lower gateis
closed and the lower signal lights are red.

The water in the lock isrising, both gates are closed, and al signal lights are
red.

The water in the lock is falling, both gates are closed, and all signal lights are
red.

The mathematical model, the detailed functionality of the master controller, and
theinterpretation of the functions, variables, and valuesin this model are asfollows.
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Variables

input(n): The input message received by the master controller in time step n.
output(n): The output message sent by the master controller to the subsidiary
controller in time step n.

state(n): The state of the master controller in time step n.

InputHistory: The sequence of all input messages received by the master con-
troller.

OutputHistory: The sequence of all output messages sent by the master con-
troller.

StateHistory: The sequence of all states of the master controller.

Values of input(n)

SwRedL ower: The button to switch on the red signal lights at the lower level is
depressed.

SwGreenLower: The button to switch on the green signal lights at the lower
level is depressed.

SwRedUpper: The button to switch on the red signal lights at the upper level is
depressed.

SwGreenUpper: The button to switch on the green signal lights at the upper
level is depressed.

GoUp: The button to initiate raising the level of water in the lock to the upper
level is depressed.

GoDown: The button to initiate lowering the level of water in the lock to the
lower level is depressed.

WaterUp: This message from the subsidiary controller indicates that the upper
water level has been reached, the upper gate is open, and the upper signal lights
arered.

WaterDown: This message from the subsidiary controller indicates that the
lower water level has been reached, the lower gateis open, and the lower signal
lights are red.

Values of output(n)

GoUp: This message to the subsidiary controller isacommand that the level of
water in the lock be raised to the upper level.

GoDown: This message to the subsidiary controller isacommand that the level
of water in the lock be lowered to the lower level.

none: In some time steps the master controller does not output a message. In
these cases, the value of output(n) is* none.” Seethe six conditionslisted above.

Values of the State Variable

LowerGateOpenRed: The lower gate is open and the lower signal lights are red.
The upper gateis closed and the upper signal lights are red.
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¢ LowerGateOpenGreen: The lower gate is open and the lower signal lights are
green. The upper gate is closed and the upper signal lights are red.

e UpperGateOpenRed: The upper gate is open and the upper signal lightsare red.
The lower gate is closed and the lower signal lights are red.

e UpperGateOpenGreen: The upper gate is open and the upper signal lights are
green. The lower gate is closed and the lower signal lights are red.

¢ Rising: Thewater inthelock isrising, both gates are closed, and all signal lights

arered.

e Fdling: The water in the lock is falling, both gates are closed, and al signal
lights are red.

Sets

* Inputs: The set of input messages: { SwRedL ower, SwGreenL ower, SwRedUp-
per, SwGreenUpper, GoUp, GoDown, WaterUp, WaterDown}

* Outputs: The set of output messages: { GoUp, GoDown, none}

e States: The set of states: {LowerGateOpenRed, LowerGateOpenGreen,
UpperGateOpenRed, UpperGateOpenGreen, Rising, Falling}

Functions

o NextState: NextState is a function from the set Imputs x States t0 States:

NextState : Inputs X States — States

[7.5.2-1]

¢ NextOutput: NextOutput isafunction fromtheset Inputs x States to Qutputs:

NextOutput : Tnputs X States — Qutputs

[7.5.2-2]

The following table gives the values of output(n+1) and state(n+1) as functions
of state(n) and input(n+1) for al nonnegative integer values of n. The table entries
arein the order of the cycle of operations described above.

output

Comment state(n) input(n+1) (n+1) state(n+1)

al boatsin UpperGateOpenGreen  SwRedUpper | none UpperGateOpenRed
lock

start lowering | UpperGateOpenRed ~ GoDown GoDown Falling

at lower level | Falling WaterDown none L owerGateOpenRed

boats have LowerGateOpenRed ~ SwGreenLower | none LowerGateOpenGreen
left lock

al boatsin LowerGateOpenGreen SwRedLower | none L owerGateOpenRed
lock

start raising | LowerGateOpenRed ~ GoUp GoUp Rising

at upper level | Rising WaterUp none UpperGateOpenRed

boats have UpperGateOpenRed ~ SwGreenUpper | none UpperGateOpenGreen

left lock
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This table is clearly incomplete. It contains only eight data rows. There are six
states and eight possible input messages, so a complete table would contain 6«8 or
48 datarows. The remaining 40 rows must be examined to seeif they are all excluded
by the safety conditions stated above. If so, it must at least be indicated in the table
that state(n+1) is the same as state(n) and that output(n+1) is none.

The following table contains the 40 rows missing from the table above. The
comments refer either to the relevant safety condition mentioned above or to the
fact that the input from the subsidiary controller is inconsistent with the behavior

described above.

output
Comment state(n) input(n+1) (n+1) state(n+1)
Condition 6 | Falling GoDown none Falling
Condition5 | Falling GoUp none Falling
Condition2 | Faling SwGreenLower | none Falling
Condition4 | Falling SwGreenUpper | none Falling
Condition1 | Falling SwRedL ower none Falling
Condition 3 | Falling SwRedUpper none Falling
Condition 6 | LowerGateOpenGreen  GoDown none LowerGateOpenGreen
Condition5 | LowerGateOpenGreen  GoUp none LowerGateOpenGreen
Condition2 | LowerGateOpenGreen  SwGreenLower | none LowerGateOpenGreen
Condition4 | LowerGateOpenGreen  SwGreenUpper | none LowerGateOpenGreen
Condition 3 | LowerGateOpenGreen  SwRedUpper none LowerGateOpenGreen
Condition 6 | LowerGateOpenRed GoDown none L owerGateOpenRed
Condition 4 | LowerGateOpenRed SwGreenUpper | none LowerGateOpenRed
Condition1 | LowerGateOpenRed SwRedL ower none L owerGateOpenRed
Condition 3 | LowerGateOpenRed SwRedUpper none LowerGateOpenRed
Condition6 | Rising GoDown none Rising
Condition5 | Rising GoUp none Rising
Condition2 | Rising SwGreenLower | none Rising
Condition4 | Rising SwGreenUpper | none Rising
Condition1 | Rising SwRedL ower none Rising
Condition 3 | Rising SwRedUpper none Rising
Condition 6 | UpperGateOpenGreen  GoDown none UpperGateOpenGreen
Condition5 | UpperGateOpenGreen  GoUp none UpperGateOpenGreen
Condition 2 | UpperGateOpenGreen  SwGreenLower | none UpperGateOpenGreen
Condition 4 | UpperGateOpenGreen  SwGreenUpper | none UpperGateOpenGreen
Condition 1 | UpperGateOpenGreen  SwRedL ower none UpperGateOpenGreen
Condition5 | UpperGateOpenRed GoUp none UpperGateOpenRed
Condition 2 | UpperGateOpenRed SwGreenLower | none UpperGateOpenRed
Condition1 | UpperGateOpenRed SwRedL ower none UpperGateOpenRed
Condition 3 | UpperGateOpenRed SwRedUpper none UpperGateOpenRed
inconsistent | Falling WaterUp none Falling
inconsistent | LowerGateOpenGreen  WaterDown none LowerGateOpenGreen
inconsistent | LowerGateOpenGreen  WaterUp none L owerGateOpenGreen
inconsistent | LowerGateOpenRed WaterDown none LowerGateOpenRed
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output
Comment state(n) input(n+1) (n+1) state(n+1)
inconsistent LowerGateOpenRed WaterUp none LowerGateOpenRed
inconsistent Rising WaterDown none Rising
inconsistent | UpperGateOpenGreen ~ WaterDown none UpperGateOpenGreen
inconsistent | UpperGateOpenGreen  WaterUp none UpperGateOpenGreen
inconsistent | UpperGateOpenRed WaterDown none UpperGateOpenRed
inconsistent | UpperGateOpenRed WeaterUp none UpperGateOpenRed

For the purposes of this example we assume that in those cases of inconsistent
inputs from the subsidiary controller, the output (none) and the next states (the same
asthe previous states) given inthetable are acceptable. However, theseinputsindicate
faulty behavior which, in an actual application, would have to be examined in more
detail: for example, by proving that the design of the subsidiary controller excludes
these responses in those states of the master controller. In addition, of course, the
reliability of the components of the system must be considered and provision for
handling their failures made in the final design of this system.

Under these assumptions, the first table above can be extended to ignore the inap-
propriate inputs. The resulting table defines the functions NextOutput and NextState:

TABLE 7.5.2-1 Controller Functions for a Lock on an Inland Waterway

output

Comment state(n) input(n+1) (n+1)  state(n+1)

al boatsin UpperGateOpenGreen  SwRedUpper none UpperGateOpenRed
lock

start lowering | UpperGateOpenRed ~ GoDown GoDown Falling

at lower level | Falling WaterDown none LowerGateOpenRed

boats have left | LowerGateOpenRed ~ SwGreenLower | none L owerGateOpenGreen
lock

al boatsin LowerGateOpenGreen SwRedLower | none LowerGateOpenRed
lock

start raising LowerGateOpenRed ~ GoUp GoUp  Rising

at upper level | Rising WaterUp none UpperGateOpenRed

boats have left | UpperGateOpenRed ~ SwGreenUpper | none UpperGateOpenGreen
lock

Conditions 1 to all other combinations none state(n)
6 and incon-
sistencies

The complete mathematical model for the master controller is, then,

Inputs = {SwRedL ower, SwGreenLower, SwRedUpper, SwGreenUpper,
GoUp, GoDown, WaterUp, WaterDown}
A Outputs = {GoUp, GoDown, none}
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A States = {LowerGateOpenRed, L owerGateOpenGreen,
UpperGateOpenRed, UpperGateOpenGreen, Rising, Falling}
A (NextState : Imputs x States — States)
A (NextOutput : Imputs x States — Qutputs)
A[ANn:nezZ A n>0: input(n+1)elnputs A state(n)eStates
A output(n+1)e OQutputs]
A[AN:NezZ A n>0: state(n+1)=NextState(input(n+1), state(n))
A output(n+1)=NextOutput(input(n+1), state(n))]
A InputHistory = [input(1), input(2), input(3), ...]
A StateHistory = [state(0), state(1), state(2), ...]
A OutputHistory = [output(1), output(2), output(3), ...] [7.5.2-3]

The values of state(0) and input(n), for all positive integers n, are determined
externdly (i.e., by this controller’s environment). The values of all other variables
referred to in the model above are functions of the values of the external variables as
stated within the mathematical model above.

The reader should extend the master controller above to output asignal when one
of the safety conditions listed above is violated. The output signal should indicate
which conditionisviolated. Assumethat thiswill cause a corresponding indication to
be displayed on the operator’s panel. Distinguish between safety-relevant violations
of the conditions and superfluous inputs from the operator’s control panel.

Asanother exercise, thereader should design the subsidiary controller. Expressthe
designinasimilar way as Table 7.5.2-1 for the master controller. Must the subsidiary
controller open or closethe gates? Switch signal lightson or off?Which, if any, safety
interlocks should be provided? How?

Sections 8.11 and 8.13 contain additional examples of dynamic processes in
discrete time steps. Section 8.10 contains a simple example of a dynamic process
in discrete time steps in which the inherent physical delay in any system provides
the time step, so that explicit consideration of the time steps in the mathematical
expressions is not needed. Section 8.8 contains an example of one component part of
alarger system that would presumably be modeled mathematically by one or more
sequences.

A typical structure for modeling a dynamic process evolving in discrete time
steps consists of sequences of an input, a change of state, and an output, repeated
continually. Depending on the current state and the current input, iterative formulas
give the next output and the next state in the corresponding sequences. That is, the
next output is a function of the current state and the current input. The next state is
also a function of the current state and the current input. Thisis the structure of the
finite state machine, or automaton, in the mathematical theoretical literature and as
defined and described in more detail in Section 4.1.7.

To formulate a model based on a finite state machine, begin by identifying its
inputs and outputs. Then identify the internal states of the system being model ed.
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Finally, develop the iterative equations for the next state and output functions from
the relevant parts of the English text.

To identify the states of the finite state machine in the mathematical model, ask
the following questions:

e What information is needed to describe the physical state of the system at each
step in time?

e What are the results of actions? A state representing the result of an action
can often be described by an adjective or by a past participle or a present
participle used as an adjective, or by phrases based on these parts of speech.
In the example above, the words “red,” “green,” “open,” “closed,” “rising,” and
“falling” are used within the descriptions of the severa states. In the example
in Section 8.13, “stopped” is such a past participle describing a state and used
asthe value of that state.

e What actions take place over an extended interval of time and should be con-
sidered states? The value of a state representing an ongoing action can often be
described by a present participle or present participle phrase used as an adjec-
tive. In the example above, “rising” and “falling” are such present participles
describing states and used as values of the state variables.

¢ Upon which aspects of the previous terms of the input sequence do or can the
subsequent terms of the output sequence depend?

The answers to one or more of these questions will lead to the state variables and
their possible values.

In effect, each output is a function of the initial state and the sequence of all
previous inputs. Therefore, each state must effectively contain all the information
about the previous inputs that is needed to determine the output in response to the
next input.

Some examples of other application areas calling for discrete time step models
are;

e Design and operation of:
o Traffic light systems
o Vehicle movement monitoring and guidance systems

o Systems for automatically monitoring, opening, and closing doors on trains
and buses and in buildings

Elevator control systems
Electrical communication systems
Cryptographic systems

o Inventory control systems

Digital computers

Digital controllers

o

o

o

O

O



234 TRANSLATING ENGLISH TO MATHEMATICS

e Forecasting, planning, scheduling, monitoring, and controlling
o Demand for and sales of products
o Order processing
o Allocation of resources and personnel

Some systems require acombination of continuous and discrete time step models.
The example in Section 8.13 is such a system.

7.6 QUESTIONS IN TRANSLATIONS FROM ENGLISH
TO MATHEMATICS

The most common type of question appearing in atext to be translated into the Lan-
guage of Mathematics indicates that the value of a particular variable or function of
certain argumentsis unknown. Determining that valueisthe goal of the analysisto be
performed after the mathematical model has been constructed. The questionitself will
not be trandlated, but the translator should ensure that all information in the English
text that can be of usein determining the unknown value isincluded in the mathemat-
ical model. If an expression for the variablein question isimplied by the context, that
expression should be included in the mathematical model. Typically, that expression
will involve variables appearing el sewhere in the mathematical model. For example,
if the unknown value is the volume of arectangular solid, an expression of the form
Volume=L ength«Width«Height should be included in the mathematical model.
Questions in English arein either one of two forms:

¢ Inthe form of a statement in question form (e.g., “Did you go to town yester-
day?” “Areyou happy?’), answered by yes or no or true or false

e |ntroduced by an interrogative word such as what, which, why, when, where,
who, whom, or how, answered most ssmply by a phrase (noun, adjective, or
adverb) or by averb phrase often expressed in a noun form, or possibly in the
form of a complete statement repeating much of the question but adding addi-
tional information. “How” questions are typically answered by the description
of aprocedure, often in the form of a command.

The first type of question above is basically a statement, to which a reply is
expected either confirming or contradicting the correctness (truth) of the statement.
The second type of question above requires a more extensive reply giving additional
information (e.g., a clarification or an explanation).

The types of questions posed in English text to be translated into a mathematical
model are usualy in one of two forms corresponding to the types described above.
In their mathematical form, they ask either of the following:

¢ |sthe value of a Boolean expression true or false for the values of the relevant
variables?

e For whichvaluesof certain variablesisthe mathematical expression constituting
the model true? (Solving a Boolean expression)
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In the first case, the truth of a Boolean expression is to be verified or disproved. In
the second case, values of dependent variables in the mathematical model are to be
determined.

The Language of Mathemati cs does hot contain any notational form for aquestion.
In the case of a question with a yes/no (true/false) answer, the question can be
reformulated in the form of a corresponding statement to be verified or disproved.
A Boolean variable whose interpretation is that statement is then introduced into
the mathematical model. The task is then to determine the value of that variable.
This approach isillustrated in Section 8.7, in which the question “Can the board be
covered by dominoes?’ given certain conditions is to be answered. The answer to
the question is interpreted to be the value of the Boolean variable BoardlsCovered.
After formulating the mathematical model for the given problem, it can be shown
that the value of the variable BoardlsCovered is always fase, giving as the answer to
the English question, “No, the board cannot be covered by dominoes.”

Thisapproach to trandating aquestion of thefirst type above handlesit in the same
way as aquestion of the second type, thereby generalizing the two types of questions
in the English text into one type of task in the Language of Mathematics: to find the
value(s) of the dependent variables—be they Boolean or non-Boolean—consistent
with or implied by the mathematical model (i.e., for which the Boolean value of the
mathematical model istrue).

In the case of a question whose answer is a non-Boolean value, a non-Boolean
variable with the value to be determined is introduced into the mathematical model.
Its interpretation is the appropriate answer to the question in the English text. In
the mathematical model this variable will be a dependent variable, that is, a variable
whose va uefollowsfrom the values of theindependent variablesinthemodel. A sim-
ple exampleisthe question: “How long will it take to travel from A to B, adistance of
d kilometers, in avehicle traveling with avel ocity of v kilometers per hour?’ The an-
swer isinterpreted to betheval ue of thevariablet. An appropriate mathematical model
isformulated consisting mainly of the expression vxt=d, from which the value of t for
any given pair of values of d and v can be determined. Several other examples of an-
swering thistypeof questioninamathematical model are given el sewherein thebook.

In some cases, a question in the English text will be answered by the process
involved in the analysis of the completed mathematical model, rather than being
given by some mathematical expression following from the model. The question “Is
there more than one solution?’ is often of thistype.

Finally, questions intended to direct attention to the implications of the results of
the analysis may appear in the English text. Such questions are intended to provoke
subsequent thought or to propose problems going beyond the bounds of the immedi-
ate problem, problems that could be the subject of subsequent investigations. Such
questions will not be translated into the Language of Mathematics.

During thetransl ation process, transl ators shoul d ask themsel ves various questions
and answer them carefully. These questions should be formulated in order to:

e Check the correctness of their interpretation of the English text and their
tranglation
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e Ensure that nothing was overlooked

e |dentify implicit information, thereby making it explicit

e Make explicit any implicit assumption

e Ensure that no unjustified assumption was made (e.g., implicitly)
e |dentify irrelevant or redundant information not to be translated
e |dentify aternative interpretations of the English text

e Help them interpret the given English text correctly

Neither the questions nor the answers to them will be included in their trandation,
but the answers to these questions will influence their translation.

7.7 SUMMARY OF GUIDELINES FOR TRANSLATING ENGLISH
TO THE LANGUAGE OF MATHEMATICS

To construct amathematical model based on English text, the translator should begin
by reading the English text thoroughly, in detail, critically and questioningly. The
translator should understand the author’s intended message. The translator should
distinguish between those parts of the text to be translated into expressions in the
mathematical model and those parts of the text giving only background information
to facilitate understanding the rest of the text. Then, concentrating on the text to be
translated into the mathematical model, the translator should:

e Look for nouns and noun phrases in the English text. They are candidates for
non-Boolean variables and functions in the mathematical model.

¢ |dentify the sets of values of these variables and functions. The values will
usually be specific instances of the generic category defined by the noun corre-
sponding to the variable or function. Examples are doctor and lawyer as values
of the function ProfessionOf(...), and numbers as values of variables for dis-
tance, length, height, velocity, force, and mass. The values often appear in the
English text as adjectives (especially predicate adjectives) and predicate houns
[e.g., “(The profession of) George is a mechanic”; “ The shape of the object is
triangular].

e |dentify clauses with a stative verb. They are candidates for Boolean variables
or Boolean functions of non-Boolean arguments. Examples are “ The value of
X is greater than the value of y” and “The button is depressed.” These might
betheinterpretations of the corresponding Boolean variables X1sGreaterThanY
and ButtonlsDepressed, respectively, or, aternatively, of the Boolean func-
tions“IsGreater(x, y),” “IsinPosition(button, depressed),” or “ StateOf I s(button,
depressed).”

¢ Reformulate clauses containing an action verb. Write them as clauses with a
stative verb, that is, by expressing the action with a past or present participle
used as an adjective or by referring to the result of the action instead of the



SUMMARY: TRANSLATING ENGLISH TO THE LANGUAGE OF MATHEMATICS 237

action itself. For example, reformulate “Add x and y to obtain z” as“The value
of zisthe sum of the values of x and y.”

e L ook for conjunctions combining clauses (and, but, or, if ... then ..., implies,
etc.). They will typically become Boolean functions of Boolean arguments in
the mathematical expressions. Typical examplesare A, Vv, and =.

e Look for conjunctions combining parts of speech other than clauses. They
will not translate into Boolean functions of Boolean arguments. In such cases,
look for other words to guide the translation. The combination formed by the
conjunction can often be translated as a set or as a sequence. See Section 6.2.4
for guidelines on translating English text in which conjunctions combine parts
of speech other than clauses.

e |dentify nouns or noun phrases in the plural form or as general singular ref-
erences suggesting a plura meaning. The values of the corresponding (non-
Boolean) variables or functions will often be sets or sequences.

e Look for the following words and phrases: dl, for all, any, for any, each, every,
there exists, there is, there are, for some, at least one. These usually indicate
quantified expressions in the mathematical model.

e Becautiousin tranglating clauses with the verb to be (is, are). Such a clause can
have any one of several meanings, each of which callsfor adifferent tranglation
into the Language of Mathematics. Some of these meanings are: membership
in a class or category, a relation, introducing a predicate adjective or noun,
introducing the description of a state. The meaning and translation into the
Language of Mathematics depends on these differences and upon whether the
nouns are in singular or plura form. General and useful guidelines exist for
each of these various possihilities (see Sections 7.2 and 7.3).

e Those parts of the English text leading to the corresponding variables and
functions are candidates for the definitions and descriptions of the variables and
functionsin question intheir interpretations. Abbreviated versions of those parts
of the English text are candidates for the names of the variables and functions
(see Section 6.2.6).

Although the guidelines above are not absolute laws, they are very strong recom-
mendations. Deviations from them are rare and should be considered and justified
very carefully. Translating anoun phrase by aBoolean variable, for example, islikely
to lead to logical problemsin the mathematical model.

Readahility of the mathematical model suggests corresponding naming conven-
tions for variables and functions as well as grammatical conventions for their inter-
pretations. In short, the name of avariable or afunction with a Boolean value should
be a stative verb phrase, abbreviated if desired, but the stative verb should always be
included. The name of a variable or function with a non-Boolean value should be a
noun phrase. The definitions and descriptionsin their interpretations should be based
on the same parts of speech (see Sections 6.13 and 6.2.6).

Because the Language of Mathematics has no action verbs, an action verb should
never be the primary element in the name of any variable or function or in its
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interpretation [i.e., do not name the addition function “Add(...)"; nameit “ Sum(...)"
instead]. Do not defineit inthe interpretation as“adds ...” but, instead, as“isthe sum
of ... " Action verbs have their place as hames of proceduresin dynamic languages,
such as many computer programming languages, but not in the static Language of
Mathematics.

In summary, begin translating an English text into the Language of Mathematics
by understanding the intended meaning of the text. Next, distinguish between state-
ments expressing background information not needed in the mathematical model and
statements to be translated into mathematical expressionsin the model. In the latter,
nouns and noun phrases are candidates for variables and functionsin the model. The
statementsthemselves should, if necessary, be reformulated into sentences expressing
relationships between the values of the variables and functions already identified for
inclusion in the mathematical model. The result of such reformulation will involve
only things expressiblein the universe of discourse of the Language of Mathematics.
In particular, action verbs will have been eliminated. Either the results of the actions
are described or the actions are expressed by adjectives, often in the form of past or
present participles, or by nouns.

7.8 ACCURACY, ERRORS, AND DISCREPANCIES IN
MATHEMATICAL MODELS

As pointed out in the introductory comments in Chapters 5 and 7, solving a problem

inthereal world involvestranslating or transforming descriptions of the problem and
a specification of its solution in several steps:

actual English
problem text

mathematical

—>
model

v

mathematical English implemented
solution text solution

In the diagram, horizontal arrows represent language transation or interpretation.
The vertical arrow represents the derivation of the mathematical formulation of the
solution from the mathematical model—a statement of the problem—both in the
Language of Mathematics. In this step represented by the vertical arrow, mathe-
matical expressions are manipulated mechanistically according to well-defined and
unambiguous rules.

Especially inthelast two stages of this process, the question arises—and should be
answered explicitly and carefully—if the solution implemented or to beimplemented
solves the actual problem. In each step, but especially in the language trandations
represented by the horizontal arrows, errors, oversights, and misinterpretation can
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lead to an inadequate result. Discrepancies will then propagate in the subsequent
steps, leading to a solution of a different problem than the original one. In some
cases, the result will be atolerable loss of accuracy, whereasin others, the result will
be an unacceptable and unusable nonsolution.

This section describestypical sourcesof errors, discrepancies, and loss of accuracy
in each of the five steps above:

. Actual problem to the English text

. English text to the mathematical model

. Mathematical model to the mathematical solution

. Mathematical solution to the English language specification of the solution
. English specification to the solution actually implemented

ga b~ WODN P

Thetrandation processesin steps 1, 4, and, to asomewhat lesser extent, 5 depend
strongly on the particular application area and the language and jargon used in it, so
will be dealt with here only to alimited extent, but the most important and common
general sources of error are highlighted in Sections 7.8.1, 7.8.4, and 7.8.5.

The implemented solution in the general sense in the diagram above consists of
both:

e The fina embodiment of the solution in the form of mechanisms, devices,
processes, procedures, computer software and hardware, and so on

e Associated documentation in a combination of English and the Language of
Mathematics for several purposes: the construction of the final embodiment of
the solution, itsoperational usein practice, and informing and training all people
affected

Step 2 above, transating English text to the mathematical model, is the primary
subject of this book. Section 7.8.2 lists the most common sources of errors in this
step and briefly outlines ways of identifying and overcoming them. Details on how
to avoid, identify, and overcome them constitute the subject of much of the rest of
the book.

Step 3 above, transforming the mathematical model into a mathematical solution,
isastepthat, in principle, can be performed without error. When performed manually,
human error can, of course, arise. Section 7.8.3 discusses this step in general, espe-
cially with regard to how errorscan arisein it and how they can be avoided, identified,
and eliminated. Basic information on how to perform this step is presented in Chap-
ter 5. For more complete details on performing this exclusively abstract mathematical
step, the reader should refer to the appropriate mathematical literature.

7.8.1 Errors Translating the Actual Problem into English

Inthisstep, ageneral awarenessof aproblemistransformedinto an English document.
The document describesthe context, nature, and key aspects of the problem and states
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the requirements that a solution must fulfill. In simple cases the “solution” consists
of questions to be answered or statements to be verified. In more complex situations
the solution can be a full specification of a machine, system, or procedures to be
implemented in the application area.

The most important causes of errors and omissions in this step are:

¢ |nadequate communication among the people living and working in the appli-
cation areain question and between them and consultants, mathematicians, and
others assisting them

¢ Aninadeguate, incomplete analysis of the perceived problem

Initially, the actual problem is not articulated or formulated. It is only a general,
mental idea, perhapsdiscussed verbally but only partially, among the partiesinvol ved.
From this beginning, the problem must be defined consciously and explicitly. The
key aspects of the perceived problem must be identified and systematically analyzed.
The requirements that a solution must satisfy must then be determined. Finally, the
results of these steps are expressed in a written document.

This process often requires communication between people with different areas
of knowledge and expertise. To ensure effective communication, the knowledge and
experience of adjacent pairs in the communication chain must overlap significantly;
otherwise, they will not really understand each other sufficiently. The weakest con-
nection in thischain will limit the overall effectiveness of the communication, just as
achain is no stronger than its weakest link.

Theanalysis performed in the process outlined above must take all relevant factors
intoaccount. If, for example, thetask isto design asystem or procedures, many aspects
of man—machine interaction must be considered—psychological on the human side,
technical on the system side. If some quantity is to be optimized, the informational
needs of a suitable mathematical model must be identified. Psychological aspects of
interpersonal communication must also be taken into account.

Specia caremust betakeninall partsof the process outlined above, because no ba-
sisexistsfor logically verifying the correctness and completeness of thefinal English
text. Neither theinitial perception of the problem nor the final English text is unam-
biguous, so there is no formal basis for systematically and logically comparing the
two against each other; thereisno formal, rigorous standard for correctness. Careful,
extensive reviewing by the parties involved after some time has elapsed can help to
achieve an adequate final document. Review also by independent persons often iden-
tifies oversights, omissions, misunderstandings, logical inconsistencies, and errors.

7.8.2 Errors Translating the English Text into a Mathematical Model

In this step, the English text describing the problem and the requirements that its
solution must satisfy istrandated into amathematical model together with its accom-
panying interpretation (asdefined in Section 6.13). The mathematical model basically
restates—mathematically, precisely, rigorously, rationally, and unambiguously—the
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context, nature, and key aspects of the problem and the requirements that a solution
must fulfill.
The main causes of errors and omissions arising in this step are:

e Ambiguitiesin the English text

¢ Inconsistencies (contradictions) in the English text

e Gapsin the English text, that is, information that is needed but not included in
the text

e Insufficient familiarity with the problem and the application area on the part of
the translator

e |nsufficient familiarity with the relevant mathematics and lack of experiencein
applying mathematics on the part of the translator

e Lack of pedantic attention to detail when reading, interpreting, and understand-
ing the English text

The correctness of the result of this step—the mathematical model—cannot be
verified because the English text is not precise and unambiguous. The mathematical
model can, however, be checked for internal consistency. Sometimes the entire ex-
pression constituting the mathematical model can be shown to be equal to thelogical
value false, indicating the presence of a contradiction (alogical inconsistency). This
can be caused, in turn, either by alogical inconsistency in the original English text,
by a misinterpretation of that text, or by a faulty trandation. All of these causes are
observed in actual practice.

The mathematical model, being written in the Language of Mathematics, isprecise
and unambiguous. It representsthe first documentation of the problem anditspossible
solutions that can be used as a reference for correctness. Because of this, it is often
useful to compare the mathematical model directly not only with the English text
but also with the original perceptions of the problem. Interpreting the mathematical
model in terms of the application area and discussing the interpretation with the
people who will use the solution in their daily work can sometimes lead to the
identification of errors, oversights, and omissionsin the English text (i.e., to errorsin
the first step outlined in Section 7.8.1). It will also increase the confidence of all in
the mathematical model.

7.8.3 Errors Transforming the Mathematical Model into
a Mathematical Solution

The mathematical model istransformed into amathematical description of asolution
by a series of transformations of subexpressions in the mathematical model. This
process consists of two parts: (1) deciding what series of transformations is to be
applied to which subexpressions and (2) applying those transformations. Deciding on
the strategy for transforming the expressionsisacreative processin which experience
and relevant intuition are helpful. Actually applying the transformations requires
knowledge of the allowable transformations and some experience performing them,
but it does not require cretivity.



242 TRANSLATING ENGLISH TO MATHEMATICS

The decisions about which transformations to apply where and when can affect
the efficiency with which the solution is obtained, but not its correctness (consistency
withtheoriginal model). Particul arly inept decisionsregarding which transformations
to apply where and when can, in the worst case, lead to the failure to find a solution,
which will easily be recognized as such.

Permissible transformations on mathematical expressions are either well known
or provable. Therefore, applying alowed transformations correctly can never cause
an error in the final result. People can, however, make mistakesin applying transfor-
mation rules, and one must exercise considerable care to avoid such mistakes. One
should also check the derivation of a solution (e.g., by having someone else verify
the manipulations independently). An alternative approach is to give someone else
the original mathematical model and the derived solution and ask that person to
prove their consistency mathematically. In both of these cases, one should not give
any other information to the verifier; that person does not need to know anything
about the application area. If a pure mathematician cannot verify the mathemati-
cal correctness of the transformation of the original mathematical model into the
mathematical statement of the solution, the transformation is not permissible.

The most frequent causes of errors when transforming mathematical expressions
are (1) overlooking conditions on the application of the transformation rules and
(2) errors in writing and, especially, copying expressions manualy from line to
line. An example of an error of the first type is dividing a numerical expression
by another numerical expression without regard to whether or not the expression
for the divisor can be zero (division by zero is not defined and, hence, is not an
allowable transformation). Examples of errors of the second type are writing errors:
for example, copying “x” inonelineas*“y” inthe next, or copying “x2” from oneline
into “x” in the next (a sloppy mistake made by the author once on a physics test).

If a solution involves continuous numerical variables and that solution is to be
implemented in practice, it isimportant that tolerances areincluded on all parameters
in the design. In the physical world, one can never manufacture anything to exactly
any particular numerical measure, and similarly, one can never measure anything
exactly. For example, if one attempts to manufacture bolts with a diameter of exactly
1 cm and the corresponding nuts to exactly 1 cm, about half the bolts can usually be
expected to be dlightly wider than 1 cm and half to be slightly narrower than 1 cm,
and similarly for the nuts. Typically, then, about half of the combinations of a bolt
and a nut will not fit because the bolt is slightly wider than the nut.

Similarly, in computer-based systems, numerical values are often rounded. This
can and does lead to apparent errors. For example, if acolumn of percentage figures,
each rounded to a certain number of decimal places, is added, the result calculated is
not always 100.

If no tolerances are included in the original mathematical model, one should
question their absence. One should seriously consider introducing them both into the
origina English description of the problem and into the mathematical model.

Numerical parameters that must be integers do not usually need to be associated
with tolerances. Discrete items can be counted exactly. The counts can be added
exactly, provided that no rounding is applied.
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7.8.4 Errors Translating the Mathematical Solution into
an English Specification

Thistranslation step isgenerally less problematic and less error prone than the earlier
trandation step. Those subexpressions in the mathematical solution that were not
present in the original mathematical model are translated one by one into English,
using the definitions in the interpretation associated with the mathematical model
(see Sections 6.13 and 7.8.2).

Themost frequent sources of error are similar tothosein thefirst step of translating
the actual problem into an English statement of the problem (see Section 7.8.1). One
must take special care to avoid ambiguitiesin the English specification, for example,
by including the mathematical solution or extracts thereof as parts (e.g., appendices)
of the English language document specifying implementation of the solution. If the
mathematical solution includesafinite state machine, including atable representation
of it in the English specification is helpful.

If the solution involves aphysical device or system, some overall design decisions
of an engineering nature are often made in this step. Corresponding attention must
be given to the environment in which the solution to be implemented will be realized
and will operateif thiswas not aready included in the mathematical model. Potential
timing problems must be foreseen and treated adequately in the English specification.

If the solution to be implemented involves continuous variables (physical sys-
tems typically do), design tolerances are essential, as discussed in the latter part of
Section 7.8.3.

The mathematical solution is written in the Language of Mathematics and is
therefore precise and unambiguous. To the extent that the English specification of
the solution is or contains an engineering specification of the solution to be imple-
mented, it will be relatively precise and unambiguous, so it and the mathematical
solution can be, at least to asignificant extent, formally verifiable against each other.
Wherever the English specification of the solution is not formally verifiable against
the mathematical solution, errors may have crept in or may creep in in the following
step: actual implementation of the solution.

When the English specification of the solution is thought to be finished, it should
be compared against all previousresults, both English text and mathematical formula-
tions, even though mathematically formal comparisons are not possible. The English
specification of the solution should also be compared against the original subjec-
tive and not necessarily documented perception of the problem. Any discrepancies
found should be eliminated by revising the documents and mathematical formulations

appropriately.

7.8.5 Errors Implementing the English Specification of the Solution

The nature of this step depends greatly on the type of solution and the application, so
only afew general comments on sources of errors and omissions are within the scope
of this book. If the solution involves a physical device or system, implementing the
solution is an engineering task, and expertise in the relevant engineering disciplines
isneeded. If the solution involves a computer-based system, corresponding expertise
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is required. In any case, knowledge, familiarity, and experience in the application
areaitself are also needed.

In all but the simplest cases the solution will include a set of procedures to
be followed by people in an organization. In such situations, a frequent source of
problems and errors in actual operation is insufficient motivation of the people to
accept and use the system and inadequate information and training in how to useit.
Involving such users of the system in the origina conception and planning of the
system usually helps considerably to motivate them. Appropriate documentation of
the system and training in itsuse are usually essential for success. The documentation
and training must be seen as part of the implementation.

Although the primary basis for implementing the solution is the English specifi-
cation of the solution, the mathematical solution or parts of it are also often useful in
implementing the solution. This can apply even when the solution is a set of proce-
duresbeing followed by people. For exampl e, tables representing finite state machines
describing the behavior of part of the system or certain characteristics of the problem
and its solution have been used beneficialy in practice for both documentation and
training.



8 Examples of Trandlating English
to Mathematics

Each example below begins with an English language statement describing the prob-
lem and the requirements that the solution must satisfy. Notice that these statements
are typically incomplete (i.e., some necessary information is omitted). Often, but not
always, some of this information is suggested or implied.

The English language statement is examined in order to identify the variables and
functions needed in the mathematical model. As pointed out in Section 6.13, these
variables and functions, together with their meanings in the application domain,
constitute the interpretation of the mathematical model. Thus, the interpretation
connects the variables and functions in the mathematical model with the English
language statement.

The parts of speech of key words in the English text guide the selection of
variables and the types of values they take on. A noun or noun phrase will give rise to
a variable or function that can take on certain types of non-Boolean values. A clause
with a stative verb will lead to a Boolean variable, a Boolean function, or a Boolean
expression. An adjective or noun which in effect abbreviates a clause with a predicate
adjective or noun can also lead to a Boolean variable. A clause with an action verb (a
nonstative verb) will sometimes represent a change of the value of a variable. Clauses
with an action verb may describe actions performed by a person, in which case the
result of the person’s action, not the action itself, will be represented by a variable or
function.

Finally, the relationships among the values of these variables—the mathemati-
cal model—are formulated in mathematical expressions. The mathematical model is
developed term by term, expression by expression. The mathematical model repre-
sents the information contained in the English language statement, but in the precise,
unambiguous Language of Mathematics.

In the process of reformulating the information in the English language text into
expressions in the mathematical model, it is almost always necessary to resolve
inconsistencies and ambiguities in the English language statement and to fill in
missing information. In practice, this is normally done by asking the stakeholders
in the final result appropriate questions. In studying the examples that follow, the
reader should pay particular attention to how these situations are identified and how
appropriate assumptions are made.

The Language of Mathematics: Utilizing Math in Practice, First Edition. Robert Laurence Baber.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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The examples below cover a wide range, from simple problems with short mathe-
matical models to moderately complex design tasks with lengthy mathematical mod-
els. These examples also relate to a range of application areas, including business,
economics, general logic, software, mathematics, reliability, and physical systems.
Examples of important applications involving calculus—especially calculus in com-
bination with probability theory—are not included because the knowledge of calculus
needed is beyond the scope of this book. Such examples are found in many areas
of science, engineering, economics, and business and finance (e.g., for analyzing
financial instruments, derivatives, markets).

81 STUDENTSWITH THE SAME BIRTHDAY

Consider a class with many students. The instructor bets the students that two or more
students have the same birthday. Write a mathematical expression that is true if this
condition is met and false otherwise.

We begin by reading and understanding the foregoing text in English. Then we
must convert the statement into a mathematical view. Finally, we must formulate the
message in mathematics.

Strategy: Understand the meaning of the message.
Tactic: Identify all objects referred to in the message.
Tactic: Distinguish between essential objects and background information.

To identify all objects, one should begin by looking at the nouns and pronouns in
the English text. In this case, we have “class,” “students,” “instructor,” and “birthday.”
Of these, the condition to be expressed in mathematics clearly involves students and
birthday. It is not stated explicitly that this condition involves the class also, but this
seems to be strongly suggested by the context set by the first sentence: “Consider a
class with many students.” Presumably the phrase “two or more students have the
same birthday” means “two or more students in the class have the same birthday,” in
which case the condition involves the class. If this is not the intended meaning of the
task description, the question arises as to which group of students is meant: the entire
student body in the school in question, all students in the world, or something else.
The condition to be expressed in mathematics does not seem to involve the instructor,
who is proposing the bet but who is not part of the condition being betted upon. We
conclude, therefore, that the instructor is not one of the objects to be mentioned in
the condition. The essential objects for the condition to be written in mathematics
are, therefore: class, students, and birthday.

The question also arises as to whether or not the word “many” is essential: that
is, whether it is part of the condition to be expressed in mathematics or whether it is
general background information not of direct concern to the translator. We assume
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the latter here. If “many” were significant, this would suggest that we must include a
term in the resulting mathematical expression to the effect that the number of students
must be greater than some constant (an implicit object), raising in turn the question
of what that constant should be. The latter uncertainty in the English text is another
reason for assuming that the word “many” is not significant.

Strategy: Understand the meaning of the message.

Tactic: Identify relationships between essential objects referred to in the
message.

To identify relationships between the essential objects, we begin by considering
all combinations of two or more of these objects. These combinations are:

e class, students

students, birthday

e class, birthday

e class, students, and birthday

Regarding the relationship between the objects class and students, the text begins
“Consider a class with many students.” In mathematical vocabulary, the reader would
understand “consider a set (a class) of elements (the students).” Renaming “class” as
C and a student as S, the relationship becomes, in mathematics, SeC.

Regarding the relationship between the objects students and birthday, we “know”
from the cultural context of human society that each student is a person and that
each person has a birthday. Furthermore, each person has a unique birthday, so that
in the mathematical world view birthday is a function of the person in question (i.e.,
the student). Renaming “birthday” as bd, the relationship becomes, in mathematics,
bd(S).

Regarding the relationship between the objects class and birthday, there appears,
again from the cultural context of human society, to be no direct relationship. One
could consider the set of birthdays of the students in the class (e.g., [U S : SeC :
{bd(S)}]), but this is not referred to explicitly in the English text and from the
statement of the task does not seem to be needed.

Regarding the relationship among the objects class, students, and birthday, there
does not appear to be any direct relationship among all three of these objects; only
the relationships above between pairs of these objects seem to be relevant.

Now we can turn to the condition to be expressed in mathematics. The English
version of this condition is, after our addition to it: “Two or more students in the class
have the same birthday.” Thinking in terms nearer mathematical vocabulary, we can
reexpress this condition as “for some student s1 in the class and some other student
s2 in the class, bd(s1)=bd(s2)” (whereby we do not exclude the possibility that still
other students have the same birthday). This sentence is in English syntax, English
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word order, and mixed English and mathematical vocabulary, so we must finish by
reexpressing it once more into purely mathematical syntax, purely mathematical
subexpression order, and purely mathematical vocabulary:

[V sl,s2:s1eC A S2eC A s1#£S2 : bd(s1)=Dbd(s2)] [8.1-1]

Trandlator’'sglossary:  some <> 3, v
in< ¢
other <> #
same <> =

At this point the reader should review the mathematical expression above and
verify that it is a correct translation of the condition in English into mathematics.
Note especially that it properly handles the phrase “or more” in the English condition
“two or more students in the class have the same birthday.”

Potential pitfall: The devil liesin the details Notice especially carefully in
the paragraph above that the phrase “two ... students in the class” was reex-
pressed using the word “other” in the phrase “for some student sl ... and some
other student s2.” In this way the implicit but clear fact that different students
are meant in English by “two” has been made explicit in the mathematical
formulation. Without careful attention to such detail we might have left out the
essential term “s1£s2” in the solution above. Without this term, the expression
would be wrong and it would be a complicated way of writing the logical
constant true. Why would it always be true? If not always true, under what
conditions would it be true?

Insufficient attention to detail is a common cause of errors in translating
from English to mathematics.

8.2 CRITERION FOR SEARCHING AN ARRAY

In the subsections below, two versions of searching an array are considered: a simple
search in which any occurrence of the value desired is identified, and a more specific
search in which the first occurrence of the value desired in the array is identified.

8.2.1 Search for Any Occurrence of a Valuein an Array

Consider an array D with index values ranging from 1 to n. The subject of this example
is part of a specification for a procedure that will find the location in D of a particular
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given value. The goal of this exercise is to write a mathematical specification of the
final state of the search: that is, a relation between the various relevant variables’
values when the search is complete. The mathematical expression should indicate
where in the array the given value is located.

The first activity in the process of translating from the description in English to an
expression in the Language of Mathematics is to read the text in English. Then, that
description must be understood in English and in terms of the array and the search.

Note below how the various ambiguities in the English text are identified and
resolved in order to obtain the information needed to formulate the unambiguous
mathematical expressions.

Strategy: Understand the meaning of the message.

Tactic: ldentify missing information.

Tactic: Identify implicit—but not necessarily true—information.
Tactic: Identify special cases, especially ones not mentioned explicitly.

Sometimes, needed information is not given in the English statement of the prob-
lem. Often, special cases are not explicitly mentioned in an English description of
the task and they are, therefore, overlooked. These discrepancies can lead to an in-
complete translation in mathematics and consequent problems that can be difficult
and time consuming to resolve.

The first question to be raised is: What does “index values ranging from 1 to n”
mean? Inclusive, exclusive? In this case the range is most likely meant to be 1 to n
inclusive. Had the wording been “between 1 and n,” the meaning would be much
less clear. From context, a reader would probably implicitly assume “between 1 and
n inclusive,” but the precise meaning of the English word “between” would actually
imply between 1 and n exclusive. One must be constantly watchful for precisely this
type of ambiguity.

To find a “particular given value,” that value must be known. Within the context
of a mathematical model, it will presumably be given in the form of the value of a
particular variable.

Stop. Question: Is this a reasonable presumption? Why or why not? What
other alternatives could be used?

The name of the variable will be needed, but it is not given in the English text above.
Normally, the person writing the mathematical specification will ask the person who
wrote the task description for the missing source of the given value or the name of
the variable. We will assume that the answer is “key.”
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Strategy: Obtain all needed information.
Tactic: Ask the author of the task description.

Stop. Question: Scan the English text again. What variables are mentioned?
Does the text give us all possible information about them? If not, what is
missing? Do we really need all of the missing information?

The English text above explicitly mentions the array D and the variable n. It says
nothing about the type of data values in D: whether they are integers, real numbers,
names, elements of some other specified set, or single values or compound structures.
In each of these possible cases, additional questions about the properties of the data
arise, such as how small and how large the numbers can be, and how long the strings
can be. In the case of the variable n, similar questions arise: in particular, whether
n may be negative or zero, how large n may be, and whether or not n must be an
integer.

Strategy: Obtain all needed information.

Tactic: ldentify gaps in the description of the task.

Tactic: Read carefully, thoroughly, and precisely.

Tactic: ldentify the data present, and ask questions about related details.
Tactic: Question whether missing information is really needed.

Tactic: Identify implicit “information.”

Tactic: Question explicitly whether implied information may be assumed.

Implicit in the English description above of the task is that the value being sought
is actually in the array. Sometimes this can be guaranteed, but more often than not,
the value being sought cannot be guaranteed to be in the array. In the latter situation,
which we assume here, we distinguish between the two cases in which (1) the value
being sought is present in the array D and (2) the value being sought is not present in
the array D.

Strategy: Divide and conquer.
Tactic: Distinguish between specific cases.
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We distinguish between case 1,

[Vi:iez A l<i<n: D(i) = key]
[case 1: value of key present in array D, 8.2.1-1]

and case 2;

—[vi i€z A 1<i<n : D(i) = key]
[case 2: value of key not present in array D, 8.2.1-2]

Expression 8.2.1-2 is mathematically equivalent to

[Ai:iez A 1<i<n:D(i) # key]
[case (2): value of key not present in array D, 8.2.1-3]

We must now decide what result is desired in each case.

When the value being sought is in array D, the task description above states that
its location in D must be identified: that is, that its location must be specified in
the mathematical expression. Again, a variable will presumably be needed for this
purpose, so we must ask the author of the task description the name of the variable.
We assume that the answer is “location”; that is, in case 1, D(location) = key and the
value of the variable named “location” will be an integer between 1 and n inclusive.

If the value being sought is not in array D, the task description above says nothing
about what the state of the various variables should be on completion of the search.
Again, the author of the text should be asked what he or she meant in this case. We
assume that the answer is that the value of the variable location should be outside the
possible range in the first case above so that case 2 can be easily identified (e.g., the
value of location might be n+1). For the sake of simplicity, we require that the value
of location be n+1.

Strategy: Divide and conquer.
Tactic: Construct a table.

Combining the answers and assumptions above and presenting them in the form
of a table yields

Case (in English): case (1): case (2):
key present in array D key not present in array D
Case (in [Vi:ieZ A 1<i<n =[vi:ieZ A 1<i<n
mathematics): 1 D(i) = key] 1 D(i) = key]
Expression: locationeZ A 1<location<n location = n+1
A D(location) = key
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The reader should now reread the English statement of the problem above and
compare it with this table. Check word by word, phrase by phrase, and so on, for
consistencies, inconsistencies, errors, omissions, and other discrepancies.

The expression desired is given unambiguously by the table above and can either
be left in that form or written in an equivalent but more traditional form: for example,

(Ivi:iez A 1<i<n:D(i) = key] = (locationezZ A 1<location<n
A D(location) = key))
A(—[vi:iez A l<i<n:D(i) = key] = (location = n+1)) [8.2.1-4]

which can be rewritten in any of several equivalent forms:

(locationez A 1<location<n A D(location) = key)
vo[vi:iez A 1<i<n:D(i) = key] A (location = n+1) [8.2.1-5]

Stop. Mathematical exercise: Prove that expressions 8.2.1-4 and 8.2.1-5 are
equivalent. (Hint: This is an exercise in manipulating Boolean algebraic ex-
pressions; no other analysis or reference to the application domain is needed.)
Notice the relationships between the top line of expression 8.2.1-5 and the
quantified expression in 8.2.1-4. See also the relevant identities in Section
5.2.4,

Notice that if location=n-+1, the value of D(location) and, therefore, the term
D(location)=Kkey in the first line of expression 8.2.1-5 is not necessarily defined. This
problem and possible solutions are discussed in more detail for this particular type of
expression at the end of Section 8.2.2 and for undefined terms in expressions more
generally in Section 3.5.3.

The reader should read and understand in detail the final mathematical expressions
above and reread and reexamine the original English statement of the problem.
Compare them to confirm that they are consistent and that mathematical expressions
8.2.1-4 and 8.2.1-5 above correctly specify all possible results of such a search.

8.2.2 Search for theFirst Occurrence of a Valuein an Array

This task consists of the same requirements as the task in Section 8.2.1 with the added
requirement that the element of D found to be equal to key must be the first such
element in array D.
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Strategy: Divide and conquer.
Tactic: Modularize.

Tactic: Use the results of previous exercises as components of solution to
this task.

Translating the text above into mathematics can be done by splitting the task
into two parts, one of which has already been solved, and adding the additional
requirement. Therefore, we concentrate first on the additional requirement.

The additional requirement is that the element of the array found to be equal to
key, that is, the element D(location), be the first such element in D. The question then
arises: What is meant by “first”? Presumably this is to be interpreted that no element
of D with a lower index value than location is equal to key. Implicit in this reasoning
is the assumption that D(location) = key, that there is at least one element of D with
the value key. Therefore, this analysis applies only to case 1 in the solution to the
search in Section 8.2.1.

The question then arises: What does the additional requirement mean if case 2
applies (i.e., no element of D is equal to key)? The most reasonable interpretation of
the phrase

with the added requirement that the element of D found to be equal to key
must be the first such element in D

in the previous task is that the condition “if any” is implied:

with the added requirement that the element of D found to be equal to key—
if any—must be the first such element in D

Adding the phrase “if any” to our intrepretation makes it clearer that in case 2 (no
element of D is equal to key), the added requirement means nothing (i.e., in this case,
the added requirement is redundant, unnecessary, and irrelevant and can, therefore,
be disregarded).

Note how the English text has been examined in detail and vagueness and ambi-
guity identified and reduced to bring it closer to the world view of mathematics (i.e.,
more precise and less ambiguous).

Strategy: Close the gap between the English text and the Language of Math-
ematics.

Tactic: Reword the English text to bring it closer to mathematics.
Tactic: Reduce vagueness and ambiguity.
Tactic: Express implicit information explicitly.
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We now return to the additional requirement and interpret it within the context of
case 1 (at least one element of the array D has the same value as the variable key; see
above). D(location) will be the first element of D with the value key if:

e D(location) = key (this condition is already part of the solution to the simple
search in Section 8.2.1).

e All elements of D with an index less than location are different from (unequal
to) key.

Therefore, if we take the solution to the simple search in Section 8.2.1 and impose
(in case 1 only), the second bulleted condition above, we will have a solution to our
current task.

Thus, we have reduced the current task to the subtask of translating

“all elements of D with an index less than location are different from
(unequal to) key”

into the Language of Mathematics. The word “all” suggests an and-series (universal
quantification).

Trandator’sglossary: each, every, all, any < for all, and (universal quantifi-
cation, V, A).

Therefore, we translate the phrase above literally from English into
[Ai:iez A 1<i<n A i<location : D(i)#key] [8.2.2-1]

At this point one should ask: Have special cases, if any, been considered ade-
quately? If the element of D with index 1 is equal to key (i.e., if location=1), there
are no elements of D with smaller index values. The mathematical expression is
correct for this case, the value of the additional expression being true because the
universal quantification is over the empty set.

Combining the solution to the simple search in Section 8.2.1 with this added
condition in case 1 only gives

Case (in English):  case (1): case (2):
key present in array D key not present in array D
Case (in [Vi:ieZ A 1<i<n —[viiieZ A 1<i<n
mathematics): : D(i) = key] - D(i) = key]
Expression: locationeZ A 1<location<n location = n+1

A D(location) = key
A[AiI€EZ A L1<i<n
A i<location
- D(i)#key]
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which can be simplified to

Case (in English): case (1): case (2):
key present in array D key not present in array D
Case (in [Vi:ieZ A 1<i<n =[vi:ieZ A 1<i<n
mathematics): : D(i) = key] 1 D(i) = key]
Expression: locationeZ A 1<location<n location = n+1

A D(location) = key
A [AiieZ A 1<i<location
- D(i)#key]

The expression represented by the table above can be expressed in more traditional
form as in Section 8.2.1. Among the equivalent expressions (assuming that n is an
integer, which seems to follow implicitly from the original statement of the task) is

locationez A 1<location<n+1
A[A 1€z A L<i<location : D(i)#key]
A ((location<n A D(location) = key) Vv (location = n+1))  [8.2.2-2]

Stop. Mathematical exercise: Prove that the expressions represented by the
two tables and expression 8.2.2-2 are equivalent. (Hint: This is an exercise
in manipulating Boolean algebraic expressions; no other analysis is needed.)
Notice the relationships between the quantified expressions and the value of
the variable location. See also the relevant identities in Section 5.2.4.

Notice that if location=n+1, the value of D(location) and, therefore, the term
D(location)=key is not necessarily defined. This problem is also mentioned at the
end of Section 8.2.1. This problem and possible solutions are discussed in more
detail for this particular type of expression and for undefined terms in expressions
more generally in Section 3.5.3. Probably the simplest solution here is to consider
the function = to be extended such that if either argument is undefined, the value of
the function = is false. Note that if the value of D(n+1) is defined, its value has no
effect on the value of the expression above.

The reader should read and understand in detail the final mathematical expression
above and reread and reexamine the original English statement of the problem. Com-
pare them to confirm that they are consistent and that the mathematical expressions
above correctly specify all possible results of such a search.
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8.3 SPECIFYING THE INITIAL STATE OF A BOARD GAME

In this section the initial state of a particular board game is to be described mathe-
matically. This description was used as a specification of part of a computer program
to play the game against other programs as opponents. The programs were written
by different teams in a university course in software development.

One type of error that arose in the early stages of writing this specification in
the Language of Mathematics illustrates the confusion that can arise when one is
not consciously aware of important linguistic characteristics of the languages one
uses. In this case, the description was given in English. The students commonly
used computer programming languages in their work. In this exercise they were to
write a mathematical model in the Language of Mathematics. English permits one
to describe both static and dynamic aspects of the subject matter. The computer
programming languages that the students frequently used were strongly oriented
to describing dynamic processes, not static characteristics or states. The Language
of Mathematics is a language oriented exclusively to describing states and static
characteristics of the topic. In their subconscious minds some of the students mixed the
various concepts underlying these languages and wrote expressions in mathematical
syntax but implicitly with the meaning and structure of a programming language.
The result was incorrect in both languages.

Section 8.3.1 presents the process of translating correctly the English description
to a specification of the initial state of the game formulated in the Language of
Mathematics. Section 8.3.2 shows how the misunderstanding outlined above led to
the wrong “solution.”

8.3.1 Initialization of a Game Board: A Correct Solution

Consider a game whose board consists of bowls, some of which contain stones. The
players, who sit around a table, are numbered from 1 to NP counterclockwise. In
front of each player are NB ordinary bowls placed in a line from left to right and one
special bowl to their right. Initially, each ordinary bowl must contain five stones, and
each special bowl must be empty.

The goal of this exercise is to write a mathematical expression describing the initial
state of the bowls. The number of stones in each bowl! will be the value of an element
of a one-dimensional array named “StonesinBow!” with index values ranging from
0 to NPx(NB-+1)—1. (Why is this formula for the highest index value correct?)

The first activity in the process of translating from the description in English above
to the expression in mathematics is to read the text in English. Then, that description
must be understood in English and in terms of the game board.

Strategy: Understand the meaning of the message.
Tactic: Draw a diagram.
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Because it is more difficult to draw an unambiguous diagram for the general case
of an unspecified number of players and of bowls than for a particular case, we
assume a specific number of players and a specific number of bowls.

Tactic: Describe a specific instance of the general problem.

To reduce the possibility of confusion later, a different value should be selected for
each of the relevant parameters. Avoid especially simple values such as 1. If feasible,
select values for the different parameters that have no common divisor.

We select NB=3 and NP=4 and draw the corresponding diagram below. The
circles represent the ordinary bowls. The squares represent the special bowls. The
number in each bowl indicates the number of stones in the bowl. The numbers in
the open space in the middle of the diagram are the indexes of the corresponding
elements of the array StonesinBowl.

PMEG®®
() |12 71| [o]
Player 4 @ s ° @ Player 2
(5) |14 5| (5)
[o] |15 4| (®
®E®E[M]

The reader should now reread the English statement of the problem above and
compare it with this diagram. Check word by word, phrase by phrase, and so on, for
consistencies, inconsistencies, errors, and other problems.

Next, we must understand the meaning in mathematical terms. The text of the
problem statement and the meanings of the various aspects of the diagram (e.g., the
circles, the squares) lead to such mathematical expressions as

StonesIinBowl(0) = 5 [8.3.1-1]
StonesinBowl(1) =5 [8.3.1-2]
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StonesinBowl(2) =5 [8.3.1-3]
StonesinBowl(3) =0 [8.3.1-4]
StonesInBowl(10) = 5 [8.3.1-5]
StonesinBowl(11) =0 [8.3.1-6]
etc.

Each of the expression above, as well as all other comparable terms, must be true
[i.e., they must be connected with the logical and function (A)].

Translator’sglossary: each, every, all, any <> for all, and (universal quan-
tification, v, A).

Because some of the bowls contain 5 stones and others, 0 stones, we will need two
quantified subexpressions at the level of the elements of the array “StonesinBowl”:
one for the ordinary bowls and one for the special bowls.

The initial state of each player’s collection of bowls is the same for every player.
That is, by considering first the several players (not the bowls), we need only one
quantified expression, which will presumably be simpler than the double quantifi-
cation needed if we would start at the more detailed level of the elements of the
array StonesIinBowl, as outlined above. Then, within each player’s collection of
bowls, we would need another—but independent—quantification, leading to a sim-
pler structure. We therefore apply another strategy to subdivide the one structurally
complicated problem into two subproblems, each structurally simpler.

Strategy: Divide and conquer.
Tactic: Modularize. (Subdivide hierarchically.)
Tactic: Introduce an auxiliary mathematical function.

We name the desired mathematical function describing the initial state of all of the
bowls “GameBoardInitialized.” It is a function of the two parameters NP and NB. It
must be true if all bowls are initialized correctly and false otherwise.

We introduce a mathematical function PlayerlInitialized(p, NB), which will be
true if the NB ordinary bowls and the special bowl in player p’s collection of bowls
are correctly initialized and false otherwise. GameBoardInitialized(NP, NB) will be
true if and only if every player’s bowls are initialized correctly, suggesting universal
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quantification (see the translator’s glossary box above) over the players:

GameBoardInitialized(NP, NB)
= [Ap:peZ A 1<p<NP : Playerlnitialized(p, NB)] [8.3.1-7]

To write an expression for Playerlnitialized(p, NB), we will need to refer to the
individual bowls within each player’s collection of bowls. Extending the diagram
above to include such new numbers for the bowls in front of each player, we obtain
the following diagram. The new numbers are outside the bow! areas.

Player 3
3 2 1 0
BI6JOJ6)
11 10 9 8
o| (&) |12 71 [0o] |3
Player 4 ! @ 2 ° @ ? Player 2
2| (5) |14 51 (5 |1
3| [0] |15 4 (® |0
0 1 2 3
®EE ]
0 1 2 3
Player 1

Again, reread the English statement of the problem above and compare it with this
diagram.

Strategy: Understand the meaning of the message.

Tactic: Express it in an intermediate language (e.g., mathematically styled
English).

From this diagram we can write the following first draft of an expression for
PlayerInitialized(p, 3):

the number of stones in player p’s bowl 0 =5 A
the number of stones in player p’s bowl 1 =5 A
the number of stones in player p’s bowl 2 =5 A
the number of stones in player p’s bowl 3 = 0 [8.3.1-8]
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The number of stones in each bowl is represented by the value of that bowl’s
element of the array StonesinBowl. We introduce, therefore, a new auxiliary function
that converts the new bowl number b within player p’s collection to that bowl’s index
in the array StonesIinBowl. We will call this function “GBIndex” (for “global bowl
index™). This function will obviously depend on player number p and bowl number
b. Presumably, it will also depend on the game board parameter NB. Conceivably, it
could also depend on NP, so we start with the parameter list (p, b, NB, NP) for this
function. (It turns out below that the function GBIndex does not depend on NP, so
we will drop that parameter later.)

Now we can reformulate expression 8.3.1-8 to obtain the following expression for
PlayerInitialized(p, 3):

StonesinBowl(GBIndex(p, 0, NB, NP)) =5 A
StonesinBowl(GBIndex(p, 1, NB, NP)) =5 A
StonesInBowl(GBIndex(p, 2, NB, NP)) =5 A
StonesinBowl(GBIndex(p, 3, NB, NP)) =0
[NP will be dropped later, 8.3.1-9]

or, for general NB,

PlayerInitialized(p, NB)

[ADb:bez A 0<b<NB-1 : StonesinBowl(GBIndex(p, b, NB, NP)) = 5]
A StonesinBowl(GBIndex(p, NB, NB, NP)) = 0 [8.3.1-10]

To define the function GBIndex, we refer to the diagram above and note that (1)
the value of this function increases by NB+1 whenever p increases by 1 and (2) the
value of this function increases by 1 when b increases by 1. An expression for the
function GBIndex must, therefore, have the form p*(NB+1) + b + K, where K is an
appropriate constant. Note that this expression depends on p, b, and NB, but not on
NP, so NP can be dropped from the list of parameters for the function GBIndex. K
can be determined by considering the case p=1, b=0 for any NB (and any NP). Note
that GBIndex(1, 0, NB) = 0 (see the diagram above):

GBIndex(L, 0, NB) = 0

1x(NB+1) + 04+ K =0

K = —(NB+1)
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Therefore, because GBIndex(p, b, NB) = p*(NB+1) + b 4+ K (see the paragraph
above),

GBIndex(p, b, NB) = p+(NB + 1) + b — (NB + 1)

GBIndex(p, b, NB) = (p—1)(NB + 1) + b [8.3.1-11]

Bringing together the several intermediate results above, the mathematical speci-
fication for the initial state of the board is

GameBoardInitialized(NP, NB)
=[Ap:peZ A 1<p<NP : Playerlnitialized(p, NB)]  [8.3.1-7 repeated]

where

Playerlnitialized(p, NB)
=[ADb:bezZ A 0<b<NB-1: StonesinBowl(GBIndex(p, b, NB)) = 5]
A StonesInBowl(GBIndex(p, NB, NB)) = 0
[8.3.1-10 repeated, NP dropped]

and where
GBIndex(p, b, NB) = (p—1)*(NB+1) + b [8.3.1-11 repeated]

If desired, the expressions for Playerlnitialized and GBIndex above can be substi-
tuted for the function references to obtain a single, closed expression for GameBoar-
dinitialized in terms of StonesinBowl only:

GameBoardInitialized(NP, NB)
=[Ap:peZ A 1<p<NP:
[Ab:bez A 0<b<NB-1: StonesinBowl((p—1)*(NB+1)+b) = 5]
A StonesInBowl(p*(NB+1)—1) = 0] [8.3.1-12]

At this point the reader should reread and understand (interpret again) the English
statement of the problem and the translation above in the Language of Mathematics
(the mathematical expressions) and compare them. There are various ways of doing
this, for example: (1) compare the final mathematical expressions against the English
text; (2) draw a diagram from the mathematical expressions and compare it with
the English text and our original diagram; (3) select a number of sample cases and
calculate the number of stones in the selected bowls by reference to both the English
and the mathematics texts independently, and verify that the results are the same (both
correctly and incorrectly initialized board states should be included in the selection of
sample cases); (4) examine the mathematical expressions for syntactical correctness;
(5) examine the mathematical expressions for semantic plausibility; (6) examine the
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mathematical expressions for compatibility (i.e., that the result of one function is
consistent with the use of that result); and so on. Drawing a hierarchical diagram
of the composition of the functions in the mathematical expressions aids in the last
point.

Persons experienced in interpreting English problem statements into the Language
of Mathematics would read the English text at the beginning of this section and would
write the equations 8.3.1-7, 8.3.1-10, and 8.3.1-11 more or less directly. Substituting
the right-hand side of equation 8.3.1-11 into equation 8.3.1-10 and then substituting
the right-hand side of the resulting equation into equation 8.3.1-7 gives equation
8.3.1-12. However, even experienced translators from English into the Language of
Mathematics would mentally go through most of the intermediate steps described
above. Experience and practice do not enable one to skip intermediate steps in
solving such problems; it only enables one to perform some of them mentally and
to see in advance which steps are likely to lead in a promising direction and which
are not. Less experienced persons are well advised to write down all steps in full
detail.

8.3.2 Initialization of a Game Board: A Wrong “ Solution”

As mentioned in the introductory paragraph in Section 8.3, students have expe-
rienced difficulty in solving the problem of specifying mathematically the initial
state of the game board. It had never been explicitly pointed out to them that
the languages they were accustomed to using frequently—computer programming
languages—and the language they were to use for the specification—the Language
of Mathematics—differ from each other linguistically in ways that are critical for
the translation process. It had probably never even been pointed out to them before
that they were translating from one language to another. They thought that they were
doing mathematics.

Common error: Confusing static and dynamic descriptions, confusing a static
mathematical expression and a dynamic procedure (e.g., a computer program)

Often, people accustomed to thinking in terms of dynamic procedures will “solve”
this problem in a way that reflects the structure of one possible computer program
for initializing the game board. In effect, they confuse the desired mathematical
expression describing the final state with a step-by-step procedure for achieving that
state. Such an erroneous approach is shown below.

Looking at the diagrams in Section 8.3.1, we see that one fairly simple strategy
for a dynamic procedure to initialize the board would be first to set all elements of
the array StonesIinBowl to 5 and afterward, set the elements of the array representing
the special bowls to 0. This thinking might lead one to write the following expression
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for GameBoardInitialized(NP, NB):

[Ai:ieZ A 0<i<NP*(NB+1)—1 : StonesinBowl(i) = 5] A
[all bowls initialized]

[Ap:pez A 1<p<NP : StonesinBowl(p*(NB+1)—1) = 0]
[special bowls initialized]
[8.3.2-1]

Stop, question, and think: What is wrong with the expression above as a
solution to the problem? Why does it not describe correctly the initial state of
the game board?

What is wrong with this approach in general?

Answer these questions befor e proceeding.

In a correct initial state, every special bowl contains 0 stones and every ordi-
nary bowl contains 5 stones. The first line in the expression above states that all
bowls—ordinary and special—contain 5 stones each. The second line, which is
anded with the first line, states that every special bowl contains 0 stones. Thus, the
expression above states that every special bowl contains 5 stones and that every
special bowl contains 0 stones. The two statements contradict each other (i.e., they
cannot both be true). Expressed differently but equivalently, the expression above is
always false for all positive NP and NB, even for a correctly initialized board, so the
expression is not a solution to the problem. The expression above is an unnecessarily
complicated way of writing the logical constant false.

Specific cases further illustrate this error. Consider, for example, the case NP=4,
NB=3 (as in the diagrams in Section 8.3.1), p=1, and b=3 (the first player’s special
bowl). The index for this bowl in the array StonesinBow! is GBIndex(p, b, NB) =
(p—1)*(NB+1)+b = 3. Therefore, the number of stones in this bowl is Stonesin-
Bowl(3). The first line in expression 8.3.2-1 contains the term StonesinBowl(3)=5,
and the second line contains the expression StonesinBowl(3) = 0. Thus, the entire
expression is

... A StonesinBowl(3) =5 A ... A StonesinBowl(3) =0 A ...

which is always false.

The members of the team that wrote the expression above thought in terms of a
two-part program. The first part would initialize all bowls to 5. Afterward, the second
part would initialize only the special bowls to 0. The first line in the expression above
describes the board state (the values of the elements of the array StonesinBowl) after
the execution of the first part of the program but before the execution of the second
part. The second line of the expression describes part of the state (the values of the



264 EXAMPLES OF TRANSLATING ENGLISH TO MATHEMATICS

elements of the array StonesinBow! representing the special bowls only) after the
execution of the second part of the program.

The first and second lines of expression 8.3.2-1 are intended to describe different
states, but the mathematical expression as written does not do this. It combines the
descriptions of the different states as if they were different parts of the same state.
The result is a contradiction, an error.

8.4 PRICE DISCOUNTS

For various reasons, suppliers often give reduced prices to customers. The reductions
of the price are called by various names, such as discounts, rebates, or in slang,
“... % off.” Discounts are also often expressed in the form of “free” additional
quantities, such as “buy 2, get 1 free,” or a new size, such as a new 1.5-liter bottle of
a drink for the price of the old 1-liter bottle.

Several different discount structures are presented in the following sections.

8.4.1 Flat Discounts

The flat discount has the simplest structure of all forms of discount. The seller offers
a certain percentage off the normal list price, independent of the quantity sold.
The variables in this model of a flat discount and their interpretation are:

P: the set of possible normal list prices.
ListPr:  the normal list price per unit purchased
DPct: the discount in percent (%) of the normal list price

Discount: the monetary amount of the discount per unit

NetPr: the net price per unit (i.e. the price per unit after deduction
of the discount)

Quan: the quantity purchased

TotCost: the discounted price for the quantity Quan

The set P is often the set of all positive numbers expressible exactly with two
decimal digits in the fractional part (i.e., 3.67). In some cases three or more decimal
digits in the fractional part are allowed.

Translating the sentence “The seller offers a certain percentage off the normal list
price, independent of the quantity sold” leads directly to the mathematical expression

Discount = ListPr«DPct/100 [8.4.1-1]

See Section 7.4 for the translation of “percentage” and “percent.”
Clearly implied is the fact that the net price to be paid is the normal list price less
the discount, or in the Language of Mathematics,

NetPr = ListPr — Discount [8.4.1-2]
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Combining expressions 8.4.1-1 and 8.4.1-2 gives the following expression for the
value of the net price per unit:

NetPr = ListPr « (1—DPct/100) [8.4.1-3]

Note the factor (1—-DPct/100) in expression 8.4.1-3. It and variants of it recur
frequently in expressions for the net price in terms of the list price in all mathematical
models of price discounts.

A complete mathematical model for the flat discount, including the total cost for
the quantity purchased, is, then,

ListPr € P A DPct € R A 0<DPct<100 A Quan € N A
NetPr = ListPr«(1—DPct/100) A TotCost = Quan*NetPr A
Discount = ListPr«DPct/100 [8.4.1-4]

In this model the net price does not depend on the quantity purchased, hence the
name flat discount. The total cost does, of course, depend on the quantity purchased.

The mathematical model above does not round net price, total cost, or discount
to an allowed monetary amount. In practice, at least the total cost is rounded to an
element of the set Ml of monetary amounts allowed. The set M can, but need not,
be the same set as IP. For the sake of generality and simplicity, rounding will not be
included in this model.

The mathematical model and interpretation above form a basis for the models in
Sections 8.4.2 and 8.4.3, in which the discount rates vary with quantity.

8.4.2 Discount Rates Depending on Quantity

Often, the supplier offers different discount rates depending on the quantity ordered.
Several different relationships between the discount rate and the quantity are possible
and are found in practice.

Simple Range Dependency A common relationship between the discount rate and
the quantity ordered is shown in the following example, in which the discount rate
applicable to the entire order depends on the quantity ordered. If the quantity is in
one range, a certain discount rate applies; if the quantity is in a different range, a
different discount rate applies; and so on.

TABLE 8.4.2-1 Discount Rate as Function of Quantity

Quantity (Inclusive) Discount Rate (%) Price Factor (1 — Discount Rate/100)
1to 100 3 0.97
101 to 200 7 0.93

201 or more 15 0.85
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The mathematical model for this quantity discount structure is the model in Section
8.4.1 with the addition of the following expression:

(1=<Quan<100 = DPct=3) A (101<Quan=<200 = DPct=7) A
(201<Quan = DPct=15) A [8.4.2-1]

Note that this discount structure can lead to a decrease in the total cost when the
quantity ordered is increased across a quantity range border. For example, the total
cost of an order for 100 units is 100xListPr=0.97 monetary units, or 97*ListPr. The
total cost of an order for 101 units is 101*ListPr«0.93, or 93.93xL.istPr, less than the
total cost of an order for 100 units.

Progressive Discount Rates  If the supplier wants to avoid such reductions in total
cost across quantity range borders, one convenient way to do so is to offer discount
rates applying differently to the different quantity ranges. For example, one discount
rate applies to the first 100 units, a different rate applies to the second 100 units, and
a third rate applies to all units over 200. Using the rates given in Table 8.4.2-1, the
total cost function would then be

(1=Quan=<100 = TotalCost = Quan=*ListPr=0.97) A
(101<Quan<200 = TotalCost = 100*ListPr«0.97
+ (Quan—100)*ListPr=0.93) A
(201<Quan = TotalCost = 100*ListPr=0.97 4+ 100*ListPr=0.93 A
+ (Quan—200)*ListPr+0.85) A [8.4.2-2]

The mathematical model for this progressive discount structure is based on the
mathematical model given in expression 8.4.1-4. In full, it is as follows:

ListPr € P A Quan € N A
(1=Quan<100 = TotalCost = Quanx*ListPr=0.97) A
(101<Quan<200 = TotalCost = 100*L.istPr+0.97

+ (Quan—100)*ListPr=0.93) A
(201<Quan = TotalCost = 100*ListPr=0.97 4+ 100xListPr«0.93

+ (Quan—200)=*L.istPr=0.85) A

NetPr = TotalCost/Quan A Discount = ListPr — NetPr A
DPct = 100=Discount/ListPr [8.4.2-3]

Other discount functions are also possible and are sometimes used in practice.
Defining the discount rate as a continuous function of the quantity is a general
approach, but such a definition is not easily expressed in a commonly understood
form. All methods amount, in effect, to defining the discount rate to be a function of
the quantity ordered; the differences are in the shape of the function and how it is
formulated. A flat discount rate and a tabular definition of a varying discount rate as
in this section are probably the most widely and easily understood forms for defining
a discount structure.
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8.4.3 Buy 2, Get 1Free

The “buy X, get y free” form of defining a quantity discount is of psychological
advantage only. It tries to delude the purchaser into believing that he or she is getting
something for nothing, which, of course, is not the case. However, many people fall
into the trap subconsciously. A more accurate description of this type of discount
would be “get x+y for the list price of x.”

Mathematically and logically, the main difficulty with such a “definition” is inter-
preting precisely what is meant. The basic case is clear: “buy 2 and get 1 free” means
that if you buy 3, you pay for 2 (i.e., the discount rate is 33.33... %). But if you order
2,0r4,o0r7,or8, etc., just what is the price to be paid?

Probably the most common interpretation of “buy 2, get 1 free,” and presumably
the intended one, is that if you purchase a multiple of 3 units, the cost will be that
multiple times the normal list price for 2. If you purchase only 1 or 2 units more
than a multiple of 3, you pay the discounted price for the multiple of 3 units and the
normal list price for each unit exceeding those in that multiple of 3. That is, if you
purchase 7 units, and the normal list price per unit is 5 m.u. (monetary units), you
pay 10 m.u. for the first group of 3, another 10 m.u. for the second group of 3, and
another 5 m.u. for the seventh unit. The total price is 25 m.u.

Translated into a mathematical expression, the total cost is

TotalCost = 2xListPrxinteger(Quan/3)
+ ListPr+(Quan—3=integer(Quan/3)) [8.4.3-1]

where the value of the function integer is the argument if it is an integer, and is the next-
lower integer if the argument is not an integer; that is, integer(5)=5, integer(4.999)=4,
integer(5.2)=5, and so on. Expressed more mathematically, integer(z) is the largest
integer such that integer(z)<z.

In expression 8.4.3-1, integer(Quan/3) is the number of multiples of 3 in the
quantity Quan, 3*integer(Quan/3) is the number of units in that multiple of 3, and
2*ListPr is the price to be paid for each multiple of 3. The value of the subexpression
(Quan—3=integer(Quan/3)) is the number of units purchased beyond the last multiple
of 3, and ListPr(Quan—3=integer(Quan/3)) is the cost of those units beyond the last
multiple of 3.

Generalizing expression 8.4.3-1 for the “buy X, get y free” offer (i.e., “get x+y for
the price of x”), the total cost for Quan units is

TotalCost = x*ListPrxinteger(Quan/(x+y)) [cost of the multiples of (X+Y)]
+ ListPr=(Quan—(x+y)*integer(Quan/(x+yY)))
[cost of the rest, 8.4.3-2]

One can view this discount scheme as offering two separate and separately priced
products: (1) a package of x+Y units at a price of x=ListPr for each package and (2)
single units at a price of ListPr for each unit. Expression 8.4.3-2 gives the price of
the least expensive combination of the two products containing a total of Quan units.



268 EXAMPLES OF TRANSLATING ENGLISH TO MATHEMATICS

The complete mathematical model for the “buy X, get y free” discount scheme is
as follows. Notice how this mathematical model is based on expression 8.4.2-3 for
the mathematical model in Section 8.4.2 and the total cost function in expression
8.4.3-2 in this section.

ListPr e PAQuan e NAXxe NAyeNA
TotalCost = x*ListPrxinteger(Quan/(x+y))
+ ListPr+(Quan—(x+y)=*integer(Quan/(x+y))) A
NetPr = TotalCost/Quan A Discount = ListPr — NetPr A
DPct = 100=Discount/ListPr [8.4.3-3]

85 MODEL OF A VERY SMALL ECONOMY

In this small economy there are four types of jobs (labeled J1, J2, J3, and J4) and
people with 3 types of skills (labeled S1, S2, and S3). People with skill S1 are capable
of performing jobs J1 and J2, but none other. People with skill S2 can perform jobs
J2 and J3 only. People with skill S3 can perform jobs J3 and J4 only. The nature of
the jobs is such that for every person performing job J1, three people are required for
job J2. For every person performing job J2, two people are required for job J3. For
every person performing job J3, three people are required for job J4. In this remote
tribal group there are 84 people in total in the workforce, 4 people with skill S1, 6
people with skill S2, and 74 people with skill S3. Any one person can split his or
her time between the jobs for which he or she is skilled. How many people will be
unemployed?

To answer the question, a mathematical model of this economy must be for-
mulated based on the given English description above. Implicit in the description
above is the notion that a particular number of people with a particular skill are
performing a particular job. This must be appended to the description above. These
numbers are not given, but are to be determined. They will determine the value of
the variable representing the answer to the question—the number of unemployed
people.

The most frequent nouns in the description above are “person,” “people,” “skill,”
and “job.” Three types of phrases modifying these nouns occur: “with skill S...,”
“performing job J...” and “required for job J... .” The nouns “skill” and “job”
appear mainly in phrases related to the noun “person” or its plural, “people.” The
numbers of people in the several categories also appear in the description. Therefore,
most, perhaps all, of the variables in the model will be the numbers of each category
of people.

The Variables and Their Interpretation From the English text above we deduce
the variables in the model and their interpretations as given below. The numbers
of people with each type of skill are given as constants in the description above,
but they will also be assigned variable names so that the model can be generalized
easily.
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NSJ(s, j): the number of people with skill s (s=1, 2 or 3) performing job j
(1=1,2,30r4)

NS(s): the number of people with skill s (s=1, 2 or 3) in the tribal group

NJ()): the number of people performing job j (j=1, 2, 3 or 4)

NTP: the total number of people in the work force
NE: the number of employed people
NU: the number of unemployed people

Note that the sentence “People with skill S1 are capable of performing jobs J1
and J2, but none other” represents a condition formulated more mathematically as
“the number of people with skill S1 performing job J3 is zero and the number of
people with skill S1 performing job J4 is zero.” Other sentences of this form are to
be interpreted correspondingly. Note that all numbers must be nonnegative, but they
need not be integers. Not stated but implied in the description of the economy are
that:

e The number of people with a particular skill performing some job cannot be
greater than the number of people with that skill in the tribal group.

e The total number of people with any skill performing any job cannot be greater
than the total number of people in the workforce.

e The number of people employed is the number of people performing some job.

e The number of unemployed people is the total number of people in the workforce
less the number of people employed.

The mathematical model is formulated by translating the sentences in the English
description above, arranging them into a clear order, and inserting terms defining the
sets for the values of the variables. The resulting mathematical model is

[As,jise{l,2,3} Aje{l, 2,3,4} : NSJ(s, j))eR A NSJ(s, j)=0] A [8.5-1]

[As:se{l, 2,3} NS(s)eR A NS(5)=0] A [8.5-2]
NS(1) = 4 ANS(2) = 6 ANS(3) =74 A [8.5-3]
NTP = [+ 5 :5€{1, 2, 3} : NS(s)] A [8.5-4]
[Aj:ie(1,2,3,4): NI() = [+ 5 :se{l, 2,3} : NSI(s, )] A [8.5-5]
NSJ(1, 3)=0 A NSJ(1,4)=0 A [8.5-6]
NSJ(2,1)=0 A NSJ(2,4)=0 A [8.5-7]
NSJ(3, 1)=0 A NSJ(3,2)=0 A [8.5-8]
NJ(2) = 3*NJ(1) A NJI(3) = 2+NJ(2) A NI(4) = 3*NJ(3) A [8.5-9]
[As:sefl,2,3}:[+]:]efl,2,3,4} : NSJ(s, j)] < NS(s)] A [8.5-10]

[+5s,):5€{1,2,3} A je{l,2,3,4} : NSJ(s, j)] < NTP A [8.5-11]



270 EXAMPLES OF TRANSLATING ENGLISH TO MATHEMATICS

NE = [+ :je{l,2,3,4} : NJ()] A [8.5-12]
NU = NTP — NE [8.5-13]

Why are the terms NJ(j)eR, NJ(j)>0, NTPeR, and NTP>0 not needed in the
mathematical model above?

The mathematical model above can be formulated in various equivalent ways, some
of which are perhaps simpler for some purposes. For example, the subexpression 8.5-9
is equivalent to

NJ(2) = 3*NJ(1) A NI(3) = 6xNI(1) A NI(4) = 18+NI(1) A [8.5-14]

and subexpressions 8.5-5 through 8.5-8 inclusive imply that

NJ(1) = NSJ(1, 1) A

NJ(2) = NSJ(1, 2) + NSJ(2, 2) A

NJ(3) = NSJ(2, 3) + NSJ(3, 3) A

NJ(4) = NSJ(3, 4) [8.5-15]

Thus, the variables NJ(j) are functions of the variables NSJ(s, j). The numerical
values of the variables NS(s) are given. The values of all other variables in the model
are determined by the values of NSJ(s, j) and NS(s). The values of NSJ(s, j) and
NS(s) are the independent variables in this model. All other variables are dependent
variables. The values of the variables NSJ(s, j) are subject to upper bounds imposed
by the values of NS(s) (see subexpression 8.5-10).

The number of people unemployed (variable NU)—one of the dependent
variables—depends on the values of NSJ(s, j), which are not given in the statement of
the problem. Presumably they are to be determined, but no criterion is given. The sim-
plest valid assignment of values for the NSJ(s, j) is O for all, in which case NE would
be 0 and NU, 84, for an employment rate of 0% and an unemployment rate of 100%.
For a short while, most people in this tribal group would be happy and content, until
they all starved to death. Presumably, the intended question is not “How many people
will be unemployed?” but “What is the minimum possible number of people who
will be unemployed?” To answer this question, a (or the) combination of values of the
variables NSJ(s, j) must be determined that minimizes the value of the variable NU.

The relationships between the relevant variables are illustrated in Table 8.5-1.

TABLE 85-1 Small Economy: Relationships Between Skills and Jobs

Jobj Upper Bound
Skill s 1 2 3 4 NS(s)
1 NSJ(1, 1) NSJ(1, 2) 0 0 4
2 0 NSJ(2, 2) NSJ(2, 3) 0 6
3 0 0 NSJ(3, 3) NSJ(3, 4) 74
NSJ(1, 1) 3xNSJ(1,1)  6+NSJ(1,1)  18xNSJ(1,1) 84 NTP

=NJ(1) =NJ(2) =NJ@3) =NJ(4)
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Notice that the entire distribution of people across job types is determined by the
value of one variable, either NJ(1) or NSJ(1, 1), whose values are equal, provided that
the distribution can be met subject to the availability of the types of skill required.
The availability of the three types of skills is shown in the rightmost column of Table
8.5-1.

As a example, consider the distribution of people given in the problem statement
across the job types. If 84 people are to be assigned to the four job types, the value of
NSJ(1, 1) must be 84/(1+3+6+18)) or 84/28, which is 3. Replacing the expressions
in the cells in Table 8.5-1 by the values of those expressions gives Table 8.5-2.

TABLE 85-2 Small Economy: Attempted Full Employment

Jobj Upper Bound
Skill s 1 2 3 4 NS(s)
1 3 1 0 0 4
2 0 8* 0 6
3 0 0 74
NJ(G) = 3 9 18 54 84 NTP

*Condition is not met; eight people with skill S2 are needed, but only six are available. Full employment
is not possible.

Three of the four persons with skill S1 are assigned to job J1, leaving one person
with skill S1 to be assigned to job J2. Eight more people are needed for job J2, but
only six with the only remaining suitable skill S2 are available. Therefore, the 84
people with the skills given in the problem statement cannot be assigned to the four
job types. Full employment cannot be achieved.

The question then becomes: How many people with the given skills can be assigned
to the four job types? Job types J1 and J2 require skill types S1 and S2, which only 10
people in the tribal group have. Referring to the bottom cells in the columns for jobs
J1 and J2 in Table 8.5-1, a new value of NSJ(1, 1) can be calculated so that NSJ(1,
1)+3*NSJ(1, 1)=10 [instead of 12 (3+9) as in Table 8.5-2]. NSJ(1, 1) is, then, 10/4
or 2.5. Recalculating from Table 8.5-1 accordingly, we obtain Table 8.5-3 for our
next attempt to assign people to jobs.

TABLE 85-3 Small Economy: Partial but Maximum Employment

Jobj Actually Assigned,
Skill s 1 2 3 4 (Upper Bound NS(s))
1 25 15 0 0 4(4)
2 0 6 0 0 6 (6)
3 0 0 15 45 60 (74)

NJ(j) = 25 75 15 45 70 (84)
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Any greater employment would require more than 10 people with skills S1 or
S2, but only 10 are available, so 70 is the greatest employment possible with the
given skills in the workforce. The unemployment is 14, or 16.67% of the workforce.
To achieve a greater employment than 70, more people with skills S1 or S2 and
correspondingly fewer with skills S3 are needed.

The skill distribution required to enable full employment can be determined by
repeating the calculation in Table 8.5-2, but without regard to the actual availability
of the skill types. This is done in Table 8.5-4.

TABLE 85-4 Small Economy: Skills Required for Full Employment

Jobj Skill Requirements for
Skill s 1 2 3 4 Full Employment, (NS(s))
1 3 1 0 0 4 (4)
2 0 8 0 0 8" (6)
3 0 0 18 54 72" (74)
NJ(j) = 3 9 18 54 84 (84)

*Reskilling two people from skill S3 to S2 will enable full employment.

Table 8.5-4 shows that all 84 people could be employed if two of the people
with skill S3 were reskilled to S2. More generally, two people with skill S3 must
be reskilled to S1 and/or S2 to achieve full employment. From the relations in the
tables above, one can conclude that the precise condition for full employment of the
84 people in the workforce is that between three and 12 people inclusive have skill
S1 and that between 54 and 72 people inclusive have skill S3.

This example illustrates that in an economy with specialization of tasks, the
availability of the different types of skills must match the needs of the various tasks.
If there is a mismatch, there will be unemployment. The greater the mismatch, the
greater the unemployment. Just as a chain is no stronger than its weakest link, the
capacity of an economy with linked activities is limited by the skill types in shortest
supply.

Mathematically, the problem in this example is to minimize a function of several
variables subject to constraints on the values of the variables. This is a classical
optimization problem in mathematics. When all functions of the variables are linear, it
is called linear programming. The subject of linear programming is beyond the scope
of this book. An extensive mathematical literature on solving linear programming
problems in general exists and has existed for many decades. Some commercial
applications of linear programming involve mathematical models with thousands of
variables and constraints. The techniques used to solve the problem in this example
relied on the simple and specific structure of skill-job interactions and on the small
size of the problem; for larger, general problems, they would be inefficient and even
inadequate.
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86 ALOGICAL PUZZLE

Many logical puzzles consist of several types of objects related in several ways. Some
of the relationships are given and the remaining relationships are to be deduced by
logically analyzing the information given. Usually, some of the information needed to
solve the puzzle is implied, not stated explicitly. The following puzzle is of this type.

8.6.1 English Statement of the Puzzle

Six passengers on a flight from London to Singapore live in London, Paris, Madrid,
Rome, Cairo, and Bombay. The following facts about these passengers are given:

¢ Arnold and the person from London are lawyers.

¢ Bill and the person from London disembarked from the flight at Rome.
e Charlotte and the person from Madrid are professors.

e The person from Bombay is older than Charlotte.

e Charlotte and the person from Cairo disembarked at Doha.

e Emily and the person from Paris are dentists.

e The person from Cairo is older than Arnold.

¢ Bill and Fred participated in Olympic Games, but the person from Madrid never
did.

Match the names, professions, and home cities of these six people. How many
solutions does this puzzle have?

8.6.2 Restatement of the Puzzle

Often, it is desirable to restate the problem in a more convenient form or structure. It
will often simplify formulating the mathematical model if sentences conveying similar
information are grouped together. Especially the types of information contained in
the questions to be answered in the solution to the puzzle should be used in grouping
the sentences.

The eight statements above giving various types of information refer to (1) names
of the passengers, (2) home cities, (3) professions, (4) ages (“older than”), (5) cities
where disembarked, and (6) participation in Olympic Games. Note that all of these are
expressed in the form of noun phrases. All eight sentences refer to names of passengers
and to home cities, so these types of information provide no criteria for grouping
the sentences. Three sentences refer to professions. Two other sentences refer to
ages of passengers. Still another two sentences refer to the city where passengers
disembarked. The one remaining sentence refers to participation in Olympic Games.
Therefore, the four types of information—profession, age, city of disembarkation,
and participation in Olympic Games—provide convenient criteria for regrouping the
eight sentences.
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The questions to be answered by the solution to the puzzle refer to names, home
cities, and professions. As concluded above, names and home cities are not useful
for grouping the eight sentences, but references to professions do give us a criterion
for grouping the sentences.

One way to resequence the eight statements above by these categories is as fol-
lows:

. Arnold and the person from London are lawyers.

. Emily and the person from Paris are dentists.

. Charlotte and the person from Madrid are professors.

. The person from Cairo is older than Arnold.

. The person from Bombay is older than Charlotte.

. Bill and the person from London disembarked from the flight at Rome.
. Charlotte and the person from Cairo disembarked at Doha.

. Billand Fred participated in Olympic Games, but the person from Madrid never
did.

0O N O O W N -

8.6.3 General Assumptions

In puzzles of this type, certain assumptions are usually implied, even though they
do not strictly follow from the text and, therefore, should be stated explicitly. In this
puzzle, it is stated that there are six passengers and six cities they are from. In such
a case, it is usually implied that each of the six passengers lives in only one city and
that in each of the six cities named, only one of these passengers lives; that is, there
is a one-to-one correspondence between the passengers and the cities in which they
live.

When a phrase appears to refer to two people, it is usually implied that two
different people are meant; for example, “Arnold and the person from London” will
be interpreted to mean two people, Arnold and some other person who is from
London. Together with the assumption that the people and the cities are in one-to-one
correspondence, this implies that Arnold is not the passenger from London (i.e., that
Arnold does not live in London).

If six different professions had been mentioned in the statement of the puzzle, one
could usually assume a one-to-one correspondence between the passengers and their
professions. In this puzzle, only three professions are mentioned, so this assump-
tion is not justified. Here, more than one passenger can have the same profession.
One can, however, assume that each passenger has only one profession—another
“fact” not strictly following from the text but usually implied in statements of
this type.

One should keep in mind the distinction between clearly stated facts and likely
implications (assumptions). If finding the solution becomes very problematic or
impossible, it may be necessary to revise the assumptions based on such typical
implications of the English text.
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The presence of the definite article “the” or of the indefinite article “a” or “an”
can sometimes help in deciding which such implications are probably meant or not
intended.

8.6.4 TheValues, Variables, and Functionsin the Mathematical M odel

We begin translating the English statement of the puzzle into a model in the Language
of Mathematics by identifying the values mentioned in the English statements, the
types of those values and the relationships between them. The different types of
values will suggest relevant sets of values to define in the mathematical model. The
relationships between the values will suggest functions in the mathematical model.

Six values in the statement of the puzzle refer to cities in which the passengers
live: Bombay, Cairo, London, Madrid, Paris, and Rome.

Five values in the statement of the puzzle are the names of passengers: Arnold,
Bill, Charlotte, Emily, and Fred. The sixth passenger is not named in the statement
of the puzzle. We will arbitrarily call him “Zeke” here. “Zeke” can be viewed mathe-
matically as a value. Alternatively, “Zeke” can be viewed mathematically as the name
of a variable whose value is unknown.

It was noted in Section 8.6.3 that the names of the passengers and the cities
in which they live are in one-to-one correspondence. This correspondence can be
represented by one of two functions:

¢ A function whose argument is a city and whose value is the name of the passenger
living in that city

¢ A function whose argument is the name of a passenger and whose value is the
city in which that passenger lives

When deciding which of these two alternatives to choose, one should look at the
phrases in which the names and the home cities are mentioned. If one of these two
types of values is always given, it will be simpler if that type of value is the argument,
not the value, of the function selected. In the eight statements given above, all phrases
connecting a name and a home city are of the form “person from London” (i.e., the
person from a given city). No phrase is of the form “the place from which Arnold
comes” or any other reference to an unstated city in which a named person lives. It
will simply matter if the function is selected whose argument is the given value—a
city—and whose value is the unknown—the name of the passenger living in that city.
The value of the function will be the name of the person from the given city, so a
suitable name of the function is “PersonFrom.”

Three values in the statement of the puzzle are the professions lawyer, dentist, and
professor. In Section 8.6.3 it was stated that each passenger has only one profession
but that more than one passenger can have the same profession. This relationship
can be represented by a function whose argument is the name of the passenger and
whose value is the profession practiced by that passenger. The relationship cannot
be represented by the reverse, that is, cannot be represented by a function whose
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argument is a profession and whose value is the name of the person practicing that
profession. Why not?

A suitable name for the function whose argument is the name of a passenger and
whose value is the profession of that passenger is “ProfessionOf.”

One simple way of translating the phrases “... older than ...” is to define a function
“Age” whose argument is the name of a passenger and whose value is the age of that
person. The “older than” relation can then be expressed as “Age(...)>Age(...).” Other
possibilities include defining a Boolean function “IsOlderThan” with two arguments
(the names of the two people whose ages are being compared) and a Boolean value,
true if the first person named is older than the second, false otherwise.

The relationship between passengers and cities of disembarkation is clearly not
one to one, because statement 6 states that two different people disembark at Rome
(see also Section 8.6.3). Even though it is not stated explicitly, it seems reasonable
to assume that any one person can disembark at only one city. This assumption
excludes the possibility that someone disembarks at one city and then later takes
another flight and disembarks at another city. Under this assumption, the relationship
between a passenger and that passenger’s city of disembarkation can be represented
by a function whose argument is the name of the passenger and whose value is
the city where the passenger disembarked. A suitable name for this function is
“CityWhereDisembarked.”

An experienced translator from English to the Language of Mathematics will,
however, probably ask her/himself at this point whether or not a function such as
“CityWhereDisembarked” is needed at all. This function is relevant to statements 6
and 7 only. The only information of use in these two statements appears to be that the
four references to passengers are to four different people, and this information can be
expressed without any reference to the cities of disembarkation. We will, however,
use the function “CityWhereDisembarked” in the first translation into a mathematical
model and will see how the first mathematical formulation of statements 6 and 7 can
be used to deduce mathematically that the four references in question are to four
different passengers. These comments apply also to the function “Age” above, but
the situation there is complicated somewhat by the possibility that Arnold might be
the person from Bombay or Charlotte might be the person from Cairo.

The last type of information to be considered is participation in Olympic Games.
This type of information is present in statement 8 only and is not connected directly
or indirectly with the information in any other statement. Thus, the comments in
the paragraph above apply here, too. To illustrate the other way of handling such a
situation, we will not define a function corresponding to participation in Olympic
Games, but will translate statement 8 into a mathematical expression expressing only
that the references to people refer to different people: in particular, that neither Bill
nor Fred is the person from Madrid.

The functions above are not the only way of representing the relationships between
names of passengers, cities of residence, their professions, their ages, the cities of
their disembarkation, and their participation in Olympic Games. One could, for
example, define for each profession a set whose elements are the names of the
passengers practicing that profession. Because the elements are not known initially,
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but constitute part of the solution to the puzzle, this approach would presumably lead
to a more complicated mathematical model. Similarly, one could define for each city
a set whose (only) element is the name of the passenger living in that city. Still other
alternatives are possible. One should try to select that alternative which leads to a
mathematical model with a simple structure and which can be easily manipulated
into a form giving a solution to the problem.

8.6.5 Thelnterpretation of Values, Variables, Functions, and Sets

Extracting the conclusions of the analysis and comments above leads to the following
interpretation of the values, variables, functions, and sets in the mathematical model
corresponding to the statement of the puzzle:

Arnold, Bill, Charlotte, Emily, and Fred are values and are also the names of five
of the six passengers.

Zeke is the name of a variable whose value is the name of the sixth passenger.

NamesPass is the set of names of passengers:

NamesPass = {Arnold, Bill, Charlotte, Emily, Fred, Zeke} [8.6.5-1]

Bombay, Cairo, London, Madrid, Paris, and Rome are values and are also the
names of the cities in which the passengers live.
HomeCities is the set of cities in which the passengers live:

HomeCities = {Bombay, Cairo, London, Madrid, Paris, Rome}  [8.6.5-2]

PersonFromis the function that maps a city to the name of the passenger who lives
in that city:

PersonFrom : HomeCities — NamesPass [8.6.5-3]

lawyer, dentist, and professor are values and are also the professions of the passengers.
Professions is the set of professions of the passengers:

Professions = {lawyer, dentist, professor} [8.6.5-4]

ProfessionOf is the function that maps the name of a passenger to the profession
which that passenger practices:

ProfessionOf : NamesPass — Professions [8.6.5-5]

Age is the function that maps the name of a passenger to the age in years of that
passenger:

Age : NamesPass — R [8.6.5-6]

Doha and Rome are values and are also the cities in which some passengers
disembark.
DisembarkationCities is the set of cities at which passengers disembarked:

DisembarkationCities = {Doha, Rome} [8.6.5-7]
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CityWhereDisembarked is the function that maps the name of a passenger to the
city at which that passenger disembarked:

CityWhereDisembarked : NamesPass — DisembarkationCities
[8.6.5-8]
8.6.6 TheMathematical Model

The mathematical model consists of two parts: (1) expressions specifying the sets
and functions of the model and (2) expressions relating the elements of the sets to
one another. The latter expressions will contain references to the functions.

The first part of the mathematical model is a copy of the appropriate parts of the
interpretation above, combined with the logical “and” function:

NamesPass = {Arnold, Bill, Charlotte, Emily, Fred, Zeke} A
[8.6.5-1 repeated]

HomeCities = {Bombay, Cairo, London, Madrid, Paris, Rome} A
[8.6.5-2 repeated]

Professions = {lawyer, dentist, professor} A [8.6.5-4 repeated]
DisembarkationCities = {Doha, Rome} A [8.6.5-7 repeated]
(PersonFrom : HomeCities — NamesPass) A [8.6.5-3 repeated]
(ProfessionOf : NamesPass — Professions) A [8.6.5-5 repeated]
(Age : NamesPass — R) A [8.6.5-6 repeated]

(CityWhereDisembarked : NamesPass — DisembarkationCities)
[8.6.5-8 repeated]

The second part of the mathematical model is a translation of the eight sentences
in the restatement of the puzzle (see Section 8.6.2). This translation is most easily
constructed sentence by sentence, translated independently of each other.

Sentence 1:

1. Arnold and the person from London are lawyers.

can be rephrased as “Arnold is a lawyer, the person from London is a lawyer, and
Arnold is not the person from London.” This can be written in the Language of
Mathematics as

ProfessionOf(Arnold)=Ilawyer A

ProfessionOf(PersonFrom(London))=Ilawyer A

Arnold=£PersonFrom(London) [8.6.6-1]
Similarly, sentence 2

2. Emily and the person from Paris are dentists.
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can be rephrased as “Emily is a dentist, the person from Paris is a dentist, and Emily
is not the person from Paris.” In the Language of Mathematics this becomes

ProfessionOf(Emily)=dentist A

ProfessionOf (PersonFrom(Paris))=dentist A

Emily=£PersonFrom(Paris) [8.6.6-2]
Sentence 3:

3. Charlotte and the person from Madrid are professors.

is translated in the same way to

ProfessionOf(Charlotte)=professor A

ProfessionOf (PersonFrom(Madrid))=professor A

Charlottes£PersonFrom(Madrid) [8.6.6-3]
Sentence 4 is

4. The person from Cairo is older than Arnold.

can be rephrased to “the age of the person from Cairo is greater than the age of
Arnold” and, in turn, translated to

Age(PersonFrom(Cairo))>Age(Arnold) [8.6.6-4]
Sentence 5:
5. The person from Bombay is older than Charlotte.
can be translated in the same way to
Age(PersonFrom(Bombay))>Age(Charlotte) [8.6.6-5]
Sentence 6 is
6. Bill and the person from London disembarked from the flight at Rome.

which can be translated in the same way as sentences 1, 2, and 3 to obtain

CityWhereDisembarked(Bill)=Rome A

CityWhereDisembarked(PersonFrom(London))=Rome A

Bill£PersonFrom(London) [8.6.6-6]
Sentence 7:

7. Charlotte and the person from Cairo disembarked at Doha.

can be translated in the same way to obtain

CityWhereDisembarked(Charlotte)=Doha A
CityWhereDisembarked(PersonFrom(Cairo))=Doha A
Charlotte£PersonFrom(Cairo) [8.6.6-7]
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Sentence 8:

8. Bill and Fred participated in Olympic Games, but the person from Madrid
never did.

as pointed out earlier states in this context only that neither Bill nor Fred is the person
from Madrid. In other words, Bill is not the person from Madrid, and Fred is not
the person from Madrid. This can be expressed in the Language of Mathematics
directly as

Bill£PersonFrom(Madrid) A Fred#PersonFrom(Madrid) [8.6.6-8]

This completes the translation of the eight sentences in the statement of the puzzle.
The eight parts must be combined with the logical “and” function to form the single
mathematical expression corresponding to all eight English sentences.

The complete mathematical model is the logical “and” combination of the two
parts above: the definitions of the sets from Section 8.6.5 and the functions and the
translation above of the eight English sentences from this section:

NamesPass = {Arnold, Bill, Charlotte, Emily, Fred, Zeke} A
[8.6.5-1 repeated]

HomeCities = {Bombay, Cairo, London, Madrid, Paris, Rome} A
[8.6.5-2 repeated]

Professions = {lawyer, dentist, professor} A [8.6.5-4 repeated]
DisembarkationCities = {Doha, Rome} A [8.6.5-7 repeated]
(PersonFrom : HomeCities — NamesPass) A [8.6.5-3 repeated]
(ProfessionOf : NamesPass — Professions) A [8.6.5-5 repeated]
(Age : NamesPass — R) A [8.6.5-6 repeated]

(CityWhereDisembarked : NamesPass — DisembarkationCities) A
[8.6.5-8 repeated]
ProfessionOf (Arnold)=lawyer A

ProfessionOf(PersonFrom(London))=lawyer A
Arnold#£PersonFrom(London) A [8.6.6-1 repeated]
ProfessionOf (Emily)=dentist A

ProfessionOf(PersonFrom(Paris))=dentist A

Emily£PersonFrom(Paris) A [8.6.6-2 repeated]
ProfessionOf(Charlotte)=professor A

ProfessionOf (PersonFrom(Madrid))=professor A
CharlottePersonFrom(Madrid) A [8.6.6-3 repeated]
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Age(PersonFrom(Cairo))>Age(Arnold) A [8.6.6-4 repeated]
Age(PersonFrom(Bombay))>Age(Charlotte) A [8.6.6-5 repeated]
CityWhereDisembarked(Bill)=Rome A
CityWhereDisembarked(PersonFrom(London))=Rome A
Bill£PersonFrom(London) A [8.6.6-6 repeated]
CityWhereDisembarked(Charlotte)=Doha A
CityWhereDisembarked(PersonFrom(Cairo))=Doha A
Charlotte£PersonFrom(Cairo) A [8.6.6-7 repeated]

Bills£PersonFrom(Madrid) A Fred#PersonFrom(Madrid)
[8.6.6-8 repeated]

Note that this expression is compact and terse. Having the English statement of the
puzzle and the interpretation of the values, variables, and functions as a context, the
mathematical model above is decipherable, but without that context, it would not be
clear what it represents or means. It would not even be clear that it represents a puzzle.
In fact, it could represent any one of several quite different things. On the other hand,
this model can be transformed by a sequence of well-defined mechanistic steps to a
solution of the puzzle, if one exists. The transformation is completely independent
of the interpretation of the model; it depends only on the expressions in the model.
If a solution does not exist, the inconsistency of the expressions, and hence of the
original English statements from which they came, can be proved. That cannot be
done with the English statement of the puzzle alone. This is a major advantage of the
mathematical model.

8.6.7 Solvingthe Puzzle

The task is to “match the names, professions, and home cities of these six peo-
ple” (see Section 8.6.1). Expressed in the terminology of the mathematical model
at the end of Section 8.6.6, the task is to determine the functions PersonFrom and
ProfessionOf. The latter part of the mathematical model above gives explicit in-
formation about these two functions, giving the values of the functions for some
arguments and giving values that the functions do not take on for some arguments.
Additional terms of these types can be deduced from other terms in the mathematical
model above. For example, from the term Age(PersonFrom(Cairo))>Age(Arnold)
one can conclude that Age(PersonFrom(Cairo))#£Age(Arnold) and, in turn, that
PersonFrom(Cairo)#Arnold. Why? (Hint: Reread the definition of a func-
tion in Section 3.3.) Also, the two terms ProfessionOf(Arnold)=Ilawyer and
ProfessionOf(PersonFrom(Paris))=dentist in expressions 8.6.6-1 and 8.6.6-2, re-
spectively, imply that Arnold#PersonFrom(Paris). Applying this property of a
function throughout expressions 8.6.6-1 through 8.6.6-8 leads to the following
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additional inequalities:

Arnold=£PersonFrom(Paris) A Arnold#PersonFrom(Madrid) A
Emily£PersonFrom(London) A Emily#PersonFrom(Madrid) A
Charlotte£PersonFrom(London) A Charlotte£PersonFrom(Paris) A
Arnold=£PersonFrom(Cairo) A

Charlotte£PersonFrom(Bombay) A

Bill£PersonFrom(Cairo) A

Charlotte£PersonFrom(London) [8.6.7-1]

Expression 8.6.7-1 can be appended to the complete mathematical model at the
end of Section 8.6.6 with the logical “and” function. This is allowed because the
mathematical model implies the additional expression above and one of the general
identities of Boolean algebra (expression 5.2.4-19) states that

X=Y)= X=XAY)) [5.2.4-19 repeated]

which in English means “if the truth of X implies the truth of Y, then X and XAY
always have the same value.”

Thus, “and”ing the additional expression to the mathematical model introduces
no new information, but it does introduce terms that will be useful in determining the
function PersonFrom. For example, among the terms in the mathematical model and
in the additional expression 8.6.7-1 are terms stating that the person from Madrid is
neither Arnold, Bill, Charlotte, Emily, nor Fred. The person from Madrid must be
one of the six passengers, and the only one left is Zeke. So the mathematical model
above also implies that Zeke=PersonFrom(Madrid).

Continuing this type of analysis leads to a complete determination of the functions
PersonFrom and ProfessionOf, but a more systematic way of structuring the analysis
is desirable. Representing the functions PersonFrom and ProfessionOf in tabular form
gives a systematic overall view of the process of deriving the two functions from the
mathematical model and, in particular, identifies clearly and visually what still needs
to be determined at each step of finding the solution.

The tables below illustrate the function PersonFrom in the upper part of each table
and the function ProfessionOf in the lower part of each table. As pointed out earlier,
the names of passengers and their home cities are in one-to-one correspondence,
so the functional relationship goes in both ways; given a name, the home city is
determined uniquely, and given a home city, the name is determined uniquely. In
mathematical terminology, one says that the function PersonFrom has an inverse.
This is not the case with the function ProfessionOf. Given a hame, the profession is
determined uniquely, but given a profession, the name is not determined uniquely.
Statements 8.6.6-1, 8.6.6-2, and 8.6.6-3 in the mathematical model state that each
profession has two practitioners.

In the tables below, information about each function is represented by symbols
in the cells. Each cell corresponds to a value of the argument of the function and
to a value of the function. Where it is known that a particular value of the function
does not correspond to a particular value of the argument, the symbol x is entered
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in the corresponding cell. Where the value of the function is known for a particular
value of the argument, the symbol «I or «! is entered in the corresponding cell,
the symbol I for the “two-way” function PersonFrom and the symbol ! for the
function ProfessionOf.

Entering the appropriate symbols in the tables for the terms

ProfessionOf (Arnold)=Ilawyer A Arnold#PersonFrom(London) A
Arnold#PersonFrom(Paris) A Arnoldz#PersonFrom(Madrid)

from the mathematical model and the additional expression 8.6.7-1 gives the follow-
ing table:

Function PersonFrom

Home City Arnold Bill  Charlotte ~ Emily  Fred  Zeke

Bombay
Cairo

London X
Madrid
Paris X
Rome

X

Function ProfessionOf

Profession Arnold Bill Charlotte Emily Fred Zeke

lawyer Pl
dentist
professor

Because ProfessionOf(Arnold)=Ilawyer, the value of the function ProfessionOf
for the argument Arnold cannot be anything else. Therefore, the cells for all other
values (dentist, professor) of the function ProfessionOf and the argument Arnold may
be eliminated by entering the symbol x in them. The table then becomes

Function PersonFrom

Home city Arnold Bill Charlotte Emily Fred Zeke

Bombay

Cairo

London X
Madrid X
Paris X

Rome
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Function ProfessionOf

Profession Arnold Bill Charlotte Emily Fred Zeke

lawyer pu
dentist X
professor X

This is a general rule: Whenever the value of a function is known for a given
argument, an x can be inserted in all cells corresponding to other values of the
function and the same argument. In the case of the two-way function PersonFrom,
this rule applies both ways; that is, when the symbol I for a function value is inserted
a cell, the symbol x may be inserted in all other cells in the same row and all other
cells in the same column.

If one scans the mathematical model and the additional expression for all terms
of the form value=function(argument) or value=£function(argument) and fills in the
corresponding cells as described above, the following table results:

Function PersonFrom

Home city Arnold Bill Charlotte Emily Fred Zeke

Bombay X

Cairo X X X

London X X X X

Madrid X X X X X
Paris X X X

Rome

Function ProfessionOf

Profession Arnold Bill Charlotte Emily Fred Zeke

lawyer pal X X
dentist X X Pl
professor X p X

For the home city Madrid, the cells for five of the six passengers have been
crossed out, so the only remaining one, Zeke, must be from Madrid. Similarly, for the
passenger Charlotte, the cells for five of the six home cities have been crossed out, so
the only remaining one, Rome, must be Charlotte’s home. Inserting the symbol T
in the cell for Zeke and Madrid and in the cell for Charlotte and Rome, and crossing
out the other cells in the column for Zeke and in the row for Rome, one obtains the
following table:



A LOGICAL PUZZLE 285

Function PersonFrom

Home city Arnold Bill Charlotte Emily Fred Zeke

Bombay X X
Cairo X X X X
London X X X X X
Madrid X X X X X g
Paris X X X X
Rome X X g X X X

Function ProfessionOf

Profession Arnold Bill Charlotte Emily Fred Zeke

lawyer Pl X X
dentist X X o
professor X pu X

From this table one can see that Fred must be from London. Filling in the cell for
Fred and London and crossing out the other cells in that column, it then follows that
Bill must be from Paris; Arnold, from Bombay; and Emily, from Cairo. The table
then becomes

Function PersonFrom

Home city Arnold Bill Charlotte Emily Fred Zeke

Bombay g
Cairo
London
Madrid
Paris
Rome

X X x x L,x
x x x Lyx x
x x T, x x x

T x x x x x

X X X X X
x T, x x x x

Function ProfessionOf

Profession Arnold Bill Charlotte Emily Fred Zeke

lawyer Pl X X
dentist X X |
professor X u X
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The function PersonFrom has been determined completely. To complete the
table for the function ProfessionOf, refer to the terms of the form ProfessionOf
(PersonFrom(...))=... in statements 8.6.6-1, 8.6.6-2, and 8.6.6-3. The person from
London, Fred, is a lawyer. The person from Paris, Bill, is a dentist. The person from
Madrid, Zeke, is a professor. This completes the table for the function ProfessionOf:

Function PersonFrom

Home city Arnold Bill Charlotte Emily Fred Zeke

Bombay g
Cairo
London
Madrid
Paris
Rome

x x x x bL,x
x x x Lyx x
x x T, x x x

T, x x x x x

X X X X X
x T, x x x x

Function ProfessionOf

Profession Arnold Bill Charlotte Emily Fred Zeke

lawyer Pl X X X Pl X
dentist X Pl X A X X
professor X X . X X pul

That is, the solution to the puzzle is:

e Arnold is from Bombay and is a lawyer.

e Bill is from Paris and is a dentist.

e Charlotte is from Rome and is a professor.
e Emily is from Cairo and is a dentist.

e Fred is from London and is a lawyer.

e Zeke (the person whose name is not given in the statement of the puzzle) is
from Madrid and is a professor.

During the process of determining the two functions, no alternative choice arose.
Therefore, the solution above is the only one.

The sequence of steps in the analysis leading to this solution is not, however,
unique. If, for example, one had not identified the inequalities in the additional
expression implied by the mathematical model, it would have been necessary to
complete the tables for the functions by examining interactions between the functions.
One such situation might have been that at one point in the analysis, both Fred and
Charlotte were still candidates for being from London, but the mathematical model
states that the person from London is a lawyer and that Charlotte is a professor, from
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which one would conclude that Fred (and not Charlotte) is from London and that Fred
is a lawyer. Such steps in the analysis are more difficult to identify and to examine
and one is more likely to make errors in them.

Finally, one should verify that the solution above satisfies the statement of the
puzzle. If it did not, that would indicate that an error had been made somewhere in
the process of determining the solution to the puzzle. The solution above does, in
fact, satisfy the statement of the puzzle.

8.7 COVERING A MODIFIED CHESSBOARD WITH DOMINOES

This problem is posed as a logical puzzle, but it has direct application to planning
the laying of certain kinds of tiles in a given pattern. The solution technique uses
the concept of an invariant, which is useful in proving a wide variety of theorems in
mathematics.

Given is a chess board consisting of 64 squares arranged in an 8 by 8 pattern.
The squares are colored white and black alternately, so that squares with a common
border are colored differently. Two diagonally opposite corner squares are cut out
and removed, leaving 62 squares remaining on the modified chess board.

In addition, dominoes are available, each of which can be placed onto two adjacent

squares of the chess board:
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The question is: Can the chess board with the two missing corner squares be
completely covered with dominoes, whereby no two dominoes may overlap?

At first glance it appears possible, because each domino covers two squares and
the number of squares to be covered is even.

As dominoes are placed one by one on the board, the state of coverage changes.
That state can be defined in detail by indicating which squares are covered and which
are not after each domino is laid down.

By examining the domino and the chess board, it is clear that each domino
laid down must cover one white square and one black square. It is not possible
to lay a domino down so that it covers two white squares or two black squares.
The number of uncovered white squares will, therefore, always be equal to the
number of white squares on the board less the number of dominoes laid down,
and correspondingly for the black squares. This suggests a coarser and simpler
indication of the state of coverage of the board at each step of laying down the
dominoes: the number of uncovered white squares and the number of uncovered black
squares.

Variablesand Their Interpretation The noun phrases in the text above lead to the
following non-Boolean variables in the mathematical model and their interpretation.
The condition that the board is completely covered—the answer to the question
above—Ieads to the last variable listed below.

NWhite: the number of white squares not covered by dominoes
NBlack: the number of black squares not covered by dominoes
NDominoes: the number of dominoes placed on the board

NWhiteOnBoard: the number of white squares on the board
NBlackOnBoard: the number of black squares on the board
BoardIsCovered: All squares on the board are covered by dominoes.

Mathematical Model  Translating the essential points in the English text above leads
to the following mathematical model.

NWhiteeZ A NBlackeZ A NDominoeseZ A

NWhiteOnBoardeZ A NBlackOnBoardez A

BoardIsCoveredeB A

NWhiteOnBoard=32 A NBlackOnBoard=30 A
NWhite=NWhiteOnBoard—NDominoes A
NBlack=NBlackOnBoard—NDominoes A

BoardlsCovered = (NWhite=0 A NBlack=0) [8.7-1]

The mathematical model in expression 8.7-1 implies that

(NWhite—NBlack=2) A BoardIsCovered = (NWhite—NBlack=0) [8.7-2]
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which, in turn, implies that
BoardlsCovered = false [8.7-3]

independent of the number of dominoes on the board. Therefore, it is impossible to
cover the board described above by dominoes.

The expression NWhite—NBlack=2 above is always true, regardless of the values
of the other variables. Such an expression is called an invariant in mathematics.
Invariants are often helpful in proving a theorem.

The reader should consider under what conditions it is impossible and possible to
cover a chess board with squares cut out, as well as similar boards of other dimensions.
An invariant of the type above is useful in identifying configurations of a board that
cannot be covered with dominoes. It must still be proved that other configurations
can be covered, but in essentially all such cases, this is easily done.

8.8 VALIDITY OF A PLAY IN A CARD GAME

This example deals with the logic of one part of a card game: determining if a
proposed play satisfies the rules of the game. The game is played with a normal deck
of 52 different cards. Each card is marked with a “number” (2t0 9, J, Q, K, or A) and
with a suit (clubs &, diamonds <>, hearts ©, or spades #). Cards of the suits clubs
and spades are black in color and the cards of the other suits (diamonds and hearts)
are red.

Cards are dealt to the several players, each player receiving the same number of
cards. Cards left over, if any, are placed face up in a single pile in the center of the
table. Only the top card in the pile shows. Then each player, one after the other in
turn, plays a card from his or her hand onto the top of the center pile, face up, or skips
his or her turn, according to the rules of play below.

8.8.1 TheRulesof Play

The player whose turn it is must follow suit, that is, play a card of the same suit as
the top card on the center pile, if possible. If the player’s hand contains no card of
that suit, any card of the other color may be played. If neither type of card is in the
player’s hand, that player skips a turn. If at the beginning of the game the center pile
is empty, the first player may play any card from his or her hand. Our goal is to write
a mathematical expression whose value is true if a planned play is valid and false if
not.

8.8.2 Trandating the Rulesof Play

To translate the English text above into the mathematical expression desired, one
should begin by searching the text for noun phrases, distinguishing between content
of a general, explanatory nature, and content essential for answering the question
(whether the planned play is valid or not). The results of the search and selection of
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essential noun phrases should be carefully considered with regard to their relation-
ships. Intermediate English formulations of the text, closer to the style of mathematics,
is often helpful in this process.

8.8.3 ldentifying the Noun Phrasesin the English Text

The noun phrases in the English text above and initial comments on them are:

e player (We are concerned with only one player in the context of the English text
for the rules of play.)

e turn (This is a general term in the context of a game with more than one player.
Only one turn is the subject of the English text for the rules of play.)

e suit (This noun refers to the suit of a card.)

e card of the same suit [This noun phrase refers to the card to be played. The
sentence in which this noun phrase appears indicates that the suits of the card
to be played and the top card on the center pile (see below) must be equal.]

e top card on the center pile (This noun phrase refers to a specific card.)

e hand (This is a common term in card games and refers to the collection of cards
that a player holds in his or her hand.)

e card of that suit [This noun phrase refers to a card in the player’s hand (i.e., a
potential card to be played) and the suit of other cards referred to specifically.]

e card of the other color (This noun phrase refers to the card to be played and the
color of other cards.)

e color (This noun refers to the color of a card. See also “card of the other color”
above.)

e neither type of card (The sentence in which this noun phrase appears refers to
the condition that the player whose turn it is does not have a card in his or her
hand that is a valid card to play.)

¢ beginning of the game (This noun phrase refers to one of the several states of
play that may apply to the player whose turn it is.)

o center pile (This noun refers to a set of cards described in the rules of the game.
See “top card on the center pile” above.)

o first player (This is the same player as referred to throughout the English text.
The word “first” indicates that in this case, the player is the first to play, see
“beginning of the game” above.)

e any card from his or her hand (See above.)

There are at least two major ambiguities in the English text above. (1) If, at the
beginning of the game, the center pile is empty, the text above states that the player
may play any card from his or her hand, but it does not state that the player must play
a card. If that first player would choose not to play a card, the next player would not
be the first player and the center pile would still be empty, a situation not covered at
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all by the rules of play. We will, therefore, assume that the first player must play a
card if the center pile is empty. In this case, the player has a free choice of which card
from his or her hand to play. (2) The rules of play do not indicate what happens if the
player whose turn it is has no more cards left in his or her hand. We will assume that
the game is then over, that is, that we are not to consider that situation. The “rules of
play” paragraph above contains additional ambiguities, but they are resolved in the
preceding general description of the game.

Examining the noun phrases above, we note that three types of cards are to be
considered. These types of cards and the names we assign to the corresponding
variables are as follows:

e The card to be played: CardToPlay

e A card in the player’s hand: ¢ (This variable will occur only in quantified
expressions.)

e The top card on the center pile: TopCard

In the cases of CardToPlay and TopCard, it must be remembered that the corre-
sponding set of values must include the situations in which no card is relevant, that
is, (1) when the player cannot play any card from his or her hand and therefore must
skip a turn and (2) when the center pile is empty. These situations will be represented
by the value “none” for CardToPlay or for TopCard as appropriate.

Every reference above to a player is to the same player, the player whose turn it
is. Because this player is always the same, we will not need to refer to the player by
a variable. Similarly, the English text refers to one turn only, so we will not need to
refer to it by a variable.

The only relevant aspect of the center pile is the top card showing (if any).
Therefore, the noun phrase “center pile” does not need to be referred to separately in
the mathematical model; references to TopCard will suffice.

The remaining nouns are hand, suit, and color. The player’s hand will be repre-
sented by the variable named “hand,” the value of that variable being a set of cards.
We define “suit” and “color” to be functions of a card.

8.8.4 Developing the Mathematical M odel

We translate the rules of play above into a mathematical expression sentence by
sentence as follows.

The player whose turn it is must follow suit: that is, play a card of the same suit
as the top card on the center pile, if possible. In other words, if the player’s hand
contains a card of the same suit as the top card of the center pile, a card of that suit
must be played.

[Uc:cehand A suit(c)=suit(TopCard) : c]£0  [card of same suit in hand]
= CardToPlaye[U ¢ : cehand A suit(c)=suit(TopCard) : ] [8.8.4-1]
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If the player’s hand contains no card of that suit, any card of the other color may
be played. That is, if the player’s hand contains no card of that suit but does contain
a card of the other color, a card of the other color must be played.

[Uc:cehand A suit(c)=suit(TopCard) : c]=¢
[card of same suit not in hand]

AU c:cehand A color(c)zcolor(TopCard) : c]£0
[card of other color in hand]

= CardToPlaye[U c : cehand A color(c)#color(TopCard) : c] [8.8.4-2]
If neither type of card is in the player’s hand, that player skips a turn.

[Uc:cehand A suit(c)=suit(TopCard) : c]=¢
[card of same suit not in hand]

AfUc:cehand A color(c)#color(TopCard) : c]=0
[card of other color not in hand]

= CardToPlay=none [skip a turn (i.e., play no card), 8.8.4-3]

If at the beginning of the game the center pile is empty, the first player may play
any card from his or her hand.

TopCard=none [center pile empty]

= CardToPlayehand [play any card from hand, 8.8.4-4]

At the latest, it becomes clear at this point that another condition is missing
from the three expressions 8.8.4-1, 8.8.4-2, and 8.8.4-3, specifically that the center
pile is not empty. This can be seen in two ways: (1) The terms suit(TopCard) are
obviously inappropriate if there is no center pile and, therefore, no top card, and (2)
without this condition, the antecedents in the four expressions would not be mutually
exclusive.

The first sentence of the English text for the rules of play above is meaningful
only if there is a top card on the center pile. In other words, that sentence implies that
there is a nonempty center pile. This implicit information must be stated explicitly in
the mathematical model.

Therefore, the additional condition TopCard=#none must be anded to the an-
tecedents of the implications in expressions 8.8.4-1, 8.8.4-2, and 8.8.4-3. Including
additional terms to specify the sets for the values of the variables and to define the
functions “suit” and “color” leads to the following expression for the validity of the
card to play, where Deck is the set of the 52 cards in the game:

handcDeck A TopCarde(Decku{none}) A CardToPlaye(DeckU{none}) A
(suit : Deck — {&, <>, O, ®}) A (color : Deck — {red, black})
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A
(TopCard+none [center pile present]
A [Uc:cehand A suit(c)=suit(TopCard) : c]#£4 [card of same suit in hand]
= CardToPlaye[U c : cehand A suit(c)=suit(TopCard) : c])

A

(TopCard+none [center pile present]

A [Uc:cehand A suit(c)=suit(TopCard) : c]=¢
[card of same suit not in hand]

A [Uc:cehand A color(c)#color(TopCard) : c]#¢4
[card of other color in hand]

= CardToPlaye[U c : cehand A color(c)s4color(TopCard) : c])
A
(TopCard=#none [center pile present]

AU c: cehand A suit(c)=suit(TopCard) : c]=¢
[card of same suit not in hand]

AU c:cehand A color(c)#color(TopCard) : c]=¢
[card of other color not in hand]

= CardToPlay=none) [skip a turn, i.e. play no card]

A

(TopCard=none [center pile empty]

= CardToPlayehand) [play any card from hand]
[8.8.4-5]

Expression 8.8.4-5 is the complete mathematical model for the validity of the card
to be played. For any value of CardToPlay, the value of the expression above is true
if CardToPlay is a valid card to play, and false, otherwise.

Note that in the three cases above beginning with the condition TopCardsnone,
the references to suit(TopCard) and color(TopCard) will be undefined when the value
of TopCard is actually none. In these cases, the values of the function references
suit(TopCard) and color(TopCard) have no effect on the value of the entire expression
8.8.4-5. This type of situation is discussed in Section 3.5.3. Probably the simplest
solution to this formal problem is to extend the definitions of the functions “suit” and
“color” to include the value “none” in the domain and the range of each and to define
these functions so that suit(none)=none and color(none)=none:

(suit : (DeckU{none}) — {&, <, O, &, none}) A
(color : (DeckU{none}) — {red, black, none}) [8.8.4-6]
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hand = {(9.9). (2.#). (K, ¢). (J. #). (3. &). (2.8). 3. ©). (Q. ®). (A. ©). (5. O)}

As exercises for the reader, determine the values of the following quantified
expressions, that is, determine which of the cards above are elements of the following

sets:

[Uc:cehand A suit(c)=suit((8, ®)) : c]
[Uc:cehand A color(c)#£color((Q,<)) : c]
[Uc:cehand A suit(c)#suit((8,m)) : c]
[Uc:cehand A color(c)=color((Q,<)) : c]
[Uc:cehand A suit(c)= : c]
[Uc:cehand A color(c)color((Q,Q)) : c]
[Uc:cehand A suit(c)#é : c]
[Uc:cehand A color(c)=color((Q,&)) : c]

[8.8.4-7]
[8.8.4-8]
[8.8.4-9]
[8.8.4-10]
[8.8.4-11]
[8.8.4-12]
[8.8.4-13]
[8.8.4-14]

Are any of the sets above equal to one another? If so, which? If not, why not?

89 THE LOGICAL PARADOX OF THE BARBER OF SEVILLE

This example is one of several well known and essentially equivalent logical para-
doxes. Perhaps the best known of the other formulations are the liar’s paradox and
Russell’s paradox. The same structure appears in mathematical proofs that certain
things cannot exist. One of these is a theorem which states that no algorithm can exist
that can determine whether or not any given algorithm terminates. So the idea behind
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this and similar paradoxes is useful not only as an entertaining example or exercise;
it has important implications in mathematics and its practical applications.

8.9.1 English Statement of the Paradox

Figaro, the Barber of Seville, shaves those men of Seville, and only those men, who
do not shave themselves. Does Figaro shave himself?

To translate the sentence and the question above into the Language of Mathe-
matics, we begin by identifying the key nouns and noun phrases. They are, clearly,
“Figaro” and “men of Seville.” The pronouns refer to these, so need not be considered
separately. The noun phrase “Barber of Seville” is synonymous with Figaro, so also
need not be considered separately.

Although the sentence above mentions “men” only in the plural, some of these
references are, at least implicitly, to individuals. Actually, every reference to “men”
can be interpreted as a reference to a single man. The sentence can be reworded in
a form closer to a mathematical formulation as “Figaro shaves each man of Seville
who does not shave himself, and no other” or even “Figaro shaves each and every
man of Seville if and only if he does not shave himself.”

But wait. Is this the only interpretation? If not, is it the best? If one man (not
Figaro) of Seville shaves another man of Seville, does that exclude Figaro from
shaving him? That is, does Figaro shave only those who no one else shaves? One
possibility is that some subset of the men of Seville shave each other, forming a subset
of the men of Sevilla who do “shave themselves,” but each shaving a different member
of that subset. Are we to interpret the original English sentence so that Figaro does or
does not shave those men? Also, to whom does the pronoun “he” refer—the man of
Seville in question or Figaro? Here, we note these ambiguities in the original English
statement of the problem and proceed as if the statement is to be interpreted as stated
at the end of the preceding paragraph: that is, that “Figaro shaves each and every man
of Seville if and only if he (i.e., that man of Seville) does not shave himself.”

All of the formulations above suggest a quantification over the men of Seville.
The noun phrase “men of Seville” will correspond to a variable whose value is a set,
the set of all men of Seville.

Other variables in our model will correspond to Figaro and to each man of Seville.

The verb “shave” or “shaves” is clearly an important term in the sentence above.
At first, it might appear to be a verb of action, for which no directly corresponding
variable or function can exist in a mathematical model. The meaning of the English
sentence in the first paragraph above is not, however, that the shaving took place, is
taking place, or will take place at any particular time in the future (i.e., the meaning
is not related to any time). Instead, “shaves” refers to the relationship between the
barber and a customer or a noncustomer. The original sentence could be reformulated
to express the stative nature of this relationship more clearly: “Figaro is the shaver
(barber) of any man of Seville if and only if that man is not his own shaver (barber).”
The English style of this sentence is perhaps not as good as the original sentence, but
it expresses more precisely and explicitly the implicit meaning. It is in a style and
form closer to the ultimate mathematical expression and, hence, closer to a form that
can be translated more directly into the Language of Mathematics.
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In short, “shaves” is, in the original English statement of this paradox, a stative
verb. It can, therefore, be represented by a Boolean variable, expression, or function.
Because this relationship pertains to many different pairs of men, it will be represented
by a Boolean function in our mathematical model.

8.9.2 Mathematical Model

Therefore, the interpretation of the elements of our mathematical model is:

e Figaro: a value representing Figaro, the Barber of Seville
e MenOfSeville: a variable, the value of which is the set of the men of Seville

e shaves(personl, person2): a Boolean function corresponding to the English
clause “personl shaves person2.” The value of shaves(personl, person2) is true
if personl does, in fact, shave person 2, and false if personl does not shave
person2.

We begin by writing a mathematical expression corresponding to whether or not
Figaro shaves a particular man of Seville. Below we write on the left parts of the
reformulated statement of the paradox, and on the right, the corresponding parts of
the mathematical expression

Figaro shaves each and every man m of Seville shaves(Figaro, m)
if and only if =
he (i.e., that man m of Seville) does not shave himself ~—shaves(m, m)

The corresponding expression is, then,
shaves(Figaro, m) = —shaves(m, m) [8.9.2-1]

The expression above pertains to an individual man of Seville. To have it apply to
all men of Seville, it must be embedded in an appropriate quantified expression:

[A m : meMenOfSeville : shaves(Figaro, m) = —shaves(m, m)] [8.9.2-2]

This mathematical expression is a translation of the original English sentence
“Figaro, the Barber of Seville, shaves those men of Seville, and only those men, who
do not shave themselves” as interpreted and understood in Section 8.9.1.

Now to the question “Does Figaro shave himself?” This is equivalent to asking
the question “Is the value of shaves(Figaro, Figaro) true?” If, as the statement of
the paradox seems to imply, Figaro is a man of Seville (he is clearly the Barber of
Seville), then he is one of the elements of the set MenOfSeville, to which expression
8.9.2-1 applies. Then

shaves(Figaro, Figaro) = —shaves(Figaro, Figaro) [8.9.2-3]

The question then becomes “which value of shaves(Figaro, Figaro) is consistent with
expression 8.9.2-3,” that is, makes expression 8.9.2-3 true? However, expression
8.9.2-3 is always false, never true. The assumption that shaves(Figaro, Figaro) is true
contradicts expression 8.9.2-3. The assumption that shaves(Figaro, Figaro) is false
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also contradicts expression 8.9.2-3. The original English statement of the problem is
self-contradictory with regard to the question posed and hence is inadequate as a basis
for answering that question—at least if Figaro is an element of the set MenOfSeville.
If Figaro is not to be viewed as a man of Seville, the contradiction disappears, but
so does the term m=Figaro in the quantified expression and with it, any possible
information on the value of the function shaves(Figaro, Figaro). In the latter case,
both statements “Figaro shaves himself” (shaves(Figaro, Figaro)=true) and “Figaro
does not shave himself” (shaves(Figaro, Figaro)=false) are possible solutions.

In short, the English formulation of the problem is inadequate as a basis for
answering the question. Depending on how we interpret it precisely, it contains either
self-contradictory or no information on whether Figaro shaves himself.

Viewed purely mathematically, the problem (question) as stated and interpreted
has no solution. This situation is by no means rare in mathematics; many Boolean
expressions exist which have no solution (i.e., are never true). They are false for all
values of the variables appearing in them. Section 5.3 contains other examples of
Boolean expressions having no solution.

Few people will recognize at first reading the inadequacy of the English statement
in Section 8.9.1 for answering the question until they translate the English statement
into the Language of Mathematics. Also, few people will recognize the ambiguities
in the original English statement; only when one attempts to translate the sentence
into the Language of Mathematics do the detailed questions of interpretation arise so
clearly.

8.10 CONTROLLING THE WATER LEVEL IN A RESERVOIR: SIMPLE
ON/OFF CONTROL

Several different ways of controlling the water level in a reservoir can be specified
and implemented. Each has certain advantages and disadvantages. Below, a simple
on/off mechanism is presented. In Section 8.11, a more advanced control system with
improved operational characteristics is presented.

Notice that these examples deal only with the control of the flow into the reservoir.
The English texts say nothing about either the flow out of the reservoir, the rate of
flow into the reservoir when the flow is on, or how these determine the actual water
level, so these aspects of the reservoir will not be included in the mathematical models
in these examples.

These examples illustrate that a mathematical model can be restricted to those
aspects of direct concern in a system; it is not necessary that it include all char-
acteristics and properties of the system and its environment. Expressed differently,
a mathematical model can, and usually does, abstract the essentials of the entire
environment of the problem being investigated. In these examples, only the on/off
control of flow into the reservoir needed to prevent overflowing the reservoir is the
issue. The factors determining the flow out and the question of whether or not the
flow rate in is sufficient to satisfy the demand for flow out of the reservoir are not of
concern in these examples. They could be dealt with by other mathemtical models if
desired.
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8.10.1 English Statement of the Requirements

When the water level in the reservoir is below a certain level (the target level), the
incoming water supply should be turned on. When the water level in the reservoir is
above this level, the incoming water supply should be turned off.

8.10.2 TheMathematical Variablesand Their Interpretation

The key noun phrases appearing in the English text are associated with mathematical
variables as given below.

w: Water level in the reservoir
s: Incoming water supply (on or off)
t:  The target level of water in the reservoir, measured in the same units as w

8.10.3 TheMathematical M odel

The English language specification does not state what should be done if the water
level is at exactly the target level. Presumably, such precision is not of practical
importance, but an appropriate assumption must be built into the mathematical model
for completeness.

The mathematical model can then be written either in tabular form:

Condition Value of s
w<t on
w >t off

or as an expression:

weR A teR A se{off, on} A
(w=<tAs=onvws>tAa s=off) [8.10.3-1]

In expression 8.10.3-1 the first line defines the range of values for every variable.
The second line expresses the relationships between the values of the variables as



CONTROLLING THE WATER LEVEL IN A RESERVOIR 299

stated in the table. The expression can be written in several equivalent forms. The
reader should identify some of them. Mathematically, this model defines a function
s of arguments w and t: nothing more, nothing less.

8.10.4 Shortcomings of the Simple On/Off Control

In practice, the accuracy to which the water level w can be measured is limited.
Measurements are not exactly repeatable; that is, successive measurements can differ
slightly. In addition, waves on the surface of the water can cause successive mea-
surements to differ. When the water level is close to the target level, these factors can
cause the valve controlling the incoming water supply to chatter, that is, to be turned
on and off in rapid succession. This, in turn, can cause unnecessary and excessive
wear and tear on the mechanical components. To avoid this problem, a suitable time
delay (hysteresis) must be introduced into the control loop turning the water supply
on and off. One of several ways of introducing such a delay is illustrated in the control
mechanism described below.

811 CONTROLLING THE WATER LEVEL IN A RESERVOIR:
TWO-LEVEL ON/OFF CONTROL

8.11.1 English Statement of the Requirements

When the water level in the reservoir is below a certain level, the incoming water
supply should be turned on. When the water level in the reservoir is above a certain
higher level, the incoming water supply should be turned off. When the water level is
between these two levels, the incoming water supply should be left unchanged (i.e.,
off if it was off, on if it was on).

8.11.2 Interpretation

The several noun phrases appearing in the English text are associated with mathe-
matical variables as given below. The passage of time is modeled with a nonnegative
integer, called k, the idea being that at each time step k the water level is measured
and the incoming water flow set on or off accordingly. The value of k increases with
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time. The English text suggests by default that the values of the lower and upper
threshold levels do not vary with time, so they do not need to be subscripted by k.

w(k): Water level in reservoir at time point k

s(k): Incoming water supply (on or off) at time point k

Low: Lowest desired water level in reservoir, measured in the same units as w(k)
High: Highest desired water level in reservoir, measured in the same units as w(k)

8.11.3 TheMathematical M odel

The English language specification does not state what should be done if the water
level is at exactly the lower or the higher threshold level. Presumably, such precision
is not of practical importance, but an appropriate assumption must be built into the
mathematical model for completeness. Furthermore, the specification also fails to
state whether the water supply is initially on or off. We assume that it is initially off.

The length of time between measurements of the water level is not mentioned in
the English text; presumably, it is short enough so that the reservoir cannot overflow.
It is omitted from this mathematical model. The mathematical model can then be
written either in tabular form:

s(k)=
Condition k=0 k>0
w(k) < Low off on
Low < w(k) < High off s(k-1)
High < w(k) off off

Oor as an expression:

HigheR A LoweR A Low<High A
[AKk:kez A k=0 :s(k)e{off, on} A w(k)eR] A
(k=0 A s(k)=off v
k>0 A w(k) < Low A s(k)=on v
k>0 A Low < w(k) < High A s(k)=s(k—1) v
k>0 A High <w(k) A s(k)=off) [8.11.3-1]

In expression 8.11.3-1 the first two lines define the range of values for every variable.
The third through last lines express the relationships between the values of the
various variables as stated in the table. The expression can be written in several other
equivalent forms. The reader should identify some of them.

Mathematically, expression 8.11.3-1 defines the sequence

[s(0), s(1), s(2), s(3), -.-] [8.11.3-2]
as a function of the input sequence
[w(1), w(2), w(3), ...] [8.11.3-3]
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8.12 RELIABLE COMBINATIONSOF LESSRELIABLE COMPONENTS

Large systems consisting of many components are common in today’s world. Fur-
thermore, the number of components in such systems is increasing. With increasing
numbers of components of constant reliability, the overall reliability of our systems
would decrease unless design techniques were employed in order to construct more
reliable systems of less reliable components. Fortunately, such design techniques
exist and have been well known and used by design engineers for a long time. In this
section, simple designs employing redundancy to increase the overall reliability are
presented and quantitatively analyzed. Probability theory (see Section 4.6) provides
the mathematical basis for such an analysis.

An especially simple example of redundancy to increase reliability is the overhead
projector used for many types of lectures. Of the many components in such a projector,
the lamp has the shortest lifetime. Therefore, it limits the overall reliability of the
projector. Most such projectors now contain two lamps, so that when one fails, the
other can be switched on, bridging the gap in time until the other lamp is replaced.

8.12.1 A Door Closure Sensor

More illustrative of engineering designs using redundancy to improve reliability is
a subsystem for sensing whether a semiautomatic door to a building or on a train
is open or closed. A single sensor can consist of mechanical, electrical, electronic,
and/or optical parts, any or all of which can fail. Normally, the sensor will correctly
sense the door to be open when it is open and closed when it is closed. Although
unlikely, it is also possible that the door is

e sensed to be open despite the fact that it is actually closed, or
¢ sensed to be closed despite the fact that it is actually open.

The latter fault can represent a particularly unsafe situation. For example, a train’s
control system will typically include an interlock to prevent the train from being
started if any door is open. If the sensor on a door indicates that the door is closed
when it is actually open, the train can be started into motion with a door open, an
obviously unsafe mode of operation. Although such a fault can never be excluded with
absolute certainty, very low failure rates can be specified for such events. Standard
engineering practice typically requires very low failure probabilities for safety critical
functions—failure probabilities that are often lower than any single component can
achieve.

The first fault above (a closed door being sensed as open) will prevent the train
from proceeding and hence will hinder operation of the train and cause unnecessary
delays, but it will not lead to unsafe operation. It represents a “fail safe” mode.

Consider a single door sensor whose probabilities of correct and faulty operation
are givenin Table 8.12.1-1. Notice that the probabilities of correct and faulty operation
are different when the door is open and when it is closed. The nondeterministic



302 EXAMPLES OF TRANSLATING ENGLISH TO MATHEMATICS

behavior of the sensor is modeled here by two different probability functions. One is
applicable when the door is actually closed, and the other, when the door is actually
open. The actual position of the door is not considered to be a random variable and,
therefore, is not modeled probabilistically.

TABLE 8.12.1-1 Probabilities of Failurefor a Single Door Sensor

Actual Position of Door Door Sensed as Probability Sensor Function
closed closed 0.999 correct
closed open 0.001 safe failure, hinders
operation
open closed 0.0005 unsafe failure
open open 0.9995 correct

These probabilities of faulty operation are atypically high for the purposes of this
numerical example. In an actual safety critical application, more reliable components
would be used. However, as will be seen below, even with such poor sensors one can
achieve much higher system reliability with appropriate redundancy.

Notice that Table 8.12.1-1 in effect includes both of the following:

e The interpretation of the (unnamed) variables in the mathematical model
e The mathematical model, including the values of the unnamed variables

Note also that use of the word “probability” implicitly includes by reference the
relevant parts of the mathematical model of a probabilistic process as defined in Sec-
tion4.6.1. Thus, that model is part of the environment of the mathematical expressions
represented by Table 8.12.1-1. The general mathematical model of a probabilistic pro-
cess is often left implicit in documentation of the analysis of an application, although
at least the sample space and the events (the subsets of the sample space) of interest
should be clearly identified. For completeness, Section 8.12.3 contains an explicit
formulation of the entire mathematical model for the door sensors considered in this
example, including the case of the single sensor represented in Table 8.12.1-1 and
the cases of the several redundant door sensor systems presented in Section 8.12.2.

8.12.2 Increased Reliability with Additional Redundant Door Sensors

One way of increasing the reliability of sensing the position of the door is to use
two sensors operating statistically independently of each other. That is, they would
interact physically with the door independently of each other, so that the probability
that one sensor fails is the same regardless of whether or not the other sensor fails.
Then the probability of a joint event is the product of the two individual events (see
Section 4.6.3).

The output signals (open or closed) of the two sensors are combined into a sin-
gle signal (open or closed) representing the presumed or inferred position of the
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door. The simplest way to minimize the probability that the door is considered to
be closed when it is actually open would be to generate a combined signal that al-
ways indicates open, but that would result in an inoperative system. The next best
way to minimize the probability of the unsafe failure is to combine the two sig-
nals from the door sensors into a composite signal, implying that the door is closed
only when both individual sensors sense that the door is closed. If either sensor
senses that the door is open, the combined signal indicates that the door is pre-
sumed to be open. This composition of the two door sensors’ signals is illustrated in
Table 8.12.2-1 which shows all possible combinations of door position and sensor
outputs.

TABLE 8.12.2-1 Probabilities of Failure for a Dual Door Sensor System

Output of
Actual Sensor Inferred
Position E— Position of Sensor
of Door 1 2 Probability Door Probability ~ Function
closed closed closed 0.998001 closed 0.998001 correct
closed closed open 0.000999 open safe failure,
closed open closed 0.000999 open 0.001999 hinders
closed open open 0.000001 open operation
open closed closed 0.00000025  closed 0.00000025  unsafe failure
open closed open 0.00049975  open
open open closed 0.00049975  open 0.99999975  correct
open open open 0.99900025 open

Notice that the probability of an unsafe failure has been reduced from 0.0005
to 0.00000025, a reduction by a factor of 2000. The cost of this improvement is
a second door sensor and a component to combine the signals from the two sen-
sors. In addition, the probability of correct operation when the door is closed is
reduced from 0.999 to 0.998001. Although this reduction is small, this low a prob-
ability of correctly sensing a closed door would presumably hinder the operation of
the train system unacceptably. With additional redundancy, this probability can be
increased.

One way of adding more redundancy is to use three sensors whose signals are
combined by a majority vote. That is, the door is considered to be:

¢ Closed if at least two sensors indicate a closed door
e Open if at least two sensors indicate an open door.

Table 8.12.2-2 shows all possible combinations of door position and sensor outputs
as well as the corresponding probabilities for this combination of sensors.
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TABLE 8.12.2-2 Probabilities of Failurefor a Triple Door Sensor System

Actual Output of Sensor Inferred

Position Position Sensor
of Door 1 2 3 Probability of Door Probability Function
closed closed closed closed 0.997002999 closed

closed closed closed open  0.000998001 closed

closed closed open closed 0.000998001 closed 0.999997002 correct
closed open closed closed 0.000998001 closed

closed closed open open  0.000000999 open safe
closed open closed open  0.000000999 open failure,
closed open open closed 0.000000999 open 0.000002998 hinders
closed open open open 0.000000001 open operation
open closed closed closed 0.000000000125 closed

open closed closed open  0.000000249875  closed unsafe
open closed open closed 0.000000249875 closed 0.000000749750 failure
open open closed closed 0.000000249875 closed

open closed open open  0.000499500125 open

open open closed open  0.000499500125 open

open open open closed 0.000499500125 open 0.999999250250 correct
open open open open 0.998500749875 open

Table 8.12.2-3 compares the three sensor structures described above. Notice in
particular the probabilities of correct operation, safe failure, and unsafe failure.

TABLE 8.12.2-3 Comparison of the Probabilities of Failure for the Three Systems

Actual Inferred Probability with ... Sensors

Position Position

of Door of Door 2 3 Sensor Function

closed closed 0.999 0.998001 0.999997002 correct

closed open 0.001 0.001999 0.000002998 safe failure,
hinders
operation

open closed 0.0005  0.00000025  0.000000749750  unsafe failure

open open 0.9995  0.99999975  0.999999250250  correct

With two sensors the probability of sensing the door as closed when it is really
open is reduced greatly compared to a single sensor, but the probability of failure
is still too high for a safety critical commercial or public application. Furthermore,
this improvement is achieved at the expense of a reduction of operational reliability.
The dual sensor system is still not satisfactory. With three sensors the operational
reliability is increased significantly, but this improvement is accompanied by an
increase in the probability of an unsafe failure.
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The probability of an unsafe failure must be reduced considerably, and an ad-
ditional decrease in the probability of a safe failure (an increase in the probability
of correct operation) is desirable. One way of achieving such an improvement is to
incorporate four sensors in the door-sensing system. To reduce the probability of an
unsafe failure, that is, the probability of inferring an open door to be closed, the door
will be considered open if two or more sensors sense the door as being open (i.e.,
also in an equal vote of 2 to 2). This system is represented in Table 8.12.2-4.

TABLE 8.12.2-4 Probabilities of Failure for a Quadruple Door Sensor System

Actual  Outputs Inferred
Position of the 4 Position Sensor
of Door Sensors  Probability of Door  Probability Function
closed 4closed 0.996005996001 closed
closed 3closed, 0.003988011996 closed 0.999994007997 correct
1 open
closed  2closed, 0.000005988006 open safe
2 open failure,
closed 1closed, 0.000000003996 open 0.000005992003 hinders
3 open operation
closed 4open  0.000000000001 open
open 4 closed 0.0000000000000625 closed 0.0000000004998125 unsafe
open 3 closed, 0.0000000004997500 closed failure
1 open
open 2 closed, 0.0000014985003750 open
2 open
open 1 closed, 0.0019970014997500 open 0.9999999995001875 correct
3 open

open 4 open  0.9980014995000625 open

The probabilities in Table 8.12.2-4 were calculated in the same way as in the
previous tables. However, they are presented in a more concise format in Table
8.12.2-4. In particular, the several lines with the same number of closed and open
sensor outputs have been combined into only one line.

The probability of an unsafe failure in the four-sensor system represented by
Table 8.12.2-4 is less than 10—, a figure often mentioned in connection with require-
ments for safety-critical systems. Thus, this configuration of four sensors, each of
relatively low reliability, can satisfy stringent reliability requirements. This example
shows one way of achieving high reliability with components of low reliability and
how to analyze such redundant system designs.

The probability of a safe failure, although perhaps acceptable, is higher than might
be desired. In an actual situation, the operational consequences of this failure rate
would be analyzed and compared with the costs of achieving a lower probability
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of safe failure. One of the several alternatives to consider would be a more reliable
individual sensor.

In the beginning of this section it was pointed out that the individual sensors are
assumed to fail independently of one another. In any system of this nature there are,
however, common mode failures (e.g., the failure of a common power supply, large-
scale physical damage affecting more than one sensor at one time). Also, a possible
failure of the component combining the outputs of the several individual sensors has
been neglected in this example. In the real engineering world, these and many other
factors affecting the reliability of components in a system and of the system as a
whole are included in failure analyses.

In engineering practice, one often distinguishes between failure, fault, and mal-
function, and between permanent and intermittent failures, faults, and malfunctions.
For reasons of simplicity, no such distinction has been made in this example.

8.12.3 The Complete Mathematical Model for the Redundant Door
Sensing Systems

In Sections 8.12.1 and 8.12.2 the mathematical models were expressed in tabular
notation, together with much of the interpretation of the (unnamed) variables, values,
and functions in the model. In this section, the complete mathematical model together
with the interpretation of all of its parts is stated completely and explicitly. The
mathematical model is presented in the form of an infix expression.

The expressions involving probabilities in the mathematical model below follow
from definitions in Section 4.6 on probability theory (see especially Sections 4.6.1
and 4.6.3).

Interpretation The several values, variables, and functions in the mathematical
model below have the following meanings in the application domain.

N: the number of individual sensors used in the door-sensing system

¢ SensedOpen, SensedClosed: the possible values output from each sensor. Each
sensor outputs the value SensedOpen if it senses the door as being open, and
SensedClosed if it senses the door as being closed.

* S the set {SensedOpen, SensedClosed}. SN is the set of all sequences of N
elements of the set S (i.e., SN is the set of all possible sequences of the outputs
of the N sensors). SN is the sample space of the probability space being modeled
(see Section 4.6.1).

e SeqlintOpen: the set of those sequences of sensor outputs that are interpreted
as indicating that the door is open. SeqlntOpen is a subset of SN.

¢ SeqglntClosed: the set of those sequences of sensor outputs that are interpreted
as indicating that the door is closed. SeqIntClosed is a subset of SN. The sets
SeqIntOpen and SeqIntClosed are mutually exclusive; that is, they have no
element in common. Together, they constitute the entire sample space SN.
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 Events: the subsets of SN corresponding to random events that are of interest
in this application and for which probabilities are defined. These events are the
elements (as singleton sets) of S, the elements (as singleton sets) of SN, the
subsets SeqintOpen and SeqIntClosed of SN, the empty set ¢, and the entire
set SN,

e PrDO: the probability function of an event when the door is actually open. The
outputs from the N sensors are statistically independent.

e PrDC: the probability function of an event when the door is actually closed.
The outputs from the N sensors are statistically independent.

Mathematical Model The complete mathematical model consists of the expression
8.12.3-1. In it, the value of the function reference termseq(i, seq) is defined to be the
ith term of the sequence seq.

NezZ A 1<N A P= [Up:peR A 0<p<l:{p}] A [header, 8.12.3-1]
(termseq : ZxSN — S) A

[A seq:seqeSN :seq = [&i:ieZ A 1<i<N: termseq(i, seq)]] A
S = {SensedOpen, SensedClosed} A
Events = {{[SensedOpen]}, {[SensedClosed]},
SeqIntOpen, SeqintClosed, ¢, SN}
U[U seq : seqeSN : {{seq}}] A [see comments below]
(PrDO : Events — P) A (PrDC : Events — P) A
(N=1 = SeqIntClosed = {[SensedClosed]}) A
[definition of SeqIntClosed]
(N=2 = SeqIntClosed = {[SensedClosed, SensedClosed]}) A
(N=3 = SeqIntClosed
= {[SensedClosed, SensedClosed, SensedClosed],
[SensedOpen, SensedClosed, SensedClosed],
[SensedClosed, SensedOpen, SensedClosed],
[SensedClosed, SensedClosed, SensedOpen]}) A
(N=4 = SeqIntClosed
= {[SensedClosed, SensedClosed, SensedClosed, SensedClosed],
[SensedOpen, SensedClosed, SensedClosed, SensedClosed],
[SensedClosed, SensedOpen, SensedClosed, SensedClosed],
[SensedClosed, SensedClosed, SensedOpen, SensedClosed],
[SensedClosed, SensedClosed, SensedClosed, SensedOpen]}) A
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SeqIntOpen = SN \ SegIntClosed A [definition of SeqIntOpen]
PrDO(#)=0 A PrDO(SN)=1 A [definition of PrDO]
PrDO([SensedOpen]) = 0.9995 A PrDO([SensedClosed]) = 0.0005 A
[A seq : seqeSN

:PrDO(seq) = [*i: i€z A 1<i<N: PrDO(termseq(i, seq))]] A
PrDO(SeqIntClosed) = [+ seq : seqeSeqIntClosed : PrDO(seq)] A
PrDO(SeqIntOpen) = 1 — PrDO(SeqIntClosed) A
PrDC(#)=0 A PrDC(SM)=1 A [definition of PrDC]
PrDC([SensedOpen]) = 0.001 A PrDC([SensedClosed]) = 0.999 A
[A seq : seqeSM

:PrDC(seq) = [*i:i€Z A 1<i<N : PrDC(termseq(i, seq))]] A
PrDC(SeqIntClosed) = [+ seq : seqeSeqIntClosed : PrDC(seq)] A
PrDC(SeqIntOpen) = 1 — PrDC(SeqIntClosed)

In the definitions of the functions PrDO and PrDC, the probability of each se-
quence of outputs from the N sensors is the product of the probabilities of the
individual output values of the sensors, because the outputs of the door sensors are
statistically independent. The probability of the event SeqintClosed is the sum of
the probabilities of the sequences of the sensor outputs in the set SeqlintClosed,
because the sequences are all different from one another (mutually exclusive). It
follows from the mathematical model in expression 8.12.3-1 that the same is true for
SeqintOpen.

In the definition of the set variable Events in the mathematical model in expression
8.12.3-1, each element of the set Events is, itself, a set. Singleton sets are also
explicitly expressed as sets. If one would follow the convention of not distinguishing
between a value, a singleton set of that value, and a singleton set of a singleton
sequence of that value, the expression defining the set variable Events could be
simplified to

Events = {SensedOpen, SensedClosed, SeqIntOpen, SeqlntClosed,#, SN} U SN
[8.12.3-2]

The last term, U SN, would still be necessary because it (and only it) brings the indi-
vidual elements of SN into the set Events. Without that last term, the set SN would be
an element of the set Events, but the elements of the set SN—the individual sequences
of sensor outputs—would not be elements of the set Events. Those individual se-
quences must be elements of the set Events, because we need to be able to refer to
the probability of each such sequence alone, and the probability functions PrDO and
PrDC can be applied only to an argument that is an element of the set Events.
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8.13 SHOPPING MALL DOOR CONTROLLER

In this example, the requirements for the control mechanism for an automatic door
to a shopping mall is first stated in English. This description is then transformed as
described in the beginning of Chapter 8 into a mathematical model written in the
Language of Mathematics. This mathematical model will constitute an engineering
specification of the logic in the door controller.

The English description of the door controller will be prefaced here by a description
of:

e The door and its operation as seen from the persons’ standpoint
e The main physical devices associated with the door

The persons’ view of the door will provide the background for a description of the
requirements of the door controller, but itself will contribute only indirectly to the
mathematical model of the door controller. The description of the physical devices
associated with the door and especially the description of their relationships with
the door constitute the specification of the controller’s immediate environment (i.e.,
the specification of the controller’s interface with the door and the physical devices
associated with the door). Both categories of time are dealt with in this example:
discrete time steps and continuous time.

8.13.1 Persons View of the Door

On and near the door are motion and proximity detectors which detect people and
objects in the door area. When someone approaches from either direction, the door
opens and the person walks through. After a short delay, the door closes if no one
is in the vicinity of the door. If, while the door is closing, someone approaches the
door, it opens again.

8.13.2 Physical Devices Associated with the Door

The following devices are associated with the door:

e Motion and proximity detectors detect people and objects near the door, both
inside and outside the door, and passing through the door. The several detectors
operate as a single subsystem to indicate whether or not a person, animal, or
object is in the vicinity of the door or is blocking the door.

e The door is equipped with a sensor to indicate whether or not the door is
physically fully open.

e The door is equipped with another, independent sensor, to indicate whether or
not the door is physically fully closed.
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e The door has a motor to open or to close the door. The signal from the door
controller to the motor controls power to the motor: power on to open the door,
power on to close the door, or power off to hold the door still.

8.13.3 TheDoor Controller’sInputsand Outputs

The descriptions above imply that the door controller will have the following inputs
and outputs:

Motion and proximity detection (input from detectors on and near the door)
e Door open sensor (input from sensor on door)

Door closed sensor (input from sensor on door)

Motor power (output to motor on door)

8.13.4 Required Responses of the Door Controller

Specific responses to the various input signals and states of the door system depend
on various conditions as follows. These requirements give the rules for calculating
the output and state variables for one point in time based on the values of the variables
at the preceding point in time, that is, for stepping the values from one point in time
to the next in succession.

¢ |f the motion and proximity detectors detect someone in the vicinity of the door,
the door controller should open the door, unless it is already open.

¢ |f the motor is on (under power), its direction should not be reversed imme-
diately. Motor power should first be turned off, then turned on in the reverse
direction. Any brief off period is sufficient.

e If the door is opening and the door sensors indicate that it has reached its open
position, power to the motor should be turned off.

e If the door is closing and the door sensors indicate that it has reached its closed
position, power to the motor should be turned off.

e If the door has been open and no person has been detected in the vicinity of
the door for a given period of time (called the closure delay time), the door
controller should close the door (see Section 8.13.1).

e |fthe door is closing and the motion and proximity detectors detect someone in
the vicinity of the door, the controller should open the door (see Section 8.13.1).

8.13.5 Method of Operation of the Controller

From the descriptions above it is clear that the door system and the controller are
dynamic in nature; that is, various aspects of them change with time. Characteristic
of any dynamic system is that at any point in time the system is in a particular state
(condition, situation) and that the state changes with time. Similarly, the values of
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input and output variables will also typically change with time. Variables whose
values represent the state, inputs, and outputs are, therefore, typically represented
as subscripted (indexed or array) variables, with the subscript representing specific
points in time. Alternatively, these variables can be viewed as functions of time, but
these two views are semantically equivalent (see Sections 4.1.2 and 4.1.4).

The state of the controller should be recalculated (updated) frequently in relation
to the time frame of the operation of the door: that is, in relation to the time it takes
people to approach and leave the door area, the time it takes the door’s motor to start
and stop, and the time it takes the door to open and close. These times are typically
on the order of a second or longer. The controller should, therefore, recalculate the
state much more frequently (i.e., in a small fraction of a second). Such a mode of
operation would approximate sufficiently well a controller mechanism continuously
updating the state (e.g., one implemented with analog electronic circuitry). One
feasible implementation of the controller would use a small digital computer, which
would be able to calculate each new state in milliseconds or even microseconds.

If the controller is implemented with a digital computer, a convenient way to
implement the logic for closing the door is to maintain, as part of the state of the
controller, the time at which the door was most recently not in a “closable state.” By
“closable” state we mean that the door is open and no person is in the vicinity of
the door. The length of time the door has been continuously in a closable state is,
then, the current time minus the time at which the door was most recently not in a
closable state. When this difference in time is greater than the closure delay time, the
condition for closing the door is met. The design of a controller implemented with
analog electronic circuitry can also be based on this logical consideration.

In this example, we assume that the controller will be implemented with a small
digital computer.

8.13.6 TheVariables

We begin identifying and defining the mathematical variables by considering the
inputs and outputs listed above and the types of values they assume.

The motion and proximity detectors together deliver a single signal indicating
whether or not someone or something is in the vicinity of the door (i.e., this input
has one of two values, so can be viewed as a Boolean variable). The information this
variable delivers is best described by a clause with a stative verb (e.g., “A person is
near the door)”, with the value being either true or false. We abbreviate this clause to
form the variable’s name “PersonlsNear.”

The next input listed above is provided by the door-open sensor. This variable
also takes on one of two values, indicating that the door is either open or is not
open. The stative clause “the door is open” can be abbreviated to the variable’s name
“DoorlsOpen,” with the value being either true or false.

Similarly, the signal provided by the door-closed sensor can be modeled with a
variable named “DoorlsClosed,” with its value being either true or false.

The output of the controller sets the power to the motor to one of three values:
power on to open the door, power on to close the door, or power off to hold the door
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still. This can be described by the noun phrase “motor power” and abbreviated to the
variable name “MotorPower,” with the value being either “on to close,” “on to open,”
or “off.”

Implementing the requirement to close the door after a certain time delay re-
quires two variables and a constant parameter. The two variables are the current
time and the time at which the door was most recently not in a closable state
(see the discussion above on closing the door). The parameter is the closure de-
lay time. Such parameters are normally modeled with a variable whose value is
fixed and does not change during normal operation. Thus, we need three variables
whose names abbreviate the noun phrases “current time,” “time at which the door
was most recently not in a closable state,” and “closure delay time.” We select the
names “CurTime,” “LastNotClosableTime,” and “ClosureDelay.” The value of each
will be a number representing time expressed in an appropriate time unit (e.g., mil-
lisecond, second). For our description and mathematical model it is essential that
all three times be expressed in the same unit, but the unit selected is itself not
important.

Additional suggestions for a variable or variables can be extracted from Section
8.13.4. References to the “states of the door system” are: open, opening, closed,
and closing, suggesting a state variable taking on those values. The two variables
DoorlsOpen and DoorlsClosed distinguish between the states open and closed, so
the needed values of the state variable, which we name simply “State,” can be reduced
to opening and closing. Because the door can also be stopped, this value should be
included in the set of values of the variable “State.”

An alternative approach to identifying the state variables in the finite state machine
in the mathematical model is to consider the possible positions of the door and the
possible movements of the door, independent of one another. Physically, the possible
positions are open, closed, and between open and closed. The values of the two
variables DoorlsOpen and DoorlsClosed distinguish between these three possible
positions of the door, as mentioned in the paragraph above. Physically, the possible
movements of the door are opening, closing, and not moving (stationary, stopped).
This leads to a state variable whose possible values are opening, closing, and stopped,
the same design conclusion as that reached in the paragraph above.

At this point it is appropriate to consider all possible combinations of the values of
the variables identified so far. Among these combinations are those in which the door-
open input variable DoorlsOpen and the door-closed input variable DoorlsClosed are
both true. This combination is illogical—the door cannot be both open and closed at
the same time—nbut because the two sensors are independent, it is physically possible.
If these two variables are both true, one or both sensors are faulty. This suggests
another possible value for the state variable: “fault.” In this case, the controller cannot
tell what position the door is in: open, closed, or in between. In general, one should
always consider the need for one or more fault states when designing a dynamic
system. Often, considering failure situations is a more time-consuming part of the
design task than the normal operation, but it is essential for a sufficiently reliable and
safe design. It is a critical aspect of engineering responsibility. Mathematical models
are helpful in fulfilling this responsibility, too.
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In summary, the variables identified are:

e Input variables: Note that of the variables above, PersonlsNear, DoorsOpen,
DoorlsClosed, and CurTime are input variables whose values are determined
by the controller’s environment.

e Qutput variable: The variable MotorPower is an output variable whose value
is determined by the controller and used as input by the motor subsystem.

e State variables: The variables Sate and LastNotClosableTime are state vari-
ables whose values are both determined and used later by the controller.

e Constant parameter: The variable ClosureDelay is a parameter, that is, a
variable whose value does not change during operation of the door sys-
tem. Its value is used by the controller only to calculate the values of other
variables.

8.13.7 Interpretation of the Variables

In summary, the variables in the mathematical model and their interpretation in
the context of the door and its controller are listed below. Each variable whose
value can change during operation of the door is a subscripted (indexed, array)
variable. The subscript (index) n is the point of time at which the value applies. The
parameter ClosureDelay is a mathematical variable with a fixed value that does not
change during operation of the door, so ClosureDelay is an ordinary (not subscripted)
variable.

e PersonlsNear (n): indicates whether or not the motion and proximity detectors
detect the presence of a person or object near the door at the nth point in time.
PersonlsNear(n) € {false, true}.

e DoorlsOpen(n): indicates whether or not the door is in its fully open position
at the nth point in time. DoorlsOpen(n) € {false, true}.

e Door|sClosed(n): indicates whether or not the door is in its fully closed position
at the nth point in time. DoorlsClosed(n) € {false, true}.

e CurTime(n): the current clock time at the nth point in time. This time is
maintained by a real-time clock in the device implementing the door controller.
CurTime(n) € R.

e MotorPower(n): a command signal from the controller instructing the motor
circuitry at the nth point in time either to apply power to the motor to close the
door or to open the door or not to apply power to the motor (to stop moving the
door). MotorPower(n) € {on to close, on to open, off}.

e State(n): the state of motion or fault of the door system at the nth point in time.
State(n) € {closing, opening, stopped, fault}.

e LastNotClosableTime(n): at the nth point in time, the time at which the door
was most recently not in a closable state. The door is in a closable state in this
sense if the door is open and no person is in the vicinity of the door. The door is
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not in a closable state, therefore, if the door is not open or if a person is in the
vicinity of the door. The value of LastNotClosableTime(n) must be in the same
time unit as CurTime(n) above. LastNotClosableTime(n) € R.

e ClosureDelay: the time that should elapse in a closable state before closure of
the door is initiated. The value of ClosureDelay must be in the same time unit
as CurTime(n) above. ClosureDelay € R.

8.13.8 TheMathematical M odel

The mathematical model of the controller consists of an expression that restricts ap-
propriately the values of the variables listed above. More precisely, it is an expression
that defines (1) the value of each state variable at a point in time in terms of the values
of the variables at the preceding point in time and (2) the value of each output variable
ata point in time in terms of the values of the variables at the preceding or the current
point in time. The values of the input variables are determined by the operational
environment of the controller, so their values are not restricted by the mathematical
model of the controller.

The coarsest restriction on the values of the variables relates to the sets of values
they may assume. Expressed mathematically, this restriction is

State(n) € {closing, opening, stopped, fault} A

PersonlsNear(n) € {false, true} A

DoorlsOpen(n) e {false, true} A DoorlsClosed(n) € {false, true} A
MotorPower(n) € {on to close, on to open, off} A

CurTime(n) € R A LastNotClosableTime(n) € R A

ClosureDelay € R A ClosureDelay > 0 [8.13.8-1]

This restriction applies for all integer values of n, so expression 8.13.8-1 should be
extended accordingly to obtain

[A n:nezZ A n>=0:
State(n) € {closing, opening, stopped, fault} A
PersonlsNear(n) e {false, true} A
DoorlsOpen(n) e {false, true} A DoorlsClosed(n) € {false, true} A
MotorPower(n) € {on to close, on to open, off} A
CurTime(n) € R A LastNotClosableTime(n) € R] A
ClosureDelay € R A ClosureDelay > 0 [8.13.8-2]

The values of the state variables are determined only by the controller, not by
its environment, so their values at the initial point in time must also be stated. An
appropriate initial condition would seem to be in a stopped state with the motor off
and with no accumulated waiting time for the purpose of initiating closing the door.
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These considerations lead to the following expression:

[An:nez A n>0:
State(n) € {closing, opening, stopped, fault} A
PersonlsNear(n) € {false, true} A
DoorlsOpen(n) € {false, true} A DoorlsClosed(n) € {false, true} A
MotorPower(n) € {on to close, on to open, off} A
CurTime(n) € R A LastNotClosableTime(n) € R] A
ClosureDelay € R A ClosureDelay > 0 A
State(0)=stopped A MotorPower(0)=0ff A
LastNotClosableTime(0)=CurTime(0) [8.13.8-3]

The value of the parameter ClosureDelay is still unspecified. For the purposes
of this example we leave it undefined but note that it is required for a final and
complete specification of the door controller. Often, such systems, especially when
implemented using a digital computer, allow the values of parameters of this type to
be set to suit the nature of each individual installation.

8.13.9 TheController Function

To mathematical expression 8.13.8-3 we must now append terms defining the values
of the state variables (State and LastNotClosableTime) and of the output variable
MotorPower at the next point in time. More precisely, we must define State(n+1),
LastNotClosableTime(n+1), and MotorPower(n+1) as functions of the values of the
variables State(n), PersonlsNear(n), DoorlsOpen(n), DoorlsClosed(n), CurTime(n),
LastNotClosableTime(n), and ClosureDelay. These functions we call collectively the
controller function.

The last three time variables occur in the relevant expressions only in the subex-
pression

(CurTime(n)—LastNotClosableTime(n)) > ClosureDelay [8.13.9-1]

for the condition for closing the door, see the discussion on closing the door in Section
8.13.5.

Thus, the functions defining State(n+1), LastNotClosableTime(n+1), and
MotorPower(n+1) will depend on the following arguments, which take on the fol-
lowing numbers of different values:

e State(n) € {closing, opening, stopped, fault}, four values
PersonlsNear(n) € {false, true}, two values

e DoorlsOpen(n) € {false, true}, two values
DoorlsClosed(n) € {false, true}, two values

[(CurTime(n)—LastNotClosableTime(n)) > ClosureDelay] € {false, true}, two
values
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The number of combinations of values for these arguments is 4#2%2x2x2 = 64,
In principle each combination must be reviewed and checked for correctness and
safety of operation before the design of the controller can be considered complete.
Tabular notation is typically the notational form of choice for functions depending on
arguments having so many combinations of values. A table with one or more rows for
headers and one row for each combination of values of the arguments and with one
column for each argument and one column for each function whose value is being
defined would be a convenient format.

A table defining the functions will, therefore, have a header row and 64 rows, one
for each combination of values for the arguments. Some reduction is possible if, for
example, for a value of fault for the variable State, the values of the functions do not
depend on the other arguments. Then 3x2%2x2x2+1 = 49 rows are needed for the
combinations of the values of the arguments. The table would contain five columns
for the arguments and three columns for the functions being defined, for a total of
eight columns.

The requirements that the controller function must satisfy are given in the English
description in Section 8.13.4. Each part of that paragraph will be used to fill in one or
more of the rows in the table described above, which defines the controller function
mathematically. After the table is filled in by examining each part of the paragraph
describing the requirements, it can be checked for (1) consistency, that is, that no
two rows contain the same values for the arguments but a different value for a result,
and (2) completeness, that is, that every possible combination of the values of the
arguments appears in some row of the table. This is a major advantage of tables as a
notational form for complex expressions and requirements. Implementing a system
from an English description of the requirements can and often does lead to undesired
and inexplicable behavior because of unnoticed gaps in the requirements. Situations
no one thought of can arise in practice, with unspecified and undefined behavior
resulting. With an English text, it is essentially impossible to tell whether or not the
statements are consistent and complete; using the Language of Mathematics, it can be
determined systematically and reliably whether or not the specification is consistent
and complete.

8.13.10 Constructing the Controller Function Table

There are two different systematic approaches to constructing a table such as our
controller function table. In the first approach, one constructs a table with all possible
combinations of values for the arguments and then, for each row, one by one, exam-
ines the relevant requirements in the English description and fills in the results. In the
second approach, for each requirement in the English description, one fills in the cor-
responding values of the arguments and the results in the table. We choose the second
approach because it probably illustrates the principles and method of construction of
the table more clearly. In practice, either approach can be used. Sometimes it is even
appropriate to have two separate designers (or design teams), each using a different
approach, construct the table and afterward, compare their tables and resolve the
differences.
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Taking the second approach mentioned above, we examine each of the require-
ments in Section 8.13.4, one by one. For each requirement, we insert the appropriate
entries in the table. As mentioned above, the table will have the form

INTERMEDIATE TABLE 8.13.10-1 Form of the Controller Function Table

Arguments Results

Closure LastNot
Person Door Door Delayls Closable Motor
State IsNear I1sOpen IsClosed Exceeded State Time Power
(n) (n) () () (n) (n+1)  (n+1) (n+1)

The argument “ClosureDelaylsExceeded(n)” in the header of the table is a function
defined to be the value of the expression

(CurTime(n)—LastNotClosableTime(n)) > ClosureDelay [8.13.10-1]

for all integers n>0.
We begin with the first requirement in Section 8.13.4:

e |f the motion and proximity detectors detect someone in the vicinity of the door,
the door controller should open the door, unless it is already open.

We then insert the appropriate values into the appropriate rows and columns into
Table 8.13.10-2.

INTERMEDIATE TABLE 8.13.10-2 Partial Controller Function Table Entries

Arguments Results
Closure LastNot

Person  Door Door Delayls Closable  Motor

State  IsNear  IsOpen  IsClosed  Exceeded | State Time Power

(n) (n) (n) (n) (n) (n+1) (n+1) (n+1)
— true false — — opening on to open
Cells for arguments whose values are irrelevant are marked with an “—.” These
are sometimes called “don’t care” cases. The results in the three columns to the right
do not depend on the values of the arguments marked “—.” In principle, one could

enter all possible combinations of values for the “don’t care” arguments, leading
to a number of rows being filled in, but this is not necessary at this stage. Later
requirements may lead to the need to expand the table entries in this way.
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Cells are left blank for results that are not determined by the requirement being
examined. Other requirements will, presumably, lead to blank cells being filled in
later.

We now go to the next requirement:

e |If the motor is on (under power), its direction should not be reversed imme-
diately. Motor power should first be turned off, then turned on in the reverse
direction. Any brief off period is sufficient.

This requirement applies to many situations, one of which could arise in the
case of the requirement already considered above. This requirement will presumably
apply to situations arising later and should, therefore, be kept constantly in mind.
Because of this requirement, we must expand the table already constructed above
to distinguish between situations in which the motor is on (the state being either
“opening” or “closing”) and in which the motor is off (the state being “stopped”).
If the state is “opening,” this requirement permits leaving the state unchanged and
motor power on to open. If the state is “closing,” this requirement requires setting
the state to “stopped” and setting the motor power to “off.” If the state is “stopped,”
this requirement permits turning on motor power. Expanding the one row in Table
8.13.10-2 and correcting the results to satisfy this new requirement, we obtain Table
8.13.10-3, which corrects and replaces Table 8.13.10-2.

INTERMEDIATE TABLE 8.13.10-3 Partial Controller Function Table Entries

Arguments Results
Closure LastNot

Person  Door Door Delayls Closable  Motor
State IsNear  IsOpen  IsClosed Exceeded | State Time Power
(n) (n) (n) (n) (n) (+1)  (n+1) (n+1)
closing  true false — — stopped off
opening  true false — — opening on to open
stopped  true false — — opening on to open

If, because of this change, motor power is turned off and the new state becomes
“stopped,” the last line in Table 8.13.10-3 will, in the next time step, set motor
power “on to open” and set the state to “opening,” achieving the same effect as Table
8.13.10-2 would have achieved, but with the effect of avoiding an immediate change
of direction of the motor (unless, of course, some other event arises in the meantime,
causing some other reaction).

The next requirement is:

¢ |f the door is opening and the door sensors indicate that it has reached its open
position, power to the motor should be turned off.
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INTERMEDIATE TABLE 8.13.10-4 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door Door Delayls Closable ~ Motor
State IsNear IsOpen  IsClosed  Exceeded | State Time Power
(n) (n) (n) () (n) (n+1) (n+1) (n+1)
opening — true — — stopped off

The next requirement deals with the corresponding situation on closing:

e If the door is closing and the door sensors indicate that it has reached its closed
position, power to the motor should be turned off.

INTERMEDIATE TABLE 8.13.10-5 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person  Door Door Delayls Closable  Motor
State IsNear IsOpen IsClosed  Exceeded | State Time Power
(n) () (n) () (n) (n+1) (n+1) (n+1)
closing — — true — stopped off

The next requirement defines when the door is to be closed automatically.

e If the door has been open and no person has been detected in the vicinity of
the door for a given period of time (called the closure delay time), the door
controller should close the door.

INTERMEDIATE TABLE 8.13.10-6 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person  Door Door Delayls Closable Motor
State  IsNear  IsOpen IsClosed Exceeded | State Time Power
(n) (n) (n) (n) (n) (+1)  (n+1) (n+1)
— — — — true closing  CurTime(n) onto close

When the closure delay is exceeded, the door will have been open for at least the
closure delay and the motor power will be off. Therefore, the requirement that the
motor direction not be changed immediately does not apply.

Upon starting the motor to close, the door is no longer in a closable state, so
measuring the delay for closing the door automatically must be reset. This is achieved
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by setting the variable LastNotClosableTime(n+1) to the value of CurTime(n), as in
Table 8.13.10-6.

Implied by this requirement is also the need to set the value of the variable
LastNotClosableTime(n+1) in various other situations. This is represented in Table
8.13.10-7 below. [See Sections 8.13.1 and 8.13.5 and the interpretation of the variable
“LastNotClosableTime(n)” in Section 8.13.7 for discussions of the logic for closing
the door automatically]. The first nonheader row in Table 8.13.10-7 represents a
closable state, and the other rows represent nonclosable states. The entry “...(n)” in
a cell of a table means the value of the same variable mentioned in the header but for
time step n, in this case, LastNotClosableTime(n).

INTERMEDIATE TABLE 8.13.10-7 Partial Controller Function Table Entries

Arguments Results
Closure LastNot

Person Door Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded State Time Power
(n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
— false true — — ...(n)
— — false — — CurTime(n)
— true — — — CurTime(n)

The next requirement covers the situation in which the door is closing and someone
approaches the door. Note that another requirement above prohibits changing the
motor direction immediately, so the controller should first turn motor power off and
then, in a second step, turn motor power on to open.

e |If the door is closing and the motion and proximity detectors detect someone
in the vicinity of the door, the controller should open the door. (See Section

8.13.1).
INTERMEDIATE TABLE 8.13.10-8 Partial Controller Function Table Entries
Arguments Results
Closure LastNot

Person  Door Door Delayls Closable  Motor
State IsNear  IsOpen  IsClosed  Exceeded | State Time Power
(n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
closing  true — — — stopped off
stopped  true — — — opening on to open

This completes translating the requirements in the bulleted list in Section 8.13.4.
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The next step is to consolidate the rows in the several tables above into a single
table. Collecting the nonheader rows in Tables 8.13.10-3 through 8.13.10-8 inclusive,

we obtain Table 8.13.10-9.

INTERMEDIATE TABLE 8.13.10-9 Partial Controller Function Table Entries

Arguments Results
Closure LastNot

Person  Door Door Delayls Closable Motor
State IsNear  I1sOpen  IsClosed Exceeded | State Time Power
(n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
closing  true false — — stopped off
opening  true false — — opening on to open
stopped  true false — — opening on to open
opening — true — — stopped off
closing — — true — stopped off
— — — — true closing  CurTime(n) on to close
— false true — — ...(n)
— — false — — CurTime(n)
— true — — — CurTime(n)
closing  true — — — stopped off
stopped  true — — — opening on to open

The state “fault” was discussed briefly earlier but was not included in the require-
ments. Clearly, if the variables DoorlsOpen(n) and DoorlsClosed(n) both have the
value “true,” something is faulty in the door system, and this is an obvious condi-
tion in which the value of State(n+1) should become “fault.” The description of the
door and its control system says nothing about how the system should behave if
this state arises, so at least in this regard the English statement of the requirements
is incomplete. At this point in the construction of the controller function table, we
detect this fault state and turn motor power off to avoid damaging some hardware

component.
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Adding the detection of the fault condition mentioned above, we obtain
Table8.13.10-10.

INTERMEDIATE TABLE 8.13.10-10 Partial Controller Function Table Entries

Arguments Results
Closure LastNot

Person  Door Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded | State Time Power
(n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
closing  true false — — stopped off
opening true false — — opening on to open
stopped  true false — — opening on to open
opening — true — — stopped off
closing — — true — stopped off
— — — — true closing  CurTime(n) on to close
— false true — — ...(n)
— — false — — CurTime(n)
— true — — — CurTime(n)
closing  true — — — stopped off
stopped  true — — — opening on to open
— — true true — fault off

At this point it is desirable to check the table for consistency and complete-
ness. Because of the many entries “—” it is clear that there is overlap of the
conditions covered by some rows; if those rows lead to different values for the
results, inconsistency is present. With the many entries “—” it is not easy to see
whether all possible combinations of arguments are covered by the table. Therefore,
each “—” entry in Table 8.13.10-10 should be expanded. As calculated in Section
8.13.9, the fully expanded table will have 64 nonheader rows. Below, we expand
the table fully and represent it in four parts, one for each value of the variable
“State(n).”
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We begin by expanding the “— entries in the first column. Each row containing
a “—” in the first column will be replaced by four copies, and then the four possible
values of the variable “State(n)” will replace the four “—" entries. In the resulting
Table 8.13.10-11, a box encloses each group of four rows expanded from a single
row.

INTERMEDIATE TABLE 8.13.10-11 Partial Controller Function Table Entries

Arguments Results
Closure LastNot

Person Door Door Delayls Closable Motor
State IsNear IsOpen IsClosed Exceeded | State Time Power
() (n) (n) (n) (n) (n+1)  (n+1) (n+1)
closing  true false — — stopped off
opening true false — — opening on to open
stopped  true false — — opening on to open
opening — true — — stopped off
closing — — true — stopped off
closing — — — true closing  CurTime(n) onto close
opening — — — true closing  CurTime(n) onto close
stopped — — — true closing  CurTime(n) onto close
fault — — — true closing  CurTime(n) onto close
closing false true — — ..(n)
opening false true — — ...(n)
stopped false true — — ...(n)
fault false true — — ...(n)
closing — false — — CurTime(n)
opening — false — — CurTime(n)
stopped — false — — CurTime(n)
fault — false — — CurTime(n)
closing  true — — — CurTime(n)
opening  true — — — CurTime(n)
stopped  true — — — CurTime(n)
fault true — — — CurTime(n)
closing  true — — — stopped off
stopped true — — — opening on to open
closing — true true — fault off
opening — true true — fault off
stopped — true true — fault off
fault — true true — fault off

The sequence of the rows in the table is of no logical significance. Therefore, the
rows in Table 8.13.10-11 can be sorted for viewing convenience. The result is Table
8.13.10-12.
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INTERMEDIATE TABLE 8.13.10-12 Partial Controller Function Table Entries

Arguments Results
Closure LastNot

Person Door Door Delayls Closable Motor
State IsNear IsOpen IsClosed Exceeded | State Time Power
(n) (n) (n) (n) (n) (+1)  (n+1) (n+1)
closing — — — true closing  CurTime(n) on to close
closing — — true — stopped off
closing — false — — CurTime(n)
closing — true true — fault off
closing false true — — ...(n)
closing  true — — — CurTime(n)
closing  true — — — stopped off
closing  true false — — stopped off
fault — — — true closing  CurTime(n) on to close
fault — false — — CurTime(n)
fault — true true — fault off
fault false true — — ...(n)
fault true — — — CurTime(n)
opening — — — true closing  CurTime(n) on to close
opening — false — — CurTime(n)
opening — true — — stopped off
opening — true true — fault off
opening false true — — ...(n)
opening true — — — CurTime(n)
opening true false — — opening on to open
stopped — — — true closing  CurTime(n) on to close
stopped — false — — CurTime(n)
stopped — true true — fault off
stopped false true — — ...(n)
stopped  true — — — CurTime(n)
stopped  true — — — opening on to open
stopped true false — — opening on to open

In Table 8.13.10-12, notice the pairs of rows surrounded by boxes. In each pair
the arguments are the same and the results complement each other; that is, one row
defines the value of LastTimeNotClosable(n+1) and the other row defines the values
for State(n+1) and MotorPower(n+1). The two rows in each pair can be combined
into one row. For convenience, we also divide the table into four parts, one part for
each value of State(n). The resulting four tables, 8.13.10-13 through 8.13.10-16, are
shown below.




SHOPPING MALL DOOR CONTROLLER 325

INTERMEDIATE TABLE 8.13.10-13 Partial Controller Function Table Entries

Arguments Results
Closure LastNot

Person  Door Door Delayls Closable Motor
State  IsNear IsOpen IsClosed Exceeded State Time Power
(M () M (n) (n) (+1)  (n+1) (n+1)
fault — — — true closing CurTime(n) on to close
fault — false — — CurTime(n)
fault — true true — fault off
fault  false true — — ...(n)
fault  true — — — CurTime(n)

As pointed out earlier, the English text is incomplete with regard to handling fault
conditions. The client must be consulted to complete this part of the specification and,
if appropriate, even modify entries in the Fault Table 8.13.10-13. After completing
the other parts of the controller function table we will return to the fault table, assume

certain decisions regarding handling faults, and complete the fault table.

The Closing Table 8.13.10-14 is shown below after combining the two rows with

identical arguments and complementary results.

INTERMEDIATE TABLE 8.13.10-14 Partial Controller Function Table Entries

Arguments Results
Closure LastNot

Person  Door Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded State Time Power
(n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
closing — — — true closing  CurTime(n) onto close
closing — — true — stopped off
closing — false — — CurTime(n)
closing — true true — fault off
closing false true — — ...(n)
closing true — — — stopped CurTime(n) off
closing true false — — stopped off
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The Opening Table 8.13.10-15 is shown below.

INTERMEDIATE TABLE 8.13.10-15 Partial Controller Function Table Entries

Arguments Results
Closure LastNot

Person  Door Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded | State Time Power
(n) (n) (n) (n) (n) (+1)  (n+1) (n+1)
opening — — — true closing  CurTime(n) onto close
opening — false — — CurTime(n)
opening — true — — stopped off
opening — true true — fault off
opening false true — — ...(n)
opening true — — — CurTime(n)
opening true false — — opening on to open

The Stopped Table 8.13.10-16 is shown below after combining the two rows with

identical arguments and complementary results.

INTERMEDIATE TABLE 8.13.10-16 Partial Controller Function Table Entries

Arguments Results
Closure LastNot

Person  Door Door Delayls Closable Motor
State IsNear IsOpen IsClosed Exceeded State Time Power
(n) (n) (n) (n) (n) (n+1)  (+1) (n+1)
stopped — — — true closing  CurTime(n) onto close
stopped — false — — CurTime(n)
stopped — true true — fault off
stopped false true — — ...(n)
stopped  true — — — opening CurTime(n) on to open
stopped  true false — — opening on to open

The three Tables 8.13.10-14 through 8.13.10-16, for the states closing, opening,
and stopped, will now be expanded and sorted to check for consistency and complete-
ness. We begin with the Closing Table 8.13.10-14. Note that the second and third
rows overlap and are complementary, so they can be expanded in order to combine
them. The same applies to the last two rows.

In each of these pairs of rows, the nonmatched “— entries are expanded. Each
row containing a “—” to be expanded is replaced by two copies, and then the two
values false and true replace the two “—" entries (cf. the expansion of rows in Table
8.13.10-10). Finally, the resulting table is sorted, yielding Table 8.13.10-17.
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Partial Controller Function Table Entries

Arguments Results
Closure LastNot

Person  Door Door Delayls Closable Motor
State IsNear IsOpen IsClosed Exceeded | State Time Power
(n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
closing — — — true closing CurTime(n) onto close
closing — false false — CurTime(n)
closing — false true — stopped off
closing — false true — CurTime(n)
closing — true true — stopped off
closing — true true — fault off
closing false true — — ...(n)
closing true false — — stopped CurTime(n) off
closing true false — — stopped off
closing true true — — stopped CurTime(n) off

Notice that the third and fourth rows in Table 8.13.10-17, which are boxed, have
the same arguments and that the results complement each other. Therefore, these two

rows can be combined into one row.

Notice also that the eighth and ninth rows, which are also boxed, have the same
arguments and the same or complementary results. These rows can be combined into

one row.

Applying these two modifications to Table 8.13.10-17 leads to Table 8.13.10-18.

INTERMEDIATE TABLE 8.13.10-18 Partial Controller Function Table Entries

Arguments Results
Closure LastNot

Person  Door Door Delayls Closable Motor
State IsNear IsOpen IsClosed Exceeded | State Time Power
(n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
closing — — — true closing  CurTime(n) onto close
closing — false false — CurTime(n)
closing — false true — stopped CurTime(n) off
closing — true true — stopped off
closing — true true — fault off
closing false true — — ...(n)
closing true false — — stopped CurTime(n) off
closing true true — — stopped CurTime(n) off
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Notice the boxed fourth and fifth rows in Table 8.13.10-18. Their arguments
are the same but their results are different. They are, therefore, inconsistent and
contradictory. Because a true value for both variables DoorlsOpen and DoorlsClosed
clearly indicates a fault in the detectors sensing the door position, we keep the row
with the result “fault” and delete the other row.

The arguments in the first and last rows in Table 8.13.10-18 overlap, but these
rows give different results. Some inconsistency is present. The interaction between
the two requirements regarding closing the door and opening the door automatically
if a person approaches the door while it is closing has not been considered completely
and in sufficient detail. To examine these rows in full detail, the “—” entries in the
“PersonlsNear” and “DoorlsOpen” columns of the first row and the “—” entry in the
“ClosureDelaylsExceeded” column of the last row will be expanded.

Both of the anomalies mentioned above highlight the inadequacy of working
from English descriptions of the requirements. They also highlight the value of a
mathematical analysis in identifying and correcting the following:

e Ambiguities
e Qversights in interpreting English text
e Inconsistencies

The modifications described above lead, after sorting, to Table 8.13.10-19.

INTERMEDIATE TABLE 8.13.10-19 Partial Controller Function Table Entries

Arguments Results
Closure LastNot

Person Door Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded | State Time Power
(n) (n) (n) Q) (n) (+1)  (n+1) (n+1)
closing — false false — CurTime(n)
closing — false true — stopped CurTime(n) off
closing — true true — fault off
closing false false — true closing  CurTime(n) onto close
closing false true — — ...(n)
closing false true — true closing  CurTime(n) onto close
closing true false — — stopped CurTime(n) off
closing true false — true closing  CurTime(n) on to close
closing true true — false stopped CurTime(n) off
closing true true — true stopped CurTime(n) off
closing true true — true closing  CurTime(n) onto close

The last two boxed rows in Table 8.13.10-19 specify different results for the same
argument and are, therefore, inconsistent. When the requirement to close the door
automatically was originally translated into a row in the table, only the condition that
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the closure delay was exceeded was used as the decision criterion. It was overlooked
that a person might approach the door in the same time step that the closure delay was
exceeded when the door was still open but starting to close. In this case, two different
requirements apply simultaneously. Normally in such a case the client should be
asked which requirement has priority over the other, but in this case the need to
open the door for the approaching person can be assumed to take precedence over
closing the door. Then the last row in Table 8.13.10-19 is incorrect and can be deleted
from the table.
The result is Table 8.13.10-20.

INTERMEDIATE TABLE 8.13.10-20 Partial Controller Function Table Entries

Arguments Results
Closure LastNot

Person  Door Door Delayls Closable Motor
State IsNear  IsOpen IsClosed Exceeded | State Time Power
(n) () (n) () (n) (n+1)  (n+1) (n+1)
closing — false false — CurTime(n)
closing — false true — stopped  CurTime(n) off
closing — true true — fault off
closing false false — true closing  CurTime(n) on to close
closing false true — — ...(n)
closing false true — true closing  CurTime(n) on to close
closing true false — — stopped  CurTime(n) off
closing true false — true closing  CurTime(n) on to close
closing true true — false stopped CurTime(n) off
closing true true — true stopped  CurTime(n) off
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In Table 8.13.10-20, other overlapping rows still contain inconsistencies, and two
of the rows give incomplete results. To resolve the remaining deficiencies, we expand
every “—" entry still present, sort the table, and insert row numbers. The result is
Table 8.13.10-21.

INTERMEDIATE TABLE 8.13.10-21 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded | State Time Power
Row | (n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
1 |closing false false  false false CurTime(n)
2 |closing false false  false true closing CurTime(n) on to close
3 |closing false false  false true CurTime(n)
4 |closing false false true false stopped CurTime(n) off
5 |closing false false  true true closing CurTime(n) on to close
6 |closing false false  true true stopped CurTime(n) off
7 |closing false  true false false ...(n)
8 |closing false true false true ...(n)
9 |closing false true false true closing CurTime(n) on to close
10 |closing false  true true false ..(n)
11 |closing false  true true false fault off
12 |closing false true true true ...(n)
13 |closing false true true true closing CurTime(n) on to close
14 | closing false  true true true fault off
15 |closing true false  false false stopped CurTime(n) off
16 |closing true false  false false CurTime(n)
17 | closing  true false  false true stopped CurTime(n) off
18 |closing  true false  false true closing CurTime(n) on to close
19 |closing true false  false true CurTime(n)
20 |closing true false  true false stopped CurTime(n) off
21 |closing true false  true false stopped CurTime(n) off
22 |closing true false  true true stopped CurTime(n) off
23 |closing true false  true true closing CurTime(n) on to close
24 |closing true false  true true stopped CurTime(n) off
25 |closing true true false false stopped CurTime(n) off
26 |closing true true false true stopped CurTime(n) off
27 |closing true true true false stopped CurTime(n) off
28 |closing true true true false fault off
29 |closing true true true true stopped CurTime(n) off
30 |closing true true true true fault off

Row 1isthe only row with its arguments, but its results are incomplete. The English
requirements do not cover this situation in which the door is closing, is neither open
nor closed, and the criteria for closing the door automatically are not met. Presumably
the door should continue to close, so the next state should remain “closing” and the
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motor power should be maintained “on to close.” See the more extensive discussion
below regarding row 1 of Table 8.13.10-30 and the corresponding situation in which
the door is opening and the other arguments are all false.

Rows 2 and 3 have the same arguments and their results are consistent, although
row 3 is incomplete. Row 2 should be retained and row 3 deleted.

Row 4 is the only row with its arguments and its results complete. It should be
retained.

Rows 5 and 6 have the same arguments but give different results. This is another
case for which two of the original English requirements are relevant: the conditions
for automatically closing the door are fulfilled, but the door was closing anyway and
had just reached the closed position. Row 6 is appropriate in order to stop the door
movement because it is in the closed position. Row 5 should be deleted. It might turn
out that the combination State(n)=closing and ClosureDelaylsExceeded(n)=true is
an unreachable state, that is, can never arise, in which case this row would be
irrelevant. At this stage of the design it is inappropriate to make such an assumption.
Also, a malfunction of the system might lead to this state. It should be included in
the analysis and design.

Row 7 is the only row with its arguments and its results incomplete. The English
requirements do not explicitly cover this situation in which the door is closing, the
door is still open, no person is near the door, and the condition for closing the door
automatically is not fulfilled. This situation can arise shortly after the controller
has initiated closing the door automatically but the door has as yet moved so little
that it is still in the open position as detected by the door sensor. Presumably the
door should continue to close, so State(n+1) should have the value *“closing” and
MotorPower(n-+1) should have the value “on to close.”

Rows 8 and 9 have the same arguments but give different results. In addition, the
results in row 8 are incomplete. The different results arise from the coarse form of the
English requirements for closing the door automatically and the interaction between
this requirement and the similarly coarse English formulation of the criterion for
calculating the value of the state variable LastNotClosableTime(n+1). The English
formulations of these requirements do not distinguish between different values of
seemingly irrelevant input variables and in the process of expanding the corresponding
rows, the different values for LastNotClosableTime(n+1) arise. It might turn out that
rows 8 and 9 represent an unreachable state, but for the reasons given in the paragraph
about rows 5 and 6 above, one of them should be included in the table. The question
remains, “if the door is closing, no one is near the door, the door is still sensed as
being open, and the condition for closing the door automatically is fulfilled, what
should the values of the results be?” As in similar situations discussed previously,
the controller should continue closing the door. To effectively reset the timer for
closing the door automatically, the value of LastNotClosableTime(n+1) should be
the current time CurTime(n). Viewed differently but equivalently, the door is, in a
sense, no longer “logically” open, so this situation should be handled in the same
way as in row 2. Row 8 should be deleted and row 9 should be retained.

Rows 10 and 11 have the same arguments and complementary results. These two
rows can be combined into one row.
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Rows 12, 13, and 14 have the same arguments but give different results. In addition,
the results in rows 12 and 14 are incomplete. Both input variables DoorlsOpen(n) and
DoorlsClosed(n) have the value true, indicating a fault condition. These rows should
be combined with, presumably, the same results as for rows 10 and 11.

Rows 15 and 16 have the same arguments and their results are consistent, although
row 16 is incomplete. Row 15 should be retained and row 16 deleted.

Rows 17, 18, and 19 have the same arguments. Rows 17 and 18 give different
results. The results in row 19 are incomplete but consistent with both rows 17 and 18,
so row 19 can be deleted. To choose between row 17 and row 18, consider the current
situation: The door is closing, a person is near the door, the door is neither open nor
closed, and the condition for closing the door automatically is fulfilled. Clearly, the
door should be opened to permit the person to pass. This excludes row 18, which
must be deleted. Because of the requirement that the motor direction may not be
reversed immediately, the controller must first stop the door movement. Thus row 17
gives the appropriate result. (In the following time step the controller will open the
door.) Compare the discussion about rows 5 and 6 above.

Rows 20 and 21 are identical. Either one can be deleted.

Rows 22, 23, and 24 have the same arguments. Rows 22 and 24 give the same
results, but row 23 gives different results. In this situation, the door is closing, a
person is near the door, the door is closed (has just reached the closed position) and
the condition for closing the door automatically is (has just become) fulfilled. Clearly,
the door should be opened to permit the person to pass, but because of the requirement
that the motor direction may not be reversed immediately, the controller must first
stop the door movement. Thus the identical rows 22 and 24 give the appropriate
result. Either row 22 or row 24 can be deleted, and row 23 must be deleted. This
situation is comparable to other situations discussed above.

Row 25 is the only row with its arguments and its results are complete. It should
be retained.

Row 26 is the only row with its arguments and its results are complete. It should
be retained.

Rows 27 and 28 have the same arguments but give different results. Both in-
put variables DoorlsOpen(n) and DoorlsClosed(n) have the value true, indicat-
ing a fault condition. Row 27 gives CurTime(n) as the value of the variable
LastNotClosableTime(n+1), while row 28 has no entry for this value, so we will
take CurTime(n). Furthermore, accepting this value effectively disables automatic
door closing for the next door closure delay, which seems to be the safer option in
this fault condition. Both rows 27 and 28 give off as the value of MotorPower(n+1).
As mentioned earlier, the subject of the fault state must be reexamined because the
English requirements for handling faults are incomplete.

Rows 29 and 30 have the same arguments but give different results. Both input
variables DoorlsOpen(n) and DoorlsClosed(n) have the value true, indicating a fault
condition. See the comments above regarding rows 27 and 28.

After applying the modifications described above, the final table for the state
“closing” is Table 8.13.10-22.
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INTERMEDIATE TABLE 8.13.10-22 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1) (n+1) (n+1)
1 | closing false false false false closing CurTime(n) on to close
2 | closing false false false true closing CurTime(n) on to close
4 |closing false false  true false stopped CurTime(n) off
6 | closing false false  true true stopped CurTime(n) off
7 | closing false true false false closing ...(n) on to close
9 | closing false true false true closing CurTime(n) on to close
11 | closing false  true true false fault ...(n) off
14 | closing false  true true true fault ...(n) off
15 | closing  true false false false stopped CurTime(n) off
17 | closing  true false false true stopped CurTime(n) off
21 | closing true false  true false stopped CurTime(n) off
24 | closing true false  true true stopped CurTime(n) off
25 | closing true true false false stopped CurTime(n) off
26 | closing true true false true stopped CurTime(n) off
28 | closing true true true false fault CurTime(n) off
30 | closing true true true true fault CurTime(n) off

Table 8.13.10-22 above contains 16 data rows. It contains all possible combinations
of values for the arguments PersonlsNear(n), DoorlsOpen(n), DoorlsClosed(n), and
ClosureDelaylsExceeded(n). It is, therefore, complete for the state “closing.”

The reader should examine carefully the structure of Table 8.13.10-22. In the
column for PersonlsNear(n), the first eight data rows contain the value false and the
last eight rows, the value true. In the next column, for DoorlsOpen(n), the first four
data rows contain the value false; the next four rows, the value true; the next four
rows, the value false; and the last four rows, the value true; that is, the values false
and true alternate in groups of four each. In the column for DoorlsClosed(n), the
values false and true alternate in groups of two each. In the last argument column,
for ClosureDelaylsExceeded(n), the values false and true alternate. This pattern
makes it particularly easy to verify visually that all combinations of values for these
arguments are included in the table. If any combination of values for these arguments
were missing, it would be clearly visible which was missing. If any combination of
values were present more than once, this situation would also be clearly visible.

Next, Table 8.13.10-15 for the state “opening” will be fully expanded and modified
as necessary, as was done for the closing table above. Here, however, the table entries
will be expanded column by column. This procedure is more systematic than the one
followed above but will still avoid the extremely long table that would result if the
table were initially expanded fully on all columns at once.
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The Opening Table 8.13.10-15 is repeated here as Table 8.13.10-23.

INTERMEDIATE TABLE 8.13.10-23 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person  Door Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded State Time Power
(n) (n) (n) (n) (M) (+1)  (n+1) (n+1)
opening — — — true closing  CurTime(n) onto close
opening — false — — CurTime(n)
opening — true — — stopped off
opening — true true — fault off
opening false true — — ...(n)
opening true — — — CurTime(n)
opening true false — — opening on to open
We begin by expanding the entries with “—” in the column for the argument

PersonlsNear(n). Sorting the table and adding a column for row numbers results in
Table 8.13.10-24.

INTERMEDIATE TABLE 8.13.10-24 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear IsOpen IsClosed Exceeded | State Time Power
Row | (n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
1 | opening false — — true closing CurTime(n) on to close
2 | opening false  false — — CurTime(n)
3 | opening false  true — — stopped off
4 | opening false  true — — ...(n)
5 | opening false  true true — fault off
6 | opening true — — true closing CurTime(n) on to close
7 | opening true — — — CurTime(n)
8 | opening true false — — CurTime(n)
9 | opening true false  — — opening on to open
10 | opening true true — — stopped off
11 | opening true true true — fault off

In Table 8.13.10-24, rows 3 and 4 have the same arguments and complementary
results. These two rows can be combined.

Rows 8 and 9 have the same arguments and complementary results. These two
rows can be combined.
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The result is Table 8.13.10-25.

INTERMEDIATE TABLE 8.13.10-25 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded | State Time Power
Row | (n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
1 | opening false — — true closing CurTime(n) on to close
2 | opening false  false — — CurTime(n)
3 | opening false  true — — stopped ...(n) off
5 | opening false  true true — fault off
6 | opening true — — true closing CurTime(n) on to close
7 | opening true — — — CurTime(n)
9 | opening true false  — — opening CurTime(n) on to open
10 | opening true true — — stopped off
11 | opening true true true — fault off
Next, the “—” entries in the row for the argument DoorlsOpen(n) are expanded.

After sorting and reassigning the row numbers we obtain Table 8.13.10-26.

INTERMEDIATE TABLE 8.13.10-26 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear IsOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1) (n+1) (n+1)
1 | opening false false — — — CurTime(n)
2 | opening false false —— true closing CurTime(n) onto close
3 | opening false true — — stopped ...(n) off
4 | opening false  true — true closing CurTime(n) on to close
5 | opening false true true — fault off
6 | opening true false  — — CurTime(n)
7 | opening true false — — opening CurTime(n) on to open
8 | opening true false  — true closing CurTime(n) on to close
9 | opening true true — — CurTime(n)
10 | opening true true — — stopped off
11 | opening true true — true closing CurTime(n) on to close
12 | opening true true true — fault off

In Table 8.13.10-26, rows 6 and 7 have the same arguments. The results in row
6 are incomplete but consistent with the results in row 7. Row 6 can be deleted and
row 7 retained.

Rows 9 and 10 have the same arguments and complementary results. These rows
can be combined. The result is Table 8.13.10-27.
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INTERMEDIATE TABLE 8.13.10-27 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1IsOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1) (n+1) (n+1)
1 |opening false false —— — CurTime(n)
2 | opening false false  — true closing CurTime(n) on to close
3 | opening false true — — stopped ...(n) off
4 | opening false true — true closing CurTime(n) on to close
5 | opening false true true — fault off
7 | opening true false  — — opening CurTime(n) on to open
8 | opening true false — true closing CurTime(n) on to close
10 | opening true true — — stopped CurTime(n) off
11 | opening true true — true closing CurTime(n) on to close
12 | opening true true true — fault off

Next, we repeat the process above by expanding the “—

” entries in the column for

DoorlsClosed(n). After sorting and reassigning the row numbers, the result is Table
8.13.10-28.

INTERMEDIATE TABLE 8.13.10-28 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1IsOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1) (n+1) (n+1)
1 |opening false false  false — CurTime(n)
2 | opening false false  false true closing CurTime(n) on to close
3 | opening false false  true — CurTime(n)
4 | opening false false  true true closing CurTime(n) on to close
5 |opening false true false — stopped ...(n) off
6 | opening false true false true closing CurTime(n) on to close
7 | opening false true true — stopped ...(n) off
8 | opening false true true — fault off
9 | opening false true true true closing CurTime(n) on to close
10 | opening true false  false — opening CurTime(n) on to open
11 | opening true false  false true closing CurTime(n) on to close
12 | opening true false  true — opening CurTime(n) on to open
13 | opening true false  true true closing CurTime(n) on to close
14 | opening true true false — stopped CurTime(n) off
15 | opening true true false true closing CurTime(n) on to close
16 | opening true true true — stopped CurTime(n) off
17 | opening true true true — fault off
18 | opening true true true true closing CurTime(n) on to close
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In Table 8.13.10-28, rows 7 and 8 have the same arguments but give different
results. In this situation, both the arguments DoorlsOpen(n) and DoorlsClosed(n)
have the value true, indicating a fault in the subsystem sensing the position of the
door. Rows 7 and 8 can be combined, taking the values from row 8 where the two
rows conflict.

Rows 16 and 17 have the same arguments but give different results. In this situ-
ation, both the arguments DoorlsOpen(n) and DoorlsClosed(n) have the value true,
indicating a fault in the subsystem sensing the position of the door. As in the case of
rows 7 and 8 above, rows 16 and 17 can be combined, taking the values from row 17,
where the two rows conflict.

The result is Table 8.13.10-29.

INTERMEDIATE TABLE 8.13.10-29 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear IsOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1) (n+1) (n+1)
1 |opening false false  false — CurTime(n)
2 | opening false false false true closing CurTime(n) on to close
3 | opening false false  true — CurTime(n)
4 | opening false false  true true closing CurTime(n) on to close
5 | opening false true false — stopped ...(n) off
6 | opening false true false true closing CurTime(n) on to close
8 | opening false  true true — fault ...(n) off
9 | opening false true true true closing CurTime(n) on to close
10 | opening true false false — opening CurTime(n) on to open
11 | opening true false false true closing CurTime(n) on to close
12 | opening true false  true — opening CurTime(n) on to open
13 | opening true false true true closing CurTime(n) on to close
14 | opening true true false — stopped CurTime(n) off
15 | opening true true false true closing CurTime(n) on to close
17 | opening true true true — fault CurTime(n) off
18 | opening true true true true closing CurTime(n) on to close
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Next, we expand the “—" entries in the last column of the arguments. After sorting
and reassigning the row numbers, we obtain Table 8.13.10-30.

INTERMEDIATE TABLE 8.13.10-30 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
1 | opening false false  false false CurTime(n)
2 | opening false false  false true CurTime(n)
3 | opening false false  false true closing CurTime(n) on to close
4 | opening false false  true false CurTime(n)
5 | opening false false  true true CurTime(n)
6 | opening false false  true true closing CurTime(n) on to close
7 | opening false true false false stopped ...(n) off
8 | opening false true false true stopped ...(n) off
9 | opening false true false true closing CurTime(n) on to close
10 | opening false true true false fault ...(n) off
11 | opening false  true true true fault ...(n) off
12 | opening false  true true true closing CurTime(n) on to close
13 | opening true false  false false opening CurTime(n) on to open
14 | opening true false  false true opening CurTime(n) on to open
15 | opening true false  false true closing CurTime(n) on to close
16 | opening true false  true false opening CurTime(n) on to open
17 | opening true false true true opening CurTime(n) on to open
18 | opening true false  true true closing CurTime(n) on to close
19 | opening true true false false stopped CurTime(n) off
20 | opening true true false true stopped CurTime(n) off
21 | opening true true false true closing CurTime(n) on to close
22 | opening true true true false fault CurTime(n) off
23 | opening true true true true fault CurTime(n) off
24 | opening true true true true closing CurTime(n) on to close

In Table 8.13.10-30, row 1 is the only row with its arguments, but its results
are incomplete. The English requirements were incomplete in the sense that they
did not state that if already opening, the door should continue opening unless some
stated requirement gives a reason to stop opening the door. This is an example
of incomplete English statements of requirements, arising in this case at least par-
tially because of the linguistic difference between English, which permits expressing
action and changes, and the Language of Mathematics, which does not permit ex-
pressing action and changes, but only static relationships. Therefore, the results of
row 1 should be completed to continue opening the door. Compare the situation in
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Table 8.13.10-21, in which the door is closing and all other arguments have the value
false.

Rows 2 and 3 have the same arguments. The results in row 2 are incomplete but
consistent with the results in row 3. Row 2 can be deleted. However, row 3 calls
for the motor direction to be reversed immediately, in violation of the requirement
that this not happen. When that requirement was translated into a row in the table, it
was argued that the door must still be open; otherwise, the condition for closing the
door automatically would not be satisfied. Presumably this state is unreachable, but
in case some fault results in it arising, the motor power should not be reversed. The
next state should be either opening or stopped, not closing. The door could be left
in its opening state. In any event, this row in the table should be noted for a detailed
analysis after the entire table is complete. The desired behavior of the system in this
and other comparable situations (see below) should be discussed with the client for
whom the door controller is being designed.

It has been assumed implicitly that the time between controller steps is much
smaller than the closure delay. One should analyze the behavior of the completed
table to determine whether a violation of this implicit assumption could enable the
situation in row 3 to arise. In any case, this assumption should be written explicitly
into the specifications for the door controller—both the English and mathematical
versions.

Here we replace the results in row 3 to continue opening the door.

Row 4 is the only row with its arguments, but its results are incomplete. In this
situation, the door is opening (has just started to open) but is still in a position
sensed as closed. This is another example of the incomplete English requirements as
discussed with regard to row 1. The results of row 4 should be completed so that the
door continues to open.

Rows 5 and 6 have the same arguments. The results in row 5 are incomplete but
consistent with the results in row 6. Row 5 can be deleted. However, row 6 calls for
the motor direction to be reversed immediately, in violation of the requirement that
this not be done. This state is presumably unreachable (see the discussion about rows
2 and 3 above). The door could be left in its opening state or stopped. If stopped, the
door might travel beyond the positions sensed as closed, and left neither closed nor
open. If this alternative is chosen, the stopped table should be reviewed to ensure that
the door is never left stopped and partially open (i.e., neither open nor closed). Here
we choose to continue to open the door, but note that this situation should be further
analyzed and discussed with the client.

Row 7 is the only row with its arguments and is complete.

Rows 8 and 9 have the same arguments but give different results. Row 9 calls for
reversing the motor direction immediately, violating one of the requirements. Row
9 can bhe deleted. Row 8 represents the situation in which the door is opening, has
just reached the open position and the condition for closing the door automatically
is satisfied. This is unrealistic and presumably represents an unreachable state. In
any case, stopping door movement is appropriate because the door has reached its
open position. Automatic closure will be initiated in the next time step because the
condition for closing the door automatically will still be satisfied.
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Row 10 is the only row with its arguments. It represents a fault condition. The
English requirements are incomplete regarding the fault state. Row 10 should be
retained as is.

Rows 11 and 12 have the same arguments but give different results. This situation
clearly represents a fault condition, so row 11 should be retained and row 12 deleted.

Row 13 is the only row with its arguments and is complete.

Rows 14 and 15 have the same arguments but give different results. The condition
for closing the door automatically is fulfilled even though the door is not in its
open position. As in similar situations discussed above, this state is presumably
unreachable. Row 15 calls for reversing the motor direction immediately in violation
of one of the English requirements, so row 15 should be deleted. Because a person is
near the door, row 14 should be retained so that the door will continue opening.

Row 16 is the only row with its arguments and is complete.

Rows 17 and 18 have the same arguments but give different results. This situation
is similar to that of rows 14 and 15 above. For the same reasons as given in the
discussion of rows 14 and 15, row 17 should be retained. Row 18 should be deleted.

Row 19 is the only row with its arguments and is complete.

Rows 20 and 21 have the same arguments but give different results. This state, in
which the condition for closing the door automatically is fulfilled although the door
is still opening, is presumably unreachable. Row 21 calls for reversing the motor
direction immediately in violation of one of the English requirements, so row 21
should be deleted. Row 20, which stops door movement, should be retained, because
the door has just reached its open position and because a person is near the door.

Row 22 is the only row with its arguments. It represents a fault condition. The
English requirements are incomplete regarding the fault state. Row 22 should be
retained as is.

Rows 23 and 24 have the same arguments but give different results. This situation
is similar to that of rows 11 and 12 above and represents a fault condition. Row 23
should be retained and row 24, deleted.
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After applying the modifications described above, the resulting final table for the
state “opening” is Table 8.13.10-31.

INTERMEDIATE TABLE 8.13.10-31 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
1 | opening false false false false opening CurTime(n) on to open
3 | opening false false false true opening CurTime(n) on to open
4 | opening false false  true false opening CurTime(n) on to open
6 |opening false false  true true opening CurTime(n) on to open
7 | opening false true false false stopped ...(n) off
8 | opening false true false true stopped ...(n) off
10 | opening false  true true false fault ...(n) off
11 | opening false  true true true fault ...(n) off
13 | opening true false false false opening CurTime(n) on to open
14 | opening true false false true opening CurTime(n) on to open
16 | opening true false  true false opening CurTime(n) on to open
17 | opening true false  true true opening CurTime(n) on to open
19 | opening true true false false stopped CurTime(n) off
20 | opening true true false true stopped CurTime(n) off
22 | opening true true true false fault CurTime(n) off
23 | opening true true true true fault CurTime(n) off

Table 8.13.10-31 contains 16 data rows. It contains all possible combinations
of values for the arguments PersonisNear(n), DoorlsOpen(n), DoorlsClosed(n), and
ClosureDelaylsExceeded(n). It is, therefore, complete for the state “opening.” Note
that it has the same structure as the Final Table 8.13.10-22 for the state “closing” (see
above).

Next, Table 8.13.10-16 for the state “stopped” will be fully expanded and modified
as necessary in the same way as for the opening table above. The table entries will
be expanded column by column. In the case of the opening table above, the entries
were expanded beginning with the leftmost column, proceeding column by column
to the right. This is not necessary; the columns can be expanded in any order.
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Stopped Table 8.13.10-16 is repeated as Table 8.13.10-32.

INTERMEDIATE TABLE 8.13.10-32 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person  Door Door Delayls Closable Motor
State IsNear IsOpen IsClosed  Exceeded | State Time Power
(n) (n) (n) (n) (n) (+1)  (n+1) (n+1)
stopped — — — true closing  CurTime(n) on to close
stopped — false — — CurTime(n)
stopped — true true — fault off
stopped false true — — ...(n)
stopped true — — — opening CurTime(n) on to open
stopped true false — — opening on to open
We begin by expanding the entries with “—” in the column for the argument
DoorlsOpen(n). Sorting the table and adding a column for row numbers yields Table
8.13.10-33.

INTERMEDIATE TABLE 8.13.10-33 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1IsOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1) (n+1) (n+1)
1 stopped — false — — CurTime(n)
2 stopped — false — true closing CurTime(n) on to close
3 stopped — true — true closing CurTime(n) on to close
4 stopped — true true — fault off
5 stopped false  true — — ...(n)
6 stopped  true false  — — opening CurTime(n) on to open
7 stopped  true false — — opening on to open
8 stopped  true true — — opening CurTime(n) on to open

In Table 8.13.10-33, rows 6 and 7 have the same arguments and complementary re-
sults. Row 6, with its complete results, should be retained. Row 7, with its incomplete
results, can be deleted.
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INTERMEDIATE TABLE 8.13.10-34 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1) (n+1) (n+1)
1 stopped — false  — — CurTime(n)
2 stopped — false  — true closing CurTime(n) on to close
3 stopped — true — true closing CurTime(n) on to close
4 stopped — true true — fault off
5 stopped false  true — — ...(n)
6 stopped  true false  — — opening CurTime(n) on to open
8 stopped  true true — — opening CurTime(n) on to open
Next, we expand the “—” entries in the column for PersonlsNear(n). After sorting

and reassigning the row numbers, the result is Table 8.13.10-35.

INTERMEDIATE TABLE 8.13.10-35 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear IsOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1) (n+1) (n+1)
1 |stopped false false  — — CurTime(n)
2 |stopped false false — — true closing CurTime(n) on to close
3 |stopped false true — — ...(n)
4 | stopped false true — true closing CurTime(n) on to close
5 |stopped false true true — fault off
6 |stopped true false — — CurTime(n)
7 | stopped true false  — — opening CurTime(n) on to open
8 | stopped true false  — true closing CurTime(n) on to close
9 |stopped true true — — opening CurTime(n) on to open
10 | stopped true true — true closing CurTime(n) on to close
11 | stopped true true true — fault off

In Table 8.13.10-35 rows 6 and 7 have the same arguments and consistent results.
Row 6, with incomplete results, can be deleted. Row 7, with complete results, should
be retained.
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The result is Table 8.13.10-36.

INTERMEDIATE TABLE 8.13.10-36 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear IsOpen IsClosed Exceeded | State Time Power
Row | (n) (n) (n) (n) (n) (n+1) (n+1) (n+1)
1 |stopped false false —— — CurTime(n)
2 |stopped false false — — true closing CurTime(n) on to close
3 |stopped false true — — ..(n)
4 |stopped false true — true closing CurTime(n) on to close
5 |stopped false true true — fault off
7 | stopped true false — — opening CurTime(n) on to open
8 |stopped true false — true closing CurTime(n) on to close
9 |stopped true true — — opening CurTime(n) on to open
10 | stopped true true — true closing CurTime(n) on to close
11 | stopped true true true — fault off
Next, we expand the “—" entries in the column for ClosureDelaylsExceeded(n).

After sorting and reassigning the row numbers, we obtain Table 8.13.10-37.

INTERMEDIATE TABLE 8.13.10-37 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1) (n+1) (n+1)
1 |stopped false false —— false CurTime(n)
2 |stopped false false — — true CurTime(n)
3 |stopped false false — — true closing CurTime(n) on to close
4 |stopped false  true — false ...(n)
5 |stopped false true — true ...(n)
6 |stopped false true — true closing CurTime(n) on to close
7 |stopped false true true false fault off
8 |stopped false  true true true fault off
9 |stopped true false  — false opening CurTime(n) on to open
10 | stopped true false — true opening CurTime(n) on to open
11 | stopped true false — true closing CurTime(n) on to close
12 | stopped true true — false opening CurTime(n) on to open
13 | stopped true true — true opening CurTime(n) on to open
14 | stopped true true — true closing CurTime(n) on to close
15 | stopped true true true false fault off
16 | stopped true true true true fault off
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In Table 8.13.10-37, rows 2 and 3 have the same arguments and consistent results.
The results in row 3 are complete, so row 3 should be retained. Row 2 can be deleted.

Row 4 is the only row with its arguments. Its results are incomplete. The door is
stopped in the open position, no person is near the door, and the closure delay is not
yet exceeded. The door should remain stopped. This is another example of an implied
requirement: In the absence of any reason to do otherwise, the current status should
be continued. Therefore, the door should remain in the stopped state unless the door
is sensed as also being closed, a fault condition that will be noticed later after the
“—" entries in the DoorlsClosed(n) column are expanded.

Rows 5 and 6 have the same arguments but different results. Because the closure
delay is exceeded, the door should be closed, as called for in row 6. Row 6 should be
retained. Row 5 can be deleted.

Row 7 is the only row with its arguments. Its results are incomplete because the
English requirements for a fault condition are incomplete. Row 7 should be retained.

Row 8 is the only row with its arguments. As in the case of row 7, the results in
row 8 are incomplete. Row 8 should be retained.

Row 9 is the only row with its arguments. Its results are complete. Row 9 should
be retained.

Rows 10 and 11 have the same arguments but different results. In this example,
two different English requirements contradict each other, one to open the door for
a person approaching the door, and the other to close the door automatically when
the closure delay has elapsed. Presumably the first of these two requirements should
have priority, so row 10 should be retained. Row 11 should be deleted.

Row 12 is the only row with its arguments. Its results are complete. However, note
that it calls for opening the door when the door is already in its open position. The
door should be left in the open position in the state “stopped.” This error arose above
when the last English requirement was translated into the initial table entries. The
English requirement called for opening the door when it was closing and a person
approached the door. Because of the other requirement that the motor direction may
not be reversed immediately, table entries were formulated that first stopped the door
and then opened it, with the door position as a “don’t care” condition. One cannot
say that the translation is wrong, because nowhere do the English requirements
state that the motor may not be turned on to open the door when it is already open.
Such “obvious” but unstated comments are a common cause of misunderstanding
in communication in general. They can and do give rise to critical, costly, and even
dangerous errors in designing technical artifacts of all kinds. Translating into the ex-
acting and very detailed Language of Mathematics and then reviewing the translation
helps considerably to identify such oversights and then to correct the resulting errors.

Rows 13 and 14 have the same arguments but different results. These two rows
are similar to rows 10 and 11 and result from two different English requirements.
Presumably the door should be left open for the person approaching the door and
not closed because the closure time has elapsed. Row 13 should be modified to leave
the door stopped and open (see the discussion of row 12 above). Row 14 should be
deleted.
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Row 15 is the only row with its arguments. Its results are incomplete because the
English requirements for a fault condition are incomplete. Row 15 should be retained.
Row 16 is the only row with its arguments. Its results are incomplete because the
English requirements for a fault condition are incomplete. Row 16 should be retained.
The result is Table 8.13.10-38.

INTERMEDIATE TABLE 8.13.10-38 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1) (n+1) (n+1)
1 |stopped false false — — false CurTime(n)
3 |stopped false false — — true closing CurTime(n) on to close
4 |stopped false  true — false stopped ...(n) off
6 |stopped false true — true closing CurTime(n) on to close
7 |stopped false true true false fault off
8 |stopped false  true true true fault off
9 |stopped true false  — false opening CurTime(n) on to open
10 | stopped true false  — true opening CurTime(n) on to open
12 | stopped true true — false stopped CurTime(n) off
13 | stopped true true — true stopped CurTime(n) off
15 | stopped true true true false fault off
16 | stopped true true true true fault off
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Next, we expand the “—" entries in the column for DoorlsClosed(n). After sorting
and reassigning the row numbers, we obtain Table 8.13.10-39.

INTERMEDIATE TABLE 8.13.10-39 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded| State Time Power
Row | (n) (n (n) (n) (n) (n+1)  (n+1) (n+1)
1 |stopped false false false false CurTime(n)
2 |stopped false false false true closing CurTime(n) on to close
3 |stopped false false  true false CurTime(n)
4 |stopped false false true true closing CurTime(n) on to close
5 |stopped false true false false stopped ...(n) off
6 |stopped false true false true closing CurTime(n) on to close
7 |stopped false true true false stopped ...(n) off
8 |stopped false true true false fault off
9 |stopped false true true true closing CurTime(n) on to close
10 |stopped false  true true true fault off
11 | stopped true false false false opening CurTime(n) on to open
12 | stopped true false false true opening CurTime(n) on to open
13 | stopped true false  true false opening CurTime(n) on to open
14 | stopped true false  true true opening CurTime(n) on to open
15 |stopped true true false false stopped CurTime(n) off
16 | stopped true true false true stopped CurTime(n) off
17 | stopped true true true false stopped CurTime(n) off
18 | stopped true true true false fault off
19 | stopped true true true true stopped CurTime(n) off
20 |stopped true true true true fault off

In Table 8.13.10-39, row 1 is the only row with its arguments, but its results are
incomplete. The door is stopped between its open and closed positions, no person is
near the door and the condition for closing the door automatically is not met. The
English requirements do not state what should be done in this situation. This situation
would seem to be unusual, but it could conceivably be reached. For example, if the
door is stopped before reversing the motor direction for a person near the door but
in the meantime the person has left, what should the door controller do? In principle
any of the three alternatives is feasible: leave the door stopped, open it, or close it.
Here we choose to close the door, but note that this question must be raised with the
client.

Row 2 is the only row with its arguments. Its results are complete. Row 2 should
be retained.

Row 3 is the only row with its arguments, but its results are incomplete. The door
is closed and stopped. Because no person is near the door, there is no reason to open
it. This is another example of a situation in which the status quo should presumably
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be maintained: that is, of a presumed and implied requirement that in the absence of
a reason to do otherwise, the current situation should be maintained.

Row 4 is the only row with its arguments. Its results are complete. However, the
next state is inappropriate. The door is sensed as being closed, so the controller should
not turn motor power on to close the door. The door should remain in the stopped state.
This row resulted from the translation of the coarse condition for closing the door, in
which only the closure delay was considered, and the other conditions neglected (see
Table 8.13.10-6; see also the discussion about rows 5 and 6 in Table 8.13.10-21).

Row 5 is the only row with its arguments. Its results are complete. Row 5 should
be retained.

Row 6 is the only row with its arguments. Its results are complete. Row 6 should
be retained.

Rows 7 and 8 have the same arguments but give different results. The door is sensed
as being both open and closed, indicating a fault. Rows 7 and 8 can be combined,
taking results from row 8 where they are inconsistent.

Rows 9 and 10 have the same arguments but give different results. The door is
sensed as being both open and closed, indicating a fault. Rows 9 and 10 can be
combined, taking results from row 10 where they are inconsistent.

Row 11 is the only row with its arguments. Its results are complete. Row 11 should
be retained.

Row 12 is the only row with its arguments. Its results are complete. Row 12 should
be retained.

Row 13 is the only row with its arguments. Its results are complete. Row 13 should
be retained.

Row 14 is the only row with its arguments. Its results are complete. Row 14 should
be retained.

Row 15 is the only row with its arguments. Its results are complete. Row 15 should
be retained.

Row 16 is the only row with its arguments. Its results are complete. Row 16 should
be retained.

Rows 17 and 18 have the same arguments but give different results. The door is
sensed as being both open and closed, indicating a fault. Rows 17 and 18 can be
combined, taking results from row 18 where they are inconsistent.

Rows 19 and 20 have the same arguments but give different results. The door is
sensed as being both open and closed, indicating a fault. Rows 19 and 20 can be
combined, taking results from row 20 where they are inconsistent.
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The result is Table 8.13.10-40.

INTERMEDIATE TABLE 8.13.10-40 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
1 |stopped false false false false closing CurTime(n) on to close
2 |stopped false false false true closing CurTime(n) on to close
3 |stopped false false  true false stopped CurTime(n) off
4 | stopped false false true true stopped CurTime(n) off
5 |stopped false true false false stopped ...(n) off
6 |stopped false true false true closing CurTime(n) on to close
8 |stopped false true true false fault ...(n) off
10 |stopped false true true true fault CurTime(n) off
11 | stopped true false false false opening CurTime(n) on to open
12 | stopped true false false true opening CurTime(n) on to open
13 |[stopped true false true false opening CurTime(n) on to open
14 | stopped true false true true opening CurTime(n) on to open
15 | stopped true true false false stopped CurTime(n) off
16 | stopped true true false true stopped CurTime(n) off
18 |stopped true true true false fault CurTime(n) off
20 |stopped true true true true fault CurTime(n) off

Table 8.13.10-40 contains 16 data rows. It contains all possible combinations
of values for the arguments PersonlsNear(n), DoorlsOpen(n), DoorlsClosed(n), and
ClosureDelaylsExceeded(n). It is, therefore, complete for the state “stopped.” Note
that it has the same structure as the Final Tables 8.13.10-22 and 8.13.10-31 for the
states “closing” and “opening,” respectively.

Table 8.13.10-13 for the state “fault” must still be expanded and completed in a
similar way. The English description of the desired reactions to the various inputs is,
as already identified and stated, incomplete. One fundamental decision to be made
by the designers and clients is whether or not the controller should attempt to recover
from a fault condition, that is, what the controller should do when in the fault state the
values of the position variables DoorlsOpen(n) and DoorlsClosed(n) are consistent
(not both true). One possibility is to remain in the fault state, while the other possibility
is to continue in one of the other states opening, closing, or stopped. For the purposes
of completing this example, we choose the latter strategy (i.e., to recover from the
fault state when possible). In a real situation this may or may not be the best choice.
In any event, some indication should be made to the maintenance group, indicating
that a fault has occurred and the type of fault.

Table 8.13.10-13 for the state “fault” is repeated as Table 8.13.10-41. It will be
expanded and completed in the same manner as the other tables above.
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INTERMEDIATE TABLE 8.13.10-41 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person  Door Door Delayls Closable Motor
State  IsNear IsOpen IsClosed Exceeded | State Time Power
(n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
fault — — — true closing  CurTime(n) onto close
fault — false — — CurTime(n)
fault — true true — fault off
fault  false true — — ...(n)
fault  true — — — CurTime(n)
We begin by expanding the entries with “—” in the column for the argument
DoorlsOpen(n). Sorting the table and adding a column for row numbers yields Table
8.13.10-42.

INTERMEDIATE TABLE 8.13.10-42 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1IsOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
1 fault — false — — CurTime(n)
2 fault — false — true closing CurTime(n) on to close
3 fault — true — true closing CurTime(n) on to close
4 fault — true true — fault off
5 fault false  true — — ...(n)
6 fault true false  — — CurTime(n)
7 fault true true — — CurTime(n)

In Table 8.13.10-42, every row has different arguments, so no rows can be com-
bined, changed, or deleted.
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Next, we expand the “—” entries in the column for PersonlsNear(n). After sorting
and reassigning the row numbers, the result is Table 8.13.10-43.

INTERMEDIATE TABLE 8.13.10-43 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
1 | fault false false  — — CurTime(n)
2 | fault false false  — true closing CurTime(n) on to close
3 | fault false  true — — ...(n)
4 | fault false  true — true closing CurTime(n) on to close
5 | fault false  true true — fault off
6 | fault true false  — — CurTime(n)
7 | fault true false  — — CurTime(n)
8 | fault true false  — true closing CurTime(n) on to close
9 | fault true true — — CurTime(n)
10 | fault true true — true closing CurTime(n) on to close
11 | fault true true true — fault off

Rows 6 and 7 are identical, so row 7 can be deleted.
The result is Table 8.13.10-44.

INTERMEDIATE TABLE 8.13.10-44 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1) (n+1) (n+1)
1 | fault false false  — — CurTime(n)
2 | fault false false  — true closing CurTime(n) on to close
3 | fault false  true — — ...(n)
4 | fault false  true — true closing CurTime(n) on to close
5 | fault false  true true — fault off
6 | fault true false — — CurTime(n)
8 | fault true false  — true closing CurTime(n) on to close
9 |fault true true — — CurTime(n)
10 | fault true true — true closing CurTime(n) on to close
11 | fault true true true — fault off

Next, we expand the “—

" entries in the column for ClosureDelaylsExceeded(n).
After sorting and reassigning the row numbers, the result is Table 8.13.10-45.
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INTERMEDIATE TABLE 8.13.10-45 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1IsOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1) (n+1) (n+1)
1 | fault false false — false CurTime(n)
2 | fault false false  — true CurTime(n)
3 | fault false  false  — true closing CurTime(n) on to close
4 | fault false  true — false ...(n)
5 | fault false  true — true ...(n)
6 | fault false  true — true closing CurTime(n) on to close
7 | fault false  true true false fault off
8 | fault false  true true true fault off
9 |fault true false  — false CurTime(n)
10 | fault true false — true CurTime(n)
11 | fault true false — true closing CurTime(n) on to close
12 | fault true true — false CurTime(n)
13 | fault true true — true CurTime(n)
14 | fault true true — true closing CurTime(n) on to close
15 | fault true true true false fault off
16 | fault true true true true fault off

In Table 8.13.10-45, rows 2 and 3 have the same arguments and compatible results.
Row 2 can be deleted.

Rows 5 and 6 have the same arguments but different results for
LastNotClosableTime(n+1). In this situation, no one is near the door, the door
is open, and the closure delay is exceeded. In the fault state, motor power is
off, so closing the door can be initiated. (That motor power is off in the fault
state can be seen from the results columns in all the tables; this is also a theo-
rem about the behavior of the controller that can easily be proved after the entire
table has been constructed.) Then, the door is no longer in a closable state, so
LastNotClosableTime(n+1) should be CurTime(n). Therefore, row 6 should be re-
tained and row 5, deleted. This is a situation in which the English requirements
are inconsistent: Because the door is open and no one is near the door, the door
is closable, and one requirement implies that LastNotClosableTime(n+1) should be
LastNotClosableTime(n). However, the closure delay is exceeded, so another require-
ment implies that LastNotClosableTime(n+1) should be CurTime(n).
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Rows 10 and 11 have the same arguments and compatible results. Row 10 can be
deleted.

Rows 13 and 14 have the same arguments and compatible results. Row 13 can be
deleted.

The result is Table 8.13.10-46.

INTERMEDIATE TABLE 8.13.10-46 Partial Controller Function Table Entries

Arguments Results
Closure LastNot
Person Door  Door Delayls Closable Motor
State IsNear 1sOpen IsClosed Exceeded| State Time Power
Row | (n) (n) (n) (n) (n) (n+1)  (n+1) (n+1)
1 | fault false false  — false CurTime(n)
3 | fault false false  — true closing CurTime(n) on to close
4 | fault false  true — false ...(n)
6 | fault false  true — true closing CurTime(n) on to close
7 | fault false  true true false fault off
8 | fault false  true true true fault off
9 |fault true false  — false CurTime(n)
11 | fault true false — true closing CurTime(n) on to close
12 | fault true true — false CurTime(n)
14 | fault true true — true closing CurTime(n) on to close
15 | fault true true true false fault off
16 | fault true true tru