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Preface

Louis Chen: A Celebration

On 25 and 26 June 2010, a conference, Probability Approximations and Beyond,
was held at the National University of Singapore (NUS) to honor Louis Chen on
his 70th birthday. Professor Chen is the Tan Chin Tuan Centennial Professor and
Professor in both the Department of Mathematics and the Department of Statistics
and Applied Probability. He is also the founding Director of the Institute for
Mathematical Sciences at the NUS.

Growing up as one of five brothers and a sister during WorldWar II and the
immediate postwar period, Louis developed his life-long interests in mathematics
and music. He graduated from the University of Singapore1 in 1964; and after
teaching briefly in Singapore, he began graduate studies in the United States. He
earned a Master’s and a Ph.D. in Statistics at Stanford University, where he wrote
his Ph.D. thesis under the supervision of Professor Charles Stein. During his time
at Stanford, Louis met his future wife, Annabelle, who was then a summer school
student at Stanford.

During his Ph.D. studies, Louis made the first of several seminal contributions
to the theory and application of Stein’s method. This appeared in his famous 1975
paper on Poisson approximation for dependent trials, and laid the foundation for
what is now known simply as the Stein–Chen method. The Poisson approximation,
sometimes called the ‘‘law of small numbers,’’ has been known for nearly two
centuries, and is taught in introductory probability courses as the limiting
approximation for the distribution of the number of occurrences of independent,
rare events. Louis showed that independence is not a necessary prerequisite for the
law to hold, and proved, by a simple and elegant argument, that the error in the
approximation can be explicitly bounded (and shown to be small) in an amazingly
large number of problems involving dependent events. This approximation has

1 NUS was formed through the merger of the University of Singapore and Nanyang University in
1980.
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found widespread application, in particular in the field of molecular sequence
comparison.

For much of his research career, Louis has been fascinated by a circle of ideas
centered on probability inequalities and the central limit theorem. Apart from his
work on Poisson and compound Poisson approximation, he has written a number
of papers exploring the relationships between Stein’s method and Poincaré
inequalities; he has established martingale inequalities that, in particular, sharpen
Burkholder’s inequalities; and he has returned again and again to the central limit
theorem. One of his most important contributions here has been to turn Stein’s
concentration inequality idea into an effective tool for providing error bounds for
the normal approximation in many settings, and in particular for sums of random
variables exhibiting only local dependence. He has recently co-authored a book,
‘Normal approximation by Stein’s method’, that promises to be the definitive text
on the subject for years to come.

After his graduate studies, Louis spent almost a year as Visiting Assistant
Professor at Simon Fraser University in Canada, before returning to Singapore in
1972. Since then, he has been engaged in teaching and research at NUS, apart from
short visiting appointments in France, Sweden and the United States. Annabelle
worked for many years for IBM, and together they raised two daughters, Carmela
and Jacinta. In addition to research and teaching, Louis has played a leading role in
the transition of NUS from a largely teaching institution to a leading research
university. Louis has served as Chair of Mathematics, helped to found the
Department of Statistics and Applied Probability, where he was also Chair, and
since 2000 has been the director of the Institute for Mathematical Sciences (IMS).
Under Louis’s leadership, the IMS has developed short programs to bring inter-
national groups of mathematicians and related scientists to Singapore, to discuss
recent research and to work with the local mathematical community on problems
of common interest, both theoretical and applied. It has also pursued outreach
programs and organized public lectures to stimulate interest in mathematics and
science among Singapore students at the high school/junior college level.

Louis’s professional service has not been confined to NUS. He has also served
as President of the Bernoulli Society (1997–1999), of the Institute of Mathematical
Statistics (2004–2005), and as Vice President of the International Statistical
Institute (2009–2011). He has also served on numerous committees of these and
other international organizations.

Along with this extraordinary level of administrative activity, Louis has con-
tinued a very active program of research, infecting students and colleagues alike
with his enthusiasm for probability and its applications. As well as exploring new
directions in probability theory, he has developed a recent interest in applications
of his work on Poisson approximation to problems of signal detection in com-
putational biology. Several of the papers in this volume provide ample evidence
that these subjects continue to provide exciting theoretical developments and
scientific applications.
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In summary, Louis Chen’s professional life has combined outstanding schol-
arship with exemplary service, to strengthen scientific institutions in Singapore and
internationally, and to provide more and better opportunities for all mathematical
scientists. This volume is only a small expression of the many contributions he has
made to students and colleagues. We hope to see him continuing to participate in
mathematical research and enjoying music for many years to come.

Andrew D. Barbour
Hock Peng Chan
David Siegmund

Conference participants at the University Hall
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Chatting with friends during the conference dinner

A younger Louis

A candid shot of Louis captured during the conference
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Poem composed by Chen Zehua and presented to Louis during the conference dinner, on behalf
of the Department of Statistics and Applied Probability

Poem composed by Lou Jiann-Hua and presented to Louis during the conference dinner, on
behalf of the Department of Mathematics. The poem meant that the first dew appearing early in
the morning, clouds are high and it is sunny for ten thousand miles. Key in this poem is that the
first word in each line forms Louis’ Chinese given name
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Contents

Part I Stein’s Method

1 Couplings for Irregular Combinatorial Assemblies . . . . . . . . . . . 3
Andrew D. Barbour and Anna Pósfai

2 Berry-Esseen Inequality for Unbounded Exchangeable Pairs . . . . 13
Yanchu Chen and Qi-Man Shao

3 Clubbed Binomial Approximation for the Lightbulb Process . . . . 31
Larry Goldstein and Aihua Xia

4 Coverage of Random Discs Driven by a Poisson Point Process . . . 43
Guo-Lie Lan, Zhi-Ming Ma and Su-Yong Sun

5 On the Optimality of Stein Factors . . . . . . . . . . . . . . . . . . . . . . . 61
Adrian Röllin

Part II Related Topics

6 Basic Estimates of Stability Rate for
One-Dimensional Diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Mu-Fa Chen

7 Trend Analysis of Extreme Values . . . . . . . . . . . . . . . . . . . . . . . 101
Goedele Dierckx and Jef Teugels

8 Renormalizations in White Noise Analysis . . . . . . . . . . . . . . . . . . 109
Takeyuki Hida

xi

http://dx.doi.org/10.1007/978-1-4614-1966-2_1
http://dx.doi.org/10.1007/978-1-4614-1966-2_2
http://dx.doi.org/10.1007/978-1-4614-1966-2_3
http://dx.doi.org/10.1007/978-1-4614-1966-2_4
http://dx.doi.org/10.1007/978-1-4614-1966-2_5
http://dx.doi.org/10.1007/978-1-4614-1966-2_6
http://dx.doi.org/10.1007/978-1-4614-1966-2_6
http://dx.doi.org/10.1007/978-1-4614-1966-2_7
http://dx.doi.org/10.1007/978-1-4614-1966-2_8


9 M-Dependence Approximation for Dependent
Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Zheng-Yan Lin and Weidong Liu

10 Variable Selection for Classification and Regression
in Large p, Small n Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Wei-Yin Loh

xii Contents

http://dx.doi.org/10.1007/978-1-4614-1966-2_9
http://dx.doi.org/10.1007/978-1-4614-1966-2_9
http://dx.doi.org/10.1007/978-1-4614-1966-2_10
http://dx.doi.org/10.1007/978-1-4614-1966-2_10


Contributors

Andrew D. Barbour Universität Zürich, Zurich, Switzerland, e-mail: a.d.barbour
@math.uzh.ch

Mu-Fa Chen Beijing Normal University, Beijing, China, e-mail: mfchen@bnu.
edu.cn

Yanchu Chen Hong Kong University of Science and Technology, Hong Kong,
China, e-mail: cyxab@ust.hk

Goedele Dierckx Hogeschool-Universiteit Brussel and Katholieke Universiteit
Leuven, Brussel, Leuven, Belgium, e-mail: Goedele.Dierckx@hubrussel.be

Larry Goldstein University of Southern California, California, CA, USA, e-mail:
larry@math.usc.edu

Takeyuki Hida Nagoya University and Meijo University, Nagoya, Japan, e-mail:
takeyuki@math.nagoya-u.ac.jp

Guo-Lie Lan Guangzhou University, Guangzhou, China, e-mail: langl@gzhu.edu.cn

Zheng-yan Lin Zhejiang University, Hangzhou, China, e-mail: zlin@zju.edu.cn

Weidong Liu Shanghai Jiao Tong University, Shanghai, China, e-mail:
liuweidong99@gmail.com

Wei-Yin Loh University of Wisconsin, Madison, WI, USA, e-mail: loh@stat.wisc.
edu

Zhi-Ming Ma Academy of Math and Systems Science, Beijing, China, e-mail:
mazm@amt.ac.cn

Anna Pósfai Tufts University and University of Szeged, Medford, MA, USA,
e-mail: anna.posfai@tufts.edu

Adrian Röllin National University of Singapore, Singapore, Singapore, e-mail:
adrian.roellin@nus.edu.sg

xiii



Qi-Man Shao Hong Kong University of Science and Technology, Hong Kong,
China, e-mail: maqmshao@ust.hk

Su-Yong Sun Academy of Math and Systems Science, Beijing, China, e-mail:
sunsuy@amss.ac.cn

Jef Teugels Katholieke Universiteit Leuven, Leuven, Belgium, e-mail: Jef.
Teugels@wis.kuleuven.be

Aihua Xia The University of Melbourne, Melbourne, VIC, Australia, e-mail:
xia@ms.unimelb.edu.au

xiv Contributors



Part I
Stein’s Method



Chapter 1
Couplings for Irregular Combinatorial
Assemblies

Andrew D. Barbour and Anna Pósfai

Abstract When approximating the joint distribution of the component counts of a
decomposable combinatorial structure that is ‘almost’ in the logarithmic class, but
nonetheless has irregular structure, it is useful to be able first to establish that the distri-
bution of a certain sum of non-negative integer valued random variables is smooth.
This distribution is not like the normal, and individual summands can contribute a
non-trivial amount to the whole, so its smoothness is somewhat surprising. In this
paper, we consider two coupling approaches to establishing the smoothness, and
contrast the results that are obtained.

1.1 Introduction

Many of the classical random decomposable combinatorial structures have compo-
nent structure satisfying a conditioning relation: if C (n)

i denotes the number of
components of size i in a randomly chosen element of size n, then the distribution of
the vector of component counts (C (n)

1 , . . . , C (n)
n ) can be expressed as
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4 A. D. Barbour and A. Pósfai

L (C (n)
1 , . . . , C (n)

n )= L (Z1, . . . , Zn|T0,n = n), (1.1)

where (Zi , i ≥ 1) is a fixed sequence of independent non-negative integer valued
random variables, and Ta,n := ∑n

i = a+1 i Zi , 0 ≤ a < n. Of course, T0,n is just the
total size of the chosen element, and by definition has to be equal to n; the interest in
(1.1) is that, given this necessary restriction, the joint distribution of the component
counts is ‘as independent as it possibly could be’. The most venerable of these
structures is that of a randomly chosen permutation of n elements, with its cycles
as components, where one has Zi ∼ Po(1/ i). Random monic polynomials over a
finite field of characteristic q ≥ 2 represent another example, with size measured by
degree, and with irreducible factors as components; here, Zi ∼ NB(mi , q−i ), and
q−i mi ∼ 1/ i. Many other examples are given in [1].

In both of the examples above (with θ = 1), and in many others, the Zi also satisfy
the asymptotic relations

iP[Zi = 1] → θ and θi := iEZi → θ, (1.2)

for some 0 < θ < ∞, in which case the combinatorial structure is called logarithmic.
Arratia, Barbour and Tavaré [1] showed that combinatorial structures satisfying the
conditioning relation and slight strengthenings of the logarithmic condition share
many common properties, which were traditionally established case by case, by a
variety of authors, using special arguments. For instance, if L(n) is the size of the
largest component, then

n−1L(n) →dL , (1.3)

where L has probability density function fθ (x) := eγ θ�(θ + 1)xθ−2 pθ ((1 − x)/x),

x ∈ (0, 1], and pθ is the density of the Dickman distribution Pθ with parameter θ,

given in [11, p. 90]. Furthermore, for any sequence (an, n ≥ 1) with an = o(n),

lim
n→∞ dTV

(
L (C (n)

1 , . . . , C (n)
an

),L (Z1, . . . , Zan )
)

= 0. (1.4)

Both of these convergence results can be complemented by estimates of the approx-
imation error, under appropriate conditions.

If the logarithmic condition is not satisfied, as in certain of the additive arithmetic
semigroups introduced in [5], the results in [1] are not directly applicable. However
Manstavičius [7] and Barbour and Nietlispach [4] showed that the logarithmic condi-
tion can be relaxed to a certain extent, without disturbing the validity of (1.4), and
that (1.3) can also be recovered, if the convergence in (1.2) is replaced by a weaker
form of convergence. A key step in the proofs of these results is to be able to show
that, under suitable conditions, the distribution of Tan ,n is smooth, in the sense that

lim
n→∞ dTV

(
L (Tan ,n),L (Tan ,n + 1)

) = 0, for all an = o(n), (1.5)

and that the convergence rate in (1.5) can be bounded by a power of {(an + 1)/n}.
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Intuitively, the limiting relation (1.5) should hold if (1.4) does, because the approx-
imate independence of C (n)

1 , . . . , C (n)
an suggests that the event {T0,n = n} has much the

same conditional probability, whatever the values taken by C (n)
1 , . . . , C (n)

an ; in other
words, the distribution of Tan ,n + r should be much the same, whenever the value
r taken by T0,an is not too large. Somewhat more formally, using the conditioning
relation, and writing t0,a(c) := ∑a

j = 1 jc j , we have

P[C (n)
1 = c1, . . . , C (n)

a = ca]
P[Z1 = c1, . . . , Za = ca] = P[Ta,n = n − t0,a(c)]

P[T0,n = n] ,

and

P[T0,n = n]
P[Ta,n = n − t0,a(c)] =

∑

r ≥ 0

P[T0,a = r ] P[Ta,n = n − r ]
P[Ta,n = n − t0,a(c)] ,

with the right hand side close to 1 if P[Ta,n = n − r ] is close to being constant for
r in the range of values typically taken by T0,a . This latter argument indicates that
it is actually advantageous to show that the probability mass function of Tan ,n is
flat over intervals on a length scale of an, for sequences an = o(n). This is proved in
[1, 4] by showing that the normalized sum n−1Tan ,n converges not only in distribution
but also locally to the Dickman distribution Pθ , and that the error rates in these
approximations can be suitably controlled.

Now, in the case of Poisson distributed Zi , the distribution of Ta,n is a particular
compound Poisson distribution, with parameters determined by n and by the θi .

In [1], the θi are all close to a single value θ, and the distribution of Tan ,n is first
compared with that of the simpler, standard distribution of T ∗

0,n := ∑n
j = 1 j Z∗

j , where
the Z∗

j ∼ Po(θ/j) are independent. The comparison is made using Stein’s method for
compound Poisson approximation (cf. [3]), and the argument can be carried through,
under rather weak assumptions, even when the Zi are not Poisson distributed. In a
second step, Stein’s method is used once more to compare the distribution of n−1T ∗

0,n
with the Dickman distribution Pθ . Both approximations are made in a way that
allows the necessary local smoothness of the probability mass function of Tan ,n to
be deduced. In [4], the same strategy is used, but the fact that the θi may be very
different from one another causes an extra term to appear in the bound on the error
in the first approximation. In order to control this error, some a priori smoothness of
the distribution of Tan ,n needs to be established, and a suitable bound on the error in
(1.5) turns out to be exactly what is required.

In this note, we explore ways of using coupling to prove bounds on the rate
of convergence in (1.5), in the case in which the Zi have Poisson distributions.
This is now just a problem concerning a sum of independent random variables with
well-known distributions, and it is tempting to suppose that its solution would be
rather simple. For instance, one could take the classical coupling approach to such
bounds, known as the Mineka coupling, and described in the next section. The Mineka
coupling is very effective for sums Tn of independent and identically distributed
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integer valued random variables, and indeed more widely in situations in which a
normal approximation may be appropriate: see, for example, [2]. However, it turns
out to give extremely pessimistic rates in (1.5), in which Tan ,n is not approximately
normally distributed, and is a sum of random variables with extremely sparse support.

To overcome this problem, an improvement over the Mineka coupling was intro-
duced in [4]. It is extremely flexible in obtaining error rates bounded by a power
of {(an + 1)/n} for a wide variety of choices of the means θi , and it is in no way
restricted to Poisson distributed Zi ’s. Here, we show that, despite these attractions,
the coupling described in [4] does not achieve the best possible error rate under
ideal circumstances; this comes as something of a surprise. Here, we also introduce
a second approach. This can be applied only in more restricted situations, but is then
capable of attaining the theoretically best results. Finding a coupling that gives the
correct convergence rate in (1.5) under all circumstances remains a curious open
problem.

1.2 A Mineka—like Coupling

Let {Xi }i∈N be mutually independent Z-valued random variables, and let Sn :=∑n
i = 1 Xi . The Mineka coupling, developed independently by Mineka [9] and Rösler

[10] (see also [6, Sect. II. 14]) yields a bound of the form

dTV (L (Sn),L (Sn + 1))�
(π

2

∑n

i = 1
ui

)−1/2
, (1.6)

where

ui :=
(

1 − dTV
(
L (Xi ),L (Xi + 1)

));

see [8, Corollary 1.6]. The proof is based on coupling copies {X ′
i }i∈N and {X ′′

i }i∈N

of {Xi }i∈N in such a way that

Vn :=
n∑

i = 1

(
Xi − X ′

i

)
, n ∈ N,

is a symmetric random walk with steps in {−1, 0, 1}. Writing S′
i := 1+∑i

j = 1 X ′
j ∼

Si + 1 and S′′
i := ∑i

j = 1 X ′′
j ∼ Si , so that Vi + 1 = S′

i − S′′
i , the coupling inequality

[6, Sect. I.2] then shows that

dTV
(
L (Sn),L (Sn + 1)

)
� P[τ > n] = P[Vn ∈ {−1, 0}],

where τ is the time at which {Vn}n∈Z+ first hits level −1, and the last equality
follows from the reflection principle. However, this inequality gives slow conver-
gence rates, if Xi = i Zi and the Zi are as described in the Introduction; typi-
cally, dTV

(
L (i Zi ),L (i Zi + 1)

)
is equal to 1, and, if Xi is taken instead to be
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(2i −1)Z2i−1 +2i Z2i , we still expect to have 1−dTV
(
L (Xi ),L (Xi + 1)

) 
 i−1,

leading to bounds of the form

dTV
(
L (Tan ,n),L (Tan ,n + 1)

)= O
(
(log(n/{an + 1}))−1/2). (1.7)

The reason that the Mineka coupling does not work efficiently in our setting is
that, once the random walk Vn takes some value k, it has to achieve a preponderance
of k+1 negative steps, in order to get to the state −1, and this typically requires many
jumps to realize. Since, at the i-th step, the probability of there being a jump is of order
i−1, it thus takes a very long time for such an event to occur, and the probability of this
not happening before time n is then relatively large. In [4], the difficulty is overcome
by observing that the Mineka random walk can be replaced by another Markov chain
(Ṽn, n ≥ 1), still constructed from copies (Z ′

i , i ≥ 1) and (Z ′′
i , i ≥ 1) of the original

sequence, but now associated differently with one another. The basic idea is to note
that, if Ṽi = k, then the random variables X ′

i+1 := j Z ′
j + ( j + k + 1)Z ′

j + k + 1 and
X ′′

i+1 := j Z ′′
j +( j + k + 1)Z ′′

j + k + 1 can be coupled in such a way that X ′
i+1−X ′′

i+1 ∈
{−(k+1), 0, (k+1)}, for any j such that the indices j and j + k + 1 have not previously
been used in the construction. Hence a single jump has probability 1/2 of making Ṽ
reach −1. The construction starts as for the Mineka walk, but if the first jump takes
Ṽ to +1, then the chain switches to jumps in {−2, 0, 2}; and subsequently, if Ṽ is in
the state k = 2r −1, the chain makes jumps in {−2r , 0, 2r }. Clearly, this construction
can be used with Zi ∼ Po(i−1θi ), even when many of the θi are zero. A number of
settings of this kind are explored in detail in [4]; for instance, when θi ≥ θ∗ for all i
in {rZ+ + t} ∪ {sZ+ + u}, where r and s are coprime. Very roughly, provided that a
non-vanishing fraction of the θi exceed some fixed value θ∗ > 0, the probability that
Ṽ reaches −1 before time n is of order n−α, for some α > 0, an error probability
exponentially smaller than that in (1.7).

Here, we make the following observation. Suppose that we have the ideal situation
in which θi = θ∗ > 0 for every i. Then the probability that a coupling, constructed
as above, should fail is at least of magnitude n−θ∗/2. In Sect. 1.3, it is shown that
the total variation distance in (1.5) is actually of order n− min{θ∗,1} under these circum-
stances, so that the estimates of this distance obtained by the [4] coupling are typi-
cally rather weaker. It is thus of interest to find ways of attaining sharper results. The
coupling given in Sect. 1.3 is one such, but it is much less widely applicable.

The coupling approach given in [4] evolves by choosing a pair of indices
Mi1 < Mi2 at each step i, with the choice depending on the values previously used:
no index can be used more than once, and Mi2 − Mi1 = Ṽi−1 + 1, so that one
jump in the right direction leads immediately to a successful coupling. Then, if
(Mi1, Mi2)= ( j, j + k + 1), the pair X ′

i and X ′′
i is constructed as above, by way of

copies of the random variables j Z j and ( j + k + 1)Z j + k + 1. The probability of a
jump taking place is then roughly 2θ∗/( j + k + 1), and, if a jump occurs, it has prob-
ability 1/2 of taking the value −(k + 1), leading to success. The main result of this
section is the following lower bound for the failure probability of such a procedure.
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Theorem 1.1 For any coupling constructed as above, the probability P[F] that the
coupling is not successful is bounded below by

P[F] ≥
�n/2
∏

i = 1

(
1 − 1

2 min{θ∗/ i, 1/e}) 
 n−θ∗/2.

Proof In order to prove the lower bound, we couple two processes, one of which
makes more jumps than the other. We start by letting (Ui , i ≥ 1) be independent
uniform random variables on [0, 1]. The first process is much as discussed above. It
is defined by a sequence of pairs of indices Mi1 < Mi2, 1 ≤ i ≤ I ∗, from [n] := {i ∈
N : i ≤ n}, with I ∗ ≤ �n/2
 the last index for which a suitable pair can be found.
No index is ever used twice, and the choice of (Mi1, Mi2) is allowed to depend on
((M j1, M j2, U j ), 1 ≤ j < i). We set Yi = I [Ui ≤ p(Mi1, Mi2)], where

p(m1, m2) := 2e−θ∗/m1(θ∗/m2)e
−θ∗/m2 < 1/e,

for m1 < m2, representing the indicator of a jump of ±(m2 −m1) being made by the
first process at time i. For the second, we inductively define Ri := {ρ(1), . . . , ρ(i)}
by taking R0 = ∅ and

ρ(i) := max{r ∈ [n/2] \ Ri−1 : 2r ≤ Mi2};
we shall check at the end of the proof that ρ(i) always exists. (The second process,
that we do not really need in detail, uses the pair (2ρ(i)−1, 2ρ(i)) at stage i.) We then
define Zi := I [Ui ≤ min{θ∗/ρ(i), 1/e}], noting that p(Mi1, Mi2)≤ min{θ∗/ρ(i),
1/e}, entailing Zi ≥ Yi a.s. for all i. Finally, let (Ji , i ≥ 1) be distributed as Be(1/2),
independently of each other and everything else.

The event that the first process makes no successful jumps can be described as
the event

F :=
⎧
⎨

⎩

I ∗
∑

i = 1

Yi Ji = 0

⎫
⎬

⎭
.

We thus clearly have

F ⊃
⎧
⎨

⎩

�n/2
∑

i = 1

Zi Ji = 0

⎫
⎬

⎭
,

where, for I ∗ < i ≤ n/2, we take ρ(i) := min{r ∈ [n/2] \ Ri−1}, and Ri := Ri−1 ∪
{ρ(i)}. But now the Zi , suitably reordered, are just independent Bernoulli random
variables with means min{θ∗/r, 1/e} , 1 ≤ r ≤ n/2, and hence

P[F] ≥
�n/2
∏

i = 1

(
1 − 1

2 min{θ∗/ i, 1/e}) 
 n−θ∗/2.



1 Couplings for Irregular Combinatorial Assemblies 9

It remains to show that the ρ(i) are well defined at each stage, which requires that

Si := {r ∈ [n/2] \ Ri−1 : 2r ≤ Mi2} �= ∅,

1 ≤ i ≤ I ∗. For i = 1, m12 ≥ 2, so the start is successful. Now, for 2 ≤ i ≤ n/2,

suppose that

r(i − 1) := max{s : Ri−1 ⊃ {1, 2, . . . , s}}.

Then 1, . . . , r(i − 1) can be expressed as ρ(i1), . . . , ρ(ir(i−1)), for some indices
i1, . . . , ir(i−1). For these indices, we have Mil ,2 ≤ 2r(i − 1) + 1, 1 ≤ l ≤ r(i − 1),

since r(i − 1)+ 1 /∈ Ri−1 and, from the definition of ρ(·), we could thus not choose
ρ(il)≤ r(i − 1) if Mil ,2 ≥ 2r(i − 1) + 2. Hence, also, Mil ,1 ≤ 2r(i − 1) + 1, and,
because all the Mis are distinct, {Mil ,s, 1 ≤ s ≤ 2, 1 ≤ l ≤ r(i −1)} is a set of 2r(i −1)

elements of [2r(i − 1) + 1]. Thus, when choosing the pair (Mi1, Mi2), there is only
at most one element of [2r(i −1)+1] still available for choice, from which it follows
that Mi2 ≥ 2r(i − 1) + 2: so r(i − 1) + 1 ∈ Si , and hence Si is not empty. ��

1.3 A Poisson-Based Coupling

In this section, we show that a coupling can be constructed that gives good error
rates in (1.5) when Z j ∼ Po( j−1θ∗), for some fixed θ∗ > 0. If Z j ∼ Po( j−1θ j )

with θ j ≥ θ∗, the same order of error can immediately be deduced (though it may no
longer be optimal), since, for Poisson random variables, we can write Tan = T ∗

an +T ′,
with T ∗

an constructed from independent random variables Z∗
j ∼ Po( j−1θ∗), and with

T ′ independent of T ∗
an .

Because of the Poisson assumption, the distribution of Tan := ∑n
j = a+1 j Z j can

equivalently be re-expressed as that of a sum of a random number N ∼ Po(θ∗han) of
independent copies of a random variable X having P[X = j] = 1/{ jhan},
a + 1 ≤ j ≤ n, where han := ∑n

j = a+1 j−1. Fix c > 1, define jr := �cr
, and set

r0 := r0(a) := �logc(a + 1)�, r1 := r1(n) := �logc n
.

Define independent random variables (Xri , r0 ≤ r < r1, i ≥ 1) and (Nr , r0 ≤ r < r1),

with Nr ∼ Po(θ∗han pr ) and

P[Xri = j] = 1/{ jhan pr }, jr ≤ j < jr+1,

where

pr :=
jr+1−1∑

j = jr

1

jhan
;
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define Pr := ∑r1−1
s = r ps ≤ 1. Then we can write Tan in the form

Tan = Y +
r1−1∑

r = r0

Nr∑

i = 1

Xri ,

where Y is independent of the sum; the Xri represent the realizations of the copies
of X that fall in the interval Cr := [ jr , jr+1), and Y accounts for all X-values not
belonging to one of these intervals. The idea is then to construct copies T ′

an and T ′′
an

of Tan with T ′
an coupled to T ′′

an + 1, by using the same Nr for both, and trying to
couple one pair X ′

ri and X ′′
ri + 1 exactly, declaring failure if this does not work.

Clearly, such a coupling can only be attempted for an r for which Nr ≥ 1. Then exact
coupling can be achieved between X ′

r1 and X ′′
r1+1 with probability 1−1/{ jr han pr },

since the point probabilities for Xr1 are decreasing. Noting that the pr are all of the
same magnitude, it is thus advantageous to try to couple with r as large as possible.
This strategy leads to the following theorem.

Theorem 1.2 With Z j ∼ Po( j−1θ∗), j ≥ 1, we have

dTV
(
L (Tan),L (Tan + 1)

) = O({(a + 1)/n}θ∗ + n−1),

if θ∗ �= 1; for θ∗ = 1,

dTV
(
L (Tan),L (Tan + 1)

) = O({(a + 1)/n} + n−1 log{n/(a + 1)}).
Proof We begin by defining

Br :=
(

r1−1⋂

s = r+1

{Ns = 0}
)

∩ {Nr ≥ 1}, r0 ≤ r < r1,

and setting B0 := ⋂r1−1
s = r0

{Ns = 0}. On the event Br , write X ′′
r1 = X ′

r1−1 if X ′
r1 �= jr ,

with X ′′
r1 so distributed on the event Ar := {X ′

r1 = jr } that its overall distribution is
correct. All other pairs of random variables X ′

r ′i and X ′′
r ′i , (r ′, i) ∈ ([r0, . . . , r1 −

1] × N ) \ {(r, 1)}, are set to be equal on Br . This generates copies T ′
an and T ′′

an of
Tan, with the property that T ′

an = T ′′
an + 1, except on the event

E := B0 ∪
(

r1−1⋃

r = r0

(Br ∩ Ar )

)

.

It is immediate from the construction that

P[Br ] = exp{−θ∗han Pr+1}(1 − e−θ∗han pr ), r0 ≤ r < r1,

and that P[B0] = exp{−θ∗han Pr0}; and P[Ar | Br ] = 1/{ jr han pr }. This gives all the
ingredients necessary to evaluate the probability



1 Couplings for Irregular Combinatorial Assemblies 11

P[E] = P[B0] +
r1−1∑

r = r0

P[Br ]P[Ar | Br ].

In particular, as r → ∞, jr ∼ cr , han pr ∼ log c and han Pr+1 ∼ (r1(n) − r) log c,
from which it follows that P[Br ] ∼ c−θ∗(r1(n)−r)(1−c−θ∗

), P[Ar | Br ] ∼ 1/{cr log c}
and

P[B0] 
 c−θ∗(r1(n)−r0(a)) 
 {(a + 1)/n}θ∗
.

Combining this information, we arrive at

P[E] 
 {(a + 1)/n}θ∗ +
r1(n)−1∑

r = r0(a)

c−r c−θ∗(r1(n)−r).

For θ∗ > 1, the dominant term in the sum is that with r = r1(n) − 1, and it follows
from the definition of r1(n) that then

P[E] 
 {(a + 1)/n}θ∗ + c−r1(n) 
 {(a + 1)/n}θ∗ + n−1.

For θ∗ < 1, the dominant term is that with r = r0(a), giving

P[E] 
 {(a + 1)/n}θ∗ + n−θ∗
(a + 1)−(1−θ∗) 
 {(a + 1)/n}θ∗

.

For θ∗ = 1, all terms in the sum are of the same order, and we get

P[E] 
 {(a + 1)/n} + n−1 log(n/(a + 1)). ��

Note that the element {(a + 1)/n}θ∗
appearing in the errors is very easy to inter-

pret, and arises from the probability of the event that Tan = 0, a value unattainable
by Tan + 1. Furthermore, the random variable Tan has some point probabilities
of magnitude n−1 [1, p.91], so that n−1 is always a lower bound for the order of
dTV

(
L (Tan),L (Tan + 1)

)
. Hence the order of approximation in Theorem 1.2 is

best possible if θ∗ �= 1. However, for a = 0 and θ∗ = 1, the point probabilities of T0n

are decreasing, and since their maximum is of order O(n−1), the logarithmic factor
in the case θ∗ = 1 is not sharp, at least for a = 0.

The method of coupling used in this section can be extended in a number of ways.
For instance, it can be used for random variables Z j with distributions other than
Poisson, giving the same order of error as long as dTV (L (Z j ), Po(θ j/j))= O( j−2).

This is because, first, for some K < ∞,

P[Br ] � K exp{−θ∗han Pr+1}(1 − e−θ∗han pr ), r0 ≤ r < r1,

and P[B0] ≤ K exp{−θ∗han Pr0}, where, in the definitions of the Br , the events
{Ns = 0} are replaced by {Z j = 0, js ≤ j < js+1}. Secondly, we immediately have
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dTV (L (Z j , jr ≤ j < jr+1), (Ẑ j , jr ≤ j < jr+1))= O( j−1
r ),

where the Ẑ j ∼ Po(θ j/j) are independent, and hence that

dTV (L (Tjr −1, jr+1−1),L (T̂ jr −1, jr+1−1))= O( j−1
r ),

where T̂rs is defined as Trs, but using the Ẑ j . Thus, on the event Br , coupling can
still be achieved except on an event of probability of order O( j−1

r ).

It is also possible to extend the argument to allow for gaps between the intervals
on which θ j ≥ θ∗. Here, for 0 < c1 ≤ c2, the intervals [ jr , jr+1 − 1] can be replaced
by intervals [ar , br ], such that br/ar ≥ c1 and ar ≥ kacr

2 for some k and for each
1 ≤ r ≤ R, say. The argument above then leads to a failure probability of at most

O

(

c−Rθ∗
1 +

R∑

r = 1

1

acr
2

c−θ∗(R−r)
1

)

.

If cθ∗
1 > c2, the failure probability is thus at most of order O(c−Rθ∗

1 + 1/{acR
2 });

if cθ∗
1 < c2, it is of order O(c−Rθ∗

1 ). In Theorem 1.2 above, we have c1 = c2 = c, k = 1
and c−R 
 (a + 1)/n, and the results are equivalent.

However, the method is still only useful if there are long stretches of indices j
with θ j uniformly bounded below. This is in contrast to that discussed in the previous
section, which is flexible enough to allow sequences θ j with many gaps. It would be
interesting to know of other methods that could improve the error bounds obtained
by these methods.
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Chapter 2
Berry-Esseen Inequality for Unbounded
Exchangeable Pairs

Yanchu Chen and Qi-Man Shao

Abstract The Berry-Esseen inequality is well-established by the Stein method of
exchangeable pair approach when the difference of the pair is bounded. In this paper
we obtain a general result which can achieve the optimal bound under some moment
assumptions. As an application, a Berry-Esseen bound of O(1/

√
n) is derived for an

independence test based on the sum of squared sample correlation coefficients.

2.1 Introduction and Main Result

Let W be the random variable of interest. Our goal is to prove a Berry-Esseen bound
for W. One powerful approach in establishing a Berry-Esseen bound is the Stein
method of exchangeable pairs. Let (W, W ∗) be an exchangeable pair. Assume that

E(W − W ∗|W ) = λ(W − R) (2.1)

for some 0 < λ < 1, where R is a random variable. Put � = W − W ∗. The Berry-
Esseen bounds are extensively studied under assumption (2.1). Rinott and Rotar [19]
proved that (see e.g. [4, Theorem 5.2]) if |�| � δ for some constant δ, EW = 0 and
EW 2 = 1, then
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sup
z

|P(W � z) − �(z)|

� δ
(

1.1 + 1

2λ
E |W |�2

)
+ 2.7E

∣
∣
∣1 − 1

2λ
E(�2|W )

∣
∣
∣ + 0.63E |R|.

(2.2)

For the unbounded case, Stein [23] proved that [see e.g. 4, (Theorem 5.5)] if EW = 0
and EW 2 = 1, then under (2.1),

sup
z

|P(W � z)−�(z)| � E
∣
∣
∣1− 1

2λ
E(�2|W )

∣
∣
∣+E |R|+0.64

(
E |�|3/λ)1/2

. (2.3)

The bound (2.2) is usually optimal, however, the contribution of the last term in (2.3)
may result in non-optimality. For example, when W is the standardized sum of n i.i.d.
random variables, the last term in (2.3) is of order n−1/4 instead of the optimal n−1/2.

The main purpose of this note is to develop a general result which can achieve the
optimal bound under some moment assumptions.

Theorem 2.1. Assume that (2.1) is satisfied. Then

sup
z

|P(W � z) − �(z)| � E |R| + 1

4λ
E(|W | + 1)|�|3

+ (1 + τ 2)
(

4λ1/2 + 4τλ1/2 + 6E
∣
∣
∣1 − 1

2λ
E(�2|W )

∣
∣
∣ + 2

E�
E |� − E�|

)
(2.4)

where � is any variable such that � � E(�4|W ) and τ = √
E�/λ.

We remark that if |�| � δ for some constant δ, then one can choose � equal to
δ4 and hence the bound on the right hand side of (2.4) reduces to C

(
E |R| + δ3/λ +

λ1/2 + E |1 − E(�2|W )/(2λ)|), which is of the similar order as (2.2).
The paper is organized as follows. The proof of Theorem 2.1 will be given in the

next section. In Sect. 2.3, as an application, a Berry-Esseen bound is derived for an
independence test based on the sum of squared sample correlation coefficients.

2.2 Proof of the Main Result

Let f be absolutely continuous. Following the discussion in [4, Sect. 2.3], observing
that E[(W − W ∗)( f (W ) + f (W ∗))] = 0, we have

E(W f (W )) = 1

2λ
E[(W − W ∗)( f (W ) − f (W ∗))] + E(R f (W )). (2.5)

Recall � = W − W ∗ and define K̂ (t) = �
2λ

(I(−��t�0) − I(0�t�−�)). Then

∫ ∞

−∞
K̂ (t) dt = �2

2λ
,

∫ ∞

−∞
|t |K̂ (t) dt = 1

4λ
|�|3. (2.6)
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By (2.5),

E(W f (W )) = 1

2λ
E

(∫ 0

−�

f ′(W + t)(W − W ∗) dt
)
+E(R f (W ))

= E
(∫ ∞

−∞
f ′(W + t)K̂ (t) dt

)
+E(R f (W )). (2.7)

and by (2.6),

E f ′(W ) = E
(

f ′(W )
(

1 − 1

2λ
�2

))
+E

(∫ ∞

−∞
f ′(W )K̂ (t) dt

)

= E
(

f ′(W )
(

1 − 1

2λ
E(�2|W )

))
+E

(∫ ∞

−∞
f ′(W )K̂ (t) dt

)
.

To prove Theorem 2.1, we first need to show the following concentration
inequality.

Lemma. 2.1 Assume that (2.1) is satisfied and that E |W | � 1, E |R| � 1. Let � be
a random variable such that � � E(�4|W ). Then

P(a � W � b)

� 2(b − a) + 2(E�/λ)1/2 + 2E
∣
∣1 − E(�2|W )/(2λ)

∣
∣ + E |� − E�|/E�.

(2.8)

Proof Let

f (w) =
⎧
⎨

⎩

− 1
2 (b − a) − δ for w < a − δ,

w − 1
2 (b + a) for a − δ � w � b + δ,

1
2 (b − a) + δ for w > b + δ,

where δ = (4E�/(27λ))1/2. Clearly, f ′ � 0 and K̂ � 0. By (2.7).

2λE{(W − R) f (W )} = 2λE
∫ ∞

−∞
f ′(W + t)K̂ (t)dt

� 2λE
∫ δ

−δ

f ′(W + t)K̂ (t) dt

� 2λE I(a�W�b)

∫

|t |�δ

K̂ (t) dt

= E I(a�W�b)|�|min(δ, |�|)

� E I(a�W�b)(�
2 − 4�4

27δ2 ), (2.9)

where in the last inequality we use the fact that min(x, y) � x − 4x3/(27y2) for
x > 0, y > 0. The right hand side of (2.9) is equal to
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E
{

I(a�W�b)(�
2 − 4�4

27δ2 )
}

= E
{

I(a�W�b)(E(�2|W ) − 4E(�4|W )

27δ2 )
}

� E
{

I(a�W�b)(E(�2|W ) − 4�

27δ2 )
}
[for� � E(�4|W )]

� P(a � W � b)
(
2λ − 4E�/(27δ2)

) − E
∣
∣E(�2|W ) − 2λ

∣
∣−427δ2 E |� − E�|

= λP(a � W � b) − E
∣
∣E(�2|W ) − 2λ

∣
∣− 4

27δ2 E |� − E�|,
(2.10)

recalling that δ = (4E�/(27λ))1/2. For the left hand side of (2.9), we have

2λE{(W − R) f (W )} � 2λ
(1

2
(b − a) + δ

)
(E |W | + E |R|) � 4λ

(1

2
(b − a) + δ

)
.

(2.11)
Combining (2.9)–(2.11) gives (2.8), as desired. ��
Proof of Theorem 2.1 For fixed z, let f = fz be the solution to the Stein equation

f ′(w) − w f (w) = I{w�z} − �(z). (2.12)

It is known that ‖ f ‖ � 1 and ‖ f ′‖ � 1 (see e.g., [6]). Hence by (2.12),

|P(W � z)−�(z)| = |E( f ′(W )−W f (W ))| � E
∣
∣(1− 1

2λ
E(�2|W )

∣
∣+ E |R|+ H,

where

H = E
∣
∣
∣

∫ ∞

−∞
( f ′(W ) − f ′(W + t))K̂ (t) dt

∣
∣
∣.

From the definition of f it follows that

H � E
∣
∣
∣

∫ ∞

−∞
(W f (W ) − (W + t) f (W + t))K̂ (t) dt

∣
∣
∣

+ E
∫ ∞

0
I{z−t�W�z} K̂ (t) dt + E

∫ 0

−∞
I{z�W�z−t} K̂ (t) dt

� 1

4λ
E(|W | + 1)|�|3 + H1 + H2,

where

H1 = E
∫ ∞

0
I{z−t�W�z} K̂ (t) dt, H2 = E

∫ 0

−∞
I{z�W�z−t} K̂ (t) dt.

To evaluate H1, divide the integral into two parts:
∫ √

λ

0 and
∫ ∞√

λ
. For the first part,

we have
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E
∫ √

λ

0
I{z−t�W�z} K̂ (t)dt

= 1

2λ
E

∫ √
λ

0
I{z−t�W�z}(−�)I{0�t�−�} dt

� 1

2λ
E

∫ √
λ

0
I{z−√

λ�W�z}(−�)I{0�t�−�} dt

� 1

2λ
E I{z−√

λ�W�z}�
2

� P(z − √
λ � W � z) + E |1 − E(�2|W )/(2λ)|

� 2
√

λ + 2(E�/λ)1/2 + 3E
∣
∣1 − E(�2|W )/(2λ)

∣
∣ + E |� − E�|/E�,

(2.13)
by Lemma 2.1. For the second part, noting that K̂ (t) � �4/(2λ t3) for t � 0, we
have

2λE
∫ ∞

√
λ

I{z−t�W�z} K̂ (t)dt

� E
∫ ∞

√
λ

I{z−t�W�z}�4/t3dt

= E
∫ ∞

√
λ

I{z−t�W�z}E(�4|W )/t3dt

� E
∫ ∞

√
λ

I{z−t�W�z}�/t3dt

� 1

2λ
E

∫ ∞
√

λ

P(z − t � W � z)E(�)/t3dt + E |� − E�|
∫ ∞

√
λ

1/t3dt

� E(�)E
∫ ∞

√
λ

(
2t + 2(E�/λ)1/2 + 2E

∣
∣1 − E(�2|W )/(2λ)

∣
∣

+ E |� − E�|/E�
)

t−3dt + E |� − E�|/(2λ) [by Lemma 2.1 again]

= E(�)
(

2/
√

λ + {
2(E�/λ)1/2 + 2E

∣
∣1 − E(�2|W )/(2λ)

∣
∣

+ E |� − E�|/E�
}
/(2λ)

)
+ E |� − E�|/(2λ)

= E�

2λ

(
4
√

λ + 2(E�/λ)1/2 + 2E
∣
∣1 − E(�2|W )/(2λ)

∣
∣

+ 2E |� − E�|/E�
)
.

(2.14)
Therefore, by(2.13) and (2.14),
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H1 � 2
√

λ + 2(E�/λ)1/2 + 3E
∣
∣1 − E(�2|W )/(2λ)

∣
∣ + E |� − E�|/E�

+ E�

4λ2

(
4
√

λ + 2(E�/λ)1/2 + 2E
∣
∣1 − E(�2|W )/(2λ)

∣
∣

+ 2E |� − E�|/E�
)
.

(2.15)
Similarly, (2.15) holds with H1 replaced by H2. This proves (2.4) by combining the
above inequalities. ��

2.3 An Application to an Independence Test

Consider a m-variable population represented by a random vector X = (X1, . . . , Xm)′
with covariance matrix � and let {X1, . . . , Xn} be a random sample of size n from
the population. In applications of multivariate analysis, m is usually large and even
larger than the sample size n. However, most inference procedures in classical mul-
tivariate analysis are based on asymptotic theory which has the sample size n going
to infinity while m is fixed. Therefore, these procedures may not be very accurate
when m is of the same order of magnitude as n. More and more attentions have been
paid to the asymptotic theory for large m, see for example, [2, 9, 10, 12, 14, 20, 21]
and references therein.

For concreteness, we focus on a common testing problem: complete indepen-
dence. Let R be the sample correlation matrix of {X1, . . . , Xn}. When the population
has a multivariate normal distribution, testing for complete independence is equiva-
lent to testing � = Im, and many test statistics have been developed in the literature.
The likelihood ratio test statistic

−
(

n − 2m + 5

6

)
log |R|

is commonly used for m < n; however, it is degenerate when m exceeds n since
|R| = 0 for m > n. Nagao [18] proposed to use 1

m tr[(R − I )2], where tr denotes
the trace. However, this test is not consistent against the alternative when m goes to
infinity with n. Leboit and Wolf [14] introduced a revised statistic 1

m tr [(R − I )2] −
m
n [ 1

m tr(R)]2 + m
n , which is robust against m large, and even larger than n. Schott

[21] considered a test based on the sum of squared sample correlation coefficients.
Let R = (ri j , 1 � i, j � m) be the sample correlation matrix, where

ri j =
∑n

k=1(Xik − X̄i )(X jk − X̄ j )
√∑n

k=1 (Xik − X̄i )2
√∑n

k=1 (X jk − X̄ j )2
,

Xi = (X1i , . . . , Xmi )
′ and X̄i = 1

n

∑n
k=1 Xik . Let tn,m be the sum of squared ri j ’s

for i > j,
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tn,m =
m∑

i=2

i−1∑

j=1

r2
i j ,

and

Wn,m = cn,m

(
tn,m − m(m − 1)

2(n − 1)

)
, where cn,m = n

√
n + 2√

m(m − 1)(n − 1)
.

Under the assumption 0 < limn→∞ m/n < ∞ and complete independence,
Schott [21] proved the central limit theorem

Wn,m → N (0, 1),

and then uses Wn,m to test the complete independence. When the population is
not necessarily normally distributed, Jiang [13], Liu, Lin and Shao [15] introduced
new statistics based on the maximum of absolute values of the sample correla-
tion coefficients and prove that the limiting distribution is an extreme distribution
of type I.

As an application of Theorem 2.1, we establish the following Berry-Essen bound
for Wn,m with an optimal rate of O(m−1/2).

Theorem 2.2. Let {Xi j , 1 � i � m, 1 � j � n} be i.i.d. random variables,
and let Z be a standard normally distributed random variable. Assume m = O(n).

If E(X24
11) < ∞, then

sup
z

|P(Wn,m < z) − �(z)| = O(m−1/2). (2.16)

To apply Theorem 2.1, we first construct W ∗ so that (W, W ∗) is an exchangeable
pair. Let X∗

i , 1 � i � n be an independent copy of Xi , 1 � i � n, and let I be a
random index uniformly distributed over {1, 2, . . . , m}, independent of {X∗

i , Xi , 1 �
i � n}. Define t∗n,m = tn,m − ∑m

j=1
j 
=I

r2
I j + ∑m

j=1
j 
=I

r2
I ∗ j , where

ri∗ j =
∑n

k=1(X∗
ik − X̄∗

i )(X jk − X̄ j )
√∑n

k=1 (X∗
ik − X̄∗

i )2
√∑n

k=1 (X jk − X̄ j )2
.

It is easy to see that (tn,m, t∗n,m) is an exchangeable pair. Write W = Wn,m and define

W ∗ = cn,m

(
t∗n,m − m(m − 1)

2(n − 1)

)
.

Clearly, (W, W ∗) is also an exchangeable pair. To prove (2.16), it suffices to show
by Theorem 2.1 that there exists � such that � � λ2 + E(�4|X1, . . . , Xn) with
λ = 2/m,
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E(W − W ∗|W ) = λ W, (2.17)

E
∣
∣
∣1 − 1

2λ
E(�2|W )

∣
∣
∣ = O(m−1/2), (2.18)

E |�|3 = O(m−3/2), (2.19)

m−2 � E(�) = O(m−2), (2.20)

var(�) = O(m−5), (2.21)

E(|W | + 1)|�|3 = O(m−3/2). (2.22)

To prove (2.17)–(2.22) above, we start with some preliminary properties on

moments of ri j . Let ui = (ui1, . . . , uin)′, where uik = Xik−X̄i√∑n
l=1 (Xil−X̄i )

2
. Clearly, we

have

n∑

k=1

uik = 0,

n∑

k=1

u2
ik = 1, (2.23)

and ri j = ui ′u j . It follows from (2.23) and the symmetry of the variables involved
that

E(uik) = 0, E(u2
ik) = 1

n
, (2.24)

E(ui j uik) = − 1

(n − 1)n
for j 
= k. (2.25)

By (2.24) and (2.25), we have for i 
= j

E(r2
i j ) = E(u′

i u j u
′
j ui ) = E(E(u′

i u j u
′
j ui |ui ))

= E
(

u′
i

( 1

n − 1
In − 1

n(n − 1)
1n

)
ui

)
= 1

n − 1
,

(2.26)

where In is the n ×n identity matrix and 1n denotes a n ×n matrix with all entries 1.
If E X6

11 < ∞, it is easy to see that (see e.g., [16])

E(u4
ik) = K

n2 + O
( 1

n3

)
, whereK = E(X11 − μ)4

σ 4 . (2.27)

From (2.23), we also have
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E(u3
ik1

uik2) = − E(u4
11)

n − 1
,

E(u2
ik1

u2
ik2

) = − E(u4
11)

n − 1
+ 1

n(n − 1)
,

E(u2
ik1

uik2 uik3) = 2E(u4
11)

(n − 1)(n − 2)
− 1

n(n − 1)(n − 2)
,

E(uik1 uik2 uik3 uik4) = 3

n(n − 1)(n − 2)(n − 3)
− 6E(u4

11)

(n − 1)(n − 2)(n − 3)
,

for distinct k1, k2, k3, k4. Hence for i 
= j,

E(r4
i j ) = E

( n∑

k1=1

n∑

k2=1

n∑

k3=1

n∑

k4=1

uik1 uik2 uik3 uik4 u jk1 u jk2 u jk3u jk4

)

= nE(u4
iku4

jk) + 4n(n − 1)E(u3
ik1

uik2 u3
jk1

u jk2)

+ 3n(n − 1)E(u2
ik1

u2
ik2

u2
jk1

u2
jk2

)

+ 6n(n − 1)(n − 2)E(u2
ik1

uik2 uik3 u2
jk1

u jk2 u jk3)

+ n(n − 1)(n − 2)(n − 3)E(uik1 uik2 uik3 uik4 u jk1 u jk2 u jk3u jk4)

= n
( K

n2 + O
( 1

n3

))2+4n(n − 1)
(
− K

(n − 1)n2 + O
( 1

n4

))2

+ 3n(n − 1)
( 1

n(n − 1)
− K

(n − 1)n2 + O
( 1

n4

))2

+ 6n(n − 1)(n − 2)
( 2K

n2(n − 1)(n − 2)
− 1

n(n − 1)(n − 2)
+ O

( 1

n5

))2

+ n(n − 1)(n − 2)(n − 3)
( 3

n(n − 1)(n − 2)(n − 3)

− K

n2(n − 1)(n − 2)(n − 3)
+ O

( 1

n6

))2

= 3

n2 + O
( 1

n3

)
.

(2.28)
Similarly to (2.26), for j1 
= j2,

E(r2
i j1r2

i j2) = E(E(r2
i j1r2

i j2 |Xi )) = E
( 1

(n − 1)2

)
= 1

(n − 1)2 , (2.29)

E(r4
i j |X j ) = E(u4

ik)

n∑

k=1

u4
jk + 4E(u3

ik1
uik2)

n∑

k1=1

n∑

k2=1
k2 
=k1

u3
jk1

u jk2

+ 3E(u2
ik1

u2
ik2

)

n∑

k1=1

n∑

k2=1
k2 
=k1

u2
jk1

u2
jk2
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+ 6E(u2
ik1

uik2 uik3)

n∑

k1=1

n∑

k2=1
k2 
=k1

n∑

k3=1
k3 
=k1
k3 
=k2

u2
jk1

u jk2 u jk3

+ E(uik1 uik2 uik3 uik4)

n∑

k1=1

n∑

k2=1
k2 
=k1

n∑

k3=1
k3 
=k1
k3 
=k2

n∑

k4=1
k4 
=k1
k4 
=k2
k4 
=k3

u jk1 u jk2 u jk3 u jk4 .

Since
∑n

k=1 uik = 0 and
∑n

k=1 u2
ik = 1, we have:

E(r4
i j |X j ) =

(
E(u4

ik) − 4E(u3
ik1

uik2) − 3E(u2
ik1

u2
ik2

) + 12E(u2
ik1

uik2 uik3)

− 6E(uik1 uik2 uik3 uik4)
) n∑

k=1

u4
jk

+ 3E(u2
ik1

u2
ik2

) − 6E(u2
ik1

uik2 uik3) + 3E(uik1 uik2 uik3 uik4)

= 3

n2 + O
( 1

n3

)
+

( K − 3

n2 + O
( 1

n3

)) n∑

k=1

u4
jk .

Thus,

E(r4
i j1r4

i j2) = E(E(r4
i j1r4

i j2 |Xi ))

= E
(( 3

n2 + O
( 1

n3

)
+

( K − 3

n2 + O
( 1

n3

)) n∑

k=1

u4
ik

)2)

= 9

n4 + O
( 1

n5

)
. (2.30)

Similarly, if E X12
11 < ∞,

E(r8
i j ) = O(m−4), (2.31)

and if E X24
11 < ∞,

E(r16
i j ) = O(m−4),

By (2.26), (2.28) and (2.29), we have

E(tn,m) = m(m − 1)

2
E(r2

i j ) = m(m − 1)

2(n − 1)
,

var(tn,m) = E(t2
n,m) − (E(tn,m))2

= m(m − 1)

2
E(r4

i j ) + m(m − 1)(m − 2)

2
E(r2

i j1r2
i j2)
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E(tn,m) = m(m − 1)

2
E(r2

i j ) = m(m − 1)

2(n − 1)
,

var(tn,m) = E(t2
n,m) − (E(tn,m))2

= m(m − 1)

2
E(r4

i j ) + m(m − 1)(m − 2)

2
E(r2

i j1r2
i j2)

+ m(m − 1)2(m − 2)

4
E(r2

i1 j1r2
i2 j2) − (E(tn,m))2

= m(m − 1)

n2 + O
(m2

n3

)
.

Proof of (2.17) Let Xn = {X1, . . . , Xn} and define u∗
i similarly as ui by using

{X∗
i j } instead of {Xi j }. As in (2.26), we have

E(r2
i∗ j |Xn) = E(E(u′

j u
∗
i u∗′

i u j |Xn))

= 1

n − 1
u′

j E(u∗
i u∗′

i )u j = 1

n − 1
,

and hence

E(W − W ∗|W ) = cn,m

m

m∑

i=1

E
( m∑

j=1
j 
=i

r2
i j −

m∑

j=1
j 
=i

r2
i∗ j

∣
∣
∣W

)
= 2

m
W

as desired. ��
Proof of (2.18) Recall λ = 2/m and the definition of � and observe that

∣
∣
∣

E(�2|Xn)

2λ
− 1

∣
∣
∣

= c2
n,mm

4

∣
∣
∣

1

m

m∑

i=1

E
(
(

m∑

j=1
j 
=i

r2
i j − r2

i∗ j )
2|Xn)

)
−4(m − 1)(n − 1)

n2(n + 2)

∣
∣
∣

= c2
n,mm

4

∣
∣
∣

1

m

m∑

i=1

(

m∑

j=1
j 
=i

(r2
i j − 1

n − 1
))2 − 2(m − 1)(n − 1)

n2(n + 2)

+ 1

m

m∑

i=1

E
(
(

m∑

j=1
j 
=i

(r2
i∗ j − 1

n − 1
))2|Xn

) − 2(m − 1)(n − 1)

n2(n + 2)

∣
∣
∣

�
c2

n,mm

4
(J1 + J2) + O(1/n), (2.32)
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where

J1 =
∣
∣
∣

1

m

m∑

i=1

{ m∑

j=1
j 
=i

(
r2

i j − 1

n − 1

)}2 − 2(m − 1)

n2

∣
∣
∣,

J2 =
∣
∣
∣

1

m

m∑

i=1

E
({ m∑

j=1
j 
=i

(
r2

i∗ j − 1

n − 1

)}2∣∣
∣Xn

)
− 2(m − 1)

n2

∣
∣
∣.

Instead of estimate E J1, we look at the second moment of J1. From (2.28) and (2.29)
we obtain

1

m

m∑

i=1

E
{ m∑

j=1
j 
=i

(
r2

i j − 1

n − 1

)}2 = 2(m − 1)

n2 + O(m/n3),

and hence

E J 2
1 = E

( 1

m

m∑

i=1

{ m∑

j=1
j 
=i

(
r2

i j − 1

n − 1

)}2 − 2(m − 1)

n2

)2

= E
( 1

m

m∑

i=1

{ m∑

j=1
j 
=i

(
r2

i j − 1

n − 1

)}2)2 − 4(m − 1)2

n4 + O(m2/n5)

= m−2
m∑

i=1

E
{ m∑

j=1
j 
=i

(
r2

i j − 1

n − 1

)}4

+ m−2
∑

1�i1 
=i2�m

E
{ m∑

j=1
j 
=i1

(
r2

i1 j − 1

n − 1

)}2{ m∑

l=1
l 
=i2

(
r2

i1l − 1

n − 1

)}2

− 4m2

n4 + O(m2/n5)

= m−2
{ m∑

i=1

m∑

j=1
j 
=i

E
(

r2
i j − 1

n − 1

)4

+ 4
m∑

i=1

m∑

j1=1
j1 
=i

m∑

j2=1
j2 
=i

j2 
= j1

E
((

r2
i j1 − 1

n − 1

)3(
r2

i j2 − 1

n − 1

))

+ 3
m∑

i=1

m∑

j1=1
j1 
=i

m∑

j2=1
j2 
=i

j2 
= j1

E
((

r2
i j1 − 1

n − 1

)2(
r2

i j2 − 1

n − 1

)2)



2 Berry-Esseen Inequality for Unbounded Exchangeable Pairs 25

+ 6
m∑

i=1

m∑

j1=1
j1 
=i

m∑

j2=1
j2 
=i

j2 
= j1

m∑

j3=1
j3 
=i

j3 
= j1
j3 
= j2

E
((

r2
i j1 − 1

n − 1

)2(
r2

i j2 − 1

n − 1

)(
r2

i j3 − 1

n − 1

))

+
m∑

i=1

m∑

j1=1
j1 
=i

m∑

j2=1
j2 
=i

j2 
= j1

m∑

j3=1
j3 
=i

j3 
= j1
j3 
= j2

m∑

j4=1
j4 
=i

j4 
= j1
j4 
= j2
j4 
= j3

E
((

r2
i j1 − 1

n − 1

)(
r2

i j2 − 1

n − 1

)

×
(

r2
i j3 − 1

n − 1

)(
r2

i j4 − 1

n − 1

))
+

m∑

i1=1

m∑

i2=1
i2 
=i1

E
(

r2
i1i2

− 1

n − 1

)4

+
m∑

i1=1

m∑

i2=1
i2 
=i1

m∑

j1=1

m∑

j2=1

I ( j1 
= i2 or j2 
= i1)

E
((

r2
i1 j1 − 1

n − 1

)2(
r2

i2 j2 − 1

n − 1

)2)

+ 4
m∑

i1=1

m∑

i2=1
i2 
=i1

m∑

j=1
j 
=i1
j 
=i2

(
E

((
r2

i1i2
− 1

n − 1

)2(
r2

i1 j − 1

n − 1

)(
r2

i2 j − 1

n − 1

))

+ E
((

r2
i1i2

− 1

n − 1

)(
r2

i1 j − 1

n − 1

)2(
r2

i2 j − 1

n − 1

)))}
− 4m2

n4 + O(m2/n5)

= O(n−4) + 0 + 3m(4n−4 + O(n−5)) + 0 + 0 + O(n−4)

+ m2(4n−4 + O(n−5)) + mO(n−4) − 4m2

n4 + O(m2/n5)

= O(m/n4).

(2.33)
We get the last equality by (2.30), (2.31) and the method in (2.26). Thus

E J1 = O(m1/2/n2). (2.34)

Similarly, we have

E J 2
2 = E

( 1

m

m∑

i=1

{ m∑

j=1
j 
=i

(
r2

i j − 1

n − 1

)}2 − 2(m − 1)

n2

)

×
( 1

m

m∑

i=1

{ m∑

j=1
j 
=i

(
r2

i∗ j − 1

n − 1

)}2 − 2(m − 1)

n2

)

= O(m/n4).
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Thus

E J2 = O(m1/2/n2). (2.35)

Noting that cn,m = O(n/m), we prove (2.18) by (2.32), (2.34) and (2.35). ��
Proof of (2.19) We estimate the forth moment of �. We have

E�4 = c4
n,m

1

m

m∑

i=1

E
( ∑

j=1
j 
=i

(r2
i j − r2

i∗ j )
)4

= O((n/m)4)E
( m∑

j=2

(
r2

1 j − 1

n − 1

))4

+ O((n/m)4)E
( m∑

j=2

(
r2

1∗ j − 1

n − 1

))4
. (2.36)

Following the same argument as in (2.33), we have

E
( m∑

j=2

(
r2

1 j − 1

n − 1

))4

=
m∑

j=2

E
(

r2
1 j − 1

n − 1

)4
(2.37)

+ 4
m∑

j1=2

m∑

j2=2
j2 
= j1

E
((

r2
1 j1 − 1

n − 1

)3(
r2

1 j2 − 1

n − 1

))

+ 3
m∑

j1=2

m∑

j2=2
j2 
= j1

E
((

r2
1 j1 − 1

n − 1

)2(
r2

1 j2 − 1

n − 1

)2)

+ 6
m∑

j1=2

m∑

j2=2
j2 
= j1

m∑

j3=2
j3 
= j1
j3 
= j2

E
((

r2
1 j1 − 1

n − 1

)2(
r2

1 j2 − 1

n − 1

)(
r2

1 j3 − 1

n − 1

))

+
m∑

j1=2

m∑

j2=2
j2 
= j1

m∑

j3=2
j3 
= j1
j3 
= j2

m∑

j4=2
j4 
= j1
j4 
= j2
j4 
= j3

E
((

r2
1 j1 − 1

n − 1

)(
r2

1 j2 − 1

n − 1

)

×
(

r2
1 j3 − 1

n − 1

)(
r2

1 j4 − 1

n − 1

))
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= mO(n−4) + 0 + O(m2)O(n−4) + 0 + 0

= O(m2 n−4). (2.38)

Similarly,

E
( m∑

j=2

(
r2

1∗ j − 1

n − 1

))4 = O(m2 n−4). (2.39)

This proves E�4 = O(m−2) by (2.36)–(2.39), and hence (2.19) holds. ��
Proof of (2.20) and (2.21) Similarly to (2.36), we have

E(�4|Xn) = O((n/m)4)E
(( m∑

j=1
j 
=I

(r2
I j − 1

n − 1

))4∣∣
∣Xn

)

+ O((n/m)4)E
(( m∑

j=1
j 
=I

(
r2

I ∗ j − 1

n − 1

))4∣∣
∣Xn

)
. (2.40)

Let the right hand side of (2.40) be �. From the proof of (2.19) we see that (2.21)
holds.

Consider the variance of the first term of �. Note that

E

(

E
(( m∑

j=1
j 
=I

(
r2

I j − 1

n − 1

))4∣∣
∣Xn

)
−E

(( m∑

j=1
j 
=I

(
r2

I j − 1

n − 1

))4)
)2

= E

((
E

(( m∑

j=1
j 
=I

(
r2

I j − 1

n − 1

))4∣∣
∣Xn

))2

−
(

E
( m∑

j=1
j 
=I

(
r2

I j − 1

n − 1

))4)2

= 1

m2

m∑

i1=1

m∑

i2=1

{
E

(( m∑

j1=1
j1 
=i1

(
r2

i1 j1 − 1

n − 1

))4( m∑

j2=1
j2 
=i2

(
r2

i2 j2 − 1

n − 1

))4)

− E
( m∑

j1=1
j1 
=i1

(
r2

i1 j1 − 1

n − 1

))4
E

( m∑

j2=1
j2 
=i2

(
r2

i2 j2 − 1

n − 1

))4}

= 1

m2

m∑

i1=1

{
E

(( m∑

j1=1
j1 
=i1

(
r2

i1 j1 − 1

n − 1

))4( m∑

j2=1
j2 
=i1

(
r2

i1 j2 − 1

n − 1

))4)

− E
( m∑

j1=1
j1 
=i1

(
r2

i1 j1 − 1

n − 1

))4
E

( m∑

j2=1
j2 
=i1

(
r2

i1 j2 − 1

n − 1

))4}
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+ 1

m2

m∑

i1=1

m∑

i2=1
i2 
=i1

{
E

(( m∑

j1=1
j1 
=i1

(
r2

i1 j1 − 1

n − 1

))4
(

m∑

j2=1
j2 
=i2

(
r2

i2 j2 − 1

n − 1

))4)

− E
( m∑

j1=1
j1 
=i1

(
r2

i1 j1 − 1

n − 1

))4
E

( m∑

j2=1
j2 
=i2

(
r2

i2 j2 − 1

n − 1

))4}

= O
( 1

m

)(
A4−4 + A4−3,1 + A4−2,2 + A4−2,1,1 + A4−1,1,1,1

+ A3,1−3,1 + A3,1−2,2 + A3,1−2,1,1 + A3,1−1,1,1,1 + A2,2−2,2 + A2,2−2,1,1

+ A2,2−1,1,1,1 + A2,1,1−2,1,1 + A2,1,1−1,1,1,1 + A1,1,1,1−1,1,1,1

)

+ O(1)
(

B4−4 + B4−3,1 + B4−2,2 + B4−2,1,1 + B4−1,1,1,1

+ B3,1−3,1 + B3,1−2,2 + B3,1−2,1,1 + B3,1−1,1,1,1 + B2,2−2,2 + B2,2−2,1,1

+ B2,2−1,1,1,1 + B2,1,1−2,1,1 + B2,1,1−1,1,1,1 + B1,1,1,1−1,1,1,1

)
,

where

Aa11,a12,...−a21,a22...

=
m∑

j11=1
j11 
=i

m∑

j12=1
j12 
=i

j12 
= j11

m∑

j21=1
j21 
=i

m∑

j22=1
j22 
=i

j22 
= j21

{
E

((
r2

i j11
− 1

n − 1

)a11
(

r2
i j12

− 1

n − 1

)a12 · · ·

×
(

r2
i j21

− 1

n − 1

)a21
(

r2
i j22

− 1

n − 1

)a22
. . .

)

− E
((

r2
i j11

− 1

n − 1

)a11
(

r2
i j12

− 1

n − 1

)a12
. . .

)

× E
((

r2
i j21

− 1

n − 1

)a21
(

r2
i j22

− 1

n − 1

)a22
. . .

)}
,

Bb11,b12,...−b21,b22...

=
m∑

j11=1
j11 
=i1

m∑

j12=1
j12 
=i1

j12 
= j11

m∑

j21=1
j21 
=i2

m∑

j22=1
j22 
=i2

j22 
= j21

{
E

((
r2

i1 j11
− 1

n − 1

)b11
(

r2
i1 j12

− 1

n − 1

)b12
. . .

×
(

r2
i2 j21

− 1

n − 1

)b21
(

r2
i2 j22

− 1

n − 1

)b22
. . .

)

− E
((

r2
i1 j11

− 1

n − 1

)b11
(

r2
i1 j12

− 1

n − 1

)b12
. . .

)

× E
((

r2
i2 j21

− 1

n − 1

)b21
(

r2
i2 j22

− 1

n − 1

)b22 · · ·
)}

,
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for i1 
= i2. Since there are m2 terms in A4−4 and every term is of order
O( 1

n8 ), A4−4 = O(m2

n8 ). Any term in A4−3,1 is zero if j22 is not equal to either

i or j11, thus there are O(m2) nonzero terms in A4−3,1 and A4−3,1 = O(m2

n8 ). By

similar arguments, all the A-type terms are of order O(m4

n8 ) and all the B-type terms

are of order O(m3

n8 ) except B2,1,1−2,1,1 and B1,1,1,1−1,1,1,1. Similarly,

B2,1,1−2,1,1 = O
(m3

n8

)
+ O(m4)E

((
r2
13 − 1

n − 1

)(
r2
23 − 1

n − 1

)

×
(

r2
14 − 1

n − 1

)(
r2
24 − 1

n − 1

)(
r2
15 − 1

n − 1

)2(
r2
26 − 1

n − 1

)2)

= O
(m3

n8

)
,

B1,1,1,1−1,1,1,1 = O
(m3

n8

)
+ O(m4)E

((
r13 − 1

n − 1

)(
r14 − 1

n − 1

)(
r15 − 1

n − 1

)

×
(

r16 − 1

n − 1

)(
r23 − 1

n − 1

)(
r24 − 1

n − 1

)

×
(

r25 − 1

n − 1

)(
r26 − 1

n − 1

))

= O
(m3

n8

)
.

Therefore, the variance of the first term of � is O( 1
m5 ) and so is the variance of the

second term. Hence (2.20) holds. ��
Proof of (2.22) Following the proof of (2.20) gives E�8 = O(m−4). Thus

E(|W | + 1)|�|3 � (E(1 + |W |)2)1/2(E�6)1/2 = O(m−3/2),

as desired. ��
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Chapter 3
Clubbed Binomial Approximation
for the Lightbulb Process

Larry Goldstein and Aihua Xia

Abstract In the so called lightbulb process, on days r = 1, . . . , n, out of n light-
bulbs, all initially off, exactly r bulbs selected uniformly and independent of the past
have their status changed from off to on, or vice versa. With Wn the number of bulbs
on at the terminal time n and Cn a suitable clubbed binomial distribution,

dTV (Wn, Cn) � 2.7314
√

ne−(n+1)/3 for all n � 1.

The result is shown using Stein’s method.

3.1 Introduction

The lightbulb process introduced by Rao, Rao and Zhang [3] was motivated by a
pharmaceutical study of the effect of dermal patches designed to activate targeted
receptors. An active receptor will become inactive, and an inactive one active, if it
receives a dose of medicine released from the dermal patch. On each of n successive
days r = 1, . . . , n of the study, exactly r randomly selected receptors will each
receive one dose of medicine from the patch, thus changing, or toggling, their status
between the active and inactive states. We adopt the more colorful language of [3],

L. Goldstein (B)
Department of Mathematics KAP 108,
University of Southern California,
Los Angeles, CA 90089-2532, USA
e-mail: larry@math.usc.edu

A. Xia
Department of Mathematics and Statistics,
The University of Melbourne,
Melbourne, Victoria Vic 3010, Australia
e-mail: xia@ms.unimelb.edu.au

A. D. Barbour et al. (eds.), Probability Approximations and Beyond, 31
Lecture Notes in Statistics 205, DOI: 10.1007/978-1-4614-1966-2_3,
© Springer Science+Business Media, LLC 2012



32 L. Goldstein and A. Xia

where receptors are represented by lightbulbs that are being toggled between their
on and off states.

Some fundamental properties of Wn, the number of light bulbs on at the end
of day n, were derived in [3]. For instance, Proposition 2 of [3] shows that when
n(n + 1)/2 = 0mod2, or, equivalently, when nmod4 ∈ {0, 3}, the support of Wn is
a set of even integers up to n, and that otherwise the support of Wn is a set of odd
integers up to n. Further, in [3], the mean and variance of Wn were computed, and
based on numerical computations, an approximation of the distribution of Wn by the
‘clubbed’ binomial distribution was suggested.

To describe the clubbed binomial, let Zn be a binomial Bin(n − 1, 1/2) random
variable, and for i ∈ Z let π∗

i = P(Zn = i), that is

π∗
i =

{(n−1
i

) ( 1
2

)n−1
for i = 0, 1, . . . , n − 1,

0 otherwise.

Let L1,n and L0,n denote the set of all odd and even numbers in {0, 1, . . . , n},
respectively. Define, for m = 0, 1,

πm
i =

{
π∗

i−1 + π∗
i , i ∈ Lm,n,

0, i �∈ Lm,n .

Summing binomial coefficients using ‘Pascal’s triangle’ yields

πm
i =

{(n
i

) ( 1
2

)n−1
, i ∈ Lm,n,

0, i �∈ Lm,n .
(3.1)

We say that the random variable Cm,n has the clubbed binomial distribution if
P(Cm,n = i) = πm

i for i ∈ Lm,n . In words, the clubbed binomial distribution
is formed by combining two adjacent cells of the binomial.

It was observed in [3] that the clubbed binomial distribution appeared to approxi-
mate the lightbulb distribution Wn exponentially well. Here we make that observation
rigorous by supplying an exponentially decaying bound in total variation. First, recall
that if X and Y are two random variables with distributions supported on Z, then the
total variation distance between (the laws of) X and Y, denoted dTV (X, Y ), is given by

dTV(X, Y ) = sup
A⊂Z

|P(X ∈ A) − P(Y ∈ A)|. (3.2)

Theorem 3.1 Let Wn be the total number of bulbs on at the terminal time in the
lightbulb process of size n and let Cn = Cm,n where m = 0 for nmod4 ∈ {0, 3} and
m = 1 for nmod4 ∈ {1, 2}. Then

dTV (Wn, Cn) � 2.7314
√

ne−(n+1)/3.
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In particular, the approximation error is less than 1% for n � 21 and less than
0.1% for n � 28.

A Berry-Esseen bound in the Kolmogorov metric of order 1/
√

n for the distance
between the standardized value of Wn and the unit normal was derived in [2]. The
lighbulb chain was also studied in [4], and served there as a basis for the exploration
of the more general class of Markov chains of multinomial type. One feature of such
chains is their easily obtainable spectral decomposition, which informed the analysis
in [2]. In contrast, here we demonstrate the exponential bound in total variation using
only simple properties of the lightbulb process.

After formalizing the framework for the lightbulb process in the next section,
we prove Theorem 1 by Stein’s method. In particular, we develop a Stein operator
A for the clubbed binomial distribution and obtain bounds on the solution f of
the associated Stein equation. The exponentially small distance between Wn and the
clubbed binomial Cn can then be seen to be a consequence of the vanishing of the
expectation of A f except on a set of exponentially small probability.

3.2 The Lightbulb Process

We now more formally describe the lightbulb process. With n ∈ N fixed we will
let X = {Xrk : r = 0, 1, . . . , n, k = 1, . . . , n} denote a collection of Bernoulli
variables. For r � 1 these ‘switch’ or ‘toggle’ variables have the interpretation that

Xrk =
{

1 if the status of bulb k is changed at stage r,
0 otherwise.

We take the initial state of the bulbs to be given deterministically by setting the
switch variables {X0k, k = 1, . . . , n} equal to zero, that is, all bulbs begin in the
off position. At stage r for r = 1, . . . , n, r of the n bulbs are chosen uniformly to
have their status changed, with different stages mutually independent. Hence, with
e1, . . . , en ∈ {0, 1}, the joint distribution of Xr1, . . . , Xrn is given by

P(Xr1 = e1, . . . , Xrn = en) =
{(n

r

)−1 if e1 + · · · + en = r,
0 otherwise,

with the collections {Xr1, . . . , Xrn} independent for r = 1, . . . , n.

Clearly, at each stage r the variables (Xr1, . . . , Xrn) are exchangeable.
For r, i = 1, . . . , n, the quantity

(∑r
s=1 Xsi

)
mod 2 is the indicator that bulb i is

on at time r of the lightbulb process, so letting

Ii =
(

n∑

r=0

Xri

)

mod 2 and Wn =
n∑

i=1

Ii ,

the variable Ii is the indicator that bulb i is on at the terminal time, and Wn is the
number of bulbs on at the terminal time.
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The lightbulb process is a special case of a class of multivariate chains studied
in [4], where randomly chosen subsets of n individual particles evolve according to
the same marginal Markov chain. As shown in [4], such chains admit explicit full
spectral decompositions, and in particular, the transition matrices for each stage of
the lightbulb process can be simultaneously diagonalized by a Hadamard matrix.
These properties were applied in [3] for the calculation of the moments needed
to compute the mean and variance of Wn and to develop recursions for the exact
distribution, and in [2] for a Berry-Esseen bound of the standardized Wn to the
normal.

3.3 Stein Operator

In order to apply Stein’s method, we first develop a Stein equation for the clubbed
binomial distribution Cm,n and then present bounds on its solution. With πm

x given
by (3.1), let πm(A) = ∑

x∈A πm
x . Set αx = (n − x)(n − 1 − x) and βx = x(x − 1)

for x ∈ {0, . . . , n}. One may easily directly verify the balance equation

αx−2π
m
x−2 = βxπ

m
x for x ∈ Lm,n, (3.3)

which gives the generator of the distribution of Cm,n as

A f (x) = αx f (x + 2) − βx f (x), for x ∈ Lm,n . (3.4)

For A ⊂ Lm,n, we consider the Stein equation

A f A(x) = 1A(x) − πm(A), x ∈ Lm,n . (3.5)

For a function g with domain A let ‖g‖ denote supx∈A |g(x)|.
Lemma 3.1 For m ∈ {0, 1} and A = {r} with r ∈ Lm,n, the unique solution f m

r (x)

of (3.5) on Lm,n satisfying the boundary condition f m
r (m) = 0 is given, for m <

x � n, x ∈ Lm,n, by

f m
r (x) =

⎧
⎪⎪⎨

⎪⎪⎩

−πm([0, x − 2] ∩ Lm,n)πm
r

βxπm
x

for m < x < r + 2,

πm([x, n] ∩ Lm,n)πm
r

βxπm
x

for r + 2 � x � n.

(3.6)

Furthermore, for all A ⊂ Lm,n, f m
A (x) = ∑

r∈A f m
r (x) is a solution of (3.5) and

satisfies

‖ f m
A ‖ � 2.7314√

n(n − 1)
for n � 1.

Lemma 3.1 is proved in Sect. 3.4.
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Applying Lemma 3.1, we now prove our main result.

Proof of Theorem 3.1 Fix m ∈ {0, 1} and A ⊂ Lm,n, and let f := f m
A be the

solution to (3.5). Dropping subscripts, let W = ∑n
i=1 Ii , where Ii is the indicator

that bulb i is on at the terminal time. For i, j ∈ {1, . . . , n}, now with slight abuse of
notation, let Wi = W − Ii , and for i �= j set Wi j = W − Ii − I j . Then

E(n − W )(n − 1 − W ) f (W + 2) = E
n∑

i=1

(1 − Ii )(n − 1 − W ) f (Wi + 2)

= E
∑

i �= j

(1 − Ii )(1 − I j ) f (Wi j + 2),

and similarly,

EW (W −1) f (W ) = E
n∑

i=1

Ii Wi f (Wi +1) = E
∑

i �= j

Ii I j f (Wi +1) = E
∑

i �= j

Ii I j f (Wi j +2).

By Proposition 2 of [3], P(W ∈ Lm,n) = 1, and hence (3.5) holds upon replacing
x by W. Taking expectation and using the expression for the generator in (3.4),
we obtain

P(W ∈ A) − πm(A) = EA f (W ) = E
∑

i �= j

(
(1 − Ii )(1 − I j ) − Ii I j

)
f (Wi j + 2).

(3.7)
Recalling that Xrk is the value of the switch variable at time r for bulb k, let Ai j be
the event that the switch variables of the distinct bulbs i and j differ in at least one
stage, that is, let

Ai j =
n⋃

r=1

{Xri �= Xr j }. (3.8)

Now using (3.7) we obtain

∣
∣P(W ∈ A) − πm(A)

∣
∣ =

∣
∣
∣
∣
∣
∣
E

∑

i �= j

(
(1 − Ii )(1 − I j ) − Ii I j

)
f (Wi j + 2)

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

∑

i �= j

E
(
(1 − Ii )(1 − I j ) − Ii I j

)
f (Wi j + 2)1Ai j

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

∑

i �= j

E
(
(1 − Ii )(1 − I j ) − Ii I j

)
f (Wi j + 2)1Ac

i j

∣
∣
∣
∣
∣
∣
.

(3.9)
Note that Ii , I j ∈ {0, 1} implies
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(1 − Ii )(1 − I j )1Ii �=I j = 0 = Ii I j 1Ii �=I j ,

and hence for the first term in (3.9) we obtain the absolute value of

∑

i �= j

(
(1 − Ii )(1 − I j ) − Ii I j

)
f (Wi j + 2)1Ai j

=
∑

i �= j

(
(1 − Ii )(1 − I j ) − Ii I j

)
f (Wi j + 2)1Ai j ,Ii =I j . (3.10)

For a given pair i,j, on the event Ai j let t be any index for which Xti �= Xt j , and
let Xi j be the collection of switch variables given by

Xi j
rk =

⎧
⎪⎪⎨

⎪⎪⎩

Xrk r �= t,
Xtk r = t, k �∈ {i, j},
Xti r = t, k = j,
Xt j r = t, k = i.

In other words, in stage t, the unequal switch variables Xti and Xt j are interchanged,

and all other variables are left unchanged. Let I i j
k be the status of bulb k at the terminal

time when applying switch variables Xi j , and similarly set W i j
i j = ∑

k �∈{i, j} I i j
k . Note

that as the status of both bulbs i and j are toggled upon interchanging their stage t
switch variables, and all other variables are unaffected, we obtain

I i j
i = 1 − Ii , I i j

j = 1 − I j and W i j
i j = Wi j .

In particular, Ii = I j if and only if I i j
i = I i j

j , and, with Ai j
i j as in (3.8) with Xi j

rk

replacing Xrk, we have additionally that Ai j
i j = Ai j . Further, by exchangeability we

have L (X) = L (Xi j ). Therefore,

E(1 − Ii )(1 − I j ) f (Wi j + 2)1Ai j ,Ii =I j

= E
(
1 − I i j

i

)(
1 − I i j

j

)
f
(
W i j

i j + 2
)
1

Ai j
i j ,I i j

i =I i j
j

= E Ii I j f (Wi j + 2)1Ai j ,Ii =I j ,

showing, by (3.10), that the first term in (3.9) is zero. Therefore,

|P(W ∈ A) − πm(A)|

�

∣
∣
∣
∣
∣
∣

∑

i �= j

E
(
(1 − Ii )(1 − I j ) − Ii I j

)
f (Wi j + 2)1Ac

i j

∣
∣
∣
∣
∣
∣
� ‖ f ‖

∑

i �= j

P(Ac
i j ).
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As Ac
i j is the event that the switch variables of i and j are equal in every stage,

recalling that these variables are independent over stages we obtain

P(Ac
i j ) =

n∏

r=1

r(r − 1) + (n − r)(n − 1 − r)

n(n − 1)

=
n∏

r=1

(

1 − 2(nr − r2)

n(n − 1)

)

� e− 2
n(n−1)

∑n
r=1(nr−r2) = e−(n+1)/3.

Hence, by Lemma 3.1,

∣
∣P(W ∈ A) − πm(A)

∣
∣ � 2.7314√

n(n − 1)
n(n − 1)e−(n+1)/3 = 2.7314

√
ne−(n+1)/3.

Taking supremum over A and applying definition (3.2) completes the proof. 
�

3.4 Bounds on the Stein Equation

In this section we present the proof of Lemma 3.1.

Proof Let m ∈ {0, 1} be fixed. First, the equalities f (m) = 0 and

f (x + 2) = 1A(x) − πm(A) + βx f (x)

αx
for m < x � n − 2, x ∈ Lm,n

specify f (x) on Lm,n uniquely, hence the solution to (3.5) satisfying the given boun-
dary condition is unique.

Next, with r ∈ Lm,n, we verify that f m
r (x) given by (3.6) solves (3.5) with

A = {r}; that f m
r (m) = 0 is given. For m < x < r, x ∈ Lm,n, applying the balance

equation (3.3) to obtain the second equality, we have

αx f m
r (x + 2) − βx f m

r (x)

= αx

(

−πm([0, x] ∩ Lm,n)πm
r

βx+2π
m
x+2

)

− βx

(

−πm([0, x − 2] ∩ Lm,n)πm
r

βxπm
x

)

= αx

(

−πm([0, x] ∩ Lm,n)πm
r

αxπm
x

)

− βx

(

−πm([0, x − 2] ∩ Lm,n)πm
r

βxπm
x

)

= −πm
r .
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If x = r then

αx f m
r (x + 2) − βx f m

r (x)

= αr

(
πm([r + 2, n] ∩ Lm,n)πm

r

βr+2π
m
r+2

)

− βr

(−πm([0, r − 2] ∩ Lm,n)πm
r

βrπm
r

)

= αr

(
πm([r + 2, n] ∩ Lm,n)πm

r

αrπm
r

)

− βr

(−πm([0, r − 2] ∩ Lm,n)πm
r

βrπm
r

)

= πm([r + 2, n] ∩ Lm,n) + πm([0, r − 2] ∩ Lm,n) = 1 − πm
r .

If x > r then

αx f m
r (x + 2) − βx f m

r (x)

= αx

(
πm([x + 2, n] ∩ Lm,n)πm

r

βx+2π
m
x+2

)

− βx

(
πm([x, n] ∩ Lm,n)πm

r

βxπm
x

)

= αx

(
πm([x + 2, n] ∩ Lm,n)πm

r

αxπm
x

)

− βx

(
πm([x, n] ∩ Lm,n)πm

r

βxπm
x

)

= −πm
r .

Hence f m
r (x) solves (3.5).

Next, to consider the solution of (3.5) more generally for A ⊂ Lm,n and x ∈ Lm,n,

letting

Um,x = [0, x − 2] ∩ Lm,n and U c
m,x = Lm,n \ Um,x ,

we may write (3.6) more compactly as

f m
r (x) = 1

βxπm
x

(
πm(U c

m,x )π
m({r} ∩ Um,x ) − πm(Um,x )π

m({r} ∩ U c
m,x )

)
.

By linearity, the solution of (3.5) for A ⊂ Lm,n is given by f m
A (m) = 0, and for

x > m, x ∈ Lm,n, by

f m
A (x) = 1

βxπm
x

(
πm(U c

m,x )π
m(A ∩ Um,x ) − πm(Um,x )π

m(A ∩ U c
m,x )

)

(cf [1], p. 7), and so, for all x ∈ Lm,n,

− 1

βxπm
x

πm(Um,x )π
m(U c

m,x ) � f m
A (x) � 1

βxπm
x

πm(U c
m,x )π

m(Um,x ),

or that

∣
∣ f m

A (x)
∣
∣ � 1

βxπm
x

πm(Um,x )π
m(U c

m,x ). (3.11)
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Since f m
A (m) = 0 and the upper bound of Lemma 3.1 reduces to ∞ if 0 � n � 1,

we only need to bound f m
A (x) for n � 2 and x � 2. Direct computation using

(3.11) gives | f 0
A(2)| � 1/4 for n = 2, | f 0

A(2)| � 1/8 and | f 1
A(3)| � 1/8 for

n = 3, | f 0
A(2)| = | f 0

A(4)| � 7/96 and | f 1
A(3)| � 1/12 for n = 4. Therefore, it

remains to prove Lemma 3.1 for n � 5.

Noting that for x � n
2 + 1 we have βx �

( n
2 + 1

) n
2 , and for x < n

2 + 1 that
αx−2 = (n − x +2)(n − x +1) >

( n
2 + 1

) n
2 , using (3.3), we obtain from (3.11) that

∣
∣ f m

A (x)
∣
∣ �

⎧
⎪⎨

⎪⎩

πm(Um,x )π
m(U c

m,x )

βxπm
x

� 1
( n

2 + 1
) n

2

πm (Um,x )πm(U c
m,x )

πm
x

if x � n
2 + 1,

πm(Um,x )πm (U c
m,x )

αx−2π
m
x−2

� 1
( n

2 +1) n
2

πm (Um,x )πm (U c
m,x )

πm
x−2

if x < n
2 + 1.

(3.12)
Clearly, for i � x,

πm
i

πm
x

=
(n

i

)

(n
x

) =
{

1 if i = x,
(n−x)···(n−i+1)

(x+1)···i if i � x + 2.

Hence, we can write, for i � x + 2,

πm
i

πm
x

=
(

n − x

x + 1

) (
n − x − 1

x + 2

)

· · ·
(

n − i + 1

i

)

=
i−x−1∏

y=0

n − x − y

x + 1 + y
. (3.13)

Note that as (n − x)/(x + 1) � 1 for x � n/2, the terms in the product (3.13) are
decreasing. In particular,

πm
i

πm
x

� 1 for i � x, and
∏

0�y�

√

n
2 �

n − x − y

x + 1 + y
� 1 provided x � n

2
. (3.14)

For n even let xs = n/2, and for n odd let xs = (n − 1)/2 when m = 0,

and xs = (n + 1)/2 when m = 1. Then, except for the case where m = 0 and
x = (n + 1)/2, which we deal with separately, we have

πm(Um,x )π
m(U c

m,x ) = πm(Um,2xs−x+2)π
m(U c

m,2xs−x+2),

and we may therefore assume x � xs + 1, and so x � n/2 + 1.

Since for y � √
n/2, recalling x � n/2 + 1, we have

n − x − y

x + 1 + y
�

n − ( n
2 + 1

) −
√

n
2

(
1 + n

2

) + 1 +
√

n
2

=
n
2 −

√
n

2 − 1
n
2 + 2 +

√
n

2

= 1 −
√

n + 3
n
2 + 2 +

√
n

2

, (3.15)

applying (3.13) and (3.14) we conclude that
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πm
i

πm
x

�
(

1 −
√

n + 3
n
2 + 2 +

√
n

2

)i−x−

√

n
2 �−1

for i � x + 

√

n

2
� + 1.

Hence, applying (3.14) again, here to obtain the second inequality, we have

1
( n

2 + 1
) n

2

πm(U c
m,x )

πm
x

� 1
( n

2 + 1
) n

2

⎛

⎜
⎝

∑

x�i�x+

√

n
2 �,i∈Lm,n

πm
i

πm
x

+
∑

i�x+

√

n
2 �+1,i∈Lm,n

πm
i

πm
x

⎞

⎟
⎠

� 1
( n

2 + 1
) n

2

⎛

⎝
(√

n

4
+ 1

)

+
∞∑

j=0

(

1 −
√

n + 3
n
2 + 2 +

√
n

2

)2 j
⎞

⎠

= 1
( n

2 + 1
) n

2

⎛

⎜
⎜
⎜
⎝

√
n

4
+ 1 + 1

1 −
(

1 −
√

n+3
n
2 +2+

√
n

2

)2

⎞

⎟
⎟
⎟
⎠

� 2.7314√
n(n − 1)

for n � 1. (3.16)

This final inequality is obtained by determining the maximum of the function

g1(n) := 1
( n

2 + 1
) n

2

⎛

⎜
⎜
⎜
⎝

√
n

4
+ 1 + 1

1 −
(

1 −
√

n+3
n
2 +2+

√
n

2

)2

⎞

⎟
⎟
⎟
⎠

√
n(n − 1)

by noting g1(n) < 1+ 4√
n
+ (n+4+√

n)2

(n+2)(n+3
√

n)
< 2.5 for n � 64 and max1�n�63 g1(n) =

g1(9) = 2.7313131 . . . .

Lastly we handle the situation, where n is odd, m = 0 and x = (n +1)/2 =: x0 ∈
L0,n, in which case n = 3mod4. In place of (3.15), we have, for y � √

n/2,

n − x0 − y

x0 + 1 + y
�

n − ( n+1
2

) −
√

n
2

( n+1
2

) + 1 +
√

n
2

= 1 − 4 + 2
√

n

n + 3 + √
n
.

Since (3.14) is valid for all x � n/2, in view of (3.13) we obtain the bound

πm
i

πm
x0

�
(

1 − 4 + 2
√

n

n + 3 + √
n

)i−x0−

√

n
2 �−1

for i � x0 + 

√

n

2
� + 1.
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Using (3.14) again for the first inequality we have

1
( n

2 + 1
) n

2

πm(Um,x0)π
m(U c

m,x0
)

πm
x0

= 1

2
( n

2 + 1
) n

2

⎛

⎜
⎝

∑

x0�i�x0+

√

n
2 �,i∈Lm,n

πm
i

πm
x0

+
∑

i�x0+

√

n
2 �+1,i∈Lm,n

πm
i

πm
x0

⎞

⎟
⎠

≤ 1
( n

2 + 1
)

n

⎛

⎝
(√

n

4
+ 1

)

+
∞∑

j=0

(

1 − 4 + 2
√

n

n + 3 + √
n

) j
⎞

⎠

= 1
( n

2 + 1
)

n

(√
n

4
+ 1 + n + 3 + √

n

4 + 2
√

n

)

� 1.638496535√
n(n − 1)

for n � 1, (3.17)

where the last inequality is from bounding the function

g2(n) := 1
( n

2 + 1
)

n

(√
n

4
+ 1 + n + 3 + √

n

4 + 2
√

n

)

(n − 1)
√

n,

with g2(n) � 1
2 + 2√

n
+ n+3+√

n
n+2

√
n

� 1.6 for n � 400 and max1�n�399 g2(n) =
g2(23) = 1.638496535.

The result now follows from combining the estimates (3.12), (3.16) and (3.17). 
�
We remark that a direct argument using Stirling’s formula for the case x = 
n/2�

shows that the best order that can be achieved for the estimate of f m
A is O(n−3/2).
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Chapter 4
Coverage of Random Discs Driven
by a Poisson Point Process

Guo-Lie Lan, Zhi-Ming Ma and Su-Yong Sun

Abstract Motivated by the study of large-scale wireless sensor networks, in this
paper we discuss the coverage problem that a pre-assigned region is completely
covered by the random discs driven by a homogeneous Poisson point process. We
first derive upper and lower bounds for the coverage probability. We then obtain
necessary and sufficient conditions, in terms of the relation between the radius r
of the discs and the intensity λ of the Poisson process, in order that the coverage
probability converges to 1 or 0 when λ tends to infinity. A variation of Stein-Chen
method for compound Poisson approximation is well used in the proof.

4.1 Introduction and Main Results

Let N = ∑
i δXi be a homogeneous Poisson point process in R

2 with inten-
sity λ. Let B(x, r) be the (open) disc centered at x with radius r. We denote by
C (λ, r) = ⋃

i B(Xi , r) the union of the random discs. In this paper we study the rela-
tion between λ and r in order that a pre-assigned region in R

2 is covered by C (λ, r).

The model C (λ, r) is a special case of coverage process. A general description of
coverage process was introduced in [1] as follows: Let P ≡ {ξ1, ξ2, . . .} be a count-
able collection of points in k-dimensional Euclidean space, and {S1,S2, . . .} be a
countable collection of non-empty sets. Define ξi +Si to be the set {ξi +x : x ∈ Si }.
Then the set {ξi +Si : i = 1, 2, . . .} is called a coverage process. Here the sequence
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P may be a stochastic point process, and {Si } may be random sets. Our motivation
of considering aforementioned special coverage process arises from the coverage
problem of wireless sensor networks. Sensor networks are widely employed both in
military and civilian applications (see [3] and references therein). A wireless sensor
network consists of a large number of sensors which are densely deployed in a certain
area. For some reasons (reducing radio interference, limited battery capacity, etc),
these sensors are small in size and have very simple processing and sensing capability.

There are many problems sensor network researchers have to handle. One of the
fundamental problems is coverage. In the literature there have been various discus-
sions concerning the minimum sensing radius, depending on the numbers of (active)
sensors per unit area, which guarantees that the pre-assigned area is covered in a
limiting performance. Philips, Panwar and Tantawi [10] considered the problem of
covering a square of area A with randomly located discs whose centers are generated
by a two-dimensional Poisson point process of density n points per unit area. Suppose
that each Poisson point represents a sensor with sensing radius r which may depend
on n and A. They proved that, for any ε > 0, if r = √

(1 + ε)A ln n/πn, then
limn→∞P(square covered) = 1. On the other hand, if r = √

(1 − ε)A ln n/πn,

then the coverage probability satisfies limn→∞ P(square covered) = 0. There-
fore they observed that, to guarantee that the area is covered, a node must have
π [(1 + ε)A ln n/πn]n or a little more than A ln n nearest neighbors (Poisson point
that lies at a distance of r or less from it) on the average. Shakkottai, Srikant and
Shroff [11] studied the coverage of a grid-based unreliable sensor network. They
derived necessary and sufficient conditions for the random grid network to cover a
unit square area. Their result shows that the random grid network asymptotically
covers a unit square area if and only if pnr2

n is of the order (ln n)/n, where rn is the
sensing radius and pn is the probability that a sensor is “active" (not failed).

In this connection we mention that Hall [6] has considered the coverage problem
with the model that discs of radius r are placed in a unit-area square D at a Poisson
intensity of λ. Let V (λ, r) denote the vacancy within D, i.e., V (λ, r) is the area of
uncovered region in D . It was shown ([6], Theorem 3.11) that

1

20
min{1, (1 + πr2λ2)e−πr2λ} < P(V (λ, r) > 0)

< min{1, 3(1 + πr2λ2)e−πr2λ} (4.1)

for λ � 1 and 0 < r � 1/2. By Hall’s result, if λ = n and
rn = √

(ln n + ln ln n + bn)/πn, then limn→∞ P(square covered) = 1 when
bn → +∞, and limn→∞ P(square covered) < 19/20 when bn → −∞. However,
it was not clear whether limn→∞ P(square covered) = 0 when |bn| = o(ln n) and
bn → −∞.

In this paper we shall obtain upper and lower bounds of the coverage probability
(Theorem 4.1). We also obtain necessary and sufficient conditions, in terms of the
relation between r and λ, in order that the coverage probability converges to 1 or 0
when λ tends to infinity (Theorem 4.2).

We now introduce our main results. In what follows let A be a unit square.
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Theorem 4.1 With the above notations,

1 −
(

1 + 8rλ + 4

3
πr2λ2

)
e−πr2λ � P(A ⊆ C (λ, r)) � 1 −

(

1 + 21.1eπr2λ

πr2λ2

)−1

.

(4.2)

Theorem 4.2 Suppose that λ tends to infinity and r depends on λ by the relation

r2 = (ln λ + ln ln λ + b(λ)) ∨ 0

πλ
. (4.3)

Then

P(A ⊆ C (λ, r)) → 1 iff b(λ) → +∞, (4.4)

P(A ⊆ C (λ, r)) → 0 iff b(λ) → −∞. (4.5)

Our estimation (4.2) partly improves the previous estimation (4.1) obtained by
Hall. Assertion (4.5) clarifies the above-mentioned question. A detailed comparison
of the two estimations (4.2) and (4.1) will be discussed in Sect. 4.4.

Results similar to Theorem 4.2 appeared first in our previous paper [8], where
the argument was based on Aldous’ Poisson clumping heuristic (cf. [1]). In this
paper we shall prove Theorem 4.2 with a rigorous argument based on a variation of
Stein-Chen method developed by Barbour, Chen and Loh [4] concerning compound
Poisson approximation.

4.2 An Estimation via Compound Poisson Approximation

In this section we shall prepare a useful lemma (see Lemma 4.1) for the estima-
tion of point processes. For the convenience of the reader, we recall first some
results obtained by Barbour, Chen and Loh [4] concerning compound Poisson
approximation.

Definition 4.1 (Barbour, Chen, Loh [4]) Let I be a countable index set. A non-empty
family of random variables {Xα, α ∈ I } is said to be locally dependent if for each
α ∈ I there exist Aα ⊆ Bα ⊆ I with α ∈ Aα such that Xα is independent of
{Xβ : β ∈ Ac

α} and {Xβ : β ∈ Aα} is independent of {Xβ : β ∈ Bc
α}.

Let A and B be non-empty subsets of I. The set B is said to be a locally dependent
set of {Xα : α ∈ A} if the latter is independent of {Xα : α ∈ Bc}.

Now let {Xα, α ∈ I } be a family of locally dependent random variables with
pα = P(Xα = 1) = 1 − P(Xα = 0) > 0. For each α ∈ I, let Aα be a locally
dependent set of {Xα} and Bα be a locally dependent set of {Xβ : β ∈ Aα}. Define
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W =
∑

α∈I

Xα, Yα =
∑

β∈Aα

Xβ, λi = 1

i

∑

α∈I

E
[
Xα1(Yα = i)

]
, i � 1. (4.6)

(Here and henceforth 1(·) denotes the indicator function).
Let δi be the degenerate measure on the space of integer numbers with mass 1 at i.

A compound Poisson distribution with parameter
∑

i λiδi , denoted by Po
( ∑

i λiδi
)

is the distribution of the random variable
∑

i iYi , where Yi ’s are independent integer
valued random variables and Yi has the Poisson distribution with expectation λi (see
[1, 9]). Denote by L (W ) the distribution of a random variable W, and by dT V (·, ·)
the total variation distance of two probabilities.

Proposition 4.1 ([4], Theorem 8) With the above notations we have

dT V
(
L (W ), Po

( ∑
i λiδi

))
� 2

(
1 ∧ λ−1

1

)
exp

(∑
i λi

) ∑

α∈I

∑

β∈Bα

pα pβ.

Moreover, if iλi ↘ 0 as i → ∞, then the bound can be improved to

dT V
(
L (W ), Po

( ∑
i λiδi

))

� 2

{

1 ∧ 1

λ1 − 2λ2

[
1

4(λ1 − 2λ2)
+ ln+2(λ1 − 2λ2)

]}∑

α∈I

∑

β∈Bα

pα pβ.

Below we shall apply the above results to (stochastic) point processes. We first
invent two concepts dependent set and second order dependent set. Let N be a point
process in some locally compact separable metric space (E, ρ). We denote again
by ρ the induced metric on the product space E2. Namely, ρ((x1, x2), (y1, y2)) =
ρ(x1, x2)+ρ(y1, y2) for (x1, y1) and (x2, y2) in E2. For an arbitrary subset D ⊂ E
(or D ⊂ E2), Dc and D will denote its complement and closure, respectively.

Definition 4.2 Let x ∈ E . The dependent set of x related to N, denoted by Dx ,

is defined as the intersection of all closed sets F such that N (· ∩ Fc) is inde-
pendent of N (· ∩ B(x, ε)) for some ε > 0. Denote by Ex = ⋃

z∈Dx
Dz . Then

E ≡ {(x, y) : x ∈ E, y ∈ Ex } (⊂ E2) is called the second order dependent set of N.

Lemma 4.1 is potentially useful in research of point processes.

Lemma 4.1 Suppose that N is a simple point process in E such that μ(dx) ≡
E[N (dx)] is a Radon measure. Let E be the second order dependent set of N. Then
for any bounded Borel set D, there exists a real number θ � μ(D) such that

∣
∣P(N (D) = 0) − e−θ

∣
∣ � 2eμ(D)μ2(E ∩ D2). (4.7)

Proof Let Dn, j be a null array of partitions of D, i.e. D is the disjoint union of
Dn, j , 1 � j � n for each n, the partitions are successive refinements and

�n ≡ max
j

diamDn, j ↘ 0 as n → ∞. (4.8)
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Let Hn, j = {N (Dn, j ) � 1} and Wn = ∑n
j=1 1(Hn, j ). Since N is a simple point

process and μ(D) < ∞, we have

Wn ↗ N (D) as n → ∞ a.s..

For each n we define the index sets I n and I n as

I n = {(k, j) : there exists x ∈ Dn,k, y ∈ Dn, j such that y ∈ Dx },
I n = {(i, j) : there exists x ∈ Dn,i , y ∈ Dn, j such that (x, y) ∈ E }.

Referring to Definition 4.1 and (4.6) we define

Yn,k =
∑

j : (k, j)∈I n

1(Hn, j ), λn,i = 1

i

∑

k�1

E
[
1(Hn,k) · 1(Yn,k = i)

]
.

Then by Proposition 4.1 we have

dT V
(
L (Wn), Po

(∑
i λn,iδi

))
� 2 exp

(∑
i λn,i

) ∑

(i, j)∈I n

P(Hn,i )P(Hn, j ). (4.9)

Let θn = ∑
i λn,i . Then it follows that

θn �
∑

i iλn,i = E[Wn] � μ(D).

Thus (4.9) implies
∣
∣P(Wn = 0) − e−θn

∣
∣ � 2eμ(D)

∑

(i, j)∈I n
P(Hn,i )P(Hn, j ). (4.10)

For each n, we define the sets En ⊆ E2 as

En = {z ∈ E2 : ρ(z,E ) � 2�n},
where �n is defined by (4.8). It can be showed that Dn,i × Dn, j ⊆ En for each
(i, j) ∈ I n . Applying Markov inequality to (4.10) we obtain

∣
∣P(Wn = 0) − e−θn

∣
∣ = 2eμ(D)

∑

(i, j)∈I n
P
(
N (Dn,i ) � 1

)
P
(
N (Dn, j ) � 1

)

� 2eμ(D)
∑

(i, j)∈I n
μ(Dn,i )μ(Dn, j )

= 2eμ(D)
∑

(i, j)∈I n
μ2(Dn,i × Dn, j )

� 2eμ(D)μ2(En ∩ D2).

(4.11)
The last “�” holds because all the (Dn,i × Dn, j )’s are disjoint and contained in
En ∩D2. It is easy to check that En ∩D2 ↘ E ∩D2 and P(Wn = 0) ↘ P(N (D) = 0).

Selecting a subsequence if necessary, we may assume that θn → θ. Then θ � μ(D)

because θn � μ(D) for all n. Therefore (4.7) is obtained by taking limits on both
sides of (4.11). ��
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4.3 Proofs of the Main Results

Let N = ∑
i δXi be a homogeneous Poisson point process in R

2 with intensity λ

and C (λ, r) = ⋃
i B(Xi , r) be defined as in the beginning of Sect. 4.1 Observe that

the randomly positioned discs divide the plane into random covered and uncovered
regions. For each connected uncovered region, we choose some special points, which
will be called corners (the terminology is motivated by [2]), to mark the region. Thus,
roughly speaking, the unit square A is covered if there is no such corner in A. We use
C(x, r) to denote the circle centered at x with radius r.

Definition 4.3 For two Poisson points Xi and X j with distance not more than 2r,
define the crossing Yi j as the intersection point of C(Xi , r) and C(X j , r) which lies

on the left-hand side of the vector
−−−→
Xi X j . A crossing Yi j is called a corner if it is not

an interior point of a third disc.
In the following, we denote by K = ∑

δYi j the point process of crossings in R
2

and by M the point process of all the corners defined as above. It is clear that both
K and M are homogeneous point processes in R

2. We denote by λK and λM the
intensities of K and M, respectively. In what follows we write a = πr2 for the area
of a disc with radius r.

Lemma 4.2 We have

λK = 4aλ2 and λM = 4aλ2e−aλ.

Proof For any region S ⊂ R
2, we denote by |S| the area of S. By the homogeneity

of K and M, it holds that E[K (S)] = λK |S| and E[M(S)] = λM |S|. We now take a
large number l. Set S = B(0, l) and S− = B(0, l −r). Given the condition that there
are m Poisson points in S, then the conditional distribution of the m points is the same
as m independent identically distributed random points with uniform distribution in
S. Denote by X1, · · · , Xm the m Poisson points in S, by our definition of K we have

K (S−) �
m∑

i=1

∑

j : j �=i

1
(|Xi − X j | � 2r

)
,

K (S) �
m∑

i=1

1
(
Xi ∈ S−) ∑

j : j �=i

1
(|Xi − X j | � 2r

)
.

Therefore,

E
[
K (S−)|N (S) = m

]
� m(m − 1) · P(|Xi − X j | � 2r) = m(m − 1) · 4a

|S| ,
E [K (S)|N (S) = m] � mP(|Xi ∈ S−) · (m − 1)P(|Xi − X j | � 2r)

= m(m − 1) · |S−|
|S| · 4a

|S| = m(m − 1) · (l − r)2

l2 · 4a

|S| .



4 Coverage of Random Discs Driven by a Poisson Point Process 49

Since N (S) follows the Poisson distribution with expectation λ|S|, hence

λK · π(l − r)2 = E
[
K (S−)

]
�

∑

m�0

m(m − 1) · 4a

|S| · (λ|S|)m

m! e−λ|S|

= 4aλ2|S| = 4aλ2 · πl2,

λK · πl2 = E [K (S)] �
∑

m�0

m(m − 1) · (l − r)2

l2 · 4a

|S| · (λ|S|)m

m! e−λ|S|

= 4aλ2 · (l − r)2

l2 · |S| = 4aλ2 · (l − r)2

l2 · πl2.

In the above two inequalities letting l tend to infinity, we get λK = 4aλ2.

For i �= j define the event

Bi j = {|Xi − X j | � 2r and |Yi j − Xk | � r for all k = 1, 2, . . . , m
}
.

Then we have

P(Bi j ) = P
(|Xi − X j | � 2r

) · P
(
Bi j

∣
∣|Xi − X j | � 2r

)

= 4a

|S|
(

1 − a

|S|
)m−2

.

Since M(S−) �
∑m

i=1
∑

j : j �=i 1(Bi j ) and M(S) �
∑m

i=1 1(Xi ∈ S−)
∑

j : j �=i 1
(Bi j ), it follows that

λM |S−| = E
[
M(S−)

]
�

∑

m�0

E
[
M(S)

∣
∣N (S) = m

] · P
(
N (S) = m

)

=
∑

m�0

m(m − 1) · 4a

|S| ·
(

1 − a

|S|
)m−2 · λm |S|m

m! e−λ|S|

= 4aλ2e−aλ|S|,

λM |S| =E [M(S)] �
∑

m�0

E
[
M(S)

∣
∣N (S) = m

] · P
(
N (S) = m

)

=
∑

m�0

m(m − 1) · |S−|
|S| · 4a

|S| ·
(

1 − a

|S|
)m−2 · λm |S|m

m! e−λ|S|

= 4aλ2e−aλ · |S−|
|S| · |S|.
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Letting l tend to infinite we conclude that the intensity of M is λM = 4aλ2e−aλ. ��
Lemma 4.3 Let N = ∑

i δXi be a homogeneous Poisson point process in R
2 with

intensity λ, C (λ, r) = ⋃
i B(Xi , r). For a directed line L in R

2, denote by IL

the point process consisting of all the beginning points of connected intervals of L
which are uncovered by C (λ, r). Then the intensity of IL (w.r.t. the 1-dim Lebsgue
measure on L) is 2rλe−aλ.

Proof Without loss of generality we assume L = R × {0}. Let D = [0, l] × (−r, r)

for some l large enough. Suppose that there are exactly m Poisson points X1, . . . , Xm

in D. Let ξi be the right end point of the segment B(Xi , r)∩ L , i = 1, . . . , m. Then

IL
([0, l]) =

m∑

i=1

1
(
Xk /∈ B(ξi , r) f or k �= i, 1 � k � m

)
.

Thus we obtain

E
[
IL([0, l])∣∣N (D) = m

] = m
(

1 − a

2lr

)m−1
.

Therefore,

E [IL([0, l])] =
∑

m�0

m
(

1 − a

2lr

)m−1 (2lrλ)m

m! e−2lrλ = 2rλle−aλ,

which shows that the intensity of IL is 2rλe−aλ. ��
Lemma 4.4 Let A be a unit square and M be the point process specified as in Lemma
4.2. Then we have

E[M(A)] = 4aλ2e−aλ, (4.12)

E
[
M(A)2] � E[M(A)]2 + (16π + 34)E[M(A)]. (4.13)

Proof Since |A| = 1, hence (4.12) follows directly from Lemma 4.2. In what follows
we check (4.13). To this end we divide the ordered pairs (Y1, Y2) of different corners
in R

2 into three classes according to the following illustration:

Y1
Y1 Y2

Y2

Class IIIClass IIClass I

Y1
Y2
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Let Pi , i = 1, 2, 3, be the number of ordered pairs of different corners in A which
belongs to Classes I, II and III, respectively. Denote by

P = P1 + P2 + P3. (4.14)

Then P is the total number of ordered pairs of different corners in A.
It is easy to check that P = M(A)[M(A) − 1]. Thus

M(A)2 = P + M(A). (4.15)

Note that almost surely each corner belongs to at most one pair in Class I. Thus

E[P1] � E[M(A)]. (4.16)

For x ∈ R
2, we denote by Px the number of pairs in Class II on the circle C(x, r).

Then we have P2 �
∑

Xi
PXi , where Xi runs over all Poisson points in A. Applying

the theory of Palm distributions (cf. [12], p. 119, (4.4.3)), we have

E [P2] �
∫

A
E[Px ]λdx = λp, (4.17)

where p ≡ E[Px ], which is interpreted as the expected number of pairs in Class II
on the circle C(x, r) conditioned on that x is a Poisson point. The value of E[Px ] is
independent of x because the underlying Poisson process is homogeneous.

Conditioned on that x is a Poisson point, we write Nx = N (B(x, 2r) \ {x}). (The
rigorous meaning of Nx will involve the theory of Palm distributions, we refer to e.g.
[7, 12] for the details of the theory). Given the condition that Nx = m, the Poisson
points X1, . . . , Xm in B(x, 2r) \ {x} are independent random points uniformly
distributed on B(x, 2r). Let Zi and Z ′

i be the crossings produced by C(x, r) and

C(Xi , r), in the manner that Zi lies on the left-hand side of the vector
−→
x Xi and Z ′

i on
the right-hand side. It is clear that {Z1, . . . , Zm} are m independent random points
with the uniform distribution on C(x, r), and so are the Z ′

i ’s.
Note that the pairs (Zi , Z j ), (Z ′

i , Z j ), (Zi , Z ′
j ) and (Z ′

i , Z ′
j ) are all in Class

II for i �= j (while (Zi , Z ′
i ) is in Class I), provided they are corners. If we define

the events Ui j = {Zi , Z j are corners}, ′Ui j = {Z ′
i , Z j are corners} and U ′

i j =
{Zi , Z ′

j are corners}, ′U ′
i j = {Z ′

i , Z ′
j are corners}, then we have

Px =
m∑

i=1

∑

j : j �=i

[
1(Ui j ) + 1(′Ui j ) + 1(U ′

i j ) + 1(′U ′
i j )

]
. (4.18)

One can check that

P(Ui j ) = P
(
Xk /∈ B(Zi , r) ∪ B(Z j , r) for k ∈ {1, . . . , m} \ {i, j})

= E
[
1 − |B(Z1, r) ∪ B(Z2, r)|/(4a)

]m−2
.
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It is clear that the angle α = Zi x Z j is uniformly distributed on [0, π ] and the area
|B(Zi , r)∪B(Z j , r)| depends only on α. Let us write F(α) = ∣

∣B(Z1, r)∪B(Z2, r)
∣
∣.

It can be calculated that F(α) = r2(π + α + sin α). Therefore,

P(Ui j ) =
∫ π

0

[
1 − F(α)/(4a)

]m−2
dα. (4.19)

By a similar argument one can check that

P(′Ui j ) = P(U ′
i j ) = P(′U ′

i j ) = P(Ui j ). (4.20)

From (4.18) to (4.20) it follows that

E[Px |Nx = m] = 4m(m − 1)

∫ π

0

[
1 − F(α)/(4a)

]m−2
dα.

Since Nx follows the Poisson distribution with expectation 4aλ, hence

p = E[Px ] =
∑

m�0

(4aλ)m

m! e−4aλ · 4m(m − 1)

∫ π

0

[
1 − F(α)/(4a)

]m−2
dα

= 4 · (4aλ)2
∫ π

0
e−λF(α)dα

= 64a2λ2 ·
∫ π

0
e−λr2(π+α+sin α)dα

� 64πr2aλ2 ·
∫ ∞

0
e−λr2(π+α)dα

= 64πaλ · e−aλ.

(4.21)
It follows from (4.12), (4.17) and (4.21) that

E [P2] � 64πaλ2e−aλ = 16πE[M(A)]. (4.22)

For each corner Y produced by circles C(Xi , r) and C(X j , r), denote by MY the
point process consisting of all the corners Y ′ which are not on C(Xi , r) ∪ C(X j , r).

Then P3 = ∑
Y MY (A), where Y runs over all the corners in A. Using the theory

of Palm distributions (cf. [12], p. 119, (4.4.3)), we have

E[P3] =
∫

A
μy(A)λM dy, (4.23)

where λM is the intensity of M, μy(·) ≡ E
[
M y(·)|y is a corner

]
. Since M y can be

identical with M on B(y, 2r)c and the distribution of M
(

A\ B(y, 2r)
)

is independent
of the event whether y is a corner or not, we have μy(A \ B(y, 2r)) = E

[
M(A \

B(y, 2r))
]

� E
[
M(A)

]
. Therefore

μy(A) � E
[
M(A)

] + μy(B(y, 2r)). (4.24)
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Now we estimate μy(B(y, 2r)). Conditioned on that y is a corner, the distribution
of M y is identical with the corner process generated by a homogeneous Poisson
process N y with intensity λ1(B(y, r)c) (since no Poisson point in B(y, r)). Let K y

be the point process consisting of all crossings generated by N y . For each crossing
Y in K y, the probability of “Y is a corner” is

P(N y(B(Y, r)) = 0) = e−λ|B(Y,r)\B(y,r)| = e−λr2 S(|Y−y|/2r),

where

S(u) = 2 arcsin u + 2u
√

1 − u2

denotes the area of the difference of two unit discs centered 2u apart. On the other
hand, since E[N y(dx)] � E[N (dx)] for all x ∈ R

2, we have

E[K y(dx)] � E[K (dx)] = 4aλ2dx .

Thus

μy(B(y, 2r)) =
∫

B(y,2r)

e−λr2 S(|x−y|/2r)E[K y(dx)]

�
∫

B(y,2r)

4aλ2e−λr2 S(|x−y|/2r)dx

=
∫ 2π

0

∫ 2r

0
4aλ2se−λr2·S(s/2r)dsdθ

=32πr2aλ2
∫ 1

0
ue−λr2·S(u)du.

Now,

S(u) = 2u(u−1 arcsin u +
√

1 − u2) � 2u arcsin 1 = πu,

since u−1 arcsin u + √
1 − u2 is decreasing on (0,1). Therefore

μy(B(y, 2r)) � 32a2λ2
∫ 1

0
ue−aλudu � 32.

Since E[M(A)] = λM , it follows from (4.23) and (4.24) that

E[P3] � E[M(A)]2 + 32E[M(A)]. (4.25)

Then (4.13) follows from (4.14), (4.15), (4.16), (4.22) and (4.25). ��
Proof of Theorem 4.1 Let L = ⋃4

i=1 Li be the boundary of A, where Li , i =
1, 2, 3, 4 denote the edges. Then A ⊆ C (λ, r) iff L ⊆ C (λ, r) and M(A) = 0.

Therefore,



54 G.-L. Lan et al.

P(A ⊆ C (λ, r)) = 1 − P(L � C (λ, r)) − P(L ⊆ C (λ, r), M(A) > 0). (4.26)

Let us endow each Li a direction such that L can be regarded as a loop when following
these directions (see Fig. (a). Let I (L) be the number of beginnings of uncovered
interval on the loop L thick dots in Fig. (b) and x0 be a fixed point on L.

(a) (b)

With the notation in Lemma 4.4, we have I (L) = ∑4
i=1 ILi (Li ). Moreover,

{
L � C (λ, r)

} = {
I (L) � 1

}⋃ {
L ∩ C (λ, r) = ∅}

= {
I (L) � 1

}⋃ {
x0 /∈ C (λ, r)

}
.

Using Lemma 4.4, we have

P(L � C (λ, r)) � 4P(ILi (Li ) � 1) + P(x0 /∈ C (λ, r))

� 4E[ILi (Li )] + P(N (B(x0, r)) = 0)

= 8rλe−aλ + e−aλ.

(4.27)

Note that {L ⊆ C (λ, r), M(A) > 0} = {L ⊆ C (λ, r), M(A) � 3} [See
Fig. 4.1(b)]. Thus

P(L ⊆ C (λ, r), M(A) > 0) � P(M(A) � 3) � 1

3
E[M(A)] = 4

3
aλ2e−aλ.

(4.28)
Combining (4.26)–(4.28) we derive

P(A ⊆ C (λ, r)) � 1 − e−aλ − 8rλe−aλ − 4

3
aλ2e−aλ.

Hence we have proved the lower bound in (4.2).
We now prove the upper bound. By the Cauchy-Schwarz inequality,

E
[
M(A) · 1(M(A) > 0)

]2 � E
[
M(A)2] · P

(
M(A) > 0

)
,

which shows that P(M(A) > 0) � E[M(A)]2/E
[
M(A)2]. Thus
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P
(
M(A) = 0

)
� 1 − E[M(A)]2/E

[
M(A)2].

Using (4.13) we obtain

P(A ⊆ C (λ, r)) � P
(
M(A) = 0

)
� 1 −

(

1 + 16π + 34

E[M(A)]
)−1

. (4.29)

Hence the upper bound follows, since E[M(A)] = 4aλ2e−aλ and (16π + 34)/4 <

21.1. ��
Before providing the proof of Theorem 4.2, let us prove a useful lemma. In the

following we write M = Mλ,r when it is necessary to indicate the intensity of N and
the radii of the discs.

Lemma 4.5 Suppose that r = r(λ) depends on λ. When λ tends to infinity, we have

P
(
Mλ,r(λ)(A) = 0

) → 0 iff E
[
Mλ,r(λ)(A)

] → ∞.

Proof If E
[
Mλ,r(λ)(A)

] → ∞, then it follows from (4.29) that P
(
Mλ,r(λ)(A) = 0

)

→ 0.

Now we suppose P
(
Mλ,r(λ)(A) = 0

) → 0. Then it is necessary that r(λ) → 0.

Otherwise one can take a sequence {(λn, r(λn)) : n � 1} such that λn → ∞ and
r(λn) � δ > 0. Then

P
(
Mλn ,r(λn)(A) = 0

)
� P(A ⊆ C (λn, r(λn)) � P(A ⊆ C (λn, δ)) → 1,

which contradicts the assumption that P
(
Mλ,r(λ)(A) = 0

) → 0. By Definition 4.2
one can check that the dependent set of x related to Mλ,r(λ) is Px = B(x, 2r). Then
the second order dependent set for Mλ,r(λ) is

E = {
(x, y) | x ∈ R

2, y ∈ B(x, 4r)
}
.

By Lemma 4.1, for each λ there exists a θ = θ(λ) � E
[
Mλ,r(λ)(A)

]
such that

∣
∣P

(
Mλ,r(λ)(A) = 0

) − e−θ(λ)
∣
∣ � 2eμ(A)μ2(E ∩ A2), (4.30)

where μ(dx) ≡ EMλ,r(λ)(dx).

Note that |A| = 1 implies that μ(dx) = λM dx = μ(A)dx . Therefore

μ2(E ∩ A2) = μ(A)2
∫

A

∣
∣B(x, 4r) ∩ A

∣
∣dx � 16πr2μ(A)2, (4.31)

from which we assert μ(A) = E
[
Mλ,r(λ)(A)

] → ∞. Otherwise, there would exist
a sequence {(λn, r(λn)) : n � 1} such that μn(A) = E[Mλn ,r(λn)(A)] → μ0 < ∞
when n tends to infinity. Then by (4.31) we would have μ2(E ∩ A2) → 0
because r(λn) → 0. Taking limits on both sides of (4.30), we would have
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e−θ(λn) → 0, and hence E[Mλn ,r(λn)(A)] � θ(λn) → ∞, contradicting the assump-
tion that E[Mλn ,r(λn)(A)] → μ0. Therefore P

(
Mλ,r(λ)(A) = 0

) → 0 implies
E
[
Mλ,r(λ)(A)

] → ∞.

��
Remark Using (4.29) it is easy to check that

P
(
Mλ,r(λ)(A) = 0

) → 1 ⇐⇒ E
[
Mλ,r(λ)(A)

] → 0.

Proof of Theorem 4.2 By (4.3) we have b = aλ − ln λ − ln ln λ, therefore

aλ = b + ln λ + ln ln λ, e−aλ = (λ ln λ)−1e−b. (4.32)

(i) We shall prove b → +∞ ⇒ P(A ⊆ C (λ, r)) → 1. By Theorem 4.1,

P(A ⊆ C (λ, r)) � 1 − e−b
[

4

3
+ 4

3

( ln ln λ + b

ln λ

)
+ 8r

ln λ
+ 1

λ ln λ

]

. (4.33)

Suppose r � 1. Then it follows from (4.33) that P(A ⊆ C (λ, r)) → 1 as
b → +∞. Otherwise, replacing r by r ∧ 1, we have

P(A ⊆ C (λ, r)λ,r ) � P(A ⊆ C (λ, r)λ,r∧1) → 1.

(ii) Now we prove b → −∞ ⇒ P(A ⊆ C (λ, r)) → 0. From (4.32) it follows that

E
[
M(A)

] = 4aλ2e−aλ = 4e−b
(

1 + ln ln λ

ln λ
+ b

ln λ

)
(4.34)

We first suppose b � − ln ln λ. Then (4.34) shows that E
[
M(A)

] → +∞ as
b → −∞. Consequently, it follows from (4.29) that P(A ⊆ C (λ, r)) → 0. In
other situations, we replace b by b∨(− ln ln λ), namely, replace r by r ∨ρ, where
ρ = √

ln λ/πλ. Then it follows that

P(A ⊆ C (λ, r)) � P(A ⊆ C (λ, r ∨ ρ)) → 0.

(iii) Now suppose P(A ⊆ C (λ, r)) → 1.Then from (4.29) it follows that E
[
M(A)

] →
0. Thus by (4.34) we have either b → +∞ or b/ ln λ → −1. However, the latter
would imply b → −∞, and hence by (ii) we would have P(A ⊆ C (λ, r)) → 0,

which contradicts the assumption. Therefore b → +∞.

(iv) Suppose P(A ⊆ C (λ, r)) → 0. By (4.26) we have

P(A ⊆ C (λ, r)) � P
(
M(A) = 0

) − P(L � C (λ, r)). (4.35)

It follows from (4.27) and (4.32) that

P(L � C (λ, r)) � e−b
( 8r

ln λ
+ 1

λ ln λ

)
. (4.36)
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By the assumption that P(A ⊆ C (λ, r)) → 0 we have obviously r → 0. Now we
can claim b → −∞. Otherwise, there would exist a sequence R = {(λn, rn) :
n � 1} such that b → β ∈ (−∞,+∞] along R. Then from (4.36) we would have
P(L � C (λ, r)) → 0 along R. Consequently, (4.35) would imply P

(
M(A) =

0
) → 0 along R, and hence by Lemma 4.5 we would have E

[
M(A)

] → ∞
along R. However, by (4.34) we should have E

[
M(A)

] → 4e−β ∈ [0,∞) along
R, which makes contradiction. The proof of Theorem 4.2 is completed. ��

4.4 Comparisons Between the Estimations (4.1) and (4.2)

In this section we make some numerical comparisons between the two estimations
(4.1) and (4.2). Note that with the notations of (4.1) and (4.2), we have

P(A ⊆ C (λ, r)) = 1 − P
(
V (λ, r) > 0

)
.

Thus our estimation (4.2) can be equivalently written as

Lo(λ, r) ≡
(

1 + 21.1eaλ

aλ2

)−1

� P
(
V (λ, r) > 0

)
� (1 + 8rλ + 4

3
aλ2)e−aλ.

The following figures illustrate the estimations of the lower bound of P(V
(λ, r) > 0) made by (4.1) (dotted line) and by (4.2) (solid line), respectively.
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Fig. 4.1 a L � C(λ, r). b L ⊆ C(λ, r), M(A) > 0

From the figures we see that globally our lower bound estimation by (4.2) is
better than the previous one by (4.1). Although the lower bound Lo(λ, r) tends to
0 as r → 0, we can ignore it because P(V (λ, r) > 0) is decreasing in r. Indeed,
Lo(λ, r) takes its maximum at r = ρλ ≡ (λπ)−1/2 if λ fixed. Then for r � ρλ,

P(V (λ, r) > 0) � P
(
V (λ; ρλ) > 0

)
� Lo(λ, ρλ).
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Fig. 4.2 a λ = 100. b λ = 1000
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Fig. 4.3 a λ = 100. b λ = 1000

Thus our lower bound Lo(λ, r) can be trivially improved to Lo(λ, r ∨ ρλ), which
is decreasing in r. Therefore, for r small enough, the lower bound Lo(λ, r ∨ ρλ) is
always better than the lower bound of (4.1). However, when r is large, the lower
bound Lo(λ, r) will be slightly worse than that of (4.1) (see Fig. 4.2(a) for λ =
100, r ∈ [0.14, 0.18] and Fig. 4.2(b) for λ = 1000, r ∈ [0.05, 0.07]).

Figure 4.3 for the upper bound of P(V (λ, r) > 0) shows that our upper bound
made by (4.2) (solid line) is always better than that by (4.1) (dotted line).
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Chapter 5
On the Optimality of Stein Factors

Adrian Röllin

Abstract The application of Stein’s method for distributional approximation often
involves so-called Stein factors (also called magic factors) in the bound of the solu-
tions to Stein equations. However, in some cases these factors contain additional
(undesirable) logarithmic terms. It has been shown for many Stein factors that the
known bounds are sharp and thus that these additional logarithmic terms cannot be
avoided in general. However, no probabilistic examples have appeared in the liter-
ature that would show that these terms in the Stein factors are not just unavoidable
artefacts, but that they are there for a good reason. In this article we close this gap by
constructing such examples. This also leads to a new interpretation of the solutions
to Stein equations.

5.1 Introduction

Stein’s method for distributional approximation, introduced in [18], has been used to
obtain bounds on the distance between probability measures for a variety of distrib-
utions in different metrics. There are two main steps involved in the implementation
of the method. The first step is to set up the so-called Stein equation, involving a
Stein operator, and to obtain bounds on its solutions and their derivatives or differ-
ences; this can be done either analytically, as for example in [18], or by means of the
probabilistic method introduced by Barbour [2]. In the second step one then needs
to bound the expectation of a functional of the random variable under consideration.
There are various techniques to do this, such as the local approach by Stein [18],
Chen and Shao [14] or the exchangeable pair coupling by Stein [19]; see [13] for a
unification of these and many other approaches.
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To successfully implement the method, so-called Stein factors play an important
role. In this article we will use the term Stein factor to refer to the asymptotic behav-
iour of the bounds on the solution to the Stein equation as some of the involved para-
meters tend to infinity or zero. Some of the known Stein factors are not satisfactory,
because they contain terms which often lead to non-optimal bounds in applications.
Additional work is then necessary to circumvent this problem; see for example [10].
There are also situations where the solutions can grow exponentially fast, as has been
shown by Barbour et al. [7] and Barbour and Utev [6] for some specific compound
Poisson distributions, which limits the usability of Stein’s method in these cases.

To make matters worse, for many of these Stein factors it has been shown that they
cannot be improved; see [3, 7, 9]. However, these articles do not address the question
whether the problematic Stein factors express a fundamental “flaw” in Stein’s method
or whether there are examples in which these additional terms are truly needed if
Stein’s method is employed to express the distance between the involved probability
distributions in the specific metric.

The purpose of this note is to show that the latter statement is in fact true. We
will present a general method to construct corresponding probability distributions;
this construction not only explains the presence of problematic Stein factors, but also
gives new insight into Stein’s method.

In the next section, we recall the general approach of Stein’s method in the context
of Poisson approximation in total variation. Although in the univariate case the Stein
factors do not contain problematic terms, it will demonstrate the basic construction
of the examples. Then, in the remaining two sections, we apply the construction to
the multivariate Poisson distribution and Poisson point processes, as in these cases
the Stein factors contain a logarithmic term which may lead to non-optimal bounds
in applications.

5.2 An Illustrative Example

In order to explain how to construct examples which illustrate the nature of Stein
factors and also to recall the basic steps of Stein’s method, we start with the Stein–
Chen method for univariate Poisson approximation (see [8]).

Let the total variation distance between two non-negative, integer-valued random
variables W and Z be defined as

dTV (L (W ),L (Z)) := sup
h∈HTV

∣
∣Eh(W ) − Eh(Z)

∣
∣, (5.1)

where the set HTV consists of all indicator functions on the non-negative integers
Z+. Assume now that Z ∼ Po(λ). Stein’s idea is to replace the difference between
the expectations on the right hand side of (6.1) by

E{gh(W + 1) − Wgh(W )},

http://dx.doi.org/10.1007/978-1-4614-1966-2_6
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where gh is the solution to the Stein equation

λgh( j + 1) − jgh( j) = h( j) − Eh(Z), j ∈ Z+. (5.2)

The left hand side of (6.2) is an operator that characterises the Poisson distribution;
that is, for A g( j) := λg( j + 1) − jg( j),

EA g(Y ) = 0 for all bounded g ⇐⇒ Y ∼ Po(λ).

Assume for simplicity that W has the same support as Po(λ). With (6.2), we can now
write (6.1) as

dTV (L (W ), Po(λ)) = sup
h∈HTv

∣
∣EA gh(W )

∣
∣. (5.3)

It turns out that (5.3) is often easier to bound than (6.1).
Barbour and Eagleson [5] and Barbour et al. [8] showed that, for all functions

h ∈ HTV,

‖gh‖ ≤ 1 ∧
√

2

λe
, ‖�gh‖ ≤ 1 − e−λ

λ
, (5.4)

where ‖·‖ denotes the supremum norm and �g( j) := g( j + 1) − g( j). So here,
if one is interested in the asymptotic λ → ∞, the Stein factors are of order λ−1/2 and
λ−1, respectively. With this we have finished the first main step of Stein’s method.

As an example for the second step and also as a motivation for the main part of this
paper, assume that W is a non-negative integer-valued random variable and assume
that τ is a function such that

E
{
(W − λ)g(W )

} = E
{
τ(W )�g(W )

}
(5.5)

for all bounded functions g; see [11] and [15] for more details on this approach.
To estimate the distance between L (W ) and the Poisson distribution with mean λ,

we simply use (5.3) in connection with (5.5) to obtain

dTV
(
L (W ), Po(λ)

) = sup
h∈HTV

∣
∣A gh(W )

∣
∣

= sup
h∈HTV

∣
∣E

{
λgh(W + 1) − Wgh(W )

}∣
∣

= sup
h∈HTV

∣
∣E

{
λ�gh(W ) − (W − λ)gh(W )

}∣
∣

= sup
h∈HTV

∣
∣E

{
(λ − τ(W ))�gh(W )

}∣
∣

≤ 1 − e−λ

λ
E

∣
∣τ(W ) − λ

∣
∣,

(5.6)

http://dx.doi.org/10.1007/978-1-4614-1966-2_6
http://dx.doi.org/10.1007/978-1-4614-1966-2_6
http://dx.doi.org/10.1007/978-1-4614-1966-2_6
http://dx.doi.org/10.1007/978-1-4614-1966-2_6
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where for the last step we used (5.4). Thus, (5.6) expresses the dTV-distance between
L (W ) and Po(λ) in terms of the average fluctuation of τ around λ. It is not difficult
to show that τ ≡ λ if and only if W ∼ Po(λ).

Assume now that, for a fixed positive integer k, τ(w) = λ + δk(w), where δk(w)

is the Kronecker delta, and assume that Wk is a random variable satisfying (5.5) for
this τ. In this case we can in fact replace the last inequality in (5.6) by an equality to
obtain

dTV
(
L (Wk), Po(λ)

) = P[Wk = k] sup
h∈HTV

|�gh(k)|. (5.7)

From Eq. (1.22) of the proof of Lemma 1.1.1 of [8] we see that, for k = �λ
,
sup

h∈HTV

|�gh(k)| � λ−1

as λ → ∞. Thus, (6.7) gives

dTV
(
L (Wk), Po(λ)

) � P[Wk = k]λ−1 (5.8)

as λ → ∞. Note that, irrespective of the order of P[Wk = k], the asymptotic (5.8)
makes full use of the second Stein factor of (5.4). To see that L (Wk) in fact exists,
we rewrite (5.5) as EBk g(Wk) = 0, where

Bk g(w) = A g(w) + δk(w)�g(w)

= (
λ + δk(w)

)
g(w + 1) − (

w + δk(w)
)
g(w).

(5.9)

Recall from [2], that A can be interpreted as the generator of a Markov process;
in our case, as an immigration-death process, with immigration rate λ, per capita
death rate 1 and Po(λ) as its stationary distribution. Likewise, we can interpret Bk

as a perturbed immigration-death process with the same transition rates, except in
point k, where the immigration rate is increased to λ+1 and the per capita death rate
is increased to 1 + 1/k. Thus, L (Wk) can be seen as the stationary distribution of
this perturbed process.

If k = �λ
, the perturbation of the transition rates at point k is of smaller order
than the transition rates of the corresponding unperturbed immigration-death process
in k. Thus, heuristically, P[Wk = k] is of the same order as the probability Po(λ){k}
of the stationary distribution of the unperturbed process, hence P[Wk = k] � λ−1/2,

and (5.8) is of order λ−3/2. We omit a rigorous proof of this statement.

Remark 5.1 Note that by rearranging (6.7) we obtain

sup
h∈HTV

∣
∣�gh(k)

∣
∣ = dTV

(
L (Wk),L (Z)

)

P[Wk = k] (5.10)

for positive k. We can assume without loss of generality that gh(0) = gh(1) for all
test functions h because the value of gh(0) is not determined by (6.2) and can in fact

http://dx.doi.org/10.1007/978-1-4614-1966-2_6
http://dx.doi.org/10.1007/978-1-4614-1966-2_6
http://dx.doi.org/10.1007/978-1-4614-1966-2_6
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be arbitrarily chosen. Thus �gh(0) = 0 and, taking the supremum over all k ∈ Z+,

we obtain

sup
h∈HTV

‖�gh‖ = sup
k≥1

dTV
(
L (Wk),L (Z)

)

P[Wk = k] . (5.11)

This provides a new interpretation of the bound ‖�gh‖ (a similar statement can be
made for ‖gh‖, but then with a different family of perturbations), namely as the
ratio of the total variation distance between some very specific perturbed Poisson
distributions and the Poisson distribution, and the probability mass at the location of
these perturbations.

Let us quote [12], p. 98:

Stein’s method may be regarded as a method of constructing certain kinds of identities
which we call Stein identities, and making comparisons between them. In applying the
method to probability approximation we construct two identities, one for the approximating
distribution and the other for the distribution to be approximated. The discrepancy between
the two distributions is then measured by comparing the two Stein identities through the use
of the solution of an equation, called Stein equation. To effect the comparison, bounds on
the solution and its smoothness are used.

Equations (6.15) and (6.16) make this statement precise. They express how certain
elementary deviations from the Stein identity of the approximating distribution will
influence the distance of the resulting distributions in the specific metric, and they
establish a simple link to the properties of the solutions to (6.2). We can thus see W
from (5.5) as a ‘mixture’ of such perturbations which is what is effectively expressed
by estimate (5.6).

Thus, to understand why in some of the applications the Stein factors are not as
satisfying as in the above Poisson example, we will in the following sections analyse
the corresponding perturbed distributions in the cases of multivariate Poisson and
Poisson point processes.

In order to define the perturbations to obtain an equation of the form (6.7), some
care is needed, though. The attempt to simply add the perturbation as in (5.9), may
lead to an operator that is not interpretable as the generator of a Markov process and
thus the existence of the perturbed distribution would not be guaranteed as easily. It
turns out that with suitable symmetry assumptions we can circumvent this problem.

5.3 Multivariate Poisson Distribution

Let d ≥ 2 be an integer, μ = (μ1, . . . , μd) ∈ R
d+ such that

∑
μi = 1, and let λ > 0.

Let Po(λμ) be the distribution on Z
d+ defined as Po(λμ) = Po(λμ1)⊗· · ·⊗Po(λμd).

Stein’s method for multivariate Poisson approximation was introduced by Barbour
[2]; but see also [1]. Let ε(i) denote ith unit vector. Using the Stein operator

http://dx.doi.org/10.1007/978-1-4614-1966-2_6
http://dx.doi.org/10.1007/978-1-4614-1966-2_6
http://dx.doi.org/10.1007/978-1-4614-1966-2_6
http://dx.doi.org/10.1007/978-1-4614-1966-2_6
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A g(w) :=
d∑

i=1

λμi
{
g(w + ε(i)) − g(w)

} +
d∑

i=1

wi
{
g(w − ε(i)) − g(w)

}

for w ∈ Z
d+, it is proved in Lemma 3 of [2] that the solution gA to the Stein equation

A gA(w) = δA(w) − Po(λμ){A} for A ⊂ Z
d+, satisfies the bound

∥
∥
∥
∥

d∑

i, j=1

αiα j�i j gA

∥
∥
∥
∥ ≤ min

{
1 + 2 log+(2λ)

2λ

d∑

i=1

α2
i

μi
,

d∑

i=1

α2
i

}

(5.12)

for any α ∈ R
d , where

�i j g(w) := g(w + ε(i) + ε( j)) − g(w + ε(i)) − g(w + ε( j)) + g(w).

Let now mi = �λμi
 for i = 1, . . . , d and define

A1 = {w ∈ Z
d+ : 0 ≤ w1 ≤ m1, 0 ≤ w2 ≤ m2}. (5.13)

Barbour [3] proved that, if μ1, μ2 > 0 and λ ≥ (e/32π)(μ1 ∧ μ2)
−2, then

∣
∣�12gA1(w)

∣
∣ ≥ log λ

20λ
√

μ1μ2
(5.14)

for any w with (w1, w2) = (m1, m2). It is in fact not difficult to see from the proof
of (6.20) that this bound also holds for the other quadrants having corner (m1, m2).

Example 5.1 Assume that W is a random vector having the equilibrium distribution
of the d-dimensional birth-death process with generator

BK g(w) = A g(w)

+ 1

2
δK+ε(2) (w)

[
g(w + ε(1)) − g(w)

] + 1

2
δK+ε(1) (w)

[
g(w + ε(2)) − g(w)

]

+ 1

2
δK+ε(1) (w)

[
g(w − ε(1)) − g(w)

] + 1

2
δK+ε(2) (w)

[
g(w − ε(2)) − g(w)

]

=
d∑

i=1

(
λμi + 1

2
δ1(i)δK+ε(2) (w) + 1

2
δ2(i)δK+ε(1) (w)

)[
g(w + ε(i)) − g(w)

]

+
d∑

i=1

(
wi + 1

2
δ1(i)δK+ε(1) (w) + 1

2
δ2(i)δK+ε(2) (w)

)[
g(w − ε(i)) − g(w)

]
,

(5.15)
where K = (m1, m2, . . . , md). Assume further that μ1 = μ2, thus m1 = m2 (the
‘symmetry condition’). See Fig. 5.1 for an illustration of this process. As the pertur-
bations are symmetric in the first coordinates the stationary distribution will also be
symmetric in the first two coordinates.

Now, noting that for any bounded g we have EBK g(W ) = 0,

http://dx.doi.org/10.1007/978-1-4614-1966-2_6
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Fig. 5.1 A rough illustration of the perturbed process defined by the generator (5.15). Between any
of two connected points on the lattice Z

2+, we assume the transition dynamics of a unperturbed
immigration-death process, that is, in each coordinate immigration rate λμi and per capita death
rate 1. The arrows symbolise the additional perturbations with respect to the unperturbed
immigration-death process; each arrow indicates an increase by 1/2 of the corresponding transition
rate. The resulting differences of the point probabilities between the equilibrium distributions of the
perturbed and unperturbed processes are indicated by the symbols + and -. The corresponding signs
in each of the quadrants are heuristically obvious, but they can be verified rigorously using the Stein
equation 5.16, and Eq. (2.8) of [3]

EA g(W ) = EA g(W ) − EBK g(W )

= −1

2
P
[
W = K + ε(2)

][
g(K + ε(2) + ε(1)) − g(K + ε(2))

]

− 1

2
P
[
W = K + ε(1)

][
g(K + ε(1) + ε(2)) − g(K + ε(1))

]

− 1

2
P
[
W = K + ε(1)

][
g(K ) − g(K + ε(1))

]

− 1

2
P
[
W = K + ε(2)

][
g(K ) − g(K + ε(2))

]

= −P
[
W = K + ε(1)

]
�12g(K ),

(5.16)

where we used P
[
W = K + ε(1)

] = P
[
W = K + ε(2)

]
for the last equality. Thus

dTV
(
L (W ), Po(λμ)

) = sup
h∈HTV

∣
∣EA gh(W )

∣
∣

= P

[
W = K + ε(1)

]
sup

h∈HTV

∣
∣�12gh(K )

∣
∣

≥ P
[
W = K + ε(1)

]
log λ

20λ
√

μ1μ2
.
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On the other hand, from (5.12) for α = ε(1), α = ε(2) and α = ε(1) + ε(2)

respectively, it follows that

∣
∣�12gh(w)

∣
∣ ≤

(
1 + 2 log+(2λ)

)
(μ1 + μ2)

2λμ1μ2
.

This yields the upper estimate

dTV
(
L (W ), Po(λμ)

) = P
[
W = K + ε(1)

]
sup

h∈HTV

∣
∣�12gh(K )

∣
∣

≤ P
[
W = K + ε(1)

]
(
1 + 2 log+(2λ)

)
(μ1 + μ2)

2λμ1μ2
,

and thus we finally have

dTV
(
L (W ), Po(λμ)

) � P
[
W = K + ε(1)

]
log λ

λ
. (5.17)

Heuristically, P
[
W = K + ε(1)

]
will be of the order Po(λμ1){m1} × · · · ×

Po(λμd){md} � λd/2, so that (5.17) will be of order log λ/λ1+d/2.

Recalling that the test function (5.13) and also the corresponding test functions
for the other three quadrants are responsible for the logarithmic term in (5.17), we
may conclude a situation as illustrated in Fig. 5.1 for d = 2. Different from the one-
dimensional case, where the perturbation moves probability mass from the point of
the perturbation to the rest of the support in a uniform way, the perturbations of the
form (5.15) affect the rest of the support in a non-uniform way. However, further
analysis is needed to find the exact distribution of the probability mass differences
within each of the quadrants.

Note that the perturbation (5.15) is ‘expectation neutral’, that is, W has also expec-
tation λμ, which can be seen by using EBg(W ) = 0 with the function gi (w) = wi

for each coordinate i.

5.4 Poisson Point Processes

Stein’s method for Poisson point process approximation was derived by Barbour [2]
and Barbour and Brown [4]. They use the Stein operator

A g(ξ) =
∫




[
g(ξ + δα) − g(ξ)

]
λ(dα) +

∫




[
g(ξ − δα) − g(ξ)

]
ξ(dα),

where ξ is a point configuration on a compact metric space 
 and λ denotes the
mean measure of the process. The most successful approximation results have been
obtained in the so-called d2-metric; see for example [4, 10, 16]. Assume that 
 is
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equipped with a metric d0 which is, for convenience, bounded by 1. Let F be the
set of functions f :
 → R, satisfying

sup
x �=y∈


| f (x) − f (y)|
d0(x, y)

≤ 1.

Define the metric d1 on the set of finite measures on 
 as

d1(ξ, η) =
⎧
⎨

⎩

1 if ξ(
) �= η(
),

ξ(
)−1 sup
f ∈F

∣
∣
∣
∫

f dξ − ∫
f dη

∣
∣
∣ if ξ(
) = η(
).

Let now H2 be the set of all functions from the set of finite measures into R satisfying

sup
η �=ξ

|h(η) − h(ξ)|
d1(ξ, η)

≤ 1.

We then define for two random measures � and 
 on 
 the d2-metric as

d2
(
L (�),L (
)

) := sup
h∈H2

∣
∣Eh(�) − Eh(
)

∣
∣;

for more details on the d2-metric see [8, 17].
For h ∈ H2 and gh solving the Stein equation A gh(ξ) = h(ξ)−Po(λ)h, Barbour

and Brown [4] proved the uniform bound

‖�αβgh(ξ)‖ ≤ 1 ∧ 5

2|λ|
(

1 + 2 log+
(

2|λ|
5

))

, (5.18)

where |λ| denotes the L1-norm of λ and where

�αβg(ξ) = g(ξ + δα + δβ) − g(ξ + δβ) − g(ξ + δα) + g(ξ).

It has been shown by Brown and Xia [9] that the log-term in (5.18) is unavoidable.
However, Brown et al. [10] have shown that it is possible to obtain results without
the log using a non-uniform bound on �αβgh .

Following the construction of [9], assume that 
 = S ∪ {a} ∪ {b}, where S is a
compact metric space, a and b are two additional points with d0(a, b) = d0(b, x) =
d0(a, x) = 1 for all x ∈ S. Assume further that the measure λ satisfies λ({a}) =
λ({b}) = 1/|λ| (again, the ‘symmetry condition’) and thus λ(S) = |λ| − 2/|λ|. For
ma, mb ∈ {0, 1}, define now the test functions

h(ξ) =
{ 1

ξ(
)
if ξ({a}) = ma, ξ({b}) = mb, ξ �= 0,

0 else.
(5.19)

It is shown by direct verification that h ∈ H2. Brown and Xia [9] proved that, for
ma = mb = 1, the corresponding solution gh to the Stein equation satisfies the
asymptotic
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Fig. 5.2 Illustration of the
perturbed process defined by
the generator (5.21) using
the same conventions as in
Fig. 5.1. The corresponding
signs can be obtained
through the Stein
equation 5.22, and the
representation of the solution
of the Stein equation as in
[9], for the different test
functions (5.19)

|�abgh(0)| � log |λ|
|λ| (5.20)

as |λ| → ∞, so that (5.18) is indeed sharp, but it is easy to see from their proof that
(5.20) will hold for the other values of ma and mb, as well.

Example 5.2 Let 
 and λ be as above with the simplifying assumption that S is
finite. Let 
 be a random point measure with equilibrium distribution of a Markov
process with generator

B0g(ξ) = A g(ξ) + 1

2
δδa (ξ)

[
g(ξ + δb) − g(ξ)

] + 1

2
δδb (ξ)

[
g(ξ + δa) − g(ξ)

]

+ 1

2
δδa (ξ)

[
g(ξ − δa) − g(ξ)

] + 1

2
δδb (ξ)

[
g(ξ − δb) − g(ξ)

]

=
∫




[
g(ξ + δα) − g(ξ)

](
λ + 1

2
δδa (ξ)δb + 1

2
δδb(ξ)δa

)
(dα)

+
∫




[
g(ξ − δα) − g(ξ)

](
ξ + 1

2
δδa (ξ)δa + 1

2
δδb (ξ)δb

)
(dα).

(5.21)
See Fig. 5.2 for an illustration of this process.

Note that the situation here is different than in Sect. 5.3. Firstly, we consider
a weaker metric and, secondly, we impose a different structure on λ. Where as in
Sect. 5.3 we assumed that the mean of each coordinate is of the same order |λ|,
we assume now that there are two special points a and b with o(|λ|) mass attached
to them. Again, in order to obtain a stationary distribution that is symmetric with
respect to a and b, we impose the condition that the immigration rates at the two
coordinates a and b are the same.
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Now, for any bounded function g,

EA g(
) = EA g(
) − EB0g(
)

= −1

2
P

[

 = δb

] [
g(δa + δb) − g(δa)

] − 1

2
P [
 = δa]

[
g(δb + δa) − g(δb)

]

− 1

2
P [
 = δa]

[
g(δa) − g(0)

] − 1

2
P

[

 = δb

] [
g(δb) − g(0)

]

= −P [
 = δa] �abg(0),

(5.22)
where we used that P [
 = δa] = P [
 = δb] . Thus, using (5.20),

d2
(
L (
), Po(λ)

) = P[
 = δa] sup
h∈H2

|�abgh(0)| � P[
 = δa] log |λ|
|λ| .

Figure 5.2 illustrates the situation for |
| = 3. If the process �t is somewhere
on the bottom plane, that is �(S) = 0, it will most of the times quickly jump
upwards, parallel to the S-axis, before jumping between the parallels, as the immi-
gration rate into S is far larger than the jump rates between the parallels. Thus, because
of the perturbations, probability mass is moved—as illustrated in Fig. 5.2—not only
between the perturbed points but also between the parallels. Although indicator func-
tions are not in H2, the test functions in (5.19) decay slowly enough to detect this
difference.

Remark 5.2 Note again, as in Example 5.1, that the perturbation in the above example
is neutral with respect to the measure λ. It is also interesting to compare the total
number of points to a Poisson distribution with mean |λ| in the dTV-distance. Note
that (5.22) holds in particular for functions gh which depend only on the number of
points of 
. Thus, using (5.3) in combination with (5.22) yields

dTV
(
L (|
|), Po(|λ|)) = P [
 = δa] sup

h∈HTV

|�2gh(0)| � P [
 = δa]

|λ| ,

where �2g(w) = �g(w + 1) − �g(w) [which corresponds to the first difference
in (5.4)] and where we used the fact that |�2gh(0)| � |λ|−1, again obtained from
the proof of Lemma 1.1.1 of [8]. Thus we have effectively constructed an example,
where the attempt to match not only the number but also the location of the points
introduces an additional factor log |λ| if using the d2-metric.

Acknowledgments The author would like to thank Gesine Reinert and Dominic Schuhmacher for
fruitful discussions and an anonymous referee for helpful comments.
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Chapter 6
Basic Estimates of Stability Rate
for One-Dimensional Diffusions

Mu-Fa Chen

Abstract In the context of one-dimensional diffusions, we present basic estimates
(having the same lower and upper bounds with a factor of 4 only) for four Poincaré-
type (or Hardy-type) inequalities. The derivations of two estimates have been open
problems for quite some time. The bounds provide exponentially ergodic or decay
rates. We refine the bounds and illustrate them with typical examples.

6.1 Introduction

An earlier topic on which Louis Chen studied is Poincaré-type inequalities (see [1,
2]). We now use this chance to introduce in Sect. 6.2 some recent progress on the topic,
especially on one-dimensional diffusions (elliptic operators). The basic estimates of
exponentially ergodic (or decay) rate and the principal eigenvalue in different cases
are presented. Here the term “basic” means that upper and lower bounds are given
by an isoperimetric constant up to a factor four. As a consequence, the criteria for the
positivity of the rate and the eigenvalue are obtained. The proof of the main result is
sketched in Sect. 6.3 The materials given in Sects. 6.4, 6.5, and Appendix are new.
In particular, the basic estimates are refined in Sect. 6.4 and the results are illustrated
through examples in Sect. 6.5. The coincidence of the exponentially decay rate and
the corresponding principal eigenvalue is proven in the Appendix for a large class of
symmetric Markov processes.
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6.2 The Main Result and Motivation

6.2.1 Two Types of Exponential Convergence

Let us recall two types of exponential convergence often studied for Markov
processes. Let Pt (x, ·) be a transition probability on a measurable state space (E,E )

with stationary distribution π. Then the process is called exponentially ergodic if
there exists a constant ε > 0 and a function c(x) such that

‖Pt (x, ·) − π‖Var ≤ c(x)e−εt , t ≥ 0, x ∈ E . (6.1)

Denote by εmax be the maximal rate ε. For convenience, in what follows, we allow
εmax = 0. Next, let L2(π) be the real L2(π)-space with inner product (·, ·) and
norm ‖ · ‖ respectively, and denote by {Pt }t≥0 the semigroup of the process. Then
the process is called to have L2-exponential convergence if there exists some η(≥ 0)

such that

‖Pt f − π( f )‖ ≤ ‖ f − π( f )‖e−ηt , t ≥ 0, f ∈ L2(π), (6.2)

where π( f ) = ∫E f dπ. It is known that ηmax is described by λ1:
λ1 = inf{( f,−L f ): f ∈ D(L), π( f ) = 0, ‖ f ‖ = 1}, (6.3)

where L is the generator with domain D(L) of the semigroup in L2(π). Even though
the topologies for these two types of exponential convergence are rather different,
but we do have the following result.

Theorem 6.1 (Chen [3, 6]) For a reversible Markov process with symmetric measure
π, if with respect to π, the transition probability has a density pt (x, y) having the
property that the diagonal elements ps(·, ·) ∈ L1/2

loc (π) for some s > 0, and a set of
bounded functions with compact support is dense in L2(π), then we have εmax = λ1.

As an immediate consequence of the theorem, we obtain some criterion for λ1 > 0
in terms of the known criterion for εmax > 0. In our recent study, we go to the opposite
direction: estimating εmax in terms of the spectral theory.

We are also going to handle with the non-ergodic case in which (6.2) becomes

μ
(
(Pt f )2) ≤ μ

(
f 2)e−2ηt , t ≥ 0, f ∈ L2(μ), (6.4)

where μ is the invariant measure of the process. Then ηmax becomes

λ0 = inf
{− μ( f L f ) : f ∈ C , μ

(
f 2) = 1

}
, (6.5)

where C is a suitable core of the generator, the smooth functions with compact
support for instance in the context of diffusions. However, the totally variational
norm in (6.1) may be meaningless unless the process being explosive. Instead of
(6.1), we consider the following exponential convergence:

Pt (x, K ) ≤ c(x, K )e−εt , t ≥ 0, x ∈ E, K : compact, (6.6)

where for each compact K, c(·, K ) is locally μ-integrable. Under some mild condi-
tion, we still have εmax = λ0. See the Appendix for more details.
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6.2.2 Statement of the Result

We now turn to our main object: one-dimensional diffusions. The state space is
E := (−M, N ) (M, N ≤ ∞). Consider an elliptic operator

L = a(x)
d2

dx2 + b(x)
d

dx
,

where a > 0 on E. Then define a function C(x) as follows:

C(x) =
∫ x

θ

b

a
, x ∈ E,

where θ ∈ E is a reference point. Here and in what follows, the Lebesgue measure
dx is often omitted. It is convenient for us to define two measures μ and ν as follows.

μ(dx) = eC(x)

a(x)
dx, ν(dx) = e−C(x)dx .

The first one has different names: speed, or invariant, or symmetrizable measure. The
second one is called scale measure. Note that ν is infinite iff the process is recurrent.
By using these measures, the operator L takes a very compact form

L = d

dμ

d

dν

(
i.e., L f ≡ ae−C( f ′eC)′) (6.7)

which goes back to a series of papers by Feller, for instance [12].
Consider first the special case that M, N < ∞. Then the ergodic case means

that the process has reflection boundaries at −M and N. In analytic language,
we have Neumann boundaries at −M and N: the eigenfunction g of λ1 satisfies
g′(−M) = g′(N ) = 0. Otherwise, in the non-ergodic case, one of the boundaries
becomes absorbing. In analytic language, we have Dirichlet boundary at −M (say):
the eigenfunction g of λ0 satisfies g(−M) = 0. Let us use codes “D” and “N”,
respectively, to denote the Dirichlet and Neumann boundaries. The corresponding
minimal eigenvalues of −L are listed as follows.

• λNN: Neumann boundaries at −M and N,
• λDD: Dirichlet boundaries at −M and N,
• λDN: Dirichlet at 0 and Neumann at N,
• λND: Neumann at 0 and Dirichlet at N.

We call them the first non-trivial or the principal eigenvalue. In the last two cases,
setting M = 0 is for convenience in comparison with other results to be discussed later
but it is not necessary. Certainly, this classification is still meaningful if M or N is
infinite. For instance, in the ergodic case, the process will certainly come back from
any starting point and so one may imagine the boundaries ±∞ as reflecting. In other
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words, the probabilistic interpretation remains the same when M, N = ∞. However,
the analytic Neumann condition that limx→±∞ g′(x) = 0 for the eigenfunction g of
λNN may be lost (cf. the first example given in Sect. 6.5). More seriously, the spectrum
of the operator may be continuous for unbounded intervals. This is the reason why
we need the L2-spectral theory. In the Dirichlet case, the analytic condition that
limx→±∞ g(x) = 0 can be implied by the definition given below, once the process
goes ±∞ exponentially fast. Now, for general M, N ≤ ∞, let

D( f ) =
∫ N

−M
f ′2eC , M, N ≤ ∞, f ∈ A (−M, N ),

A (−M, N ) = the set of absolutely continuous functions on (−M, N ),

A0(−M, N ) = { f ∈ A (−M, N ) : f has a compact support}.
From now on, the inner product (·, ·) and the norm ‖ · ‖ are taken with respect to μ

(instead of π ). Then the principal eigenvalues are defined as follows.

λDD = inf{D( f ) : f ∈ A0(−M, N ), ‖ f ‖ = 1}, (6.8)

λND = inf{D( f ) : f ∈ A0(0, N ), f (N−) = 0 if N < ∞, ‖ f ‖ = 1}, (6.9)

λNN = inf{D( f ) : f ∈ A (−M, N ), μ( f ) = 0, ‖ f ‖ = 1}, (6.10)

λDN = inf{D( f ) : f ∈ A (0, N ), f (0+) = 0, ‖ f ‖ = 1}. (6.11)

Certainly, the above classification is closely related to the measures μ and ν. For
instance, in the DN- and NN-cases, one requires thatμ(0, N ) < ∞ andμ(−M, N ) <

∞, respectively. Otherwise, one gets a trivial result as can be seen from Theorem
6.2 below.

To state the main result of the paper, we need some assumptions. In the NN-
case (i.e., the ergodic one), we technically assume that a and b are continuous on
(−M, N ). For λDN and λNN, we allow the process to be explosive since the maximal
domain is adopted in definition of λDN and λNN. But for λND and λDD, we are working
for the minimal process (using the minimal domain) only, assuming that μ and ν are
locally finite.

Theorem 6.2 (Basic estimates[9]) Under the assumptions just mentioned, corre-
sponding to each #-case, we have

(
κ#)−1

/4 ≤ λ# = εmax ≤ (κ#)−1
, (6.12)
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where

(
κNN)−1 = inf

x<y

[
μ(−M, x)−1 + μ(y, N )−1]v(x, y)−1, (6.13)

(
κDD)−1 = inf

x<y

[
v(−M, x)−1 + v(y, N )−1]μ(x, y)−1, (6.14)

κDN = sup
x∈(0,N )

v(0, x)μ(x, N ) (6.15)

κND = sup
x∈(0,N )

μ(0, x)v(x, N ). (6.16)

In particular, λ# > 0 iff κ# < ∞.

In each case, the principal eigenvalue is controlled from above and below by a
constant κ# up to a factor 4 which is universal. Among these cases, the hardest one
is the ergodic case. It may be helpful for the reader to show how to write down κNN

step by step.

• We need two parameters, say x and y with x < y. The state space is then divided
by x and y into three parts: the left-hand part (−M, x), the right-hand part (y, N),
and the middle one (x, y).

• Measure the left-hand and the right-hand subintervals by μ and the middle one
by ν, respectively:

κ = κNN : μ(−M, x) μ(y, N ) ν(x, y).

• Make inverse everywhere:

κ−1 : μ(−M, x)−1 μ(y, N )−1 ν(x, y)−1.

• Finally, summing up the first two terms and making infimum with respect to x < y,

we get the answer.

Every step is quite natural except the second one: why we use μ but not ν in the
first two terms? This is because we are in the ergodic case, μ is a finite measure.
If μ is replaced by ν, since ν(−∞, x) and ν(y,∞) are infinite when M, N = ∞, one
would get zero for these terms and so the quantity is trivial. A sensitive point here is
that we use plus, rather than maximum in the last step. Otherwise, even though the
resulting bounds are equivalent to ours but it then would produce a factor 8 rather than
4 as we expected. We have thus completed the first, the most important quantity κNN.

To get κDD, simply apply the rule: exchanging the codes D and N simultaneously
in κ# leads to the exchange of the measures μ and ν in the formula. Let us now
examine (6.14) more carefully. When N = ∞ and ν(y,∞) = ∞, the second term
in the sum of (6.14) disappeared. In other words, the boundary condition D on the
right endpoint is replaced by N. Then the variable y is free and so can be removed.
Therefore we obtain formula (6.15). We remark however, that the relation between
λDN and κDN remains the same even if ν(y,∞) < ∞. From (6.15), using again our
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rule, we obtain (6.16). We mention that (6.16) can be formally obtained from (6.13)
by removing the second term in the sum. Actually, (6.16) is formally a reverse of
(6.15), and so is somehow an easy consequence of (6.15).

6.2.3 Short Review on the Known Results

It is the position to say a little about the history of the topic. Clearly, we are in
the typical situation of the Sturm–Liouville eigenvalue problem (1836–1837). From
which, we learn the general properties of the eigenfunction: the existence and unique-
ness, the zeros of the eigenfunction, and so on. Except some very specific cases, the
problem is usually not solvable analytically. This leads to the theory of special func-
tions used widely in sciences. The estimation of the principal eigenvalues is usually
not included in the Sturm–Liouville theory but is studied in harmonic analysis (espe-
cially for λDN). To see this, rewrite (6.11) as the Poincaré inequality

λDN‖ f ‖2 ≤ D( f ), f (0) = 0.

More general, we have Hardy’s inequality

‖ f ‖p
L p(μ) ≤ Ap

∫ N

−M
| f ′|peC , f (0) = 0, p > 1

where Ap denotes the optimal constant in the inequality. Certainly, A2 = (λDN
)−1

.

This was initialed, for the specific operator L = x2d2/dx2, by Hardy [15] in 1920,
motivated from a theorem of Hilbert on double series. To which, several famous
mathematicians (Weyl, Wiener, Schur et al.) were involved. After a half century,
the basic estimates in the DN-case were finally obtained by several mathematicians,
for instance Muckenhoupt [20]. The reason should be now clear why (6.15) can be
so famous in the history. The estimate of λND was given in [18]. In the DD-case,
the problem was begun by (Gurka, 1989. Generalized Hardy’s inequality for func-
tions vanishing on both ends of the interval, “unpublished”) and then improved in
the book by Opic and Kufner [21] with a factor ≈ 22. In terms of a splitting tech-
nique, the NN-case can be reduced to the Muckenhoupt’s estimate with a factor 8, as
shown by Miclo [19] in the context of birth–death processes. A better estimate can be
done in terms of variational formulas given in [4; Theorem 3.3]. It is surprising that
in the more complicated DD- and NN-cases, by adding one more parameter only,
we can still obtain a compact expression (6.13) and (6.14). Note that these two
formulas have the following advantage: the left- and the right-hand parts are
symmetric; the cases having finite or infinite intervals are unified together without
using the splitting technique.
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Fig. 6.1 Phase transition of
the ϕ4 model

6.2.4 Motivation and Application

Here is a quick overview of our motivation and application of the study on this
topic. Consider the ϕ4-model on the d-dimensional lattice Z

d . At each site i, there
is a one-dimensional diffusion with operator Li = d2/dx2

i − u′(xi )d/dxi , where
ui (xi ) = x4

i − βx2
i having a parameter β ≥ 0. Between the nearest neighbors i and

j in Z
d , there is an interaction. That is, we have an interaction potential H(x) =

−J
∑

〈i j〉 xi x j with parameter J ≥ 0. For each finite box � (denoted by � � Z
d)

and ω ∈ R
Zd

, let Hω
� denote the conditional Hamiltonian (which acts on those x:

xk = ωk for all k /∈ �). Then, we have a local operator

Lω
� =

∑

i∈�

[
∂i i − ∂i

(
u + Hω

�

)
∂i
]
.

We proved that the first non-trivial eigenvalue λ
β
1

(
�,ω

)
(as well as the logarithmic

Sobolev constant σβ
(
�,ω

)
which is not touched here) of Lω

� is approximately
exp[−β2/4] − 4d J uniformly with respect to the boxes � and the boundaries ω.

The leading rate β2/4 is exact which is the only one we have ever known up to now
for a continuous model.

Theorem 6.3 (Chen [8]) For the ϕ4-model given above, we have

inf
��Zd

inf
ω∈RZd

λ
β
1

(
�,ω

)≈ inf
��Zd

inf
ω∈RZd

σβ
(
�,ω

)≈exp
[−β2/4−clogβ

]− 4d J,

where c ∈ [1, 2]. See Fig. 6.1.

The figure says that in the gray region, the system has a positive principal eigen-
value and so is ergodic; but in the region which is a little away above the curve,
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the eigenvalue vanishes. The picture exhibits a phase transition. The key to prove
Theorem 6.3 is a deep understanding about the one-dimensional case. Having one-
dimensional result at hand, as far as we know, there are at least three different ways
to go to the higher or even infinite dimensions: the conditional technique used in
[8]; the coupling method explained in [6; Chap. 2]; and some suitable comparison
which is often used in studying the stability rate of interacting particle systems. This
explains our original motivation and shows the value of a sharp estimate for the
leading eigenvalue in dimension one. The application of the present result to this
model should be clear now.

6.3 Sketch of the Proof

The hardest part of Theorem 6.2 is the assertion for λNN. Here we sketch its proof.
Meanwhile, the proof for λDD is also sketched. The proof for the first assertion
consists mainly of three steps by using three methods: the coupling method, the dual
method, and the capacitary method.

6.3.1 Coupling Method

The next result was proved by using the coupling technique.

Theorem 6.4 (Chen and Wang [10]) For the operator L on (0,∞) with reflection
at 0, we have

λ1 = λNN ≥ sup
f ∈F

inf
x>0

[

− b′ − a f ′′ + (a′ + b) f ′

f

]

(x), (6.17)

F = { f ∈ C 2(0,∞) : f (0) = 0, f |(0,∞) > 0
}
. (6.18)

Actually, the equality sign holds once the eigenfunction ot λ1 belongs to C3.

We now rewrite the above formula in terms of an operator, Schrödinger operator
L S .

λ1 = sup
f ∈F

inf
x>0

[

− b′ − a f ′′ + (a′ + b) f ′

f

]

(x) (6.19)

= sup
f ∈F

inf
x>0

(

− L S f

f

)

(x) =: λS, (6.20)

L S = a(x)
d2

dx2 + (a′(x) + b(x)
) d

dx
+ b′(x). (6.21)
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The original condition π( f )= 0 in the definition of λNN means that f has to
change its sign. Note that f is regarded as a mimic of the eigenfunction g. The
difficulty is that we do not know where the zero-point of g is located. In the new
formula (6.20), the zero-point of f ∈ F is fixed at the boundary 0, the function
is positive inside of the interval. This is the advantage of formula (6.20). Now, a
new problem appears: there is an additional potential term b′(x). Since b′(x) can be
positive, the operator L S is Schrödinger but may not be an elliptic operator with
killing. Up to now, we are still unable to handle with general Schrödinger operator
(even with killing one), but at the moment, the potential term is very specific so it
gives a hope to go further.

6.3.2 Dual Method

To overcome the difficulty just mentioned, the idea is a use of duality. The dual now
we adopted is very simple: just an exchange of the two measures μ and ν. Recall
that the original operator is L = d

dμ

d
dν

by (6.7). Hence the dual operator takes the
following form

L∗ = d

dμ∗
d

dν∗ = d

dν

d

dμ
, (6.22)

L∗ = a(x)
d2

dx2 + (a′(x) − b(x)
) d

dx
, x ∈ (0,∞). (6.23)

This dual goes back to Siegmund [22] and Cox and Rösler [11] (in which the
probabilistic meaning of this duality was explained), as an analog of the duality
for birth–death process (cf. [9] for more details and original references). It is now a
simple matter to check that the dual operator is a similar transform of the Schrödinger
one

L∗ = eC L Se−C . (6.24)

This implies that

− L S f

f
= − L∗ f ∗

f ∗ ,

where f ∗ := eC f is one-to-one from F into itself. Therefore, we have

λS = sup
f ∈F

inf
x>0

−L S f

f
(x) = sup

f ∗∈F
inf
x>0

−L∗ f ∗

f ∗ (x) = λ∗DD,

where the last equality is the so-called Barta’s equality.
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we have thus obtained the following identity.

Proposition 6.1 λ1 = λS = λ∗DD.

Actually, we have a more general conclusion that L S and L∗ are isospectral from
L2
(
eC dx

)
to L2

(
e−C dx

)
. This is because of

∫

eC f L Sg =
∫

e−C (eC f )
(
eC L Se−C)(eC g) =

∫

e−C f ∗L∗g∗,

and L S and L∗ have a common core. But L on L2(μ) and its dual L∗ on L2
(
e−C dx

)

are clearly not isospectral.
The rule mentioned in the remark after Theorem 6.2, and used to deduce (6.14)

from (6.13), comes from this duality. Nevertheless, it remains to compute λDD for
the dual operator.

6.3.3 Capacitary Method

To compute λDD, we need a general result which comes from a different direction
to generalize the Hardy-type inequalities. In contract to what we have talked so far,
this time we extend the inequalities to the higher dimensional situation. This leads
to a use of the capacity since in the higher dimensions, the boundary may be very
complicated. After a great effort by many mathematicians (see for instance Maz’ya
[18], Hansson [14], Vondraček [23], Fukushima and Uemura [13] and Chen [7]), we
have the following result.

Theorem 6.5 For a regular transient Dirichlet form (D,D(D)) with locally
compact state space (E,E ), the optimal constant AB in the Poincaré-type inequality

∥
∥ f 2

∥
∥

B
≤ AB D( f ), f ∈ C ∞

K (E)

satisfiesBB ≤ AB ≤ 4BB, where ‖ · ‖B is the norm in a normed linear space B and

BB = sup
compactK

Cap(K )−1‖1K ‖B.

The space B can be very general, for instance L p(μ)(p ≥ 1) or the Orlicz spaces.
In the present context, D( f ) = ∫ N

−M f ′2eC , D(D) is the closure of C ∞
K (−M, N )

with respect to the norm ‖ · ‖D : ‖ f ‖2
D =‖ f ‖2+D( f ), and

Cap(K ) = inf
{

D( f ) : f ∈ C ∞
K (−M, N ), f |K ≥ 1

}
.

Note that we have the universal factor 4 here and the isoperimetric constant BB has
a very compact form. We now need to compute the capacity only. The problem is that
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the capacity is usually not computable explicitly. For instance, at the moment, I do
not know how to compute it for Schrödinger operators even for the elliptic operators
having killings. Luckily, we are able to compute the capacity for the one-dimensional
elliptic operators. The result has a simple expression:

BB = sup
−M<x<y<N

[
ν(−M, x)−1 + ν(y, N )−1]−1‖1(x,y)‖B.

It looks strange to have double inverse here. So, making inverse in both sides, we get

B−1
B

= inf−M<x<y<N

[
ν(−M, x)−1 + ν(y, N )−1]‖1(x,y)‖−1

B
.

Applying this result to B = L1(μ), we obtain the solution to the DD-case: λDD =
A−1

L1(μ)
and

(
κDD)−1 = B−1

L1(μ)
= inf−M<x<y<N

[
ν(−M, x)−1 + ν(y, N )−1]μ(x, y)−1.

6.3.4 The Final Step

Applying the last result to the dual process and using Proposition 6.1, we have not
only

(
κ∗DD)−1

/4 ≤ λNN = λS = λ∗DD ≤ (κ∗DD)−1
,

but also

(
κ∗DD)−1= inf

x<y

[
ν∗(−M, x)−1+ν∗(y, N )−1]μ∗(x, y)−1

= inf
x<y

[
μ(−M, x)−1+μ(y, N )−1]ν(x, y)−1

= (κNN)−1
.

This finishes the proof of the main assertion of Theorem 6.2.

6.3.5 Summary of the Proof

Here is the summary of our proof. First, by a change of the topology, we reduce the
study on εmax to λNN. Then, by coupling, we reduce λNN to λS . Next, by duality,
we reduce λS to λ∗DD. We use capacitary method to compute λ∗DD. Finally, we
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use duality again to come back to λNN. Recall that our original purpose is using
λ1 = λNN to study the phase transition, a basic topic in the study on interacting
particle systems (abbrev. IPS). It is very interesting that we now have an opposite
interaction. We use the main tools (coupling and duality) developed in the study on
IPS to investigate a very classical problem and produce an interesting result.

6.4 Improvements

The basic estimates given in Theorem 6.2 can be further improved. For half-line
at least, we have actually an approximating procedure for each of the principal
eigenvalues. Refer to [6, 9] and references therein. Moreover, one may approach
the whole line by half-lines. Here we consider an additional method but concentrate
on λDD and λNN only. As will be seen soon, the resulting bounds are much more
complicated, less simple and less symmetry, than those given in Theorem 6.2.

Let us begin with a simper but effective result.

Proposition 6.2 We have

λDD ≤ (κ̄DD)−1 ≤ (κDD)−1

and

λNN ≤ (κ̄NN)−1 ≤ (κNN)−1
,

where

(
κ̄DD)−1 = inf

x<y

(
ν(−M, x)−1 + ν[y, N )−1

)

×
{

μ(x, y) +
∫ x

−M
μ(dz)

[

1 − ν(z, x)

ν(−M, x)

]2

+
∫ N

y
μ(dz)

[

1 − ν(y, z)

ν(y, N )

]2}−1

,

(
κ̄NN)−1 = inf

x<y

(
μ(−M, x)−1 + μ[y, N )−1

)

×
{

ν(x, y) +
∫ x

−M
ν(dz)

[

1 − μ(z, x)

μ(−M, x)

]2

+
∫ N

y
ν(dz)

[

1 − μ(y, z)

μ(y, N )

]2}−1

.

Note that if ν(−M, N )< ∞ which is not assumed in Proposition 6.2, then the
last two terms in {· · · } in the expression of

(
κ̄DD

)−1 can be written as

ν(−M, x)−2
∫ x

−M
μ(dz)ν(−M, z)2+ ν(y, N )−2

N∫

y

μ(dz)ν(z, N )2.

Otherwise, this expression may be meaningless. Similar comment is meaningful for
(
κ̄NN

)−1
.
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Proof Fix x < y. Applying λDD ≤ D( f )/μ
(

f 2
)

to the test function

f (z) =
{

ν(y,N )
ν(−M,x)

ν(−M, z ∧ x), z ≤ y
ν(z, N ), z ≥ y.

we obtain λDD ≤ (κ̄DD
)−1

. By duality, we obtain the assertion for κ̄NN. Refer to the
remark after the proof of [9; Theorem 8.2] for more details. ��

To improve the lower estimate Theorem 6.2, we need more work. For a given
f ∈ C (−M, N ) with f |(−M,N ) > 0, define

h−(z)=h−
f (z)=ν

(
μ
(
1(·,θ) f

)
1(−M,z)

)
=
∫ z

−M
e−C(x)dx

∫ θ

x

eC f

a
, z ≤ θ,

(6.25)

h+(z)=h+
f (z)=ν

(
μ
(
1(θ,·) f

)
1(z,N )

)
=
∫ N

z
e−C(x)dx

∫ x

θ

eC f

a
, z > θ,

(6.26)
i.e. (by exchanging the order of the integrals),

h−(z) = μ
(

f ν(−M, · ∧ z)
)=μ

(
f ν(−M, ·)1(−M,z)

)
+μ
(

f 1(z,θ)

)
ν(−M, z), z ≤ θ,

h+(z) = μ
(

f ν(· ∨ z, N )
) =μ

(
f ν(·, N )1(z,N )

)
+ μ

(
f 1(θ,z)

)
ν(z, N ), z > θ,

where x ∧ y = min{x, y}, x ∨ y = max{x, y}, and θ = θ( f ) ∈ (−M, N ) is the
unique root of the equation:

h−(θ) = h+(θ)

provided h±
f < ∞. Next, define II ±( f ) = h±/ f.

Theorem 6.6 (Variational formula) Let a and b be continuous and a > 0 on
(−M, N ).

(1) Assume that ν(−M, N ) < ∞. Using the notation above, we have

λDD = sup
f ∈C+

[
inf

z∈(−M,θ)
II −( f )(z)−1

]∧[
inf

z∈(θ,N )
II +( f )(z)−1

]
, (6.27)

where C+ = { f ∈ C (−M, N ) : f > 0 on (−M, N )}.
(2) Assume that μ(−M, N ) < ∞. Then (6.27) holds replacing λDD by λNN provided

in definition of h±, μ and ν are exchanged.

Proof By duality, it suffices to prove the first assertion.

(a) Without loss of generality, assume that h±
f < ∞. Otherwise, the assertion is

trivial. First, we prove “≥”. Let
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h(z) =
{

h−(z), z ≤ θ,

h+(z), z > θ,

Clearly, h|(−M,N ) > 0 and h ∈ C (−M, N ) in view of definition of θ. Next, note
that

h−′
(x) = e−C(x)

∫ θ

x

eC

a
f, h−′′

(x) = e−C(x)

[

− b

a

∫ θ

x

eC

a
f − eC

a
f

]

, x < θ;

h+′
(x) = −e−C(x)

∫ x

θ

eC

a
f, h+′′

(x) = e−C(x)

[
b

a

∫ x

θ

eC

a
f − eC

a
f

]

, x > θ.

Obviously, h′(θ ±0) = 0. Since a, b and f are continuous and a > 0 on (−M, N ),

we also have h′′(θ + 0) = h′′(θ − 0) and so h ∈ C 2(−M, N ). Therefore, by
Barta’s equality, we have

λDD = sup
g∈F

inf
z∈(−M,N )

−Lg

g
(z)

≥ inf
z∈(−M,N )

−Lh

h
(z)

=
[

inf
z∈(−M,θ)

−Lh−

h− (z)
]∧[

inf
z∈(θ,N )

−Lh+

h+ (z)
]
.

Now, by (6.7), required assertion follows by a simple computation.
(b) Next, we show that the equality sign in (6.27) holds. The assertion becomes

trivial if λDD = 0. Otherwise, the eigenfunction g of λDD should be unimodal
(which seems known in the Sturm–Liouville theory and is proved in the discrete
context [9; Proposition 7.14]. Actually, the discrete case is even more complex
since the eigenfunction can be a simple echelon, not necessarily unimodal). By
setting f = g and θ to be the maximum point of g (g′(θ) = 0), it follows that
II ±( f )−1 ≡ λDD and hence the equality sign holds. ��
We now introduce a typical application of Theorem 6.6. Fix x < y. Define

f x,y(s) =
{√

ν(y,N )
ν(−M,x)

ν(−M, s ∧ x), s ≤ y√
ν(s, N ), s ≥ y

and set

κDD = inf
x<y

[
sup

z∈(−M,θ)

II −( f x,y)(z)
]∨[

sup
z∈(θ,N )

II +( f x,y)(z)
]
.

By exchanging μ and ν, we obtain κNN. Now, by Theorem 6.6, we have the following
result.

Corollary 6.1 Under assumptions of Theorem 6.6, we have

λDD ≥ (κDD)−1and λNN ≥ (κNN)−1
.
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We remark that the assumption in part (1) of Theorem 6.6 is necessary for DD-case
(cf. (6.13)). Recall that (6.27) is a complete variational formula for the lower estimates
of λDD. Starting at f1 = f used in Corollary 6.1, replacing f and h used in Theorem
6.6 by fn−1 and fn, respectively, we obtain an approximating procedure from below
for λDD. Dually, we can obtain a variational formula for the upper estimates of λDD

and an approximating procedure from above. Here we omit all of the details. The
same remark is meaningful for λNN, which is especially interesting since here we do
not use the property that μ( f ) = 0 for the test function f. The new difficulty of (6.27)
is that θ( f ) may not be computable analytically. This costs a question to prove that
κDD ≤ 4κDD which should be true in view of our knowledge on the half-line, and
is illustrated by examples in the next section. It is noticeable that the method works
for the whole line and the use of θ( f ) is essentially different from what used in the
splitting technique. Finally, we mention that the method used here is meaningful for
birth–death processes, refer to [9; Lemma 7.12].

For convenience in practice, we express h± used in Corollary 6.1 more explicitly.
Let ν−(s) = ν(−M, s) and ν+(s) = ν(s, N ) for simplicity. Then

f (s) = f x,y(s) =
⎧
⎨

⎩

√
ν+(y)ν−(s)

/√
ν−(x), s ≤ x√

ν+(y), x ≤ s ≤ y√
ν+(s), s ≥ y,

(6.28)

and

h−(z) = μ
(

f ν−1(−M,z)

)
+ ν−(z)μ

(
f 1(z,θ)

)
, z ≤ θ, (6.29)

h+(z) = μ
(

f ν+1(z,N )

)
+ ν+(z)μ

(
f 1(θ,z)

)
, z ≥ θ. (6.30)

We now consider the typical case that θ ∈ [x, y]. Then,

h−(θ) =
√

ν+(y)

ν−(x)
μ
(
ν

3/2
− 1(−M,x)

)
+√ν+(y)μ

(
ν−1(x,θ)

)
,

h+(θ) = μ
(
ν

3/2
+ 1(y,N )

)
+√ν+(y)μ

(
ν+1(θ,y)

)
.

Hence the equation h−(θ) = h+(θ) becomes

1
√

ν−(x)
μ
(
ν

3/2
− 1(−M,x)

)
+ μ

(
ν−1(x,θ)

)

= 1
√

ν+(y)
μ
(
ν

3/2
+ 1(y,N )

)
+ μ

(
ν+1(θ,y)

)
, θ ∈ [x, y].

(6.31)

Furthermore, by some computations, we obtain the ratio h±/ f x,y as follows. We
have for z: z ≤ x ≤ θ ≤ y that
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II −( f x,y)(z) = 1
√

ν−(z)
μ
(
ν

3/2
− 1(−M,z)

)
+√ν−(z)μ

(√
ν−1(z,x)

)

+√ν−(z)ν−(x)μ(x, θ), (6.32)

and for z: z ≥ y ≥ θ that

II +( f x,y)(z) = 1
√

ν+(z)
μ
(
ν

3/2
+ 1(z,N )

)
+√ν+(z)μ

(√
ν+1(y,z)

)

+√ν+(z)ν+(y)μ(θ, y). (6.33)

Note that by (6.25) and (6.26), h− is increasing on [x, θ ] and h+ is decreasing on
[θ, y]. Since f x,y is a constant on [x, y], it follows that

max
z∈[x,θ]

h−(z)

f x,y(z)
= h−(θ)

f x,y(x)
and max

z∈[θ,y]
h+(z)

f x,y(z)
= h+(θ)

f x,y(x)
.

By assumption, h−(θ) = h+(θ). Hence

max
z∈[x,θ] II −( f x,y)(z) = max

z∈[θ,y] II +( f x,y)(z) = h−(θ)

f x,y(x)

= 1
√

ν−(x)
μ
(
ν

3/2
− 1(−M,x)

)
+ μ

(
ν−1(x,θ)

)
. (6.34)

Thus, for computing κDD, by (6.32)–(6.34), we arrive at
[

sup
z∈(−M,θ)

II −( f x,y)(z)
]∨[

sup
z∈(θ,N )

II +( f x,y)(z)
]

= sup
z∈(−M,x)

[
1

√
ν−(z)

μ
(
ν

3/2
− 1(−M,z)

)
+√ν−(z)μ

(√
ν−1(z,x)

)

+√ν−(z)ν−(x)μ(x, θ)

]

∨[
1

√
ν−(x)

μ
(
ν

3/2
− 1(−M,x)

)
+ μ

(
ν−1(x,θ)

)]

∨
sup

z∈(y,N )

[
1

√
ν+(z)

μ
(
ν

3/2
+ 1(z,N )

)
+√ν+(z)μ

(√
ν+1(y,z)

)

+ √
ν+(z)ν+(y)μ(θ, y)

]

. (6.35)

Finally, let (x∗, y∗, θ∗) solve Eq. 6.31 and two more equations modified from (6.35)
ignoring its left-hand side and replacing the last two “∨” with “=”. Then we have

κDD = 1
√

ν−(x∗)
μ
(
ν

3/2
− 1(−M,x∗)

)
+ μ

(
ν−1(x∗,θ∗)

)
. (6.36)
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6.5 Examples

This section illustrates the application of the basic estimates given in Theorem 6.2
and the improvements given in Proposition 6.2 and Corollary 6.1.

Example 6.1 (OU-processes) The state space is R and the operator is

L = 1

2

(
d2

dx2 − 2x
d

dx

)

.

This is a typical example of the use of special functions. It has discrete eigenvalues
λn = n with eigenfunctions (Hermite polynomials)

gn(x) = (−1)nex2 dn

dxn

(
e−x2)

, n ≥ 0.

Then, we have
(
κDD

)−1 = λ0 = 0, λNN = λ1 = 1 with eigenfunction g(x) = x .

To compute κNN, noting that the operator, the eigenfunction are all symmetric with
respect to 0 and so does κNN, one can split the whole line into two parts (−∞, 0)

and (0,∞) with common Dirichlet boundary at 0. This simplifies the computa-
tion and leads to

(
κNN

)−1 = (
κDN

)−1 ≈ 2.1. Note that g′(x) ≡ 1 but lim|x |→∞(
eC g′)(x) = 0.

For the half-space (0,∞), as we have just mentioned, λDN = λDD = 1 with
g(x) = x,

(
κDN

)−1 = (
κDD

)−1 ≈ 2.1. For λNN, the symmetry in the whole line

is lost. We have λNN = 2 with g(x) = −1 + 2x2,
(
κNN

)−1 ≈ 4.367 which
is achieved at (x, y) ≈ (0.316, 1.185). Note that limx→∞ g′(x) = ∞, however,
limx→∞

(
eC g′)(x) = 0.

To study κ̄NN, recall that we can reduce the NN-case to the DD-one by an exchange

of μ and ν. By Proposition 6.2, we have
(
κ̄NN

)−1 ≈ 2.6. By Corollary 6.1 and (6.36),

we obtain
(
κNN

)−1 ≈ 1.83 with (x∗, y∗, θ∗) ≈ (0.6405, 0.938, 0.721194). For the
last conclusion, we use a direct search starting from (x, y) ≈ (0.316, 1.185) which
leads to κNN in the last paragraph. The ratio becomes 2.6/1.83 ≈ 1.42 < 4.

We mention that similar estimates can also be obtained by using a different
approximating procedure in parallel with [9; Theorem 6.3]. Refer to [5]; Footnotes
12 and 14].

The following examples are often illustrated in the textbooks on ordinary differ-
ential equations, see for instance [16; Sect. 11.1].

Example 6.2 The equation

u′′ + σ 2u = 0 (σ �= 0)

has the general solution

u = c1 cos(σ x) + c2 sin(σ x).
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From this, it should be clear that for the operator L = d2/dx2 with finite state space
(α, β), we have

λDD =
(

π

β − α

)2

, g(x) = sin

(
π(x − α)

β − α

)

;

λNN =
(

π

β − α

)2

, g(x) = cos

(
π(x − α)

β − α

)

;

λDN =
(

π

2(β − α)

)2

, g(x) = sin

(
π(x − α)

2(β − α)

)

;

λND =
(

π

2(β − α)

)2

, g(x) = cos

(
π(x − α)

2(β − α)

)

.

The corresponding estimates are as follows.

(
κDD)−1 = (κNN)−1 =

(
4

β − α

)2

,
(
κDN)−1 = (κND)−1 =

(
2

β − α

)2

.

Note that by symmetry, the DD- and NN-cases can be split at θ = (α +β)/2 into
the DN- and ND-cases. One can then approach λDD and λNN by using the known
approximating method for λDN and λND (cf. [5]; Theorem 1.2]). However, as an
illustration of Theorem 6.6 and Corollary 6.1, we now compute κ̄DD and κDD.

Consider first the simpler interval (α, β) = (0, 1). Since μ = ν = dx, by
symmetry, one may choose y = 1 − x . Then x < 1/2 and

(
κ̄DD)−1= inf

x∈(0,1/2)

2

x

[

1−2x + x−2
∫ x

0
z2dz + x−2

∫ 1

1−x
(1 − z)2dz

]−1

= inf
x∈(0,1/2)

6

3x − (2x)2

= 32

3
(with x = 3/8).

To compute κDD, set again y = 1 − x with x ∈ (0, 1/2). Then, the test function
f x,y becomes

f x (s) =
{√

s ∧ x s ≤ 1 − x√
1 − s s ∈ (1 − x, 1).

By symmetry again, we have θ = 1/2. Fix x ∈ (0, 1/2). For convenience, we express
f x as ( f1, f2) : f1(s) = √

s for s ∈ [0, x] and f2(s) = √
x for s ∈ [x, 1/2]. Then

by (6.29) with ν−(s) = s, we have h− = (h−
1 (z), h−

2 (z)
)
:

h−
1 (z) =

∫ z

0
f1(s)sds + z

[ ∫ x

z
f1 +

∫ 1/2

x
f2

]

, z ∈ [0, x]

h−
2 (z) =

[ ∫ x

0
f1(s)sds +

∫ z

x
f2(s)sds

]

+ z
∫ 1/2

z
f2, z ∈ [x, 1/2].
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Hence by (6.32), we have

II −( f x )(z) = h−(z)

f x (z)
=
⎧
⎨

⎩

(
− 1

3 x3/2 + 1
2 x1/2

)√
z − 4

15 z2, z ∈ [0, x],
1

10

(
5z(1 − z) − x2

)
, z ∈ [x, 1/2].

Define

H(x) = −1

3
x3/2 + 1

2
x1/2 and γ (z) = H(x)

√
z − 4

15
z2.

Then

γ ′(z) = H(x)

2
√

z
− 8

15
z, γ ′′(z) = − H(x)

4z3/2 − 8

15
< 0.

Hence γ achieves its maximum at

z∗(x) =
(

15

16
H(x)

)2/3

.

Furthermore,

γ (z∗(x)) = H(x)

(
15

16
H(x)

)1/3

− 4

15

(
15

16
H(x)

)4/3

= 3

8

(
15

2

)1/3

H(x)4/3.

Note that z∗(x) ≤ x iff x ≥ 5/14. Besides, on the subinterval [x, 1/2], h−(z)/
f x (z) has maximum 1/8 − x2/10 by (6.34). Solving the equation

3

8

(
15

2

)1/3

H(x)4/3 = 1

8
− 1

10
x2, x ∈ (5/14, 1/2),

we obtain x∗ ≈ 0.436273 and then

inf
x∈(5/14,1/2)

sup
z≤1/2

h−(z)

f x (z)
= γ (z∗(x∗)) ≈ 0.105967.

From these facts and (6.36), we conclude that

(
κDD)−1 ≈ 1/0.105967 ≈ 9.43693.

By the way, we mention that a similar but simpler study shows that

inf
x∈(0,5/14)

sup
z≤1/2

h−(z)

f x (z)
= 1

8
.

This shows that to get a less sharp lower bound 1/8, the computation becomes much
simpler. It needs to study the extremal case that x = 0 only; the corresponding test
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function becomes f x ≡ 1. Return to the original interval (α, β), by Proposition 6.2
and Corollary 6.1, we obtain

8

(β − α)2 <
9.4369

(β − α)2 < λDD =
(

π

β − α

)2

≤ 32

3(β − α)2 = 2

3

(
4

β − α

)2

.

The ratio becomes 32
3

/
9.4369 ≈ 1.13. The same assertion holds if λDD is replaced

by λNN because of the symmetry.
It is a good chance to discuss the approximating procedure remarked after Corol-

lary 6.1. Here we consider the lower estimate only. Replacing f x = ( f1, f2) by
(h−

1 , h−
2 ), one produces a new (h−

1 , h−
2 ) and then a new II −( f ) which

provides a new lower bound. By using this procedure twice with fixed θ = 1/2
and x = x∗ ≈ 0.436273, we obtain successively the following lower bounds:

9.80392

(β − α)2 ,
9.86193

(β − α)2 .

Clearly, they are quite close to the exact value of λDD and λNN:

π2

(β − α)2 ≈ 9.8696

(β − α)2 .

Example 6.3 By a substitute u = ze−bx/2, the equation

u′′ + bu′ + γ u = 0 (b, γ are real constants)

is reduced to

z′′ + σ 2z = 0
(
σ 2 = γ − b2/4

)
.

From the last example, it follows that the equation has general solutions

u =

⎧
⎪⎨

⎪⎩

e−bx/2(c1 + c2x) if γ = b2/4
c1eξ1x + c2eξ2x if γ < b2/4

e−bx/2
(

c1 cos
(
x
√

γ − b2/4
)+ c2 sin

(
x
√

γ − b2/4
))

if γ > b2/4,

where ξ1, ξ2 are solution to the equation

ξ2 + bξ + γ = 0.

Thus, for the operator L = d2/dx2 +bd/dx (b is a constant) with state space (0,∞),

we have the following principal eigenfunctions

• g(x) = (2/b + x)e−bx/2 and g(x) = xe−bx/2 in ND- and DD-cases, respectively,
when b > 0;
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• g(x) = xe−bx/2 and g(x) = (1+bx/2)e−bx/2 in DN- and NN-cases, respectively,
when b < 0.

In each of these cases, we have the principal eigenvalue λ# = b2/4 and (κ#)−1 = b2.

Moreover,
(
κ̄DD

)−1
,
(
κ̄NN

)−1 = b2/2. Clearly, the lower estimate
(
κ#
)−1

/4 is sharp
in all cases.

Example 6.4 (Cauchy–Euler equation) Consider the operator

L = x2 d2

dx2 + bx
d

dx
,

where b is a constant. By a change of variable x = ey, the equation

x2u′′ + bxu′ + γ u = 0 (b, γ are constants)

is reduced to the last example:

d2u

dy2 + (b − 1)
du

dy
+ γ u = 0.

Hence the original equation has general solutions

u =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x (1−b)/2(c1 + c2logx) if γ = (1 − b)2/4
c1xξ1 + c2xξ2 if γ < (1 − b)2/4

x (1−b)/2
(

c1 cos
(√

γ − (1 − b)2/4logx
)+c2 sin

(√
γ − (1 − b)2/4logx

))

if γ > (1 − b)2/4,

where ξ1, ξ2 are solution to the equation ξ2 + (b − 1)ξ + γ = 0:

ξ1, ξ2 = (1 − b)/2 ±
√

(1 − b)2/4 − γ .

Here we have used Euler’s formula:

xi
√

ξ = ei
√

ξ logx = cos
(√

ξ logx
)+ i sin

(√
ξ logx

)
.

In particular, (1) when b = 0, we have solutions

u =

⎧
⎪⎨

⎪⎩

√
x(c1 + c2logx) if γ = 1/4

c1xξ1 + c2xξ2 if γ < 1/4√
x
(

c1 cos
(√

γ − 1/4logx
)+c2 sin

(√
γ − 1/4logx

))
if γ > 1/4.

Now, corresponding to γ = 1/4, we have

λDN = 1

4
, g(x) =

{√
x if the state space is (0,∞)√
x log

√
x if the state space is (1,∞).
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The first case is the original Hardy’s inequality. Corresponding to γ = 1/4 again but
for state space (1,∞), we have

λNN = 1

4
, g(x) = √

x
(
log

√
x − 1

)
.

Here limx→∞
(
eC g′)(x) = limx→∞ g′(x) = 0. We have

(
κDN

)−1
,
(
κNN

)−1 =
1,
(
κ̄DN

)−1
,
(
κ̄NN

)−1 = 1/2, respectively. The lower estimate
(
κ#
)−1

/4 is sharp in
each case. The DN-case is actually a special one of the last example.

(2) When b = 1, for finite state space (1, N) with Dirichlet boundaries, we have

λn =
(

nπ

logN

)2

, g(x) = sin

(
nπ

logN
logx

)

, n ≥ 1.

In particular,

λDD =
(

π

logN

)2

, g(x) = sin

(
π

logN
logx

)

.

Next, for Neumann boundaries, we have

λNN =
(

π

logN

)2

, g(x) = cos

(
π

logN
logx

)

.

In both cases, we have
(
κDD

)−1
,
(
κNN

)−1 = (4/logN
)2

. Besides, we have

λDN =
(

π

2logN

)2

, g(x) = sin

(
π

2logN
logx

)

;

λND =
(

π

2logN

)2

, g(x) = cos

(
π

2logN
logx

)

.

In these cases, we have
(
κDN

)−1
,
(
κND

)−1 = (2/logN
)2

. Note that the present case
can be reduced to Example 6.2 under the change of variable x = ey, the results here
can be obtained from Example 6.2 replacing (α − β)2 by log2 N . In view of this, we
also have

(
κ̄DD)−1 = (κ̄NN)−1 = 32

3log2 N
,

(
κDD)−1 = (κNN)−1 ≈ 9.4369

log2 N
.
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Appendix

The next result is a generalization of [9; Proposition 1.2].

Proposition 6.3 Let Pt (x, ·) be symmetric and have density pt (x, y) with respect to
μ. Suppose that the diagonal elements ps(·, ·) ∈ L1/2

loc (μ) for some s > 0 and a set
K of bounded functions with compact support is dense in L2(μ). Then λ0 = εmax.

Proof The proof is similar to the ergodic case (cf. [6; Sect. 8.3] and 9; proof of
Theorem 7.4]), and is included here for completeness.

(a) Certainly, the inner product and norm here are taken with respect to μ. First,
we have

Pt (x, K ) = Ps Pt−s1K (x)

=
∫

μ(dy)
dPs(x, ·)

dμ
(y)Pt−s1K (y) (sincePs � μ)

= μ

(
dPs(x, ·)

dμ
Pt−s1K

)

= μ

(

1K Pt−s
dPs(x, ·)

dμ

)

(by symmetry ofPt )

≤ √μ(K )

∥
∥
∥
∥Pt−s

dPs(x, ·)
dμ

∥
∥
∥
∥ (by Cauchy–Schwarz inequality)

≤ √μ(K )

∥
∥
∥
∥

dPs(x, ·)
dμ

∥
∥
∥
∥e−λ0(t−s) (by L2-exponential convergence)

=
(√

μ(K )p2s(x, x)eλ0s
)

e−λ0t (by [6; (8.3)]).

By assumption, the coefficient on the right-hand side is locally μ-integrable. This
proves that εmax ≥ λ0.

(b) Next, for each f ∈ K with ‖ f ‖ = 1, we have
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‖Pt f ‖2 = ( f, P2t f ) (by symmetry of Pt )

≤ ‖ f ‖∞
∫

supp( f )

μ(dx)P2t | f |(x)

≤ ‖ f ‖2∞
∫

supp( f )

μ(dx)P2t (x, supp( f ))

≤ ‖ f ‖2∞
∫

supp( f )

μ(dx)c(x, supp( f ))e−2εmaxt

=: C f e−2εmaxt .

The technique used here goes back to [17].
(c) The constant C f in the last line can be removed. Following Lemma 2.2 in

[24], by the spectral representation theorem and the fact that ‖ f ‖ = 1, we have

‖Pt f ‖2 =
∫ ∞

0
e−2λt d(Eλ f, f )

≥
[ ∫ ∞

0
e−2λsd(Eλ f, f )

]t/s

(by Jensen’s inequality)

= ‖Ps f ‖2t/s, t ≥ s.

Note that here the semigroup is allowed to be subMarkovian. Combining this with
(b), we have ‖Ps f ‖2 ≤ Cs/t

f e−2εmaxs . Letting t → ∞, we obtain

‖Ps f ‖2 ≤ e−2εmaxs,

first for all f ∈ K and then for all f ∈ L2(μ) with ‖ f ‖ = 1 because of the denseness
of K in L2(μ). Therefore, λ0 ≥ εmax. Combining this with (a), we complete the
proof. ��

The main result (Theorem 6.2) of this paper is presented in the last section (Sect.
10) of the paper [9], as an analog of birth–death processes. Paper [9], as well as [8]
for ϕ4-model, is available on arXiv.org.
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Chapter 7
Trend Analysis of Extreme Values

Goedele Dierckx and Jef Teugels

Abstract In Dierckx and Teugels (Environmetrics 2:1–26) we concentrated on
testing whether an instantaneous change occurs in the value of the extreme value
index. This short article illustrates with an explicit example that in some cases the
extreme value index seems to change gradually rather than instantaneously. To this
end a moving Hill estimator is introduced. Further a change point analysis and a trend
analysis are performed. With this last analysis it is investigated whether a linear trend
appears in the extreme value index.

7.1 Catastrophes

Worldwide major catastrophes often have a grave humanitarian impact with regard
to losses. Therefore, Swiss Re, one of the leading global reinsurance companies,
lists every year the biggest disasters of different types (hurricanes, earthquakes,
floods,...) in their Swiss Re Catastrophe Database [8]. Table 7.1 summarizes the 62
largest insured losses in million US-dollars over the period from January 1, 1970
until January 1, 2009. The losses have been calibrated to January 1, 2009. As one
can see, the types of disaster are quite different: H stands for hurricane, T for typhoon,
F for flood, M for manmade disaster, E for earthquake, ES for European storm and
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Table 7.1 Losses (n = 62) for different types of catastrophes

Event T Date Loss Event T Date Loss

Katrina H 24.08.05 71,163 X12 ES 06.08.02 2,755
Andrew H 23.08.92 24,479 US F 20.10.91 2,680
WTC-attack M 11.09.01 22,767 X10 US 06.04.01 2,667
Northridge E 17.01.94 20,276 X16 ES 25.06.07 2,575
Ike H 06.09.08 19,940 Isabel H 18.09.03 2,540
Ivan H 02.09.04 14,642 Fran H 05.09.96 2,488
Wilma H 16.10.05 13,807 Anatol ES 03.13.99 2,454
Rita H 20.09.05 11,089 Iniki H 11.09.92 2,448
Charley H 11.08.04 9,148 Frederic H 12.09.79 2,361
Mireille T 27.09.91 8,899 X15 ES 19.08.05 2,340
Hugo H 15.09.89 7,916 Petro US M 23.10.89 2,296
Daria ES 25.01.90 7,672 Tsunami E 26.12.04 2,273
Lothar ES 25.12.99 7,475 Fifi US 18.09.74 2,177
Kyrill ES 18.01.07 6,309 X7 ES 04.07.97 2,139
X3 ES 15.10.87 5,857 Luis H 03.09.95 2,113
Frances H 26.08.04 5,848 Erwin ES 08.01.05 2,071
Vivian ES 25.02.90 5,242 X11 US 27.04.02 1,999
Bart T 22.09.99 5,206 Gilbert H 10.09.88 1,984
Georges H 20.09.98 4,649 X9 US 03.05.99 1,914
Allison US 05.06.01 4,369 X2 US 17.12.83 1,895
Jeanne H 13.09.04 4,321 X13 US 04.04.03 1,880
Songda T 06.09.04 4,074 X1 US 02.04.74 1,873
Gustav H 26.08.08 3,988 Mississippi F 25.04.73 1,787
X14 US 02.05.03 3,740 X8 US 15.05.98 1,770
Floyd H 10.09.99 3,637 Loma Pieta E 17.10.89 1,714
Piper Alpha M 06.07.88 3,631 Celia H 04.08.70 1,714
Opal H 01.10.95 3,530 Vicki T 19.09.98 1,682
Kobe, Japan E 17.01.95 3,482 Fertilizer M 21.09.01 1,646
Klaus ES 01.01.09 3,372 X6 US 05.01.98 1,621
Martin ES 27.12.99 3,093 X5 US 05.05.95 1,599
X4 US 10.03.93 2,917 Grace H 20.10.91 1,576

US for US storm. The indices to the quantities X are made for convenience for those
disasters arranged in time that did not get a name attached.

The listed events form themselves a set of extreme values that can be analyzed in
its own right. To gain some insight into the behavior of the data over time, we plot
the pairs (xi , Yi ), i = 1, . . . , 62 in Fig. 7.1. The variable Y represents the losses of
the catastrophes in million US-dollars. Note that to avoid empty places and erratic
behavior, we rescale the time axis so that one unit represents 5 years. In Fig. 7.1, one
can see that within this set of extreme values, some losses seem exceedingly severe.
Moreover, and this offers another aspect of Fig. 7.1, one might suspect that the losses
have a tendency to increase over time. We will investigate this phenomenon in more
detail.
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Fig. 7.1 Losses as a function
of the number of 5 years
since January 1, 1970
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7.2 The Insured Losses

We now investigate the loss data in more detail. More specifically, we will focus on
the extreme value index of the losses.

7.2.1 No Time Component

We first ignore the time component. It can be safely assumed that the extreme value
index γ of these extreme events is positive. The estimation of γ is illustrated in Fig.
7.2a, where the Hill estimator and the Peak Over Threshold estimator are plotted as a
function of k, the number of extreme data taken into account in the estimation. When
using the Hill estimator, we choose k to be the number of data that minimizes the
Empirical Mean Square Error. This leads to an optimal k = 52 and a corresponding
estimate for γ of 0.87. From classical extreme value theory we know that such a
large value is associated with Pareto type distributions with a finite mean but with an
infinite variance. The Pareto QQ plot of the data in Fig. 7.2b is very close to linearity,
suggesting that almost all the losses can be used in the estimation.

7.2.2 Time Component

We now include the time component explicitly.
When the time is taken into account the data tells a slightly different story. We

will study this in three different ways: (1) using a moving Hill estimator, (2) by
performing a change-point analysis and (3) by performing a trend analysis. Note
that change point models using a simple change-point and change-point models in
a regression context have been studied before. Loader [6] considered a regression
model in which the mean function might have a discontinuity at an unknown point
and proposes a change-point estimate with confidence regions for the location and
the size of the change. Kim and Siegmund [5] considered likelihood ratio tests to
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Fig. 7.2 a Hill (full line) and peaks over treshold estimator (dashed line) as function of k = the
number of extremes taken into account. b Pareto QQ plot for the losses:(
− log

(
1 − i

n+1

)
, log Yi :n

)
, for i = 1, . . . , n where Yi :n represents the i th order statistic of

the losses

detect a change-point in simple linear regression. Cox [2] commented on the choice
between a simple change-point model without covariates and a regression model with
no change-point. Model selection for changepoint-like problems was also discussed
by Siegmund [7]. Unlike these authors we focus on the special features of the extreme
value index.

7.2.2.1 Moving Hill Estimator

One way of including the time component is by calculating the Hill estimator for
a small time window that moves along the time range. Several choices can be made
regarding the size of the moving window. One can choose a fixed number of data in
each window or a fixed length of the time window. This is illustrated in Fig. 7.3 for
some choices that lead to reasonable results in this example.

In Fig. 7.3a and b the number of data in each window is fixed. Around each
xi , the 10 nearest x-values are selected in a time window. The Hill estimator is then
calculated based on the largest 40% [in (a)] or 70% [in (b)] losses in this time window.
Clearly, the length of the time window is not constant when moving.

In Fig. 7.3c and d the length of the time window is fixed. One can see that a
length of two time units, that is 10 years, results in reasonable plots. Around each xi ,

the x-values lying within a range of two time units are selected in the time window.
Again, the Hill estimator is based on the largest 40% [in (c)] or 70% [in (d)] losses
in each time window.

One can see that the choice of the size of the window and the number of data
taken into account in each window has some effect on the results. However, all
choices seem to indicate that the Hill estimator is not constant over time but actually
increases from 1970 until 1990 (x = 4), then stabilizes or even decreases to increase
again somewhere around the year 2000. But overall an increasing trend seems to
prevail.
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Fig. 7.3 Moving Hill estimator calculated over a moving time window, a window: 10 data points
around each data point; Hill estimator is based on the largest 40% of these 10 data points, b window:
10 data points around each data point; Hill estimator is based on the largest 70% of these 10 data
points, c window: length 2 (i.e. 10 year window, since each unit represents 5 years); Hill estimator
is based on the largest 40% data points in each window, d window: length 2; Hill estimator is based
on the largest 70% data points in each window
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Moreover, note that when the length of the window is fixed, each window might
contain a different number of data as shown in Fig. 7.4. This figure nicely illustrates
that the frequency of catastrophes also seems to increase with time.

7.2.2.2 Change Point Analysis

Dierckx and Teugels [3] discussed a method to detect change points in the extreme
value index of a data series Y that follows a Pareto type distribution. To test whether
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Fig. 7.5 The plot of the test
statistic T against x with the
horizontal line indicating the
critical value
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the extreme value index changes at some point, a likelihood-based test statistic T is
used. In that procedure, each point is investigated as a potential change point and the
data set is split up into two groups. The test statistic compares the log-likelihoods of
the two groups with the one obtained for the entire data set. A large difference leads
to the conclusion that the extreme value index is not constant overall. In Fig. 7.5, one
sees that the test statistic is well over the critical value 2.96 for all points, suggesting
that the extreme value index keeps changing over time rather than the presence of a
single change point.

7.2.2.3 Trend Analysis

In a forthcoming paper [4], we develop trend models for the extremal behavior
in a data set under the condition that Y |x follows a Pareto-type distribution.
In mathematical terms this means that the relative excesses over some threshold
u(x) follow approximately a Pareto distribution, i.e. P(Y/u > y|Y > u) ∼ y−1/γ (x)

when u → ∞. By way of example, we assume that the extreme value index follows
a linear trend γ (x) = α1 +α2x with αi , i = 1, 2 constants. It is natural to determine
the estimated values of these two parameters by maximum likelihood. The outcome
of this estimation is illustrated in Fig. 7.6. The estimators are plotted as a function
of k, the number of data taken into account. Recall that this number k is determined
by a threshold u(x) satisfying P(Y > u(x)) = k/n. Note that the choice of k does
not seem to be crucial as the estimations are remarkably stable over the broad set of
k-values. For example, when k = 45 (which is one of the largest k-values for which
the parameter plots are stable), α̂1 = 0.001, whereas α̂2 = 0.159.

According to this analysis, γ can be estimated as 0.001+0.159x, where x denotes
the number of 5 years since January 1, 1970. Note that the estimated value for α2 is
significantly different from zero, a result that follows from the large sample behavior
of maximum likelihood estimators. The obtained linear trend model summarizes well
what can be seen in Fig. 7.3d. Indeed, in Fig. 7.7a γ̂ (x) = 0.001+0.159x compares
well to this moving Hill plot.

The above conclusion is strengthened by looking at an adapted exponential quan-
tile plot. When Y |x follows a Pareto type distribution with extreme value index γ (x),
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Fig. 7.6 a (k, α̂1); b (k, α̂2) with 95% confidence intervals
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Fig. 7.7 a (x, γ̂ (x)), with the moving Hill estimator from Fig. 7.3d added in dashed line, b expo-
nential QQ plot for log Y/γ (x), with first bissector added in dashed line

the random variable log Y/γ (x) follows approximately a standard exponential distri-
bution, at least for the largest data points. Figure 7.7b shows remarkably well that the
exponential quantile plot of that quantity follows closely the first bisector that corre-
sponds to the expected standard exponential. It is somewhat surprising that the largest
data point that corresponds to hurricane Katrina (Time: 24.08.2005 (x = 7.13), Loss:
71,163) does not have a major effect on the estimations.

7.3 Conclusion

Whether the catastrophes worldwide over the last 40 years are becoming more and
more severe is a point of discussion in many research areas and in public debate.
Assuming some climatological models for the natural disasters, several climato-
logical studies have detected an increase in severity. Other reports however threw
doubts on such conclusions as the conclusions are based on model assumptions.
In this article, we study the severity of the catastrophes by looking at a secondary
measurement, namely losses corresponding to major natural disasters. The conclu-
sions, based on a change-point and trend analysis of the extreme value index of the
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losses from 1970 onward, indicate that the catastrophes are becoming more and more
severe over time.
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Chapter 8
Renormalizations in White Noise Analysis

Takeyuki Hida

Abstract Renormalization has been applied in many places by using a method
fitting for each situation. In this report, we are in a position where a white noise
{Ḃ(t), t ∈ R1} is taken to be a variable system of random functions ϕ(Ḃ). With this
setting, renormalization plays the role that lets ϕ(Ḃ) become a generalized white
noise functional, the notion of which has been well established in white noise theory.

8.1 Introduction

Let us start with a quotation from Tomonaga [9, pp. 44–45].

Dirac made it possible to use a nondenumerably infinite number of coordinate axes by
introducing his well-known δ-function. In other words,in Dirac’s theory we can use an
xq -axis in which the subscript q is a parameter with a continuous range of values (Actually,
mathematicians do not like this type of idea, but it is convenient for physics.)

Also, Tomonaga said (in his series of lectures at Nagoya University, in Nov. 1971)
that we should like to take vectors with infinite length.

We present here a realization of such continuously many, linearly independent
vectors with infinite length in terms of white noise. More explicitly those vectors
can be represented as Ḃ(t), which is the time derivative of a Brownian motion B(t)
depending on the time parameter t.

It is therefore significant to discuss functions, actually functionals of Ḃ(t)’s, both
in theory and applications. We may start with elementary functionals such as poly-
nomials in Ḃ(t)’s and their exponentials. On the other hand, we have established
the space (L2)− or (S)∗ of generalized white noise functionals. They are defined
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in a quite reasonable and acceptable manner and are quite big compared with the
classical space of the Ḃ(t)-functionals, as we shall elaborate in the next section.
Unfortunately, elementary functionals of Ḃ(t)’s are not always in the class of our
favourite space of generalized white noise functionals. We shall overcome this by
using the method of renormalization which is the main topic of this paper.

8.2 White Noise and Its Generalized Functionals

8.2.1 Linear Functionals of White Noise

Consider a Brownian motion {B(t, ω), ω ∈ �(P), t ∈ R1}. Its time derivative Ḃ(t)
is defined in the classical sense as a generalized stochastic process. That is, Ḃ(t, ω)

is a generalized function for almost all ω, so that the smeared variable

〈Ḃ(t), ξ 〉, ξ ∈ E,

is a continuous linear functional of ξ almost surely, where E is some nuclear
space dense in L2(R1). The collection {〈Ḃ, ξ 〉, ξ ∈ E} forms a subspace H1 of
L2(�, P) = (L2). We have an isomorphism

H1 ≡ L2(R1). (8.1)

This isomorphism extends to

H (−1)
1 ≡ K (−1)(R1), (8.2)

where K (−1)(R1) stands for the Sobolev space over R1 of order −1.

Each Ḃ(t) is now a member (well-defined element) of H (−1)
1 and the collection

{Ḃ(t)} is total in H (−1)
1 . We say that the collection {Ḃ(t)} forms a system of idealized

elemental random variables, that is a noise. The system can, therefore, be taken to
be the variable system of random functions.

Thus, we shall deal with general functionals of the form

ϕ(Ḃ) = ϕ(Ḃ(t), t ∈ R1). (8.3)

Our next steps of the analysis are

1. To give a rigorous definition of nonlinear functionals of the Ḃ(t)’s expressed in
the acceptable form.

2. To establish the differential and integral calculus on the space of those functionals.
We shall, however, not discuss this topic, since there is no direct connection with
the renormalization.
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8.2.2 Generalized White Noise Functionals

Original motivations to have generalized white noise functionals can be seen in [1],
and we shall revisit this briefly in what follows, with an alternative definition. We
note, in fact, two ways, i.a) and i.b), to define nonlinear functionals of the form (8.3).

(i.a) Generalization of the Fock space. Namely, we start with the direct sum
decomposition

(L2) =
⊕

n

Hn,

where (L2) is the complex Hilbert space involving all the functions of Brownian
motion with finite variance.

Noting that Hn is isomorphic to the symmetric L2(Rn) space up to a constant√
n!, we shall extend Hn to H (−n)

n by letting

H (−n)
n

∼= K̂ (Rn)−(n+1)/2,

where K̂ (Rn)−(n+1)/2 is the symmetric Sobolev space over Rn of degree −(n+1)/2.

Here and also in what follows the constant
√

n! will be omitted.
Then, we define a weighted sum

(L2)− =
⊕

n

cnH (−n)
n , (8.4)

where cn is a non-increasing sequence of positive numbers chosen suitably depending
on the problem.

(i.b) There is another way, due to Kubo and Takenaka, of extending the space
(L2). The idea is to have an infinite dimensional analog of the Schwartz space S and
the space S′ of Schwartz distributions:

(S) ⊂ (L2) ⊂ (S)∗;
where (S)∗ is the space of generalized white noise functionals.

To construct such a triple we use the second quantization method of the operator

A = − d2

du2 + u2 + 1.

Each method (i.a) or (i.b) has its advantage, so that we shall use both. It is inter-
esting to note that the exponential functional exp [< Ḃ, ξ >], ξ ∈ E is a test func-
tional in both (i.a) and (i.b).

(ii) By renormalization.
An alternative approach arises from the treatments of polynomials in Ḃ(t)’s.

This direction is what we are going to focus on in this paper. The idea comes from
elementary mathematical analysis and renormalizations.
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8.3 Renormalizations

8.3.1 The Algebra A

Since the variable system is given as {Ḃ(t), t ∈ R1}, it is reasonable to take poly-
nomials in Ḃ(t)’s. However, it is known that polynomials are not always ordinary
(generalized) white noise functionals, although they are most basic functions. We
are, therefore, requested to have them modified to invite them to manageable class
by us, namely to (L2)− or to (S)∗. This can be done by, so-to-speak, renormalization
which is going to be explained in what follows.

We start with the linear space A spanned by all the polynomials in Ḃ(t), t ∈ R1

over the complex number field C.

Proposition 8.1 The set A forms a graded algebra:

A =
∑

An .

The grade is obviously the degree of a polynomial. We can therefore define the
annihilation operator ∂t that makes the degree of a polynomial in Ḃ(t) decrease by
one. As the dual operator (in a sense) we can define the creation operator ∂∗

t that
makes the degree of a polynomial in Ḃ(t) increase by one.

The above operators can be extended to those acting on the general polynomials in
Ḃ(t)’s. Such a simple consideration leads us to define the partial differential operators
acting on the space (L2)− as the annihilation operator. It is important to note that
differential operators acting on white noise functionals cannot be analogous to the
differential operators acting on sure functions. In the case of random functions the
definition may seem to be rather simple, however not quite. We have to be careful for
the definition. For one thing, one may ask how to define a variation of the variable
Ḃ(t).

Many reasons suggest us to propose the annihilation operator in place of differen-
tial operator, if, in particular, the algebraA is concerned, where the grade is defined. If
the duality is taken into account, it is natural to introduce creation operator. Thus, we
have to deal with a non-commutative algebra generated by annihilation and creation
operators in line with the study of operator algebra.

8.3.2 Renormalizations, a General Theory

We wish to establish a general theory of renormalization. For this purpose, we have
to think of the characteristic properties of Ḃ(t)’s.

1. Each Ḃ(t) is elemental (atomic); hence, it is natural to remind the idea of reduc-
tion of random functions.
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2. It is, intuitively speaking, 1√
dt

in size. The differential operator should, therefore,
be quite different from non-random calculus. Formal observations are given, if
permitted:

(a) Ḃ(t) may be viewed as a stochastic square root of δt . Compare Mikusinski’s
idea of the square of the delta function (See [6]).

(b) A serious question is that, as was mentioned before, how a differential operator
is defined, how to think of δ Ḃ(t). Is it sure variable or random?

3. If the Ḃ(t) is understood to be a multiplication variable, it has to be the sum of
creation and annihilation:

Ḃ(t) = ∂t + ∂∗
t ,

so that we immediately see that its powers generate an algebra involving non-
commutative operators, and so on.

With these facts in mind we shall propose a method of renormalization starting
from the algebra A in a framework as general as possible. The key role is played by
the so-called S -transform in white noise theory. We use the notation in white noise
analysis (see [4]). The white noise measure which is the probability distribution of
{Ḃ(t), t ∈ R1} is denoted by μ. It is introduced on the dual space E∗ of a basic
nuclear space E. A member of E∗ is denoted by x, which is viewed as a sample of
Ḃ(t), t ∈ R1.

The S-transform is defined by the following formula: for a white noise functional
ϕ(x)

(S ϕ)(ξ) = e− 1
2 ‖ξ‖2

∫

e〈x,ξ〉ϕ(x)dμ(x). (8.5)

The reasons why we use the S -transform are:

(a) In order to have generalized functionals, we have to take a test functional space.
The function exp[〈x, ξ 〉] is not only a test functional by itself, but also a generator
of ordinary white noise functionals.

(b) The renormalization, that we are going to introduce, could be, formally speaking,
a projection of A down to the space (L2)−. The inner product of the exponential
functional and a polynomial defines a projection, since the exponentials generate
the space of test functionals.

(c) The method to be proposed should be applied not only to A , but also to expo-
nential functionals by the same principle.

With these considerations, we define the renormalization via the following propo-
sition.
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Proposition 8.2

(i) Let ϕ(Ḃ(t)) be a polynomial in Ḃ(t). Then

(S ϕ)(ξ) = p(ξ(t)) + O
( 1

dt

)
,

where p is a polynomial.
(ii) For a product

∏
ϕ j (Ḃ(t j )) of polynomials [using the same notations as in (i)],

∏
p j (ξ(t j )) + O

( ∏ 1

dt j

)
.

The proof is easy. One thing to take note of is how to interpret the symbol 1
dt

.

A polynomial in Ḃ(t) is approximated by that of �B
�

. Apply the S-transform to find
terms involving 1

�
. For computation one may compare the Hermite polynomials with

parameter (with σ 2 is replaced by 1
dt

or 1
�

).

We define the renormalization using the notation : · : by

:
∏

ϕ j (Ḃ(t j )) := S −1
(∏

p j (ξ(t j ))
)

. (8.6)

Theorem 8.1 The operation : · : can be extended linearly to A and

(i) it is idempotent,
(ii) it can be extended to exponential functionals of quadratic forms of the Ḃ(t)’s.

Remark 8.1 It is difficult to say whether the operation : · : is Hermitian, but : · :
satisfies partly a role of the projection operator.

8.3.3 Exponentials of Quadratic Functionals

Renormalization can be applied to those exponential functionals through the power
series expansion. According to the well-known Potthoff-Streit characterization of
(S)∗-functionals, we essentially need to think of the case where the exponent is a
polynomial in Ḃ(t)’s of degree at most two. Linear exponent is easily dealt with, so
that we shall be involved only in exponential functionals with quadratic exponent.

Recall the result on the S-transforms of exponential functions of “ordinary”
quadratic functionals of white noise. Take x ∈ E∗(μ) and let ϕ(x) be a real-valued
H2-functional with kernel F. Set

f (x) = exp[ϕ(x)].
Then, we have (from [4]):
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Theorem 8.2 Suppose that the kernel F has no eigenvalues in the interval (0, 4].
Then

(S f )(ξ) = δ(2i; F)−
1
2 exp

[∫ ∫

F̂(u, v)ξ(u)ξ(v)dudv

]

, (8.7)

where F̂ = F
−I+2F , (F being an integral operator), and where δ(2; F) is the modified

Fredholm determinant.

For the proof of Theorem 8.2, see (8.5) and [2, Sect. 4.6]. Also see [8].

Remark 8.2 One may ask why the modified Fredholm determinant is used instead of
the Fredholm determinant. The answer is worth to be mentioned. Roughly speaking,
f(x) is not quite equal to a quadratic form, but it is a renormalized quadratic form. The
diagonal term is subtracted off from the ordinary expression of quadratic form. This
fact is related to the modification of the determinants that appear in the expansion of
the Fredholm determinant.

We now have the theorem:

Theorem 8.3 The renormalization of a functional of the form f (x) = exp[ϕ(x)]
with ϕ quadratic is necessary only when ϕ tends to a generalized functional. In

such a case we have: f(x): just by deleting the factor δ(2i; F)− 1
2 of the formula in

Theorem 8.2.

For the proof of Theorem 8.3, use the formulas for Hermite polynomials with
parameter which we shall define below.

Definition 8.1 (Hermite polynomials with parameter)

Hn(x; σ 2) = (−σ 2)n

n! e
x2

2σ2
dn

dxn
e− x2

2σ2 ,

where σ > 0, n � 0.

The generating function of the Hermite polynomial above is

∑
tn Hn(x; σ 2) = exp

(
− σ 2

2
t2 + t x

)
.
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Chapter 9
M-Dependence Approximation for Dependent
Random Variables

Zheng-Yan Lin and Weidong Liu

Abstract The purpose of this paper is to describe the m-dependence approxima-
tion and some recent results obtained by using the m-dependence approximation
technique. In particular, we will focus on strong invariance principles of the partial
sums and empirical processes, kernel density estimation, spectral density estimation
and the theory on periodogram. This paper is an update of, and a supplement to the
paper “m-Dependent Approximation” by the authors in The International Congress
of Chinese Mathematicians (ICCM) 2007, Vol II, 720–734.

9.1 Introduction

Asymptotic theory plays a very important role in modern probability and statistic.
Varieties of important theory were proposed and developed in the last century. Among
them, the law of large numbers, central limit theorem, the moderate and large devi-
ation, weak and strong invariance principle and lots of their variation dominate the
development in limiting theory. Many classical theorems were first proved under
the independent and identically distributed (i.i.d.) assumption, and then extended to
dependent cases. The dependence can often arise in practical and statistical problems
such as time series analysis, finance and economy. There is a large literature on the
properties of mixing random variables and we refer to [17] for an excellent review.
Although the mixing condition is general, there are still many random sequences
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in time series which do not satisfy mixing conditions. A prominent example is the
simple AR(1) process Xn = (Xn−1 + εn)/2, where εn are i.i.d. Bernoulli random
variables with success probability 1/2. The process Xn is not α-mixing (cf. [3]).
To capture the dependence structure in time series, a more intuitive way is to assume
that the time series has Markov form

Xn = g(. . . , εn−1, εn), (9.1)

where {εn; n ∈ Z} are i.i.d. random variables and g is a measurable function such
that Xn is well-defined. The sequence {Xn} represents a huge class of processes.
In particular, it contains linear and nonlinear processes including the threshold AR
(TAR) models, ARCH models, random coefficient AR (RCA) models, exponential
AR (EAR) models and so on. To measure the dependence of {Xn}, one can use
the physical dependence measure introduced by Wu [63]. Let {ε∗

i , i ∈ Z} be an
independent copy of {εi , i ∈ Z}. For n ∈ Z , denote X∗

n by replacing ε0 with ε∗
0 in

Xn defined by (9.1). Set

θn,p = ‖Xn − X∗
n‖p and �n,p =

∑

i≥n

θi,p.

The parameter θn,p measures the impact of ε0 on Xn . The assumption
∑

n≥0 θn,p

< ∞ indicates that when n is large, the overall impact of εi , i ≤ 0, on Xn is
small. Based on θn,p, {Xn} can be approximated by martingale differences. Let
Dn = ∑∞

i=n Pn(Xi ), where Pn(Z) = E(Z |Fn) − E(Z |Fn−1) with Fn =
(. . . , εn−1, εn). The sequence {Xn} can be approximated by {Dn}. For example,
from [63], we have

E|Sn − Mn|p ≤ C p

n∑

j=1

�2
j,p (9.2)

for p > 2, where Sn = ∑n
i=1 Xi and Mn = ∑n

i=1 Di . Various limiting theorems
can now be obtained by using the martingale approximation (9.2). For a comprehen-
sive description of many important applications of martingale approximation, we
refer to [32, 63, 64, 67]. Another way to deal with {Xn} in (9.1) is m-dependence
approximation. Roughly speaking, we need to construct a sequence of m-dependent
random variables to approximate {Xn}. A simple but useful approximation of Xn

is the projection Xn,m = E[Xn|Fn−m,n], where Fn−m,n = (εn−m, . . . , εn). As in
(9.2), we can bound the difference between {Xn} and {Xn,m} by

E( max
1≤i≤n

|Si − Si,m |p) ≤ C pn p/2�
p/2
m,p,

where Si,m = ∑i
j=1 X j,m; see [40]. Various powerful tools can be applied to

the sequence {Xn,m}. Such an approximation is intuitive, but never trivial. To deal
with the m-dependent sequence {Xn,m}, lots of fine techniques are needed. Finally,
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combining the martingale approximation and m-dependence approximation, we can
also approximate {Xn} by {Dn,m}, where Dn,m = E(Dn|Fn−m,n). The difference
Dn,m is not only the martingale difference, but also is m-dependent. This technique
was used in [42, 43].

In the following sections, we will review some results obtained recently by using
the m-dependence approximation technique. In particular, we will focus on strong
invariance principles (SIP) of the partial sums in Sect. 9.2 the SIP of empirical
processes in Sect. 9.3, kernel density estimation in Sect. 9.4, the theory on peri-
odogram in Sect. 9.5 and spectral density estimation in Sect. 9.6.

9.2 Strong Invariance Principle for Partial Sums

The strong invariance principles are quite useful and have received considerable atten-
tion in probability theory. It plays an important role in statistical inference. Strassen
[58, 59] initiated the study for i.i.d. random variables and stationary and ergodic
martingale differences. Optimal results for i.i.d. random variables were obtained by
Komlós et al. [34, 35]. Their results can be stated as follows.

Theorem 9.1 (Komlós et al. [34, 35]) Suppose X1, X2, . . . are i.i.d. random vari-
ables. If EX1 = 0 and E|X1|p < ∞ for p > 2, then we can reconstruct {Xn} in a
new probability space and a standard Brownian motion B(t) such that

Sn − σ B(n) = oa.s.(n
1/p), (9.3)

where σ 2 = EX2
1 .

There are many attempts to extend Strassen and KMT’s theorems to dependent
cases. Papers on such extension to mixing random variables include [11, 12, 16, 36,
51, 55]; to associated random variables include [6, 69]; to various generalization
of martingale include [8, 26, 70]; to various times series include [4, 5, 40, 62]; to
stationary process include [64, 68]. The rates for dependence cases are usually of
the order O(n1/2−η) for some η > 0 which is slower than the optimal rate O(n1/p).

Using martingale approximation, an interesting paper by Wu [64] obtained SIP for
stationary Markov process with rates O(n1/p)�n for 2 < p ≤ 4, where �n is the
logarithm factor with some power. Apply his result to time series {Xn} in (9.1), Wu’s
[64] result can be read as follows.

Theorem 9.2 (Wu [64]) If EX0 = 0, E|X0|p < ∞ for some 2 < p < 4 and

∞∑

i=1

iθi,p < ∞, (9.4)

then Sn − σ B(n) = Oa.s.(n1/p(log n)1/2+1/p(log log n)2/p), where σ 2 = ∑
i∈Z E

(X1 Xi ).
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The rate in Theorem 9.2 is not optimal since the key tool in Wu’s paper is martin-
gale approximation. To get the optimal rate in (9.3), m-dependent approximation was
used in [40]. First of all, we estimate the difference of Sn and Sn,m .

Proposoition 9.1 (Liu and Lin [40])

(i) Suppose that X1 ∈ L q for some q > 1. Let q ′ = min(2, q). Then we have

‖Sn − Sn,m‖q
′

q ≤ Cqn�
q ′
m,q ,

where Cq is a constant only depending on q.
(ii) If q > 2, then

‖ max
1≤i≤n

|Si − Si,m |‖2
q ≤ Cqn�2

m,q .

(iii) If 1 < q ≤ 2, then

‖ max
1≤i≤n

|Si − Si,m |‖q
q ≤ Cqn(log n)q�2

m,q .

To review the results in [40], more notations are needed. Let

U j (δ) =
[2δ j ]∑

i=1

|Xi |, j ≥ 1, δ > 0,

χp(n) =
{√

n log log n if p = 2,

n1/p if 2 < p < 4.

Condition A Let 2 ≤ p < 4. Suppose there exists C satisfying 0 < C ≤ 1/p such
that for every 0 < δ < C and every ε > 0,

∞∑

j=1

2 j (1−δ)
P

(
U j (δ) ≥ εχp(2

j )
)

< ∞. (9.5)

Essentially, Condition A is a moment condition on {Xn}. It is easy to see that
E|X0|p+τ < ∞ for some τ > 0 implies (9.5). Also Liu and Lin [40] showed that
many time series satisfy Condition A under E|X0|p < ∞.

Theorem 9.3 (Liu and Lin [40]) Let 2 ≤ p < 4 and let Condition A hold. Suppose
that EX0 = 0, E|X0|p < ∞ and

⎧
⎨

⎩

∞∑
n=1

(log n)2

n log log n �2
n,2 < ∞ if p = 2,

�n,p = O(n−(p−2)/(2(4−p))−τ ) if 2 < p < 4,

(9.6)

for some τ > 0. Then
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|Sn − σ B(n)| = oa.s.(χp(n)), (9.7)

where σ 2 = EX2
0 + 2

∑∞
i=1 EX0 Xi .

Note that the rate in (9.7) is optimal. Moreover, the dependence assumption (9.6)
is weaker than (9.4) when 2 < p < 10/3.

The following theorem does not need Condition A, but converges at a slower rate.

Theorem 9.4 (Liu and Lin [40]) Let 2 < p < 4. Suppose that EX0 = 0,

E|X0|p < ∞ and

�n,p = O(n−η), η > 0.

Set τ = max(1 − 2η/(1 + 4η), 2/p). Then

|Sn − σ B(n)| = oa.s.(n
τ/2+δ) f or anyδ > 0. (9.8)

To compare Theorem 9.4 with the results of Wu [64], we need more notations.
Let F ′−∞,n = (F−∞,−1, ε

∗
0, ε1, . . . , εn), F ∗−∞,n = (. . . , ε∗

n−1, ε
∗
n), F ′′−∞,n =

(F ∗−∞,0, ε1, . . . , εn). Define g1(F−∞,n) = E[g(F−∞,n+1) |F−∞,n] and

α̃k = ‖g1(F−∞,k)−g1(F
′−∞,k)‖p, α∗

k = ‖g1(F−∞,k) − g1(F
′′−∞,k)‖p

β∗
k = ‖g(F−∞,k) − g(F ′′−∞,k)‖p.

Theorem 9.5 (Wu [64]) If EX0 = 0, E|X0|p < ∞ (2 < p ≤ 4), �n,p =
O(n−η) and

β∗
n +

∞∑

i=n

min(α∗
i , α̃i−n) = O(n−η), η > 0, (9.9)

then |Sn − σ B(n)| = oa.s.(nγ /2(log n)3/2), where γ = max(1 − η, 2/p).

It is easy to see that when

0 < η < min
(1

4
,

p − 2

p
,

p − 2

2(4 − p)

)
, (9.10)

we have τ < γ. That is, the rate in (9.8) is better than oa.s.(nγ /2(log n)3/2) under
(9.10). Also there is another restriction (9.9) in Wu’s theorem. It should be pointed
out that Wu [64] considered more general stationary process rather than {Xn} in
(9.1). Moreover, Wu [64] seemed to be the first to get the suboptimal rate O(n1/p)�n

for 2 < p ≤ 4 under the dependent case (except Strassen’s pioneer work under
martingale condition).
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9.3 Strong Invariance Principle for Empirical Process

A closely related problem to SIP for partial sums is the SIP for empirical process.
Define the empirical process F(s, t) = ∑[t]

k=1(1{Xk≤s} − F(s)), where F(s) is the
distribution of Xn . Let Yk(x) = 1{Xk≤x} − F(x) and

�(s, s′) = E(Y1(s)Y1(s
′)) +

∞∑

n=2

E(Y1(s)Yn(s′)) +
∞∑

n=2

E(Yn(s)Y1(s
′)).

The first SIP for empirical process was given in [18]. Kiefer [33] considered the
empirical process F(s,t) as a process with two variables and proved it can be approx-
imated by a Kiefer process with rate O(n1/3(log n)2/3). A stronger result was proved
in [34].

Theorem 9.6 (Komlós et al. [34]) Suppose X1, X2, . . . are i.i.d. random
variables. One can define a Kiefer process K(s,t) with covariance function
min{t, t

′ }�(s, s′) such that

sup
s∈R

|F(s, n) − K (s, n)| = Oa.s.((log n)2). (9.11)

Extensions to multivariate empirical processes can be found in [21, 44, 49, 50]. We
refer to [22, 29] for a survey of results on SIP for empirical process under i.i.d. condi-
tion. Various generalizations have also been done without independence assumptions
and most of them were focused on mixing sequences or some special processes. For
example, assuming {Xn} is a sequence of strong mixing and uniform random vari-
ables with certain mixing rates, Berkes and Philipp [10] proved (9.11) still holds
with the rate replaced by O(n1/2/(log n)λ) for some λ > 0. Berkes and Horváth [9]
considered the SIP for empirical process for GARCH process. The invariance prin-
ciple of weighted empirical process Fq(s, t) = q(s)

∑[t]
k=1(1{Xk≤s} − F(s)) has also

been considered in literature. Shao and Yu [56] obtained some results concerning the
weak convergence Fq(·, n)/

√
n ⇒ q(·)B(·), where B(·) is a Gaussian process with

covariance function �(s, s′). Their results extended the Chibisov-O’Reilly Theorem
to the case of dependent random variables. For other work under mixing conditions,
we refer to [23, 45]. A recent paper by Wu [65] considered the weak invariance
principle of Fq(s, t) for the stationary process {Xn} in (9.1). The SIP for weighted
empirical process was proved in [39] for {Xn} in (9.1) by m-dependence approxima-
tion. To introduce the results in the latter paper, we need some conditions.

Suppose the weighted function satisfies

|q(s)| ≤ C(1 + |s|)q for some q ≥ 0.

Let FX1|F0(x) = E(1{X1≤x}|F0) be the conditional distribution of X1 given F0 =
(. . . , ε−1, ε0). Suppose that for some 0 < C < ∞, 0 < v ≤ 1 and any x, y ∈ R,

∣
∣
∣FX1|F0(x) − FX1|F0(y)

∣
∣
∣ ≤ C |x − y|v a.s. (9.12)
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Condition 1 Let q = 0, assume (9.12) and that

P

(
|Xn − X ′

n| ≥ n−θ/v
)

= O(n−θ ) for some θ > 2.

Condition 2 Let q > 0 and assume (9.12 holds. Assume that E|X1|2q+δ < ∞ for
some δ > 0 and θn,2q = ‖Xn − X ′

n‖2q = O(ρn) for some 0 < ρ < 1. Let Fε0(x)

be the distribution function of ε0 and assume that

Fε0(x) is Lipschit z continuous on R. (9.13)

Suppose that Gn = G(. . . , εn−1, εn), where G is a measurable function.

Condition 3 Let q > 0 and assume (9.13)holds. Suppose that Xn = a0εn + Gn−1
and

E(|ε0|2q1{|ε0|≤x}) is Lipschit z continuous on R. (9.14)

Let E|Gn|2q+2 < ∞ and �n,2q+2 = O(n−θ ) for some θ > 0.

Condition 4 Let q > 0 and assume (9.13) holds. Suppose that Xn = ∑∞
j=0 a jεn− j

and (9.14) holds. Let E|ε0|max(2q,2)+δ < ∞ for some δ > 0 and
∑∞

j=n |a j | =
O(n−θ ) for some θ > 0.

Theorem 9.7 (Liu [39])

(i) Suppose Condition 1 holds and q(s) ≡ 1. There exists a Kiefer process K (s, t)
with covariance function min{t, t ′}�(s, s′) such that for some λ > 0,

sup
s∈R

|F(s, n) − K (s, n)| = O(n1/2(log n)−λ) a.s. (9.15)

(ii) Assume that Condition 3, Condition 3 or Condition 3 holds. Then for some
λ > 0,

sup
s∈R

|Fq(s, n) − q(s)K (s, n)| = O(n1/2(log n)−λ) a.s.

9.3.1 Linear Process

Let Xn = ∑∞
i=0 aiεn−i with {an} satisfying |an| = O(ρn) for some 0 < ρ < 1.

Corollary 9.1 Let q(s) ≡ 1 and assume (9.13) holds. Suppose that |an| = O(ρn)

for some 0 < ρ < 1 and E(log+ |ε0|)p < ∞ for some p > 2. Then (9.15) holds.
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9.3.2 Nonlinear AR Model

Define the nonlinear autoregressive model by

Xn = f (Xn−1) + εn, n ∈ Z , (9.16)

where | f (x) − f (y)| ≤ ρ|x − y|, 0 < ρ < 1. Special cases of (9.16) include the
TAR model (cf. [61]) and the exponential autoregressive model (cf. [31]).

Corollary 9.2 Let q(s) ≡ 1 and assume (9.13) holds. Suppose that E(log+ |ε0|)p <

∞ for some p > 2. Then (9.15) holds.

9.3.3 GARCH Model

We only consider GARCH (1,1) process and similar results can be proved for
GARCH(p, q) processes and augmented GARCH processes. Let Xk satisfy the
following equations:

Xk = σkεk, (9.17)

σ 2
k = δ + βσ 2

k−1 + αX2
k−1, (9.18)

where δ > 0 and β, α are nonnegative constants. The GARCH process was intro-
duced by Bollerslev [14]. Equations 9.17 and 9.18 admit a unique stationary solution
if and only if E log(β + αε2

0) < 0; see [47]. The solution can be written as

Xk = δ

∞∑

i=1

εk

i−1∏

j=1

(β + αε2
k− j ).

Corollary 9.3 Let q(s) ≡ 1, assume (9.13) holds and that E(log+ |ε0|)p < ∞ for
some p > 12. Suppose that E log(β + αε2

0) < 0. Then (9.15) holds.

To get (9.15) for GARCH (1,1) process, Berkes and Horváth [9] assumed
E(log+ |ε0|)p < ∞ for some p > 36.

9.4 Kernel Density Estimation

Let f(x) be the density function of Xn . Let

fn(x) = 1

nbn

n∑

k=1

K
( Xk − x

bn

)
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be the kernel density estimate of f. Asymptotic properties of fn(x) have been widely
discussed under various dependent conditions; see [15, 27, 30, 52, 53, 60, 63, 66].
To assess shapes of density functions so that one can perform goodness-of-fit and
other specification tests, one needs to construct uniform or simultaneous confidence
bands (SCB). To this end, we need to deal with the maximum absolute deviation
over some interval [l, u]:

�n := sup
l≤x≤u

√
nbn√

λK f (x)
| fn(x) − E fn(x)|.

In an influential paper, Bickel and Rosenblatt [13] obtained an asymptotic distribu-
tional theory for �n under the assumption that Xi are i.i.d.

(C1). There exists 0 < δ2 ≤ δ1 < 1 such that n−δ1 = O(bn) and bn = O(n−δ2).

(C2). The density function fε of ε1 is positive and

sup
x∈R

[| fε(x)| + | f ′
ε(x)| + | f ′′

ε (x)|] < ∞.

(C3). The support of K is [-A, A], K is differentiable over (−A, A) and the left (resp.
right) derivative K ′(−A) (resp. K ′(A)) exists, and sup

|x |≤A
|K ′(x)| < ∞. The Lebesgue

measure of the set {x ∈ [−A, A] : K (x) = 0} is zero. Let λK = ∫
K 2(y)dy, K1 =

[K 2(−A) + K 2(A)]/(2λK ) and K2 = ∫ A
−A(K ′(t))2dt/(2λK ).

Theorem 9.8 (Bickel and Rosenblatt [13]) Suppose X1, X2, . . . are i.i.d. random
variables and (C1)–(C3) hold. Then we have for every z ∈ R,

P

(
(2 log b̄−1)1/2 (�n − dn) ≤ z

)
→ e−2e−z

, (9.19)

where b̄ = bn/(u − l),

dn = (2 log b̄−1)1/2 + 1

(2 log b̄−1)1/2

{

log
K1

π1/2 + 1

2
log log b̄−1

}

if K1 > 0, and otherwise

dn = (2 log b̄−1)1/2 + 1

(2 log b̄−1)1/2
log

K 1/2
2

21/2π
.

It is a very challenging problem to generalize their result to dependent random vari-
ables. In their paper Bickel and Rosenblatt applied the very deep embedding theorem
of approximating empirical processes of independent random variables by Brownian
bridges with a reasonably sharp rate. For dependent random variables, however, such
an approximation with a similar rate generally can be extremely difficult to obtain. In
1998, Neumann [48] made a breakthrough and obtained a similar result for β-mixing
processes whose mixing rates decay exponentially quickly. Such processes are very
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weakly dependent. Significant improvement on weakening dependence assumption
was recently made by Liu and Wu [42]. Using m-dependence approximation together
with martingale approximation, they showed that (9.19) still holds for a wide class
of time series even including some long-range dependent processes. To state their
result, we first assume that Xn satisfies

Xn = a0εn + g(. . . , εn−2, εn−1) =: a0εn + g(ξn−1). (9.20)

(C4). Suppose that X1 ∈ L p for some p > 0. Let p′ = min(p, 2) and �n =
∑n

i=0 θ
p′/2

i,p′ . Assume �n,p′ = O(n−γ ) for some γ > δ1/(1 − δ1) and

Znbn−1 = o(log n), where Zn =
∞∑

k=−n

(�n+k − �k)
2.

Theorem 9.9 (Liu and Wu [42]) Suppose that (C1)–(C4) hold and {Xn} satisfies
(9.20). Then (9.19) holds.

Liu and Wu [42] also considered the case when Xn satisfies the general form
in (9.1). Let Fη|ξ (·) be the conditional distribution function of η given ξ, and let
fη|ξ (x) = ∂ Fη|ξ (x)/∂x be the conditional density.

Conditions (C2) and (C4) are replaced respectively by (C2)’. The density function
f is positive and there exists B < ∞ such that

sup
x

[| fXn |ξn−1(x)| + | f ′
Xn |ξn−1

(x)| + | f ′′
Xn |ξn−1

(x)|] ≤ B almost surely.

(C4)’. Suppose that X1 ∈ L p and θn,p = O(ρn) for some p > 0 and 0 < ρ < 1.

Theorem 9.10 (Liu and Wu [42]) Under (C1), (C2)’, (C3) and (C4)’, we have
(9.19).

9.5 The Maximum of the Periodogram

Let

In,X (ω) = n−1
∣
∣
∣

n∑

k=1

Xk exp(iωk)

∣
∣
∣
2
, ω ∈ [0, π ],

denote the periodogram of random variables Xn and

Mn(X) = max
1≤ j≤q

In,X (ω j ), ω j = 2π j/n,

where q = qn = max{ j : 0 < ω j < π}, that is q ∼ n/2. Define the spectral density
function of {Xn} by
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f (ω) = 1

2π

∑

k∈Z

EX0 Xk exp(ikω)

and suppose that

f ∗ := min
ω∈R

f (ω) > 0. (9.21)

Primary goals in spectral analysis include estimating the spectral density f and
deriving asymptotic distribution of In,X (ω). There are extensive literature on various
properties of the periodograms. Among them, An, Chen and Hannan [1] obtained
the logarithm law for the maximum of the periodogram; Davis, Mikosch [24] and
Mikosch et al. [46] obtained the asymptotic distribution for the maximum of the peri-
odogram under the i.i.d. and linear process cases, the heavy-tailed case respectively;
Fay and Soulier [28] obtained central limit theorems for functionals of the peri-
odogram; Liu and Shao [41] obtained Cramér-type large deviation for the maximum
of the periodogram; Shao and Wu [57] obtained asymptotic distributions for the peri-
odogram and empirical distribution function of the periodogram for a wide class of
nonlinear processes.

When Xn = ∑
i∈Z aiεn−i , Davis and Mikosch [24] derived the following

theorem.

Theorem 9.11 (Davis and Mikosch [24]) Let Xn = ∑
j∈Z a jεn− j and assume

(9.21) holds. Suppose that Eε0 = 0, E|ε0|s < ∞ for some s > 2 and
∑

j∈Z | j |1/2|a j | <

∞. Then

max
1≤ j≤q

In,X (ω j )/(2π f (ω j )) − log q ⇒ G,

where G has the standard Gumbel distribution �(x) = exp(− exp(−x)), x ∈ R.

The Fourier transforms of Xn in (9.1) can be approximated by the sum of m-
dependent random variables. Set

Xk(m) = E[Xk |εk−m, . . . , εk], k ∈ Z , m ≥ 0.

Proposition 9.2 (Lin and Liu [37]) Suppose that E|X0|p < ∞ for some p ≥ 2 and
�0,p < ∞. We have

sup
ω∈R

E

∣
∣
∣

n∑

k=1

(Xk − Xk(m))exp(iωk)

∣
∣
∣

p ≤ C pn p/2�
p
m,p,

where C p is a constant only depending on p.

Lin and Liu [37] considered the periodogram of the functionals of linear process.
Let

Yn =
∑

j∈Z

a jεn− j , and Xn = h(Yn) − Eh(Yn), (9.22)
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where
∑

j∈Z |a j | < ∞ and h is a Lipschitz continuous function. By Proposition ,
Lin and Liu [37] obtained the following:

Theorem 9.12 (Lin and Liu [37]) Let Xn be defined in (9.22). Suppose that (9.21)
holds, and

Eε0 = 0, Eε2
0 = 1 and

∑

| j |≥n

|a j | = o(1/ log n).

(i) Suppose h(x) = x,

Eε2
0 I {|ε0| ≥ n} = o(1/ log n). (9.23)

Then

max
1≤ j≤q

In,X (ω j )/(2π f (ω j )) − log q ⇒ G. (9.24)

(ii) Suppose h is a Lipschitz continuous function on R. If (9.23) is strengthened to
Eε2

0 I {|ε0| ≥ n} = o(1/(log n)2), then (9.24) holds.

Lin and Liu [37] also established (9.24) for Xn in (9.1).

Theorem 9.13 (Lin and Liu [37]) Suppose that EX1 = 0, E|X1|s < ∞ for some
s > 2 and �n,s = o(1/ log n). Then (9.24)holds.

The condition �n,s = o(1/ log n) above is mild and easily verifiable. Many
nonlinear models, such as GARCH models, generalized random coefficient auto-
gressive model, nonlinear AR model, Bilinear models, satisfy �n,s = O(ρn) for
some 0 < ρ < 1 (see [57]).

9.6 Spectral Density Estimation

Define the spectral density estimation

fn(λ) = 1

2π

Bn∑

k=−Bn

r̂(k)a(k/Bn) exp(−ikλ),

where r̂(k) = n−1 ∑n−|k|
j=1 X j X j+|k|, |k| < n, a(·) is an even, continuous function

with support [-1, 1], a(0) = 1, Bn is a sequence of positive integers with Bn → ∞
and Bn/n → 0. Spectral density estimation is an important problem and there is
a rich literature. However, restrictive structural conditions have been imposed in
many earlier results. For establishing the asymptotic normality on fn(λ) − E fn(λ) :
Brillinger [18] assumed that all moments exists and cumulants of all orders are
summable. Anderson [2] dealt with linear processes. Rosenblatt [54] considered



9 M-Dependence Approximation for Dependent Random Variables 129

strong mixing processes and assumed the summability condition of cumulants up
to eighth order. There has been a recent surge of interest in nonlinear time series.
Chanda [20] considered a class of nonlinear processes. But his formulation does
not include popular nonlinear time series models including GARCH, EXPAR and
ARMA-GARCH. Shao and Wu [57] considered Xn = g(. . . , εn−1, εn). But they
assumed that E|X0|p < ∞ and θn,p = O(ρn) for some 0 < ρ < 1, p > 4. Their
restrictions of course exclude the short memory linear process Xn = ∑

j∈Z a jεn− j

with
∑

j∈Z |a j | < ∞.

The summability condition

∑

m1,m2,m3∈Z

|cum(X0, Xm1 , Xm2 , Xm3)| < ∞ (9.25)

are commonly checked (or imposed) in the above literature. It is unclear that whether
(9.25) holds when

∑
|i |≥0 θi,4 < ∞. To avoid (9.25), the m-dependent approximation

and martingale approximation were used in [43]. Let

X̃t := Xt,m = E(Xt |εt−m, . . . , εt ) = E(Xt |Ft−m,t ), m ≥ 0,

and

�m,p =
⎛

⎝
∞∑

j=m

θ
p′
j,p

⎞

⎠

1/p′

, where p′ = min(2, p).

Proposition 9.3 (Liu and Wu [43]) Assume EX0 = 0, E|X0|2p < ∞, p ≥ 2 and
�0,2p < ∞. Let

Ln =
∑

1≤ j< j ′≤n

α j ′− j X j X j ′ and L̃n =
∑

1≤ j< j ′≤n

α j ′− j X̃ j X̃ j ′,

where α1, α2, . . . ,∈ C. Let An = (
∑n−1

s=1 |αs |2)1/2. Then

‖Ln − ELn − (L̃n − EL̃n)‖p

n1/2 An�0,2p
≤ C pdm,2p, where dm,q =

∞∑

t=0

min(θt,q , �m+1,q).

Proposition 9.4 (Liu and Wu [43]) Assume EX0 = 0, X0 ∈ L 4 and �0,4 < ∞.

Let α j = β j eı jλ, where λ ∈ R, β j ∈ R, 1 − n ≤ j ≤ −1, m ∈ N and L̃n =
∑

1≤ j<t≤n α j−t X̃ j X̃t . Define

Dk = Ak − E(Ak |Fk−1), where Ak =
∞∑

t=0

E(X̃t+k |Fk)e
ıtλ,

and Mn = ∑n
t=1 D̄t

∑t−1
j=1 α j−t D j , where ·̄ denotes complex conjugate. Then
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‖L̃n − EL̃n − Mn‖
m3/2n1/2‖X0‖2

4

≤ CV 1/2
m (β), where Vm(β)

= max
1−n≤i≤−1

β2
i + m

−n−1∑

j=−1

|β j − β j−1|2.

The following theorem was proved using Propositions 9.3 and 9.4.

Theorem 9.14 (Liu and Wu [43]) Suppose that EX0 = 0, EX4
0 < ∞ and∑

i≥0 θi,4 < ∞. Then

√
n

Bn
{ fn(λ) − E( fn(λ))} ⇒ N (0, σ 2(λ)), (9.26)

where σ 2(λ) = {1 + η(2λ)} f 2(λ)
∫ 1
−1 a2(t)dt and η(λ) = 1 if λ = 2kπ for some

integer k and η(λ) = 0 otherwise.

The assumption
∑

i≥0 θi,4 < ∞ in Theorem 9.14 is obviously much weaker than
θn,p = O(ρn). The theorem holds for the short memory linear process. In fact, it
includes the more general case, i.e. the linear process with dependent innovations.

Corollary 9.4 Let Xn = ∑∞
j=0 a j Yn− j , n ∈ Z , and Yn = g(. . . , εn−1, εn) with

EYn = 0. Suppose that
∑∞

j=0 |a j | < ∞ and
∑∞

j=0 θ j,4(Y ) < ∞. Then (9.26) holds.
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Chapter 10
Variable Selection for Classification
and Regression in Large p, Small n Problems

Wei-Yin Loh

Abstract Classification and regression problems in which the number of predictor
variables is larger than the number of observations are increasingly common with
rapid technological advances in data collection. Because some of these variables
may have little or no influence on the response, methods that can identify the unim-
portant variables are needed. Two methods that have been proposed for this purpose
are EARTH and Random forest (RF). This article presents an alternative method,
derived from the GUIDE classification and regression tree algorithm, that employs
recursive partitioning to determine the degree of importance of the variables. Simu-
lation experiments show that the new method improves the prediction accuracy of
several nonparametric regression models more than Random forest and EARTH.
The results indicate that it is not essential to correctly identify all the important vari-
ables in every situation. Conditions for which this occurs are obtained for the linear
model. The article concludes with an application of the new method to identify rare
molecules in a large genomic data set.

10.1 Introduction

Consider the problem of fitting a nonparametric regression model to a response vari-
able y on p predictor variables, xp = (x1, x2, . . . , x p). Let μ = μ(xp) = E(y|xp)

denote the conditional mean of y given xp and let μ̂n(xp) be the value of μ

at xp estimated from a training sample of size n. The expected squared error is
E[μ̂n(x∗

p) − μ(x∗
p)]2, where x∗

p is an independent copy of xp and the expectation
is over the training sample and x∗

p. In many applications, the mean function μ(xp)

may depend on only a small but unknown subset of the xi variables. We call the latter
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variables “important” and the others “unimportant.” If n is fixed and the number of
unimportant variables increases, the expected squared error typically increases too.
This occurs even for modern nonparametric fitting algorithms that perform variable
selection on their own.

To see this, let n = 100, p ≥ 5, and xp be a vector of mutually independent and
uniformly distributed variables on the unit interval. Consider the six models

y = 5[2 sin(πx1x2) + 4(x3 − 1)2 + 2x4 + x5] + ε/5 (10.1)

y = 10−1 exp(4x1) + 4[1 + exp(−20x2 + 10)]−1 + 3x3 + 2x4 + x5 + ε (10.2)

y = x1 + 2x2 + 3x3 + 4x4 + 5x5 + ε (10.3)

y = 5[2 sin(4πx1x2) + 4(x3 − 1)2 + 2x4 + x5] + ε/5 (10.4)

y = 10(x1 + x2 + x3 + x4 + x5 − 5/2)2 + ε/10 (10.5)

y = sgn[(2x1 − 1)(2x2 − 1)](3x3 + 4x4 + 5x5) + ε (10.6)

where ε is independent standard normal. Models (10.1) and (10.2) are used in [5].
Model (10.3) is linear and Model (10.4) is a minor modification of (10.1) with 4π in
place of π. Models (10.5) and (10.6) have strong interaction effects.

Figure 10.1 shows estimated values of the expected squared errors of MARS [5],
GUIDE [6], and Random forest (RF) [1] for these six models for p = 5 , 20, 50,
100, 200, and 500. Each estimate is based on 600 simulation trials; the simulation
standard error bars are too small to be shown in the plots. GUIDE fits a piecewise-
linear regression tree using stepwise regression in each node of the tree. Random
forest is an average of 500 piecewise-constant regression trees. The initial rapid rise
in the expected squared error as p increases is obvious. MARS is best in one model
and worst in three; RF is best in two and worst in three; and GUIDE is best in two
and worst in none.

Can the expected squared errors of these regression methods be reduced by pres-
electing a subset of the predictor variables? To this end, several approaches for
assigning “importance scores” to the predictors have been proposed. Random forest
itself produces importance scores as by-products. Recall that the algorithm constructs
an ensemble of piecewise-constant regression trees from bootstrap samples of the
training data. The observations not in a bootstrap sample are called the “oob” (out of
bag) sample. To measure the predictive power of a variable xi , the expected squared
error of each tree is estimated twice with the oob sample, once with and once without
randomly permuting their xi values. A small difference between the two error esti-
mates indicates that the variable has low predictive power. The importance score
assigned to xi is the average of the differences across the trees in the ensemble.

A strength of RF is its applicability to all data types, including data with missing
values. Simulations show, however, that its importance scores can be unreliable
because their variances depend on the type of predictor variable. Variables that allow
more splits, such as categorical variables with many categories, have scores with
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Fig. 10.1 Simulated values of E(μ̂n −μ)2 of GUIDE, MARS and RF versus number of unimportant
predictor variables, with ε standard normal. Simulation standard errors are about the size of the plot
symbols

larger variances. One proposed solution [10] replaces the split selection procedure
with permutation tests and changes bootstrap sampling to sampling without replace-
ment.
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Neither RF nor this modification [10] gives a threshold value of the scores for
identifying the important variables. This problem is solved in [11] by supplementing
the training sample with a set of artificially created variables obtained by randomly
permuting the real predictor variables. A variable is declared important if its impor-
tance score is larger than the 75th percentile of the scores of the artificial vari-
ables. The process is repeated several times on the residuals to select additional
real variables. One disadvantage of adding artificial variables is that it increases
the computational requirements. A simpler solution [4] adds thirty independent and
uniformly distributed artificial variables to the training data and takes the threshold to
be two times the mean of the importance scores from the artificial variables. Because
Random forest is biased toward selecting variables that allow more splits, however,
this approach yields incorrect results if all the xi variables are nominal-valued.

EARTH [4] tries a different approach by ranking the xi variables according to the
strength of its relationship with the y variable. For each xi , a user-specified number,
m, of points from the training sample are randomly chosen. A short, narrow tube is
constructed around each chosen point, with axis in the xi direction. A polynomial
(usually first order) model is fitted to the data in the tube and the F-statistic for
testing the null hypothesis that E(y) is constant within the tube is computed. The
tube length is gradually increased to find the largest value of the F-statistics. The
importance score l(xi ) for xi is the average of the square roots of the maximal
F-statistics over the m points. To determine a threshold for the scores, the whole
process is repeated with the y-values randomly permuted to obtain the corresponding
scores l∗(xi ). Variable xi is declared unimportant if the difference l(xi ) − l∗(xi ) is
less than a pre-specified multiple of the standard deviation of the l∗(xi ). Simulation
results in [4] show that if EARTH is used to select variables before application of
GUIDE or MARS, their expected squared errors can be reduced. EARTH is not
applicable, however, if either y or some xi are categorical (i.e., nominal-valued)
variables.

Yet another method [3], applicable only to discrete-valued xi , randomly selects
subsets of the xi variables to optimize the total variation of the y values within the
partitions defined by the values of the selected variables. The method appears to be
practicable only for binary-valued xi variables, and it is not applicable to categorical
y variables. In the next section, we introduce a new variable selection method based
on the GUIDE algorithm that does not have such limitations.

10.2 GUIDE Variable Selection

A classification or regression tree algorithm typically partitions the data in a node
of a tree with a split of the form “xi ≤ c” (if xi is an ordered variable) or “xi ∈ S”
(if xi is a categorical variable). Many algorithms, such as CART [2], search for the
best xi and c or S simultaneously, by optimizing a measure of node impurity such
as entropy (for classification) or sum of squared residuals (for regression). Besides
being computationally expensive, this approach creates a bias toward selecting vari-
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ables that allow more splits of the data—see [6, 7]. To avoid the bias and to reduce
computational cost, GUIDE uses chi-squared tests to choose the xi variable before
searching for c or S.

Consider first the classification problem, where y is a categorical variable. At each
node t and for each x variable, GUIDE computes the significance probability q(x, t)
of the chi-squared contingency table test of independence between y and x, with the
values of y forming the rows of the table. If x is a categorical variable, its labels
form the columns of the table. If x is an ordered variable, its range is split into K
intervals to form the columns. The value of K is determined by the sample size n(t)
in t. If n(t) < 40, then K = 3; otherwise K = 4. The specific steps for a J-valued y
variable may be briefly stated as follows.
Algorithm 1 Variable and split selection for classification.

1. For each ordered variable xi:
a. Group the values of xi into K intervals with approximately equal numbers of

observations in each group.
b. Form a J × K contingency table, with the values of y as rows and the intervals

of xi as columns.

2. For each categorical variable xi:
a. Let mi denote the number of distinct values of xi in t.
b. Form a J ×mi contingency table, with the values of y as rows and the categories

of xi as columns.

3. Compute the P-value q(xi , t) of the chi-squared test of independence.
4. Find χ2

1 (xi , t), the upper q(xi , t)-quantile of the chi-squared distribution with
one degree of freedom.

5. Let x∗
i be the variable with the smallest q(xi , t). If x∗

i is an ordered variable, split
t into two subnodes at the sample median of x∗

i . If x∗
i is categorical, split t with

the procedure detailed in [7].

This algorithm is applied recursively to construct a binary tree with four levels of
splits. The importance score of variable x is

IMP(x) =
∑

t

√
n(t)χ2

1 (x, t) (10.7)

where the sum is over the intermediate nodes of the tree. A similar procedure is
followed for regression, except that at each node, y is first converted to a binary-
valued categorical variable y′ that takes value 1 if y is above its node mean and 0
otherwise.

If x is independent of y, the score IMP(x) is a weighted sum of approximately
independent chi-squared random variables, each having one degree of freedom.
By the Satterthwaite [8] method, its distribution can be approximated by a scaled
chi-squared distribution. We use the upper p−1 th-quantile of the latter distribution
as the threshold for identifying the important variables.
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Figures 10.2, 10.3 and 10.4 compare the probabilities with which variables
x1, x2, . . . , x5 are selected by the our GUIDE method, EARTH and RF (the last using
the thresholding method of [4]) for simulation models (10.1)–(10.6). The results are
based on 600 simulation trials with n = 100 and p = 5, 20, 50, 100, 200, and 500,
yielding standard errors of 0.02 or smaller. For p = 5, i.e., when there are no unimpor-
tant variables, our method is almost always best, sometimes by wide margins—see
Fig. 10.4. But when there are many unimportant variables, e.g., when p = 500, RF is
best and our method is a distant third.

The large probabilities with which EARTH and RF select the important variables
come at the cost of larger numbers of unimportant variables being selected as well,
as shown in Fig. 10.5 which plots the average number versus p (on the logarithmic
scale) for each model. The higher false positive rates may be seen in Fig. 10.6 too,
which shows the mean number of variables selected by each method when E(y) is
constant, independent of all the x variables. In this situation, EARTH and RF have
false positive rates of about 10% compared to 1% for our method.

To see how the results change if some of the x variables are correlated, we follow
[4] by generating xi = �(zi ), i = 1, 2, . . . , 9, where � is the standard normal
distribution function, (z1, z2, . . . , z9) is multivariate normal with zero mean and
covariance matrix

� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.0 0.9
1.0 0.9

1.0 0.5
1.0 0.2 0.2

0.9 1.0
0.9 1.0

0.5 1.0
0.2 1.0 0.2
0.2 0.2 1.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(10.8)

and xi independent and uniformly distributed on the unit interval for i = 10, 11,

. . . , p. Thus x1 and x5 are highly correlated, as are x2 and x6; x3 is moderately corre-
lated with x7, and x4 is moderately correlated with x8 and x9. Note that x6, x7, x8,

and x9 do not appear explicitly in models (10.1)–(10.6). Figures 10.7, 10.8 and 10.9
show the resulting selection probabilities for p = 10, 20, 50, 100, 200, and 500. The
high correlation between x1 and x5 increases their selection probabilities for all three
methods in models (10.1)– (10.3), and (10.5) and decreases them in model (10.4).
The odd exception is model (10.6), where the probabilities are increased for RF but
decreased for EARTH and GUIDE.

10.3 Expected Squared Error

Because increasing the probability of selecting the important variables inevitably
leads to more unimportant ones being chosen, a better way to compare the variable
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Fig. 10.2 Variable selection probabilities; xi independent; simulation SE < 0.02
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Fig. 10.3 Variable selection probabilities; xi independent; simulation SE < 0.02 (cont’d.)
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Fig. 10.4 Variable selection probabilities; xi independent; simulation SE < 0.02 (cont’d.)
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Fig. 10.5 Mean number of unimportant variables selected; xi mutually independent

Fig. 10.6 Mean number of
variables selected for the
constant model y = ε and
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selection methods is in terms of their effect on prediction error. Figure 10.10 shows
the simulated expected squared errors of GUIDE, MARS, and RF with (solid lines)
and without (dashed lines) each of the three variable selection methods, for the
constant model with mutually independent predictor variables. The training sample
size is 100, test sample size is 1000, and p = 5, 20, 50, 100, 200, 500. Owing to its
lengthy computation time, the results for EARTH when p = 500 are based on 300
simulation trials; the others are based on 600 trials. Simulation standard errors are
less than 0.015.
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Fig. 10.7 Variable selection probabilities; xi dependent; simulation SE < 0.02
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Fig. 10.8 Variable selection probabilities; xi dependent; simulation SE < 0.02 (cont’d.)
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Fig. 10.9 Variable selection probabilities; xi dependent; simulation SE < 0.02 (cont’d.)
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Fig. 10.10 Expected squared errors for the constant model y = ε, with ε standard normal and
independent predictors; simulation SE < 0.015. Dashed and solid lines indicate before and after
variable selection

The results show that the expected squared error of MARS is reduced substantially
by all three variable selection methods, with the GUIDE selection method giving the
greatest reduction. On the other hand, all three variable selection methods increase
slightly the expected squared error of RF, although its values are already low to
begin with. The GUIDE selection method is the only one that reduces the expected
squared error of the GUIDE fitting method for all values of p—see the middle panel of
Fig. 10.10.

Figures 10.11 and 10.12 give the corresponding results for the non-constant
models (10.1)–(10.6). The conclusions are similar: the GUIDE selection method
tends to reduce the expected squared error of all three regression methods more than
the EARTH and RF selection methods. Figures 10.13 and 10.14 show the results
when the xi variables have the dependence structure in (10.8). Again the GUIDE
selection method is more effective than EARTH and Random forest in reducing
the expected squared error of all three regression methods. Figure 10.15 shows the
computation times (in s) required by each method for each model and various values
of p. EARTH is by far the most time consuming and GUIDE is the least. Further, the
computation time of EARTH increases with p much faster than that of the other two
methods.

10.4 Some Theory for Linear Models

It is natural to expect a variable selection procedure to degrade the performance of
a fitting method if there are no unimportant variables in the data. Careful inspection
of Figs. 10.11 and 10.12 shows, however, that all three variable selection methods
(GUIDE, EARTH and RF) decrease the expected squared error of RF in all six
simulation models even for p = 5, where every variable is important! This rather
counter-intuitive behavior can be shown to occur in linear models too.
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Fig. 10.11 Expected squared errors for models 1–3, with ε standard normal and independent predic-
tors. Dashed and solid lines correspond to before and after variable selection. Simulation error bars
are too small to be shown

Let βi be a pi -dimensional vector and Xi an n × pi -dimensional matrix, for
i = 1, 2, 3, such that

y = X1β1 + X2β2 + X3β3 + ε. (10.9)

Assume throughout that

β3 = 0 (10.10)

that is, the variables in X3 are unimportant. The correct model is then
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Fig. 10.12 Expected squared errors for models 4–6, with ε standard normal and independent predic-
tors. Dashed and solid lines correspond to before and after variable selection. Simulation error bars
are too small to be shown

y = X1β1 + X2β2 + ε. (10.11)

Let Z2 = (X1, X2) and β = (β1, β2)
′, with least-squares estimate β̂ =

(Z′
2Z2)

−1Z′
2y. Let xi be a pi -dimensional vector, for i = 1, 2, 3. The mean of y

at (x′
1, x′

2)
′ is μ = x′

1β1 + x′
2β2 with least-squares estimate μ̂0 = (x′

1, x′
2)β̂.

For i = 2 and 3, define H1 = X1(X′
1X1)

−1X′
1, Li = (X′

1X1)
−1X′

1Xi , and Mi =
(X′

i (I − H1)Xi )
−1. Then (see, e.g., [9, p. 231])

(Z′
2Z2)

−1 =
(

(X′
1X1)

−1 + L2M2L′
2 −L2M2

−M2L′
2 M2

)

.
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Fig. 10.13 Expected squared errors for models 1–3, with ε standard normal and dependent predic-
tors. Dashed and solid lines correspond to before and after variable selection. Simulation error bars
are too small to be shown

Let X = (X1, X2, X3). The expected squared error is

E(μ̂0 − μ)2 =E[Var{(x′
1, x′

2)β̂|X, x1, x2}]
=σ 2 E

{

(x′
1, x′

2)(Z
′
2Z2)

−1
(

x1
x2

)}

=σ 2 E

{

(x′
1, x′

2)

(
(X′

1X1)
−1 + L2M2L′

2 −L2M2
−M2L′

2 M2

) (
x1
x2

)}

.
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Fig. 10.14 Expected squared errors for models 4–6, with ε standard normal and dependent predic-
tors. Dashed and solid lines correspond to before and after variable selection. Simulation error bars
are too small to be shown

=σ 2 E

{

(x′
1, x′

2)

(
(X′

1X1)
−1x1 + L2M2(L′

2x1 − x2)

−M2(L′
2x1 − x2)

)}

=σ 2 E{x′
1(X

′
1X1)

−1x1 + (L′
2x1 − x2)

′M2(L′
2x1 − x2)}. (10.12)

Suppose that we mistakenly exclude X2 and include X3 instead. That is, we fit
the incorrect model

y = X1β1 + X3β3 + ε. (10.13)
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Fig. 10.15 Variable selection computation time per data set plotted on log scales

Let Z3 = (X1, X3). The estimated mean at (x′
1, x′

2, x′
3)

′ is μ̂1 = (x′
1, x′

3)(Z
′
3Z3)

−1

Z′
3y and

μ̂1 − μ =(x′
1, x′

3)(Z
′
3Z3)

−1Z′
3y − x′

1β1 − x′
2β2

=(x′
1, x′

3)(Z
′
3Z3)

−1Z′
3(X1β1 + X2β2 + ε) − x′

1β1 − x′
2β2

=(x′
1, x′

3)

(
(X′

1X1)
−1 + L3M3L′

3 −L3M3
−M3L′

3 M3

)(
X′

1
X′

3

)

(X1β1 + X2β2 + ε)

− x′
1β1 − x′

2β2

=(x′
1, x′

3)

(
(X′

1X1)
−1X′

1 + L3M3(L′
3X′

1 − X′
3)−M3(L′

3X′
1 − X′

3)

)

(X1β1 + X2β2 + ε)

− x′
1β1 − x′

2β2

={x′
1(X

′
1X1)

−1X′
1 + (x′

1L3 − x′
3)M3(L′

3X′
1 − X′

3)}(X1β1 + X2β2 + ε)

− x′
1β1 − x′

2β2

={x′
1L2 − x′

2 + (x′
1L3 − x′

3)M3(L′
3X′

1 − X′
3)X2}β2

+ {x′
1(X

′
1X1)

−1X′
1 + (x′

1L3 − x′
3)M3(L′

3X′
1 − X′

3)}ε

where we use the identity L′
3X′

1X1 = X′
3X1. Therefore its expected squared error is
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E(μ̂1 − μ)2 =E
[{x′

1L2 − x′
2 + (x′

1L3 − x′
3)M3(L′

3X′
1 − X′

3)X2}β2
]2

+ σ 2 E
[
{x′

1(X
′
1X1)

−1X′
1 + (x′

1L3 − x′
3)M3(L′

3X′
1 − X′

3)}
× {X1(X′

1X1)
−1x′

1 + (X1L3 − X3)M3(L′
3x1 − x3)}

]

=E
[{x′

1L2 − x′
2 + (x′

1L3 − x′
3)M3(L′

3X′
1 − X′

3)X2}β2
]2

+ σ 2 E
[
x′

1(X
′
1X1)

−1x1 + (L′
3x1 − x3)

′M3(L′
3x1 − x3)

]

and the increase in expected squared error is

E(μ̂1 − μ)2 − E(μ̂0 − μ)2 =
E[{(L′

2x1 − x2)
′ + (L′

3x1 − x3)
′M3(L′

3X′
1 − X′

3)X2}β2]2

+ σ 2 E[(L′
3x1 − x3)

′M3(L′
3x1 − x3) − (L′

2x1 − x2)
′M2(L′

2x1 − x2)].
(10.14)

Consider the following three situations:

1. Underfitting. Suppose that p3 = 0. Then X3, L3 and M3 vanish and

E(μ̂1 −μ)2 − E(μ̂0 −μ)2 = E[(L′
2x1 −x2)′β2]2 −σ 2 E[(L′

2x1 −x2)′M2(L′
2x1 −x2)].

Thus E(μ̂1 − μ)2 < E(μ̂0 − μ)2 if and only if

E[(L′
2x1 − x2)

′β2]2 < σ 2 E{(L′
2x1 − x2)

′M2(L′
2x1 − x2)}. (10.15)

Further,

E(μ̂1 − μ)2

E(μ̂0 − μ)2 =1 + E[(L′
2x1 − x2)

′β2]2 − σ 2 E[(L′
2x1 − x2)

′M2(L′
2x1 − x2)]

σ 2 E{x′
1(X

′
1X1)−1x1 + (L′

2x1 − x2)′M2(L′
2x1 − x2)}

→1 − E[(L′
2x1 − x2)

′M2(L′
2x1 − x2)]

E{x′
1(X

′
1X1)−1x1 + (L′

2x1 − x2)′M2(L′
2x1 − x2)}

as β2 → 0. If p2 = 1, i.e., β2 is real-valued, condition (10.15) reduces to

β2
2 E[(L′

2x1 − x2)
2] < σ 2 E[M2(L′

2x1 − x2)
2].

Figure 10.16 shows a graph of the ratio of expected squared errors as a function
of β2/σ for p1 = 5, 10, 30, 50, 70, 90, p2 = 1, n = 100, the first predictor
variable being one and the other predictors independent and uniformly distributed
on the unit interval. The ratios are estimated by simulation with 1000 test samples
and 1000 simulation trials, yielding simulation standard errors less than 0.01.
We see that the threshold value of β2/σ for which underfitting is advantageous
increases with p1.

2. Overfitting. Suppose instead that p2 = 0. Then β2, X2, L2, and M2 vanish
and the increase in expected squared error is non-negative because M3 is positive
definite and E(μ̂1 −μ)2 − E(μ̂0 −μ)2 = σ 2 E[(L′

3x1 −x3)
′M3(L′

3x1 −x3)] ≥ 0.
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Fig. 10.16 Simulated values
of E(μ̂1 − μ)2/E(μ̂0 − μ)2

vs. β2/σ for p2 = 1, p3 = 0
and different values of p1;
simulation standard errors
are less than 0.01
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3. Under and overfitting. Suppose that p2 = p3 and the distribution of (x1, x2) is
the same as that of (x1, x3). Then the increase in expected squared error is always
positive, because

E(μ̂1 − μ)2 − E(μ̂0 − μ)2

= E[{(L′
2x1 − x2)

′ + (L′
3x1 − x3)

′M3(L′
3X′

1 − X′
3)X2}β2]2.

10.5 Application to Real Data

We now compare the variable selection methods in an application to quantitative
high-throughput screening of the enzyme pyruvate kinase. The data, obtained from
the National Chemical Genomics Center (NCGC), consist of measurements on p =
5,444 chemical properties (x variables) of 46,229 compounds. Each compound is also
measured for its level of inhibition (y variable) of the biological activity of pyruvate
kinase. A compound is considered to be an inhibitor if y < −5. Figure 10.17 shows
a histogram of the y values; only one percent of the compounds are inhibitors. Our
goals are: (1) to identify the chemical properties that are predictive of an inhibitor
and (2) to use this information to predict whether a new compound is an inhibitor.
We employ ten-fold cross-validation to compare the methods. That is, we randomly
divide the data set into ten roughly equal parts, use each part in turn as the training
set to identify the important variables and to build a prediction model, and then use
the other nine-tenths as a test set to assess the accuracy of the predictions. Thus the
number of compounds, n, in each training set is approximately 4,623, which is less
than p.

First, we treat this as a regression problem, i.e., we use our GUIDE and RF variable
selection methods to identify the important variables and then apply three different
nonparametric regression methods (GUIDE piecewise-linear regression tree, MARS,
and RF) to the selected variables to predict the test sample y values. Figure 10.18



156 W.-Y. Loh

Fig. 10.17 Histogram of
biological activity levels of
46,229 compounds. A
compound is an inhibitor if
its level is below −5
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Fig. 10.18 Boxplots of
cross-validation expected
squared errors. GGUIDE,
GMARS, and GRF refer to
GUIDE variable selection
followed by GUIDE
piecewise-linear, MARS, and
RF model fitting. Similarly,
RFGUIDE, RFMARS, and
RFRF refer to RF variable
selection followed by
GUIDE piecewise-linear,
MARS, and Random forest
model fitting
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GRF

RFGUIDE
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shows boxplots of the ten cross-validation mean squared prediction errors of the six
methods. The top half of Table 10.1 gives their average as well as the average number
of variables identified as important. GUIDE chooses about 50% more variables than
RF (331 vs. 225). For variable selection, GUIDE is as good or better than RF, but
the latter is best for model fitting. The differences are, however, less than 5%.

High accuracy in predicting y does not imply high accuracy in predicting whether
a compound is an inhibitor. Since the latter is a classification problem, consider a
binary response variable that takes value 1 if y < −5 and 0 otherwise. The problem
is then the estimation of the probability, P(y < −5), that a compound is an inhibitor,
for which stepwise logistic regression offers a ready solution. Some sort of variable
selection is needed, however, because n < p.Since the RF and GUIDE variable selec-
tion methods are applicable to classification problems, we use them to do this. After
the variables are selected, we fit a stepwise logistic regression model to the training
sample and use it to estimate the probability of an inhibitor for each compound in
the test sample. We also employ prediction models constructed by Random forest
and GUIDE forest. The latter is an ensemble method similar to RF except that the
GUIDE classification tree algorithm is used to split the nodes of the trees. This yields
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Table 10.1 Average cross-validation results for NCGC data; smaller values are better

Variable Number of Mean squared prediction error
selection variables GUIDE Random
method selected tree MARS forest
GUIDE 331 0.412 0.414 0.403
Random forest 225 0.423 0.426 0.403

Mean rank of inhibitor
GUIDE Stepwise Random
forest logistic forest

GUIDE 34 9181 9874 10102
Random forest 470 10374 10699 12015

Fig. 10.19 Boxplots of
cross-validation mean rank
of inhibitors. GGF, GLOG,
and GRF refer to GUIDE
variable selection followed
by GUIDE forest, stepwise
logistic, and RF model
fitting. Similarly, RFGF,
RFLOG, and RFRF refer to
RF variable selection
followed by GUIDE forest,
stepwise logistic, and
Random forest model fitting.
Methods with small mean
ranks are better
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a total of six combination methods—two variable selection methods crossed with
three model fitting methods. Given a compound in the test sample, each combina-
tion method yields an estimated probability that it is an inhibitor. We rank the test
compounds in decreasing order of these probabilities and take the average of the
ranks of the true inhibitors among them. Thus small values of the average ranks are
indicative of high prediction accuracy.

Figure 10.19 shows boxplots of the ten cross-validation mean ranks for the six
combination methods. GUIDE variable selection is consistently better than RF in
improving the prediction of all three fitting methods. Among fitting methods, GUIDE
forest is better than stepwise logistic regression, which in turn is better than RF. The
bottom half of Table 10.1 gives the average of the ten cross-validation mean ranks
as well as the mean number of variables selected for each method. RF selects on
average fourteen times as many variables as GUIDE (470 vs. 34).

Table 10.2 shows the average computation time for each variable selection and
model fitting method for both the regression and classification problems. GUIDE
variable selection is 40–60 times faster than RF variable selection: 0.54 vs. 32.18 min
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Table 10.2 Average computation time (min) for one cross-validation iteration

Selection Selection GUIDE Random
method time tree MARS forest

Regression GUIDE 0.54 8.20 0.48 5.87
Random forest 32.18 1.38 0.17 1.14

Selection Selection GUIDE Stepwise Random
method time forest logistic forest

Classification GUIDE 1.13 7.01 0.87 0.17
Random forest 48.48 53.87 185.37 3.31

for regression and 1.13 vs. 48.48 min for classification. For regression model fitting,
MARS is much faster than both RF and GUIDE piecewise-linear tree. For classifi-
cation, RF is fastest. Stepwise logistic regression is faster than GUIDE forest when
there are few variables (0.87 min when GUIDE is the selection method) but its speed
rapidly decreases when the number of variables is large (185.37 min when RF is the
selection).

10.6 Conclusion

We introduced a variable selection method for use prior to application of any clas-
sification and regression fitting algorithm. Because the method is a by-product of
the GUIDE algorithm, it is applicable to all kinds of data, including categorical and
non-categorical response and predictor variables as well as data with missing values.
We compared the method with EARTH and Random forest in terms of their probabil-
ities of selecting the important variables in simulated regression models. The results
show that the new method is as good as or better than the other two when there are few
unimportant variables. When there are numerous unimportant variables, the proba-
bility that the new method selects the important variables is much lower than that of
EARTH and RF. The higher detection rates of the latter two methods are, however,
accompanied by correspondingly higher false positive detection rates. For example,
if the true regression model is a constant, EARTH and RF have false positive rates
of about ten percent compared to about one percent for the new method.

High false positive rates can adversely affect the prediction accuracy of the
fitted models. We demonstrated this by coupling each of the three variable selec-
tion methods with each of three regression fitting methods: MARS, RF and GUIDE
piecewise-linear tree. Our simulation results show that while all three fitting methods
generally benefit from prior variable selection, the new selection method tends to offer
the greatest benefit. Further, the new method requires much less computation time
than EARTH and RF.

One explanation for the greater effectiveness of the new method in reducing the
prediction error of fitting algorithms may be its lower false positive detection rate.



10 Variable Selection for Classification and Regression 159

We support this conjecture by showing that in the case of a linear model with some
variables having weak effects and no unimportant variables, an under-fitted model
can possess lower expected squared error than a fully fitted one.

We also compared the new method with RF on a real data set with so many
predictor variables that variable selection is a necessary step before model fitting.
We analyzed the data twice, first as a regression problem and then as a classification
problem. In the case of regression, the new method is more effective than RF selection
in reducing the mean squared prediction error of MARS and GUIDE piecewise-linear
regression tree models, but it is less effective when applied to the RF model. On the
other hand, the new method consistently beats RF selection across all three fitting
methods for the classification problem. In terms of computation time, the new method
is also substantially faster than RF.
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