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What mathematicians and teachers write about

FROM ZERO TO INFINITY

“I read From Zero to Infinity when I was a schoolboy in Oxford,
England, and my only regret is that I was well into my teens (17)
before it happened. Just last week I gave away my most recent
copy to the 12-year-old daughter of a friend. I will be getting an-
other copy for myself as soon as I can.”

—John B. Cosgrave, St. Patrick’s College, Dublin, Ireland

“After reading From Zero to Infinity, I was hooked. This book dis-
cussed many beautiful ideas and facts about the integers and posed
several interesting problems. I tried to solve them. I failed. I tried
to construct counter examples. I made my own conjectures and
proved some related results. By the time I graduated from high
school I had filled two 2-inch notebooks with my own ideas, re-
sults, and calculations.”

—Nathaniel Dean, Mathematics Department,
Bell Communications Research

“Constance Reid’s book From Zero to Infinity was translated into
Japanese, and I found it when I was a junior high school boy. I
was really impressed by Reid’s book, and I read it repeatedly. In-
spired by it, I even tried to solve Fermat’s Last Theorem. Now I
am working in analytic number theory, and I think one of the rea-
sons for my choice is a sentence in Reid’s book: ‘Analytic number
theory is said to be technically the most difficult in the whole of
mathematics.’ ”

—Kohji Matsumoto, student at Nagoya University
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“Yesterday, aboard a flight from Denver, I had a nice conversation
with a gentleman, John Moulter. When I learned that Mr. Moulter
is a retired Los Angeles mathematics teacher, I mentioned that I
had the good fortune to know Connie Reid. Mr. Moulter abruptly
demanded, ‘Do you mean Constance R-E-I-D?’ When I answered
affirmatively, he told me that you had changed his life. About
fifty years ago, then a high-school history teacher, he picked up a
copy of Esquire magazine in a barbershop containing a review of
From Zero to Infinity. The review prompted him to buy your book.
And your book inspired him to switch from teaching history to
teaching mathematics!”

—Letter from a friend with appended note
from John Moulter: “Thank you. Thank you.”

“I was the sort of child who always carried a book wherever he
went. In fifth and sixth grade that book was most frequently From
Zero to Infinity. I was indeed born to be a mathematician, but From
Zero to Infinity helped me to realize that I was part of a community
of number-people. There can be few pleasures more satisfying
than having the chance, as an adult, to help bring one’s favorite
childhood book back into print.”

—Bruce Reznick, University of Illinois Urbana

“I want to thank you for having written such a wonderful book. It
was pitched on just the right level for a young teenager but, more
to the point, it expressed the right mix of beauty and wonder. I just
had to learn more. I very much believe that this small book, which
still occupies an important place in my personal library, enriched
my life immeasurably. It is very rare that we find what we really
want to do in life, and I am very grateful that your book led me in
the right direction.”

—Hugh Williams, University of Calgary, Canada,
author of Edouard Lucas and Primality Testing
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0, 1, 2, 3, 4, 5, 6, 7, 8, 9, . . .

The natural numbers, which are the primary subject of this
book, do not end with the digits with which we represent
them. They continue indefinitely—as the three dots indi-
cate—to infinity. And they are all interesting: for if there
were any uninteresting numbers, there would of necessity
be a smallest uninteresting number and it, for that reason
alone, would be very interesting.
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· A C K N O W L E D G M E N T S ·

Throughout the half century during which From Zero to In-
finity has been in print, it has had a number of different
publishers. As its author I would like to express my spe-
cial gratitude to four of them.

First, to Dennis Flanagan, the longtime editor of Scien-
tific American, who accepted an article on “Perfect Num-
bers” from a freelancing housewife who was not even a
mathematician.

Second, to Robert L. Crowell, who read her article in Sci-
entific American, saw its possibilities for a book, and shep-
herded it and its author through three editions.

Third, to Donald J. Albers, publications director of the
Mathematical Association of America, who, after I had re-
trieved the copyright from the last in the series of publish-
ing companies that had come into possession of Crowell
books, published a fourth edition of From Zero to Infinity
under the imprint of the MAA.

Fourth, to Klaus Peters, the president of A K Peters, Ltd.
I am particularly happy that Klaus will be republishing

· xi ·
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my first “mathematical” book, because he was also the pub-
lisher, as mathematics editor of Springer-Verlag, who in
1969 accepted for publication my life of David Hilbert and
thus opened up to me a new field of mathematical writing—
the writing of mathematical lives.

—Constance Reid

· xii ·
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There is a story behind the publication of this fiftieth
anniversary edition of From Zero to Infinity.

It begins with a phone call from my sister, Julia Robin-
son, on the morning of January 31, 1952. She has called to
tell me of an exciting event that occurred the night before
at the Institute for Numerical Analysis on the UCLA cam-
pus, where the National Bureau of Standards has located its
Western Automatic Computer—the SWAC.

Julia tells me that a program by her husband, Raphael
Robinson, had turned up the first new “perfect numbers”
in seventy-five years—not one but two of them. (I learn
only later from others that Raphael had at this point never
seen the SWAC and had programmed entirely from a copy
of the manual.) Julia explains the problem simply: perfect
numbers—the name itself is intriguing—are numbers like
6 that are the sum of all their divisors except themselves:
6 = 1 + 2 + 3. Then she tells me there is a particular form
of prime necessary for the formation of such numbers, the
amount of calculation involved in determining their pri-
mality, the enormousness of such primes. For me the whole

· xiii ·
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thing is fascinating. I decide to write an article about the
discovery of new perfect numbers.

I am lucky to be able to interview Dick Lehmer, the
Director of the SWAC, while he and his wife Emma are vis-
iting in Berkeley. It is Emma who suggests that I send my
article to Scientific American. If you look up the March 1953
issue you will see a photo of the SWAC and be able to read
a fairly detailed description of Raphael’s program and how
it was fed into the computer.

Of course a subscriber later wrote to Dennis Flanagan,
the editor, to complain that when he read an article in Sci-
entific American he expected the author to be a Ph.D. But my
not being a Ph.D. did not seem to have concerned Dennis
Flanagan anymore than it concerned the publisher Robert
L. Crowell. After reading my article, Mr. Crowell immedi-
ately wrote to ask if I would be interested in writing a small
book on numbers that he could pair with a book on the al-
phabet. Even I found the combination a bit incongruous,
but it gave me an idea. The title of Mr. Crowell’s book, al-
ready in print, was Twenty-six Letters. I would write a book
about the ten digits; and because I had found what Julia
had told me to be so interesting, I would call it What Makes
Numbers Interesting.

I consulted Julia and Raphael. Robert Crowell’s pro-
posal was something of a joke to them—Constance writ-
ing a book about “mathematics”—but they thought I could
do what I proposed. They would, they promised, read the
manuscript before it went to the publisher. Otherwise I was
on my own.

I promptly sent off a proposal and a sample chapter to
Robert Crowell. He replied that although he had found my
sample chapter on zero “pretty tough sledding,” he was en-
closing a contract.

· xiv ·
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Today I really don’t know how I managed to write the
book that I wrote. But I learned a great amount in the course
of doing so, and I found what I was learning so very inter-
esting that I didn’t see how it could fail to interest others.

The book was finished in a little over a year,
Then came a problem. The sales department flatly ve-

toed my proposed title—What Makes Numbers Interesting.
The word interesting bothered them. Nobody would buy
a book about things that were described as “interesting”.

Mr. Crowell agreed. Could Mrs. Reid come up with
another title?

I submitted a dozen or so, none of which I liked. The
sales department simply loved the one that I disliked the
most—From Zero to Infinity. My reasons for disliking it were
the following. First, in ascending order of importance, it
was similar to the title of a then very popular novel, From
Here To Eternity. (A later reviewer noted that the title sound-
ed as if the book was a novel.) Second, it was too simi-
lar to George Gamow’s One, Two, Three . . . Infinity (although
Gamow had begun with the number 1 while I had begun
with the number 0). My real objection to the proposed title,
however, was that I had not written anything in my book
about the theory of the infinite.

So I added three dots after the chapter on nine to in-
dicate that the natural numbers continued “to infinity,” and
held out for my original title as a subtitle. It is still there fifty
years later—What Makes Numbers Interesting—along with a
neat little proof that there is no such thing as an uninterest-
ing number.

The book did quite well. It was recommended for teach-
ers and libraries and selected by science book clubs, even
described as doing for number what George R. Stewart’s
Storm had done for weather: “breathing life into a seem-

· xv ·
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ingly lifeless body.” (Stewart had been the first to give girls’
names to storms.)

The Russians put Sputnik into space in 1957. Americans
became almost hysterical about the possibility of falling be-
hind in mathematics and science. Mr. Crowell announced
that it was time for a second edition. At this point the
change in title, to which I had so strenuously objected, paid
off. Since there must be a new chapter for a new edition, it
would be a chapter on the theory of infinite sets.

Four years later Crowell wanted still another edition—
and of course another chapter. What could follow “Infin-
ity”?

Here Raphael came to the rescue, proposing a chapter
on the base of the natural logarithm. As he reasonably point-
ed out, it was only with e that mathematicians had finally
been able to establish—by mathematical proof—the distri-
bution in the large of the prime numbers—in short, to prove
the Prime Number Theorem. For this reason, in his opinion,
e was not at all out of place in a book on the natural num-
bers.

Some time later, after the third edition of my book,
Robert Crowell had to face the fact that none of his four
sons wanted to carry on the publishing firm that had been
founded by their great grandfather. The firm was sold. It
became Lippincott, then Harper and Row, then, as I recall,
HarperCollins. Eventually royalties were so meager that
the book seemed essentially out of print. I asked for the
copyright to be returned and HarperCollins agreed, retain-
ing only the rights to a Japanese translation.

The fourth edition of From Zero to Infinity was published
in 1992 by The Mathematical Association of America with
an autobiographical author’s note instead of still another
chapter.

· xvi ·
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You are now reading the Fiftieth Anniversary Edition
of From Zero to Infinity, which is being published by A K
Peters, Ltd. It is the hope of both the publisher and the au-
thor that the story that began with the discovery of the first
new perfect numbers in 75 years will continue and that,
through this new edition, the book will continue to reach
out to new generations of young people, some of whom
may be inspired, as others have been, to become mathema-
ticians—and all will gain a glimpse of what has made the
natural numbers so eternally interesting.

· xvii ·
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· Z E R O ·

Zero is the first of ten symbols—the digits—with which we
are able to represent any of an infinitude of numbers. Zero
is also the first of the numbers that we must represent. Yet
zero, first of the digits, was the last to be invented; and zero,
first of the numbers, was the last to be discovered.

These two events, the invention and the discovery of
zero, tardy as they were in the history of number, did not
occur at the same time. The invention of zero preceded its
discovery by centuries.

At the time of the birth of Christ, the idea of zero as
symbol had occurred only among the Babylonians and had
vanished with them. The idea of zero as number had not
occurred to anyone. The problem of writing down num-
bers without using a different symbol for each one had been
met in very much the same way by all the other great civi-
lizations. The Egyptians had used appropriate pictures; the
Greeks, the letters of their alphabet; the Romans, the few
simple lines that we see so often on cornerstones; but all had
grouped the numbers so that the same symbols could be
used over and over. It was possible to write down numbers,

· 1 ·
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but it was not possible to write them down in a way that
they could be easily handled in even the simplest processes
of arithmetic. Anyone who has tried to multiply Roman
numerals will have no difficulty in understanding why the
Roman, when he had a problem in arithmetic, turned his
back on the Vs and Xs and Cs and Ms of the written num-
bers and obtained his answer with the beads on a counting
board. Egyptian and Greek did the same thing. Yet it never
seemed to occur to any of them that in these same beads
was the secret of the most efficient method of number rep-
resentation that the world was to develop.

The counting board, although it took various forms and
names in various civilizations, was basically a frame di-
vided into parallel columns. Each column had the value of
a power of ten, the number of times that a particular power
occurred in a total being represented by markers of some
sort, usually beads. All the beads were identical in appear-
ance and all stood for one unit. The value of the unit, how-
ever, varied with the column. A bead in the first column
had the value of 1 (100), in the second column of 10 (101), in
the third of 100 (102) and so on. For this reason the uncer-
tain life of a favorite at the court of a tyrant was sometimes
compared to that of a marker on the counting board “which
signifies now much, now little.”

Numbers that the Romans represented in writing as
CCXXXIV (234) and CDXXIII (423) were easily distinguish-
able on the board.

· 2 ·
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Today we are immediately struck by the resemblance
between this ancient method of representing numbers on
the counting board and our present method of representing
them in writing. Instead of nine beads, we use nine differ-
ent symbols to represent the total of beads in a column and
a tenth symbol to indicate when a column is empty. The or-
dering of these ten symbols, which we call the digits, tells us
exactly the same thing the beads do: 234 tells us two 100s,
three 10s, four 1s, while 423 tells us four 100s, two 10s and
three 1s.

In short, modern positional notation, where each digit
has a varying value depending upon its position in the rep-
resentation of a number, is simply the notation of the count-
ing board made permanent. All that is needed to transfer a
number from the board to paper is ten different symbols;
for there can be only one of ten possible totals in a column:
one, two, three, four, five, six, seven, eight or nine beads,
or no beads at all. The column can be empty, and the tenth
symbol must of necessity be a symbol for such an empty
column. Otherwise it would be impossible to distinguish
among different numbers from the counting board.

Without such a symbol the above examples would all on
paper be the same: 234. With a symbol they are easily dis-
tinguishable as 2,340, 2,034 and 2,304.

It would seem that the first time anyone wanted to record
a number obtained on the counting board, he would auto-
matically have put down a symbol of some sort—a dash,

· 3 ·
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a dot or a circle—for that empty column, which we today
represent by 0. But in thousands of years, nobody did.

Not Pythagoras.
Not Euclid.
Not Archimedes.
For the great mystery of zero is that it escaped even the

Greeks, except for their astronomers.
It is difficult, if not impossible, as the reader of this book

will soon discover, to write about numbers without writ-
ing about the Greeks. The respect in which mathematicians
hold these ancient “contemporaries” was expressed by Eng-
land’s G. H. Hardy (1877–1947) when he wrote: “Orien-
tal mathematics may be an interesting curiosity, but Greek
mathematics is the real thing. As Littlewood1 said to me
once, ‘The Greeks are not clever schoolboys or scholarship
candidates, but fellows at another college.’”

That zero, or nothing, was not recognized as a number
by the Greeks is more than curious. They were the first peo-
ple to be interested in numbers solely because numbers are
interesting, and they left to number theory some questions
that remain unanswered to this day. They were concerned,
however, with learning the secrets of numbers, not with us-
ing them. They looked at the numbers through the lens of
geometry, and this may be one reason that the idea of zero
as a number escaped them. Moreover, although much of
number theory has no need for a zero, without a zero reck-
oning is impossibly hobbled. The great Greek mathemati-
cians, pondering the interesting numbers, considered that
reckoning was an occupation for slaves and left it to them.

It was India that gave us our zero, and with it a practi-
cal system of arithmetical notation. Sometime in the early

1J. E. Littlewood (1885–1977).

· 4 ·
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centuries of the Christian era an unknown Hindu who
wanted to keep in permanent form the answer on his count-
ing board put down a symbol of his own invention, a dot
he called sunya, to indicate a column in which there were
no beads.

Thus, after all the others, came zero, the first of digits.
It has been pointed out by some that the invention of a

symbol for nothing, the void, was one for which his philos-
ophy and religion had peculiarly prepared the Hindu. But it
must be understood that the dot sunya which the Hindu cre-
ated was not the number zero. It was merely a mechanical
device to indicate an empty space, and that was what the
word itself meant—empty. The Indians still use the same
word and symbol for the unknown in an equation—what
we usually refer to as x—the reason being that until a space
is filled with the proper number it is considered empty.

With sunya, the symbol zero had been invented; but the
number zero was yet to be discovered. In the meantime,
the new Indian notation made its way to Europe through
the Arabs as “Arabic” notation. Immensely superior as it
was, it was not immediately accepted. In 1300 the use of
the new numerals was forbidden in commercial papers be-
cause it was thought that they could be forged more easily
than the Roman numerals. Merchants recognized their use-
fulness while the more conservative class of the universities
hung onto the numerals of the Romans and the system of
the counting board. Not until 1600 were the new numerals
accepted all over Europe.

Everyone recognized that the revolutionary thing about
the notation was the inclusion of the dot—sifr, as it was
called in Arabic—to represent the empty column. The whole
new system came to be identified by the name of this one
symbol, and that is how the word cipher, in addition to

· 5 ·
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standing for zero, came also to stand for any of the digits
and the verb to cipher, for to calculate. (Zero came later from
the French and the Italian.) But sifr, like sunya, was still a
symbol for an empty column, not a number.

Even today, although we use the symbol 0 constantly,
we do not always think of it as a number. On a typewriter
keyboard or a telephone dial, we still list it with the other
digits but place it after 9. Since in value it does not exceed
9, it is obviously there as a symbol and not as a number.

This should not surprise us, for zero is the one digit that
we do not commonly use as a number. If the reader will
answer the few questions below he will discover for himself
that he is much more efficient in handling zero the symbol
than in handling zero the number. The symbol is the zero
he knows; for it is a curious fact that positional arithmetic,
which depends for its existence upon the symbol zero, often
gets along very well without the number zero.

· U N D E R S T A N D I N G Z E R O ·
Zero as a Symbol Zero as a Number

1 + 10 = 1 + 0 =
10 + 1 = 0 + 1 =
1 − 10 = 1 − 0 =
10 − 1 = 0 − 1 =
1 × 10 = 1 × 0 =
10 × 1 = 0 × 1 =

10 × 10 = 0 × 0 =
10 ÷ 1 = 0 ÷ 1 =
1 ÷ 10 = 1 ÷ 0 =

10 ÷ 10 = 0 ÷ 0 =

· A N S W E R S ·

AsaSymbol:11,11,−9,9,10,10,100,10,1/10,1.
AsaNumber:1,1,1,−1,0,0,0,0,impossible,indeterminate.

· 6 ·
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Centuries after sunya had been invented as a symbol
for the empty column on the counting board, people were
still fumbling toward the mastery of zero as a number that
could be added, subtracted, multiplied and divided like the
other numbers. To the scholar of today, poring over an-
cient mathematical papers, the test of mastery is always the
same. Addition, subtraction, even multiplication with zero
seem to have caused relatively little trouble. Always it is
the handling of division of and by zero that shows us today
whether a person really understood the curious new num-
ber. The problems that caused the trouble were similar to
the last three in our little test (probably the same ones that
caused the reader trouble).

0 ÷ 1 =?

The fractional expression 0/1, which is just another way
of expressing the division, is mathematically meaningful.
Zero can be divided by any other number; in this it is unique
among the numbers. (In number theory, one number is
considered to “divide” another only when the answer ob-
tained is a whole number.) No matter what number is mul-
tiplied by zero, the answer is always the same—zero. Since
0 × 1 = 0, 0 ÷ 1 = 0. No matter what number is divided
into zero, the answer is always the same—zero.

1 ÷ 0 =?

The expression 1/0 is not, on the other hand, mathemat-
ically meaningful. Zero cannot divide any number except
itself, not even as the denominator in a fractional expres-
sion. In this, and in the fact that it can be divided by all
numbers, it is unique. The reason that 1/0 is a meaningless
expression is the same reason that 0/1 is a meaningful one.

· 7 ·
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No matter what number is multiplied by zero, the answer
is always zero. A division, however, indicates that some
number (the quotient) when multiplied by another (the di-
visor) will produce the number being divided. If there is
an answer to the problem 1/0, or a value for the expression
1/0, it would have to be such a number that multiplied by
zero would produce one. But we have already stated that
any number multiplied by zero can produce only zero. It
follows, therefore, that we cannot divide one (or any other
number) by zero.

0 ÷ 0 =?

The expression 0/0 is neither mathematically meaning-
ful nor meaningless. It is indeterminate. Zero can be divided
by itself, but there is no way of determining the value of
the answer. Since any number multiplied by zero produces
zero, zero divided by zero can yield any number. Zero di-
vided by zero can equal zero, since 0 × 0 = 0, but it can
also equal one, since 0 × 1 = 0, and two, since 0 × 2 = 0,
and so on and on. Zero has always been a favorite in a field
of insult best described as “mathematical invective.” An
example from a newspaper is “a lousy nothing divided by
nothing.” This is mathematically a less definite insult than
was intended.

The three terms we have been using—meaningful, mean-
ingless and indeterminate—can be made even clearer by a
comparison. An indicated operation of division is said to
be mathematically meaningful only if it stands for a specific
value that can be obtained by performing the operation. It
may be compared to a title used to identify specifically a
person not named. The President of the United States, for
instance, is such a title. Generally when we use it we are re-
ferring to a certain person as specifically as if we had named

· 8 ·
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him. In a similar way the expression 0/1 (or 0 ÷ 1) refers to
a specific value: 0. It cannot stand for another value any-
more than 10/1 can stand for a value other than 10.

An indicated operation of division, on the other hand, is
mathematically meaningless when it cannot possibly have
any value. In the same way a title may be meaningless. The
King of the United States is such a title. The expression 1/0
(or 1 ÷ 0) is meaningless because one cannot be divided by
zero; therefore, the expression stands for no value. (No value
is not at all the same thing as zero.)

The expression 0/0 (or 0 ÷ 0) is meaningless in a quite
different sense. It is like the title the United States Senator,
which is meaningless for identification unless the context in
which it is used specifies which of the one hundred senators
is meant by it. The choice with the expression 0/0 is much
greater than one hundred. It can have any numerical value
we choose to give it, since any number multiplied by zero
produces zero. The expression 0/0 is meaningless only be-
cause it can mean anything. Mathematicians say, more tech-
nically, that it is indeterminate, and it took them centuries to
realize that it is. Only then had they finally mastered zero
the number.

To understand the special significance of zero among the
numbers, we must examine what are known as the integers.
When the integers are arranged in order, the positive num-
bers, which we might say count things present, extend in-
definitely to the right; the negative numbers, which count
things absent, extend indefinitely to the left. This is an ar-
rangement we are familiar with on the thermometer, the
positive numbers being the degrees “above” zero; the neg-
ative, those “below.”

. . . ,−5,−4,−3,−2,−1, 0, +1, +2, +3, +4, +5, . . .
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In this arrangement of negative and positive integers,
every consecutive pair must be the same distance apart as
every other pair. Such regularity of spacing is the essence
of the integers: −1 is the same distance from −2 that +1 is
from +2 and also +2 is from +3. But this regularity can be
maintained only if zero is included as one of the integers.
Without zero the distance between −1 and +1 is twice the
distance between any other pair. Obviously then −1 and +1
are not consecutive: 0 is the number between them.

In the Christian accounting of time, unlike on the scale
above, zero marks not a number but a point. A problem
in degrees of temperature, therefore, yields quite a different
answer from a similar problem in years. If the temperature
is 5◦ below zero in the morning and rises 8◦ during the day,
it is then 3◦ above zero. But a child born on the first day of
January, 5 B.C., will not be eight years old until 4 A.D. The
reason for the difference in the answers to these two seem-
ingly identical problems is clear when we place the scale of
temperature against the scale of time:

This difference was the cause of a major howler in the
scholarly world in 1930. The celebration of the 2,000th an-
niversary of the birth of the poet Virgil was in full swing
when a mathematical killjoy pointed out that there having
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been no year zero, the poet (born in 70 B.C.) would not have
been 2,000 years old until 1931. The scholars, who should
have known better, were performing on a scale on which
zero is not a number, a mathematical process that works as
it does because zero is a number. A similar thing happened
when January 1, 2000, was celebrated as the beginning of
the new millennium, which actually began on January 1,
2001.

Among the whole numbers, or integers, zero is unique,
being neither negative nor positive. Although we use all
the integers in computation, it is those after zero that we
usually think of as “the numbers.” (As late as the twelfth
century the Indian mathematician Bhaskara gave x = 50
and x = −5 as the roots of the equation x2 − 45x = 250,
but cautioned, “The second value in this case is not to be
taken, for it is inadequate; people do not approve of nega-
tive roots.”) We even call the numbers that follow zero the
natural numbers, although it may be argued whether they
are in fact more natural than any other numbers. They are
the numbers we count with, and that seems to us the nat-
ural thing to do with numbers. We do not think of zero
as one of them because it does not seem at all natural to
most of us to “count” with “nothing.” It is, however, be-
coming more natural as more and more people learn to use
computers. As far as the computer is concerned, zero is a
number. There is no question about that. Not only does 0
precede 1 on the numerical pad—as it should—but in pro-
gramming even such everyday things as house and car pay-
ments, what we usually think of as the “first” year must be
treated, not as year one, but as year zero.

Zero, unlike the negative numbers, is logically at home
with the so-called natural numbers. For zero answers the
same great question that all the counting numbers answer,
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and it answers it in exactly the same way. The question is
simply, How many?

How many people are there in the room where
you are reading this book?

How many elephants are there in the room where
you are reading this book?

The answer to the first question is at least one, maybe
two or three; but the answer to the second is quite probably
zero. The number of elephants in the room is zero. Zero is
a number just like one and two and three.

But if zero is a number, the reader may well ask, just
what is a number anyway?

Certainly a number is an abstraction, a recognition of
the fact that collections may have something in common
even though the elements of the collections have in com-
mon nothing whatsoever. There is a similarity between two
mountains and two birds even though birds and mountains
are not similar, and this similarity they share with two of
anything. While this may seem obvious to us, it was not to
our ancestors. They recognized the difference between one
pheasant and two, one day and two but, as Bertrand Russell
(1872–1970) has pointed out, “It must have required many
ages to discover that a brace of pheasants and a couple of
days were both instances of the number two.”

What was discovered, mathematically speaking, was
that the number two is the common property of all sets con-
taining a pair. It does not matter whether a set contains
people, elephants, flies or mountains, or completely differ-
ent objects; it shares with all other sets that contain a pair
the number two.

When we say that one, two and three are numbers, we
mean that one is the number of all those sets that contain a
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single member; two is the number of the sets that contain
a pair; three is the number of the sets that contain a triple.
Since there is no end to the possibilities of what these sets
may contain, we say that they are infinite.

There is also a set of zero, comparable to these others.
This is the set that contains no people, no elephants, no flies,
no mountains. In other words, the empty set. In the same
way that one, two and three are the numbers of the sets of
one, two and three respectively, zero is the number of the
empty set. There is, however, a difference between the set
of zero and the other sets that has nothing to do with the
difference in the number of members. While all the other
numbers represent an infinite number of sets, zero repre-
sents only one, the empty set. Whether it is empty of men,
elephants, flies or mountains does not matter; it is the same
set—and there is only one.

It is things like this that make zero a very interesting
number among an infinitude of interesting numbers. Each
of the natural numbers is, of course, unique: two is not
three, and three is not four, and four is not five—or any
other number. But the uniqueness of zero is more general
than that of the other numbers, more significant for that rea-
son, and therefore more interesting.

Zero is the only number that can be divided by
every other number.

Zero is the only number that can divide no other
number.

Because of these two characteristics, zero is almost in-
variably a “special case” among the numbers, and we shall
find many examples of its “specialness” in the pages to fol-
low. Zero is enough like all the other natural numbers to be
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one of them, but enough different to be a very interesting
number: the last, and the first, of the digits.

· A P R O B L E M ·

The digits can be arranged in various ways. In this chap-
ter we have mentioned two. In one arrangement 0 follows
9 as a symbol; in the other, much less common, 0 the num-
ber comes before 1. But usually, even in fun, 0 ends up as
the last of the digits. The basis for the arrangement below is
one that many mathematicians have great difficulty in per-
ceiving.

8 5 4 9 1 7 6 3 2 0

· A N S W E R ·
Thedigitsarearrangedinalphabeticalorder.Secretariesusually
outwitmathematiciansonthisone.Avariationistoarrangethe
digitsinalanguageotherthanEnglish.
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We are all familiar with the behavior of the number one in
the ordinary processes of arithmetic. It does not surprise
us as does the behavior of zero. In fact, it is so simple that
we generally dismiss it as trivial. We do not even bother
to learn the “ones” in school, so obvious is it to us that any
number when multiplied by one yields a product that is it-
self and when divided, a quotient that is itself. Yet these
simple characteristics of the number one have the greatest
implications for the study of numbers.

The very first idea of number comes with the recognition
that there is a difference between one and more than one.
A child grasps this distinction when he is about eighteen
months old. “He likes to assemble the many cubes into a
pile,” writes Arnold Gesell in The First Five Years of Life, “or
to disperse the pile into the many cubes. . . . In comparison,
the one-year-old is single- and serial-minded.”

Presumably man recognized the distinction proportion-
ately early in his history. Either there is one wolf or there are
many around the fire, one river or more than one between
this camp and the next, one star in the early evening sky
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or many when the campfire dies down. We begin with two
number words, but only the number one. Nevertheless it is
possible for us to count in a fashion, and quite accurately,
with this number. We look up suddenly from the campfire
and see “many” wolves—more than one. There are actually
two wolves, but we have no word for two, so we say there
are many. How many? We try to think of something as
“many” as the wolves and come up with another pair with
which we are familiar. We announce that there are as many
wolves as a bird has wings.

This method of communicating the exact number of
wolves, distinguishing among the many meanings of
“many,” need not stop with a pair. We can find other sets
with which we are familiar and against which we can match
the number of wolves, one to one. The wings of a bird may
be followed by the leaves of a clover, the legs of an animal,
the fingers of a hand. We are then able to “count” any num-
ber of wolves from one to five although we still have no
number other than the number one.

We look around for what is logically the next set, a set
that contains one more member than our hand has fingers.
It is not so easy to find an immediate set of six in nature. So
instead of using another completely new set for counting
one more wolf, we add to the set of fingers on one hand a
finger from the other. This is a good practical idea because
now, for our next set, when the number of wolves increases
by still one more, we can add another finger and can con-
tinue in this manner until we have used all the fingers of
both hands to count ten wolves.

But the wolves keep coming. What can we do with a
many that is more than the fingers on both our hands? We
could of course start upon our toes, and some people did;
but we decide to reuse our fingers. For one more wolf, we
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put up both our hands and then a finger by itself. We have
now started, inexorably, on our way to infinity. We will
never get there, but we will never have to stop along the
way and say that we can’t go any farther. For no matter
how many wolves we have “counted” and how many fin-
gers we have used in the process, we can always lift one
more and count one more wolf.

What then has been our achievement?
Simply that we have constructed, with no other number

concept except that of the number one, the infinite set of
natural numbers:

1,

1 + 1,

1 + 1 + 1,

1 + 1 + 1 + 1,

. . . .

These are the natural numbers: the foundation upon
which has been erected the beautifully complex edifice that
is the theory of numbers.

The fact that one generates all the other numbers by suc-
cessive additions of itself has always, even after it was no
longer the only number, given it a special significance. The
Greeks had a hard time defining one because it was the
means by which they defined all the other numbers. Could
the maker of numbers be itself a number? they asked them-
selves. They decided it could not. (As Aristotle reasonably
observed, the measure is not measures but the measure.) So
instead they defined one as the beginning, or principle, of
number. It was so completely set apart from the other num-
bers that it was not considered the first odd number (that
was three), but rather the great Even-Odd because when
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added to odd numbers it produces even and when added
to even, odd. One was not a number but Number with a
capital “N.” It was considered to contain within itself, layer
by layer like an onion, all the other numbers.

The onion simile is not farfetched. Joseph T. Shipley, in
his Dictionary of Word Origins, remarks: “Those that have,
with intended humor, transposed the saying ‘In union there
is strength’ to ‘In onion there is strength’ in all probability
did not know that in onion there is union. With the same
vowel change as in one, from L. unus, one, onion is from L.
unio, union, unity, from unus. The idea is that the many lay-
ers make but one sphere. . . . The onion has been used as a
symbol, in that, far as you may peel, you never reach the
core.”

This great reversal of e pluribus unum that is embodied
in the number one has always given it first place among the
numbers in religion. During the Middle Ages, when mysti-
cism flourished while mathematics languished, the number
one represented God the Creator, the First Cause, the Prime
Mover. The other numbers were considered more imperfect
in direct proportion as they receded from one. Two, as the
first number so receding, signified sin, which deviates from
the first good. Fortunately for the larger numbers, there
were ways by which they could be reduced to the digits
so that they weren’t completely beyond salvation.

The characteristics of the number one that give it so
much nonmathematical significance are the same that make
it mathematically interesting—and the same that make its
behavior so obvious and hence so seemingly trivial in the
ordinary processes of arithmetic:

One is the only number that divides every
number.
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One is the only number that no other number
divides.

Among the infinitude of natural numbers, each in its
own way unique and yet in many ways very like the others,
there is no other number at all like one. The only number
ever linked with it is its antithesis—zero. While one divides
all the numbers, zero divides none; while one is divided by
none of the other numbers, zero is divided by all of them.
Among the numbers they are both “special cases.”

The behavior of one that seems so trivial to us in multi-
plication and division is the direct result of the ability of one
to generate all the other numbers by successive additions of
itself. One is the unit out of which the other numbers are
built. Do not let the grammar-school obviousness of this
fact deceive you, for it is the most important single fact in
all the theory of numbers. When we are trying to wrest the
secrets of their relationships from the numbers, the fact that
one divides all the numbers is a most valuable weapon. It
is in a sense the weapon with which we start. Our next fol-
lows from it—the fact that every number is also divisible by
itself.

Given the infinite set of natural numbers, each differing
from its predecessor by one, the theory of numbers extends
a challenge. What can be learned about the numbers be-
sides these two easily ascertained facts—that every number
is divisible by one and that every number is divisible by
itself?

The first step toward the understanding of any group,
including the numbers, is the classification of its members
into mutually exclusive subgroups. At first thought it might
not seem that the two facts we have been given would pro-
vide a basis for such a classification. It was not, indeed, the
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first thought of man that they did. The most ancient clas-
sification of numbers into groups was on the basis of their
divisibility by the number two. The numbers that are ex-
actly divisible by two were called even and those that leave
a remainder of one when divided by two were called odd.
All numbers belong in one of these groups, and no num-
ber in both. The even-odd classification seemed so basic to
the Greeks that they thought of it like the great distinction
between the two kinds of human beings. The even num-
bers they saw as “ephemeral,” hence female; the odd, “in-
dissoluble, masculine, partaking of celestial nature.” But
even-odd, based on divisibility by two, is not nearly so sig-
nificant a classification of the numbers as one that is based
on their general divisibility.

We have already made two statements about the general
divisibility of numbers, and we can add to these two more,
which we arrive at after examining the first few numbers
and their divisors.

Some numbers, like two, three, five and seven,
are divisible only by themselves and one.

Some numbers—four, six, eight and nine, for
example—are divisible as well by some number
other than themselves and one.

Here is a basis for a classification of numbers into two
groups that has produced enough mathematics to fill most
of the bulky first volume of L. E. Dickson’s three-volume
definitive history of the theory of numbers. The numbers
in the first group, divisible only by themselves and one, are
commonly called the prime (or first) numbers. Since it can
be proved quite simply that all the numbers in the second
group, divisible by some other number in addition to them-
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selves and one, are composed of prime numbers, these are
known as composite numbers.

(If a number n is composite, it has by definition divisors
between one and n. If m is the least of these divisors, it must
be prime because otherwise [if it is divisible by a number
other than itself and one] it cannot be the least divisor of n.
Continuing in this way, we can reduce all the divisors of n
to primes, thus proving that every composite number can
be produced by primes.)

We saw a few pages back how it is possible for us to
represent all the numbers after zero by successive additions
of one. Now we see that after zero and one (which, befit-
ting their status as special cases, are neither prime nor com-
posite1) we can also represent all the numbers by primes or
combinations of primes:

1 + 1 = 2 (prime)

1 + 1 + 1 = 3 (prime)

1 + 1 + 1 + 1 = 2 × 2 (composite)

1 + 1 + 1 + 1 + 1 = 5 (prime)

1 + 1 + 1 + 1 + 1 + 1 = 2 × 3 (composite)

1 + 1 + 1 + 1 + 1 + 1 + 1 = 7 (prime)

. . . . . .

We do not need to be told that the additive represen-
tation of numbers in the left-hand column is unique. It is

1Zero is not prime because it is divisible by an infinitude of numbers
besides itself and one and not composite because, since one of its factors
is always itself, it cannot be produced by primes alone. One is technically
excluded from the primes because, as we shall see, if it were a prime, the
most important theorem about primes would no longer be true. In addi-
tion, although one is, like the primes, divisible only by itself and one, it has
only one divisor while they have two.
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obvious that there can be but a single possible way of ex-
pressing any number as the sum of ones. If six is 1 + 1 + 1 +
1 + 1 + 1, it can be nothing else; and its successor among the
numbers, whether we call it seven or simply the successor
of six, can be nothing but 1 + 1 + 1 + 1 + 1 + 1 + 1.

It is not so obvious that the multiplicative representation
of numbers in the right-hand column is also unique. Just
as there is but a single way of expressing a number as the
sum of ones, there is but a single way of expressing it as the
product of primes:

6 = 1 + 1 + 1 + 1 + 1 + 1, and nothing else as
the sum of ones;

6 = 2 × 3, and nothing else as the product of
primes.

There is but a single way (without respect to order) that
a number can be produced by primes alone. This is true
of any number, no matter how large it is. A number like
17,640, for instance, is the sum of 17,640 ones and its prime
factorization is 2 × 2 × 2 × 3 × 3 × 5 × 7 × 7. There
are no primes except 2, 3, 5 and 7 that will divide 17,640—
although, it being such a large number, we might be in-
clined to think that there would be others. Only one combi-
nation of these four prime factors—three 2s, two 3s, one 5,
and two 7s—will produce 17,640. Of course, various other
numbers also divide it: 6, 10, 14, 21, 35, to name a few, but
ultimately these all reduce to primes—and to the primes 2,
3, 5 and 7.

The representation of any number as the product of
primes is unique, just as the representation of any number
as the sum of ones is unique.

Think for a moment of the significance of this statement.
Any number can be a number so large that it has never been
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written out, a number so large that a man’s lifetime would
not be long enough to record it on paper (if the paper were
long enough); any number can be any number in an infinite
number of numbers. Yet, from the information we have just
been given, we can make a very significant statement about
this most interesting number, any number n.

We can say that n has certain prime factors, which we
designate as p1, p2,. . . , pr, and that the prime factorization
of n is a unique combination of these factors. The prime p1

is used so many times, and we indicate this by pk1
1 ; p2 is

used so many times, and we indicate this by pk2
2 ; and so on.

Just as we can say that 6 = 2× 3 and 17, 640 = 23 × 32 × 5×
72, we can say of any number n that n = pk1

1 pk2
2 pk3

3 · · · pkr
r

and know that this representation of n as the product of
primes is the only possible representation. This knowledge
is so important in the study of numbers that the theorem
that states it is universally acclaimed the fundamental the-
orem of arithmetic.2

The proof of the theorem, which tells us that the prime
factorization of any n is unique, rests upon a secondary
mathematical truth (known as a lemma) that a prime that
divides the product of two or more numbers will divide at
least one of those numbers. In the case of 17,640—the num-
ber we used above as an example—this means that 2, 3, 5
and 7, its prime factors, will each divide at least one num-
ber in any group of numbers that, multiplied together, pro-
duce 17,640. For example: 15 × 28 × 42 = 17,640; and, in
accordance with the lemma, 2 divides 28 and 42, 3 divides
15 and 42, 5 divides 15, and 7 divides 28 and 42.

2The theory of numbers was treated even by C. F. Gauss (1777–1855) as
“arithmetic,” as in the title of his classic Disquisitiones Arithmeticae, or on
occasion as “the higher arithmetic.”
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The proof of the fundamental theorem itself is by re-
ductio ad absurdam, a method that has been a favorite with
mathematicians since the time of Euclid. It is simply as-
sumed for the purpose of proof that prime factorization is
not unique.

Let us say that a number n = pk1
1 pk2

2 pk3
3 · · · pkr

r and also
ql1

1 ql2
2 ql3

3 · · · qls
s , the ps and the qs being separate sets of prime

factors. On the basis of the lemma we stated above, we
know that since each p divides n, which is also the prod-
uct of the qs, each p must also divide some q. Since the qs
are by definition prime and hence not divisible except by
themselves and one, each p must be equal to some q and
conversely each q equal to some p. Both sides then must
contain the same primes and the prime factorization of n,
contrary to our assumption, is unique.

It has been said that this theorem is essential for a sys-
tematic science of arithmetic. Certainly arithmeticians con-
sider it so essential that for the sake of it they exclude the
number one from the prime numbers. This is because if one
is considered a prime, then prime factorization of the num-
bers is no longer unique. Instead of being able to say that
6 = 2 × 3 and nothing else as the product of primes, we
would have to admit an infinite number of possible prime
factorizations for six and for every other number:

6 = 2 × 3 × 1,

6 = 2 × 3 × 1 × 1,

6 = 2 × 3 × 1 × 1 × 1,

. . . .

Because we know by the fundamental theorem that any
number can be expressed uniquely in terms of its prime
factors, we are able to handle n with much the same ease
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that we handle a particular number. Because we can do
this, we can often prove something true about all numbers
that otherwise we would have to prove for each number,
one at a time, and would never be able to prove for all
numbers.

The example usually given in this connection is that of
the theorem that states generally which roots of which num-
bers are irrational. The Greeks discovered and proved that
the square root of two is irrational—that it is not express-
ible as an integer or as a ratio of integers—in other words, a
rational number—what we commonly refer to as a fraction.
They then went on, one at a time, to prove the irrational-
ity of the square roots of three, five, six, seven, eight, ten,
eleven, twelve, thirteen, fourteen, fifteen and seventeen—
and here stopped. (The omitted numbers are squares of
whole numbers.) For all their labor they had proved noth-
ing except that these few numbers out of an infinitude of
numbers have irrational square roots. They had proved
nothing about their other roots—cube, fourth, fifth and so
on through an infinitude of roots for each number. With the
fundamental theorem of arithmetic as a tool, however, it is
possible to prove simply and directly when any root of any
number is irrational.3

Proving something about each number—true of one,
true of two, true of three, and so on—will never, no mat-
ter how high we go, prove with finality that a statement is
true of all numbers. The special challenge that the natural
numbers offer is to prove that certain things are true of all

3The theorem states that the mth root of N is irrational unless N is the
mth power of an integer n. In brief, we cannot possibly get a whole number
by raising a fraction to any power—no matter how often, for instance, we
multiply 3/2 or any other “proper fraction” by itself we will never get a
whole number.
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numbers without ever having a chance to examine all the
numbers individually. The extent to which human beings
have met the challenge of the numbers rests upon the fact
that one is the unit. One sets the conditions—an infinite
set with each member separated from the next by the same
unit—and one puts down the weapons:

Every number is divisible by one.
Every number is divisible by itself.

· A Q U I Z ·

The whole subject of divisibility is basic to the study of
numbers. In the course of this book we shall answer the
questions below in more detail, but now the reader may en-
joy trying to answer them for himself:

1. Is there a number that has no divisors?

2. How many numbers have only one divisor?

3. How many numbers have only two divisors?

4. How many numbers have an infinite number of divi-
sors?

5. Is there a number not a divisor of any other number?

6. Is there a number that is a divisor of all numbers?

7. How many numbers divide an infinite number of
numbers?

8. What is the largest number having no divisors other
than itself and one?
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9. How many even numbers have only two divisors?

10. After zero, what number has the greatest number of
divisors?

· A N S W E R S ·

1.No.2.Onlyone—oneitself,sinceallothernumbersaredivis-
ibleatleastbythemselvesandone.3.Aninfinitenumber,since
aprimehasonlytwodivisorsandthereisaninfinitenumberof
primes.4.Onlyone—zero,whichhasasitsdivisorseachandev-
eryoneofthenaturalnumbers,whichareinfinite.5.Yes—zero,
whichcandivideonlyitself.6.Yes—one.7.Aninfinitenum-
ber,sinceeverynumberexceptzerodividesaninfinitenumber
ofnumbers.8.Thereisnolargestnumber,sinceaprimehasno
divisorsbesidesitselfandoneandthereisnolargestprime.9.
Onlyone—thenumbertwo,whichistheonlyprimeamongthe
evennumbers.10.Thereisnone,sincebymultiplyingtogetheras
manyprimesaswepleasewecanobtainanumberwithasmany
divisorsasweplease.
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The number two is not generally written as 10, but it can
be. For two is 10 in that simple and elegant system of rep-
resenting numbers known as the binary.

The binary system of numeration has had something of
a rags-to-riches history. It is the descendant of man’s most
primitive method of representing numbers as anything
other than the sum of ones. It was the invention of a great
mathematician who had high hopes that it might convert
the Emperor of China to Christianity. Until the twentieth
century it was looked upon as a mere mathematical curios-
ity. Then, in the middle of that century, it came into its own
with the invention of the computer. Its representation of
numbers with only two symbols, one and zero, made possi-
ble the representation of numbers simply by the condition
of a switch, or current, that was either on (1) or off (0). Al-
most simultaneously a new word came into the language:
bit for binary digit—a happy choice since it designates the
smallest possible amount of information.

The binary system, simple as it appears, is a relatively
sophisticated number system, depending as it does on a
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symbol to indicate an empty column. The earliest base-
two system known to man was the pair system. In the pair
system there were also just two number symbols, one and
two. Three then was one and two, four was two and two,
five was two and two and one. This system was probably
sugggested to man by the parts of his own body. Eyes, ears,
arms, legs—all were in pairs. Although eventually he was
to count by tens because he had ten fingers, he started to
count by twos, perhaps because he had two hands.

The pair system, primitive though it was—and it was
most primitive—met the essential requirements for a work-
able system of number representation. It was based on a
finite numbr of symbols (there were only two), and it could
be used to represent any number, no matter how large. It
does not seem likely, however, that with the pair system
man ever went beyond five.

The binary system is similar to the pair system in that
it also requires only two symbols for representation of any
number. The difference is that while the pair system repre-
sents numbers by twos, the binary system represents them
by powers of two.

A power of two, as of any number, is simply the re-
sult of a self-multiplication. We are all familiar with the
squares and the cubes, which are second and third powers
respectively, and recognize that the multiplicative process
that produces them can continue indefinitely:

22 = 2 × 2 = 4,

23 = 2 × 2 × 2 = 8,

24 = 2 × 2 × 2 × 2 = 16,

25 = 2 × 2 × 2 × 2 × 2 = 32,

. . . .
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Such multiplications, even with such a small a number
as two, rapidly attain astronomical proportions: 22 is only
four, but 210 is in the thousands, 220 in the millions and 240

(or the product of forty 2s multiplied together) in the mil-
lion millions. Obviously, by using powers of two, we can
represent numbers much more compactly than in the pair
system and hence more efficiently. Consider the expression
of even a small number like 30. In the pair system 30 must
be 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2,
but in the binary system it is simply 24 + 23 + 22 + 21 (16 +
8 + 4 + 2).

Except for the substitution of powers of two for powers
of ten, the binary system works just as the decimal system
does:

11111 in the decimal system =
104 + 103 + 102 + 101 + 100,

11111 in the binary system =
24 + 23 + 22 + 21 + 20.

The difference in base gives each system an advantage
over the other and a corresponding disadvantage. The dec-
imal system, because it has a larger base, is able to repre-
sent numbers much more compactly than the binary sys-
tem. As we see above, 11111 in the decimal system is a
number 358 times as large as the decimal number 31, which
is represented by 11111 in the binary system. But the bi-
nary system, because it has the smaller base, is able to rep-
resent numbers with fewer symbols. This means that it re-
quires a smaller multiplication table, an important practical
advantage.

In the binary system, the symbol 1 indicates that a par-
ticular column contains a power of two; the symbol 0 in-
dicates that it does not. These two symbols are all that are
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needed, for it is possible to represent any number uniquely
as the sum of powers of two. All numbers are either ex-
actly divisible by two or divisible by two with a remain-
der of one. Since the zeroth power of two is one and the
first power is two itself, the powers of two—it can be easily
seen—are sufficient to represent any number by the use of
only two symbols to indicate the presence or absence of a
particular power in the column reserved for it.

The idea that the zeroth power of two is one is hard to
accept until we examine the logic behind this apparently
illogical statement:

23 = 8 = 2 × 22,

22 = 4 = 2 × 21,

21 = 2 = 2 × 20,

20 = 1.

Although we may swear that we have never heard of
such a thing, we work every day with this concept. In the
familiar decimal system, as in the binary, the first column is
reserved for the zeroth power of the base—the ones. Once
we accept this, we must then accept the idea that while ev-
ery other power of zero is zero, the zeroth power of zero is
one.

The fact that all numbers can be represented with only
1 and 0 fascinated Gottfried Wilhelm von Leibnitz (1646–
1716), the inventor of the binary system. Leibnitz was one
of the great mathematicians. We have only to read the ac-
count of his life in E. T. Bell’s Men of Mathematics to be awed
by the universality of his genius. Writes Bell: “The union in
one mind of the highest ability in the two broad, antithet-
ical domains of mathematical thought, the analytical and
the combinatorial, or the continuous and the discrete, was
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without precedent before Leibnitz and without sequent af-
ter him.”

All mathematics was not enough to occupy this great
mind. Leibnitz also had innumerable nonmathematical
projects, one of which was the reuniting of the Protestant
and Catholic churches. When he invented the binary arith-
metic he saw in it, according to another great mathemati-
cian, Pierre Simon Laplace (1749–1827), “the image of Cre-
ation. . . . He imagined that Unity represented God, and
Zero the void; that the Supreme Being drew all beings from
the void, just as unity and zero express all numbers in [the
binary] system of numeration.” The story is that Leibnitz
communicated his idea to the Jesuit who was the president
of the Chinese tribunal for mathematics in the hope that it
would help convert to Christianity the Emperor of China,
who was said to be very fond of the sciences.

The enthusiasm of Leibnitz for the simplicity and ele-
gance of his system was not shared by his fellow mathe-
maticians, for at the time it appeared that the system had
nothing more than simplicity and elegance to recommend
it. Yet even in Leibnitz’s day the principle of representa-
tion by powers of two was commonly used by people who
would never have recognized a number expressed in the bi-
nary system. These people, who knew so little of arithmetic
that they did not even try to multiply except by two, had
worked out a very neat system of multiplying in this way.
In fact, multiplication and division by two were once so
commonly used that, as duplation and mediation, they were
considered basic processes of arithmetic along with addi-
tion, subtraction, multiplication and division.

Known generally as “peasant multiplication,” duplation
and mediation worked like this. To multiply 29 by 31, di-
vide 29 by 2 and the answer again by 2 and so on until you
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have a remainder of 1. Then double 31 the same number of
times that you have halved 29, keeping halvings and dou-
blings in parallel columns. Cross out whatever doubling oc-
curs opposite an even halving and add the remaining dou-
blings to obtain your answer:

29 31
14 62

7 124
3 248
1 496

899

If the reader will multiply 29 by 31 in the customary
way, he will find that he obtains the same answer.

We can understand why the correct answer has been ob-
tained by “peasant multiplication” only if we examine what
has been done in terms of the binary system. The successive
halvings of 29 have given us a binary representation of that
number. All we have to do is to put a 1 after 29 itself (be-
cause it is odd), a 1 after each of the other odd halvings, and
a 0 after the even halving.

29 1
14 0
7 1
3 1
1 1

We see immediately that 29 in the decimal system is
11101 in the binary. (This is in fact the simplest method of
transposing a number from decimal to binary system.) We
then recognize the successive doublings of 31 as multipli-
cations by the powers of two in the binary representation
of 29.

· 34 ·



�

�

�

�

�

�

�

�

· T W O ·

1 × 20 = 1
0 × 21 = 0
1 × 22 = 4
1 × 23 = 8
1 × 24 = 16

29 × 31 =

1 × 31 = 31
0 × 31 = 0
4 × 31 = 124
8 × 31 = 248

16 × 31 = 496

899

The same multiplication performed in the binary system
itself looks like this:

11111
11101

11111
00000

11111
11111

11111

1110000011 =

29 + 28 + 27 + 21 + 20 =

512 + 256 + 128 + 2 + 1 = 899

As we have indicated, the simplicity of binary represen-
tation—the fact that in it all numbers are merely arrange-
ments of ones and zeros—makes it the ideal system for com-
puters, which are descendants of Leibnitz’s calculating ma-
chine—a very superior one for its time, since it was able
to do multiplication, division, and the extraction of square
roots as well as addition and subtraction.

Computers use the binary system, not because they
could not be constructed to use the decimal system, but
because with decimals they would be much less efficient.
Consider a machine working with a number such as the
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one that for seventy-five years held the honor of being the
largest known prime—a number that, in spite of its great
size, is divisible only by itself and one. Mathematicians
think of it and work with it as 2127 − 1. In the decimal sys-
tem, however, it is

170, 141, 183, 460, 469, 231, 731, 687, 303, 715, 884, 105, 727.

In the binary system it is

1111111111111111111111111111111111111111111

1111111111111111111111111111111111111111111

11111111111111111111111111111111111111111.

For decimal representation of the number above, the ma-
chine would have to be able to differentiate between ten
different possible symbols in each column of the number.
For binary representation it need differentiate between only
two.

The particular usefulness of binary representation in
high-speed computation arises from the fact that the “sym-
bols” for 1 and 0 do not have to be symbols at all. They
can be simply an electric impulse for 1, to indicate the pres-
ence of a power of two in the column reserved for it, and no
impulse for 0, to indicate the absence of a power.

If Leibnitz had invented his binary arithmetic especially
for the computing machines of the future instead of for the
Emperor of China, he could not have invented a better sys-
tem. It does not matter to the machines that the binary rep-
resentation of large numbers takes up a staggering amount
of space. In the early days of the computer it did, how-
ever, matter to the people who had to enter the numbers,
and they were able to use still another number system—the
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base-sixteen—in which representation is even more com-
pact than in the decimal system. (Today, of course, such an
expedient is no longer necessary, since decimals are entered
and changed into binary digits by the machine itself.) In the
base-sixteen system each column of number representation
increases by a power of sixteen instead of by a power of two
as in the binary or a power of ten as in the decimal:

111 (base two) = 22 + 21 + 20 = 7

111 (base ten) = 102 + 101 + 100 = 111

111 (base sixteen) = 162 + 161 + 160 = 273

The base-sixteen system was selected for transposition
to and from the binary because its base is a power of two
(24). Since the binary system is based on two itself, trans-
position is relatively simple, as can be seen by comparing
the first few powers of two in the base-two and in the base-
sixteen:

20 (in base-two) 1 (in base-sixteen) 1
21 10 2
22 100 4
23 1000 8
24 10000 10
25 100000 20
26 1000000 40
27 10000000 80
28 100000000 100
. . . . . . . . .

Although in the example here, a base-sixteen represen-
tation looks exactly like a decimal representation, it does
not always. For full representation in the base-sixteen, we
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need six symbols in addition to the ten we use in the deci-
mal system. At one time it was customary to represent 10,
11, 12, 13, 14 and 15 in base-sixteen with the last six letters
of the alphabet, u standing for 10, v for 11, and so on. Later
the IBM PC used instead the first six capital letters. Thus
xyz and DEF both stood for (13 × 256) + (14 × 16) + (15 × 1)
in base-sixteen. This is the number we recognize in base-ten
as 3,567.

We are all so used to thinking that the decimal represen-
tation of a number “is” that number that it rarely (if ever)
occurs to us that “two” represented as 10 is just as much
“two” as 2. There is no special superiority in ten as a base.
The superiority of modern arithmetic lies not in the ten but
in the zero. Often positional arithmetic can be equally effi-
cient, and sometimes more efficient, with bases other than
ten.

It has been said, in fact, that with the exception of nine,
ten is probably the worst possible base for efficient number
representation. (It is better than nine because while nine has
only one divisor, ten has two.) A number like twelve, which
has four divisors, would be a much more practical base,
easily falling into halves, fourths, thirds and sixths. There
have been many advocates, including some royal ones, of
“counting by the dozen.” (A thorough argument for twelve
as a base instead of ten is presented in New Numbers by
F. Emerson Andrews [Essential Books, New York, 1944].)
Some mathematicians have even expressed a preference for
a prime base with no divisors except the trivial ones of p
and 1. Other mathematicians have still another preference.
Why not a number system based on a power of two?

Two itself or its square as a base would make represen-
tation, even of relatively small numbers, too lengthy. A sys-
tem based on the fourth power of two, on the other hand,
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would involve as we have see the addition of six new sym-
bols. What then about a system based on the third power
of two, eight? A base-eight system does not seem like a
bad idea to a great many people who work with numbers.
Representation in it would be almost as compact as in base-
ten, and the multiplication table would be slightly smaller.
Halves, fourths and eighths could be easily computed.

In spite of these arguments, it is quite unlikely that
twelve, eleven, seven or eight—or any other number—will
ever replace ten as the commonly used base for number rep-
resentation. But the fact that they could serves to remind us
of something that we are quite likely to forget. A number
and its symbol are not the same thing. “Two-ness” must not
of necessity be represented by 2. Whether the symbol 2 is
omitted entirely in a system of number representation, as in
the binary; whether a 2 in the representation of a number
stands for two powers of seven, two powers of twelve, or
two powers of eight instead of the usual two powers of ten;
even whether some totally different symbol such as b is sub-
stituted for the familiar 2—the concept of the number two,
the pair, remains unchanged. Two remains an interesting
number.

· P R O B L E M S I N B I N A R Y ·
· A R I T H M E T I C ·

It takes a little practice to perform even the simplest op-
erations on numbers in a system other than the decimal,
but there is a pleasant feeling of satisfaction in being able to
do so. Below are examples of addition, subtraction, multi-
plication and division as they are performed in the binary
arithmetic, and then similar problems for the reader.
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Addition: 100001 or 33
+ 1011 + 11

101100 44

Subtraction: 11110 or 30
− 1010 − 10

10100 20

Multiplication: 1011 or 11
× 11 × 3

1011 33
1011

100001

Division: 11
0.010101. . .)
1.000000

11

100
11

100
11

1

or 3
0.333. . .)
1.000

1. Add 110010 and 1111.

2. Subtract 11001 from 110111.

3. Multiply 1010 by 101.

4. Divide 1 by 101.

· A N S W E R S ·

1.1000001(65inthedecimalsystem).2.11110(30inthedecimal
system).3.110010(50inthedecimalsystem)4.0.00110011...(0.2
inthedecimalsystem).
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Three is an interesting number because it is the first typical
prime and the primes are, as a group, the most interesting
of numbers.

“It would be difficult,” said the mathematician G. H.
Hardy, “for anyone to be more profoundly interested in any-
thing than I am in the theory of primes.”

The lure of the primes has been felt as well by many who
are not professional mathematicians. For the primes are, af-
ter all, just numbers—numbers like two and three that are
divisible only by themselves and one. They are the num-
bers from which, by multiplication, all the other numbers
can be constructed, and for this reason they are often called
“the building blocks of the number system.” With the ex-
ception of two, they are odd, since all even numbers after
two are divisible by the prime two and are hence compos-
ite. Three is thus, while not the first prime, the first typical
prime.

The distinction between the two types of numbers, those
that build and those that are built, came relatively late in
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mathematics and yet it is still an ancient one. The first def-
inition of a prime appears in the Elements of Euclid (c. 300
B.C.). Much earlier, though, it was noted that some numbers
are rectilinear (their units being capable of arrangement only
in a straight line) while others are rectangular:

2 3 5 7 . . . but 4 6 8 9 . . .
◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦

◦ ◦ ◦ ◦◦ ◦ ◦ ◦
◦ ◦ ◦◦
◦ ◦

◦
◦

The rectilinear numbers, since they cannot be divided
except by themselves and one, can be arranged in only one
way. The rectangular numbers can be arranged in at least
two ways, a straight line or a rectangle; many, like twenty-
four, admit more than one rectangular arrangement.

The distinction, whether we call it prime-composite or
rectilinear-rectangular, has had no practical importance un-
til recently. But for more than two thousand years it has
exerted a hold on the mind of man simply because it
suggests questions that are interesting but very difficult to
answer.

Most of the questions are about the primes because an-
swering a question about primes automatically answers a
question about composite numbers as well.

The first question asked about primes, and the first that
was answered, was How many prime numbers are there? The
question, in more mathematical language, is whether the
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set of primes is finite or infinite. The answer has great sig-
nificance for the interest of these numbers. If the primes are
finite they are not nearly so interesting as if they are infinite.
Theoretically, we can find out anything we want to know
about a finite set of numbers by sheer physical endurance.
We can even count them, no matter how many there are,
because at some point there is a last one. The challenge of
a finite set is merely physical. With an infinite set, the chal-
lenge is mental.

For numbers the occurence of which is regular and hence
predictable, it is simple to show that they continue to ap-
pear without end. The natural numbers are infinite because
we can always add one to any natural number and have an-
other. We can always add two to an even number and have
another even number, add two to an odd number and have
another odd number. There is no last number, no last even
number, no last odd number.

With numbers like the primes, the question of how many
is much more difficult to answer. For while the natural
numbers string out like beads, each the same distance from
its predecessor, the same from its successor, even and odd
beads alternating without exception, the prime beads occur
apparently without pattern in the string of numbers.

Even (O) and odd (X) numbers
OXOXOXOXOXOXOXOXOXOXOXOXOX. . . ,

but

Prime (X) and composite (O) numbers
— — XXOXOXOOOXOXOOOXOXOOOXOO. . . .

A proof that the number of primes is infinite appeared
in Euclid’s Elements almost three hundred years before the
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birth of Christ. It has a quality about it—a certain mathe-
matical beauty—that even today provokes respectful envy
among professional mathematicians, who cannot help ask-
ing themselves, “Would I have thought of that if it had never
been thought of before?”

Euclid was an Athenian who taught for most of his life
at the school in Alexandria, which he helped to found. In
The Great Mathematicians H. W. Turnbull writes, “The pic-
ture has been handed down of a genial man of learning,
modest and scrupulously fair, always ready to acknowl-
edge the original work of others, and conspicuously kind
and patient.” He was a man who devoted his time to num-
bers, not because they are useful, but because they are in-
teresting. When a pupil demanded to know what he would
gain by proving a theorem, Euclid ordered a slave to give
him a coin “since he must make a gain out of what he
learns.”

Euclid’s proof that the number of primes is infinite is al-
most as straightforward as the proof that the natural num-
bers are infinite. It rests upon the simple fact that if we mul-
tiply together any group of prime numbers, the immedi-
ate successor of the number n that we obtain as our answer
(n + 1 in mathematical language) will not be divisible by
any of the numbers we have multiplied. It will be either an-
other prime or a composite number that has as each of its
factors a prime not in the group of primes we multiplied.
This is because no number except one, which is not a prime,
can possibly divide both n and n + 1.

When we multiply together any group of primes select-
ed at random and add one, we can observe that a new prime
does indeed result; but it is most pertinent to an under-
standing of Euclid’s proof that the primes are infinite to ob-
serve the result when we multiply a group of consecutive
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primes, beginning with two and three, the first members of
the set:

2 × 3 = 6 and 6 + 1 = 7, another prime,

2 × 3 × 5 = 30 and 30 + 1 = 31, another prime,

2 × 3 × 5 × 7 = 210 and 210 + 1 = 211, another prime.

If, instead of adding one to the product of “all” the
primes, we subtract one, we will get a similar result:

2 × 3 = 6 and 6 − 1 = 5, another prime,

2 × 3 × 5 = 30 and 30 − 1 = 29, another prime,

2 × 3 × 5 × 7 = 210 and 210 − 1 = 209,

not another prime itself but a number that has as factors the
primes 11 and 19 that have not been included in our set of
“all.”

Euclid’s proof that the number of primes is infinite is
simply this. If we take the set of what we shall call “all” the
primes, multiply them together, and add one to our prod-
uct, we will have (as above) either another prime or a com-
posite number with a prime factor that was not included in
our set of “all.” Obviously, then, we could not have had
all the primes in our set. We have now generated another
prime, and no matter how many primes we include in our
set of “all,” we can always generate still another prime in
this same way.

The number of primes is, therefore, infinite.
The composite numbers are also infinite. With each ad-

ditional prime we can build a composite number that we
did not have before. We can, in fact, build an infinite num-
ber of infinite sets of composite numbers. An example taken
from the very beginning of the natural numbers will be
enough to show how the composite numbers multiply with
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the addition of just one prime to the set of primes. Taking
two as the only prime, we have as composite numbers only
the powers of two:

4, which is 2 × 2,

8, which is 2 × 2 × 2,

16, which is 2 × 2 × 2 × 2,

. . . .

But these powers of two are infinite in number.
With the addition of three to the set of primes, we add

another set of composite numbers, the powers of three:

9, which is 3 × 3,

27, which is 3 × 3 × 3,

81, which is 3 × 3 × 3 × 3,

. . . .

These too are infinite in number. By adding three to the
primes, we have also added another infinite set of numbers:
each of the powers of two multiplied once by three:

12, which is 2 × 2 × 3,

24, which is 2 × 2 × 2 × 3,

48, which is 2 × 2 × 2 × 2 × 3,

. . . .

In fact—and this is easily said but difficult to grasp in all
its enormousness—with the addition of three, or any prime,
to the set of primes we increase the set of composite num-
bers by an infinite number of infinite sets. Just as we multi-
plied each of the powers of two by three, we can also mul-
tiply each of them in turn by each of the powers of three, of
which there are an infinite number.
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At this point we might as well take a deep breath and
admit that there are a lot of composite numbers.

How then does the number of primes compare with the
number of composite numbers?

The primes, with two and three, start out in the lead,
are even at thirteen, behind at seventeen, and continue to
fall farther and farther behind. They become steadily rarer
while the composite numbers become steadily more numer-
ous. There are places in the unending series of natural num-
bers where we have a million, a billion, a trillion, “as many
as we please”composite numbers without one prime among
them. These are what are called “prime deserts,” and their
existence can be easily proved without sending one mathe-
matical expedition to this no man’s land of number.

“As many as we please” is a favorite expression in the
theory of numbers. Although it sounds like unwarranted
boasting, it is not. When we say that among the natural
numbers there are sequences of consecutive composite
numbers “as many as we please,” we mean exactly that.
Let us say, for simplicity’s sake, that we please to have five
composite numbers occurring in succession. We first multi-
ply together the numbers from one to six (one more than the
five numbers we are after) and obtain the product 720. We
know then for a certainty that the five consecutive numbers
722, 723, 724, 725 and 726 are composite.

How do we know this? We know that two divides 720,
since it was one of the numbers multiplied to produce it; if it
divides 720, it must also divide 722. Therefore, 722 is com-
posite, being divisible by at least one number other than
itself and one. Since three divides 720, it must also divide
723; four must divide 724; five, 725; and six, 726. We have
found “as many as we please” (which in this case happens
to be five) consecutive numbers that are not prime. In this
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particular example 721 is also composite, but generally we
must assume that the immediate successor of our product
may be prime, for on the basis of our proof we know of no
divisors for it except itself and one.

By exactly the same process, if we please a million in-
stead of five, we can find a place in the sequence of natural
numbers where there are at least a million composite num-
bers between primes. Yet there is never a number beyond
which all numbers are composite. In addition, even though
we can prove the existence of consecutive composite num-
bers “as many as we please,” mathematicians have not been
able to prove that there is ever a point beyond which pairs
of primes separated by only one composite number cease to
occur. (Two and three, which are of course the only primes
not separated by a composite number, are sometimes re-
ferred to as “the Siamese twin primes.”)

As in the case of so many sets of numbers to be de-
scribed in this book, the computer and its operators have
turned up “twin primes” of sizes previously undreamed of,
perhaps even by those who originally asked “How many?”
In the first edition of this book (1955) the largest known
pair of prime twins was reported as 1,000,000,009,649 and
1,000,000,009,651. In the fourth edition (1992) the largest
known twins were 1,706,595 × 211,235 ±1, discovered in
1989 by a group calling themselves “the Six of Amdahl.”
These were numbers of 3,389 digits compared to the 13 digit
prime twins listed as “largest” in the first edition. With this
edition I have decided not even to mention the largest twins
since, whatever they are, they will quite likely have been
exceeded within a month, or even a week. Instead, in this
case, as in the case of other numbers that are constantly be-
ing hunted down, I will refer the reader to the internet for
the latest discoveries.
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“Almost all” numbers are composite, but there are in-
finitely many prime numbers.

Although it is often exceedingly difficult to determine
whether a particular number is prime or composite, it is
very easy to “make up” a number that we know in advance
will be composite. We simply multiply a few primes to-
gether, and there we are with a composite number. We can’t
do anything at all similar with primes. This is because no
one has ever been able to determine a form of number that
is always prime.

There have been a great many attempts to find such a
generating form for primes. Not one has been successful.

How then can we tell whether a number is prime?
This is one of those deceptively simple questions in

which the theory of numbers abounds. The general method
for testing a number for primality is implicit in the distinc-
tion between prime and composite numbers: if we can di-
vide a number, it is not prime. We can test the primality of
any number by the simple expedient of trying to divide it by
each of the primes below its square root. At least one of the
prime factors of a number must be equal to or smaller than
the square root, since if all the prime factors were greater
than the square root their product would be greater than
the number itself. In the case of ninety-seven, this means
trying two, three, five and seven. If ninety-seven is not di-
visible by any one of these four primes, it is not divisible by
any number except itself and one.

There is a sort of assembly-line variation of this test of
primality known as the Sieve of Eratosthenes. Eratosthenes,
who lived from about 276 to about 194 B.C., is remembered
particularly for an amazingly accurate measurement of the
earth. His sieve seems to have been the first methodical at-
tempt to separate the primes from the composite numbers,
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and all subsequent tables of primes and of prime factors
have been based on extensions of it.

The compilation of such a table involves a fantastic
amount of work, which is not always rewarded. One table,
published in 1776 at the expense of the Austrian imperial
treasury, is reported to have had such a poor sale that the
paper on which it was printed was confiscated and used in
cartridges in war with Turkey.

Using the Sieve of Eratosthenes, we can find all the
primes under one hundred by eliminating after two every
second number; after three, every third number; and so on.
This leaves us with the following numbers, which are all
prime:

X X 2 3 X 5 X 7 X X
X 11 X 13 X X X 17 X 19
X X X 23 X X X X X 29
X 31 X X X X X 37 X X
X 41 X 43 X X X 47 X X
X X X 53 X X X X X 59
X 61 X X X X X 67 X X
X 71 X 73 X X X X X 79
X X X 83 X X X X X 89
X X X X X X X 97 X X

Besides this sieve, which facilitates finding all the primes
within certain limits, and the arduous method of dividing
into a particular number all possible prime divisors, there is
only one completely general test for primality. The theorem
that states this test bears the name, not of a great mathe-
matician, but of a young student who subsequently gave
up mathematics for law. John Wilson (1741–1793) attended
Cambridge University, and it was recorded by one of his
professors, Edward Waring (1734–1798), that Wilson there
stated what has since become known as Wilson’s theorem:
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If a number n is greater than 1, then (n − 1)! + 1
is a multiple of n if and only if n is prime.

The theorem known as Wilson’s is beautifully and com-
pletely general. It can be applied as a test of primality to
any number, and any number that passes the test is prime.
There are more useful tests for primality than Wilson’s, but
none has this same quality of generality.

It is not thought that Wilson had proved his theorem. He
had probably arrived at it by a little computation. The same
theorem, it is now known, had already been stated but not
published by Leibnitz. Later it was proved by several men
whose names are also immortal in mathematics; however, it
continues to bear the name of the young student who first
enunciated it. Wilson, by the time his theorem was proved,
was a judge; and if mathematics owes him a further debt it
has not been recorded.

To test a number for primality according to Wilson’s the-
orem, we must first compute (n − 1)!—in words, such an
expression means the product of all the numbers up to and
including the immediate predecessor of the number n that
is being tested. The expression n! represents what is called a
“factorial number,” the exclamation mark being the math-
ematical symbol for the factorial. If the prime we wish to
test is seven, the product we must first obtain is (7 − 1)! or
6!—which is 1× 2× 3× 4× 5× 6, or 720. According to Wil-
son’s theorem, 7 is prime if, and only if, it divides evenly
(n − 1)! + 1, or 721. Since 7 does divide 721 exactly 103
times, we know that it is prime.

The trouble with Wilson’s theorem is that it is more beau-
tiful than useful. The great difficulty is not the size of the
numbers involved, although they do get very large very
fast, but the number of different operations that must be
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performed. Just take the time to compute a relative small
factorial number like 26!—the number of different ways in
which the letters of the alphabet can be arranged. It is pleas-
ant to know that a number like 170, 141, 183, 460, 469, 231,
731, 687, 303, 715, 884, 105, 727 is prime if, and only if, it di-
vides 170, 141, 183, 460, 469, 231, 731, 687, 303, 715, 884, 105,
726! + 1, but even in the theory of numbers, which is not
distinguished for placing a premium on usefulness, this is
not considered very useful information.

The primality of this quite long number (for it is, as it
happens, prime) was determined by a completely differ-
ent method. Worked out in 1876 by Edouard Lucas (1842–
1891), the method, like Wilson’s, tests primality without try-
ing any of the possible divisors. For this reason we may dis-
cover that a number is not prime, and therefore is divisible
by some number other than itself and one, and yet still not
know any number that divides it.

According to Lucas, a number N of the form 2n − 1,
where n is greater than 2, is prime if, and only if, it divides
the (n − 1)st term of a series in which the first number is
4; the second, the square of the first minus 2; the third, the
square of the second minus 2—in other words, 4, 14, 194,
37634, and so on. To test the primality of 7 by this method,
we must divide it into the (n − 1)st term of the series—
which, since n in the case of 7 is 3, is the second number,
or 14, and find it divides evenly and is therefore prime. To
test the next number of this form, which is 15 = 24 − 1, we
divide 15 into the third term of the series, 194, and find that
it does not divide evenly and is therefore composite. The
next, 31, however, divides 37,634 and so is prime.

Even Lucas’s method of testing primality becomes rather
unwieldy when, as in the case of 2127 − 1, we must divide a
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number like 170, 141, 183, 460, 469, 231, 731, 687, 303, 715,
884, 105, 727 into the 126th term of the series to determine
if it is prime. For numbers of such size, Lucas worked out
a shortcut. Instead of squaring each term of the series, he
squared only the remainder after he had divided the num-
ber being tested into it. With this shortcut, he was able to
announce at the same time he announced his new method
that he had tested 2127 − 1 and found it prime.

The shortcut is particularly well suited to machine cal-
culation. In 1952 it was used in the first successful computer
test of primality, which will be treated in “Six.” The largest
number the primality of which it established was 22,281 − 1.
In the binary system that number is represented by 2281
ones.

It used to be customary to give some idea of the size
of large primes by saying that they were so many times as
great as something that seemed very great in itself. But the
number represented by 22281 − 1 is so large that we can-
not compare it even to such a large number as that of all
the electrons in the universe. The square of the number of
electrons (a number so large that in it each electron is re-
placed by a universe of electrons) is equivalent to the rela-
tively small prime 2521 − 1.

There are probably few readers who will not feel a slight
thrill at the thought that it is known that for all its size this
number, like 3, is divisible only by itself and 1. But just
as some people can look at a mountain and feel no urge
to climb it, not even feel vicariously another person’s urge,
many of us can see a large number and feel no curiosity
whatsoever about whether it is prime or composite. What-
ever it is that makes some people test large numbers for pri-
mality is probably somewhat like the impulse that makes a
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person embark upon the uncomfortable enterprise of climb-
ing a mountain. As one famous mountain climber put it
when asked why he wanted to climb a certain peak: “Be-
cause it is there.”

It is fortunate for the theory of primes that there are
those who are interested in testing the numbers themselves
for primality. Much that is now known about primes in gen-
eral was first suggested by extensive work on individual
primes. More interesting, however, than climbing a partic-
ular mountain is finding out about mountains. Devising an
efficient general test for primality is much more interesting
than testing the primality of a number, no matter how large.
If there is a form that invariably generates primes, that fact
will be more interesting than the form itself or the primes
that are generated by it. Much more interesting than the
fact that a certain unimaginably large number is prime is
the fact that there is no last prime—and this was proved at
a time when any man alive would have been hard put to
represent a very large number.

It was this—the theory of the primes as an infinite set,
not the individual prime numbers—to which G. H. Hardy
was referring when he said, “It would be difficult for any-
one to be more profoundly interested in anything than I am
in the theory of primes.”

· T H E P O W E R S O F T H R E E ·

If we have three weights equal to the first three powers
of three (1, 3, and 9) and if we are allowed to put weight in
either pan to balance our scale, we can weigh any number
of pounds from 1 to 13 inclusive. In the illustration below
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a square represents the amount being weighed and a
circle ©, the weight:

Left Right

1 1©
2 1© 3©
3 3©
4 3© 1©
5 1© 3© 9©
6 3© 9©
7 3© 9© 1©
8 1© 9©
9 9©
10 9© 1©
11 1© 9© 3©
12 9© 3©
13 9© 3© 1©

1. How many pounds can we weigh if we are allowed
under the same conditions the first four powers of 3
as our weights?

2. How many if we are allowed the first five powers of 3
as weights?

3. With the knowledge of the number of pounds we can
weigh with three, four and five powers of 3 respec-
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tively, can you work out the general formula that will
tell you how many pounds you can weigh when you
are allowed n powers of 3 as your weights?

· A N S W E R S ·

1.Withfourweightswewillbeabletoweighuptoandincluding
fortypounds.2.Withfiveweightswewillbeabletoweighupto
andincluding121pounds.3.Theanswertothegeneralquestion
isexpressedby3n−1

2wherenisthenumberofpowersof3usedas
weights.
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Two times two is four. This is the most interesting fact about
the number four, and it is very interesting indeed. Four (if
we ignore the trivial 02 and 12) is the first perfect square.
Four is 22.

There is something very solid about the symmetry of
four. One of the first and most permanent number ideas
was of four as the “earth number.” There are still the four
winds and the four elements and, of course, the four corners
of the earth. Long after the world has been proved round,
four carries in countless common expressions a reminder of
the time when it was thought square.

The word square as applied to a number is a legacy from
the Greeks, who looked at numbers with the eyes of geo-
metricians. The squares to them were those numbers the
units of which could be arranged in quadrilateral figures
with equal sides. Arranging the units of numbers into such
shapes began, according to legend, with the early Pythago-
reans, who on the sand arranged pebbles into the form of
people, animals or geometric forms and then assigned the
number of the total to each representation. The numbers
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with the shape of a square are, they noted, related to other
numbers in several interesting ways. Each square, for in-
stance, is the summation of successive odd numbers; and
this is the way the whole series of squares can be built up,
layer by layer, from a single unit. Each square is also the
product of one of the natural numbers multiplied by itself.

= 1 = 1 × 1 = 12

= 1 + 3 = 2 × 2 = 22

= 1 + 3 + 5 = 3 × 3 = 32

= 1 + 3 + 5 + 7 = 4 × 4 = 42

= 1 + 3 + 5 + 7 + 9 = 5 × 5 = 52

. . . .
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As a way of thinking of the squares, the representation
of the second power of a number as n2 has long since re-
placed the geometric arrangement of the units, but the name
that the eye-minded Greeks gave them has persisted.

The relationships expressed above, however, are not the
sort of thing that has kept four and the other squares inter-
esting for more than two thousand years. Although fasci-
nating to a people who were looking at numbers with fresh
eyes, they are easily perceived and easily proved.

But difficulty in proving and difficulty in perceiving re-
lationships between the squares and the other numbers are
not the only criteria for mathematical interest. Let us con-
sider a surprising relationship between the squares and the
natural numbers that can be perceived merely by looking at
them and is so obvious that it needs only the simplest proof.

Every number has a square. That fact does not even re-
quire a proof since it is implicit in the definition of a square
as the product of a number multiplied by itself. If then
every number has a square, the number of squares, like
the number of numbers, is infinite. This was known to
the Greeks. It is much more easily grasped than the idea
that the number of primes is infinite, an idea that they also
grasped and proved. Yet the fact that the squares, like the
numbers themselves, are infinite suggested nothing more
to them or to mathematicians after them until the time of
Galileo Galilei (1564–1642).

Although the Encyclopedia Britannica lists Galileo as an
astronomer and experimental philosopher—and this is the
way we generally think of him—he was actually a professor
of mathematics. The squares and the natural numbers, both
unending, suggested to him a relationship that, more than
two hundred years after his death, was to be basic to the
development of the theory of the infinite. With this hint, the
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reader may be interested in seeing if he too will perceive the
relationship implicit in the numbers below:

0 02 0
1 12 1
2 22 4
3 32 9
. . . . . . . . .

What Galileo saw was that with the natural numbers we
can count the squares. The zeroth square is 0; the first, 1; the
second, 4; the third, 9; and so on. The disparity between
the numbers with which we are counting and the squares
that are being counted becomes greater as the squares be-
come larger—the tenth square, for example, being 100. But
the important thing is that we will never run out of squares.
There is a square for every natural number. The set of
squares can be placed in one-to-one correspondence with
the set of natural numbers in exactly the same way that back
at the beginning of our understanding of number we placed
two wolves in one-to-one correspondence with the wings of
a bird.

There is a certain difference. Wolves and wings are finite
and in our example there were exactly two of each. Num-
bers and squares are infinite. Yet there are obviously many
more numbers than there are squares, for the squares occur
less and less frequently the higher we go among the num-
bers. We do not have to go very high to see that this is true:

0 , 1 , 2, 3, 4 , 5, 6, 7, 8, 9 , 10, 11, 12, 13, 14, 15, 16 , . . .

How Galileo resolved this contradiction is explained
through a character called Salviatus in his Mathematical Dis-
courses and Demonstrations. Having stated what we have
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just noted, that the squares can be placed in one-to-one cor-
respondence with the natural numbers, a square to every
number, Salviatus comes to the conclusion:

“I see no other decision that it may admit, but to say that
all Numbers are infinite; Squares are infinite; and that nei-
ther is the multitude of Squares less than all Numbers, nor
this greater than that; and in conclusion, that the Attributes
of Equality, Majority, and Minority have no place in Infini-
ties, but only in terminate quantities.”

This conclusion of Galileo’s provides modern mathemat-
ics with one of its most important definitions. On the basis
of what Galileo perceived in the relationship between the
squares and all the numbers we now say:

A set is called infinite when it can be placed in
one-to-one correspondence with a part of itself.

This definition is just as true of the infinite set of squares
as it is of the infinite set of natural numbers. If we divide the
squares into even and odd, we find that we can place the
members of the two subsets in one-to-one correspondence
with the set of all the squares.

Even Squares Odd Squares All Squares
0 1 0
4 9 1

16 25 4
36 49 9
64 81 16
. . . . . . . . .

We will never run out of squares; neither will we run out
of even or odd squares. We can rest assured—squares are
inexhaustible.
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Problems concerning squares are also inexhaustible.
Even if as a group they were not, there would still be a sat-
isfactory collection of individual problems that have been
keeping mathematicians busy for a good many centuries
and from all indications will continue to keep them busy. A
case in point is the problem of the squares connected with
what is undoubtedly the best known theorem in mathemat-
ics:

The square of the hypotenuse of a right triangle
is equal to the sum of the squares of the other
two sides.

The Pythagorean theorem, as it is usually known, was
stated and proved either by Pythagoras or by one of his fol-
lowers some five hundred years before the birth of Christ.
It was, like most of the Greek statements about numbers,
geometrical. It posed, though, an interesting arithmetical
problem. What are the solutions in whole numbers for the
equation below?

a2 + b2 = c2

One solution had been known for a long time. There
is even a story that the Egyptians built their pyramids by
marking off a rope into three, four and five units so that
it fell automatically into a right triangle. This, however, is
considered mathematical folklore. As mathematicians point
out, there is a simpler method in Euclid I,11.

32 + 42 = 52 3

4

5

· 62 ·



�

�

�

�

�

�

�

�

· F O U R ·

There is a way of ascertaining all possible primitive so-
lutions to this problem. It was probably known even to
the Pythagoreans, but that was by no means the end of the
problem of the right triangle. Because of its relation to the
squares, the Pythagorean triangle (as the right triangle with
integral sides came to be known) was for centuries the basis
for countless problems that, although expressed geometri-
cally, are in reality arithmetical. Some seven centuries after
Pythagoras, such problems, along with many others con-
cerning squares and the higher powers, appeared in a little
book prepared by a man known as Diophantus of Alexan-
dria, a man whose name was to be forever linked with the
squares.

Diophantus was a Greek who had an un-Greek inter-
est in something very like algebra. Little is known about
him except the problems he proposed—so little, in fact, that
even the time when he lived can be estimated only in rela-
tion to the lives of other men who did or did not refer to him
in their own writings. His tombstone, which proposes one
last problem, tells us all that is known about his personal
life:

“Here you see the tomb containing the remains of Dio-
phantus, it is remarkable: artfully it tells the measures of
his life. The sixth part of his life God granted for his youth.
After a twelfth more his cheeks were bearded. After an ad-
ditional seventh he kindled the light of marriage, and in the
fifth year he accepted a son. Elas, a dear but unfortunate
lad, half of his father he was and this was also the span a
cruel fate granted it, and [his father] controlled his grief in
the remaining four years of his life. By this device of num-
bers tells us the extent of his life.”

If x is taken as the age of Diophantus at the time of
his death, the problem becomes one of solving for x in the
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equation
x

16
+

x
12

+
x
7

+ 5 +
x
2

+ 4 = x.∗

This is not the type of problem that has come to be
known as a Diophantine problem. It is much too simple,
there being but a single possible value for x. A more typical
Diophantine problem is the ancient one of the Pythagorean
triangle: to find whole number solutions for the equation
a2 + b2 = c2.

The squares, particularly in connection with this very
problem, were great favorites with Diophantus. One of his
problems is especially interesting because it provoked, as
we shall see, a conjecture that has been the most difficult to
prove in the history of the theory of numbers—at least the
most famously difficult. The problem appears in Book II of
Diophantus’s Arithmetic as Problem 8: “To divide a given
square number into two squares.” This is the same as say-
ing, “Given the square of the hypotenuse of a right trian-
gle, find the squares of the other two sides”—just another
of the apparently inexhaustible variations on that ancient
problem.

This problem in the Arithmetic, and others like it, were
read and struggled over for centuries before a translated
version came into the hands of the man for whom they
were all unknowingly destined. For Diophantus of Alexan-
dria, who died during the third century after Christ, had the
honor nearly fourteen hundred years later of introducing to
numbers the man who was to become the father of modern
number theory.

Pierre Fermat (1601–1665) was a busy, successful lawyer,
thirty years old, when a copy of the Arithmetic fell into his
hands. Up until that time he had apparently shown no

∗x = 84.
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more than a cursory interest in numbers, and he was a lit-
tle old to develop a serious one. Great mathematics has
most often been produced by young, sometimes even very
young men. We think of poets dying young, already hav-
ing achieved immortality in literature. Christopher Mar-
lowe was twenty-nine; Shelley, thirty; Keats, twenty-six.
But they died no younger than some great mathematicians.
Galois was twenty when he was killed in a Paris duel; Abel
died in poverty in Norway at twenty-seven. Both men left
behind enough great mathematics to assure them perma-
nent places in the history of the subject. Even mathemati-
cians who have lived a full span must often face the fact
that they did their best work when they were very young.
Carl Friedrich Gauss, who was known during his lifetime
(as he is known today) as the “prince of mathematicians,”
died at seventy-eight; but he produced his Disquisitiones
Arithmeticae, which is usually considered his masterpiece,
between his eighteenth and twenty-first years. All these
mathematicians, Galois and Abel when they died, Gauss
when he wrote the Disquisitiones, were younger than Pierre
Fermat when one day he picked up the Arithmetic of Dio-
phantus and got his first inkling of how very interesting the
numbers are.

It has been said that Fermat was the first man to pene-
trate deeply into numbers. Technically never more than an
amateur— his profession was the law—he is nevertheless
omitted from J. L. Coolidge’s Great Amateurs in Mathemat-
ics because, Coolidge explains, “he was so really great he
should count as a professional.”

For recreation Fermat, the busy lawyer, worked on the
ancient problems of Diophantus. Usually these asked only
for a single solution, but Fermat almost always went on—
often giving methods for determining all possible solutions.
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Sometimes the problems suggested to him general theorems
that stated deep and previously unsuspected relationships
among the numbers. As a mathematician, however, Pierre
Fermat had one idiosyncrasy. Although he communicated
his theorems to friends in letters or noted them down in the
margins of his copy of Diophantus, he almost never stated
proofs. There seems to have been no special reason that he
didn’t. Probably, like most mathematicians, he found what
he had proved less interesting than what he was trying to
prove.

In connection with Problem 8 of Book II of the Arith-
metic, Fermat put down a characteristic note in the margin.
It has been said in reference to this note that if the margin
of the Arithmetic had been wider, the history of mathemat-
ics would have been quite different. Problem 8, as we have
already stated in a slightly different form, is To divide a given
square into two squares. Fermat was very interested in the
squares, but he was also interested in the other higher pow-
ers. The problem of the squares suggested to him a much
more general one, a problem that involved all the powers.

“On the other hand,” he wrote in the margin beside Prob-
lem 8, “it is impossible to separate a cube into two cubes, or
a biquadrate into two biquadrates, or generally any power
except a square into two powers with the same exponent.
I have discovered a truly marvelous proof of this which,
however, the margin is not large enough to contain.”

What Fermat wrote in his Diophantus is the same as say-
ing that an + bn = cn cannot be solved in positive integers
when n is greater than two; that is, as in the Pythagorean
theorem.

Fermat’s copy of the Arithmetic contained many other
such references to proofs that were never stated. Fermat’s
letters to his mathematical friends were full of more. If it
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is curious that Fermat never offered these friends proof of
the theorems that he announced with such enthusiasm, it
is more than curious that they never asked for proof. With
anyone else but Fermat, the theorems would have proba-
bly been discounted by future mathematicians. Without a
proof a theorem is not really mathematics. In fact, it is not
really even a theorem, because a theorem in mathematics is
a statement that has been proved. But Fermat was not only
one of the most perceptive mathematicians who ever lived,
but a mathematician of unimpeachable integrity. In every
case except the one just given, when he said he had a proof
for a theorem, a proof for it has been later (usually much
later) discovered. Only this one theorem, which has long
been known as Fermat’s Last Theorem (even though it was
neither the last nor in fact a theorem but merely a conjec-
ture), remained unproved.

It was not from lack of effort. Almost all the great acad-
emies have at some time or other offered prizes for its proof.
Almost every great mathematician since Fermat has tried
his hand at it. Only Gauss refused, remarking that he him-
self could make a great many mathematical statements that
nobody could prove or disprove.

Every so often there was a rumor in the mathematical
community that one of its members had proved Fermat’s
“theorem.” In 1988 a story appeared in the New York Times
that a Japanese mathematician had accomplished the feat.
As in all previous instances, however, the claim was later
withdrawn.

Many special cases of the theorem had been proved. It
had been definitely established that for prime values of n
up to 150,000 the “theorem” held. In other words, the equa-
tion an + bn = cn is not solvable in positive integers when
n has any prime value from 3 up to 150,000. This served
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to indicate, but only to indicate, that Fermat was probably
right, that for any n greater than 2 the equation is not solv-
able in positive integers.

Of course whether Fermat was right about the theorem
was not the interesting question anymore; it was whether
he was right about the proof. Was he in the seventeenth
century able to prove a theorem that, in spite of concen-
trated effort, no mathematician in the next three centuries
had been able to prove?

It was thought that Fermat’s Last Theorem was true, but
that Fermat was probably mistaken when he said he had a
proof for it. Mathematically, it no longer seemed to mat-
ter much whether it was ever proved. It had already made
its contribution, for many of the most valuable weapons of
modern mathematics had been forged for what had invari-
ably turned out to be unsuccessful assaults on Fermat’s fa-
mous conjecture.

Eric Temple Bell, the mathematician and popular writer
on mathematics, who firmly believed that Fermat had had
a proof, devoted the last years of his life to writing a history
of what he called The Last Problem.

“Suppose that our atomic age is to end in total disaster,”
he wrote in the Prospectus for the book. “What problems
that our race has struggled for centuries to solve will still be
open when the darkness comes down?”

Most of the “great” problems were, in his view, either
too ambiguous or too broad to treat as The Last Problem. His
nomination was a problem “that anyone with an elemen-
tary-school education can understand.” His book would be
“a biography” of the famous, unproved “Last Theorem” of
Pierre Fermat and a biography of Fermat as well.

Bell worked on The Last Problem for the rest of his life,
signing the contract for the almost completed book on his
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hospital bed. Fifteen days later on December 20, 1960, he
died.

A few years later the English edition of the published
book fell into the hands of a ten-year-old Cambridge school-
boy named Andrew Wiles (1953–), for whom it could have
been destined. On October 25, 1994, Wiles, announced that
he had proved Fermat’s Last Theorem with a short but
crucial step contributed by Richard L. Taylor (1962–). The
proof, which eliminated an error in an earlier version, was
extremely complicated, requiring some forty pages of de-
tailed argument; but after several months of careful review
it had been accepted by the mathematical community:

The equation an + bn = cn has no integer solu-
tions when n > 2.

To some devotees of the ancient theory of numbers, the
long delayed proof of Fermat’s Last Theorem was a bit of
a disappointment: “We had hoped it would have been sim-
pler.” One thing all agreed upon—if Fermat had had a proof
it was not Andrew Wiles’s proof!

Pierre Fermat proved many interesting things about the
squares. His famous Two Square Theorem, which is cited
in any discussion of mathematical beauty, states that every
prime (such as five) of the form 4n + 1 can always be repre-
sented as the sum of two squares, but that no prime (such as
three) of the form 4n − 1 can ever be so represented. Since
all primes greater than two belong to one or the other of
these two forms, this is a very profound statement about
prime numbers.

This theorem is one of the few for which Fermat detailed
his method, which he called “the method of infinite de-
scent,” although even here he did not actually give a proof.
He began with the assumption that there was a prime of
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the form 4n + 1 that could not be represented as the sum of
two squares; proved that if there were such a prime, there
must then be a smaller prime that also could not be so rep-
resented; and continued in this way until he got to five, the
smallest prime of the form. Since five can be represented
as the sum of two squares (12 + 22), the assumption was
obviously false; the theorem as stated true. (Even with this
assistance from Fermat himself, the Two Square Theorem
was not actually proved until almost a hundred years after
his death.)

The 4n + 1 primes, incidentally, have an interesting con-
nection with the old problem of the right triangle. Fermat
also proved a theorem that states, A prime of the form 4n + 1
is only once the hypotenuse of a right triangle; its square is twice;
its cube, three times; and so on. As an example of this theorem,
in the case of five we have

52 = 32 + 42,

252 = 152 + 202 and also 72 + 242,

1252 = 752 + 1002 and also 352 + 1202 and also 442 + 1172.

It is ironic that Pierre Fermat, who proved so many in-
teresting things about the squares and about the other num-
bers, should be known for a theorem that he quite probably
did not prove. In this he reminds us of Galileo Galilei, who
said so many interesting things but is known for repeating
stubbornly, Eppur si muove, which he may not have said (but
probably did).

The lives of Fermat and Galileo overlapped during the
years 1601 to 1642: one man in France passing busy, rela-
tively uneventful days as a lawyer; the other in Italy,
brought before the Inquisition, tried under threat of torture,
recanting his deepest scientific beliefs. They led different
lives; but both, like so many other mathematicians before
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and after them, found the squares to be very interesting
numbers.

· A N O C C U P A T I O N ·

There is nothing to keep a person occupied like trying to
represent all numbers by four 4s. All four 4s must be used
for every number, but various mathematical notations may
also be used, as in the four examples below.

1 =
44
44

2 =
4 × 4
4 + 4

3 = 4 −
(

4
4

)4

4 = 4 + 4 −
√

4 −
√

4

Try now to find similar representations for 5 through 12 in
the terms of four 4s.

· A N S W E R ·

Onepossiblelistofanswers:5=4+(4
4

)4
,6=4+4+4 √4,7=4+

4−4
4,8=4×4−4−4,9=4+4+4

4,10=44−4
4,11=44 √4×4,

12=44+4
4.Thereisnoneedtostopwith12;foritispossible,ifwe

donotlimitourselvesastonotations,torepresentallnumbersby
four4s.
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One of the most interesting things about the natural num-
bers is that although nothing about them changes, they re-
tain the ability to surprise us. A case in point is that of the
pentagonal numbers—those that, as their name implies, can
be arranged in the shape of a five-sided polygon.

The Pythagoreans had a special fondness for the shape
of five, for within the regular pentagon they constructed
the “triple-interwoven triangle”—the five-pointed star that
was the symbol of recognition in their order. Nevertheless,
to them the pentagonal numbers were just one group in an
infinitude of so-called polygonal numbers that they found
very interesting. These numbers began with three as the
triangle, four as the square, five as the pentagon and con-
tinued without end through the natural numbers. For the
Greeks observed the obvious though essentially farfetched
relationship that “every number from three on has as many
angles as it has units.”

They then observed that they could add to each polygon
a row of units and have another larger polygon of the same
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number of sides. Because in this row by row construction,
one was the point from which construction began,

1

1

1

3

4

5

one was considered the first polygon in each group. In the
case of five, for example, successive pentagons were formed
from a point as follows:

Five was thus the archetype of the pentagonal numbers,
having as many units as a pentagon has angles, but one
was the first. The first twelve pentagonal numbers appear
below:

1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, . . . .

Since a standard test of mathematical aptitude is the abil-
ity to see the basis for selection in a series of numbers like
the one above, the reader might like to try to continue the
series by adding the appropriate next number. The next
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number, as it happens, is the thirteenth pentagonal number.
There is more than one way of arriving at its value.

The first way is by summing one and every third num-
ber up to and including the thirteenth. As we saw in “Four,”
the squares are successive summations of every second
number after one. The pentagonals, we now see, are the
successive summations of every third number after one (the
hexagonals of every fourth, and so on).

Pentagonal #1 = 1 = 1,

#2 = 1 + 4 = 5,

#3 = 1 + 4 + 7 = 12,

#4 = 1 + 4 + 7 + 10 = 22,
...

#12 = 1 + 4 + 7 + 10 + 13 + 16 + 19 + 22+

25 + 28 + 31 + 34 = 210.

Thus to obtain the thirteenth pentagonal number, we
add 37 (34 + 3) to the twelfth pentagonal number, which
gives us 247.

The second way of arriving at the thirteenth pentagonal
number is more direct, but it involves a knowledge of the
general formula for determining any polygonal number. In
the language of mathematics, any polygonal number is re-
ferred to as the nth r-agonal number. In our case we are
after the 13th 5-agonal number. In the formula below the
letter n has the value of 13, the letter r of 5:

pr
n =

n
2

[2 + (n − 1)(r − 2)] or n + (r − 2)n
(n − 1)

2
or

13th 5-agonal number =
13
2

× 38 or 13 + (3 × 78) = 247.
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Like many after them who have looked at numbers for
the first time, the Greeks found the formation and inter-
relationships of the polygonal numbers very interesting.
More sophisticated mathematicians, once they have the
above formula with which they can obtain any polygonal
number of any rank, are inclined to dismiss them as the
kind of thing that only amateurs would find interesting.
But no one can dismiss as uninteresting numbers that Pierre
Fermat found interesting. Fermat looked at the natural
numbers with something of the fresh interest of the Greeks,
but in the case of the polygonal numbers he went below the
surface relationships that had intrigued the Greeks and so
discovered a relationship between the polygonals and all
the numbers of which they had never dreamed.

“Every number,” wrote Fermat, again in the margin of
his copy of Diophantus, “is either triangular or the sum of
two or three triangular numbers; square or the sum of two,
three, or four squares; pentagonal or the sum of two, three,
four, or five pentagonal numbers; and so on.”

The beauty of this theorem lies in the every number and
the and so on. It is completely general. It says something
about all numbers and about all polygonal numbers, and
what it says is not at all obvious. J. V. Uspensky and M. A.
Heaslet, who in their Elementary Number Theory dismiss the
Greek interest in the polygonal numbers as trivial, say of
Fermat’s theorem, respectfully, “This is a truly deep prop-
erty of numbers.”

That every number can be expressed as the sum of five
or fewer pentagonal numbers is an unexpected relationship
between these numbers of the shape of five and all the natu-
ral numbers. It lacks, however, that quality of surprise that
we find in an even later discovery.
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The discoverer in this case was no amateur in mathe-
matics, even in the grand sense of Pierre Fermat. Leonhard
Euler (1707–1783) was one of the most completely profes-
sional mathematicians who ever lived and, without a ri-
val, the most prolific. During his seventy-six years there
was scarcely an aspect of mathematics that he did not leave
more systematized than he had found it, this in spite of the
fact that during the last seventeen years of his life he was
almost totally blind.

It was one of the rare things about Euler that he did what
needed to be done in mathematics—whether it was making
a great original contribution or merely picking up pins to
keep things straight. One thing that was needed at the time
of Euler—and the thing we are especially interested in—
rose out of the study of partitions. It was there, where no
one would have expected to find the pentagonal numbers
playing an important role, that Euler found them.

In the theory of partitions, we are concerned with the
number of ways in which a number can be represented as
the sum of its parts. The partitions can be restricted to par-
ticular parts (such as odd parts or distinct parts), but most
generally they are all parts without restriction. How many
different ways, for instance, can the number five be repre-
sented as the sum of the numbers one, two, three, four and
five?

5 = 5,

5 = 4 + 1,

5 = 3 + 2,

5 = 3 + 1 + 1,

5 = 2 + 2 + 1,

5 = 2 + 1 + 1 + 1,

5 = 1 + 1 + 1 + 1 + 1.
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The number of unrestricted partitions for five is seven,
or p(5) = 7.

The general problem in the theory of partitions is to de-
termine the number of partitions possible for each of the
natural numbers. This is no simple task, for the number of
partitions bears no fixed relationship to the number being
partitioned. One can be partitioned in only one way, two
in two ways, three in three ways, but after three the rela-
tionship is no longer one-to-one. The number of partitions
for four is five; for five, as we have seen, seven. The reader
may be interested in hazarding a guess as to the number of
ways in which six can be partitioned. Unless he actually
computes them, he is almost certain to come up with the
wrong answer.1

If there is no apparent relationship between a number
and the number of its partitions, how then can we deter-
mine the partitions of a particular number without actu-
ally computing them? What would be useful would be a
combination of numbers that by multiplication or division,
or both, would automatically produce the answers we are
after. Producing answers indefinitely. For we want the num-
ber of partitions for each and every one of an infinitude
of numbers.

It was just such a “generating function” that Euler con-
tributed to the theory of partitions. In discovering it, he
discovered also a very surprising relationship between the
pentagonal numbers and the unrestricted partitions of all
the natural numbers.

Euler’s generating function for p(n) is the reciprocal of
a power series:

1 p(6) = 11.
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1
(1 − x)(1 − x2)(1 − x3)(1 − x4)(1 − x5) . . .

.

The expression indicates, as does any fractional expression,
that a division is to be performed. There will, however, be
something very odd about this division. We will have to
start our division without ever having completed our divi-
sor. We will be instructed by the three dots after (1 − x5)
that we are to continue multiplying in the same fashion.
Each time we are to increase the power of x by 1 so that
we will be multiplying (1 − x5) by (1 − x6) by (1 − x7) and
so on and on. The terms being multiplied will never end,
nor will the product that we obtain with them. More and
more of it will be finally established the longer we multiply,
but all of it—never. It must be what is known as an infinite
product.

When therefore we divide this infinite product into one,
we will obtain as our answer an infinite quotient. This is as
it should be, for the generating function for p(n) must by
definition never stop generating. It has to produce for us
the number of partitions for every one of the infinitude of
natural numbers.

All in all, this generating function for p(n) is an odd sort
of thing to anyone used to multiplication and division with
finite numbers. The multiplication that gives us the infinite
product looks odd enough, but the division that gives us
the infinite quotient looks odder yet.

We begin, with deceptive ease, by multiplying (1 − x)
by (1 − x2). The early part of the multiplication is printed
in full below so that the reader can see how in a short time
the first few terms of our answer no longer change with
continued multiplication. They are, in other words, estab-
lished; and we can use them to begin our division of 1:
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1 − x

1 − x2

1 − x − x2 + x3

1 − x3

1 − x − x2 + x3

− x3 + x4 + x5 − x6

1 − x − x2 + x4 + x5 − x6

1 − x4

1 − x − x2 + x4 + x5 − x6

− x4 + x5 + x6 − x8 − x9 + x10

1 − x − x2 + 2x5 − x8 − x9 + x10

1 − x5

1 − x − x2 + 2x5 − x8 − x9 + x10

− x5 + x6 + x7 − 2x10 . . .

1 − x − x2 + x5 + x6 + x7 − x8 − x9 − x10 . . .
1 − x6

1 − x − x2 + x5 + x6 + x7 − x8 − x9 − x10 . . .

− x6 + x7 + x8 − x11 − x12

1 − x − x2 + x5 + 2x7 − x9 − x10 − x11 − x12 . . .
1 − x7

1 − x − x2 + x5 + 2x7 − x9 − x10 − x11 − x12 . . .

− x7 + x8 + x9 − x12 . . .

1 − x − x2 + x5 + x7 + x8 − x10 − x11 − 2x12 . . .
1 − x8

. . .
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The first of these established terms are

1 − x1 − x2 + x5 + x7 − x12 − x15 + x22 + x26 . . . .

By substituting a 1 for each of these powers of x that has
remained in the product and substituting a 0 for each that
has dropped out, we get an odd looking representation for
the beginning of our divisor:

1 − 1 − 1 + 0 + 0 + 1 + 0 + 1 + 0 + 0 + 0 + 0 − 1 + 0 . . . .

We are now ready to divide one, or unity:

1− 1− 1 + 0 + 0 + 1 + 0 . . .
1 + 1 + 2 + 3 + 5 + 7 + 11 . . .)
1 + 0 + 0 + 0 + 0 + 0 + 0 . . .
1 − 1 − 1 + 0 + 0 + 1 + 0 . . .

+ 1 + 1 + 0 + 0 − 1 + 0 . . .
1 − 1 − 1 + 0 + 0 + 1 . . .

+ 2 + 1 + 0 − 1 − 1 . . .
2 − 2 − 2 + 0 + 0 . . .

+ 3 + 2 − 1 − 1 . . .
3 − 3 − 3 + 0 . . .

+ 5 + 2 − 1 . . .
5 − 5 − 5 . . .

+ 7 + 4 . . .
7 − 7 . . .

+ 11 . . . .

From the fragment of the division that we have repro-
duced, the reader will observe that the numbers appearing
in our answer seem strangely familiar. They are indeed fa-
miliar, for they are—in order—the number of unrestricted
partitions p for each of the first few natural numbers:

· 81 ·



�

�

�

�

�

�

�

�

· F R O M Z E R O T O I N F I N I T Y ·

p(0) = 1,

p(1) = 1,

p(2) = 2,

p(3) = 3,

p(4) = 5,

p(5) = 7,

p(6) = 11,

. . . .

Continuing the division of one in this manner will go
right on producing the successive values of p(n). It will
even turn up the fact that the number of unrestricted parti-
tions for a relatively small number like 200 is 3, 972, 999, 029,
388.

In arithmetic like this we have no reason to expect to
find our old friends—those trivial, if amusing, numbers that
can be arranged into the shape of five. Yet if we will exam-
ine the first few terms of the infinite product that have been
definitely established, we will find

1 − x1 − x2 + x5 + x7 − x12 − x15 + x22 + x26 . . . .

Now let us do a little arithmetic of our own. The formula
for a pentagonal number is

P5
n =

3n2 − n
2

.

Up until now we have been considering only the pentago-
nal numbers produced by this formula when the value of n
is 0 or one of the positive integers:
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1 when n = +1,

5 when n = +2,

12 when n = +3,

22 when n = +4,

. . . .

But the same formula also yields pentagonal numbers
for negative values of n:

2 when n = −1,

7 when n = −2,

15 when n = −3,

26 when n = −4,

. . . .

If we now re-examine the first few established terms of
our infinite product, we find that the only x that remain are
those the exponents of which are the pentagonal numbers pro-
duced by the formula above for both negative and positive values
of n.

This is not a relationship that Euler or anyone else sus-
pected. It is curious and not exactly clear why the pentag-
onal numbers should make this appearance in the generat-
ing function for p(n). But it is a discovery that the Greeks
would have appreciated. For if they were distracted some-
times by the more trivial and obvious aspects of number
composition, they were nevertheless the first people to real-
ize that the numbers as numbers are fascinatingly complex
in their relationships—and full of surprises.
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· A N O T H E R S U R P R I S E ·

It is very satisfying to discover for oneself interesting re-
lationships among the numbers even though the same rela-
tionships have already been discovered by somebody else.
If the reader will square the beginning of the infinite prod-
uct that we obtained in this chapter, he will find nothing
interesting about the result; but if he will cube it, he will
discover a surprising and interesting pattern. The first to
discover this pattern was C. G. J. Jacobi (1804–1851), a very
great mathematician.

1 − x − x2 + x5 + x7 − x12 − x15 multiplied by

1 − x − x2 + x5 + x7 − x12 − x15 multiplied by

1 − x − x2 + x5 + x7 − x12 − x15 yields?

· A N S W E R ·

1−3x+5x3−7x6+9x10...,theexponentsthatremaininthis
casearethetriangularnumbersratherthanthepentagonalnum-
bersandthecoefficientsarealternatelythepositiveandnegative
oddnumbers.

· 84 ·



�

�

�

�

�

�

�

�

6
· S I X ·

Six is the first “perfect number.”
The Greeks called it perfect because it is the sum of all

its divisors except itself. These are one, two and three: 6 =
1 + 2 + 3.

The Romans attributed the number six to the goddess of
love, for it is made by the union of the sexes: from three,
which is masculine since it is odd, and from two, which is
feminine since it is even. The ancient Hebrews explained
that God chose to create the world in six days instead of
one because six is the more perfect number.

Numbers that are mathematically “perfect” in the ways
of six—the sum of all their divisors except themselves—
have been interesting to mathematicians, and to others, since
the time of the Greeks. But starting out with six, mathemati-
cians in more than two thousand years had turned up only
eleven more that met the strict requirements for numerical
perfection.

Then, at the beginning of 1952, as the twentieth century
settled into its second half, a University of California profes-
sor, Raphael M. Robinson (1911–1995), using the computer
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at what was then the Institute for Numerical Analysis on
the Los Angeles campus of the University, turned up the
first new perfect number in seventy-five years and, in the
next few months, four more that brought the total of known
perfect numbers to seventeen.

Robinson’s discovery did not attract the attention of the
press. Perfect numbers were not useful in the construction
of bombs. In fact, perfect numbers were not useful for any-
thing at that time. But they were interesting to mathemati-
cians (they had interested Gauss), and their story is an inter-
esting one. It begins, like most stories in mathematics, with
the Greeks, who, having noticed the fact that six (1 + 2 + 3)
and twenty-eight (1 + 2 + 4 + 7 + 14) are both the sum of
all their divisors except themselves, wondered how many
numbers there were that were like them. The basic similar-
ity of six and twenty-eight is apparent when both are repre-
sented algebraically. They are of the form 2n−1(2n − 1):

6 = 21(22 − 1), or 2 × 3,

28 = 22(23 − 1), or 4 × 7.

Euclid, more than two thousand years ago, had proved
that all numbers of this form are perfect when 2n − 1 is di-
visible only by itself and one or, in other words, prime. For
2n − 1 to be prime, n must also be prime. In the case of 6 we
see from the above that the prime essential to its formation
is 3 or 22 − 1; in the case of 28, 7 or 23 − 1. Euclid, however,
did not prove that all perfect numbers are of this form, and
he left for future mathematicians a question:

How many perfect numbers are there?

In the following centuries, the numbers seemed to gain
more ethical than mathematical significance. L. E. Dickson
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(1874–1954) in his history of the theory of numbers reports
that in the first century A.D. numbers were separated into
abundant (those like twelve whose divisors total more than
themselves), deficient (those like eight whose divisors total
less), and perfect; and the moral implications of the three
types were carefully analyzed. In the eighth century it was
pointed out that the second origin of the human race was
made from the deficient number eight, since in Noah’s Ark
there were eight human animals from whom the entire hu-
man race sprang, this second origin being thus more imper-
fect than the first, which was made according to the per-
fect number six. In the twelfth century the study of perfect
numbers was recommended in a program for “Healing of
Souls.”

Nobody, however, answered Euclid’s question.
Nobody, in fact, seemed much concerned with the math-

ematics of the subject. The first four perfect numbers—6,
28, 496 and 8,128—had been known as early as the first cen-
tury. The basic theorem concerning perfect numbers had
been enunciated by Euclid three hundred years before the
birth of Christ. Yet it was not until fourteen centuries later,
in spite of all the speculation on the subject in general, that
the fifth perfect number was correctly stated as 33,550,336.

Looking smugly back from the age of computers, we
may forget that the discovery of perfect numbers, even those
much smaller than the largest ones known today, has al-
ways involved a considerable amount of computation. Let’s
take this fifth perfect number as a case in point. From it the
reader can get some idea of just how much of the third “R”
was behind the announcement that it is perfect.

To prove that 213−1(213 − 1), the representation of 33,550,
336 according to Euclid’s formula, is perfect, we must prove
that 213 − 1 is prime. First we must compute the number
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represented by 213 − 1. The multiplication of thirteen 2s
gives us the product 8,192, which less 1 gives us 213 − 1 as
8,191.

To ascertain whether 8,191 is prime, we must try to di-
vide it by all the primes below its square root, which falls
between 90 and 91. There are twenty-four primes below 90.
Only after we have verified that none of these divides 8,191
can we say that it is prime. For this job we need an accurate
listing of the primes and accurate reckoning at every step.
When we recall that reckoning up until this time was done
without a practical system of arithmetic notation, we do not
marvel that it was so long until the fifth perfect number was
accurately stated. For after we have ascertained that 8,191 is
indeed prime, we must multiply it by 4,096 (or 212) to obtain
33,550,336, the fifth perfect number.

The reader with time to spare may be interested in try-
ing his skill on 217−1(217 − 1), which is the next possible
perfect number of Euclid’s form.

Because perfect numbers are, after the fourth, so large
and offer so many opportunities for error in computation, a
great many imperfect numbers were announced at various
times as perfect.

There was a tendency also to guess at the unknown num-
bers from the known. On the basis of the first four perfect
numbers—6, 28, 496 and 8,128—two guesses were widely
accepted. One was that the perfect numbers ended alter-
nately in 6 and 8. As it happens, they do end in 6 or 8
but not alternately or in any discernible pattern. That hy-
pothesis went by the board with the announcement of the
sixth perfect number—8,589,869,056, which ends in 6 when
it “should” end in 8. The other guess was that perfect num-
bers appeared in regular fashion throughout the numbers,
one (6) in the units, one (28) in the tens, one (496) in the
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hundreds, one (8,128) in the thousands. The discovery of
the fifth perfect number, which left the ten thousands and
the hundred thousands without their allotted perfect num-
bers, disproved this hypothesis.

In the perfect number business, though, anybody’s guess
appears to have been as good as anybody else’s. The fact
that a guess was wrong did not write it off the records. The
particular primes of the form 2n − 1 that are necessary for
the formation of perfect numbers of Euclid’s form bear for
all time the name of a man who guessed wrong.

Marin Mersenne (1588–1648) was a friar whose best
claim to mathematical importance lay in the fact that he
was a favorite correspondent of both Fermat and Descartes.
It was in 1644 that he established another claim to math-
ematical importance and linked his name forever with the
perfect numbers. Since with the fifth perfect number even
the necessary primes were enormous, it had become nec-
essary to describe all perfect numbers by the prime values
of n in the expression 2n − 1. The five known perfect num-
bers were by this system designated as 2 (for the exponent
in 22 − 1, the prime necessary for the formation of 6), 3, 5, 7
and 13. Mersenne now announced that there were only six
more such prime exponents up to and including 257. He
listed them as 17, 19—which in his time had already been
shown to be prime by Pietro Cataldi (1552–1626)—31, 67,
127 and 257. This last and largest number he announced as
prime (2257 − 1) is

231584, 178474, 632390, 847141, 970017, 375815, 706539,

969331, 281128, 078915, 168015, 826259, 279871.

It was obvious to other mathematicians that Father
Mersenne could not have tested for primality all the num-
bers that he had announced as prime. But neither could
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they. One contemporary suggested hopefully that the ba-
sis of Mersenne’s assertion was doubtless to be found in his
stupendous genius, which perhaps recognized more truths
than he could demonstrate.

At the time Mersenne announced his primes—primes
far beyond those he listed are still designated by his name—
the only method of testing the primality of a number was
the one previously mentioned of actually dividing into it all
the primes smaller than its square root. This was a method
so time consuming that for some Mersenne numbers even
the computers of the distant future would not be able to
achieve results with it. But by this laborious method mathe-
maticians did test or re-test the primes announced by
Mersenne for the sixth, seventh and eighth perfect num-
bers. The eighth (231 − 1) was tested and found prime by
Euler, busy as usual doing what needed to be done in math-
ematics.

A mathematical writer commented that the perfect num-
ber formed from Euler’s prime would quite probably be the
last to be discovered: “For, as [the perfect numbers] are
merely curious without being useful, it is not likely that
any person will attempt to find one beyond it.” Little did
he reckon with the curiosity of mathematicians when the
question is whether a particular kind of prime number is
finite or infinite.

It was Euler who made the most important contribution
since Euclid to the question of the perfect numbers. Eu-
clid had proved that any number of the form 2n−1(2n − 1)
is perfect when 2n − 1 is prime, but he did not prove that
all perfect numbers are of this form. He proved that all
even perfect numbers are. There are, as far as is known, no
odd perfect numbers; but it has never been proved that there
are none.
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Euler’s perfect number remained the largest known for
more than a hundred years. Then in 1876 Edouard Lucas
(1842–1891) worked out the method that we have already
described in “Three” by which a possible prime can be test-
ed without factoring. At the same time he announced that
he had tested 2127 − 1 and found it prime. Although in
1891 in his Theorie des Nombres he changed his mind and
listed the number as “undecided,” after further verification
in 1913 it was accepted as the largest known Mersenne
prime.

Even with the help of Lucas’s much more efficient
method of testing, mathematicians were not able to finish
testing all the Mersenne numbers until the following cen-
tury. The last, 2257 − 1, required over a year of work on
a standard electric calculating machine and then another
year for checking the result. It is not prime. Since it was
the largest guess Mersenne had made, the final score on the
mathematician-friar could at last be reckoned. In addition
to the five perfect numbers already known at the time he
made his famous announcement, he had listed four more
correctly (17 and 19—both already established as prime—
and 31 and 127) and two incorrectly (67 and 257); and he
had omitted three that he should have included since they
are below 257 (61, 89 and 107).

As the twentieth century went into its second half, there
were twelve known perfect numbers, the largest being
2126(2127 − 1), which had been discovered seventy-five
years previously by Lucas. There had been one venture in
1951 with the newly invented computer, but it had merely
verified M127 about which Lucas had been a bit doubtful.

Euclid’s question was still unanswered.
The machine that in 1952 broke the barrier in the

Mersenne numbers was the National Bureau of Standards
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Western Automatic Computer, known as the SWAC. It was
at that time one of the fastest computers in existence.1 It
could add two ten-digit figures in sixty-four microseconds.
Since a microsecond is one-millionth of a second, this meant
that the SWAC could do an addition of that type 156,000
times as fast as a human being could—if a human being
could do it in ten seconds. These figures are not impressive
today, but in 1952 they were very impressive. The SWAC
extended man’s ability to compute just as the then new Palo-
mar telescope, which was its neighbor in southern Califor-
nia, extended his ability to see.

But the SWAC was no mathematician. Except for its
speed and accuracy it was inferior to any human being who
knew how to add, subtract, divide and multiply efficiently.
For it could not compute anything it had not been told how
to compute.

Robinson, in Berkeley, had never seen the machine in
Los Angeles, but he set out to program the SWAC to test
Mersenne numbers by using only the manual.

The job was to break down the Lucas method of test-
ing primality into a program of the thirteen kinds of com-
mands to which the SWAC responded. The job was compli-
cated by the fact that while the machine was built to handle
numbers of 36 bits, the numbers involved ran to 2,300 bits.
The total memory of the machine was only 256 words, each
word consisting of 36 bits and a sign, so a number of ap-
proximately 2,300 bits required 64 words. But for the test-
ing by Lucas’s method the number would also have to be
squared. Thus one number could use up half the memory
of the machine. It was, Robinson found, very much like try-
ing to explain to a human being how to multiply hundred-

1The Bureau of Standards had two computers, the SEAC on the east
coast and the SWAC on the west.
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digit numbers on a desk calculator built to handle ten-digit
numbers.

The program had to be written entirely in machine lan-
guage. One hundred and eighty-four separate commands
were necessary to tell the SWAC how to test a possible prime
by the Lucas method. The same program of commands,
however, could be used for testing any number of the
Mersenne type from 23 − 1 to 22297 − 1. The latter was the
largest that could be handled.

There was still more to be done before the machine could
“solve” the problem. The commands had to be coded. This
was done by using the letters and signs of the standard
typewriter keyboard, the letter “a,” for example, being the
code letter for the command to add. Coded, the commands
were then transferred to a heavy paper tape so that they be-
came merely an arrangement of perforations that could be
recognized by the machine either as an electric impulse (a
hole punched in the tape) or as the lack of an impulse (no
hole).

Such simplicity of language was the main factor in the
SWAC’s then amazing computing speed. Even the enor-
mous numbers it worked with were expressed wholly as 1s
(impulses) or 0s (no impulses). The SWAC, instead of using
the decimal system for its computations, used the binary
system that we described in “Two.”

D. H. Lehmer (1905–1991), the Director of the SWAC,
and his staff had not been unduly excited when Robinson
sent his program down to Los Angeles. After all, their own
programs, in spite of their familiarity with the machine and
its manual, almost never ran without error the first time.
They put Robinson’s program in a drawer for when they
had the time to show him it would not run. But Robin-
son kept insisting that they run his program. Finally, after
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a fortnight, muttering that Robinson would find out pro-
gramming a computer from the manual was not easy, they
took his work out of the drawer where it had languished.

On the evening of January 30, 1952, the program of com-
mands, coded and punched on a twenty-four-foot tape was
placed in the machine. In comparison to the seconds it
would take the SWAC to obey all the commands on the
tape, the insertion itself took an extremely long time—
several minutes. All that was then necessary to test the pri-
mality of any Mersenne number was to insert the exponent
of the new number as it was to be tested. The machine could
do the rest, even to typing out the result—continuous ze-
ros if the number was a prime, a number written out to the
base-sixteen if it was not.

The proof of primality would be in a string of continu-
ous zeros because by the Lucas test (described in “Three”)
a number is prime only if it leaves no remainder when di-
vided into a certain term in a certain series. The version of
the Lucas test that was used by Robinson was an improve-
ment on the test by Lehmer, the director of the Institute.

The human operator of the SWAC, sitting at a desk in
front of the large machine, inserted the first number to be
tested. He typed it out backwards, not in the binary sys-
tem, which would have made his job too lengthy, but in
the base-sixteen so that the machine itself could transpose
it into the binary. He then pressed a button on the panel of
his desk, and the machine, following the one hundred and
eighty-four instructions it had received, began the test for
primality of the first number.

The first number chosen to be tested was 2257 − 1, the
largest of the eleven numbers announced as prime by
Mersenne. Twenty years before the SWAC test, it had been
tested and found not prime by Lehmer and his wife, Emma
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Trotsky Lehmer (1906). It had taken them two hours a day
for a year to make the test using a handcranked electric cal-
culating machine that made so much noise the neighbors
complained if they worked at night. This evening both the
Lehmers were in the room to see the machine, in a frac-
tion of a second, arrive at the answer that had taken them
an arduous seven hundred and some hours: 2257 − 1 is not
prime.

The SWAC then continued on a list of larger possible
primes. Mersenne had said, four hundred years before,
that to tell if a given number of fifteen or twenty digits is
prime, all time would not suffice for the test; but he had
not foreseen a shortcut like the Lucas-Lehmer method or a
machine like the SWAC. One by one, by that method, the
SWAC tested forty-two numbers, the smallest having more
than eighty digits. Not one proved prime.

It was not until ten o’clock that evening that the long
awaited string of zeros came out of the machine. The num-
ber just tested, briefly expressed as 2521 − 1, was the first
new Mersenne prime discovered in seventy-five years. The
new perfect number that could be formed from it—
2520(2521 − 1)—was only the thirteenth perfect number to
be discovered in almost twice that many centuries.

The fact that Robinson’s program ran successfully on
its first trial created something of a sensation. “That the
code was without error was (and still is) a remarkable feat,”
wrote John Todd and Magnus R. Hestenes in their history
of the Institute for Numerical Analysis.

For a period of approximately two hours on the night of
January 30, 1952, 2521 − 1 had the distinction of being the
largest known prime number as well as the largest known
Mersenne prime. Then shortly before midnight the string
of zeros announcing another, larger prime, 2607 − 1, came
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up. Over the next several months Robinson’s program pro-
duced a total of five previously unknown Mersenne primes.
The testing of the thirteenth Mersenne prime had taken the
SWAC approximately one minute—the equivalent of a
year’s full-time work for a man. The seventeenth and last
took the machine an hour. It would have taken a human
being a lifetime.

Some thirty years later Robinson ran his program on one
of the first IBM PC’s, which turned out to be twice as fast as
the SWAC.

In the last fifty odd years the number of known
Mersenne primes (and hence the number of known perfect
numbers) has almost tripled. At the time (1992) that I was
working on the fourth edition of From Zero to Infinity, there
were thirty-one, the most recently discovered Mersenne
prime having been found six years earlier. But ever improv-
ing technology and the importance of enormous primes in
cryptology have resulted in what might be called a great
leap forward. Since 1996, when George Woltman organized
The Great Internet Mersenne Prime Search—GIMPS, as it is
called—has had what it describes as “a virtual lock” on the
largest known prime number:

“This is because its excellent free software is easy to in-
stall and maintain, requiring little of the user other than
to watch and see if they find the next big one!” GIMPS
announces on its website, and adds, “Tens of thousands
of users have replaced the ubiquitous inane screen savers
with this much more productive use of their computers’
idle time.”

As I type this, pulling up the official web site2 of GIMPS,
I learn that the largest known Mersenne prime—at this

2http://primes.utm.edu/largest.html.
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moment—is 225,964,951 − 1, the 42nd known Mersenne prime,
a number of 7,816,230 digits, discovered on February 26,
2005 by a participant in GIMPS, a German ophthalmologist.

Yet, by a proof as old as Euclid, we know that the per-
fect number that results from this prime, unbelievably enor-
mous though it is, is the sum of all its divisors except itself—
just as surely as we know that 6 = 1 + 2 + 3 and 28 =
1 + 2 + 4 + 7 + 14.

On the GIMPS website Gauss is quoted as writing in the
Disquisitiones:

“The problem of distinguishing prime numbers from
composite numbers and of resolving the latter into their
prime factors is known to be one of the most important and
useful in arithmetic. It has engaged the industry and wis-
dom of ancient and modern geometers to such an extent
that it would be superfluous to discuss [it] at length. . . .
Further the dignity of the science itself seems to require that
every possible means be explored for the solution of a prob-
lem so elegant and celebrated.”

But how many perfect numbers are there? Is their num-
ber finite or infinite?

Euclid’s question is still unanswered.

· O L D F A V O R I T E S ·

Not quite so old as perfect numbers, but quite old, are
the amicable numbers. These are pairs of numbers such that
each is the sum of the divisors, including one, of the other.
Today many pairs of these numbers are known. Euler pub-
lished at one time a list of 64, two of which turned out to
be false. But the ancients knew only one, a pair of numbers
that they considered the symbol of perfect harmony. One
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member of the pair is 220, and the reader may like to see if
he can determine the other.

· A N S W E R ·

Thedivisorsof220are1,2,4,5,10,11,20,22,44,55and110;and
theseaddupto284,thedivisorsofwhichaddupto220.
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The number seven has been held in esteem since antiquity
as being unique among the first ten. It is the only digit that
is not produced by any of the others—with the exception
of one, of course—and that does not produce any other: six,
eight, nine and ten being produced by the primes two, three
and five, and all being produced by one, the unit.

“On which account,” one ancient philosopher concluded,
“other philosophers liken this number to Victory, who had
no mother, and to the virgin goddess, whom the fable as-
serts to have sprung from the head of Jupiter: and the
Pythagoreans compare it to the ruler of all things.”

If he had been less of a numerologist and more of a
mathematician, he might have pointed out other more sig-
nificant ways in which seven is unique among the first ten
numbers. Seven, for instance, is the only prime among the
digits that is not one more than a power of two: two is
20 + 1; three is 21 + 1; five is 22 + 1; but seven is one less
than a power of two, 23 − 1. The regular polygon with seven
sides is the first with prime number of sides that cannot be
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constructed by the traditional methods of straightedge and
compass alone.

One of the most interesting dramas in the theory of
numbers is the discovery of a relationship between these
last two apparently unrelated characteristics of the number
seven. It is a story that is studded with some of the greatest
names in mathematics.

For the beginning we must go back again to the Greeks.
To the Greeks, as we have pointed out, numbers were also
shapes. Each individual number was thought of as a poly-
gon “with as many angles as units”: three, a triangle; four, a
square; five, a pentagon; six, a hexagon; seven, a heptagon;
and so on. This interest in the shape of numbers extended
even to their construction.

The Greeks were especially fond of limiting their con-
structions to those that were possible with straightedge
(a ruler without any markings upon it) and compass alone
and by proved principles of geometry. Their most famous
construction problems were the trisection of an angle, the
doubling of a cube and the squaring of a circle. All of these
are now known to be impossible when the tools of construc-
tion are limited, as the Greeks limited them, to straightedge
and compass. Without that limitation all are possible.

(Even though these famous constructions have been
proved impossible, it is a rare student who comes to geom-
etry for the first time without trying to make at least one
of the constructions (the trisection of the angle is the most
popular) and dreaming of achieving mathematical immor-
tality when he should be studying Euclid’s Elements.)

The problem of constructing regular polygons with
straightedge and compass alone is somewhat different in
that it is possible to construct some polygons, impossible
to construct others. The man who determined the criterion
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for such constructibility was well on his way to mathemat-
ical immortality with his discovery before he was nineteen
years old. But that was long after the Greeks.

The Greeks were easily able to construct a triangle and a
square within a circle. Constructing a pentagon was some-
what more complicated but, thanks to the Pythagoreans, it
was still possible under the classic restrictions. By bisect-
ing the sides of these constructions they produced the other
polygons with which we are most familiar—the hexagon,
the octagon, the decagon and the dodecagon, all with equal
sides and equal angles. But they could not, again under
the classic restrictions, construct a regular seven sided poly-
gon, a heptagon. They stopped, defeated, at seven. Were
there more constructible polygons? If there were more, was
their number finite or infinite? These questions remained
unanswered for two thousand years. In that time no one
constructed—with straightedge and compass alone—a reg-
ular prime polygon with sides numbering more than five.

The opening act of the drama of the constructible poly-
gons had taken place in Greece. Act II, scene 1, was laid in
France; scene 2, in Russia. At the time, no one in the audi-
ence suspected that the second act was even connected with
the first. In it the leading role was played by Pierre Fermat,
and the role he played was that of a very great mathemati-
cian being dead wrong.

Fermat was concerned, not with the constructible poly-
gons, but with a particular form of number that he believed
to be always prime. In the theory of numbers the search for
a form that will invariably generate primes has been inten-
sive. The only plausible conjecture anyone has made on the
subject was made by Fermat. As it happened, his conjec-
ture was false, and the numbers that still bear his name are
a permanent reminder of his mistake.

· 101 ·



�

�

�

�

�

�

�

�

· F R O M Z E R O T O I N F I N I T Y ·

It was the great mathematician’s belief that numbers of
the form 2n + 1 when n is a power of two were, without
exception, prime. The first few numbers of the form 22t

+ 1
are certainly prime:

220
+ 1 = 3,

221
+ 1 = 5,

222
+ 1 = 17.

Fermat himself tested and found prime the next two of the
form, 257 and 65,537. These are usually represented by a
capital “F” and a subscript having the value of the respec-
tive power of two involved as F3 and F4. But testing F5 was
beyond even Fermat. In spite of its tidy representation by
a capital letter and a single digit subscript, F5 is a number
that runs into the billions:

F5 or 225
+ 1 = 4, 294, 967, 297.

Fermat made many attempts to find a factor for F5
(“. . . j’ai exclu si grande quantité de diviseurs par demon-
strations infaillibles,” he wrote in 1640) and came to the
conclusion (although being a mathematician he never went
beyond “I think”) that F5, like the five numbers of that form
that precede it, was prime and that all subsequent numbers
of the form 22t

+ 1 were prime. These numbers are now
permanently known as the Fermat numbers.

Some might consider the fact that the first five numbers
of a particular form are prime a verification that all numbers
of that form are prime, especially when the sixth is in the
billions. For a mathematician, however, a sampling of any
number of numbers is not enough to make a final statement
about all numbers.
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(In sciences other than mathematics a sampling must of-
ten serve as verification of a hypothesis. Mathematicians,
who by the nature of their science can usually prove or dis-
prove a hypothesis with finality, have a smug little joke that
they call “The Physicist’s Proof That All Odd Numbers Are
Prime.” The Physicist, so the joke goes, starts out by clas-
sifying one as prime because it is divisible only by itself
and one. Then three is prime, five is prime, seven is prime,
nine—divisible by three? well, that’s just an exception—
eleven is prime, thirteen is prime. Obviously all odd num-
bers with the exception of nine are prime.)

A mathematician’s statement must be proved. To prove
his, Fermat would have had to show that every number of
the form 22t

+ 1 must be prime. To disprove it, someone had
only to show that just one number of the form 22t

+ 1 is
divisible by a number other than itself and one.

This is exactly what someone did, but not until almost
exactly a century after Fermat made his statement about “si
grande quantité de diviseurs” that he himself had tried on
F5. This someone was an equally great mathematician—
Leonhard Euler, then mathematician at the court of St. Pe-
tersburg. Euler, as we have mentioned before, did not like
to see mathematical questions lying around unanswered.
Did the form 22t

+ 1 invariably generate primes, as Fermat
had conjectured that it did, or did it not? Answering this
question with finality in the negative could be as simple
as finding a divisor of F5, and this is what Euler set out
to do.

He first determined that a factor of F5, if such existed,
would have to be a number of the form 25+1k + 1, or
64k + 1. With this discovery he greatly simplified the prob-
lem of testing the primality of F5. Only certain possible
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primes of the form 64k + 1 needed to be tried. The first
few are 193, 257, 449, 577 and 641. As it happens, it was 641
that neatly divided F5, or 4,294,967,297, and settled for all
time that Fermat had been wrong. The form 22t

+ 1 does
not invariably generate primes.

By all rights the curtain should have been rung down
on the Fermat numbers. But it wasn’t. These numbers,
whether or not they are prime, are still very interesting.
Like the powers of two from which they are formed, they
are obviously infinite. Yet in all the infinitude of natural
numbers there is not one number that divides more than one
of the infinitude of Fermat numbers. This means that every
one of the Fermat numbers (there being an infinite number
of them) has a prime factor that not one of the others has.1

Mathematicians went right on looking for primes among
the Fermat numbers after Euler had shown that all of them
could not possibly be prime. There was still a mathemati-
cally interesting question to be answered. Were there any
primes at all among the Fermat numbers beyond F4? Or
had it been the great mathematician’s ill fortune that the
only primes in the infinitude of numbers of the form 22t

+ 1
are the first five? In the second millennium the search con-
tinues, futile to date.

The third act of the drama took place in Germany, in
1801, with the publication of a small book. Two thousand
years after the Greeks and a century and a half after Fermat,
it brought to the stage again the five Fermat numbers, this
time, to everyone’s surprise, in the company of the ancient
problem of the constructible polygons.

1This fact has been used for another neat proof of Euclid’s theorem that
the number of primes is infinite. The proof is by George Polya, whose very
useful and untechnical little book, How to Solve It, is highly recommended
to the reader.
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The name of Carl Friedrich Gauss, the very young au-
thor of the book, is the only name in the theory of numbers
that outshines the other names in this drama. Gauss was
one of the three greatest mathematicians who ever lived
(Archimedes and Newton being usually named with him),
but in the branch of mathematics that is the theory of num-
bers no name is coupled with his. The small book published
in 1801, when Gauss was twenty-four, was titled Disquisi-
tiones Arithmeticae. Most of the work in it was done by him
between the years of eighteen and twenty-one, the most
profitable of his many profitable years. The Disquisitiones
Arithmeticae is credited with systematizing the then com-
pletely unsystematized theory of numbers and marking out
a path that other, lesser men were to follow gratefully.

It is appropriate, as we shall see, that Gauss took up the
ancient problem of the constructible polygons in the sev-
enth section of the Disquisitiones. This problem was not one
that anybody expected to find in a book on the theory of
numbers, for since the time of the Greeks it had been con-
sidered a problem in geometry. When it was solved, how-
ever, it was solved by an arithmetician who attacked it with
algebra and found the answer in arithmetic.

Starting from the fact that the only constructible lengths
are those that can be expressed algebraically using the four
basic operations of arithmetic and square root, Gauss was
able to show that a polygon with a prime number of sides
can be constructed only if the prime is a prime of the form
22t

+ 1, and none other—in short, the favored primes of
Pierre Fermat.

In general then, a regular polygon of n sides can be con-
structed with straightedge and compass alone only when n
is a power of two, or a Fermat prime, or the product of a
power of two and distinct Fermat primes.
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With the general solution of the problem Gauss had add-
ed to the list of the basic constructible polygons just three:

the regular polygon with 17 sides (F2),
the regular polygon with 257 sides (F3),
the regular polygon with 65,537 sidees (F4).

Gauss, whose later mathematical achievements were nu-
merous, was always very proud of this one, made when he
was just eighteen years old. Supposedly it was the discov-
ery that decided him between a career in philology and one
in mathematics. He even suggested that a polygon with
seventeen sides should be inscribed on his gravestone, as
the sphere and circumscribed cylinder (suggesting the for-
mula for the volume of the sphere) decorated Archimedes’
tomb. But the stone mason objected that he could not carve
a 17-sided polygon that would not look more like a circle.
Whether Gauss ever made such a suggestion, he did point
out, after his solution of the problem:

“There is certainly good reason to be astonished that
while the division of the circle in three and five parts having
been known already at the time of Euclid, one had added
nothing to these discoveries in a period of two thousand
years and that all geometers have considered it certain that,
except for these divisions and those that may be derived
from them. . . , one could not achieve any others by geomet-
ric constructions.”

There is no seventeen-sided polygon on Gauss’s grave-
stone, but one does appear on the monument erected to him
in his native town of Brunswick.

But even Gauss did not answer the question whether the
polygon of 65,537 sides (F4) is the last that is constructible
by the Greek requirements of straightedge and compass
alone. This is a question that can be answered only when
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certain questions concerning the Fermat primes are answer-
ed. Is F4 the last prime of the form 22t

+ 1? If there are more,
which seems increasingly doubtful, is their number finite—
or infinite?

Since the time of Fermat a great many mathematical
man-hours have been expended on these questions. The
publication of the Disquisitiones Arithmeticae, giving as it did
a new significance to the Fermat primes, made the answers
even more interesting. Since Fermat made his conjecture,
all that has been learned in the intervening centuries is that
all subsequent Fermat numbers that have been tested are
composite.

There are three methods for determining whether a Fer-
mat number is composite. The first is a test similar to the
Lucas test mentioned in “Six.” As a result some Fermat
numbers have been known to be composite years before a
factor has been found. The numbers F7 and F8, for instance,
were shown to be composite in 1905 and 1909 but factors
were not found until 1970 and 1980. No factor has yet been
found for F14 although it has been known to be compos-
ite since 1963. The test mentioned above, which was first
stated in 1877, was used in 1987 as part of a long-term test
of the hardware reliability of the Cray-2 supercomputer. In
that year Jeff Young and Duncan A. Buell established the
composite character of F20 after a total of approximately
ten CPU days on the Cray-2. They concluded that to de-
termine the character of F22, which was at that time the
smallest Fermat number of unknown character, they would
need a little more than one hundred and sixty CPU days.
Since that time, however, F22, F23, F24, F28 and F31 have all
been shown to be composite. But while we now know that
F20, F23 and F24 are composite and therefore the product
of a unique combination of prime factors, we do not know
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(as we do not know in the case of F14) even one of their
factors.

(As in the case of the Mersenne primes, we must refer
the reader to the internet for more up to date information.)

Incidentally, the test mentioned above can be used only
for “comparatively small” Fermat numbers. Large numbers
of that class must be attacked with a formula similar to the
one used by Euler when he disposed of Fermat’s conjecture
by showing that F5 is composite.

The two other methods of testing a Fermat number for
primality are either to find a single factor of the number or
to factor the number completely—the latter, of course, being
almost always much more time consuming.

The Fermat numbers that have been tested do not in-
clude, however, all those that are below the largest Fermat
number known to be composite. The explanation for this
phenomenon is simply that the easiest numbers to establish
as composite are those that have a prime factor among the
first primes that would be tried as factors. For this reason,
to bring the example down to a less olympian numerical
level, it is much easier to factor a number like 14,997 than
a smaller number like 8,633. The first prime that divides
14,997 is 3, but the first prime that divides 8,633 is 89.

We can find a somewhat similar example among the Fer-
mat numbers in the case of F73, the character of which was
known as early as 1905. At the time of the invention of the
computer, F73 was still the largest known composite Fer-
mat number. In fact, it is probably the largest number the
character of which was investigated in the pre-computer
age. The number represented by F73 is so large that if it
were printed in the decimal system in standard type and in
standard-size volumes, all the libraries in the world could
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not hold it.2 Fortunately, however, it and even larger Fer-
mat numbers do not have to be written out in the decimal
system before they can be factored. If a number Ft can be
factored, the factor must be a number of the form 2t+2k +
1—an improvement over the 2t+1k + 1 mentioned earlier in
connection with Euler, since it eliminates even more primes
as possible factors. In the case of F73 this means a number
of the form 275k + 1. There are good mathematical reasons
for not trying 1, 2, 3 or 4 for the values of k. So instead we
take 5 and try 275 × 5 + 1 as the first possible factor of F73.
It is indeed, as it turns out, the smallest prime factor. Thus,
with very little work, the composite character of F73 was
determined early in the twentieth century.

It is odd and interesting that among the Fermat numbers
now known to be composite, eight have factors of the form
5 × 2n + 1. These include the smallest composite Fermat
number (F5) and the largest (F23,471) known to be composite.
In two other cases there is a factor of the form 3× 2n + 1 and
in four cases, a factor of the form 7× 2n + 1. (The value of n
must be at least t + 2 for a factor of Ft.) Listed below are the
cases involving these small primes. Not unexpectedly, the
discovery of these numbers, unlike the discovery of other
composite Fermat numbers, took place chronologically.

Oddly enough, while the complete factorization of F11
in 1988 passed virtually unnoticed in the nonmathemati-
cal world, the factorization two years later of F9, billed by
mathematicians interested in such things as one of “The Ten
Most Wanted Numbers,” attracted media attention from
coast to coast. The New York Times headlined the story as
GIANT LEAP IN MATH and noted that it was “an advance
that could imperil secrets.” This special attention was due

2We have taken our estimate of the size of F73 from W. W. Rouse Ball’s
Mathematical Recreations and Essays, a classic in its field.
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Ft Factor Date of Discovery

F5 5 × 27 + 1 1732
F12 7 × 214 + 1 1877
F23 5 × 225 + 1 1878
F36 5 × 239 + 1 1886
F38 3 × 241 + 1 1903
F73 5 × 275 + 1 1905
F117 7 × 2120 + 1 1956
F125 5 × 2127 + 1 1956
F207 3 × 2209 + 1 1956
F284 7 × 2290 + 1 1956
F316 7 × 2320 + 1 1956
F1,945 5 × 21,947 + 1 1957
F3,310 5 × 23,313 + 1 1979
F23,471 5 × 223,473 + 1 1984

mostly to the fact that the factoring was a group project, uti-
lizing several hundred mathematicians and about a thou-
sand computers. The combination of human and computer
power “brought the number in” speedily enough to show
that the method is a real threat to “public codes.” In these
codes messages can be encoded using some very large num-
ber of a hundred digits or more that does not have to be se-
cret because the messages can be decoded only by someone
who knows the prime factors of that number.

“For the first time,” announced the spokesperson for the
group that did the complete factoring of F9, a number of 155
digits, “we have gotten into the realm of what is being used
in cryptography. . . it is impossible to guarantee security.”

Fifty years ago, in the first edition of this book, we wrote:
“It is not likely that the character of F13 [then the largest
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untested Fermat number] will be determined in the near
future. Nor does it seem likely that the general question
of whether the Fermat primes are finite will be determined
soon.”

We were wrong on the first count but right on the
second.

The question of the constructible polygons is still open.
Gauss was able to tell us that the regular polygon of seven-
teen sides (F2) can be constructed by straightedge and com-
pass alone; but even he, great as he was, was not able to tell
us whether the polygon with 65,537 sides (F4) is the last.

It seems unlikely that ten years from now there will be
still another “Anniversary Edition” of From Zero to Infinity.

What is more than likely, in fact certain, is that there will
be larger and still larger and still larger Fermat numbers
that will have been proved composite. It has seemed, there-
fore, pointless to include in this edition information “at this
time” regarding the largest Fermat numbers that have been
factored.

What is less likely but not impossible is that some math-
ematician, perhaps still unborn, will come forth with
A PROOF that there are no more Fermat primes beyond the
first five that Fermat himself knew.

So the story of the constructible polygons and of the
Fermat primes does not end, but merely stops. It is a story
studded with some of the greatest names in mathematics,
but there is still a place in it for another name.

· A C H A L L E N G E ·
Mersenne and Fermat numbers have much in common

besides the fact that they both bear the names of men who
guessed wrong. Mersenne numbers are of the general form
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2n − 1; Fermat numbers, of the form 2n + 1. Each form will
produce primes only for certain limited values of n, and
not always for these. For all other n it is not even nec-
essary to write a number out to show that it can be fac-
tored. The problem stated below will make the challenge
of both Mersenne and Fermat numbers more understand-
able.

Problem: For any positive integer s, xs − 1 is algebraically
divisible by x − 1. Similarly, if s is odd, xs − 1 is divisible by
x + 1.

x2 − 1 = (x − 1)(x + 1)

x3 − 1 = (x − 1)(x2 + x + 1)

x3 + 1 = (x − 1)(x2 − x + 1)

It follows that 2rs − 1 = (2r)s − 1 is divisible 2r − 1 for
all s and that 2rs + 1 = (2r)s + 1 is divisible 2r + 1 if s is
odd. The following are special cases of the identities written
above:

255 = 28 − 1 = (24 − 1)(24 + 1) = 15 × 17,

511 = 29 − 1 = (23 − 1)(26 + 23 + 1) = 7 × 73,

513 = 29 + 1 = (23 + 1)(26 − 23 + 1) = 9 × 57.

Using the facts stated, the reader may enjoy finding some
divisors of 212 − 1 (4,095) and of 212 + 1 (4,097). He may also
consider in what cases the above rule does not give any fac-
tors of 2n − 1 or of 2n + 1 and try to draw a conclusion about
when these numbers may be prime.
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Thenumber212−1=4,095isdivisibleby22−1=3,23−1=7,
24−1=15=3×5and26−1=63=32×7.Aamatteroffact,
4,095=32×5×7×13.
Thenumber212+1=4,097isdivisibleby24+1=17.Actually,
4,097=17×241.
Ingeneral,wecanfindadivisor,otherthanitselfandone,of
2n−1unlessnisprimeandof2n+1unlessnisapowerof2.
Hence,Mersennenumbersarenumbersoftheform2n−1where
nisprime;Fermatnumbersarenumbersoftheform2n+1where
nisapowerof2.Aswehaveseenin“Six”and“Seven,”even
withtheselimitationstheyarenotalwaysprime.Thatiswhy
theypresentsogreatachallengetothemathematicianuntilhe
canprovewhethertheyarefiniteorinfinite.
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The most interesting thing about the number eight is that it
is a cube (2× 2× 2), and the cubes are interesting and tough
numbers. Since the time of the Greeks, who gave them their
solid 3-D name, these numbers, which are the products of
triple multiplication of the same number, have furnished
the higher arithmetic with some of its most difficult prob-
lems. None has equaled in difficulty the problem that is
today very simply the problem of the cubes. In that prob-
lem’s history, the number eight, in addition to being itself a
cube, has been a very significant number.

There are two questions that are usually asked about
any group of numbers, and these have of course been asked
about the cubes:

How can the cubes be generally represented in
the terms of the other natural numbers?

How can the natural numbers be represented in
the terms of cubes?

An answer to the first question dates from the early
Christian era. It is usually credited to Nicomachus, whose
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Introductio Arithmetica in the first century A.D. was the first
exhaustive work in which arithmetic was treated indepen-
dently from geometry. Cubical numbers, Nicomachus stat-
ed, are always equal to the sum of successive odd numbers
and can be represented in this way:

13 = 1 = 1,

23 = 8 = 3 + 5,

33 = 27 = 7 + 9 + 11,

43 = 64 = 13 + 15 + 17 + 19,

. . . .

An answer to the first question about the cubes was easy
to find. (There may of course be other answers.) Answer-
ing the second question, of the general representation of the
natural numbers in terms of cubes, was very difficult; and
the answer when found inconsiderately posed a new, dif-
ferent and much more difficult question about the cubes.

When we speak of “representing” one group of numbers
in terms of another, we may mean either by multiplication
or by addition. It seems natural to think of the primes in
terms of multiplication, and the integers are hence generally
represented as the product of primes.1 On the other hand,
it seems natural to think of the cubes, like the squares, in
terms of addition; the integers are then represented as the

1When mathematicians begin to think of numbers as the sum of primes
they get into fantastic difficulties. In 1742 a Prussian mathematician named
Christian Goldbach (1690–1764) offered what is now known as Goldbach’s
conjecture: every even number greater than four is the sum of two primes.
No one doubted this postulate, but it was not until 1931 that a mathemati-
cian was able to prove that every even number is the sum of not more than
three hundred thousand primes. Since then, it has been proved that every
sufficiently large odd number is the sum of not more than three primes;
hence every sufficiently large even number, of not more than four.
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sums of squares, cubes, biquadrates and the other higher
powers.

Obviously some integers require fewer cubes than oth-
ers for representation as the sum of cubes. A number that is
itself a cube, like eight, requires only one: 23. A number like
twenty-three, which can be represented only in terms of the
three smallest cubes since 33 = 27, requires nine cubes for
representation: 23 + 23 + 13 + 13 + 13 + 13 + 13 + 13 + 13.
Eight, however, like twenty-three, can also be said to be the
sum of nine cubes since to 23 we can add 03 eight times for
a total of nine cubes.

It is apparent then that if there is a number that requires the
most cubes for representation, all numbers can be represented
by that many cubes with the addition of the necessary 03s.
But there was no assurance that there was such a number.
The requirements for cubical representation might increase
as the numbers themselves increase.

There was no serious attempt to answer the second ques-
tion about the cubes until 1772. In that year a similar ques-
tion about the squares, after unbelievable difficulty, had at
last been answered with proof. There is no better exam-
ple in number theory of the fact that it is easier to state
a truth than to prove it. The Four Square Theorem states
that every natural number can be represented as the sum of
four squares. A little computation with the smaller num-
bers suggests that this is quite probably true. It is a the-
orem that is thought to have been familiar to Diophantus.
Certainly it was stated by the translator through whom Fer-
mat became familiar with the problems of Diophantus. It
was then restated as part of a more general theorem and
proved by Fermat. (This was the theorem that we met in
“Five” to the effect that every number is either triangular
or the sum of two or three triangular numbers; square or
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the sum of two, three or four squares; pentagonal or the sum of
two, three, four or five pentagonal numbers; and so on). Al-
though Fermat remarked that no proof ever gave him more
pleasure, as usual the margins of his Diophantus were too
small and the proof died with Fermat. Euler than tackled
the problem of proving the part of the theorem pertaining
to the squares, devoted in fact forty years, off and on, of his
long life to it, without success. Eventually, though, in 1772,
with the help of much of the work Euler had already done,
the Four Square Theorem was proved by Joseph Louis La-
grange (1736–1813), the man Napoleon called “the lofty
pyramid of the mathematical sciences.” A few years later
Euler brought forth a more simple and elegant proof than
Lagrange’s of the theorem that had caused him so much
difficulty, and it is now the proof generally followed.

With a history like this behind its “twin” in the squares,
it did not seem likely that the question of how many cubes
are necessary and sufficient to represent any number as the
sum of cubes would be easy to answer.

The year 1772, in addition to being the year of the long-
sought proof of the Four Square Theorem, offered another
incentive for trying to answer the question of cubical repre-
sentation of numbers. Edward Waring had proposed, with-
out proof, a theorem that went on—and on—from where
the four square theorem left off. Every number, Waring sug-
gested, can be expressed as the sum of four squares, nine cubes,
nineteen biquadrates, and so on through an infinitude of higher
powers. We met Waring in “Three” as the Cambridge profes-
sor who published John Wilson’s unproved test for primal-
ity. Waring was something of a prodigy, being appointed to
the faculty at Cambridge before he had obtained the neces-
sary M.A. degree; as a result it had to be awarded to him
by royal mandate. During his lifetime he was described
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as “one of the strongest compounds of vanity and
modesty which the human character exhibits.” (“The
former, however,” the writer added, “is his predominant
feature.”)

We will not at the moment go into the history of War-
ing’s general theorem. It was Waring’s good luck, not his
fault, that it turned out to be “one of those problems that
has started epochs in mathematics.” (The words are E. T.
Bell’s.) As “Waring’s problem” the theorem has paid off
with an immortality in mathematics that Waring the math-
ematician never earned. (Oddly enough, in the summary
of Waring’s life in the Dictionary of National Biography, his
mathematically famous problem is not mentioned.)

At this point we are concerned less with the general the-
orem than with Waring’s choice of nine as the number of
cubes necessary and sufficient to represent every number as
the sum of cubes. That nine was quite probably the correct
choice could have been suggested to him by a little paper
and pencil work. If we start out to represent every number
as the sum of cubes, we will find by the time we reach one
hundred that none requires more than nine, and only 23, as
we have already mentioned, requires as many as nine. If we
continue past one hundred, we will find that there is not an-
other number after 23 that requires as many as nine cubes
until we get to 239.

It was probably on just such paper and pencil work that
Waring based his statement that every number can be rep-
resented as the sum of nine cubes. It was a good guess, but
nothing more. As we have already seen, there is no assur-
ance implicit in paper work, no matter how far up into the
numbers it is continued, that there are not numbers that re-
quire more than nine cubes for representation even though
we never find them. Nor is there any assurance that the
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number of cubes required does not tend toward infinity as
the numbers themselves do. This is what happens when we
try to represent all numbers as the sum of powers of two,
there being no fixed numbers of powers of two that will be
sufficient for representation of all numbers.

The first step in proving the portion of Waring’s theo-
rem that deals with the cubes was to prove that there ac-
tually exists a finite number of cubes by which every num-
ber can be represented; in short, that the number of cubes
required does not tend toward infinity. The mathematical
symbol selected for this finite number of cubes, if such there
was, was g(3). By implication Waring had stated that such
a g(3) existed and was nine; that g(4), the finite number
of biquadrates necessary for representation of all numbers,
was nineteen; and so on. Unless there existed a g for each
power after g(2), Waring’s theorem had no meaning.There
was no need to prove the existence of g(2), since Lagrange
had already proved (by proving the Four Square Theorem)
that g(2) = 4.

It was not until 1895, more than a century after the pub-
lication of Waring’s theorem, that even the existence, let
alone the value, of g(3) was established. At that time it was
proved that every number can be represented as the sum
of seventeen cubes. This meant that seventeen is sufficient;
that the number of cubes required to represent any number,
no matter what its size, can never be more than seventeen.
Although it had not been proved that the smallest possible
number of cubes necessary to represent all numbers was sev-
enteen, it had been proved that seventeen was a bound to
the number necessary: in short, an estimated value for a
finite g(3).

This was a great step because it disposed of the possi-
bility that the cubes necessary to represent every number
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might, like the numbers themselves, continue to increase.
Now g(3) could be replaced by G(3), the number of cubes
actually required to represent all numbers as the sum of
cubes.

For the next sixteen years mathematicians whittled away
at seventeen, reducing the number of cubes sufficient and
necessary for representation of every number as the sum of
cubes from seventeen to sixteen to fifteen. . . and finally to
nine. This conclusion was reached exactly one hundred and
thirty-nine years after Waring had stated that every number
can be represented as the sum of nine cubes.

Someone not familiar with the problems posed by the
natural numbers might be inclined to think it a testimonial
to Waring’s brilliance to have recognized intuitively what it
took his fellow mathematicians well over a century to come
to by investigation and proof. This is not the case. For one
of the characteristics of the natural numbers—perhaps their
most interesting—is that some of the most easily guessed
relationships among them are the most difficult to prove.

G. H. Hardy, who devoted a great deal of his time to
Waring’s problem, commented to this effect as follows:

“No very laborious computations would be necessary
to lead Waring to a highly plausible speculation, which is
all I take his contribution to the theory to be; and in the
theory of numbers it is singularly easy to speculate, though
often terribly difficult to prove; and it is only the proof that
counts.”2

It was at this point that the problem of the cubes, which
had been difficult enough to take more than a century to

2Hardy is one of the most quotable of modern mathematicians, and it is
only by a determined effort that we have refrained from quoting him even
more often then we have. The reader is again recommended to his little
book A Mathematician’s Apology.
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solve, became an incomparably more difficult—and more
interesting—problem. In the year 1909 it was proved that
the numbers requiring as many as nine cubes for represen-
tation are finite. Perhaps, as was generally suspected, 23
and 239 were the only ones in all the infinitude of numbers
that require nine cubes.

What is the significance of the fact that only a finite num-
ber of numbers require as many as nine cubes? It is that
there is some last number that requires nine cubes. From
that number on, eight cubes are sufficient to represent all
numbers.

We quote again from Hardy:
“Let us assume (as is no doubt true) that the only num-

bers which require 9 cubes for their expression are 23 and
239. This is a very curious fact which should be interesting
to any genuine arithmetician; for it ought to be true of an
arithmetician that, as has been said of Mr. Ramanujan, and
in his case at any rate with absolute truth, that ‘every pos-
itive integer is one of his personal friends.’3 But it would
be absurd to pretend that it is one of the profounder truths
of higher arithmetic; it is nothing more than an entertain-
ing arithmetical fluke. It is. . . 8 and not. . . 9 that is the pro-
foundly interesting number.”

3Srinivasa Ramanujan (1887–1920), the brilliant young Indian mathe-
matician who died in 1920 at the age of thirty-two, has a colorful story that
must certainly be included in a book on the interesting numbers. He was
virtually self-taught until, as a clerk in the government service, having sent
some of his mathematical work to several English mathematicians, he was
brought to England by Hardy. For a few short years, the two men, En-
glishman and Indian, collaborated on some brilliant mathematical work.
It is in the very fine memoir that introduces Ramanujan’s collected papers
that Hardy tells how, visiting his sick friend one day, he remarked that
the number of the cab he had arrived in was 1,729, “not a very interesting
number.” Ramanujan replied promptly that on the contrary it was a very
interesting number, being the smallest that can be represented as the sum
of two cubes in two different ways (1, 729 = 103 + 93 = 123 + 13).
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With the new concept of the number of cubes that would
be sufficient to represent all numbers from some point on
(perhaps from 240 on), it was necessary to invent a new
mathematical expression. Now g(3), the number of cubes
necessary to represent all numbers as the sum of cubes, was
joined by G(3), the number of cubes necessary to represent
all numbers with a finite number of exceptions, perhaps
only 23 and 239. It had already been established that g(3) is
nine; and since the numbers requiring as many as nine had
been proved finite, it followed that G(3) must be equal to or
less than eight. In 1939 it was definitely established that 23
and 239 are the only numbers that require as many as nine
cubes for their representation.

This distinction between “Little Gee” and “Big Gee,” as
they are sometimes called informally, was discovered
through work on that phase of Waring’s problem that dealt
with third powers, but it had important implications for all
other phases of the problem. The existence of g(s) implies
the existence of a G(s), and the existence of G(s) implies
the existence of a g(s). As a result, the mathematicians
now found themselves with two problems for every one
that they had had before: to determine a value for “Little
Gee” for every power and another, the same or smaller, for
every “Big Gee.”

(The problem of “Big Gee” had never come up with the
squares, for g(2) and G(2) are both four. Although all num-
bers except those of the form 4m(8n + 7) require only three
squares for representation, numbers of this form are obvi-
ously infinite. There is, therefore, no number at which we
can say, “From this point on all numbers can be represented
as the sum of three squares.” The question in regard to
the fourth powers (the “biquadrates,” as they were called
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in Waring’s day) has also been answered: g(4) is nineteen
and G(4) is sixteen.)

The problem of the cubes, as Waring had proposed it,
had been solved; but as so often happens in the theory of
numbers, the solution of one problem had produced an-
other problem. As they had whittled away at g(3) ≤ 17,
mathematicians now began to whittle away at G(3) ≤ 8.
When tables of the actual cubical representation of the num-
bers up to 40,000 were examined, a curious fact emerged.
There are among these only fifteen numbers that require
as many as eight cubes for representation; seven are suffi-
cient for all of the others (except of course 23 and 239, which
we have already mentioned as requiring nine). The largest
number requiring as many as eight cubes is 454. Between
454 and 40,000 there are no other numbers requiring eight.

Such paper and pencil work served to indicate, as it had
before in the history of Waring’s problem, a point of attack.
Mathematicians set out to prove that the numbers requir-
ing as many as eight cubes, like those requiring as many as
nine, are finite. When they proved this—as they eventually
did—the value of G(3) was established as equal to or less
than seven. This is where it stands at the date of writing. Yet
there are indications in the same paper and pencil work that
seven is quite probably not the final answer to the question.

In the table of numbers up to 40,000, there are only 121
for which as many as seven cubes are needed. The largest of
these is 8,042. Between 8,042 and 40,000 there are no numbers
that require more than six cubes. It is generally thought that
from 8,042 on there are no numbers that require more than
six cubes and that the value of G(3) is probably equal to or
less than six.

This is conjectured, not proved.
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Yet when someone does prove, as eventually someone
quite probably will, that G(3) is equal to or less than 6,
there is every indication in the table of numbers that this
will not be the end of the matter either. Thousand by thou-
sand, those numbers requiring as many as six cubes for rep-
resentation become rarer. There are 202 numbers in the first
thousand numbers requiring six. In the thousand numbers
preceding a million, there is only one.

Someone may eventually prove that the numbers requir-
ing as many as six cubes are also finite. Then the value of
G(3) will have narrowed to five or four, it already having
been proved that there are an infinite number of numbers
requiring four cubes for representation.

In the tables that have been made, it has been noted that
there is a marked tendency for the numbers requiring five
cubes to decrease as those requiring four increase. It is pos-
sible that eventually the five-cube numbers too will disap-
pear; but if they do, it will be at a point far beyond the abil-
ity of man to make tables. This does not matter at all. The
exact value of G(3) can never be established by tables; it
will have to be proved.

There is no question but that it will be very, very difficult
to establish an exact value of G(3). As we said in the open-
ing of this chapter, eight and the other cubes are interesting
and tough numbers.

· A N O T H E R P R O B L E M O F C U B E S ·
Here is a problem of the cubes that, unlike the one we

have been discussing, can be finally solved with a little pa-
per and pencil work. Among all the numbers, there are just
four that can be represented by the cubes of their digits—
that are, in other words, equal to the sum of the cubes of
their digits. What four numbers are they?

· 125 ·



�

�

�

�

�

�

�

�

· F R O M Z E R O T O I N F I N I T Y ·

· A N S W E R ·

153=13+53+33,

370=33+73+03,

371=33+73+13,

407=43+03+73.
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A great many things about the number nine and its rela-
tionships with the other numbers can be expressed by the
equals sign; but there is one property of nine, known since
antiquity and both interesting and useful, that cannot be so
expressed. This is the fact that divided into any power of
ten, nine always leaves a remainder of one. When, at the be-
ginning of the nineteenth century, a notation very like that
of the equals sign was at last invented to express this and
other similar relationships, all of the numbers took on what
might well be called a mathematical “new look.” No sin-
gle invention in the theory of numbers ever posed so many
new and interesting questions. In the history of the number
nine lies the seed for this sudden flowering.

In the days when computations were of necessity per-
formed on counting boards, nine was commonly used as a
check on the computation. Having completed his work and
having before him on the board the beads of his answer, the
person doing the computation needed to know if the an-
swer was right. Thanks to nine, there was a very simple
way for him to find out.
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He had multiplied, let us say, 49,476 by 15,833 and had
obtained the answer 783,353,508. His work no longer re-
mained on the board, only his answer:

Since he knew that nine leaves a remainder of one when
divided into any power of ten and since each bead on the
board represented a power of ten, he proceeded to count
the beads of the answer as he had previously counted the
beads representing the numbers to be multiplied. Today
we would add the digits:

1 + 5 + 8 + 3 + 3 = 20,

4 + 9 + 4 + 7 + 6 = 30,

7 + 8 + 3 + 3 + 5 + 3 + 5 + 0 + 8 = 42.

He then divided each of these sums by nine, noting only
the remainders:

20 ÷ 9, a remainder of 2,

30 ÷ 9, a remainder of 3,

42 ÷ 9, a remainder of 6.

If the computation has been correct, the remainders of
the numbers being multiplied (reduced when necessary by
further casting out of nines) will produce the remainder
of the product. Since 2 × 3 = 6, he could go on with a
fair amount of confidence to his next problem. (There was,
however, always the possibility that digits might have been
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transposed in the answer, a common error that the check
will not catch.)

This same check can be used for addition and subtrac-
tion as well as for multiplication. The sum of the same two
numbers we multiplied will leave a remainder of five; their
difference, a remainder of one. For checking division, we
follow the standard rule that the dividend a should equal
the divisor b multiplied by the quotient q plus the remain-
der r, or a = b × q + r. But instead of using the whole num-
ber for this check, we cast out nines and use only the re-
mainders.

15833
3)

49476
47499

1977

49,476 = 15,833 × 3 + 1,977

or (when the nines are cast out)

2 × 3 + 6 = 12 and 1 + 2 = 3

This was the ancient computational check known as
“casting out nines.” It depends upon the fact we have al-
ready noted that nine when divided into one, ten, one hun-
dred, one thousand or any other power of ten leaves a re-
mainder of one. For this reason nine divides a number that
is represented in the decimal system only if it also divides
the sum of the digits of the number. If it leaves a remainder,
this is the same remainder that would be left if the number
itself were divided by nine.1 By this ancient “Rule of Nine”
we can say, with only the hesitation of the time that it takes
us to add the digits and divide them, that such a number as
9,876,543,210, for example, is divisible by nine:

1A similar check exists with eleven, which alternately leaves a remain-
der of +1 or −1 when divided into the powers of ten (+1 for 1, −1 for 10,
+1 for 100, −1 for 1,000, and so on). To check a computation by elevens, we
alternately add and subtract the digits and then divide the total by eleven.
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9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0 = 45,

4 + 5 = 9,

9 ÷ 9 = 1.

The notation that was at last invented to express a re-
lationship between any two numbers such as the one that
exists between nine and the powers of ten is a beautifully
simple one. It was invented by Gauss, “whose name,” as
E. T. Bell wrote, “lives everywhere in mathematics.” The
language of Gauss’s Disquisitiones Arithmeticae is Latin, but
the mathematical language is that of congruence, there used
for the first time.

A congruence is a relationship similar enough to the re-
lationship expressed by the equals sign to be very useful,
different enough to be very interesting:

= equal to,

≡ congruent to.

Gauss gave in the Disquisitiones the following definition:

Two integers a and b shall be said to be congru-
ent for the modulus m [from the Latin, “a cer-
tain small measure”] when their difference a − b
is divisible by m.

a ≡ b( mod m) 5 ≡ 1( mod 2)

84 ≡ 0( mod 6)

173 ≡ 8( mod 11)

Another way of saying the same thing is to say that a
and b leave the same remainder when divided by m.

Although the notion of congruence may seem complete-
ly unfamiliar when we first meet it, it is not—in fact, it is
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very familiar. We base every day of our lives on a congru-
ence relationship. When we say that today, for example, is
Tuesday, we are saying that a certain number of days when
divided by seven (the week) leaves a remainder of Tuesday.

The day of the week can be very accurately stated as a
congruence if we utilize the astronomers’ concept of the Ju-
lian day. To avoid the confusion that results from months
and years of unequal lengths, the astronomers number the
days consecutively from January 1, 4713 B.C., the begin-
ning of the Julian era. By this numbering January 1, 1930,
which fell on Wednesday, was Julian Day 2,425,978. With
this information and the congruence relationship based on
the modulus 7 we can compute on which day of the week
January 1, 2000—25,567 days later—would fall:

January 1, 1930 = J.D. 2, 425, 978 ≡ 2( mod 7)

= Wednesday,

January 1, 2000 = J.D. 2, 451, 545 ≡ 5( mod 7)

= Saturday.

The general congruence upon which the ancient method
of checking a computation by casting out nines rests is

10n ≡ 1( mod 9).

This notation tells us at a glance that the difference be-
tween one and any power of ten is always divisible by nine.
When, instead of looking merely at the powers of ten in
relation to the number of nine, we look at all numbers for
the same modulus we find that they fall into nine different
groups:
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0, 9, 18, 27, 36, . . . ≡ 0 (mod 9)
1, 10, 19, 28, 37, . . . ≡ 1 (mod 9)
2, 11, 20, 29, 38, . . . ≡ 2 (mod 9)
3, 12, 21, 30, 39, . . . ≡ 3 (mod 9)
4, 13, 22, 31, 40, . . . ≡ 4 (mod 9)
5, 14, 23, 32, 41, . . . ≡ 5 (mod 9)
6, 15, 24, 33, 42, . . . ≡ 6 (mod 9)
7, 16, 25, 34, 43, . . . ≡ 7 (mod 9)
8, 17, 26, 35, 44, . . . ≡ 8 (mod 9)

Every number falls into one of these nine groups, and
no number falls into more than one group. With the con-
gruence notation, as in the method of casting out nines, we
are now able to treat all numbers as if they were just nine
different numbers. A specially constructed multiplication
table gives us all possible products for the modulus nine:

× 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8
2 0 2 4 6 8 1 3 5 7
3 0 3 6 0 3 6 0 3 6
4 0 4 8 3 7 2 6 1 5
5 0 5 1 6 2 7 3 8 4
6 0 6 3 0 6 3 0 6 3
7 0 7 5 3 1 8 6 4 2
8 0 8 7 6 5 4 3 2 1

Using this table, the reader will find that such appar-
ently dissimilar multiplications as 13 × 14, 4 × 32 and 22 ×
41 give the same answer (mod 9); or, as we said earlier,
when we cast out the nines, they will all leave a remainder
of 2.

Each pair contains one number that is congruent to 4
(mod 9) and one number congruent to 5 (mod 9). The reader
will note that 4× 5 on the above multiplication table yields 2.
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By performing the multiplications indicated, he will find
that all three products are congruent to 2 (mod 9).

Just as we have looked at all numbers in relation to nine,
we can look at them in relation to any number m that we
choose and find that they will accordingly fall into one of m
mutually exclusive groups. The most familiar way of doing
this is according to the number two.

An even number n leaves a remainder of 0 when
divided by 2.

An odd number n leaves a remainder of 1 when
divided by 2.

An even number n is one that is congruent to
0 (mod 2).

An odd number n is one that is congruent to
1 (mod 2).

Or an even number n ≡ 0 (mod 2).

An odd number n ≡ 1 (mod 2).

The notation invented by Gauss in the Disquisitiones was
at once so exact and so easily grasped that many theorems
that were already known in other forms were promptly re-
stated as congruences. A case in point is Wilson’s theorem,
which we have met earlier in “Three.” The expression of
this theorem as a congruence is today so usual that a mathe-
matician, hearing that the author intended to introduce Wil-
son’s theorem in “Three” but not to mention the congru-
ence notation until “Nine,” demanded, “But how can you
even state Wilson’s theorem until you have explained con-
gruence?” Yet seven years before the inventor of the con-
gruence notation was born, Wilson’s theorem was stated as
follows:
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If p is a prime, then the quantity

1 × 2 × 3 × · · · × (p − 1) + 1
p

is a whole number.

When young Wilson’s teacher, Edward Waring, publish-
ed this theorem in 1770, he commented: “Theorems of this
kind will be very hard to prove, because of the absence of
a notation to express prime numbers.” It was in connec-
tion with this remark that Gauss commented sharply to the
effect that mathematical proofs depend on notions, not on
notations. Although today Wilson’s theorem is almost in-
variably expressed in the notation of congruence as

(p − 1)! + 1 ≡ 0(modp),

and although the simplest and most direct proof of Wilson’s
theorem (Gauss’s own) is based on congruence, the notion
still remains more important than the notation.

There is, nevertheless, in the history of congruence a
strong argument for notations sharing importance with no-
tions. The type of relationship that is expressed by the three
parallel lines of the congruence has been known since the
early centuries of the Christian era. There is even an equally
brief way of noting it mathematically with the symbol “|”
for “divides”:

To say m|(a − b) is the same as saying a ≡ b (mod m).

Yet this long known type of relationship played no im-
portant part in the study of numbers until Gauss found a
way of expressing it in a mathematically suggestive form.
The three parallel lines of the congruence sign suggest the
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equals sign and remind us that congruences and equalities,
both being equivalence relationships, have certain proper-
ties in common. We are familiar with these in equalities:

If a is any number, then a = a.

If a = b, then b = a.

If a = b and b = c, then a = c.

These properties of the equality relationship are also prop-
erties of the congruence relationship:

If a is any number, then a ≡ a (mod m).

If a ≡ b (mod m), then b ≡ a (mod m).

If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

The similarities between equalities and congruences that
are emphasized by the similar notation suggest that we at-
tempt with congruences certain operations that work with
equalities. We have already seen, in the process of casting
out nines, how we can add, subtract and multiply numer-
ical congruences as we do equations. We can also handle
algebraic congruences very much as we handle algebraic
equations. The results are usually interesting.

Consider, for instance, a fundamental problem of squares
and primes:

To find a square one less than a multiple of p
where p is a given odd prime.

In the congruence notation this problem is stated more
briefly:

Is x2 ≡ −1 (mod p) solvable?
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Before we give the general solution of this problem, the
reader might like to try to solve it for a few values of p: to
find squares that are, respectively, one less than a multiple
of the first few odd primes, three, five, seven, eleven and
thirteen. He will find them for only two of these primes,
but those he can find very quickly.

Now for the general solution of the problem.
It can be proved, although not here, that the only odd

primes for which the congruence above is solvable are those
that like five and thirteen are of the form 4n + 1. In the
congruence notation we say

x2 ≡ −1 (mod p) is solvable only when p ≡ 1 (mod 4).

Closely connected with this problem is a theorem that
has the distinction of being the most often proved in the
theory of numbers. That it can be approached in so many
different ways speaks eloquently for its fundamental im-
portance in number relationships. We mention it here be-
cause it is the finest example of that particular type of rela-
tionship among the numbers that is brought to the fore by
the congruence notation.

The theorem, which is known as the Law of Quadratic
Reciprocity, was called by Gauss himself the gem of arith-
metic. Since at another time Gauss called mathematics the
queen of the sciences and arithmetic the queen of mathematics,
this puts the law of quadratic reciprocity at the very pinna-
cle of science.

The Law of Quadratic Reciprocity was known to math-
ematicians before Gauss. It was Euler who discovered it,
but neither he nor anyone else proved it. Then at the age of
eighteen, unaware of the work of Euler and others, Gauss
rediscovered the law on his own. He found it immediately
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beautiful, but he was not immediately able to prove it. “It
tortured me for the whole year and eluded the most strenu-
ous efforts,” he wrote. He proved it, at last, in a fittingly
beautiful and simple form. At the time he was nineteen
years old.

Having proved this gem of arithmetic, Gauss was still
so fascinated by it that during the course of his lifetime he
composed six more very different proofs. At the time of
this writing the number of proofs of the Law of Quadratic
Reciprocity is well over one hundred.

The “reciprocity” of the law is that which exists between
two different odd primes p and q. The law states that for p
and q the two congruences

x2 ≡ q (mod p) and x2 ≡ p (mod q)

are both solvable or both not solvable unless both p and
q are primes of the form 4n − 1, in which case one of the
congruences is solvable and the other is not.

We can see and admire the Law of Quadratic Reciprocity
in action if we try to determine whether a particular con-
gruence of the type to which the law applies is solvable; for
example:

Is x2 ≡ 43 (mod 97) solvable?

This is the same as asking ourselves whether there exists a
square that is 43 more than a multiple of 97. Since not both
primes, 43 and 97, are of the form 4n − 1, we know by the
Law of Quadratic Reciprocity that the congruence

x2 ≡ 43 (mod 97)

is solvable only if the congruence

x2 ≡ 97 (mod 43)
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is also solvable. They stand or fall together: either both are
solvable, or both are not solvable.

To determine the solvability of our second congruence,
which will settle the solvability of the first, we proceed,
since 97 is greater than 43, to reduce it by dividing 97 by
43 and obtaining as our answer

x2 ≡ 11 (mod 43).

We now have a congruence in which both primes are of
the form 4n − 1. We know by the Law of Quadratic Reci-
procity that

x2 ≡ 11 (mod 43) is solvable

only if
x2 ≡ 43 (mod 11) is not solvable.

We now proceed as before, since 43 is greater than 11, to
reduce this second congruence. It reduces to a familiar one:

x2 ≡ −1 (mod 11).

We recognize this as the same problem we met a few
pages back: to find a square one less than a multiple of p
when p is a given odd prime. We recall from the solution of
that problem that the congruence expressed above is solv-
able only when the prime is of the form 4n + 1. Since 11 is
of the form 4n − 1, the congruence is not solvable.

We can now work our way back to our original congru-
ence.

Since x2 ≡ −1 (mod 11) is not solvable, then by the Law
of Quadratic Reciprocityx2 ≡ 11 (mod 43) is solvable. Since
x2 ≡ 11 (mod 43) is solvable, x2 ≡ 97 (mod 43) is solvable
and therefore by the Law of Quadratic Reciprocity our orig-
inal congruence x2 ≡ 43 (mod 97) is solvable.
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We have not actually found a solution to the congruence.
(This is often more difficult than proving that a solution ex-
ists, but never so interesting.) As it happens, however, for
this particular congruence we can find the numerical solu-
tion simply by inspection. The congruence

x ≡ ± 25 (mod 97)

means that any x that differs from a multiple of 97 by 25
will, when squared, be exactly 43 more than a multiple of
97. The lowest positive value for x is 25, and the reader may
be interested in testing the original congruence for x = 25.

The solution to such a congruence looks quite a bit like
the solution to an equation, but there is a significant differ-
ence. For an equation, such as

x2 − 625 = 0,

which also has as its solution ±25, there are only two values
among the infinitude of the integers that when substituted
for x will “work.” These are +25 and −25.

On the other hand, for the congruence that we have just
solved, although we say also that there are only two solu-
tions, each of these solutions actually stands for an infini-
tude of numerical values that will satisfy the congruence

x2 ≡ 43 (mod 97).

In this congruence x can be any number, positive or negative,
that differs by 25 from a multiple of 97.

That we are able to speak of this infinitude of values sim-
ply as two numbers is indicative of the new perspective on
the numbers that we gain from the notion of congruence.
Normally when we look at the numbers we try to get as
close as possible to them so that we can see the ways in
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which they are different from one another. When, however,
we look at the numbers in terms of congruences, we move
away from them. Suddenly they do not look as much dif-
ferent as they look alike. We are able, as in the solution to
our congruence a few pages back, to see an infinitude of
numbers as being the same. Because they are all congruent
to one of a pair of numbers in respect to the same modulus,
we can think of them, not as an infinitude of different numbers,
but as two.

It is a thought-provoking transformation.
For if the numbers, so seemingly regular and predictable

as they stretch out by ones to infinity, are capable of such a
transformation, what else may they not be capable of?

· O N E F O R T H E R E A D E R ·
Is the congruence x2 ≡ 2 (mod p) solvable?
With a knowledge of the solution of this congruence and

the solution of the congruence x2 ≡ 1 (mod p), which we
gave in this chapter, combined with the Law of Quadratic
Reciprocity, it is possible to determine the solvability of any
congruence x2 ≡ a (mod p).

Although it is not at all easy to prove under what condi-
tions the congruence

x2 ≡ 32(modp)

is solvable, the reader may be able to guess them by actually
testing the congruence for the first few squares

0, 1, 4, 9, 16, 25, 36, 49, 64, 81

and the first few odd primes

3, 5, 7, 11, 13, 17, 19, 23, 29, 31.
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Thecongruencex2≡2(modp)issolvablewhenp≡±1(mod8).
Itissolvablefor7,17,23and31amongtheaboveprimes.Itisnot
solvablewhenp≡±3(mod8),soitisnotsolvablefor3,5,11,13,
19or29.
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Everything about the natural numbers is there. All the re-
lationships and interrelationships among them are inher-
ent in the ordered unit-by-unit sequence that begins with
zero and continues to infinity. The simple patterns of the
surface are easy for anyone to guess but often difficult or
even impossible to establish by proof. Subtler, more compli-
cated patterns lie so deep that only the rarest minds glimpse
them. Yet all are implicit when we begin 0, 1, 2, 3,. . . .

It is the more amazing then that one of the most stub-
bornly guarded secrets of the natural numbers—the general
distribution of the primes—should be wrested from them
by means of a number that is not at all natural in the same
sense that they are.

Such a number is the one that mathematicians call “Eu-
ler’s number” or, more simply, e. It is a number that cannot
be expressed by any finite combination of the integers. A
number that did not come into formal existence until nearly
two thousand years after the Greeks began their numerical
investigations. A number that, although it seems most un-
natural, has a more intimate connection with nature than
any one of the natural numbers.
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The story of this very interesting number e and the way
in which, with the knowledge of e, mathematicians were
able to uncover the very deep, very important relationship
of the infinitude of prime numbers to the infinitude of nat-
ural numbers is perhaps the most amazing in twenty-five
centuries of number theory, and a fitting one to include in a
book subtitled “What Makes Numbers Interesting.”

The nearest we can come to an exact numerical repre-
sentation of e is the famous factorial series:

e = 1 +
1
1!

+
1
2!

+
1
3!

+
1
4!

+
1
5!

+
1
6!

+
1
7!

+
1
8!

+
1
9!

+ . . . .

Although at first glance we may find it strange to express a
number as the limiting sum of an infinite series, we actually
do the same thing every day. The decimal .333333. . . is a
familiar representation of just such an infinite series for the
number 1/3:

1
3

=
3

101 +
3

102 +
3

103 +
3

104 +
3

105 +
3

106 +
3

107 + . . . .

If we perform the indicated additions (3/10 + 3/100+
3/1, 000 + . . .) on a mental number line, we intuitively rec-
ognize that while we can get as close to the point 1/3 as we
wish, we are never going to hit it exactly nor can we exceed
it. In the same way, as we sum more and more terms of
the series for e, we get closer and closer to the exact value e,
which is the limiting sum of that series just as 1/3 is of the
other.

From the factorial series for e that begins above we can
also obtain a decimal representation of that number to as
many places as we desire. We proceed in the following
manner:

We take 1, then take 1 again and divide by 1, take the
answer—which is of course 1—and divide by 2, take the an-
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swer (.500000) and divide by 3, take the answer and divide
by 4, and so on. When we have divided by all the numbers
up to and including 9, and have added all our quotients, we
have the number e rounded off to six decimal places:

1.000000
1.000000
0.500000
0.166667
0.041667
0.008333
0.001389
0.000198
0.000025
0.000003

e = 2.718282.

This process can continue without end, like the factorial
series on which it is based. There is, however, a difference
between the decimal representation of e and its represen-
tation as the limit of the series above. While we can al-
ways predict the nth term of the series above, which will be
1/(n− 1)!, we have no possible way of knowing in advance
what digit will be in the nth place of the decimal represen-
tation of e. In this the number e differs from 1/3 and the
other rational numbers; for they can always be represented
by decimals that at least after a certain point repeat in a reg-
ular, predictable pattern. The number e is thus nonrational,
or irrational.

To gain even the most superficial knowledge of such a
seemingly un-number-like number, we must examine e in
relation to the many extensions of the idea of number that
have been made since the days when the Pythagoreans built
a philosophy and a religion—as well as a science—on the
basis of the numbers 1, 2, 3, . . . .
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The Pythagoreans believed that the universe was “ruled”
by these numbers. Although they recognized that there
were lengths, for example, that could not be measured in
whole numbers, they were sure that they could always put
a number to such lengths by using the ratios of whole num-
bers, like 1/3, 5/7, and so on. In other words, if all possible
lengths were thought of as represented by points on some
giant measuring line, there was among the whole numbers
and their ratios a number for every possible point on that
line. A death blow was dealt to this theory when, approxi-
mately four centuries before the birth of Christ, they discov-
ered and proved that among the whole numbers and their
ratios there is no such number or ratio that exactly measures
the diagonal of the unit square:

x

1 2

1
1

12 + 12 = x2

x2 = 2;
therefore,
x =

√
2.

They proved this is true by first assuming that there was
some ratio between two whole numbers a and b such that
(a/b)2 was equal to two, and then showing that such an
assumption led logically to an impossibility and, therefore,
must be false.

Since the Greeks had never really considered even the
ratios to be numbers, it never occurred to them that a nonra-
tio like the square root of 2 could possibly be a number. The
conclusion they drew from their discovery was that there
were lengths for which there were no numbers and that
they would be better off studying geometry, where there
would be no necessity to put a number to the diagonal of the
unit square before they could use it in their mathematics.
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(One of the most unusual things about the number e is
that although we know it measures a definite distance from
zero on the number line and although we can approach the
point it represents to any degree of accuracy we care to de-
mand, we cannot with the traditional instruments of math-
ematics actually produce a line segment of exact length e.
This paradox would have been appreciated by the Greeks,
who in the diagonal of the unit square were able to produce
a line segment for which they could produce no number.)

It was the non-Greek development of algebra that at last
brought mathematicians back to numbers. With the inven-
tion of zero and the negative numbers, they could think
of the number line as extending indefinitely in both direc-
tions. The invention of decimals at the beginning of the six-
teenth century gave them a numerical representation for ev-
ery conceivable point on the line, including the length of the
diagonal of the unit square. The negative numbers marked
the lengths to the left of the origin (0); the positive num-
bers, the lengths to the right. The rational numbers, pos-
itive and negative, marked all those lengths that could be
represented as ratios between integers, including the inte-
gers themselves. As decimals they either repeat (like 1/3 or
1/7) or terminate (like 1/5). The irrational numbers marked
all other lengths, or points, and (like the square root of 3 and
the square root of 7) are nonrepeating, nonterminating dec-
imals.

It all seemed crystal clear. There was a number for ev-
ery point on the line, and (by the definition of irrational
numbers) there could not be a point for which there was
no number, or a number for which there was no point. Be-
cause by this time mathematicians were beginning to use as
numbers other quantities whose reality as numbers seemed
more doubtful to them than even the square root of 2 had
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seemed to the Greeks, they christened the numbers that
they could place in one-to-one correspondence with the
points on a straight line the real numbers.

The numerically more doubtful quantities that we just
mentioned depended upon the idea of “a fiction” that they
called “i, the square root of –1.” By the use of this fiction
they had found that they could solve equations that were
otherwise unsolvable even with all the real numbers they
already had at their disposal. Such an equation is

x2 + 1 = 0,

where it is clear that x2 must be −1 and that x must be
some number that when squared, or multiplied by itself,
produces −1. They all agreed that there could be no such
number since any positive or negative number when multi-
plied by itself yields a positive product. But they also agreed
that it would be very useful mathematically if there were
such an impossible number, so they began to use i to pro-
vide them with square roots for negative numbers. They
called these the imaginary numbers.

The extension to the number i was the last one needed
to provide a root for every algebraic equation.

Up until this time, in spite of all the new quantities be-
ing used as numbers, the quantity represented by the non-
repeating, nonterminating decimal 2.7182818. . . that we call
e had not been picked out for any special attention. Being,
however, one of the real numbers, the representative of a
particular point, it was most certainly in existence there on
the real number line, somewhere between 2 and 3, between
2.7 and 2.8, between 2.71 and 2.72, somewhere—but there.

It was not until the invention of logarithms at the begin-
ning of the seventeenth century that the value represented
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by 2.7182818. . . was recognized as one of the most interest-
ing of numbers, the base of the so-called natural logarithm.

The principle of logarithms, invented by John Napier,
Laird of Merchiston (1550–1617), immeasurably reduced the
burden of calculation with very large numbers by replac-
ing multiplication by addition. (Napier himself was par-
ticularly interested in the problems of astronomical calcu-
lation.) This was one of those “Why didn’t I ever think
of that?” inventions, and the feeling was never better ex-
pressed than by Henry Briggs (1556–1631), professor of ge-
ometry at Oxford, who upon beholding the inventor of log-
arithms for the first time, marveled:

“My lord, I have undertaken this long journey purposely
to see your person, and to know by what engine of wit or
ingenuity you came first to think of this most excellent help
in astronomy . . . but, my lord, being by you found out, I
wonder nobody found it out before, when now known it is
so easy.”

We are all familiar with how simple it is to calculate with
exponents. We can, for instance, multiply perfect powers of
a given number by adding the exponents, so that 1015 × 1023

becomes merely a problem in addition, 15 + 23, to give us
the product 1038. Using the principle of logarithms, we can
change every number into a power of the same base, so that
while 10 is 101, a number that is not a perfect power of 10,
like 11, is 101.0414, approximately, and 12 is 101.0792. The
principle can also be extended to the other side of the deci-
mal point so that 11.5, for example, is 101.0607, again approx-
imately.

Mathematically, we express what we have just done
by two simple formulas that embody the principle of
logarithms:

x = 10y and y = log10 x.
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The terminology of logarithms follows naturally:

10 = 101, and 1 is the logarithm of 10,

11 = 101.0414, and 1.0414 is the logarithm of 11.

Logarithmic calculations originally used the base ten,
which seems to us most “natural.” However, as we have
seen earlier in this book, there is nothing mathematically
natural about ten as a number base. Whatever naturalness
it has follows, not from any property of the natural num-
bers themselves, but only from the fact that we are born
with ten fingers. To mathematicians, doing analytic work,
and to engineers, doing any kind of computation that in-
volves calculus, it is much more natural to use e rather than
ten as a base for logarithms. For this reason e is called the
base of the natural logarithm.

For more than three hundred years, the ease of calcu-
lation with logarithms made them indispensable to people
who worked in a practical way with numbers. With the
invention and proliferation of computers, they and their
pocket aid, the slide rule, have become artifacts of another
time. (Even the counting board has outlived them!) But the
natural logarithm is still as important as ever.

Most of the reasons for e being mathematically natural
are too technical for a book of this type, but one example
will serve to illustrate the mathematical naturalness of base
e over base ten.

Let us say that we wish to choose a number for a base
such that the logarithm of any small number (1 + x) that
differs from one by the very small amount x will be approx-
imately equal to x itself. Such a logarithm greatly simplifies
calculations with very small numbers. What number then
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can we choose for our base? The answer is not what we
would expect. Surprisingly, it can be established with fi-
nality that the best possible number for a base meeting the
requirement above is the (to us) unlikely number e.

The chart here shows the difference between logarithms
to base e and base ten, respectively, for several numbers that
differ from 1 by only a few hundredths:

1.00 1.01 1.02 1.03 1.04 1.05
loge 0.0000 0.0100 0.0198 0.0296 0.0392 0.0488
but
log10 0.0000 0.0043 0.0086 0.0128 0.0170 0.212

From this chart we can see that loge1.01 is exactly equal
(to four places) to the difference between 1 and 1.01 while
loge1.02, which is .0198, is almost equal to .02. On the other
hand, log101.01 is .0043. Mathematically, we say that
loge(1 + x) is approximately equal to 1 times x, or x itself,
for very small x while log10(1 + x) is approximately equal
to .43 times x. Since 1 is obviously a much more “natural”
number to work with than .43, we use the natural logarithm
to base e for calculation with very small numbers and dis-
miss 10 as the base of the common logarithm.

But the number e is not merely mathematically natural.
Although its definition as a logarithmic base is removed
from everyday base-ten life and its character as a number is
different from that of any one of the natural numbers, it is
a number most intimately a part of nature itself. The basic
processes of life—growth and decay—are most accurately
represented in mathematical terms by curves that spring
from what mathematicians call the exponential function, or
generally the curve determined by the equation y = ex.
Thus the number e is uniquely important in many different
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applications of mathematics: probability and statistics, bio-
logical and physical sciences, ballistics, engineering,
finance.1

Long before it was given the name by which we know it
best today, the number 2.7182818. . . was recognized as the
base of the mathematically natural logarithm. The young
Euler—he was just twenty-one years old and at the court
of St. Petersburg—first suggested the alphabetical name in
a paper entitled “Meditation upon Experiments made re-
cently on the firing of Cannon.”

“For the number whose logarithm is unity,” he stated,
“let e be written. . . .”

Although e is often referred to as “Euler’s number” and
will probably always suggest the first letter of the great
mathematician’s name, it was probably selected by him for
quite another reason. It is the vowel immediately following
a,which he customarily used to signify the general logarith-
mic base.

“Euler’s number,” however, is a most appropriate name
for the number e. Probably never in the history of mathe-
matics has a great affinity existed between one man and one
number. Euler calculated e to twenty-three places, surely a
labor of love at that time:

e = 2.71828182845904523536028 . . . .

He found several very simple representations of the
number by infinite continued fractions; for example:

1The reader who would like to know more about these practical appli-
cations is referred to What Is Mathematics? by Richard Courant and Herbert
Robbins [Oxford University Press, 1941].
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e = 2 +
1

1 +
1

2 +
2

3 +
3

4 +
4

5 +
5
6 + . . .

and

e = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1
1 + . . .

.

The second example, which is called a simple continued
fraction because all the numerators are equal to 1, can be
expressed even more simply as

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, . . .].†

It was also Euler who developed from an earlier discov-
ery the most famous formula in all mathematics, one which
expresses the relationship that exists among the three very
special numbers—e and i and π—and the two always spe-
cial natural numbers, 0 and 1:

eiπ + 1 = 0.
†The reader who is interested in calculating e from one of the above will

find the method detailed in the problem at the end of this chapter.

· 153 ·



�

�

�

�

�

�

�

�

· F R O M Z E R O T O I N F I N I T Y ·

Reactions to this simple and elegant formula have ranged
from that of the American mathematician, Benjamin Peirce
(1809–1880), who announced to his Harvard class, “Gentle-
men. . . we cannot understand it, and we don’t know what
it means, but we have proved it, and therefore, we know it
must be the truth,” to that of an anonymous mathematician
who facetiously defined e as the number that makes the fa-
mous equality possible.

By the time of Euler, the invention of analytic geometry
by Descartes and the independent invention of the calculus
by Newton and Leibnitz had pushed back the traditional
frontiers of mathematics and opened up a great new do-
main. To arithmetic, geometry and algebra now was added
analysis. In analysis undoubtedly the most important single
number is Euler’s number, e. This too is appropriate, since
Euler was such a master of the new art that he has been
described as “Analysis Incarnate.”

In analysis we find a quite different approach to the def-
inition of e. It seems particularly complicated for a number
when we recall the straightforward “God-given” character
of the natural numbers, or even the “man-made” charac-
ter of such frankly invented numbers as i. For the number
e is defined by the area under a certain curve at a certain
point—that point being called the number e.

Surely such a number can have nothing to do with 0, 1,
2, 3, . . . . But, as we shall see very shortly, it has a great deal
to do with those numbers.

The necessary curve for the analytic definition of e is de-
termined by graphing all those points for which the vertical
or y coordinate is the reciprocal of the horizontal or x coor-
dinate. In other words, all those points (x, y) for which y =
1/x. When we mark these points just for the whole number
values on the x axis, we see the beginnings of our curve.
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1
2

1
1 2 3 4 5 6 7 81

y

x

From our illustration it is easy to see that we can make
the curve continuous by marking for every real number on
the x axis the point on the y axis that is its reciprocal. The
number e is then defined in relation to this curve and the
area under it between 1 and x.

Suppose we mark off this area by erecting two perpen-
diculars to the x axis, the left-hand boundary at 1 and the
right-hand boundary at some other point x. When this right-
hand perpendicular boundary is also erected at x = 1, the
area under the curve will obviously be 0; but the farther
we move x, or our perpendicular boundary, to the right the
larger the area under the curve will become.

Here we ask the question upon which the analytic defi-
nition of the number e rests. At what point on the x axis must
the perpendicular be erected so that the area under this curve be-
tween 1 and x is exactly equal to 1? We answer this question
in the way of mathematicians, not by locating the point, but
by naming it. That point along the x axis at which the area
becomes exactly 1 is defined as the number e.

1

1 2 3 4e

A = 1

The area under the curve between 1 and x is the loga-
rithm of the real number x to base e.3

3We can also characterize e in the following down-to-earth manner: if

· 155 ·



�

�

�

�

�

�

�

�

· F R O M Z E R O T O I N F I N I T Y ·

That there should turn out to be be an intimate relation-
ship between logex and the number of primes below a given
number x was one of the most totally unexpected things in
all mathematics.

Before we state this relationship, however, let us think
back again to the natural numbers with which we began—
each one separated from its predecessor by a unit and from
its successor by a unit, beginning with zero and continuing
to infinity. We recall the first great surprise—that the num-
bers in this simple regular sequence should fall—in an ap-
parently quite irregular way—into two very different kinds
of numbers, the indivisible primes and the divisible com-
posite numbers. The second surprise was that the indivisi-
ble numbers should continue, like the numbers themselves,
without end; for surely common sense would lead us to ex-
pect that when numbers are large enough, they must be di-
visible by some number smaller than themselves. From the
beginning it was always clear that any composite number
can be produced by primes, but the third great surprise was
that one and only one combination of primes can produce a
given number.

These few examples are enough to remind us that the
numbers 0, 1, 2, 3, . . . are full of surprises. The relationships
we have noted in the past, however, all have one thing in
common. Mathematicians have guessed them by examin-
ing the natural numbers themselves, and they have proved
them by the use of the mathematical properties of the sys-
tem of natural numbers. No e was allowed here—or needed!

But now we come to a different kind of problem. We
have seen that the occurrence of primes in detail is exceed-
ingly irregular. Given a number ending in 1, 3, 7 or 9, we are

we invest one dollar at 100 percent interest compounded continuously, at
the end of one year we shall have $2.72—that is, e dollars.
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not able to tell immediately whether it is prime. Given an
already known prime, we cannot tell what the next prime
will be. Although we have never been able to prove that
there is a point beyond which there are no more pairs of
primes separated only by one other number, we know that
there are great deserts where we can find in succession as
many numbers as we please without a single prime among
them. We have also noticed that although the primes con-
tinue without end, they become fewer and fewer so that,
paradoxically, we can say that although the primes are infi-
nite, almost all numbers are not prime.

Amidst all the irregularity of prime numbers in the
small, we find in the large a certain regularity. The de-
cline is slow and steady. There are 25 primes in the first 100
numbers, 168 in the first 1,000, 1,229 in the first 10,000, and
9,592 in the first 100,000. But what is the pattern of this
decline?

It was Gauss with his clear eye for patterns among the
numbers who first perceived the amazing relationship be-
tween the slow, steady decline of the prime numbers and
the area between 1 and x under the curve y = 1/x that
we illustrated a few pages back. What he conjectured has
come to be known as the Prime Number Theorem, the most
important truth about the natural numbers discovered in
modern times.

To understand the statement of this great theorem (the
proof is unfortunately beyond us), we must begin by con-
sidering the problem of measuring the density of primes
below a given number x. In the first ten numbers we find
four primes, 2, 3, 5 and 7. We can represent the density of
the primes below 10 by the ratio 4/10, or .40. In the first 100
numbers we find only 25 primes, the density dropping to
25/100, or from .40 to .25. If we continue our examination
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of the numbers we find that after the first 1,000 numbers
we have a density ratio of 168/1,000, so that the measure
of density has now dropped from .40 to .25 to .168. What
Gauss observed was that this ratio approaches closer and
closer to 1/logex.

This relationship can be stated entirely in the symbols

π(x)
x

∼ 1
loge x

where π(x) is the number of primes under a given number
x so that the ratio π(x)/x is the measure of their density,
the sign ∼ signifies that the two ratios are asymptotically
equal, and the ratio 1/logex is the reciprocal of the natural
logarithm of x to base e.

The relationship so expressed is the Prime Number The-
orem, usually stated in the following manner:

lim
x→∞

π(x)
x/ loge x

= 1.

The increasing accuracy of this approximation can best be
shown by taking the actual densities for primes under a
given x and comparing them to the approximation given
by 1/logex, as in the table below:

Actual Approximate
Density Density

x = π(x)/x 1/logex
1,000 0.168 0.145
1,000,000 0.078498 0.072382
1,000,000,000 0.050847478 0.048254942
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The extreme difficulty of proving this theorem—it was
difficult enough merely to perceive—is shown by the fact
that even Gauss, who conjectured it, could not prove it. One
of Gauss’s last students, G. F. B. Riemann (1826–1866), who
although he died at thirty-nine laid the mathematical foun-
dations for the theory of relativity, outlined the strategy of
attack on the theorem in a brief, brilliant memoir when he
was thirty-three. Riemann could not prove it either.

The Prime Number Theorem differs in a most impor-
tant respect from the other theorems about primes that we
have met earlier in this book. Euclid’s great proof that the
number of primes is infinite, for example, arises so directly
from the natural numbers that anyone with a little calcula-
tion among the smallest primes can convince himself of its
truth. But no amount of calculation can convince us in the
same way of the truth of the Prime Number Theorem. As
Hardy once said, “You can never be sure of the facts with-
out the proof.” And the proof, unlike Euclid’s, comes from
outside the natural numbers.

Not until 1896 did mathematicians succeed in proving
the Prime Number Theorem. In that year it was proved in-
dependently by the French mathematician Jacques S.
Hadamard (1865–1963) and the Belgian mathematician C. J.
de la Vallée Poussin (1866–1962). This was nearly a century
after the relationship that the theorem states was first per-
ceived. Both proofs were of fantastic difficulty, and almost a
century of intensive effort has not brought them within the
reach of anyone but a professional mathematician.

Since the time of Riemann, the prime number theorem
has been the central problem of what is known as the ana-
lytic theory of numbers, a discipline that uses the most ad-
vanced methods of the calculus and is considered from a
technical point of view one of the most difficult in all math-
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ematics. Unlike the classical number theory of the Greeks,
it does not limit itself to the natural numbers in its efforts to
uncover the relationships and interrelationships that exist
among 0, 1, 2, 3,. . . . It brings to the battle infinities upon in-
finities of other numbers: rationals and irrationals, positive
numbers and negative numbers, real numbers and imagi-
nary numbers. All are marshalled together under the ban-
ner of the complex numbers. These are numbers of the form
x + yi, half-real and half-imaginary. When x = 0, they are
pure imaginaries. When y = 0, they are real numbers.

Against this formidable array, the natural numbers
would seem to be both literally and figuratively outnum-
bered; but although they yield much, they also retain much.
What we find out about them through the use of these other
numbers is found only with great difficulty. What we win
is never easily won.

In the story of the relationship between a number like
e, the base of the natural logarithm, and the numbers 0, 1,
2, 3,. . . , we catch a glimpse of the underlying unity of all
numbers. Like the relationships among the natural num-
bers that are inherent in the simple sequence 0, 1, 2, 3,. . . , the
relationships among the different kinds of numbers are in-
herent in the structure of that imposing edifice, the concept
of number, which has been erected, block by block, upon
the foundation of the natural numbers themselves.

The wonder is not merely that the relationships are there,
but that they are so very difficult for us to perceive—and to
prove.

· A N O T H E R P R O B L E M ·
The infinite continued fraction by which Euler repre-

sented e is defined as the limit of the sequence
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2, 2 +
1
1

, 2 +
1

1 +
1
2

, 2 +
1

1 +
1

2 +
2
3

, 2 +
1

1 +
1

2 +
2

3 +
3
4

, 2 +
1

1 +
1

2 +
2

3 +
3

4 +
4
5

, . . . .

The reader may enjoy computing these first few terms and
seeing how the sums, alternately smaller and larger, ap-
proach closer and closer to the value of e.

e > 2

e < 2 +
1
1

= 3

e > 2 +
1

1 +
1
2

= 2 +
1
3/2

= 2
2
3

or 2.67

e < 2 +
1

1 +
1

2 +
2
3

= 2 +
1

1 +
1
8/3

= 2 +
1
1 + 3/8

= 2
8
11

or 2.73

e > 2 +
1

1 +
1

2 +
2

3 +
3
4

=

e < 2 +
1

1 +
1

2 +
2

3 +
3

4 +
4
5

=
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· A N S W E R ·

e>238
53or2.717,e<274

103or2.7184.
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Zero, with which we began our story of the numbers, was
the most practical invention in the history of mathematics.
The theory of infinite sets, which we are now going to take
up, may well be the most impractical; yet from the point
of view of mathematics, it is incomparably the more impor-
tant.

Although the modern mathematical theory of the infi-
nite is not properly a part of the theory of numbers, it per-
meates the modern theory (as it does all of modern mathe-
matics) and develops quite naturally from a consideration
of the numbers with which we have been concerned in this
book. We have seen in the preceding chapters that the math-
ematically interesting sequences of numbers are those that
continue without end. If the primes were finite, they would
be of considerably less interest; and if it is established ul-
timately that the perfect numbers are finite, their interest
will become merely historical. Odd and even numbers, the
primes and the composite numbers, the squares, the cubes,
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the curious pentagonal numbers, all are infinite. These in-
finite sequences of numbers among the infinite sequence of
the natural numbers first suggested the revolutionary idea
that is the cornerstone of the modern theory of the infinite.

To understand this idea, we have only to go back to
Galileo, who held the cornerstone in his hands but failed to
put it into place. In “Four” we told how he, in the charac-
ter of Salviatus, pointed out that there are fully “as many”
in the infinite set of squares as there are in the infinite set
of all numbers. His argument was simplicity itself. Every
number, by definition, has a square, which is that number
multiplied by itself. We can pair the first square with the
first number, the second square with the second number,
and so on. We shall never run out of squares until we run
out of numbers; and since we shall never run out of num-
bers, we shall never run out of squares. In a similar way we
pair the fingers of the right hand with those of the left, right
thumb to left thumb, right forefinger to left forefinger, and
so on; when we come out even, we say we have “as many”
fingers on one hand as we have on the other.

Galileo did no more than to extend this commonly ac-
cepted way of determining “as many” to infinite quanti-
ties. He pointed out that there is a square for every num-
ber throughout the entire sequence of numbers. Squares
and numbers can be paired “to infinity.” In spite of appear-
ances to the contrary, there are as many squares as there are
numbers.

When we say that Galileo did no more than extend the
commonly accepted way of determining “as many” from
finite to infinite quantities, we do not intend to minimize
his achievement; for in some two thousand years no other
mathematician did so much. But Galileo, having come so
close to the modern theory of the infinite, did no more.
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He had showed that logically there are as many squares as
there are numbers; then he asked himself the next question.
If there are as many squares as there are numbers, can the number
of squares be said to be equal to the number of numbers?

Well, how was a mathematician going to answer that
one?

If there are as many squares as numbers, as he himself
had shown, the two sets cannot be said to be unequal. On
the other hand, there are obviously many more numbers
that are not squares than there are numbers that are squares.
At this point Galileo put the cornerstone back on the rock
pile and concluded, as we have seen already in “Four”:

“I see no other decision that it may admit, but to say that
all Numbers are infinite; Squares are infinite; and that nei-
ther is the multitude of Squares less than all Numbers, nor
this greater than that; and in conclusion, that the Attributes
of Equality, Majority, and Minority have no place in Infini-
ties, but only in terminate quantities.”

Three hundred years later, the mathematician Georg
Cantor (1848–1918) recognized that inherent in the defini-
tion of “as many” were the concepts of “equality” and of
“the same number.” To apply to infinities these concepts,
usually applied only to finite quantities, he needed a truly
precise definition of an infinite set as opposed to a finite set.
Such a definition he found in the relationship that Galileo
had earlier perceived between the squares and all the num-
bers although Cantor did not in fact come to his discovery
from the same direction as Galileo.

An infinite set, so Cantor defined it, is one that can be placed
in one-to-one correspondence with a proper part of itself.

This definition obviously does not apply to a finite set.
Although we can place all the squares in one-to-one cor-
respondence with all the numbers, never running out of

· 165 ·



�

�

�

�

�

�

�

�

· F R O M Z E R O T O I N F I N I T Y ·

either squares or numbers, we cannot place the squares less
than ten in one-to-one correspondence with the numbers
less than ten for the simple reason that we run out of squares
before we run out of numbers.

COUNTING COUNTING
ALL SQUARES THOSE UNDER TEN

0 0 0 0
1 1 1 1
2 4 2 4
3 9 3 9
4 16 but 4
5 25 5
6 36 6
7 49 7
8 64 8
9 81 9
. . . . . .

At this point we may well ask ourselves why, if Galileo
perceived the essential characteristic of an infinite set as dis-
tinguished from a finite set, did he not go on to Cantor’s
theory of the infinite, three hundred years before Cantor?
The answer to this question lies in one of the most ancient
axioms of mathematics: the axiom, found in Euclid’s Ele-
ments, to the effect that the whole is greater than the part.
Galileo could not bring himself to deny this axiom by say-
ing that the whole (all the numbers) is equal to the part (all
the squares). Instead he decided that the Attribute of Equal-
ity had no place in infinite quantities. Cantor said in essence
that the axiom that the whole is greater than the part has no
place in infinite quantities.

The mathematical justification for Cantor’s revolution-
ary reversal of Euclid’s axiom lies, very simply, in the fact
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that the reversal works with infinite quantities; that is, it
does not lead us into contradictions. On the other hand, the
axiom that the whole is greater than the part, which works
for finite quantities, leads us into contradictions when we
apply it to infinite quantities. Before Cantor, mathemati-
cians had struggled in vain to resolve these contradictions.
Cantor, defining an infinite set as one that, unlike a finite
set, can be placed in one-to-one correspondence with a part
of itself, resolved them all by eliminating them.

His theory of the infinite is famous for many seeming
contradictions. We can prove, for instance, that there are
as many points on a line one inch long as there are on a
line one mile long; we can also prove that there are in all
time as many years as there are days.1 But we never find

1To prove that there are as many points on the short line as there are
on the long line, we take the line AB and the longer line CD, place them
parallel to each other, and join the ends AC and BD. We extend AC and BD
until they intersect at O. It is then easy to see that any line drawn from O
through the two lines AB and CD will intersect them at the points P and
Q, respectively. For every point Q on the longer line there will be a point
P on the shorter that can be paired in one-to-one correspondence with it.

O

A

C
Q

P B

D

That there are in all time as many years as there are days is what
Bertrand Russell calls the Tristram Shandy paradox. Shandy, we recall,
spent two years recounting the events of the first two days of his life and
bemoaned the fact that at this rate he would fall farther and farther be-
hind in his autobiography. Quite true for a mortal Shandy. But an immor-
tal Shandy, with all eternity at his disposal, would recount the first day’s
events in the first year, the second day’s in the second year, and so on; and
eventually he would arrive in his narrative at any given day.
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ourselves in the untenable position of having proved in both
cases mentioned that the compared sets are equal—and that
they are unequal. The justification of consistency—that an
axiom does not lead to self-contradictory statements—is all
the justification a mathematician needs. By the rules of the
game, he is then free to formulate any theory that follows
logically from his axiom.

This is exactly what Georg Cantor did. Having defined
an infinite set as one that can be placed in one-to-one corre-
spondence with a part of itself, he then defined infinite sets
that can be so paired as equal and as having the same number.

Any infinite set that can be placed in one-to-one corre-
spondence with the set of all the positive integers has the
same cardinal number as the set of all the positive integers. It
is not the last positive integer, for there is no last. It is the
number of the totality of positive integers. It is a cardinal
number because it answers the question How many? about
the set of positive integers just as two and three answer the
question How many? about the sets of pairs and triplets to
which they apply. But it is an entirely new kind of cardi-
nal because it answers the question, not about finite, but
about infinite sets. Cantor called it a transfinite cardinal and
boldly presented it with a name. As the Greeks had called
their numbers by the letters in their alphabet, he called his
after the first letter of the Hebrew alphabet, aleph, the sym-
bol for which is ℵ.

Up until Cantor’s time infinity, represented by three dots
at the end of a sequence of numbers or by the symbol ∞,
had been the ultimate in unfinished business: an ever-
increasing finite quantity—add one and you always got a
larger quantity, a larger number—there was no last num-
ber. Of course, Cantor actually changed none of this. The
aleph of the positive integers is no last number. It is, for one
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thing, not a positive integer at all. The relation of the trans-
finite cardinal of the positive integers to the integers them-
selves is somewhat similar to the relation of the number one
to the proper fractions. One is not itself a fraction; it is the
limit that the fractions approach. No matter how large a
fraction we choose (that is, how close to one in value), there
is always another fraction that is larger than the first and,
therefore, closer to one; yet there is no such fraction that
exceeds or equals one. In very much the same way this par-
ticular aleph, which is not a positive integer itself, is the limit
of all the positive integers. No matter how large the integer
we choose, there is always another that is larger, although
it is not any “closer” to the limit. The essential difference,
for this example, between the number one and the number
aleph of the positive integers is that while the fractions liter-
ally approach the limit one, the positive integers approach
their transfinite cardinal only because the larger they get the
farther they get from zero. No matter how large the integer
we choose, we never get any “closer” to infinity because be-
tween us and infinity is always an infinity of numbers equal
to the infinity of positive integers.

The idea of infinity, not as something that is in the pro-
cess of becoming, but as something that exists—a number
that can be handled in many ways just like a finite number:
added, multiplied, raised to a power—was as revolutionary
as any idea that has ever flowered in the mind of man. Like
all revolutionary ideas, it was opposed with emotion, much
of it blind and bitter. Even Gauss, who thought far ahead
of his time and disembarked on many mathematical shores
long before their official discoverers, could not accept the
idea of a consummated infinite.

Probably no great mathematician ever stood more com-
pletely alone with his idea than Cantor, but he stood firm:
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“I was logically forced, almost against my will, because
in opposition to traditions which had become valued by me,
in the course of scientific researches, extending over many
years, to the thought of considering the infinitely great, not
merely in the form of the unlimitedly increasing. . . but also
to fix it mathematically by numbers in the definite form of a
‘completed infinite.’ I do not believe, then, that any reasons
can be urged against it which I am unable to combat.”

Cantor’s confidence lay not only in his mathematics but
in mathematics itself. He was always aware of the inherent
freedom of mathematical thought, and at another time he
wrote:

“. . . mathematics is, in its development, quite free, and
only subject to the self-evident condition that its concep-
tions are both free from contradiction in themselves and
stand in fixed relations, arranged by definitions, to previ-
ously formed and tested conceptions. In particular, in the
introduction of new numbers, it is only obligatory to give
such definitions of them as will afford them such a defi-
niteness and, under certain circumstances, such a relation
to the older numbers, as permits them to be distinguished
from one another in given cases. As soon as a number sat-
isfies all these conditions, it can and must be considered as
existent and real in mathematics.”

Cantor did not fear such freedom. He recognized that
the conditions laid down for it were very strict, arbitrary
abuse being kept at a minimum. He recognized also that
unless a new mathematical conception was mathematically
useful, it was abandoned in short order. Both the math-
ematical soundness of Cantor’s conception of a consum-
mated infinite and the mathematical usefulness of his trans-
finite cardinals have been borne out by time. Even before
his death in 1918, his ideas had been quite generally ac-
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cepted; and the arithmetic of the transfinite cardinals that
we shall detail briefly in the next few pages is now as much
a part of mathematics as 2 × 2.

Having defined cardinality for infinite quantities, Can-
tor proceeded to make two important statements: (1) the
cardinal number of all the positive integers is the small-
est transfinite cardinal and (2) for every transfinite cardinal
there exists a next larger transfinite cardinal. The similarity
between the totality of transfinite cardinals and the totality
of everyday finite cardinals, or the natural numbers, is ap-
parent. There is a first; there is always a next; there is no
last.

All of these transfinite cardinals were called alephs by
Cantor, but to each he added a subscript that indicated its
place in the sequence. The number of the positive integers,
first and smallest of the transfinite cardinals, has zero as
its subscript and is signified by ℵ0; in words, it is “aleph-
zero.” The next largest transfinite cardinal is aleph-one; the
next largest aleph-two, and so on.2 The reader should not,
however, conclude that this unlimited sequence of transfi-
nite cardinals exhausts the transfinite cardinal numbers, for
there exists a number that is the sum of all these alephs and
“out of it,” as Cantor wrote, “proceeds in the same way. . . a
next greater. . . , and so on, without end.”

Is there an everyday example of an infinity that is larger
than that represented by aleph-zero; in other words, an in-
finity that cannot be placed in one-to-one correspondence
with the positive integers?

It was Cantor’s achievement, not only to produce such
an infinity, but to produce it by a method so simple that a
person with no more knowledge of the theory of the infinite

2Interestingly, although Cantor later came to aleph-zero, he initially be-
gan to number his alephs with one rather than zero.
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than that we have been able to expound in the few pages of
this chapter will have no trouble in following his proof. To
appreciate his achievement, however, we must realize that
just as the positive integers can be placed in one-to-one cor-
respondence with one of their subsets, such as the squares
or the primes, infinities that include the positive integers
themselves as one of their subsets can also be placed in one-
to-one correspondence with them.

An example of such an apparently larger infinity that ac-
tually has the same cardinal number as the positive integers
is the infinity of all positive rational numbers. The rational
numbers, as we recall from “One,” include all those quanti-
ties that can be represented by the ratio of two whole num-
bers. Since the quantity represented by the ratio of a whole
number to one is that number itself as 2/1 = 2, the rationals
include the positive integers as well as well as what we call
fractions. Intuition tells us that there are many more ratio-
nals than integers, but intuition also tells us that there are
fewer squares than there are integers. And intuition is not
mathematical proof. If we can count the rational numbers,
we can pair a given fraction a/al with 1, a second b/b1, with
2. . . so that in a finite amount of time we shall be able, if we
wish, to count to any given rational number.

Well, let us begin. But how?
There is no smallest rational number.
There is no next largest rational number.
Given a rational number a/b as “the smallest,” we can

always get a smaller by adding one to the denominator,
a/(b + 1) being smaller than a/b. Given any two ratio-
nal numbers, a/b and c/d, no matter how close together,
we can always produce another that lies between them by
adding the numerators and the denominators of both for a
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new rational number. Between a/b and c/d lies (a + c)/
(b + d).

Have we then found an infinity that is larger than the
infinity of positive integers, represented by aleph-zero? No,
we have not. For it is possible to arrange the rational num-
bers (although not according to increasing size) in such a
way that there is a unique rational number to be paired
with each of the positive integers and that, given a sufficient
but finite amount of time, we can count to any rational we
choose.

We begin by arranging all the rational numbers in sub-
sets according to their numerators, omitting all those with
common factors since they will already have been included.
We now have an infinite number of rows of rational num-
bers, and it is obvious that the rows can be placed in one-
to-one correspondence with the positive integers:

1 ↔ 1/1 1/2 1/3 1/4 1/5 . . .
2 ↔ 2/1 2/3 2/5 2/7 2/9 . . .
3 ↔ 3/1 3/2 3/4 3/5 3/7 . . .
...

...
...

...
...

...

But each column also contains an infinite number of ra-
tional numbers that can also be placed in one-to-one corre-
spondence with the positive integers:

1 2 3 4 5 6 . . .
� � � � � �

1/1 1/2 1/3 1/4 1/5 1/6 . . .
2/1 2/3 2/5 2/7 2/9 2/11 . . .
3/1 3/2 3/4 3/5 3/7 3/8 . . .

...
...

...
...

...
...

We have here infinities upon infinities. If we count by
rows, we shall never get to the end of the first row and,
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therefore, never to the beginning of the second row, or the
rational number 2/1. If we count by columns, we shall
never get to the end of the first column and, therefore, never
to the beginning of the second column, or 1/2.

Yet there is a way of counting the rationals so that we
can place each of them in one-to-one correspondence with
a unique positive integer and so that, in a finite time, we
can count to any given rational number. We can do this—
Cantor showed—by counting the same arrangement of rows
and columns on the diagonal:

11 21 31 41 51

12 22 32 42 52

13 23 33 43 53

14 24 34 44 54

. . .

. . .

. . .

. . .

. . .15 25 35 45 55

By this method we have a first rational number to be
counted (1/1) and we always have a next number (in the
illustration above, after 1/5 we go next to 6/1). We have no
trouble at all in getting to 2/1 and 1/2. It is apparent that
given sufficient time we can count to any rational number
we choose. We shall never run out of numbers with which
to count. There are, in spite of appearances to the contrary,
fully as many positive integers as there are rational num-
bers.
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1 1
1

2 2
1

3 1
2

4 3
1

5 2
3

and so on.

The transfinite cardinal number of both sets is the same.
It is aleph-zero. Such sets, which can be placed in one-to-
one correspondence with the positive integers (i.e., can be
“counted” by them), are said to be “denumerable.”

After a result so contrary to intuition, can we, in accor-
dance with Cantor’s claim that for every transfinite cardi-
nal there is a next transfinite cardinal, now place on exhi-
bition a set that is “larger”—in short, a set that is “non-
denumerable,” that cannot be “counted” by the positive in-
tegers? Indeed we can. Cantor himself showed that the in-
finity of decimal fractions between zero and one cannot be
placed in one-to-one correspondence with the positive in-
tegers and must, therefore, have a cardinal number greater
than aleph-zero.

The decimal fractions include both the rational numbers
and the irrational numbers, such as the square root of 2, that
cannot be represented by the ratio of two whole numbers.
Among the decimal fractions there are some that terminate
in a string of zeros, others that after a certain sequence of
numbers begin to repeat that sequence indefinitely, and still
others—those that represent the irrational quantities—that
by their nature never terminate in zeros and never repeat.
All three types can be considered as non-terminating (the
string of zeros in the first type continuing to infinity), and
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all can be represented by the general form

0.n1n2n3n4n5n6n7n8n9 . . .

where each n represents a given place in the decimal.
Just as it is impossible to write down the first rational

number greater than zero, it is also impossible to write
down the first decimal fraction; and just as it is impossible
to write down the next rational number, it is also impos-
sible to write down the next decimal fraction. Yet it was
possible to arrange the rational numbers in such a way that
there was a first to be counted, and a next, and so on; and
we could arrive in a finite length of time at any given ratio-
nal number. Is there a similar way to arrange the decimal
fractions so that they too can be placed in one-to-one corre-
spondence with the integers?

Mathematics allows two ways of answering this ques-
tion: produce an arrangement, or show that no such ar-
rangement is possible. Cantor did the latter, and did it as
simply and smoothly as Euclid two thousand years before
him had proved that the number of primes is infinite. We
recall (from “Three”) that Euclid began by assuming a fi-
nite set that included all the primes; he then showed that
by multiplying the primes of the set together and adding
one, he could always produce either a prime not included
in the set or a number the prime factors of which had not
been included. The assumption then that there could be a
finite set of all primes was shown to be false; the primes,
infinite.

This is exactly the method Cantor followed. To prove
that the set of all decimal fractions between zero and one
cannot be placed in one-to-one correspondence with the pos-
itive integers—and is thus non-denumerable—he assumed
that by some unspecified arrangement such a correspon-
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dence was possible. He assumed a first decimal fraction
determined by this arrangement and paired it with the first
positive integer. He then assumed a next and paired it with
the second positive integer, and so on.

1 ↔ 0.a1a2a3a4a5a6a7a8a9 . . .
2 ↔ 0.b1b2b3b4b5b6b7b8b9 . . .
3 ↔ 0.c1c2c3c4c5c6c7c8c9 . . .
. . . . . .

He then showed that such an assumption of one-to-one
correspondence between the decimals and the positive in-
tegers is false, because he could always produce a decimal
fraction that had not been counted. The uncounted decimal
fraction he represented as

0.m1m2m3m4m5m6m7m8m9 . . .

where m1 is a digit other than a1 in the “first” decimal; m2,
a digit other than b2 in the “second” decimal; m3, a digit
other than c3 in the “third” decimal; and so on.3 A decimal
fraction formed in this manner could not be included in the
assumed arrangement of “all” decimal fractions because it
differs from each fraction that has been included in at least
one place. Thus in this way the infinity of decimal fractions
is shown to be greater than the infinity of positive integers:
the two sets cannot be placed in one-to-one correspondence.
And since it is greater, its cardinal number must be greater.

The decimal fractions between zero and one cover only
an infinitesimal part of the number line—the continuum of

3Since terminating decimals like 0.25 can be represented as nontermi-
nating decimals in two ways: either as 0.25000. . . or as 0.24999. . . , Cantor
excluded the digit nine to avoid having the new decimal a different repre-
sentation of a number that had already in a different form been included
in the class of “all” decimals.
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real numbers that provides a number for every point on the
line. But what is true of that part of the line is true of the
continuum as a whole. Cantor, therefore, called his new
transfinite cardinal “the number of the continuum” and
took as its symbol a letter from the German alphabet.

This departure from the Hebrew alphabet was signifi-
cant, for Cantor could not establish where among the alephs
the number of the continuum stands. He had stated that
aleph-zero was the smallest transfinite cardinal, that for ev-
ery transfinite cardinal there was a next largest and, most
important, that all the transfinite cardinals were included
in the sequence of alephs. Now he had produced in the
continuum of real numbers a set of numbers with a trans-
finite cardinal other than aleph-zero and larger than aleph-
zero, but was it the next aleph—was it aleph-one? This was
the question that Cantor left to the mathematicians that fol-
lowed him. It had all the beguiling simplicity of one of the
Greeks’ questions about the natural numbers, but when it
was answered—as it finally was—the answer was one that
many mathematicians were to find highly unsatisfactory.

Cantor himself always believed that the number of the
continuum was indeed aleph-one. Proving this conjecture
of his—the so-called “continuum hypothesis”—was to be-
come one of the great mathematical challenges of the twen-
tieth century.

Unfortunately Cantor himself had not proved all the state-
ments he had made about the alephs, although they would
follow logically if (as Cantor believed) all infinite sets could
be “well-ordered”—that is, ordered in such a way that ev-
ery nonempty subset had a first element. But this theorem
was proved only later by Ernst Zermelo (1871–1953), and to
prove it he had to invoke a new axiom—what is known as
the axiom of choice.
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In very nontechnical language the axiom of choice as-
sumes that it is possible to make infinitely many choices
even when one has no rule for choosing. A popular ex-
ample among logicians is the case of the man with a de-
numerable infinity of pairs of shoes and pairs of socks that
he wants to “count” by placing in one-to-one correspon-
dence with the positive integers. To do so, he must begin
with a “first” shoe and a “first” sock from each pair. He
has no problem deciding which will be the first shoe in a
pair, since there is a right and a left, but by what rule can he
choose a first sock from each pair? According to the axiom
of choice, he can take whichever sock he wishes—that is the
rule. Those mathematicians who do not accept the axiom
of choice say that he can’t assume he can choose unless he
has a rule for choosing. Those—the majority—who favor
the axiom say he can choose, rule or no rule.

Since the time of Cantor the theory of infinite sets has
been rigorously axiomatized after the model established by
Euclid in his Elements. Theorems in set theory, like the theo-
rems of geometry, have to be logically derived from a small
group of accepted assumptions, or axioms, and from the-
orems that have been derived previously from those same
axioms. There has, however, always been some doubt
whether the axiom of choice should be included among the
axioms. Without it many important and beautiful theorems
about infinite sets cannot be proved; yet it makes a state-
ment about infinite sets that, in mathematical language, is
“not constructive.” Such a statement makes many mathe-
maticians uncomfortable. To put it bluntly, even those who
utilize the axiom of choice in their proofs would be happier
if they didn’t have to do so. Unfortunately the axiom of
choice is necessary even to prove Cantor’s statement that
the cardinal number of the continuum is in fact one of the
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alephs—a statement that is obviously much weaker than his
hypothesis that the cardinal number of the continuum is
aleph-one.

Mathematicians who have come after Cantor have al-
ways believed with him that the number of the continuum
was in fact aleph-one, the next aleph after aleph-zero. They
have also believed that ultimately one of them would prove,
from the axioms of set theory, that it was—or in the alterna-
tive but also from the axioms, that it was not.

“Take any definite unsolved problem[s]. . . ” the great
German mathematician David Hilbert (1862–1943) said in
a famous talk at the beginning of the twentieth century,
“however unapproachable they may seem to us and how-
ever helpless we stand before them, we have, nevertheless,
the firm conviction that their solution must follow by a fi-
nite number of purely logical processes.”

Hilbert’s conviction “that every definite mathematical
problem must necessarily be susceptible of an exact settle-
ment, either in the form of an actual answer to the question
asked, or by the proof [as in the case of such problems as
the trisection of the angle] of the impossibility of its solution
and therewith the necessary failure of all attempts” was to
be severely tested in the coming century—and in connec-
tion with the questions posed by the axiom of choice and
by Cantor’s continuum hypothesis.

In 1938 Kurt Gödel (1906–1978) showed that the axiom
of choice cannot be disproved from the other axioms. Twenty-
five years later the young American mathematician, Paul
Cohen (1934–), showed that it cannot be proved from the other
axioms. This result established that there is no way around
the axiom of choice. It is consistent with the other axioms
(Gödel) and independent of them (Cohen). If you need it,
you must include it as an axiom.
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More unsettling to mathematicians was another result of
Cohen’s. Gödel had showed that the continuum hypothe-
ses cannot be disproved from the axioms of set theory. Co-
hen now showed that it cannot be proved from the axioms.
In the language to which mathematicians have come since
the time of the Greeks, and indeed since the time of Hilbert,
the question posed by the continuum hypothesis is undecid-
able.

Many mathematicians, including Gödel himself, found
such an answer highly unsatisfactory. If mathematics is, as
one mathematician has called it, “the ultimate reality,” then
either the number of the continuum is aleph-one or it is not
aleph-one. Some mathematicians referred to Cohen’s solv-
ing of the problem of the continuum hypothesis as its “un-
solving.” But Cohen himself feels that it is the best answer
that can be obtained.

Two thousand years ago, as we saw in “Six,” mathemati-
cians asked, How many numbers are there that are the sum of all
their divisors? Are they finite or infinite? Today they would
like to know with the traditional certainty of mathematics
whether the number of the continuum is aleph-one. Both
questions remain unanswered, but between the askings lie
two thousand years under the spell of an apparently simple
sequence that begins with zero and continues without end.

· T H E A R I T H M E T I C O F T H E ·
· I N F I N I T E ·

The arithmetic of transfinite numbers is as paradoxical
as the theory of the infinite itself. Questions in the “two
plus two” class of ordinary arithmetic are either so simple
that they are trivial or so difficult that no one has been able
to answer them.
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The reader will find that he can answer the problems
below if he will recall what he has learned about the various
infinite sets among the real numbers, and he can “show”
that he is right by producing an example from the text:

ℵ0 + ℵ0 =

2 × ℵ0 =

ℵ0 × ℵ0 =

· A N S W E R S ·

Theanswertoallthreeproblemsisthesame—aleph-zero.Exam-
plescouldbe(1)theoddandtheevennumbers,(2)thepositive
andthenegativeintegers,(3)therationalnumbers.
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additive representation, 21,
115–117, 116n, see also
Waring’s Problem

analytic number theory,
159–160

Arabic notation, 5–6
Aristotle, 17
arithmetical checks, 127–130

expressed as congruences,
131–133

axiom of choice, 178–181, see
also infinite sets, theory of

Babylonians, 1
bases for number systems

other than ten, 37–39
Bell, E. T., 32–33, 68–89, 119,

130
Briggs, Henry, 149
Buell, Donald A., 107

Cantor, Georg, see infinite sets
Cataldi, Pietro, 89
cipher (sifr), 5–6

classic construction problems,
100

classification of numbers
as even/odd, 19–20
as prime/composite, 20–22

Cohen, Paul, see axiom of
choice; continuum
hypothesis

computing machines, 35–36, see
also SWAC

congruence, 130
”casting out nines” as a

congruence, 131–133
constructible regular

polygons, 101
everyday congruences, 131
handling congruences like

algebraic equations,
135–136

Law of Quadratic
Reciprocity, 137–138

reciprocity of the law,
137–140

notions versus notations,
134–135
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significance of Fermat
primes, 100–02

transformation of numbers,
39–40

Wilson’s theorem as a
congruence, 133–134

continuum, number of, 178, see
also infinite sets, theory of

continuum hypothesis, 180–81,
Coolidge, J. L., 65
counting board, 2–3
counting by one-to-one

correspondence, 15–17
Courant, Richard, 152n
cubes, 115–117, see also

Waring’s Problem
cubical numbers, 116

decimal fractions, 31, 175–177,
see also continuum, number
of

decimal system, 31–32
de la Valle Poussin, C. J., 159,

see also Prime Number
Theorem

Dickson, L. E., 86–87
Diophantus, 63–64, see also

Fermat, Pierre
Disquisitiones Arithmeticae, 23n,

65, 105–107
duplation, 33–35

empty set, 13
Eratosthenes, 49–50
Euclid, 42, 44, 86, 90, 97, 100
Euler, Leonhard, 77–78, 82–83,

90, 103, 118, 136, 152, 153

Euler’s number
definition of e, 154–155,

155n–156n
famous formula, 152–153
importance for other

sciences, 151–152
invention of logarithms,

148–149
mathematically expressed,

144–145
name e, 152
omission from extensions of

numbers, 146–148
paradoxical, 143
relation to primes, 158–160

Fermat, Pierre, 64–67, 70–71, 76
Fermat numbers, 101–04

F5 and Euler, 103–104
Fermat primes, 101–104, 105
interest beyond primality,

104
methods of determining if

composite, 107–108
relation to constructible

polygons, 105–106
smallest tested, 110

Fermat’s Last Theorem, 67–69
Four Square Theorem, 117–119,

120
fundamental theorem of

arithmetic, 22–27

Galilei, Galileo, 59–61, 70,
164–165, 166

Gauss, Carl Friedrich, 23n, 65,
67, 97, 105–107, 130, 134,
136, 137, 157–159

GIMPS, 96, 97
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Gödel, Kurt, 180–181
Goldbach postulate, 116n
Great Amateurs of Mathematics,

65
Greek mathematics, 4

Hadamard, Jacques, 159, see
also Prime Number
Theorem

Hardy, G. H., 4. 41, 54, 121,
121n, 122–123

Hestenes, Magnus R., 95
Hilbert, David, 180
How to Solve It, 104n

imaginary numbers, 148
India, 4–5
infinite descent, method of,

69–70
infinite sets,

alephs, 168
Cantor, 165–171
continuum hypothesis, 178
counting decimal fractions,

175–177
counting positive rationals,

172–175
Galileo, 164–165
number of the continuum,

178
seeming contradictions,

167n, 167–168
theory of, 163–164
transfinite cardinals, 168–171
see also axiom of choice

integers, positive/negative and
zero, 9–10

irrational roots, 25, 25n

Julian Day, 131

Lagrange, Joseph Louis, 118
Laplace, Pierre Simon, 33
Law of Quadratic Reciprocity,

136–138
Lehmer, D. H., 93, 94
Lehmer, Emma Trotsky, 94–95
Leibnitz, Gottfried Wilhelm

von, 32–33, 35, 36, 51
limiting sum of the fractions of

the positive integers,
168–169

Littlewood, J. E., 4, 4n
logarithms, see Euler’s number
Lucas, Edouard, test of

primality, 51–53, 91, 94

mathematical invective, 8
Mathematical Recreation and

Essays, 109n
mediation, 33–35
Mersenne, Marin, 89–91, see

also Mersenne numbers
Mersenne numbers

largest known at time of
printing, 96-97

testing of primality by
computer, 92–97

Napier, John, 149, see also
Euler’s number

Napoleon I, 118
National Bureau of Standards

Western Automatic
Computer, 91–92, see also
SWAC

natural logarithm, 149, 150
numbers

abundant, 87
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amicable, 97
classification of, 19–21
deficient, 87
ephemeral, 20
factorial, 51–52, 144
feminine, 85
fundamental theorem of

arithmetic, 23–25
imaginary, 148
indissoluble, 20
masculine, 20, 85
natural, 11, 17, 73
prime, 20–23
prime factorization, unique,

23
Number Theory and Its History,

86–87

one
characteristics, 1, 15, 18–19
construction of natural

numbers, 16–17
definition of, 17–18
first idea of, 15
one and more than one,

15–17
one and religion, 18
one-to-one correspondence,

16–17
onion simile, 18
special case, 19
weapon we are given, 19

pair system, 30
Peirce, Benjamin, 154
pentagonal numbers, 73–75, 76

Euler’s generating function
for partitions, 77–83

Euler’s theorem about
pentagonal numbers and
partitions, 77–83

perfect numbers
definition of, 85
Dickson, 86–87
Euclid’s proof, 86
Euler’s proof all even perfect

numbers of same form, 90
first new, 95
mythology, 85, 87,
R. M. Robinson’s first testing

by computer, 85–86
R. M. Robinson’s program,

92–96
SWAC, 91–96

Polya, George, 104n
polygonal numbers, 73–75

Fermat’s theorem, 76
Euler’s theorem about

pentagonal numbers and
partitions, 77–83

Euler’s generating function
for partitions, 77–83

positional arithmetic, see
counting board; decimal
system

primes
arithmetic of testing, 87–88
building blocks of number

system, 2–3, 41
desire to find primes, 53–54,
Euclid’s proof that primes

are infinite, 43–45
Gauss on primes, 97
GIMPS, 96–97
guessing unknowns from

knowns 88–89
interest in primes, 41
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Lucas’s test for primality,
52–53

Mersenne’s guess, 89–91
number of composite

numbers, 45–47
prime deserts, 47–48
physicist’s proof all odd

numbers are prime, 103
testing for primality, 49–50
three, first typical prime, 41
twin primes, 48
Wilson’s theorem, 51–52

Prime Number Theorem,
156–160

problems and quizzes by
chapter

Zero, 14
One, 26–27
Two, 39–40
Three, 54–56
Four, 71
Five, 84
Six, 97–98
Seven, 111–113
Eight, 125–126
Nine 140–141
Euler’s Number, 160–162
Aleph-Zero, 181–182

Pythagorean theorem, 62–64,
see also Fermat’s Last
Theorem

Ramanujan, Srinivasa, 122,
122n

reductio ad absurdam, 24
Riemann, G. F. B., 159
Robbins, Herbert, 152n
Robinson, R. M., 85–96

Rouse Ball, W. W., 109n
Russell, Bertrand, 12

seven
mathematical significance,

99–100
numerological significance,

99
sifr, see cipher
squares,

geometrical arrangement,
57–59

relationship to natural
numbers, 59–61

see also Galilei, Galileo; Four
Square Theorem;
Pythagorean theorem; Two
Square Theorem

SWAC, 86, 91–96

Taylor, Richard L., 69
Todd, John, 95
trisection of angle, see classic

construction problems
Two Square Theorem, 69–70

unsolvability proofs, 180

Virgil, 10–11

Waring, Edward, 50, 118
Waring’s Problem, 118

in regard to biquadrates, 120,
123–124

in regard to cubes, 119–121
in regard to squares, 117–118,

123–124
proof that g(9) leads to G(n),

121–125
What Is Mathematics?, 152n
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Wiles, Andrew, see Fermat’s
Last Theorem

Wilson, John, 50, 118
Wilson’s Theorem, 51,

118–119,133–134
Woltman, George, 96

Young, Jeff, 107

Zermelo, Ernst, 178, see also
axiom of choice

zero
as a natural number, 11–13

as a special case, 13–14
as meaningful, meaningless,

indeterminate, 7–9
discovery as a number, 1,

7–9, 13–14
invention as a symbol, 1, 4–5
on time line and

thermometer, 9–11
placement among digits, 6–7
understanding as a number,

6–7
zeroth power of a number, 32
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